
Detecting Code Injections

in Noisy Environments Through

EM Signal Analysis and SVD Denoising

Presented in Partial Fulfillment of
the Requirements for the Degree of

Master of Science

with a Major in

Computer Science

in the

College of Graduate Studies

University of Idaho

by

Ekaterina M iller

Major Professor
Konstantinos Kolias , Ph .D.

Committee
Frederick T. Sheldon , Ph .D.

J ia Song , Ph .D.
Alex Vakanski , Ph .D.

Department Administrator
Terence Soule , Ph .D.

May 2022

ii

Abstract

The widespread use of embedded devices in virtually all types of critical applica-

tions has rendered them a vulnerable target for attackers and evildoers. However,

modifying traditional well-known perimeter protection mechanisms such as Intrusion

Detection Systems to function in corresponding devices is not a trivial task. The

main challenges revolve around Random Access Memory (RAM) and processing

limitations. Recently, the analysis of electromagnetic emanations has gathered the

interest of the research community. Thus, analogous protection systems have emerged

as a viable solution for providing external, non-intrusive control-flow attestation for

resource-constrained devices. Unfortunately, the majority of current work fails to

account for the implications of real-life factors, predominantly the impact of envi-

ronmental noise. In this work, we introduce a framework that integrates Singular

Value Decomposition (SVD) along with outlier detection mechanisms for discovering

malicious modifications in the execution of embedded software even under variable

conditions of noise. Our proposed framework achieves near-perfect accuracy, i.e.,

above 99% Area Under the Curve (AUC) score of even minimal and unknown code in-

jection attacks in moderately noisy environments, e.g., 0 Signal-to-Noise Ratio (SNR),

and maintains high detection accuracy, i.e., above 93% AUC score for unseen attacks,

even under extreme noise conditions, i.e., -10 SNR. To the best of our knowledge, this

is the first time this realistic limiting factor, i.e., environmental noise, has been suc-

cessfully addressed in the context of Electromagnetic (EM)-based anomaly detection

for embedded devices.

iii

Acknowledgements

This project would not have been possible without the incredible team’s work led by

Constantinos Kolias. Specifically, I would like to thank Georgios Michail Makrakis,

Kurt Vedros, and Craig Rieger.

iv

Dedication

I would like to thank my husband Pete and my sons Serafim and Eastin for putting

up with me while I was working on this project.

v

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

Table of Contents . v

L ist of Tables . vii

L ist of F igures . viii

Acronyms . ix

1 Introduction . 1

2 Technical Background & Definitions 4

2.1 Side Channel Analysis . 4

2.2 Code Injection Attacks . 5

2.3 SVD Denoising . 6

3 Problem statement . 10

4 Proposed Framework . 11

4.1 Signal Acquisition . 12

4.2 Noise Reduction & Pre-processing . 12

4.3 Anomaly Detection . 13

5 Experimental Setup & Data Gathering 16

5.1 Control Logic Process . 16

5.2 Experimental Setup . 21

5.3 Observations on the Captured Signals . 21

5.4 Evaluation Method . 22

6 Experimental Evaluation . 26

6.1 Considering No Pre-processing for Noise Reduction 26

6.2 Considering SVD with Traditional Cutting Points for Noise Reduction . 27

6.3 Statistically Inferring Cutting Points for Anomaly Detection 28

6.4 Evaluating Considering Variable Noise Levels 30

7 D iscussion . 36

7.1 Considerations Regarding the Number of Examples 38

8 Related Work . 42

8.1 EM Analysis as an Attack Vector . 42

8.2 EM based monitoring systems . 45

vi

8.3 SVD denoising . 49

9 Conclusion . 54

9.1 Challenges & Future Work . 55

B ibliography. 57

vii

List of Tables

Table 6 .1 Performance of the detection algorithm without applying noise reduction
as pre-processing. In parentheses is the number of neighbors provided
as input to the anomaly detection algorithm. 26

Table 6 .2 Performance of the detection algorithm with applying SVD using
cutting point 1 and number of neighbors for the LOF algorithm
equal 3. 28

Table 6 .3 Average AUC score achieved for the detection of two malicious
injections when the same noise conditions apply during training
and testing phases. In parentheses, the value for the cutting point
for the training set, the cutting point for the testing set, number of
neighbors for the LOF algorithm. 29

Table 6 .4 AUC scores across different noise levels. In parentheses, the parameters
provided as input for anomaly detection algorithm: cutting points
for training and testing determined by formula 6.1 and number of
neighbors for the LOF algorithm. 32

Table 6 .5 AUC scores across different noise levels with cutting points selected
through brute force. In parentheses, the parameters provided as
input for anomaly detection algorithm: cutting points for training
and testing and number of neighbors for the LOF algorithm. . . . 33

Table 6 .6 AUC scores are based on cutting points predicted using formula 6.2 34

Table 7 .1 The AUC score is based on the size of the matrix for denoising the
testing dataset (normal + ADD) 39

viii

List of Figures

F igure 2 .1 Comparison between a clean signal (red) and the noisy version
of the same signal (blue) for various SNR levels. 5

F igure 2 .2 Position of the cutting point where the slope of the curve of the
corresponding singular values changes drastically. Noise reduction
can be achieved by zeroing out singular values after that point. . . 8

F igure 4 .1 Data flow and basic procedures in the proposed framework. . . . 11

F igure 5 .1 A graphical representation of described tank filling scenario. . . . 17

F igure 5 .2 The proposed framework along with the major components used
in our experimental setup. 20

F igure 5 .3 Examples of benign and malicious signals with the injected code
are highlighted in red. It is clear that the injection of malicious
instructions causes an analogous displacement. 23

F igure 5 .4 Zoom-in at the critical section where the injection occurred. Notice
the displacement of the normal instruction (CLR) due to the injection
of malicious instructions. 24

F igure 5 .5 Zoom-in at the critical section where the injection occurred. The
reader should compare the difference amplitude for each instruction
that was injected vs. the normal instruction. 25

F igure 6 .1 Statistical analysis of cutting points based on the noise level. . . . 30

F igure 6 .2 Comparison between optimal AUC, AUC based on parameters
predicted by equation 6.1 only, and AUC based on parameters
predicted by equation 6.2 and equation 6.1. 35

F igure 7 .1 Normal signal(blue) vs. anomalous with ADD injection (orange)
in the noise-free dataset. 36

F igure 7 .2 The distribution of the crests (“peaks”) heights in the dataset
normal vs. abnormal (with ADD injection) and abnormal (with
JMP injection) before injection (crest 3) and after injection (crests
32). 37

F igure 7 .3 The average distance of the three closest neighbors of each individual
signal (testing normal and testing anomalous) in the dataset to
the totality of normal signals (training) that are considered as the
baseline in a clean dataset (top) vs. a noisy dataset (bottom). . . . 38

F igure 7 .4 Signals in the -10 SNR train dataset after denoising using cutting
point 4 for the matrixes size 402x2010, 576x2010, 2016x20010. . . . 39

F igure 7 .5 The effect of the number of observations vs. the number of
samples in each observation on the quality of denoising. 41

ix

Acronyms

AUC Area Under the Curve. ii

CI Critical Infrastructure. 1

CPU Central Processing Unit. 1

DWT Discrete Wavelet Transform. 50

EM Electromagnetic. 1

ICS Industrial Control Systems. 1

LOF Local Outlier Factor. 2

LSTM Long Short-Term Memory. 47

ML Machine Learning. 2

PCA Principal Component Analysis. 42

PD Partial Discharge. 49

PSD Power Spectral Density. 48

RAM Random Access Memory. ii

RNN Recurrent Neural Network. 47

SNR Signal-to-Noise Ratio. ii, 2

STFT Short-Term Fourier Transforms. 45

STS Shot-Term Spectra. 45

SVD Singular Value Decomposition. ii

VRM Voltage Regulator Module. 43

WT Wavelet Transform. 50

1

chapter 1

Introduction

Today, embedded devices have become an indispensable component for a wide range

of heterogeneous applications. Besides home automation, transportation, and retail,

such systems are increasingly deployed even within Industrial Control Systems (ICS).

Such systems may even support mission-critical tasks that are part of Critical Infras-

tructure (CI). Therefore, it does not come as a surprise that embedded devices time

and again become the targets of cyberattacks. Nonetheless, due to their limited on-

chip processing capabilities and proprietary nature, installing traditional means of

protection such as anti-malware or Host-based Intrusion Detection Systems (H-IDS)

is generally considered impractical.

Because of this, the applicability of external means of detecting the execution

of malware, e.g., via control-flow attestation, has attracted the interest of the re-

search community. Among the considered solutions, monitoring systems based on

side-channel analysis have gained traction. The term side-channel refers to analog

signals that get emanated by devices during their normal operation involuntarily.

Typically, such signals are disregarded as they do not correspond to those wireless

signals transmitted by the devices purposefully to achieve communication. However,

relevant bibliography Nazari et al. (2017),Han et al. (2017),Khan et al. (2019),Khan

et al. (2018),Han et al. (2019), and Sehatbakhsh et al. (2020a), indicates that there is

a correlation between these analog signals and the operations actively performed by

a subject device.

Among the different types of side-channels (power Liu et al. (2016),Wei et al. (2019),

acoustic Anton et al. (2019), thermal Islam et al. (2017)), the analysis of Electromagnetic

(EM) signals is preferable because it provides high bandwidth and enables the mon-

itoring of the Central Processing Unit (CPU) activity at high sampling rates Nazari

et al. (2017),Han et al. (2017),Sehatbakhsh et al. (2018),Kolias et al. (2020),Kolias et al.

(2019).

2

Previous work in the area Nazari et al. (2017),Han et al. (2017),Khan et al. (2019)

has shown high accuracy for detecting significant violations in the execution flow of a

monitored program under controlled laboratory environments. However, minimal code

injections of just a few instructions may be more stealthy and challenging to detect.

A code injection is an attack-type that consists of injecting malicious code that is, in

turn, forcefully executed by the application. Detecting minimal code injections be-

comes particularly challenging when such protection systems are deployed in realistic

environments and get affected by noise. Vedros et al. (2021) identified that even one-

instruction injections could be identified reliably, given a high sampling rate, when

operating at high SNR environments. The authors also noted the necessity of a noise

elimination step, particularly for low SNR conditions. Finally, they highlighted that

some noise filters might prove detrimental to the anomaly detection process due to

their tendency to eliminate critical artifacts associated with the anomaly.

In this work, we propose a framework for reliably identifying code injection attacks

of arbitrary lengths of code even under the influence of variable levels of environmental

noise. At the core of the framework lies a non-destructive, noise-reduction technique

that is based on the Signal-to-Noise Ratio (SNR) method. The proposed system relies

on Machine Learning (ML) to effectively describe the normal operations based on

examples of EM signals. The analysis process is not supervised, but rather it is based

on an outlier detection strategy at the core of which lies the well-known Local Outlier

Factor (LOF) Breunig et al. (2000) method. This design decision renders the system

capable of detecting unseen attacks i.e., in this context, the injection of variable lengths

of code and alternative types of instructions. These considerations are reasonable,

particularly for deployments in industrial settings where we have virtually no control

over the noise level.

The contributions of this work are summarized as follows:

• We propose a noise reduction strategy based on a modified version of SVD to

reduce the environmental white noise from a signal without eliminating critical

anomalous artifacts.

3

• We contribute equations derived from the empirical analysis to predict critical

hyperparameters of the method.

• We propose an anomaly detection strategy that is based on the incorporation of

the Local Outlier Factor in transduction for identifying even unseen anomalies.

• We propose an integrated framework for the reliable capturing and analysis of

EM signals from the CPU of embedded devices that can achieve high perfor-

mance even in highly noisy environments for the detection of code injection

attacks.

4

chapter 2

Technical Background & Definitions

This chapter describes fundamental technical terms and related previous work for a

better understanding of the scientific foundations of the proposed framework.

2 .1 side channel analysis

The execution of instructions by the CPU of a given device results in changes in the

flow of electric current inside the CPU’s circuitry. This change produces a magnetic

field that interacts with the electric field, resulting in an EM field. Moreover, the

components of the printed circuit board act as antennas that unintentionally transmit

the EM signals. These emanations can be captured by placing a probe near the

source of the signal Han et al. (2017), Han et al. (2019). It is possible to identify the

execution state of a program by analyzing these analog signals. The reader should

notice that there are alternative types of side-channels, for example, cache and timing

side-channels Yarom and Benger (2014), Hund et al. (2013). These are considered out

of the scope of this work, as this research concentrates on EM side-channels.

EM signals obtained by the CPU are amplitude modulated according to corre-

sponding instruction, with a carrier signal that has as base frequency the clock of the

monitored CPU Khan et al. (2018). Therefore, different instructions can theoretically

be distinguished by observing the amplitude of the signal across time.

Unfortunately, the presence of noise increases the difficulty in identifying sequences

that correspond to potentially unseen instructions. Figure 2.1 presents an example of

an EM signal that corresponds to the same execution path in clean (red) and noisy

(blue) environments for different SNR levels. The reader may notice that as the levels

of noise increase, the critical differences in amplitude become unrecognizable.

5

F igure 2 .1 : Comparison between a clean signal (red) and the noisy version of the
same signal (blue) for various SNR levels.

2 .2 code injection attacks

Code injection attacks start by exploring a target software for pre-existing vulnerabil-

ities that allow an attacker to inject malicious code. During the exploitation step, the

instructions that are injected change the original logic of the program or forge a new

(malicious) execution path, thus altering the original control flow.

Typically, code injection attacks are possible due to the lack of proper sanitization

of program input blocks. When such a vulnerability exists, an aggressor may insert

directly executable code to effectively modify a program. Control flow attestation and

control-flow integrity tools aim to detect or protect against such malicious practices.

However, the majority of conventional practices that fall under this category rely on

the instrumentation of the binary in collaboration with monitoring tools installed

natively. That is not always possible.

6

To fill this gap, side-channel techniques aim to achieve the same, but in a totally

external fashion, simply by relying on the EM signals emitted by the subject CPU.

Previous work in the area has shown that code injection attacks can be reliably

identified with this method. However, the majority of these works (a) consider only

significant modifications of the logic of a program where an attacker does not wish

to remain stealthy and (b) The majority of anomaly detection techniques proposed in

the literature achieve high-quality results assuming ideal conditions of a laboratory

setting. Nevertheless, in certain applications such as ICS, the devices are expected to

be deployed in conditions of high levels of EM noise. Indeed, critical artifacts corre-

sponding to the anomalous behavior are frequently concealed behind noise Vedros

et al. (2021), Khan et al. (2018),Epps and Krivitzky (2019).

In previous work, the authors Vedros et al. (2021) have been able to detect as low

as one-instruction injection with an average AUC rate of 98.7% for low noise envi-

ronments (10 SNR) using EM-based techniques and a rudimentary analysis method.

However, as the noise level increases, the detection rate decreases remarkably.

2 .3 svd denoising

SVD has been applied in diverse fields such as feature reduction in data analysis

Abdi and Williams (2010), image processing Epps and Krivitzky (2019), Rajwade et al.

(2012), fault diagnosis for machine Zeng and Chen (2019),Zhao and Jia (2017), to

name just a few. Regardless of the application, SVD essentially discovers the most

important components of a signal, (where the terms important and signal depends on

the application).

A critical mass of works has applied SVD for signal denoising, but only a handful

of these works have applied SVD for noise reduction of EM signals Jha and Yadava

(2010), Zhao and Jia (2017), Zeng and Chen (2019). In this context, a received signal is

considered as the composition of the original signal and the noise:

Xm = Xs + Xn (2.1)

7

where Xm is a set of examples of a signal mixed with random noise (usually expressed

as a 2-D matrix), Xs is a set of clean signals, and Xn is the white Gaussian noise added

to each signal. Applying SVD in Xm will result in the decomposition of that matrix

into three components Xm = UΣVT, where the columns of U are the left singular

vectors of Xm, the columns of V are the right singular vectors of Xm, and Σ is a

diagonal matrix where the values along the main diagonal correspond to singular

values of A. These values are ordered σ1 ≥ σ2 ≥ σ3... > 0 Golub and Van Loan (2013).

In general, the first singular value contained in the Σ matrix will correspond to the

most important features of the signal. U can be found as the eigenvector of XmXT
m, V is

the eigenvector of XT
mXm, and singular values are the square roots of the eigenvalues

of XmXT
m or XT

mXm (which are the same). From a mathematical point of view, to have

real eigenvalues and eigenvectors, the matrix must be symmetric. Multiplying any

rectangular matrix by its transpose will create a square symmetric matrix.

Each of these components can still be expressed as the composition of two signal

subspaces: (a) that of the clean signal and (b) that of the noise as follows:

Xm = UΣVT = [UsUn][ΣsΣn][VT
s VT

n] (2.2)

In order to denoise the signal, all singular values that are below a certain threshold

(from now on, this will be referred to as cutting point) are set to zero, thus creating

a new approximation of the singular matrix, Σnew. Figure 2.2 (right) illustrates this

transformation. After this, a denoised version of the signal Xs can be obtained as

the dot product of U, Σnew, and VT. More specifically, this can be expressed as in

Equation 2.3.

Xs = UΣnewVT

= U

σs 0

0 σn = 0

VT
(2.3)

8

where Xs is the clean signal, U is the left singular matrix, σs are the singular values

that correspond to the signal, σn are the singular values that correspond to noise, and

VT is the right singular matrix transposed.

One challenge with this approach is to accurately pinpoint the cutting point, i.e.,

the index of the singular value in the Σ matrix that demarcates the singular values

that correspond to the signal from those corresponding to noise. The reader should

remember that the σ values in the Σ matrix are ordered across the main diagonal.

Hassanpour et al. (2012) identified this point as the one where the slope of the curve

of the corresponding singular values changes drastically (Figure 2.2). This can be

obtained as the maximum change between two consequent derivation values when

calculating the derivation of the curve at each point.

F igure 2 .2 : Position of the cutting point where the slope of the curve of the
corresponding singular values changes drastically. Noise reduction can be achieved
by zeroing out singular values after that point.

Another obvious problem with such methods has to do with the high computa-

tional complexity of the denoising process, which can be up to O(m2n+ nm2 + n3) for

m by n matrix or O(min(m2n, nm2)) if we only need the k largest singular values.

Finally, a significant shortcoming revolves around the applicability of the approach

in streaming applications. Mainly because SVD cannot be directly applied to denoise

a single signal (streaming mode) since, in that case, SVD always yields a Σ, which is

a vector with only one non-zero singular value:

9

Xm = u
[
σ10 . . . 0

]
vT

s · · ·
...

...

vT
n · · ·

 (2.4)

where u is a scalar value, σ1 is the only non-zero singular value of the Σ vector, and

vi are the right singular vectors, of which only some correspond to the actual signal.

To tackle this problem, a common solution is to first transform the single observation

Xm into a Hankel Matrix (HM) representation, apply the denoising, and then revert

back to a one-dimensional signal. Let Xm represent a signal in time domain, i.e.,

X = x0, x1, x2, ..., xn. The Hankel Matrix (HM) of the signal can be written as

H =

x0 x1 x2 · · · xk

x1 x2 x3 · · · xk+1
...

...
...

...
...

xl xl+1 xl+2 · · · xn

 (2.5)

where n is the number of timestamps, l is the number of rows in H, and k = n− l + 1

is the number of columns. Govindarajan et al. (2019) use the HM on the whole signal

to remove the random noise from the Partial Discharge (PD) signal. Zhou et al. (2019)

propose to create an HM for each sliding window. This way, they were able to prevent

waveform distortion, a typical issue when SVD is performed for the whole signal.

Generally, Hankel transformations result in structures that have high memory require-

ments, in combination with the long execution times of SVD. Therefore, the denoising

time may easily become greater than the arrival rate of new observations. Because

of this, in this work, instead of denoising each signal individually, we consider the

use of a matrix created out of multiple synchronized signals and perform a grouped

denoising. The theoretical idea is described in De Moor (1993) and implemented in

Jha and Yadava (2010) for removing a “noise” in vapor samples.

10

chapter 3

Problem statement & Threat Model

The main purpose of this work is to introduce an integrated framework for reliably

identifying code injection attacks in embedded devices even in the presence of noise

by relying only on totally external, non-intrusive means. To achieve this, we rely on

EM signals, and we assume we have knowledge of what type of signals should be

emitted when the program operates normally (without the code injection).

We treat this problem as an anomaly detection problem comprising of two steps

(a) the fingerprinting and (b) the deployment stage. During the fingerprinting stage,

several examples of the same operation are gathered and used to identify the most

representative morphology of the signal. We assume that during this stage, the code

executed corresponds to the normal operation; therefore, we have no knowledge of

the anomalous operations and their corresponding signals. During the deployment

stage, we obtain signals whose type is not yet known, but their morphology has been

altered due to the impact of higher levels of noise.

The main assumptions regarding the attacker’s behavior and their capabilities are

the following:

• We assume that a vulnerability in the code of a protected program that allows a

code injection exists, and the attacker is aware of this vulnerability.

• The attacker has the capability of injecting arbitrary lengths of malicious instruc-

tions.

• Even a minimal number of extraneous instructions can have a significant (yet

sometimes stealthy) impact.

• The attacker can inject the malicious set of instructions anywhere in code.

11

chapter 4

Proposed Framework

This study aims to detect one instruction code injection in a noisy environment us-

ing an unsupervised detection mechanism and SVD denoising techniques. We will

discuss the challenges this denoising presents and the requirements for effective

noise elimination without the loss of essential artifacts. In addition, we will show

the possibility of training a detection algorithm in one noise domain and using this

algorithm to detect code injection in a different (noisier) noise domain. The research

will determine the choice of parameters for the SVD denoising using empirical and

statistical analyses.

The proposed framework specifies practices for (a) obtaining the EM signals from

the subject device, (b) performing signal pre-processing to reduce noise while main-

taining important characteristics that correspond to anomalies, (c) fingerprinting the

morphology of EM signals corresponding to normal operations (training) and finally,

(d) quantifying the level of disparity of these signals versus the ones obtained on the

field towards recognizing anomalous operations. Further details for each of these

procedures are discussed below.

F igure 4 .1 : Data flow and basic procedures in the proposed framework.

12

4 .1 signal acquisition

As a first step, the signals are obtained from the CPU using a near-field antenna that is

placed in close proximity to the target device. The actual distance depends on the size

of the monitored device, the type of enclosure, the type of the antenna, the presence

of other digital devices operating in the area, etc. Generally, one to five cm away from

the target is expected to give good accuracy in most noise-free setups.

During the fingerprinting phase, an adequate number of signals must be captured

to define the baseline. The number of signals varies and is analogous to the total

duration of the operation-to-be-fingerprinted and the sampling rate. From empirical

observations, one must collect a large number of samples that correspond to each

potential execution path of instructions (e.g., same loop) to achieve efficient finger-

printing. Ideally, the number of samples of each execution path should be at least as

many as the total number of timestamp samples that are used to describe those signals.

During the deployment phase, to avoid the use of a Hankel matrix, multiple signals

must also be obtained. Our experiments indicate that the number of observations

should be double the number of samples in each observation (Chapter 7).

Due to the low power of the captured signals, the readings must first be amplified

before they are fed to an oscilloscope. After this, signals are digitized and stored in a

database in binary (preferable) or CSV format. According to Vedros et al. (2021) high

sampling rates, i.e., around x16, the CPU clock speed (with higher sampling rates

providing diminishing returns) are ideal for anomaly detection purposes. Moreover,

such sampling rates are found to provide some level of robustness against noise and

can reliably detect even small code injections.

4 .2 noise reduction & pre -processing

Noise poses a significant challenge when the given task is anomaly detection. In

this work, we apply a modification of the SVD denoising as a pre-processing step to

reduce the noise level in the captured signals. The variations revolve around two axes.

On the one hand, the method is applied to multiple examples (as opposed to a single)

describing the same phenomenon, i.e., the same branch. This significantly speeds up

13

the denoising process and alleviates the need for bringing individual observations

to their HM representation, thus reserving memory. On the other hand, the signals

are denoised by considering a higher-than-usual values for cutting points. Although this

decision may appear counterintuitive, the reader should keep in mind that anomaly

detection and not noise elimination is the main objective of this work. Therefore, the

traditional cutting points defined in the literature based on the slope of the curve of

the corresponding singular values Hassanpour et al. (2012) or some hard threshold

Gavish and Donoho (2014) may be irrelevant in this context. In Chapter 7 we suggest

the choice of the cutting point that will allow us to observe the maximum contrast

between normal signals and signals with code injection. Since the only characteristic

that distinguishes different instructions is the difference in amplitude, we must take

special care in preserving those differences during the denoising process.

4 .3 anomaly detection

Our EM signal anomaly detection strategy is a modification of the transduction and

hypothesis testing algorithm introduced by Barbara et al. in Barbara´et al. (2006).

Transduction operates using the process of reasoning from specific, baseline cases

to other specific testing cases. This is in contrast to the more popular method of

induction, which reasons from specific cases to rules that can be applied to test other

cases. In the context of this problem, the baseline represents the morphology of the

benign signals and quantifies the variability in the population of the signals caused

primarily by noise. The basic assumption is that benign instances are easy to obtain in

real-life conditions. Meanwhile, malicious cases, while bearing differences compared

to benign observations, are highly unpredictable regarding the exact location, the

morphology, and the extent of the disparity. Thus, the anomalous cases that can be

observed in real life may potentially be infinite. The latter is the primary reason why

we chose to approach the problem at hand as an outlier detection problem rather than

a classification problem.

Transduction is carried out by placing an unknown signal in a known sample

distribution of data and then carrying out hypothesis testing; it determines whether

14

that instance is a good fit, i.e., highly similar to the rest or not. To that end, a measure

of strangeness i.e., level of unfitness is used for every signal with respect to every other

signal in the distribution, including the one we are trying to fit. Strangeness is a

function that measures the uniqueness or unfitness of that point. The authors of

Proedru et al. (2002) coined the term, and the term has been used in machine learning

algorithms based on transduction ever since.

The process described above is given in Algorithm 1. In further detail, the pro-

posed approach requires that the following steps are executed:

Step 1: Collect a population of normal signals. Here, we assume that during the

fingerprinting step, all examples correspond to a benign operation, and the device is

not infected. This will be the baseline of signals.

Step 2: Apply the LOF algorithm for each example in the baseline to quantify the level

of the strangeness of that signal with the rest. The reader may recall that LOF has been

proven to have superior discrimination power over simpler methods like K-Nearest

Neighbors (KNN) due to the fact that LOF takes into consideration the density of

the neighboring points relative to the density of the point in consideration. For this

reason, LOF has become our method of choice. This will be the baseline strangeness

distribution.

Step 3: During the deployment phase, obtain a signal we wish to test, and compute

its unfitness score with respect to the baseline constructed in Step 1 by using LOF. Then,

transduce that value against the baseline strangeness distribution that was constructed

in the previous step.

Step 4: As a result of the previous step, one obtains a fraction of the number of

signals whose unfitness score is greater or equal to the unfitness score of the test

point to the total signals considered. This fraction can be considered a p-value for a

statistical hypothesis test, where the null hypothesis is this point belongs to the baseline

distribution (considered normal), while the alternative hypothesis is that this point

does not fit the distribution, and hence, it needs to be deemed an anomaly.

Advantages: The proposed approach can detect anomalies without knowing (training

examples) their morphology or characteristics. Moreover, this method is guided by

a user’s confidence level. This is contrary to commonly used anomaly detection

15

algorithms that produce a ranking of outliers, leaving the user to select the desired

number.

Algorithm 1 Anomaly Detection Algorithm
1: function Detect(benign dataset X, test observation q)
2: statusq ← 0
3: for ∀i ∈ X do
4: sxi ← LOF(X, xi)
5: Si ← sxi
6: end for
7: sq ← LOF(X, q)
8: for ∀sxi ∈ S do
9: if sxi ≥ sq then

10: n← n + 1
11: end if
12: end for
13: pq ← n+1

|x|+1
14: τ ← 1− con f idence
15: if pmax <= τ then
16: statusq ← 1
17: end if

return statusq
18: end function

16

chapter 5

Experimental Setup & Data Gathering

To evaluate the proposed framework, we have created an experimental setup con-

sisting exclusively of low-cost, off-the-shelve components. A simple control process

emulating a tank filling system is used as the software-to-be-protected against malicious

modifications. Two alternative versions of that software are compiled, each one

corresponding to the version of the control logic after the malicious injection of a

single instruction. During the fingerprinting stage, EM signals are obtained from the

benign version of the software. These signals are used to create the baseline and train

the detection engine. At the deployment stage, we collected signals while the device

was operating under normal as well as anomalous states (i.e., after the injection). In

an offline step, we add noise of various levels to the signals synthetically to simulate

the change in environmental conditions. The predictive accuracy of our system is

evaluated. Details regarding the process described above are given in this section.

5 .1 control logic process

For the inspected control process, we devised a simple tank filling system. According

to the considered scenario, fluid is inserted into a tank by a pump. At the point

where the fluid reaches critical levels, a valve opens, and the fluid is removed from the

container. Two sensors indicate the levels of the fluid that are placed at two different

levels (high and low). In the unlikely event that the sensors provide erroneous

readings (e.g., high is enabled but low is not), an alarm is triggered, and the system

automatically disables both the pump and the valve. For reasons of simplicity, both

the pump and the valve can be in an open or closed state, and the sensors can provide

an indication or not depending on whether the fluid has reached the sensor. The

pump keeps pushing fluid to the tank until both the high-level and low-level sensors

provide readings. When that happens, the pump switches to a closed state, and the

valve switches to an open state. Once the fluid is removed from the tank, the process

17

F igure 5 .1 : A graphical representation of described tank filling scenario.

starts again from the beginning (loop). A sample setup supporting the described

control process is illustrated in Figure 5.1 and the corresponding pseudocode can be

found in Algorithm 2

The above control logic is implemented in the AVR assembly language and in-

stalled in an Arduino Mega with an ATmega2560 CPU clocked at 16MHz. The choice

of language is made to have better control over the actual instructions being executed

at the CPU at every instance. The demonstrated results could have been achieved us-

ing C language, which is the de facto language for the platform of choice, without loss

of generality. However, the C compiler tends to add or remove numerous instructions

that are not directly relevant to the objective, e.g., for purposes of optimization. The

assembly code that corresponds to the described control logic can be found in Listing

5.1.

18

1
2 loop:
3 sbi pinb , 7 ; toggle pinb 7 every loop (as sync artifact)
4

5 ; just a NOP sequence
6 nop
7 nop
8 nop
9 nop

10 nop
11 nop
12

13 ; read the lowLevel input (arduino pin 11)
14 clr r20
15 sbic pinb , 3
16 ldi r20 , 1
17

18 ; read the highLevel input (arduino pin 12)
19 clr r21
20 sbic pinb , 4
21 ldi r21 , 1
22 jmp low_0_high_lowerEq_1
23 rjmp loop
24 low_0_high_lowerEq_1:
25

26 ; if lowLevel is not set , go to the next case
27 ldi r22 , 0
28 cp r20 , r22
29 brne low_1_high_lowerEq_1
30

31 ; if highLevel is not set , go to the next case
32 ldi r22 , 0
33 cp r21 , r22
34 brne low_1_high_lowerEq_1
35

36 ; set only the pump
37 sbi portb , 2
38 cbi portb , 1
39 cbi portb , 5
40 rjmp loop
41

L isting 5 .1 : The normal assembly program for the tank filling process.

19

Algorithm 2 Tank Filling process
1: LowLevel ← readLowLevelSensor()
2: HighLevel ← readHighLevelSensor()

3: if LowLevel = 0 and HighLevel = 0 then
4: pump← 1
5: valve← 0
6: alarm← 0
7: else if LowLevel = 1 and HighLevel = 1 then
8: pump← 0
9: valve← 1

10: alarm← 0
11: else if LowLevel <= 1 and HighLevel > 0 then
12: pump← 0
13: valve← 0
14: alarm← 1
15: else//outputs unchanged
16: end if

The two adversarial cases considered in this work include the injection of ADD

and JMP instructions, respectively. In other words, both adversarial cases consider the

injection of a single instruction. However, both cases can be harmful and can alter the

program execution in a meaningful way, e.g., alter the value of an important variable

(ADD) or even skip entire blocks of code (JMP). Regardless, the malicious injection is

expected to be much more extensive in real-life scenarios. These two modifications

are presented in Listings 5.2 and 5.3.

7

8
9 nop

10 nop
11 nop
12

13 add r2, r0
14

15 ; read the lowLevel input (arduino pin 11)
16 clr r20
17 sbic pinb , 3
18 ldi r20 , 1
19

20

L isting 5 .2 : The assembly program for the injection of ADD instruction in the tank

filling process.

20

7

8
9 nop

10 nop
11 nop
12

13 jmp label1
14

15 ; read the lowLevel input (arduino pin 11)
16 clr r20
17 sbic pinb , 3
18 ldi r20 , 1
19

L isting 5 .3 : The assembly program for the injection of JMP instruction in the tank

filling process.

F igure 5 .2 : The proposed framework along with the major components used in our
experimental setup.

21

5 .2 experimental setup

An illustration of our setup, along with the relevant placement of the mentioned com-

ponents, is given in Figure 5.2. For all considered experiments, the subject device was

the Arduino Mega 1 . While the framework assumes any type of near-field antenna

placed at a distance of a few cm away from the device, in our experiments, we used

a near-field probe placed directly on top of the CPU; namely, an EMRSS RF Explorer

H-Loop 2 . This was done to obtain EM readings that are virtually noise-free. Later

on, synthetic random noise having a Gaussian distribution was added to each signal.

We considered noise levels of 10dB, 5dB, 0dB, -5dB, and -10dB SNR. The noise was

added using Python and a version of the Additive Gaussian White Noise function

adapted from Viswanathan (2019). Since such signals are emitted involuntarily using

no dedicated antennas they are typical of extremely low amplitude. Therefore, each

signal captured 3 was first amplified using a Beehive 150A EMC probe amplifier

5 . The captured signals were saved in a digital format with the use of a PicoScope

3403D oscilloscope 6 connected to a laptop 7 . For all experiments, the sampling

rate was set to 250MS/sec, i.e., a sampling interval of 4ns. Notice that this sampling

rate is almost 15 times more than the CPU clock of the chosen platform. Using an

external signal from a specific I/O pin (4 in Figure 5.2), we were able to identify the

beginning and end of the program’s execution loop by toggling between high/low

values on the I/O pin. This was done to maintain a strong synchronization among all

the signals.

5 .3 observations on the captured signals

The injection of a malicious instruction occurs right after a sequence of NOP instruc-

tions. An ADD instruction consumes one cycle while a JMP instruction takes three

cycles. Naturally, the injection of these malicious instructions causes a displacement

of one and three cycles to the right for the following benign instruction, namely the

CLR. This is presented in Figure 5.4 which contains a zoomed-in version of the area

of interest in Figure 5.3.

22

By comparing the amplitude of the signals, we can verify that there is a difference

between the normal (expected CLR) and malicious instructions (ADD and JMP). More

specifically, The CLR has a much higher amplitude than either the ADD or JMP.

A zoomed-in version of the area of interest is given in Figure 5.5. A comparison

solely based on the differences in EM amplitudes for specific cycles indicates that the

injection took place around the indexes 400 to 450.

5 .4 evaluation method

The method of ten-fold cross-validation was used to evaluate the detection accuracy

of the proposed system. More specifically, 90% of the normal dataset was withheld

and used for training, and 10% of the remaining normal dataset, along with the same

amount of anomalous signals, was used for testing purposes in each of the folds.

The average from the folds has been calculated and reported. The predictive

accuracy is evaluated using the Area Under the Curve (AUC) score of the corre-

sponding Receiver Operator Characteristic (ROC) curve. A ROC is a popular metric

for describing the efficiency of anomaly detection systems. It is essentially a graph

illustrating the True-Positive Rate (TPR) vs. the False Positive Rate (FPR) for various

thresholds. This graph is usually a curve, and since the shape of the curve is arbitrary,

the most common method for comparing two ROC curves is by measuring the AUC.

23

F igure 5 .3 : Examples of benign and malicious signals with the injected code are
highlighted in red. It is clear that the injection of malicious instructions causes an
analogous displacement.

24

F igure 5 .4 : Zoom-in at the critical section where the injection occurred. Notice
the displacement of the normal instruction (CLR) due to the injection of malicious
instructions.

25

F igure 5 .5 : Zoom-in at the critical section where the injection occurred. The reader
should compare the difference amplitude for each instruction that was injected vs. the
normal instruction.

26

chapter 6

Experimental Evaluation

We have conducted four sets of experiments to evaluate the efficiency of our frame-

work. The reader should keep in mind that all experiments consider injecting a

minimum number of instructions, i.e., one. Therefore, all results presented in this

section define a lower bound (minimum) of predictive accuracy.

6 .1 considering no pre -processing for noise

reduction

Table 6 .1 : Performance of the detection algorithm without applying noise reduction
as pre-processing. In parentheses is the number of neighbors provided as input to the
anomaly detection algorithm.

Injection of ADD
test SNR 10 5 0 -5 -10

10 99.23% (3) 23.1% (3) 0.00% (3) 0.00% (3) 0.00% (3)
5 - 98.74% (3) 0.00% (3) 0.00% (3) 0.00% (3)
0 - - 61.93% (3) 0.00% (3) 0.00%(3)
-5 - - - 31.72% (3) 0.00% (3)

tr
ai

ni
ng

SN
R

-10 - - - - 21.9% (3)
Injection of JMP

test SNR 10 5 0 -5 -10
10 99.40% (3) 22.03% (3) 0.00% (3) 0.00% (3) 0.00% (3)
5 - 99.10% (3) 0.00% (3) 0.00% (3) 0.00% (3)
0 - - 39.36% (3) 0.00% (3) 0.00% (3)
-5 - - - 15.3% (3) 0.00% (3)

tr
ai

ni
ng

SN
R

-10 - - - - 9.97% (3)

In the first experiment, we wanted to identify the performance of the anomaly

detection algorithm when no noise elimination was applied. More specifically, we

have posed two questions: (a) what are the limits of our framework for various

noise levels assuming that noise remained the same during the fingerprinting and

27

deployment phases? (b) how does the predictive accuracy get impacted if the noise

intensity increases from the fingerprinting to the deployment phase?

Table 6.1 contains the results (AUC scores) of the experiments. The highlighted

values at the main diagonal of the table directly provide an answer to the first ex-

periment. The rest of the values correspond to the second experiment. The results

indicate that the AUC score is near-perfect when the system is deployed in a relatively

clean environment, i.e., 10 to 5 SNR. However, the predictive accuracy rapidly drops

to very poor levels (below 70%) when considering SNR below 5dB. For example, for -

10dB, the score achieved is only 21.9% for identifying the injection of ADD instruction

and 9.97% for identifying the injection of JMP instruction. Regarding the second

experiment, the best results are obtained when the noise level during the deployment

stage remains close to those applied during the fingerprinting process. Regardless of

whether the noise levels are variable, the results indicate that higher noise levels have

a clear negative impact.

Conclusion: A noise reduction step is necessary, especially when the system is expected to

operate at the SNR levels below 5 dB.

6 .2 considering svd with traditional cutting points

for noise reduction

In the next experiment, we introduce a pre-processing step aiming at noise reduction.

The denoising method of choice is based on SVD. In this experiment, the parameter

cutting point is chosen according to traditional criteria, i.e., where the slope of the

curve in the corresponding singular values graph changes drastically. The value of

the parameter is chosen based on the noise conditions of the fingerprinting stage

solely, assuming no knowledge of the noise levels in the deployment stage. Notice

that based on the chosen criteria in all of our experiments, the value of the cutting

point is dictated to be one.

The results of this experiment are given in the Table 6.2. According to the values in

the table, the application of SVD with traditional cutting points drastically degrades

the anomaly detection accuracy for all cases. For example, the AUC score drops from

28

near-perfect 99.23% to 4.49% even for the cleanest environment, i.e., 10dB for detection

of the ADD instruction. Such an aggressive noise reduction procedure eliminates

important characteristics that indicate the anomalies.

Conclusion: The application of SVD for noise reduction as a pre-processing step, when using

traditional cutting points, has a negative impact on the anomaly detection process. Therefore,

new criteria for choosing optimal cutting points should be identified.

Table 6 .2 : Performance of the detection algorithm with applying SVD using cutting
point 1 and number of neighbors for the LOF algorithm equal 3

Injection of ADD
SNR 10 5 0 -5 -10

4.49%
(1,1,3)

5.06%
(1,1,3)

5.49%
(1,1,3)

4.91%
(1,1,3)

5.38%
(1,1,3)

Injection of JMP
SNR 10 5 0 -5 -10

4.46%
(1,1,3)

4.98%
(1,1,3)

5.49%
(1,1,3)

4.87%
(1,1,3)

5.60%
(1,1,3)

6 .3 statistically inferring cutting points for

anomaly detection

For the next set of experiments, we have considered the simple case where the noise

levels remain the same across training and deployment environments. More specifi-

cally, the experiments aim to answer the following questions: (a) Can we statistically

infer alternative cutting points that are optimized for anomaly detection? (b) Are

these parameter values applicable for the detection of alternative instructions?

From our observations, we noticed that as noise levels increase, the number of

singular values that need to be retained decreases. This is in accordance with the

dominant approaches in the bibliography. However, unlike common practices, we

opt to retain more than the usual number of singular values than the perceived

ideal. Let us consider the case for the case of -10dB (extremely high levels of noise).

Traditional approaches typically dictate the retention of just one singular value. By

retaining four singular values instead, we achieve, on average, a better TPR to FPR

29

Table 6 .3 : Average AUC score achieved for the detection of two malicious injections
when the same noise conditions apply during training and testing phases. In
parentheses, the value for the cutting point for the training set, the cutting point
for the testing set, number of neighbors for the LOF algorithm.

Injection of ADD
SNR 10 5 0 -5 -10

99.54%
(25,25,3)

99.46%
(15,15,3)

98.84%
(10,10,3)

97.45%
(6,6,5)

92.20%
(4,4,51)

Injection of JMP
SNR 10 5 0 -5 -10

99.84%
(25,25,3)

99.51%
(15,15,3)

99.00%
(10,10,3)

97.47%
(6,6,5)

93.07%
(4,4,51)

rate, despite the denoised signals retaining a significant amount of noise. Yet, a

dichotomy exists. Discarding many singular values may lead to the elimination of

important characteristics indicative of anomalies, while retaining too many many

singular values may result in retaining noise that may conceal or distort the artifacts

of interest.

Therefore, across all considered noise environments, by increasing the value of

the cutting point, we are able to achieve a significant increase in predictive accuracy.

More specifically, a near-perfect accuracy is achieved, i.e., close or above to 99% AUC

score for environments with low to moderate noise levels, i.e., from 10dB to 0dB. For

more noisy environments, e.g., -5dB up to extremely high levels of noise, i.e., -10dB,

the predictive accuracy drops at a slow pace but remains above 90% levels. Detailed

results for each experiment, along with the chosen hyperparameters, are given in

Table 6.3.

Interestingly, the values for the cutting points and the number of neighbors are

the same for the two types of injections. This indicates that the identified parameters

for a given type of injection at a specific noise level are potentially transferable across

different types of injections.

By plotting those values 6.1, we can statistically derive the equation 6.1 that esti-

mates the value of the optimal cutting point based on the active noise level. More

specifically, the formula is given as:

30

F igure 6 .1 : Statistical analysis of cutting points based on the noise level.

T̂ = α · eβ·n (6.1)

where α and β are constants specific to the environment. In our experiments, the

values for these parameters are α = 9.7915 and β = 0.0916; n is the noise level in

the training and deployment environments; T̂ is the value for the cutting points that

need to be applied to reduce noise in the training and deployment environments. In

other words, T̂ is a number of singular values that will be retained during denoising.

Conclusions: (a) SVD denoising with cutting points that lead to the retention of more

singular values provides high predictive accuracy even for minimal code injections and for

extremely high levels of environmental noise; (b) It is possible to statistically infer a formula

for identifying (near-optimal) cutting points for anomaly detection, regardless of the type of

injection.

6 .4 evaluating considering variable noise levels

Our next set of experiments focused on quantifying the accuracy of our system in

variable noise domains; more specifically, we considered the case where we trained

our baseline at a specific noise level, but the noise level increased during the deploy-

ment stage. As in the previous experiment, we relied on the equation 6.1 to identify

31

optimal cutting points for fingerprinting and deployment environments separately.

The results of this experiment are provided in table 6.4. The reader can see that

the AUC score decreases as the difference between the noise level between the two

environments increases.

Subsequently, we posed the question of whether these results are optimal we can

achieve. Based on exhaustive experimentation regarding the values of the cutting

points (brute force), we obtained alternative values for the hyperparameters. The

optimal results are reported in table 6.4. Intuitively, one may recognize that the

choice of optimal cutting points may not only depend upon the active noise levels

but possibly on the difference in noise levels between fingerprinting and deployment.

This observation, allowed us to derive a new formula that takes into account both

the original and the new noise levels. Specifically, the formula is defined as follows:

T = λ · eγ∆SNR · T̂ (6.2)

where T and T̂ are the values for the cutting points that need to be applied to reduce

noise in the training and deployment environments respectfully; λ and γ are constants

specific to the environment. In our experiments, the values for these parameters are

λ = 2.255 and γ = 0.1637; ∆SNR is the difference between the levels of noise in the

training and deployment environments.

With this new formula, we repeated the experiments by utilizing cutting points as

they were dictated by the new formula. To test our findings, we run the experiment

with a cutting point during fingerprinting calculated by 6.2 and a cutting point for

deployment based on equation 6.1 with α = 8.913 and β = 0.1068. The result of this

experiment is presented in table 6.6. The reader can clearly see a significant increase

in predictive accuracy across all noise levels that reaches near-optimal levels.

Figure 6.2 shows the comparison between AUC scores achieved when cutting

points are identified through exhaustive search (red), predicted by equation 6.1 (green),

and AUC based on parameters predicted with the utilization of equation 6.2 (blue).

This image compares performance when fingerprinting is done in different noise

32

Table 6 .4 : AUC scores across different noise levels. In parentheses, the parameters
provided as input for anomaly detection algorithm: cutting points for training and
testing determined by formula 6.1 and number of neighbors for the LOF algorithm.

Injection of ADD
test SNR 10 5 0 -5 -10

10 99.54%
(25,25,3)

98.91%
(25,15,3)

97.92%
(25,10,3)

95.71%
(25,6,3)

86.25%
(25,4,25)

5 - 99.46%
(15,15,3)

98.02%
(15,10,3)

96.67%
(15,6,5)

86.88%
(15,4,25)

0 - - 98.84%
(10,10, 5)

86.89%
(10,6,5)

87.17%
(10,4,25)

-5 - - - 97.45%
(6,6,5)

87.28%
(6,4,51)tr

ai
ni

ng
SN

R

-10 - - - - 92.20%
(4,4,5)

Injection of JMP
test SNR 10 5 0 -5 -10

10 99.84%
(25,25,3)

98.97%
(25,15,3)

98.12%
(25,10,3)

96.20%
(25,6,3)

88.37%
(25,4,25)

5 - 99.51%
(15,15,3)

98.33%
(15,10,3)

96.94%
(15,6,5)

88.72%
(15,4,25)

0 - - 99.00%
(10,10, 3)

96.99%
(10,6,5)

88.90%
(10,4,25)

-5 - - - 97.47%
(6,6,5)

88.94%
(6,4,51)tr

ai
ni

ng
SN

R

-10 - - - - 93.07%
(4,4,5)

domains and deployment is done at -10 SNR. As can be seen, the new formula can

choose denoising parameters that approximate near optimal levels.

33

Table 6 .5 : AUC scores across different noise levels with cutting points selected
through brute force. In parentheses, the parameters provided as input for anomaly
detection algorithm: cutting points for training and testing and number of neighbors
for the LOF algorithm.

Injection of ADD
test SNR 10 5 0 -5 -10

10 99.84%
(61,25,3)

99.85%
(54,14,3)

99.59%
(100,10,5)

98.78%
(200,6,9)

90.01%
(200,3,20)

5 - 99.83%
(38,15,3)

99.66%
(50,10,5)

98.81%
(50,5,25)

90.12%
(76,3,25)

0 - - 99.77%
(25,10, 5)

98.84%
(25,5,25)

90.41%
(29,3,25)

-5 - - - 99.43%
(13,5,5)

91.20%
(15,3,11)tr

ai
ni

ng
SN

R

-10 - - - - 94.20%
(7,3,11)

Injection of JMP
test SNR 10 5 0 -5 -10

10 99.95%
(61,25,3)

99.92%
(55,15,3)

99.63%
(100,10,5)

98.86%
(200,6,9)

92.20%
(200,3,20)

5 - 99.94%
(37,15,3)

99.70%
(50,10,5)

98.90%
(50,4,25)

92.29%
(75,3,25)

0 - - 99.79%
(21,7, 5)

98.94%
(25,5,25)

92.31%
(29,3,25)

-5 - - - 99.47%
(14,5,5)

93.15%
(15,3,11)tr

ai
ni

ng
SN

R

-10 - - - - 95.33%
(7,3,11)

34

Table 6 .6 : AUC scores are based on cutting points predicted using formula 6.2

Injection of ADD
test SNR 10 5 0 -5 -10

10 99.84%
(59,26,3)

99.75%
(77,15,3)

99.12%
(104,9,5)

97.46%
(131,5,5)

89.47%
(179,3,11)

5 - 99.88%
(34,15,3)

99.66%
(46,9,5)

97.69%
(58,5,5)

89.70%
(79,3,11)

0 - - 99.77%
(26,9, 5)

98.42%
(25,5,5)

90.03%
(35,3,11)

-5 - - - 99.34%
(11,5,5)

91.20%
(15,3,11)tr

ai
ni

ng
SN

R

-10 - - - - 94.20%
(7,3,11)

Injection of JMP
test SNR 10 5 0 -5 -10

10 99.95%
(59,26,3)

99.87%
(77,15,3)

99.17%
(104,9,5)

97.64%
(131,5,5)

91.31%
(179,3,11)

5 - 99.94%
(34,15,3)

99.73%
(46,9,5)

97.84%
(58,5,5)

91.41%
(79,3,11)

0 - - 99.62%
(26,9, 5)

98.56%
(25,5,5)

91.61%
(35,3,11)

-5 - - - 99.34%
(11,5,5)

91.20%
(15,3,11)tr

ai
ni

ng
SN

R

-10 - - - - 95.33%
(7,3,11)

35

F igure 6 .2 : Comparison between optimal AUC, AUC based on parameters
predicted by equation 6.1 only, and AUC based on parameters predicted by equation
6.2 and equation 6.1.

36

chapter 7

Discussion

This chapter intends to give a deeper understanding of the evaluation numbers we

saw in Chapter 6. It explains why denoising is a necessary step and how the matrix

size and cutting points affect denoising. If we compare normal signals with abnormal

ones, as in Figure 7.1, we can see that they have the same frequencies and are only

slightly deferred by the amplitude of some "peaks."

F igure 7 .1 : Normal signal(blue) vs. anomalous with ADD injection (orange) in the
noise-free dataset.

By analyzing the clean signals, we can see that the difference in amplitude is

consistent through all signals. In Figure 7.2 top, the reader can see the boxplots for

the height of the "peaks" before (crest 3) and after (crest 32) injection. When there is no

noise, this difference in amplitude is enough for our evaluation model to distinguish

between normal and abnormal signals. However, as noise increases, the difference

between the "peaks" heights is impossible to see (Figure 7.2 middle). Finally, if we

denoise the dataset, the distance between hights is visible again (Figure 7.2 bottom)

and can be used for anomaly detection.

Our anomaly detection algorithm is described in section 4.3, uses k nearest neigh-

bors distance from the signal collected during the deployment to the baseline deter-

mined during the training phase. Figure 7.3 shows the average three nearest neighbor

distances (3-NN) for the individual signals from the testing dataset to the training

dataset. The training dataset (green) contains only normal observations and is used as

37

F igure 7 .2 : The distribution of the crests (“peaks”) heights in the dataset normal vs.
abnormal (with ADD injection) and abnormal (with JMP injection) before injection
(crest 3) and after injection (crests 32).

a baseline. The testing dataset contains normal (blue) and abnormal signals (red) with

ADD injection. It is easy to see that, with the exception of a few outliers, both normal

and anomalous signals concentrate within specific distance ranges that are clearly

separable when the signal is noise-free. However, if noise is present, the separation

between normal and abnormal signals is impossible to distinguish.

38

F igure 7 .3 : The average distance of the three closest neighbors of each individual
signal (testing normal and testing anomalous) in the dataset to the totality of normal
signals (training) that are considered as the baseline in a clean dataset (top) vs. a noisy
dataset (bottom).

The reader can see that a noise reduction must be applied to the dataset. Since the

given task is anomaly detection, the chosen methodology should be as non-destructive

as possible and retain the maximum number of artifacts specific to the anomaly.

7 .1 considerations regarding the number of examples

First, we investigate the effect of the matrix size on the quality of denoising. We

denoise train(all signals are normal) datasets where the number of examples is around

20%, 30%, 50%, 100% of the number of samples in each signal. Figure 7.4, shows that

as the number of signals gets closer to the number of observations in each signal, the

denoising effect improves.

We have observed the same result in the testing dataset; as the number of ex-

amples gets closer to the number of observations in each signal, there is a lower

39

F igure 7 .4 : Signals in the -10 SNR train dataset after denoising using cutting point
4 for the matrixes size 402x2010, 576x2010, 2016x20010.

deviation in the denoised signals (Figure 7.5). By increasing the number of signals,

we are able to achieve better denoising results without losing important artifacts. A

similar observation was made by Jha and Yadava (2010). They stated that when the

number of observations(in their case vapors) is more than the number of samples in

each observation (in their case sensors), the noise variable of "vapor origins" is more

effectively eliminated than the noise variable of "sensor origins."

Size of the Testing
Dataset

Average AUC

402 x 2010 50.17%
576 x 2010 59.34%
1008 x 2010 73.60%
2016 x 2010 84.57%
4032 x 2010 92.20%

Table 7 .1 : The AUC score is based on the size of the matrix for denoising the testing
dataset (normal + ADD)

The same result is confirmed by the experiment. In the Table 7.1, we denoised the

training dataset using a matrix where the number of signals is equal to the number

of observations in each signal. Then we created train datasets, where the number of

signals is around 20%, 30%, 50%, 100%, and 200% of the number of observations in

each example. The reader can see that AUC is increased as the number of rows in the

matrix increase.

From observations of numerous test cases, we concluded that the number of

observations that is around twice the number of samples of the signal is the best

40

to achieve a high-quality noise reduction effect without negatively impacting the

anomalous artifacts. However, keep in mind that a trade-off exists. By collecting

more signals, more time is required to elapse between code injection and detection.

This might be an issue for some applications with real-time restrictions.

41

F igure 7 .5 : The effect of the number of observations vs. the number of samples in
each observation on the quality of denoising.

42

chapter 8

Related Work

The embedded devices are growing in popularity and can be found in numerous

sectors, including energy, medical, security, etc. As a result, the malicious attacks on

those devices increase as well. As an alternative to on-device detection, there is a

growing interest in developing remote malware detectors that leverage physical side

channels.

Han et al. (2019) presents a good overview of the side channel-based code execu-

tion monitoring systems. The paper mainly concentrates on power consumption and

EM emanation. It shows that power consumption has very few variations between

different runs of the same instruction than EM signal, which is more susceptible

to environmental noise and interference. In addition, the authors go over how the

Hidden Markov Model, a neural network, and Principal Component Analysis (PCA)

can assist in detecting anomalies in embedded devices during code execution. They

give a basic idea of how to construct a monitoring system using a side channel. This

system is based on two phases: profiling and deployment. During the profiling, a

signal is collected, preprocessed, and a profiling model is established. During the

deployment phase, the model is used to evaluate the collected signal and report

anomalies. Finally, the authors discuss the challenges this monitoring system present:

determine the window length for each code segment, the effect of the size of the loops

in the program, and the processor specifications the program is running on. The paper

does not address the white noise problem.

8 .1 em analysis as an attack vector

Several papers use EM emanation as an attack vector. In essence, extracting infor-

mation from the device for malicious purposes has strong similarities to extracting

information for monitoring/protection monitoring purposes. Because of this, we find

the following papers relevant to our work.

43

Sehatbakhsh et al. (2020b) describe a new micro-architectural vulnerability that

is created by power management units of modern computers and can be exploited

through EM emanation. Modern computers are using multiple power-management

techniques to save battery life. One of them is voltage-frequency scaling, where the

processor’s clock frequency can be adjusted dynamically depending on the required

level of performance. The other technique is placing unused units within the pro-

cessor into a low-power state. The module that supplies power to the core is called

Voltage Regulator Module (VRM). The power module contains a capacitor that VRM

tries to keep filled to the desired voltage level. Every time a capacitor gets charged

(typically every 1-4 microseconds, called the switching period), the charge creates

a burst of EM current with a powerful component at a frequency that has a very

high amplitude compared to other electrical current flows in a computer system.

To improve the power consumption, the process called phase shedding skips the

capacitor charging if the load is low. As a result, the "spikes" in an EM signal are

prominent under a high load and much weaker when the load is low. Those "spikes"

can be detected with a lower-cost radio receiver or a loop antenna. The authors create

a covert channel, a simple program that reads the file on the victim’s computer. If a bit

is 1, it runs a loop for LOOP_PERIOD and then sleeps for SLEEP_PERIOD. If a bit is 0,

the program sleeps for two SLEEP_PERIOD. By measuring EM emanation, an attacker

can read the files on a victim’s computer. Through experiments, the authors find

that SLEEP_PERIOD and LOOP_PERIOD should be no less than 10µs. Specifically,

they use 100µs for UNIX-based machines and 1ms for Windows-based machines.

The authors conclude that all other background activities produce a small burst of

amplitude that is usually shorter than SLEEP and LOOP PERIODs and can easily be

distinguished. In the experimental setup, the authors have been able to detect signals

from up to 2.5m away and from 1.5m away behind a 35cm office wall with a working

printer and refrigerator as a sort of additional EM emanation. In addition, the authors

demonstrate that by measuring EM emanation on modern laptops, the attacker could

identify keystrokes and distinguish words.

Khan et al. (2018) use EM emanation to infer a cryptographic key from a de-

vice running an OpenSSL. To achieve it, the authors determine the instruction that

44

the CPU executed. They start with AM demodulating EM signals at the processor

clock frequency and low-pass filtering. They create a dictionary of all possible EM

signatures corresponding to different branch decisions during the training phase by

executing encryption with known keys. They use a 1-NN algorithm with Euclidean

distance to match the capture signal with the dictionary during the detection phase.

They achieve a >90% accuracy rate for minimal differences in program execution (one

instruction) even when the sampling rate is only 4% of the monitoring system’s clock

cycle rate and an SNR of 20dB or better. They observe that accuracy increases as

an SNR improves and the sampling rate increases. In addition, they show that large

differences (a tenth of instructions) can be identified with an accuracy rate >99% even

when the sampling rate is only 2% of the processor’s clock cycle rate, and SNR is only

5dB.

Camurati et al. (2018) presented a new channel attack named screaming channel

that affects mixed-signal chips used in wireless communication protocols, such as

Bluetooth and WiFi. Mixed-signal chips include digital and analog circuits on the

same silicon die in close physical proximity. Because of this proximity, noise from

the digital circuit leaks to the analog circuit. This noise corresponds to processes

running by digital logic. As a result, sensitive information from the digital domain

gets propagated to the radio transmission, which broadcasts it at a much larger

distance than normal EM emanation. The authors investigate this effect on several

popular devices and demonstrate a completely cryptographic key recovery from AES-

128 implementation in tinyAES at a distance of 10m in a controlled environment using

template attacks. The template attacks are based on aligned traces of the signal, each

corresponding to a single execution of the computation under attack. To capture

radio emission, they used software-defined radio (SDR) tuned to fchan + 2 · fclock,

where fchan is the center frequency of the Bluetooth or WiFi channel and fclock is the

frequency of the microprocessor’s clock. They split the signal into individual traces

and aligned the traces. The authors use the point-wise mean of all aligned traces as a

measurement for a new alignment. Averaging aligned traces removes random noise,

making key recovery easy. To recover the cryptographic key, the authors used around

70000 traces with 500 timestamps to create a template. This allowed them to use only

45

428 traces during the attack in a controlled environment. For the attack to succeed in

an uncontrolled environment (office), 52589 traces need to be collected. In addition,

the number of traces increases as the distance to the target increase. The authors note

that the full range of devices affected by this attack still needs to be determined.

8 .2 em based monitoring systems

Apart from utilizing the analysis of EM signals as an attack vector, several works have

attempted to apply such techniques for protection purposes e.g., to achieve external

control flow attestation.

Nazari et al. (2017) describes an anomaly detection framework based on the anal-

ysis of EM signals, namely EDDIE. It creates a model of normal program execution

using Short-Term Fourier Transforms (STFT). Computing FT in each window will

show frequencies for this time period instead of frequencies for the whole signal.

Looking at the different windows demonstrates how frequencies change over time.

The authors call the frequency domain for each window Shot-Term Spectra (STS).

EDDIE gets trained on sequences of STSs obtained for each loop nest and each loop-

to-loop transition. The training phase starts with adding instrumentation during com-

pilation. EDDIE then runs the application multiple times with different inputs. It is

necessary to obtain signals to the regions that are not executed all the time. Since there

are pieces of code that get rarely executed, collecting signals for those pieces requires

specially crafted input data. The signal collected during training is then divided into

windows. Finally, for each region in the program, EDDIE collects the set of sample

windows that belongs to that region. Due to noise, "random" variation in program

behavior, or micro-architectural events like cache misses, different STSs that belong to

the same code region are not exactly the same. To compare the observation during

the testing phase to the STSs distribution, EDDIE uses a nonparametric statistical

test. The authors have discovered that Kolmogorov-Smirnov (K-S) nonparametric

test works better for their purpose. Kolmogorov-Smirnov (K-S) test determines the

differences in the shapes of two sample distributions. It uses the critical value of D

that is found in the K-S table, where is the level of significance. The Null Hypothesis

46

is that two samples are drawn from populations with the same distribution. The

Alternative Hypothesis is that two samples are drawn from different populations.

The maximum absolute difference between the two cumulative distribution functions

is calculated. If this value is less than the critical value, then Null Hypothesis is

accepted. Otherwise, the Null Hypothesis is rejected, and an Alternative Hypothesis

is accepted. Another challenge the authors have encountered has been choosing the

number of monitoring-observed STSs that would be tested in each K-S test. This

number should be large enough to provide a near-zero false positive rate but not

too large because it will affect detection latency. The problem is that this number is

different for each region. The authors apply the K-S test to the train STSs for each

region and choose the smallest number that provides the minimum false positive rate

to overcome this problem. The authors test EDDIE on a few instructions (2,4,6,8)

injected inside the loop, and significantly more instructions (100K, 187K, 218K, 315K,

400K, 500K) injected outside the loop. They have been able to achieve accuracy from

93% to 100%.

Sehatbakhsh et al. (2018) extend the framework presented in EDDIE. Their new

system is called SYNDROME - Spectral analYsis for aNomaly Detection On Medical

and Embedded devices. The authors evaluate Syndrome on real word medical device

called a Syringe Pump that is designed to dispense or withdraw a precise amount

of fluid and is used at hospitals to administrate a small amount of medication to the

patient at frequent intervals. The authors execute an exploit that performs buffer-

overflow and hijacks the control flow of the syringe pump application. Similar to

EDDIE, the training phase of the SYNDROME starts with a statistical analysis of the

application to determine the loops and their possible ordering. Then they perform

train runs with knowing input to collect EM signal. This signal gets converted into

a sequence of sample spectra, where each spectral sample corresponds to a 1 ms

window of time and overlaps 75% with the previous sample. Those samples get

categorized based on the region of the program they belong to. After categorizing

samples, the features (spikes in frequency domain corresponding to loops) get ex-

tracted. During the detection(monitoring) phase, the EM signal gets converted into

spectral samples. The features from those samples get extracted and compared to

47

train samples using K-S statistical test. The samples of the monitoring signal get

tested against the train time samples for the first region. If the test fails, that means

that the malicious activity has begun or the code has switched to another region. In

this case, all possible regions get tested. If all of those possibilities are rejected, the

Syndrome reports malicious execution. One of the main challenges authors run into

was handling the operation system’s interrupts. They found out that the spectral

features of the interrupt activities are very similar to each other, which allows them

to create a training-time model for interrupts. When the K-S test rejects the sample,

the sample gets tested against training-time samples of interrupt-related activity. In

summary, it took SYNDROME lees then 2ms to detect every occurrence (100% true

positive rate without false positives) of an actual attack on an embedded medical

system.

Han et al. (2017) have proposed Zeus, a contactless monitoring system for em-

bedded devices that uses electromagnetic emission. Zeus runs the program on the

PLC for each execution path and collects the electromagnetic emanations using an

external sensor. The collected signal traces, along with their labels (corresponding

control lows), are fed to a sequence neural network classifier for training. Since the

execution time of the individual instructions is not fixed, Zeus looks at frequency

representations of signals within a local sliding window. Since electromagnetic signals

suffer from random perturbation, 1000 signal traces are collected for each instruction

type for the classifier training and the validation testing. To construct the classification

model with sequential inputs, the authors use a Long Short-Term Memory (LSTM)

network layer. LSTM is a variation of the Recurrent Neural Network (RNN) used

for modeling sequential data. A stacked two-layer LSTM network with 100 nodes

on both layers is used to fingerprint the execution behavior of each program. The

authors train the network using Stochastic Gradient Descent (SGD). An average of 50

epochs (iterations) are required for the network to converge on the tested programs.

The authors obtain 100 traces for every feasible control flow to train the model. 2-

fold cross-validation is performed ten times to stabilize the result. After deployment,

Zeus feeds the spectrum sequences of the collected signal into the trained model. The

model computes a probability distribution for each sequence over all the classes. The

48

class with the highest score is compared to a predefined threshold. If the threshold

check fails, the system indicates a mismatch between the query signal trace and the

trained model. Consequently, it triggers an alert about an illegitimate control low. To

evaluate Zeus’s performance, the authors use ten real PLC programs from different

application domains. The area under curve (AUC) evaluation technique shows the

worth performance at 96% and the best at 100%.

Chawla et al. (2021) presents an EM signal processing approach that uses machine

learning (ML) to detect a malicious application running on the device and classify

the application into a malware family. Instead of being trained on trusted execution

behavior, the proposed model learns characteristics of different malware families from

their EM side-channel signatures by running multiple malware samples. The collected

EM signal is segmented into short windows, Short-time Fourier Transform (STFT)

is computed for each window, and a spectrogram is generated. The spectrogram

shows Power Spectral Density (PSD) variations of the EM side-channel trace over time.

Then, a two-dimensional Discrete Wavelet Transform (2D-DWT) is used the resulting

coefficients are used as features. After this, the authors apply Principal Component

Analysis (PCA) to reduce the feature dimensions. Finally, the ML model gets to train

on the resulting reduced dimensional feature vector. Specifically, Random Forest (RF)

Classifier and Support Vector Machines (SVM) are used to learn unique futures for

each malware family based on the malware samples. During the testing process, the

above steps are repeated. The feature vector is tested on the trained ML model. The

authors achieve an F1 accuracy score of 99% with the SVM model and 97% using RF.

In addition, the authors demonstrate the software update capability of the proposed

framework to detect unknown applications or malware families and re-training model

on new features.

Khan et al. (2019) introduces another intrusion detection framework called IDEA

based on an EM side-channel signal. Unlike the approaches described above, it does

not use instrumentation and works in the time domain. During the training phase,

IDEA collects the EM signal of the trusted program during multiple executions. The

collected EM signal is split into multiple overlapping windows that are recorded as

"words." Then mean subtraction and scale normalization are applied to each word.

49

This step is necessary to ensure that matching is based on the shape of the signal

rather than the actual amplitude. There is a chance that testing and training signals

will have different amplitudes due to the position of the antenna. After this, words get

separated into clusters. Since the number of clusters is unknown, popular clustering

algorithms are not feasible for this work. Instead, threshold-based clustering is used.

In summary, the random word is chosen as a cluster centroid. Every word in the

dictionary whose Euclidian difference to this centroid is less than the threshold gets

assigned to the cluster. After this, the cluster centroid gets updated by averaging all

cluster members, and Euclidian distance is recalculated. The process repeats until as-

signments no longer change. After this, a new cluster centroid is selected from words

that have not been assigned to any cluster. After all words have been assigned to the

clusters, cluster centroids create a dictionary of words. During the monitoring phase,

the EM signal is split into windows and matched against the words in the dictionary

using the 1-Nearest Neighbor algorithm, with Euclidian distance as a distance metric.

The signal is then reconstructed by using these words. The reconstructed signal is

compared with the monitoring signal, and the square difference is reported. The

result is compared to the threshold; when this threshold is breached, the intrusion is

reported. The IDEA is able to detect different attacks with AUC >99.5% for high SNR

(10SNR and above).

8 .3 svd denoising

As seen from the work mentioned above, we can achieve good anomaly detection

results using EM emanation as long as we collect signals at a low noise level. When

the noise level is significant, additional preprocessing techniques should be applied.

In this work, we choose SVD denoising because it shows better results than other

technics based on the work presented below.

Govindarajan et al. (2019) use SVD denoising to remove the random noise from the

Partial Discharge (PD) signal. In electrical engineering, PD is a localized nonperiodic

electrical discharge (impulse) that occurs for a duration of 10−9 to 10−7sec. PD

occurs whenever there is a stressed region due to some cavity inside the insulation

50

under high voltage stress. PD indicates the insulation weakness at the beginning

of destruction. Timely indication helps to prevent catastrophic failure. The authors

apply the Hankel Matrix (HM)-based Fast Singular Value Decomposition (H-FSVD)

technique to one signal at a time. The authors use HM on the whole signal and then

reduce the HM to a tridiagonal matrix using the Lanczos method. Then, they calculate

the SVD of the tridiagonal matrix using the twisted factorization method. Next, they

use Singular Spectral Analysis to zero out singular values corresponding to noise and

reconstruct the noise-free signal. They test their method on three different data sets

(synthetic and two real with added synthetic noise -10dB and 10 dB). Their result

shows that this method is superior to the Wavelet Transform (WT) based method and

Empirical Mode Decomposition (EMD) method with respect to noise removal. This

paper concentrates on noise removal and not anomaly detection.

Zhou et al. (2019) propose the Adaptive Short-Time Singular Value Decomposition

(ASTSVD) to remove a white noise in Partial Discharge (PD) signals. The idea is to

use signal segments extracted by a sliding window moving along the time axis of

the PD signal. Instead of calculating HM for the whole signal, they create a Hankel

matrix for each snapshot. The authors use a number of columns in Hankel matrix

K = TW − L + 1, where TW is the length of the snapshot, and the number of rows

L = TW/3. In addition, they propose using the minimum description length (MDL)

criterion to determine the number of singular values (cutting point) for SVD denoising.

The sliding window width is determined empirically as half of the PD pulse. One of

the techniques to identify the pulse mentioned in this work is to calculate the SVD

of each sliding window, choose the same cutting point r for each window, and plot

them. The graph will have a peak. The beginning of the peak will correspond to the

beginning of the PD pulse. The end of the peak will correspond to the end of the

PD pulse. The authors have tested the technique for the 0 SNR and have been able

to reconstruct the original PD signal without waveform distortion, a typical effect

when SVD is performed for the whole signal. They show that their results are better

than results obtained using Discrete Wavelet Transform (DWT) and using a technique

proposed in Govindarajan et al. (2019). The authors note that despite good denoising

51

results, there are still some limitations, including the determination of the optimal

sliding window and computation time that is still higher than DWT-based methods.

Zhang et al. (2020) takes two-division recursion singular value decomposition and

extends it to three- and four-division recursion singular value decomposition and

evaluates them. Based on the evaluation, the authors concluded that two-division

recursion singular value decomposition is optimal for noise reduction. The idea of

two-division recursion SVD is for one-dimensional signal s = s1, s2, . . . , sn construct a

HM with two rows and perform SVD of this matrix A = σ11u11vT
11 + σ12u12v12

T, where

u11 and u12 are the vectors formed by the first two rows of the first decomposition of

matrix U, σ11 and σ12 are the two singular values obtained by the first decomposition,

and v11 and v12 are the vectors formed by the first two rows of the first decomposition

of matrix V. σ11u11vT
11 = A1 is the approximated signal and σ12u12v12

T = D1 authors

call the detailed signal. This signal gets discarded as noise. The above process gets

repeated on A1 creating A2 and D2, etc. As a result, A = AM +ΣM
i=1Di, where M is the

number of decomposition layers and AM is the denoised signal. The M is determined

experimentally by plotting SNR and Mean Square Error (MSE) for different M and

finding the peak in performance. The choice of M will depend on the type of signal.

The authors apply the noise reduction model to the diagnosis of faulty bearings. They

have been able to successfully remove noise from the signal with noise levels from

20SNR to -5SNR.

As can be seen from a few works mentioned above, SVD denoising usually gets

performed on one signal at a time. Examples of matrix denoising usually relate to

image denoising that is not related to our study. However, a theoretical base for

denoising multiple signals at once exists.

De Moor (1993) discuss why and when the SVD is successful in using geomet-

rical, algebraic, and statistical arguments. The authors have used a noisy matrix of

measurement m-by-n, where m is the number of measurement channels and n is the

number of measurements in each channel. Specifically, when m << n, they call the

column space long space and row space short space. Authors give the theoretical

justifications why under certain assumptions, the short space of the noise-free matrix

can be estimated consistently while the long space cannot be recovered. This work

52

explains why in our experiment, we have been able to achieve a better denoising effect

when the number of observations is significantly larger than the number of samples

in each observation.

To the best of our knowledge, Jha and Yadava (2010) is the only paper we have

come across that uses SVD denoising to remove noise in a matrix of observation

with real-life applications. In this work, the authors analyze the work of the SVD in

denoising sensor array data of electronic nose systems. They show that this method ef-

fectively reduces noise components arising from the order sampling, delivery system,

and sensors electronics. Using a neural network classifier, the authors use denoised

data in the classification problem. After denoising data, they use PCA to reduce the

separation between samples of the same class and increase the separation between

classes. The authors use formula ϵ ≤ σ
√

mn to calculate threshold for singular values,

where σ is a standard deviation of the noise in m-by-n matrix. Since, in practice, σ

is unknown, they use empirical analysis to estimate σ. Authors argue that in sensor

array data where m >> n, SVD is much more effective in denoising than PCA. They

show that for good denoising, the number of rows should be significantly greater than

the number of columns. In our work, we have come to the same conclusion.

Gavish and Donoho (2014) have proposed one more approach to calculating the

threshold for singular values. Like with all traditional denoising technics, every singu-

lar value less than this threshold gets set to 0. Doing so allows the authors to recover a

low-rank matrix (denoised matrix in our application) from noisy data. They evaluate

their approach using Asymptotic Mean Square Error (AMSE). The authors start their

development process by analyzing the "elbow" approach to detect the optimal cutting

point. The "elbow" is where the slope of singular values changes dramatically when

plotted in descending order. In addition, they look at the alternative approach; in a

case where the "elbow" is not detectable (the matrix is exactly or approximately low-

rank), the class histogram of the singular values should be plotted. In this case, a

quarter-circle "bulk" will be formed on the left side of the graph. The edge of this

bulk can be used to determine the cutting point for denoising. Finally, they evaluate

the approach in which the threshold is calculated using τ = 2.02
√

nσ, where n is

the size of the matrix and σ is the noise level. Based on their analysis they propose

53

an optimal threshold τ∗ = 4√
3

√
nσ ≈ 2.309

√
nσ for the n-by-n matrix with white

noise of level σ. For the non-square m-by-n matrix, they propose τ∗ = λ(β)
√

nσ,

where β = m/n and λ(β) =
√

2(β + 1) + 8β

β+1+
√

β2+14β+1
. In the case of an unknown

noise level, the threshold can be calculated using τ∗ = 2.858med for n-by-n matrix,

where ymed is the median of the singular values. For m-by-n matrix, with unknowing

noise level the hard threshold can be estimated by formula τ∗ = ω(β)med, where

β = m/n and ω(β) ≈ 0.56β3 − 0.95β2 + 1.82β + 1.43. Using AMSE, the authors show

that their approach produces better denoising than the above-mentioned methods.

Unfortunately, this technique produces a cutting point similar to the "elbow" approach

in our experiment. This cutting point was not sufficient for anomaly detection.

54

chapter 9

Conclusion

In this work, we proposed an EM-based anomaly detection framework for remotely

identifying code injection attacks against embedded devices that operate in ICS en-

vironments. We experimentally proved that systems adopting our framework could

effectively perform anomaly detection even in environments of dynamically altering

noise conditions or extremely high noise levels.

Typically, analogous systems have the inherent advantage of being non-intrusive

compared to traditional malware detection systems. The latter family of solutions

needs to be natively installed in the target device, which may not always be possible

due to the resource-constrained nature of embedded devices. Unfortunately, due

to their remote operation, EM-based systems may be negatively impacted by envi-

ronmental noise. Despite the severity of this issue, most relevant works in the area

consider only experiments in controlled laboratory environments with ideal noise

conditions. However, in several real-life applications, this assumption is not realistic.

For example, in ICS environments, it is natural to assume that the target device will

reside in locations where numerous digital devices operate in parallel. Therefore the

target device may be subject to environmental white noise and interference.

In this work, we introduced an EM-based anomaly detection framework that is ro-

bust against environmental noise. Our framework relies on a modified version of SVD

denoising applied as a preprocessing step. Our main contribution to this step revolves

around the way we infer the highly sensitive hyperparameters used internally in this

step. More specifically, after a battery of experiments, we statistically inferred generic

formulas for identifying the optimal value of the parameter SVD cutting point that is

internally used to define the intensity of noise elimination. Our formulas take into

account noise levels of the training and deployment environments, which are trivial to

infer. In our case, the task at hand is primarily to achieve optimal anomaly detection;

therefore, the criteria for choosing the value of this hyperparameter are different from

those dictated in the bibliography. Our approach manages to achieve the necessary

55

level of noise reduction without losing important artifacts that differentiate normal

from abnormal signals. Moreover, through several experiments, we identified that

to achieve optimal noise elimination without losing important abnormality features,

the number of example observations should be significantly more than the number of

samples in each observation. Through experimental evaluations, we demonstrate that

the proposed framework can yield a near-perfect accuracy rate (above 99% AUC score)

in moderately noisy (above 0 SNR) environments and can maintain a high detection

rate, e.g., above 94% AUC score in rather boisterous environments, (-10 SNR).

To summarize, the main contributions of this work can be outlined as follows:

• Our proposed framework can be used in highly noisy environments (up to -10

SNR).

• The proposed methodology is highly robust against noise changes.

• The framework does not require any stochastic analysis for the identification of

optimal (or near-optimal) hyperparameters. By relying on contributed formulas,

such parameters can be identified automatically.

• The methodology proposed can identify never seen before alterations of code

without requiring any examples of anomalous signals. Our system gets trained

using only normal signals.

9 .1 challenges & future work

Despite the advantages of our approach, there are several aspects that still remain

challenging. These can be summarised as follows:

• Our framework assumes that the signals analyzed are synchronized. However,

in order to collect synchronized signals, we must add an instrumentation code.

Adding the instrumentation might not always be desirable or even possible in

certain applications. The use of alternative metrics that involve a sliding window,

e.g., convolution might be beneficial in such situations.

56

• So far, we have identified that the number of signals during the fingerprinting

stage, ideally, must be twice the number of observations in each signal. Un-

fortunately, for large examples of code that involve hundreds of thousands of

samples per observation, collecting a buffer of this size may compromise the

real-time requirements of certain applications. Towards this end, we plan to

evaluate a method that fragments given signals in a fixed size of windows, e.g.,

of 100 samples.

Besides providing solutions to these challenges, in the near future, we plan to

conduct high-scale experiments to gain insight into how the location of the code

injection affects the accuracy of our approach. Moreover, our long-term goals include

expanding our framework to detect code injection attacks in the presence of internal

or external interference. More specifically, we would like to identify how the system

interrupts and the parallel execution of processes affects the precision of our methods.

Finally, we plan to test the robustness of the proposed solution under adversarial

attacks that aim to trigger misclassifications through the dissemination of well-crafted,

malicious noise.

57

Bibliography

Abdi H. and Williams L.J. 2010. Principal component analysis. Wiley interdisciplinary
reviews: computational statistics 2:433–459.

Anton S.D.D., Lohfink A.P., and Schotten H.D. 2019. Discussing the feasibility of
acoustic sensors for side channel-aided industrial intrusion detection: An essay. In
Proceedings of the Third Central European Cybersecurity Conference, pages 1–4.

BarbaraD́., Domeniconi C., and Rogers J. 2006. Detecting outliers using transduction
and statistical testing. In Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, Philadelphia.

Breunig M.M., Kriegel H.P., Ng R.T., and Sander J. 2000. Lof: identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 93–104.

Camurati G., Poeplau S., Muench M., Hayes T., and Francillon A. 2018. Screaming
channels: When electromagnetic side channels meet radio transceivers. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 163–177.

Chawla N., Kumar H., and Mukhopadhyay S. 2021. Machine learning in wavelet
domain for electromagnetic emission based malware analysis. IEEE Transactions
on Information Forensics and Security 16:3426–3441.

De Moor B. 1993. The singular value decomposition and long and short spaces of
noisy matrices. IEEE transactions on signal processing 41:2826–2838.

Epps B.P. and Krivitzky E.M. 2019. Singular value decomposition of noisy data: noise
filtering. Experiments in Fluids 60:1–23.

Gavish M. and Donoho D.L. 2014. The optimal hard threshold for singular values is
4/√3. IEEE Transactions on Information Theory 60:5040–5053.

Golub G.H. and Van Loan C.F. 2013. Matrix computations. JHU press.

Govindarajan S., Subbaiah J., Cavallini A., Krithivasan K., and Jayakumar J. 2019.
Partial discharge random noise removal using hankel matrix-based fast singular
value decomposition. IEEE Transactions on Instrumentation and Measurement
69:4093–4102.

Han Y., Christoudis I., Diamantaras K.I., Zonouz S., and Petropulu A. 2019.
Side-channel-based code-execution monitoring systems: a survey. IEEE Signal
Processing Magazine 36:22–35.

Han Y., Etigowni S., Liu H., Zonouz S., and Petropulu A. 2017. Watch me,
but don’t touch me! contactless control flow monitoring via electromagnetic
emanations. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pages 1095–1108.

58

Hassanpour H., Zehtabian A., and Sadati S. 2012. Time domain signal enhancement
based on an optimized singular vector denoising algorithm. Digital Signal
Processing 22:786–794.

Hund R., Willems C., and Holz T. 2013. Practical timing side channel attacks against
kernel space aslr. In 2013 IEEE Symposium on Security and Privacy, pages 191–205,
IEEE.

Islam M.A., Ren S., and Wierman A. 2017. Exploiting a thermal side channel for
power attacks in multi-tenant data centers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1079–1094.

Jha S.K. and Yadava R. 2010. Denoising by singular value decomposition and its
application to electronic nose data processing. IEEE Sensors Journal 11:35–44.

Khan H.A., Alam M., Zajic A., and Prvulovic M. 2018. Detailed tracking of program
control flow using analog side-channel signals: a promise for iot malware detection
and a threat for many cryptographic implementations. In Cyber Sensing 2018, vol.
10630, page 1063005, International Society for Optics and Photonics.

Khan H.A., Sehatbakhsh N., Nguyen L.N., Callan R.L., Yeredor A., Prvulovic M., and
Zajić A. 2019. Idea: Intrusion detection through electromagnetic-signal analysis for
critical embedded and cyber-physical systems. IEEE Transactions on Dependable
and Secure Computing 18:1150–1163.

Kolias C., Barbará D., Rieger C., and Ulrich J. 2020. Em fingerprints: Towards
identifying unauthorized hardware substitutions in the supply chain jungle. In 2020

IEEE Security and Privacy Workshops (SPW), pages 144–151, IEEE.

Kolias C., Borrelli R., Barbara D., and Stavrou A. 2019. Malware detection in critical
infrastructures using the electromagnetic emissions of plcs. Transactions 121:519–
522.

Liu Y., Wei L., Zhou Z., Zhang K., Xu W., and Xu Q. 2016. On code execution tracking
via power side-channel. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 1019–1031.

Nazari A., Sehatbakhsh N., Alam M., Zajic A., and Prvulovic M. 2017. Eddie: Em-
based detection of deviations in program execution. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, pages 333–346.

Proedru V., Nouretdinov I., Vovk V., and Gammerman A. 2002. Transductive
confidence machine for pattern recognition. In Proceedings of the 13th European
Conference in Machine Learning.

Rajwade A., Rangarajan A., and Banerjee A. 2012. Image denoising using the higher
order singular value decomposition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 35:849–862.

Sehatbakhsh N., Alam M., Nazari A., Zajic A., and Prvulovic M. 2018. Syndrome:
Spectral analysis for anomaly detection on medical iot and embedded devices.
In 2018 IEEE international symposium on hardware oriented security and trust
(HOST), pages 1–8, IEEE.

59

Sehatbakhsh N., Yilmaz B.B., Zajic A., and Prvulovic M. 2020a. Emsim: A
microarchitecture-level simulation tool for modeling electromagnetic side-channel
signals. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 71–85, IEEE.

Sehatbakhsh N., Yilmaz B.B., Zajic A., and Prvulovic M. 2020b. A new side-channel
vulnerability on modern computers by exploiting electromagnetic emanations from
the power management unit. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 123–138, IEEE.

Vedros K., Makrakis G.M., Kolias C., Xian M., Barbara D., and Rieger C. 2021. On the
limits of em based detection of control logic injection attacks in noisy environments.
In 2021 Resilience Week (RWS), pages 1–9, IEEE.

Viswanathan M. 2019. Digital Modulations using Python. Independently published.

Wei S., Aysu A., Orshansky M., Gerstlauer A., and Tiwari M. 2019. Using power-
anomalies to counter evasive micro-architectural attacks in embedded systems. In
2019 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 111–120, IEEE.

Yarom Y. and Benger N. 2014. Recovering openssl ecdsa nonces using the flush+
reload cache side-channel attack. Cryptology ePrint Archive .

Zeng M. and Chen Z. 2019. Soso boosting of the k-svd denoising algorithm for
enhancing fault-induced impulse responses of rolling element bearings. IEEE
Transactions on Industrial Electronics 67:1282–1292.

Zhang G., Xu B., Zhang K., Hou J., Xie T., Li X., and Liu F. 2020. Research on a noise
reduction method based on multi-resolution singular value decomposition. Applied
Sciences 10:1409.

Zhao M. and Jia X. 2017. A novel strategy for signal denoising using reweighted
svd and its applications to weak fault feature enhancement of rotating machinery.
Mechanical Systems and Signal Processing 94:129–147.

Zhou K., Li M., Li Y., Xie M., and Huang Y. 2019. An improved denoising method for
partial discharge signals contaminated by white noise based on adaptive short-time
singular value decomposition. Energies 12:3465.

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Technical Background & Definitions
	Side Channel Analysis
	Code Injection Attacks
	SVD Denoising

	Problem statement
	Proposed Framework
	Signal Acquisition
	Noise Reduction & Pre-processing
	Anomaly Detection

	Experimental Setup & Data Gathering
	Control Logic Process
	Experimental Setup
	Observations on the Captured Signals
	Evaluation Method

	Experimental Evaluation
	Considering No Pre-processing for Noise Reduction
	Considering SVD with Traditional Cutting Points for Noise Reduction
	Statistically Inferring Cutting Points for Anomaly Detection
	Evaluating Considering Variable Noise Levels

	Discussion
	Considerations Regarding the Number of Examples

	Related Work
	EM Analysis as an Attack Vector
	EM based monitoring systems
	SVD denoising

	Conclusion
	Challenges & Future Work

	Bibliography

