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Abstract

I present the first complete analytical solution to finding the specular point on a spherical surface,

known as the Alhazen-Ptolemy problem, for the cases where either the observer of the light source may

be approximated as infinitely distant, and where they must both be treated as finitely distant. I also

present Vulcan, a new orbital integration code which offers the benefits of modernization to existing

orbital integration algorithms: efficient parallelization, advanced memory management, and concurrent

output. Lastly, I present my work compiling the Titan data from Cassini’s Visible Infrared Mapping

Spectrometer (VIMS) instrument to create a set of composite maps which summarize the dataset for

future work.
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Chapter 1 Introduction

1.1 Solving the Alhazen-Ptolemy Problem

In 150 C.E. Ptolemy formulated a deceptively simple problem: given a light source, a spherical reflector,

and an observer, where on the surface of the sphere will the observer see the light, i.e. where is the the

specular point? Known as the Alhazen-Ptolemy problem thanks to the geometric solution presented by

the 11th-century mathematician Alhazen, this problem lacked a complete analytical solution for nearly

the next two thousand years. The earliest algebraic solution was found by Jack Elkin in 1965, but

as with most subsequent solutions, it was incomplete, relying on numerical or inspective methods to

complete the calculation. Jason Barnes, Shannon MacKenzie, and I created a formulation which allows

a complete solution. I have solved the Alhazen-Ptolemy problem under this formulation for two cases:

the case where either the source, observer, or both are so distant they can be approximated as infinitely

distant, and the case where both must be treated as finitely distant. This formulation, my solutions,

and their implications are presented in Chapter 2.

1.2 Modernizing Orbital Integration

When it comes to orbital integration, the problem is time. There is a direct relationship between the

duration of an integration and the time it takes to complete, limiting either the size of or the sampling

granularity for the parameter space being investigated. Broadly speaking, the solution to this problem

lies in the improvement of the algorithm employed in integrating, but even the best algorithms can

benefit significantly from optimization, particularly when it comes to algorithms whose implementation

was optimized under the constraints of computing architecture which no longer exists, such as MERCURY’s

hybrid symplectic integrator. The ‘low-hanging fruit’ of beating orbital integration’s inherent problem

of time is the modernization of the implementations of existing algorithms. I have accomplished this

modernization with Vulcan. Vulcan forms a codebase in which any integration scheme can be easily added

while receiving the benefits of efficient parallelization, modern memory management, and concurrent file

output. The construction of Vulcan is intended to support any algorithm – even future algorithms – in

the interest of solving the optimization problem once-and-for-all, or at least until quantum computing

renders it obsolete. I discuss Vulcan in detail in Chapter 4.
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1.3 Compiling Cassini-VIMS Titan Data

The observations of Titan conducted by the flagship Cassini mission’s Visible Infrared Mapping

Spectrometer (VIMS) during more than a hundred flybys over the course of the thirteen-year mission

have proven invaluable to furthering our understanding of the only other body in our solar system with

active hydrology (in the form of methane). This enormous dataset is difficult to work with, requiring

substantial processing to synthesize useful data products for scientific investigation. And although there

have already been many useful analyses published it is important to lower these barriers to enable future

work, especially as many contributors to the mission which began 25 years ago have moved on or retired.

I have integrated the creation of data products compatible with Version 4 of the Planetary Data System

standard into Jason Barnes’ Jcube code base. With my additions we have summarized the observations

from the prime mission and most of the extended mission into PDS4 data products. The creation of

these maps is the matter of Chapter 3.
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Chapter 2 Solving the Alhazen-Ptolemy Problem
Miller, W., Barnes J., MacKenzie S. 2021, Planetary Science Journal, 2, 63

Given a light source, a spherical reflector, and an observer, where on the surface of the sphere will the

light be directly reflected to the observer, i.e. where is the the specular point? This is known as the

Alhazen-Ptolemy problem, and finding this specular point for spherical reflectors is useful in applications

ranging from computer rendering to atmospheric modeling to GPS communications. Existing solutions

rely upon finding the roots of a quartic equation and evaluating numerically which root provides the

real specular point. We offer a formulation, and two solutions thereof, for which the correct root is

predeterminable, thereby allowing the construction of the fully analytical solutions we present. Being

faster to compute, our solutions should prove useful in cases which require repeated calculation of the

specular point, such as Monte-Carlo radiative transfer, including reflections off of Titan’s hydrocarbon

seas.

2.1 Introduction

The specular point is the specific location on a surface where the outgoing vector of a mirror reflection

coincides exactly with the vector to an observer. At such a point, the light from a point source is seen

by the observer and, if the source has spatial extent, an image is produced in the reflection. Since

superposition allows a source with spatial extent to be divided into point sources – each with a single

specular point which in aggregate comprise the specular region – the same methods for finding a specular

•

•
y1

x1

y2

x2

xs

θeθi

Figure 2.1: Specular point for planar surface.

•

•
Source

•
Specular
Point

Observer

Robs

Rsph

Rsrc

•

θobs

θspec

θe

θi

θ2

θ1

Figure 2.2: Specular point on a spherical surface.
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point can be repeatedly applied to determine the region of specular reflection corresponding to a source

with spatial extent.

2.1.1 Applications

Perhaps the most notable use for finding the specular point for an arbitrary source-observer configuration

is in Global Positioning Systems. Unfortunately, the tolerance of GPS requires the Earth be

approximated as an ellipsoid instead of a sphere, rendering analytical solution of the spherical-surface

case less useful (Southwell & Dempster, 2018; Prakash et al., 1994). However, our formulation can be

extended to elliptical geometries more easily than previous approaches, arguing positively of its usefulness

in this application.

Unlike the Earth, Saturn’s moon Titan – which harbors liquid hydrocarbons that allowed the Cassini

mission to record numerous specular reflections (Stephan et al., 2010; Barnes et al., 2014) – can be

well-approximated as a sphere. The SRTC++ model (Barnes et al., 2018) does exactly that and finding

a faster method for computing the specular reflections due to scattering off of Titan’s ubiquitous

atmospheric haze aerosols in SRTC++ is the direct motivation for this work. There may also be utility for

removing ‘sun-glint’ from imaging data by employing a method similar to those in Kay et al. (2009) but

with the higher precision enabled by our analytical solutions.

Another notable application is the rendering of computer graphics with raytracing (Inakage, 1986), a

case where computation speed is critical. Particularly when rendering a reflected image (instead of a

simple point source) because the rendering fidelity is much more sensitive to the accuracy of the specular

point calculation. The increased interest in ray-traced rendering, particularly with regard to the video

game and movie industries, serves only to increase the usefulness of a faster method for handling even

partially reflective surfaces.

2.1.2 Planar Surface

For a planar surface the specular point (Figure 2.1) can be found trivially. In the coordinate system

centered on the specular point with the x-axis parallel to the surface, the positions of the source and

observer must satisfy

θi
!
= θe (2.1)

where θi is incidence angle and θe is emission angle. In the configuration shown in Figure 2.1 they are

defined as

θi = tan−1

(
y1
x1

)
, for 0 ≤ θi ≤

π

2
,
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θe = tan−1

(
y2
x2

)
, for 0 ≤ θe ≤

π

2
, and

xs = x1 + x2.

where xs is the separation between the source and observer in the x-direction. Then the position of the

source and observer relative to the specular point can be found by combining the above and rearranging,

x2 =
xsy2

y2 + y1
,

x1 =
xsy1

y1 + y2
.

2.1.3 Alhazen-Ptolemy Problem

The case of a spherical surface (Figure 2.2) is far more complicated. First formulated in 150 CE by

Ptolemy (Weisstein, 2002), it is known as the Alhazen-Ptolemy problem because the first method of

solving it (a geometric approach using conic sections) was provided – and proven – by Ibn al-Haythum in

the 11th century (Katz, 1995). Elkin (1965) provided the first algebraic solution and similar formulations

by Riede (1989), Smith (1992), and Waldvogel (1992) confirmed Elkin’s solution. Neumann (1998) proved

that ruler-and-compass construction of a general solution, a method which permits only circular arcs

and straight lines, is impossible. That is, given only an unmarked and idealized compass and straight

edge there is no way to determine the specular point.

2.1.3.1 Existing methods

The solution in Elkin (1965) produces a quartic equation for the distance from either the source or the

observer to the specular point (though the he does not term it such), the roots of which can be used to

retrieve a collection of distances from the specular point to the other point of interest. The resulting x-y

pairs must then be analyzed to find the real specular point. There are several methods which are useful

in retrieving the specular point from the generated x-y pairs: minimizing the source-specular-observer

path length, employing a numerical root finding method with an initial ‘guess’ (e.g. Newton’s method),

or ‘by probe’.

Fujimura et al. (2019) provides a formulation which works well for the method of path-length

minimization, but suffers numerical instability in cases where the radius of the sphere is very small

relative to source or observer distance (e.g. in the one-finite case discussed below). Glaeser (1999)

demonstrates the numerical root finding approach (using an algorithm from Schwarze 1990) and notes

that it is subject to “numerical instabilities that may lead to a considerable loss of accuracy” under

certain circumstances. Elkin (1965) shows the ‘by probe’ method, but this is almost impossible to
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capture algorithmically. These limitations beg the creation of a better, faster method.

2.1.3.2 Our approach

The salient problem, and in fact the only obstacle to a fully analytical solution, is that of deducing which

root to use. We present a formulation that allows predetermination of the ‘correct’ root and enables

the construction of a piecewise function which directly produces the location of the physical specular

point. We find this formulation superior to previous work because of its analytical branch deduction

– something lacking from every other formulation. The fully analytical approach avoids numerical

instability and allows significantly faster computation.

We present two analytical solutions for this formulation: one that requires the distance to either the

source or observer be approximateable as infinite (the “one-finite” case) and a second that works

for any arbitrary configuration of source and observer (the “both-finite” case). Furthermore, we

demonstrate that the complete solution can be expressed using no more than 3 roots in the both-finite

case and no more than 2 roots in the one-finite case. We apply an Euler rotation and make use of

the particulars of the resulting geometry to simplify the analysis, which also serves to minimize the

associated computational expenses.

2.2 Euler Rotation

In both cases, it is useful to place either the source or observer at polar angle π/2 (i.e. above the north

pole) for two reasons: first, it reduces the subsequent analysis to two dimensions and second, it allows

a simplification which will be used in Sections 2.3 and 2.4. The simplest way to accomplish this is to

start in Cartesian coordinates with the origin at the center of the sphere and then apply two sequential

rotations. The first rotation uses the angles

α =
π

2
− atan2 (ysrc, xsrc) and β =

π

2
− sin−1

(
zsrc
Rsrc

)
(2.4)

to define new coordinates in a rotated frame (denoted by the prime, ′),

x′
k = zk sin (β)− xk cos (β) sin (α)− yk cos (β) cos (α) , (2.5a)

y′k = xk cos (α) + yk sin (α) , and (2.5b)

z′k = xk sin (β) sin (α) + yk cos (α) sin (β) + zk cos (β) . (2.5c)
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Here α is the azimuthal angle of the source (measured from the positive x-axis), and β is the inclination

angle (measured from the positive z-axis). The second rotation is not strictly necessary; the critical

portion is the placement of source or observer at π/2, accomplished by the first rotation. However, this

second rotation further reduces the problem because it enforces −π/2 < θobs < π/2 (in the rotated frame),

allowing us to ignore some of the roots in Equations 2.13 and 2.21. This rotation takes

γ = atan2 (y′src, x
′
src) (2.6)

to establish coordinates in the twice-rotated, ′′, frame to be

x′′
k = z′k sin (γ)− y′k cos (γ) , (2.7a)

y′′k = y′k sin (γ)− z′k cos (γ) , and (2.7b)

z′′k = z′k. (2.7c)

With k ∈ {src, obs} (i.e. for x′′
src, x′′

obs, etc) and where atan2 (y, x) defines the angle from the positive

x-axis to (x, y). At the end, once the specular point has been calculated in this new coordinate system,

we will apply these two rotations in reverse for k ∈ {src, obs, spec} to recover the specular point in the

original system. The rotated system (x′′
k , y

′′
k , z

′′
k ) will be used for the remainder of this paper.

In the one-finite case, the rotation should be performed to place the coordinate of finite radius at π/2.

This allows full use to be made of the approximation Robs ≫ Rsph or Rsrc ≫ Rsph. In the both-finite

case the rotation can place either coordinate at π/2, but we will place the source at π/2 for notational

consistency.

2.3 One-Finite Case

If either the source or the observer can be considered infinitely distant, then after applying the Euler

rotation in Equation 2.5 to place the finitely distant of the two at π/2 – as Figure 2.2 shows – θ1 and θ2

can be defined such that

θ1 = tan−1

(
Robs sin (θobs)−Rsph sin (θspec)

Robs cos (θobs)−Rsph cos (θspec)

)
and (2.8a)

θ2 = tan−1

(
Rsrc sin (θsrc)−Rsph sin (θspec)

Rsrc cos (θsrc)−Rsph cos (θspec)

)
, (2.8b)
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where θe and θi are then given by

θe =
π

2
− (θspec − θ1) and θi =

π

2
− (θ2 − θspec) .

2.3.1 Formulation

Since incidence angle (θi) must always be equal to emission angle (θe), then in the limit where Robs ≫

Rsph we get

θ2 = 2θspec − θobs. (2.9)

With the introduction of a constant,

c ≡ Rsph
Rsrc

, (2.10)

and substituting in θ2 from Equation 2.8b, Equation 2.9 becomes

sin (θsrc)− c sin (θspec)

cos (θsrc)− c cos (θspec)
= tan (2θspec − θobs) . (2.11)

Making use of the identities

tan (x− y) =
sin (2x)− sin (2y)

cos (2x) + cos (2y)
and sinx cos 2y ± sin 2y cosx = sin (2y ± x) ,

and the fact that the Euler rotation in Equation 2.5 results in θsrc = π/2, we get

cos (4θspec) + c sin (3θspec) + cos (2θobs) = c sin (θspec − 2θobs) . (2.12)

2.3.2 Solution

Equation 2.12 has sixteen unique, non-trivial solutions, courtesy of Wolfram Mathematica

(Wolfram Research, 2020). We neglect eight of these because they represent special cases that are

not physically meaningful for our purposes. The other eight are presented in Equation 2.14 using the
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Figure 2.3: Plots of the solutions to Equation 2.12 where Rsph/Rsrc (c) is 0.85. Note that the numerical
method is only applied to [−π/2, π/2] because the Euler rotation in Section 2.2 enforces θobs to be between
−π/2 and π/2. θobs is the angle of the observer, θspec is the angle of the specular point. Both are in the
rotated reference frame and measured from the positive x-axis.

coefficients we define in Equation 2.13.

D0 ≡ 1152
(
c2 − 4

) (
c2 + c2 cos (2θobs)− 846 cos (2θobs)− 1

)
+ c2 sin (2θobs)

2 (2.13a)

D1 ≡
(

−4
(
160− 128c2 + 4c4 + 96 cos (2θobs)− 96c2 cos (2θobs)

)3
+
(
−16

(
c2 − 4

)3 −D0

)2)1/2

(2.13b)

D2 ≡ 3

√
16 (c2 − 4)

3
+D0 −D1 (2.13c)

D3 ≡ 1

3 3
√
4D2

(
40− 32c2 + c4 + 24 cos (2θobs)− 24c2 cos (2θobs)

)
+

D2

24 3
√
2

(2.13d)

D4 ≡
√

4− c2

6
+D3 (2.13e)
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θspec = ±



cos−1

−D4

2
−

√
−4− c2

3
−D3 −

c sin (2θobs)

8D4


cos−1

−D4

2
+

√
−4− c2

3
−D3 −

c sin (2θobs)

8D4


cos−1

+
D4

2
−

√
−4− c2

3
−D3 +

c sin (2θobs)

8D4


cos−1

+
D4

2
+

√
−4− c2

3
−D3 +

c sin (2θobs)

8D4



(2.14)

The only differences between the solutions are the different signs associated with four terms. The possible

combinations are ±−−−, ±−+−, ±+−+, and ±+++. These solutions are plotted in Figure 2.3 for

a source at 3000 km from the center of a sphere of radius 2575 km (i.e. Titan) and observer at much

greater distance. After comparing these solutions against the numerical method, as in Figure 2.3, it is

clear the branch that produces the physical specular point (on the exterior of the sphere) is

θspec =



cos−1

D4

2
−

√
−4− c2

3
−D3 +

c sin (2θobs)

8D4

 θspec <
π(cot−1 (c)− θobs)

π + 2 cot−1 (c)

cos−1

D4

2
+

√
−4− c2

3
−D3 +

c sin (2θobs)

8D4

 θspec ≥ π(cot−1 (c)− θobs)

π + 2 cot−1 (c)

(2.15)

2.3.3 Observer at finite distance

By altering the Euler rotation in 2.5 to place the observer at θobs = π/2 instead of the source, this same

approach can be used in the limit where Rsrc ≫ Rsph and Robs ̸≫ Rsph. In this case Equation 2.12

becomes

cos (4θspec) + c sin (3θspec) + cos (2θsrc) = c sin (θspec − 2θsrc) (2.16)

and the solutions thereof will similarly have θobs replaced with θsrc.
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2.4 Both-Finite Case

2.4.1 Formulation

If Robs ̸≫ Rsph and Rsrc ̸≫ Rsph then the solution becomes even more complicated. In this case,

Equation 2.9 becomes

θ2 + θ1 = 2θspec, (2.17)

and Equation 2.8 becomes

θ1 = tan−1

(
Robs sin (θsrc)−Rsph sin (θspec)

Robs cos (θsrc)−Rsph cos (θspec)

)
and (2.18a)

θ2 = tan−1

(
Rsrc sin (θobs)−Rsph sin (θspec)

Rsrc cos (θobs)−Robs cos (θspec)

)
, (2.18b)

which yields

tan−1

(
Robs sin (θsrc)−Rsph sin (θspec)

Robs cos (θsrc)−Rsph cos (θspec)

)
+ tan−1

(
Rsrc sin (θobs)−Rsph sin (θspec)

Rsrc cos (θobs)−Robs cos (θspec)

)
= 2θspec .

Again making use of θsrc = π/2 and defining a new constant,

b ≡ Rsph
Robs

, (2.19)

the both-finite equivalent of Equation 2.12 is

c sin (θobs + θspec)− cb sin (2θspec) + cos θobs − b cos θspec
c cos (θobs + θspec)− cb cos (2θspec) + sin θobs − b sin θspec

= tan (2θspec) . (2.20)

With b = 0 (and with some manipulation) we can recover Equation 2.12. Doing so is nontrivial and

will be neglected for brevity, but it is clearly demonstrated by the agreement between the two methods

when b ≈ 0 as shown in section 2.5.2.
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Figure 2.4: Solutions to Equation 2.22 for Rsph/Rsrc (c) of 0.85 and Rsph/Robs (b) of 0.95. Note that
the numerical method is only applied to [−π/2, π/2] because the Euler rotation in Section 2.2 enforces θobs
to be between −π/2 and π/2. θobs is the angle of the observer, θspec is the angle of the specular point.
Both are in the rotated reference frame and measured from the positive x-axis.

2.4.2 Solution

Similar to Equation 2.12, Equation 2.20 produces sixteen unique, non-trivial solutions – only eight of

which are physically meaningful (the others represent special cases). These are presented in Equation

2.22 using the coefficients defined in Equation 2.21
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E0 ≡ b2 + c2 + 2bc sin θobs − 4 (2.21a)

E1 ≡ 24 cos (θobs)
2 (

b2 − bc sin θobs − 2c2 + 2
)
+ E2

0 (2.21b)

E2 ≡ 72E0 cos
2 θobs

(
b2 − bc sin θobs + 4c2 − 4

)
+ (2.21c)

432 cos2 θobs

(
(b− c sin θobs)

2 − b2(c2 − 1) cos2 θobs

)
+ 2E3

0 (2.21d)

E3 ≡
(√

E2
2 − 4E3

1 + E2

)1/3

(2.21e)

E4 ≡
3
√
4E2

3 + 3
√
16E1

24E3
(2.21f)

E5 ≡

√
b2 cos (θobs)

2

4
+

E3

12 3
√
2
+

E1

6 3
√
4 E3

− E0

6
(2.21g)

E6 ≡ (b cos θobs)
3 − bE0 cos θobs − 4 cos θobs (b− c sin θobs)

16E5
(2.21h)

θspec = ±



cos−1

(
b cos θobs − 2E5

4
− 1

2

√
3(b cos θobs)2 − 2E0

12
− E4 − E6

)

cos−1

(
b cos θobs − 2E5

4
+

1

2

√
3(b cos θobs)2 − 2E0

12
− E4 − E6

)

cos−1

(
b cos θobs + 2E5

4
− 1

2

√
3(b cos θobs)2 − 2E0

12
− E4 + E6

)

cos−1

(
b cos θobs + 2E5

4
+

1

2

√
3(b cos θobs)2 − 2E0

12
− E4 + E6

)

(2.22)

As in Equation 2.14, the only differences between the solutions are the signs on four terms. The

combinations of these signs are ± − −−, ± − +−, ± + −+, and ± + ++ (the same as in 2.14). They

are plotted in Figure 2.4. Comparison with the numerical method indicates the branch that produces

the physical specular point (on the exterior of the sphere) is

E7 ≡ 3(b cos θobs)
2 − 2E0

12
− E4 + E6
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θspec =



− cos−1

(
b cos θobs + 2E5

4
+

1

2

√
E7

)
−π
2
≤ θobs < L1

cos−1

(
b cos θobs + 2E5

4
+

1

2

√
E7

)
L1 ≤ θobs ≤ L2 and ∂ E7

∂ θobs
≤ 0

cos−1

(
b cos θobs + 2E5

4
− 1

2

√
E7

)
L2 < θobs ≤

π

2
or ∂ E7

∂ θobs
> 0

(2.23)

where the limits L1 and L2 are given by

L1 = tan−1

(
c+ b

√
1− b2 + c2

b2 − c2

)
(2.24a)

L2 = tan−1

(
c− b

√
1− b2 + c2

b2 − c2

)
(2.24b)

It should be noted that L1 may occur at less than −π/2, and in such cases only the second two parts in

Equation 2.23 are necessary. Additionally, while there is an exact solution for the partial derivative of

E7, in practical computation it is robust to use the approximation

∂ E7

∂ θobs
≈ E7

∣∣
θobs

− E7

∣∣
θobs−ζ

where ζ is directly related to the branch-deduction precision (assuming it is larger than the computation

precision), e.g. ζ = 10−9 will result in the correct branch being chosen within 10−9. Our both-finite

implementation in the following section makes use of this approach.

2.5 Computation

Implementations of these solutions in both Python and C++ can be found in this GitHub Repository1.

Also in the repository are Wolfram Language Package files for easily reading the solutions into

Mathematica. The C++ implementations were used for performance benchmarking. The solution for the

one-finite case performs significantly better than that of the both-finite case, but in many applications

the difference will be negligible because both routines are relatively minimal – especially compared to

numerical methods.
1https://github.com/WMiller256/Alhazen-Ptolemy

https://github.com/WMiller256/Alhazen-Ptolemy
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2.5.1 Performance

Excluding branch deductions (and after compiling with gcc option -O3), our C++ implementation of

the one-finite solution requires 76 floating point operations, 6 trigonometric and 5 sqrt calls with

one expensive exponentiation operation to find a complex cube root. The corresponding both-finite

code requires 131 floating point operations, 5 trigonometric and 5 sqrt calls, and one expensive cube

root.

Benchmarked on an hexacore Intel i7-8750H the one-finite solution averaged 23 ns per iteration and the

both-finite solution averaged 121 ns per iteration for 109 random combinations of b, c, and θobs. The

code used for benchmarking is included in the linked GitHub repository. In cases where L1 ≤ θobs ≤

L2 the one-finite implementation has a more significant speed advantage because the both-finite

implementation’s branch deductions are most expensive in this region.

2.5.2 Precision

The agreement between the one-finite solution and the both-finite solution is shown in Figure 2.5.

When using the 64-bit double type, the machine precision for either calculation is roughly 10−7 due

to the trigonometric functions. The use of the long double type (which is implementation dependent

but usually corresponds to between 80-bit and 128-bit storage) can be used to improve this precision to

10−15. It should be noted that any numerical methods will have the same or similar precision limitations.

Figure 2.5 does not make use of the extra precision and therefore the point at which the average error

exceeds 10−6 can be considered the point at which the disagreement between the two methods exceeds

the machine precision. This occurs at around b/c = 2×10−5, i.e. when either Robs or Rsrc is 50,000 times

larger than the other. At a ratio of 500 the accuracy drops to ±1.72×10−2 degrees, but only for the

nearly worst-case-scenario of c = 0.95. As c decreases the accuracy of θspec at the same b/c improves,

e.g. for c = 0.1 the accuracy is ±1.72×10−6 degrees at b/c = 500.

2.6 Conclusion

2.6.1 SRTC

Our method is of particular use in simulating radiative transfer on Titan, i.e. in the SRTC++ model

(Barnes et al., 2018). Specifically, calculating specular reflections due to atmospheric scattering allows

us to compensate for the adjacency effect – when atmospheric scattering redirects light reflected off

bright material adjacent to spectrally dark regions (e.g. lakes) and causes them to appear brighter than

they should. This effect has been well documented on Earth (Odell & Weinman, 1975; Tanre et al.,
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Figure 2.5: The agreement between the one-finite and both-finite solutions as a function of the ratio
between b and c with the maximum error across all θobs for a given b/c. Note that even though θobs is
confined to [−π/2, π/2], we are showing the error for θobs between 0 and π. We do so to demonstrate that
for −π/2 > θobs or θobs < π/2 (in the reference frame before the second Euler rotation) the persistent
error is symmetrically reversed.

1981; Minomura et al., 2001; Sterckx et al., 2011; Kiselev et al., 2015) and Karkoschka & Schroder

(2016) found it necessary to compensate for it in their reflectivity analysis of Huygens data.

Realistically simulating Titan’s atmosphere and surface requires compensation for the adjacency effect,

and many high fidelity simulations. In such simulations, the specular point must be calculated for every

scattering event (and there are usually billions). The effect of our method on the computation speed of

these simulations is negligible (e.g. about 1 minute over 4 days of execution time). The same cannot be

said of existing methods.

2.6.2 Rendering

Another notable application is in rendering computer graphics. Computation speed is critical here as

well, and often multiple light sources or reflections must be accounted for – each with a separate specular

point. Sources with non-negligible spatial extent are also common, requiring the calculation of multiple

specular points during each refresh. We have formulated this paper to emphasize spherical surfaces, but

in fact the analysis in the rotated reference frame can be applied to any reflective surfaces of revolution,

provided the intersection between the surface and the plane formed by the source, observer, and specular

point forms a circle.
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2.6.3 Extension to elliptical geometry

Extending our approach to elliptical geometry would drastically broaden its usefulness by providing

an analytical, branch-deducing method for calculating specular points on any closed conic section. As

mentioned previously, this extension would enable our solution to be used in GPS communications. But

it would also expand the usefulness for computer rendering because most planar slices of regular surfaces

of revolution produce one or several non-circular conic sections. We leave the elliptical case to future

work.

2.6.4 In Summary

We have presented a formulation of the Alhazen-Ptolemy problem in which the physical specular point

is predeterminable, we find this formulation to be superior to previous approaches because it does not

rely on numerical methods for branch deduction. Furthermore, we have shown that the solution can

be directly written as a piecewise function with only 3 branches in the both-finite case and only 2

branches in the one-finite case. Employing an Euler rotation, normalizing the radius of the sphere to

unity, and translating the rotated coordinate system to center on the specular point are critical in this

formulation and in enabling robust and efficient computational implementation. Our method is useful

for studying the ethane composition of Titan’s lakes with SRTC++, rendering 3D computer graphics, and

lays the groundwork for extension to elliptical geometry.
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Chapter 3 Compiling Cassini-VIMS Titan Data
William J. Miller, Jason W. Barnes

During her 13-year tenure in the Saturn system, Cassini completed 127 imaging flybys of Titan. These

immense and invaluable data have greatly furthered our understanding of Titan, of particular import are

the observations from the prime instrument; the Visible Infrared Mapping Spectrometer (VIMS). There

are significant processing barriers to overcome in synthesizing useful products from the VIMS data.

To enable their dissemination and lower these barriers I have integrated the creation of data products

compatible with Version 4 of the Planetary Data System (PDS) standard into the Jcube codebase. We

have completed creating PDS data products for 89 flybys.

3.1 Introduction

The VIMS dataset is comprised of 694 gigabytes of imaging data in 352 wavelengths in the visible and

near- infrared. This massive dataset has proven invaluable to furthering our understanding of Titan,

revealing a body with active hydrology in the form of methane. These data have shown rivers and seas

of methane (Barnes et al., 2007, 2006; Stephan et al., 2010), clouds (Griffith et al., 2005; Rodriguez

et al., 2009), dunes (Barnes et al., 2008), and even allowed the measurement of waves in Jinpo Lacus

and Kraken Mare (Barnes et al., 2011).

3.1.1 The Problem

The process by which these data can be digested into something scientifically useful is by no means

simple. The raw data are delivered from the calibration pipeline as Integrated Software for Imagers and

Spectrometers (ISIS) Version 2 files. ISIS2 files are themselves fairly workable – albeit somewhat dated –

the ISIS2 format is supported by the C++ and Python Application Programming Interfaces (API) of the

Geospatial Data Abstraction Library (GDAL). The problems arise when mosaicing (3.2.2) or coloring

the raw images to generate summary products for publication and dissemination.
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Figure 3.1: The 1-µm atmospheric window. The 1.09816 band is the only one of the three shown here
which receives sufficient surface signal to be useful. There are only four VIMS bands in this window.

The main issue of coloring comes from the optical characteristics of Titan’s atmosphere, namely the

numerous and broad absorption bands in the visible and infrared ranges. Figure 3.1 illustrates the

narrowness of the 1-µm atmospheric window. We use data from five of these atmospheric windows to

create colored images, those five windows only span about 50 VIMS wavelengths. Hence, useful colored

images depicting surface detail cannot be created from a full cube, but only from an appropriate subset

of planes. Figure 3.2 shows two composite maps colored using a scheme which assigns blue to 1.3 µm,

green to 2 µm, and red to 5 µm – our standard scheme.

Figure 3.2: Colored and cylindrically-projected global maps from the T8 flyby using Lanczos
interpolation, with sequential replacement (left) and coadd (right) meshing. Blue has been assigned
to 1.3 µm, green to 2 µm, and red to 5 µm.
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The second significant barrier to creating summary products is the staggering variety of viewing

geometries. This is not unique to the Cassini mission; any spacecraft will create a vast array of viewing

geometries, either during a flyby or an orbit. For the Titan data, this works to our advantage because

it provides us coverage at multiple scales with temporal adjacency – allowing us to create composites

which put higher resolution data in broader context. It also works to our disadvantage because it makes

the creation of said composites more complicated.

The challenge is that every single observation, which in the case of the VIMS instrument is not only

every image but every single pixel, the spacecraft has a different three-axis position and orientation.

Fortunately, the techniques for compensating for the different viewing geometries and projecting the

different observations onto a common canvas are well-established. Unfortunately, that doesn’t make

them easy. The spacecraft and target position and orientation must first be extracted from the SPICE

(Spacecraft, Planet, Instrument, Camera-matrix, and Events) kernels to define the viewing geometry.

This geometry is used to create a homography (transformation matrix) between the observation and a

common canvas, and then the homography is applied to ‘project’ the observation onto the canvas.

In short, a researcher interested in using data from VIMS who does not already possess the necessary

software infrastructure to perform the processing must

1. Ingest the ISIS2 files

2. Extract the relevant information from the SPICE kernels

3. Compose a homography for each pixel

4. Apply the homographies

5. Compose the projected cubes

6. Create colored images from a subset of planes

7. Conduct their investigation

Furthermore, since there are hundreds of cubes per flyby, practically speaking the above must be

automated by the development of redundant software infrastructure. I expect most researchers would

much rather skip to number 7, given the option.
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3.1.2 The Project

The goal of this project is to create a comprehensive set of data products – specifically, cylindrically

projected maps – spanning all 127 flybys.1 These products are stratified by sequence, interpolation,

mesh, and coverage. For each flyby, there can be a total of 24 products as shown in Figure 3.3. That

being said, not every flyby will have products from both ingress and egress or for every coverage, but

every sequence will have both Lanczos and nearest neighbor interpolations, which will each have coadd

and sequential replace meshes for every coverage. At minimum, a sequence will contain a global Lanczos

and nearest neighbor for both coadd and sequential replace (4 products in total).

Flyby

Ingress

Lanczos

Coadd
Global

Regional
Local

Sequential
replace

Global
Regional

Local

Nearest
neighbor

Coadd
Global

Regional
Local

Sequential
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Coadd
Global
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Local

Sequential
replace

Global
Regional

Local

Nearest
neighbor

Coadd
Global

Regional
Local

Sequential
replace

Global
Regional

Local

CoverageMeshInterpolationSequence

Figure 3.3: The stratification of data products for each flyby. Not every flyby will feature a complete
tree, but will at minimum contain global coverage of each mesh and interpolation for at least one
sequence.

1Several flybys are excluded due to lack of usable data, e.g. the Tc flyby which was reserved for Huygens insertion.
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These products will summarize the data from every flyby into an easily ingestable set of maps: with

a few simple lines of Python or C++, they can be read into memory for analysis. Furthermore, data

viewers such as pds4_viewer are capable of immediately opening and displaying the maps without any

configuration or modification. A prospective researcher armed with access to these maps would be able to

go from concept to investigation in a matter of minutes, regardless of their technical background.

Figure 3.4: Colored version of the calibrated
1509136601_1 ISIS cube

Figure 3.5: Lanczos-interpolated cylindrical
projection of the 1509136601_1 ISIS cube.

3.2 Processing

After retrieving the calibrated data from the VIMS server, the process of generating a composite map

is as follows,

1. Project the ISIS2 cube files onto a cylindrical canvas.

2. Color the projected cubes to create a set of images for review.

3. Review the cylindrically-projected images to determine which to include in the composites. The

set will be different for sequential replace and coadd.

4. Mesh the cubes into a single composite map.

5. Iterate the reviewing, filtering, and meshing as needed.

Much of this processing can be, and is, delegated to computing resources through automated processes.
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Figure 3.6: Comparison between orthographic projections of the Lanczos-interpolated, sequential
replacement, global composites from Ta (left) and T3 (right). Note the bright orange cloud feature
to the south in the Ta observations is no longer present by T3.

However, the determinations of which observations to include over what coverage and at what resolution

must be made by a human, making this a tedious and time-consuming process.

3.2.1 Projecting

The projection step is required in order to mesh different observations into a single composite. Without

projecting the ISIS cubes, there is no relationship between pixels and spatial coordinates (latitude and

longitude). It also allows for direct comparison between features in different observations, even entirely

different flybys.

This is of particular use in identifying and studying ephemeral features such as clouds. Take for example

the comparison between the orthographic projections of the sequential replace, Lanczos composites from

Ta and T3 in Figure 3.6. Ta shows a prominent bright orange feature (a cloud) in the south, while T3

does not. Thanks to the projection we can at a glance observe the extent of the cloud. In fact, since the

images are aligned to the same canvas, we could do that same analysis quantitatively – which would be

impossible with unprojected images.
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Projected cubes can also be directly compared against observations from other instruments, most

importantly those from Cassini’s radar instrument (RADAR). Combining RADAR and VIMS data

provides both spectral and altimetry information of the same features, which is particularly useful in

identifying and analyzing lakes.

There are many applications for quantitatively analyzing the temporal variations on Titan’s surface, this

is merely one example. The data products we are creating will enable such analyses in unprecedented

fashion.

3.2.2 Mosaicing

The process of mosaicing is equally critical to creating a manageable set of data products because it

allows an entire flyby to be viewed in a single image. Similarly invaluable is the ability to put high

resolution data into broader context by mosaicing observations of differing resolutions. Furthermore, it

allows the combination of observations from different flybys into a single composite, which is particularly

useful in summarizing the highest resolution data from multiple flybys.

Figure 3.7: Demonstration of sequential replacement, the left panel shows the lower-resolution
observations only and the right shows the higher-resolution observations layered over the others. The
high resolution data are summarized in context by this method. The data are from the ingress sequence
of flyby Tb.
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Condensing hundreds of cubes comprising hundreds of millions of pixels into one image is quite the task,

and its usefulness cannot be understated. Fortunately, this process is very straightforward once the

cubes have been projected. The process of mosaicing is also described as ‘meshing’. We use two meshing

methods:

Coadd – pixels at the same latitude and longitude are averaged into a single value. This method

provides better signal-to-noise at the cost of lower spatial resolution.

Sequential Replacement – the cubes are layered in a prescribed order with the highest resolution

on top and then flattened. This method provides higher spatial resolution, but at a lower

signal-to-noise ratio. Figure 3.7 demonstrates this approach.

3.3 Results

Figure 3.8: Final global maps for the Ingress sequence of the Ta flyby. Top row shows the sequential
replacement mesh, bottom row shows the coadd mesh. Left column shows Lanzcos interpolation, right
column shows nearest neighbor.

Presently, we have completed creating final data products for 89 flybys, totaling 528 individual

composites, 274 from the prime mission (T0 - T44) and 254 from the extended mission (T45 - T126).

The products from the prime mission are being finalized for delivery to the PDS, and those from the

extended mission will be delivered upon their completion. Figure 3.8 shows the complete set of global

cylindrically-projected composites from the Ta flyby, as they will be delivered.

Orthographic projection offers a number of advantages over cylindrical projection and in many cases is
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more appropriate than cylindrical; it allow the observations from a flyby to be placed in the context

of the original viewing geometry of the sequence.2 This is particularly useful for illustrating specular

geometries, especially when there is a specular reflection, and for analyzing haze properties near the

terminator (it is in fact critical for this analysis). We may also later include orthographic projections of

these products (see Figure 3.9) as well as the individual cylindrically-projected cubes. But for now that

is left to future work.

3.4 Conclusion

I have integrated the ability to generate PDS4 compliant files into our existing processing infrastructure,

enabling the creation and dissemination of a stratified collection of composite maps summarizing Cassini’s

VIMS observations of Titan. This set will make it substantially easier for future researchers to work with

the data it covers, and enhance the quality of future analyses which leverage it by facilitating temporal

comparisons of features or regions of interest.

We have completed this set of data products for the prime mission, flybys T0 through T44, and a majority

of the extended mission, T45 through T126. I am preparing the products from the prime mission for

final deliver to the PDS. The remaining maps will be delivered upon their completion.

2The viewing geometry changes constantly, as mentioned previously, but we can pick a viewing geometry either early
in ingress or late in egress which is representative for the purposes of summarization.
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Figure 3.9: Orthographic projections of the global maps for the Ingress sequence of the Ta flyby. Top
row shows the sequential replacement mesh, bottom row shows the coadd mesh. Left column shows
Lanzcos interpolation, right column shows nearest neighbor.
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Chapter 4 Modernizing orbital integration
William J. Miller

There is tremendous unrealized potential arising from the advantages offered by modern computing

hardware in the implementation of orbital integrators. Vulcan creates a structure in which any integration

scheme can be implemented and given full advantage of its efficient parallelization, advanced memory

management, and concurrent file output. This speeds integration by potentially hundreds of times -

reducing the time needed for an Euler-Symplectic integrator to simulate the solar system for a gigayear

from a month to a few hours. Furthermore, new calculations - and even entirely new integration

algorithms - can be added without significantly changing the source code.

4.1 Introduction

The driving force behind the development of new orbital and N-body integration methods is

computational efficiency. Greater efficiency allows the study of a wider parameter space, or the same

space at higher resolution. It allows better understanding of how the chaos of a system varies within

its parameter space. More efficient integration relaxes the lower bound on the simulation time-step,

enabling simulations of systems with faster-orbiting bodies, more close encounters, or a wider disparity

in orbital period between bodies. The challenge is to balance the drive for greater efficiency with the

need for accuracy. Existing orbital integrators can be stratified by both algorithmic and implementation

differences, and achieve varying degrees of success in improving the computational efficiency without

sacrificing accuracy.

The most prevalent integrators, MERCURY (Chambers, 1999), SyMBA (Duncan et al., 1998a), and RMVS3

(Levison & Duncan, 1994), share a common restriction imposed by their age - they were designed for

computer architectures which no longer exist, and consequently, were driven by design restrictions that

are incongruous with modern computing hardware: they lack parallelization, memory management is

geared toward minimizing memory footprint, and writing to file is performed in serial. The strength

of these integrators is in their algorithmic improvements - symplectic and hybrid-symplectic integrators

are an order of magnitude faster than more primitive methods (e.g. Bulirsch-Stoer, Runge-Kutta)

(Chambers, 1999). Subsequent integration schemes have generated further algorithmic improvements

(Wisdom, 2017) (Hernandez, 2016) (González et al., 2000) (Peláez et al., 2007). But still none fully

leverage the potential of modern hardware.
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The most successful attempt at improving implementation efficiency by taking advantage of modern

hardware is the Rebound project (Rein, H. & Liu, S.-F., 2012) - it features intra-step parallelization using

the OpenMP library and the memory management approach optimizes for speed instead of footprint.

However, it still falls short of fully realizing the potential of modern hardware - this is detailed in

subsection 4.3.

The divergent development of SMercury (Lissauer et al., 2012) and Mercury-T (Bolmont et al., 2015)

highlights an additional drawback of existing implementations: each implementation is constructed on a

different code base, marrying two algorithms from existing implementations requires prohibitive overhaul

to the code base - even adding a new calculation can create a development branch which is incompatible

with other branches - as is the case with the addition of spin and tidal calculations to MERCURY.

No single algorithm or implementation exists which can simultaneously maximize efficiency and accuracy

for all use cases. This has resulted in the broad array of algorithms and implementations outlined above

and creates a need which Vulcan is intended to fulfill - a structure which can provide the advantages

of modern hardware to any integrator or integration scheme. Vulcan is built for efficiency in both

execution and development time: it features efficient parallelization and memory management for

small-N simulations and intelligent, concurrent file output with the ability to add new calculations

in just a few lines of code.

4.2 Practical Details

Large-scale N-body integrators such as PKDGRAV (Potter et al., 2017), GADGET-2 (Springel, 2005), and

GANDALF (Hubber et al., 2018) (as well as its predecessor SEREN Hubber et al., 2011) feature parallelization

schemes which are well optimized for the simulation of many particles, but not for small-scale N-body

integrations. Most of the prevalent orbital integrators which are geared towards a small number of bodies

do not employ parallelization, and those that do (i.e. Rebound) are restricted to intra-step parallelization

- where the operations within a step are performed in parallel, but where there is no thread-continuity

between steps.

I posit that one reason for this lack is the expense of thread sleeping and resumption - sleeping takes

about 100 clock cycles, resuming takes at least as much, often more. Modern processors can usually

perform between 4 (Intel Core 2 Pentium series) and 32 (Intel Skylake-X series) flop/cycle (Dolbeau,

2018). So at the lower bound, sleeping and resuming a thread corresponds to between 800 and 6,400

flop - depending on the architecture. Since calculating the gravitational interactions of a system of n
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massive bodies requires
28n!

2(n− 2)!

floating point operations, then a corresponding Bulirsch-Stoer integration (Stoer & Bulirsch, 1980)

requires

ns−2∑
i=1

26 · i+
ns∑
i=1

(
48 +

28n!

2(n− 2)!

)
· i+

68 · ns + 3

(
28n!

2(n− 2)!

)
· ns

floating point operations per step. Where ns is the maximum number of substeps. For small n, on most

architectures this is on the scale of the cost to sleep and resume the threads. Significant improvement is

not realized until the ratio between the hardware concurrency (number of logical cores) and number of

bodies is small. Hence, intra-step parallelization does not offer much improvement for small-scale N-body

integration (see Figure 4.1). This is not true for inter-step parallelization which employs ‘busy-waiting’

or ‘spin-locking’ (normally considered an anti-pattern Gamma et al., 1995) to guarantee against sleeping

between steps. Implementing this is non-trivial.

It should be noted, however, that the spin-lock timeout period in C++ is implementation dependent, and

consequently the magnitude of the pessimization in intra-step parallelization varies based on the specific

simulation and the integrator used.

4.3 Vulcan

The continued advancement of the algorithms used in orbital integration, as well as the variety of

calculations which are useful in different simulations – from the common (e.g. spins, tides, general

relativity) to the exotic (e.g. YORP and Yarkovsky) – demand an implementation that brings the

advantages of modern computing hardware to any integration scheme. Vulcan seeks to do exactly

that.

There are three main avenues of improvement which I have pursued in the development of this code:

efficient parallelization of calculations, memory optimization, and concurrent file output. I have

implemented these improvements congruent with my requirements for extensibility:

1. Every Integrator must arbitrarily benefit from the three primary optimizations

2. Vulcan must support any integration scheme
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3. Vulcan must support any arbitrary set of calculations, provided the necessary inputs can be

encapsulated in a Body object

4. The set of calculations must be flexible between time steps.

5. Vulcan must support variable and fixed time steps.

6. Vulcan must support different time steps for different bodies.

To this end, I have implemented a structure wherein an arbitrary calculation can be added to the

integration with as little as 5 lines of code (excluding the code for the calculation itself). Additionally,

any new integration scheme (i.e. a new integration algorithm, a new combination of existing algorithms,

or a new implementation of an existing scheme) can be added by simply sub-classing the abstract base

class, Integrator, and will receive full benefit of the parallelization, memory management, and file output

optimizations.
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Figure 4.1: Realized changes in computation time for serial, intra-step parallelized, and inter-step
parallelized execution of Vulcan’s Bulirsch-Stoer integrator. Testing conducted with memory
optimizations disabled: parallel integrations with 6 bodies or fewer are memory-limited. The intra-step
method does not surpass serial if fewer than 9 bodies are included. The inter-step method is always
faster than serial when not memory-limited.
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4.3.1 Parallelization

Efficient parallelization of the calculations demands inter-step thread continuity. If the threads are

relinquished to the thread scheduler between steps they may be assigned to other tasks in the interim,

bottle-necking the remaining threads to fewer logical cores or forcing a delay to allow completion of lower

priority tasks. Furthermore, upon resumption the calculations may be redistributed, and calculations

that switch cores will cause further slowdown. Thread schedulers are quite good at all of this, and in

most cases there is no significant pessimization - which is in fact the foundation of the popular technique

of thread-pooling (Garg et al., 2002). In cases where the expense of the calculation (or task) is roughly

the same or less than normal thread-scheduling (such as small-scale N-body integration), a different

technique is needed. When faced with such a calculation, thread pools will generally revert to serial

execution, but then they sacrifice the potential advantages.

In Vulcan, the threads are forced into ‘busy-waiting’ between steps – something which is normally

considered an anti-pattern (Gamma et al., 1995). This prevents them from being relinquished to the

thread scheduler and guarantees they will not have to sleep and resume between calculations. This allows

my code to better realize the full potential offered by parallelization compared to other parallelization

techniques (pipes, OpenMP, threadpools, etc), even with a small number of bodies.

4.3.2 Memory Optimization

The utility of memory caching is most notable in cases where there is a discrepancy between the time

steps of individual bodies. In cases which are suitable for the use of ‘ghost’ bodies (i.e. bodies who are

affected by the massive bodies but do not affect them or each other (Lissauer et al., 2012)) this caching

makes use of computing space which would otherwise be wasted, as shown in Figure 4.2.

The idea here is to cache the necessary values from each time step and use them to do the ‘ghost’

calculations while the main simulation progresses instead of waiting until all the calculations for ‘ghosts’

have been finished before advancing the simulation to the next step. In a use case such as that in

(Lissauer et al., 2012), this would enable the simulation of 68 different Earth obliquities without any

decrease in the overall speed of the simulation, and a twofold increase in the overall speed above that.

This would either allow double the parameter space to be sampled, or halve the time needed to sample

the same space.

4.3.3 Concurrent file output

The most expensive part of any orbital integration is the file IO. Write speed strongly restricts the

temporal granularity of the results. Most prevalent integrators will write to file on a fixed simulation
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Figure 4.2: Illustration of the improvement of appropriate memory caching for an architecture whose
memory scheduler can perform 6 parallel operations (typical for modern machines). The test system is
comprised of our solar system and 12 ‘ghost’ Earths. In this case, the caching version completes 14 steps
for every 9 steps of the non-caching version.

time interval, or write to memory on a fixed interval and dump to file on a longer interval. In Vulcan,

I employ a more advanced scheme: the parameters are written to memory on a given simulation time

interval, but they are dumped to file on a given wall time interval, e.g. once every hour. These memory

dumps are performed concurrent to the main simulation, meaning the simulation is only slowed down

to a factor of nthreads
nthreads − 1

for the duration of the write.

Additionally, only the last time point in each memory dump is written with full precision - the rest use

a much lower precision. This way even if a simulation is interrupted and needs restarting there will be

no error due to loss of precision but the disk operations can be performed between 2 and 4 times faster,

enabling a higher temporal granularity.

4.3.4 Realized Improvement

The real test of any theory is the result of its application in practice, and Vulcan passes this test with

flying colors. Figure 4.3 shows the performance increase from parallelization for different architectures

for a solar-system Bulirsch-Stoer integration. It bears noting that the Intel i7-8750H and AMD Ryzen 5

2060 are hyperthreading, and the AMD Opterons are not. The Intel i7-8750H and AMD Ryzen 5 2600

were built for processing speed, and sacrifice memory speed. The AMD Opteron systems are older, but

were better optimized for memory speed – so while their raw performance is worse, they leverage the
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Figure 4.3: Comparison of the performance of Vulcan’s Bulirsch-Stoer integrator simulating 50,000
years of the solar system across several architectures.

parallelization better. With a system built for memory speed, the realized performance improvement

will increase even further.

4.4 Results

Of course, the true measure of any orbital integrator is not speed, but accuracy. After all, what good

is getting an answer more quickly if that answer is wrong? The most important and useful metric for

the accuracy of an orbital integrator is the relative energy error of the system, i.e. the change in energy

relative to the initial energy:

∆E =
E − E0

E0
(4.1)

where E is the energy at time t and E0 is the energy at time t = 0.

In a perfect integrator, the net change would be zero across any timescale. In practice, relative energy

errors on the order of 10−6 are generally sufficient since the physical precision is generally limited to

10−7 (unless specific efforts are made to employ greater than 64-bit precision). Both Chambers (1999)

(MERCURY) and Duncan et al. (1998b) (SyMBA) benchmarked their accuracy against a modified outer solar
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system model in which the masses of the four outer planets are increased by a factor of 50. This is a

very chaotic system, as Chambers (1999) notes, and even small variations in the initial parameters or in

the time-step result in drastically different outcomes. This makes it a perfect system on which to test

Vulcan.
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Figure 4.4: 175 Earth year integration of the five-body, modified outer planets system, where the
masses of the four outer planets have been increased by a factor of 50. Uranus has just experienced a
close encounter with Saturn which will lead to it’s ejection within 25 Earth years.

Figure 4.4 shows the evolution of this system using Vulcan’s Bulirsch-Stoer integrator over a period

of 175 Earth years. 175 years is too short to benchmark the energy error, but with this configuration

Uranus is ejected at around 200 Earth years due to a close encounter with Saturn so the 175-year version

is more suitable for illustration. The accuracy benchmark completed 2000 Earth years of integration

time. Longer integration would not be meaningful for this system because Uranus, Neptune, and Saturn

are all ejected by the 2000 year mark. The absolute maximum relative energy error for this integration

was 3.0×10−7 — on par with the results from both MERCURY and SyMBA. More importantly, as with both
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MERCURY and SyMBA, Vulcan’s Bulirsch-Stoer integrator did not demonstrate any accumulation of energy

error.

4.5 Conclusion

At present, I have fully implemented and rigorously tested both a Runge-Kutta and a Bulirsch-Stoer

integrator which satisfy all the design requirements outlined in 4.3. The performance and results from

the Bulirsch-Stoer integrator are discussed in 4.2, 4.3.4, and 4.4.

While the Bulirsch-Stoer integrator provides a meaningful proof-of-concept for the optimizations

described herein, it offers no advantage over the established standard of MERCURY’s hybrid symplectic

integrator and, generally speaking, the MERCURY integrator should be preferred over Vulcan’s

Bulirsch-Stoer. The same cannot necessarily be said of MERCURY’s Bulirsch-Stoer integrator, which suffers

a tremendous speed disadvantage: Vulcan’s Bulirsch-Stoer integrator took 38 days to complete a gigayear

simulation of our solar system on an 8-core, 3.6 GHz Intel i7-9700K, compared to 27 days for MERCURY’s

hybrid symplectic integrator. Chambers (1999) states that symplectic integrators are roughly an order

of magnitude faster than their numerical counterparts. Since this integration features very few close

encounters, it is reasonable to expect that the MERCURY’s Bulirsch-Stoer integrator would require 8 to 9

months to complete a gigayear1.

Consequently, Vulcan needs a hybrid symplectic integrator before competing with MERCURY and rigorous

testing thereof before being applied to scientific investigation. Said integrator and its testing suite will

be the next developments in the Vulcan code.

1I was unable to measure this directly, for obvious reasons
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Chapter 5 Summary

5.1 Solving the Alhazen-Ptolemy Problem

I have presented solutions to the Alhazen-Ptolemy problem for the one-finite and both-finite cases under a

useful formulation created in collaboration with Jason Barnes and Shannon MacKenzie. These solutions

are immediately useful for simulating radiative transfer on Titan with the SRTC++ model, and I have

integrated an implementation of them into that code. The locations of specular points returned by my

solutions are both more accurate and take less time to compute than any alternative method; critical

for enabling SRTC++ to model specular reflections.

The modifications I have made to SRTC++ will allow us to compensate for the adjacency effect in future

investigations and facilitate the analysis of ethane composition in Titan’s lakes – which was the direct

motivation for this work.

5.2 Modernizing Orbital Integration

I have modernized orbital integration with the Vulcan code base, offering all existing orbital integration

schemes the benefits of efficient parallelization even with small numbers of bodies, modern memory

management, and concurrency in outputting results.

I have fully implemented and rigorously tested a Bulirsch-Stoer integrator which has demonstrated

proof-of-concept for the aforementioned optimizations and which has realized a near ten-fold

improvement in computational efficiency over the Bulirsch-Stoer integrator featured in the MERCURY

code. Vulcan’s Bulirsch-Stoer beats both MERCURY’s hybrid symplectic integrator and SyMBA’s numerical

integrator in terms of relative energy error for a modified outer-planets test system while competing

with the hybrid integrator in terms of computation time. Vulcan will enable future orbital integrations

to cover significantly larger parameter spaces or the same spaces with much higher granularity.

5.3 Compiling Cassini-VIMS Titan Data

I have compiled Titan data from Cassini’s VIMS instrument into summary data products and integrated

the process for creating products compliant with Version 4 of the PDS standard into the Jcube code base.

These composite maps span different coverages, interpolation styles, and meshing methods to ensure that
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they support the broadest feasible range of analyses.

The global views provide large-scale context and allow for global comparisons across different flybys, the

regional views provide summaries of observations whose resolution is too good to be accurately depicted

in the global context but whose extent goes beyond that of the local views. The local views put the

highest resolution data into context without sacrificing spatial resolution to do so.

Lanczos interpolations provide the highest spatial resolution, but sacrifice some spectral resolution while

nearest neighbor interpolations preserve the spectral resolution without enhancing the spatial resolution.

Sequential replacement meshes give higher resolution but lower signal-to-noise while coadd meshes give

better signal-to-noise at the cost of lower resolution.

The delivery of these products with enable future researchers to conduct meaningful scientific

investigations without paying the time costs of developing code to process the raw data.
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