
Accelerated Convergence of Gradient Descent
Using Adaptive Parameters

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Mathematics

in the

College of Graduate Studies

University of Idaho

by

Matthew Mills

Approved by:

Major Professor: Fuchang Gao, Ph.D.

Committee Members: Lyudmyla Barannyk, Ph.D.; Linh Nguyen, Ph.D.

Department Administrator: Hirotachi Abo, Ph.D.

May 2022

ii

Abstract

The Nesterov gradient descent algorithm serves as a performance benchmark for
convex optimization problems. Like many other gradient-based methods, the Nes-
terov algorithm requires choosing a constant step size before optimization begins,
and the performance of the algorithm heavily depends on the step size. Here, we
propose three novel adaptive algorithms which adaptively determine the step size
based on the searching history. The new adaptive methods were tested along-
side the original Nesterov algorithm on a list of commonly-used optimization test
functions in a range of dimensions. The numerical experiments showed that they
consistently outperformed the Nesterov algorithm by a wide margin. We also dis-
cuss ways that these adaptive methods could be improved.

iii

Acknowledgments

I would like to acknowledge my advisor, Dr. Fuchang Gao, for his insight, effort,
and direction on this project and his willingness to create a successful research
environment.

iv

Dedication

This thesis is dedicated to my wife, who supported me through many long days
and nights, as well as my parents, who always encouraged me to pursue my interest
in Mathematics.

v

Contents

Abstract ii

Acknowledgments iii

Dedication iv

Table of Contents v

Chapter 1: Introduction 1

Chapter 2: Optimization Methods 3

Chapter 3: Nesterov Acceleration 20

Chapter 4: New Adaptive Methods 28

Chapter 5: Numerical Experiments 39

Chapter 6: Conclusion and Future Work 47

Bibliography 49

1

Chapter 1: Introduction

This thesis explores solutions to optimization problems using gradient-based meth-
ods. An optimization problem is formally stated as follows:

Problem 1. Let f be a function defined on some set I, find

argminx∈If(x).

Optimization can also refer to finding maximum function values as well, but
in the context of machine learning, the function f usually is an indication of error
within a model or approximated solution, so it is customary to let the term “op-
timization” refer to finding minimum values. In particular, we are concerned with
optimization problems with a convex target function. Convex functions appear in
many different applications, so it is natural to study optimization techniques which
apply specifically to convex functions. Recall that for differentiable functions, con-
vexity is defined as follows ([18], p52):

Definition 1. A continuously differentiable function f is said to be convex on Rn

if for any x, y ∈ Rn, it follows that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩. (1)

The inequality (1) can be derived from another more common definition of
convexity ([18], p54):

Definition 2. A function f in Rn is called convex if for all x, y ∈ Rn, and all
p ∈ [0, 1],

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y). (2)

In fact, for differentiable functions, the two definitions are equivalent. Now, this
second definition can be readily used to prove the following important property
about convex functions which guarantees that an algorithmic scheme can achieve
a minimal function value [10]:

2

Proposition 1. Let f be a convex function on Rn, and suppose f has a local
minimum at x∗. Then f also has a global minimum at x∗.

Proof. Suppose x∗ is a local minimum of f . Then for any y ∈ Rn, we can choose
p ∈ (0, 1] small enough, so that z := (1 − p)x∗ + py is in the neighborhood of x∗

such that f(x∗) ≤ f(z). It follows that

f(x∗) ≤ f((1− p)x∗ + py) ≤ (1− p)f(x∗) + pf(y).

Thus, f(x∗) ≤ f(y). So f has a global minimum at x∗.

There are many existing methods to perform convex optimization [1], and an
example which is consistently regarded as a benchmark for algorithm performance
is the Nesterov gradient descent method ([18], p80). However, the Nesterov gradi-
ent descent algorithm is non-adaptive, meaning that it uses some parameters that
are predetermined by the user, and the step sizes are computed separately from
the given function and error values produced by the algorithm. Consequently, the
performance of the algorithm heavily depends on the initial parameters. As such,
it is a non-trivial task to choose the right initial parameters, which often requires
a brute-force search.

Thus, the goal of this research project is to create a convex optimization algo-
rithm with better performance by using adaptive techniques. The new algorithm’s
successful performance improvement is measured by running itself and the Nes-
terov algorithm on a set of commonly-used optimization test functions, with a
wide range of dimensions, to compare the number of iterations and function eval-
uations required for each algorithm to converge. To introduce the new algorithms,
it will first be necessary to explore some of the most common gradient-based op-
timization methods, then the new adaptive methods will be presented along with
the specific test cases that were used to verify their performance improvement.

3

Chapter 2: Optimization Methods

There are many different methods which have been discovered to solve optimization
problems. For general reference, we recommend the excellent book [1]. Many of
these methods rely on computing and using a function’s gradient, since it contains
valuable information about extreme values. In this chapter, we explain four of the
most common optimization methods currently in use: Gradient Descent, Mirror
Descent, Coordinate Descent, and the Ellipsoid method. This will help setup the
motivation for a new method.

1. Gradient Descent

For a given continuous function f , the gradient descent method begins by picking
an initial point (x0, f(x0)), and a step size. Then, to find the nearest minimal
function value, new x values are iteratively computed by finding the gradient at
the current x value, scaling the gradient by some constant determined by the step
size, and then going in the direction opposite to the gradient by subtracting from
the current x value. This is because the direction opposite the gradient indicates the
path of steepest descent towards the nearest minimal function value [6]. Also, the
constant gradient scalar is normally referred to as the step size, but in the context
of machine learning, is usually referred to as the learning rate. This process can
be formally stated as follows:

Algorithm 1. Gradient Descent For a convex function f , an initial point x0,
and a given constant step size η, iteratively compute xn+1 = xn − η∇f(x) for
n = 1, 2,

Now, a question that naturally arises is whether or not this process will converge
to some minimum value of f? Proving this result requires setting up and stating
some preliminary definitions and lemmas (See e.g. [10]). First, let ∥ · ∥ denote the
Euclidean norm defined by

∥x∥ =

(
n∑

i=1

x2
i

)1/2

, x = (x1, x2, . . . , xn).

4

Definition 3. Let f : Rn 7→ R be a convex, continuous objective function with
respect to a given norm ∥ ·∥, then f is defined to be L-Lipschitz if for all x, y ∈ Rn,

∥f(x)− f(y)∥ ≤ L∥x− y∥.

Furthermore, f is defined to be L-smooth if the gradient ∇f := (∂f/∂x1, . . . , ∂f/∂xn)

is L-Lipschitz. In other words, for any x, y in the domain of f ,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

The following result ensures the convergence of the gradient descent algorithm
[10]:

Theorem 1. Let f be convex and L-smooth on Rn, and let x∗ = argminf(x). Then
the gradient descent with η = 1

L
satisfies

f(xn)− f(x∗) ≤ 2L∥x1 − x∗∥2

n− 1
.

The proof of this theorem contains the ideas that are essential to the develop-
ment of the new algorithms. To this end, it is necessary to first prove two lemmas:

Lemma 1. Let f be convex and L-smooth on Rn. Then for any x, y ∈ Rn, it
follows that

|f(x)− f(y)−∇f(y)T (x− y)| ≤ L

2
||x− y||2.

Proof. First, express f(x) − f(y) as an integral, then apply the Cauchy-Schwartz
inequality and the definition of L-smooth:

|f(x)− f(y)−∇(y)T (x− y)| =
∣∣∣∣∫ 1

0

∇f(y + t(x− y))T (x− y)dt−∇(y)T (x− y)

∣∣∣∣
≤
∫ 1

0

∥∇f(y + t(x− y))−∇f(y)∥ · ∥x− y∥dt

≤
∫ 1

0

Lt∥x− y∥2dt

=
L

2
∥x− y∥2.

Lemma 1 implies that if f is convex and L-smooth, then for any x, y ∈ Rn,

0 ≤ f(x)− f(y)−∇f(y)T (x− y) ≤ L

2
∥x− y∥2. (3)

Thus, apply the iterative step from gradient descent y = x − 1
L
∇f(x) to get the

next result:

f(x− 1

L
∇f(x))− f(x) ≤ − 1

2L
∥∇f(x)∥2. (4)

The inequality (3) is often considered to be an alternative definition of smoothness
[10], and will be used in the development of the new algorithms.

5

Lemma 2. Suppose a function f satisfies (3), then for any x, y ∈ Rn, it follows
that

f(x)− f(y) ≤ ∇f(x)T (x− y)− 1

2L
∥∇f(x)−∇f(y)∥2.

Proof. Let z = y − 1
L
(∇f(x)−∇f(y)). Then by convexity, we have

f(x)− f(y) =f(x)− f(z) + f(z)− f(y)

≤∇f(x)T (x− z) +∇f(y)T (z − y) +
L

2
∥z − y∥2

=∇f(x)T (x− y) + (∇f(x)−∇f(y))T (y − z) +
1

2L
∥∇f(x)−∇f(y)∥2

=∇f(x)T (x− y)− 1

2L
∥∇f(x)−∇f(y)∥2.

With the above results, we now turn to the proof of Theorem 1 [10]:

Proof. By inequality (4) and the iterative step of gradient descent, it is true that

f(xn+1)− f(xn) ≤ − 1

2L
∥∇f(xn)∥2.

Now, define a term that denotes the distance from the value of f at the current
point xn to the function minimum as follows:

δn = f(xn)− f(x∗).

Thus, by applying the above definition, it follows that

δn+1 ≤ δn −
1

2L
∥∇f(xn)∥2.

Also, by convexity it is true that

δn ≤ ∇f(xn)
T (xn − x∗) ≤ ∥xn − x∗∥ · ∥∇f(xn)∥. (5)

Now, (5) implies that

δn+1 ≤ δn −
1

2L∥xn − x∗∥2
δ2n.

If it is shown that ∥xn − x∗∥ decreases as n increases, then this would imply

δn+1 ≤ δn −
1

2L∥x1 − x∗∥2
δ2n. (6)

By Lemma 2, we have

f(x)− f(y) ≤ ∇f(x)T (x− y)− 1

2L
∥∇f(x)−∇f(y)∥2.

6

Switching x and y, we have

f(y)− f(x) ≤ ∇f(y)T (y − x)− 1

2L
∥∇f(y)−∇f(x)∥2.

Summing the two inequalities above gives

(∇f(x)−∇f(y))T (x− y) ≥ 1

L
∥∇f(x)−∇f(y)∥2.

Now, ∇f(x∗) = 0, so

∥xn+1 − x∗∥2 =∥xn −
1

L
∇f(xn)− x∗∥2

=∥xn − x∗∥2 − 2

L
∇f(xn)

T (xn − x∗) +
1

L2
∥∇f(xn)∥2

≤∥xn − x∗∥2 − 1

L2
∥∇f(xn)∥2

≤∥xn − x∗∥2.

Now, let ω = 1
2L∥x1−x∗∥2 , then ωδ2n + δn+1 ≤ δn if and only if

ω
δn
δn+1

+
1

δn
≤ 1

δn+1

.

This implies that
1

δn+1

− 1

δn
≥ ω,

which implies that
1

δn
≥ ω(t− 1).

So
f(xn)− f(x∗) = δn ≤ 1

ω(t− 1)
,

and this concludes the proof.

Applications in Machine Learning

The version of gradient descent that has been discussed so far involves minimizing
a general function. Now, a common problem in machine learning is to minimize a
specific kind of function called a loss function, which indicates the error of a given
machine learning model. In this context, a machine learning model is associated
with various parameters, and the goal is to configure these parameters so that
the model’s error is minimal. In general, the loss functions considered in machine
learning are not always convex. The minimization is achieved by a process called
“training”, which involves systematically updating these parameters after evaluat-
ing the model on training data, which contains a set of input values matched with

7

expected output values. After training, the model’s accuracy is determined by eval-
uating it on test data, which is also a set of input values with previously known
output values, and determining the error. Naturally, the model is considered to be
trained successfully when the error of expected outputs compared with predicted
outputs by the model in the test data is minimal.

Thus, it is common to think of training a machine learning model as an opti-
mization problem, in which the loss function is the objective function needing to
be minimized. Then it is possible to use gradient descent to find the data values
and parameters that produce the least error. There are several main methods that
use gradient decent to minimize a loss function which are discussed below.

Stochastic Gradient Descent

When gradient descent is used to minimize error across a data set with many
pairs of input values matched to expected output values, a popular and effective
technique is to approximate the gradient at each step by a randomly selected indi-
vidual pair of input/output values in the training data, or by averaging gradients
of several values from the training data [13]. It has been shown that the stochastic
gradient descent method is nearly optimal when minimizing the loss of a convex
function [13].

Now, in order to guarantee that the stochastic gradient descent method con-
verges, the step size of the gradient must occasionally be updated according to a
decreasing sequence. This can cause the method to take longer to converge than
traditional gradient descent, since decreasing the step size usually increases the
amount of time it takes the algorithm to finish [15]. However, there are certain
conditions that will guarantee stochastic gradient descent converges at a rate com-
parable to traditional gradient descent. Suppose f is the function being minimized,
∇f is the true gradient, and ∇fi is the stochastic gradient chosen at the i-th step,
then for all x in the domain of f , and for all i and for some constant C ∈ R, if

max
i

{∥∇fi(x)∥} ≤ C∥∇f(x)∥,

then the stochastic gradient descent method will converge as quickly as traditional
gradient descent [15].

Batch Gradient Descent

Generally, batch gradient descent is a method of minimizing the loss function that
involves updating the parameters of a machine learning model after each value
in the training data has been evaluated using the current set of parameters. An

8

epoch is defined to be the process of updating the model parameters after the
loss function has been evaluated on a complete set of training data. In the batch
method of gradient descent, the training set in each epoch is the entire training
data set. In the on-line method, the training set in each epoch is a single value
from the training data set. Finally, in the mini-batch method, the training set is a
small, randomly selected portion of the training data set [17].

Momentum

There are many techniques which have been developed to improve the performance
of gradient based methods. Most often, these techniques are implemented as a
variation of stochastic gradient descent in particular. One such technique is to
use a decaying sum to stabilize the direction of the gradient from one iteration to
the next [8], [9]. This concept is called momentum, and it can be formally stated
as a modification to the gradient descent method. Let µ be the momentum factor
given, and let mk denote the momentum in the k-th iteration, then modify gradient
descent as follows to incorporate momentum:

Algorithm 2. Gradient Descent with Momentum For a convex function f ,
an initial point x0, and a given constant step size η. Let m0 = ∇f(x0). Do the
following until the stopping condition is met:

mk+1 = µmk + η∇(xk),

xk+1 = xk −mk+1.

This gives rise to another performance enhancing gradient descent modification
called adaptive momentum estimation, or adam for short [9]. The process that this
technique calls for in each iteration of the gradient descent is outlined below:

mk+1 = µmk + (1− µ)∇f(xk)

xk+1 = xk − η
mk+1

1− µk
.

There are other more recent methods that have been proven to successfully improve
gradient descent. For example, one of these methods is called adagrad, in which
the learning rate is set to be

η√
Σk

i=1∇(f(xi))2
.

A similar method called adadelta performs the same process, with the exception
that a fixed number of previous gradients are summed in the RMS term during each
iteration. This avoids dividing by a value so large that the learning rate vanishes
to zero [13].

9

2. Coordinate Descent

The coordinate descent method of optimization can be described as a gradient
descent process in which dimensionality reduction is applied to the gradient step.
Thus, in each iterative step, rather than descending by a scaled gradient vector,
one or several components of the actual gradient are selected and scaled, and the
descent from the current point occurs only along the coordinates of the selected
components. Coordinate descent has recently become a competitive alternative
to mainstream optimization methods for certain problems. This advancement has
been made possible by the improvement of computational statistical methods of
selecting the gradient coordinate’s dimensionality reduction. We now state an
important definition that sets up the discussion of coordinate descent [16].

Definition 4. Let X, Y be sets and F be a field, then a function f : X×Y 7→ F is
said to be separable if f(x, y) =

∑n
i=1 gi(x)hi(y), such that for all i, gi, hi : X×Y 7→

F .

In the context of coordinate descent, it is common practice to separate the function
f : Rn 7→ R into smooth and non-smooth portions as follows:

min
x

h(x) + λΩ(x)

where h is smooth and convex, and Ω may be convex, non-smooth, and separable
by assumption; and λ ∈ R+ is a regularization constant. If Ω is separable, then

Ω(x) = Σn
i=1Ωi(xi),

where Ωi : R 7→ R for all i [3]. A basic algorithmic scheme of coordinate descent is
provided below. In this implementation, a single component from the gradient is
selected in each iteration, and the corresponding coordinate of the current point x
is adjusted in the direction opposite the gradient’s component [3]:

Algorithm 3. Coordinate Descent Given index k = 0, x0 ∈ Rn, and learning
rate λ, do the following until the stopping condition is met:

1. Choose gradient component index ik ∈ {1, 2, ..., n}

2. Compute xk+1 = xk − λ[∇f(xk)]ikeik

3. Set k = k + 1

It is worth noting that in the basic coordinate scheme, the index ik can be
chosen in a cyclic manner, where ik = (ik−1 mod n) + 1. As stated above, another

10

method of choosing the index ik is to randomly select it. This is a more effective
coordinate descent method, and a proof of its convergence is provided. It is first
necessary to state some definitions.

Definition 5. A function f is said to be strongly convex with a modulus of convexity
µ > 0 if for all x, y:

f(y)− f(x) ≥ ∇f(x)T (y − x) +
µ

2
∥y − x∥2.

Now, a small variation of the Lipschitz definition states that f is said to be
L-smooth if for all x, d ∈ Rn, it follows that

∥∇f(x+ d)−∇f(x)∥ ≤ L∥d∥.

In this case, L is said to be the Lipschitz constant. In the context of coordinate
descent, it is useful to apply this concept to each dimensional component. This
gives rise to the following definition:

Definition 6. Let f be an L-smooth function, then the component Lipschitz con-
stants are defined to be the set of constants Li for i = 1, 2, ..., n such that for all
x ∈ Rn and t ∈ R,

|[∇f(x+ tei)]i − [∇f(x)]i| ≤ Li|t|.

If this is true for all i, then f is said to be uniformly Lipschitz continuous.
Also, the coordinate Lipschitz constant Lmax is defined to be

Lmax = max
i=1,2,...,n

Li.

Now, before proving convergence of the random coordinate descent method, it
is necessary to formally state the notation of a required concept:
Notation: Let Eik denote the expectation of the single random index ik, and let
E denote the expectation of all random variables i1, i2, ..., in [3]. We now proceed
with a proof of convergence for the random coordinate descent method [3].

Theorem 2. Let f be a convex, uniformly Lipschitz continuous function that at-
tains a minimum value f ∗ = f(x∗) where x∗ is in some set S. Suppose there is
some finite constant R0 such that maxx∗∈S maxx{∥x − x∗∥ : f(x) ≤ f(x0)} ≤ R0.
Suppose also that λ = 1

Lmax
. Then for all k > 0, it is true that

E(f(xk))− f ∗ ≤ 2nLmaxR
2
0

k
.

Furthermore, if f is strongly convex with µ > 0, it follows that

E(f(xk))− f ∗ ≤
(
1− µ

nLmax

)k

(f(x0)− f ∗).

11

Proof. By Taylor’s theorem and definition of uniform Lipschitz continuity, it follows
that

f(xk+1) =f(xk − λ[∇f(xk)]ikeik),

≤f(xk)− λ[∇f(xk)]
2
ik
+

1

2
λ2Lik [∇f(xk)]

2
ik
,

≤f(xk)− λ

(
1− Lmax

2
λ

)
[∇f(xk)]

2
ik
,

=f(xk)−
1

2Lmax

[∇f(xk)]
2
ik
.

when λ = 1
Lmax

.
Now, take the expectation of both sides over the random index ik to get the

following:

Eik(f(xk+1)) ≤f(xk)−
1

2nLmax

m∑
i=1

[∇f(xk)]
2
i

=f(xk)−
1

2nLmax

∥∇f(xk)∥2.

Note that ik was chosen from {1, 2, ..., n} with equal probability. Thus,

Eik(f(xk+1))− f ∗ ≤ Eik(f(xk))− f ∗ − 1

2nLmax

∥∇f(xk)∥2.

Now, let
ϕk = E(f(xk))− f ∗,

and take the expectation of both sides with respect to all indices to get

ϕk+1 ≤ϕk −
1

2nLmax

E(∥∇f(xk)∥2),

≤ϕk −
1

2nLmax

[E(∥∇f(xk)∥)]2

by Jensen’s inequality.
Now, f is convex, so for any x∗ ∈ S, it is true that

f(xk)− f(x∗) ≤∇f(xk)
T (xk − x∗),

≤∥∇f(xk)∥ · ∥xk − x∗∥,

≤R0∥∇f(xk)∥.

12

by assumption. Thus, take the expectation of both sides to get

ϕk

R0

≤ E(∥∇f(xk)∥).

Substitute this bound into the previous result to get the following:

ϕk − ϕk+1 ≥
1

2nLmax

1

R2
0

ϕ2
k.

Thus, it follows that

1

ϕk+1

− 1

ϕk

=
ϕk − ϕk+1

ϕkϕk+1

,

≥ϕk − ϕk+1

ϕ2
k

,

≥ 1

2nLmaxR2
0

.

By recursively summing the above result as a telescoping sum, we get the following
result:

1

ϕk

− 1

ϕ0

≥ k

2nLmaxR2
0

.

Thus, it is true that
1

ϕk

≥ k

2nLmaxR2
0

.

So then
E(f(xk))− f ∗ = ϕk ≤

2nLmaxR
2
0

k
,

as stated in the first part of the claim.
Now it remains to prove the part of the claim involving strong convexity.

Assume that for some µ > 0 and for all x, y:

f(y)− f(x) ≥ ∇f(x)T (y − x) +
µ

2
∥y − x∥2.

Now, let f ∗ = f(y) and x = xk and apply this to the statement of strong convexity:

f ∗ ≥ f(xk)−
1

2µ
∥∇f(xk)∥2.

By using this inequality to bound the squared norm of the gradient, we modify the
previous statement of expected values:

ϕk+1 ≤ϕk −
µ

nLmax

ϕk,

=

(
1− µ

nLmax

)
ϕk.

13

Recursively substituting this expression results in the following inequality:

ϕk ≤
(
1− µ

nLmax

)k

ϕ0

So substituting back in the definition of ϕ,

E(f(xk))− f ∗ ≤
(
1− µ

nLmax

)k

(f(x0)− f ∗),

which satisfies the claim.

This proof establishes the fact that the coordinate descent scheme will eventu-
ally converge to the minimal function value, on the order of 1

k
.

Accelerated Coordinate Descent

It is possible to derive an algorithmic scheme that accelerates coordinate descent.
This is achieved by applying the Nesterov acceleration technique to the coordinate
descent scheme, taking care to integrate the randomized gradient coordinate se-
lection into the accelerated scheme. Here is a formal statement of the algorithm
[3]:

Algorithm 4. Accelerated Coordinate Descent For a strongly convex function
f with convexity modulus µ > 0, let x0 ∈ Rn, k = 0, v0 = x0, and γ−1 = 0. Do the
following until the stopping condition is met:

1. Choose γk to be the larger root by applying the quadratic formula to the fol-
lowing expression: γ2

k +
µγ2

k−1−1

n
γk − γ2

k−1 = 0

2. Set αk =
n−γkµ

γk(n2−µ)
, and Bk = 1− γkµ

n

3. Set yk = αkvk + (1− αk)xk

4. Choose index ik ∈ {1, 2, ..., n} with uniform probability

5. Set xk+1 = yk − 1
Lik

[∇f(yk)]ikeik

6. Set vk+1 = Bkvk + (1−Bk)yk − γk
Lik

[∇f(yk)]ikeik

7. Set k = k + 1

14

Let S0 = supx∗∈S Lmax∥x0−x∗∥2+ f(x0)−f∗

n2 . Then the following theorem ensures
that Algorithm 4 converges on the order of 1

k2
[3]:

Theorem 3. For Algorithm 4, suppose the conditions of Theorem 2 are true, then
for all k ≥ 0,

E(f(xk))− f ∗ ≤ S0

(
n

k + 1

)2

.

The Nesterov acceleration achieves a faster rate of convergence by forward substi-
tuting accurate approximations of the objective function in several intermediate
series. More information about this technique is provided in a later chapter.

3. Mirror Descent

General gradient descent methods rely on analyzing function behavior at local
points within a vector space. The mirror descent algorithm was motivated by the
fact that information can be gathered by looking at the objective function’s dual
space as well [11]. The following definitions and assumptions lay the foundation
for the formal statement of the mirror descent algorithm [10].

Definition 7. The function g on Rn is said to be a subgradient of f at x ∈ X if
for any y ∈ X, it is true that

f(x)− f(y) ≤ gT (x− y).

The set of subgradients of f is denoted as ∂(f).

Now, assume that the function f has a minimum, and a subgradient of f at
x ∈ X is computable and denoted by f ′(x).
Then let

Ψ : X 7→ R

be a continuously differentiable and strongly convex function with modulus of
convexity denoted as µ.
Finally, the conjugate of Ψ is defined to be

Ψ∗(y) = max
x∈X

{⟨x, y⟩ −Ψ(x)},

which is assumed to be easily computable, and λ is considered to be the chosen
step size.

Thus, a formal statement of the Mirror Descent algorithm is provided below
[11].

15

Algorithm 5. Mirror Descent Let the assumptions above hold true, and let
x0, y0 ∈ X. Do the following until stopping condition is met:

1. xk = ∇Ψ∗(yk)

2. yk+1 = ∇Ψ(xk)− λf ′(xk)

3. xk+1 = ∇Ψ∗(yk+1)

A natural consequence of the above algorithmic scheme is that the subgradient
iterative definition for xk+1 is a linearization of the more general process [11], [7]:

xk+1 ∈ argmin
x∈X

{⟨x, f ′(xk)⟩+
1

2λ
∥x− xk∥2}.

This gives rise to another important variation of the mirror descent method called
the Subgradient Algorithm with Nonlinear Projections (SANP), for which a formal
statement is given [11].

Algorithm 6. SANP Assume the conditions of the previous algorithm (Algorithm
5).

1. Define a new distance-like function, BΨ : X×int(X) 7→ R such that BΨ(x, y) =

Ψ(x)−Ψ(y)− ⟨x− y,∇Ψ(y)⟩

2. Do the following until the stopping condition is met:

xk+1 = argmin
x∈X

{⟨x, f ′(xk)⟩+
1

λ
BΨ(x, xk)}

There is a deep relationship between the mirror descent algorithm and the
SANP algorithm. This resemblance is due to the fact that the optimality condition
of BΨ gives rise to the formula for xk+1 in mirror descent. This is formally stated in
the following theorem which along with an additional lemma gives rise to a proof
that the SANP algorithm converges. Proof of this corollary and lemma is omitted
[11].

Theorem 4. The sequence {xk} ⊆ X generated by mirror descent corresponds
exactly to the sequence generated by SANP.

16

Lemma 3. Let S ⊂ Rn be an open set with closure S and let Ψ : S 7→ R be
continuously differentiable on S. Then for any three points a, b ∈ S and c ∈ S, the
following holds true:

BΨ(c, a) +BΨ(a, b)−BΨ(c, b) = ⟨∇Ψ(b)−∇Ψ(a), c− a⟩.

Now, define ∥z∥∗ = maxx{⟨x, z⟩|x ∈ Rn, ∥x∥ ≤ 1} to be the dual conjugate
norm, and assume the sequence {xk} produced by SANP is well defined. Then
consider the following theorem [11]:

Theorem 5. Suppose that the assumptions listed above for the mirror descent
algorithm hold true, and that x0 ∈ int(X). Then for k ≥ 1, it is true that

min
1≤s≤k

f(xs)−min
x∈X

f(x) ≤ BΨ(x
∗, x1) + 2µ−1Σk

s=1λ
2
s∥f ′(xs)∥2∗

Σk
s=1λs

.

In particular, the sequence min1≤s≤k f(xs) − minx∈X f(x) converges as k → ∞
provided that λs → 0 and ∑

s

λs → ∞.

Proof. Let x∗ be a minimal solution. Then this implies that for all x ∈ X,

⟨x− xk+1, λkf
′(xk) +∇Ψ(xk+1)−∇Ψ(xk)⟩ ≥ 0.

Thus, let x = x∗ to get the following inequality:

⟨x∗ − xk+1,∇Ψ(xk)−∇Ψ(xk+1)− λkf
′(xk)⟩ ≥ 0.

Now, let

s1 =⟨x∗ − xk+1,∇Ψ(xk)−∇Ψ(xk+1)− λkf
′(xk)⟩,

s2 =⟨x∗ − xk+1,∇Ψ(xk+1)−∇Ψ(xk)⟩,

s3 =⟨xk − xk+1, λkf
′(xk)⟩.

Then the subgradient inequality for convex functions gives rise to the next inequal-
ity:

0 ≤λk(f(xk)− f(x∗)),

≤λk⟨xk − x∗, f ′(xk),

=s1 + s2 + s3.

17

Now, by the above inequality, it follows that s1 ≤ 0. Furthermore, by Lemma 2.9,
we have that

s2 = BΨ(x
∗, xk)−BΨ(x

∗, xk+1)−BΨ(xk+1, xk).

Also, a general property of the convexity modulus µ is that for all a, b ∈ Rn,

⟨a, b⟩ ≤ 1

2µ
∥a∥2 + µ

2
∥b∥2.

Thus, we have that

s3 ≤
1

2µ
λ2
k∥f ′(xk)∥2∗ +

µ

2
∥xk − xk+1∥2.

Recall that BΨ is strongly convex, meaning that

−BΨ(xk+1, xk) +
µ

2
∥xk − xk+1∥2 ≤ 0.

Thus, it follows that

λk(f(xk)− f(x∗)) =s1 + s2 + s3

≤BΨ(x
∗, xk)−BΨ(x

∗, xk+1) +
1

2µ
λ2
k∥f ′(xk)∥2∗.

Thus, by summing the above inequality over k = 1, ..., s, we get the following
expression:

Σs
k=1λk(f(xk)− f(x∗)) ≤ BΨ(x

∗, x1)−BΨ(x
∗, xs+1) +

1

2µ
Σs

k=1λ
2
k∥f ′(xk)∥2∗.

Since BΨ is a nonnegative function, the last inequality gives rise to the following
result:

min
1≤s≤k

f(xs)−min
x∈X

f(x) ≤
BΨ(x

∗, x1) +
1
2µ
Σk

s=1λ
2
s∥f ′(xs)∥2∗

Σk
s=1λs

.

Note that this result proves the overall convergence of SANP, so the first part of
the claim is satisfied. Also, if λk → 0 and Σ∞

k=1λk = ∞ as assumed, it follows from
this last inequality as well that

min
1≤s≤k

f(xs)−min
x∈X

f(x) → 0.

So this proves the second part of the claim.

18

4. Ellipsoid Method

The Ellipsoid method is an optimization algorithm that starts out with an ellip-
soid containing a portion of a function with the desired minimal point in Rn. It
progresses by using the gradient to find a half-space that cuts the function into
portions with minimal points, and those without minimal points, and then creates
a new, smaller ellipsoid around the portion of the function with the minimal points
[4]. Notice that this is not a method of gradient descent. So each time an approxi-
mal minimizer xk is generated in each algorithmic iteration, f(xk) is added to a list,
and the proposed solution f ∗ is said to be f ∗ = mink=1,2,... f(xk). The algorithm
converges when f ∗ falls below a given error threshold. It has been proven that this
method does indeed converge in quadratic time [4]. Before formally stating the
ellipsoid method’s algorithmic scheme, a definition for ellipsoid is required.

Definition 8. A set E ⊆ Rn is an ellipsoid if there exists a vector a ∈ Rn and a
positive definite n× n matrix A such that

E = E(A, a) = {x ∈ Rn|(x− a)TA−1(x− a) ≤ 1}.

This gives rise to the following theorem ([5], p69):

Theorem 6. For every convex body K ⊂ Rn there exists a unique ellipsoid E of
minimal volume containing K. Moreover, K contains the ellipsoid obtained from
E by shrinking E from its center by a factor of n.

Another definition is required to state the ellipsoid algorithm [20].

Definition 9. Let A be a matrix, then the encoding length of A, denoted as ⟨A⟩, is
the number of bits required to encode the entries of A in binary form. For example,
if A is an m×n integer-matrix, then ⟨A⟩ =

∑m
i=1

∑n
j=1 1+ ⌈log2(|ai,j|+ 1)⌉. Also,

if b is a vector in Rn, then ⟨A, b⟩ = ⟨A⟩+ ⟨b⟩.

Now we are ready to state the ellipsoid algorithm. Consider the parameters
ρ = 1

n+1
, σ = n2

n2−1
, τ = 2

n+1
, and ξ = 1. The ellipsoid algorithm may be speed up

to quadratic time by increasing these parameters ([5], p82).

19

Algorithm 7. Ellipsoid Method Given an m × n inequality system Cx ≤ d,
and let P = {x ∈ Rn|Cx ≤ d}. Let k = 0, N = 2n((2n + 1)⟨C⟩ + n⟨d⟩ − n3),
A0 = R2In, for R ≤

√
(n)2⟨C,d⟩−n2, and a0 = 0.

While ak /∈ P and k < N :

1. Choose a linear inequality cTx ≤ γ from Cx ≤ d that is false when x = ak

2. Set b = 1√
ctAkc

Akc

3. Set ak+1 = ak − ρb

4. Set Ak+1 = ξσ(Ak − τbbT)

20

Chapter 3: Nesterov Acceleration

There is a method of improving the performance of gradient descent that was
pioneered by Nesterov which was also proven to be very effective. An outline of
this method is provided. All of the theorems and proofs from this chapter come
directly from Nesterov’s book ([18], p71-80). Now, assume that f is an L-Lipschitz
function that is strongly convex with µ as its modulus of convexity. Also, let f

have a minimum f ∗ at x = x∗. Then consider the following definition:

Definition 10. A pair of sequences ϕk(x) and λk is said to be an estimate sequence
of f if

λk → 0,

and for any x ∈ Rn and k ≥ 0,

ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

The concept of an estimate sequence is useful because it shows that f converges
to a minimum value at the same rate that λk converges to 0. This is proven in the
following Lemma.

Lemma 4. If for some sequence xk it is true that f(xk) ≤ ϕ∗
k = minx∈Rn ϕk(xk),

then
f(xk)− f ∗ ≤ λk[ϕ0(x

∗)− f ∗] → 0.

Proof. By assumption and definition of estimate sequences,

f(xk) ≤min
x∈Rn

ϕk(xk),

≤min
x∈Rn

(1− λk)f(x) + λkϕ0(x),

≤(1− λk)f(x
∗) + λkϕ0(x

∗).

Now, we provide a recursive definition for an estimate sequence and prove that
it satisfies the definition.

21

Lemma 5. Let ϕ0(x) be an arbitrary function on Rn and let yk be an arbitrary
sequence on Rn. Also, let ak be a sequence with terms strictly between 0 and 1
such that

∑∞
k=1 ak = ∞ and λ0 = 1. Then (λk, ϕk) defined as follows satisfy the

conditions of an estimate sequence:

λk+1 =(1− ak)λk,

ϕk+1(x) =(1− ak)ϕk(x) + ak[f(yk) + ⟨∇f(yk), x− yk⟩+
µ

2
∥x− yk∥2].

Proof. By definition, we have that

ϕk+1(x) = (1− ak)ϕk(x) + ak[f(yk) + ⟨∇f(yk), x− yk⟩+
µ

2
∥x− yk∥2].

Also, by strong convexity, we have that

f(x) ≥ f(yk) + ⟨∇f(yk), x− yk⟩+
µ

2
∥x− yk∥2.

Thus, since ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x), it follows that

ϕk+1(x) ≤(1− ak)ϕk(x) + akf(x),

=(1− (1− ak)λk)f(x) + (1− ak)(ϕk(x)− (1− λk)f(x)),

≤(1− (1− ak)λk)f(x) + (1− ak)λkϕ0(x),

=(1− λk+1)f(x) + λk+1ϕ0(x).

Now, notice that since
∑∞

k=1(1 − λk) diverges, the sequence λk must converge.
Thus, the claim is true.

Nesterov went on to prove an explicit definition of the ϕ functions of an estimate
sequence for f . Note that ϕ0 can be any function, so for simplicity’s sake, it is
usually chosen to be a quadratic function.

Lemma 6. Let (λk, ϕk) be an estimate sequence of f . Then it is possible to define
ϕk as follows:

ϕk(x) = ϕ∗
k(x) +

γk
2
∥x− vk∥2,

where ϕ∗
k, γk, and vk are sequences with the following definitions:

γk+1 = (1− ak)γk + akµ,
vk+1 =

1
γk+1

[(1− ak)γkvk + akµyk − ak∇f(yk)],

ϕ∗
k+1 = (1−ak)ϕk+akf(yk)−

a2k
2γk+1

∥∇f(yk)∥2+ak(1−ak)γk
γk+1

(µ
2
∥yk−vk∥2+⟨∇f(yk), vk − yk⟩).

22

Now we are ready to derive the accelerated algorithmic scheme. Suppose the
assumption of Lemma 3.1 holds true, in that

ϕ∗
k ≥ f(xk).

Then substituting this inequality into the explicit definition of ϕ∗
k gives rise to the

following inequality:

ϕ∗
k+1 ≥ (1− ak)f(xk) + akf(yk)−

a2k
2γk+1

∥∇f(yk)∥2

+
ak(1− ak)γk

γk+1

(µ
2
∥yk − vk∥2 + ⟨∇f(yk), vk − yk⟩

)
.

Also, by convexity, f(xk) ≥ f(yk)+⟨∇f(yk), xk − yk⟩, which when substituted into
the previous expression gives rise to the next inequality:

ϕ∗
k+1 ≥ f(yk)−

a2k
2γk+1

∥∇f(yk)∥2 + (1− ak)⟨∇f(yk),
akγk
γk+1

(vk − yk) + xk − yk⟩.

The goal is to construct an algorithm for which ϕk+1 ≥ f(xk+1) since that would
guarantee f(xk)− f ∗ converges according to some sequence λk.
Notice from result (4) in Chapter 2, the following inequality holds true:

f(yk)−
1

2L
∥∇f(yk)∥2 ≥ f(xk+1).

Thus, let γk+1 = La2k = (1− ak)γk + akµ, so then

ϕ∗
k+1 ≥f(yk)−

1

2L
∥∇f(yk)∥2 + (1− ak)⟨∇f(yk),

akγk
γk+1

(vk − yk) + xk − yk⟩,

≥f(xk+1) + (1− ak)⟨∇f(yk),
akγk
γk+1

(vk − yk) + xk − yk⟩.

Now, we can solve ak from the quadratic equation above, and this is satisfactory
since we have freedom of choice for ak. We also have freedom of choice for yk, so
we choose yk such that akγk

γk+1
(vk − yk) + xk − yk = 0, so

yk =
akγkvk + γk+1xk

akγk + γk+1

=
akγkvk + γk+1xk

γk + akµ
.

This gives rise to the algorithmic scheme:

Algorithm 8. Nesterov Accelerated Gradient Descent, Scheme 1

Let x0 ∈ Rn and γ0 > 0 and set v0 = x0

Do the following until the stopping condition is met:

1. Compute ak ∈ (0, 1) from the equation La2 = (1− ak)γk + akµ

23

2. Set γk+1 = (1− ak)γk + akµ

3. Set yk =
akγkvk+γk+1xk

γk+akµ

4. Compute xk+1 = yk − 1
L
∇f(yk)

5. Set vk+1 =
1

γk+1
[(1− ak)γkvk + akµyk − ak∇f(yk)]

Thus, these terms were derived from the inequality which serves as the condition
for Lemma 3.1, so it follows from that lemma that f(xk) will converge to a minimum
as λk converges to 0. This scheme can be simplified by substituting the definition
of vk into the formula for yk, and setting Bk = ak+1γk+1(1−ak)

ak(γk+1+ak+1µ)
, to get the following

definition of yk:
yk = xk+1 +Bk(xk+1 − xk).

This makes the update step for vk unnecessary, since it is handled in place by the
new definition of yk. Now, we substitute in the equation γk+1 = La2k and simplify
to get the following algorithmic scheme:

Algorithm 9. Nesterov Accelerated Gradient Descent, Scheme 2

Let x0 ∈ Rn, y0 = x0, and a0 ∈ (0, 1)

Do the following until the stopping condition is met:

1. Compute xk+1 = yk − 1
L
∇f(yk)

2. Compute ak ∈ (0, 1) from the equation a2k+1 = (1− ak+1)a
2
k + ak+1

µ
L

3. Set Bk+1 =
ak(1−ak)

a2k+ak+1

4. Set yk+1 = xk+1 +Bk+1(xk+1 − xk)

In order to prove the rate at which this scheme converges, it is necessary to
first state and prove the following lemma.

Lemma 7. Nesterov Accelerated Gradient Descent, Scheme 2 is equivalent to the
following gradient descent scheme:

yk+1 =xk −
1

L
∇f(xk),

λk+1 =
1 +

√
1 + 4λ2

k

2
,

γk+1 =
1− λk

λk+1

,

xk+1 =yk+1 + γk+1(yk − yk+1).

24

Proof. For simplicity, let µ = 0 and use the quadratic formula to see that ak+1 =
1
2
(
√
a4k + 4a2k − a2k). So we must first establish the relationship between λk and ak.

Notice that 1
ak+1

= 2√
a4k+4a2k−a2k

and multiply by the conjugate to get the following
expression:

1

ak+1

=
1

2

(
1 +

√
a4k + 4a2k

a4k

)
,

=
1 +

√
1 + 4 1

a2k

2
.

Thus, the recursive structure of each sequence is preserved by the following
relationship: λk = 1

ak
. Now, this can be used to show the relationship between γk

and Bk. If it can be shown that γk = −Bk, then this would complete the proof.
Notice that

γk+1 =
1− λk

λk+1

=
1− 1

ak
1

ak+1

.

Thus, γk+1 = −Bk+1 if and only if −ak+1

ak
(1− ak) =

−ak
a2k+ak+1

(1− ak)

which is true if and only if ak+1

ak
= ak

a2k+ak+1
, and this is true if and only if a2k =

a2k+1 + a2kak+1. We evaluate the right hand side:

a2k+1 + a2kak+1 =
a4k + 4a2k − 2a2k

√
a4k + 4a2k + a4k

4
+

2a2k
√

a4k + 4a2k − 2a4k
4

= a2k.

Thus, the claim is true.

This result will now enable us to prove the rate at which Nesterov Accelerated
Gradient Descent, Scheme 2 converges [10].

Theorem 7. Let f be convex and L-Lipschitz, the Nesterov Accelerated Gradient
Descent, Scheme 2 satisfies the following:

f(yt)− f(x∗) ≤ 2L∥x1 − x∗∥2

t2
.

Proof. Notice that by gradient descent and Lemma 2.3,

f(yk+1)− f(yk) ≤ f(xk)− f(yk) ≤ ∇f(xk)
T (xk − yk)−

1

2L
∥∇f(xk)∥2.

Then by using the definition of yk+1 above, it is clear that the right hand side
directly above equals

L(xk − yk+1)(xk − yk)−
L

2
∥xk − yk+1∥2.

25

Thus, if follows that

f(yk+1)− f(x∗) ≤ L(xk − yk+1)(xk − x∗)− L

2
∥xk − yk+1∥2.

Now, multiply (λk−1) to the inequality above the last inequality, and add that
to the last inequality. Then, by setting a new variable σk = f(yk) − f(x∗) we get
the following results:

λkσk+1 − (λk − 1)σk ≤L(xk − yk+1)
T (λkxk − (λk − 1)yk − x∗)

− L

2
λk∥xk − yk+1∥2.

Multiply this expression by λk to get the following:

λ2
kδs+1 − λ2

k−1δk ≤
L

2

(
2λk(xk − yk+1)

T (λkxk − (λk − 1)yk − x∗)
)
,

− ∥λk(yk+1 − xk)∥2,

=
L

2

(
∥λkxk − (λk − 1)yk − x∗∥2 − ∥λkyk+1 − (λk − 1)yk − x∗∥2

)
,

which follows from the fact that λ2
k−1 = λ2

k − λk and for any vectors u and v,
2vTu− ∥v∥2 = ∥u∥2 − ∥u− v∥2.

Now, by definition, the following equations hold true:

xk+1 =yk+1 + γk+1(yk − yk+1),

λk+1xk+1 =λk+1yk+1 + (1− λk)(yk − yk+1),

λk+1xk+1 − (λk+1 − 1)yk+1 =λkyk+1 − (λk − 1)yk.

Let wk = λkxk − (λk − 1)yk − x∗. Then combining the last two previous results
gives rise to the following:

λ2
kσk+1 − λ2

k−1σ
2
k ≤ L

2
(∥uk∥2 − ∥uk+1∥2).

Thus, form a telescoping sum by adding up both sides of the inequality from k = 1

to k = t− 1 to get the following result:

σt ≤
L

2λ2
t−1

∥u1∥2.

Then by induction, it is clear to see that λt−1 ≥ t
2
. Thus, the claim is true.

26

Now, ak and Bk from Nesterov Accelerated Gradient Descent, Scheme 2 can
be estimated by appropriate constants ak =

√
µ
L

and Bk =
√
L−√

µ√
L+

√
µ

to produce the
following algorithmic scheme:

Algorithm 10. Nesterov Accelerated Gradient Descent, Scheme 3

Let x0 ∈ Rn, y0 = x0

Do the following until the stopping condition is met:

1. Compute yk+1 = xk − 1
L
∇f(xk)

2. Set xk+1 = yk+1 +
√
L−√

µ√
L+

√
µ
(yk+1 − yk)

By setting κ = L
µ
, we may prove this scheme converges according to exponential

decay with the following theorem [10].

Theorem 8. Let f be strongly convex with µ modulus of convexity and L-Lipschitz,
then the Nesterov acceleration converges as follows:

f(yk)− f ∗ ≤ L+ µ

2
∥x1 − x∗∥2e−

k−1√
κ .

Proof. Consider the following recursive function definitions:

ϕ1(x) =f(x1) +
µ

2
∥x− x1∥2;

ϕk+1(x) =

(
1− 1√

κ

)
ϕk(x) +

1√
k

(
f(xk) +∇f(xk)

T (x− xk) +
µ

2
∥x− xk∥2

)
.

Thus, by strong convexity, as k increases, ϕk will get closer to f according to the
following inequality:

ϕk+1(x) ≤ f(x) +

(
1− 1√

κ

)k

(ϕ1(x)− f(x)).

Now, it is proven by induction that f(yk) ≤ minx∈Rn ϕk(x). The details of this
proof are meticulous, so they are omitted. Therefore, it follows that

f(yk)− f ∗ ≤ϕk(x
∗)− f(x∗),

≤f(x∗) +

(
1− 1√

κ

)k

(ϕ1(x
∗)− f(x∗))− f(x∗),

≤
(
1− 1√

κ

)k

(ϕ1(x
∗)− f(x∗)),

≤
(
1− 1√

κ

)k−1

(f(x1) +
µ

2
∥x∗ − x1∥2 − f(x∗)).

27

And by convexity, it follows that

f(yk)− f ∗ ≤
(
1− 1√

κ

)k−1(
L+ µ

2
∥x∗ − x1∥2

)
,

≤L+ µ

2
∥x∗ − x1∥2

(
1− 1√

κ

)k−1

,

≤L+ µ

2
∥x∗ − x1∥2

(
1− 1√

κ(k − 1)

)k−1

.

Thus, as k increases, the farthest-right term takes on the form of the exponential,
so the claim is true.

28

Chapter 4: New Adaptive Methods

The performance of a gradient-based algorithm heavily depends on the choice of
step size, or the learning rate. A learning rate that is too small will not only take
a long time to converge, but sometimes when coupled with the vanishing gradient,
may lead the algorithm to get stuck before reaching the minimum point. Also, a
learning rate that is too large may lead the algorithm to diverge. Thus, choosing
the right learning rate is the main challenge of these algorithms. Indeed, as we will
discuss later in this chapter, a good learning rate is determined by how fast the
gradient changes its direction. Furthermore, in real applications, the rate at which
the gradient changes its direction changes from location to location, and it is not
feasible to have one learning rate that fits universally. For example, consider the
two-dimensional Zakharov function:

f(x, y) = x2 + y2 + (x+ 2y)2 + (x+ 2y)4.

The function has a unique minimizer (0, 0). Suppose we start at the initial point
(0.5, 0.5). Near (0.5, 0.5), the gradient changes its direction slowly, so a larger step
size is desired. As it gets closer to the minimizer at the origin, the gradient changes
its direction faster. Consequently, the step size would be better if it were smaller,
even though the magnitude of the gradient also gets smaller, as the decrease in
magnitude may not be able to catch up to the change of the direction. This case is
quite different from the sphere function g(x, y) = x2+ y2, in which the direction of
the gradient does not change, and only its magnitude decreases. Thus, a constant
or increasing learning rate is preferable.

The goal of this work is to develop adaptive methods that automatically adjust
their learning rates along the way. Figure 1 illustrates this phenomenon for the
Zakharov function introduced above. By choosing a learning rate according to
the local curvature of the gradient flow curve, one can speed up the process of
searching for the minimizer. Without using an adaptive rate, it requires several
hundred iterations to reach the minimum, while using an adaptive learning rate,
seven steps are enough to get the same level of approximation.

29

Figure 1: Adaptive learning rate can significantly improve the performance of
gradient-based algorithms.

We now discuss the adaptive methods of gradient descent to serve as an alter-
native to the Nesterov acceleration. We introduce three new methods. Each of
these methods relies on update steps which take information about the current run
into consideration.

Adaptive Gradient Descent

To introduce the adaptive gradient descent methods, we start with the Taylor
expansion of multivariate functions. Suppose f is a n-dimensional function defined
on Rn that has continuous second partial derivatives. For x = (x1, x2, . . . , xn) ∈ Rn

and y = (y1, y2, . . . , yn) ∈ Rn, we define g(t) = f(x+ t(y − x)), t ∈ R. The second
order Taylor approximation of g gives

g(t)− g(0) = tg′(0) +
t2

2
g′′(ξ), (7)

for some ξ ∈ (0, t). By the Chain Rule, we have

g′(t) =
n∑

i=1

∂f

∂xi

(yi − xi) = (y − x)T∇f(x+ t(y − x)),

30

and

g′′(t) =
n∑

i=1

n∑
j=1

∂2f

∂xi∂xj

(yi − xi)(yj − xj) = (y − x)TH(x+ t(y − x))(y − x),

where H is the Hessian matrix defined by

H(z) =


∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2

· · · ∂2f(x)
∂x2∂xn

...
... · · · ...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n

 .

Thus, (7) can be rewritten as

f(x+ t(y − x)))− f(x) = t(y − x)T∇f(x) +
t2

2
(y − x)TH(x+ ξ(y − x))(y − x).

If f is convex, then by (1), we have

f(x+ t(y − x))− f(x) ≥ t(y − x)T∇f(x),

which implies that (y − x)TH(x + ξ(y − x))(y − x) ≥ 0. In particular, if we let
y − x = −∇f(x), then we obtain

f(x− t∇f(x))− f(x) = −t∥∇f(x)∥2 + t2

2
(∇f(x))TH(x− ξ∇f(x))∇f(x). (8)

Suppose x, y are close to each other. Then by the assumption that f has
continuous second partial derivatives, we have

(∇f(x))TH(x− ξ∇f(x))∇f(x) ≈ (∇f(x))TH(x)∇f(x),

which is independent of t. Thus, to minimize the value f(x− t∇f(x)), the optimal
choice of t would be

t ≈ ∥∇f(x)∥2

(∇f(x))TH(x)∇f(x)
.

However, computing the Hessian matrix is rather costly. In what follows, we
need to obtain some estimate for the quantity (∇f(x))TH(x)∇f(x). For each
1 ≤ i ≤ n, we define

h(t) =
∂f

∂xi

(x+ t(y − x))− ∂f

∂xi

(x).

By the Mean Value Theorem, we have

h(t) = h(t)− h(0) = th′(η)

31

for some η ∈ (0, t). Also, by the Chain Rule, we have

h′(t) =
n∑

j=1

∂2f(x)

∂xi∂xj

(yj − xj),

and

∂f

∂xi

(y)− ∂f

∂xi

(x) =t

n∑
j=1

∂2f(x+ η(y − x))

∂xi∂xj

(yj − xj).

Thus,
∇f(y)−∇f(x) = (y − x)TH(x+ η(y − x)).

Consequently,

(y − x)TH(x+ η(y − x))(y − x) =(y − x)T (∇f(y)−∇f(x))

≤∥y − x∥ · ∥∇f(y)−∇f(x)∥,

by the Cauchy-Schwartz inequality. Now, when x and y are close to each other, by
the continuity of the second partial derivatives of f , we have

(∇f(x))TH(x)∇f(x) ≲ ∥y − x∥ · ∥∇f(y)−∇f(x)∥.

Thus,

t ≈ ∥∇f(x)∥2

(∇f(x))TH(x)∇f(x)
≥ ∥y − x∥

∥∇f(y)−∇f(x)∥
.

This leads to our first adaptive gradient decent algorithm. It is clear that this
should yield good results, since 1

L
was proven to be the optimal step size for convex

functions in gradient descent ([18], p69):

Algorithm 11. Adaptive Gradient Descent I. For a convex function f that
has continuous second partial derivatives, the algorithm consists of these steps:

1. Pick an initial point x0, compute ∇f(x0);

2. Choose a small δ, say δ = 10−6, compute x1 = x0 − δ∇f(x0) and ∇f(x1).

3. For n = 1, 2, . . . , until a stopping condition is met, compute

tn =
∥xn − xn−1∥

∥∇f(xn)−∇f(xn−1)∥
,

xn+1 = xn − tn∇f(xn) and ∇f(xn+1).

32

Improved Adaptive Gradient Descent: First Improvement

One advantage of Adaptive Gradient Descent I is that both ∇f(xn) and ∇f(xn−1)

have been computed in the previous step. Thus, no additional expensive com-
putation is needed. The drawback is that the learning rate estimated by tn =

∥xn−xn−1∥
∥∇f(xn)−∇f(xn−1)∥ is smaller than the optimal value. This leads to conservative
iterative steps. For low dimensional cases, this is not a concern. When the dimen-
sion gets higher, and x and y are close, the quantities (y − x)TH(x)(y − x) and
∥y − x∥ · ∥∇f(y)−∇f(x)∥ may not be close. To get a more accurate estimate of
the adaptive learning rate, we propose a direct estimate of the former, under the
assumption that the function f has continuous third order partial derivatives.

We reconsider the function g(t) = f(x + t(y − x))− f(x). If f has continuous
third order partial derivatives, then g′′′(t) is continuous. By the third order Taylor
expansion, we have

g(t) =g(0) + tg′(0) +
t2

2
g′′(0) +

t3

6
g′′′(ξ), (9)

g(−t) =g(0)− tg′(0) +
t2

2
g′′(0)− t3

6
g′′′(η), (10)

for some ξ ∈ (0, t) and η ∈ (−t, 0). When ξ and η are close, by the continuity of
g′′′, we have g′′′(ξ) ≈ g′′′(η). Thus, (9) and (10) implies

t2g′′(0) ≈ g(t) + g(−t)− 2g(0).

Rewriting it in terms of f , we have

t2(y − x)TH(x)(y − x) ≈ f(x+ t(y − x)) + f(x− t(y − x))− 2f(x).

Consequently, we have

∥y − x∥2

(y − x)TH(x)(y − x)
≈ ∥t(y − x)∥2

f(x+ t(y − x)) + f(x− t(y − x))− 2f(x)
.

In particular, if y and x are close, then by choosing t = 1, we have

∥y − x∥2

(y − x)TH(x)(y − x)
≈ ∥y − x∥2

f(y)) + f(2x− y)− 2f(x)
.

Thus, we are led to the following substitution

sn :=
∥xn − xn−1∥2

f(xn − 1) + f(2xn − xn − 1)− 2f(xn)

for the learning rate tn in Adaptive Gradient Decent I.
This estimate is aggressive and risky. If y and x are not close enough, the

estimate itself may not be accurate. When y and x are very close to each other,

33

the denominator on the right-hand side is very close to 0. The estimate of the
fraction is then very sensitive to the computational rounding error. If the fraction
(which corresponds to the learning rate) is over estimated, then the algorithm may
lead to divergence. To avoid this, we use the harmonic average of tn and sn as the
new learning rate.

Algorithm 12. Adaptive Gradient Descent II. For a convex function f that
has continuous second partial derivatives, the algorithm consists of these steps:

1. Pick an initial point x0, compute ∇f(x0);

2. Choose a small δ, say δ = 10−6, compute x1 = x0 − δ∇f(x0) and ∇f(x1).

3. For n = 1, 2, . . . , until a stopping condition is met, compute

• an = ∥∇f(xn)−∇f(xn−1)∥
∥xn−xn−1∥

• bn = f(xn−1)+f(2xn−xn−1)−2f(xn)
∥xn−xn−1∥2

• xn+1 = xn − 2
an+bn

∇f(xn) and ∇f(xn+1).

Note that the estimate of sn uses three additional function evaluations, two of
which are calculated in the previous steps, but the evaluation of f(2xn−xn−1) is an
additional calculation. If the gradient of f is given by an analytic formula, and it
can be easily evaluated, this extra evaluation is a non-trivial overhead. Otherwise,
the numerical calculation of the gradient of a d-dimensional function takes 2d+ 1

function evaluations, so adding one extra function evaluation only increases the
computation by 1/(2d+ 1) fraction of the effort.

Improved Adaptive Gradient Descent: Second Improvement

Assume that the function g(t) defined near 0 has continuous fourth derivatives.
Then by the Taylor expansion, we have

g(t) = g(0) + tg′(0) +
t2

2
g′′(0) + g

t3

6
g′′′(0) +

t4

24
g(4)(ξ),

g(−t) = g(0)− tg′(0) +
t2

2
g′′(0)− g

t3

6
g′′′(0) +

t4

24
g(4)(η),

for some ξ ∈ (0, t) and η ∈ (−t, 0). If ξ and η are close (e.g. when t is small), by
the continuity of g(4) we have

g′′′(0) ≈ 3[g(t)− g(−t)− 2tg′(0)]

t3
.

34

In particular, if g(t) = f(x+ t(y − x)) for some x and y that are close to each
other, we have

n∑
i=1

n∑
j=1

n∑
k=1

(yi−xi)(yj−xj)(yk−xk)
∂3f(x)

∂xi∂xj∂xk

≈ 3[f(y)−f(2x−y)−(y−x)T∇f(x)].

Together with the estimate derived earlier:

∥y − x∥2

(y − x)TH(x)(y − x)
≈ ∥y − x∥2

f(y)) + f(2x− y)− 2f(x)
,

we now have all the estimates we need for a new and improved adaptive gradient
descent. For notational convenience, we denote

A(x, y) =f(y)) + f(2x− y)− 2f(x),

B(x, y) =f(y)− f(2x− y)− (y − x)T∇f(x).

Note that for g(t) = f(x+ t(y − x)), the approximation

g(t) = g(0) + tg′(0) +
t2

2
g′′(0) +

t3

6
g′′′(0)

can be rewritten as

f(x+ t(y − x)) ≈ f(x) + t(y − x)T∇f(x) +
t2

2
A(x, y) +

t3

2
B(x, y).

If x and y are close, then the estimate is sharp, in which case f(x + t(y − x)) is
minimized when the right-hand side is minimized. This happens when

(y − x)T∇f(x) + A(x, y)t+
3

2
B(x, y)t2 = 0,

from which we can solve for t to get

t =
−2(y − x)T∇f(x)

A(x, y) +
√

[A(x, y)]2 − 6B(x, y) · (y − x)T∇f(x)
.

This is valid only when A(x, y)]2 − 6B(x, y) · (y − x)T∇f(x) ≥ 0. When this
condition fails, the right-hand side above does not have a minimum value, in such
a case we simply drop the square root term in the denominator.

The above analysis leads us to the following variant of improved adaptive gra-
dient descent:

Algorithm 13. Adaptive Gradient Descent III. For a convex function f that
has continuous third partial derivatives, the algorithm consists of these steps:

1. Pick an initial point x0, compute ∇f(x0);

35

2. Choose a small δ, say δ = 10−6, compute x1 = x0 − δ∇f(x0) and ∇f(x1).

3. For n = 1, 2, . . . , until a stopping condition is met,

• Compute D = ∥xn − xn−1∥

• Compute A = f(xn−1) + f(2xn − xn−1)− 2f(xn) and a = A
D2

• Compute B = f(xn−1) − f(2xn − xn−1) − 2(xn − xn−1)
T∇f(xn) and

b = B
D3

• Compute c = max{a2 − 6b∥∇f(xn)∥, 0}

• Compute λ = 2
a+

√
c

• Compute xn+1 = xn − λ∇f(xn) and ∇f(xn+1).

Adaptive Momentum

We now discuss a new algorithmic scheme called adaptive momentum that is de-
rived using the second order Taylor estimate of the objective function.

As before, we let g(t) = f(x+ t(y − x)). Recall that we have derived that

g′′(t) =Σn
i=1Σ

n
j=1(yi − xi)(yj − xj)

∂2f

∂xi∂xj

(x+ t(y − x))

=(y − x)TH(x+ t(y − x))(y − x).

Let λ ∈ R and let mn be a momentum sequence in Rn such that mn = an∇f(xn)+

bnmn−1, where an, bn ∈ R. Also, define xn = xn−1 − λmn−1. Choosing y = xn−1

and x = xn, then the second order Taylor expansion of g(t) gives:

f(xn−1)− f(xn)− λmT
n−1∇f(xn) =g(1)− g(0)− λmT

n−1∇f(xn)

=g′(0) +
1

2
g′′(ξ)− λmT

n−1∇f(xn).

Calculate g′(0) and g′′(0) and evaluate them using the definition of xn to get the
following expression:

f(xn−1)− f(xn)− λmT
n−1∇f(xn)

=(xn−1 − xn)∇f(xn + 0(xn−1 − xn)) +
1

2
(y − x)TH(y − x)− λmT

n−1∇f(xn)

=(λmT
n−1)∇f(xn) +

1

2
(λmT

n−1)H(λmn−1)− λmT
n−1∇f(xn)

=
1

2
(λmT

n−1)H(λmn−1) =
1

2
λ2A,

where A denotes (mT
n−1)H(mn−1).

36

Now, let yn = xn − λ∇f(xn). Then by a process of evaluating g′ and g′′ as
above, it follows that

f(yn)− f(xn) + λ∥∇f(xn)∥2 =
1

2
λ2∇f(xn)

TH∇f(xn)

=
1

2
λ2B,

where B denotes ∇f(xn)
TH∇f(xn).

Next, let zn = yn − λmn−1 = xn − λ∇f(xn) − λmn−1 and by another similar
process, we get

f(zn)− f(xn) + λ∥∇f(xn)∥2 + λmT
n−1∇f(xn) =

1

2
λ2B +

1

2
λ2A+ λ2C,

where C denotes mT
n−1H∇f(xn).

Now, using the fact that xn+1 = xn−λ(an∇f(xn)+bnmn−1), we get the following
equation:

f(xn+1)− f(xn)

=(−λ(an∇f(xn) + bnmn−1))∇f(xn)

+
1

2
(−λ(an∇f(xn) + bnmn−1))

TH(−λ(an∇f(xn) + bnmn−1)

=− anλ∥∇f(xn)∥2 − bnλm
T
n−1∇f(xn) +

1

2
λ2a2nB +

1

2
λ2b2nA+ λ2anbnC.

Now, the goal is to minimize f(xn+1). By the right-hand side above, we can view
it as a function of an and bn. This minimum value is attained when ∂fn+1

∂an
= 0 and

∂fn+1

∂bn
= 0, leading to the following system of linear equations:

∂fn+1

∂an
= −λ∥∇f(xn)∥2 + λ2Ban + λ2bnC = 0,

∂fn+1

∂bn
= −λmT

n−1∇f(xn) + λ2Abn + λ2anC = 0.

Cramer’s rule may be applied to compute the solutions to an and bn:[
λB λC

λC λA

]
×

[
an

bn

]
=

[
∥∇f(xn)∥2

mT
n−1∇f(xn)

]
(11)

We now have the necessary information to formalize the terms above into an
algorithmic scheme.

Algorithm 14. Adaptive Momentum For a convex function f that has contin-
uous third partial derivatives, the algorithm consists of these steps:

1. Pick an initial point x0, compute ∇f(x0);

37

2. For n = 1, 2, . . . , until a stopping condition is met, do the following:

• Set xn = xn−1 − λmn−1

• Set yn = xn − λ∇f(xn)

• Set z=yn − λmn−1

• Compute λ2A = 2(f(xn−1)− f(xn)− λmT
n−1∇f(xn))

• Compute λ2B = 2(f(yn)− f(xn) + λ∥∇f(xn)∥2)

• Compute λ2C = f(zn)−f(xn)+λ∥∇f(xn)∥2+λmT
n−1∇f(xn)− 1

2
λ2B−

1
2
λ2A.

• Calculate
an =

λ∥∇f(xn)∥2A− λmT
n−1∇f(xn)C

λ2AB − λ2C

bn =
λmT

n−1∇f(xn)B − λ∥∇f(xn)∥2C
λ2AB − λ2C

• Set mn = an∇f(xn) + bnmn−1

Adaptive Nesterov Parameters

Several of the techniques discussed before were combined with new methods to de-
velop a third algorithm. This new algorithm uses the step size parameters κ, λ, γ

from both Nesterov Scheme 2 and Scheme 3 from Chapter 3. As stated in that chap-
ter, Scheme 2 converges according to 2L∥x1−x∗∥2

k2
while Scheme 3 converges according

to L+µ
2

∥x1 − x∗∥2e−
k√
κ , where κ = L

µ
. Thus, in a given iteration, if L+µ

2
e
− k√

κ < 2L
k2

,
it follows that the parameters from Scheme 3 will provide a better descent than
the parameters from Scheme 2, so in this case, these are the parameters which
are chosen to determine the step size. So if L+µ

2
e
− k√

κ > 2L
k2

, the parameters from
Scheme 2 will provide a better descent, and they are the ones that are chosen.

Now, recall that both Scheme 2 and Scheme 3 use two vectors labeled yk and
xk that are updated in each iteration. We found that the algorithm occasionally
diverged when the direction of descent was chosen to be the gradient evaluated at
xk in each iteration. So we tried choosing the gradient at yk to be the direction of
descent, and the algorithm still would occasionally diverge. We hypothesized that
this was due to the fact that in a given iteration, out of all possible directions one
could proceed in Rn, the gradients at yk and xk are good candidates, but sometimes
they can direct the new points towards a steep wall that results in the divergence.
We correct this divergence problem by adding an additional check in each iteration
that evaluates the function at two points u and v, where u = xk − 1

L
∇f(xk) and

38

v = xk − 1
L
∇f(yk), and then compares these values. If f(u) < f(v), then the

gradient at xk is chosen as the direction of descent, and if f(u) ≥ f(v), then the
gradient at yk is chosen as the direction of descent. This is motivated by the fact
that looking ahead to how the function is behaving in each of these directions helps
choose the best gradient direction between xk and yk. This look-ahead step requires
two additional function evaluations, but the algorithm converges so quickly that
this does not hurt its performance overall. A formal statement of this algorithm is
provided below:

Algorithm 15. Adaptive Nesterov Let λ0 = 0, δ = 1e−6, and f be a convex and
L-smooth function, x0, y0 ∈ Rn, and declare new list P = []. While the stopping
condition is not met:

1. L = ∥∇f(yn)−∇f(yn−1)∥
∥yn−yn−1∥

2. Append L to P

3. Let P0 be P if |P | ≤ 10 or the last ten elements of P otherwise.

4. Lk = max(P0), µk = min(P0)

5. κ = Lk

µk
, and θ =

√
κ−1√
κ+1

6. λ = 1+
√
1+4λ2

2
and γ = 2(1−λ)

1+
√
1+4λ2

7. η = min{θ,−γ}

8. If f(xk − 1
Lk
∇f(xk)) < f(xk − 1

Lk
∇f(yk)):

yk+1 = xk −
1

Lk

∇f(xk)

Else:
yk+1 = xk −

1

Lk

∇f(yk)

9. xk+1 = (1 + η)yk+1 − η · yk

39

Chapter 5: Numerical Experiments

The following commonly-used test functions were used in a series of numerical tests
to determine how well some of the new methods performed in comparison to the
original Nesterov acceleration:

• Norm squared function: f(x) = ∥x∥2

• Sum of Squares (Sum2): f(x) = Σn
i=1ix

2
i

• Sphere function: f(x) = Σn
i=1x

2
i

• Perm-β function (β = 3): f(x) = Σn
i=1(Σ

n
j=1(j + β)(xi

j − 1
ji
))2

• Ellipse function: f(x) = Σn
i=1Σ

i
j=1x

2
j

• Sum of Different powers function: f(x) = Σn
i=1|xi|i+1

• Trid function: f(x) = Σn
i=1(xi − 1)2 − Σn

i=2xixi−1

• Zakharov function: f(x) = Σn
i=1x

2
i + (Σn

i=1
1
2
ixi)

2 + (Σn
i=1

1
2
ixi)

4

• Powell function:

f(x) = Σ
⌊ 1
4
n⌋

i=1 (x4i−3+10x4i−2)
2+5(x4i−1−x4i)

2+(x4i−2−2x4i−1)
4+10(x4i−3−x4i)

2

• Brown function: f(x) = Σd−1
i=1 (x

2
i)

x2
i+1+1 + (x2

i+1)
x2
i+1

• Dixon-Price function: f(x) = (x1 − 1)2 + Σd
i=2i(2x

2
i − xi−1)

2

• Exponential function: f(x) = − exp(−0.5Σd
i=1x

2
i)

• Schwefel 2.23 function: f(x) = Σd
i=1x

1
i 0

• Xin-She Yang N.3 function:

f(x) = exp(−Σn
i=1(xi/β)

2m)− 2 exp(Σn
i=1(x

2
i))

n∏
i=1

cos2(xi).

40

Now, in order to implement the new adaptive methods, it is necessary to com-
pute the objective function’s gradient. Rather than finding the analytical formula
for each function’s gradient, we used a function that computes a numerical gradient
approximation instead. A formal statement of our numerical gradient function is
given below, given that x ∈ Rn and h = 1e−8:

∇f(x) ≈ 1

2h
· [f(x+ h · e1)− f(x− h · e1), . . . , f(x+ h · en)− f(x− h · en]

.
The Adaptive Gradient Descent, Adaptive Momentum, and Adaptive Nesterov

algorithms were tested on the list of functions provided above, along with the orig-
inal Nesterov Scheme 2 algorithm. Scheme 2 was chosen as the comparison since
the non-adaptive version of Scheme 3 did not perform as well. Each algorithm was
given the same initial x value, and performance was determined based on the num-
ber of numerical derivative evaluations required for each method to converge below
a given error threshold. For Adaptive Gradient Descent and Adaptive Momentum,
the number of numerical derivative evaluations equals the number of iterations
during run-time, and for Adaptive Nesterov, the number of numerical derivative
evaluations is twice the number of iterations. These tests were run in 5, 20, and
50 dimensions. They were also run on many other randomly chosen start values,
with consistent results.

The learning curves from one of these battery of tests are shown below. In
these curves, the error of an algorithm is mapped to by the number of numerical
derivative evaluations taken by the algorithm. Error is computed by the difference
between the test function’s value at the current iteration and the test function’s
global minimum value. Also, the original Nesterov method requires choosing a step
size, so before this battery of tests was run, a separate set of tests was performed
for the original Nesterov method to find the step size that yielded its best perfor-
mance for each function and dimension. This was done to guarantee that it would
have a fair competition with the new adaptive methods.

41

Dimension: 5

42

Dimension: 5

43

Dimension: 20

44

Dimension: 20

45

Dimension: 50

46

Dimension: 50

47

Chapter 6: Conclusion and Future

Work

The goal of this research was to modify the Nesterov technique by including adap-
tive capability to improve its performance. The tests show that the algorithms
derived previously do indeed succeed at outperforming the non-adaptive Nesterov
method. The Adaptive Gradient Descent algorithm converges most quickly on
most functions, but it diverges in a few examples. Adaptive Momentum behaves
similarly, but it converges a little more slowly than Adaptive Gradient Descent.
The Adaptive Nesterov algorithm converges more slowly than these two methods,
but it never diverges, which is an improvement in its own right.

All three of these methods outperformed the original, non-adaptive Nesterov
scheme in the majority of tests cases. This is significant, because unlike the original
Nesterov method, they do not require a predetermined learning rate. Choosing a
learning rate can be a very difficult question, and often times it is only answered by
running many tests and choosing the learning rate that produced the best results.
Thus, the adaptive methods presented here outperformed the original method with-
out needing to be assigned any predetermined values. Another observation is that
the learning curves of all methods oscillate between higher and lower levels of er-
ror until convergence is achieved. We conjecture that this is because the step sizes
slightly overshoot the ideal descent, and thus the descent occurs in the wrong direc-
tion temporarily until it gets corrected. Naturally, the adaptive methods seem to
correct faster than the non-adaptive method, which might explain their improved
performance.

There are still some open questions regarding the effectiveness of the adaptive
methods. One function they did not perform well on was the Dixon-Price function.
This function is very flat at a small distance from the origin, and grows sharply
towards infinity in the shape of a U curve. It is hypothesized that the adaptive
methods can effectively crawl down the sharp wall of the U curve, but they stop
progressing to smaller values when they enter the flat region of the function close to

48

the origin. This is because the gradient approaches zero in this region and becomes
negligible, so the algorithm stops producing new points. This was not a problem
unique to the adaptive methods, since the non-adaptive Nesterov method experi-
enced the same issue, but it was thought that taking into account the curvature of
this function would have allowed the descent to continue, and this was not the case.

Another interesting task would be to compare these new methods with other
methods. For instance, Nesterov pioneered another optimization technique called
Fast Iterative Soft Thresholding Algorithm (FISTA) that appears to take into
consideration information from the Lipschitz constant. It would be meaningful
to compare these methods, especially since the convergence rate of FISTA is not
clearly understood [19]. It would also be beneficial to study the behavior of these
new methods on non-Lipschitz functions. If a function is not Lipschitz, the L value
becomes infinite. However, when it is being approximated, we conjecture that it
can be reduced by dividing the learning rate by the magnitude of the gradient
found by numerical approximation in order to allow the gradient descent to work.
So in summary, the main result from exploring the three new methods derived in
Chapter 4 is that the Lipschitz constant is an important quantity when determining
the learning rate of gradient descent. Therefore, by relying on the information it
provides about the current location of an objective function, it is possible to dras-
tically improve an algorithm’s rate of convergence while simultaneously removing
the requirement of finding a predetermined learning rate.

49

Bibliography

[1] Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cam-
bridge University Press. doi:10.1017/CBO9780511804441

[2] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701.

[3] Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Program-
ming, 151(1), 3-34.

[4] Boyd, S. (2018). Ellipsoid Method. Notes for EE364b.

[5] Grötschel, M., Lov’asz, L., Schrijver, A. (1993). The ellipsoid method. In Ge-
ometric Algorithms and Combinatorial Optimization (pp. 64-101). Springer,
Berlin, Heidelberg.

[6] Haji, S. H., Abdulazeez, A. M. (2021). Comparison of optimization techniques
based on gradient descent algorithm: A review. PalArch’s Journal of Archaeology
of Egypt/Egyptology, 18(4), 2715-2743.

[7] Raskutti, G., Mukherjee, S. (2015). The information geometry of mirror de-
scent. IEEE Transactions on Information Theory, 61(3), 1451-1457.

[8] Botev, A. G. Lever, Barber, D. (2017). Nesterov’s accelerated gradient
and momentum as approximations to regularised update descent. 2017 In-
ternational Joint Conference on Neural Networks (IJCNN). 1899-1903 doi:
10.1109/IJCNN.2017.7966082.

[9] Dozat, T. (2016). Incorporating nesterov momentum into adam.

[10] Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foun-
dations and Trends in Machine Learning, 8(3-4), 231-357.

[11] Beck, A., Teboulle, M. (2003). Mirror descent and nonlinear projected sub-
gradient methods for convex optimization. Operations Research Letters, 31(3),
167-175.

50

[12] Allen-Zhu, Z., Orecchia, L. (2014). Linear coupling: An ultimate unification
of gradient and mirror descent. arXiv preprint arXiv:1407.1537.

[13] Hardt, M., Recht, B., Singer, Y. (2016, June). Train faster, generalize better:
Stability of stochastic gradient descent. In International conference on machine
learning (pp. 1225-1234). PMLR.

[14] Hallen, H. (2017). A Study of Gradient-Based Algorithms
http://lup.lub.lu.se/student-papers/record/8904399

[15] Schmidt, M., Roux, N. L. (2013). Fast convergence of stochastic gradient
descent under a strong growth condition. arXiv preprint arXiv:1308.6370.

[16] Rosenberg, M. (1969). Separable Functions and the Generalization
of Matricial Structure. Mathematics Magazine 42:4, 175-186, DOI:
10.1080/0025570X.1969.11975955

[17] Wilson, D. R., Martinez, T. R. (2003). The general inefficiency of batch train-
ing for gradient descent learning. Neural networks, 16(10), 1429-1451.

[18] Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic
course (Vol. 87). Springer Science Business Media.

[19] Chambolle, Dossal, C. (2015). On the convergence of the iterates of" FISTA".
Journal of Optimization Theory and Applications, 166(3), 25.

[20] Rebennack, S., Floudas, C. A., & Pardalos, P. M. (2009). Ellipsoid Method.

