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Abstract

Mobile Edge Computing (MEC) is proving to be a very successful alternative to cloud

computing (CC) for executing computationally intensive tasks that cannot be handled by end

devices such as laptops and smart phones. The MEC paradigm facilitates task computation

at the edge of the network rather than the cloud. It has been shown that MEC decreases

delay and energy consumption while simultaneously reducing the load on backbone networks

and the clouds. The hierarchical-MEC (H-MEC) paradigm adds on to MEC by involving

idle end devices in the task computation process. H-MEC can offer the advantages of MEC,

while further reducing the load on edge networks and edge servers. A large proportion of

edge computing tasks comprise some form of data analytics where there is an increasing

trend to use machine learning (ML) techniques. Therefore, in order to share the burden

of complex ML algorithms and to preserve data privacy, employing the ML training in a

distributed manner on end devices or learners, is becoming more common. This is especially

important with the advent of the deployment of 5th generation (5G) networks which may

offer the feature of fast device-to-device (D2D) communication.

This dissertation proposes a method for optimal task offloading in H-MEC while jointly

minimizing delay and energy consumption. Analysis on H-MEC task allocation with the joint

time and energy minimization showed that the problem is NP-hard and hence, a heuristic

solution was proposed. Results indicate that allowing one idle user to act as a server can

provide up-to a 13% reduction in completion time and up-to 17% reduction in energy con-

sumption. The focus of the dissertation then shifts to the major component of this work,

which is enabling and optimizing the execution of machine learning tasks in a distributed

manner, referred to as distributed Learning (DL), on H-MEC systems.

Consequently, we design the novel paradigm of Mobile Edge Learning (MEL), where the

goal is to allocate tasks optimally such that the ML model accuracy is maximized while tak-

ing into consideration the heterogeneous communication and computational capabilities of
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individual learners in a wireless MEC system. More specifically, our approach is heterogene-

ity aware (HA) compared to previous works which were heterogeneity unaware (HU). This

part of the research investigates MEL optimal task allocation for synchronous (HA-Sync)

and asynchronous (HA-Asyn) settings, with limits on the global completion time and local

energy consumption. In the last part of the work, we provide recommendations on best

scheme selection and how to apply the MEL in context of H-MEC.

The problem of optimal task allocation in MEL is divided into four sub-problems consist-

ing of HA-Sync and HA-Asyn with only time constraints and the HA-Sync/Asyn with dual

time and energy constraints. All sub-problems are shown to be non-polynomial (NP) hard

and hence, solutions based on relaxations are proposed. For the HA-Sync with time con-

straints, analytical upper bounds are proposed and shown to perform similar to the numerical

approaches. For the HA-Asyn with time constraints and the HA-Sync/Asyn with dual time

and energy constraints, solutions based on the suggest-and-improve (SAI) framework are

proposed.

Simulation results on MEL show that our proposed HA approaches achieve a superior

validation accuracy and provide significant reductions in time for reaching a certain accuracy

threshold compared to HU schemes when there is a limit on the global completion time. For

example, the HA-Sync schemes reduce training time by up-to 25% compared to HU, whereas

the HA-Asyn can provide further gains of up-to 10% in some settings. When there are

joint global time and local energy consumption constraints, the HA-Sync/Asyn approaches

can provide gains of up-to 25% compared to the HU schemes. Furthermore, because of

different settings, where the HA-Asyn and HA-Sync outperform each other, this dissertation

concludes by providing recommendations on how to select the appropriate scheme with the

correct parameters, describing different application scenarios and identifying areas for future

research.
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Chapter 1: Introduction

Resource intensive applications including facial recognition, virtual reality, and advanced

image enhancement/filtering have become a vital component of modern-day mobile devices

and networks. Furthermore, rapid advancements of smart infrastructure such as smart grids,

cities, and cars is mandating the deployment of a large number of Internet-of-Things (IoT)

devices. This equipment generates exponentially increasing amounts of data at the edge

of the network, which needs to be communicated to the cloud for processing. Although

cloud computing (CC) technologies have bridged the gap between the required and available

resources effectively [2], it is expected that the rate and nature of this generated data will

prohibit their centralized processing and analytics at cloud servers. The expected exponential

rise in the amount of end devices served by base stations and edge routers coupled with the

deployment of 5th generation (5G) networks that consist of macro-cells and the possibilities

for D2D communication in the future, have encouraged researchers to investigate alternate

computing paradigms. Mobile edge computing (MEC) has emerged as a promising paradigm

that provides an effective alternative to CC [3].

The cloud-edge-user model is a three layer architecture, where several end users are

connected to a wireless network via an edge server, and multiple edge servers connect several

such ’edge networks’ to a central server called the cloud. The edge layer is also known as

the fog layer. The terms ’edge’ and ’fog’ have been used interchangeably in the literature,

but we will strictly use the term ’edge’ in this dissertation. The end users are also known

as end devices, user equipment (UE), nodes, edge nodes, fog nodes, and edge devices among

other names. In this dissertation, we will use some of the mentioned terms interchangeably.

The end users are usually connected to each other via a wireless network which is controlled

by an edge server. Hence, one such network of devices is called the wireless edge network or

the ’wireless edge’/’edge’ for short.

The edge may be a mobile base station, Wi-Fi router, a road side unit (RSU) in a

connected vehicle (CV) network, etc. An end device may be a laptop, smart phone, a
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Figure 1.1: An illustration of several edge networks connected to a central cloud, each
containing multiple nodes.

processor attached to the on-board unit (OBU) on a smart car, a smart meter, a micro-

processor attached to a microcontroller such as the Raspberry Pi or Arduino, etc. One edge

network can comprise the same or multiple types of such devices as illustrated in Figure 1.1.

Because several of the edge nodes may be mobile, such as a smart phone on a person or an

OBU on a car, these types of networks are called mobile edge networks or the ’mobile/wireless

edge’ for short. The wireless edge is already resource-constrained. In addition to limited

energy constraints, a wireless edge suffers from a condensed spectrum, fading effects, and

noisy channels. The aspect of mobility adds an additional challenge because the channel

will now suffer from fast fading, multipath effects, and interference. Furthermore, end users

typically require tasks to be completed as quickly as possible while consuming the least

energy because many are battery-powered. Therefore, it is vital to allocate tasks such that

resource utilization is optimized.

The concept behind MEC is to allow users the option to locally execute tasks or offload

the more computationally intensive tasks to the edge server. The motivation behind this

paradigm is that edge servers are typically equipped with multi-core processors and are
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powered by the main supply. Because they are mostly being used as routers, a large amount

of processing power is wasted. Therefore, employing this equipment for task computation is

a promising solution for reducing the burden on backbone networks.

Research on MEC has included completion time and energy consumption minimization,

offloading decision optimization, and proposing of different architectures for MEC. One pro-

posed architecture is to merge the previously explored distributed computing paradigms

with MEC to develop a hierarchical structure where end devices may offload tasks either to

another end device or to the edge server. This new idea falls under the umbrella of H-MEC,

where end devices either compute tasks locally, offload to a neighboring device within their

edge network or offload to the edge server.

In our work, we originally propose to optimize the offloading decisions as well as the

communication and computational resources such that the sum of completion times and

energies is jointly minimized. Results show that our proposed solution offers significant

advantages over the MEC with similar resource optimization. Although our model for generic

task offloading for H-MEC offered interesting results, a deeper literature review revealed that

one of the biggest open problems was resource optimization for machine learning (ML) over

MEC/H-MEC systems.

Indeed, UEs and other devices nowadays come equipped with various types of sensors

including cameras that can collect a large amount of data in a short time. To serve a useful

purpose, this data needs to be analyzed. Therefore, increasingly, most task computation

comprises data analytics such as forecasting, predictive modeling, object recognition, etc.

ML algorithms such as regression (linear and logistic), support vector machines (SVM),

neural networks (NN), deep NNs (DNN), convolutional NNs (CNN), etc. have shown superior

performance in such applications. Most ML algorithms including the ones mentioned above

rely on iterative approaches to predict an output based on an input which comprises the set

of features belonging to each data sample of a given dataset.

Because ML models are large and these iterative approaches can be very computationally
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complex and time-consuming, we focus on distributing the ML training process, also known

as distributed learning (DL), over high performance computing (HPC) systems and graphical

processing units (GPUs). For deploying ML models distributedly on edge networks, the

classical approach so far has been to collect the data from multiple nodes and transmit it to

the cloud for centralized analysis. Transferring these monumental amounts of data generated

on devices mostly connected via wireless edge networks spread across vast geographical

regions to cloud servers for analysis via multiple backhaul links is time-consuming, costly,

and raises security and privacy concerns [4]. Therefore, it is expected that 90% of data

analytics will be done on either edge processors using MEC or on the end devices themselves

using H-MEC [5]. Thus, training ML algorithms and models over the resource-constrained

wireless edge has become a significant area of interest for researchers.

Due to the above reasons and an existing research gap in this area, we narrowed our focus

to solving the special case of optimal task allocation for training DL algorithms at the wireless

edge. To this end, we designed the novel Mobile Edge Learning or “MEL” paradigm. In the

literature, some of this work may fall under the keywords of “Edge Artificial Intelligence”

(Edge AI) or “Federated Learning (FL) at the resource-constrained edge”. DL over the

wireless edge can take two forms: Federated Learning (FL) where all learners own their own

dataset or Parallelized Learning (PL) where the a central server distributes subsets of the

data to all learners for collaborative ML training. Please note that FL may also be referred

to as Distributed Datasets (DD) and PL as Task-Parallelization (TP).

The novelty of the work presented in this dissertation stems from incorporating: a)

heterogeneity awareness (HA), b) Parallelized Learning (PL), and c) dataset size allocations,

all of which were partially or completely ignored in previous works. Before we present the

related work, we will motivate the subjects of this dissertation with some statistical forecasts

on the impact of Edge AI and some applications.
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1.1 Motivation

The concept of IoT started a couple of decades ago and was upgraded in the last

few years to the internet of everything (IoE). Starting with the example of a refrigerator

that orders your milk for you, to fully functional smart homes that come equipped with

devices such as the Amazon Echo with its own AI interface Alexa, IoT/IoE has come a long

way. Furthermore, in addition to smart homes, the world is embracing smart infrastructure

including smart cities, smart grids, smart homes, etc., at an exponential pace.

It is expected that 41 billion IoT devices will be connected to the internet by 2022

[1]. Examples of such end user devices include smart phones, traffic cameras, autonomous

connected vehicles, unmanned aerial vehicles (UAVs), etc. Furthermore, Cisco estimates

that up-to 800 zettabytes (∼ 1021) of data will be present on this equipment [1]. Forecasts

by Statista show that the industrial IoT market which was worth $285 billion USD in 2017

will almost double in five years to $540 billion USD. Figure 1.2 charts this exponential growth

and provides statistics on how various industries such as healthcare and transportation are

expected grow in terms of IoT.

According to [6], though edge analytics may not replace the cloud, it will clearly be a

game changer. One of the major benefits to service providers for enabling IoT analytics at

the edge will be the reduction in CC costs in the form of less communication and storage

requirements because data not needed for later use can be analyzed and discarded. Other

benefits include enhanced customer experience and more robustness and security.

For the consumers, the promotion of edge analytics is very important because it provides

several benefits. Although the general population enjoy advertising their life on social media

and many have made careers out of it, they have become more aware of their rights to

privacy. Therefore, it is a paradox where people want their services to be delivered as soon

as possible in this fast-paced world without compromising their data privacy rights. Edge

analytics will remove some of the latencies due to CC and the analysis of data at the edge
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Figure 1.2: IoT market-share forecast of various industries from 2017-2022. Data was taken
from [1].

will prevent its collection by central servers which may be owned by third-parties.

As described before, with the success of ML algorithms such as deep learning and rein-

forcement learning (RL) in analytics and their expected usage in Edge AI or edge intelligence

(EI) for short, most of the focus nowadays is enabling DL over the wireless edge [7]. In fact,

edge DL is expected to be a key part of technologies driving 6th generation networks (6G) [8].

Indeed, some of the biggest players are actively involved in the R&D of EI deployment. For

example, Google has dedicated a research group for FL specifically [9]. Furthermore, Intel

is now teaming up with the online education provider Udacity to train developers for edge

ML and EI [10]. The aim of this initiative is to supply the talent pool required for deploying

real-time analytics platforms at the edge. Most importantly, the IEEE is already working

on a standard for deploying DL over the edge [11].

Because of this push from the industry towards EI, many researchers have worked on

applying DL concepts to the edge for different applications. For example, related to the
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health industry, the work of [12] explores the role of federated learning (FL) in biomedical

applications whereas related to the transportation industry, the works of [13] and [14] explore

the applications of FL for reliable communications in vehicular networks and for urban

sensing, respectively. Overall, we can conclude that edge computing in general and DL over

the wireless edge in particular will play a huge role in near-future IoT analytics.

1.2 Applications

We have described two scenarios for DL over the edge, FL and PL. Though we will discuss

them in details later, let us go over a couple of quick examples for each. We will begin by

the FL scenario first.

Currently, most of the world is dealing with the corona virus 2019 (COVID-19) crisis with

an expectation that a second wave of infections and epidemics may pop up in different cities

and localities. As it has become clear from this crisis, the number of medical professionals

and testing kits are not available in abundance especially in densely populated areas; some

of which are located in the developing world. On the other hand, basic equipment such

as laptop computers and wireless connections are accessible. Moreover, typically there are

strict regulations that are enforced to protect patient privacy.

Let us imagine a large drive-through COVID-19 testing facility such as the ones that were

developed in Europe or a stadium that has been converted into a COVID-19 isolation area

with medical professionals conducting tests and quarantining positive individuals. Many

people who feel even slight symptoms may naturally drive up to get tested. However, a lot

of negative results can lead to wasted test kits and consume the time of medical professionals

which could have been better served elsewhere.

In such a scenario, if a simple system could be developed where all of the equipment

such as tablets or laptops that may be connected via Wi-Fi or Cellular networks, could

collect patient data locally and with a program that accepts symptoms and level of severity.

Based on initial data of symptoms and test result (positive or negative), a simple ML model
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such as logistic regression or SVM can be developed to correlate multiple symptoms to test

results. In this case, medical professionals can be replaced by Kiosks where patients enter

their symptoms (may be even based on scales of 1 to 10) and this model can be used to

adaptively train and predict the probability of a person having COVID-19. A threshold

can be set such that the people with the highest probable combination of symptoms end up

getting tested or referred to a medical professional.

There are several benefit to such a system. Firstly, patient data will be analyzed at

the terminal and there is no need for centralized transfer to the cloud which would require

additional steps to make the data anonymous in real-time. For later use or record-keeping,

this may be done offline. Medical professionals can focus their attention on serving the most

vulnerable patients especially if online Kiosks will be used. Either way, AI has shown promise

in several areas such as providing more accurate diagnoses for cancer detection using tumor

images compared to human doctors. Hence, there is a potential for less false positives which

would be inconvenient to the individual or even false negatives which can be catastrophic.

Therefore, a junior medical professional may collect the history/symptom data and enter

into the system which in turn would provide a suggestion on next steps. The experts can

then utilize their time better by helping the most vulnerable patients.

For the PL scenario, let us go back to that refrigerator example of the early 2000’s.

Imagine a smart fridge equipped with a small processor and memory that stores data related

to the items bought. Let us say it was to train an ML model to forecast the expected demand

of different items to create an automated grocery list. The refrigerator has the data but not

the computational capability to run such an analysis. In this case, it may collaborate with

devices already located at the household such as other smart phones and laptops which are

all connected via a Wi-Fi router. In this way, the refrigerator may leverage the computing

power of some of the idle devices and a good network by distributing partial data to each

learner. Notice that the data still remains private within the confines of the household in

this example.
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With the deployment of 5G and rapid manufacturing of smart medical devices and the

likes, such applications will very soon become a reality. For example, the COVID-19 example

can be extended for thermal tracking at airports and at large scale events such as sporting

competitions once normal life resumes. Despite the promise and many advantages offered

by edge computing (EC) in general and EI in particular, challenges remain.

For example, there is the social challenge where people need to be convinced that these

paradigms will preserve their security and privacy. Furthermore, there are remaining chal-

lenges where applications have to be deployed with the help of equipment and resources

owned by multiple vendors and hence, standards need to be designed and implemented to

promote interoperability. At the fundamental level though, the biggest challenge is that the

edge is resource-constrained. For example, the available resources in the wireless channel

are limited and battery power is at a premium on end devices. Moreover, some of these

applications may be time-critical.

In addition to designing applications, standards, and proper marketing, researchers need

to focus on coming up with solutions that would facilitate MEC and EI while taking into

account these widely heterogeneous capabilities and low resource budgets. Therefore, in this

dissertation, the focus is developing task allocation schemes that will optimize the imple-

mentation of technologies for edge analytics.

1.3 Dissertation Organization

Using statistical data and recent R&D trends for edge computing and DL, Chapter 1 has

shown the value and importance of further exploring these areas. The rest of this dissertation

is organized as follows:

• Chapter 2 Literature Review presents the work related to MEC/H-MEC in general

with a particular focus on the transition to DL over the wireless edge. We present

some of the work published, identify the research gaps, and highlight the contributions
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of this dissertation towards fulfilling these gaps.

• Chapter 3 Hierarchical Mobile Edge Computing (H-MEC) completely covers the

work on H-MEC including the system model, problem formulation, proposed solution

and the results.

• Chapter 4 Mobile Edge Learning (MEL) System Model presents the overall

complete system model with the associated parameters for the proposed novel “MEL”

paradigm. We begin by introducing the basic concepts of machine learning (ML);

specifically gradient-based ML. Then, the chapter transitions to the generic DL model

and extends that to the MEL paradigm. Finally, the system parameters of MEL are

described. The chapter also discusses how these variables relate directly to the physical

resources of time and energy. In other words, this chapter fully describes the proposed

heterogeneity aware (HA) model.

• Chapter 5 MEL Task Allocation with Time Constraints solves the first two sub-

problems where solutions are proposed for MEL with only time constraints for both

settings, the HA synchronous (HA-Sync) and asynchronous (HA-Asyn) task allocation

approaches. The results are evaluated for both settings in terms of multiple metrics.

Because an analytical solution is derived for the HA-Sync case, a complexity analysis

is also performed to support the proposed solutions.

• Chapter 6 MEL with Dual Time and Energy Constraints provides solutions for

HA task allocation for both HA-Sync and HA-Asyn, with joint dual completion time

and energy consumption constraints. Based on the results, we first prove that the HA

approaches are better than the heterogeneity unaware (HU) approaches. Finally, we

provide recommendations on how to select the appropriate scheme with the correct

choice of parameters.

• Chapter 7 Synchronous MEL Extension presents the work done on HA-Sync with

only time constraints with optimal task allocation instead of maximal task allocation.

Because our models did not directly relate the ML or DL convergence properties to
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the resource consumption linked variables in that work, this part of the dissertation

explored the performance gains of HA-Sync versus HU-Sync with only time constraints

when the HA model loss function convergence is linked directly to the HA model

parameters.

• Chapter 8 Recommendations, Conclusions, and Future Work summarizes the

work by providing recommendation on how to select the best scheme for MEL, giving

brief conclusions on the work done and setting some of the future research directions

in the area of H-MEC in general and MEL in particular.
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Chapter 2: Literature Review

The booming need for edge processing and analytics is supported by recent advance-

ments in mobile edge computing (MEC) [3,15–17] and hierarchical MEC (H-MEC) [18–20].

While MEC enables edge nodes to either compute their tasks locally or offload them the

edge servers, H-MEC gives an end device the additional option to offload to a peer. These

offloading decisions are usually made such that metrics such as completion time, energy

efficiency, and bandwidth usage are optimized.

For MEC, the two key performance metrics are the delay and the energy consumed to

fulfill a particular task. Previously, researchers have proposed techniques to minimize task

latency [21] or maximize energy efficiency [15]. Some of the most important works focus on

minimizing the task latency and energy consumption in a joint manner [4,22]. However, for

hierarchical edge computing, the idea of optimizing delay and energy efficiency jointly has

not been investigated before.

Partial offloading and cooperative communication is investigated in [18] where is assumed

only two end devices, one user and the other acting as a helper, jointly achieve task offloading

and computation for the user. The transmission/computation time is divided into four slots.

In the first period, the local user transmits to the local helper. In the second slot, both

the user and helper nodes send the partial task to the access point (AP). In this scenario,

there is only cooperative communication. The AP computes the task and transmits the

results back to the user in the 3rd and 4th slots, respectively. The problem is constrained by

task completion time (no energy constraints) and solved using the Lyapunov optimization

techniques.

The model in [19] consists of a set of edges with devices and access points connected to

the cloud. An external controller stores task fingerprints and makes the offloading decisions.

There are four possibilities: execute locally, offload to the cloud, offload to peers who have

recently done a similar task (sharing), or ask for resources (co-operative) to share the load.

The edges (AP’s) are just only used for communication and hence, this differs model only
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offers edge communication, no computing. The network-wide average energy consumption

is optimized using Lyapunov optimization.

The authors of [20] consider a set of sensor nodes (edges) connected to a cloud; but they

focus on only the edge layer, i.e. cooperative computing between sensors. The edge servers

cooperatively share computational resources to minimize the total energy consumption of the

system by accepting partial tasks from users. An exhaustive search and a heuristic algorithm

is proposed to optimize the partial offloading parameters.

The concept of exploiting D2D communication as an alternative to MEC is explored

in [17, 23, 24]. The authors of [17] propose optimal and periodic access schemes for users to

identify and utilize resources on peer devices. The work of [23] focuses on using heterogeneous

networks to enhance capacity and minimize offloading probability. Furthermore, they show

that exploiting content similarity among user tasks can reduce offloading probability.

So far, there is very little work in the literature which talks about H-MEC where users

have the choice to offload to their peers or the edge server. To the best of our knowledge, no

such work exists which talks about dual-objective joint resource optimization in such multi-

level MEC. Therefore, our first goal is to do joint task latency and energy consumption

minimization for 2-level MEC, where users can offload tasks to their peers or the edge.

While most of the previous works on MEC/H-MEC were limited to independent com-

puting tasks, one of the most important forthcoming applications of MEC/H-MEC is im-

plementing distributed learning (DL) on edge nodes. Using DL, multiple edge nodes can

collectively analyze and learn from their local possessed data with no or limited dependence

on cloud/edge servers. As the topic of H-MEC was explored further, it was discovered that

researchers are devoting most of their attention to machine learning over H-MEC. Some

works have focused on optimizing the process of task allocation using ML techniques [25].

Other researchers have worked on caching results of ML based applications at the edge server

so that other users running similar apps may have quick access to results [26]. Lately, the

focus has shifted to deploying ML models for training in a distributed manner over multiple
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end devices on the edge [27].

Although distinct from each other, optimal task allocation for H-MEC or for DL over

the wireless edge are two sides of the same coin. In the former, end devices compete with

each other to offload computationally intensive tasks to the edge server or neighboring nodes

based on the heterogeneous communication channels and the computation capacities of each

node. In the latter, one orchestrator facilitates the learning process at edge nodes (or learners

as we will refer to devices in the context of DL over the wireless edge). This is done while

simultaneously trying to maximize ML accuracy and satisfying the resource constraints such

as delay and energy consumption limits. Therefore, one can see how optimal task allocation

for DL at the wireless edge is an important extension of the H-MEC paradigm.

Distributed learning (DL) in general, has attracted much attention in the ML research

community because of the complexities of the ML models. Until recently, most works on DL

were studied over wired and/or non-heterogeneous distributed computing and data transfer

environments such as high performance computing (HPC) systems and graphical processing

units (GPUs) [28,29]. However, applying DL in such environments is very different from the

wireless edge which requires dealing with the eccentricities of wireless communication and

the heterogeneous capacities of end devices in terms of processing power.

Extending these DL studies to resource-constrained edge servers and nodes was not ex-

plored until very recently [30,31]. The work was started by a research group at Google [27]

where they proposed the general concept of federated learning for on-device intelligence at

the edge [32]. The focus of these early works was deploying FL at the edge rather while

evaluating the communication and latency issues. The heterogeneous capabilities of learners

or resource consumption issues were not tackled specifically in light of the physical layer

parameters.

From then on, researchers have focused on developing DL algorithms for the mobile edge

computing paradigm without fully considering resource allocation issues and usually for

specific ML techniques [33, 34]. The work of [33] focuses on the cloud rather than the edge
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and optimizes learning by automatically selecting a particular model via ensemble learning

and auto-tuning of parameters. The authors of [34] tackle the SVM technique by reducing

the communication overhead in a generic manner which may make their algorithm attractive

for implementation on the edge. However, a general method for all ML algorithms was not

explored. A few works have focused on the optimization algorithms themselves. For example,

the authors of [35] investigate the benefits and drawbacks of performing local ML training

at the learners as opposed to a global training. On the other hand, the work of [36] proposes

an optimal global optimization method based on annealing for DL at the edge.

A significant amount of research has been done on the implementation of federated learn-

ing for specific applications such as vehicular networks [37–41], multi-robot systems [42], hu-

man activity recognition [43], keyword spotting [44], and general mobile object recognition

using deep learning [45]. Edge DL has also been applied to smart infrastructure including

smart cities [46], smart homes [47], smart health care systems for e-health [48, 49] and for

smart cyber-physical systems such as AI-based control of multiple inverted pendulums [50].

Because privacy and security are of concern in edge DL, blockchain-based networks have been

proposed to support edge DL [51, 52]. In fact, hybrid blockchain-based edge DL solutions

have been proposed for a few applications such as connected vehicular networks [53–55] and

smart cyber-physical systems [56,56].

Because devices that participate in edge DL are expected to be resource-constrained, some

research has also been carried out on ways to incentivize FL for learners at the edge [57–62],

either by associating a cost for initiating a learning process or a prize to motivate end users

for participating in a round of FL. As one can observe, work has been carried out to facilitate

edge DL by proposing distributed models for specific ML algorithms, designing distributed

optimization methods, and by implementing edge DL for specific applications such as for

autonomous connected vehicles. However, very little work has been done on how the physical

constraints in MEC’s and H-MEC’s directly impact the edge DL process.

Limited works have proposed solutions to tackle some of the physical layer challenges.
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For example, one area researchers have worked on is analog aggregation or over-the-air

computation, where the objective is to speed up the aggregation of ML models resulting

from multiple learners by utilizing the analog communication over antennas [63–68]. The

work of [69] tackles the issue when perfect channel state information (CSI) is not available at

the edge server whereas the works of [70, 71] propose scheduling policies to streamline data

exchange between learners and servers in wireless media with limited resources.

While not relating physical layer parameters directly to the resources consumed during

the DL process, the works of [72–75] have proposed communication-efficient approaches. The

work of [72] designed a feature fusion approach to reduce the size of the data exchanged,

compression strategies for ML model parameters were designed in [73], using dual streamed

models to reduce communication rounds was proposed in [75], and the authors of [74] de-

signed a mechanism to exclude learners that were not performing well which also resulted in

less communication rounds.

A couple of conclusions can be made after examining the most recent work on DL over

the wireless edge. First of all, FL has been extensively studied in literature [76–83] whereas

PL or MEL which comprises both, has been sparsely studied. Secondly, most works have

proposed distributed algorithms for the MEL paradigm without focusing on the resource

allocation issues [33,34], and the researchers that consider resource consumption only do so

in generic terms [76–79] without considering the heterogeneities, i.e. they are heterogeneity

unaware (HU). Although the works of [80–82] are heterogeneity aware (HA), they ignore the

aspect of batch allocation and the PL scenario.

The works of [76–79] have aimed to jointly optimize the number of local learning and

global update cycles in resource-constrained edge environments, to maximize learning accu-

racy. However, these approaches are HU; they do not consider the inherent heterogeneities

in the computing and communication capacities of different edge learners and links, re-

spectively. The implications of such heterogeneities on optimizing the task allocation to

different learners, selecting learning models, improving learning accuracy, minimizing local
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and global cycle times, and/or minimizing energy consumption, are clearly game-changing,

yet have rarely been investigated. Recently, the works of [81,82] have investigated the impact

of energy and communication time, but only in the context of federated learning and only

for assigning the number of local updates without any task size allocation.

To the best of our knowledge, this dissertation is the first attempt to synergize the novel

trends of DL and H-MEC, in order to establish an optimization framework for efficiently

executing distributed learning tasks on a neighboring set of heterogeneous wireless edge

nodes or learners while taking into account these heterogeneities in order to ensure that

resource consumption limits such as completion time and energy usage, are not violated.

2.1 Contributions

In the area of H-MEC, most works that proposed optimal task offloading and resource

allocation while satisfying dual time and energy constraints did so for MEC. For H-MEC,

either the designed systems treated the peers as relays or if any optimization was done,

it was either only for delay minimization or energy efficiency. The existing research gap,

as highlighted in Figure 2.1, is to allocate tasks and resources such that delay and energy

consumption are jointly minimized.

As briefly described before, ML or DL algorithms rely on iterative approaches where

Figure 2.1: Review chart and research gap for H-MEC
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Figure 2.2: Review chart and research gap for MEL

individual learners will have to make several updates. The current literature tackled the

problem of either only optimizing the number of local updates for HU resource consumption

or optimizing resource allocation without task allocation, specifically batch-size allocation,

to optimize the performance of the ML model. Therefore, a research gap exists in the area of

HA optimal task allocation, both, the number of local updates and task size for maximizing

the accuracy while respecting the time and energy constraints. Our proposed MEL design

fills this gap as illustrated in Figure 2.2.

To this end, this dissertation has the following contributions:

1. In contrast to the previous works, this dissertation proposes to jointly minimize delay

and energy consumption via optimal task offloading and resource allocation for H-MEC

systems.

2. The design of a novel new paradigm for DL over the wireless edge called mobile edge

learning (MEL), which incorporates both edge DL scenarios, parallelized learning (PL)

and federated learning (FL).

3. Ensures that the designed system is HA, in contrast to most previous works which were

HU, such that one or both of completion time and energy consumption constraints are

satisfied as they relate to the physical channel parameters and computational capabil-

ities of learners.
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4. Proposes solutions for the MEL system with HA synchronous (HA-Sync) task alloca-

tion and asynchronous (HA-Asyn) task allocation. Further, this dissertation examines

regions where one scheme may outperform the other in terms of the available resources,

i.e. time and energy.

5. Illustrates the performance gains of the proposed HA solutions as compared to the HU

through extensive simulations using more than one model and dataset under different

conditions in terms of ML model accuracy. For some schemes, we also study the

complexity of the optimization algorithms to study the trade-off between complexity

and performance gains.

6. Provides recommendations for selecting the best scheme out of the HA-Sync and HA-

Asyn.

7. Additional work is also done on optimizing task allocation in an HA manner while

relating these parameters directly to the performance of the ML algorithm. This was

done for the synchronous case with only time constraints to compare its performance

to the previous works.
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Chapter 3: Hierarchical Mobile Edge Computing (H-MEC)

This chapter starts off the first contribution of this dissertation by presenting our foray into

the world of mobile edge computing (MEC). In this work, we propose a new framework for

MEC called Hierarchical-MEC (H-MEC). Edge devices could offload their task either to the

server or to another edge node instead. The assumptions are that the any edge node is either

available to serve its peers or had its own tasks that need to be computed. Furthermore,

one device is allowed to offload to one server only; either the edge server or a neighbor node.

Also, one edge node is allowed to serve one other node only whereas the edge server is allowed

to accept tasks from multiple end devices. In the following sections, we introduce the mobile

edge computing (MEC) concept, then transition to the proposed H-MEC system model,

presenting the problem followed by our proposed solution, and then discuss the achieved

results. This chapter comprises material from a paper that has already been published1.

3.1 Introduction to MEC

Consider a set K = {1, 2, . . . , k, . . . ,K} of end user devices connected via an edge server

O such as a router or a base station. At any given instant, an end device k ∈ K has a

task that needs to be computed. In CC, user k would either attempt to do local execution

or transmit its task to the edge which would forward it to the cloud for processing. This

approach would be slow because the central server may be serving a queue of tasks and may

also be located very far away. In contrast, the MEC paradigm allows the user to either

compute the task locally or offload to the edge instead. This concept is illustrated in Figure

3.1.

1Part of the material in this chapter was published as “Multi-Objective Resource Optimization for Hi-
erarchical Mobile Edge Computing” in proceedings of the 2018 IEEE Global Communications Conference:
Mobile and Wireless Networks (Globecom2018 MWN) [84].
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Figure 3.1: Illustration of multiple edge networks with a zoomed in view of one network to
demonstrate the concept of MEC.

3.2 Transition to H-MEC

Consider a system that consists of K user devices connected via an edge server O

such as a router or base station. At any given instant, an end device k ∈ K where K =

{1, 2, . . . , k, . . . ,K}, has a task that needs to be computed. Now, assume that the total

number of devices connected to the edge server in the MEC are given by K ′, where the set

of these devices is denoted by K′ = {1, . . . , k′, . . . , K ′}. The remaining M = K ′ − K

nodes are idle and each such node m ∈ {1, . . . , M} may advertise its services for the set

of neighboring nodes K. In such a system, each node k ∈ K can take one of the following

actions:

1. Perform the task locally.

2. Offload the task to the edge.

3. Offload the task to a neighbor m ∈M.

The additional option of being able to offload the task to anther user makes this an H-

MEC and distinguishes it from the classic MEC paradigm. Figure 3.2 illustrates the H-MEC
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Figure 3.2: Logical grouping of end devices in an H-MEC. Note that the devices are grouped
together for classification/presentation purposes. Practically, the servers and offloaders will
be co-located such that they are randomly placed within the radius served by the edge server.

concept. We can now define the complete set of servers asM = {1, . . . , m, . . . , M, M+1}

where servers 1, . . . , M represent the peers accepting tasks and server M + 1 represents

the edge server O.

The task associated with user k ∈ K can be described by its task size in bits Dk and

the CPU clock cycles Xk required to complete this task. Assume that the edge server has

knowledge of the channel (via channel estimation) and that before each computation, the

nodes share their task-related information along with their computational/communication

capabilities. Whether the task is executed locally or offloaded either to the edge or a peer,

the task size and the associated clock cycles required will directly influence the time taken

and energy consumed.
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Let TLk represent the execution time needed to compute the task locally on the local

processor. Then TLk can be given by:.

TLk =
Xk

fLk
, k ∈ K (3.1)

The processor’s capability is given by fLk in Hz. The local energy EL
k dissipated during task

execution is given by:

EL
k = µXkf

L
k

ζ−1
, k ∈ K (3.2)

The on-board CPU capacitance is given by µ and ζ ≥ 2. [3].

The time taken to complete a task in case it is offloaded, TOk , comprises the following:

the time taken to transmit the task from user k ∈ K to either, the edge O or user m ∈ M

denoted by T TOkm , task execution time at the server TEOkm , and the time needed to transfer the

results back TROkm . However, due to the results’ size being significantly less than the task size

in bits, we ignore the last quantity. Therefore, the total time TOkm is given by:

TOkm = T TOkm + TEOkm (3.3)

Assuming that the channels are perfectly orthogonal and do not suffer from interference, the

transmission time to a server is given by:

T TOkm =
Dk

Rkm

, (3.4)

where Rkm is the data rate between user k and the server as given below:

Rkm = W log2 (1 + akmPkm) (3.5)

The transmission power from the user to an adjacent device or the edge server is Pkm. The

coefficient akm is
Hkm

N0

where Hkm represents the channel gain from user k to server m for
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k ∈ K,m ∈M. The available system bandwidth for one user k is denoted by W . The time

taken to complete the task by a server is given by:

TEOkm =
Xk

fkm
, (3.6)

where fkm is the processing power reserved by the serving unit for user k ∈ K. The energy

consumption will cover task transmission from user k ∈ K to m ∈M. However, in case the

task is offloaded to the edge, execution energy is ignored. It is only taken into account if the

task is offloaded to a peer, i.e. for m ∈ {1, . . . , M}. The energy is related to T TOkm and the

power Pkm available to user k for communication as given in (3.7).

EO
km =


T TOkm Pkm + µXkfkm

ζ−1, if m ∈ {1, . . . , M}

T TOkm Pkm, if m = M + 1

(3.7)

3.3 Formulation with Joint Delay and Energy Efficiency

Each end device k ∈ K can compute the task locally with time TLk and an energy

consumption EL
k . It may also offload its task to a neighbor node m ∈ {1, . . . M} or the

edge server O denoted by server M + 1. The probability Dkm of user k ∈ K to offload to

any server m ∈M is 1 if the user offloads and 0 for local execution as shown below:

Dkm =


1 if user k ∈ K offloads to server m ∈M

0 if user k ∈ K executes the task locally

(3.8)

So, the decision probability Dkm will form an offloading matrix as follows:
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D =



D11 D12 . . . D1m . . . D1,M+1

D21 D22 . . . D2m . . . D2,M+1

...
...

. . .
...

. . .
...

Dk1 Dk2 . . . Dkm . . . Dk,M+1

...
...

. . .
...

. . .
...

DK1 DK2 . . . DKm . . . DK,M+1


(3.9)

The matrix D is K ×M + 1, where the rows represent the users and the columns represent

servers. The first M columns are the neighboring devices that have available resources and

the last column represents the edge server O. For example, for a system with K = 2 and

M = 1 implying two servers, one of them a peer and the other being the edge O, if D11 = 0,

D12 = 1, D21 = 1, and D22 = 0, user # 1 offloads to the peer and user # 2 offloads to the

edge.

The completion times and energy consumed for offloading are given by TOkm and EO
km,

respectively, whereas the TLk and EL
k denote the local execution time and energy, respectively.

Given the description of the decision offloading probability in (3.8), the total time to finish

the task for user k ∈ K is given in (3.10) and the total energy consumption in (3.11).

Tk =
M+1∑
m=1

dOkm × TOkm + (1− dOkm)× TLk (3.10)

Ek =
M+1∑
m=1

dOkm × EO
km + (1− dOkm)× EL

k (3.11)

We propose that in our H-MEC model, each user k can is allowed to offload the complete

task to one server only and that the peer devices acting as servers may serve one user

only. The edge server can compute tasks for several users as limited by the total system

bandwidth. The objective is to jointly allocate resources such that we minimize the two

physical quantities of time and energy. Because, both quantities have different units, a
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useful metric is needed; one that will represent the time and energy saved due to offloading

as compared to local execution. To this end, the utility for each node k ∈ K is defined as

follows:

Uk(Dk,Fk,Pk) =
M+1∑
m=1

(DO
km)×

[
ηTk
TLk − TOkm

TLk
+ ηEk

EL
k − EO

km

EL
k

]
(3.12)

The M + 1 row vectors Fk, Pk ∀ k ∈ K represent the computational resource in Hz allotted

to any user k by server m ∈ M and the transmission power resource available to user k for

send data to m ∈ M, respectively. The parameters ηTk and ηEk ∀ k ∈ K are scaling factors

that each represent the preference of user k for either saving time or energy, respectively.

They can be set such that 0 < ηTk < 1, 0 < ηEk < 1, and ηEk + ηTk = 1. We can re-write the

overall system utility as follows:

U(D,F,P) =
K∑
k=1

Uk(Dk,Fk,Pk) (3.13)

The matrices F and P represent the computational resource in Hz allotted to user k ∈ K by

server m ∈ M and the transmission power resource available to user k ∈ K to send data to

m ∈M, respectively. Therefore, each of them is also K × (M + 1) similar to D.

Given that a user can offload to one server only, the joint latency and energy minimization
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problem can be formulated as:

arg max
O,D,F,P

U(D,F,P) (3.14)

s.t. C1 : Dkm ∈ {0, 1}

C2 : ‖Dk‖1 ≤ 1

C3 : ‖DT
m‖1 ≤ 1, m = 1, . . . ,M

C4 : 0 < ‖DT
M+1‖1 ≤ N

C5 : O = {k|Dkm = 1}, for m = 1, . . . ,M + 1

C6 : 0 < Pkm ≤ Pk,max

C7 : fkm > 0,∀k ∈ O

C8 :
∑
k∈O

fk,M+1 = fmaxM+1

Although, the utility is a function of the computational resource F, the communication

resource P, and the offloading decisions D, the optimization is done over these three variables

and an additional variable O which represents the set of users that are offloading, whether

to the edge or a peer. Adding the set of offloading users facilitates the analysis and the

solution later.

The constraint C1 simply ensures that the elements of the offloading matrix are either 0

for local execution or 1 for offloading. C2 and C3 ensure that a user k offloads to one server

only and that a peer acting as a server only accepts task from one end device only. The

transpose operation is represented by the operator AT , where A is a two-dimensional (2D)

matrix, and the subscript i in Ai represents the ith row of the 2D matrix A. Similarly, ATi

implies the ith column of the matrix A or the ith row of the transposed of A. C4 ensures

that for edge offloading, the number of users are restricted by the communication resources.

C5 defines the set of offloading users O int terms of the offloading matrix. C6 sets the power

constraint such that any node k ∈ K does not exceed its maximum transmission power given
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by Pk,max ∀ k ∈ K. C7 ensures that any server m ∈ M assigns a non-zero computational

resource whereas C8 guarantees that the edge (server M + 1), does not exceed its maximum

computational capacity denoted by fmaxM+1.

3.4 Proposed Solution

The problem can be decomposed into maximizing the communication and computational

resources over an offloading set described by C5 and eliminating it as shown in (3.15). The

constraints C1−C4 are not related to the resource allocation, only to the offloading decisions.

max
O,D

max
F,P

U(D,F,P)

s.t. C1− C4 and C6− C8 (3.15)

So, the joint computation and communication resource allocation problem can be modeled

as a maximization problem over a set of offloading decisions as demonstrated in (3.16).

max
O

U(O)

s.t. C6− C8 (3.16)

Thus, the resource allocation problem can be re-written as:

U(O) =
∑
k∈O

max
F,P

Uk(Dk,Fk,Pk)

= max
F,P

∑
k∈O

M+1∑
m=1

[
ηTk
TLk − TOkm

TLk
+ ηEk

EL
k − EO

km

EL
k

]
s.t. C6− C8 (3.17)



29

We can form this problem as a minimization problem as described by P1.

P1 : min
F,P

∑
k∈O

M+1∑
m=1

[
ηTk
TOkm
TLk

+ ηEk
EO
km

EL
k

]
(3.18)

s.t: C6− C8

We can substitute the expressions for the local and remote execution times and energy

consumption in (3.1), (3.6), (3.2), and (3.7), respectively, in P1 and write the problem as

shown in P2.

P2 : min
F,P

∑
k∈O

M+1∑
m=1

[
C1
k + C2

kPkm
log2 (1 + akmPkm)

+ ηTk
fLk
fkm

]
(3.19)

s.t: C6− C8

The two constants can be described by C1
k =

ηTk Dk
WTLk

and C2
k =

ηEk Dk
WELk

. Interestingly, the two

constants are still only dependent on user k. Furthermore, the minimization problem consists

of two terms. The term on the left-hand side is only constrained by C6, the communication

or transmission power constraint. On the other hand, the term on the right hand side is

constrained by the computation resources as described by C7− C8.

Therefore, similar to [2], the problem can be separated into optimal power transmission

allocation and computational power assignment calculation from each server to the user

offloading to that particular server. The optimal transmission power can be calculated by

solving the problem in P3.

P3 : min
P

∑
k∈O

M+1∑
m=1

C1
k + C2

kPkm
log2 (1 + akmPkm)

] (3.20)

s.t: C6

We can exchange the summations in P3 and re-write the problem as shown in P4. The

reason for this is that in our current models, we assume that the channels are independent

of each other and there is no interference. The cases of interfering channels and contention



30

schemes will be studied later. It can be noted that the optimal power transmission from

each user to each potential server (whether the edge or a peer) can be calculated based on

channel parameters regardless of the offloading decision.

P4 : min
P

M+1∑
m=1

∑
k∈O

C1
k + C2

kPkm
log2 (1 + akmPkm)

] (3.21)

s.t: C6

The optimization program in (3.21) is shown to be quasi-convex in [2] and can be solved

efficiently using the bisection method. This process is repeated for each channel and thus

the, optimal transmission power matrix P∗ can be obtained.

The computational resource assignment problem can be modeled by P5.

P5 : min
F

∑
k∈O

M+1∑
m=1

ηTk
fLk
fkm

(3.22)

s.t: C7− C8

Notice that constraint C7 only affects the cases where the user is offloading to a peer device

whereas constraint C8 only considers the users that are offloading to the edge. This problem

can be separated into two parts as shown in P6. Furthermore, for our system we consider the

scenario where a ’free’ user will advertise its services to the edge along with the corresponding

CPU clock cycles available.

P6 : min
F

∑
k∈O

M∑
m=1

ηTk
fLk
fkm

+
∑
k∈O

ηTk
fLk

fk,M+1

(3.23)

s.t: C7− C8

The problem on the left hand side may consider parameters for partial offloading which will

be discussed later. The problem on the right hand side can be solved using the Lagrangian

dual method and the optimal frequency assigned to user k ∈ O by the edge can be calculated
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using [2]:

f ∗k,M+1 =

√
ηTk f

L
k∑

k∈O

√
ηTk f

L
k

(3.24)

Once we know how to get the optimal transmission powers and the optimal computational

resource allocation by each server to its clients, we can search over the different offloading

decision set possibilities. In a system where users only offload to one edge server, there

are 2K possible offloading decisions. A brute force solution becomes impractical for large

number of users. In a system where there are K users and M peer devices acting as servers

in addition to the edge, the complexity can be given by
∑M

m=0

(
M
m

)(
K
m

)
2K−m.

3.4.1 Peer Offloading Priority Based Heuristic Algorithm

Due to the high complexity of the brute force approach, it is necessary to design our own

algorithm that can reduce the complexity and provide nearly optimal performance. Before

doing so, let us appreciate that although D2D communication is assumed, the system is still

centralized. In other words, the edge server will decide on the final offloading decisions, and

broadcast them to all devices who will offload their tasks accordingly. Consequently, the

goal of our heuristic algorithm is to minimize the tasks offloaded to the edge server.

Let us define some new terms before discussing our algorithm. The expression U(S)

represents the utility of a given offloading set of users. We can define ∆kU(S) as the increase

in utility due to the adding of user k in the set S. This term comprises a part that is constant

and another part ∆m(k) that changes for each user if it offloads to server m as shown below:

∆m(k) =
C1
k + C2

kPkm
log2 (1 + akmPkm)

+ ηTk
fLk
fkm

(3.25)

The task will be done locally if the ηTk + ηEk −
∑M+1

m=1 ∆m(k) < 0. For all the users that

do not satisfy this condition, they will send an offloading request to the server. At the

same time, the user devices advertising their services will send their available resources to

the server. The server will sort the peers according to the maximum available resources.
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After that, the server will select the device such that Ukm ≥ 0 and k = arg max ∆m(k) for

m = 1, . . . ,M .

At each time a decision is made, the corresponding user k is excluded from the search set

and device m will only serve 1 device. This condition will satisfy constraints C2 and C3 of

the original problem. The last check is to make sure that the utility of user k is not higher

while offloading to the edge server. If that is the case, we will move onto the next device.

Figure 3.3: Illustration of the proposed peer offloading priority based heuristic algorithm.
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Once the offloading decisions have been determined by offloading to the peers according to

the maximum utility, the remaining set of users can be offloaded to the edge based on the

HODA algorithm of [2]. The complete algorithm is given illustrated in Figure 3.3.

The complexity of the HODA algorithm itself is O(K3). The complexity of making

offloading decisions to peers depends requires O(K) operations for each peer. In total, in the

worst case M ×O(K) operations are required in case no user offloads to an adjacent device.

In the scenario with K >> M , the complexity is nearly O(K). On the other hand, when

M is comparable to K, the complexity will be O(K2). The last step of ensuring that Ukm is

greater than the utility of offloading to the edge has a negligible cost and in the worst case

scenario, the complexity will be O(K3). Overall, the expected complexity of the system is

in the range of O(K5) ∼ O(K6).

3.5 Results and Discussion

The comparisons are made for the case of offloading to the edge compared to our model

where users can offload to the neighboring devices. Therefore, similar parameters are used

to the system tested in [2]. The edge base station is assumed to serve users located within a

500 m radius with a path-loss model following the lognormal shadowing. A total bandwidth

of 20 MHz is available with each offloading user assigned a 1 MHz. The users are all assumed

to be located in a 20 m radius. The application studied is facial recognition with a task size

of 420 kB requiring 1 billion cycles. Local devices are assumed to have processor speeds of

between 1-2 GHz and the server’s processor speed is 20 GHz.

Figure 3.4 shows that as the number of users increase, offloading to a peer improves system

utility. To elaborate, the blue crossed curve shows that for the case of users only offloading

to the edge in an optimal way, the utility will saturate faster. In contrast, the performance of

our system continually improves as users compete for a peer with free resources. The results

show that configuration is beneficial where there are a large number of users competing for

resources. In modern day networks with large number of devices, this configuration has the
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Figure 3.4: Plot of system utility versus number of users

potential to significantly lighten the load on edge servers.

Figure 3.5 shows the average number of offloaded users as we increase the total number

of devices in the scenario where one peer is accepting tasks. The blue crossed-line shows the

case where devices only offload to the edge and the performance of our model is illustrated

by the red-dotted line. As one can observe, offloading tasks to neighboring devices reduces

the need to offload to the edge. However, as the number of users increase, more devices

will offload tasks to the edge and hence, the performance will approach the MEC case. The

performance in terms of average offloading of users can be improved in systems where more

than one user device acts as a server.

The best performance in terms of both the highest utility and the least average offloading

users can be achieved in MEC systems serving a large number of devices within a limit. For

example, in the case of one user accepting tasks, the best jointly optimal performance can

be achieved by an MEC cloud consisting of between 7−15 users. Testing using the heuristic
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Figure 3.5: Plot number of users offloading to the edge versus number of users

algorithm with larger configurations (e.g. more users or offloading to more than one peer)

may show a similar trend but with even lesser users offloading to the edge.
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Chapter 4: Mobile Edge Learning (MEL) System Model

In this section, we present the model for the proposed paradigm of “MEL”. We first briefly

introduce the concept of ML and extend the discussion to DL. Finally, we elaborate on how

DL is applied over multiple learners connected via the wireless edge.

4.1 Machine Learning

Machine learning (ML) algorithms are designed to solve a problem automatically from avail-

able data. There are several types of problems that ML can solve. Broadly, these can be

grouped into two categories: supervised and unsupervised learning. In supervised learning,

the data is labeled, i.e. the output or target is known apriori and the goal of the algorithm

is to predict the output with minimum error using the given data as input. In unsupervised

learning, the labels are not known and the aim is to cluster or group similar data together

with minimum error based on the input data.

We will limit the discussion to supervised learning, though the work in this thesis also

applies to unsupervised learning. In supervised learning, the ML process consists of two

stages: training and testing. In contrast, unsupervised learning only comprises training

which may involve fitting or clustering data into groups. In the training phase, for most

methods, the ML model parameters are updated using an iterative procedure until a loss

function, which is pre-defined, is minimized. The algorithm can see the output during the

training phase and keeps adjusting the model parameters until the error reaches below a

certain threshold.

The output of the ML algorithm may be a real number, a binary digit or a set of integers

depending upon the application. In binary classification, the output is 0 or 1, which tells

us whether a data sample belongs to a category or “class”. In multi-class classification, the

output may be an integer representing the class label or a set of real numbers that represent

the probability with which a data sample belongs to a class. In regression, curve fitting or

time-series prediction, the output is simply a real number. Typically, a loss function is used
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to quantify the difference between the actual target and the ML model output.

In the testing phase, the learned parameters are simply applied to the test dataset in

one go and the output of the model is compared to the actual targets in order to gauge

accuracy. Often, there is an additional stage which is called validation. In validation, during

the training process, part of the training dataset is kept hidden from the model in order to

see how the algorithm will generalize to real data. Usually, the validation accuracy is a good

indicator of the performance during training because it expresses how the ML model will

perform when tested on previously unseen data.

Typically, an ML algorithm will be trained on a dataset D comprising a total of d

samples. Each data sample has a set of features that serve as the inputs to the ML algorithm.

Therefore, each data sample Dn for n = 1, . . . , d has F features that can be denoted by

xj where j = 1, . . . , F . The set of features belonging to data sample number n can be

denoted by xn = {x1, . . . , xj, . . . , xF}.

In ML, the objective is to find the relationship between xn and yn using a set of parameters

w such that a loss function, F (xn,yn,w), or Fn (w) for short because xn and yn are known,

is minimized. The total loss over the complete dataset can be given by:

F (w) =
1

d

d∑
n=1

Fn (w) (4.1)

Because it is generally difficult to find an analytical solution, typically an iterative gra-

dient descent approach is used to optimize the set of model parameters such that the model

parameter set at any discrete time-step l, for l = 1, . . . , L, is related to the model at the

previous time-step and the gradient of the loss in the following way:

w[l] = w[l − 1]− η∇F (w[l − 1]) (4.2)

The learning rate represented by η is usually set on the interval (0, 1) and influences the

convergence rate and the final accuracy.
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Typically, the ML model will go over each data sample one-by-one until it passes over

the whole dataset; a complete pass is known as one epoch. This approach is known as

the deterministic gradient descent (DGD). In recent times, more computationally efficient

approaches have been proposed such as the mini-batch gradient descent where the algorithm

goes over batches of data by matrix operations. One of the best performing approaches in

terms of computational efficiency and error performance is the stochastic gradient descent

(SGD) with mini-batch training [85] where, before the start of each new epoch, the dataset

is re-shuffled randomly.

4.2 Distributed Learning

Many ML techniques, including regression, support vector machine (SVM) and neural

networks (NN) are built on iterative gradient-based learning. Because such iterative ap-

proaches can be exhaustive for a single device, distributed learning (DL) has been proposed

to train ML algorithms over multiple learners. There are two possible scenarios: training an

ML model on a large dataset in a distributed manner where subsets of the data are located

across multiple learners (data parallelism), or training very large models distributedly on

one dataset co-located at each learner (model parallelism). Although both options apply to

the wireless edge, most of the discussion focuses on the DP scenario. However, the proposed

“MEL” paradigm can support MP and this will be mentioned where appropriate.

Consider the case where there exists one centralized controller or orchestrator that trains

an ML model to solve a specific problem (classification, prediction, image segmentation,

etc.) on a set of K = {1, . . . , k, . . . , K} learners. In DL with DP, a batch of the data Dk

of size dk is present at each individual learner k which may be locally owned or supplied by

the orchestrator. The orchestrator initiates the learning process by sending a global model

w and possibly dk samples to each learner k. Each learner k applies the gradient descent

approach to the local model wk as shown in (4.3) multiple (τk) times in parallel, and sends

back the local models to the orchestrator for global aggregation. One such cycle can be
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called the global update cycle.

wk[l] = wk[l − 1]− η∇Fk(wk[l − 1]) (4.3)

The local model parameter set at learner k is given by wk, the local loss is given by Fk, and

η is the learning rate. At time-step l, the local model wk[l] depends on the model wk[l] at

previous step l and the gradient of the local loss ∇Fk(w). The local loss Fk ∀ k ∈ K can be

calculated using the local dataset Dk of size dk in the following way [76]:

Fk(wk) =
1

dk

dk∑
n=1

Fn(wk) (4.4)

The global optimal model parameter set w will only be visible to the learners after a

global aggregation which may occur at any arbitrary time-step l for l = 1, . . . , L. For

that particular time-step, wk = w ∀ k ∈ K. In the synchronous case, at all learners k, a

global aggregation occurs after τ time-steps; whereas in the asynchronous case, the global

aggregations will occur after potentially different τk updates for each learner k ∀ k ∈ K. For

both scenarios, the globally optimal model parameter set can be obtained by applying the

following aggregation mechanism [76]:

w =
1

d

K∑
k=1

dkwk (4.5)

The orchestrator may perform multiple global cycles until a stopping criteria is reached such

as when the model reaches a pre-set accuracy threshold or the resources such as multi-core

processors are no longer available. This process is summarized in Figure 4.1.

4.3 Transition to MEL

In this section, we introduce the system model for MEL by transitioning the afore-

mentioned DL setting to the heterogeneous edge nodes setting. This will be performed by
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Figure 4.1: Illustration of the DL process with DP
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defining the parameters that relate to the heterogeneity of the computing and communica-

tion capacities of wireless edge nodes (a.k.a. learners), and how they relate to the steps of

the global update clock duration. Two scenarios for DL have been defined in Chapter 1:

namely Federated Learning (FL) which is also referred to as distributed datasets (DD), and

parallelized learning (PL) which may also be referred to as task-parallelization (TP).

In FL, data is generated and collected by multiple nodes, but cannot be transferred to

a central hub for analytics due to some constraints (e.g., bandwidth, privacy) [86]. In this

case, the learning process cycles between these nodes performing local training/learning on

their individual datasets, and a central orchestrator collecting the locally derived parameters,

performing global processing, and returning globally updated parameters to the learners. On

the other hand, PL scenario usually involves a main node, which maybe the edge server or

one of the end devices. This edge server/end device parallelizes the learning process over its

local dataset on multiple cores/nodes due to one or more reasons (e.g., limited main node

resources, faster processing, lower energy consumption) [28]. Thus, the orchestrator must

distribute subsets of the dataset to other multiple learners for local learning followed by

global aggregations until a stopping criteria is reached. Figure 4.2 illustrates the differences

between both approaches.

Performing learning in mobile, edge, and IoT environments is the clear manifestation of

both of the above scenarios. Indeed, edge nodes generate/collect data that they cannot share

to edge/cloud servers due to bandwidth limitations. Many of them are also computationally-

limited, and can thus use H-MEC to parallelize the learning process over multiple neighboring

Figure 4.2: Comparison of DD/FL and TP/PL paradigms.
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nodes for faster processing and/or lower energy consumption. Clearly, PL fully encompasses

the FL, but only adds to it the batch transfer component from the orchestrator to the

learners. We will therefore mainly consider the latter scenario in our discussions but will show

the variations in the model when the former scenario is considered and how the parameters

may change. In fact, the PL scenario separates the work in this dissertation from other

works that mainly focus on FL.

Consider an MEL system comprising the set of learners K = {1, . . . , k, . . . , K} where

learner k trains its local learning model on a batch size of dk data samples. The goal is to

minimize the local loss function [77]. The total size of all batches is denoted by d =
∑K

k=1 dk,

which is usually preset by the orchestrator O given its computational capabilities, the desired

accuracy, and the time/energy constraints of the training/learning process. The number of

local iterations or local updates run by learners on their allocated batch is denoted by τk. For

the synchronous case, τk = τ ∀ k ∈ K; whereas in asynchronous task allocation, each learner

can perform a different number of τk local iterations. Figure 4.3 illustrates the considered

MEL setting.

Traditionally, most works explore the synchronous approach, though both methods have

their merits. In this dissertation, we will explore both options. In addition to the two

approaches, two key aspects of the MEL process are the expected task completion time and

the energy consumption per learner k. In this dissertation, we will consider both time and

energy constraints in our model. There are many variables that can impact the time and

energy consumption in MEL and some of these may also impact the accuracy.

For example, the number of local updates will directly impact the execution time and

the dataset size will impact both the execution time and the transmission time. If MP is

applied, dataset size may impact the completion time in both FL and PL, whereas with DP

it will only impact in PL. A smaller batch-size may allow for more local updates which may

improve accuracy because typically, in SGD, the loss decreases as the number of iterations

are increased. However, if the dataset size is too small, that may also adversely affect the ac-
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Figure 4.3: System model of a MEL setting

curacy. Other variables that may impact the local completion time and energy consumption

include the transmission power, local computational power and the complexity of the ML

model. Whereas these components may not be of significant influence when DL is executed

over controlled wired and infrastructural servers, their high heterogeneity can tremendously

impact the performance of DL when applied in wireless and mobile edge environments. This

is where the MEL paradigm comes into play.

In the following paragraphs, we will relate these parameters for user k to both, its local

time and energy consumption for one global cycle. The orchestrator performs the aggregation

of the parameters only once after all learners send back their result within that particular
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global update cycle after doing τk ∀ k local updates. To summarize, the global update

process in MEL occurs in periodic cycles, that we will refer to as the global update cycles.

This process should include the following phases:

1. transmission of the global parameter matrix w to each learners k ∈ K

2. computation of τk local update cycles at each learner k

3. return of the local parameter matrices wk ∀ k ∈ K from each learner to the orchestrator

4. global aggregation at the orchestrator as defined in (4.5)

The orchestrator will typically demand the results within pre-set duration within which

all of these four steps should be completed. In previous works, it has been assumed that

only devices that are charging or fully charged will take part in H-MEC in general. However,

the devices or learners in MEL, may not be fully charged or on direct power and hence, they

may have a limit on the amount of battery power they are willing to drain. To this end, in

the following two sub-sections, we define the time taken and the energy consumed by one

learner k ∈ K, respectively, to complete the MEL process.

4.3.1 Local Completion Time

Let us define Bdata
k as the number of bits of the batch allocated to learner k, which can be

expressed as follows:

Bdata
k = dkFPd (4.6)

Recall that F is the feature vector size and Pd defines the storage strategy of the data which

may simply be the precision in bits or an advanced quantization/compression scheme. The

size in bits of learner k’s local parameter matrix wk ∀ k is denoted by Bmodel
k and can be

expressed as:

Bmodel
k = Pm (dkSd + Sm) (4.7)
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where Pm is the model bit precision or compression ratio. As shown in the above equation,

the local parameter matrix size consists of two parts, one depending on the batch size

(represented by the term dkSd, where Sd is the number of model coefficients related to each

sample of the batch), and the other related to the constant size of the employed ML model

(denoted by Sm). The first represents the support for MP in our scheme. Please note that

the aggregation mechanism described in (4.5) cannot be employed with MP.

At the start of each global cycle, the orchestrator sends the optimal global model param-

eter matrix of size Bmodel
k and in the case of PL, also a batch of size Bdata

k in bits, to each

learner k in parallel. Assuming that enough orthogonal channels are available without inter-

ference, the orchestrator will send this information with power Pko over a wireless channel of

bandwidth W having a gain equal to hko and a noise spectral density N0. The orchestrator

sends the bit concatenation of the data batch and initial global parameter matrix to learner

k with power Pko over a wireless channel, having a bandwidth W and a channel power gain

hko. Given the above description, the time taken for the first step denoted by tSk can be

expressed as1:

tSk =
dkFPd + Pm (dkSd + Sm)

W log2

(
1 + Pkohko

N0

) (4.8)

Once the global parameter matrix w is received by each learner k, it sets its local pa-

rameter matrix wk ∀ k to the initial matrix w provided by the orchestrator. For PL, it

may have received dk data samples whereas in FL, it will randomly select dk data samples

from its complete dataset. Each then performs τk local update steps using (4.3) on the

local parameter matrix wk ∀ k using its allocated batch. In the local model, the iterative

gradient procedure will be applied sequentially to each data sample once per local iteration.

Consequently, the number of computations required per iteration Xk is equal to:

Xk = dkCm (4.9)

1For FL, the only difference in the model is that the first term of the numerator (dkFPd) will not exist.
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which clearly depends on the number of data samples dk assigned to each learner and the

computational complexity Cm of the model. The second time consists of τk times the duration

tCk needed by learner k to perform one local update cycle. Defining fk as learner k’s local

processor frequency dedicated to the DL task, tCk can be expressed as:

tCk =
Xk

fk
=
dkCm
fk

(4.10)

For simplicity, we will assume that the bits of the computed local parameter matrix

wk ∀ k ∈ K are transmitted back to the orchestrator over a reciprocal channel with symmetric

transmission power Pko. Then, the third time tRk needed by learner k to send its updated

local parameter matrix to the orchestrator can be described as:

tRk =
Pm (dkSd + Sm)

W log2

(
1 + Pkohko

N0

) (4.11)

The orchestrator will then re-compute the global parameter matrix w as described in

(4.5). Once computed, it send this matrix back with a new random batch of samples from

the dataset to each learner2, and the process repeats. Because the global aggregation is a lot

less computationally complex then the iterative GD, and also because the communication

time will be significantly higher than simple weighted summing, the time for the last stage

can be ignored.

Thus, the total time tk ∀ k ∈ K taken by learner k to complete the first three processes

of MEL is equal to:

tk = tSk + τkt
C
k + tRk

=
dkFPd + 2Pm (dkSd + Sm)

W log2

(
1 + Pkohko

N0

) + τk
dkCm
fk

(4.12)

2In the FL/DD setting, each learner selects a new random set of dk samples for the new cycle.
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4.3.2 Local Energy Consumption

Given the MEL model described, learner k consumes eCk (J) to perform one learning iteration

over its allocated batch-size. It then consumes a further energy eRk (J) to send back the

updated local model parameters. The energy consumed by the orchestrator for transmitting

the global model to each learner or for aggregation can be ignored because it does not affect

learner k. (This is expected to be true in practical scenarios, especially if the orchestrator

is the edge server or if it is on charging mode.) Therefore, for each learner, the energy

consumed in one global cycle can be given by:

ek = τke
C
k + eRk (4.13)

Given that learner k’s processing capability depends upon the processor speed denoted

by fk in GHz, the energy consumed by performing a learning iteration on a sample size of

dk is given by [84]:

eCk = µXkfk
ν−1 = µdkCmfk

ζ−1, k ∈ K (4.14)

where µ is the on-board chip capacitance (typically 10−9 ∼ 10−12 F) and ν = 2 [84]. The

energy consumed by learner k to transmit the latest local model parameters is given by:

eRk =
Pk0B

model
k

Rk

=
Pm (dkSd + Sm)

W log2

(
1 + Pkohko

N0

) , k ∈ K (4.15)

The total energy consumed by learner k ∈ K in one global update cycle can be given by:

ek = τke
C
k + eRk

=
Pk0Pm (dkSd + Sm)

W log2

(
1 + Pkohko

N0

) + τkdkµCmfk
ζ−1 (4.16)
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4.4 MEL Model Summary

As one can see, time taken and energy consumed depend on several physical parameters

including the number of local updates τk ∀ k, the local dataset size dk ∀ k, transmission

power Pko, model size Sm, and model computational complexity Cm. The model sizes and

complexities will depend on the DL model usually pre-set by the orchestrator. On the other

hand, τk, dk, Pko ∀ k ∈ K can be optimized or controlled for best use of the resources.

As discussed earlier, previous works have focused on optimizing τk’s [76] without studying

the impact of dk’s with respect to how it will impact the possible local updates given the

limited and heterogeneous nature of the resources in a wireless environment. Other more

recent works include investigating the impact of power allocation Pko as well as the number

of channels allocated [80–82].

However, the impact of batch allocation dk ∀ k ∈ K has never been studied, which means

the PL scenario has been completely overlooked. To this end, we will study the joint impact

of τk and dk on resource consumption in the form of time and energy and try to optimize

them such that this may enhance the performance of the ML model. It can be assumed

that each learner k ∈ K has only one channel available and has a limit on the available

transmission power. Hence, the optimization variables will be τk and dk ∀ k ∈ K.

To make things clearer, we can re-write the expressions of tk ∀ k ∈ K in (4.12) as a

function of τk and dk as follows:

tk = C2
kτkdk + C1

kdk + C0
k (4.17)

where C2
k , C1

k , and C1
k represent the quadratic, linear, and constant coefficients of learner k
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in terms of τk and dk, expressed as:

C2
k =
Cm
fk

(4.18)

C1
k =

FPd + 2PmSd
W log2

(
1 + Pkohko

N0

) (4.19)

C0
k =

2PmSm
W log2

(
1 + Pkohko

N0

) (4.20)

We can also re-write the expression for ek ∀ k ∈ K as follows:

ek = G2
kτkdk +G1

kdk +G0
k (4.21)

The quadratic, linear, and constant coefficients of learner k ∈ K denoted by G2
k, G

1
k, and G1

k,

respectively, can be expressed as follows:

G2
k = µCmfk

ζ−1 (4.22)

G1
k =

Pk0PmSd
W log2

(
1 + Pkohko

N0

) (4.23)

G0
k =

Pk0PmSm
W log2

(
1 + Pkohko

N0

) (4.24)

It is clear that the expressions of the task completion time tk and the energy consumed

ek are quadratic in terms of τk and dk for all learners k ∈ K. The significance of this will be

discussed in later chapters. For the time-being, note that we have described the complete

heterogeneity aware (HA) MEL system model including the time and energy consumption

per learner per global cycle. This model can now be sub-divided into two cases. The first

case comprises the scenario when there is a limit only on the completion time for every global

cycle. The second case consists of the scenario when there is an additional constraint on

the energy consumption per global cycle for each learner k ∈ K. Furthermore, these two
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scenarios can be sub-divided into two categories: the synchronous case (HA-Sync) where the

number of local updates τk = τ ∀ k ∈ K, and the asynchronous case where the number of

updates can be variable among any two learners. Therefore, there are four scenarios possible:

1. HA-Sync with time constraints only

2. HA-Asyn with time constraints only

3. HA-Sync with dual time and energy constraints

4. HA-Asyn with dual time and energy constraints

We will discuss each scenario as a sub-problem where the two sub-problems with only time-

constraints are tackled in Chapter 5 and the two sub-problems with dual time and energy

constraints are presented in Chapter 6.
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Chapter 5: MEL with Time Constraints

This chapter presents the results achieved in the area of mobile edge learning “MEL”

with synchronous and asynchronous task allocation when there is a global completion time

constraint on the global update cycle. We begin by presenting our proposed heterogeneity

aware (HA) synchronous (HA-Sync) task allocation scheme in Section 5.1 followed by the

presentation of the HA asynchronous (HA-Asyn) scheme in Section 5.2.

5.1 Synchronous Task Allocation

This section discusses optimal task allocation for MEL when there is a time constraint

on the amount of local ML iterations that can be performed within every global aggregation.

In the discussed setting, the number of iterations are synchronized among all learners and

hence, we call it synchronous task allocation. This work has already been published1.

5.1.1 Problem Formulation

In Section 4.3.1, we introduced the MEL system model parameters and how they relate

to the time consumed by each learner k ∈ K for one global cycle. Assuming that the

orchestrator limits the collection of the model parameters in every global cycle to time T ,

then tk ≤ T must hold ∀ k for the orchestrator to acquire all the needed information for

performing its global cycle update process. Moreover, in the sub-problem in this section,

we assume that the all learners perform a synchronized number of local updates such that

τk = τ ∀ k ∈ K and that the constraint is only on the global completion time. This may

happen when the orchestrator has the luxury to select learners that are charging or being

powered by batteries that are sufficiently charged.

1This section is part of a paper titled “Adaptive Task Allocation for Mobile Edge Learning” which
was presented at the 2019 2nd Workshop on Intelligent Computing and Caching at the Network Edge. This
event was part of the 2019 IEEE Wireless Communications and Networking Conference (IEEE WCNC 2019).
The paper was published in proceedings of the IEEE WCNCW 2019 and is available on the IEEE Xplore
library [87]. An extended part of this work titled “Dynamic Task Allocation for Mobile Edge Learning” has
also been submitted to the IEEE Transactions on Mobile Computing.
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It is well established in the literature that the loss function in general GD/SGD-based ML

are minimized (and thus the learning accuracy is maximized) by increasing the number of

learning iterations [28]. For synchronous DL, this is equivalent to maximizing the number of

local iterations τ in each global cycle [88]. Thus, maximizing the MEL accuracy is achieved

by maximizing τ . Given the model in Section 4.3 and the above facts, the objective can be

re-worded as optimizing the assigned batch sizes dk to each of the learners so as to maximize

the number of local iterations τ per global updated cycle, while bounding tk ∀ k by the

preset global cycle clock T . As mentioned in Section 4.4, the optimization variables are τ

and dk, and tk ∀ k ∈ K can be expressed as:

tk = C2
kτdk + C1

kdk + C0
k (5.1)

where C2
k , C1

k , and C1
k represent the quadratic, linear, and constant coefficients of learner k

in terms of the optimization variables τ and dk as defined in (4.18)-(4.20)2.

Given the above expressions and facts, the problem of interest in this paper can be

formulated as an integer linear program with quadratic and linear constraints as follows:3

max
τ,dk ∀ k

τ (5.2)

s.t. C2
kτdk + C1

kdk + C0
k ≤ T, k = 1, . . . , K (5.2a)

K∑
k=1

dk = d (5.2b)

τ ∈ Z+ (5.2c)

dk ∈ Z+, k = 1, . . . , K (5.2d)

2Note that, for the FL scenario, the only difference in the model is that the first term of the numerator
in (4.19) will not exist.

3Note that, for the FL scenario, the only difference in the formulation is the simpler expression of C1
k .

Thus, the problem type and solution remain the same with different C1
k expressions for the two scenarios.
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Constraint (5.2a) guarantees that tk ≤ T ∀ k. Constraint (5.2b) ensures that the sum of

batch sizes assigned to all learners is equal to the total dataset size that the orchestrator needs

to analyze. Constraints (5.2c) and (5.2d) are simply non-negativity and integer constraints

for the optimization variables. Note that the solutions of (5.2) having τ and/or all dk’s being

zero represent settings where MEL is not feasible.

Clearly the relationship between the optimization variables dk and τ is quadratic in

tk ∀k ∈ K in (5.1). Furthermore, the optimization variables τ and dk ∀ k are all non-

negative integers. Thus, the above problem is a quadratically-constrained integer linear

program (QCILP), which is well-known to be NP-hard [89]. We will thus propose a simpler

solution to it through relaxation of the integer constraint in the next section.

5.1.2 Proposed Solution

As clarified in the previous section, the considered problem is NP-hard due to its integer

decision variables. Therefore, we propose to simplify the problem by relaxing the integer

constraints in (5.2c) and (5.2d), solving the relaxed problem, then rounding the obtained

real results back into integers. The relaxed problem can therefore be given by:

max
τ,dk ∀ k

τ (5.3)

s.t. C2
kτdk + C1

kdk + C0
k ≤ T, k = 1, . . . , K (5.3a)

K∑
k=1

dk = d (5.3b)

τ ≥ 0 (5.3c)

dk ≥ 0, k = 1, . . . , K (5.3d)

where the cases for τ and/or all dk’s being zero represent scenarios where MEL will not

be feasible, and hence, the orchestrator must send the learning tasks to the edge or cloud
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server. The above resulting program becomes a linear program with quadratic constraints.

This problem can be solved by using interior-point or alternating direction of multiplier

(ADMM) methods, and there are efficient solvers (such as OPTI) that implement these

approaches [90].

Although the associated matrices for each of the quadratic constraints in the relaxed

problems can be written in a symmetric form, they will have two non-zero values that are

positive and equal to each other. The eigenvalues will then sum to zero, which means

these matrices are not positive semi-definite, and hence the relaxed problem is non-convex.

Consequently, we cannot derive the optimal solution of this problem analytically. Yet, we

can still derive upper bounds on the optimal variables and optimal solution using Lagrangian

relaxation and the Karush-Kuhn-Tucker (KKT) conditions.

Thus, the philosophy of our proposed solution is to calculate these upper bounds values

on the optimal variables, then implement suggest-and-improve steps until a feasible real

solution is reached. The integer values for the optimization variables can be obtained by

flooring these real solutions. Using the well-known KKT conditions, the following theorem

introduces upper bounds on the optimal variables of the relaxed problem.

Theorem 1 The optimal values d∗k of the allocated batch sizes to different users in the relaxed

problem satisfy the following bound:

d∗k ≤
T − C0

k

τ ∗C2
k + C1

k

∀ k ∈ K (5.4)

Moreover, the analytical upper bound on the optimization variable τ belongs to the solution

set of the polynomial given by:

d

K∏
k=1

(τ ∗ + bk)−
K∑
k=1

ak

K∏
l=1
l 6=k

(τ ∗ + bl) = 0 (5.5)

where r0k = C0
k − T , ak = − r

0
k

C2
k

and bk =
C1
k

C2
k

.
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Algorithm 1 Process at the Orchestrator

Input: T , d, K
Output: w

Initialize w and set the flag STOP ← FALSE
1: while not STOP do
2: In Parallel : Send w to each learner k ∈ K
3: In Parallel : Receive Pko, hko, and fk from learner k ∈ K
4: Solve (5.5) to obtain τ and approximate dk ∀ K ∈ K using (5.4)
5: Ensure feasibility using (A.14) and (A.15)
6: In Parallel : Send bτc and bdkc samples to each learner k ∈ K4

7: WAIT for each learner k ∈ K to do τ local updates
8: In Parallel : Receive wk ∀ k ∈ K
9: Obtain w using (4.5)

10: if STOPPING CRITERIA REACHED then
11: Set STOP ← TRUE
12: end if
13: end while
14: return w

Proof: Please find the proof in Appendix A. �

Although it was suspected that the above bounds would be loose, by simulations we

show that the approximate solutions closely match the numerical solutions from the solver.

The complete steps followed by the orchestrator over multiple global cycles to update τ and

dk ∀ K ∈ K are summarized in Algorithm 1.

5.1.3 Simulation Environment for Testing the HA-Sync

In this section, we describe the realistic learning and edge node environments used to test

our proposed adaptive task allocation solutions for HA synchronous (HA-Sync) MEL with

only time constraints. More specifically, for both schemes FL (also referred to as DD) and

PL (also referred to as TP), we compare the numerical solutions from OPTI of the relaxed

version of the QCILP formulation of the proposed HA (HA-TP/DD-Num) scheme against the

analytical results (HA-TP/DD-Ana) from (5.4) and (5.5) solutions. We show that the upper

bounds are tight and match the numerical solution. We also show the merits of these two

4In FL, the orchestrator only sends the value of dk and the learner chooses min(dk, d
max
k ) data points

from its privately owned dataset randomly where dmax
k is learner k’s dataset size.
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Table 5.1: Simulation parameters for testing the HA-Sync with only time constraints

Parameter Value

Wi-Fi Attenuation Model 7 + 2.1 log(R) dB [91]

Cell Attenuation Model 128 + 37.1 log(R) dB [84]

Node Bandwidth (W ) 5 MHz

Device proximity indoor (R) 50m

Device proximity outdoor 500m

Transmission Power (Pk) 23 dBm

Noise Power Density (N0) -174 dBm/Hz

Computation Capability (fk) 2.4 GHz and 700 MHz

Pedestrian Dataset size (d) 9,000 images

Pedestrian Dataset Features (F) 648 ( 18× 36 ) pixels

MNIST Dataset size (d) 60,000 images

MNIST Dataset Features (F) 784 ( 28× 28 ) pixels

solutions compared to the heterogeneity unaware (HU) equal task allocation (HU-TP/DD)

scheme employed in [77, 78]. We will first introduce the simulation environment, and then

present the testing results.

A typical MEC will consist of a cloudlet of heterogeneous devices, channel and computing

devices. In our simulation, the edge nodes are assumed to be located in an area of 50m of

radius for an 802.11 environment and a 500m radius for a cellular type environment. Half

of the considered nodes emulate the capacity of a typical fixed/portable computing device

(e.g., laptops, tablets, road-side units. etc.) and the other half emulates the capacity of

commercial microcontrollers (e.g., Raspberry Pi) that can be attached to different indoor

or outdoor systems (e.g., smart meters, traffic cameras). The setting thus emulates an edge

environment that can be located either indoor or outdoor. The employed channel model

between these devices is summarized in Table 5.1, which emulates 802.11/Cellular type links

between the edge nodes.

Two datasets are considered in our simulation: namely the MNIST [92] dataset and the

pedestrian [93]. The forward and backward passes will require 781,208 floating point opera-

tions [94]. The MNIST dataset consists of 60,000 images 28x28 images (784 features). The

employed ML model for this data is a 3-layer neural network with the following configuration

[784, 300, 124, 60, 10]. (The details about the resulting model sizes and complexities can be
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found in [87].) On the other hand, the pedestrian dataset has 8,000 training images consisting

of 684 features (18 x 36 pixels). The ML model used for this dataset is a single-layer neural

network with 300 neurons in the hidden layer. For this model, the set of weights w = [w1, w2]

is the concatenation of two sub-matrices, where w1 is 300 × 648 and w2 is 300 × 2, neither

of which depending on the batch size (Sd = 0). Thus, the size of the model is 6,240,000 bits,

which is fixed for all edge nodes.

To evaluate the performance of MEL, two metrics are used: achievable local updates and

validation accuracy progression per global cycle for both datasets. The MNIST dataset is

a classic dataset typically used by ML researchers to demonstrate the superiority of their

proposed approaches. On the other hand, the pedestrian dataset emulates a real-life scenario

where a traffic camera periodically captures the image of a side-walk and the objective is

to detect whether a pedestrian is present. In such an application, the detection accuracy

and speed of detection are both equally important. Thus, datasets and model should be

sufficiently large but small enough to ensure a higher number of local updates and thus, a

faster accuracy progression.

5.1.4 Simulation Results for Parallelized Learning (PL/TP)

Figure 5.1 shows the results for training using the MNIST dataset with the aforementioned

deep neural network model. Figures 5.1a and 5.1b depict the number of local iterations τ

achieved by all tested approaches versus the number of edge nodes (for T = 30 s and T = 60

s) and against the global cycle time (for K = 10 and K = 20), respectively. We can first

notice τ increases as the number of edge nodes increases. This is trivial as a smaller batch

size will be allocated to each of the nodes as the number of learners is increased. We can also

see that the performance of the OPTI-based numerical (HA-TP-Num) and UB-Analytical

(HA-TP-Ana) solutions are identical for all simulated number of learners and global update

cycle times.

We can finally observe from both sub-figures that the dynamically optimized heterogene-
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Figure 5.1: Achievable local iterations τ for the MNSIT dataset. (a) Performance comparison
of all schemes for T = 30 and 60 s vs K (b) Performance comparison of all schemes for K = 10
and 20 vs T

ity aware (HA) scheme achieves a significantly larger number of local updates compared to

the heterogeneity unaware (HU) scheme. For instance, the HA scheme makes it possible to

perform 6 updates (as opposed to 1) for 20 learners each with a global cycle time of 30 s, a

gain of 600%. When K = 10, at T = 60 s the HA approach for adaptive batch allocation

gives τ = 7 updates whereas only 3 updates are possible with equal allocation, a gain of

233%. Another interesting result is that the performance of the HU scheme for T = 60 s or

K = 20 is actually much lower than the performance of our proposed solutions for T = 30
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s or K = 10, respectively. In other words, our scheme can achieve a better level of accuracy

as the HU scheme in half the time or with half the number of learners.

Figure 5.2a shows the number of local iterations τ achieved by all tested approaches

versus the number of edge nodes, for T = 15 and T = 5 s. Similar to the results of the

MNIST dataset, the numerical solution (HA-TP-Ana) matches the analytical upper bound

solution (HA-TP-Ana) for all simulated scenarios. For both cases, when T = 15 s and 15
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s, the figures show that both HA approaches result in a significantly higher number of local

iterations than the HU approach. For example, for T = 15 s, 50 learners can perform only

26 iterations each, whereas 78 can be achieved with our proposed solutions, a gain of 300%.

Another interesting result is that the performance of ETA scheme for T = 15 s is actually

worse than the performance of our proposed solutions for T = 5 s. In other words, our

scheme can achieve a better level of accuracy as the ETA scheme in half the time.

Figure 5.2b illustrates the number of local iterations τ versus the global cycle time T ,

for K = 10 and 20 learners. Once again, the solutions of HA-TP-Num match HA-TP-Ana.

Comparing this performance to the HU approach, the figures shows that, when T = 10 s,

our solutions can facilitate 20 local iterations on each of the 20 edge learners, versus only 4

possible iterations with equal batch allocation, a gain of 500%. For T = 30 s, the HA scheme

can reach up-to 64 iterations whereas the HU scheme achieves only 12 updates, less than the

number of local iterations made possible by our HA scheme for a system of 10 learners.

Validation Accuracy

The left and right sub-figures in Figure 5.3 depict the progression of learning accuracy

achieved by both, our dynamic HA scheme (Figure 5.3a) and HU (5.3b) after global update

cycles of T = 12 s each for K = 20 and T = 30 s each for K = 10. The figure shows a

significant improvement achieved by our proposed scheme over the HU method in reaching

a high accuracy in fewer global cycles. For K = 20 and T = 12 s, to reach an accuracy of

96.67%, the HA scheme require 4 cycles as opposed to 7 for the HU, a reduction of about 43%

(i.e., 48 s). Furthermore, an accuracy of 97% can be achieved with our proposed scheme

which is not possible with the HU scheme. For the case of K = 10 and T = 30 s, HA

can cross the 97% mark for accuracy in 5 updates whereas HU requires 9 updates which

represents a reduction in time of 2 minutes or about 56%. This clearly exhibits the merits

of the adaptive scheme in reaching learning goals in much less time and number of cycles,

which also saves significantly on nodes’ energy.
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Figure 5.3: Validation accuracy progression for the MNIST Dataset after global cycles up-
dates for (a) K = 20 and T = 12 s (b) K = 10 and T = 30 s

5.1.5 Simulation Results for Federated Learning (FL/DD)

In the next phase of our simulations, we examine the performance of all schemes in an

outdoor setting with cellular-type communication links. The parameters for this setting

have also been given in Table 5.1. There are four possibilities in this scenario. We can have

a system employing the distributed datasets (DD) approach or the task-parallelization (TP)

with our optimized task allocation or heterogeneity aware (HA) scheme. Both scenarios
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Figure 5.4: Validation accuracy progression for the Pedestrian Dataset after global cycles
updates for (a) K = 20 and T = 5 s (b) K = 20 and T = 3 s

can also occur where the system simply follows the ETA or heterogeneity unaware (HU)

scheme. For our proposed method, we show that the analytical approximations (HA-TP-

Ana and HA-DD-Ana) match the OPTI-based solutions (HA-TP-Num and HA-DD-Num).

Furthermore, we compare the performances of the dynamic task allocation in both scenarios

against the performance of the HU scheme (HU-TP and HU-DD).

Figure 5.5 and Figure 5.6 show the number of local iterations achieved by all schemes

for the MNIST and Pedestrian datasets, respectively, in both scenarios against the number
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Figure 5.5: Achievable local iterations τ for the MNSIT dataset. (a) Performance comparison
of all schemes for T = 30 and 60 s vs K (b) Performance comparison of all schemes for K = 10
and 20 vs T

of edge nodes for fixed times (30 s and 60 s for MNIST and 1 s and 2 s for pedestrian,

respectively). The MNIST dataset is larger than the Pedestrian dataset and we employ a

more complex and larger ML model for MNIST classification. Therefore, the distributed

datasets approach gives a smaller gain compared to the Pedestrian dataset. For example,

while employing 20 learners, for a global cycle time of 30 s, 5 updates can be achieved with

task-parallelization whereas 6 updates can be achieved in the distributed datasets approach,

a gain of 20%. When T is increased to 60 s, both approaches give similar performance

because the size of the model parameters’ set is much larger than the dataset itself.
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Figure 5.6: Achievable local iterations τ for the Pedestrian dataset. (a) Performance com-
parison of all schemes for T = 15 and 5 s vs K (b) Performance comparison of all schemes
for K = 10 and 20 vs T

On the other hand, in the scenario where T is restricted to 1 s for the Pedestrian dataset,

a system of 20 learners allows for 2 local iterations with the task-parallelization approach

whereas 5 iterations can be achieved with the distributed datasets approach, a gain of 150%.

In contrast, when T is increased to 2 s, the task-parallelization and distributed datasets

approaches can achieve 9 and 13 updates, respectively, which offers a gain of 44.44% only. In

general, it is noticeable that the gain of the distributed datasets approach is significant over

the task-parallelization approach when the size of the model is comparable to the subsets of
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Figure 5.7: Achievable local iterations τ for the MNSIT dataset. (a) Performance comparison
of all schemes for T = 30 and 60 s vs K (b) Performance comparison of all schemes for K = 10
and 20 vs T

the data. Furthermore, as larger global update cycles are allowed, which is typically not the

case in edge computing, the performance of both approaches is similar.

Figures 5.7 and 5.8 show the number of local iterations achieved by all schemes for the

MNIST and Pedestrian dataset in both scenarios against time for a fixed number of learners

(K = 10 and 20, respectively). Similar to the previous cases, as the number of learners are

increased, the amount of gain achieved in terms of the number of local iterations that can

be performed is reduced. A similar trend is also noticed where the gains achieved in terms
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Figure 5.8: Achievable local iterations τ for the Pedestrian dataset. (a) Performance com-
parison of all schemes for T = 15 and 5 s vs K (b) Performance comparison of all schemes
for K = 10 and 20 vs T

of the number of possible updates for the smaller dataset employing the smaller ML model

are higher than for the MNIST dataset.

For example, for the MNIST dataset with the larger ML model, a system employing DD

in a setting with K = 20 for T = 30 s can allow for 7 local updates whereas TP gives 6

local iterations; in other words, a gain of 16.67%. In contrast, employing the smaller dataset

with the smaller model and setting T = 2 s for K = 20, TP allows 9 updates whereas the

other approach allows 13 updates leading to a gain of 44.44%. For the same scenario, if we
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reduce the global cycle time to 1 s, then in that case, TP gives 2 updates whereas DD gives

5 updates or a gain of 150%.

Validation Accuracy

This section presents the learning accuracy performance comparisons for both dynamic

schemes (HA and HU), DD and TP, in an outdoor mobile channel environment. Figure

5.9 compares the learning accuracy of all schemes (HA-TP and HA-DD versus HU-TP and

HU-DD) for the MNIST dataset when the global cycle time is set to 60 s and the system

consists of 10 learners. In general, the dynamic HA schemes are far superior to the HU
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Figure 5.9: MNIST Learning Results. Learning accuracy comparison for T = 60 s and
K = 10 using both, the dynamic and ETA approaches, for both frameworks: distributed
datasets and task-parallelization.
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approach. For example, HA reaches an accuracy of 96% in 4 global cycles whereas the HU

approaches require 7 cycles, a reduction in time of about 43%. We also notice that TP seems

to work slightly better than the DD approach despite more iterations (larger τ) are possible

with the latter scenario. The reason for that is that the former approach resembles SGD

more accurately because each node performs learning on a different random subset of data

after each global update. On the other hand, devices learn on all or part of the same subset

of data at each global cycle in the DD scenario.

Figure 5.10 compares the learning accuracy of all schemes for the Pedestrian dataset

when the global cycle time is set to 5 s and the system consists of 10 learners. Once again,

the dynamic HA schemes are far superior to the HU approach. For example, HA reaches

an accuracy of 76% in at most 10 global cycles whereas the HU approaches require at least

10 cycles, a reduction in processing-time requirement by 40%. We also notice that the DD

approach seems to work better than the TP approach. One possible an interpretation is

that the difference in the average number of iterations per node (more than 5) makes up for

the deterministic nature of the DD scenario. For example, the DD approach with dynamic

task allocation crosses the 77% accuracy mark in the 8th global update cycle whereas the

TP approach requires 12 updates, in other words, it takes 50% more time. On the other

hand, the TP approach seems to converge more smoothly to an accuracy of above 80% which

maybe due to the more “stochastic” nature of the algorithm as compared to the DD scenario.

Figure 5.11 compares the learning accuracy of only the dynamic schemes for the Pedes-

trian dataset when the global cycle time is reduced to 2 s and the system consists of 10 and

20 learners, respectively. With such low global cycle time, the HU schemes fail. Interest-

ingly, after the first few iterations, the TP approach clearly works better when there are only

10 learners. For example, this approach requires only 8 updates to cross the 79% accuracy

benchmark whereas the DD approach requires 16 updates or an increase in time by 100%.

On the other hand, when we have 20 learners, i.e. each device has a smaller subset of data
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Figure 5.10: Pedestrian learning results. Learning accuracy comparison for T = 5 s and
K = 10 using both, the dynamic and ETA approaches, for both frameworks: distributed
datasets and task-parallelization.

to learn from, having a larger number of iterations has an impact because the performance

of both schemes is similar. For example, the distributed approach reaches 80% in 15 updates

compared to 17 updates for the parallelization approach; a reduction in time of about 12%.

5.1.6 Complexity Analysis

As described in previous sections, the problem of interest is a non-convex QCLP after re-

laxation, which can still be written in the form of a QCQP. The solvers of the type we used

typically employ the interior-point (IP) methods mixed with heuristics. For the case of a

convex QCQP, IP methods can achieve a solution in polynomial time but are generally NP-
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Figure 5.11: MNIST results (a) Performance comparison of all schemes for T = 30 and 60 s
vs K (b) Performance comparison of all schemes for K = 10 and 20 vs T

hard for non-convex problems. On the other hand, our approximation of the upper bounds

is based on the solving of a Kth degree polynomial. Most solvers such as MATLAB and

LAPACK find the roots using the Eigenvalues of the companion matrix which can typically

be achieved in polynomial time.

The complexity of the polynomial solvers arises mainly from the QR factorization needed

for diagonalization, and with the fast DQR algorithms, can be achieved in O (4/3n3 + n2)

[95]. For our solution, the complexity for the Kth degree-polynomial can be given by:
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O (4/3K3 +K2). The complexity of an IP depends on the size of the quadratic matrix and

the number of quadratic constraints in the problem. It is given by O
(
n1/2 [m+ n]n2

)
[96].

For our problem, the complexity will be O
(

[K + 1]1/2 [2K + 1] [K + 1]2
)

. The final ex-

pression can be expanded to the following form: O
(

[K + 1]1/2 [2K3 + 5K2 + 4K + 1]
)

; this

is for convex problems. Since our problem is non-convex, the complexity will actually be

non-polynomial.

Figure 5.12 better illustrates the complexity of the solution in terms if the execution

times for each method. The results are presented for the HA-TP schemes because DD is a

subset of TP. The simulations were ran on a laptop with an 8-core Intel i7 processor and the

OPTI toolbox [90] was used for the numerical optimization. For each K, the execution time

was reported for an average of 100 runs with difference communication and computation

capacities across each run (same for all schemes in a given run). Since the optimization in

the HU scheme is linear, it can be done in constant time whereas our proposed analytical

solution has a complexity on the order of O(K3). On the other hand, the complexity is

much higher for the case when a numerical solution is pursued. Figure 5.12a demonstrates

that the complexity of our proposed scheme is comparable to the HU scheme. Furthermore,

it seems that increasing the global cycle time does not have any impact on the execution

time requirements of the HU and HA-TP-Ana schemes. In contrast, a larger T reduces

the execution time of the HA-TP-Num method because it allows the optimizer to reach the

solution faster.

Figure 5.12b represents a zoomed-in view of the behavior of the HU and HA-TP-Ana

schemes. Interestingly, our proposed solution provides a lower execution time compared

to the equal task allocation approach up-to certain values of K (K = 40) while at the

same time, providing gains on accuracy and reductions in convergence times. Therefore, our

proposed method improves the accuracy with a lower execution time for smaller systems.

Furthermore, in the region where the execution time of our proposed HA method exceeds

the HU scheme, the increase in processing time is much less compared to the reductions in
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Figure 5.12: Complexity comparisons for the MNIST dataset for the TP scheme for T = 30
and 60 s vs K illustrating: (a) Execution times of all methods (HA analytical and numerical
against the HU) (b) Execution times of the HA analytical versus HU scheme.

time taken to converge to a certain validation accuracy. The execution time increases on the

order of milliseconds whereas the convergence time saved is on the order of s.

5.2 Asynchronous Task Allocation

This section presents results for MEL in the scenario where learners are allowed to perform

an asynchronous number of updates while satisfying a given time constraint. Hence, this

approach is called the HA asynchronous task allocation (HA-Asyn). The material presented
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in this section is part of an article available as a pre-print on Arxiv5.

5.2.1 Formulation

In contrast to the synchronous case presented in Section 5.1, any learner k ∈ K will

now be allowed to perform τk local updates. Hence, the number of local iterations done

by any learner k ∈ K may now differ from the number of local updates done by learner

l ∈ {K | l 6= k}. To this end, we can define the staleness between the models of any two

learners as:

sk,l = |τk − τl|, ∀ k ∈ K & l ∈ {K | l 6= k ∀ k} (5.6)

So, the staleness between any two learners is the difference between the number of local

learning cycles each has performed. It has been shown in the literature for asynchronous

SGD [88] and FL [98] that the loss function of SGD-based ML is minimized (and thus the

learning accuracy is maximized) by minimizing the staleness between the gradients.

Overall, the maximum staleness has to be minimized while satisfying other constraints

including the global cycle time constraint where tk ≤ T ∀ k ∈ K. The expression for tk can

now be given as:

tk = C2
kτdk + C1

kdk + C0
k k ∈ K (5.7)

where C2
k , C1

k , and C1
k represent the quadratic, linear, and constant coefficients of learner k

in terms of the optimization variables τk and dk as defined in (4.18)-(4.20)6.

Therefore, the problem can be formulated as an ILP with quadratic and linear constraints

5This work titled “Adaptive Task Allocation for Asynchronous Federated Mobile Edge Learning” has
been uploaded as a pre-print article on Arxiv [97] and has been submitted to the IEEE Transactions on
Vehicular Technology (TVT) as a correspondence paper.

6Note that, for the FL scenario, the only difference in the model is that the first term of the numerator
in (4.19) will not exist.
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as follows7:

min
τk, dk ∀ k

max sk,l, k ∈ K & l ∈ {K | l 6= k ∀ k} (5.8)

s.t. C2
kτkdk + C1

kdk + C0
k = T, k =∈ K (5.8a)

K∑
k=1

dk = d (5.8b)

τk ∈ Z+, ∀ k ∈ K (5.8c)

dk ∈ Z+, ∀ k ∈ K (5.8d)

dl ≤ dk ≤ du, ∀ k ∈ K (5.8e)

Constraint (5.8a) guarantees that tk = T ∀ k, which means that all devices work for the full

allotted time though they may perform different number of epochs. Constraint (5.8b) ensures

that the sum of batch sizes assigned to all learners is equal to the total dataset size that

the orchestrator needs to analyze. Constraints (5.8c) and (5.8d) are simply non-negativity

and integer constraints for the optimization variables. Please note that the solutions of (5.8)

having any τk and/or dk being zero represent conditions where MEL is not feasible for learner

k ∈ K.

Constraint (5.8e) bounds the number of data points considered by each learner in order to

ensure that the task allocation algorithm does not assign extremely small batches to certain

learners and very large batches to others. In PL, the orchestrator controls the dispatching of

the data, which implies that it will allocate and transmit dk samples such that dl ≤ dk ≤ du.

On the other hand, in FL, the orchestrator can ensure that all selected learners during the

initiation process have dl samples. Then, in every global update cycle, learner k will learn

on a subset of the data of size equal to min (dk, βk), where βk is the total size of data at

learner k. Since dk ≤ du in either case, the upper bound will be satisfied.

7Note that, for the FL scenario, the only difference in the formulation is the simpler expression of C1
k .
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Please note that jointly, the bounds on dk and the equality constraint on tk, ∀ k ∈ K

will help ensure that minimizing the staleness does not lead to solutions with the minimum

possible updates with zero staleness, which will eliminate the benefits of HA-Asyn.

5.2.2 Proposed Solution

Clearly, the relationship between tk and the optimization variables dk and τk ∀ k ∈ K

is quadratic. Furthermore, the optimization variables τk and dk ∀ k are all non-negative

integers. Consequently, the program in (5.9) is a QCILP, which is well-known to be NP-

hard [89]. The problem is simplified by relaxing the integer constraints in (5.9d) and (5.9e),

solving the relaxed problem, then flooring the obtained real results back into integers. We

begin by applying a min-max transformation and relaxing the integer constraints as follows:

min
τk, dk ∀ k

z (5.9)

s.t. |τk − τl| ≤ z, k ∈ K & l ∈ {K | l > k ∀ k} (5.9a)

C2
kτkdk + C1

kdk + C0
k = T, k ∈ K (5.9b)

K∑
k=1

dk = d (5.9c)

τk ≥ 0, ∀ k ∈ K (5.9d)

dl ≤ dk ≤ du, ∀ k ∈ K (5.9e)

The slack variable z is introduced in (5.9a) and an additional constraint is defined in (5.9a)

to ensure that the staleness is less than z, which in turn guarantees that the maximum

staleness is minimized. Please note that constraint (5.8d) has been eliminated due to the

lower bound on dk.

The resulting program in (5.9) becomes a linear program with quadratic constraints.

This problem can be solved by using interior-point or ADMM methods implemented in
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commercial solvers. From the analytical viewpoint, the associated matrices to each of the

quadratic constraints in (5.9b) can be written in a symmetric form. However, these matrices

will have two non-zero values that are positive and equal. The eigenvalues will thus sum

to zero, which means these matrices are not positive semi-definite, and hence, the relaxed

problem is non-convex. Consequently, the optimal solution cannot be obtained analytically.

Therefore, upper bounds well be derived using Lagrangian analysis followed by improve steps

to reach a feasible solution.

Let τ = {τ1, . . . , τk, . . . , τK} and d = {d1, . . . , dk, . . . , dK}. The Lagrangian of the relaxed

problem is given by:

L (z, τ,d, λ, α, ω, ν, ν ′, µ, µ′) = z +
K∑
k=1

λk
(
C2
kτkdk + C1

kdk + C0
k − T

)
+

αkτk + ω

(
K∑
k=1

dk − d

)
+

K∑
k=1

νk (−dk + dl) +
K∑
k=1

ν ′k (dk − du) +

N∑
n=1

µn
(
−z + τcn,1 − τcn,2

)
+

N∑
n=1

µ′n
(
−z − τcn,1 + τcn,2

)
(5.10)

where the λk’s k ∈ K, ω, and νk/ν
′
k k ∈ K, are the Lagrangian multipliers associated with

the time constraints of the K learners in (5.9b), the total batch size constraint in (5.9c), the

non-negative constraints of the number of epochs at each node τk in (5.9d) and the lower

and upper bounds in (5.9e), respectively. The multipliers µn and µ′n n ∈ {1, . . . , N} are

associated with (5.9a). Note that the absolute value constraint in (5.9a) can be decoupled

as τk − τl ≤ z and τl − τk ≤ z, k ∈ K & l ∈ {K | l > k ∀ k}.

The matrix c ∈ RN×2 where N is the number of possibilities of mutual staleness for K

set of users, i.e. N =
(
K
2

)
. For example, for a set of 4 users, N = 6 and the matrix of

possibilities will be:

c =

1 1 1 2 2 3

2 3 4 3 4 4


T

(5.11)
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Using the KKT conditions ∇Lx = 0, the following theorem gives a way to find the

optimal values of τk and dk using the Lagrange multipliers.

Theorem 2 The optimal number of updates each user node can perform τk can be given by:

τ ∗k = −λkC
1
k + νk + ν ′k + ω

λkC2
k

∀ k (5.12)

Moreover, the optimal value of dk can be given by the following equation:

d∗k = −uk + u′k + αk
λkC2

k

∀ k (5.13)

Each element of the vectors u and u′ is a function of the Lagrange multipliers µn and µ′n.

Please refer to the proof below.

Proof: The proof of this theorem can be found in Appendix B. �

As suspected, due to the relaxed problem being non-convex with quadratic constraints,

in some situations, the approach described above resulted in infeasible solutions. In that

case, we performed constraint checks and then used the initial solution to carry out suggest-

and-improve (SAI) steps to reach a feasible solution.

5.2.3 Results and Discussion

This section presents the results of the proposed scheme by testing in MEL scenarios

emulating realistic edge node environments and learning. We show the merits of the proposed

solution compared to performing asynchronous learning with the heterogeneity unaware (HU)

equal task allocation (ETA) in terms of staleness and learning. For the staleness, one of the

the metrics will be maximum staleness as described in (5.6). In addition, we would like

to introduce average staleness as shown in (5.14) which will give a measure of the mutual

staleness between every two learners for all learners. The metric for evaluating the learning



78

performance is validation accuracy.

savg =
1

N

N∑
n=1

|τcn,1 − τcn,2| (5.14)

Simulation Environment, Dataset, and Learning Model

The simulation environment considered is an indoor environment which emulates 802.11-

type links between the edge nodes that are located within a radius of 50m. We assume that

that approximately half of the nodes have the processing capabilities of typical computing

devices such as desktops/laptops and the other half consists of industrial micro-controller

types such as a Raspberry Pi. The employed channel model is summarized in Table 5.2.

As a benchmark, the MNIST dataset [92] is used to evaluate the proposed scheme. The

training data comprises 60,000 28x28 pixel images contributing 784 features each. The ML al-

gorithm tested is a deep neural network with the following configuration [784, 300, 124, 60, 10].

The input layer has 784 nodes for each feature and the output represents the number of

classes (10 for each digit). The size of the resulting model is 8,974,080 bits, which is fixed

for all edge nodes, and the forward and backward passes will require 1,123,736 floating point

operations [87].

Table 5.2: Simulation parameters for testing the HA-Asyn with only time constraints

Parameter Value

Attenuation Model 7 + 2.1 log(R) dB [91]

System Bandwidth B 100 MHz

Node Bandwidth W 5 MHz

Device proximity R 50m

Transmission Power Pk 23 dBm

Noise Power Density N0 -174 dBm/Hz

Computation Capability fk 2.4 GHz and 700 MHz

MNIST Dataset size d 60,000 images

MNIST Dataset Features F 784 ( 28× 28 ) pixels
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Figure 5.13: Maximum and Average Staleness vs K for T = 7.5 s and T = 15 s.

Staleness Analysis

Fig 5.13 shows the maximum and average staleness versus the number of learners K for

global cycle times T of 7.5 s and 15 s. Comparisons are made among the solutions to our

optimal batch allocation using both methods, optimizer-based/numerical (NUM) and SAI

methods, and the ETA scheme as well. In general, the SAI based approach gives similar

staleness to the numerical solution from the optimizer. The general trend is that as the

number of updates τk increases, the staleness tends to increase with the exception when T =

7.5 s, the average maximum staleness of our proposed scheme does not exceed 1.2 as K

increases. For example, our scheme with 20 users at T = 7.5 s gives a maximum staleness

of 1 compared to 4 for ETA which is 400% higher and the average staleness is 1.5 compared
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Figure 5.14: Validation accuracy progression after global update cycles for K = 10, 15 and 20
for T = 15 s

to 0.5 which is 300% higher. One curious aspect to note is that for certain specific number

of learners or K, the asynchronous scheme is able to find an optimal solution where the

staleness is zero. One such example is K = 14 for T = 15 s and K = 18 for T = 7.5 s.

Learning Accuracy

Figure 5.14 compares the validation accuracy progression of the proposed asynchronous

scheme (Prop), ETA and the synchronous scheme in [87] (Sync). We test systems with 10,

15 and 20 learners, respectively, for T = 15 s. When K = 10, the proposed scheme achieves

a validation accuracy of 95% within 4 updates or 1 minute of learning as compared to the

synchronous scheme which requires 8 updates. In other words, we obtain a gain of 50%.
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In contrast, ETA fails to achieve a 95% accuracy. An accuracy of 95% is achieved by our

scheme within 3 updates with 15 users whereas the other schemes require 4 updates; which

gives represents a gain of 25%. Moreover, our scheme achieves an accuracy of 97% within 8

updates whereas the other 2 methods require 10 global cycles leading to a gain of 25%.

A similar gain is achieved for K = 20 learners for the 95% accuracy mark. For the

case of 97% validation accuracy, our scheme requires 7 updates whereas the ETA needs 11

cycles, representing a gain of of about 64%. On the other hand, the synchronous scheme

requires 8 updates which translates to a gain of 12.5%. The gain appears marginal compared

to the synchronous scheme because as the number of users increase, each learner has to

process less data which means a larger number of synchronized updates can be done even in

heterogeneous conditions. In contrast, the gain is significant compared to the ETA scheme

because the staleness for ETA increases significantly versus K for a fixed global cycle T .

5.3 Chapter Summary

This chapter presented the results for the proposed HA schemes with only time constraints

for the synchronous case (HA-Sync) and the asynchronous setting (HA-Asyn). It was shown

that both problems are NP-hard QCILP. An analytical upper bound was derived for HA-

Sync and an upper bound based on the SAI approach was derived for HA-Asyn. For both

schemes, it was shown that the proposed solutions matched the results of the numerical

solvers. In terms of performance, it was shown that the HA-Sync can provide up-to a 45%

reduction in convergence time compared to the HU-sync. Furthermore, it was shown that the

HA-Asyn performs better than the HU-asyn and in some cases, the HA-Asyn may provide

a reduction in convergence time compared to HA-Sync as well. In the next chapter, we will

propose solutions for both HA-Sync and HA-Asyn with dual time and energy constraints.
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Chapter 6: MEL with Dual Time and Energy Constraints

In the previous chapter, we have proposed solutions for optimal task allocation in MEL

such that the accuracy is maximized when there is a limit only on the global completion

time constraint. However, most of the devices in edge networks are expected to be battery-

operated. Though many papers make the assumption that only learners that are charging

or with full battery will participate, this is not feasible in many settings. Therefore, learners

will have limited energy, and thus may out a limit on the amount consumed. To this end,

we propose solutions to maximize local updates while optimizing batch size allocation. We

begin with the case when the number of updates are synchronized (HA-Sync) in Section 6.1

and follow-up with the asynchronous version (HA-Asyn) in Section 6.2.

6.1 Synchronous Task Allocation with Time and Energy Con-

straints

This section presents results for the HA-Sync scheme with dual global cycle time and

local energy consumption constraint and has already been presented at the IEEE ICC 2020

Conference1.

6.1.1 Formulation

Recall the MEL model described in Section 4.3, where the time taken tk and the energy

consumed ek for one global update cycle is given by (6.1) and (6.2), respectively. Please note

that once again, for the synchronous case, we set τk = τ , and the optimization variables are

τ, dk ∀ k ∈ K.

tk = C2
kdkτ + C1

kdk + C0
k ∀ k ∈ K (6.1)

ek = G2
kdkτ +G1

kdk +G0
k ∀ k ∈ K (6.2)

1The paper was presented at the 2020 IEEE International Communications Conference (IEEE ICC 2020)
Workshop on Edge Machine Learning for 5G (EML5G) and will appear in Proceedings of the IEEE ICC
2020 [99].
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The coefficients C2
k , C1

k , and C0
k , related to the completion time tk, and the coefficients G2

k,

G1
k, and G0

k, related to the energy consumption ek ∀ k ∈ K, have been described in Sections

4.3.1 and 4.3.2, respectively.

It has been previously shown that maximizing the local iterations per global cycle can

lead to a faster progression of the learning process [87]. Therefore, the objective is to allocate

batches dk such that we maximize τ . This has to be achieved while maintaining a global

cycle time constraint T on each learner and not letting learner k consume more than it’s

limit of E0
k J of energy per global cycle. As it can be observed, there exists a quadratic

relationship among the optimization variables τ and dk in tk and ek. Furthermore, due to τ

and dk ∀ k being non-negative integers, the resulting optimization problem is a QCILP as

shown below:

max
τ,dk ∀ k

τ (6.3)

s.t. C2
kτdk + C1

kdk + C0
k ≤ T, ∀k ∈ K (6.3a)

G2
kdkτ +G1

kdk +G0
k ≤ E0

k , ∀k ∈ K (6.3b)

K∑
k=1

dk = d (6.3c)

τ ∈ Z+ (6.3d)

dk ∈ Z+, ∀k ∈ K (6.3e)

dk > dl ∀k ∈ K (6.3f)

Constraints (6.3a) and (6.3b) guarantee that the time and energy constraints are not violated

for each learner, respectively. Constraint (6.3c) ensures that the orchestrator facilitates the

learning of the complete dataset consisting of d data samples. Constraints (6.3d) and (6.3e)

imply that τ and dk’s are non-negative integers ∀k. Furthermore, there is an additional

lower bound constraint on dk’s ∀k in (6.3f) to ensure that some learners are not completely
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eliminated which may also effect accuracy. Note that the solutions of (6.3) having τ and/or

all dk’s being zero represent settings where MEL is not feasible. Thus, the program in

(6.3) is a QCILP which is well-known to be NP-hard [89]. This problem can be solved

numerically using interior point methods and many commercially available solvers do the

job. However, in the next section, we propose an analytical-numerical solution based on a

relaxation approach.

6.1.2 Proposed Solution

We simplify the NP-hard problem by relaxing the integer constraints in (6.3d) and (6.3e),

and obtaining the final τ and dk’s by taking the floor of the original solution. Hence, the

relaxed problem can be represented as:

max
τ,dk ∀ k

τ (6.4)

s.t. C2
kdkτ + C1

kdk + C0
k ≤ T, ∀k ∈ K (6.4a)

G2
kdkτ +G1

kdk +G0
k ≤ E0

k , ∀k ∈ K (6.4b)

K∑
k=1

dk = d (6.4c)

τ ≥ 0 (6.4d)

dk ≥ dl, ∀k ∈ K (6.4e)

Constraint (6.3e) has been eliminated after relaxation because dl ≥ 0 in (6.4e). Analytically,

the matrices associated with the quadratic constraints in (6.4a) and (6.4b) are symmetric

sparse matrices with 2 non-negative values each. However, they will have one positive and

one negative eigenvalue which means the matrices are not positive semi-definite leading to a

non-convex program. Consequently, we need to pursue methods that can provide solutions

for a non-convex QCQP. Therefore, we will use the suggest-and-improve (SAI) approach [100]
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by deriving upper bounds on the optimal variables and solution using Lagrangian analysis

and then use a local optimizer to reach the optimal solution.

The equality constraint in (6.4c) can be written as the following two inequality con-

straints:
∑K

k=1 dk − d ≤ 0 and −
∑K

k=1 dk + d ≤ 0. In that case, the Lagrangian function of

the relaxed problem is given by:

L (x, λ, γ, α, ᾱ, ω, ν) = −τ+

K∑
k=1

λk
(
C2
kτdk + C1

kdk + C0
k − T

)
+

K∑
k=1

γk
(
G2
kτdk +G1

kdk +G0
k − E0

k

)
+

α

(
K∑
k=1

dk − d

)
− ᾱ

(
K∑
k=1

dk − d

)
− ωτ −

K∑
k=1

νkdk (6.5)

The Lagrange multipliers associated with the global cycle time and local energy con-

straints are given by λk and γk, respectively, ∀ k ∈ K. The Lagrange multipliers related to

the two total task size constraint inequalities are given by α/ᾱ, and ω/νk k ∈ K are the La-

grangian multipliers associated with the non-negative constraints of both sets of optimization

variables τ and dk, respectively.

Let us denote the set of optimization variables by x = [τ d1 d2 . . . dk . . . dK ]T and

the set of Lagrange multipliers by Γ = [λ, γ, α, ᾱ, ω, ν]T , where λ = [λ1 . . . λk . . . λK ]T , γ =

[γ1 . . . γk . . . γK ]T , and ν = [ν1 . . . νk . . . νK ]T . :

Theorem 3 The set of optimal Lagrange multipliers Γ∗ can be obtained by solving the dual

problem in the following semi-definite program (SDP):

max
Γ

ζ (6.6)

s.t.

 F2 (Γ) 1
2
f1 (Γ)

1
2
f1 (Γ) f0 (Γ)− ζ

 < 0

Γ < 0
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The functions of the Lagrange multipliers F2(Γ), f1(Γ) and f0(Γ), are defined in the proof.

Proof: Please refer to Appendix C for the proof. �

A candidate solution is given by:

x̂ = −1

4
F2 (Γ)−1 f1 (Γ) (6.7)

In the case of a convex QCQP, the resulting solution will be optimal with zero duality gap,

i.e. x̂ = x. In our case, because of the problem being non-convex, we have to use a simple

local optimizer called the coordinate descent method to improve the candidate solution where

x∗ = coordinate-descent(x̂) [100].

6.1.3 Results and Discussion

In this section, we show that our proposed SAI approach gives similar results to the

numerical solvers. We also compare our HA scheme against the HU scheme in terms of the

average number of achievable updates per global cycle and the progression of the validation

accuracy after each global update index. Lastly, we study the impact of different amounts

of energy caps on various devices.

Simulation Environment, Dataset, and Learning Model

The edge nodes performing ML are assumed to be in a cellular type environment and

located within a distance of 500m. The devices are evenly distributed to emulate multi-core

laptops, simple processors (in cell phones, road side units, smart meters, etc.), advanced

micro-processors such as Raspberry Pi’s and some of the less powerful microcontrollers such

as the Arduino, respectively. Typically, such micro-controllers are attached to various IoT

devices these days. The channel parameters and other specs are listed in Table 6.1. To

test our proposed MEL paradigm, the well-known commonly used MNIST [92] is employed.

The ML model trained is a deep neural network with 3 hidden layers consisting of 300, 124



87

Table 6.1: Simulation parameters for HA-Sync with dual time and energy constraints.

Parameter Value

Cell Attenuation Model 128 + 37.1 log(R) dB [84]

Node Bandwidth (W ) 5 MHz

Device proximity (R) 500m

Transmission Power (Pk) 23 dBm

Noise Power Density (N0) -174 dBm/Hz

Computation Capabilities (fk) ∼ {6.0, 2.4, 1.4, 0.7} GHz

MNIST Dataset size (d) 54,000 images

MNIST Dataset Features (F) 784 ( 28× 28 ) pixels

and 60 neurons, respectively. The details of the resulting model sizes and complexities are

discussed in [87].

The major contribution of this paper is to facilitate learning while satisfying the various

energy constraints imposed by learners locally. If a device k consumes a total of E0
k joules (J)

or in other words, E0
k watt-seconds in one global cycle, it translates to an energy consumption

of
E0
k

3.6
milliwatt-hours (mWh). Since battery capacities are determined by their amperage

(mAh) and voltage (V), it is easy to measure the battery drainage in mWh. For example,

a device that uses up 200 J per global update cycle for 12 cycles will consume a total of

666.67 mWh. Now, let us consider a device that has a 12.5V battery rated at 4800mAh. The

corresponding wattage is 60,000 mWH. In that scenario, after 12 cycles, 666.67
60,000

∗ 100 = 1.11%

of the battery would have been drained by the complete learning process.

In our simulations, all learners have a total energy constraint such that the average energy

constraint per learner per global cycle is E J, where the constraint for each learner can be

in the interval [E − 25, E + 25] J. For example, when the average energy is constrained

by E = 50 J, it means that for any learner k ∀ k ∈ K, the total energy consumed per

global cycle E0
k ∈ [25, 75] J. Our experiments are performed for the set of values of E =

{50, 100, 150, 200, 250} J which would, for a 60WH battery, correspond to a drainage of

E = {0.28, 0.56, 0.83, 1.11, 1.39}%, respectively.
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Figure 6.1: Achievable number of local update cycles for average energies of 50 to 250 J in
steps of 50 J by all schemes (a) vs K for T = 20 s (b) vs T for K = 20.

Number of Local Updates

Figure 6.1 compares the achievable number of local updates τ per global cycle for our

HA scheme versus the HU scheme. Figure 6.1a shows the impact of increasing the number

of nodes while fixing T = 20 s for different energy levels. In contrast, Figure 6.1b shows the

impact of increasing T for different energy levels for a system of K = 20 learners. It can be

observed that the performance of the HA scheme in terms of the number of updates is much

higher compared to the HU scheme. For example, we can see from both figures that with

K = 20 for a global cycle time of T = 20 s, for E = 150 J, 200 J and 250 J, the possible

number of updates for the HA scheme are 4, 5 and 6, respectively. On the other hand, the
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HU scheme can only achieve a total of 2 updates for all levels of energy. This represents

gains of 200%, 250% and 300%, respectively.

Interestingly, we notice that the performance of the HU scheme is capped for such strin-

gent constraints and time and energy. We can observe from the left sub-figure that for the

HA scheme, as the constraints on energy are relaxed, more updates are possible up to a

certain level. The limiting factor is T . From the right sub-figure, we notice that for a fixed

number of learners, as T is relaxed to higher values, allowing larger energy consumption can

provide significant gains. For example, when T = 40 s, average E’s of 150 J, 200 J and 250 J

will allow for 6, 8 and 10, local iterations, respectively. For the HU scheme, only 4 updates

are possible which represents gains of 50%, 100% and 150%, respectively. The HA scheme

gives an interesting trade-off between time and energy.

Learning Accuracy

Figure 6.2 depicts the progression of learning accuracy achieved by both, our HA scheme

compared to the HU, right after each global update cycle for 12 cycles each of T = 20 s

with K = 20. We examine the learning for average energy constraints E of 100 J, 150 J,

200 J and 250 J per learner per global cycle. For example, at E = 250 J, the HA technique

achieves a 97% accuracy in 6 global cycles compared to 11 cycles needed for the HU scheme

which represents a 45% reduction in time (about 100 s). For energy levels of 150 and 200

J, a reduction 37% in time is achieved. The performance of the HU scheme across varying

energies is the same because only 2 updates are possible.

Figure 6.3 studies the impact of increasing the energy on the validation accuracy progres-

sion of the HA scheme. There is a huge jump in performance when the average energy per

cycle is increased from 100 J to 150 J. Overall, we observe that increasing the energy with

restricted time will allow for fine-tuning of the accuracy. In general, E = 250 J provides a

0.1% higher accuracy compared to 200 and 150 J except at global update cycle 11, which is

an outlier for all cases. For example, E = 250 J will reach an accuracy of 97% in 6 global
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Figure 6.2: Learning accuracy progression after global cycles updates for K = 20

updates compared to 7 updates needed for E = 150 J and 200 J which reduces learning

time by about 14%. For an accuracy of 97.25%, 250 J, 200 J, and 150 J require 7, 8 and, 9

cycles, respectively. This represents gains of 12.5% and 22.2%, respectively, for E = 250 J

compared to 200 J and 150 J.



91

4 5 6 7 8 9 10 11 12

Global Update Index

96

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

97.8

98
A

cc
ur

ac
y 

(%
)

HA scheme energy comparison for K = 20 and T = 20s 

250J
200J
150J
100J
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6.2 Asynchronous Task Allocation with Time and Energy Con-

straints

This section presents results for the scenario when each learner k can perform τk local

updates ∀ k ∈ K and there are dual time and energy constraints on the global completion

time and local energy consumption, respectively. The following sub-sections provide more

details on the system model and problem formulation, discusses the proposed solution and

presents the results. Part of this work has already been submitted to a journal2.

2The material in this section forms part of a paper that has been submitted to a special issue on parallel
and distributed ML/AI of the IEEE Transactions on Parallel and Distributed Systems.
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6.2.1 Problem Formulation

In MEL, one approach is to have all K learners do τk = τ local updates of the model

parameters wk ∀k ∈ K; this is the synchronous approach presented in Section 6.1 and [99].

The other approach is to optimize τk for each learner while controlling the difference among

the number of local updates done by different learners. part of this work with only time

constraints has been presented in Section 5.2. the term staleness sk,l has been defined as

the difference between the number of updates done by two arbitrary learners k and l in the

following way:

sk,l = τk − τl if


k & l ∈ K | l 6= k

τk ≥ τl

(6.8)

It has been previously shown that maximizing the local iterations per global cycle can lead

to a faster progression of the learning process [87,99]. On the other hand, for asynchronous

approaches, it has been shown that accuracy can be optimized by controlling the staleness

[88,97,98]. Although our model is different to the models in [88,98], Lemma 1 shows the way

to maximize accuracy for our proposed HA-Asyn with dual time and energy constraints.

Lemma 1 Jointly controlling the staleness sk,l ∀ k ∈ K & l ∈ {K | l 6= k} while maximizing

the minimum number of updates min(τk)k ∈ K will minimize the global loss of the proposed

HA-Asyn MEL.

Proof: Please refer to Appendix D for the proof. �

Therefore, the objective is to allocate batches dk such that we maximize min(τk) for

k ∈ K while minimizing sk,l ∀ k. However, this problem will be non-tractable and difficult

to solve. A more tractable way to achieve these objectives is to maximize the average of

the local updates τk while controlling the staleness sk,l ∀ k. In this way, we can increase

the number of local updates by the worst performing learner while controlling the model

staleness. Based on this, the optimization variables are τk and dk, and we can study the

impact of different values of staleness by an additional constraint sk,l ≤ c.
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In addition to this, the optimization needs to be done such that the global cycle is

completed before time T and does not violate the energy consumption limit E0
k (J) per

global cycle of any learner k. It is observable that the relationship between the optimization

variables in the global cycle time and local energy consumption constraints will be quadratic

in τk and dk. Moreover, due to τk and dk ∀ k being non-negative integers, the resulting

problem is a QCILP as shown:

max
τk,dk ∀ k

1

K

K∑
k=1

τk (6.9)

s.t. C2
kτdk + C1

kdk + C0
k ≤ T, ∀k ∈ K (6.9a)

G2
kdkτ +G1

kdk +G0
k ≤ E0

k , ∀k ∈ K (6.9b)

|τk − τl| ≤ c ∀k, l ∈ K | l 6= k (6.9c)

K∑
k=1

dk = d (6.9d)

τk ∈ Z+, ∀k ∈ K (6.9e)

dk ∈ Z+, ∀k ∈ K (6.9f)

dk > dl, ∀k ∈ K (6.9g)

Constraint (6.9a) and (6.9b) guarantee that all learners k satisfy the global cycle time

constraint T and the their energy consumption limit constraint E0
k ∀ k ∈ K, respectively.

Constraint (6.9c) ensures that the staleness does not exceed a desired amount c. We will

test for multiple values of the staleness and report the results later in section 6.2.4-6.2.5.

The assurance that the orchestrator will learn on the complete dataset D is given by (6.9d).

Lastly, constraints (6.9e) and (6.9f) ensure that both optimization variables are non-negative

integers whereas constraint (6.9g) is a lower bound dk to ensure all learners are allocated a

reasonable batch size. Note that the a lower bound of zero represents the case where dk can
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take any positive value. Solutions of (6.9) where τk or dk is zero for any k represents a setting

where learner k cannot participate in the learning process and MEL may be sub-optimal.

In contrast to the problem in (5.8) in Section 5.2 representing the HA-Asyn approach

with only time-constraints, the formulation in (6.9) is different in that the objective of

maximizing the average number of updates across K learners is distinct. At the same time,

instead of minimizing the staleness, we control it by putting caps on the maximum value

of sk,l ∀ k ∈ K & l ∈ {K | l > k ∀ k}. The advantage of this approach is that it eliminates

the need for an upper bound on dk ∀ k ∈ K and more importantly, the need for an equality

constraint which makes finding feasible solutions a lot more difficult. Similar to the previous

formulations, the program in 6.9 is an NP-hard QCILP. Therefore, in the next section, we

propose a two-step solution based on relaxations and the SAI framework.

6.2.2 Proposed Solution

Instead of applying the SAI technique directly on the asynchronous problem in (6.9), we

first propose to solve the problem by getting candidate solutions for dk and τk from the

synchronous problem in [99] by setting τk = τ ∀ k ∈ K. In the next step, we obtain the

solution to (6.9) by applying the improve step using the candidate solutions as the initial

values. The reason for doing this is because a system of K learners would produce at least(
K
2

)
constraints. For example, an MEL system of 100 learners will result in 4950 mutual

staleness bounds. It was found that applying SAI directly to (6.9) does not work but applying

the suggest step to the synchronous problem in [99] and the improve step to our problem

provides solutions that converge. In the last step, the real values of the obtained τk’s and

dk’s are floored to get the integer values.

The problem can be simplified by replacing τk’s with the optimization variable τ and
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relaxing the integer constraints in (6.9e and (6.9f) as follows:

max
τ,dk ∀ k

τ (6.10a)

s.t. C2
kdkτ + C1

kdk + C0
k ≤ T, ∀k ∈ K (6.10b)

G2
kdkτ +G1

kdk +G0
k ≤ E0

k , ∀k ∈ K (6.10c)

K∑
k=1

dk = d (6.10d)

τ ≥ 0 (6.10e)

dk ≥ dl, ∀k ∈ K (6.10f)

Note that
1

K

∑K
k=1 τk = τ when τk = τ ∀ k ∈ K. The non-negative integer constraint

on dk’s in (6.9f) has been relaxed and can be covered by (6.10f). Constraint (6.9f) has been

eliminated after relaxation because dl ≥ 0 in (6.10f). Therefore, the problem is now in

the form of the QCQP of the synchronous problem in (6.10) in Section 6.1.2. If the steps

described in Section 6.1.2 are followed, the solution obtained will be for the synchronous

problem. Consequently, we propose a novel two-step procedure to obtain the solution to

(6.9).

We can follow the steps of Lagrangian relaxation described in Appendix C to obtain the

candidate solution x̂ as shown in (6.7). Then, for the proposed asynchronous approach, the

optimal solution can be obtained by applying the local optimizer coordinate descent (CD)

to the problem in (6.9 with the relaxed constraints in (6.10e) and (6.10f) and after replacing

τ with τk ∀ k ∈ K in (6.10e) and the additional constraint in (6.9c). The complete steps

followed by the orchestrator over multiple global cycles are summarized in Algorithm 2.
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Algorithm 2 Process at the Orchestrator

Input: T , d, dl, K
Output: w

Initialize w and set the flag STOP ← FALSE
1: while not STOP do
2: In Parallel : Receive Pko, hko, fk, and e0k from k ∈ K
3: Solve (6.7) to obtain τ̂ , d̂k
4: Transform (7.9) by setting τk > 0 ∀ k ∈ K in (6.10e) and removing (6.10f)
5: Get τk and dk by applying CD to (7.9) using τ̂ , d̂k
6: In Parallel : Send bτkc, bdkc to each learner k ∈ K3

7: In Parallel : Send w to each learner k ∈ K
8: In Parallel : After τk local updates, receive wk ∀ k ∈ K
9: Obtain w using (4.5)

10: if STOPPING CRITERIA REACHED then
11: Set STOP ← TRUE
12: end if
13: end while
14: return w

6.2.3 Test Setup for HA-Asyn with Dual Time and Energy Con-

straints

It is assumed that the learners comprise a combination of the following: laptops with multi-

core processors, smart phones simple processors, advanced micro-controllers such as the

Raspberry Pi, and very simple micro-controllers such as the Arduino. The learners are co-

located within 500 meters in a cellular type environment and may be mobile. The channel

parameters and other specs are listed in Table 6.2 To test our proposed MEL paradigm, a

fully-connected deep neural network consisting of 300, 124, and 60 neurons is used to train

on the MNIST dataset [92]. For detailed descriptions on how to obtain the model size and

computational complexity, the readers are referred to [87].

The two major additional contributions of this paper are the study of different levels

of caps on the energy consumed per global cycle per learner k and the impact of different

values of staleness capped by c. We plot the validation accuracy related metrics for values

3In PL, the orchestrator sends dk samples after randomly shuffling its dataset whereas it sends dk in FL
and the learner chooses min(dk, d

max
k ) data points where dmax

k is learner k’s dataset size.



97

Table 6.2: Simulation parameters for HA-Asyn with dual time and energy constraints

Parameter Value

Wi-Fi Attenuation Model 7 + 2.1 log(R) dB [91]

Cell Attenuation Model 128 + 37.1 log(R) dB [84]

Channel Bandwidth (W ) 5 MHz

Device proximity (R) 500m

Transmission Power (Pk) 23 dBm

Noise Power Density (N0) -174 dBm/Hz

Computation Capability (fk) ∼ {6.0, 2.4, 1.4, 0.7} GHz

MNIST Dataset size (d) 60,000 images

MNIST Dataset Features (F) 784 ( 28× 28 ) pixels

of staleness of up-to c = 5, because it was found that having a higher c > 5 does offer any

improvements.

As for the constraint on the local energy consumption E0
k ∀ k ∈ K, it is possible that

devices will have wildly varying consumption limits. However, to quantify the impact of

these limits, we define an average energy consumption per global cycle across all learners E

(J) and E0
k (J) in any global cycle varies by σ0

k (J) such that E0
k = E ± σkU ∀ k ∈ K where

U ∼ U(0, 1) (J). To put these numbers into perspective, modern batteries are rated in terms

of voltage (V) and milliampere-hours (mAH). An average consumption of 20 J per global

cycle for 10 cycles would imply a total consumption of 200 J. For a battery rated at 5V, this

represents a consumption of 11.1 mAH which for a 2000 mAH battery, represents 0.36% of

the maximum load.

In the following sub-sections, we present results for an MEL system comprising K =

20 learners tested for global cycle times of T = 5 s to T = 40 s in steps of 5 s and for

average energy values of E = {10, 20, 30} J with σ0
k = 2.5 J. The results are discussed

for our proposed HA asynchronous (HA-Asyn) scheme with PL and compared to the HA

synchronous (HA-Sync) scheme in [87] and the performance that would have been achieved

if the HU random equal task allocation approach was used (HU-Sync/Asyn) such as the one

described in [76].
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Figure 6.4: Final validation accuracy achieved after a total of 12 global epochs with various
training times for an average device energy consumption of 10 J.

6.2.4 Convergence Proof Results

Figure 6.4 shows the plots for learning accuracy for the synchronous case only where HA-Sync

represents solution obtained using the approach in [99] and HA-Asyn represents solutions to

problem (6.10) with c set to zero. The HU-Sync/Asyn plots represent the HU solution for

both approaches. As observable, we have confirmed that our solution in this paper converges

to the synchronous case. Moreover, for extremely low values of energy and time (10 J and

10 s, respectively), the proposed approach works better than the approach to solve the

synchronous problem. Last but not least, for the synchronous case (c = 0), the HA scheme

always works better than the HU scheme where the HU scheme fails to converge on several
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Figure 6.5: Accuracy progression for the cases when T = 10 s and 20 s and for average
energy values of E = {10, 20, 30}J .

occasions.

Figure 6.5 plots the learning accuracy progression for different values of staleness (in-

cluding the synchronous case with c = 0) with varying values of T and E for both, the HA

and HU schemes. The purpose of these figures is to demonstrate the importance of utilizing

HA schemes, especially when the resources are limited. Observe that the HA schemes gen-

erally converge faster and reach a higher level of final validation accuracy. The plots also

demonstrate the usefulness of having a staleness aware asynchronous scheme.

For example, as we can see from Figure 6.4a that when T = 10 s and E = 10 J, the HA-

Asyn with c = 1 and c = 2 requires 5 global updates to reach a 94% accuracy whereas the

HA-Sync requires 7 updates, a reduction in time of 29%. Similarly, 6 updates are required

to achieve a 95% accuracy with c = 1 whereas the HA-Sync needs 8 updates representing a

reduction of 25%. Because this is not clear from Figure 6.4 in general, the next subsection

demonstrates these gains more clearly using bar charts.
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6.2.5 Validation Accuracy Results

Low and Medium Energy Regions

In this part, we focus on some specific metrics such as final validation accuracy after a set

number of global updates or the number of updates required to reach an accuracy threshold.

These results are presented for all schemes for the case where the devices have a low average

energy consumption of about 10 J and a higher consumption of 20 J per global cycle for each

learner for all global cycle times. This study is important because fewer updates for a given

global cycle time constraint results in lower total training time for a given time constraint.

Figures 6.6a and 6.6b present the final validation accuracy achieved after a total of 6

global updates with different total training times for the case when the average energy

consumption limit per cycle per learner E = 10 J and E = 20 J, respectively. The final

validation accuracies for those two settings after 12 global cycles is given in Figure 6.6c and

Figure 6.6d, respectively. The case when c = 0 implies the HA/HU-Sync scheme and cases

Figure 6.6: Final validation accuracy values after 6 and 12 global updates, respectively,
for various training times for average energy consumption limits E = 10 J and E = 20 J,
respectively.
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when c > 0 represent the HA/HU-Asyn schemes.

Overall, it can be seen that the HA schemes provide a better performance compared to

the best performance of the HU schemes. In most regions, the best performance is provided

by the HA-Asyn schemes. For example, in the low resource region with T = 15 and 20 s and

E = 10 J, after 6 global updates the HA-Asyn with c = 1 provides a best accuracy of 94.4%

and 95.4%, respectively, whereas the HA-Sync fails to reach 94%. The HA-Asyn with c = 2

crosses 94.5% for T = 20 s. For a higher energy of 20 J, the HA-Asyn scheme with c = 1-3

is able to provide an accuracy of 97% when T = 20 s and for c values of 2-4 for T = 35 s.

After 12 global cycles, for E = 10 J and T = 10 s and 20 s, the HA-Async schemes with

c = 1 and c = {1, 2}, respectively, are able to provide a significantly higher final accuracy

with a difference of more than 0.4%. Similarly when E = 20 J, for global cycle times of

T={5, , 10, 15, 20, 25} s, the HA-Asyn scheme provides the best validation accuracy with

corresponding staleness c = {5, 2, 2, 4, 4}. with the difference ranging from 0.1-0.3%.

Figure 6.7 displays these differences clearly by showing the number of updates required

to reach a 95.5% accuracy for various global cycle times T for E = 10 J (Figure 6.7a)

and E = 20 J (Figure 6.7b). For the same settings, the number of updates required to

achieve an accuracy of 97.3% are plotted in Figures 6.7c and Fig 6.7d, respectively. For

example, when E = 10 J and T = 10 s, a final accuracy of 95% can be achieved in 7 global

updates with HA-Asyn as opposed to 9 updates with the HA-Sync, representing a reduction

of 22.2%. This means that the MEL system needs to train for 20 s less to reach the same

accuracy. Similarly, after 12 global update cycles, an MEL system with E = 10 J can reach

an accuracy of 97.3% with HA-Asyn (c = 1, 2, 3) whereas the HA-Sync cannot reach that

level of accuracy. Moreover, for T = 25 s, the HA-Asyn (c = 3, 4) can 97.3% in 10 updates

as compared to 11, representing a reduction of 9.1% or 25 s.
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Figure 6.7: Number of global updates needed to reach a validation accuracy of 95.5% for:
(a) E = 10 J and (b) E = 20 J and the number of updates needed to reach an accuracy of
97.3% for: (c) E = 10 J and (d) E = 20 J.

Figure 6.8: Results for an MEL system with average energy E = 30 J. Final validation after
(a) 6 global updates and (b) 12 global updates, and number of global updates to reach an
accuracy threshold of (c) 95.5% and (d) 97.3%.

High Energy Region

Figure 6.8 presents the results for the high energy region of E = 30 J. Figures 6.8a and 6.8b,

display the final validation accuracy achieved after 6 and 12 global updates, respectively.
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From Figures 6.8c and 6.8d, we can see that it takes 11.1% less global cycles to reach an

accuracy of 95.5% for T = 5 s and a reduction of 18.2% is achieved to reach an accuracy of

97.3% when T = 15 s. In the case when both energy and time are in abundance, the HA-

Asyn reduces the number of global cycles by 14.3% though the HA-Sync reaches a slightly

higher final accuracy as after 12 updates as observable from Figure 6.8c. In most cases, the

HA-Asyn reaches a higher final validation accuracy with an improvement of up-to 0.2%.

6.2.6 Discussions

Despite these gains, it can be seen that in some situations, the HA-Sync approach provides

the best results. For example, when T = 25 s and E = 20 J, the least time to reach an

accuracy of 97.2% is by the HA-Sync scheme. It also reaches an accuracy of 95.5% and 97%

with the same number of updates for values T in the range 25− 35 s for E = 10 J and 20 J.

Moreover, the best final validation accuracy after 12 global cycles is provided by HA-Sync

for E = 10 J when T = 30 s and also for E = 20 J when T = 30 s and T = 40 s.

The reason for this is that when the resources are quite low, a straggler or a very bad

performing learner brings down the whole system for the HA-Sync which results in low

convergence rates and final accuracy. On the other hand, the HA-Asyn scheme provides the

flexibility for better performing learners to improve accuracy, but only when the staleness is

low. When one of the resources is higher, then increasing the staleness further improves the

performance because the minimum number of local updates are still close to the HA-Sync.

However, when both resources are in the medium range, the HA-Sync can allow for

enough local updates per global cycle such that it overtakes the adverse impacts of a high

staleness among gradients. Lastly, when both time and energy are plenty, the HA-Asyn starts

to provide better results because the average number of updates done by the HA-Sync are

capped whereas the HA-Asyn can allow for a higher average number of local updates which

masks the adverse impacts of staleness. Based on these observations, recommendations will

be provided in Section 8.1 on how to choose the best scheme with the correct parameters.
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Chapter 7: Optimal Task Allocation

The work in this chapter discusses optimal task allocation for MEL when there is a time

constraint and when the number of iterations are synchronized among all learner. Hence,

it is an extension of the work done on synchronous task allocation presented in Section 5.1

where we simply maximized the number of local updates per global cycle. This in turn led

to the maximum possible total ML model updates, which generally reduces the loss and

improves the accuracy.

In contrast, the aim of the work done in this chapter is to jointly optimize the number

of total local updates by adaptively optimizing the number of local updates for every global

aggregation step until a pre-set total training time is exhausted. This work is important

because recent works have related edge DL models directly to the progression of the ML

model global loss. Our MEL model, though HA, hsd not related the physical parameters

directly to the loss/accuracy so far, but was built on a solid hypothesis that facilitating more

total updates given a constraint on global completion time would increase accuracy [85].

Therefore, in this part, we propose an HA model for MEL with the optimization variables

linked directly to the bounds on the global ML model loss; this work has already been

submitted to a conference1.

7.1 Problem Formulation

In this work, the objective is to optimize the task allocation, i.e. the distributed batch

sizes dk for each learner k and the associated τ updates to be performed locally per global

cycle. Over a total of L updates, the goal is to simultaneously minimize the global DL loss

and thus, maximize the accuracy. To this end, the problem is formulated as a loss-function

minimization problem over the optimization variables L, τ and dk.

Consider that after every τ local iterations, a global aggregation will be performed and

1This section is part of a paper titled “Optimal Task Allocation for Mobile Edge Learning” which was
submitted to the 2020 IEEE Global Communications Conference (IEEE GLOBECOM 2020). It is also
available as a pre-print online [101].
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a total of G global aggregations are performed. In any global update cycle, between any

learner k ∈ K, and the orchestrator O, there will be one communication round each and τ

local updates. For now, to facilitate the analysis, let us assume that L is an integer multiple

of τ such that L = Gτ and that the communication and computation related parameters

remain unchanged over the complete training process. In that case, each learner needs time

tCk ∀ k ∈ K for one local update and tSk + tRk for the gth global aggregation for g = 1, . . . , G.

Overall, L local updates and G = L/τ global updates will be performed. Then, the total

time consumed by learner k denoted by tk ∀k ∈ K can be expressed as:

tk = L

(
tCk +

tSk + tRk
τ

)
(7.1)

Later on, we will show how the values of τ and dk for each set of τ local ML iterations

in one global cycle g will be re-calculated according to the latest channel parameters and

computational capabilities. The total training time within which the process should be

completed is given bounded by T . Because the τ iterations occur in parallel over the K

learners, we need the time for the most time-consuming learner to be less than T such that

max(tk) ≤ T . Alternatively, it is sufficient for this condition to hold that tk ≤ T ∀k ∈ K.

This point differentiates our work from that of [77] where we actually capture the time

consumed by parallel local update processes rather than a generic resource consumption

model. Therefore, the optimization problem can be written as:

min
L,τ,dk∀ k

F (w[L]) (7.2)

s.t. L

(
C2
kdk +

C1
kdk + C0

k

τ

)
≤ T, k ∈ K
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The constants C2
k ,C1

k ,and C0
k can be defined as:

C2
k =
Cm
fk

(7.3a)

C1
k =

FPd + 2PmSd
W log2

(
1 + Pkohko

N0

) (7.3b)

C0
k =

2PmSm
W log2

(
1 + Pkohko

N0

) (7.3c)

It is generally impossible to find an exact expression relating the optimization variables to the

objective for most ML models. Therefore, the objective will be re-formulated as a function of

the convergence bounds on the DL process over the edge. For more details on these bounds,

the readers are referred to [77]. We will use the results and extend the discussion to our

formulation, and then propose a strategy to jointly find the optimal τ , dk, and L.

7.1.1 Convergence Bounds

The convergence bounds have been derived and well-discussed in [77]. For completeness,

we will present some of the important results here in order to support our analysis. Let us

continue with the assumption that L is an integer multiple of τ . Then, the global aggregation

will only occur at every τ updates. therefore, the local updates occur at every iteration

l = 1, . . . , L and a global update will occur whenever l = gτ for g = 1, . . . , G. For any

interval [g] defined over [(g − 1)τ, gτ ], define an auxiliary global model denoted by v, which

would have been calculated if a global update occurred, as follows:

v[g][l] = v[g][l − 1]− η∇F (v[g][l − 1]) (7.4)
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Let the local model parameter set of learner k be denoted by wk and the local loss by

Fk(wk). Then, the optimal model at iteration l can be obtained by:

w[l] =
1

d

K∑
k=1

dkwk[l] (7.5)

The optimal w[l] will only be visible when l = gτ and for that iteration, the global loss can

be defined by:

F (w) =
1

d

K∑
k=1

dkFk(w) (7.6)

The following assumptions are made about the loss function Fk(w) at learner k: Fk(w)

is convex, ‖Fk(w) − Fk(w̄)| ≤ ρ|w − w̄|, and ‖∇Fk(w) − ∇Fk(w̄)| ≤ β|w − w̄| for any

w, w̄. These assumptions will hold for ML models with convex loss function such as linear

regression and SVM. By simulations, we will show that the proposed solutions work for

non-convex models such as the neural networks with ReLU activation.

Let us also assume that the local loss function at Fk(w) does not diverge by more than

δk such that |Fk(w)− F (w)| ≤ δk and we can apply the following estimation:

δ =

∑
k dkδk
d

(7.7)

Furthermore, |w − v[g][l − 1]| ≤ h(l − (g − 1)τ). For any τ , h(τ) = δ
β

[(ηβ + 1)τ − 1]− ηδτ .

Recall that η is the learning rate and β can be estimated by β =

∑
k dkβk
d

where:

βk =
‖∇Fk(wk[l])−∇Fk(w[l])|

|wk[l]−w[l]|
(7.8)

Based on this, the objective can be written as a function of the difference of the global

loss after iteration L and the optimal global loss. Given the above assumptions about the

loss function, and the constraints on the optimization variables and the time taken by learner
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k ∈ K, the optimization problem can be written as:

min
L,τ,dk∀ k

F (w[L])− F (w∗) (7.9)

s.t. L

(
C2
kdk +

C1
kdk + C0

k

τ

)
≤ T, k ∈ K (7.9a)

K∑
k=1

dk = d (7.9b)

τ ∈ Z+ (7.9c)

L ∈ Z+ (7.9d)

dk ∈ Z+, k = 1, . . . , K (7.9e)

η(1− βη

2
)− ρ

ωε2
h(τ)

τ
≥ 0 (7.9f)

ηβ ≤ 1 (7.9g)

F
(
v[g][l]

)
− F (w∗) ≥ ε (7.9h)

F (w(L)− F (w∗)) ≥ ε (7.9i)

Constraint (7.9a) guarantees that the time consumed by a total of L updates does not

exceed the total training time available given by T s. Constraint (7.9b) ensures that the

total dataset comprising d samples is utilized. Constraints (7.9c) - (7.9e) are simply non-

negativity and integer constraints for the optimization variables where L, τ and/or all dk’s

being zero represent cases where DL is not possible in the MEL environment. Constraints

(7.9g) and (7.9f) represent a bound on the learning rate, meaning it should be small enough

such that it guarantees convergence. When (7.9g) holds, (7.9f) will always hold. Constraints

(7.9h) and (7.9i) define a lower bound on the gap between the optimal loss and the auxiliary

loss at interval [g] and the global loss, respectively, where ε > 0. The parameter ω ,

ming‖v[g][g − 1]τ −w∗‖−2 represents the interval that minimizes the difference between the

auxiliary loss and the global loss. The variables ρ, ω, and ε appear in a single term ρ
ωε2

in
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(7.9f) which represents a control parameter. Later on, this term will be represented by B0

but for now, we will continue with the original terms to make the analysis relatable to the

original variables.

It is assumed that η > 0 (typically 0 < η < 1) and β > 0. Furthermore η and ε can be

set to small enough values such that ηβ ≤ 1, and the constraints in (7.9f)-(7.9i) are satisfied.

For a β-smooth function, Bernoulli’s inequality will hold implying that (ηβ+ 1)τ ≥ ηβτ + 1.

Furthermore, once all the assumptions about the loss function constraints are satisfied, it

can be shown that F (w[L]) − F (w∗) ≤ 1

η(1−βη
2
)− ρ

ωε2
h(τ)
τ

. Thus, the problem in (7.9) can be

re-formulated as:

min
L,τ,dk ∀ k

1

L
[
η(1− βη

2
)− ρ

ωε2
h(τ)
τ

] (7.10)

s.t. L ≤ Tτ

C2
kτdk + C1

kdk + C0
k

, k = 1, . . . , K (7.10a)

K∑
k=1

dk = d (7.10b)

τ ∈ Z+ (7.10c)

L ≥ 0 (7.10d)

dk ≥ 0, k = 1, . . . , K (7.10e)

Note that the integer constraints on dk and L have been relaxed in (7.10e) and (7.10d)

which will help in proposing a solution.

7.2 Proposed Solution

The idea of the proposed solution is to re-write the objective as a function of τ by using

the constraints on the total time consumption and the fact that the system must train the

model on at least d training samples.



110

7.2.1 Relating Bounds to the Number of Local Updates (τ)

The orchestrator can ensure that the bounds in constraints (7.9g)-(7.9i) are satisfied by

choosing small enough values for η and ε. In that case, if constraint (7.9f) holds, the de-

nominator of the objective function will be positive. Furthermore, if we relax the integer

constraint on L, the optimal value for the total learning iterations can be given by:

L =
Tτ

C2
kτdk + C1

kdk + C0
k

, k ∈ K (7.11)

By using the equality constraint in (7.10b), and re-arranging (7.11) to make dk the subject,

and defining two new variables ak =
C1
k

C2
k

and bk =
C0
k

C2
k
, we can write L as a function of τ .

L(τ) =
KT

∑K
k=1 τ

∏K
l=1
l 6=k

(τ+bl)

d
∏K

k=1(τ + bk) +
∑K

k=1 ak
∏K

l=1
l 6=k

(τ+bl)
(7.12)

The objective function denoted by O can be re-written as a function of τ in the following

manner:

O(τ) =
1

L(τ)

1[
η(1− βη

2
)− ρ

ωε2
h(τ)
τ

] =
P (τ)

L(τ)
(7.13)

Theorem 4 O(τ) is strictly convex on the domain τ ≥ 0.

Proof: The proof can be found in Appendix E �

Because ∂O
∂τ

= 0 does not have a closed form solution, the optimal τ ∗ can be obtained by

solving the following problem:

τ∗ = arg min
τ
O(τ) (7.14)

The value of τ ∗ can be difficult to obtain because τ is unbounded. However, we can limit

the search space by τmax and then use a brute force approach to find the optimal τ ∗. In fact,

a binary search procedure has been proposed in [77] which has a complexity of O(log τmax).

Once τ∗ has been determined, L∗ can be obtained using (7.12) and re-set to this new value.
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Algorithm 3 MEL Process at the Orchestrator

Input: T , B0, τmax, d, K
Output: w[L]

INITIALIZE τ ← 1 and dk ← d
K

SET w← w[0] as a random vector
1: while τ > 0 do
2: for each learner k ∈ K in PARALLEL do
3: SEND w, τ , and dk
4: WAIT for completion of τ local updates
5: RECEIVE wk, βk, and ∇Fk(wk)
6: RECEIVE Pko, hko and fk from each learner k ∀ k ∈ K
7: end for
8: ESTIMATE tk ∀ k ∈ K using (7.1)
9: SET T̂ ← T̂ + max(tk)/L and T ← T − T̂

10: ESTIMATE w,∇F (w), β, and δ
11: Find the optimal τ by applying the bisection method to (7.13) on [0, τmax]
12: Calculate L using (7.12)
13: Use new value of L to obtain dk ∀ k ∈ K using (7.11)
14: SET T̂ ← T̂ + max(tk)
15: if T̂ > T then
16: Reduce τ to maximum value ≥ 0 such that T̂ ≤ T
17: end if
18: end while
19: return w

The values of d∗k ∀ k ∈ K for the next τ updates can be obtained using (7.11). Because

the integer constraint on dk ∀ k ∈ K was relaxed in (7.10), they can be set by flooring the

actual value. This process is repeated for each global cycle until the total training time is

consumed. This process is summarized in algorithm 3.

7.3 Results and Discussion

The learners are assumed to be located in a cellular type environment and are assumed

to be a combination of smart phone and Raspberry PI type microcontrollers. The chan-

nel parameters and device capabilities are listed in Table 7.1. To test our proposed MEL

paradigm, the commonly used MNIST [92] dataset is trained using a DNN with 3 hidden

layers consisting of 300, 124 and 60 neurons, respectively. The details of the resulting model
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Table 7.1: Simulation environment for optimal task allocation

Parameter Value

Cell Attenuation Model 128 + 37.1 log(R) dB [84]

Node Bandwidth (W ) 5 MHz

Device proximity (R) 500m

Transmission Power (Pk) 23 dBm

Noise Power Density (N0) -174 dBm/Hz

Computation Capabilities (fk) ∼ { 2.4, 1.2} GHz

MNIST Dataset size (d) 54,000 images

MNIST Dataset Features (F) 784 ( 28× 28 ) pixels
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Figure 7.1: Training loss versus total training time for K = 20 learners

sizes and complexities are discussed in [87].

For the simulation, we consider a set of K = 20 learners and test for total training times of

T = {300, 400, 500, 600} s. It was found that a value of η = 0.01 for the learning rate works

very well and setting B0 in the range 0.005− 0.01 provided solutions that converge. τmax is

set to the case where only three global aggregations would be done on dk = d/K ∀k ∈ K.

We plot the final loss value after training for time T for the proposed HA approach and

the HU approach from [77] in Figure 7.1, and the final accuracy in Figure 7.2. As expected,

as the training time is increased, the loss value decreases for all approaches. However, for
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Figure 7.2: Validation accuracy versus total training time for K = 20 learner

the HA approach, there is just a slight increase in validation accuracy because it is able to

achieve a high level in minimum time. The main conclusion is that optimizing τ and dk

jointly influences the possible number of global aggregations G as well as the total iterations

L, which helps in converging to both a lower loss and a higher final accuracy. For example,

the loss of the HA approach is lower by 0.03-0.05 which represents gains in the range of 27%

- 40%. Furthermore, training for 300 s using the HA approach achieves a 97% accuracy, a

value not achieved by the HU approach even in 600 s.
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Chapter 8: Recommendations, Conclusions, and Future Outlook

8.1 Recommendations

Although it is difficult to see a concrete trend from the results in Chapter 6 and specifically

Sections 6.2.5 and 6.2.5, we may conclude that the HA-Asyn works best when the resources

are at their lowest and the synchronous approach may fail. It can also provide gains when

one resource is low and the other high, especially, when energy is abundant and time is low.

This works for the scenarios where FL has been proposed for devices that are charging and

not on battery power. In the medium range of both resources, time and energy, the HA-Sync

works best. When both resources are abundant, the HA-Asyn provides faster convergence

to certain accuracy thresholds but the HA-Sync may converge to higher final accuracy.

To conclude, we suggest the following procedure to select the best scheme between the

HA-Sync and the HA-Asyn approaches:

1. If energy is not a factor at all and the constraint is only on time, choose the HA-Sync

approach unless the global cycle time is very low.

2. If both time and energy consumption are a factor, then:

• if either resource, time or energy is low, choose the HA-Asyn approach

• if both resources are in the medium range, then go for the HA-Sync

• if both resources are high and an early exit is desired, choose the HA-Asyn ap-

proach; otherwise if time is unlimited, HA-Sync may work best

3. If the HA-Sync is chosen, simply do cross-validation on the ML model and associated

hyper-parameters such as model size, learning rate, regularization, etc. On the other

hand, when HA-Asyn is used, the parameter c should be added to the cross-validation.

In the very low resource region, checking with c = 1 c = 2 may suffice whereas in case

when one of the resources is abundant, a set from the range c ≥ 3 may be used. For

the very high resource region, the search can be done on 0 ≤ c ≤ 5.
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8.2 Conclusions

This dissertation begins by designing an H-MEC paradigm with optimal resource alloca-

tion while jointly minimizing system completion time and energy consumption. The focus

then shifts to proposing an optimal task allocation method for DL over the wireless edge

while maximizing the ML model accuracy. To this end, a new paradigm called MEL was de-

signed. The aim was to optimize task allocation for MEL systems when there are completion

time constraints only and also for the case when there are dual constraints on the comple-

tion time and energy consumption. This was done for the synchronous and asynchronous

settings.

Results on H-MEC demonstrated that our proposed architecture reduced the number of

users offloading to the edge and offered a higher utility (a function of delay and energy usage).

Results on task allocation for MEL under time constraints showed that our HA approach

(HA-Sync) worked much better than the previously proposed HU (HU-Sync) approaches

in literature. From the asynchronous task allocation (HA-Asyn) results, it was shown that

under certain conditions, this approach can offer better learning accuracy than even the

synchronous (HA-Sync) setting.

Extending these studies to the cases when the HA-Sync/Asyn had dual time and energy

constraints, it was shown once again that the HA-Sync performed much better than the HU-

Sync. Furthermore, it was shown that both, HA-Asyn and HA-Sync, outperform each other

given different scenarios and regions of resource availability. Based on this, the dissertation

concluded by provides recommendations on which scheme to select out of the HA-Sync and

HA-Asyn with the correct amounts of cap on the staleness.

Lastly, additional work was done to relate our HA parameters directly to the HA MEL

model for the HA-Sync with time constraints to compare against previous work. It was

found that the HA-Sync performs better then the HU-Asyn in terms of a lower final loss and

a higher final validation accuracy.
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8.3 Future Work

Overall, as described in the first chapter, with the potential presence of billions of IoT

devices on edge networks, edge analytics EI will play an important role in helping preserve

backhaul networks, central storage capacities, as well as user privacy which has suddenly

become a vital component of the consumer experience. Specifically, DL over the wireless

edge is a budding and exciting area especially with the advent of 5G and 6G technologies

that are expected to speed up the deployment of Edge AI. Indeed, MEL can be expected to

play a huge role for streamlining the implementation of background ML applications that

will be required to run for producing the results based on edge anlalytics and AI.

The following problems are still open in the area of H-MEC and MEL, respectively:

• For H-MEC, adding the component of peer-to-peer offloading raises security and pri-

vacy concerns. One extension is to add a security block such as encryption and evaluate

the efficacy of the proposed approach with the additional delay.

• For MEL, one challenge is to cluster the best set of learners to each orchestrator in a

system where multiple orchestrators are training different ML models. The clustering

needs to be done such that the dual objectives of optimal wireless resource allocation

and maximum ML accuracy are satisfied.

• Completely distributing the FL process where there is no dependence on a central

orchestrator. One scenario where this may apply is when several sets of learners all need

to learn different tasks. Based on its capacity, each learner will have the independence

to join the most suitable set of learners and any one learner joining in or dropping out

of the learning process will not impact the other learners.
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Appendix A: Proof of Theorem 1

The Lagrangian function of the relaxed problem is expressed as:

L (x, λ, ν, α) = −τ +
K∑
k=1

λk
(
C2
kτdk + C1

kdk + C0
k − T

)
+

ν

(
K∑
k=1

dk − d

)
− α0τ −

K∑
k=1

αkdk (A.1)

where the λk’s k ∈ K, ν, and α0/αk k ∈ K, are the Lagrangian multipliers associated with the

time constraints of the K learners in (5.3a), the total batch size constraint in (5.3b), and the

non-negative constraints of all the optimization variables in (5.3c) and (5.3d), respectively.

Then, from the KKT optimality conditions, we have the following relations:

C2
kτ
∗d∗k + C1

kd
∗
k + C0

k − T ≤ 0, k = 1, . . . , K (A.2)

α∗0, α
∗
k, and λ∗k ≥ 0 k = 1, . . . , K (A.3)

λ∗k
(
C2
kτ
∗d∗k + C1

kd
∗
k + C0

k − T
)

= 0, k = 1, . . . , K (A.4)

−α∗0τ ∗ = 0 (A.5)

−α∗kd∗k = 0 k = 1, . . . , K (A.6)

K∑
k=1

d∗k − d = 0 (A.7)

−∇τ ∗ +
K∑
k=1

λ∗k∇
(
C2
kτ
∗d∗k + C1

kd
∗
k + C0

k − T
)

+

ν∗∇

(
K∑
k=1

d∗k − d

)
− α∗0∇τ ∗ −∇

(
K∑
k=1

α∗kd
∗
k

)
= 0 (A.8)

From the conditions in (A.2), we can see that the batch size at user k must satisfy (5.4).

Moreover, it can be inferred from (A.4) that the bound in (5.4) holds with equality for
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any learner k having λ∗k ≥ 0. The upper bound will be equal to the optimal solution (i.e.

strong duality will hold) for some feasible τ ∗ when strictly speaking, λ∗k > 0 for k = 1, . . . , K

because in that case, the second term in (A.4) must be equal to zero. By re-writing the

bound on d∗k in (5.4) as an equality and substituting it back in (A.7), we have the following

relation:

d =
K∑
k=1

d∗k =
K∑
k=1

[
T − C0

k

τ ∗C2
k + C1

k

]
=

K∑
k=1

[
ak

τ ∗ + bk

]
(A.9)

The expression on the right-most hand-side has the form of a partial fraction expansion of a

rational polynomial function of τ ∗ where ak, bk ∈ R++. Therefore, we can expand (A.9) in

the following way:

a1
τ ∗ + b1

+
a2

τ ∗ + b2
+ · · ·+ ak

τ ∗ + bk
+ · · ·+ aK

τ ∗ + bK
=

1

(τ ∗ + b1)(τ ∗ + b2) . . . (τ ∗ + bk) . . . (τ ∗ + bK)
×[

a1(τ
∗ + b2)(τ

∗ + b3) . . . (τ
∗ + bk) . . . (τ

∗ + bK) +

a2(τ
∗ + b1)(τ

∗ + b3) . . . (τ
∗ + bk) . . . (τ

∗ + bK) + . . .+

ak(τ
∗ + b1)(τ

∗ + b2) . . . (τ
∗ + bk−1)(τ

∗ + bk+1) . . . (τ
∗ + bK)

+ · · ·+ aK(τ ∗ + b1)(τ
∗ + b2) . . . (τ

∗ + bK−1)

]
(A.10)

Finally, the expanded form can be cleaned up in the form of a rational function with respect

to τ , which is equal to the total dataset size d.

d =

∑K
k=1 ak

∏K
l=1
l 6=k

(τ ∗ + bl)∏K
k=1 (τ ∗ + bk)

(A.11)

Please note that the degrees of the numerator and denominator will be K − 1 and K,

respectively. Furthermore, the poles of the system will be −bk, and, since bk ≥ 0, the system

will be stable. Furthermore, τ ∗ = −bk is not a feasible solution for the problem, because it



136

is eliminated by the τ ≥ 0 constraint. Therefore, we can re-write (A.11) as shown in (5.5).

By solving this polynomial, we obtain a set of solutions for τ ∗, one of them is feasible. The

problem being non-convex, this feasible solution τ ∗ will constitute the upper bound to the

solution of the relaxed problem.

As a last step, to ensure that the solution set is feasible, it must be noted that according

to (A.5) and (A.6), α∗0 and α∗k ∀ k must be equal to 0. Expanding the vanishing gradient con-

dition in (A.8), it can be shown that the following two relations can be derived (representing

K + 1 equations):

λ∗kC
2
kτ
∗ + λ∗kC

1
k + ν∗ = α∗k, k ∈ K (A.12)

−1 +
K∑
k=1

λ∗kC
2
kd
∗
k = α∗0 (A.13)

By setting α∗0 = 0 and α∗k = 0 for k = 1, . . . , K, we can write λ∗k in terms of ν∗ as shown in

(A.14) and substitute the resulting expression in (A.13) to find ν∗ using the values of d∗k and

τ ∗ obtained from (5.4) and (5.5), respectively.

λ∗k = − ν∗

C2
kτ
∗ + C1

k

, k ∈ K (A.14)

ν∗ = − 1∑K
k=1

C2
kd

∗
k

C2
kτ

∗+C1
k

(A.15)

The values of λ∗k for k = 1, . . . , K can be obtained by back-substituting ν∗ in (A.14). As one

can observe, as long as there exists a τ ∗ greater than zero, ν∗ will be negative and hence, λ∗k

for k = 1, . . . , K will be strictly greater than zero. Hence, as long as there exists a τ ∗ > 0

in the feasible set such that d∗k > 0, there will exist a set of λ∗k > 0 for k = 1, . . . , K. This

fact can be used to verify the feasibility of the solution. This step is also helpful when there

may exist multiple values of τ greater than zero for choosing the optimal τ ∗.
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Appendix B: Proof of Theorem 2

From the KKT optimality conditions, we have the following condition on the Lagrangian

in (A.1):

∇Lz,τ∗k ,d∗k ∀ k∈K = ∇z +
K∑
k=1

λk∇
(
C2
kτ
∗
kd
∗
k + C1

kd
∗
k + C0

k − T
)
−

K∑
k=1

∇αkτ ∗k+

K∑
k=1

νk∇ (−d∗k + dl) +
K∑
k=1

ν ′k∇ (d∗k − du) +
N∑
n=1

µn∇
(
−z + τ ∗cn,1 − τ

∗
cn,2

)
+

N∑
n=1

µ′n∇
(
−z − τ ∗cn,1 + τ ∗cn,2

)
+ ω ∇

(
K∑
k=1

d∗k − d

)
= 0 (B.1)

After taking the partial derivative of the Lagrangian function in (B.1) with respect to τk and

d∗k, the following sets of equations can be obtained as shown in (B.2) and (B.3).

λkC
2
kτ
∗
k + λkC

1
k + νk + ν ′k + ω = 0, ∀k (B.2)

λkC
2
kd
∗
k + uk + u′k + αk = 0, ∀k (B.3)

Solving for τ ∗k and d∗k will give the results shown in (5.12) and (5.13). The procedure to

obtain uk and u′k is given below.

B.1 Obtaining u and u′

The maximum staleness constraint in (5.9a) can be re-written as two separate inequalities

as shown below:

−z + τk − τl ≤ 0 (B.4)

−z − τk + τl ≤ 0 (B.5)

The kth element of the vector u denoted as uk is associated with the Lagrange multipliers

of the maximum staleness constraint inequality in (B.4) whereas u′k is associated with the
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inequality in (B.5), and the way to calculate them is shown in (B.6) and (B.7), respectively.

uk = ∇τk

N∑
n=1

µn (−z + τk − τl) (B.6)

u′k = ∇τk

N∑
n=1

µ′n (−z − τk + τl) (B.7)

As defined earlier, k ∈ K and l ∈ {K | l > k ∀ k}.

In this case, after some manipulations, uk can be defined as the following:

uk =

Nk∑
j=nk

µj −
K−1∑
j=1

µnj+(k−j) (B.8)

The start index and end indices of the first summation in (B.8) are defined in (B.9) and

(B.10), respectively.

nk = 1 +
k−1∑
m=0

(K −m) (B.9)

Nk =
k∑

m=1

(K −m) (B.10)

On the other hand, u′k can be simply be defined as the following:

u′k = −
Nk∑
j=nk

µ′j +
K−1∑
j=1

µ′nj+(k−j) (B.11)
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Appendix C: Proof of Theorem 3

The optimization variables are denoted by x where x = [τ d1 d2 . . . dk . . . dK ]T . Then, the

relaxed program in (6.10) can be re-written in the form of a QCQP as shown below:

min
x

xTFx + fTx + f0 (C.1)

s.t. xTPkx + pTk x + p0k ≤ 0, ∀k ∈ K (C.1a)

xTQkx + qTk x + q0k ≤ 0, ∀k ∈ K (C.1b)

xTAx + aTx + a0 ≤ 0 (C.1c)

xT Āx + āTx + ā0 ≤ 0 (C.1d)

xTUx + UTx + u0 ≤ 0 (C.1e)

xTVkx + vTk x + v0k ≤ 0, ∀k ∈ K (C.1f)

Constraints (C.1a) and (C.1b) represent the time and energy constraints, respectively, and

constraints (C.1c) and (C.1d) represent the total batch size constraint as two inequalities.

The non-negative constraints on τ and dk are given in (C.1e) and (C.1f), respectively. The

constants associated with the time and energy constraints can be defined as p0k = C0
k − T

and q0k = G0
k−E0

k , respectively, ∀ k. The variables a0 = −d, āo = d and v0k = dl,∀ k whereas

u0 = 0 and f0 = 0.

f =
[
−1 0 0 . . . C1

k . . . 0
]T

(C.2)

pk =
[
0 0 0 . . . C1

k . . . 0
]T
, ∀ k

qk =
[
0 0 0 . . . G1

k . . . 0
]T
,∀ k

a = [0 1 1 . . . 1 . . . 1]T

ā = [0 − 1 − 1 . . . − 1 . . . − 1]T

u = [−1 0 0 . . . 0 . . . 0]T

vk = [0 0 0 . . . − 1 . . . 0]T , ∀ k
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The coefficients associated with the linear terms in the objective and constraints (f and

pk, qk, a, ā, u, and vk, respectively) are given in (C.2) as column vectors.

The quadratic matrices associated with the time and energy constraints, Pk and Qk,

respectively, are given in (C.3) and (C.4).

Pk(i, j) =


0.5C2

k , if
i = 1 & j = k + 1

i = k + 1 & j = 1

0, otherwise

(C.3)

Qk(i, j) =


0.5G2

k, if
i = 1 & j = k + 1

i = k + 1 & j = 1

0, otherwise

(C.4)

The remaining quadratic matrices F, A, Ā, U and Vk are all 0(K+1)×(K+1).

The functions F2(Γ), f1(Γ) and f0(Γ) can now be defined as [100]:

F2(Γ) =
K∑
k=1

λkPk + γkQk (C.5)

f1(Γ) =
K∑
k=1

(λkpk + γkqk + νkvk) + αa + ᾱā + ωu (C.6)

f0(Γ) =
K∑
k=1

(
λkp

0
k + γkq

0
k + νkv

0
k

)
+ αa0 + ᾱā0 (C.7)
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Appendix D: Proof of Lemma 1

Let’s assume the orchestrator will train the MEL model for a total of L epochs where a global

aggregation can occur at any update step l + 1 for l = 0, . . . , L − 1, while local updates

occur at each step l + 1. In the synchronous model of [76, 77, 87], between any two global

updates, each learner k performs τ updates whereas it performs τk updates in the proposed

HA-Asyn. Let us assume, to facilitate the analysis, that the global aggregations occur at

integer multiples of the τm = max(τk); which represents the maximum possible updates that

would be done by the highest performing learner. We can now define the interval [g] over

[gτm, (g + 1)τm] for g = 0, 1, 2, . . ..

Assuming a global aggregation were to occur at each iteration l + 1, let us define an

auxiliary set of global model parameters denoted by ŵ[g] for any interval [g] which would be

calculated if a global update step took place. (Note that at the beginning of any interval [g],

a global aggregation does occur.) Then, the update rule for this auxiliary set can be given

by:

ŵ[g][l + 1] = ŵ[g][l]− η∇F (ŵ[g][l]) (D.1)

We assume that the local loss function at learner k given by Fk(w) is:

1. convex

2. ρ-Lipschitz ‖Fk(w)− Fk(w̄)| ≤ ρ|w − w̄|

3. β-smooth ‖∇Fk(w)−∇Fk(w̄)| ≤ β|w − w̄|

These assumptions will hold for ML models with convex loss function such as linear regression

and SVM. By simulations, we will show that the proposed solutions work for non-convex

models such as DNN with ReLU activation. It has been shown that for such a model, the

difference between the global optimal model and the auxiliary model for any iteration l + 1

within an interval g, for l = 0, . . . , L− 1 and g = 0, 1, 2, . . ., can bounded by:

‖w[l + 1]− ŵg[l + 1]‖ ≤ ‖w[l]− ŵg[l]‖+
ηβ

d

K∑
k=1

fk [l − gτm] (D.2)
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The function fk(t) = δk
β

[(ηβ + 1)t − 1] which relates the local model wk ∀ k ∈ K to the

auxiliary model set ŵg[l] as follows:

‖wk[l + 1]− ŵg[l + 1]‖ ≤ fk(l − gτm) (D.3)

Assume that each learner has performs τk updates and for a particular interval, l ∈

[gτk, (g + 1)τk] ∀ k ∈ K where l + 1 is the progression of the index of the best performing

learner. Then, the upper bound on the model divergence can be given by the following

expression:

‖w[l + 1]− ŵ[l + 1]‖ ≤ ‖w[l]− ŵ[l]‖+
ηβ

d

K∑
k=1

fk(l − gτk) (D.4)

The learning rate η can be selected such that 0 ≤ ηβ ≤ 1 which is necessary to satisfy the

assumptions in [12]. In that case 1 ≤ ηβ + 1 ≤ 2 and because tk = l− gτk ≥ 0, the function

fk(tk) grows exponentially greater as t increases because the dominating term is (ηβ + 1)tk .

So, as the staleness sk,l = τk − τl k, l ∈ K | l 6= k increases, fk(tk) will be higher for more

learners which will result in a higher bound on the divergence. Therefore, as the auxiliary

model diverges further from the globally optimal model, the loss will increase and hence, it

can be expected that the accuracy will decrease.

To sum up, the learning will progress faster as l+1 is higher which can be done maximizing

the τm. Alternatively, if we want to keep tk ∀ k low, we can maximize the min(τk) while

controlling staleness sk,l.
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Appendix E: Proof of Theorem 4

In this proof, we will show that the objective function O is strictly convex under certain

conditions because ∂2O
∂τ2

> 0. Because τ is a positive integer, the optimal value τ ∗ is the

argument that minimizes O(τ). The reciprocal of L(τ) in (7.13) can be separated into two

terms M(τ) and N(τ) as follows:

M(τ) =
d

KT

∏K
k=1(τ + bk)∑K

k=1 τ
∏K

l=1
l 6=k

(τ+bl)
(E.1a)

N(τ) =
1

KT

∑K
k=1 ak

∏K
l=1
l 6=k

(τ+bl)∑K
k=1 τ

∏K
l=1
l 6=k

(τ+bl)
(E.1b)

Therefore, the objective function can be re-written as O(τ) = O1(τ) +O2(τ) where O1(τ) =

M(τ)P (τ) and O2(τ) = N(τ)P (τ). Moreover, the term P (τ) can be written as the reciprocal

of ν(τ) where

ν(τ) = A−BC
τ − 1− (C − 1)τ

τ
(E.2)

The constants A = η
(
1− βη

2

)
, B = δ

β
ρ
ωε2

and C = ηβ + 1. We can say that B = δ
β
B0 where

B0 = ρ
ωε2

> 0 is a control parameter that can be set empirically.

For brevity, we will represent f(τ) as f where f may be O, O1, O2, M , N or P . We will

also represent ∂f
∂τ

and ∂2f
∂τ2

as f ′ and f ′′, respectively. Using this new notation, O′′ can be

given as follows:

O′′ = P (M ′′ +N ′′) + 2P ′(M ′ +N ′) + (M +N)P ′′ (E.3)

By definition M > 0 and N > 0 because they are related to the time consumed by user

k, and P > 0 assuming that the constraint in (7.9f) holds. Hence, if we can show that each

of the three terms in (E.3) are strictly positive, then O will be strictly convex. We need to

show that P ′′ > 0 and M ′′ + N ′′ > 0. Furthermore, if we can show that M ′ + N ′ and P ′

follow the same sign, O′′ > 0.
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The first derivatives of M , N , and P can be given by:

M ′ = − d

KT

∑K
k=1

bk
(τ+bk)2(∑K

k=1
τ

(τ+bk)

)2 (E.4a)

N ′ =
M ′

d
− 1

KT

2
∑K

k=1
bk

(τ+bk)3(∑K
k=1

τ
(τ+bk)

)2 (E.4b)

P ′ = −B Cτ [1− (lnC)τ ]− 1

[Aτ −B(Cτ − 1− (C − 1)τ)]2
(E.4c)

The variables ak =
C1
k

C2
k

and bk =
C0
k

C2
k
, respectively, and both are positive quantities. For M ′,

the first term outside the square bracket is always negative whereas the term inside is a sum

of positive quantities whereas N ′ is a sum of negative quantities. Therefore, M ′ < 0 and

N ′ < 0. Hence, we need to show that P ′ < 0 or find the domain on which P ′ < 0.

The complete expressions of M ′′ and N ′′ can be given by:

M ′′ =
d

KT

1(∑K
k=1

τ
(τ+bk)

)2
[

2
K∑
k=1

bk
(τ + bk)3

+
K∑
k=1

bk
(τ + bk)2

]
(E.5a)

N ′′ =
1

KT

K∑
k=1

ak

(τ + bk)
3
(∑K

l=1
τ

(τ+bl)

)4
[

K∑
l=1

τ

τ + bl
+ 2(τ + bk)

K∑
l=1

1

(τ + bl)2
+

K∑
l=1

2

(τ + bl)3

]
(E.5b)

It can be shown that M ′′ and N ′′ are strictly greater than zero because they are both a sums

of positive terms. Hence, the left-most term in (E.3) is strictly positive. Thus we need to

show that P ′′ > 0 or find the domain for which this is true.
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Although the complete expression for P ′′ is omitted for brevity, it can be shown that the

necessary and sufficient conditions to achieve P ′ < 0 and P ′′ > 0 is to satisfy Cτ [1−(lnC)τ ] >

1. From the Bernoulli inequality, we know that Cτ ≥ (C− 1)τ + 1. Assuming the worst case

where the equality holds, the expression can be written as [(C − 1)τ + 1][1 − (lnC)τ ] > 1.

By expanding the expression, we can show that we need to check the following inequality:

τ [(lnC)τ − C(lnC)− 1 + C] > 0 (E.6)

We know that as long as a feasible τ ∗ > 0 is found, we need to satisfy the second term

enclosed by the square brackets. Writing τ as a function of C and, we can see that the

condition on τ is the following:

τ >
C(lnC) + 1− C

lnC
(E.7)

Recall that C = ηβ + 1 where η is chosen such that ηβ ≤ 1, and η, β > 0. Hence, it follows

that 1 ≤ ηβ + 1 ≤ 2. If we plot, f(C) = C(lnC)+1−C
lnC

against the domain of C, we notice

that for ν ′′ < 0 and hence, for P ′ to be strictly negative and P ′′ to be strictly positive, it is

sufficient for τ > 0. Hence, we have now proved that O(τ) is strictly convex because ∂2O
∂τ2

> 0

as long as τ is a positive integer and the ML model variables are selected as defined.
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