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Abstract

The percentage of an annual ring composed of regisity latewood measured using the threshold
latewood demarcation method is commonly reporteal descriptor of both the annual ring
formation process and the quality of the wood poedu Recently developed methods have been
reported to provide more consistent estimatestefMaod in trees exhibiting high intra-ring
variability; but there is little published regardithe anatomy at the transition from earlywood (EW)
to latewood (LW), and the ability of these alteimaimethods to predict mechanical properties.
These alternative measures of latewood may be omorgistent, but without an understanding of the
anatomy at the EW-LW transition selected by théserative methods, the interpretation of the
latewood percentages returned by these methods imeaningful. An assessment of the ability of
these alternative latewood measures to predictigddyend mechanical properties would further

define the value of these alternative latewood mmemsent methods.

In this paper, we compared the threshold latewoethad (TLWP), an inflection based latewood
method (ILWP), and a polynomial based latewood oei{PLWP) in terms of the region selected as
the EW-LW transition, how they measured tree respda environment, and how well they

predicted mechanical properties.

We found that in mature suppressed Douglas-fir, Ls¥d PWLP were not well correlated with
average density (AVGDEN), but that the differeneén®en TLWP and ILWP or PLWP was
positively correlated with AVGDEN. Microscopy agtlieW-LW transition points showed that the
threshold method selected a transition point nearkM definition of latewood and that the
inflection and polynomial methods targeted theaagh which the cell wall thickness and lumen
diameter changed most rapidly, but exhibited aesyatic bias in the location chosen based on

AVGDEN.



v
We studied the differences in TLWP, PLWP, ILWP, #0ndGDEN between suppressed Douglas-fir
growing on low and high bulk density soils. Anahgithe characteristics of the annual rings over 30
years, we found differences between the groupalfoneasures that were consistent with the
hypothesized difference predicted by the Least lingiWater Range concept. Trees grown on low
bulk density soils had significantly higher AVGDENd latewood using all measures, but all the

measures suggested similar differences.

Finally, we studied the ability of AVGDEN, TLWP, ®P, and ILWP to predict Modulus of
Elasticity (MOE) and Modulus of Rupture (MOR) in alirclear samples and the matching high
grade 2x4s. We found that AVGDEN and TLWP weredygttedictors for small clear properties,

but PLWP and ILWP had some predictive ability. Akasures were better predictors of MOR in the
small clears and MOE in the 2x4s. The results efttinee studies presented form a basis with which
to interpret ILWP and PLWP in the context of batetresponse to the environment and the

mechanical properties of the wood in Douglas-fir.
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Chapter One
Introduction

Problem statement

Latewood proportion is most frequently reportedhaspercent of an annual ring that exceeds a
given threshold density. Studies reporting latewpedod can be broken down into two general
groups: 1) Studies that summarize one or more palygroperties of the xylem with a single
measurement and 2) studies that measure the respbtiee tree to the environment. Studies
reporting the relationship between latewood peamgmtnd mechanical properties focus on latewood
percentage as a proxy for density and other coeeleharacteristics (e.g. maturity or microfibril
angle) to predict mechanical properties. To poseath a question: How does this component of
density and other characteristics predict mechhpicgerties? Studies regarding changes in
latewood percentage due to treatments or eventisueseood as a proxy measurement to describe
the physiological processes at work during xylenmi@tion within the annual ring of the tree. In
other words: How did the xylogenic process resporitie stimuli being studied? It is reasonable to

ask if these two questions could be answered ubmgame measure of latewood.

Background

Formation and measurement of latewood

During the xylem formation process in conifers taenbial initials must pass through three steps to
become mature xylem: 1) a division step, 2) anrgelaent step, and 3) a maturation or
densification step (Wilson et al. 1966). Cuny e(2012 ; 2013) liken the process to a seriesrafth
connected pools in which division, enlargement, @@asification occur and the duration a tracheid
spends in any pool determines its properties. UWpasion from the cambial initial, the newly
formed xylem begins the radial enlargement procHss.radial diameter of a forming tracheid is

determined by the rate and duration of the exparngiocess. Research in Douglas-fir suggests that
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both the rate and duration change seasonally @upeowide tracheids in the early growing season
and narrowing tracheids as the season progressesl @nhd Fox 1990). Densification occurs as the
secondary cell walls of the tracheid thicken. Theation of the cell wall thickening stage seems to
be the primary determinant of the degree of desaifin as the rate of cell wall deposition remains
relatively constant (Dodd and Fox 1990). The doratf the wall thickening process peaks near the
end of the growing season leading to increasingitdetoward the end of the annual ring. The
maturation process ends with the death of the ¢éidadnd assumption of water conduction (Dodd
and Fox 1990). The process of tracheid developaieas rise to wide and thin-walled earlywood
with low density early in the season and narrolw@kiwalled latewood with higher density later in

the season.

The resulting annual ring is therefore a recorthefduration and rates of expansion and cell wall
deposition that produced an annual ring as wetha®xternal factors that can manipulate them.
Precipitation, heat, drought, fertilization, thingi and a host of other variables can manipulae th
tracheid formation process to produce differenbsadf earlywood to latewood and rings of varied
density (Jozsa and Brix 1989; Antony et al. 2000nalez-Benecke et al. 2010; Kantavichai et al.
2010). Measures of latewood proportion and theiteakthe resulting earlywood and latewood can

be used to infer timing and intensity of seasohahges in the xylogenic process.

The terms earlywood and latewood and the poirttérainnual ring that separates them have no
universally accepted definition or standard. Mowd&dinition (Mork 1928) is one of the most
commonly cited, and defines the latewood transipiomt as the point in the annual ring in which

the shared wall of adjacent tracheids is greatar tivice their lumen diameter Many variations on
Mork’s definition have been reported (reviewed melaer and Chaloner 1984) but they all require
extensive microscopic analysis. The introductioiXXehy densitometers opened up a new avenue of
annual ring investigation, and was followed quickiyh the development of the threshold method.

Threshold methods declare the latewood transitdretthe point at which the annual ring profile
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crosses a set density value, frequently at a detisit approximates Mork’s definition (Polge 1978).
The region of the annual ring that is less denselisidered earlywood, and the region that is dense
is considered latewood (Polge 1978, Creber andaBball984). Whether by exposure of X-ray
sensitive film (e.g. Polge 1978) or more moderre){-detectors (e.g. Clark et al. 2006), the
threshold method can be applied quickly and eaaiid, has been shown to be well correlated to

average wood density (Lachenbruch et al. 2010;&déby et al. 2011).

A presupposition of the use of the threshold lasavaethod is that the latewood transition occurs

at the same density for all trees or rings. Thitnd®n may be useful if the latewood percentage i
being used as a substitute for density, but mayrmtide a consistent evaluation of the xylogenic
process mentioned previously if the researcherteseésted in measuring tree response. As Koubaa et
al. (2005) and Antony et al. (2010) have notedbtack spruce and loblolly pine, the threshold

method might not adequately describe the wood foamgrocess for both juvenile wood and

mature wood simultaneously. They demonstratedtét@tlynamic latewood methods gave more
consistent measures of latewood percentage betfweemnile and mature wood than the threshold

method.

Dynamic latewood methods use changes in the demnghin rings to determine a point which
represents the transition from earlywood to latedvdde method developed by Koubaa et al. (2005)
used polynomials to fit a curve to the density/posiprofile and found the roots of the second
derivative that best met a series of selectiorsrulde inflection method reported by Antony et al.
(2010) used smoothed splines fit to the densitytjoosprofile and chose the inflection point as the
second derivative of the spline crossed through daring the transition from earlywood to
latewood. The use of the slope of the density/mositurve in the annual ring density profile makes

it possible to identify a latewood transition paiagardless of the average density of the species o

individual.



Assessing variation in ring characteristics throughime

To assess the ability of any of the latewood methodneasure physiological changes in trees due to
climate or treatments, the annual ring charactesistf multiple trees must be assessed, preferably
over multiple years of growth. The study of sedata collected from the same individuals over time
presents a unique set of challenges (Ott and Lakgn&001). Many of the more commonly used
statistical tools require an assumption of indepeid between samples, in that the results of one
sample has no correlation with the results of agrosample. In addition, there is an assumption of
constant variance between samples, which requieeddgree of random variation to remain
constant from sample to sample. In the study ofiahnngs of trees, the independence assumption
would equate to the assumption that the events¢kngatic, cultural, or biological) in years past
had no influence on this year's growth (covariabetveen years equals zero) or that the events of
100 years ago has the same influence as last ymaarg (covariance between years equals a
constant). The assumption of constant variancddimelinterpreted to require that the random
differences are constant through time and thateslts would exhibit the same degree of dispersion
(Fitzmaurice et al. 2011). A basic familiarity wittee growth and physiology would suggest that

applying these assumptions to serial data woulsplieious at best, or even misleading.

Violations of independence and constant variansaeraptions can make it difficult to assess the
significance of the effects being measured (OeRI@00). Violations of the independence
assumption lie in the fact that although our edstimaf the treatment effect remain unbiased, our
estimate of the variation about the averages ofréements is no longer unbiased. Because the
responses of each of our samples are correlateoetanother, each additional sample no longer
represents a “new” piece of information. The analysay reveal that there is a numerically large
difference between treatments, we are confidetitahresult, but we can’t accurately assess the
significance of that difference using standard ficas. Violations of the constant variance

assumption lead to variation in the rates at winelreject or accept the null especially in



5
unbalanced datasets. Issues with nonconstant eargiam from the fact that we need to use the
same estimate of error variance to test the sigmifie of different groups, so when one small group
has a very small associated error and a largendegroup has a high degree of error, we
overestimate the amount of error for the first groessulting in a conservative test, and

underestimate the amount of error in the secondpgresulting in a liberal test. (Oehlert 2000).

Repeated measures methodologies provide a meadstess the violations of independence and
constant variance assumptions that are inhereepated measures of the same individuals over
time. Repeated measures techniques use a muchcomopticated framework describing variation
within (and in some cases between) individuals ¢iveg. By allowing observations close in time to
be more similar and observations separated by timecto be less similar, repeated measures
models can give a more valid estimation of theatamn within the samples, and allows more
accurate tests for significance. Likewise, allowihg variance within individuals to change through
time permits more accurate assessments of significaHowever, if accurately modeling the
samples through time requires a lot of parameterstliere is no general pattern or it is very
complex), when we try to test the significancelehgents of our model, we will find that it takes a

larger difference in treatments to register theestevel of significant difference.

Latewood as a measure of wood quality

Wood quality is a primary driver of the value ofiaen tree or species and determines the end uses
to which it may be applied (Bowyer, 2003). This @awill focus on the quality attributes desirable
for structural lumber i.e. strength and stiffndsst, other properties may be desirable based on the
end use of the product. The numbers of charadterigtat determine wood quality are vast and
subject to variation at any spatial level from specange down to individual annual rings (Larsbn e
al. 2001). The simultaneous modeling of the erstiriége of quality limiting characteristics and the

factors that influence them is not currently aist@l proposition. However, researchers may



measure a few key factors associated with woodtguaid infer the effect on resulting end

products.

One of the earliest and most cited characterisissciated with wood quality is the density of a
sample of lumber (Newlin and Wilson 1917; Markwaadtd Wilson 1935; Doyle 1968;
Lachenbruch et al. 2010). The correlations of dgrteimechanical properties has been reported
frequently and the basis of the correlations stenmfthe fact that the density of the material
comprising the walls of virtually all wood is coast (USDA 2002). The density of a wood sample
is therefore a measure of the volume of the samgdapied by solid wood. If a simplified model of
wood under bending is used, with tracheids reptesgdoy a collection of slender pipes of uniform
outside diameter and differences in density areifi@sted as thicker or thinner pipe walls,
engineering mechanics suggest that the thickeréligvalls will increase the transformed moment
of inertia (Bodig and Jayne 1982). If the Modul@i€tasticity (MOE) and Modulus of Rupture
(MOR) of the cell wall material are held constajreater loads will be required to reach the same
midspan displacement and bending stress as démsigases. At the macroscopic scale, we will
report specimens with higher density as exhibitigher MOE and MOR. This model can be
expanded to incorporate all manner of physicalattaristics, but density remains one of the most

important properties.

Latewood percentage has also been correlated vadhamical properties (Biblis et al. 2004; Choi
1986; Lachenbruch et al. 2010). The influence w@od proportion on mechanical properties has
at least two components. First, latewood percentagell correlated with density (Bower et al.
2003; USDA 2002) because latewood percentage (edlgdbreshold latewood percentage) relates
the relative amount of high density latewood todah®unt of lower density earlywood in the annual
ring. The correlation may strengthen or weaken déjpg on the density of the earlywood and
latewood components, but it is one of the primamyrses of variability in annual ring density

(Lachenbruch et al. 2010). Microfibril Angle (MFAJ the cellulose fibrils in the secondary cell wall



of fibers and tracheids has been shown to be nefyatorrelated with mechanical properties,
especially in juvenile wood (Groom et al. 2002a)2®; Hein and Lima 2012; Yang and Evans
2003). Within an annual ring, the MFA of latewosdjenerally lower than the MFA of earlywood
(Lachenbruch et al. 2010, Groom et al. 2002b). @ioportion of latewood in an annual ring

therefore is related to the average MFA for thad ri

Research Objectives

Chapter Two

There has been little research published concethmgorrelations in latewood percentage
measured between the threshold, inflection, angnpohial methods with average ring density.
There has also been limited research regardingrtaomy of the earlywood/latewood transition
point chosen by the inflection and polynomial melhdn order to use the results of the inflection
and polynomial methods to predict mechanical priggera better understanding of their correlations
to the threshold method and average density isnegtjun order to use the inflection and polynomial
methods to assess tree response to the environtineripnsistency of the anatomy at the latewood

transition point assigned by the inflection andypomial methods must be determined.

Objective 1: Assess the relationship between the inflectioth polynomial methods, with threshold

latewood percentage and average density.

Objective 2 Assess the anatomy at the latewood transitiont paéntified by the inflection and

polynomial methods.

Chapter Three
In a prior paper (Morrow et al. 2013) we found adestructive measure of stiffness varied
significantly between trees grown on low and higtklalensity soils. Based on this result we

hypothesized that a specific climate-soil moistiuret relationship could affect the xylogenic
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process. In Chapter Three, we used a repeated rasaswalysis to test for systematic differences in

annual ring characteristics between soil bulk dgr{§BD) groups.

Objective 1 Test for differences between SBD groups usindl)itreshold, 2) inflection, 3)

polynomial latewood percentages, and 4) averagedémsity in a repeated measures analysis.

Objective 2 Determine if annual ring differences between SBBups were consistent with the a

priori hypothesis.

Objective 3 Assess the agreement between latewood measutesesgpect to differences found

between SBD groups.

Chapter Four

We found no data published concerning the corariatbetween wood quality and the inflection and
polynomial latewood methods. In Chapter Four, wagared the abilities of 1) average density, 2)
the threshold method, 3) the inflection method, 4hdolynomial methods, and average density to

predict the MOE and MOR of small clear samplestaed matched high grade 2x4s.

Objective 1: Compare the ability of the inflection and polynaimnethod to predict mechanical

properties with the more commonly used threshdkltaod and average density.

Objective 2: Assess the correlation of each wood density measith MOE and MOR in both

small clear samples and full size 2x4s.
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Chapter Two
Comparison of methods to determine latewood perceage in
suppressed Douglas-fir

Abstract

Latewood methods such as the threshold or Morkhaus have been used extensively in forest
research, but may not provide consistent resuldd imees. Alternative methods of latewood
measurement have been reported to be more conslatiethe lack of published studies of the
anatomy at the earlywood/latewood transition cutydimits their interpretation. To assess these
alternative methods, radial strips from 45 smadlraieter Douglas-fir were analyzed using X-ray
densitometry to test the performance of three latglimeasurement methods: a static threshold
method, a dynamic inflection method, and a dynamignomial method. The analysis indicated that
the static and dynamic measures seemed to be angnately correlated (R0.5) , and the

difference between methods was correlated to aeaiag density (R0.6). The threshold
measurement was by far the most highly correlaiexVérage ring density tR0.67) while the
inflection and polynomial methods were poorly ctated with average density ¥80.23, R=0.16).
Anatomical measurements from a subset of the amimga indicated the position identified by the
500kg/nf threshold measurement was the most consistentras® a point very close to Mork’s
definition of latewood. The ratio of radial lumeraheter to the radial cell wall thickness at the
transition point selected by the polynomial metkodld be predicted with the same level of error
(RMSE=0.47 42m/um) as that of the threshold method (RMSE =mfum) with the

incorporation of average ring density. In the stlb$eings used from which the anatomical data was
derived, the dynamic measurements seemed to systalyaunderestimate the position of greatest
lumen and cell wall thickness change in high dgmiilgs, and vice versa. The most likely source of

these errors is the geometry of the density psféad the linear nature of the errors suggesys the
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could be reduced using a linear correction baseaverage ring density. The use of several methods
simultaneously may provide researchers an inexpermgiportunity broaden the scope of xylem

formation research.

Introduction

The annual rings of a tree contain valuable infdiomaregarding the quality of the wood contained
within that tree and a record of the tree’s respdnghe environment. The wood quality implications
of density are well documented, and one of the nngsbrtant contributors to density is the
proportion of latewood produced. The calculatiothaf average density of an annual ring or a wood
sample is intuitive, however, a variety of methadpés exist to classify portions of an annual ring
into earlywood and latewood. One of the most fredlyecited is Mork’s definition (Mork 1928) in
which latewood is generally described as thosédtigs in which the thickness of the shared cell
wall is greater than twice the diameter of thehed's lumen. The advent of commercially available
X-ray densitometers has led to the frequent uskeothreshold method in which latewood is
assigned as those tracheids with a density abevihthshold value (Polge 1978; Lasserre et al.
2009; Schneider et al. 2008; Clark et al. 2004 pAgtet al. 2011). Density values in the range of
400kg/nt to 550 kg/m are frequently used but the location of the tistitn point defined using the
threshold method can vary greatly with that defibgdork’s Index (Koubaa et al. 2002).

Threshold measurements are generally simple tceimght (excepting complications such as false
rings or other aberrant growth patterns) but maybeahe most effective measure of the
physiological variations expressed in the densitfile of an annual ring such as juvenile rings

(Koubaa el al. 2002).

Alternative methodologies use the shape and clarsiits of each annual ring density profile to
determine the transition from earlywood to latewcbige intent of these techniques is to decouple

the measurement of latewood percentage from thegealensity of the ring using a defined set of
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rules to divide the annual rings into earlywood &tdwood. The use of mean ring density (e.g.
Dalla-Salda et al. 2011) or the midpoint densitg.(8ower et al. 2005) as the demarcation between
earlywood and latewood are simple examples of dynamasures because they are not tied to any
particular density or anatomical measurement. Moraplex dynamic latewood determination
techniques focus on the degree of densificatiom firacheid to tracheid. An example used in prior
research (Pernestal et al. 1995) was to calculatslope of the density profile in the earlywood-
latewood transition region and find the point aichtthe slope reached its maximum value, or the
second derivative of the density profile slope éegiaero. The process can be automated by
smoothing the individual data points and settilggio ensure noise or density aberrations do not
falsely trigger the algorithm (Pernestal et al. 3;9%oubaa et al. 2002, Antony et al. 2011). The
definition of the earlywood-latewood transition vidtherefore shift from a fixed density threshold
or anatomical measurement to a dynamic measurensitg change in adjacent tracheids in the
annual ring. Koubaa et al. introduced the ideatonhd a polynomial to the density profile, and
calculate roots of the second derivative of the/poinial to identify the point at which the ring
transitions from earlywood to latewood. The usa @fell fit polynomial provides two advantages.
First, the polynomial acts to smooth the raw datal secondly, the identification of roots of the
polynomial provide well defined points that candedected as the transition from earlywood to

latewood using standardized rules (Koubaa et &2R0

The application and comparison of several of tlidesearcation methodologies simultaneously may
provide several advantages. Firstly, the use ghamhic measure of earlywood-latewood transition
may provide a means to compare the response sfurige varying average densities in a more
consistent manner. By decoupling the transitiomfearlywood to latewood from a defined density,
the dynamic measures seek to identify the pointréth the difference in density from tracheid to
tracheid is greatest. Similar methodologies hawnhesed in place of traditional species-specific

threshold definitions to develop more robust modélhe transition from juvenile to mature wood
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using segmented regression (Clark et al. 2006 nsleti-Raczkowska and Fabisiak 1999; Kouba et
al. 2005; Wang et al. 2012). These dynamic methoelflexible enough to be applied across a wide
range of individuals within and between specieso8dly, if the dynamic measures could accurately
identify the region of the annual ring that expessthe greatest rate of anatomical change, it reay b
possible to correlate major shifts in moisturesstrand xylem formation to a relatively inexpensive
dynamic latewood measurement. Thirdly, by combirhegindividual methods, it may be possible
to expedite the quality control process for largéadsets in a systematic and partially automated

manner that focuses researcher time on the mostignable or unusual rings.

Dynamic earlywood-latewood demarcation are diffitalinterpret. It is not readily apparent which
anatomical features of the annual ring are idexttifiy the inflection and polynomial techniques,
how closely the dynamic measures are related tageeing density, or how the resulting values
may be interpreted and used. The objective ofstiudy was to compare threshold, inflection, and
polynomial latewood demarcation techniques in teofrtheir correlation to one another, correlation

to average density, and the anatomy at the selé&etesition points.

Methods

In the summer of 2007, stand measurements andhiecrtecores were collected from 297 small
diameter Douglas-fir trees in mixed age standsdstarn Montana (Morrow et al. 2013) in an effort
to develop models to predict the trees’ stiffnelserement cores from 45 trees of these were
randomly selected for X-ray analysis. A summartheftree and stand characteristics of the source
trees for the increment cores studied here is givdmable 2.1. The increment cores were glued
between wooden strips and ripped on a table sawtwih blades to produce a 1.5 mm strip from
the center of the increment core. The radial stripge allowed to equilibrate to ambient laboratory
conditions then scanned using a QTM-QTRX X-ray dengeter at 0.02 mm step intervals. The

absorption coefficient used by the densitometeresdsblished by finding the best-fit value for
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predicting the density of 24 Douglas-fir sampleg&mdwn density, which ranged in density from 440
kg/m3 to 700 kg/m3. Cracked or otherwise damagegkrivere omitted from the final analysis, as
were rings suspected to contain compression woddhanrings closest to the pith when the pith was

not centered in the radial strip.

Table 2.1. Tree and stand characteristics of the iglas-fir used in this study

Characteristic Average Range
Mean age in 2007 (yr) 77.4 (10.7) 57-105
Elevation (m) 1750 (217) 1420-2110
Basal area (ftha) 13.8 (5.3) 4.6-29.7
DBH (cm) 23.1(5.6) 12.2-31.8
Total height (m) 15.9 (3.4) 7.0-24.1
Whole core SG 0.45 (0.02) 0.37-0.49

Latewood determination

Threshold method

The demarcation of the beginning, end, and earlgalatewood transition of all rings was
performed by the QTM-QTRX software using a thredhalue of 500kg/m3. The beginning of a
ring was defined as the point at which the dersdfithhe annual ring dropped below 500 kgimthe
transition from one year's latewood to the nextrige@arlywood. The earlywood-latewood transition
was defined as the point at which the density efysar’s earlywood rose above 500 kigmd the
end of the ring was located at the point at whighdensity fell back below 500 kgifmEach X-ray
density value was thus assigned a ring number lasdified as either earlywood or latewood. A
summary of each ring was produced that includeéstiold ring length (TRLEN) threshold

earlywood density (TEWDEN), threshold latewood dign@ LWDEN), average ring density
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(TAVGDEN), and threshold latewood percentage (TLWHRhgs with lengths less than 0.4mm were

dropped from the data set because of limited résolu

Inflection method

The raw densitometry data from each radial strip indially assessed via a Microsoft Excel©
Macro that identified the beginning and end of eachual ring by locating every other position at
which the second derivative of the density plotigdinst position passed through a deadband value
near zero and the'Herivative of the density exceeded a predetermvage. Deadband values
were set as percentages of the maximum and minifinsihhand second derivatives found for each
ring to account for differences in ring length. Wit each ring, while looping through the data, the
script averaged the density of the latewood (INFLEW), noted the position and density (INFDEN)
of the data point closest to the transition frotewsood to earlywood (first and second derivative
exceeded deadband values), averaged the denéity e&rlywood (INFEWDEN), and reported ring
length (INFRLEN), percent latewood (INFLWP), anceeage ring density (INFAVGDEN). Ring
lengths were checked against those found usinthtleehold method, and rings with disparate
lengths were reanalyzed to ensure that the tranditbm ring to ring was assigned in accordance
with the rules previously mentioned. Appendix A t@ns a more detailed description of the

methodology and scripting.

Polynomial method

The raw densitometry data was entered into a Mati@hatlab 2013, MathWorks Inc. Natick, MA,
2013) script in which a"6degree polynomial was fit to each ring individyalking the start and
stop position determined during the inflection noetlanalysis. The position of the EW/LW
transition was taken from the root of the seconuvdgve of the polynomial that was: 1) closest to
the bark, 2) between 10% and 80% of the total léngth, 3) occurred after (toward the pith) the

maximum ring density, and 4) th& derivative of the polynomial at that point exhélta negative
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slope when read from bark to pith. The position treddensity at the root of the polynomial that met
the requirements were recorded. The position@BW/LW transition was used to calculate
polynomial earlywood density (PEWDEN), polynomialdwood density (PLWDEN), and
polynomial latewood percent (PLWP). The averagesiigof the rings using the polynomial method
was the same as INFAVGDEN. Appendix B contains aendietailed description of the

methodology and scripting.
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Figure 2.1 Selecting the appropriate root of the pgnomial for latewood demarcation

Anatomical Measurement

Increment core strips from seven trees selectezbacthe range of average densities were sliced for
microscopy using a sliding microtome to producegserse cross sections. Micrographs were made
from five of the most recent rings from each striing an Olympus BX51 (Olympus America,
Center Valley, PA) microscope and cell measurem@ken using Olympus software. For each ring,
the radial dimensions of the cell walls and lumerse measured for five rows of tracheids. The cell

wall and lumen data was assessed using curvelfitiiExcel to define best fit estimates of average
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wall thicknesses and lumen diameters. The curves used to define the anatomy at the transition
points selected by the three latewood methods.eAgip C contains a more detailed description of
the methodology used to align and transfer thetioecaf the latewood transition points from the

densitometer data to the anatomical data

Results

Annual ring length assignments

In general, there was good agreement in the rimggleassignments using the threshold and
inflection method, with no indication of bias beememethods. The distribution of differences
appeared to be normally distributed with a mea®.0905 mm and a standard deviation of 0.031
mm. The distribution of deviations is shown in Fig2.2. Within ring length quartile groups, the
average difference in ring length between the tvedhwds ranged from -0.0028mm for the first
guartile to 0.0029 mm for the fourth quartile. $tard deviations ranged from 0.027mm to
0.033mm. Figure 2.3 shows the means of the ringtlhequartiles with error bars equivalent to one
standard deviation. For this data set, 34% ofitiglength assignments were exactly the same, 76%
were within one step (£0.02mm), and 92% were withia steps (£0.04mm). Ring length
disagreements of more than two steps seemed to wmsi frequently in rings with less abrupt
transitions from ring to ring and were usually pdiwith an adjacent ring with the equal and
opposite deviation. In Figure 2.4, one such deas shown in which there is a 0.16mm difference
in ring length because the density of the earlywdoelsn’t decline in the same manner as the
surrounding rings. In this example, Ring A wouldister a relatively large negative deviation

(TRLEN- INFRLEN) and Ring B would exhibit an appnarately equal positive deviation.
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Figure 2.4. Deviation between inflection and threstid determination of ring length

Across the range of ring lengths encountered, tiaiea high level of correlation between ring

length as shown in Figure 2.5. Because of the aiitylin the regions assigned to each ring, the

average density of the annual rings was likewisg sinilar (R=0.99) as shown in Figure 2.6.
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Rings with unusual features, such as the ring abthormally high earlywood density shown in
Figure 2.4 are responsible for the outlying casdsigure 2.6, especially in shorter rings. The
threshold method did not seem to accommodate theradal earlywood of the middle ring, and

reported a much shorter ring length than the itifeomethod.
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Figure 2.5. Similarities in ring length using the o demarcation methods
Figure 2.6. Similarities in INFAVGDEN and TAVGDEN using the two demarcation methods

Measures of latewood percentage

The three measures of latewood percentage dichoat the same degree of agreement as the
average density and ring length measurements. d-Ryiirshows the correlation between TLWP and
PLWP. On average the density identified at theertfon point for PINFDEN was 740 kgim

which was higher than INFDEN (657 kghmand far higher than the 500 kg/osed for the

threshold measure. PLWP was lower than TPLW forlpedi rings with average densities above
500 kg/ni. Some of those rings that exhibited TAVGDEN beB00 kg/ni were found to have
PLWP values higher than their respective TLWP \&l&égure 2.8 shows the correlation of the
difference between TLWP and PLWP on the averagsigeof the ring. The PLWP method

compensated for low average ring density by selgdower density inflection points earlier in the
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ring than the threshold method. In Figure 2.8, nebshe annual rings follow a general trend of
increasing difference in TLWP and PLWP with inciaggensity, but there is a group at the upper
extreme that does not fit well with the rest. Tégnisup exhibits high earlywood densities and the
threshold method measures little to no earlywodthé@se annual rings. In many of these rings, it was
difficult to determine if they had abnormally higharlywood density, or were extreme examples of
false rings. An example is shown in Figure 2.9 hicl the a tree exhibits an abnormally high
TLWP (100%) in two nearby annual rings as a resfulinusually high earlywood densities, but the

PLWP values are consistent with the surroundingsiin
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Figure 2.7. Comparison of PLWP and TLWP
Figure 2.8. Difference in TLWP and PLWP (TLWP-PLWP) regressed against TAVGDEN
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Figure 2.9. Unusual annual rings indicated by largaleviation of TLWP and PLWP

INFLWP exhibited a very similar relationship with WP as PLWP, with a similar goodness of fit
when regressed against TLWP as shown in Figure 24.iith PLWP, the difference between the
threshold measurement of latewood and INFLWP shiaviigure 2.11 exhibited a positive
correlation when plotted against average densdicating that the earlywood/latewood transition
point identified by the inflection method was dbaver density in rings of lower average density and

vice versa.
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Figure 2.10. Comparison of INFLWP and TLWP
Figure 2.11. Difference between TLWP and INFLWP (TIWP — INFLWP) regressed against TAVGDEN

The inflection and polynomial methodologies produmientical or nearly identical results for many
annual rings, however, there were some differeimctiee earlywood/latewood transition
assignments. In Figure 2.12, INFLWP is plottedirgtsPLWP and many of the annual rings
demonstrate a one-to-one (or nearly so) relatignisbiween the two measures. INFLWP was much
lower than PLWP in a handful of annual rings, apdrufurther analysis, the inflection method in
those cases identified the fluctuations similathebeginning of a false ring in what would
otherwise be considered latewood. When the tramsitom earlywood to latewood was rapid, or
very linear, both methods returned similar transifpoints. When there was a “shoulder” during the
transition from earlywood to latewood as seen dnaamatic example in Figure 2.13, the Polynomial
method generally chose the upper part of the skeoudohd the Inflection method frequently chose
the lower part of the shoulder if the slope of tipper shoulder was less than the cutoff set in the

inflection methodology.
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Figure 2.12. Fit of PLWP and INFLWP
Figure 2.13. Differences in PLWP and INFLWP affectd by ring shape

TLWP was more closely correlated with average dgiisan either PLWP or INFLWP. Figure
2.14(a) shows the fit of TLWP plotted against TAVER, and shows the relatively high degree of
fit (R?=0.67) in annual rings measured in this study. féigu14(b) shows PLWP regressed against
INFAVGDEN, and shows a much poorer fit’®.16) between the polynomial measure of latewood
percentage and the average density of the ringvithsthe polynomial method, Figure 2.14(c) shows
the poor fit (R=0.23) between INFLWP and average ring density. FLWas by far the most
correlated latewood measure with average dendifyDEN and PINFDEN provided better
estimates of INFAVGDEN than INFLWP or PLWP witd-R®.43 and R=0.31 for INFDEN and

PINFDEN respectively.
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Values of PINFDEN, the density at which the polymarmethod indicated the transition had taken
place, were more closely associated with differeried®>LWDEN than PEWDEN. In Figure 2.15,
PLWDEN and PEWDEN are regressed against PINFDENVPEN shows a very tight fit with
PINFDEN, with an R= 0.91 for the sample population. Over the rarfgelNFDEN measured in
this data set, PEWDEN did not exhibit a great @dé&hriation compared to PLWDEN, and was
shown to be more poorly fit with PINFDEN, with aA R0.25 for that regression. Differences in
INFDEN were likewise more closely associated wihrges in INFLWDEN than INFEWDEN,
however the goodness of fit between INFDEN and INFREN (R = 0.70) was somewhat poorer

than that of PINFDEN and PLWDEN as seen in Figuté&2
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Figure 2.15. PLWDEN and PEWDEN regressed against RIFDEN
Figure 2.16. TLWDEN and TEWDEN regressed against NFDEN

Anatomy

The increment cores of seven of the 45 trees wesen for further microscopic analysis of radial
cell wall widths and radial lumen diameters. Tleetrwere chosen to span the range of average
densities of the entire set of 45 trees. Measurésriaken from seven selected trees indicated that
the threshold method identified the transition freamnlywood to latewood at a point slightly beyond
Mork’s definition (lumen diameter: single cell wétlickness = 4:1) while the inflection and
polynomial methods identified points with much loviemen diameter to cell wall ratios. Table 2.2
shows the lumen to cell wall ratios for the threetimods and suggests that the ratios measured for
the threshold latewood point were more consisteart those found for the inflection and polynomial
methods. The threshold method identified regiortk @i average lumen to cell wall ratio of
3.9um/um with a standard deviation of fa®/um amongst all the rings measured, while the
inflection and polynomial methods identified reggomith ratios of 2.am/um and 2.Qum/um with
standard deviations of JuB/um and .8@m/um respectively. A paired t-test indicated thatltiraen

to cell wall ratio of the points selected by alldb methods were significantly different beyond a
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95% significance level. For the seven trees andly24% of the points selected by the threshold
method were within 5% of the total ring length fréime position identified as meeting Mork’s

definition of latewood.

Table 2.2. Comparison of lumen diameter to cell whthickness ratios using the three latewood measuse

Latewood determination method

Threshold Inflection Polynomial

lumen/wall lumen/wall lumen/wall

(bm/pm)  (um/um) (km/pm)

Mean 3.9 2.5 2.0
Standard Deviation .50 1.3 73
Minimum 3.1 1.2 .83
Maximum 5.3 7.4 3.6

Figure 2.17 shows the measurements of a typicalamimg encountered during the study. The
lumen to cell wall ratio at the threshold latewatsmarcation was 3.4:1 while the ratios at the
inflection and polynomial inflection points werel2l and 1.9:1 respectively. While the lumen to cell
wall ratio of the inflection and polynomial inflégh points varied substantially from ring to ring,

they consistently target the region of the mosidrapange in cell wall thickness and lumen
diameter, with the polynomial latewood point octgrslightly after the maximum slope was
reached, and the inflection latewood point slighiifore the maximum slope was reached. For the
seven trees studied, the threshold method on aveelgcted a point about 12% of total ring length
before the maximum lumen slope, the inflection madthn average selected a point about 3% before
the maximum slope, and the polynomial method omamechose a point 2% after the maximum

slope. The standard deviation of the distance fitoarpoint chosen by the threshold, inflection, and
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polynomial method with relation to the positiontbé maximum slope were 8.1%, 7.9%, and 6.9%
of total ring length. Evaluating the slope of thewe fit for cell wall thickness and lumen diameter
Figure 2.18 shows the location of the inflection @olynomial EW/LW transition points near the

region with the highest rate of change in cell whitkness and lumen diameter.
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Figure 2.17. Lumen diameter and cell wall thicknesacross a typical annual ring, with the threshold,
inflection, and polynomial latewood transition poirts identified.
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inflection, and polynomial earlywood-latewood trangion points. Error bars represent one standard
deviation.

As suggested in Figures 2.9 and 2.11, in loweritenags, the polynomial and inflection methods
targeted regions with higher lumen to cell walloat(less dense) than in higher density rings. The
threshold method exhibited very little bias forleg lumen to cell wall ratios in low density rings.
Figure 2.19 shows the lumen to cell wall ratiosdlhthe rings measured in the seven trees plotted
against average ring density. The goodness dfffithfe threshold measure was approximately 0.05,
while the goodness of fit for the inflection andysmmial methods were 0.42 and 0.60 respectively.
The fit of the inflection ring method was marketigs than the fit of the polynomial method for the
rings studied, indicating more erratic performaridee Root Mean Squared Error (RMSE) for the
regressions were 0.4&h/um, 1.1um/um, and 0.4um/um for the threshold, inflection, and

polynomial methods respectively.
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Figure 2.19. Graphs of fit for lumen diameter to cé wall ratio regressed against density for the pasons
identified by the three latewood demarcation methost threshold (a), inflection (b), and polynomial (}.
Symbols indicate tree number.

The intent of the dynamic measurements was toifgieht point in the density profile during the
transition from earlywood to latewood that exhitditte most change in density, and seemed to be
associated with the simultaneous rapid declinenmen diameter and increase in cell wall thickness,
as shown in Figure 2.17. The threshold measuremasiexpected to identify a point close to
Mork’s definition of latewood, and not follow theint of maximum density change during the
earlywood/latewood transition. The distance (ircpet ring length) between the transition point
identified by the latewood measures using the demsiric data and the location of maximum lumen
and cell wall dimension change found in the anatahdata (DMAXSLP) was found to exhibit a
correlation with the average ring density in thealyic latewood measurements, and no correlation
with average ring density for the threshold latedvateasurement. These correlations are shown in
Figure 2.20. The goodness of fit of DMAXSLP for h@ynomial method regressed with
TAVGDEN was the highest with arfR 0.38, followed by the inflection method with Bf=0.23,

and finally the threshold method with ah+0. The dynamic methods appeared to select a

transition point beyond the point of the most raghdnge in lumen diameter and cell wall thickness
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in dense rings (i.e. identify a point later in tiveg or shorten the latewood period) and select a
transition point before the point of most rapid & in lumen diameter and cell wall thickness in
low density rings (i.e. identify a point earliertime ring or lengthen the latewood period). Thaea
phenomenon may also cause the deviations betwe@PTand PLWP shown in Figure 2.9 to

increase as the density of the annual ring inceease
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Figure 2.20. Percent of ring distance from point ofnaximum rate of change in lumen diameter versus
average ring density for the three latewood demardan methods: threshold (a), inflection (b), and
polynomial (c). Positive distance indicates the tmsition point chosen occurred after maximum slopeni
lumen diameter. Symbols indicate tree number.

Discussion

Correlations between latewood measures and averagensity

Both the inflection and polynomial methods showestierate agreement to the threshold latewood
measurements in this study, but less than thatteghby Antony et al. (2009) in a similar
experiment (r = 0.99 for young loblolly pine). Ases in Figures 2.7 and 2.10 the goodness of fit
generated by INFLWP and PLWP regressed against Tia&slightly better than 0.50, but
between half to two-thirds of the error variancea®sen the threshold measure and the dynamic

measures was correlated to the average densitg @rinual ring being studied as seen in Figures
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2.8 and 2.11. This would seem to indicate thattietess random error between the static and
dynamic measures than a simple correlation woulgest and that there is a more constant range of
divergences for the static and dynamic measurena¢@tgiven annual ring density. Although not
specifically mentioned in Antony et al, there appéda be a similar trend expressed in terms of the
age/density relationship in their research: th& fivo rings from the pith (presumably denser than
the next five or so rings) show T LWP being lontd&n the inflection measurement, and in the
seven or so subsequent rings (presumably as theleimsity decreases and then rebounds to mature
levels) the threshold LWP was shorter than thahefinflection measurement. As the trees mature,
the difference returns to near zero. In Koubad. §2@05), the plantation grown black spruce stddie
showed a similar relationship between the polynbania threshold methods for the first five to
seven rings from the pith with the threshold metheidrning longer latewood periods in the higher
density early rings, and very little differencetlas ring density moderated to presumably mature
levels. Koubaa’s figures indicate equivalence efttireshold and polynomial methods for rings with
an average density of approximately 450 Kgiirtually identical to the relationship found time
present research. The Douglas-fir studied forghjzer did not exhibit an age based trend in the
deviation between the threshold and dynamic measBexause the dynamic measures seek the
region with the most change in density, they tenskdect points lower than 500 kd/m rings with
average densities less than 450 Kgamd points greater than 500kd/m rings with average
densities greater than 450 kd/reading to the systematic positive and negatifferénces between
the threshold and dynamic latewood measurementsnirf2011) and Koubaa (2005) attribute this
discrepancy to ring age; average ring density nmayige an alternative or complementary

explanation.

The dynamic inflection and polynomial methods shdaeyreat deal of agreement in their latewood
assignments for the rings studied here. The gosdoid# between the two shown in Figure 2.12

was approximately 0.89, with the regression indligpthe inflection method increased nearly one-
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to-one with the polynomial method. From the demséty data, it seems as if these methods are
essentially interchangeable. From a user’s persgedinplementing a robust latewood
measurement scheme for the polynomial method wasrfgler than for the inflection method. To
produce reliable results using MS Excel VBA witle ihflection method required over 170 lines of
code with multiple iterative loops and a great d#dtial and error to set dynamic parameters that
could adequately handle the wide variety of rimggtés (0.4mm-4.5mm) and density profile shapes
encountered in this study. The polynomial methoplémented in Matlab required only 57 lines of

code and required virtually no fine tuning to penfcas expected.

There were 25 rings in this study which the thrés$heeasure reported >95% latewood, and of
those, 13 returned a value of 100% latewood whitinesshold of 500kg/?n/vas used. If the

threshold level were raised much higher, the lowessity rings examined here would register 0%
latewood. These rings are rare, but beg the queatido how to address them. Changing the
threshold value for the extreme rings is a possibibut it would require reporting and analyzing
those rings differently than the other rings. Tlgaamic measures for the “unusual” rings in Figure
2.9 had similar latewood percentages as the suliogmings even though the average densities
were quite different. For rings with elevated eadpd density, the dynamic measures performed
more consistently. The dynamic methods, howevaddd to select earlywood-latewood transition
points on latewood shoulders in rings with gradtesitions and long latewood periods as shown in

Figure 2.13. There were shortcomings with everyhogtused.

One of the primary uses of latewood measuremerits@st products research is to describe and
predict average density. TLWP seemed to be the higlsly correlated with average density,
making it an obvious choice for inferences of prtips associated with density. The two pieces of
information inherent in the threshold measuremeatiae (1) proportion of the annual ring which
has (2) a density greater than the threshold v&INFDEN and INFDEN provided better fits with

INFAVGDEN than PLWP or INFLWP, but still do not nchitthe predictive power of TLWP. If the
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density at which the inflection point takes plaseombined with PLWP or INFLWP, an equivalent
or better fit can be achieved with average der{aity shown). Using the polynomial and inflection
methods to predict average density requires antiaddi piece of information to produce an

equivalent estimate of average density as TLWP.

Anatomy at the selected transition points

The anatomical measurements taken during thisrgs@adicated that the threshold method was the
most consistent in terms of the ratio of radial &mdiameter to cell wall at the latewood transition
points selected in the absence of any other infoomabout the ring. The analysis indicated that
Mork’s definition of latewood was approximated, arerage, with a threshold value of 500 k§j/m
for the Douglas-fir samples measured in this stidigether or not the standard deviation of
0.5um/um found for the radial lumen to cell wall thicksestio is an adequate level of precision
would depend on the needs of the individual researdut it would be far more consistent than the
dynamic methods without additional density datee Tthmen diameter to cell wall ratio at the
threshold latewood transition point was virtuallycorrelated with the average density of the ring
being measured. This consistency constitutes thatest strength of the threshold method: it

provided an anchor point in terms of the anatonthatpoint selected.

The lumen to cell wall ratio at the positions sedeldoy the dynamic measures showed significant
correlation with the average density of the ringeSe findings suggest that the average density of
the ring, which would be collected during densiamsednalysis, could be used to estimate tracheid
anatomy at the selected positions with an estimad&E of 0.47um/um using the polynomial
method, generating a similar level of precisioihes found for the threshold method. It seems
probable however, that the relationship betweemnaa@eering density and the lumen:cell wall ratio at
the chosen latewood transition points would vampeahat by species, especially between species

that exhibit slow transitions from earlywood toelabod (eg. spruce) and rapid transition species
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such as the Douglas-fir studied here. Baselinestaiions of density and anatomy would still have to
be developed for a species of interest, but therg e an opportunity to use a baseline model built
with observed anatomical data to infer propertigbainflection point in rings for which no

anatomical measurements were taken.

During xylogenesis, there seem to be periods irchttie duration of the enlargement or thickening
stages of forming xylem shift, and those changetuination should result in changes in the density
of the mature xylem cells (e.g. Cuny et al. 2012yCet al. 2013, Dodd and Fox 1990). In Figures
2.17 and 2.18, the dynamic measures seem to btfyilegnthe portion of the annual ring at which
the lumen diameter and cell wall thickness are ghmghmost rapidly, which would indicate a
transition such as that shown in Cuny or Dodd amd Fhe duration profiles reported by Cuny et al.
were developed using labor intensive microcoring éaual analysis techniques to determine
changes in the number of cells in the various stafelevelopment and estimate the time spent in
each stage. In addition, localized irregularitiegiiowth rates often make it necessary to sample
large numbers of trees (Cuny et al. 2013). By bevaking duration times in the enlargement and
secondary wall thickening zones with various thoddimeasurements, researchers may be able to
develop proxy models to correlate the time forntiagheids spent in individual zones of
development with regions of the density profile gthimeet the threshold value. Dynamic latewood
measurements could be used to identify the reditimecannual ring that passed through the
enlargement and secondary wall thickening stagdle whration times were changing the most
rapidly. Employing multiple measures of latewoodymarmit researchers to leverage fewer labor
intensive microscopic analyses to increase the keasige and scope of their studies using relatively

inexpensive densiometric analysis.

The inflection and polynomial methods are meandi¢émtify the point of annual ring that exhibits
the greatest rate of change in density, and byneiie, enumerate the position of the ring with the

greatest change in lumen diameter and cell walkttéss. The anatomical data, however, indicates
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that while both the inflection and polynomial medsadentified the region of greatest change in
lumen diameter and cell wall thickness on avertiggy, tended to systematically overshoot or
undershoot the exact position of greatest changendkng on the average density of the individual
rings being measured. By reporting shorter thareebga latewood lengths in high density rings, and
longer than expected latewood periods in low dgmsigs, the dynamic measures tended to
homogenize latewood percentages. The reason fopli@nomenon likely has to do with the
interaction of the dynamic latewood transition séte criteria and the shape of density profiles in
high and low density rings. The rings shown in [FggR.13 may illustrate the point. In higher density
rings, the transition from earlywood to latewoodyisically less abrupt, and may contain several
transition regions of different slopes. Both of thamic measures preferentially seek later
inflection points, and are not required to selbetinflection point with the greatest slope. Integ
density rings, this may cause the dynamic meadareslect inflection points later in the
earlywood/latewood transition, thereby shortenhmglatewood period from the expected length. In
lower density rings, there is frequently a veryidagnd linear transition from earlywood to latewpod
a short period of high density latewood productimg a relatively rapid transition to the next
annual ring. This geometry may force the appardigdtion point earlier in the ring because the
density profile appears to reach its maximum sjapeafter leaving the lower density latewood.
Figures 2.20 b and c suggest that this error coelceduced by using a linear correction factor thase
on the average density of the ring, which wouldafect rings of average density much, but would
improve the accuracy of the dynamic measures figisrivith more extreme average densities. These
corrections may prove vital for researchers inteces correlating remotely collected measures of

canopy moisture stress with xylem formation.

Quality control
Human error is a persistent issue in the colleaiot analysis of annual ring data in large dats set

The repetitive nature of the work can easily leadrtors that become increasingly difficult to
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address as the analysis progresses. Even at wimabcuracy rates, the sheer number of evaluations
and decisions dictate that human error will be gmesComparing the results of multiple measures of
latewood percentage provided an additional quabtytrol check in the course of this research that
identified errors not previously corrected. Durthg script building process, the comparisons proved
invaluable in identifying code statements that neslifurther refinement to accommodate the
features of unusual rings and return more congiséswood demarcation for all rings. Graphs of
residuals such as Figure 2.8 and 2.11 were eslyeasaful for identifying questionable latewood
and ring length assignments because they provigad@e graphic to identify unusual rings.
Combining methods to evaluate latewood assignnadlaiwed the researcher to take advantage of

the strengths of each method and produce the mostate data set possible.

Conclusion

Three latewood demarcation methods: a static tblésh dynamic inflection based, and dynamic
polynomial based, were compared to determine theistency between them, their correlations to
average density, and the anatomy at the seledmaldad transition points for the annual rings of 45
small-diameter Douglas-fir. At first glance, thendynic measures seem to exhibit a moderate
amount of agreement with the threshold methdg@), but further analysis indicated that the
differences between the static and dynamic measwees correlated to average density~0R6)
indicating that comparisons between static and ahymaeasures need to be made in the context of
the average density of the ring because of thesyaic deviations between the measures. The
inflection and polynomial methods showed a higtelef agreement (R0.89), although in some
instances, the shape of the density profile leditergences, especially long latewood shoulders. As
a standalone measurement, TLWP produced the gréiateith average density (R0.67) as
compared to INFLWP (0.23), and PLWP (0.16). Anatomical measurements on a subset of

the 45 trees indicated that the threshold valus06fkg/nf identified a point, on average, very close
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to Mork’s definition where the radial lumen to cehll ratio was 3.um/um with a standard
deviation of 0.5um/um. The lumen to cell wall ratio at the point idéatl by inflection and
polynomial measures exhibited a linear relationstith average ring density , making it possible to
estimate the lumen to cell wall ratio at that peuith the same level of precision as the threshold
measurement. The inflection and polynomial measanésnalso seemed to systematically over or
underestimate the position of those annual ringls thie most change in lumen diameter and cell
wall width based on the average density of the ahring. The geometry of the density profile may
cause the systematic nature of these errors ancfutork should focus on incorporating rules or
algorithms that are less affected by the geomdttilgenannual ring density profile. Each method has
its strengths, and using several simultaneously emayple researchers to complement their current

research and expand the scope and scale of fuljects.
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Chapter Three
The influence of soil bulk density and climate faairs on wood
guality in Douglas-fir trees

Abstract

Soil bulk density (SBD) appeared to be negativelyalated with a dynamic measure of stiffness in
a study on suppressed small diameter Douglaseiin the Bitterroot region of western Montana.
When modeled in a repeated measures frameworky ¥easitometry from the increment cores of a
subset of the sampled trees revealed that thedreas) in low SBD stands had significantly higher
average density (P=.0088) and latewood period ubireg different measures of latewood (P=.025
to P=.039) across the model testing period. THerdihce in average ring density between the two
groups showed a positive correlatiorf¥B.43) to July/August Cooling Degree Days (CDD)] an
during an extremely cool year, the SBD effect waanereversed. The concept of Least Limiting
Water Range (LLWR) may provide a framework for exping these findings such that trees
growing in high SBD stands may experience limitedess to late-season soil moisture due to the
mechanical impediment to fine root egression imargoulk density soils, making it difficult to
remove soil moisture down to the wilting point. $iiproved understanding of the soil-climate-tree
interaction may help forest managers prioritizagdtanprovement treatments to meet challenges

stemming from changes in climate or market expiectatof wood quality.

Introduction

The latewood proportion of an annual ring has tsgawn to be dependent on a variety of factors
including environmental influences such as moisawalability and climate. Irrigation or readily
available moisture generally delays the transiftom earlywood to latewood (Zahner et al. 1964;
Brix 1972) and dry conditions advance the dateaidition (Kantavichai et al. 2010(b); Rozas et al.

2010). If conditions leading up to and followirgettransition are still conducive to latewood
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formation, there is an opportunity to increaseléitewood proportion of the annual ring (Kennedy
1961; Robertson et al. 1990; Gonzalez-Benecke 204D; Eilman et al. 2011). An important
consideration to draw from these studies, as noydchrson et al. (2001) in a review of wood
formation in southern pine, is that the timing eh#able moisture is a critical aspect in determgni
the effect of irrigation or climate on latewood gemtage or ring. As Zahner and others have
demonstrated, increasing the availability of mawstinroughout the growing season with irrigation
tended to delay the transition from earlywood tewaod, lead to increased amounts of earlywood
and latewood, and resulted in latewood percentsigaar to subjects exposed to season-long
drought or control conditions (Zahner et al. 198baugh et al. 2004). Gonzalez-Benecke et al.
(2010) applied irrigation to clonal loblolly pindgmtations only in the summer and fall, and found a
significant increase in the latewood percentagespedific gravity of rings grown under late-season
irrigation. Increasing the year-round availabilitiysoil moisture does not necessarily lead to

increased latewood percentages or ring densityjrtiieg is important.

Operational silvicultural practices such as thignom fertilization can also influence latewood
percentage. Thinning is meant to reduce competitioavailable soil moisture, nutrients, and light
with the objective of improving growth, but whenpéipd as a standalone treatment, studies suggest
there is a modest or no effect (Brix and Mitch&3Q; Cregg et al. 1988; Kantavichai et al. 2010(b))
on annual ring density or percent latewood. Sewardiors noted that the date of latewood initiation
was delayed by the treatment but that the increaadgwood growth was matched with increased
latewood growth, resulting in little significantaige in latewood proportion of the annual rings
(Brix and Mitchel 1980; Cregg et al. 1988). Feztiiion treatments reduce nutrient constraints and
are frequently applied to stimulate the photosytthmpacity of the crown. Although the results are
frequently complicated by site, stand, or spegiesific factors (Larson et al. 2001), there are

frequently short-term reductions in ring densityfaiewood percentage reported (Jozsa and Brix
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1989; Antony et al. 2009), although some effecty beseen for decades (Kantavichai et al. 2010

(@)

The influence of climatic conditions on latewoodqgamtage and ring density may be thought to
parallel those of irrigation for many species vgite specific considerations. In a study of coastal
Douglas-fir, Robertson et al. (1990) compared viagables on xeric, submesic, and subhygric sites
and found that differences between annual ringitiessormed during dry (average 0.45 gfyor

wet years (average 0.52 gRrvere the highest in the xeric site. Their researd others have

found that the sensitivity of ring variables tawditic variables is highest on marginal sites
(Robertson et al. 1990; Savva et al. 2003). Intexid the percent latewood at the xeric site was
most correlated with precipitation in June andyauly, likely the period in which the transition
from earlywood to latewood was occurring. Similaiantavichai and others found that July

precipitation or soil moisture deficit was a strqprgdictor of latewood percentage.

In addition to the timing of natural precipitatiements, there exists the possibility that diffeesnin
soil texture may produce measurable differenceélsdrproportion of latewood produced. The Least
Limiting Water Range (LLWR) may provide a conceptuadel to frame the influence of soil
texture on tree growth, and specifically latewoedqd, for some stands. Many traditional estimates
of moisture availability are based on proxy measenats of field capacity and the wilting point of
the soil (USDA 2010) with assumption that all morstbetween these two values is available for
plant use. LLWR (Letey 1985; Da Silva et al. 1984hoenholtz et al. 2000) compliments these
measures by incorporating limits imposed by lackxfgen in the pore spaces at high moisture
contents and impediment to root penetration at tan@isture contents. As the bulk density of the
soil increases, these limits tend to narrow andeedhe amount of moisture available in a given
volume of soil (Daddow and Warrington 1993; Da &iét al. 1994). This phenomenon would
provide a mechanism to limit late-season moistuedlability, but only if there was active root

growth during the late growing season or the higlk density soils impeded access to soil moisture
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late in the growing season. Many researchers haygested that root growth ceases before the soil
moisture content drops to the point where the belhksity of the soil would limit further root

penetration (Joslin et al 2001; Lopez et al. 2001).

In addition to the well documented influence of wWatensity on the physical properties of forest
products, the overall density of annual rings Has been shown to be an important predictor for
surviving drought events. High average ring denaitgt higher latewood percentage were associated
with lower mortality in plantation grown Douglas-following a severe drought in 2003 that
impacted much of Europe (Martinez-Meier et al. 20D8lla-Salda et al. 2009; Dalla-Salda et al.
2011). Possible explanations for latewood’s rolthereduction in Douglas-fir mortality following

an extreme drought event included the reducedemcie of embolism at extreme water potentials
and increased water storage capability as comparearlywood (Domec and Gartner 2002). These
researchers suggest that at moderate levels ahs@ture deficit, the pits in the earlywood aréab

to block embolisms from spreading, while some efriost dense latewood pits do not. Water from
a portion of the embolizing latewood tracheidsvailable as a short term reserve. With increasing
negative pressure under severe drought conditsamse earlywood pits are unable to block air from
leaking past the pit membranes resulting in a rdpitctease in conductance in the earlywood . Under
those same conditions, latewood tracheids, stitloative by virtue of their pit geometry, are atade
resist embolism and continue transporting waterd@yand Sperry 1989; Domec and Gartner 2002).
Experiments with the hydraulic conductivity of gavbod and latewood in Douglas-fir suggested
that under favorable moisture conditions, latewought only account for 5% of the total
conductance of the stem, but under severe drougditions, that proportion could reach 16%

(Domec and Gartner 2002).

Morrow et al. (2013) found that small diameter Diasefir growing on low bulk density soils had
consistently higher standing Dynamic Modulus ofsitity (DMOE) values than their counterparts

growing on high bulk density soils in suppresseads in the Bitterroot National Forest outside
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Darby, MT. We proposed that the framework of Laastiting Water Range (LLWR) could explain
the differences in DMOE by providing a mechanismlémger latewood periods. If slow growth
were coupled with varying amounts of available smlisture between soil types late in the growing
season, then the development the annual ringséheflict those differences. The goal of this study
was to determine if systematic differences in rimgyphology exist in trees grown on high and low
bulk density soils. Average ring density and thresasures of latewood were used for comparison: a
threshold measure, a smoothed slope inflection inegand a polynomial measure. The threshold
latewood method identifies the position at which #mnual rings reached the threshold density, in
other words, the position at which the ratio of &mdiameter to cell wall thickness reached a
specific value. The dynamic inflection and polynahmethods measure the point at which the
change in density reaches its peak, alternativiedyposition at which the rate of narrowing lumen

diameter and cell wall thickening reaches its peak

Methods

Selection of subjects

Increment cores and tree measurements were callgotm 247 small diameter (10.2-30.5cm
diameter at breast height) Douglas-fir growinghia Trapper Bunkhouse region within the Darby
Ranger District of the Bitterroot National ForeBtees were sampled across four elevation zones
ranging from 1280m to 2120m, and three stand denkitses based on the percent of open canopy.
Plots were located on north- to east-facing aspeatands that were naturally regenerated.
Increment cores were removed from the uphill sidéhree trees at every plot: 1) the one closest to
10cm DBH, 2) closest to 20cm DBH and 3) the oneeatbto 30cm DBH. After the fieldwork was
completed, the soil bulk density on which the trelese growing on was determined using the
USGS-NRCS SSURGO soil map for the region (USGS-NRQ®) with no spot checking of the

soil bulk densities at the sites. The trees wiassdied into two groups based on the bulk densdity
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the soil on which they grew: the low Soil Bulk DépgSBD) group (soil density < 1.46 mgiyrand
the high SBD group (soil density > 1.46 gf&smA more detailed description of the field samglis

found in Morrow et al. (2013).

To avoid the effects of juvenile to mature woodhsiéion, only rings with a cambial age greater than
25 years at breast height in 1976 (the start othdy period) were used. From the remaining 218
trees meeting the criteria, increment cores fronmakiduals from each soil bulk density group
were chosen randomly to study the SBD effect. Thenm diameter increment cores were glued
between pine blanks and ripped to 1.5mm thickngss.radial strips were scanned using a QMS
QTRS-01X (Quintek Measurement Systems, Knoxvilld) X-ray densitometer at 0.2mm intervals.
The entire increment cores were scanned; howerbr rimg data from 1976 to 2005 was used in the
analysis. Cracked or otherwise damaged rings vegneved from the data set. The resulting set of
rings was analyzed to determine if significanteli#nces in the annual ring characteristics could be
found in those trees growing on low bulk densitiyssand those growing on higher bulk density

soils.

Average density and latewood measures

Three methods were used to measure the latewoodmiage of the annual rings in this study and
are outlined in more detail in Chapter Two. Thstfivas a 500kg/frthreshold (TLWP)
measurement generated by the QMS software. Thedaeas an inflection measurement
(INFLWP) generated using a purpose written scrigflicrosoft Excel VBA that identified the
inflection point at which the second derivativellod density/position slope passed through zero
during the transition from earlywood to latewootieTthird measurement was a polynomial derived
measurement (PLWP) similar to that proposed by lhaudt al. (2002) generated using Matlab
(Matlab 2013, MathWorks Inc. Natick, MA, 2013) sitriThe Matlab script fit a6order

polynomial and identified the points on the polynalnat which the roots of the second derivative of
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the polynomial equaled zero. The latest root waseh which occurred before the maximum
density value, occurred between 20 and 90 perddatal ring length, and exhibited a positive slope
when read from earlywood to latewood was choses.BEginning and end positions of the rings for
the threshold method were determined by the QM8Bvaoé (QMS, Knoxville, Tennessee) at points
in which the density passes through the threshalidevduring the transition from one year’s ring to
the next. The QMS software also measured the agetagsity (AVGDEN) of the ring. The
beginning and end points for the inflection andypomial methods were determined by identifying
the position during the transition from year toryawhich the second derivative of the density
position profile crossed through zero. An averagestty for the dynamic measures was also
recorded, but because it was essentially idertticddat generated by the QMS software, only the

average density from the QMS software is reporaxé.h

In Chapter Two, anatomical analysis of a subs#éh®study trees indicated that the inflection and
polynomial methods tended systematically underedérthe amount of latewood in high density
annual rings, and overestimate the amount of labehio low density annual rings. The end result
would be a reduction in the apparent differencatewood percentage in the low and high density
rings. To reduce the systematic component of thar eresent in the inflection and polynomial
methods, a linear correction factor developed infiér Two was applied to these dynamic latewood

measures using the following formulae:

Adjusted Inflection Latewood Percentage (ADJINFLWP)

ADJINFLWP = INFLWP + 0.054*AVGDEN - 32.95 (1)

Adjusted Polynomial Latewood Percentage (ADJPLWP)

ADJPLWP = PLWP + 0.060 * AVGDEN — 31.44 (2)
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Statistical Analysis
Ring data from 1976 to 1985 was used to developatsddr the ring properties using continuous
ring characteristics and tree, stand, and sitakibes measured in 2007 at the time the samples were
collected from the field. The potential tree arahst blocking variables as measured in 2007 were:
percent green canopy height (PERGRN), basal aresuned on plot center(BA), percent closed
canopy at plot center(PERCOV), stand density in@&X), inverse of the mean annual increment of
the tree(MAI"), and elevation measured at plot center (ELEV} fihg characteristics used as
blocking variables were: cambial age at breastti€BHAGE), average ring length for the
modeling period (AVGRLN), and natural log of thenaal ring length of the modeling period
(LNAVGRLN). Soil Bulk Density (SBD) was derived inoNRCS Soil Survey data as described in
Morrow et al. (2013), and trees were divided into groups (BDGROUP) based on the SBD on
which they grew. The treatment variable BDGROURI& EAR), and BDGROUP X YEAR were
combined with covariates and interactions to idgrignificant variables for each ring property
initially ignoring autocorrelation. After develogra reduced set of significant variables, random
effects and autocorrelation models were establisinelthe models further reduced until the models
contained treatment, time, BDGROUP x time intemactrandom effects, and two of the most

significant and interpretable blocking variables.

Repeated measures Analysis of Variance (ANOVA) ugesl to model the ring series data collected
from the cores using the MIXED procedure in SASSAS Institute, Inc., McGary, NC). Ring data
from the ten year time period 1976-1985 was modeg#ag the two most significant and
interpretable blocking variables, the main effeftSBD (BDGROUP), year (YEAR), and the

interaction of SBD and year. The full linear mixaddel would be the following
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Yijk =M tayiji +Byijz +A4i+ 1 + (A0 + (S + eiji 3

Wherey; ;; = the ring characteristic from ttigh year (1976, ..., 2005) of thiéh tree (1, ..., 25)
nested in théth SBD (low or high). p is the overall meaa;is the coefficient for the first
blocking variable measured for tree y;; ; § is the coefficient for the second blocking varebl
measured for treg;;; 4 is the fixed effect of théth SBD classification (low or high}; is the fixed
effect of thekth year;At is the fixed effect of the interaction betwaémSBD andkth year; S is
the random effect (random intercept) of flietree nested within thigh SBD classification,~NID

(0, 6%s); ejiis the random error term, ~NID (6°).

Several covariance structures were tested to deeeb®st fit model for the correlated residual rsrro
resulting from repeated sampling of the same inldiai trees through time. For each ring
characteristic modeled, the structures tested waistructured, first order autoregressive,
heterogeneous autoregressive, compound symmaedtardgeneous compound symmetric, Toeplitz,
and heterogeneous Toeplitz. The model that exkilite lowest value for Schwartz's Bayesian
Information Criterion (BIC) was selected as thafimodel used for that ring characteristic (Litel
al. 1996). Normality of the residuals and the agstion of constant variance of the errors were
assessed visually. Once the models for each riopepty were established for the calibration years
of 1976-1985, the models were rerun using thertegtdata from 1986-2005. The results from
1986-2005 were used to assess the significancBDfdd the ring characteristics measured. A
primer on repeated measures analysis and moré detiie statistical analysis can be found in

Appendix C.

Climate data was collected from the nearest NOAAther station in Darby, MT, approximately 16
km from the study site and at an elevation of IHT6INOAA, 2013). Monthly precipitation and
temperature data along with Cooling Degree Days¥DBere used to investigate the influence of

climate on the two SBD groups.
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Results

Initially, the data for all rings larger than 0.2mwere assessed for quality, but it became apparent
during the model building process that the disageds in ring length between the latewood
methods and the location of the earlywood/latewansition generated a great deal of variation in
the ring characteristics of some of the smalleggi Figure 3.1 shows TLWP regressed against ring
length for all the rings above 0.2mm. The ringoied.4mm were typified by extremely high or low
earlywood density, rapid transitions from earlywaodatewood, and at times erratic density that
caused all three methods of latewood demarcatioetton erroneous results. To reduce the
measurement uncertainty due to ring start/stogas®nt, those rings less than 0.4mm were
dropped. The rings shorter than 0.4mm that werpplrd were assumed to be missing at random
because the smallest rings had the greatest riiatiall measures of latewood and average density.
Of the initial 1000 rings collected for the testataet, 43 were dropped because they were less than
0.2 mm or damaged, 85 were dropped because theylegsthan 0.4mm, the oldest tree in the high
and low SBD group were dropped (5+ standard deviatfrom mean age, total of 40 rings), two
trees were dropped because they only had 6 valig thetween them, and one tree from the low
SBD group was dropped because it had unusuallylatgivood percentage and was suspected of

containing compression wood. A total of 45 of thiginal 50 trees were used in the final analysis.
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Figure 3.1. Plot of TLWP vs RINGLEN

Figure 3.1 also show the distribution of TLWP hddrage right tail, as did all the other measures of
latewood. After modeling the calibration data ¢, residuals appeared to flare with increasing
predicted TLWP (See Appendix C). The latewood messwere adjusted using a natural log
transformation, and the resulting residuals exéibitonstant variation across the range of predicted
values with the prediction data set. The log tramséd latewood measures were used for the final

analysis.

A summary table of the trees included in this stisdshown in Table 3.1. On average, the height and
diameter were similar, likely owing to the simikage and stand density distributions. The average
elevations were similar, but the distributions wesenewhat different and are explained in the

Discussion section.
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Table 3.1. Low and high SBD sample populations, stdard deviation in parentheses

SBD group
Property Low <1.46 g/cn High >1.46g/cm
Mean age in 1986 (yr) 55.9 (11.3) 56.0(9.6)
Elevation (m) 1774 (258) 1719 (170)
Oldest tree in 1986 (yr) 84 76
Youngest tree in 1986 (yr) 36 38
Basal area on plot(th 14.6 (6.0) 12.9 (4.5)
DBH (cm) 22.7 (5.6) 23.5 (5.6)
Total height (m) 15.5 (3.4) 15.9 (3.4)
Average ring length 1986-2005 0.94 (0.38) 1.00 (.49)
(mm)
Number of trees in sample 22 23

Linear mixed model results

A description of the variable names are shown inl§ 8.2 After determining the most significant
and interpretable variables and covariance mdtek provided the best fit for the calibration dsga
from rings added between 1976 to 1985 (results shinwable 3.3), the models were rerun with the
ring data from 1986 to 2005, the results of whighshown in Table 3.4. The first order
autoregressive covariance model was found to peoid best fit (using BIC) for all ring property
models. All models indicated that YEAR was highigrsficant, likely indicating that variation in

annual climate played an important role in the chgracteristics modeled.

Table 3.2. Descriptions of ring variables used inhe analysis

Ring variable Description

LNTLWP Log transformed threshold latewood perceatag

TAVGDEN Average ring density using threshold method

LNPLWP Log transformed polynomial latewood percegeta

LNADJPLWP Log transformed polynomial latewood afeljustment using equation 2
LNINFLWP Log transformed inflection latewood pertage

ADJLNINFLWP  Log transformed inflection measuremafier adjustment using equation 1
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Table 3.3. Results of ring property models for caliration dataset

Parameter Estimates Type 3Test of Fixed Effects

Property Source Coefficient Std. Err. Num d.f. DEn F-value P-value
LNTLWP Intercept 3.42 .201 1 41.2 365 <.0001
LNAVGRL -0.184 0.0865 1 42.6 4.54 038¢
RMSE BHAGE 0.00671 0.346 1 40.9 3.77 .0591
0.145 BDGRP 0.132 0.0869 1 41.5 2.21 .1443
Bias YEAR 9 306 13.98 <.0001
-0.000787 BDGRP X
YEAR 9 288 3.19 .0011
TAVGDEN Intercept 593 73.9 1 40.7 74.7 <.0001
ELEV -0.0869 0.0325 1 40.6 7.12 .0109
RMSE BHAGE 2.00 0.714 1 40.7 7.82 .0079
27.8 BDGRP 44.4 17.8 1 41.1 1.95 1704
Bias YEAR 9 311 13.4 <.0001
-0.0693 BDGRP X
YEAR 9 293 4.20 <.0001
LNPLWP Intercept 3.33 0.114 1 42.3 1280 <.0001
LNAVGRL -0.194 0.0789 1 43.1 6.02 .0183
RMSE PERGRN -0.226 0.157 1 42.8 2.08 1567
0.155 BDGRP 0.0285 0.0845 1 41.3 1.87 1787
Bias YEAR 9 285 8.27 <.0001
-0.00150 BDGRP X
YEAR 9 285 2.77 .0040
ADJLNPLWP Intercept 3.44 0.149 1 42.3 805 <.0001
LNAVGRL -0.203 0.104 1 43.1 4.95 .0313
RMSE PERGRN -0.346 0.205 1 42.8 2.84 .0992
0.195 BDGRP 0.107 0.109 1 41.3 2.04 .1607
Bias YEAR 9 289 12.89 <.0001
-0.000770 BDGRP X
YEAR 9 289 3.60 .0003
LNINFLWP Intercept 3.02 0.159 1 40.8 472 <.0001
LNAVGRL -0.186 0.0679 1 42.9 7.53 .0088
RMSE BHAGE 0.00541 0.00269 1 40.5 4.05 .0508
0.166 BDGRP 0.0196 0.0783 1 41.2 2.10 .1653
Bias YEAR 9 309 7.16 <.0001
-0.000800 BDGRP X
YEAR 9 291 2.10 .0293
ADJLNINFLWP  Intercept 2.55 0.252 1 40.7 140 <.0001
LNAVGRL -0.262 0.108 1 42.7 5.83 .0201
RMSE BHAGE 0.0107 0.00430 1 404 6.16 .0173
0.242 BDGRP 0.124 0.253 1 41.1 2.64 1116
Bias YEAR 9 310 11.7 <.0001
-.000792 BDGRP X
YEAR 9 292 2.97 .0022
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Table 3.4. Results of ring property models for Tesperiod

Parameter Estimates Type 3Test of Fixed Effects
Property Source Coefficient Std. Err. Num d.f. DEn F-value P-value
LNTLWP Intercept 3.43 0.242 1 41.2 285 <.0001
LNAVGRL -0.139 0.102 1 413 1.87 179
RMSE BHAGE 0.00330 0.00318 1 41.2 1.08 .305
0.142 BDGRP 0.179 0.0814 1 41.1 5.39 .0253
Bias YEAR 19 647 8.94 <.0001
-0.000768 BDGRP X
YEAR 19 652 0.81 0.695
TAVGDEN Intercept 545 79 1 41.1 60.2 <.0001
ELEV -0.0683 0.0310 1 41.1 3.87 .0559
RMSE BHAGE 1.28 0.679 1 41.2 3.56 .0661
28.4 BDGRP 44.4 17.6 1 41.1 7.56 .0088
Bias YEAR 19 644 11.2 <.0001
-0.0500 BDGRP X
YEAR 19 651 1.26 0.202
LNPLWP Intercept 3.26 0.127 1 40.8 952 <.0001
LNAVGRL -0.244 0.109 1 41 5.00 .0308
RMSE PERGRN -0.0502 0.167 1 40.8 0.09 .766
0.162 BDGRP 0.0513 0.0903 1 40.8 2.40 129
Bias YEAR 19 647 8.82 <.0001
-0.00169 BDGRP X
YEAR 19 647 1.27 0.196
ADJLNPLWP Intercept 3.28 0.157 1 41 646 <.0001
LNAVGRL -0.283 0.135 1 41.2 4.40 .0421
RMSE PERGRN -0.108 0.207 1 41 0.27 .604
0.196 BDGRP 0.140 0.111 1 41 4.56 .0387
Bias YEAR 19 647 9.85 <.0001
-0.00125 BDGRP X
YEAR 19 647 1.13 .319
LNINFLWP Intercept 3.21 0.232 1 41 263 <.0001
LNAVGRL -0.241 0.0974 1 41.2 6.13 .0175
RMSE BHAGE 0.00121 0.00304 1 41 0.16 .693
0.156 BDGRP 0.0777 0.0824 1 40.9 241 0.1281
Bias YEAR 19 650 7.75 <.0001
-0.000824 BDGRP X
YEAR 19 651 12 .248
ADJLNINFLWP  Intercept 2.80 0.341 1 41.1 97.65 <.0001
LNAVGRL -0.324 0.143 1 41.3 5.12 028¢
RMSE BHAGE 0.00397 0.00448 1 41.2 0.79 .3803
0.223 BDGRP 0.173 0.120 1 41 4.68 .0365
Bias YEAR 19 647 8.12 <.0001
-.000845 BDGRP X
YEAR 19 650 1.02 435

The significance of the blocking variables droppethewhat for all ring models, though many
retained significance at an alpha level of 95%,tmosably, LNAVGRL. The parameter estimates
for the blocking variables were also similar foe ttalibration and test periods, as were the measure
of fit provided by RMSE and Bias calculated for thedels. The most meaningful change from the
calibration period models (1976-1985) to the testqd models (1986-2005) was the shift in the
significant treatment effects from the treatmentbgr interaction term in the calibration models to

the treatment main effect term in the test modalsing characteristic models had significant
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BDGRP X YEAR interaction terms in the calibratioomdels, and none of the test models had
significant BDGRP X YEAR interactions. Instead, thedels for the test period indicated that
LNTLWP, TAVGDEN, ADJLNPLWP, and ADJLNINFLWP had sidicant main effects for
BDGRP with parameter estimates that were not saanmifly different than the estimates from the
calibration models. The nature of the differenecethe previously mentioned ring characteristics
between the low and high SBD groups changed fromtanmittent significant difference to a

sustained significant difference.

Threshold method and average density

From Table 3.4, BDGRP was found to be significanha 95% confidence level for LNTLWP, with
a marginal mean of TLWP of 47% and 40% for tre@swgron low and high bulk density soils
respectively, and a RMSEP of approximately 14%afproximately 6% TLWP at the mean).
Neither LNAVGRL nor PERGRN were significant at &&8%onfidence level. Figure 3.2 shows
LNTLWP transformed back to the original units fbettest period. TLWP for the low SBD group
was always higher during the test period, andweSBD groups moved in concert with one

another for the study period.

The model for TAVGDEN indicated that BDGRP wasgnfficant at a 99% confidence level with
marginal means of 571 kg/m3 and 532 kyfan the low and high bulk density groups respeattiy
for a difference of 40 kg/ fr(or 7.5%) between the groups on average acrosstutg period.
ELEV was somewhat significant with an estimatedrease of 0.02 kg/ frper meter of elevation
gain. Similarly, BHAGE was somewhat significantiwén increase of about 1.3 kgi per
additional year of age. The model had a RMSEP ¢fk2f nf and the marginal means of

TAVGDEN by year are shown in Figure 3.3
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Figure 3.2. Marginal means of TLWP over the periodl986-2005 (Bars indicate one standard error)
Figure 3.3. Marginal means for TAVGDEN during the years 1986-2005 (Bars indicate one standard
error)

Polynomial method

Table 3.4 shows that LNPLWP indicated that neiBlBGRP nor BDGRP X YEAR were significant
at a 95% level, with estimated average PLWP vabi@8% and 25% for the low and high bulk
density groups respectively and a RMSE of 4% PLWHRemean. LNAVGRL was found to be
significant with a 1% increase in average ring trr@sulting in a 0.24% decrease in PLWP. The
marginal means of LNPLWP transformed back to thgimal units for the study period are shown in

Figure 3.4.

The model for ADJLNPLWP indicated that BDGRP wamfficant at a 95% confidence level, with
marginal means of 30% and 25% for the low and BBD groups respectively with an RMSE of
5% at the mean. LNAVGRL was also found to be sigaiit with a decrease of 0.28% PLWP for
every 1% increase in ring length. Figure 3.5 shthesnarginal means of LNADJPLWP

transformed to the original units over the studsique
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Figure 3.4. Marginal means of LNPLWP transformed tothe original units for the study period (Bars
indicate one standard error)

Figure 3.5. Marginal means of ADJLNPLWP transformedto the original units for the study period
(Bars indicate one standard error)

Inflection method

From Table 3.4, neither BDGRP nor BDGRPxYEAR werenid to be significant for LNINFLWP
with estimated INFLWP levels of 30% and 27% for lilve and high bulk density soils respectively.
LNAVGRL was found to be significant at a 95% comeinte level with a parameter estimate of 1%
increase in ring length resulting in a 0.24% deseda INFLWP. The marginal means of

LNINFLWP transformed to its original units are shoim Figure 3.6.

The model for ADJLNINFLWP indicated that BDGRP waasignificant factor (P=0.037), and that
the BDGRPXYEAR interaction was not. The mean vahfeSDIJLNINFLWP transformed back to
the original units were 27% and 22% for the low aigh SBD groups respectively. LNAVGRL was
likewise significant at a 95% confidence level watiparameter estimate of 1% increase in ring

length resulting in a 0.32% decrease in ADJINFLVVRe model had a RMSE of approximately 6%
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ADJINFLWP at the mean. The marginal means of ADNIRIWP transformed to its original units

are shown in Figure 3.7.
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Figure 3.6. Marginal means of LNINFLWP transformedto the original units for the study period (Bars
indicate one standard error)

Figure 3.7. Marginal means of ADJLNINFLWP transformed to the original units for the study period
(Bars indicate one standard error)

Comparison of latewood measurement methods

The parameter estimates reported by the ANOVAHerdffect of BDGRP and the significance of
the BDGRP effect on LNTLWP, ADJLNPLWP, and ADJLNINWP were similar across both
periods (Tables 3.3 and 3.4), and the measuresajgneflected similar trends in the differences
between SBD groups from year to year. Figure 3®vstthe percent difference in latewood
measures between the two SBD groups (trees onutikndiensity soil had higher average latewood
percentages for all years except 1980) for theentudy period. The adjusted polynomial and
inflection methods occasionally reported more eraggd differences between the two SBD groups
than the threshold method (e.g. 2003, 1998, 193884 )1 though for many years, there was no real

difference between the latewood measures (e.g.-1978, 1985-1988).
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Figure 3.8. Percent difference in latewood percengge throughout the study period using the threshold,
adjusted polynomial, and adjusted inflection method.

The results of the models for the unadjusted patyaband inflection latewood measures suggested
there was much less difference between the two &BDps. In Figure 3.9, the average percent
difference between the two SBD groups are grapbethé entire study period. For all but a handful
of years, the difference in SBD groups is less thah measured by the threshold method. This
reduced level of difference is reflected in the AOresults for the test period in Table 3.4;
BDGRP does not appear to be a significant fact@nasing the unadjusted dynamic latewood

measures to compare the trees grown on low anddulihdensity soils.
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Figure 3.9. Percent difference in latewood percentge throughout the study period using the threshold,
polynomial, and inflection methods

Climate effects

In an effort to understand the significance of YEARI why the significant effect of BDGRP was
found in the BDGRPXYEAR interaction for the calitiom data set (1976-1985) and as a main effect
in the test data set (1986-2005), climate data ffeemearest weather station in Darby, MT
(approximately 16 km from site and at elevatiod d60m) for all data periods were collected
(NOAA, 2013). The most dramatic differences in @imbetween the periods were found in the
extreme temperatures late in the growing seasofMaydprecipitation. Figure 3.10 shows the sum
of Cooling Degree Days (18@Q basis) for July and August from 1955 to 2005.ibgithe

calibration period, the trees experienced a namrosrgge and lower average levels of late season
heat than during the test period. In addition,ehgas almost twice the range in May precipitation

during the calibration period compared to the pestod, as shown in Figure 3.11.
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Table 3.4 shows the percent difference in averagsit) for the calibration and test period between
trees grown on low and high bulk density soils. iBgithe calibration period, the average difference
was 4%, but there was one year (1980) in whictstgeewn on high bulk density soils averaged 3%
higher density than trees grown on low bulk densiys. Climate data for this year revealed that
1980 registered the highest May precipitation duedthird coldest (in terms of CDD) July and

August in the 50 year record.

Table 3.5. Percent difference in AVGDEN between lownd high bulk density soil groups

Dataset Mean N SD Range Minimum Maximum
Calibration 4.0% 10 3.9% 14.5% -3.0% 11.2%
Test 7.5% 20 2.0% 7.1% 3.9% 11.0%
Total 6.3% 30 3.2% 14.5% -3.0% 11.2%

If the yearly percent differences in average dgraié binned by their Z-score, the resulting
distribution by Z score is shown in Figure 3.12irlds¢he same Z-score grouping, monthly
precipitation and CDD data are plotted in Figurds8&nd 3.14. In Figures 3.13 and 3.14, the lines
represent the average monthly precipitation and @@Bhe years which produced AVGDEN
differences of their respective Z scores, withdlierage (circles) for the 30 years with error bars
representing one standard error from the 30 yeanage. The year producing the least difference
were years with higher than average May (and Jonthé year 1980) rainfall seen in Figure 3.11
and considerably lower than average temperaturesaasin Figure 3.10. Conversely, those years
producing the highest difference between the SBidigs exhibited slightly lower than average
rainfall during May and June, but experienced highan average CDDs during July and August. As
shown in Figure 3.15, plotting May precipitation) éad July/August CDD (b) against the percent
difference in AVGDEN between the two SBD groupg tiend with precipitation is very weak and
seems to be heavily dependent on the extremelygdrigdipitation year 1980, but the trend for

July/August CDD appears to be a much better fihait B = 0.43.
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Discussion

The working hypothesis at the outset of this redearas that trees grown on low bulk density soils
had increased availability of soil moisture in thi growing season over trees grown on higher bulk
density soils. It was theorized that this persistate season differential in available soil maistu
would manifest itself as longer latewood percergagyed increased average densities in those trees
grown on low bulk density soils. The models builtést the significance of SBD supported that

hypothesis on several levels.

Comparison of latewood measures

For the test data set (rings added between 1988}2(0@ models indicated that trees grown on low
bulk density soils had higher latewood percenthgethe difference was not significant for all
measures. The ANOVA models (Table 3.4) suggestdhiang the test period, the difference
between the two groups ranged between a signific@#it difference for the threshold method to a
non-significant 5% difference for the unadjusted¥. The polynomial and inflection methods
produced mixed results dependant on whether athectdjusted values were used. The polynomial
and inflection methods were intended to identify pioint at which the thickening cell walls and
narrowing lumen create the highest rate of changkensity from tracheid to tracheid along a radial
profile. The adjustment factors used for this Chaftquations 1 and 2) were instituted to try and
reduce the systematic errors found in Chapter Tavomprove the dynamic measures’ ability to
identify the point-of-most-change in cell wall thiess and lumen diameter. In the unadjusted values
found in the anatomical section of Chapter Two,din@amic measures seemed to systematically
overestimate the amount of latewood in low dengitys and underestimate the amount of latewood
in higher density rings, leading to reduced appaddferences. The models in Table 3.4 for the
unadjusted polynomial and inflection latewood mehmdicated that the effect of BDGRP was not

significant, with parameter estimates of 5% andf8fthe effect of BDGRP on the models for the
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polynomial and inflection methods respectively. 3&evould translate to differences of 3% PLWP

and 3% INFLWP on average through the study period.

After adjustment, however, the model for dynami@aswees of latewood percentage returned similar
results as the model for TLWP. The model for agjdS2LWP indicated a difference of 14% (or 5%
higher PLWP for low SBD) between low and high SBDOups, and the model for adjusted INFLWP
estimated a 17% difference (or 5% higher INFLWPIéov SBD trees). The models for the threshold
and adjusted dynamic measures all suggested treetbamy; there was a significant difference in
between SBD groups of between 5% and 7% actualdete percentages on average over the course
of the test period. The fact that the results veergimilar may be related to the rapid transitiamf
earlywood to latewood typical in Douglas-fir anhtags (Bowyer et al. , 2003), and the findings in
Chapter Two that large deviations between the llmldsand dynamic measures are generally only

seen in rings exhibiting extreme values of avedayesity.

Average density and climate interaction with SBD

The model for AVGDEN suggested that the effect BI@ERP was highly significant (beyond 99%
confidence level) during the test period and thatdifference in AVGDEN over the test period was
approximately 40kg/fhat laboratory conditions. Transforming the deasifor each SBD group at
lab conditions to an estimated green specific ¢yathe average for the low SBD group was about

0.49, while the average for the high SBD group alasut 0.45 (USDA 2001).

In addition to the significance of the effect of BBP during the test period, the contrasting
behavior of the models from the calibration per{876-1985) to the test period (1986-2005)
further supports a site affect associated with SB&ing AVGDEN as an example, the calibration
model indicated a highly significant (P<0.0001) BRI& X YEAR interaction. When the model was

employed on the test period data, the interactam tvas not found to be significant, but the main
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effect of BDGRP was. Variation in climate variabgegms to explain the significance of both the

interaction and the main effect.

During the calibration period, two cold years: 1@l 1980, presented conditions that resulted in
no difference (1976), and the only year in the t8@igd in which the high SBD group had higher
AVGDEN than the low SBD group (1980). When growganditions were exceedingly mild and
sufficient soil moisture was present, there waslifference between the two SBD groups, and even
a reversal of the SBD effect. Removing these twaryéom the calibration dataset results in a non-
significant BDGRPXYEAR interaction, as well as anrgignificant main effect for BDGRP during
the calibration period. Mild conditions during 197885, excepting 1976 and 1980, contributed to a

higher, but not significantly higher, average dgnfar trees growing on low bulk density soils.

During the test period, there was a relativelyanstd difference in AVGDEN between the two SBD
groups, a consistently higher average densityvin3&D trees, and is reflected in the significante o
the main effect of BDGRP, not the interaction wigtar. In Figure 3.10 and 3.11, it can be seen that
the severity of the July/August period was freglyemiore extreme in the test period than the
calibration period, and there were no cold/wet gdi&e 1976 or 1980. Figure 3.15b suggests a good
fit between July/August CDD and the percent diffieess of AVGDEN between SBD groups across
both the calibration and the test periods. Morgusant hot July/August in the test period seemed to

lead to a significant BDGRP main effect for AVGDEN.

The only other broad-scale site variable collethed seems likely to cause this sort of difference
with AVGDEN would be elevation. If the two SBD gnmiexamined here were not drawn from
equivalent elevations, there could be an opponuoit elevationally induced climate variation to
appear as an effect of SBD, leading to larger latelpercentages and higher average density due to
uneven sampling, not SBD. To explore if differenceslevation distributions between SBD groups

could explain the differences, Figure 3.16a shaweddistribution of elevations for the two SBD
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groups that were included in the study. The treegpted from each group cover approximately the
same range, but the low bulk density trees sedmve more individuals from the lowest and
highest elevation levels, while the high SBD grdas more individuals in the middle elevation
levels. However, the residuals for AVGDEN from b&BD groups in Figure 3.16b appear to be
similarly distributed across their shared elevatimmge, indicating that even though the distritrutio
of elevations was not identical, there was no syate difference in the random errors across the
elevation range between the two groups. Althoughetevational composition of the two SBD

groups were not identical, they appeared to bewately similar for comparison purposes.
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Figure 3.16. Comparison of elevations between SBRraple groups. Histogram of elevation distribution
for the two sample groups (a), residuals of AVGDENit against elevation for the two treatment groups

(b).

When additional interactions between BDGRP, ELEA] ¥EAR are added using the same
covariance framework as the base models foundle$a8.2 and 3.3, the model indicates that all
the 2 way and the 3-way interaction are significhnt all the interactions significantly raise Bk
value, indicating a less parsimonious or more dwverddel compared to the base model. The

behavior accounted for by the interactions is ifai®d in Figure 3.17. Figure 3.17a shows
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AVGDEN for all trees in 1980, the coldest and w&tia the study period, across the elevation
gradient sampled. As mentioned previously, 1980twaonly year in which the marginal mean of
AVGDEN was higher for the high SBD group than the ISBD group, and both sample groups
seem to exhibit a similar negative correlation valévation. Of all the years for which
measurements were taken, 1980 should have be&rasidimited by soil moisture. Conversely,
Figure 3.17b shows the AVGDEN of all trees acrbssdlevation gradient for the year 2003, the
hottest year in the study period. The AVGDEN of line SBD group exhibits an almost identical
regression to ELEV as in 1980, but the high SBDugr@specially those below 2000m, dropped by
approximately 100kg/fwhen taken as a group. In addition to being theekbyear in the study
period, 2003 was the third year of an extendedghbas measured by the Palmer Drought Severity
Index published for the region (NOAA, 2013(a)). 3Ghould have been one of the years most
limited by low soil moisture. The magnitude of tiggp seems to drive the differences in AVGDEN
between the groups seen in Figure 3.15b, and treirction of ELEVXYEAR, BDGRPXELEV,
and BDGRPXELEVXYEAR interactions all refine the fgahs in Figure 3.17 to the detriment of the
BIC values of their respective models. During thederate climatic conditions of most of the
calibration period, the difference between SBD gmowas modest, during the hotter and drier test
period; the difference between SBD groups exenaglifh Figure 3.17b was sustained through much

of the period.
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Figure 3.17. Average density by elevation for theoiv and high SBD groups in 1980 (a), and 2003(b).

The LLWR concept provides a possible explanatioritiese findings. As discussed in Morrow et

al, the LLWR model suggests that trees growingosvel bulk density soils should, on average, have
more water available after decreasing soil watéemal triggers the thickening of tracheids and
before the soil dries to the point where additiowal penetration is not possible or the wiltingnbo
The work of Larson and others suggests that thiagimf available moisture is a critical factor iret
creation of additional latewood, and the LLWR caqutgerovides an explanatory mechanism by
which trees on low bulk density soils, receivingiisar amounts of total precipitation and
experiencing similar climatic conditions have exted access to soil moisture specifically during the

latewood formation period over trees grown on tigtk density soils.

Increasing SBD has been demonstrated to reducéreggbwth in Douglas-fir and other
species (e.g. Cochran and Brock 1985; Heningdr 2082; Bulmer and Simpson 2010). Although
these studies focus on the effect of soil compadtiaising SBD via compression) on height and
volume growth, the same soil porosity and hardiobasacteristics could affect latewood percentage

and average density. Bulmer and Simpson’s resesaiggests that soil mechanical resistance



72
experienced as the soil dried was a greater rastaithe growth of lodgepole pine and Douglas-fir
seedlings within the range of field capacity anelwilting point than aeration limits in wet soilhis
restriction increases as SBD increases, and pretess growing on higher bulk density soils from
being able to extract soil moisture all the way ddwthe wilting point, but has much less affeet th
trees’ ability to extract soil moisture before thensition to latewood tracheid production. Thi#-so
tree-water interaction could explain many of tmelings in this research. In Figure 3.17a, 1980
seems likely to be the year in which growth wasthkich most by growing season, and not moisture.
With relatively moderate evaporative and transjpratl demands, all trees were given greater ability
to add as much latewood as possible late in thwiggoseason. Decreasing average density with
increasing elevation for both SBD groups may hdse been induced by shortened growing season
length, and both groups show the same elevation/&IS relationship. During 2003, as shown in
Figure 3.17b, those trees growing on high bulk ieiseils at lower elevations exhibited a reduced
AVGDEN, but those at higher elevation had almosnhiecal AVGDEN values as during 1980. The
climate moderating effect of elevation may havewdéd the high elevation/ high SBD group to
continue growing latewood beyond the ability of lelevation/high SBD trees. The low
elevation/high SBD trees may have reached thevsathanical limit at which further exploitation of
the soil moisture was limited, stunting the lated@eriod. Trees grown on low bulk density soils
show a similar relationships between AVGDEN anda&iien for both extreme years, indicating a
similar earlywood/latewood ratio, and possibly eajer limitation by growing season than soil

moisture across all elevations during 2003.

Roots of forest trees frequently do not continugrtow at the low moisture levels that would cause
impediment to growth (Joslin et al. 2001, Lopeale001) suggested by the LLWR model. We
hypothesized that this impediment to growth woutdtllate season availability to moisture, but
without measurements of soil moisture and root ¢inpwe cannot conclude that there is an

impediment to root growth. Another plausible exjaldmn could be ash caps present in the forest
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soils studied. The soil series descriptions foesahof the low bulk density soils listed ash as a
parent material. The improved water holding capagitsoils that include ash caps (McDaniel and
Wilson 2007) may provide an alternative mechanignidte season moisture availability for trees
growing on low bulk density soils. The slow grovatthe trees studied may indicate they have
modest moisture requirements. The slow utilizatbaoil moisture may prolong the latewood

period in trees growing on low bulk density sosscampared to high bulk density soils.

Several important caveats should be considerextiamolating the findings here with other stands.
The effects that seem to be associated with SBkalg amplified by the crowded nature of the
stands and marginal growing conditions for Doudiagund on much of the Trapper-Bunkhouse
region of the Darby Ranger District in which thiady took place. High stocking levels have led to
slow growth in these suppressed stands, and sipaitatibns likely prevent trees from expanding
their root systems to the fullest extent possilblthere was no competition between trees (i.ee\@ n
plantation or a thinned stand) or other vegetatimen those trees on high bulk density soils would
have access to untapped soil moisture late indhsos, and we would expect to see the differences
between SBD groups to diminish accordingly. Likesyil®wer precipitation and warmer climatic
conditions, especially at lower elevations in #tisdy, may further accentuate the affect of SBD.
Forests with more hospitable conditions for Dougiaéor higher elevations in this study) may not
exhibit as much of a difference between SBD gro@gsondly, the stands chosen were all naturally
regenerated, leading to the possibility that theression of genetic factors in the face of climatic
variations may contribute to differences foundwerage density and latewood percentage between
subpopulations. Thirdly, the estimates of SBD wadved from soil surveys conducted by the
Natural Resources Conservation Service (as outimétbrrow et al. 2013) for the region, and were
not spot checked, leading to the possibility theacounted-for localized microsite effects may

affect the results presented here.
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Further research is needed to determine the ettevitich these findings are applicable. Monitoring
the soil moisture status, root growth, and xylemmfation simultaneously in these suppressed stand
may provide a better understanding of the mechan&rwork. Crowded stands in marginal
Douglas-fir habitat would be the most likely topead to the SBD affect, and an expanded network
of sampling may provide some boundary conditiong. @ge, stand density, elevation, aspect, etc)
inside which we would expect to find similar diféeices between SBD groups, providing forest
managers and researchers with an improved unddistpof the scope of the SBD effect. Perhaps
more importantly, the assumptions presented herénhat the effect of SBD exhibits a linear
relationship with climatic variables, especiallyydAugust CDD. Climatic conditions studied in this
research did not seem to reach a threshold at wihéchelationship was broken, despite experiencing
some of the hottest and coolest summers sinceukeEbwl years of the 1930's (NOAA 2013(b)).
Expanded sampling programs into more extreme Degtfgidabitat, or, if climate change
predictions come to fruition, monitoring the sartensls, may better define the climatological limits

of the SBD effect.

The influence of SBD on average density and latelymmyiod, and the interaction with climate

could create many interesting opportunities for aggmns of these forests depending on their
management objectives. Managers interested in pngpeurrent forests to meet the near-term
challenges associated with projections of increpsmperatures changing weather patterns as a
result of climate change (IPCC 2007) may want tasater the research of Dalla-Salda and
Martinez-Meier and others who suggest that Doufifagith increased average density may be
better able to survive drought (Martinez-Meierle2808; Dalla-Salda et al. 2009; Dalla-Salda et al
2011) and prioritize high SBD areas, especiallpatr elevations for remedial treatments to reduce
moisture stress or possibly the introduction of endrought tolerant species. Forest managers
interested in marketing high quality forest produciay consider incorporating SBD in stand

delineation decisions to deliver more uniform aighlr quality raw material as increasing average



75
temperatures contribute to increasing CDD in July August, and increasing divergence between
SBD groups. The estimated green specific gravitieghe two groups over the test period were 0.49
(low SBD) and 0.45 (high SBD), which is more thha tifference between the marketing categories
DF-L and DF-L South, for which different allowal®agineering values are used (WWPA 2001),
and would place the average specific gravity ferldtw SBD trees in the middle range of the
southern yellow pines for the test period (USDA PO@s discussed in Morrow et al. (2013), the
incorporation of SBD into sale layout operations/rhalp attract buyers interested in high quality

forest products to these remote forests.

Conclusions

The results of this study indicate that the intBoscof soil bulk density and climate may induce
significant differences in latewood percentage avetage density in mature suppressed Douglas-fir
stands in the Inland Northwest. Through the udRegfeated Measures Analysis of Variance over a
30 year period, dichotomous grouping into high kxwd SBD groups explained a significant amount
of variation using threshold (P=0.025) and adjugtelgnomial and inflection measures (P= 0.039,
P=0.036 respectively) of latewood, as well averdgesity (P=0.0088). The degree of difference in
average density of trees between SBD groups shavwséang correlation to climatic conditions,
especially to July/August Cooling Degree Dayé®43) across the entire 30 year study period. By
virtue of the relatively long scope of the studyipe, instances of the negation and even revefsal o
the effect were found during extremely cool yedtse concept of Least Limiting Water Range
(LLWR), and especially the resistance to root petiein in high bulk density soils at low soil
moisture contents, may provide an explanationHerdirection and magnitude of the differences
found between SBD groups. These results furthehesipe the importance of soil-climate
interactions in the study of tree-ring and woodlifpaharacteristics, and may help forest managers
make more efficient and effective decisions regaydhe health and productivity of dynamic forest

environments.
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Chapter Four
Predicting mechanical properties in Douglas-fir usag latewood
demarcation methods

Abstract

Fundamental wood properties such as density aadi¢etd percentage have been shown to
be important predictors of wood quality, and aegjtrently reported as variables of interest
in forest-related research. The ability of two dgnand three latewood measures derived
from small clear samples to predict the Modulug&laisticity (MOE) and Modulus of
Rupture (MOR) in the small samples and their matdbeber was assessed using 75 Select
Structural 2x4s. The weight/volume and X-ray detie@erage small clear sample density
measurements proved to be the best predictorsadijtisted Ras high as 0.79 for MOR to
0.42 for MOE in the small clear samples The threskdewood demarcation method
exhibited a better fit with MOE (adj.?R0.32) and MOR (adj. £0.54) than the inflection
and polynomial latewood demarcation methods. Ttuelgess-of-fit of all measures
dropped considerably when predicting 2x4 MOR, letained a majority of their predictive
ability for MOE in the high-grade 2x4s studied hérbis study suggests that density
measurements and threshold latewood demarcatidmodgetre better predictors of

mechanical properties than the inflection and potyial latewood demarcation methods.

Introduction
Density has been found to be an important predaftstrength and stiffness in lumber
(Newlin and Wilson 1917; Markwardt and Wilson 198&@yle 1968; Lachenbruch et al

2010). Because the cell wall material of any speofdree has a specific gravity of



82

approximately, 1.5 (USDA, 2002), the density orcfie gravity of a wood sample reflects
the amount of cell wall material present and presid useful and relatively simple-to-

measure assessment of many mechanical and physiparties.

The proportion of high density latewood in an animung is an important contributor to the
density of an annual ring in many species andagéisult of xylogenic processes in the stem
of living trees. During xylem formation, newly dded tracheids undergo enlargement and
densification before reaching maturity (Wilson etl®66; Cuny et al. 2013). In the early
part of the growing season, developing tracheid3anglas-fir experience rapid radial
expansion and a short secondary cell wall deposjieriod that result in the relatively low
density wood found in earlywood (Dodd and Fox 199@)the growing season progresses,
the rate and duration of radial expansion decreaskthe duration of cell wall deposition
increases creating narrow tracheids with thick wells that form the latewood in an annual
ring. The tracheid formation process is malleaate] many natural and human influenced
factors can affect the latewood proportion and g$ wood (Jozsa and Brix 1989;

Antony et al. 2009; Gonzalez-Benecke et al. 201dnhtKvichai et al. 2010).

There are many methods available for measuringvtadd percentage, and the choice of
method likely depends on the goal of the study.aBse there is no universally accepted
definition of earlywood or latewood, many approachave been developed to identify the
earlywood/latewood transition point. One of theesidand most frequently cited is Mork’s
(1928) definition. As reported by Denne (1988), Kerefinition of the latewood transition
is the point in the annual ring at which the shareddlwall between tracheids is greater than

twice the radial lumen diameter. Identifying theel@ood transition point using Mork’s
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definition requires microscopic examination anceigatively time consuming. With the
commercial availability of X-ray densitometershaeishold density method has been
developed which defines the latewood as the patadrihe rings that exceed a
predetermined threshold density (Polge 1978). Theshold densities are often set at a level

that approximate Mork’s definition of latewood ame easy to perform.

One of the shortcomings reported for thresholdsueaments of latewood is an inability to
accommodate intra-ring variability (Koubaa et &03; Antony and Schimleck 2012). The
presence of false rings and the differences inchegacteristics between juvenile and
mature wood lead to inconsistency in the earlywaod latewood traits measured between
rings of the same tree. This variation in measurgradds to uncertainty and complicates
studies that measure the effect of treatments @sething characteristics. Dynamic latewood
demarcation methods were introduced in an attemiphprove the consistency of

earlywood and latewood traits between rings (eegnéstal et al. 1995; Koubaa et al. 2005).

Dynamic latewood methods measure the shape andeggoaf the density profile in
individual annual rings and select a latewood ttarspoint that best fits a series of criteria
or rules. Antony et al. (2012) for example applkesegmented smooth spline method to the
density profile of individual rings to identify thoint at which the second derivative of the
slope of the density/position curve passed thraegb to identify the earlywood-latewood
transition. They compared this inflection methodhwWork’s definition of latewood and a
threshold demarcation method and suggest thahfleetion method identified latewood
more consistently between juvenile and mature ringsblolly pine. Koubaa et al. (2005)

proffered a polynomial method whereby the densitfile of an individual ring was fit with
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a 6" order polynomial, and the root of the second dgive that met certain criteria was
chosen as the earlywood latewood transition. Tiesialts suggested that the polynomial
method provided a more consistent latewood proporiieasured between juvenile and
mature wood. Both studies offered evidence thateltynamic measures may provide more
consistent estimations of latewood percentageuidiess analyzing intra-ring density
variations, and may provide a more accurate reptagen of physiological processes at

work during ring formation.

Research concerning the correlations of densitytlreshold percent latewood to
mechanical properties has been well documented eMerycorrelations of the inflection

and polynomial latewood measures to physical anchar@cal properties are limited. In
Chapter Three, we found that Douglas-fir growindmm bulk density soils had

significantly higher average density and latewoettpnt using a threshold, inflection, and a
polynomial method. Several studies were availablgrédict the increases in wood quality
using density and threshold latewood percentageydy little research was found to
translate the increases in inflection and polyndhatawood percentage to predicted
improvements in wood quality. The main objectivelo$ study was to compare the ability
of measurements of density and latewood percenmtageedict clear wood mechanical
properties in Douglas-fir from the inland Northwe&tsecondary objective of the paper was
to develop best case estimates of the ability @dénsity and latewood percentage methods

to predict the mechanical properties of high qyalisually graded lumber.
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Methods

560 — 10ft Number 1 and Better 2x4s from two millshe Inland Northwest were regraded
by a Western Wood Products Association repres@etadl 25mm x 25mm x 500mm small
clear sample for bending was cut from the endbe®®ix4s, and all small clear samples and
2x4s were conditioned to 12% MC. After the specisnequilibrated, they used for bending
tests as per ASTM 4761 and ASTM 143 respectivefintbthe Modulus of Elasticity

(MOE) and Modulus of Rupture (MOR) of the samplBse load was applied to the radial
face of the small clear specimens to reduce vanatsulting from the presence of wide
earlywood or latewood bands at the compressiortearsion faces. Moisture content
samples were used to measure the specific gravit®% MC immediately after testing
(SGxx4 and SGcfor the 2x4s and small clears respectively) acogdo ASTM D2395-93
Method A. Of the initial 560 boards, 336 met Setuctural grade requirements, and 144
of these were removed because they contained piterg small annual ring radii. From the
remaining set of 192 Select Structural 2x4s, 7%ewandomly chosen, 75 were randomly
chosen to assess the correlations between thegaveng characteristics of the small clear

samples and MOE and MOR for the small clear spetsna@d 2x4s.

After the small clear specimens were tested, a h%noss section was cut from each,
allowed to equilibrate to laboratory conditionsgamas scanned using a QTM-QTRX X-ray
densitometer. The densitometer was calibrated wdngouglas-fir samples of verified
average density ranging from 400 kg/rm 700 kg/m. The threshold latewood percentage
generated using a 500 kg/threshold level (TLWP) and average density (AVGLD)HEd

each ring was calculated by the QTM software. Evedata from the X-ray scans was

entered into the Inflection Ring Calculator desedlin Chapter One, and the inflection



86
latewood percentage (INFLWP) was determined fohe&mmnplete ring in the small clear
specimen cross sections. The procedure developzaldolate INFLWP broke the
collection of annual rings from the raw data imdividual annual rings, and then selected
the point at which the"2derivative passed through zero and tieldrivative of the
density/position curve exceeded a predeterminagevahile moving from the latewood to
the earlywood. As described in Chapter One, thgnaohial latewood percentage (PLWP)
was determined using a Matlab script which fif'sd@gree polynomial to each annual ring
and identified the position of the latest roottu £nd derivative of the polynomial that
occurred before the maximum density found in thg and occurred between 20% and 90%

of the total ring length.

Ring-width weighted averages of TLWP (TLWPAVGDEN (DEN,), ILWP (ILWP,),
and PLWP (PLWR) were calculated for all the small samples. Theatations and simple
regressions were produced using SPSS 17.0 (SP88i&dor Windows, Version 17.0.
Chicago:SPSS Inc.). Constant variance and normsalual assumptions were checked

visually.

Results

The mean, standard deviation, coefficient of vasrgtminimum and maximum values of
the properties measured are presented in Tabléd Wwith previous experiments described
in Chapter Two, TLWR was on average larger than ILWRNnd PLWR, was the shortest.

The specimens tested covered a broad range ofispgavity, MOE, and MOR.
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Table 4.1. Summary of specimens tested

Property Mean SD CV  Min Max Description

MOEs(GPa) 11.8 1.9 0.167.8 16.3  Static MOE of small clear samples

MORs(MPa) 92.1 12.2 0.1369.6 120.6 Static MOR of small clear samples

SG¢ 0.475 0.055 0.12 0.380 0.621 SG of small clear samples at 12%
MC

TLWP,, (%) 38.1 8.7 0.2321.8 61.5 Ring width weighted average
threshold latewood percentage

DEN, (kg/m®) 542 57 0.11 429 678 Ring width weighted average ring
density at laboratory EMC

ILWP,, (%) 29.3 7.0 0.2418.8 50.5 Ring width weighted average
inflection latewood percentage

PLWR, (%) 250 5.8 0.2316.6 42.1 Ring width weighted average
polynomial latewood percentage

MOE,(GPa) 12.2 2.0 0.178.2 17.2  Static MOE of 2x4s

MOR2a(MPa) 62.7 17.3 0.2822.4 94.2 Static MOR of 2x4s

SGyy 476 055 0.12.378 .659 SG of 2x4s at 12% MC

Simple correlations between properties are showrabile 4.2. All correlations were
significant to at least p < 0.01. For the smalhclsamples, MO&was most correlated with
the measures of density: §@nd DEN, (r = 0.69 and r = 0.66). Of the latewood perceatag
measurements, MQEwas most correlated with TLWHRr = 0.57) and least correlated with
ILWP,, (r = 0.45). MOR; was most correlated with SGr = 0.89) and DEN (r = 0.79), but
TLWP,, exhibited nearly the same correlation to M@&s DEN, likely owing to the high

correlations between SGDEN,, and TLWR,.

Table 4.2. Simple correlations between average rirgnd mechanical properties for the small clear and
2x4 samples

Property MOEc. MORs SG. TLWP, DEN, ILWP, PLWR, MOEys MOR;4 SGy4

MOEsc - .85 .69 .57 .66 A5 .52 72 A1 .59
MOR, .85 - .89 74 .79 .64 .68 73 .56 .76
SG,. .69 .89 - .88 .89 .80 .82 .64 .52 .85
TLWP,, .57 74 .88 - .90 .86 .86 .54 42 .76
DEN, .66 .79 .89 .90 - .83 .84 .60 49 .79
ILWP,, 45 .64 .80 .86 .83 - .96 .52 49 74
PLWR, .52 .68 .82 .86 .84 .96 - .57 45 75
MOE;y, 72 73 .64 .54 .60 .52 .57 - 73 .67
MORgx4 A1 .56 .52 42 49 49 A5 73 - .62
SGu .59 .76 .85 .76 79 74 75 .67 .62 -

Note: All correlations are significant at p < 0.01.
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Simple regressions between mechanical and ringeptiep were run to check the
differences between slope parameters. The regresgidlable 4.3 suggest, like the
Pearson’s correlations, that for the small cleacspens, SG exhibited the best fit,
followed by DEN,, TLWPR,,, PLWR,, and finally ILWR,. With respect to MOE, the
parameter estimates for §@nd DEN,, after accounting for the differences in unitsreve
not significantly different, with estimates that wa be within one standard error of each
other. The same held true for the measures of taidwthe greatest difference was between
ILWP,, and PLWR,, and the comparison of these parameters wouldt iesat-score of
approximately 1.7. For MOR the density and ring properties followed the saamking in
terms of goodness of fit. After accounting for diffnces in units between §@nd DEN,,
the slope parameters exhibited a significant déffiee with a t-score for the comparison of
approximately 2.6. Although the slopes are differémey only produce meaningfully
different estimates for the samples near the maxirofithe density range tested. The
coefficients for TLWR, and PLWR, were significantly different for MORsc but the
regression equations would only predict slightetéhces in boards with the narrowest

latewood period.

A comparison of the results between small cleapdasrand the 2x4s demonstrated that
there were no significant changes in the sloperpatars, but there was the expected
reduction in the goodness of fit for most of thegrproperties. The regressions for IL\WP
and PLWR, however, suggested an increase in the adjusté®R MOE,; to MOEyq.
From the RMSEs of the regressions, inferences dd@,., using density and ring
properties had similar levels of residual erroimdésrences about MQE with increases in

RMSE between 3% and 14%or MOR, RMSE increased by 62% to 165% from preoinst
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for small clears to the 2x4s. The regressions sigbat the latewood measures performed

similarly when making predictions about 2x4 projssxt

Table 4.3. Results of simple regressions betweenes&ge ring properties and mechanical properties

Property Intercept (SE) Coefficient (SE) A(2:Ij. RMSE
R
MOE (GPa)
SG 0.581 (1.38) 23.6 (2.89) 0.47 1.36
TLWP, 7.13 (0.808) 0.122 (0.0207) 0.32 1.54
DENy 0.229 (1.57) 0.0213 (0.00287) 0.42 1.42
ILWP,, 8.29 (0.841) 0.120 (0.0279) 0.19 1.68
PLWR, 7.59 (0.823) 0.169 (0.0321) 0.26 1.60
MORs (MPa)
SG -2.25 (5.71) 199 (11.9) 0.79 5.62
TLWP 52.5 (4.32) 1.04 (0.111) 0.54 8.26
DENy, 1.09 (8.33) 0.168 (0.0153) 0.62 7.54
ILWP,, 59.5 (4.73) 1.12 (0.157) 0.40 9.45
PLWR, 56.3 (4.62) 1.44 (0.180) 0.46 8.99
MOEy4 (GPa)
SG .990 (1.58) 23.5(3.30) 0.40 1.55
TLWP, 7.44 (0.892) 0.124 (0.0228) 0.28 1.70
DENy 0.863 (1.79) 0.0209 (0.00329) 0.35 1.62
ILWP,, 7.81 (0.865) 0.149 (0.0288) 0.26 1.73
PLWR, 7.28 (0.858) 0.196 (0.0334) 0.31 1.67
MORoyx4 (MPa)
SG -15.8 (15.2) 165 (31.8) 0.26 14.9
TLWP, 30.7 (8.31) 0.837 (0.213) 0.16 15.9
DENy -16.8 (16.9) 0.147(0.0310) 0.22 15.3
ILWP,, 27.2 (7.64) 1.21 (0.254) 0.24 15.3
PLWR, 29.0 (8.03) 1.35 (0.313) 0.19 15.6

In Chapter Two, plots comparing TLWP with ILWP aadWP showed that ILWP and
PLWP behaved differently across the density rarfigaoual rings. The same behavior was
observed in this study, with the deviation betwtenthreshold measures and the inflection

and polynomial increasing as average density iseckaFigure 4.1 shows the relationship
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between TLWP and PLWP for the rings analyzed is $hiidy. Figure 4.1 suggests that as

the average density of the ring increased, theadigpbetween TLWP and PLWP increased,

and that difference decreases to near zero fdetts dense rings in the data set.
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Figure 4.1. Fit of average ring density to TLWP andPLWP

To illustrate the cause of the deviations betweeW® and PLWP, Figure 4.2a shows an
annual ring that exhibited a modest difference ketwTLWP (29%) and PLWP (33%), and
Figure 4.2b shows and annual ring with a very lalifference between TLWP (63%) and
PLWP (33%). Lower density rings tended to makelatixely brief and abrupt transition
from earlywood to latewood, while higher densitygs made a more gradual transition. In
low density rings, the rapidly densifying tracherdach a maximum density and
immediately made the transition to the next anningl. This geometry forces the last
infection point of the second derivative relativebrly in the transition from earlywood to

latewood, often before the threshold latewood itemsin the lowest density rings. In



91

higher density rings the polynomial method freqlyeigentified shoulders such as that

depicted in Figure 4.2b as the latewood transjpioimt when the shoulders provided a

region of linear density increase. These pattezemsto be the cause of much of the

discrepancies in latewood percentage seen in Figare
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Figure 4.2. Comparison of latewood transition pointhosen by the threshold, inflection, and polynomia

methods. Low density ring with PLWP<TLWP (a). High density ring with PLWP>>TLWP(b).

Discussion

Prediction of small clear sample mechanical properes

Pearsons correlations and simple regressions siegigiaat measures of density were better

predictors of MOE. and MOR. than the measures of latewood percentage. Thecpved

ability of density has been a common finding in snatudies investigating the relationships

between ring properties and mechanical properéigs Newlin and Wilson 1917;

Markwardt and Wilson 1935; Choi 1986; Lachenbruchl€2010; El-Kassaby et al. 2011).

The correlation between the measures of density.(&@& DEN,) in Table 4.2 for the small
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clear specimens and M@E&and MOR; were within the range of those found in other &sid
of Douglas-fir. Lachenbruch et al. (2008) foundretations between small clear sample
density and MOE and MOR of 0.67 and 0.63 respdgtared parameter estimates that were
within, although correlations as low as r = 0.44npwles et al. 2004) and as high as 0.716
and 0.829 (El-Kassaby et al. 2011) have been regoit source of this variability between
studies likely stems from the proximity of the dignseasurement to the specimen being
sampled, with the densities in the studies reppttie weakest correlations derived from
tree disks or increment cores and the densitiesttmlies with stronger correlations derived
from the specimens themselves. The density sampbsto predict MOE and MOE,

came directly from the small clear samples.

Common to many of the previous studies is thetfaadt not all density measurements
perform equally. Lachenbruch and others found aagain in the correlation between
density and MOE when moving from a weight/volumeaswee of density to an X-ray based
measurement of density. Similar results were faarttie present study, and the reduction in
the descriptive power of the density measuremeargsen in the decreasing correlations and
goodness-of-fit and increasing RMSE in Tables #4243 when comparing S&with

DEN,, for small clear sample mechanical properties. ddmesitometer was calibrated using
full sample width scans of 24 Douglas-fir samplékrmwn density from 440 kg/frto 700
kg/m®, and the calibration resulted if=R0.97 and RMSE of 14 kgfAbetween actual

density and the average whole sample densityrdaterby X-ray. A likely source of
disagreement between §@nd DEN, stems from the fact that only intact annual ringse
analyzed using the X-ray densitometer for the sampted in this study to produce the

DEN,, measurement. Thus, omitting the edge rings fraBEN, measurement may have
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produced density measurements that were not alildyalescribe the density of the small

clear specimens.

The measures of fit between TLWBnd MOE. and MOR.in Table 4.3 were similar to
other studies. Using a threshold measurement sitoilBLWR,,, Mamdy et al. (1999) found
a goodness of fit of+0.26 between latewood proportion to board MOE au@las-fir.

Choi (1986) found arf+0.54 between latewood percentage and MOE, ant-8m#d when
latewood percentage was regressed against MORuglBs-fir. TLWR, was the most
correlated latewood measurement with MEdhd MOR,, followed by PLWR, and finally
ILWP,,. The order and magnitude of these measures’ etioelto MOE. and MOR. seem
to follow closely with their correlations to meassiof average density. Logically, TLWP
should have been, and was, the most correlateddertbkity because it implicitly gives
information about the amount of an annual ring waitthensity above the predetermined
threshold. As seen in Figures 4.2a and 4.2b, tiection and polynomial methods can vary
in the density at which they determine the trarmistrom earlywood to latewood has
occurred. If all the annual rings were more homaogenthen all three methods would likely
exhibit similar correlations with density as TL\WFAcross varied annual ring geometries
however, PLWR, and ILWR, were less stable, and provided poorer predictodns

mechanical properties.

ILWP,, and PLWR, were both poorer predictors of MOE and MOR thaWR,, but they
were still able to account for 19% to 26% of theiatgon in MOE,. and 40% to 46% of the
variation in MOR. when regressed singly. When the measures of lagare paired in a

multiple regression with Sor DEN, to predict MOE:(not shown), ILWR, is significant
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(p = 0.045 and p = 0.033 paired with DEBind SGc respectively) but only explains an
additional 2% of the error variance above densigasures alone. For the same pairings to
predict MOR. ILWP,, is significant when paired with S&p= 0.016), but only accounts for
an additional 1% of error variance overss@one. The measures of latewood did not

provide meaningful predictive ability beyond thé&inteasures of density.

In the small clear samples studied, both the measirdensity and latewood explained
more variation in MOR: than in MOE.. Similar studies have found mixed results with
several reporting better fit for MOE than MOR (CHA®886; for X-ray density Lacenbruch et
al. 2010) and others reporting poorer fit with M@i&En MOR (for volume based density
Lacenbruch 2010; El-Kassaby et al. 2011),3@s likely the most accurate measure of
small clear sample density, and also exhibitechtbkest correlation and best fit with
MORs., and the correlations between MQBNnd DEN, and the latewood measures closely
match their relative correlations with SAf MOR is limited by the worst defect in the
sample, then the density measurements for the sheall samples may have provided
provide more information about the worst defedhia relatively uniform small clear

samples.

Prediction of 2x4 mechanical properties

MOE,y4 Was best predicted by §&followed by DEN,, PLWR,, TLWP,, and finally
ILWP,,. The density measures were still the best predictut SG, DEN,, and TLWR,
experienced and 4%-7% drop in the amount of expthirariance compared to MQEThis
drop contrasts sharply with the 5% and 7% incréaseplained variance reported for

PLWR, and ILWR, respectively. Checking the model results for it aesiduals (not
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shown), there didn’t appear to be a dramatic chaoggared to the regressions with
MOEs and the rise in goodness of fit seems to be t#facirof the data and doesn’t suggest
an improved ability to predict 2x4 stiffness ovaradl clear sample stiffness. The density

and latewood measures retained most of their plbdipredict MOE in the 2x4 samples.

MORyy4 exhibited the best fit with SGfollowed by ILWR,, DEN,,, PLWR,, and finally
TLWP,,. There was also a large decrease in explainednaiand increase in the RMSE

for the density and latewood properties in the jgtexh of MOR,, compared to MOR.

The fact that ILWR seemed to provide a better fit than DEdbduld be attributed to a same
artifact in the data that suggested a better tth MOE,,4, than MOE. for ILWP,, and

PLWR,. The correlations between M@Rand the study variables are similar to those found
for Douglas-fir (Lachenbruch et al. 2010) and seuthyellow pine (Doyle 1968; Biblis

2004) This reduction likely reflects the more coaxphature of defects found in the 2x4
specimens and the dependence of MOR on localizedgth reducing characteristics

(Doyle 1968; USDA 1999).

Comparison of density and latewood measurements

SGc was the best predictor of MOE and MOR for bothdhmll clear and 2x4 samples, and
the X-ray derived DEN value also gave good predictions. These findimgsenilar to

those published by other researchers. An impogaimit to consider is that the correlation
between MOE; and MORy4 was 0.72 and the correlation between density nmeasund
MOE,xsWere quite close to that value (r=0.64 and r=0®G. and DEN,). This would
suggest that Sexplained approximately 80% as much of the emdviOEx, as MOE,

did. Similarly, SG. explained approximately 85% as much of the emdviDR,,4 as MOR,
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did. DEN, did seem to be a slightly poorer predictor the ma@acal properties, but in
studies that report changes in annual ring avedagsity such as Chapter 2, the findings
here could be used to gauge the significance aktlfiodings in terms of the expected
mechanical properties of small clear samples, aradlimited extent, 2x4s derived from

those trees.

The measures of latewood generally did not prédioE and MOR as well as did the
density measurements. For the small clear sampl&¥pP,, provided the best fit for
mechanical properties, but for the 2x4s, the resudre less clear. It is difficult to develop a
valid explanation as to why PLWRnd ILWR, would be better predictors of M@E than
MOEs.. On average, PLWpand ILWR, identify latewood transition points later in the
annual ring than TLWE, but even this pattern is confounded in low averdgnsity rings
such as that shown in Figure 4.2. Although othseaechers have found merits in the
consistency in latewood transition assignmentsgugia polynomial and inflection methods
(Koubaa et al. 2005; Antony and Schimleck 2012y tiere generally worse predictors of

mechanical properties in the samples studied here.

Factors not included in the study and future work

Microfibril angle (MFA) was not measured in the ceeiof this study, but the influence of
MFA may be inferred from other similar studies. M@&s been shown to vary with MFA;
with decreasing angle of the fibrils within thelagall associated with greater Young's
Modulus in the longitudinal axis of softwood traate(Cave and Hutt 1968) and increasing
resistance to longitudinal tension or compressionending members. In Douglas-fir,

correlations between r=-0.42 to -0.58 have beearteg@ (Lachenbruch et al. 2010; Vikram
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et al. 2011), but as noted by Vikram and othemesetlseemed to be weaker correlations
between MFA and MOE for Douglas-fir than for otlspecies such as eucalyptus (r=0.67;
Hein and Lima 2012; r=-0.93; Yang and Evans 2003adiata pine (r=-0.82; Raymond et
al. 2007; r=-0.76; Cown et al. 1999). In addititme more mature (17 to 49 yr old) Douglas-
fir Lacenbruch et al. studied exhibited less vasiain MFA than in juvenile wood used in
other studies. Lucenburch et al found that thetamdof MFA in a regression of MOE with
density increased the adjustetiffom 0.45 for density alone to 0.51 with the aidditof
MFA. The inclusion of MFA in a regression with déggo predict MOR resulted in no
change in the adjusted Bver density alone. Because the samples selemtékis study
were chosen to limit the amount of juvenile woo&, would expect to have similar modest

effects of MFA.

Knots, slope of grain, and other defects all inficeethe mechanical properties of lumber,
but represent a second tier of growth charactesisteyond the fundamental wood
properties such as density and latewood percetiajenany studies such as Chapter Three
and others focus on (e.g. Brix 1972; Jozsa and B389; Kantavichai et al. 2010). The
primary goal of the study was to compare the ahdftthe inflection and polynomial
latewood methods with conventional threshold anusdy to predict the mechanical
properties of clear lumber. These estimates weeaded to be used to assess the practical
effects of proposed models in the Northwest tbatgare site differences, silvicultural
treatments, climate change, or other influentiatdes in terms of basic ring characteristics
such as density and percent latewood. The extewsithhe study to predict the mechanical
properties of select structural grade lumber waanht® provide a best case estimate of

differences in the predictive ability of the degsand latewood methods, not to provide an
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exhaustive quantification of predictive performamaceoss multiple grades. The inclusion of
lower grades of lumber will almost certainly redtice fit between small clear density and

latewood and mechanical properties.

The ability of density and threshold measuremenmfmrédict mechanical properties has been
well studied, but the ability of the inflection apdlynomial latewood demarcation methods
has not been as well documented. Although the ptesedy found poorer predictions using
ILWP and PLWP in high quality Douglas-fir lumbehngte may be species and lumber grade
categories for which they perform better. Koubaal ef2005) developed the polynomial
method to assess black spruce, a species witls alesgpt transition from earlywood to
latewood than the Douglas-fir studied here (USDA20The polynomial and inflection
methods may behave more consistently in slow-ttiansspecies, and thus should be a
focus of future research. In addition, a wider en§lumber grades should be assessed. The
study of lower grades of lumber would provide a enoomplete understanding of the
capabilities of the polynomial and inflection medisdo predict mechanical properties in

more complex defect combinations than those fowrd.h

Conclusions

In this study, we tested the ability of a weightlime density measurement ($Ga X-ray
density measurement (DEN a threshold latewood demarcation method (TLYYBn
inflection latewood demarcation method (ILWPand a polynomial demarcation method
(PLWR,) to predict MOE and MOR in Douglas-fir small cleggecimens 2x4 lumber. The
results showed that the SGsc was universally teefredictor of MOE (R=0.47, R=0.40)

and MOR (RB=0.79, R=0.26) for both small clears and 2x4s respectivieiN, provided
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slightly less predictive ability of MOE @R0.42, R=0.35) and MOR (R=0.62, R=0.22) for
small clears and 2x4’s respectively. Of the latesdvdemarcation methods, TLWHRvas the
best predictor for most of the properties exhiljtiits of R=0.32 and B= 0.28 with MOE
and R=0.54 and R=0.16 with MOR for the small clears and 2x4s resipely. Density was
the best predictor in this study, and PL)\dhd ILWR, were more poorly correlated with
density and erratic in their latewood selectiompothan TLWR. The results suggest that
studies attempting to extrapolate mechanical pt@sefrom annual ring characteristics

should use a density or a threshold latewood measent.
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Chapter Five
Conclusions

The findings reported in this paper offer an img@wnderstanding of the inflection and polynomial
latewood demarcation methods from the significasfdde point selected as the Earlywood (EW)
Latewood (LW) transition to the ability of Infleoti Latewood Percentage (ILWP) and Polynomial
Latewood Percentage (PLWP) to predict the mechbofcamall clear specimens and high grade

lumber.

In Chapter Two, we found that Threshold Latewoort@atage (TLWP) was moderately correlated
with ILWP and PLWP, but that ILWP and PLWP were gpaorrelated with Average Density
(AVGDEN). The threshold method, when using a 500rkghreshold was able to identify a point

on average that was very close to Morks definitiblatewood, and the anatomy at the point
selected for the EW-LW transition was not affeddgdAVGDEN of the ring. We found that ILWP
and PLWP seemed to target the point in the anmglat which the rate of lumen diameter decrease
and cell wall thickness increase are at their p&hks, the anatomy at the EW-LW transition point
determined by the inflection and polynomial methsdgariable, and we found it may be subject to
bias based on annual ring geometry and AVGDEN aR@searcher interested in studying xyolgenic
response, the threshold measurement representse @@mbination of duration and rates of radial
expansion and duration of cell wall thickening aveloping tracheids to produce a tracheid of a
threshold density. The inflection and polynomiakition points represent the tracheids that were
forming as the same expansion and thickening stages changing the most rapidly. This research
may provide a means to expand wood formation rekday providing improved tools to replace or

augment traditional microscopy with relatively eask-ray densitometry analysis.

With the ability to interpret the EW-LW transitiodgveloped in Chapter Two, the results in Chapter

Three suggest the significant effect of Soil BukrBity (SBD) on TLWP and the adjusted inflection



104
and polynomial methods have different interpretaiol ress in the low SBD groups reached the
tracheid expansion and densification combinatian pnoduced tracheids with a density of 500
kg/m?® earlier in their relative growing season (sigrafit difference in TLWP) and also reached the
point at which forming tracheids’ radii were shiimg and cell walls thickening at the greatest rate
earlier (significant difference in adjusted ILWPdaRLWP). This suggests that the transition from
earlywood to latewood was similarly abrupt for bgtbups on average, but the trees growing on low
bulk density soils had longer periods of the l&ason latewood accrual. In addition, in the two
coldest summers on record, the effect was negatetdeven reversed. This phenomenon would be
consistent with the Least Limiting Water Range desd in Chapter Three. The three latewood
methods seemed to describe the same differencseediegroups, and no method stood out with in

terms of the parameter estimates or model compsnent

Finally, we studied the ability of AVGDEN, TLWP, RP, and ILWP to predict MOE and MOR in
small clear samples and the matching high grade.2¥4 found that AVGDEN and TLWP were
better predictors for small clear properties, NP and ILWP had some predictive ability. All
measures were better predictors of MOR in the sohedirs and MOE in the 2x4s. The results could
be used to make inferences about the wood qualiji¢ations of studies measuring tree responses.
The results of the three studies presented forases lwvith which to interpret ILWP and PLWP in

the context of both tree response to the enviromed the mechanical properties of the wood in

Douglas-fir.

Future work regarding these methods should focusmproving the consistency of the inflection

and polynomial methods. Because ring geometry séeiffect the latewood transition location
decision, an approach needs to be developed thatwaltaneously provide smoothing but is not as
influenced by the shape of the density/positiorvelrefore and after the region of most change in

density. In addition, similar studies should bedwsted with different species to determine if the
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other patterns of growth such as slow transitieomfEW to LW cause the same problems seen with

Douglas-fir studied here.
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Appendix A
Inflection method
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Introduction

The inflection ring calculator reads densitometayadmported manually, and reports ring
characteristics based on the script at the endeoAppendix. This code was written to automate the
process of identifying the start and stop of ting iand the transition from earlywood to latewood
based on the inflection of the second derivativthefposition/density slope. At the same time, it
calculates the earlywood and latewood densitiesatlerage density, ring length, and the latewood
proportion using the inflection point method. THea for the calculator came from Koubaa et al

(2002) and Pernesal et al (1995) but the methogidog coding represent the author’s own work.

Inflection Ring Calculator Instructions

The coding for determining the inflection positimas developed using Microsoft Visual Basic (VB)
6.5 in conjunction with Microsoft Excel 2007. A usell open the inflection ring calculator Excel
file, and paste the raw densitometry data in tret fi columns. The first column must be position,
the second must be density. The third and fourlimais were reserved for automatic output from
the QTM-QTRX raw data and contain the QTM'’s detewtion (based on threshold method) of ring
number and earlywood or latewood. The fifth colurafculates the slope of the density and position
data for the three data points centered on thémamestion and the sixth column calculates tHe 2
derivative at the row in question using the same flata point range. The user will clear any old
data from 12:U?, then run the InflectionRingCalcanea Results will be reported in columns |
through U on Sheet “1_1". A graph below the outpilt show the density profile with the ring
divisions and inflection points graphed for quatigntrol purposes. The second sheet of the excel

file contains instructions.
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Inflection Ring Calculator Script

Sub InflectionRingCalc() 'Script to identify te&art and stop of ring using inflection and EW/LW
‘transition using inflection method, will also rep&W and LW densities

'‘Declare variables

Dim StartPosition As Single ' position at startiafy

Dim StopPosition As Single 'position at end of ring

Dim CurrentPosition As Integer ' counter that ketepsk of current position in loops

Dim RingLength As Single ' variable calculated aeplorted for ring length

Dim RingCount As Integer ' ring number

Dim CurrentDensity As Single ' the density at RosiRonInRaw

Dim RowPositioninRaw As Integer ' current row omiaeworksheet

Dim WhileCount As Single ' loop counter

Dim WholeRingDensity As Single ' ring density vénlia

Dim Current2ndDer As Single ' Second derivativRatvPositionInRaw

Dim CurrentlstDer As Double ' first derivative ati@ ositioninRaw

Dim InflectionDensity As Single ' Density at poitetermined to be EW/LW inflection

Dim InflectionPosition As Single ' position at poohetermined to be EW/LW inflection

Dim LWDensity As Single ' Latewood density variable

Dim EWDensity As Single ' Earlywood density variabl

Dim StartDensity As Single ' Density at StartPositi

Dim StopDensity As Single ' Density at StopPosition

Dim RingDensitylntegration As Single ' Used for suimg densities at all points

Dim EWCount As Single ' Number of positions in Barbod

Dim LWCount As Single ' Number of positions in Latsod

Dim AverageDensity As Single 'Average density Vialea

Dim PositionForRingLength As Integer ' Used to kraosition in file during initial ring length
estimate

Dim NumberOfPointsForRingLength As Integer ' Numbgdata points in ring length estimate
Dim NumberOfCellsForSlopeMeasurement As Integeairidble to determine how many points
should ‘be included in smoothing

Dim RowPositionSlopeWrite As Integer ' Variableitack position in active worksheet while
writing ‘new first and second derivatives

Dim MaxFirst As Single ' Maximum first derivativa ring, helps identify inflection point
Dim MinFirst As Single ' Minimum first derivativeniring, helps identify inflection point
Dim Maxsecond As Single ' Maximum second derivativeng, helps identify inflection point
Dim MinSecond As Single ' Minimum second derivatinging, helps identify inflection point

Dim FirstRange As Range ' Range variable usedlonlede first and second derivatives
Dim SecondRange As Range ' Range variable usealdolate first and second derivatives
Dim ThirdRange As Range ' Range variable usedltulzde first and second derivatives
Dim FourthRange As Range ' Range variable usedloulate first and second derivatives

Range("G2:U10000").ClearContents 'delete old result
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RowPositioninRaw = 43 ' First row to start lookiiog valid densitometry data
PositionForRingLength = RowPositioninRaw 'Poin¥naosition values to the same row

RingCount = 1 'These are initial values for thetfiing
RingLength =1

MinSecond = -1000

Maxsecond = 5000

MinFirst = -1000

MaxFirst = 2000

'read the first and second derivative at the ctimem position
Current2ndDer = Worksheets("1_1").Cells(RowPoslai&aw, 6).Value
CurrentlstDer = Worksheets("1_1").Cells(RowPosltu&aw, 5).Value
CurrentDensity = Worksheets("1_1").Cells(RowPositidraw, 2).Value

' skip scanning of air, step through data until fiad wood
While CurrentDensity < 500

Do

RowPositionlInRaw = RowPositionInRaw +iidex to next data position
StopPosition = Worksheets("1_1").Cells(RmsitionInRaw, 1).Value
CurrentDensity = Worksheets("1_1").Cells{fPositioninRaw, 2).Value
Current2ndDer = Worksheets("1_1").CellsfRositionInRaw, 6).Value
CurrentlstDer = Worksheets("1_1").CellsfiRositioninRaw, 5).Value
PositionForRingLength = RowPositionInRaw

Loop Until (Current2ndDer < 0 And Currentidéy > 500) ' loop until we are in wood
Wend

‘as long as there is still valid data to be read
While Worksheets("1_1").Cells(RowPositionInRaw\M3lue <> ™"

PositionForRingLength = RowPositioninRaw

Application.ScreenUpdating = False ' turn affeen update to speed up program
WholeRingDensity = 0 ' Reset the ring density

RingDensityIntegration = 0 ' Reset this secopdiag density helper variable
StopPosition = Worksheets("1_1").Cells(RowRosihRaw, 1).Value
CurrentDensity = Worksheets("1_1").Cells(RowiBasinRaw, 2).Value
NumberOfPointsForRingLength = 0

While Current2ndDer < 1000 ' find the ldngf the latewood to scale slope measurements

Do

NumberOfPointsForRingLength = Num@i®&ointsForRingLength + 1
PositionForRingLength = PositionRimgLength + 1
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'read the new 1st and 2nd derieat@iues to see if we are still in latewood
Current2ndDer = Worksheets("1_18}JI§{PositionForRingLength, 6).Value
CurrentlstDer = Worksheets("1_18)I§fPositionForRingLength, 5).Value

'Loop to Do statement until these ctinds are met ie, pass ew/lw inflection
Loop Until ((Current2ndDer > MaxsecdrzD) And (CurrentlstDer < (MinFirst / 2)))

Wend

While Current2ndDer > 0 ' find the lengfttlee earlywood to scale slope measurements

Do

NumberOfPointsForRingLength = Num@i#ointsForRingLength + 1
PositionForRingLength = PositionRimgLength + 1

'see if the next row is the sameg Br not
Current2ndDer = Worksheets("1_18}JI§{PositionForRingLength, 6).Value
CurrentlstDer = Worksheets("1_18)I§fPositionForRingLength, 5).Value

'Loop to the Do statment until the do¥ing conditions are met ie leave the ring
Loop Until (Current2ndDer < MinSecontil And CurrentlstDer > MaxFirst / 4) '

Wend

'determine how many points to take theeslofpfor the inflection latewood determination use
10% ‘of the ring length

NumberOfCellsForSlopeMeasurement = Int((NumberQiBéiorRingLength \ 10) \ 2)

'If the ring is short, use at least 3 posi to smooth
If NumberOfCellsForSlopeMeasurement < 3imNeimberOfCellsForSlopeMeasurement = 3

'Reset row position to write new 1st and @erivatives
RowPositionSlopeWrite = RowPositioninRaw

'record the new and improved 1stder measemés in the 7th column
While RowPositionSlopeWrite < PositionFariiength

Do

'debugging tools

Worksheets("1_1").Cells(RowPosigtwmpeWrite, 7).Value = RowPositionSlopeWrite

Worksheets("1_1").Cells(RowPosigtwpeWrite, 9).Value = _
NumberOfCellsForSlopeMeasurement

'set the ranges so we can calcthatdirst derivative

Set FirstRange = Worksheets("1 Rahge(Cells((RowPositionSlopeWrite - _
NumberOfCellsForSlopeMeasurement), 2), Cells((RaitRmSlopeWrite +
NumberOfCellsForSlopeMeasurement), 2))

Set SecondRange = Worksheets("1Rat)ge(Cells((RowPositionSlopeWrite - _
NumberOfCellsForSlopeMeasurement), 1), Cells((RasitRmSlopeWrite + _
NumberOfCellsForSlopeMeasurement), 1))
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‘calculate first derivative
CurrentlstDer = WorksheetFunctitop8(FirstRange, SecondRange)

'write the first derivative on thleeet
Worksheets("1_1").Cells(RowPositopeWrite, 7).Value = CurrentlstDer

RowPositionSlopeWrite = 1 + RowRosiSIopeWrite

'keep writing ‘first derivatives in aohn 7 for twice the estimated ring length
Loop Until RowPositionSlopeWrite = PositionForRirgigth + RingLength * 50

Wend
RowPositionSlopeWrite = RowPositionInRaw

'record the new and improved 2ndder measemés in the 8th column
While RowPositionSlopeWrite < PositionFariiength

Do
'Set ranges to point to the 1st déifréaand position to calculate 2nd derivative

Set SecondRange = Worksheets("1_1"pR@ells((RowPositionSlopeWrite - _
NumberOfCellsForSlopeMeasurement), 1), Cells((RasitRmSlopeWrite + _
NumberOfCellsForSlopeMeasurement), 1))

Set ThirdRange = Worksheets("1_1").R#6glls((RowPositionSlopeWrite - _
NumberOfCellsForSlopeMeasurement), 7), Cells((RaitRmSlopeWrite +
NumberOfCellsForSlopeMeasurement), 7))

‘calculate 2nd derivative
Current2ndDer = WorksheetFunction.S{@pgdRange, SecondRange)

'write 2nd derivative on worksheet
Worksheets("1_1").Cells(RowPosition®ld{rite, 8).Value = Current2ndDer

RowPositionSlopeWrite = 1 + RowPosittopeWrite

'keep writing second derivatives inuoh 8 for twice the estimated ring length
Loop Until RowPositionSlopeWrite = PositionForRirgigth + RingLength * 50

Wend

'Locate the start of the ring and the dgredithe start
StartPosition = StopPosition ' This will the first position of the current ring
StartDensity = CurrentDensity ' This wiél the density at the first position of the ring

WhileCount = 0 ' reset whole ring lengtlucter variable
EWCount = 0 ' reset earlywood ring lengtrer variable
LWCount = 0 ' reset latewood ring lengtlimier variable

'set a range of length rawposition minusigEanforringlength to find min and max for 1st and
2nd ‘derive slopes
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Set ThirdRange = Worksheets("1_1").Rangkg®wPositionInRaw, 7), _
Cells(PositionForRingLength, 7))

Set FourthRange = Worksheets("1_1").RangfRowPositioninRaw, 8), _
Cells(PositionForRingLength, 8))

'Find min and max first derivatives in #&ected ring length
With ThirdRange

MaxFirst = Application.WorksheetFunctiblax(ThirdRange)
MinFirst = Application.WorksheetFunctiMin(ThirdRange)

End With

'Find min and max second derivatives ingkpected ring length
With FourthRange

Maxsecond = Application.WorksheetFumttiMax(FourthRange)
MinSecond = Application.WorksheetFuaotMin(FourthRange)

End With

'reset active 1st and 2nd derivatives twRasition derivative from sheet
Current2ndDer = Worksheets("1_1").Cells(RasitioninRaw, 8).Value
CurrentlstDer = Worksheets("1_1").Cells(RmositioninRaw, 7).Value

‘walking through the raw data to find ldmghd average density of latewood
While Current2ndDer < Maxsecond / 20

Do

'StartPoint reached above is thé €ied of the LW period
StopPosition = Worksheets("1_1").Cells(RowPositidtéw, 1).Value ' set the end of the
ring to the current position

CurrentDensity = Worksheets("1_@8lls(RowPositionInRaw, 2).Value

'needed two variables to averagesitie won't add to itself
WholeRingDensity = CurrentDensitRingDensitylntegration
RingDensitylntegration = WholeRirgixity

'index postion counters to be refdythe next loop
WhileCount = WhileCount + 1

LWCount = LWCount + 1

RowPositionInRaw = RowPositionInRaw

'read the new 1st and 2nd derieat@lues to see if we are still in latewood
Current2ndDer = Worksheets("1_18JIS§RowPositionInRaw, 8).Value
CurrentlstDer = Worksheets("1_18JISfRowPositioninRaw, 7).Value

'debugging tool
Worksheets("1_1").Cells(RowPositidRaw, 12).Value = Maxsecond
Worksheets("1_1").Cells(RowPositidgaw, 13).Value = MinSecond
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'Loop to Do statement until these cbads are met ie left latewood
Loop Until (Current2ndDer > Maxsecond / 20 And @mtd.stDer < (MinFirst / 2))

'If we have left the preceeding looje, ave at the end of the latewood
LWDensity = WholeRingDensity / LWCount

Wend

'When 2nd der passes back through 0, gtitsei inflection point
'Inflection point will be the first cell dhe earlywood
StopPosition = Worksheets("1_1").Cells(RosiRoninRaw, 1).Value ' update stop position

CurrentDensity = Worksheets("1_1").Cells{fRmsitioninRaw, 2).Value ' read new density
InflectionDensity = CurrentDensity

'debugging tool
Worksheets("1_1").Cells(RowPositioninRaw).¥Yalue = InflectionDensity

InflectionPosition = StopPosition
WhileCount =0
RingDensitylntegration = 0

‘walk through the raw data to find endinfrand add up ew densities
While Current2ndDer > MinSecond / 20

Do

'debugging tool
Worksheets("1_1").Cells(RowPositidgRaw, 12).Value = Maxsecond
Worksheets("1_1").Cells(RowPositidgaw, 13).Value = MinSecond

'‘Update stopposition and curremtsity to new row value
StopPosition = Worksheets("1_1")l§sf®owPositioninRaw, 1).Value

CurrentDensity = Worksheets("1_Q8lls(RowPositionInRaw, 2).Value
WholeRingDensity = CurrentDensitRingDensitylntegration
RingDensitylntegration = WholeRirgixity

WhileCount = WhileCount + 1

RowPositionInRaw = RowPositionInRaw

EWCount = EWCount + 1

'see if the next row is the sameg Br not
Current2ndDer = Worksheets("1_18JIS§RowPositionInRaw, 8).Value
CurrentlstDer = Worksheets("1_18JISfRowPositioninRaw, 7).Value

'Loop to the Do statment until the do¥ing conditions are met ie leave earlywood
Loop Until Current2ndDer < MinSecontlhd And CurrentlstDer > MaxFirst / 4
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Wend

'the current row position is out of thegiiwalculate the new values below for the ring ust
left

EWDensity = WholeRingDensity / WhileCount

StopDensity = CurrentDensity

RingLength = (EWCount + LWCount) * 0.02

AverageDensity = ((LWCount * LWDensity) E\WCount * EWDensity)) / (EWCount +
LWCount)

Worksheets("1_1").Cells(RowPositionInRafy 10).Value = StopDensity

Application.ScreenUpdating = True ' updage screen

'print out all the values on the excel sheevhatever RingCount row we are in
Worksheets("1_1").Cells(RingCount + 1, @lié = RingCount
Worksheets("1_1").Cells(RingCount + 1, Y¥@Jue = StartPosition
Worksheets("1_1").Cells(RingCount + 1, ¥hJue = StartDensity
Worksheets("1_1").Cells(RingCount + 1, ¥2Jue = InflectionPosition
Worksheets("1_1").Cells(RingCount + 1, ¥&Jue = InflectionDensity
Worksheets("1_1").Cells(RingCount + 1, Y4Jue = LWDensity
Worksheets("1_1").Cells(RingCount + 1, ¥&Jue = EWDensity
Worksheets("1_1").Cells(RingCount + 1, ¥@Jue = StopPosition
Worksheets("1_1").Cells(RingCount + 1, Y&lue = StopDensity
Worksheets("1_1").Cells(RingCount + 1, ¥@Jue = LWCount * 0.02
Worksheets("1_1").Cells(RingCount + 1, Y@Jue = AverageDensity
Worksheets("1_1").Cells(RingCount + 1, 2@Jue = RingLength
Worksheets("1_1").Cells(RingCount + 1, ¥hjue = 100 * (LWCount * 0.02) / RingLength

'Index RingCount variable and make sure€hfstDer and Current2ndDer are stored
RingCount = RingCount + 1

Current2ndDer = Worksheets("1_1").Cells(RasitioninRaw, 8).Value

CurrentlstDer = Worksheets("1_1").Cells(RmsitioninRaw, 7).Value

'loop back to initial while statement as lorsgtlaere is valid data for next ring
Wend

End Sub
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Appendix B
Polynomial method
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Introduction

The polynomial inflection program reads raw demsgtry data and reports ring characteristics
based on the script at the end of the Appendixs Thide was written to automate the process of
calculating, identifying, and checking the trarmsitpoint from earlywood to latewood as defined by
the polynomial root method. The script uses rava fiam the QTM-QTRX densitometer with
annual rings identified using the inflection rirglaulator to fit a sixth order polynomial to thewa
annual ring data and the root of the second dévivaf the polynomial that fits certain criterigh&
criteria used for this method came from suggestiom&ubaa et al. 2002. The script also calculates

earlywood and latewood densities, average densitylength, and latewood proportion.

Method

Raw densitometer data with ring assignments frarinfiection ring method for one tree are
imported on the clipboard and the Matlab file is@xed. The script brings the raw data into a
matrix and copies all of the density and positiatadf the first ring into a second matrix notihg t
start and stop position. When the script has pwledata from the first ring into the second matri

it calculates and stores the ring length, therefiséxth order polynomial to the annual ring’s déita
then calculates the second derivative of the patyaband then identifies the roots of the second
derivative. There are at most four roots of theoedalerivative of the polynomial, so the script mus
then determine which one meets the method crit€ha.script finds the data point with the highest
density (maximum density encountered in the annng), and chooses the roots which occurs
closest to but after (from bark to pith) the maximdensity, within 80% of the ring length, and the

first derivative at that root is also negative.

The script then prints a graph on the screen tovathe user to check the root identification, an
example is shown below. In the top graph, the caimieg being analyzed is displayed with the

density on the y-axis and the position from the damnsitometry data on the x-axis with circles
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representing the individual data points of the ahming. The root of the second derivative chosen
for this ring is represented by the red X (positiénl), and the line represents the sixth order
polynomial fit to the ring. The bottom graph reets all of the rings analyzed thus far for théstr
again with X’'s at the earlywood/latewood inflectipaints determined by the script. These graphs

were used to screen the results to ensure the s@gfunctioning as expected.
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Figure B.1. Output graph from Matlab script to ched assignment

Once the user is satisfied with the root deternonahe presses a key and the script calculates the
earlywood and latewood densities, percent latewand,average density of the active ring, then

records the results in a results matrix. The saiig calculates earlywood and latewood densities
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based on the integral of the polynomial, but tlitadvas not used in the analysis. After recordihg a
the ring characteristics, the script advanceseamgxt ring and repeats the process until theraare

remaining rings. The results matrix was then copoeExcel for use in the analysis.

Polynomial Method Instructions

Three columns of data for a tree are copied orgclipboard from Excel. The first column should

be the position, the second should be densityttamthird should be the ring number assignment.
This study used the ring assignment from the ititdacring calculator, but any ring assignment

could be used. In Matlab, open the script belowrandt. A graph similar to the one above will pop
up, and the user will strike a key to advance tlogiam to the next ring. Any rings with

guestionable assignments can be noted for addittmsassment. Once all the rings contained on the
clipboard have been analyzed, the matrix in Matlaimed “OutputMatrix” can be saved as an Excel

compatible file.

Polynomial Method Script

% This program is used to determine the EW/LW ftaorsusing Koubaa's polynomial fit

%Pull in clipboard data and determine how manygithgere are, reset counters
counter = 1;

Ring = [[;

OutputMatrixRowCounter = 1

clipboarddatalength = length(clipboarddata)
clipboarddata(clipboarddatalength + 1,:) =0
RingNumber=clipboarddata(counter, 3)

RingStartPosition = clipboarddata(counter, 1)

RingMatrixStart = counter

maxring = max(clipboarddata(:,3))

%While there is a valid ring to be read
while (RingNumber ~= 0)

rcounter = 1
Ring =]
RingMatrixStart = rcounter
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RingStartPosition = clipboarddata(counter, 1)

%While we are still in the same ring
while ( RingNumber == clipboarddata(counter+1,3))

%Copy the data from the clipboard to the Ring matdop until ring number
%changes

Ring(rcounter, 1)=clipboarddata(counter, 1)

Ring(rcounter, 2)=clipboarddata(counter, 2)

counter = counter + 1

rcounter = rcounter + 1

end

Ring(rcounter, 1)=clipboarddata(counter, 1);
Ring(rcounter, 2)=clipboarddata(counter, 2);

%The current position is the end of the ring
RingStopPosition = clipboarddata(counter, 1)
RingMatrixStop = rcounter

%Calculate ring length
RingLength = RingStopPosition - RingStartPositiord2

%Fit a 6" order polynomial to the ring data contained indRimatrix
p = polyfit(Ring(RingMatrixStart:RingMatrixStop, Bing(RingMatrixStart: RingMatrixStop,2),6);

%Calculate and stord®erivative of polynomial as secondder
secondder = polyder(polyder(p))

%Find the roots of polynomial secondder and stom@atssecond
rootssecond = roots(secondder)

% Find the maximum density in the ring and identifg position as MaxPosition
MaxDensity = find(Ring(RingMatrixStart:RingMatrix&p,2) ==
Max(Ring(RingMatrixStart:RingMatrixStop,2)))

MaxPosition = max(Ring(MaxDensity,1))

%(Criteria to determine which root of the secondwdgive is the best. As written below, find
%root which is pith side of the maximum density anthin 80 percent of the ring length and
%the first derivative at that point is negativev&aas integer (roots 1, 2, 3, 4) as “whichrootadto
whichrootsecond = max(find(MaxPosition < rootsset&rootssecond < RingStartPosition +
.80*RingLength & polyval(polyder(p),rootssecondpy

%Assign InflectionPoint as the root chosen aboveHis ring
InflectionPoint = rootssecond(whichrootsecond)

%Evaluate the polynomial at InflectionPoint to detime density at inflection point
InflectionDensity = polyval(p,InflectionPoint)
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%Produce graphs for user

%31 graph of this ring raw data with polynomial anéléntion point
x2 = Ring(RingMatrixStart:RingMatrixStop, 1);

y2 = polyval(p,x2);

hold on

subplot(2,1,1);
plot(Ring(RingMatrixStart:RingMatrixStop,1),Ring(RiMatrixStart: RingMatrixStop,2),'0',x2,y2,
InflectionPoint, InflectionDensity, 'x');

grid on;
hold off

%Print second graph, just adds current graph taigue graphs of same tree

subplot (2,1,2);
plot(Ring(RingMatrixStart:RingMatrixStop, 1),Ring(RiMatrixStart: RingMatrixStop,2),'0',x2,y2,
InflectionPoint, InflectionDensity, 'x');

grid on;

%Wait for user to hit key
pause

%Ildentify latewood data points and calculate thamfer latewood density
Latewoodpoints = find( Ring(RingMatrixStart:RingNiaStop,1)< InflectionPoint)
LatewoodDensity = mean(Ring(Latewoodpoints,2))

%ldentify earlywood points and calculate the mearearlywood density
EarlywoodPoints = find( Ring(RingMatrixStart: RingkMiaStop,1)> InflectionPoint)
EarlywoodDensity = mean(Ring(EarlywoodPoints,2))

%Calculate latewood and earlywood width using nunabg@oints in each
LatewoodWidth = length(Latewoodpoints) * .02
EarlywoodWidth = length(EarlywoodPoints) * .02

%Calculate percent latewood using previously cated values
PercentLatewood = 100*LatewoodWidth/RingLength

%Alternative measure of latewood and earlywood itignsing integral of polynomial over
%Earlywood and latewood regions

IntegratedLatewoodDensity = mean(polyval(p,Ring®tasition:.01:InflectionPoint))
IntegratedEarlywoodDensity = mean(polyval(p,InflesPoint:.01:RingStopPosition))

%Calculate average density
AverageDensity = mean(Ring(:,2))

%Fill OutputMatrix with values for ring on the OutiMatrixRowCounter-th row
OutputMatrix(OutputMatrixRowCounter,:) = [RingNumbRingStartPosition InflectionPoint
RingStopPosition RingLength InflectionDensity LatewiDensity IntegratedLatewoodDensity
PercentLatewood EarlywoodDensity IntegratedEarlya@ensity AverageDensity]
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%Index OutputMatrixRowCounter for next ring
OutputMatrixRowCounter = OutputMatrixRowCounter + 1

%Index counter to look at next ring and read nigyg number —if none, exit while loop
counter = counter + 1
RingNumber=clipboarddata(counter, 3)

end
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Appendix C
Repeated measures analysis
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Background repeated measures

The study of serial data collected from the sandeviduals over time presents a unique set of
challenges. Many of the more commonly used stediktools require an assumption of
independence between samples, in that the resaiteoample has no correlation with the results of
another sample. In addition, there is an assumpgti@onstant variance between samples, which
requires the degree of random variation to remanstant from sample to sample. In the study of
annual rings of trees, the independence assumptiaid equate to the assumption that the events
(e.g. climatic, cultural, or biological) in yearagt had no influence on this year’s growth (covaréa
between years equals zero) or that the eventsyédars ago has the same influence as last year’s
event (covariance between years equals a constiing) assumption of constant variance would be
interpreted to require that the random differeramesconstant through time and that all years would
exhibit the same degree of dispersion (Fitzmawetad. 2011). A basic familiarity with tree growth
and physiology would suggest that applying theseragtions to serial data would be spurious at

best, or even misleading.

Violations of these assumptions using common aitalytechniques can lead to interpretation issues
regarding the significance of the effects being suead, but violations of these assumptions are
often the norm in serial datasets (Oehlert 200@hodigh it may be difficult to define the precise
effects of assumption violations, some generakpatthave been observed. Violations of the
independence assumption lie in the fact that ajhawur estimates of the treatment effect remain
unbiased, our estimate of the variation about Hegaayes of the treatments is no longer unbiased.
Because the responses of each of our samplesraeéated to one another, each additional sample
no longer represents a “new” piece of informatibhe analysis may reveal that there is a
numerically large difference between treatmentsameconfident in that result, but we can't

accurately assess the significance of that differarsing standard practices. Depending on the
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nature of the correlations, we may reject or acttepnull hypothesis more frequently than we

would expect using independent data.

In a similar vein, violations of the constant vada assumption lead to variation in the rates at
which we reject or accept the null hypothesis dwmddeparture from expected behavior increases
with departures from balanced data sets and adetlyee of differences in variance increases. Issues
with nonconstant variance stem from the fact thaneed to use the same estimate of error variance
to test the significance of different groups, sewlone small group has a very small associated erro
and a larger second group has a high degree of erecoverestimate the amount of error for the

first group resulting in a conservative test, andarestimate the amount of error in the secondpyrou
resulting in a liberal test. For dichotomous grawgpivith balanced data structure, nonconstant
variance is less of an issue, but as more groupsanpared and the degree of unbalance increases,

these issues became more onerous (Oehlert 2000).

Repeated Measures methodologies provide a meauakltess the violations of independence and
constant variance assumptions that are inheraepimated measures of the same individuals over
time. Put simply, repeated measures techniquea oag&ch more complicated framework describing
variation within (and in some cases between) imlligls over time. By allowing observations close
in time to be more similar and observations sepdrby more time to be less similar, repeated
measures models can give a more valid estimatidineofariation within the samples, and allows
more accurate tests for significance. Likewiseywilhg the variance within individuals to change
through time permits more accurate assessmenigrificance. The use of these more complex
models has a trade-off or penalty: for each aduiiparameter we estimate to develop a more
accurate model of the sample’s change through tvedpse parameters to estimate the final error
variance, which requires larger differences betwesgtments to return a significant result. If
accurately modeling the samples through time reguarlot of parameters (ie there is no general

pattern or it is very complex), when we try to ts significance of elements of our model, we will
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find that it takes a larger difference in treatnseiotregister the same level of significant differe.

There is no free lunch.

In basic ANOVA tests, the Independent Variables) @ve considered fixed factors which, each in
their own way, explain some of the variation in Wigole dataset by assigning parameter estimates
(means or slopes) associated with the levels @isd¥s) or values (continuous IVs). The basic
design of a single factor ANOVA is shown in Fig@e, with groups representing different
treatment levels. The basic test of significaneestch of the Vs is whether or not the variation
explained solely by the IV (Between groups in Fegr.2) being tested exceeds some ratio of the
leftover variation(Within treatments in Figure Cdtjce all the IVs have been accounted for. This
ratio, called an F-value, is compared to a critiadbe for a given significance level and if it erds
the critical value, we call the effect of the \gsificant. If individuals in each group are clusigr
tightly around their respective group means, tenassignment of group means explains a lot of the
total variation, and there will be little withingatment variation. As the ratio of variance expddin

by treatment to error variation increases, theafistic will increase, and may reach a criticaleal

at which we can call the treatment effect signific#\ll F-values in a simple ANOVA are calculated
using the same denominator, an estimate of err@hwhcludes random variation, variation due to

subjects, and measurement error.
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Figure C.1. Visualization of ANOVA

In the repeated measures models used here, tlatiaaris split into two categories: betw-subject
and within-subject. Figure Cshows how variation is partitioned in a repeatedsnees design. Tt
betweensubject portion of the error is used to wate the treatments and other covariates tha
fixed through time. In basic ANOVA, all of the reimimg error after accounting for IVs is used
the denominator for the test. In repeated measures designs, the errorfeertime betwee-subject
F-teg is really the amount of variation due to subjedithin treatments. The-test for the betwes-
subject portion of the repeated measures analyséally comparing the amount of variat
explained by the treatments to the amount of anawithin treatment groups without respect
time, or as an average across time. The bel-subject component of the repeated meas
analysis is identical to theMOVA design depicted in FiguiC.2above. One can imagine that
more the groups converge on ttrespective groups averages, group means accoumofe
variation and the random differences between iddiis in the same group decreases, and-

statistic for the test will increa:
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Figure C.2. Partitioning of variance in repeated measure

To assess the significance of Vs that vary (spedlff time and interactions between treatments
time), a separate portion of the error varianaesed, the withi-subject portion. The with-subject
portion of the variance assesses differencendividuals over time. Variance explained by time
interactions between time and treatments is pdited the withir-subject variance, and tl

remainder becomes the error term for within subjaciables, and can be thought of as |

individuals withintreatments vary over time. Unlike simple ANOVA, whall treatments are test
against the same error term, repeated measurdsa®the use of different error terms dependin

whether or not the IV being tested is constantasies with time

Themixed models used in this Chapter incorporate fixelcts such as treatments and covarii
but they also include random effects. Random effact used as placeholders or explane
variables for random differences that we can accfaurbut may nc want specific estimates of,
opposed to fixed effects, which are used to spedifi measure the differences between thing
classic example takes place in a factory settifigeresthere are 3 machines, many operators
some other IVs which are lieved to affect some manufacturing outcome. We bayery
interested in the effect of each machine or thero¥is, because for all practical purposes, the)

the only ones available, or they are the things oxech we have control. We may not be
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interested in the effect of operator because thereso many or we want to assess a population of
operators. We account for the effect of operatothat we may estimate a range of likely deviations
due to operators (or test whether or not operétgosse a significant amount of variation) but
typically do not estimate the effect of any onerap@. The incorporation of random effects in a
model provides a means to account for known or eepevariation without specifically measuring
the effect of every individual. The deviations that attributable to the random effect are held

separately, and do not contribute to the error tg€rm

The model referenced in Equation 3 incorporatemédam effect for tre€Sy) ;(;). This random

effect is commonly referred to as a random intetrcpd ideally would be thought of as accounting
for random variation common to all trees. By usingandom intercept, the model acknowledges that
there are differences between trees, and we aghatnehose differences are normally distributed
with a mean of zero and some variance. If we wanklout to the field and sampled more trees, we
would expect that the new trees sampled would thereit than the originals, but we would expect
their variations to be similarly distributed as th@inals. Thus, when we use the model to estimate
population parameters (making inferences acroasge lgroup of individuals), the random term
essentially drops to zero in the same way thatdbiglual variance drops to zero when estimating
population parameters. Another way of thinking atibe random intercept would be in the context
of a regression for many individuals, and the iiaépt of each individual would be “allowed” to
float, and the researcher would be interested fimerén how the slope with respect to the IV was
able to account for remaining variance. The randdercept permits us to remove some of the
variation common to all trees so that we can coima@on measuring variation between and within

treatments

One of the primary features of repeated measur@gsas such as these is the use of a more

complicated covariance matrix to explain residusdrs through time. The covariance matrix is the
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mathematical tool or matrix structure that is usedescribe the variation of individuals at a given
time (variance) and the relationships in errorsvieen time periods (covariance). As stated
previously, if a close approximation of the “trualvariance structure can be reached, with faithful
representations of the variances and covariandbdgwimdividuals through time, then the resulting
measures of significance will be more accurataddition, some of that quantity that was
considered random error in a simple ANOVA framewwik be recognized as covariance, and
reduce the random portion of the error. If you aaourately account for variation with a model, then

the predictable portion of the variation is notliseeandom.

For example, we can plot the average densitiealfbrees for two consecutive years, and we find
there is some correlation there; that the treestéimaled to have high density last year also hayle h
density this year, and vice versa. Figure C.4avshtbe average ring density of trees in the years
1976, and the average densities of the same wel}i7. This correlation (or specifically this
covariance) allows us to partition some of whatassumed was random error into covariance.
Figure C.5 show how we can divide the within-subgrcor into four components: variation
explained by Year, variation explained by the Tiresit X Year interaction, the residual covariance
between years, and finally the remaining errordwlis that will form the error term for the anadysi
of the within-subject IVs. As mentioned previousgme covariance matrix models allow for
different patterns of covariance within trees fiffedent years, and different variances for differe
years. In Figure C.4b , the average densities 16 Ee fitted with the average densities in 2005.
There was a dramatic reduction in the same treelation compared to 1977, and to accurately
model the covariance patterns, the covariance dimobably be allowed to decrease with time. The
more closely we can model what is actually occgrimthe data, the better our estimates of
significance should be. As the covariance matroobge more complicated, we may be able to
assign more of the error residuals term as covegiafis we make the covariance matrix more

complicated, we also lose degrees of freedom fraretror residual term, which may make it more
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difficult to demonstrate significant differencesdliain the analysis. The trade-off is thus to detee
the most parsimonious covariance matrix which doeadequate job of describing variance within

years and covariance between years with the fepassible number of parameters.
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Figure C.3. Correlations between years. Correlatios between 1976 and 1977 (a). Correlations between
1976 and 2005 (B).
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Figure C.4. Partitioning of within-tree error varia nce
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Progression of analysis

The increment cores for the study were chosen rahdimom the cores collected from the initial
study performed in August of 2007. The only initiateria were that the cambial age was at least 25
years in 1975, and that the cores were complet high and low SBD groups represented similar
ranges of stand conditions, though not always thighsame distribution. Figure C.6 shows
histograms of some of the tree and stand blockantakiles for the two SBD groups. Figure C.6 A
shows the establishment year at breast heightinalimhtes that across many of the stands sampled,
there was a major disturbance in the 1930'’s, aftéch, a great deal of ingrowth in the stands
occurred. This same pattern was seen in the pamigihal samples from which the trees for this
study were drawn. In Figure C.6 B, the distributidrelevations for the sample trees suggests that
the SBD groups cover approximately the same ramigle the low SBD group exhibiting a slightly
wider range. The clustering is a result of crosgiseal nature of the initial study to try and saenp
across a wide elevation gradient categories. FigueeC shows the distribution of green canopy as a
percent of total height, and shows that the two $Biips encompassed a similar range of canopy
lengths. Figure C.6 D shows the distribution of specific gravities of the entire increment cores,
from pith to bark. The member of the high SBD grexpibited a low whole tree specific gravity,

but it was one of the youngest trees in the sampiepresumably contained a high proportion of
juvenile or core wood. The average densities frioat tree used in the analysis were much closer to
the mean of the high SBD group. Figure C.6 E shiwslistribution of total tree heights, and Figure
C.6 F shows the diameter distributions for the 88D groups. In all, the distributions were similar

to those found from which the samples were drawmfr
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The data set was split into a calibration set dommg data from 1976-1985 and a test data set that
contained data from 1986-2005. The intent was éotlis calibration data set to determine the two
most significant covariates to accompany Soil Bddnsity Group (BDGRP), Year, and BDGRP X
Year. In addition, the calibration data was useddi@rmine which covariance matrix model best fit

the data by means of the Bayesian Information flvitecalculated in Proc Mixed in SAS.

The models were built using a top-down approacbuditned in West et al. in which the first step
was to identify those variables that seemed todsqdtin variation in the ring characteristics of
interest with no accommodations for the serialaations in the data due to repeated sampling, and
without random effects. The resulting model waslykoverfit, but the goal was to explain as much
systematic variation as possible using covariaéegdt the means as close as reasonably possible),
leaving residuals that contained as little syst@&tor as possible. Next, models including the
random effect (random intercept for this study) potential residual covariance models were
compared using the BIC value as a measure of pangin©Once an appropriate random intercept and
covariance combination were selected, the covariatehe model were reduced until the two most
significant covariates remained along with BDGREAR, BDGRP X YEAR, and the random

intercept.

To identify the best variables to accompany SBB,filst step was to use regression without
accounting for repeated measures to see if anghlag exhibited strong relationships across
individuals and time with the ring characteristiesng investigated in the calibration data set. The
intent of the first step was to explore the relagitips between variables, and determine if any
interactions could be visually determined. All maffects and seemingly significant potential

interactions were tested in the second phase.
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The second phase of the analysis was to use ariatevANOVA model in SPSS to reduce the
number of variables in the model to a more readeraibset. The models all included BDGRP,
Year, and the BDGRP X Year interaction, but theeottovariates were added to see which ones
were best correlated to the ring characteristibg Univariate model still did not account for the
repeated measures format of the analysis, but beallthe variables being considered were
between-tree factors, they all were tested ag#iessame error term. The covariates that exhibited

significance in the univariate ANOVA analysis wersed for the final model building stage.

The final model building step was take those vadgislthat exhibited significance in the univariate
ANOVA and build a final model that accounted foe ttepeated measures structure of the data,
possibly included the random effects, and usednb&t appropriate residual covariance matrix. The
covariates that were significant in the prior stege added into PROC MIXED in SAS 9.1 with
BDGRP, YEAR, BDGRP X YEAR, and executed with a gtwritten to run all the potential
combinations of random intercept and residual damae matrices (as appropriate) in one pass. The
Restricted Maximum Likelihood (REML) method was dise generate parameter estimates and the
Kenward-Rogers method was used to approximategherdinator degrees of freedom. The
covariance matrices tested were: diagonal, unsire} first order autoregressive, heterogeneous
autoregressive, compound symmetric, heterogenemupaund symmetric, toeplitz, and
heterogeneous toeplitz. The final covariance matsed was the one that registered the lowest BIC
score, or in the case of a tie, the one that redue fewest parameters. Once the residual
covariance matrix was chosen, the covariates weninated one by one based on their significance
in the model until there were two covariates tooaggany the treatment, time, treatment-time
interaction, and random intercept. The final modas$ run on the calibration data to check residuals

for normality and constant variance.
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TLWP

After developing the models for the threshold,gnflon, and polynomial models, an analysis of the
residuals indicated that the assumption of constaénce across the predicted values may be
violated in the calibration dataset. The graphagihe calibration dataset weren't definitive, bat

a precaution, models for the log transformatiothefthree latewood measure were developed, and
were the ones that were ultimately used. All thevlod measurements exhibited long right tails in
their distributions and the smallest rings exhibiéegreater variation than longer rings. The resdglu
for AVGDEN did not exhibit any patterns in the \ance of the residuals in either the calibration or

test dataset.

Figure C.7 shows the residuals from TLWP and LNTLWjf consistency of the residuals over the
range of predicted values showed a great deal mfawement using the transformed values. The two
models used nearly the same covariates, the ufgrared TLWP used LNAVGRL and ELEV,

while LNTLWP used LNAVGRL and BHAGE, but ELEV walsd last covariate removed (third best
covariate). The BIC values from the covariance ixditting for LNTLWP are shown in Table C.1.
The autoregressive model was essentially tied thigtheterogeneous autoregressive model , and the
autoregressive model was chosen. The results dinlemodel fitting for LNTLWP are shown in

Table Y. The final covariates selected to model LM/P were: ELEV and LNAVGRL.
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FigureC.6. Residuals plot of the calibration modefor TLWP(a). Residual plot of the calibration model
for LNTLWP(b).

Table C.1. BIC values for choice of covariance maitx for LNTLWP

Covariance Stucture Random Intercept BIC
Diagonal No 271.3
Unstructured Yes 189.6
Diagonal Yes 112.4
Autoregressive No 154.3
Autoregressive Yes 107.2
Heterogenous Autoregressive No 150.7
Heterogenous Autoregressive Yes 106.9
Compound Symmetry No 112.4
Compound Symmetry Yes 112.9
Heterogenous Compound Symmetry No 113.9
Toeplitz Yes 123.3
Heterogenous Toeplitz No 124.2

The model results are shown in the body of the Resaction of the Chapter, but the analysis of the
residuals is shown below. The distribution of tasiduals for the low SBD group in Figure C.8a,

and the high SBD group in the Figure C.8.b, thalteds for both appeared to be normal
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Figure C.7. Distribution of residuals for the final LNTLWP model, low SBD(a), high SBD (b)

The residuals for both of the covariates likewisersed to be consistently distributed for both SBD

groups across their respective ranges. Figurel@@sthe distribution of residuals plotted across

the range of LNAVGRL 86-05 and BHAGE
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Figure C.8. Residuals from final model for LNTLWP plotted against LNAVGRL(a), BHAGE (b).
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AVGDEN

The covariance selection process indicated thaaub@egressive covariance model with a random
intercept provided the best fit using the BIC valas a metric. The results of the covariance

selection process are shown in Table C.2

Table C.2. BIC values for choice of covariance maitx for AVGDEN

Covariance Stucture Random Intercept BIC
Diagonal No 4232
Unstructured Yes 4005
Diagonal Yes 3939
Autoregressive No 3985
Autoregressive Yes 3928
Heterogenous Autoregressive No 3984
Heterogenous Autoregressive Yes 3930
Compound Symmetry No 3939
Heterogenous Compound Symmetry Yes 3939
Heterogenous Compound Symmetry No 3946
Toeplitz No 3946
Heterogenous Toeplitz No 3952

With the autoregressive covariance matix and thdamn intercept, the final two covariates chosen

using the calibration data were ELEV and BHAGE.

The homogeneity of the variance across the pratlidkies of AVGDEN is shown in Figure C.10,
and the normal distribution of the residuals fa lbw and high SBD groups are shown in Figures
C.11.a and C.11.b. The distribution of residuatesthe range of BHAGE and ELEV are shown in
Figures C.12a and C.12b. All residuals appeardx tapproximately normally distributed and

showed no pattern to suggest differences in digioh across the ranges of any of the covariates.
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LNINFLWP

The covariance selection process indicated thaaub@egressive covariance model with a random
intercept provided the best fit using the BIC valas a metric. The results of the covariance

selection process are shown in Table C.3.

Table C.3. BIC values for choice of covariance maitx for LNINFLWP

Covariance Stucture Random Intercept BIC
Diagonal No 63
Unstructured Yes 94
Diagonal Yes -7
Autoregressive No 11
Autoregressive Yes -11
Heterogenous Autoregressive No 28
Heterogenous Autoregressive Yes 8
Compound Symmetry No -7
Heterogenous Compound Symmetry No 8
Toeplitz No 0

Heterogenous Toeplitz No 17
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The final model selection in PROC MIXED is shownTiable BH. The final covariates chosen using
the calibration dataset for LNINFLWP were BHAGE diddlAVGRL76_85 using the autoregressive

covariance matrix and a random intercept term

The homogeneity of the variance across the pratlidties for the test data set of LNINFLWP is
shown in Figure C.13, and the normal distributibthe residuals for the low and high SBD groups
are shown in Figures C.14a and C.14b. The distobwif residuals across the range of BHAGE and
LNAVGRL are shown in Figures C.15a and C.15b. Alliduals appeared to be approximately
normally distributed and showed no pattern to sagd#ferences in distribution across the ranges of

any of the covariates.
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Figure C.12. Residual plot for final model of LNINALWP
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LNADJINFLWP

The covariance selection process indicated thdewviné heterogeneous compound symmetric
covariance model without a random intercept pravithe best fit using the BIC values as a metric,
the autoregressive model was within 2 BIC pointthefheterogeneous compound symmetric
indicating near equivalency. In addition, the cesmace parameters estimated by the unstructured
matrix seemed to indicate a pattern more consistightthe autoregressive model with a few years
with interspersed with higher covariance that ddfit the autoregressive pattern. The resulthef t

covariance selection process are shown in Table C.4

Table C.4. BIC values for choice of covariance maix for LNADJINFLWP.

Covariance Stucture Random Intercept BIC
Diagonal No 407
Unstructured Yes 363
Diagonal Yes 282
Autoregressive No 323
Autoregressive Yes 280
Heterogeneous Autoregressive No 307
Heterogeneous Autoregressive Yes 283
Compound Symmetry No 282
Heterogeneous Compound Symmetry No 278
Toeplitz No 289
Heterogeneous Toeplitz No 286

The final covariates chosen using the calibratiataset for LNINFLWP were BHAGE and

LNAVGRL76_85 using the autoregressive covarianceimand a random intercept term.

The homogeneity of the variance across the pratlidties for the test data set of LNADJINFLWP
is shown in Figure C.16, and the normal distributid the residuals for the low and high SBD
groups are shown in Figures C.17a and C.17b. Wtaldition of residuals across the range of

BHAGE and LNAVGRL86_05 are shown in Figures C.18d &.18b. All residuals appeared to be
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approximately normally distributed and showed nttgoa to suggest differences in distribution

across the ranges of any of the covariates.
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Figure C.15. Residual plot for final model of LNADJIJNFLWP
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Figure C.16. Distribution of residuals from the final model for LNADJINFLWP. Low SBD group (a),
high SBD group (b).
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Figure C.17. Residuals from final model for LNADJINFLWP plotted against BHAGE (a), LNRLEN (b).

LNPLWP
The covariance selection process indicated thadub@egressive covariance model best fit the data.

The results of the covariance selection processtaen in Table C.5

Table C.5. BIC values for choice of covariance maitx for LNPLWP.

Covariance Stucture Random Intercept BIC
Diagonal No 145
Unstructured Yes 64
Diagonal Yes -28
Autoregressive No -12
Autoregressive Yes -43
Heterogeneous Autoregressive No -9.4
Heterogeneous Autoregressive Yes -19
Compound Symmetry No -28
Heterogeneous Compound Symmetry No -13
Toeplitz No -33
Heterogeneous Toeplitz No -16

The homogeneity of the variance across the pratlidties for the test data set of LNPLWP is
shown in Figure C.19, and the normal distributibthe residuals for the low and high SBD groups

are shown in Figures C.20a and C.20b. The distobwif residuals across the range of PERGRN
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and LNAVGRL86_05 are shown in Figures C.21a and B&.2ll residuals appeared to be
approximately normally distributed and showed nttgoa to suggest differences in distribution

across the ranges of any of the covariates.

Residuals

I I I I I I
28 30 33 35 38 40

Predicted Values LNPLWP
Figure C.18. Residual plot for final model of LNPLWP.
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Figure C.19. Distribution of residuals from the final model for LNADJPLWP. Low SBD group (a), high
SBD group (b).
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Figure C.20 Residuals from final model for LNPLWP potted against PERGRN (a), LNRLEN (b).

LNADJPLWP

The covariance selection process indicated thadub@egressive covariance pattern provided the

best fit. The results of the covariance selectimtgss are shown in Table XD

Table C.6. BIC values for choice of covariance maix for LNADJPLWP.

Covariance Stucture Random Intercept BIC
Diagonal No 407
Unstructured Yes 363
Diagonal Yes 282
Autoregressive No 323
Autoregressive Yes 280
Heterogeneous Autoregressive No 307
Heterogeneous Autoregressive Yes 283
Compound Symmetry No 282
Heterogeneous Compound Symmetry No 278
Toeplitz No 289
Heterogeneous Toeplitz No 286

The final covariates chosen using the calibratiataset for LNINFLWP were BHAGE and

LNAVGRL76_85 using the autoregressive covariancéimand a random intercept term.
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The homogeneity of the variance across the pratlidties for the test data set of LNADJINFLWP
is shown in Figure C.22, and the normal distributid the residuals for the low and high SBD
groups are shown in Figures C.23a and C.23b. Wtaghdition of residuals across the range of
BHAGE and LNAVGRL86_05 are shown in Figures C.24d €.24b. All residuals appeared to be
approximately normally distributed and showed nttgoa to suggest differences in distribution

across the ranges of any of the covariates.

Residuals

-1.57

I I
25 3.0 3.5 4.0

Predicted Values
LNADJPLWP

Figure C.21. Residual plot for final model of LNADJPLWP.
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Figure C.22. Distribution of residuals from the final model for LNADJPLWP. Low SBD group (a), high
SBD group (b).
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Figure C.23. Residuals from final model for LNADJPLWP plotted against PERGRN (a), LNAVGRL
(b).
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Appendix D
SAS Code



proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;

model Intlwp = bdgrp bsyrfix bdgrp*bsyrfix bhage
Inavgrl86_05

/htype = 3 intercept ddfm=kr s outpred=predintlwp;
random intercept/sub=tree(bdgrp);

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);

Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;

proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;

model ewden = bdgrp bsyrfix bdgrp*bsyrfix elevation
Inavgrl86_05

/htype = 3 intercept ddfm=kr s outpred=predewden;
random intercept/sub=tree(bdgrp);

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);

Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;

proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;
model lwden = bdgrp bsyrfix bdgrp*bsyrfix pcntgrnchecked
Inavgrl86_05

/htype = 3 intercept ddfm=kr s outpred=predlwden;

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);

Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;

proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;

model avgden = bdgrp bsyrfix bdgrp*bsyrfix bhage elevation
/htype = 3 intercept ddfm=kr s outpred=predavgden;
random intercept/sub=tree(bdgrp);

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);

Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;

proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;

model Inmtplwnew = bdgrp bsyrfix bdgrp*bsyrfix
pcntgrnchecked Inavgri86_05
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/htype = 3 intercept ddfm=kr s outpred=predinmtplwnew;
random intercept/sub=tree(bdgrp);

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);

Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;

proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;

model Incorrectedmtplw = bdgrp bsyrfix bdgrp*bsyrfix
pcntgrnchecked Inavgri86_05

/htype = 3 intercept ddfm=kr s
outpred=predincorrectedmtplw;

random intercept/sub=tree(bdgrp);

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);
Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;

proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;

model Ininflwp = bdgrp bsyrfix bdgrp*bsyrfix bhage
Inavgrl86_05

/htype = 3 intercept ddfm=kr s outpred=predIninflwp;
random intercept/sub=tree(bdgrp);

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);
Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;

proc mixed data=fridaynight covtest method =
reml;/*autoregressive*/

class bsyrfix bdgrp tree;

model correctedIninflwp = bdgrp bsyrfix bdgrp*bsyrfix bhage

Inavgrl86_05
/htype = 3 intercept ddfm=kr s
outpred=predcorrectedIninflwp;

random intercept/sub=tree(bdgrp);

repeated bsyrfix / sub=tree(bdgrp) type = ar(1);

Ismeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix;
run;
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