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 Abstract 
 

The percentage of an annual ring composed of high density latewood measured using the threshold 

latewood demarcation method is commonly reported as a descriptor of both the annual ring 

formation process and the quality of the wood produced. Recently developed methods have been 

reported to provide more consistent estimates of latewood in trees exhibiting high intra-ring 

variability; but there is little published regarding the anatomy at the transition from earlywood (EW) 

to latewood (LW), and the ability of these alternative methods to predict mechanical properties. 

These alternative measures of latewood may be more consistent, but without an understanding of the 

anatomy at the EW-LW transition selected by these alternative methods, the interpretation of the 

latewood percentages returned by these methods is not meaningful. An assessment of the ability of 

these alternative latewood measures to predict physical and mechanical properties would further 

define the value of these alternative latewood measurement methods.  

In this paper, we compared the threshold latewood method (TLWP), an inflection based latewood 

method (ILWP), and a polynomial based latewood method (PLWP) in terms of the region selected as 

the EW-LW transition, how they measured tree response to environment, and how well they 

predicted mechanical properties.  

We found that in mature suppressed Douglas-fir, ILWP and PWLP were not well correlated with 

average density (AVGDEN), but that the difference between TLWP and ILWP or PLWP was 

positively correlated with AVGDEN. Microscopy at the EW-LW transition points showed that the 

threshold method selected a transition point near Mork’s definition of latewood and that the 

inflection and polynomial methods targeted the region in which the cell wall thickness and lumen 

diameter changed most rapidly, but exhibited a systematic bias in the location chosen based on 

AVGDEN.  
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We studied the differences in TLWP, PLWP, ILWP, and AVGDEN between suppressed Douglas-fir 

growing on low and high bulk density soils. Analyzing the characteristics of the annual rings over 30 

years, we found differences between the groups for all measures that were consistent with the 

hypothesized difference predicted by the Least Limiting Water Range concept. Trees grown on low 

bulk density soils had significantly higher AVGDEN and latewood using all measures, but all the 

measures suggested similar differences.  

Finally, we studied the ability of AVGDEN, TLWP, PLWP, and ILWP to predict Modulus of 

Elasticity (MOE) and Modulus of Rupture (MOR) in small clear samples and the matching high 

grade 2x4s. We found that AVGDEN and TLWP were better predictors for small clear properties, 

but PLWP and ILWP had some predictive ability. All measures were better predictors of MOR in the 

small clears and MOE in the 2x4s. The results of the three studies presented form a basis with which 

to interpret ILWP and PLWP in the context of both tree response to the environment and the 

mechanical properties of the wood in Douglas-fir.   



v 
 

 Acknowledgements 
 

My heartfelt thanks go to Dr. Tom Gorman for his guidance during the course of this 

research and the personal and professional advice he has shared, Dr. Armando McDonald 

for dragging me kicking and screaming into an expanded understanding of wood science, Dr 

Steve Shook for his advice and guidance on this paper and other projects, and Dr. Mark 

Coleman for helping improve the quality of this document.  I am indebted to the Coalition 

for Advanced Structures for funding this research and my studies at the University of Idaho. 

I thank the work-studies that helped with this research, and the graduate students of the 

RMAT program who have been a constant source of inspiration and support. Finally, thanks 

to my wife, Adrienne, for supporting a deadbeat graduate student without complaint. 

  



vi 
 

 Table of Contents 
 

Authorization to Submit Dissertation.................................................................................................... ii 

Abstract ................................................................................................................................................ iii  

Acknowledgements ............................................................................................................................... v 

Table of Contents ................................................................................................................................. vi 

List of Figures ....................................................................................................................................... x 

List of Tables ...................................................................................................................................... xv 

Chapter  One Introduction ..................................................................................................................... 1 

Problem statement .................................................................................................................... 1 

Background .............................................................................................................................. 1 

Formation and measurement of latewood ................................................................... 1 

Assessing variation in ring characteristics through time ............................................. 4 

Latewood as a measure of wood quality ..................................................................... 5 

Research Objectives ................................................................................................................. 7 

Chapter Two ................................................................................................................ 7 

Chapter Three .............................................................................................................. 7 

Chapter Four ............................................................................................................... 8 

References ................................................................................................................................ 9 

Chapter Two Comparison of methods to determine latewood percentage in suppressed           

Douglas-fir  ................................................................................................................................... 12 

Abstract .................................................................................................................................. 12 



vii 
 

Introduction ............................................................................................................................ 13 

Methods .................................................................................................................................. 15 

Latewood determination ........................................................................................... 16 

Anatomical Measurement ......................................................................................... 18 

Results .................................................................................................................................... 19 

Annual ring length assignments ................................................................................ 19 

Measures of latewood percentage ............................................................................. 21 

Anatomy .................................................................................................................... 27 

Discussion .............................................................................................................................. 32 

Correlations between latewood measures and average density ................................ 32 

Anatomy at the selected transition points ................................................................. 35 

Quality control .......................................................................................................... 37 

Conclusion ............................................................................................................................. 38 

References .............................................................................................................................. 40 

Chapter Three The influence of soil bulk density and climate factors on wood quality in  

Douglas-fir trees ........................................................................................................................... 42 

Abstract .................................................................................................................................. 42 

Introduction ............................................................................................................................ 42 

Methods .................................................................................................................................. 46 

Selection of subjects.................................................................................................. 46 

Average density and latewood measures .................................................................. 47 



viii 
 

Statistical Analysis .................................................................................................... 49 

Results .................................................................................................................................... 51 

Linear mixed model results ....................................................................................... 53 

Comparison of latewood measurement methods ...................................................... 59 

Climate effects .......................................................................................................... 61 

Discussion .............................................................................................................................. 66 

Comparison of latewood measures ........................................................................... 66 

Average density and climate interaction with SBD .................................................. 67 

Conclusions ............................................................................................................................ 75 

References .............................................................................................................................. 76 

Chapter Four Predicting mechanical properties in Douglas-fir using latewood demarcation  

methods ......................................................................................................................................... 81 

Abstract .................................................................................................................................. 81 

Introduction ............................................................................................................................ 81 

Methods .................................................................................................................................. 85 

Results .................................................................................................................................... 86 

Discussion .............................................................................................................................. 91 

Prediction of small clear sample mechanical properties ........................................... 91 

Prediction of 2x4 mechanical properties ................................................................... 94 

Comparison of density and latewood measurements ................................................ 95 

Factors not included in the study and future work .................................................... 96 



ix 
 

Conclusions ............................................................................................................................ 98 

References ............................................................................................................................ 100 

Chapter Five Conclusions ................................................................................................................. 103 

Appendix A Inflection method ......................................................................................................... 106 

Appendix B Polynomial method ....................................................................................................... 115 

Appendix C Repeated measures analysis .......................................................................................... 122 

Appendix D SAS Code ..................................................................................................................... 150 

  



x 
 

 List of Figures 
 

Figure 2.1. Selecting the appropriate root of the polynomial for latewood demarcation .................... 18 

Figure 2.2. Distribution of deviations between threshold and inflection ring length assessments...... 20 

Figure 2.3. Mean values of TRLEN – INFRLEN for ring length quartiles (error bars represent        

+/- 2SD) ........................................................................................................................................ 20 

Figure 2.4. Deviation between inflection and threshold determination of ring length ........................ 20 

Figure 2.5. Similarities in ring length using the two demarcation methods ........................................ 21 

Figure 2.6. Similarities in INFAVGDEN and TAVGDEN using the two demarcation 

      methods……………………….……….…………………………………………………….…...21 

Figure 2.7. Comparison of PLWP and TLWP .................................................................................... 22 

Figure 2.8. Difference in TLWP and PLWP (TLWP-PLWP) regressed against TAVGDEN ............ 22 

Figure 2.9.Unusual annual rings indicated by large deviation of TLWP and PLWP ......................... 23 

Figure 2.10. Comparison of INFLWP and TLWP .............................................................................. 24 

Figure 2.11. Difference between TLWP and INFLWP (TLWP – INFLWP) regressed against 

TAVGDEN ................................................................................................................................... 24 

Figure 2.12. Fit of PLWP and INFLWP ............................................................................................. 25 

Figure 2.13. Differences in PLWP and INFLWP affected by ring shape ........................................... 25 

Figure 2.14. Correlations between latewood measures and average density. Correlation TLWP      

and TAVGDEN(a), correlation of PLWP and INFAVGDEN (b), correlation of INFLWP        

and INFAVGDEN(c). ................................................................................................................... 26 

Figure 2.15. PLWDEN and PEWDEN regressed against PINFDEN ................................................. 27 

Figure 2.16. TLWDEN and TEWDEN regressed against PINFDEN ................................................. 27 

Figure 2.17. Lumen diameter and cell wall thickness across a typical annual ring, with the   

threshold, inflection, and polynomial latewood transition points identified. ............................... 29 



xi 
 
Figure 2.18. Rate of change in cell wall thickness and lumen diameter at locations identified as 

threshold, inflection, and polynomial earlywood-latewood transition points. Error bars    

represent one standard deviation. ................................................................................................. 30 

Figure 2.19. Graphs of fit for lumen diameter to cell wall ratio regressed against density for the 

positions identified by the three latewood demarcation methods: threshold (a), inflection         

(b), and polynomial (c). Symbols indicate tree number. .............................................................. 31 

Figure 2.20. Percent of ring distance from point of maximum rate of change in lumen diameter 

versus average ring density for the three latewood demarcation methods: threshold (a),   

inflection (b), and polynomial (c). Positive distance indicates the transition point chosen 

occurred after maximum slope in lumen diameter. Symbols indicate tree number. ..................... 32 

Figure 3.1. Plot of TLWP vs RINGLEN ............................................................................................. 52 

Figure 3.2. Marginal means of TLWP over the period 1986-2005 (Bars indicate one standard     

error) ............................................................................................................................................. 57 

Figure 3.3. Marginal means for TAVGDEN during the years 1986-2005 (Bars indicate one    

standard error)............................................................................................................................... 57 

Figure 3.4. Marginal means of LNPLWP transformed to the original units for the study             

period (Bars indicate one standard error ....................................................................................... 58 

Figure 3.5. Marginal means of ADJLNPLWP transformed to the original units for the study      

period (Bars indicate one standard error) ..................................................................................... 58 

Figure 3.6. Marginal means of LNINFLWP  transformed to the original units for the study        

period (Bars indicate one standard error) ..................................................................................... 59 

Figure 3.7. Marginal means of ADJLNINFLWP transformed to the original units for the             

study period (Bars indicate one standard error) ............................................................................ 59 

Figure 3.8. Percent difference in latewood percentage throughout the study period using the 

threshold, adjusted polynomial, and adjusted inflection methods. ............................................... 60 



xii 
 
Figure 3.9. Percent difference in latewood percentage throughout the study period using the 

threshold, adjusted polynomial, and adjusted inflection methods ................................................ 61 

Figure 3.10. Sum of July and August CDD (65°F basis) from 1955 to 2005 ..................................... 62 

Figure 3.11. May Precipitation from 1955 to 2005 ............................................................................. 62 

Figure 3.12. Distribution of Z scores for the percent difference of AVGDEN between SBD        

groups ........................................................................................................................................... 64 

Figure 3.13. Mean monthly precipitation for entire study period by Z-score of AVGDEN     

difference between low and high bulk density soils (error bars represent one standard error) .... 64 

Figure 3.14. Mean monthly CDD for entire study period by Z-score of AVGDEN difference   

between low and high bulk density soils (error bars represent one standard error) ..................... 65 

Figure3.15. Fit of May precipitation and percent difference in AVGDEN between the two SBD 

groups (a). Fit of July/August CDD and percent difference in AVGDEN between the two      

SBD groups (d). Regression lines represent the best-fit for both periods combined .................... 65 

Figure 3.16. Comparison of elevations between SBD sample groups. Histogram of elevation 

distribution for the two sample groups (a), residuals of AVGDEN fit against elevation for        

the two treatment groups (b). ........................................................................................................ 69 

Figure 3.17. Average density by elevation for the low and high SBD groups in 1980 (a),   and 

2003(b). ........................................................................................................................................ 71 

Figure 4.1. Fit of average ring density to TLWP and PLWP .............................................................. 90 

Figure 4.2. Comparison of latewood transition point chosen by the threshold, inflection, and 

polynomial methods. Low density ring with PLWP<TLWP (a). High density ring with 

PLWP>>TLWP(b). ...................................................................................................................... 91 

Figure B.1. Output graph from Matlab script to check assignment .................................................. 117 

Figure C.1. Visualization of ANOVA ............................................................................................... 126 

Figure C.2. Partitioning of variance in repeated measures................................................................ 127 



xiii 
 
Figure C.3. Correlations between years. Correlations between 1976 and 1977 (a). Correlations 

between 1976 and 2005 (B). ....................................................................................................... 130 

Figure C.4. Partitioning of within-tree error variance ....................................................................... 130 

Figure C.5. Comparison of stand and tree characteristics between SBD groups:Establishment   

year(a), elevation(b), green canopy (c), whole tree SG (d), height (e), DBH (f). ....................... 132 

Figure C.6. Residuals plot of the calibration model for TLWP(a). Residual plot of the         

calibration model for LNTLWP(b). ............................................................................................ 136 

Figure C.7. Distribution of residuals for the final LNTLWP model, low SBD(a), high SBD (b) .... 137 

Figure C.8. Residuals from final model for LNTLWP plotted against LNAVGRL(a),              

BHAGE (b). ................................................................................................................................ 137 

Figure C.9. Residual plot for final model of AVGDEN ................................................................... 139 

Figure C.10. Distribution of residuals from the final model for AVGDEN. Low SBD group           

(a), high SBD group (b). ............................................................................................................. 139 

Figure C.11. Residuals from final model for AVGDEN plotted against BHAGE(a), ELEV (b). .... 140 

Figure C.12. Residual plot for final model of LNINFLWP .............................................................. 141 

Figure C.13. Distribution of residuals from the final model for LNINFLWP. Low SBD group         

(a), high SBD group (b). ............................................................................................................. 142 

Figure C.14. Residuals from final model for LNINFLWP plotted against BHAGE (a),           

LNRLEN (b). .............................................................................................................................. 142 

Figure C.15. Residual plot for final model of LNADJINFLWP ....................................................... 144 

Figure C.16. Distribution of residuals from the final model for LNADJINFLWP. Low SBD       

group (a), high SBD group (b). ................................................................................................... 144 

Figure C.17. Residuals from final model for LNADJINFLWP plotted against BHAGE (a),  

LNRLEN (b). .............................................................................................................................. 145 

Figure C.18. Residual plot for final model of LNPLWP. ................................................................. 146 



xiv 
 
Figure C.19. Distribution of residuals from the final model for LNADJPLWP. Low SBD            

group (a), high SBD group (b). ................................................................................................... 146 

Figure C.20. Residuals from final model for LNPLWP plotted against PERGRN (a),             

LNRLEN (b). .............................................................................................................................. 147 

Figure C.21. Residual plot for final model of LNADJPLWP. .......................................................... 148 

Figure C.22. Distribution of residuals from the final model for LNADJPLWP. Low SBD            

group (a), high SBD group (b). ................................................................................................... 149 

Figure C.23. Residuals from final model for LNADJPLWP plotted against PERGRN (a), 

LNAVGRL (b). .......................................................................................................................... 149 

 

  



xv 
 

 List of Tables 
 

Table 2.1. Tree and stand characteristics of the Douglas-fir used in this study .................................. 16 

Table 2.2.Comparison of lumen diameter to cell wall thickness ratios using the three latewood 

measures ....................................................................................................................................... 28 

Table 3.1. Low and high SBD sample populations, standard deviation in parentheses ...................... 53 

Table 3.2. Descriptions of ring variables used in the analysis ............................................................ 53 

Table 3.3. Results of ring property models for calibration dataset ..................................................... 54 

Table 3.4. Results of ring property models for Test period ................................................................ 55 

Table 3.5. Percent difference in AVGDEN between low and high bulk density soil groups ............. 63 

Table 4.1. Summary of specimens tested ............................................................................................ 87 

Table 4.2. Simple correlations between average ring and mechanical properties for the small        

clear and 2x4 samples ................................................................................................................... 87 

Table 4.3. Results of simple regressions between average ring properties and mechanical       

properties ...................................................................................................................................... 89 

Table C.1. BIC values for choice of covariance matrix for LNTLWP ............................................. 136 

Table C.2. BIC values for choice of covariance matrix for AVGDEN ............................................. 138 

Table C.3. BIC values for choice of covariance matrix for LNINFLWP ......................................... 140 

Table C.4. BIC values for choice of covariance matrix for LNADJINFLWP. ................................. 143 

Table C.5. BIC values for choice of covariance matrix for LNPLWP. ............................................ 145 

Table C.6. BIC values for choice of covariance matrix for LNADJPLWP. ..................................... 147 

 



1 
 

 Chapter  One 
Introduction 

 

Problem statement 

Latewood proportion is most frequently reported as the percent of an annual ring that exceeds a 

given threshold density. Studies reporting latewood period can be broken down into two general 

groups: 1) Studies that summarize one or more physical properties of the xylem with a single 

measurement and 2) studies that measure the response of the tree to the environment. Studies 

reporting the relationship between latewood percentage and mechanical properties focus on latewood 

percentage as a proxy for density and other correlated characteristics (e.g. maturity or microfibril 

angle) to predict mechanical properties. To pose this as a question: How does this component of 

density and other characteristics predict mechanical properties? Studies regarding changes in 

latewood percentage due to treatments or events use latewood as a proxy measurement to describe 

the physiological processes at work during xylem formation within the annual ring of the tree. In 

other words: How did the xylogenic process respond to the stimuli being studied? It is reasonable to 

ask if these two questions could be answered using the same measure of latewood. 

Background 

Formation and measurement of latewood 

During the xylem formation process in conifers the cambial initials must pass through three steps to 

become mature xylem: 1) a division step, 2) an enlargement step, and 3) a maturation or 

densification step (Wilson et al. 1966). Cuny et al. (2012 ; 2013) liken the process to a series of three 

connected pools in which division, enlargement, and densification occur and the duration a tracheid 

spends in any pool determines its properties. Upon division from the cambial initial, the newly 

formed xylem begins the radial enlargement process. The radial diameter of a forming tracheid is 

determined by the rate and duration of the expansion process. Research in Douglas-fir suggests that 
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both the rate and duration change seasonally to produce wide tracheids in the early growing season 

and narrowing tracheids as the season progresses (Dodd and Fox 1990). Densification occurs as the 

secondary cell walls of the tracheid thicken. The duration of the cell wall thickening stage seems to 

be the primary determinant of the degree of densification as the rate of cell wall deposition remains 

relatively constant (Dodd and Fox 1990). The duration of the wall thickening process peaks near the 

end of the growing season leading to increasing density toward the end of the annual ring. The 

maturation process ends with the death of the tracheid and assumption of water conduction (Dodd 

and Fox 1990). The process of tracheid development gives rise to wide and thin-walled earlywood  

with low density early in the season and narrower thick-walled latewood with higher density later in 

the season.  

The resulting annual ring is therefore a record of the duration and rates of expansion and cell wall 

deposition that produced an annual ring as well as the external factors that can manipulate them.  

Precipitation, heat, drought, fertilization, thinning, and a host of other variables can manipulate the 

tracheid formation process to produce different ratios of earlywood to latewood and rings of varied 

density (Jozsa and Brix 1989; Antony et al. 2009; Gonzalez-Benecke et al. 2010; Kantavichai et al. 

2010). Measures of latewood proportion and the density of the resulting earlywood and latewood can 

be used to infer timing and intensity of seasonal changes in the xylogenic process. 

The terms earlywood and latewood and the point in the annual ring that separates them have no 

universally accepted definition or standard. Mork’s definition (Mork 1928) is one of the most 

commonly cited, and defines the latewood transition point as the point in the annual ring in which 

the shared wall of adjacent tracheids is greater than twice their lumen diameter Many variations on 

Mork’s definition have been reported (reviewed in Creber and Chaloner 1984) but they all require 

extensive microscopic analysis. The introduction of X-ray densitometers opened up a new avenue of 

annual ring investigation, and was followed quickly with the development of the threshold method. 

Threshold methods declare the latewood transition to be the point at which the annual ring profile 
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crosses a set density value, frequently at a density that approximates Mork’s definition (Polge 1978). 

The region of the annual ring that is less dense is considered earlywood, and the region that is denser 

is considered latewood (Polge 1978, Creber and Chaloner 1984). Whether by exposure of X-ray 

sensitive film (e.g. Polge 1978) or more modern X-ray detectors (e.g. Clark et al. 2006), the 

threshold method can be applied quickly and easily, and has been shown to be well correlated to 

average wood density (Lachenbruch et al. 2010; El-Kassaby et al. 2011). 

A presupposition of the use of the threshold latewood method is that the latewood transition occurs 

at the same density for all trees or rings. This definition may be useful if the latewood percentage is 

being used as a substitute for density, but may not provide a consistent evaluation of the xylogenic 

process mentioned previously if the researcher is interested in measuring tree response. As Koubaa et 

al. (2005) and Antony et al. (2010) have noted for black spruce and loblolly pine, the threshold 

method might not adequately describe the wood formation process for both juvenile wood and 

mature wood simultaneously. They demonstrated that two dynamic latewood methods gave more 

consistent measures of latewood percentage between juvenile and mature wood than the threshold 

method.   

Dynamic latewood methods use changes in the density within rings to determine a point which 

represents the transition from earlywood to latewood. The method developed by Koubaa et al. (2005) 

used polynomials to fit a curve to the density/position profile and found the roots of the second 

derivative that best met a series of selection rules. The inflection method reported by Antony et al. 

(2010) used smoothed splines fit to the density/position profile and chose the inflection point as the 

second derivative of the spline crossed through zero during the transition from earlywood to 

latewood. The use of the slope of the density/position curve in the annual ring density profile makes 

it possible to identify a latewood transition point regardless of the average density of the species or 

individual. 
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Assessing variation in ring characteristics through time 

To assess the ability of any of the latewood methods to measure physiological changes in trees due to 

climate or treatments, the annual ring characteristics of multiple trees must be assessed, preferably 

over multiple years of growth. The study of serial data collected from the same individuals over time 

presents a unique set of challenges (Ott and Longnecker 2001). Many of the more commonly used 

statistical tools require an assumption of independence between samples, in that the results of one 

sample has no correlation with the results of another sample. In addition, there is an assumption of 

constant variance between samples, which requires the degree of random variation to remain 

constant from sample to sample. In the study of annual rings of trees, the independence assumption 

would equate to the assumption that the events (e.g. climatic, cultural, or biological) in years past 

had no influence on this year’s growth (covariance between years equals zero) or that the events of 

100 years ago has the same influence as last year’s event (covariance between years equals a 

constant).  The assumption of constant variance would be interpreted to require that the random 

differences are constant through time and that all years would exhibit the same degree of dispersion 

(Fitzmaurice et al. 2011). A basic familiarity with tree growth and physiology would suggest that 

applying these assumptions to serial data would be spurious at best, or even misleading. 

Violations of independence and constant variance assumptions can make it difficult to assess the 

significance of the effects being measured (Oehlert 2000). Violations of the independence 

assumption lie in the fact that although our estimates of the treatment effect remain unbiased, our 

estimate of the variation about the averages of the treatments is no longer unbiased. Because the 

responses of each of our samples are correlated to one another, each additional sample no longer 

represents a “new” piece of information. The analysis may reveal that there is a numerically large 

difference between treatments, we are confident in that result, but we can’t accurately assess the 

significance of that difference using standard practices. Violations of the constant variance 

assumption lead to variation in the rates at which we reject or accept the null especially in 
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unbalanced datasets. Issues with nonconstant variance stem from the fact that we need to use the 

same estimate of error variance to test the significance of different groups, so when one small group 

has a very small associated error and a larger second group has a high degree of error, we 

overestimate the amount of error for the first group resulting in a conservative test, and 

underestimate the amount of error in the second group resulting in a liberal test. (Oehlert 2000).  

Repeated measures methodologies provide a means to address the violations of independence and 

constant variance assumptions that are inherent in repeated measures of the same individuals over 

time. Repeated measures techniques use a much more complicated framework describing variation 

within (and in some cases between) individuals over time. By allowing observations close in time to 

be more similar and observations separated by more time to be less similar, repeated measures 

models can give a more valid estimation of the variation within the samples, and allows more 

accurate tests for significance. Likewise, allowing the variance within individuals to change through 

time permits more accurate assessments of significance. However, if accurately modeling the 

samples through time requires a lot of parameters (i.e. there is no general pattern or it is very 

complex), when we try to test the significance of elements of our model, we will find that it takes a 

larger difference in treatments to register the same level of significant difference.  

Latewood as a measure of wood quality 

Wood quality is a primary driver of the value of a given tree or species and determines the end uses 

to which it may be applied (Bowyer, 2003). This paper will focus on the quality attributes desirable 

for structural lumber i.e. strength and stiffness, but other properties may be desirable based on the 

end use of the product. The numbers of characteristics that determine wood quality are vast and 

subject to variation at any spatial level from species range down to individual annual rings (Larson et 

al. 2001). The simultaneous modeling of the entire suite of quality limiting characteristics and the 

factors that influence them is not currently a realistic proposition. However, researchers may 
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measure a few key factors associated with wood quality and infer the effect on resulting end 

products. 

One of the earliest and most cited characteristics associated with wood quality is the density of a 

sample of lumber (Newlin and Wilson 1917; Markwardt and Wilson 1935; Doyle 1968; 

Lachenbruch et al. 2010). The correlations of density to mechanical properties has been reported 

frequently and the basis of the correlations stem from the fact that the density of  the material 

comprising the walls of virtually all wood is constant (USDA 2002). The density of a wood sample 

is therefore a measure of the volume of the sample occupied by solid wood. If a simplified model of 

wood under bending is used, with tracheids represented by a collection of slender pipes of uniform 

outside diameter and differences in density are manifested as thicker or thinner pipe walls, 

engineering mechanics suggest that the thickening cell walls will increase the transformed moment 

of inertia (Bodig and Jayne 1982). If the Modulus of Elasticity (MOE) and Modulus of Rupture 

(MOR) of the cell wall material are held constant, greater loads will be required to reach the same 

midspan displacement and bending stress as density increases. At the macroscopic scale, we will 

report specimens with higher density as exhibiting higher MOE and MOR. This model can be 

expanded to incorporate all manner of physical characteristics, but density remains one of the most 

important properties.  

Latewood percentage has also been correlated with mechanical properties (Biblis et al. 2004; Choi 

1986; Lachenbruch et al. 2010). The influence of latewood proportion on mechanical properties has 

at least two components. First, latewood percentage is well correlated with density (Bower et al. 

2003; USDA 2002) because latewood percentage (especially threshold latewood percentage) relates 

the relative amount of high density latewood to the amount of lower density earlywood in the annual 

ring. The correlation may strengthen or weaken depending on the density of the earlywood and 

latewood components, but it is one of the primary sources of variability in annual ring density 

(Lachenbruch et al. 2010). Microfibril Angle (MFA) of the cellulose fibrils in the secondary cell wall 
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of fibers and tracheids has been shown to be negatively correlated with mechanical properties, 

especially in juvenile wood (Groom et al. 2002a; 2002b; Hein and Lima 2012; Yang and Evans 

2003). Within an annual ring, the MFA of latewood is generally lower than the MFA of earlywood 

(Lachenbruch et al. 2010, Groom et al. 2002b). The proportion of latewood in an annual ring 

therefore is related to the average MFA for that ring.   

Research Objectives 

Chapter Two 

There has been little research published concerning the correlations in latewood percentage 

measured between the threshold, inflection, and polynomial methods with average ring density. 

There has also been limited research regarding the anatomy of the earlywood/latewood transition 

point chosen by the inflection and polynomial methods. In order to use the results of the inflection 

and polynomial methods to predict mechanical properties, a better understanding of their correlations 

to the threshold method and average density is required. In order to use the inflection and polynomial 

methods to assess tree response to the environment, the consistency of the anatomy at the latewood 

transition point assigned by the inflection and polynomial methods must be determined.  

Objective 1: Assess the relationship between the inflection and polynomial methods, with threshold 

latewood percentage and average density. 

Objective 2: Assess the anatomy at the latewood transition point identified by the inflection and 

polynomial methods. 

Chapter Three 

In a prior paper (Morrow et al. 2013) we found a nondestructive measure of stiffness varied 

significantly between trees grown on low and high bulk density soils. Based on this result we 

hypothesized that a specific climate-soil moisture-root relationship could affect the xylogenic 
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process. In Chapter Three, we used a repeated measures analysis to test for systematic differences in 

annual ring characteristics between soil bulk density (SBD) groups. 

Objective 1: Test for differences between SBD groups using the 1) threshold, 2) inflection, 3) 

polynomial latewood percentages, and 4) average ring density in a repeated measures analysis. 

Objective 2: Determine if annual ring differences between SBD groups were consistent with the a 

priori hypothesis. 

Objective 3: Assess the agreement between latewood measures with respect to differences found 

between SBD groups. 

Chapter Four 

We found no data published concerning the correlations between wood quality and the inflection and 

polynomial latewood methods. In Chapter Four, we compared the abilities of 1) average density, 2) 

the threshold method, 3) the inflection method, and 4) polynomial methods, and average density to 

predict the MOE and MOR of small clear samples and their matched high grade 2x4s. 

Objective 1: Compare the ability of the inflection and polynomial method to predict mechanical 

properties with the more commonly used threshold latewood and average density. 

Objective 2: Assess the correlation of each wood density measure with MOE and MOR in both 

small clear samples and full size 2x4s.   
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 Chapter Two 
Comparison of methods to determine latewood percentage in 

suppressed Douglas-fir 
 

Abstract 

Latewood methods such as the threshold or Mork’s methods have been used extensively in forest 

research, but may not provide consistent results in all trees. Alternative methods of latewood 

measurement have been reported to be more consistent, but the lack of published studies of the 

anatomy at the earlywood/latewood transition currently limits their interpretation. To assess these 

alternative methods, radial strips from 45 small-diameter Douglas-fir were analyzed using X-ray 

densitometry to test the performance of three latewood measurement methods: a static threshold 

method, a dynamic inflection method, and a dynamic polynomial method. The analysis indicated that 

the static and dynamic measures seemed to be only moderately correlated (R2≈0.5) , and the 

difference between methods was correlated to average ring density (R2≈0.6). The threshold 

measurement was by far the most highly correlated to average ring density (R2=0.67) while the 

inflection and polynomial methods were poorly correlated with average density (R2=0.23, R2=0.16). 

Anatomical measurements from a subset of the annual rings indicated the position identified by the 

500kg/m2 threshold measurement was the most consistent, and chose a point very close to Mork’s 

definition of latewood. The ratio of radial lumen diameter to the radial cell wall thickness at the 

transition point selected by the polynomial method could be predicted with the same level of error 

(RMSE=0.47 49μm/μm) as that of the threshold method (RMSE =0.49μm/μm) with the 

incorporation of average ring density. In the subset of rings used from which the anatomical data was 

derived, the dynamic measurements seemed to systematically underestimate the position of greatest 

lumen and cell wall thickness change in high density rings, and vice versa. The most likely source of 

these errors is the geometry of the density profiles, and the linear nature of the errors suggests they 
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could be reduced using a linear correction based on average ring density. The use of several methods 

simultaneously may provide researchers an inexpensive opportunity broaden the scope of xylem 

formation research. 

Introduction 

The annual rings of a tree contain valuable information regarding the quality of the wood contained 

within that tree and a record of the tree’s response to the environment. The wood quality implications 

of density are well documented, and one of the most important contributors to density is the 

proportion of latewood produced. The calculation of the average density of an annual ring or a wood 

sample is intuitive, however, a variety of methodologies exist to classify portions of an annual ring 

into earlywood and latewood. One of the most frequently cited is Mork’s definition (Mork 1928) in 

which latewood is generally described as those tracheids in which the thickness of the shared cell 

wall is greater than twice the diameter of the tracheid’s lumen. The advent of commercially available 

X-ray densitometers has led to the frequent use of the threshold method in which latewood is 

assigned as those tracheids with a density above the threshold value (Polge 1978; Lasserre et al. 

2009; Schneider et al. 2008; Clark et al. 2004; Antony et al. 2011).  Density values in the range of 

400kg/m3 to 550 kg/m3 are frequently used but the location of the transistion point defined using the 

threshold method can vary greatly with that defined by Mork’s Index (Koubaa et al. 2002). 

Threshold measurements are generally simple to implement (excepting complications such as false 

rings or other aberrant growth patterns) but may not be the most effective measure of the 

physiological variations expressed in the density profile of an annual ring such as juvenile rings 

(Koubaa el al. 2002). 

Alternative methodologies use the shape and characteristics of each annual ring density profile to 

determine the transition from earlywood to latewood. The intent of these techniques is to decouple 

the measurement of latewood percentage from the average density of the ring using a defined set of 
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rules to divide the annual rings into earlywood and latewood. The use of mean ring density (e.g. 

Dalla-Salda et al. 2011) or the midpoint density (e.g. Bower et al. 2005) as the demarcation between 

earlywood and latewood are simple examples of dynamic measures because they are not tied to any 

particular density or anatomical measurement. More complex dynamic latewood determination 

techniques focus on the degree of densification from tracheid to tracheid.  An example used in prior 

research (Pernestal et al. 1995) was to calculate the slope of the density profile in the earlywood-

latewood transition region and find the point at which the slope reached its maximum value, or the 

second derivative of the density profile slope equaled zero. The process can be automated by 

smoothing the individual data points and setting rules to ensure noise or density aberrations do not 

falsely trigger the algorithm (Pernestal et al. 1995; Koubaa et al. 2002, Antony et al. 2011).  The 

definition of the earlywood-latewood transition would therefore shift from a fixed density threshold 

or anatomical measurement to a dynamic measure of density change in adjacent tracheids in the 

annual ring. Koubaa et al. introduced the idea of fitting a polynomial to the density profile, and 

calculate roots of the second derivative of the polynomial to identify the point at which the ring 

transitions from earlywood to latewood. The use of a well fit polynomial provides two advantages. 

First, the polynomial acts to smooth the raw data, and secondly, the identification of roots of the 

polynomial provide well defined points that can be selected as the transition from earlywood to 

latewood using standardized rules (Koubaa et al. 2002).  

The application and comparison of several of these demarcation methodologies simultaneously may 

provide several advantages. Firstly, the use of a dynamic measure of earlywood-latewood transition 

may provide a means to compare the response of trees with varying average densities in a more 

consistent manner. By decoupling the transition from earlywood to latewood from a defined density, 

the dynamic measures seek to identify the point at which the difference in density from tracheid to 

tracheid is greatest. Similar methodologies have been used in place of traditional species-specific 

threshold definitions to develop more robust models of the transition from juvenile to mature wood 
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using segmented regression (Clark et al. 2006; Helinska-Raczkowska and Fabisiak 1999; Kouba et 

al. 2005; Wang et al. 2012). These dynamic methods are flexible enough to be applied across a wide 

range of individuals within and between species. Secondly, if the dynamic measures could accurately 

identify the region of the annual ring that expresses the greatest rate of anatomical change, it may be 

possible to correlate major shifts in moisture stress and xylem formation to a relatively inexpensive 

dynamic latewood measurement. Thirdly, by combining the individual methods, it may be possible 

to expedite the quality control process for large data sets in a systematic and partially automated 

manner that focuses researcher time on the most questionable or unusual rings. 

Dynamic earlywood-latewood demarcation are difficult to interpret. It is not readily apparent which 

anatomical features of the annual ring are identified by the inflection and polynomial techniques, 

how closely the dynamic measures are related to average ring density, or how the resulting values 

may be interpreted and used. The objective of this study was to compare threshold, inflection, and 

polynomial latewood demarcation techniques in terms of their correlation to one another, correlation 

to average density, and the anatomy at the selected transition points. 

Methods 

In the summer of 2007, stand measurements and increment cores were collected from 297 small 

diameter Douglas-fir trees in mixed age stands in western Montana (Morrow et al. 2013) in an effort 

to develop models to predict the trees’ stiffness.  Increment cores from 45 trees of these were 

randomly selected for X-ray analysis. A summary of the tree and stand characteristics of the source 

trees for the increment cores studied here is given in Table 2.1. The increment cores were glued 

between wooden strips and ripped on a table saw with twin blades to produce a 1.5 mm strip from 

the center of the increment core. The radial strips were allowed to equilibrate to ambient laboratory 

conditions then scanned using a QTM-QTRX X-ray densitometer at 0.02 mm step intervals. The 

absorption coefficient used by the densitometer was established by finding the best-fit value for 
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predicting the density of 24 Douglas-fir samples of known density, which ranged in density from 440 

kg/m3 to 700 kg/m3. Cracked or otherwise damaged rings were omitted from the final analysis, as 

were rings suspected to contain compression wood and the rings closest to the pith when the pith was 

not centered in the radial strip. 

Table 2.1. Tree and stand characteristics of the Douglas-fir used in this study 

Characteristic Average Range 

Mean age in 2007 (yr) 77.4 (10.7) 57-105 

Elevation (m) 1750 (217) 1420-2110 

Basal area (m2/ha) 13.8 (5.3) 4.6-29.7 

DBH (cm) 23.1(5.6) 12.2-31.8 

Total height (m) 15.9 (3.4) 7.0-24.1 

Whole core SG 0.45 (0.02) 0.37-0.49 

 

Latewood determination 

Threshold method 

The demarcation of the beginning, end, and earlywood-latewood transition of all rings was 

performed by the QTM-QTRX software using a threshold value of 500kg/m3. The beginning of a 

ring was defined as the point at which the density of the annual ring dropped below 500 kg/m3 in the 

transition from one year’s latewood to the next year’s earlywood. The earlywood-latewood transition 

was defined as the point at which the density of the year’s earlywood rose above 500 kg/m3 and the 

end of the ring was located at the point at which the density fell back below 500 kg/m3.  Each X-ray 

density value was thus assigned a ring number and classified as either earlywood or latewood. A 

summary of each ring was produced that included: threshold ring length (TRLEN) threshold 

earlywood density (TEWDEN), threshold latewood density (TLWDEN), average ring density 
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(TAVGDEN), and threshold latewood percentage (TLWP). Rings with lengths less than 0.4mm were 

dropped from the data set because of limited resolution. 

Inflection method 

The raw densitometry data from each radial strip was initially assessed via a Microsoft Excel© 

Macro that identified the beginning and end of each annual ring by locating every other position at 

which the second derivative of the density plotted against position passed through a deadband value 

near zero and the 1st derivative of the density exceeded a predetermined value. Deadband values 

were set as percentages of the maximum and minimum first and second derivatives found for each 

ring to account for differences in ring length. Within each ring, while looping through the data, the 

script averaged the density of the latewood (INFLWDEN), noted the position and density (INFDEN) 

of the data point closest to the transition from latewood to earlywood (first and second derivative 

exceeded deadband values), averaged the density of the earlywood (INFEWDEN), and reported ring 

length (INFRLEN), percent latewood (INFLWP), and average ring density (INFAVGDEN). Ring 

lengths were checked against those found using the threshold method, and rings with disparate 

lengths were reanalyzed to ensure that the transition from ring to ring was assigned in accordance 

with the rules previously mentioned. Appendix A contains a more detailed description of the 

methodology and scripting.  

Polynomial method 

The raw densitometry data was entered into a Matlab© (Matlab 2013, MathWorks Inc. Natick, MA, 

2013) script in which a 6th degree polynomial was fit to each ring individually using the start and 

stop position determined during the inflection method analysis. The position of the EW/LW 

transition was taken from the root of the second derivative of the polynomial that was: 1) closest to 

the bark, 2) between 10% and 80% of the total ring length, 3) occurred after (toward the pith) the 

maximum ring density, and 4) the 1st derivative of the polynomial at that point exhibited a negative 
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slope when read from bark to pith. The position and the density at the root of the polynomial that met 

the requirements were recorded.  The position of the EW/LW transition was used to calculate 

polynomial earlywood density (PEWDEN), polynomial latewood density (PLWDEN), and 

polynomial latewood percent (PLWP). The average density of the rings using the polynomial method 

was the same as INFAVGDEN. Appendix B contains a more detailed description of the 

methodology and scripting. 

 

Figure 2.1 Selecting the appropriate root of the polynomial for latewood demarcation 

 

Anatomical Measurement 

Increment core strips from seven trees selected across the range of average densities were sliced for 

microscopy using a sliding microtome to produce transverse cross sections. Micrographs were made 

from five of the most recent rings from each strip using an Olympus BX51 (Olympus America, 

Center Valley, PA) microscope and cell measurements taken using Olympus software. For each ring, 

the radial dimensions of the cell walls and lumens were measured for five rows of tracheids. The cell 

wall and lumen data was assessed using curve fitting in Excel to define best fit estimates of average 
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wall thicknesses and lumen diameters. The curves were used to define the anatomy at the transition 

points selected by the three latewood methods.  Appendix C contains a more detailed description of 

the methodology used to align and transfer the location of the latewood transition points from the 

densitometer data to the anatomical data 

Results 

Annual ring length assignments 

In general, there was good agreement in the ring length assignments using the threshold and 

inflection method, with no indication of bias between methods. The distribution of differences 

appeared to be normally distributed with a mean of 0.0005 mm and a standard deviation of 0.031 

mm. The distribution of deviations is shown in Figure 2.2. Within ring length quartile groups, the 

average difference in ring length between the two methods ranged from -0.0028mm for the first 

quartile to 0.0029 mm for the fourth quartile. Standard deviations ranged from 0.027mm to 

0.033mm. Figure 2.3 shows the means of the ring length quartiles with error bars equivalent to one 

standard deviation. For this data set, 34% of the ring length assignments were exactly the same, 76% 

were within one step (±0.02mm), and 92% were within two steps (±0.04mm).  Ring length 

disagreements of more than two steps seemed to occur most frequently in rings with less abrupt 

transitions from ring to ring and were usually paired with an adjacent ring with the equal and 

opposite deviation.  In Figure 2.4, one such deviation is shown in which there is a 0.16mm difference 

in ring length because the density of the earlywood doesn’t decline in the same manner as the 

surrounding rings. In this example, Ring A would register a relatively large negative deviation 

(TRLEN– INFRLEN) and Ring B would exhibit an approximately equal positive deviation. 
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Figure 2.2 Distribution of deviations between threshold and inflection ring length assessments 
Figure 2.3 Mean values of TRLEN – INFRLEN for ring length quartiles (error bars represent +/- 2SD) 

 

 

Figure 2.4. Deviation between inflection and threshold determination of ring length 

 

Across the range of ring lengths encountered, there was a high level of correlation between ring 

length as shown in Figure 2.5. Because of the similarity in the regions assigned to each ring, the 

average density of the annual rings was likewise very similar (R2=0.99) as shown in Figure 2.6. 
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Rings with unusual features, such as the ring with abnormally high earlywood density shown in 

Figure 2.4 are responsible for the outlying cases in Figure 2.6, especially in shorter rings. The 

threshold method did not seem to accommodate the abnormal earlywood of the middle ring, and 

reported a much shorter ring length than the inflection method. 

 

Figure 2.5. Similarities in ring length using the two demarcation methods 
Figure 2.6. Similarities in INFAVGDEN and TAVGDEN using the two demarcation methods 

 

Measures of latewood percentage 

The three measures of latewood percentage did not show the same degree of agreement as the 

average density and ring length measurements. Figure 2.7 shows the correlation between TLWP and 

PLWP. On average the density identified at the inflection point for PINFDEN was 740 kg/m3  , 

which was higher than INFDEN (657 kg/m3), and far higher than the 500 kg/m3 used for the 

threshold measure. PLWP was lower than TPLW for nearly all rings with average densities above 

500 kg/m3. Some of those rings that exhibited TAVGDEN below 500 kg/m3 were found to have 

PLWP values higher than their respective TLWP values. Figure 2.8 shows the correlation of the 

difference between TLWP and PLWP on the average density of the ring. The PLWP method 

compensated for low average ring density by selecting lower density inflection points earlier in the 
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ring than the threshold method. In Figure 2.8, most of the annual rings follow a general trend of 

increasing difference in TLWP and PLWP with increasing density, but there is a group at the upper 

extreme that does not fit well with the rest. This group exhibits high earlywood densities and the 

threshold method measures little to no earlywood in these annual rings. In many of these rings, it was 

difficult to determine if they had abnormally high earlywood density, or were extreme examples of 

false rings. An example is shown in Figure 2.9 in which the a tree exhibits an abnormally high 

TLWP (100%) in two nearby annual rings as a result of unusually high earlywood densities, but the 

PLWP values are consistent with the surrounding rings. 

 

Figure 2.7. Comparison of PLWP and TLWP 
Figure 2.8. Difference in TLWP and PLWP (TLWP-PLWP) regressed against TAVGDEN 
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Figure 2.9. Unusual annual rings indicated by large deviation of TLWP and PLWP 

 

INFLWP exhibited a very similar relationship with TLWP as PLWP, with a similar goodness of fit 

when regressed against TLWP as shown in Figure 2.10. As with PLWP, the difference between the 

threshold measurement of latewood and INFLWP shown in Figure 2.11 exhibited a positive 

correlation when plotted against average density indicating that the earlywood/latewood transition 

point identified by the inflection method was of a lower density in rings of lower average density and 

vice versa.  
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Figure 2.10. Comparison of INFLWP and TLWP 
Figure 2.11. Difference between TLWP and INFLWP (TLWP – INFLWP) regressed against TAVGDEN 

 

The inflection and polynomial methodologies produced identical or nearly identical results for many 

annual rings, however, there were some differences in the earlywood/latewood transition 

assignments.  In Figure 2.12, INFLWP is plotted against PLWP and many of the annual rings 

demonstrate a one-to-one (or nearly so) relationship between the two measures. INFLWP was much 

lower than PLWP in a handful of annual rings, and upon further analysis, the inflection method in 

those cases identified the fluctuations similar to the beginning of a false ring in what would 

otherwise be considered latewood. When the transition from earlywood to latewood was rapid, or 

very linear, both methods returned similar transition points. When there was a “shoulder” during the 

transition from earlywood to latewood as seen in a dramatic example in Figure 2.13, the Polynomial 

method generally chose the upper part of the shoulder, and the Inflection method frequently chose 

the lower part of the shoulder if the slope of the upper shoulder was less than the cutoff set in the 

inflection methodology. 
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Figure 2.12. Fit of PLWP and INFLWP 
Figure 2.13. Differences in PLWP and INFLWP affected by ring shape 

 

TLWP was more closely correlated with average density than either PLWP or INFLWP. Figure 

2.14(a) shows the fit of TLWP plotted against TAVGDEN, and shows the relatively high degree of 

fit (R2=0.67) in annual rings measured in this study. Figure 2.14(b) shows PLWP regressed against 

INFAVGDEN, and shows a much poorer fit (R2=0.16) between the polynomial measure of latewood 

percentage and the average density of the ring. As with the polynomial method, Figure 2.14(c) shows 

the poor fit (R2=0.23) between INFLWP and average ring density. TLWP was by far the most 

correlated latewood measure with average density. INFDEN and PINFDEN provided better 

estimates of INFAVGDEN than INFLWP or PLWP with R2=0.43 and R2=0.31 for INFDEN and 

PINFDEN respectively.  
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Figure 2.14. Correlations between latewood measures and average density. Correlation TLWP and 
TAVGDEN(a), correlation of PLWP and INFAVGDEN (b), correlation of INFLWP and 
INFAVGDEN(c). 

 

Values of PINFDEN, the density at which the polynomial method indicated the transition had taken 

place, were more closely associated with differences in PLWDEN than PEWDEN. In Figure 2.15, 

PLWDEN and PEWDEN are regressed against PINFDEN. PLWDEN shows a very tight fit with 

PINFDEN, with an R2 = 0.91 for the sample population. Over the range of PINFDEN measured in 

this data set, PEWDEN did not exhibit a great deal of variation compared to PLWDEN, and was 

shown to be more poorly fit with PINFDEN, with an R2 = 0.25 for that regression. Differences in 

INFDEN were likewise more closely associated with changes in INFLWDEN than INFEWDEN, 

however the goodness of fit between INFDEN and INFLWDEN (R2 = 0.70) was somewhat poorer 

than that of PINFDEN and PLWDEN as seen in Figure 2.16. 
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Figure 2.15. PLWDEN and PEWDEN regressed against PINFDEN 
Figure 2.16. TLWDEN and TEWDEN regressed against PINFDEN 

 

Anatomy 
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95% significance level. For the seven trees analyzed, 94% of the points selected by the threshold 

method were within 5% of the total ring length from the position identified as meeting Mork’s 

definition of latewood. 

Table 2.2. Comparison of lumen diameter to cell wall thickness ratios using the three latewood measures 

 Latewood determination method 

 

Threshold 

lumen/wall 

(μm/μm) 

Inflection 

lumen/wall 

(μm/μm) 

Polynomial 

lumen/wall 

(μm/μm) 

Mean 3.9 2.5 2.0 

Standard Deviation .50 1.3 .73 

Minimum 3.1 1.2 .83 

Maximum 5.3 7.4 3.6 

  

Figure 2.17 shows the measurements of a typical annual ring encountered during the study. The 

lumen to cell wall ratio at the threshold latewood demarcation was 3.4:1 while the ratios at the 

inflection and polynomial inflection points were 2.1:1 and 1.9:1 respectively. While the lumen to cell 

wall ratio of the inflection and polynomial inflection points varied substantially from ring to ring, 

they consistently target the region of the most rapid change in cell wall thickness and lumen 

diameter, with the polynomial latewood point occurring slightly after the maximum slope was 

reached, and the inflection latewood point slightly before the maximum slope was reached. For the 

seven trees studied, the threshold method on average selected a point about 12% of total ring length 

before the maximum lumen slope, the inflection method on average selected a point about 3% before 

the maximum slope, and the polynomial method on average chose a point 2% after the maximum 

slope.  The standard deviation of the distance from the point chosen by the threshold, inflection, and 
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polynomial method with relation to the position of the maximum slope were 8.1%, 7.9%, and 6.9% 

of total ring length. Evaluating the slope of the curve fit for cell wall thickness and lumen diameter, 

Figure 2.18 shows the location of the inflection and polynomial EW/LW transition points near the 

region with the highest rate of change in cell wall thickness and lumen diameter.  

 

Figure 2.17. Lumen diameter and cell wall thickness across a typical annual ring, with the threshold, 
inflection, and polynomial latewood transition points identified. 

0

2

4

6

8

10

12

0

5

10

15

20

25

30

35

40

45

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
e

ll
 W

a
ll

 T
h

ic
k

n
e

ss
 (

μ
m

)

Lu
m

e
n

 D
ia

m
e

te
r 

(μ
m

)

Percent of Ring 

Lumen Diameter

Cell Wall Thickness

Threshold

Polynomial
Inflection



30 
 

 

Figure 2.18. Rate of change in cell wall thickness and lumen diameter at locations identified as threshold, 
inflection, and polynomial earlywood-latewood transition points. Error bars represent one standard 
deviation. 

 

As suggested in Figures 2.9 and 2.11, in lower density rings, the polynomial and inflection methods 

targeted regions with higher lumen to cell wall ratios (less dense) than in higher density rings. The 

threshold method exhibited very little bias for higher lumen to cell wall ratios in low density rings. 

Figure 2.19 shows the lumen to cell wall ratios for all the rings measured in the seven trees plotted 

against average ring density. The goodness of fit for the threshold measure was approximately 0.05, 

while the goodness of fit for the inflection and polynomial methods were 0.42 and 0.60 respectively. 

The fit of the inflection ring method was markedly less than the fit of the polynomial method for the 

rings studied, indicating more erratic performance. The Root Mean Squared Error (RMSE) for the 

regressions were 0.49μm/μm, 1.1 μm/μm, and 0.47 μm/μm for the threshold, inflection, and 

polynomial methods respectively.  
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Figure 2.19. Graphs of fit for lumen diameter to cell wall ratio regressed against density for the positions 
identified by the three latewood demarcation methods: threshold (a), inflection (b), and polynomial (c). 
Symbols indicate tree number. 

 

The intent of the dynamic measurements was to identify the point in the density profile during the 

transition from earlywood to latewood that exhibited the most change in density, and seemed to be 

associated with the simultaneous rapid decline in lumen diameter and increase in cell wall thickness, 

as shown in Figure 2.17. The threshold measurement was expected to identify a point close to 

Mork’s definition of latewood, and not follow the point of maximum density change during the 

earlywood/latewood transition. The distance (in percent ring length) between the transition point 

identified by the latewood measures using the densiometric data and the location of maximum lumen 

and cell wall dimension change found in the anatomical data (DMAXSLP) was found to exhibit a 

correlation with the average ring density in the dynamic latewood measurements, and no correlation 

with average ring density for the threshold latewood measurement. These correlations are shown in 

Figure 2.20. The goodness of fit of DMAXSLP for the polynomial method regressed with 

TAVGDEN was the highest with an R2 = 0.38, followed by the inflection method with an R2=0.23, 

and finally the threshold method with an R2 ≈ 0.  The dynamic methods appeared to select a 
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in dense rings (i.e. identify a point later in the ring or shorten the latewood period) and select a 

transition point before the point of most rapid change in lumen diameter and cell wall thickness in 

low density rings (i.e. identify a point earlier in the ring or lengthen the latewood period).  The same 

phenomenon may also cause the deviations between TLWP and PLWP shown in Figure 2.9 to 

increase as the density of the annual ring increases. 

 

Figure 2.20. Percent of ring distance from point of maximum rate of change in lumen diameter versus 
average ring density for the three latewood demarcation methods: threshold (a), inflection (b), and 
polynomial (c). Positive distance indicates the transition point chosen occurred after maximum slope in 
lumen diameter. Symbols indicate tree number. 
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2.8 and 2.11. This would seem to indicate that there is less random error between the static and 

dynamic measures than a simple correlation would suggest and that there is a more constant range of 

divergences for the static and dynamic measurements at a given annual ring density. Although not 

specifically mentioned in Antony et al, there appears to be a similar trend expressed in terms of the 

age/density relationship in their research: the first two rings from the pith (presumably denser than 

the next five or so rings) show T LWP being longer than the inflection measurement, and in the 

seven or so subsequent rings (presumably as the ring density decreases and then rebounds to mature 

levels) the threshold LWP was shorter than that of the inflection measurement. As the trees mature, 

the difference returns to near zero. In Koubaa et al. (2005), the plantation grown black spruce studied 

showed a similar relationship between the polynomial and threshold methods for the first five to 

seven rings from the pith with the threshold method returning longer latewood periods in the higher 

density early rings, and very little difference as the ring density moderated to presumably mature 

levels. Koubaa’s figures indicate equivalence of the threshold and polynomial methods for rings with 

an average density of approximately 450 kg/m3, virtually identical to the relationship found in the 

present research. The Douglas-fir studied for this paper did not exhibit an age based trend in the 

deviation between the threshold and dynamic measures. Because the dynamic measures seek the 

region with the most change in density, they tend to select points lower than 500 kg/m3 in rings with 

average densities less than 450 kg/m3 and points greater than 500kg/m3 in rings with average 

densities greater than 450 kg/m3, leading to the systematic positive and negative differences between 

the threshold and dynamic latewood measurements. Antony (2011) and Koubaa (2005) attribute this 

discrepancy to ring age; average ring density may provide an alternative or complementary 

explanation.  

The dynamic inflection and polynomial methods showed a great deal of agreement in their latewood 

assignments for the rings studied here. The goodness of fit between the two shown in Figure 2.12 

was approximately 0.89, with the regression indicating the inflection method increased nearly one-
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to-one with the polynomial method. From the densitometry data, it seems as if these methods are 

essentially interchangeable. From a user’s perspective, implementing a robust latewood 

measurement scheme for the polynomial method was far simpler than for the inflection method. To 

produce reliable results using MS Excel VBA with the inflection method required over 170 lines of 

code with multiple iterative loops and a great deal of trial and error to set dynamic parameters that 

could adequately handle the wide variety of ring lengths (0.4mm-4.5mm)  and density profile shapes 

encountered in this study. The polynomial method implemented in Matlab required only 57 lines of 

code and required virtually no fine tuning to perform as expected. 

There were 25 rings in this study which the threshold measure reported >95% latewood, and of 

those, 13 returned a value of 100% latewood when a threshold of 500kg/m2 was used. If the 

threshold level were raised much higher, the lowest density rings examined here would register 0% 

latewood. These rings are rare, but beg the question as to how to address them. Changing the 

threshold value for the extreme rings is a possibility, but it would require reporting and analyzing 

those rings differently than the other rings. The dynamic measures for the “unusual” rings in Figure 

2.9 had similar latewood percentages as the surrounding rings even though the average densities 

were quite different. For rings with elevated earlywood density, the dynamic measures performed 

more consistently. The dynamic methods, however, tended to select earlywood-latewood transition 

points on latewood shoulders in rings with gradual transitions and long latewood periods as shown in 

Figure 2.13. There were shortcomings with every method used. 

One of the primary uses of latewood measurements in forest products research is to describe and 

predict average density. TLWP seemed to be the most highly correlated with average density, 

making it an obvious choice for inferences of properties associated with density. The two pieces of 

information inherent in the threshold measurement are the (1) proportion of the annual ring which 

has (2) a density greater than the threshold value. PINFDEN and INFDEN provided better fits with 

INFAVGDEN than PLWP or INFLWP, but still do not match the predictive power of TLWP.  If the 
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density at which the inflection point takes place is combined with PLWP or INFLWP, an equivalent 

or better fit can be achieved with average density (not shown). Using the polynomial and inflection 

methods to predict average density requires an additional piece of information to produce an 

equivalent estimate of average density as TLWP.  

Anatomy at the selected transition points 

The anatomical measurements taken during this research indicated that the threshold method was the 

most consistent in terms of the ratio of radial lumen diameter to cell wall at the latewood transition 

points selected in the absence of any other information about the ring. The analysis indicated that 

Mork’s definition of latewood was approximated, on average, with a threshold value of 500 kg/m3 

for the Douglas-fir samples measured in this study. Whether or not the standard deviation of 

0.5μm/μm  found for the radial lumen to cell wall thickness ratio is an adequate level of precision 

would depend on the needs of the individual researcher, but it would be far more consistent than the 

dynamic methods without additional density data. The lumen diameter to cell wall ratio at the 

threshold latewood transition point was virtually uncorrelated with the average density of the ring 

being measured. This consistency constitutes the greatest strength of the threshold method: it 

provided an anchor point in terms of the anatomy at the point selected.  

The lumen to cell wall ratio at the positions selected by the dynamic measures showed significant 

correlation with the average density of the ring. These findings suggest that the average density of 

the ring, which would be collected during densiometric analysis, could be used to estimate tracheid 

anatomy at the selected positions with an estimated RMSE of 0.47 μm/μm using the polynomial 

method, generating a similar level of precision as that found for the threshold method.  It seems 

probable however, that the relationship between average ring density and the lumen:cell wall ratio at 

the chosen latewood transition points would vary somewhat by species, especially between species 

that exhibit slow transitions from earlywood to latewood (eg. spruce) and rapid transition species 
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such as the Douglas-fir studied here. Baseline correlations of density and anatomy would still have to 

be developed for a species of interest, but there may be an opportunity to use a baseline model built 

with observed anatomical data to infer properties at the inflection point in rings for which no 

anatomical measurements were taken.  

During xylogenesis, there seem to be periods in which the duration of the enlargement or thickening 

stages of forming xylem shift, and those changes in duration should result in changes in the density 

of the mature xylem cells (e.g. Cuny et al. 2012,Cuny et al. 2013, Dodd and Fox 1990). In Figures 

2.17 and 2.18, the dynamic measures seem to be identifying the portion of the annual ring at which 

the lumen diameter and cell wall thickness are changing most rapidly, which would indicate a 

transition such as that shown in Cuny or Dodd and Fox. The duration profiles reported by Cuny et al. 

were developed using labor intensive microcoring and visual analysis techniques to determine 

changes in the number of cells in the various stages of development and estimate the time spent in 

each stage. In addition, localized irregularities in growth rates often make it necessary to sample 

large numbers of trees (Cuny et al. 2013). By benchmarking duration times in the enlargement and 

secondary wall thickening zones with various threshold measurements, researchers may be able to 

develop proxy models to correlate the time forming tracheids spent in individual zones of 

development with regions of the density profile which meet the threshold value. Dynamic latewood 

measurements could be used to identify the region of the annual ring that passed through the 

enlargement and secondary wall thickening stages while duration times were changing the most 

rapidly. Employing multiple measures of latewood may permit researchers to leverage fewer labor 

intensive microscopic analyses to increase the sample size and scope of their studies using relatively 

inexpensive densiometric analysis. 

The inflection and polynomial methods are meant to identify the point of annual ring that exhibits 

the greatest rate of change in density, and by extension, enumerate the position of the ring with the 

greatest change in lumen diameter and cell wall thickness. The anatomical data, however, indicates 
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that while both the inflection and polynomial methods identified the region of greatest change in 

lumen diameter and cell wall thickness on average, they tended to systematically overshoot or 

undershoot the exact position of greatest change depending on the average density of the individual 

rings being measured. By reporting shorter than expected latewood lengths in high density rings, and 

longer than expected latewood periods in low density rings, the dynamic measures tended to 

homogenize latewood percentages. The reason for this phenomenon likely has to do with the 

interaction of the dynamic latewood transition selection criteria and the shape of density profiles in 

high and low density rings. The rings shown in Figure 2.13 may illustrate the point. In higher density 

rings, the transition from earlywood to latewood is typically less abrupt, and may contain several 

transition regions of different slopes. Both of the dynamic measures preferentially seek later 

inflection points, and are not required to select the inflection point with the greatest slope. In higher 

density rings, this may cause the dynamic measures to select inflection points later in the 

earlywood/latewood transition, thereby shortening the latewood period from the expected length. In 

lower density rings, there is frequently a very rapid and linear transition from earlywood to latewood, 

a short period of high density latewood production, and a relatively rapid transition to the next 

annual ring. This geometry may force the apparent inflection point earlier in the ring because the 

density profile appears to reach its maximum slope just after leaving the lower density latewood. 

Figures 2.20 b and c suggest that this error could be reduced by using a linear correction factor based 

on the average density of the ring, which would not affect rings of average density much, but would 

improve the accuracy of the dynamic measures for rings with more extreme average densities. These 

corrections may prove vital for researchers interested in correlating remotely collected measures of 

canopy moisture stress with xylem formation. 

Quality control 

Human error is a persistent issue in the collection and analysis of annual ring data in large data sets. 

The repetitive nature of the work can easily lead to errors that become increasingly difficult to 
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address as the analysis progresses. Even at very high accuracy rates, the sheer number of evaluations 

and decisions dictate that human error will be present. Comparing the results of multiple measures of 

latewood percentage provided an additional quality control check in the course of this research that 

identified errors not previously corrected. During the script building process, the comparisons proved 

invaluable in identifying code statements that required further refinement to accommodate the 

features of unusual rings and return more consistent latewood demarcation for all rings. Graphs of 

residuals such as Figure 2.8 and 2.11 were especially useful for identifying questionable latewood 

and ring length assignments because they provided a simple graphic to identify unusual rings. 

Combining methods to evaluate latewood assignments allowed the researcher to take advantage of 

the strengths of each method and produce the most accurate data set possible.  

Conclusion 

Three latewood demarcation methods: a static threshold, a dynamic inflection based, and dynamic 

polynomial based, were compared to determine the consistency between them, their correlations to 

average density, and the anatomy at the selected latewood transition points for the annual rings of 45 

small-diameter Douglas-fir. At first glance, the dynamic measures seem to exhibit a moderate 

amount of agreement with the threshold method (R2≈0.5), but further analysis indicated that the 

differences between the static and dynamic measures were correlated to average density (R2≈0.6) 

indicating that comparisons between static and dynamic measures need to be made in the context of 

the average density of the ring because of the systematic deviations between the measures. The 

inflection and polynomial methods showed a high level of agreement (R2=0.89), although in some 

instances, the shape of the density profile led to divergences, especially long latewood shoulders. As 

a standalone measurement, TLWP produced the greatest fit with average density (R2=0.67) as 

compared to INFLWP (R2=0.23), and PLWP (R2=0.16). Anatomical measurements on a subset of 

the 45 trees indicated that the threshold value of 500 kg/m2 identified a point, on average, very close 



39 
 
to Mork’s definition where the radial lumen to cell wall ratio was 3.9 μm/μm with a standard 

deviation of 0.5 μm/μm.  The lumen to cell wall ratio at the point identified by inflection and 

polynomial measures exhibited a linear relationship with average ring density , making it possible to 

estimate the lumen to cell wall ratio at that point with the same level of precision as the threshold 

measurement. The inflection and polynomial measurements also seemed to systematically over or 

underestimate the position of those annual rings with the most change in lumen diameter and cell 

wall width based on the average density of the annual ring. The geometry of the density profile may 

cause the systematic nature of these errors and future work should focus on incorporating rules or 

algorithms that are less affected by the geometry of the annual ring density profile. Each method has 

its strengths, and using several simultaneously may enable researchers to complement their current 

research and expand the scope and scale of future projects.  
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 Chapter Three 
The influence of soil bulk density and climate factors on wood 

quality in Douglas-fir trees 
 

Abstract 

Soil bulk density (SBD) appeared to be negatively correlated with a dynamic measure of stiffness in 

a study on suppressed small diameter Douglas-fir from the Bitterroot region of western Montana. 

When modeled in a repeated measures framework, X-ray densitometry from the increment cores of a 

subset of the sampled trees revealed that the trees grown in low SBD stands had significantly higher 

average density (P=.0088) and latewood period using three different measures of latewood (P= .025 

to P=.039) across the model testing period. The difference in average ring density between the two 

groups showed a positive correlation (R2=0.43) to July/August Cooling Degree Days (CDD), and 

during an extremely cool year, the SBD effect was even reversed. The concept of Least Limiting 

Water Range (LLWR) may provide a framework for explaining these findings such that trees 

growing in high SBD stands may experience limited access to late-season soil moisture due to the 

mechanical impediment to fine root egression in higher bulk density soils, making it difficult to 

remove soil moisture down to the wilting point. This improved understanding of the soil-climate-tree 

interaction may help forest managers prioritize stand improvement treatments to meet challenges 

stemming from changes in climate or market expectations of wood quality. 

Introduction 

The latewood proportion of an annual ring has been shown to be dependent on a variety of factors 

including environmental influences such as moisture availability and climate.  Irrigation or readily 

available moisture generally delays the transition from earlywood to latewood (Zahner et al. 1964; 

Brix 1972) and dry conditions advance the date of transition (Kantavichai et al. 2010(b); Rozas et al. 

2010).  If conditions leading up to and following the transition are still conducive to latewood 
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formation, there is an opportunity to increase the latewood proportion of the annual ring (Kennedy 

1961; Robertson et al. 1990; Gonzalez-Benecke et al. 2010; Eilman et al. 2011).  An important 

consideration to draw from these studies, as noted by Larson et al. (2001) in a review of wood 

formation in southern pine, is that the timing of available moisture is a critical aspect in determining 

the effect of irrigation or climate on latewood percentage or ring. As Zahner and others have 

demonstrated, increasing the availability of moisture throughout the growing season with irrigation 

tended to delay the transition from earlywood to latewood, lead to increased amounts of earlywood 

and latewood, and resulted in latewood percentages similar to subjects exposed to season-long 

drought or control conditions (Zahner et al. 1964, Albaugh et al. 2004).  Gonzalez-Benecke et al. 

(2010) applied irrigation to clonal loblolly pine plantations only in the summer and fall, and found a 

significant increase in the latewood percentage and specific gravity of rings grown under late-season 

irrigation. Increasing the year-round availability of soil moisture does not necessarily lead to 

increased latewood percentages or ring density, the timing is important. 

Operational silvicultural practices such as thinning or fertilization can also influence latewood 

percentage. Thinning is meant to reduce competition for available soil moisture, nutrients, and light 

with the objective of improving growth, but when applied as a standalone treatment, studies suggest 

there is a modest or no effect (Brix and Mitchel, 1980; Cregg et al. 1988; Kantavichai et al. 2010(b)) 

on annual ring density or percent latewood. Several authors noted that the date of latewood initiation 

was delayed by the treatment but that the increased earlywood growth was matched with increased 

latewood growth, resulting in little significant change in latewood proportion of the annual rings 

(Brix and Mitchel 1980; Cregg et al. 1988). Fertilization treatments reduce nutrient constraints and 

are frequently applied to stimulate the photosynthetic capacity of the crown. Although the results are 

frequently complicated by site, stand, or species specific factors (Larson et al. 2001), there are 

frequently short-term reductions in ring density or latewood percentage reported (Jozsa and Brix 
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1989; Antony et al. 2009), although some effects may be seen for decades (Kantavichai et al. 2010 

(a))   

The influence of climatic conditions on latewood percentage and ring density may be thought to 

parallel those of irrigation for many species with site specific considerations. In a study of coastal 

Douglas-fir, Robertson et al. (1990) compared ring variables on xeric, submesic, and subhygric sites 

and found that differences between annual ring densities formed during dry (average 0.45 g/cm3) or 

wet years (average 0.52 g/cm3) were the highest in the xeric site. Their research and others have 

found that the sensitivity of ring variables to climatic variables is highest on marginal sites 

(Robertson et al. 1990; Savva et al. 2003).  In addition, the percent latewood at the xeric site was 

most correlated with precipitation in June and early July, likely the period in which the transition 

from earlywood to latewood was occurring. Similarly, Kantavichai and others found that July 

precipitation or soil moisture deficit was a strong predictor of latewood percentage.  

In addition to the timing of natural precipitation events, there exists the possibility that differences in 

soil texture may produce measurable differences in the proportion of latewood produced. The Least 

Limiting Water Range (LLWR) may provide a conceptual model to frame the influence of soil 

texture on tree growth, and specifically latewood period, for some stands. Many traditional estimates 

of moisture availability are based on proxy measurements of field capacity and the wilting point of 

the soil (USDA 2010) with assumption that all moisture between these two values is available for 

plant use. LLWR (Letey 1985; Da Silva et al. 1994; Schoenholtz et al. 2000) compliments these 

measures by incorporating limits imposed by lack of oxygen in the pore spaces at high moisture 

contents and impediment to root penetration at lower moisture contents. As the bulk density of the 

soil increases, these limits tend to narrow and reduce the amount of moisture available in a given 

volume of soil (Daddow and Warrington 1993; Da Silva et al. 1994).  This phenomenon would 

provide a mechanism to limit late-season moisture availability, but only if there was active root 

growth during the late growing season or the high bulk density soils impeded access to soil moisture 



45 
 
late in the growing season. Many researchers have suggested that root growth ceases before the soil 

moisture content drops to the point where the bulk density of the soil would limit further root 

penetration (Joslin et al 2001; Lopez et al. 2001).   

In addition to the well documented influence of wood density on the physical properties of forest 

products, the overall density of annual rings has also been shown to be an important predictor for 

surviving drought events. High average ring density and higher latewood percentage were associated 

with lower mortality in plantation grown Douglas-fir following a severe drought in 2003 that 

impacted much of Europe (Martinez-Meier et al. 2008; Dalla-Salda et al. 2009; Dalla-Salda et al. 

2011). Possible explanations for latewood’s role in the reduction in Douglas-fir mortality following 

an extreme drought event included the reduced incidence of embolism at extreme water potentials 

and increased water storage capability as compared to earlywood (Domec and Gartner 2002).  These 

researchers suggest that at moderate levels of soil moisture deficit, the pits in the earlywood are able 

to block embolisms from spreading, while some of the most dense latewood pits do not. Water from 

a portion of the embolizing latewood tracheids is available as a short term reserve. With increasing 

negative pressure under severe drought conditions, some earlywood pits are unable to block air from 

leaking past the pit membranes resulting in a rapid decrease in conductance in the earlywood . Under 

those same conditions, latewood tracheids, still conductive by virtue of their pit geometry, are able to 

resist embolism and continue transporting water (Tyree and Sperry 1989; Domec and Gartner 2002). 

Experiments with the hydraulic conductivity of earlywood and latewood in Douglas-fir suggested 

that under favorable moisture conditions, latewood might only account for 5% of the total 

conductance of the stem, but under severe drought conditions, that proportion could reach 16% 

(Domec and Gartner 2002). 

Morrow et al. (2013) found that small diameter Douglas-fir growing on low bulk density soils had 

consistently higher standing Dynamic Modulus of Elasticity (DMOE) values than their counterparts 

growing on high bulk density soils in suppressed stands in the Bitterroot National Forest outside 
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Darby, MT. We proposed that the framework of Least Limiting Water Range (LLWR) could explain 

the differences in DMOE by providing a mechanism for longer latewood periods. If slow growth 

were coupled with varying amounts of available soil moisture between soil types late in the growing 

season, then the development the annual rings should reflect those differences. The goal of this study 

was to determine if systematic differences in ring morphology exist in trees grown on high and low 

bulk density soils. Average ring density and three measures of latewood were used for comparison: a 

threshold measure, a smoothed slope inflection measure, and a polynomial measure. The threshold 

latewood method identifies the position at which the annual rings reached the threshold density, in 

other words, the position at which the ratio of lumen diameter to cell wall thickness reached a 

specific value. The dynamic inflection and polynomial methods measure the point at which the 

change in density reaches its peak, alternatively, the position at which the rate of narrowing lumen 

diameter and cell wall thickening reaches its peak. 

Methods 

Selection of subjects 

Increment cores and tree measurements were collected from 247 small diameter (10.2-30.5cm 

diameter at breast height) Douglas-fir growing in the Trapper Bunkhouse region within the Darby 

Ranger District of the Bitterroot National Forest. Trees were sampled across four elevation zones 

ranging from 1280m to 2120m, and three stand density classes based on the percent of open canopy. 

Plots were located on north- to east-facing aspects in stands that were naturally regenerated. 

Increment cores were removed from the uphill side of three trees at every plot: 1) the one closest to 

10cm DBH, 2) closest to 20cm DBH and 3) the one closest to 30cm DBH. After the fieldwork was 

completed, the soil bulk density on which the trees were growing on was determined using the 

USGS-NRCS SSURGO soil map for the region (USGS-NRCS 2006) with no spot checking of the 

soil bulk densities at the sites.  The trees were classified into two groups based on the bulk density of 
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the soil on which they grew: the low Soil Bulk Density (SBD) group (soil density < 1.46 mg/m3) and 

the high SBD group (soil density > 1.46 g/cm3).  A more detailed description of the field sampling is 

found in Morrow et al. (2013). 

To avoid the effects of juvenile to mature wood transition, only rings with a cambial age greater than 

25 years at breast height in 1976 (the start of the study period) were used. From the remaining 218 

trees meeting the criteria, increment cores from 25 individuals from each soil bulk density group 

were chosen randomly to study the SBD effect.  The 12 mm diameter increment cores were glued 

between pine blanks and ripped to 1.5mm thickness. The radial strips were scanned using a QMS 

QTRS-01X (Quintek Measurement Systems, Knoxville, TN) X-ray densitometer at 0.2mm intervals. 

The entire increment cores were scanned; however, only ring data from 1976 to 2005 was used in the 

analysis. Cracked or otherwise damaged rings were removed from the data set. The resulting set of 

rings was analyzed to determine if significant differences in the annual ring characteristics could be 

found in those trees growing on low bulk density soils and those growing on higher bulk density 

soils. 

Average density and latewood measures 

Three methods were used to measure the latewood percentage of the annual rings in this study and 

are outlined in more detail in Chapter Two. The first was a 500kg/m3 threshold (TLWP) 

measurement generated by the QMS software. The second was an inflection measurement 

(INFLWP) generated using a purpose written script in Microsoft Excel VBA that identified the 

inflection point at which the second derivative of the density/position slope passed through zero 

during the transition from earlywood to latewood. The third measurement was a polynomial derived 

measurement (PLWP) similar to that proposed by Koubaa et al. (2002) generated using Matlab 

(Matlab 2013, MathWorks Inc. Natick, MA, 2013) script. The Matlab script fit a 6th order 

polynomial and identified the points on the polynomial at which the roots of the second derivative of 



48 
 
the polynomial equaled zero. The latest root was chosen which occurred before the maximum 

density value, occurred between 20 and 90 percent of total ring length, and exhibited a positive slope 

when read from earlywood to latewood was chosen. The beginning and end positions of the rings for 

the threshold method were determined by the QMS software (QMS, Knoxville, Tennessee) at points 

in which the density passes through the threshold value during the transition from one year’s ring to 

the next. The QMS software also measured the average density (AVGDEN) of the ring. The 

beginning and end points for the inflection and polynomial methods were determined by identifying 

the position during the transition from year to year in which the second derivative of the density 

position profile crossed through zero. An average density for the dynamic measures was also 

recorded, but because it was essentially identical to that generated by the QMS software, only the 

average density from the QMS software is reported here. 

In Chapter Two, anatomical analysis of a subset of the study trees indicated that the inflection and 

polynomial methods tended systematically underestimate the amount of latewood in high density 

annual rings, and overestimate the amount of latewood in low density annual rings. The end result 

would be a reduction in the apparent difference in latewood percentage in the low and high density 

rings. To reduce the systematic component of the error present in the inflection and polynomial 

methods, a linear correction factor developed in Chapter Two was applied to these dynamic latewood 

measures using the following formulae: 

Adjusted Inflection Latewood Percentage (ADJINFLWP) 

ADJINFLWP = INFLWP + 0.054*AVGDEN – 32.95   (1) 

Adjusted Polynomial Latewood Percentage (ADJPLWP) 

ADJPLWP = PLWP + 0.060 * AVGDEN – 31.44   (2) 
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Statistical Analysis 

Ring data from 1976 to 1985 was used to develop models for the ring properties using continuous 

ring characteristics and tree, stand, and site variables measured in 2007 at the time the samples were 

collected from the field. The potential tree and stand blocking variables as measured in 2007 were: 

percent green canopy height (PERGRN), basal area measured on plot center(BA), percent closed 

canopy at plot center(PERCOV), stand density index (SDI), inverse of the mean annual increment of 

the tree(MAI-1), and elevation measured at plot center (ELEV). The ring characteristics used as 

blocking variables were: cambial age at breast height (BHAGE), average ring length for the 

modeling period (AVGRLN), and natural log of the annual ring length of the modeling period 

(LNAVGRLN). Soil Bulk Density (SBD) was derived from NRCS Soil Survey data as described in 

Morrow et al. (2013), and trees were divided into two groups (BDGROUP) based on the SBD on 

which they grew. The treatment variable BDGROUP, year (YEAR), and BDGROUP X YEAR were 

combined with covariates and interactions to identify significant variables for each ring property 

initially ignoring autocorrelation. After developing a reduced set of significant variables, random 

effects and autocorrelation models were established and the models further reduced until the models 

contained treatment, time, BDGROUP x time interaction, random effects, and two of the most 

significant and interpretable blocking variables.  

Repeated measures Analysis of Variance (ANOVA) was used to model the ring series data collected 

from the cores using the MIXED procedure in SAS 9.2(SAS Institute, Inc., McGary, NC). Ring data 

from the ten year time period 1976-1985 was modeled using the two most significant and 

interpretable blocking variables, the main effects of SBD (BDGROUP), year (YEAR), and the 

interaction of SBD and year. The full linear mixed model would be the following:  
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����  � � � 	���
  � �����  � � � ��  � �����  � ������� � ����             (3) 

Where ���� � the ring characteristic from the �th year (1976, …, 2005) of the �th tree (1, …, 25) 

nested in the �th SBD (low or high). µ is the overall mean; α is the coefficient for the first 

blocking variable measured for tree ��� ; β is the coefficient for the second blocking variable 

measured for tree ���; i is the fixed effect of the �th SBD classification (low or high); τk is the fixed 

effect of the �th year; τik is the fixed effect of the interaction between �th SBD and �th year; Sj(i) is 

the random effect (random intercept) of the �th tree nested within the �th SBD classification,  ~NID 

(0, σ2
S); eijk is the random error term, ~NID (0, σ2).  

Several covariance structures were tested to develop a best fit model for the correlated residual errors 

resulting from repeated sampling of the same individual trees through time. For each ring 

characteristic modeled, the structures tested were: unstructured, first order autoregressive, 

heterogeneous autoregressive, compound symmetric, heterogeneous compound symmetric, Toeplitz, 

and heterogeneous Toeplitz. The model that exhibited the lowest value for Schwartz’s Bayesian 

Information Criterion (BIC) was selected as the final model used for that ring characteristic (Littell et 

al. 1996).  Normality of the residuals and the assumption of constant variance of the errors were 

assessed visually. Once the models for each ring property were established for the calibration years 

of 1976-1985, the models were rerun using the test ring data from 1986-2005. The results from 

1986-2005 were used to assess the significance of SBD on the ring characteristics measured. A 

primer on repeated measures analysis and more detail on the statistical analysis can be found in 

Appendix C. 

Climate data was collected from the nearest NOAA weather station in Darby, MT, approximately 16 

km from the study site and at an elevation of 1160 m (NOAA, 2013). Monthly precipitation and 

temperature data along with Cooling Degree Days (CDD) were used to investigate the influence of 

climate on the two SBD groups. 
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Results 

Initially, the data for all rings larger than 0.2 mm were assessed for quality, but it became apparent 

during the model building process that the disagreements in ring length between the latewood 

methods and the location of the earlywood/latewood transition generated a great deal of variation in 

the ring characteristics of some of the smallest rings. Figure 3.1 shows TLWP regressed against ring 

length for all the rings above 0.2mm. The rings below 0.4mm were typified by extremely high or low 

earlywood density, rapid transitions from earlywood to latewood, and at times erratic density that 

caused all three methods of latewood demarcation to return erroneous results. To reduce the 

measurement uncertainty due to ring start/stop assignment, those rings less than 0.4mm were 

dropped. The rings shorter than 0.4mm that were dropped were assumed to be missing at random 

because the smallest rings had the greatest variation in all measures of latewood and average density. 

Of the initial 1000 rings collected for the test dataset, 43 were dropped because they were less than 

0.2 mm or damaged, 85 were dropped because they were less than 0.4mm, the oldest tree in the high 

and low SBD group were dropped (5+ standard deviations from mean age, total of 40 rings), two 

trees were dropped because they only had 6 valid rings between them, and one tree from the low 

SBD group was dropped because it had unusually high latewood percentage and was suspected of 

containing compression wood.  A total of 45 of the original 50 trees were used in the final analysis. 
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Figure 3.1. Plot of TLWP vs RINGLEN 

 

Figure 3.1 also show the distribution of TLWP had a large right tail, as did all the other measures of 

latewood. After modeling the calibration data set, the residuals appeared to flare with increasing 

predicted TLWP (See Appendix C). The latewood measures were adjusted using a natural log 

transformation, and the resulting residuals exhibited constant variation across the range of predicted 

values with the prediction data set. The log transformed latewood measures were used for the final 

analysis. 

A summary table of the trees included in this study is shown in Table 3.1. On average, the height and 

diameter were similar, likely owing to the similar age and stand density distributions. The average 

elevations were similar, but the distributions were somewhat different and are explained in the 

Discussion section.  
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Table 3.1. Low and high SBD sample populations, standard deviation in parentheses 

Property 
SBD group 

Low <1.46 g/cm3  High >1.46g/cm3 
Mean age in 1986 (yr) 55.9 (11.3) 56.0(9.6) 
Elevation (m) 1774 (258) 1719 (170) 
Oldest tree in 1986 (yr) 84 76 
Youngest tree in 1986 (yr) 36 38 
Basal area on plot(m2) 14.6 (6.0) 12.9 (4.5) 
DBH (cm) 22.7 (5.6) 23.5 (5.6) 
Total height (m) 15.5 (3.4) 15.9 (3.4) 
Average ring length 1986-2005 
(mm) 

0.94 (0.38) 1.00 (.49) 

Number of trees in sample 22 23 
 

Linear mixed model results 

A description of the variable names are shown in Table 3.2 After determining the most significant 

and interpretable variables and covariance matrix that provided the best fit for the calibration data set 

from rings added between 1976 to 1985 (results shown in Table 3.3), the models were rerun with the 

ring data from 1986 to 2005, the results of which are shown in Table 3.4. The first order 

autoregressive covariance model was found to provide the best fit (using BIC) for all ring property 

models. All models indicated that YEAR was highly significant, likely indicating that variation in 

annual climate played an important role in the ring characteristics modeled. 

 

Table 3.2. Descriptions of ring variables used in the analysis 

Ring variable Description 
LNTLWP Log transformed threshold latewood percentage 
TAVGDEN Average ring density using threshold method 
LNPLWP Log transformed polynomial latewood percentage 
LNADJPLWP Log transformed polynomial latewood after adjustment using equation 2 
LNINFLWP Log transformed inflection latewood percentage 
ADJLNINFLWP Log transformed inflection measurement after adjustment using equation 1 
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Table 3.3. Results of ring property models for calibration dataset 

  Parameter Estimates  Type 3Test of Fixed Effects 
Property Source Coefficient Std. Err.  Num d.f. Den d.f. F-value P-value 
LNTLWP Intercept 3.42 .201  1 41.2 365 <.0001 
 LNAVGRL -0.184 0.0865  1 42.6 4.54 .0389 

RMSE BHAGE 0.00671 0.346  1 40.9 3.77 .0591 
0.145   BDGRP 0.132 0.0869  1 41.5 2.21 .1443 
Bias   YEAR    9 306 13.98 <.0001 

-0.000787   BDGRP X 
YEAR 

   
9 288 3.19 .0011 

TAVGDEN Intercept 593 73.9  1 40.7 74.7 <.0001 
 ELEV -0.0869 0.0325  1 40.6 7.12 .0109 

RMSE BHAGE 2.00 0.714  1 40.7 7.82 .0079 
27.8   BDGRP 44.4 17.8  1 41.1 1.95 .1704 
Bias   YEAR    9 311 13.4 <.0001 

-0.0693   BDGRP X 
YEAR 

   
9 293 4.20 <.0001 

LNPLWP Intercept 3.33 0.114  1 42.3 1280 <.0001 
 LNAVGRL -0.194 0.0789  1 43.1 6.02 .0183 

RMSE PERGRN -0.226 0.157  1 42.8 2.08 .1567 
0.155   BDGRP 0.0285 0.0845  1 41.3 1.87 .1787 
Bias   YEAR    9 285 8.27 <.0001 

-0.00150   BDGRP X 
YEAR 

   
9 285 2.77 .0040 

ADJLNPLWP Intercept 3.44 0.149  1 42.3 805 <.0001 
 LNAVGRL -0.203 0.104  1 43.1 4.95 .0313 

RMSE PERGRN -0.346 0.205  1 42.8 2.84 .0992 
0.195   BDGRP 0.107 0.109  1 41.3 2.04 .1607 
Bias   YEAR    9 289 12.89 <.0001 

-0.000770   BDGRP X 
YEAR 

   
9 289 3.60 .0003 

LNINFLWP Intercept 3.02 0.159  1 40.8 472 <.0001 
 LNAVGRL -0.186 0.0679  1 42.9 7.53 .0088 

RMSE BHAGE 0.00541 0.00269  1 40.5 4.05 .0508 
0.166   BDGRP 0.0196 0.0783  1 41.2 2.10 .1653 
Bias   YEAR    9 309 7.16 <.0001 

-0.000800   BDGRP X 
YEAR 

   
9 291 2.10 .0293 

ADJLNINFLWP Intercept 2.55 0.252  1 40.7 140 <.0001 
 LNAVGRL -0.262 0.108  1 42.7 5.83 .0201 

RMSE BHAGE 0.0107 0.00430  1 40.4 6.16 .0173 
0.242   BDGRP 0.124 0.253  1 41.1 2.64 .1116 
Bias   YEAR    9 310 11.7 <.0001 

-.000792   BDGRP X 
YEAR 

   
9 292 2.97 .0022 

 

 

 

 

 

 



55 
 
Table 3.4. Results of ring property models for Test period 

  Parameter Estimates  Type 3Test of Fixed Effects 
Property Source Coefficient Std. Err.  Num d.f. Den d.f. F-value P-value 
LNTLWP Intercept 3.43 0.242  1 41.2 285 <.0001 
 LNAVGRL -0.139 0.102  1 41.3 1.87 .179 

RMSE BHAGE 0.00330 0.00318  1 41.2 1.08 .305 
0.142   BDGRP 0.179 0.0814  1 41.1 5.39 .0253 
Bias   YEAR    19 647 8.94 <.0001 

-0.000768   BDGRP X 
YEAR 

   
19 652 0.81 0.695 

TAVGDEN Intercept 545 79  1 41.1 60.2 <.0001 
 ELEV -0.0683 0.0310  1 41.1 3.87 .0559 

RMSE BHAGE 1.28 0.679  1 41.2 3.56 .0661 
28.4   BDGRP 44.4 17.6  1 41.1 7.56 .0088 
Bias   YEAR    19 644 11.2 <.0001 

-0.0500   BDGRP X 
YEAR 

   
19 651 1.26 0.202 

LNPLWP Intercept 3.26 0.127  1 40.8 952 <.0001 
 LNAVGRL -0.244 0.109  1 41 5.00 .0308 

RMSE PERGRN -0.0502 0.167  1 40.8 0.09 .766 
0.162   BDGRP 0.0513 0.0903  1 40.8 2.40 .129 
Bias   YEAR    19 647 8.82 <.0001 

-0.00169   BDGRP X 
YEAR 

   
19 647 1.27 0.196 

ADJLNPLWP Intercept 3.28 0.157  1 41 646 <.0001 
 LNAVGRL -0.283 0.135  1 41.2 4.40 .0421 

RMSE PERGRN -0.108 0.207  1 41 0.27 .604 
0.196   BDGRP 0.140 0.111  1 41 4.56 .0387 
Bias   YEAR    19 647 9.85 <.0001 

-0.00125   BDGRP X 
YEAR 

   
19 647 1.13 .319 

LNINFLWP Intercept 3.21 0.232  1 41 263 <.0001 
 LNAVGRL -0.241 0.0974  1 41.2 6.13 .0175 

RMSE BHAGE 0.00121 0.00304  1 41 0.16 .693 
0.156   BDGRP 0.0777 0.0824  1 40.9 2.41 0.1281 
Bias   YEAR    19 650 7.75 <.0001 

-0.000824   BDGRP X 
YEAR 

   
19 651 1.2 .248 

ADJLNINFLWP Intercept 2.80 0.341  1 41.1 97.65 <.0001 
 LNAVGRL -0.324 0.143  1 41.3 5.12 .0289 

RMSE BHAGE 0.00397 0.00448  1 41.2 0.79 .3803 
0.223   BDGRP 0.173 0.120  1 41 4.68 .0365 
Bias   YEAR    19 647 8.12 <.0001 

-.000845   BDGRP X 
YEAR 

   
19 650 1.02 .435 

 

The significance of the blocking variables dropped somewhat for all ring models, though many 

retained significance at an alpha level of 95%, most notably, LNAVGRL. The parameter estimates 

for the blocking variables were also similar for the calibration and test periods, as were the measures 

of fit provided by RMSE and Bias calculated for the models. The most meaningful change from the 

calibration period models (1976-1985) to the test period models (1986-2005) was the shift in the 

significant treatment effects from the treatment by year interaction term in the calibration models to 

the treatment main effect term in the test models. All ring characteristic models had significant 



56 
 
BDGRP X YEAR interaction terms in the calibration models, and none of the test models had 

significant BDGRP X YEAR interactions. Instead, the models for the test period indicated that 

LNTLWP, TAVGDEN, ADJLNPLWP, and ADJLNINFLWP had significant main effects for 

BDGRP with parameter estimates that were not significantly different than the estimates from the 

calibration models. The nature of the differences in the previously mentioned ring characteristics 

between the low and high SBD groups changed from an intermittent significant difference to a 

sustained significant difference. 

Threshold method and average density 

From Table 3.4, BDGRP was found to be significant at the 95% confidence level for LNTLWP, with 

a marginal mean of TLWP of 47% and 40% for trees grown on low and high bulk density soils 

respectively, and a RMSEP of approximately 14% (or approximately 6% TLWP at the mean).  

Neither LNAVGRL nor PERGRN were significant at a 95% confidence level. Figure 3.2 shows 

LNTLWP transformed back to the original units for the test period. TLWP for the low SBD group 

was always higher during the test period, and the two SBD groups moved in concert with one 

another for the study period.  

The model for TAVGDEN indicated that BDGRP was a significant at a 99% confidence level with 

marginal means of 571 kg/m3 and 532 kg/m3 for the low and high bulk density groups respectively, 

for a difference of 40 kg/ m3 (or 7.5%) between the groups on average across the study period. 

ELEV was somewhat significant with an estimated decrease of 0.02 kg/ m3 per meter of elevation 

gain. Similarly, BHAGE was somewhat significant with an increase of about 1.3 kg/ m3 per 

additional year of age. The model had a RMSEP of 28.4kg/ m3 and the marginal means of 

TAVGDEN by year are shown in Figure 3.3 
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.  

Figure 3.2. Marginal means of TLWP over the period 1986-2005 (Bars indicate one standard error) 
Figure 3.3. Marginal means for TAVGDEN during the years 1986-2005 (Bars indicate one standard 
error) 

 

Polynomial method 

Table 3.4 shows that LNPLWP indicated that neither BDGRP nor BDGRP X YEAR were significant 

at a 95% level, with estimated average PLWP values of 28%  and 25% for the low and high bulk 

density groups respectively and a RMSE of 4% PLWP at the mean.  LNAVGRL was found to be 

significant with a 1% increase in average ring length resulting in a 0.24% decrease in PLWP.  The 

marginal means of LNPLWP transformed back to the original units for the study period are shown in 

Figure 3.4. 

The model for ADJLNPLWP indicated that BDGRP was significant at a 95% confidence level, with 

marginal means of 30% and 25% for the low and high SBD groups respectively with an RMSE of 

5% at the mean. LNAVGRL was also found to be significant with a decrease of 0.28% PLWP for 

every 1% increase in ring length. Figure 3.5 shows the marginal means of LNADJPLWP 

transformed to the original units over the study period. 
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Figure 3.4. Marginal means of LNPLWP transformed to the original units for the study period (Bars 
indicate one standard error) 
Figure 3.5. Marginal means of ADJLNPLWP transformed to the original units for the study period 
(Bars indicate one standard error) 

 

Inflection method 

From Table 3.4, neither BDGRP nor BDGRPxYEAR were found to be significant for LNINFLWP 

with estimated INFLWP levels of 30% and 27% for the low and high bulk density soils respectively. 

LNAVGRL was found to be significant at a 95% confidence level with a parameter estimate of 1% 

increase in ring length resulting in a 0.24% decrease in INFLWP. The marginal means of 

LNINFLWP transformed to its original units are shown in Figure 3.6. 

The model for ADJLNINFLWP indicated that BDGRP was a significant factor (P=0.037), and that 

the BDGRPxYEAR interaction was not. The mean values of ADJLNINFLWP transformed back to 

the original units were 27% and 22% for the low and high SBD groups respectively. LNAVGRL was 

likewise significant at a 95% confidence level with a parameter estimate of 1% increase in ring 

length resulting in a 0.32% decrease in ADJINFLWP. The model had a RMSE of approximately 6% 
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ADJINFLWP at the mean. The marginal means of ADJLNINFLWP transformed to its original units 

are shown in Figure 3.7. 

 

Figure 3.6. Marginal means of LNINFLWP  transformed to the original units for the study period (Bars 
indicate one standard error) 
Figure 3.7. Marginal means of ADJLNINFLWP transformed to the original units for the study period 
(Bars indicate one standard error) 

 

Comparison of latewood measurement methods 

The parameter estimates reported by the ANOVA for the effect of BDGRP and the significance of 

the BDGRP effect on LNTLWP, ADJLNPLWP, and ADJLNINFLWP were similar across both 

periods (Tables 3.3 and 3.4), and the measures generally reflected similar trends in the differences 

between SBD groups from year to year. Figure 3.8 shows the percent difference in latewood 

measures between the two SBD groups (trees on low bulk density soil had higher average latewood 

percentages for all years except 1980) for the entire study period. The adjusted polynomial and 

inflection methods occasionally reported more exaggerated differences between the two SBD groups 

than the threshold method (e.g. 2003, 1998, 1994, 1984), though for many years, there was no real 

difference between the latewood measures (e.g. 1976-1979, 1985-1988). 
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Figure 3.8. Percent difference in latewood percentage throughout the study period using the threshold, 
adjusted polynomial, and adjusted inflection methods. 

 

The results of the models for the unadjusted polynomial and inflection latewood measures suggested 

there was much less difference between the two SBD groups. In Figure 3.9, the average percent 

difference between the two SBD groups are graphed for the entire study period. For all but a handful 

of years, the difference in SBD groups is less than that measured by the threshold method. This 

reduced level of difference is reflected in the ANOVA results for the test period in Table 3.4; 

BDGRP does not appear to be a significant factor when using the unadjusted dynamic latewood 

measures to compare the trees grown on low and high bulk density soils.  
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Figure 3.9. Percent difference in latewood percentage throughout the study period using the threshold, 
polynomial, and inflection methods 

 

Climate effects  

In an effort to understand the significance of YEAR and why the significant effect of BDGRP was 

found in the BDGRPxYEAR interaction for the calibration data set (1976-1985) and as a main effect 

in the test data set (1986-2005), climate data from the nearest weather station in Darby, MT 

(approximately 16 km from site and at elevation of 1160m) for all data periods were collected 

(NOAA, 2013). The most dramatic differences in climate between the periods were found in the 

extreme temperatures late in the growing season and May precipitation. Figure 3.10 shows the sum 

of Cooling Degree Days (18.3°C basis) for July and August from 1955 to 2005. During the 

calibration period, the trees experienced a narrower range and lower average levels of late season 

heat than during the test period. In addition, there was almost twice the range in May precipitation 

during the calibration period compared to the test period, as shown in Figure 3.11. 
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Figure 3.10 Sum of July and August CDD (65°F basis) from 1955 to 2005 

 

 

Figure 3.11 May Precipitation from 1955 to 2005 
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Table 3.4 shows the percent difference in average density for the calibration and test period between 

trees grown on low and high bulk density soils. During the calibration period, the average difference 

was 4%, but there was one year (1980) in which trees grown on high bulk density soils averaged 3% 

higher density than trees grown on low bulk density soils. Climate data for this year revealed that 

1980 registered the highest May precipitation and the third coldest (in terms of CDD) July and 

August in the 50 year record. 

Table 3.5. Percent difference in AVGDEN between low and high bulk density soil groups 

Dataset Mean N SD Range Minimum Maximum 
Calibration 4.0% 10 3.9% 14.5% -3.0% 11.2% 
Test 7.5% 20 2.0% 7.1% 3.9% 11.0% 
Total 6.3% 30 3.2% 14.5% -3.0% 11.2% 
 

If the yearly percent differences in average density are binned by their Z-score, the resulting 

distribution by Z score is shown in Figure 3.12. Using the same Z-score grouping, monthly 

precipitation and CDD data are plotted in Figures 3.13 and 3.14. In Figures 3.13 and 3.14, the lines 

represent the average monthly precipitation and CDD for the years which produced AVGDEN 

differences of their respective Z scores, with the average (circles) for the 30 years with error bars 

representing one standard error from the 30 year average. The year producing the least difference 

were years with higher than average May (and June for the year 1980) rainfall seen in Figure 3.11 

and considerably lower than average temperatures as seen in Figure 3.10. Conversely, those years 

producing the highest difference between the SBD groups exhibited slightly lower than average 

rainfall during May and June, but experienced higher than average CDDs during July and August. As 

shown in Figure 3.15, plotting May precipitation (a) and July/August CDD (b) against the percent 

difference in AVGDEN between the two SBD groups, the trend with precipitation is very weak and 

seems to be heavily dependent on the extremely high precipitation year 1980, but the trend for 

July/August CDD appears to be a much better fit with an R2 = 0.43. 
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Figure 3.12. Distribution of Z scores for the percent difference of AVGDEN between SBD groups 

 

 

Figure 3.13. Mean monthly precipitation for entire study period by Z-score of AVGDEN difference 
between low and high bulk density soils (error bars represent one standard error) 

 

0

2

4

6

8

10

12

14

Z<-2.0 -2.0<Z<-1.0 -1.0<Z<0 1.0>Z>0 2.0>Z>1.0

C
o

u
n

t

.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
re

ci
p

it
a

ti
o

n
 (

m
m

)

Month

2.0>Z>1.0

1.0>Z>0

-1.0<Z<0

-2.0<Z<-1.0

Z<-2.0

Average



65 
 

 

Figure 3.14. Mean monthly CDD for entire study period by Z-score of AVGDEN difference between low 
and high bulk density soils (error bars represent one standard error) 

 

 

Figure 3.15. Fit of May precipitation and percent difference in AVGDEN between the two SBD groups 
(a). Fit of July/August CDD and percent difference in AVGDEN between the two SBD groups (d). 
Regression lines represent the best-fit for both periods combined 
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Discussion   

The working hypothesis at the outset of this research was that trees grown on low bulk density soils 

had increased availability of soil moisture in the late growing season over trees grown on higher bulk 

density soils. It was theorized that this persistent late season differential in available soil moisture 

would manifest itself as longer latewood percentages and increased average densities in those trees 

grown on low bulk density soils. The models built to test the significance of SBD supported that 

hypothesis on several levels. 

Comparison of latewood measures  

For the test data set (rings added between 1986-2005), the models indicated that trees grown on low 

bulk density soils had higher latewood percentage, but the difference was not significant for all 

measures. The ANOVA models (Table 3.4) suggest that during the test period, the difference 

between the two groups ranged between a significant 18% difference for the threshold method to a 

non-significant 5% difference for the unadjusted PLWP.  The polynomial and inflection methods 

produced mixed results dependant on whether or not the adjusted values were used. The polynomial 

and inflection methods were intended to identify the point at which the thickening cell walls and 

narrowing lumen create the highest rate of change in density from tracheid to tracheid along a radial 

profile. The adjustment factors used for this Chapter (equations 1 and 2) were instituted to try and 

reduce the systematic errors found in Chapter Two, to improve the dynamic measures’ ability to 

identify the point-of-most-change in cell wall thickness and lumen diameter. In the unadjusted values 

found in the anatomical section of Chapter Two, the dynamic measures seemed to systematically 

overestimate the amount of latewood in low density rings and underestimate the amount of latewood 

in higher density rings, leading to reduced apparent differences. The models in Table 3.4 for the 

unadjusted polynomial and inflection latewood methods indicated that the effect of BDGRP was not 

significant, with parameter estimates of 5% and 8% for the effect of BDGRP on the models for the 
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polynomial and inflection methods respectively. These would translate to differences of 3% PLWP 

and 3% INFLWP on average through the study period.  

After adjustment, however, the model for dynamic measures of latewood percentage returned similar 

results as the model for TLWP. The model for adjusted PLWP indicated a difference of 14% (or 5% 

higher PLWP for low SBD) between low and high SBD groups, and the model for adjusted INFLWP 

estimated a 17% difference (or 5% higher INFLWP for low SBD trees). The models for the threshold 

and adjusted dynamic measures all suggested the same thing; there was a significant difference in 

between SBD groups of between 5% and 7% actual latewood percentages on average over the course 

of the test period. The fact that the results were so similar may be related to the rapid transition from 

earlywood to latewood  typical in Douglas-fir annual rings (Bowyer et al. , 2003), and the findings in 

Chapter Two that large deviations between the threshold and dynamic measures are generally only 

seen in rings exhibiting extreme values of average density.  

Average density and climate interaction with SBD 

The model for AVGDEN suggested that the effect of BDGRP was highly significant (beyond 99% 

confidence level) during the test period and that the difference in AVGDEN over the test period was 

approximately 40kg/m3 at laboratory conditions. Transforming the densities for each SBD group at 

lab conditions to an estimated green specific gravity, the average for the low SBD group was about 

0.49, while the average for the high SBD group was about 0.45 (USDA 2001).  

In addition to the significance of the effect of BDGRP during the test period, the contrasting 

behavior of the models from the calibration period (1976-1985) to the test period (1986-2005) 

further supports a site affect associated with SBD. Using AVGDEN as an example, the calibration 

model indicated a highly significant (P<0.0001) BDGRP X YEAR interaction. When the model was 

employed on the test period data, the interaction term was not found to be significant, but the main 
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effect of BDGRP was. Variation in climate variables seems to explain the significance of both the 

interaction and the main effect.  

During the calibration period, two cold years: 1976 and 1980, presented conditions that resulted in 

no difference (1976), and the only year in the 30 studied in which the high SBD group had higher 

AVGDEN than the low SBD group (1980). When growing conditions were exceedingly mild and 

sufficient soil moisture was present, there was no difference between the two SBD groups, and even 

a reversal of the SBD effect. Removing these two years from the calibration dataset results in a non-

significant BDGRPxYEAR interaction, as well as a non-significant main effect for BDGRP during 

the calibration period. Mild conditions during 1976-1985, excepting 1976 and 1980, contributed to a 

higher, but not significantly higher, average density for trees growing on low bulk density soils. 

During the test period, there was a relatively sustained difference in AVGDEN between the two SBD 

groups, a consistently higher average density in low SBD trees, and is reflected in the significance of 

the main effect of BDGRP, not the interaction with year. In Figure 3.10 and 3.11, it can be seen that 

the severity of the July/August period was frequently more extreme in the test period than the 

calibration period, and there were no cold/wet years like 1976 or 1980. Figure 3.15b suggests a good 

fit between July/August CDD and the percent differences of AVGDEN between SBD groups across 

both the calibration and the test periods. More frequent hot July/August in the test period seemed to 

lead to a significant BDGRP main effect for AVGDEN.   

The only other broad-scale site variable collected that seems likely to cause this sort of difference 

with AVGDEN would be elevation. If the two SBD groups examined here were not drawn from 

equivalent elevations, there could be an opportunity for elevationally induced climate variation to 

appear as an effect of SBD, leading to larger latewood percentages and higher average density due to 

uneven sampling, not SBD. To explore if differences in elevation distributions between SBD groups 

could explain the differences, Figure 3.16a shows the distribution of elevations for the two SBD 
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groups that were included in the study. The trees sampled from each group cover approximately the 

same range, but the low bulk density trees seem to have more individuals from the lowest and 

highest elevation levels, while the high SBD group has more individuals in the middle elevation 

levels. However, the residuals for AVGDEN from both SBD groups in Figure 3.16b appear to be 

similarly distributed across their shared elevation range, indicating that even though the distribution 

of elevations was not identical, there was no systematic difference in the random errors across the 

elevation range between the two groups. Although the elevational composition of the two SBD 

groups were not identical, they appeared to be adequately similar for comparison purposes. 

   

Figure 3.16. Comparison of elevations between SBD sample groups. Histogram of elevation distribution 
for the two sample groups (a), residuals of AVGDEN fit against elevation for the two treatment groups 
(b). 

 

When additional interactions between BDGRP, ELEV, and YEAR are added using the same 

covariance framework as the base models found in Tables 3.2 and 3.3, the model indicates that all 

the 2 way and the 3-way interaction are significant, but all the interactions significantly raise the BIC 

value, indicating a less parsimonious or more overfit model compared to the base model. The 

behavior accounted for by the interactions is illustrated in Figure 3.17. Figure 3.17a shows 
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AVGDEN for all trees in 1980, the coldest and wettest in the study period, across the elevation 

gradient sampled. As mentioned previously, 1980 was the only year in which the marginal mean of 

AVGDEN was higher for the high SBD group than the low SBD group, and both sample groups 

seem to exhibit a similar negative correlation with elevation. Of all the years for which 

measurements were taken, 1980 should have been the least limited by soil moisture. Conversely, 

Figure 3.17b shows the AVGDEN of all trees across the elevation gradient for the year 2003, the 

hottest year in the study period. The AVGDEN of the low SBD group exhibits an almost identical 

regression to ELEV as in 1980, but the high SBD group, especially those below 2000m, dropped by 

approximately 100kg/m3 when taken as a group. In addition to being the hottest year in the study 

period, 2003 was the third year of an extended drought as measured by the Palmer Drought Severity 

Index published for the region (NOAA, 2013(a)). 2003 should have been one of the years most 

limited by low soil moisture. The magnitude of this gap seems to drive the differences in AVGDEN 

between the groups seen in Figure 3.15b, and the introduction of ELEVXYEAR, BDGRPXELEV, 

and BDGRPXELEVXYEAR interactions all refine the patterns in Figure 3.17 to the detriment of the 

BIC values of their respective models. During the moderate climatic conditions of most of the 

calibration period, the difference between SBD groups was modest, during the hotter and drier test 

period; the difference between SBD groups exemplified in Figure 3.17b was sustained through much 

of the period. 
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Figure 3.17. Average density by elevation for the low and high SBD groups in 1980 (a), and 2003(b). 

 

The LLWR concept provides a possible explanation for these findings.  As discussed in Morrow et 

al, the LLWR model suggests that trees growing on lower bulk density soils should, on average, have 

more water available after decreasing soil water potential triggers the thickening of tracheids and 

before the soil dries to the point where additional root penetration is not possible or the wilting point. 

The work of Larson and others suggests that the timing of available moisture is a critical factor in the 

creation of additional latewood, and the LLWR concept provides an explanatory mechanism by 

which trees on low bulk density soils, receiving similar amounts of total precipitation and 

experiencing similar climatic conditions have extended access to soil moisture specifically during the 

latewood formation period over trees grown on high bulk density soils.  

Increasing SBD has been demonstrated to reduce seedling growth in Douglas-fir and other 

species (e.g. Cochran and Brock 1985; Heninger et al. 2002; Bulmer and Simpson 2010).  Although 

these studies focus on the effect of soil compaction (raising SBD via compression) on height and 

volume growth, the same soil porosity and hardness characteristics could affect latewood percentage 

and average density. Bulmer and Simpson’s research suggests that soil mechanical resistance 
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experienced as the soil dried was a greater restraint on the growth of lodgepole pine and Douglas-fir 

seedlings within the range of field capacity and the wilting point than aeration limits in wet soil. This 

restriction increases as SBD increases, and prevents trees growing on higher bulk density soils from 

being able to extract soil moisture all the way down to the wilting point, but has much less affect the 

trees’ ability to extract soil moisture before the transition to latewood tracheid production. This soil-

tree-water interaction could explain many of the findings in this research. In Figure 3.17a, 1980 

seems likely to be the year in which growth was limited most by growing season, and not moisture. 

With relatively moderate evaporative and transpirational demands, all trees were given greater ability 

to add as much latewood as possible late in the growing season. Decreasing average density with 

increasing elevation for both SBD groups may have also been induced by shortened growing season 

length, and both groups show the same elevation/AVGDEN relationship. During 2003, as shown in 

Figure 3.17b, those trees growing on high bulk density soils at lower elevations exhibited a reduced 

AVGDEN, but those at higher elevation had almost identical AVGDEN values as during 1980. The 

climate moderating effect of elevation may have allowed the high elevation/ high SBD group to 

continue growing latewood beyond the ability of low elevation/high SBD trees. The low 

elevation/high SBD trees may have reached the soil mechanical limit at which further exploitation of 

the soil moisture was limited, stunting the latewood period. Trees grown on low bulk density soils 

show a similar relationships between AVGDEN and elevation for both extreme years, indicating a 

similar earlywood/latewood ratio, and possibly a greater limitation by growing season than soil 

moisture across all elevations during 2003. 

Roots of forest trees frequently do not continue to grow at the low moisture levels that would cause 

impediment to growth (Joslin et al. 2001, Lopez et al. 2001) suggested by the LLWR model. We 

hypothesized that this impediment to growth would limit late season availability to moisture, but 

without measurements of soil moisture and root growth, we cannot conclude that there is an 

impediment to root growth. Another plausible explanation could be ash caps present in the forest 
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soils studied. The soil series descriptions for several of the low bulk density soils listed ash as a 

parent material. The improved water holding capacity of soils that include ash caps (McDaniel and 

Wilson 2007) may provide an alternative mechanism for late season moisture availability for trees 

growing on low bulk density soils. The slow growth of the trees studied may indicate they have 

modest moisture requirements. The slow utilization of soil moisture may prolong the latewood 

period in trees growing on low bulk density soils as compared to high bulk density soils.  

Several important caveats should be considered in extrapolating the findings here with other stands. 

The effects that seem to be associated with SBD are likely amplified by the crowded nature of the 

stands and marginal growing conditions for Douglas-fir found on much of the Trapper-Bunkhouse 

region of the Darby Ranger District in which this study took place. High stocking levels have led to 

slow growth in these suppressed stands, and space limitations likely prevent trees from expanding 

their root systems to the fullest extent possible. If there was no competition between trees (i.e. a new 

plantation or a thinned stand) or other vegetation, even those trees on high bulk density soils would 

have access to untapped soil moisture late in the season, and we would expect to see the differences 

between SBD groups to diminish accordingly. Likewise, lower precipitation and warmer climatic 

conditions, especially at lower elevations in this study, may further accentuate the affect of SBD. 

Forests with more hospitable conditions for Douglas-fir (or higher elevations in this study) may not 

exhibit as much of a difference between SBD groups. Secondly, the stands chosen were all naturally 

regenerated, leading to the possibility that the expression of genetic factors in the face of climatic 

variations may contribute to differences found in average density and latewood percentage between 

subpopulations. Thirdly, the estimates of SBD were derived from soil surveys conducted by the 

Natural Resources Conservation Service (as outlined in Morrow et al. 2013) for the region, and were 

not spot checked, leading to the possibility that unaccounted-for localized microsite effects may 

affect the results presented here. 
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Further research is needed to determine the extent to which these findings are applicable. Monitoring  

the soil moisture status, root growth, and xylem formation simultaneously in these suppressed stand 

may provide a better understanding of the mechanisms at work. Crowded stands in marginal 

Douglas-fir habitat would be the most likely to respond to the SBD affect, and an expanded network 

of sampling may provide some boundary conditions (e.g. age, stand density, elevation, aspect, etc) 

inside which we would expect to find similar differences between SBD groups, providing forest 

managers and researchers with an improved understanding of the scope of the SBD effect. Perhaps 

more importantly, the assumptions presented here are that the effect of SBD exhibits a linear 

relationship with climatic variables, especially July/August CDD. Climatic conditions studied in this 

research did not seem to reach a threshold at which the relationship was broken, despite experiencing 

some of the hottest and coolest summers since the Dust Bowl years of the 1930’s (NOAA 2013(b)). 

Expanded sampling programs into more extreme Douglas-fir habitat, or, if climate change 

predictions come to fruition, monitoring the same stands, may better define the climatological limits 

of the SBD effect.   

The influence of SBD on average density and latewood period, and the interaction with climate 

could create many interesting opportunities for managers of these forests depending on their 

management objectives. Managers interested in preparing current forests to meet the near-term 

challenges associated with projections of increasing temperatures changing weather patterns as a 

result of climate change (IPCC 2007) may want to consider the research of Dalla-Salda and 

Martinez-Meier and others who suggest that Douglas-fir with increased average density may be 

better able to survive drought (Martinez-Meier et al, 2008; Dalla-Salda et al. 2009; Dalla-Salda et al. 

2011) and prioritize high SBD areas, especially at lower elevations for remedial treatments to reduce 

moisture stress or possibly the introduction of more drought tolerant species. Forest managers 

interested in marketing high quality forest products may consider incorporating SBD in stand 

delineation decisions to deliver more uniform and higher quality raw material as increasing average 
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temperatures contribute to increasing CDD in July and August, and increasing divergence between 

SBD groups. The estimated green specific gravities for the two groups over the test period were 0.49 

(low SBD) and 0.45 (high SBD), which is more than the difference between the marketing categories 

DF-L and DF-L South, for which different allowable engineering values are used (WWPA 2001), 

and would place the average specific gravity for the low SBD trees in the middle range of the 

southern yellow pines for the test period (USDA 2001). As discussed in Morrow et al. (2013), the 

incorporation of SBD into sale layout operations may help attract buyers interested in high quality 

forest products to these remote forests.  

Conclusions 

The results of this study indicate that the interaction of soil bulk density and climate may induce 

significant differences in latewood percentage and average density in mature suppressed Douglas-fir 

stands in the Inland Northwest. Through the use of Repeated Measures Analysis of Variance over a 

30 year period, dichotomous grouping into high and low SBD groups explained a significant amount 

of variation using threshold (P=0.025) and adjusted polynomial and inflection measures (P= 0.039, 

P=0.036 respectively) of latewood, as well average density (P=0.0088). The degree of difference in 

average density of trees between SBD groups showed a strong correlation to climatic conditions, 

especially to July/August Cooling Degree Days (R2=0.43) across the entire 30 year study period. By 

virtue of the relatively long scope of the study period, instances of the negation and even reversal of 

the effect were found during extremely cool years. The concept of Least Limiting Water Range 

(LLWR), and especially the resistance to root penetration in high bulk density soils at low soil 

moisture contents, may provide an explanation for the direction and magnitude of the differences 

found between SBD groups. These results further emphasize the importance of soil-climate 

interactions in the study of tree-ring and wood quality characteristics, and may help forest managers 

make more efficient and effective decisions regarding the health and productivity of dynamic forest 

environments.  
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 Chapter Four 
Predicting mechanical properties in Douglas-fir using latewood 

demarcation methods 
 

Abstract 

Fundamental wood properties such as density and latewood percentage have been shown to 

be important predictors of wood quality, and are frequently reported as variables of interest 

in forest-related research. The ability of two density and three latewood measures derived 

from small clear samples to predict the Modulus of Elasticity (MOE) and Modulus of 

Rupture (MOR) in the small samples and their matched lumber was assessed using 75 Select 

Structural 2x4s. The weight/volume and X-ray derived average small clear sample density 

measurements proved to be the best predictors with adjusted R2 as high as 0.79 for MOR to 

0.42 for MOE in the small clear samples The threshold latewood demarcation method 

exhibited a better fit with MOE (adj. R2=0.32) and MOR (adj. R2=0.54) than the inflection 

and polynomial latewood demarcation methods. The goodness-of-fit of all measures 

dropped considerably when predicting 2x4 MOR, but retained a majority of their predictive 

ability for MOE in the high-grade 2x4s studied here. This study suggests that density 

measurements and threshold latewood demarcation methods are better predictors of 

mechanical properties than the inflection and polynomial latewood demarcation methods. 

Introduction 

Density has been found to be an important predictor of strength and stiffness in lumber 

(Newlin and Wilson 1917; Markwardt and Wilson 1935; Doyle 1968; Lachenbruch et al 

2010). Because the cell wall material of any species of tree has a specific gravity of 
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approximately, 1.5 (USDA, 2002), the density or specific gravity of a wood sample reflects 

the amount of cell wall material present and provides a useful and relatively simple-to-

measure assessment of many mechanical and physical properties.  

The proportion of high density latewood in an annual ring is an important contributor to the 

density of an annual ring in many species and is the result of xylogenic processes in the stem 

of living trees. During xylem formation, newly divided tracheids undergo enlargement and 

densification before reaching maturity (Wilson et al. 1966; Cuny et al. 2013). In the early 

part of the growing season, developing tracheids in Douglas-fir experience rapid radial 

expansion and a short secondary cell wall deposition period that result in the relatively low 

density wood found in earlywood (Dodd and Fox 1990). As the growing season progresses, 

the rate and duration of radial expansion decrease, and the duration of cell wall deposition 

increases creating narrow tracheids with thick cell walls that form the latewood in an annual 

ring. The tracheid formation process is malleable, and many natural and human influenced 

factors can affect the latewood proportion and density of wood (Jozsa and Brix 1989; 

Antony et al. 2009; Gonzalez-Benecke et al. 2010; Kantavichai et al. 2010). 

There are many methods available for measuring latewood percentage, and the choice of 

method likely depends on the goal of the study. Because there is no universally accepted 

definition of earlywood or latewood, many approaches have been developed to identify the 

earlywood/latewood transition point. One of the oldest and most frequently cited is Mork’s 

(1928) definition. As reported by Denne (1988), Mork’s definition of the latewood transition 

is the point in the annual ring at which the shared cell wall between tracheids is greater than 

twice the radial lumen diameter. Identifying the latewood transition point using Mork’s 
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definition requires microscopic examination and is relatively time consuming. With the 

commercial availability of X-ray densitometers, a threshold density method has been 

developed which defines the latewood as the portions of the rings that exceed a 

predetermined threshold density (Polge 1978). The threshold densities are often set at a level 

that approximate Mork’s definition of latewood and are easy to perform. 

 One of the shortcomings reported for threshold measurements of latewood is an inability to 

accommodate intra-ring variability (Koubaa et al. 2005; Antony and Schimleck 2012). The 

presence of false rings and the differences in ring characteristics between juvenile and 

mature wood lead to inconsistency in the earlywood and latewood traits measured between 

rings of the same tree. This variation in measurement adds to uncertainty and complicates 

studies that measure the effect of treatments on these ring characteristics. Dynamic latewood 

demarcation methods were introduced in an attempt to improve the consistency of 

earlywood and latewood traits between rings (e.g. Pernestal et al. 1995; Koubaa et al. 2005). 

Dynamic latewood methods measure the shape and geometry of the density profile in 

individual annual rings and select a latewood transition point that best fits a series of criteria 

or rules. Antony et al. (2012) for example applied a segmented smooth spline method to the 

density profile of individual rings to identify the point at which the second derivative of the 

slope of the density/position curve passed through zero to identify the earlywood-latewood 

transition. They compared this inflection method with Mork’s definition of latewood and a 

threshold demarcation method and suggest that the inflection method identified latewood 

more consistently between juvenile and mature rings in loblolly pine. Koubaa et al. (2005) 

proffered a polynomial method whereby the density profile of an individual ring was fit with 
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a 6th order polynomial, and the root of the second derivative that met certain criteria was 

chosen as the earlywood latewood transition. Their results suggested that the polynomial 

method provided a more consistent latewood proportion measured between juvenile and 

mature wood. Both studies offered evidence that these dynamic measures may provide more 

consistent estimations of latewood percentage in studies analyzing intra-ring density 

variations, and may provide a more accurate representation of physiological processes at 

work during ring formation. 

Research concerning the correlations of density and threshold percent latewood to 

mechanical properties has been well documented. However, correlations of the inflection 

and polynomial latewood measures to physical and mechanical properties are limited. In 

Chapter Three, we found that Douglas-fir growing on low bulk density soils had 

significantly higher average density and latewood percent using a threshold, inflection, and a 

polynomial method. Several studies were available to predict the increases in wood quality 

using density and threshold latewood percentage, but very little research was found to 

translate the increases in inflection and polynomial latewood percentage to predicted 

improvements in wood quality. The main objective of this study was to compare the ability 

of measurements of density and latewood percentage to predict clear wood mechanical 

properties in Douglas-fir from the inland Northwest. A secondary objective of the paper was 

to develop best case estimates of the ability of the density and latewood percentage methods 

to predict the mechanical properties of high quality visually graded lumber. 
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Methods 

560 – 10ft Number 1 and Better 2x4s from two mills in the Inland Northwest were regraded 

by a Western Wood Products Association representative. A 25mm x 25mm x 500mm small 

clear sample for bending was cut from the ends of the 2x4s, and all small clear samples and 

2x4s were conditioned to 12% MC. After the specimens equilibrated, they used for bending 

tests as per ASTM 4761 and ASTM 143 respectively to find the Modulus of Elasticity 

(MOE) and Modulus of Rupture (MOR) of the samples. The load was applied to the radial 

face of the small clear specimens to reduce variation resulting from the presence of wide 

earlywood or latewood bands at the compression and tension faces.  Moisture content 

samples were used to measure the specific gravity at 12% MC immediately after testing 

(SG2x4 and SGsc for the 2x4s and small clears respectively) according to ASTM D2395-93 

Method A.  Of the initial 560 boards, 336 met Select Structural grade requirements, and 144 

of these were removed because they contained pith or very small annual ring radii. From the 

remaining set of 192 Select Structural 2x4s, 75 were randomly chosen, 75 were randomly 

chosen to assess the correlations between the average ring characteristics of the small clear 

samples and MOE and MOR for the small clear specimens and 2x4s. 

After the small clear specimens were tested, a 1.5mm cross section was cut from each, 

allowed to equilibrate to laboratory conditions, and was scanned using a QTM-QTRX X-ray 

densitometer. The densitometer was calibrated using 24 Douglas-fir samples of verified 

average density ranging from 400 kg/m3 to 700 kg/m3. The threshold latewood percentage 

generated using a 500 kg/m3 threshold level (TLWP) and average density (AVGDEN) for 

each ring was calculated by the QTM software. The raw data from the X-ray scans was 

entered into the Inflection Ring Calculator described in Chapter One, and the inflection 
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latewood percentage (INFLWP) was determined for each complete ring in the small clear 

specimen cross sections. The procedure developed to calculate INFLWP broke the 

collection of annual rings from the raw data into individual annual rings, and then selected 

the point at which the 2nd derivative passed through zero and the 1st derivative of the 

density/position curve exceeded a predetermined value while moving from the latewood to 

the earlywood. As described in Chapter One, the polynomial latewood percentage (PLWP) 

was determined using a Matlab script which fit a 6th degree polynomial to each annual ring 

and identified the position of the latest root of the 2nd derivative of the polynomial that 

occurred before the maximum density found in the ring and occurred between 20% and 90% 

of the total ring length.  

Ring-width weighted averages of TLWP (TLWPw), AVGDEN (DENw), ILWP (ILWPw), 

and PLWP (PLWPw) were calculated for all the small samples. The correlations and simple 

regressions were produced using SPSS 17.0 (SPSS Statistics for Windows, Version 17.0. 

Chicago:SPSS Inc.). Constant variance and normal residual assumptions were checked 

visually.   

 Results 

The mean, standard deviation, coefficient of variation, minimum and maximum values of 

the properties measured are presented in Table 4.1. As with previous experiments described 

in Chapter Two, TLWPw was on average larger than ILWPw, and PLWPw was the shortest. 

The specimens tested covered a broad range of specific gravity, MOE, and MOR. 

 

 



87 
 
Table 4.1. Summary of specimens tested 

Property Mean SD CV Min Max Description 
MOEsc (GPa) 11.8 1.9 0.16 7.8 16.3 Static MOE of small clear samples 
MORsc (MPa) 92.1 12.2 0.13 69.6 120.6 Static MOR of small clear samples 
SGsc 0.475 0.055 0.12 0.380 0.621 SG of small clear samples at 12% 

MC 
TLWPw (%) 38.1 8.7 0.23 21.8 61.5 Ring width weighted average 

threshold latewood percentage  
DENw (kg/m3) 542 57 0.11 429 678 Ring width weighted average ring 

density at laboratory EMC 
ILWPw (%) 29.3 7.0 0.24 18.8 50.5 Ring width weighted average 

inflection latewood percentage  
PLWPw (%) 25.0 5.8 0.23 16.6 42.1 Ring width weighted average 

polynomial latewood percentage  
MOE2x4 (GPa) 12.2 2.0 0.17 8.2 17.2 Static MOE of 2x4s 
MOR2x4 (MPa) 62.7 17.3 0.28 22.4 94.2 Static MOR of 2x4s 
SG2x4 .476 .055 0.12 .378 .659 SG of 2x4s at 12% MC 

Simple correlations between properties are shown in Table 4.2. All correlations were 

significant to at least p < 0.01. For the small clear samples, MOEsc was most correlated with 

the measures of density: SGsc and DENw (r = 0.69 and r = 0.66). Of the latewood percentage 

measurements, MOEsc was most correlated with TLWPw (r = 0.57) and least correlated with 

ILWPw (r = 0.45). MORsc was most correlated with SGsc (r = 0.89) and DENw (r = 0.79), but 

TLWPw exhibited nearly the same correlation to MORsc as DENw likely owing to the high 

correlations between SGsc, DENw, and TLWPw.  

Table 4.2. Simple correlations between average ring and mechanical properties for the small clear and 
2x4 samples 

Property MOESC MORsc SGsc TLWPw DENw ILWPw PLWPw MOE2x4 MOR2x4 SG2x4 

MOESC - .85 .69 .57 .66 .45 .52 .72 .41 .59 
MORsc .85 - .89 .74 .79 .64 .68 .73 .56 .76 
SGsc .69 .89 - .88 .89 .80 .82 .64 .52 .85 
TLWPw .57 .74 .88 - .90 .86 .86 .54 .42 .76 
DENw .66 .79 .89 .90 - .83 .84 .60 .49 .79 
ILWPw .45 .64 .80 .86 .83 - .96 .52 .49 .74 
PLWPw .52 .68 .82 .86 .84 .96 - .57 .45 .75 
MOE2x4 .72 .73 .64 .54 .60 .52 .57 - .73 .67 
MOR2x4 .41 .56 .52 .42 .49 .49 .45 .73 - .62 
SG2x4 .59 .76 .85 .76 .79 .74 .75 .67 .62 - 

Note: All correlations are significant at p < 0.01. 
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Simple regressions between mechanical and ring properties were run to check the 

differences between slope parameters. The regressions in Table 4.3 suggest, like the 

Pearson’s correlations, that for the small clear specimens, SGsc exhibited the best fit, 

followed by DENw, TLWPw, PLWPw, and finally ILWPw. With respect to MOEsc, the 

parameter estimates for SGsc and DENw, after accounting for the differences in units, were 

not significantly different, with estimates that would be within one standard error of each 

other. The same held true for the measures of latewood: the greatest difference was between 

ILWPw and PLWPw, and the comparison of these parameters would result in a t-score of 

approximately 1.7.  For MORsc, the density and ring properties followed the same ranking in 

terms of goodness of fit. After accounting for differences in units between SGsc and DENw, 

the slope parameters exhibited a significant difference with a t-score for the comparison of 

approximately 2.6. Although the slopes are different, they only produce meaningfully 

different estimates for the samples near the maximum of the density range tested. The 

coefficients for TLWPw and PLWPw were significantly different for MORsc but the 

regression equations would only predict slight differences in boards with the narrowest 

latewood period. 

A comparison of the results between small clear samples and the 2x4s demonstrated that 

there were no significant changes in the slope parameters, but there was the expected 

reduction in the goodness of fit for most of the ring properties. The regressions for ILWPw 

and PLWPw, however, suggested an increase in the adjusted R2 from MOEsc to MOE2x4. 

From the RMSEs of the regressions, inferences about MOE2x4 using density and ring 

properties had similar levels of residual error as inferences about MOEsc, with increases in 

RMSE between 3% and 14%. For MOR, RMSE increased by 62% to 165% from predictions 
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for small clears to the 2x4s. The regressions suggest that the latewood measures performed 

similarly when making predictions about 2x4 properties. 

Table 4.3. Results of simple regressions between average ring properties and mechanical properties 

Property Intercept (SE) Coefficient (SE) Adj. 
R2 

RMSE 

MOEsc (GPa)     
SGsc 0.581 (1.38) 23.6 (2.89) 0.47 1.36 
TLWPsc 7.13 (0.808) 0.122 (0.0207) 0.32 1.54 
DENw 0.229 (1.57) 0.0213 (0.00287) 0.42 1.42 
ILWPw 8.29 (0.841) 0.120 (0.0279) 0.19 1.68 
PLWPw 7.59 (0.823) 0.169 (0.0321) 0.26 1.60 
     
MORsc (MPa)     
SGsc -2.25 (5.71) 199 (11.9) 0.79 5.62 
TLWPsc 52.5 (4.32) 1.04 (0.111) 0.54 8.26 
DENw 1.09 (8.33) 0.168 (0.0153) 0.62 7.54 
ILWPw 59.5 (4.73) 1.12 (0.157) 0.40 9.45 
PLWPw 56.3 (4.62) 1.44 (0.180) 0.46 8.99 
     
MOE2x4 (GPa)     
SGsc .990 (1.58) 23.5 (3.30) 0.40 1.55 
TLWPsc 7.44 (0.892) 0.124 (0.0228) 0.28 1.70 
DENw 0.863 (1.79) 0.0209 (0.00329) 0.35 1.62 
ILWPw 7.81 (0.865) 0.149 (0.0288) 0.26 1.73 
PLWPw 7.28 (0.858) 0.196 (0.0334) 0.31 1.67 
     
MOR2x4 (MPa)     
SGsc -15.8 (15.2) 165 (31.8) 0.26 14.9 
TLWPsc 30.7 (8.31) 0.837 (0.213) 0.16 15.9 
DENw -16.8 (16.9) 0.147(0.0310) 0.22 15.3 
ILWPw 27.2 (7.64) 1.21 (0.254) 0.24 15.3 
PLWPw 29.0 (8.03) 1.35 (0.313) 0.19 15.6 
 

In Chapter Two, plots comparing TLWP with ILWP and PLWP showed that ILWP and 

PLWP behaved differently across the density range of annual rings. The same behavior was 

observed in this study, with the deviation between the threshold measures and the inflection 

and polynomial increasing as average density increased. Figure 4.1 shows the relationship 
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between TLWP and PLWP for the rings analyzed in this study. Figure 4.1 suggests that as 

the average density of the ring increased, the disparity between TLWP and PLWP increased, 

and that difference decreases to near zero for the least dense rings in the data set.  

 

Figure 4.1. Fit of average ring density to TLWP and PLWP 

 

To illustrate the cause of the deviations between TLWP and PLWP, Figure 4.2a shows an 

annual ring that exhibited a modest difference between TLWP (29%) and PLWP (33%), and 

Figure 4.2b shows and annual ring with a very large difference between TLWP (63%)  and 

PLWP (33%). Lower density rings tended to make a relatively brief and abrupt transition 

from earlywood to latewood, while higher density rings made a more gradual transition. In 

low density rings, the rapidly densifying tracheids reach a maximum density and 

immediately made the transition to the next annual ring. This geometry forces the last 

infection point of the second derivative relatively early in the transition from earlywood to 

latewood, often before the threshold latewood transition in the lowest density rings. In 
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higher density rings the polynomial method frequently identified shoulders such as that 

depicted in Figure 4.2b as the latewood transition point when the shoulders provided a 

region of linear density increase. These patterns seem to be the cause of much of the 

discrepancies in latewood percentage seen in Figure 4.1. 

 

Figure 4.2. Comparison of latewood transition point chosen by the threshold, inflection, and polynomial 
methods. Low density ring with PLWP<TLWP (a). High density ring with PLWP>>TLWP(b).  

 

Discussion 

Prediction of small clear sample mechanical properties 

Pearsons correlations and simple regressions suggested that measures of density were better 

predictors of MOEsc and MORsc than the measures of latewood percentage. The predictive 

ability of density has been a common finding in many studies investigating the relationships 

between ring properties and mechanical properties (e.g. Newlin and Wilson 1917; 

Markwardt and Wilson 1935; Choi 1986; Lachenbruch et al. 2010; El-Kassaby et al. 2011). 

The correlation between the measures of density (SGsc and DENsc) in Table 4.2 for the small 
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clear specimens and MOEsc and MORsc were within the range of those found in other studies 

of Douglas-fir. Lachenbruch et al. (2008) found correlations between small clear sample 

density and MOE and MOR of 0.67 and 0.63 respectively and parameter estimates that were 

within, although correlations as low as r = 0.44 ( Knowles et al. 2004) and as high as 0.716 

and 0.829 (El-Kassaby et al. 2011) have been reported. A source of  this variability between 

studies likely stems from the proximity of the density measurement to the specimen being 

sampled, with the densities in the studies reporting the  weakest correlations derived from 

tree disks or increment cores and the densities for studies with stronger correlations derived 

from the specimens themselves. The density samples used to predict MOEsc and MOEsc 

came directly from the small clear samples. 

 Common to many of the previous studies is the fact that not all density measurements 

perform equally. Lachenbruch and others found a reduction in the correlation between 

density and MOE when moving from a weight/volume measure of density to an X-ray based 

measurement of density. Similar results were found in the present study, and the reduction in 

the descriptive power of the density measurements is seen in the decreasing correlations and 

goodness-of-fit and increasing RMSE in Tables 4.2 and 4.3 when comparing SGsc with 

DENw for small clear sample mechanical properties. The densitometer was calibrated using  

full sample width scans of 24 Douglas-fir samples of known density from 440 kg/m3 to 700 

kg/m3, and the calibration resulted in R2= 0.97 and RMSE of 14 kg/m3 between actual 

density and  the average whole sample density determine by X-ray. A likely source of 

disagreement between SGsc and DENw stems from the fact that only intact annual rings were 

analyzed using the X-ray densitometer for the samples used in this study to produce the 

DENw measurement. Thus, omitting the edge rings from the DENw measurement may have 



93 
 
produced density measurements that were not able to fully describe the density of the small 

clear specimens.  

The measures of fit between TLWPw and MOEsc and MORsc in Table 4.3 were similar to 

other studies. Using a threshold measurement similar to TLWPw, Mamdy et al. (1999) found 

a goodness of fit of r2=0.26 between latewood proportion to board MOE in Douglas-fir.  

Choi (1986) found an r2=0.54 between latewood percentage and MOE, and an r2=0.44 when 

latewood percentage was regressed against MOR in Douglas-fir. TLWPw was the most 

correlated latewood measurement with MOEsc and MORsc, followed by PLWPw and finally 

ILWPw. The order and magnitude of these measures’ correlation to MOEsc and MORsc seem 

to follow closely with their correlations to measures of average density. Logically, TLWPw 

should have been, and was, the most correlated with density because it implicitly gives 

information about the amount of an annual ring with a density above the predetermined 

threshold. As seen in Figures 4.2a and 4.2b, the inflection and polynomial methods can vary 

in the density at which they determine the transistion from earlywood to latewood has 

occurred. If all the annual rings were more homogenous, then all three methods would likely 

exhibit similar correlations with density as TLWPw. Across varied annual ring geometries 

however, PLWPw and ILWPw were less stable, and provided poorer predictions of 

mechanical properties. 

ILWPw and PLWPw were both poorer predictors of MOE and MOR than TLWPw but they 

were still able to account for 19% to 26% of the variation in MOEsc and 40% to 46% of the 

variation in MORsc when regressed singly. When the measures of latewood are paired in a 

multiple regression with SGsc or DENw to predict MOEsc (not shown), ILWPw is significant 
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(p = 0.045 and p = 0.033 paired with DENw and SGsc respectively) but only explains an 

additional 2% of the error variance above density measures alone. For the same pairings to 

predict MORsc ILWPw is significant when paired with SGsc (p= 0.016), but only accounts for 

an additional 1% of error variance over SGsc alone. The measures of latewood did not 

provide meaningful predictive ability beyond that of measures of density.  

In the small clear samples studied, both the measures of density and latewood explained 

more variation in MORsc than in MOEsc. Similar studies have found mixed results with 

several reporting better fit for MOE than MOR (Choi 1986; for X-ray density Lacenbruch et 

al. 2010) and others reporting poorer fit with MOE than MOR (for volume based density 

Lacenbruch 2010; El-Kassaby et al. 2011). SGsc was likely the most accurate measure of 

small clear sample density, and also exhibited the highest correlation and best fit with 

MORsc, and the correlations between MORsc and DENw and the latewood measures closely 

match their relative correlations with SGsc. If MOR is limited by the worst defect in the 

sample, then the density measurements for the small clear samples may have provided 

provide more information about the worst defect in the relatively uniform small clear 

samples.  

Prediction of 2x4 mechanical properties 

 MOE2x4 was best predicted by SGsc, followed by DENw, PLWPw, TLWPw, and finally 

ILWPw. The density measures were still the best predictors, but SGsc, DENw, and TLWPw 

experienced and 4%-7% drop in the amount of explained variance compared to MOEsc. This 

drop contrasts sharply with the 5% and 7% increase in explained variance reported for 

PLWPw and ILWPw respectively. Checking the model results for fit and residuals (not 
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shown), there didn’t appear to be a dramatic change compared to the regressions with 

MOEsc, and the rise in goodness of fit seems to be an artifact of the data and doesn’t suggest 

an improved ability to predict 2x4 stiffness over small clear sample stiffness. The density 

and latewood measures retained most of their ability to predict MOE in the 2x4 samples. 

MOR2x4 exhibited the best fit with SGsc followed by ILWPw, DENw, PLWPw, and finally 

TLWPw. There was also a large decrease in explained variance and increase in the RMSE  

for the density and latewood properties in the prediction of MOR2x4 compared to MORsc.  

The fact that ILWPw seemed to provide a better fit than DENw could be attributed to a same 

artifact in the data that suggested a better fit with MOE2x4 than MOEsc for ILWPw and 

PLWPw. The correlations between MOR2x4 and the study variables are similar to those found 

for Douglas-fir (Lachenbruch et al. 2010) and southern yellow pine (Doyle 1968; Biblis 

2004) This reduction likely reflects the more complex nature of defects found in the 2x4 

specimens and the dependence of MOR on localized strength reducing characteristics 

(Doyle 1968; USDA 1999).  

Comparison of density and latewood measurements 

SGsc was the best predictor of MOE and MOR for both the small clear and 2x4 samples, and 

the X-ray derived DENw value also gave good predictions. These findings are similar to 

those published by other researchers. An important point to consider is that the correlation 

between MOEsc and MOE2x4 was 0.72 and the correlation between density measures and 

MOE2x4 were quite close to that value (r=0.64 and r=0.60 for SGsc and DENw). This would 

suggest that SGsc explained approximately 80% as much of the error in MOE2x4 as MOEsc 

did. Similarly, SGsc explained approximately 85% as much of the error in MOR2x4 as MORsc 
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did. DENw did seem to be a slightly poorer predictor the mechanical properties, but in 

studies that report changes in annual ring average density such as Chapter 2, the findings 

here could be used to gauge the significance of those findings in terms of the expected 

mechanical properties of small clear samples, and to a limited extent, 2x4s derived from 

those trees. 

The measures of latewood generally did not predict MOE and MOR as well as did the 

density measurements. For the small clear samples, TLWPw provided the best fit for 

mechanical properties, but for the 2x4s, the results were less clear. It is difficult to develop a 

valid explanation as to why PLWPw and ILWPw would be better predictors of MOE2x4 than 

MOEsc. On average, PLWPw and ILWPw identify latewood transition points later in the 

annual ring than TLWPw, but even this pattern is confounded in low average density rings 

such as that shown in Figure 4.2. Although other researchers have found merits in the 

consistency in latewood transition assignments using the polynomial and inflection methods 

(Koubaa et al. 2005; Antony and Schimleck 2012), they were generally worse predictors of 

mechanical properties in the samples studied here. 

Factors not included in the study and future work 

Microfibril angle (MFA) was not measured in the course of this study, but the influence of 

MFA may be inferred from other similar studies. MOE has been shown to vary with MFA; 

with decreasing angle of the fibrils within the cell wall associated with greater Young’s 

Modulus in the longitudinal axis of softwood tracheids (Cave and Hutt 1968) and increasing 

resistance to longitudinal tension or compression in bending members. In Douglas-fir, 

correlations between r=-0.42 to -0.58 have been reported (Lachenbruch et al. 2010;  Vikram 
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et al. 2011), but as noted by Vikram and others, there seemed to be weaker correlations 

between MFA and MOE for Douglas-fir than for other species such as  eucalyptus (r=0.67; 

Hein and Lima 2012; r=-0.93; Yang and Evans 2003) or radiata pine (r=-0.82; Raymond et 

al. 2007; r=-0.76; Cown et al. 1999). In addition, the more mature (17 to 49 yr old) Douglas-

fir Lacenbruch et al. studied exhibited less variation in MFA than in juvenile wood used in 

other studies. Lucenburch et al found that the addition of MFA in a regression of MOE with 

density increased the adjusted R2 from 0.45 for density alone to 0.51 with the addition of 

MFA. The inclusion of MFA in a regression with density to predict MOR resulted in no 

change in the adjusted R2 over density alone. Because the samples selected for this study 

were chosen to limit the amount of juvenile wood, we would expect to have similar modest 

effects of MFA. 

Knots, slope of grain, and other defects all influence the mechanical properties of lumber, 

but represent a second tier of growth characteristics beyond the fundamental wood 

properties such as density and latewood percentage that many studies such as  Chapter Three 

and others focus on (e.g. Brix 1972; Jozsa and Brix 1989; Kantavichai et al. 2010). The 

primary goal of the study was to compare the ability of the inflection and polynomial 

latewood methods with conventional threshold and density to predict the mechanical 

properties of clear lumber. These estimates were intended to be used to assess the practical 

effects of proposed models in the Northwest  that compare site differences, silvicultural 

treatments, climate change, or other influential factors in terms of basic ring characteristics 

such as density and percent latewood. The extension of the study to predict the mechanical 

properties of select structural grade lumber was meant to provide a best case estimate of 

differences in the predictive ability of the density and latewood methods, not to provide an 
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exhaustive quantification of predictive performance across multiple grades. The inclusion of 

lower grades of lumber will almost certainly reduce the fit between small clear density and 

latewood and mechanical properties.   

The ability of density and threshold measurements to predict mechanical properties has been 

well studied, but the ability of the inflection and polynomial latewood demarcation methods 

has not been as well documented. Although the present study found poorer predictions using 

ILWP and PLWP in high quality Douglas-fir lumber, there may be species and lumber grade 

categories for which they perform better. Koubaa et al. (2005) developed the polynomial 

method to assess black spruce, a species with a less abrupt transition from earlywood to 

latewood than the Douglas-fir studied here (USDA 2002). The polynomial and inflection 

methods may behave more consistently in slow-transition species, and thus should be a 

focus of future research. In addition, a wider range of lumber grades should be assessed. The 

study of lower grades of lumber would provide a more complete understanding of the 

capabilities of the polynomial and inflection methods to predict mechanical properties in 

more complex defect combinations than those found here. 

Conclusions 

In this study, we tested the ability of a weight/volume density measurement (SGsc), a X-ray 

density measurement (DENw), a threshold latewood demarcation method (TLWPw), an 

inflection latewood demarcation method (ILWPw), and a polynomial demarcation method 

(PLWPw) to predict MOE and MOR in Douglas-fir small clear specimens 2x4 lumber. The 

results showed that the SGsc was universally the best predictor of MOE (R2=0.47, R2=0.40) 

and MOR (R2=0.79, R2=0.26) for both small clears and 2x4s respectively. DENw provided 
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slightly less predictive ability of MOE (R2=0.42, R2=0.35) and MOR (R2=0.62, R2=0.22) for 

small clears and 2x4’s respectively. Of the latewood demarcation methods, TLWPw was the 

best predictor for most of the properties exhibiting fits of R2=0.32 and R2= 0.28 with MOE 

and R2=0.54 and R2=0.16 with MOR for the small clears and 2x4s respectively. Density was 

the best predictor in this study, and PLWPw and ILWPw were more poorly correlated with 

density and erratic in their latewood selection points than TLWPw. The results suggest that 

studies attempting to extrapolate mechanical properties from annual ring characteristics 

should use a density or a threshold latewood measurement.   
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 Chapter Five 
Conclusions 

 

The findings reported in this paper offer an improved understanding of the inflection and polynomial 

latewood demarcation methods from the significance of the point selected as the Earlywood (EW) 

Latewood (LW) transition to the ability of Inflection Latewood Percentage (ILWP) and Polynomial 

Latewood Percentage (PLWP) to predict the mechanical of small clear specimens and high grade 

lumber. 

In Chapter Two, we found that Threshold Latewood Percentage (TLWP) was moderately correlated 

with ILWP and PLWP, but that ILWP and PLWP were poorly correlated with Average Density 

(AVGDEN). The threshold method, when using a 500 kg/m3 threshold was able to identify a point 

on average that was very close to Morks definition of latewood, and the anatomy at the point 

selected for the EW-LW transition was not affected by AVGDEN of the ring. We found that ILWP 

and PLWP seemed to target the point in the annual ring at which the rate of lumen diameter decrease 

and cell wall thickness increase are at their peak. Thus, the anatomy at the EW-LW transition point 

determined by the inflection and polynomial methods is variable, and we found it may be subject to 

bias based on annual ring geometry and AVGDEN. For a researcher interested in studying xyolgenic 

response, the threshold measurement represents a certain combination of duration and rates of radial 

expansion and duration of cell wall thickening in developing tracheids to produce a tracheid of a 

threshold density. The inflection and polynomial transition points represent the tracheids that were 

forming as the same expansion and thickening stages were changing the most rapidly. This research 

may provide a means to expand wood formation research by providing improved tools to replace or 

augment traditional microscopy with relatively easier X-ray densitometry analysis. 

With the ability to interpret the EW-LW transitions developed in Chapter Two, the results in Chapter 

Three suggest the significant effect of Soil Bulk Density (SBD) on TLWP and the adjusted inflection 
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and polynomial methods have different interpretations. Tress in the low SBD groups reached the 

tracheid expansion and densification combination that produced tracheids with a density of 500 

kg/m3 earlier in their relative growing season (significant difference in TLWP) and also reached the 

point at which forming tracheids’ radii were shrinking and cell walls thickening at the greatest rate 

earlier (significant difference in adjusted ILWP and PLWP). This suggests that the transition from 

earlywood to latewood was similarly abrupt for both groups on average, but the trees growing on low 

bulk density soils had longer periods of the late season latewood accrual. In addition, in the two 

coldest summers on record, the effect was negated, and even reversed. This phenomenon would be 

consistent with the Least Limiting Water Range described in Chapter Three. The three latewood 

methods seemed to describe the same differences between groups, and no method stood out with in 

terms of the parameter estimates or model components. 

Finally, we studied the ability of AVGDEN, TLWP, PLWP, and ILWP to predict MOE and MOR in 

small clear samples and the matching high grade 2x4s. We found that AVGDEN and TLWP were 

better predictors for small clear properties, but PLWP and ILWP had some predictive ability. All 

measures were better predictors of MOR in the small clears and MOE in the 2x4s. The results could 

be used to make inferences about the wood quality implications of studies measuring tree responses. 

The results of the three studies presented form a basis with which to interpret ILWP and PLWP in 

the context of both tree response to the environment and the mechanical properties of the wood in 

Douglas-fir. 

Future work regarding these methods should focus on improving the consistency of the inflection 

and polynomial methods. Because ring geometry seems to affect the latewood transition location 

decision, an approach needs to be developed that can simultaneously provide smoothing but is not as 

influenced by the shape of the density/position curve before and after the region of most change in 

density. In addition, similar studies should be conducted with different species to determine if the 
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other patterns of growth such as slow transition from EW to LW cause the same problems seen with 

Douglas-fir studied here. 
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 Appendix A 
Inflection method 
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Introduction 

The inflection ring calculator reads densitometry data imported manually, and reports ring 

characteristics based on the script at the end of the Appendix. This code was written to automate the 

process of identifying the start and stop of the ring and the transition from earlywood to latewood 

based on the inflection of the second derivative of the position/density slope. At the same time, it 

calculates the earlywood and latewood densities, the average density, ring length, and the latewood 

proportion using the inflection point method. The idea for the calculator came from Koubaa et al 

(2002) and Pernesal et al (1995) but the methodology and coding represent the author’s own work. 

Inflection Ring Calculator Instructions 

The coding for determining the inflection position was developed using Microsoft Visual Basic (VB) 

6.5 in conjunction with Microsoft Excel 2007. A user will open the inflection ring calculator Excel 

file, and paste the raw densitometry data in the first 4 columns. The first column must be position, 

the second must be density. The third and fourth columns were reserved for automatic output from 

the QTM-QTRX raw data and contain the QTM’s determination (based on threshold method) of ring 

number and earlywood or latewood. The fifth column calculates the slope of the density and position 

data for the three data points centered on the row in question and the sixth column calculates the 2nd 

derivative at the row in question using the same five data point range. The user will clear any old 

data from I2:U?, then run the InflectionRingCalc macro. Results will be reported in columns I 

through U on Sheet “1_1”. A graph below the output will show the density profile with the ring 

divisions and inflection points graphed for quality control purposes. The second sheet of the excel 

file contains instructions. 
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Inflection Ring Calculator Script 

Sub InflectionRingCalc()    'Script to identify the start and stop of ring using inflection and EW/LW 
‘transition using inflection method, will also report EW and LW densities 

 

'Declare variables 
Dim StartPosition As Single ' position at start of ring 
Dim StopPosition As Single 'position at end of ring 
Dim CurrentPosition As Integer ' counter that keeps track of current position in loops 
Dim RingLength As Single ' variable calculated and reported for ring length 
Dim RingCount As Integer ' ring number 
Dim CurrentDensity As Single ' the density at RowPositionInRaw 
Dim RowPositionInRaw As Integer ' current row on active worksheet 
Dim WhileCount As Single ' loop counter 
Dim WholeRingDensity As Single ' ring density variable 
Dim Current2ndDer As Single ' Second derivative at RowPositionInRaw 
Dim Current1stDer As Double ' first derivative at RowPositionInRaw 
Dim InflectionDensity As Single ' Density at point determined to be EW/LW inflection 
Dim InflectionPosition As Single ' position at point determined to be EW/LW inflection 
Dim LWDensity As Single ' Latewood density variable 
Dim EWDensity As Single ' Earlywood density variable 
Dim StartDensity As Single ' Density at StartPosition 
Dim StopDensity As Single ' Density at StopPosition 
Dim RingDensityIntegration As Single ' Used for summing densities at all points 
Dim EWCount As Single ' Number of positions in Earlywood 
Dim LWCount As Single ' Number of positions in Latewood 
Dim AverageDensity As Single 'Average density variable 
Dim PositionForRingLength As Integer ' Used to track position in file during initial ring length 
estimate 
Dim NumberOfPointsForRingLength As Integer ' Number of data points in ring length estimate 
Dim NumberOfCellsForSlopeMeasurement As Integer ' Variable to determine how many points 
should ‘be included in smoothing 
Dim RowPositionSlopeWrite As Integer ' Variable to track position in active worksheet while 
writing ‘new first and second derivatives 
 

Dim MaxFirst As Single ' Maximum first derivative in ring, helps identify inflection point 
Dim MinFirst As Single ' Minimum first derivative in ring, helps identify inflection point 
Dim Maxsecond As Single ' Maximum second derivative in ring, helps identify inflection point 
Dim MinSecond As Single ' Minimum second derivative in ring, helps identify inflection point 
 

Dim FirstRange As Range ' Range variable used to calculate first and second derivatives 
Dim SecondRange As Range ' Range variable used to calculate first and second derivatives 
Dim ThirdRange As Range ' Range variable used to calculate first and second derivatives 
Dim FourthRange As Range ' Range variable used to calculate first and second derivatives 

Range("G2:U10000").ClearContents 'delete old results 
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RowPositionInRaw = 43 ' First row to start looking for valid densitometry data 

PositionForRingLength = RowPositionInRaw  'Point row position values to the same row 

RingCount = 1 'These are initial values for the first ring 
RingLength = 1 
MinSecond = -1000 
Maxsecond = 5000 
MinFirst = -1000 
MaxFirst = 2000 

'read the first and second derivative at the current row position 
Current2ndDer = Worksheets("1_1").Cells(RowPositionInRaw, 6).Value 
Current1stDer = Worksheets("1_1").Cells(RowPositionInRaw, 5).Value 
CurrentDensity = Worksheets("1_1").Cells(RowPositionInRaw, 2).Value 

' skip scanning of air, step through data until you find wood 
While CurrentDensity < 500 

           Do 

         RowPositionInRaw = RowPositionInRaw + 1 ' index to next data position 
         StopPosition = Worksheets("1_1").Cells(RowPositionInRaw, 1).Value 
         CurrentDensity = Worksheets("1_1").Cells(RowPositionInRaw, 2).Value 
         Current2ndDer = Worksheets("1_1").Cells(RowPositionInRaw, 6).Value 
         Current1stDer = Worksheets("1_1").Cells(RowPositionInRaw, 5).Value 
         PositionForRingLength = RowPositionInRaw 

        Loop Until (Current2ndDer < 0 And CurrentDensity > 500) ' loop until we are in wood 

Wend 

'as long as there is still valid data to be read 
While Worksheets("1_1").Cells(RowPositionInRaw, 6).Value <> "" 

    PositionForRingLength = RowPositionInRaw 
    Application.ScreenUpdating = False ' turn off screen update to speed up program 
    WholeRingDensity = 0 ' Reset the ring density 
    RingDensityIntegration = 0 ' Reset this secondary ring density helper variable 
    StopPosition = Worksheets("1_1").Cells(RowPositionInRaw, 1).Value 
    CurrentDensity = Worksheets("1_1").Cells(RowPositionInRaw, 2).Value 
    NumberOfPointsForRingLength = 0 

        While Current2ndDer < 1000 ' find the length of the latewood to scale slope measurements 

            Do 

             

                NumberOfPointsForRingLength = NumberOfPointsForRingLength + 1 
                PositionForRingLength = PositionForRingLength + 1 
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                'read the new 1st and 2nd derivative values to see if we are still in latewood 
                Current2ndDer = Worksheets("1_1").Cells(PositionForRingLength, 6).Value 
                Current1stDer = Worksheets("1_1").Cells(PositionForRingLength, 5).Value 

            'Loop to Do statement until these conditions are met ie, pass ew/lw inflection 
            Loop Until ((Current2ndDer > Maxsecond / 20) And (Current1stDer < (MinFirst / 2))) 

        Wend 

        While Current2ndDer > 0 ' find the length of the earlywood to scale slope measurements 

            Do 

                NumberOfPointsForRingLength = NumberOfPointsForRingLength + 1 
                PositionForRingLength = PositionForRingLength + 1 

                'see if the next row is the same ring or not 
                Current2ndDer = Worksheets("1_1").Cells(PositionForRingLength, 6).Value 
                Current1stDer = Worksheets("1_1").Cells(PositionForRingLength, 5).Value 

            'Loop to the Do statment until the following conditions are met ie leave the ring 
            Loop Until (Current2ndDer < MinSecond / 10 And Current1stDer > MaxFirst / 4) ' 

        Wend 

        'determine how many points to take the slope of for the inflection latewood determination use 
10% ‘of the ring length 
NumberOfCellsForSlopeMeasurement = Int((NumberOfPointsForRingLength \ 10) \ 2) 

        'If the ring is short, use at least 3 positions to smooth 
        If NumberOfCellsForSlopeMeasurement < 3 Then NumberOfCellsForSlopeMeasurement = 3 

        'Reset row position to write new 1st and 2nd derivatives 
        RowPositionSlopeWrite = RowPositionInRaw 

        'record the new and improved 1stder measurements in the 7th column 
        While RowPositionSlopeWrite < PositionForRingLength 

            Do 

                'debugging tools 
                Worksheets("1_1").Cells(RowPositionSlopeWrite, 7).Value = RowPositionSlopeWrite 
                Worksheets("1_1").Cells(RowPositionSlopeWrite, 9).Value = _ 
NumberOfCellsForSlopeMeasurement 

                'set the ranges so we can calculate the first derivative 
                Set FirstRange = Worksheets("1_1").Range(Cells((RowPositionSlopeWrite - _ 
NumberOfCellsForSlopeMeasurement), 2), Cells((RowPositionSlopeWrite + _ 
NumberOfCellsForSlopeMeasurement), 2)) 

                Set SecondRange = Worksheets("1_1").Range(Cells((RowPositionSlopeWrite - _ 
NumberOfCellsForSlopeMeasurement), 1), Cells((RowPositionSlopeWrite + _ 
NumberOfCellsForSlopeMeasurement), 1)) 
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                'calculate first derivative 
                Current1stDer = WorksheetFunction.Slope(FirstRange, SecondRange) 

                'write the first derivative on the sheet 
                Worksheets("1_1").Cells(RowPositionSlopeWrite, 7).Value = Current1stDer 

                RowPositionSlopeWrite = 1 + RowPositionSlopeWrite 

            'keep writing ‘first derivatives in column 7 for twice the estimated ring length 
Loop Until RowPositionSlopeWrite = PositionForRingLength + RingLength * 50  

        Wend 

        RowPositionSlopeWrite = RowPositionInRaw 

        'record the new and improved 2ndder measurements in the 8th column 
        While RowPositionSlopeWrite < PositionForRingLength 

            Do 

             'Set ranges to point to the 1st derivative and position to calculate 2nd derivative 

            Set SecondRange = Worksheets("1_1").Range(Cells((RowPositionSlopeWrite -  _ 
NumberOfCellsForSlopeMeasurement), 1), Cells((RowPositionSlopeWrite + _ 
NumberOfCellsForSlopeMeasurement), 1)) 

            Set ThirdRange = Worksheets("1_1").Range(Cells((RowPositionSlopeWrite - _ 
NumberOfCellsForSlopeMeasurement), 7), Cells((RowPositionSlopeWrite + _ 
NumberOfCellsForSlopeMeasurement), 7)) 

            'calculate 2nd derivative 
            Current2ndDer = WorksheetFunction.Slope(ThirdRange, SecondRange) 

            'write 2nd derivative on worksheet 
            Worksheets("1_1").Cells(RowPositionSlopeWrite, 8).Value = Current2ndDer 

            RowPositionSlopeWrite = 1 + RowPositionSlopeWrite 

            'keep writing second derivatives in column 8 for twice the estimated ring length 
Loop Until RowPositionSlopeWrite = PositionForRingLength + RingLength * 50  

        Wend 

        'Locate the start of the ring and the density at the start 
        StartPosition = StopPosition ' This will be the first position of the current ring 
        StartDensity = CurrentDensity ' This will be the density at the first position of the ring 

        WhileCount = 0 ' reset whole ring length counter variable 
        EWCount = 0 ' reset earlywood ring length counter variable 
        LWCount = 0 ' reset latewood ring length counter variable 

        'set a range of length rawposition minus positionforringlength to find min and max for 1st and 
2nd ‘derive slopes 
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        Set ThirdRange = Worksheets("1_1").Range(Cells(RowPositionInRaw, 7), _ 
Cells(PositionForRingLength, 7)) 

        Set FourthRange = Worksheets("1_1").Range(Cells(RowPositionInRaw, 8), _ 
Cells(PositionForRingLength, 8)) 

        'Find min and max first derivatives in the expected ring length 
        With ThirdRange 

            MaxFirst = Application.WorksheetFunction.Max(ThirdRange) 
            MinFirst = Application.WorksheetFunction.Min(ThirdRange) 

        End With 

        'Find min and max second derivatives in the expected ring length 
        With FourthRange 

            Maxsecond = Application.WorksheetFunction.Max(FourthRange) 
            MinSecond = Application.WorksheetFunction.Min(FourthRange) 

        End With 

        'reset active 1st and 2nd derivatives to RowPosition derivative from sheet 
        Current2ndDer = Worksheets("1_1").Cells(RowPositionInRaw, 8).Value 
        Current1stDer = Worksheets("1_1").Cells(RowPositionInRaw, 7).Value 

        'walking through the raw data to find length and average density of latewood 
        While Current2ndDer < Maxsecond / 20              

            Do 

              'StartPoint reached above is the first cell of the LW period 
StopPosition = Worksheets("1_1").Cells(RowPositionInRaw, 1).Value ' set the end of the 
ring to the current position 

                CurrentDensity = Worksheets("1_1").Cells(RowPositionInRaw, 2).Value 

                'needed two variables to average density, won't add to itself 
                WholeRingDensity = CurrentDensity + RingDensityIntegration 
                RingDensityIntegration = WholeRingDensity 

                'index postion counters to be ready for the next loop 
                WhileCount = WhileCount + 1 
                LWCount = LWCount + 1 
                RowPositionInRaw = RowPositionInRaw + 1 

                'read the new 1st and 2nd derivative values to see if we are still in latewood 
                Current2ndDer = Worksheets("1_1").Cells(RowPositionInRaw, 8).Value 
                Current1stDer = Worksheets("1_1").Cells(RowPositionInRaw, 7).Value 

                'debugging tool 
                Worksheets("1_1").Cells(RowPositionInRaw, 12).Value = Maxsecond 
                Worksheets("1_1").Cells(RowPositionInRaw, 13).Value = MinSecond 
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            'Loop to Do statement until these conditions are met ie left latewood 

Loop Until (Current2ndDer > Maxsecond / 20 And Current1stDer < (MinFirst / 2)) 

            'If we have left the preceeding loop, we are at the end of the latewood 
            LWDensity = WholeRingDensity / LWCount 

        Wend 

        'When 2nd der passes back through 0, this is the inflection point 
        'Inflection point will be the first cell of the earlywood 
        StopPosition = Worksheets("1_1").Cells(RowPositionInRaw, 1).Value ' update stop position 

        CurrentDensity = Worksheets("1_1").Cells(RowPositionInRaw, 2).Value ' read new density 

        InflectionDensity = CurrentDensity 

        'debugging tool 
        Worksheets("1_1").Cells(RowPositionInRaw, 11).Value = InflectionDensity 

        InflectionPosition = StopPosition 

        WhileCount = 0 

        RingDensityIntegration = 0 

        'walk through the raw data to find end of ring and add up ew densities 
        While Current2ndDer > MinSecond / 20 

            Do 

                'debugging tool 
                Worksheets("1_1").Cells(RowPositionInRaw, 12).Value = Maxsecond 
                Worksheets("1_1").Cells(RowPositionInRaw, 13).Value = MinSecond 

                'Update stopposition and current density to new row value 
                StopPosition = Worksheets("1_1").Cells(RowPositionInRaw, 1).Value 

                CurrentDensity = Worksheets("1_1").Cells(RowPositionInRaw, 2).Value 

                WholeRingDensity = CurrentDensity + RingDensityIntegration 

                RingDensityIntegration = WholeRingDensity 

                WhileCount = WhileCount + 1 

                RowPositionInRaw = RowPositionInRaw + 1 

                EWCount = EWCount + 1 

                'see if the next row is the same ring or not 
                Current2ndDer = Worksheets("1_1").Cells(RowPositionInRaw, 8).Value 
                Current1stDer = Worksheets("1_1").Cells(RowPositionInRaw, 7).Value 

            'Loop to the Do statment until the following conditions are met ie leave earlywood 
            Loop Until Current2ndDer < MinSecond / 10 And Current1stDer > MaxFirst / 4 
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        Wend 

        'the current row position is out of the ring, calculate the new values below for the ring we just 
left 
        EWDensity = WholeRingDensity / WhileCount 
        StopDensity = CurrentDensity 
        RingLength = (EWCount + LWCount) * 0.02 
        AverageDensity = ((LWCount * LWDensity) + (EWCount * EWDensity)) / (EWCount + 
LWCount) 
        Worksheets("1_1").Cells(RowPositionInRaw - 1, 10).Value = StopDensity 

        Application.ScreenUpdating = True ' update the screen 

        'print out all the values on the excel sheet in whatever RingCount row we are in 
        Worksheets("1_1").Cells(RingCount + 1, 9).Value = RingCount 
        Worksheets("1_1").Cells(RingCount + 1, 10).Value = StartPosition 
        Worksheets("1_1").Cells(RingCount + 1, 11).Value = StartDensity 
        Worksheets("1_1").Cells(RingCount + 1, 12).Value = InflectionPosition 
        Worksheets("1_1").Cells(RingCount + 1, 13).Value = InflectionDensity 
        Worksheets("1_1").Cells(RingCount + 1, 14).Value = LWDensity 
        Worksheets("1_1").Cells(RingCount + 1, 15).Value = EWDensity 
        Worksheets("1_1").Cells(RingCount + 1, 16).Value = StopPosition 
        Worksheets("1_1").Cells(RingCount + 1, 17).Value = StopDensity 
        Worksheets("1_1").Cells(RingCount + 1, 18).Value = LWCount * 0.02 
        Worksheets("1_1").Cells(RingCount + 1, 19).Value = AverageDensity 
        Worksheets("1_1").Cells(RingCount + 1, 20).Value = RingLength 
        Worksheets("1_1").Cells(RingCount + 1, 21).Value = 100 * (LWCount * 0.02) / RingLength 

        'Index RingCount variable and make sure Current1stDer and Current2ndDer are stored 

        RingCount = RingCount + 1 

        Current2ndDer = Worksheets("1_1").Cells(RowPositionInRaw, 8).Value 

        Current1stDer = Worksheets("1_1").Cells(RowPositionInRaw, 7).Value 

    'loop back to initial while statement as long as there is valid data for next ring 
    Wend 

End Sub 
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 Appendix B 
Polynomial method 
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Introduction 

The polynomial inflection program reads raw densitometry data and reports ring characteristics 

based on the script at the end of the Appendix. This code was written to automate the process of 

calculating, identifying, and checking the transition point from earlywood to latewood as defined by 

the polynomial root method. The script uses raw data from the QTM-QTRX densitometer with 

annual rings identified using the inflection ring calculator to fit a sixth order polynomial to the raw 

annual ring data and the root of the second derivative of the polynomial that fits certain criteria. The 

criteria used for this method came from suggestions in Koubaa et al. 2002. The script also calculates 

earlywood and latewood densities, average density, ring length, and latewood proportion. 

Method 

Raw densitometer data with ring assignments from the Inflection ring method for one tree are 

imported on the clipboard and the Matlab file is executed. The script brings the raw data into a 

matrix and copies all of the density and position data of the first ring into a second matrix noting the 

start and stop position. When the script has pulled all data from the first ring into the second matrix, 

it calculates and stores the ring length, then fits a sixth order polynomial to the annual ring’s data. It 

then calculates the second derivative of the polynomial and then identifies the roots of the second 

derivative. There are at most four roots of the second derivative of the polynomial, so the script must 

then determine which one meets the method criteria. The script finds the data point with the highest 

density (maximum density encountered in the annual ring), and chooses the roots which occurs 

closest to but after (from bark to pith) the maximum density, within 80% of the ring length, and the 

first derivative at that root is also negative.  

The script then prints a graph on the screen to allow the user to check the root identification, an 

example is shown below. In the top graph, the current ring being analyzed is displayed with the 

density on the y-axis and the position from the raw densitometry data on the x-axis with circles 
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representing the individual data points of the annual ring. The root of the second derivative chosen 

for this ring is represented by the red X (position 10.1), and the line represents the sixth order 

polynomial fit to the ring. The bottom graph represents all of the rings analyzed thus far for this tree, 

again with X’s at the earlywood/latewood inflection points determined by the script. These graphs 

were used to screen the results to ensure the script was functioning as expected. 

 

Figure B.1. Output graph from Matlab script to check assignment 

 

Once the user is satisfied with the root determination, he presses a key and the script calculates the 

earlywood and latewood densities, percent latewood, and average density of the active ring, then 

records the results in a results matrix. The script also calculates earlywood and latewood densities 
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based on the integral of the polynomial, but this data was not used in the analysis. After recording all 

the ring characteristics, the script advances to the next ring and repeats the process until there are no 

remaining rings. The results matrix was then copied to Excel for use in the analysis.  

Polynomial Method Instructions 

Three columns of data for a tree are copied onto the clipboard from Excel. The first column should 

be the position, the second should be density, and the third should be the ring number assignment. 

This study used the ring assignment from the inflection ring calculator, but any ring assignment 

could be used. In Matlab, open the script below and run it. A graph similar to the one above will pop 

up, and the user will strike a key to advance the program to the next ring. Any rings with 

questionable assignments can be noted for additional assessment. Once all the rings contained on the 

clipboard have been analyzed, the matrix in Matlab named “OutputMatrix” can be saved as an Excel 

compatible file. 

Polynomial Method Script 

% This program is used to determine the EW/LW transition using Koubaa’s  polynomial fit 

%Pull in clipboard data and determine how many rings there are, reset counters 
counter = 1; 
Ring = []; 
OutputMatrixRowCounter = 1 
clipboarddatalength = length(clipboarddata) 
clipboarddata(clipboarddatalength + 1,:) = 0 
RingNumber=clipboarddata(counter, 3) 
RingStartPosition = clipboarddata(counter, 1) 
RingMatrixStart = counter 
maxring = max(clipboarddata(:,3)) 
 

%While there is a valid ring to be read 
while (RingNumber ~= 0) 

rcounter = 1 
Ring = [] 
RingMatrixStart = rcounter 
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RingStartPosition = clipboarddata(counter, 1) 
 

%While we are still in the same ring 
while ( RingNumber == clipboarddata(counter+1,3)) 

%Copy the data from the clipboard to the Ring matrix, loop until ring number 
%changes 
Ring(rcounter, 1)=clipboarddata(counter, 1) 
Ring(rcounter, 2)=clipboarddata(counter, 2) 
counter = counter + 1 
rcounter = rcounter + 1 

end 

Ring(rcounter, 1)=clipboarddata(counter, 1); 
Ring(rcounter, 2)=clipboarddata(counter, 2); 
 

%The current position is the end of the ring 
RingStopPosition = clipboarddata(counter, 1) 
RingMatrixStop = rcounter 
 

%Calculate ring length 
RingLength = RingStopPosition - RingStartPosition + .02 

%Fit a 6th order polynomial to the ring data contained in Ring matrix 
p = polyfit(Ring(RingMatrixStart:RingMatrixStop,1),Ring(RingMatrixStart:RingMatrixStop,2),6); 

%Calculate and store 2nd derivative of polynomial as secondder 
secondder = polyder(polyder(p)) 

%Find the roots of polynomial secondder and store in rootssecond 
rootssecond = roots(secondder) 

% Find the maximum density in the ring and identify the position as MaxPosition 
MaxDensity = find(Ring(RingMatrixStart:RingMatrixStop,2) == 
Max(Ring(RingMatrixStart:RingMatrixStop,2))) 
MaxPosition = max(Ring(MaxDensity,1)) 

%Criteria to determine which root of the second derivative is the best. As written below, find 
%root which is pith side of the maximum density and within 80 percent of the ring length and 
%the first derivative at that point is negative. Saved as integer (roots 1, 2, 3, 4) as “whichrootsecond” 
whichrootsecond = max(find(MaxPosition < rootssecond & rootssecond < RingStartPosition + 
.80*RingLength & polyval(polyder(p),rootssecond) < 0)) 

%Assign InflectionPoint as the root chosen above for this ring 
InflectionPoint = rootssecond(whichrootsecond) 

%Evaluate the polynomial at InflectionPoint to determine density at inflection point 
InflectionDensity = polyval(p,InflectionPoint) 
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%Produce graphs for user 
%1st graph of this ring raw data with polynomial and inflection point 
x2 = Ring(RingMatrixStart:RingMatrixStop,1); 
y2 = polyval(p,x2); 

hold on 

subplot(2,1,1); 
plot(Ring(RingMatrixStart:RingMatrixStop,1),Ring(RingMatrixStart:RingMatrixStop,2),'o',x2,y2, 
InflectionPoint, InflectionDensity, 'x'); 

grid on; 

hold off 

%Print second graph, just adds current graph to previous graphs of same tree 
subplot (2,1,2); 
plot(Ring(RingMatrixStart:RingMatrixStop,1),Ring(RingMatrixStart:RingMatrixStop,2),'o',x2,y2, 
InflectionPoint, InflectionDensity, 'x'); 

grid on; 

%Wait for user to hit key 
pause 

%Identify latewood data points and calculate the mean for latewood density 
Latewoodpoints = find( Ring(RingMatrixStart:RingMatrixStop,1)< InflectionPoint) 
LatewoodDensity = mean(Ring(Latewoodpoints,2)) 

%Identify earlywood points and calculate the mean for earlywood density 
EarlywoodPoints = find( Ring(RingMatrixStart:RingMatrixStop,1)> InflectionPoint) 
EarlywoodDensity = mean(Ring(EarlywoodPoints,2)) 

%Calculate latewood and earlywood width using number of points in each 
LatewoodWidth = length(Latewoodpoints) * .02 
EarlywoodWidth = length(EarlywoodPoints) * .02 

%Calculate percent latewood using previously calculated values 
PercentLatewood = 100*LatewoodWidth/RingLength 

%Alternative measure of latewood and earlywood density using integral of polynomial over 
%Earlywood and latewood regions 
IntegratedLatewoodDensity = mean(polyval(p,RingStartPosition:.01:InflectionPoint)) 
IntegratedEarlywoodDensity = mean(polyval(p,InflectionPoint:.01:RingStopPosition)) 

%Calculate average density 
AverageDensity = mean(Ring(:,2)) 

%Fill OutputMatrix with values for ring on the OutputMatrixRowCounter-th row  
OutputMatrix(OutputMatrixRowCounter,:) = [RingNumber RingStartPosition InflectionPoint 
RingStopPosition RingLength InflectionDensity LatewoodDensity IntegratedLatewoodDensity 
PercentLatewood EarlywoodDensity IntegratedEarlywoodDensity AverageDensity] 
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%Index OutputMatrixRowCounter for next ring 
OutputMatrixRowCounter = OutputMatrixRowCounter + 1 

%Index counter to look at next ring and read next ring number –if none, exit while loop 
counter = counter + 1 
RingNumber=clipboarddata(counter, 3)  

end 
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 Appendix C 
Repeated measures analysis 
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Background repeated measures 
 
The study of serial data collected from the same individuals over time presents a unique set of 

challenges. Many of the more commonly used statistical tools require an assumption of 

independence between samples, in that the result of one sample has no correlation with the results of 

another sample. In addition, there is an assumption of constant variance between samples, which 

requires the degree of random variation to remain constant from sample to sample. In the study of 

annual rings of trees, the independence assumption would equate to the assumption that the events 

(e.g. climatic, cultural, or biological) in years past had no influence on this year’s growth (covariance 

between years equals zero) or that the events of 100 years ago has the same influence as last year’s 

event (covariance between years equals a constant).  The assumption of constant variance would be 

interpreted to require that the random differences are constant through time and that all years would 

exhibit the same degree of dispersion (Fitzmaurice et al. 2011). A basic familiarity with tree growth 

and physiology would suggest that applying these assumptions to serial data would be spurious at 

best, or even misleading. 

Violations of these assumptions using common analytical techniques can lead to interpretation issues 

regarding the significance of the effects being measured, but violations of these assumptions are 

often the norm in serial datasets (Oehlert 2000). Although it may be difficult to define the precise 

effects of assumption violations, some general patterns have been observed. Violations of the 

independence assumption lie in the fact that although our estimates of the treatment effect remain 

unbiased, our estimate of the variation about the averages of the treatments is no longer unbiased. 

Because the responses of each of our samples are correlated to one another, each additional sample 

no longer represents a “new” piece of information. The analysis may reveal that there is a 

numerically large difference between treatments, we are confident in that result, but we can’t 

accurately assess the significance of that difference using standard practices. Depending on the 
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nature of the correlations, we may reject or accept the null hypothesis more frequently than we 

would expect using independent data.  

In a similar vein, violations of the constant variance assumption lead to variation in the rates at 

which we reject or accept the null hypothesis and the departure from expected behavior increases 

with departures from balanced data sets and as the degree of differences in variance increases. Issues 

with nonconstant variance stem from the fact that we need to use the same estimate of error variance 

to test the significance of different groups, so when one small group has a very small associated error 

and a larger second group has a high degree of error, we overestimate the amount of error for the 

first group resulting in a conservative test, and underestimate the amount of error in the second group 

resulting in a liberal test. For dichotomous grouping with balanced data structure, nonconstant 

variance is less of an issue, but as more groups are compared and the degree of unbalance increases, 

these issues became more onerous (Oehlert 2000).  

Repeated Measures methodologies provide a means to address the violations of independence and 

constant variance assumptions that are inherent in repeated measures of the same individuals over 

time. Put simply, repeated measures techniques use a much more complicated framework describing 

variation within (and in some cases between) individuals over time. By allowing observations close 

in time to be more similar and observations separated by more time to be less similar, repeated 

measures models can give a more valid estimation of the variation within the samples, and allows 

more accurate tests for significance. Likewise, allowing the variance within individuals to change 

through time permits more accurate assessments of significance. The use of these more complex 

models has a trade-off or penalty: for each additional parameter we estimate to develop a more 

accurate model of the sample’s change through time, we lose parameters to estimate the final error 

variance, which requires larger differences between treatments to return a significant result. If 

accurately modeling the samples through time requires a lot of parameters (ie there is no general 

pattern or it is very complex), when we try to test the significance of elements of our model, we will 
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find that it takes a larger difference in treatments to register the same level of significant difference. 

There is no free lunch. 

In basic ANOVA tests, the Independent Variables (IV) are considered fixed factors which, each in 

their own way, explain some of the variation in the whole dataset by assigning parameter estimates 

(means or slopes) associated with the levels (discrete IVs) or values (continuous IVs). The basic 

design of a single factor ANOVA is shown in Figure C.2, with groups representing different 

treatment levels. The basic test of significance for each of the IVs is whether or not the variation 

explained solely by the IV (Between groups in Figure C.2) being tested exceeds some ratio of the 

leftover variation(Within treatments in Figure C.2) once all the IVs have been accounted for.  This 

ratio, called an F-value, is compared to a critical value for a given significance level and if it exceeds 

the critical value, we call the effect of the IV significant. If individuals in each group are clustered 

tightly around their respective group means, then the assignment of group means explains a lot of the 

total variation, and there will be little within-treatment variation. As the ratio of variance explained 

by treatment to error variation increases, the F-statistic will increase, and may reach a critical value 

at which we can call the treatment effect significant. All F-values in a simple ANOVA are calculated 

using the same denominator, an estimate of error which includes random variation, variation due to 

subjects, and measurement error.  



 

Figure C.1. Visualization of ANOVA
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Figure C.2. Partitioning of variance in repeated measures
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interested in the effect of operator because there are so many or we want to assess a population of 

operators. We account for the effect of operators in that we may estimate a range of likely deviations 

due to operators (or test whether or not operators impose a significant amount of variation) but 

typically do not estimate the effect of any one operator. The incorporation of random effects in a 

model provides a means to account for known or expected variation without specifically measuring 

the effect of every individual. The deviations that are attributable to the random effect are held 

separately, and do not contribute to the error term(s). 

The model referenced in Equation 3 incorporates a random effect for tree: ��*�����. This random 

effect is commonly referred to as a random intercept, and ideally would be thought of as accounting 

for random variation common to all trees. By using a random intercept, the model acknowledges that 

there are differences between trees, and we assume that those differences are normally distributed 

with a mean of zero and some variance. If we went back out to the field and sampled more trees, we 

would expect that the new trees sampled would be different than the originals, but we would expect 

their variations to be similarly distributed as the originals. Thus, when we use the model to estimate 

population parameters (making inferences across a large group of individuals), the random term 

essentially drops to zero in the same way that the residual variance drops to zero when estimating 

population parameters. Another way of thinking about the random intercept would be in the context 

of a regression for many individuals, and the y-intercept of each individual would be “allowed” to 

float, and the researcher would be interested therefore in how the slope with respect to the IV was 

able to account for remaining variance. The random intercept permits us to remove some of the 

variation common to all trees so that we can concentrate on measuring variation between and within 

treatments 

One of the primary features of repeated measures analysis such as these is the use of a more 

complicated covariance matrix to explain residual errors through time. The covariance matrix is the 
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mathematical tool or matrix structure that is used to describe the variation of individuals at a given 

time (variance) and the relationships in errors between time periods (covariance). As stated 

previously, if a close approximation of the “true” covariance structure can be reached, with faithful 

representations of the variances and covariances within individuals through time, then the resulting 

measures of significance will be more accurate. In addition, some of that quantity that was 

considered random error in a simple ANOVA framework will be recognized as covariance, and 

reduce the random portion of the error. If you can accurately account for variation with a model, then 

the predictable portion of the variation is not really random. 

For example, we can plot the average densities for all trees for two consecutive years, and we find 

there is some correlation there; that the trees that tended to have high density last year also have high 

density this year, and vice versa.  Figure C.4a shows the average ring density of trees in the years 

1976, and the average densities of the same trees in 1977. This correlation (or specifically this 

covariance) allows us to partition some of what we assumed was random error into covariance. 

Figure C.5 show how we can divide the within-subject error into four components: variation 

explained by Year, variation explained by the Treatment X Year interaction, the residual covariance 

between years, and finally the remaining error residuals that will form the error term for the analysis 

of the within-subject IVs. As mentioned previously, some covariance matrix models allow for 

different patterns of covariance within trees for different years, and different variances for different 

years. In Figure C.4b , the average densities in 1976 are fitted with the average densities in 2005. 

There was a dramatic reduction in the same tree correlation compared to 1977, and to accurately 

model the covariance patterns, the covariance should probably be allowed to decrease with time. The 

more closely we can model what is actually occurring in the data, the better our estimates of 

significance should be. As the covariance matrix become more complicated, we may be able to 

assign more of the error residuals term as covariance. As we make the covariance matrix more 

complicated, we also lose degrees of freedom from the error residual term, which may make it more 
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difficult to demonstrate significant differences later in the analysis. The trade-off is thus to determine 

the most parsimonious covariance matrix which does an adequate job of describing variance within 

years and covariance between years with the fewest possible number of parameters. 

 

Figure C.3. Correlations between years. Correlations between 1976 and 1977 (a). Correlations between 
1976 and 2005 (B). 

 

Figure C.4. Partitioning of within-tree error varia nce 
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Progression of analysis 

The increment cores for the study were chosen randomly from the cores collected from the initial 

study performed in August of 2007. The only initial criteria were that the cambial age was at least 25 

years in 1975, and that the cores were complete. The high and low SBD groups represented similar 

ranges of stand conditions, though not always with the same distribution. Figure C.6 shows 

histograms of some of the tree and stand blocking variables for the two SBD groups. Figure C.6 A 

shows the establishment year at breast height, and indicates that across many of the stands sampled, 

there was a major disturbance in the 1930’s, after which, a great deal of ingrowth in the stands 

occurred. This same pattern was seen in the pool of original samples from which the trees for this 

study were drawn. In Figure C.6 B, the distribution of elevations for the sample trees suggests that 

the SBD groups cover approximately the same range, with the low SBD group exhibiting a slightly 

wider range. The clustering is a result of cross-sectional nature of the initial study to try and sample 

across a wide elevation gradient categories. Figure C.6 C shows the distribution of green canopy as a 

percent of total height, and shows that the two SBD groups encompassed a similar range of canopy 

lengths. Figure C.6 D shows the distribution of the specific gravities of the entire increment cores, 

from pith to bark. The member of the high SBD group exhibited a low whole tree specific gravity, 

but it was one of the youngest trees in the sample and presumably contained a high proportion of 

juvenile or core wood. The average densities from that tree used in the analysis were much closer to 

the mean of the high SBD group. Figure C.6 E shows the distribution of total tree heights, and Figure 

C.6 F shows the diameter distributions for the two SBD groups. In all, the distributions were similar 

to those found from which the samples were drawn from.  
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Figure C.5. Comparison of stand and tree characteristics between SBD groups: Establishment year(a), 
elevation(b), green canopy (c), whole tree SG (d), height (e), DBH (f).  

a. b. 

c. d. 

e. f. 
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The data set was split into a calibration set containing data from 1976-1985 and a test data set that 

contained data from 1986-2005. The intent was to use the calibration data set to determine the two 

most significant covariates to accompany Soil Bulk Density Group (BDGRP), Year, and BDGRP X 

Year. In addition, the calibration data was used to determine which covariance matrix model best fit 

the data by means of the Bayesian Information Criterion calculated in Proc Mixed in SAS.  

The models were built using a top-down approach as outlined in West et al. in which the first step 

was to identify those variables that seemed to best explain variation in the ring characteristics of 

interest with no accommodations for the serial correlations in the data due to repeated sampling, and 

without random effects. The resulting model was likely overfit, but the goal was to explain as much 

systematic variation as possible using covariates (ie get the means as close as reasonably possible), 

leaving residuals that contained as little systematic error as possible. Next, models including the 

random effect (random intercept for this study) and potential residual covariance models were 

compared using the BIC value as a measure of parsimony. Once an appropriate random intercept and 

covariance combination were selected, the covariates in the model were reduced until the two most 

significant covariates remained along with BDGRP, YEAR, BDGRP X YEAR, and the random 

intercept. 

To identify the best variables to accompany SBD, the first step was to use regression without 

accounting for repeated measures to see if any variables exhibited strong relationships across 

individuals and time with the ring characteristics being investigated in the calibration data set. The 

intent of the first step was to explore the relationships between variables, and determine if any 

interactions could be visually determined. All main effects and seemingly significant potential 

interactions were tested in the second phase. 
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The second phase of the analysis was to use a univariate ANOVA model in SPSS to reduce the 

number of variables in the model to a more reasonable subset. The models all included BDGRP, 

Year, and the BDGRP X Year interaction, but the other covariates were added to see which ones 

were best correlated to the ring characteristics. The univariate model still did not account for the 

repeated measures format of the analysis, but because all the variables being considered were 

between-tree factors, they all were tested against the same error term.  The covariates that exhibited 

significance in the univariate ANOVA analysis were used for the final model building stage. 

The final model building step was take those variables that exhibited significance in the univariate 

ANOVA and build a final model that accounted for the repeated measures structure of the data, 

possibly included the random effects, and used the most appropriate residual covariance matrix. The 

covariates that were significant in the prior step were added into PROC MIXED in SAS 9.1 with 

BDGRP, YEAR, BDGRP X YEAR, and executed with a script written to run all the potential 

combinations of random intercept and  residual covariance matrices (as appropriate) in one pass. The 

Restricted Maximum Likelihood (REML) method was used to generate parameter estimates and the 

Kenward-Rogers method was used to approximate the denominator degrees of freedom. The 

covariance matrices tested were: diagonal, unstructured, first order autoregressive, heterogeneous 

autoregressive, compound symmetric, heterogeneous compound symmetric, toeplitz, and 

heterogeneous toeplitz. The final covariance matrix used was the one that registered the lowest BIC 

score, or in the case of a tie, the one that required the fewest parameters. Once the residual 

covariance matrix was chosen, the covariates were eliminated one by one based on their significance 

in the model until there were two covariates to accompany the treatment, time, treatment-time 

interaction, and random intercept. The final model was run on the calibration data to check residuals 

for normality and constant variance. 
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TLWP 

After developing the models for the threshold, inflection, and polynomial models, an analysis of the 

residuals indicated that the assumption of constant variance across the predicted values may be 

violated in the calibration dataset. The graphs using the calibration dataset weren’t definitive, but as 

a precaution, models for the log transformation of the three latewood measure were developed, and 

were the ones that were ultimately used. All the latewood measurements exhibited long right tails in 

their distributions and the smallest rings exhibited a greater variation than longer rings. The residuals 

for AVGDEN did not exhibit any patterns in the variance of the residuals in either the calibration or 

test dataset.  

Figure C.7 shows the residuals from TLWP and LNTLWP, the consistency of the residuals over the 

range of predicted values showed a great deal of improvement using the transformed values. The two 

models used nearly the same covariates, the untransformed TLWP used LNAVGRL and ELEV, 

while LNTLWP used LNAVGRL and BHAGE, but ELEV was the last covariate removed (third best 

covariate). The BIC values from the covariance matrix fitting for LNTLWP are shown in Table C.1. 

The autoregressive model was essentially tied with the heterogeneous autoregressive model , and the 

autoregressive model was chosen. The results of the final model fitting for LNTLWP are shown in 

Table Y. The final covariates selected to model LNTLWP were: ELEV and LNAVGRL. 
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FigureC.6. Residuals plot of the calibration model for TLWP(a). Residual plot of the calibration model 
for LNTLWP(b). 

 

Table C.1. BIC values for choice of covariance matrix for LNTLWP 

 

 

The model results are shown in the body of the Results section of the Chapter, but the analysis of the 

residuals is shown below. The distribution of the residuals for the low SBD group in Figure C.8a, 

and the high SBD group in the Figure C.8.b, the residuals for both appeared to be normal 

Covariance Stucture Random Intercept BIC 
Diagonal No 271.3 
Unstructured Yes 189.6 
Diagonal Yes 112.4 
Autoregressive No 154.3 
Autoregressive Yes 107.2 
Heterogenous Autoregressive No 150.7 
Heterogenous Autoregressive Yes 106.9 
Compound Symmetry No 112.4 
Compound Symmetry Yes 112.9 
Heterogenous Compound Symmetry No 113.9 
Toeplitz Yes 123.3 
Heterogenous Toeplitz No 124.2 

a. b. a. b. 
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Figure C.7. Distribution of residuals for the final LNTLWP model, low SBD(a), high SBD (b) 

 

The residuals for both of the covariates likewise seemed to be consistently distributed for both SBD 

groups across their respective ranges. Figure C.9 shows the distribution of residuals plotted across 

the range of LNAVGRL 86-05 and BHAGE 

 

Figure C.8. Residuals from final model for LNTLWP plotted against LNAVGRL(a), BHAGE (b). 

 

a. b. 

a b 
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AVGDEN 

The covariance selection process indicated that the autoregressive covariance model with a random 

intercept provided the best fit using the BIC values as a metric. The results of the covariance 

selection process are shown in Table C.2 

Table C.2. BIC values for choice of covariance matrix for AVGDEN  

Covariance Stucture Random Intercept BIC 
Diagonal No 4232 
Unstructured Yes 4005 
Diagonal Yes 3939 
Autoregressive No 3985 
Autoregressive Yes 3928 
Heterogenous Autoregressive No 3984 
Heterogenous Autoregressive Yes 3930 
Compound Symmetry No 3939 
Heterogenous Compound Symmetry Yes 3939 
Heterogenous Compound Symmetry No 3946 
Toeplitz No 3946 
Heterogenous Toeplitz No 3952 
   
 

With the autoregressive covariance matix and the random intercept, the final two covariates chosen 

using the calibration data were ELEV and BHAGE.  

The homogeneity of the variance across the predicted values of AVGDEN is shown in Figure C.10, 

and the normal distribution of the residuals for the low and high SBD groups are shown in Figures 

C.11.a and C.11.b. The distribution of residuals across the range of BHAGE and ELEV are shown in 

Figures C.12a and C.12b. All residuals appeared to be approximately normally distributed and 

showed no pattern to suggest differences in distribution across the ranges of any of the covariates. 
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Figure C.9. Residual plot for final model of AVGDEN 

 

 

Figure C.10. Distribution of residuals from the final model for AVGDEN. Low SBD group (a), high SBD 
group (b). 

a. b. 
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Figure C.11. Residuals from final model for AVGDEN plotted against BHAGE(a), ELEV (b). 

 

LNINFLWP 

The covariance selection process indicated that the autoregressive covariance model with a random 

intercept provided the best fit using the BIC values as a metric. The results of the covariance 

selection process are shown in Table C.3. 

Table C.3. BIC values for choice of covariance matrix for LNINFLWP 

Covariance Stucture Random Intercept BIC 
Diagonal No 63 
Unstructured Yes 94 
Diagonal Yes -7 
Autoregressive No 11 
Autoregressive Yes -11 
Heterogenous Autoregressive No 28 
Heterogenous Autoregressive Yes 8 
Compound Symmetry No -7 
Heterogenous Compound Symmetry No 8 
Toeplitz No 0 
Heterogenous Toeplitz No 17 
 

a. b. 
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The final model selection in PROC MIXED is shown in Table BH. The final covariates chosen using 

the calibration dataset for LNINFLWP were BHAGE and LNAVGRL76_85 using the autoregressive 

covariance matrix and a random intercept term  

The homogeneity of the variance across the predicted values for the test data set of LNINFLWP is 

shown in Figure C.13, and the normal distribution of the residuals for the low and high SBD groups 

are shown in Figures C.14a and C.14b. The distribution of residuals across the range of BHAGE and 

LNAVGRL are shown in Figures C.15a and C.15b. All residuals appeared to be approximately 

normally distributed and showed no pattern to suggest differences in distribution across the ranges of 

any of the covariates. 

 

Figure C.12. Residual plot for final model of LNINFLWP 
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Figure C.13. Distribution of residuals from the final model for LNINFLWP. Low SBD group (a), high 
SBD group (b). 

 

  

Figure C.14. Residuals from final model for LNINFLWP plotted against BHAGE (a), LNRLEN (b). 

 

 

 

 

a. b. 

a. b
. 
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LNADJINFLWP 

The covariance selection process indicated that while the heterogeneous compound symmetric 

covariance model without a random intercept provided the best fit using the BIC values as a metric, 

the autoregressive model was within 2 BIC points of the heterogeneous compound symmetric 

indicating near equivalency. In addition, the covariance parameters estimated by the unstructured 

matrix seemed to indicate a pattern more consistent with the autoregressive model with a few years 

with interspersed with higher covariance that did not fit the autoregressive pattern. The results of the 

covariance selection process are shown in Table C.4 

 

Table C.4. BIC values for choice of covariance matrix for LNADJINFLWP.  

Covariance Stucture Random Intercept BIC 
Diagonal No 407 
Unstructured Yes 363 
Diagonal Yes 282 
Autoregressive No 323 
Autoregressive Yes 280 
Heterogeneous Autoregressive No 307 
Heterogeneous Autoregressive Yes 283 
Compound Symmetry No 282 
Heterogeneous Compound Symmetry No 278 
Toeplitz No 289 
Heterogeneous Toeplitz No 286 
 

The final covariates chosen using the calibration dataset for LNINFLWP were BHAGE and 

LNAVGRL76_85 using the autoregressive covariance matrix and a random intercept term.  

The homogeneity of the variance across the predicted values for the test data set of LNADJINFLWP 

is shown in Figure C.16, and the normal distribution of the residuals for the low and high SBD 

groups are shown in Figures C.17a and C.17b. The distribution of residuals across the range of 

BHAGE and LNAVGRL86_05 are shown in Figures C.18a and C.18b. All residuals appeared to be 
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approximately normally distributed and showed no pattern to suggest differences in distribution 

across the ranges of any of the covariates. 

 

Figure C.15. Residual plot for final model of LNADJINFLWP 

 

   

Figure C.16. Distribution of residuals from the final model for LNADJINFLWP. Low SBD group (a), 
high SBD group (b). 

 

a. b. 
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Figure C.17. Residuals from final model for LNADJINFLWP plotted against BHAGE (a), LNRLEN (b). 

 

LNPLWP 

The covariance selection process indicated that the autoregressive covariance model best fit the data.. 

The results of the covariance selection process are shown in Table C.5 

Table C.5. BIC values for choice of covariance matrix for LNPLWP.  

Covariance Stucture Random Intercept BIC 
Diagonal No 145 
Unstructured Yes 64 
Diagonal Yes -28 
Autoregressive No -12 
Autoregressive Yes -43 
Heterogeneous Autoregressive No -9.4 
Heterogeneous Autoregressive Yes -19 
Compound Symmetry No -28 
Heterogeneous Compound Symmetry No -13 
Toeplitz No -33 
Heterogeneous Toeplitz No -16 
 

The homogeneity of the variance across the predicted values for the test data set of LNPLWP is 

shown in Figure C.19, and the normal distribution of the residuals for the low and high SBD groups 

are shown in Figures C.20a and C.20b. The distribution of residuals across the range of PERGRN 

a. b. 
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and LNAVGRL86_05 are shown in Figures C.21a and C.21b. All residuals appeared to be 

approximately normally distributed and showed no pattern to suggest differences in distribution 

across the ranges of any of the covariates. 

 
Figure C.18. Residual plot for final model of LNPLWP. 

 

  

Figure C.19. Distribution of residuals from the final model for LNADJPLWP. Low SBD group (a), high 
SBD group (b). 

 

a. b. 



147 
 

  

Figure C.20 Residuals from final model for LNPLWP plotted against PERGRN (a),  LNRLEN (b). 

 

 

LNADJPLWP 

The covariance selection process indicated that the autoregressive covariance pattern provided the 

best fit. The results of the covariance selection process are shown in Table XD 

Table C.6. BIC values for choice of covariance matrix for LNADJPLWP. 

Covariance Stucture Random Intercept BIC 
Diagonal No 407 
Unstructured Yes 363 
Diagonal Yes 282 
Autoregressive No 323 
Autoregressive Yes 280 
Heterogeneous Autoregressive No 307 
Heterogeneous Autoregressive Yes 283 
Compound Symmetry No 282 
Heterogeneous Compound Symmetry No 278 
Toeplitz No 289 
Heterogeneous Toeplitz No 286 
 

The final covariates chosen using the calibration dataset for LNINFLWP were BHAGE and 

LNAVGRL76_85 using the autoregressive covariance matrix and a random intercept term.  

a. b. 
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The homogeneity of the variance across the predicted values for the test data set of LNADJINFLWP 

is shown in Figure C.22, and the normal distribution of the residuals for the low and high SBD 

groups are shown in Figures C.23a and C.23b. The distribution of residuals across the range of 

BHAGE and LNAVGRL86_05 are shown in Figures C.24a and C.24b. All residuals appeared to be 

approximately normally distributed and showed no pattern to suggest differences in distribution 

across the ranges of any of the covariates. 

 

Figure C.21. Residual plot for final model of LNADJPLWP. 
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Figure C.22. Distribution of residuals from the final model for LNADJPLWP. Low SBD group (a), high 
SBD group (b). 

 

  

Figure C.23. Residuals from final model for LNADJPLWP plotted against PERGRN (a), LNAVGRL 
(b). 

  

a. b. 

a. b. 
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 Appendix D 
SAS Code 
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proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model lntlwp = bdgrp bsyrfix bdgrp*bsyrfix bhage 

lnavgrl86_05 

/htype = 3 intercept ddfm=kr s outpred=predlntlwp; 

random intercept/sub=tree(bdgrp); 

repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model ewden = bdgrp bsyrfix bdgrp*bsyrfix elevation 

lnavgrl86_05 

/htype = 3 intercept ddfm=kr s outpred=predewden; 

random intercept/sub=tree(bdgrp); 

repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model lwden = bdgrp bsyrfix bdgrp*bsyrfix pcntgrnchecked 

lnavgrl86_05 

/htype = 3 intercept ddfm=kr s outpred=predlwden; 

 repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model avgden = bdgrp bsyrfix bdgrp*bsyrfix bhage elevation 

/htype = 3 intercept ddfm=kr s outpred=predavgden; 

random intercept/sub=tree(bdgrp); 

repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model lnmtplwnew = bdgrp bsyrfix bdgrp*bsyrfix 

pcntgrnchecked lnavgrl86_05 
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/htype = 3 intercept ddfm=kr s outpred=predlnmtplwnew; 

random intercept/sub=tree(bdgrp); 

repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model lncorrectedmtplw = bdgrp bsyrfix bdgrp*bsyrfix 

pcntgrnchecked lnavgrl86_05 

/htype = 3 intercept ddfm=kr s 

outpred=predlncorrectedmtplw; 

random intercept/sub=tree(bdgrp); 

repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model lninflwp = bdgrp bsyrfix bdgrp*bsyrfix bhage 

lnavgrl86_05 

/htype = 3 intercept ddfm=kr s outpred=predlninflwp; 

random intercept/sub=tree(bdgrp); 

repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

proc mixed data=fridaynight covtest method = 

reml;/*autoregressive*/ 

class bsyrfix bdgrp tree; 

model correctedlninflwp = bdgrp bsyrfix bdgrp*bsyrfix bhage 

lnavgrl86_05 

/htype = 3 intercept ddfm=kr s 

outpred=predcorrectedlninflwp; 

random intercept/sub=tree(bdgrp); 

repeated bsyrfix / sub=tree(bdgrp) type = ar(1); 

lsmeans bdgrp bsyrfix*bdgrp / adjdfe=row slice= bsyrfix; 

run; 

 


