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Abstract

COVID-19 has been at the forefront of global concern since its emergence in December

of 2019. Determining the social factors that drive case incidence is paramount to mitigating

disease spread. Simple predictive analysis in the form of multiple regression proves to be

an inefficient method for predicting COVID-19 case rate using sociodemographic factors, as

many of these factors are collinear; additionally, multiple regression is insufficient as this

technique results in models that overfit the data, meaning the models cannot generalize

when given new data and thus perform poorly. As such, biased estimation through elastic

net regression was used to conduct a broad-based analysis across the ten HHS health re-

gions for both the pre-Delta (March 22, 2020 to June 15, 2021) and Delta (June 15, 2021 to

November 1, 2021) waves of the COVID-19 pandemic. Statistically, elastic net proved to be

much more accurate in its prediction when compared to multiple regression, as almost every

HHS model consistently had a lower root mean square error (RMSE); additionally, these

models also succeeded in remedying overfitting through verification by way of training/test-

ing R2 evaluation. From an epidemiological standpoint, this research confirmed many of the

known trends in terms of social factors that influence case incidence (such as group quarters

percentage or mobile home percentage per county), while also discovering interesting trends

occurring across different waves of the pandemic that give insight into the effect of measures

such as vaccination. This research provides a novel approach to modeling sociodemographic

risk factors against COVID-19 case rate which can easily be expanded upon in the future

with a more robust set of sociodemographic factors.
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CHAPTER 1

Introduction

COVID-19, formally known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), has made a significant impact on the world since its emergence in December of

2019, with a global case total of approximately 409 million cases and global death total

of approximately 5.8 million deaths as of February of 2022 (The New York Times 2022).

Coronavirus has seen various mutations throughout the course of its spread, with the most

recent strain, Omicron, resulting in what appears to be vastly higher transmissibility and

reinfection than for previous variants, though it is too early to tell with much scientific

certainty as of the time of writing (Araf et al. 2022). Efforts to quell the pandemic to this

point have included quarantining, mask mandates, social distancing measures, and vaccines.

Developing vaccines, along with the other aforementioned preventative measures, has been

the primary focus in eliminating COVID-19 from the general population since the onset of

the pandemic in late 2019. However, in spite of the current abundance of vaccines and two

years of ongoing quarantining procedures, the pandemic has spread globally in high numbers,

especially in the United States, which, outside of having the highest total confirmed case

count by a wide margin, just experienced a spike in Omicron cases with a single-day peak

of just over 1,000,000 daily cases on January 24, 2022 (The New York Times 2022). These

confirmed case numbers are significantly higher than other nations of comparable or larger

population sizes. For instance, India and Brazil, the two nations which have the second

and third most total confirmed COVID-19 cases, respectively, averaged 300,000 and 100,000

daily cases at their respective peaks from Omicron during that same time frame in late

January 2022 (The New York Times 2022). What is important to note is that nations like

India have a lower proportion of fully vaccinated individuals (55.16%) when compared to the

United States (64.40%) (Ritchie et al. 2020). Even at an international level, the COVID-19

pandemic is an anomaly in an epidemiological sense, as wealthier countries with better health

infrastructure have been hit much harder than their less wealthy counterparts (Bollyky et
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al. 2022). Of course, disparities in case reporting in these less wealthy countries certainly

may influence this trend, which is an important factor to acknowledge when viewing any

epidemiological data. However, it is still reasonable to expect that nations with more wealth

and better access to vaccines would have less disease burden overall, since studies have shown

enhanced immune response when completing a full course of the COVID-19 vaccine (Bates et

al. 2022). Thus, a search of which factors influence infection outside of reporting disparities

may still be worthwhile.

Preventative measures show positive results in mitigating disease spread; social distancing

measures effectively reduce the likelihood of contracting COVID-19 (Fazio et al. 2021), and

vaccinations reduce disease severity, hospitalization risk, and deaths (Centers for Disease

Control and Prevention 2021). In looking at potential risk factors for COVID-19 outside

of preventative measures, social factors present themselves as a rational point of analysis,

since environment is one of the pillars of epidemiological spread as mapped by the host-

agent-environment model (Tsui, Deng, and Pan 2020). Two avenues present themselves

when thinking about social factors: extrinsic social factors (i.e., qualities and behaviors that

one acquires or changes throughout their daily lives, such as political ideology, metaphysical

worldview, etc.), and intrinsic factors (i.e., factors that one cannot inherently change, or

rather, cannot change with ease; these may include race, ethnicity, socioeconomic status,

etc.).

One motivating example of an extrinsic social effect is the effect of political affiliation on

COVID-19 response and behavior. COVID-19 rapidly became a highly-politicized issue in

the U.S. as the initial spread of the disease progressed. The rapid spread and endorsement

of misinformation regarding disease severity and origin (Motta, Stecula, and Farhart 2020),

and the overall influence of the “anti-intellectual” ideology (Merkley and Loewen 2021) along

partisan lines has resulted in a polarized divide in response to the pandemic in the United

States, with the anti-intellectual side contributing to more lax, and often more risky, COVID-

19 behaviors. Though not verifiable with absolute certainty, many of the individuals on the
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anti-intellectualism side appear to be ideological conservatives and religious fundamentalists,

as they “may see [scientific] experts as threatening to their social identities” (Merkley and

Loewen 2021). This presents itself both at the national and state level. At a national level,

for instance, the conservative individuals who cited former President Donald Trump and

his task force as their primary news and information outlet were far less likely to receive

a dose of the vaccine (Jurkowitz and Mitchell 2021), though these trends only serve to

strengthen previously held concerns regarding vaccines, ones that traditionally do not break

along partisan lines. A study conducted on Google trends data by Pullan and Dey reveal

that the topic of COVID-19 vaccines accentuate previously established hoaxes on MMR

vaccines containing mercury or causing autism (Pullan and Dey 2021). In other words,

anti-intellectualism did not solely create vaccine hesitancy in the United States, but rather

it exacerbated previously-held beliefs in individuals who had established concerns regarding

vaccines, and contributed to individuals being more outspoken about vaccine misinformation

along partisan lines. It still is a concern, though; anti-intellectualism has been a staple

and a sort of “rallying cry” behind former President Donald Trump’s rhetoric from the

outset of his presidential campaign in 2016 (Motta, 2017), and these negative perspectives

toward science that are common in anti-intellectualism can assist in spreading misinformation

regarding treatments to the pandemic such as hydroxychloroquine and ivermectin (Mackey

et al. 2021). However, this political divide for COVID-19 response goes beyond the national

level. Differences in pandemic response split down the political divide at the state level,

as well, with democratic states having more aggressive response to the disease (Grossman

et al. 2020). Idaho, for instance, has had little to no state-wide regulation on prevention of

COVID-19 through active precautions such as mask and vaccine mandates, and as such have

suffered high spikes in cases and deaths due to the emergence of mutations such as Delta

and Omicron (Baker 2022). It appears that these later variants, namely Delta and Omicron,

have overall severity that is much more individually dependent when compared to earlier

strains due to vaccine effectiveness on mitigating disease incidence (Bernal et al. 2021) and
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the impact of political leaning on vaccination intent (Jurkowitz and Mitchell 2021).

Intrinsic social factors have broad-reaching effects on pandemic spread as well, although

many of these factors are confounded and intertwined. Over the course of the pandemic,

several studies have shown an adverse relationship between being a racial or ethnic minor-

ity (e.g., African American, Indigenous, Hispanic, etc.) and infection rate; this translates

as well to higher incidences of severe cases and deaths (Gayle and Childress 2021). This

increased disease burden on racial/ethnic minorities has several contributing factors. For

example, some of the underlying trends in this increased risk for racial/ethnic minorities

stems from factors such as higher rates of comorbidity, living in more crowded living con-

ditions (Hooper, Nápoles, and Pérez-Stable 2020), and decreased ability to social distance

due to working lower-paying interpersonal jobs throughout the pandemic (i.e., jobs in crit-

ical retail, transportation, agriculture, etc.) (Gayle and Childress 2021). Clearly, many of

these intrinsic COVID-19 trends within the United States stem from other underlying so-

cial factors. In terms of racial disparity in the healthcare space, this result is not entirely

unprecedented; for example, African Americans are eight times more likely to contract HIV

compared to Caucasians on average, yet coverage of pre-exposure prophylaxis for treating

HIV is seven times higher in Caucasians than in African Americans (Harris et al. 2019). This

racial disparity in healthcare has existed prior to the COVID-19 pandemic, so clearly it is

an issue to address in terms of modeling disease spread. Additionally, we can deduce that

many underlying factors exist and are covarying, given that we know from Hooper, Nápoles,

and Pérez-Stable (2020) that the disproportionate disease burden on racial/ethnic minorities

stems from various underlying factors. Thus, it is within reason to believe that many other

intrinsic social factors should play a similar role in COVID-19 spread and prophylaxis, and

exploring what these specific effects are is of interest for this research.

Socioeconomic disparity in health crises is not a new issue when it comes to severity

and impact. Setting a baseline at an international level to understand the global impact of

socioeconomic disparity on COVID-19 is beneficial for understanding more localized effects.
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According to Our World in Data, low-wealth nations have just above a 10% vaccination

rate overall, which is critically low compared to nations like the United States which have

relatively high vaccination rates and vaccine abundance (Ritchie et al. 2020). Despite the

fact that higher-wealth countries have had a greater COVID-19 burden overall as mentioned

previously, it is important to note the broad-reaching disparity as vaccines are proven to

be effective. Furthermore, socioeconomic disparity negatively effects disease burden for in-

dividuals within these wealthier nations. At a national level, for instance, poverty and low

income within the United States may have a damaging impact on disease burden and effec-

tiveness in preventing infection, as many low-income individuals had to work in in-person

jobs that resulted in them being vulnerable to the disease. Additionally, due to being lower-

income, these individuals generally have higher rates of comorbidity and generally live in

more crowded living spaces, both of which are confounding effects that result in hightened

disease burden (Little et al. 2021). Given how these confounding factors increase disesase

burden for COVID-19, it becomes a matter of great concern to map out the effect these

intrinsic social factors have across the United States, so that ample resources are provided

to everyone, regardless of inherent wealth, previous afflictions, and socioeconomic status.

Interestingly, preliminary studies have been inconclusive in terms of direct analysis up to

this point; the aforementioned retrospective study conducted by Little et al. (2021) deter-

mined that poverty was not a contributing factor to higher rates of hospitalization, in spite

of the presence of many dangerous pre-existing conditions these more impoverished indi-

viduals have as a whole. Little et al. (2021) also identify that racial/ethnic minorities are

unfavorably predisposed to negative COVID-19 burden due to confounding social factors.

Though many of these results seem conflicting, this study aims to take a different approach

to analyzing these sociodemographic factors with much more robust methods.

The contents of this thesis will look into the effect of sociodemographic factors on COVID-

19 incidence. The analyses will first look into a meaningful and practical method to organize

data to capture sufficient pandemic information across the entire United States. From there,
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model development will be discussed and explored, looking into an appropriate method to

analyze the data. Finally, the implications of the modeling will be discussed, along with the

potential contribution to the broader body of COVID-19 research.
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CHAPTER 2

Methods

2.1 Data and Analysis Overview

Data selection for this research involves choosing a source of sociodemographic factors that

is comprehensive, reliable, and is measured at a sufficiently fine scale (i.e., county-level as

opposed to state level) to capture sufficient variability by region. An analysis conducted by

Karmakar, Lantz, and Tipirneni (2021) utilized the CDC’s Social Vulnerability Index (SVI)

in an exploratory sociodemographic analysis using negative binomial regression. In an effort

to expand upon previous research, this paper will also use SVI as the primary source of data.

The CDC’s Social Vulnerability Index is a metric developed through synthesizing 15 census

variables in order to map potential negative community effects from external forces such as

natural disasters and public health crises (CDC/ATSDR 2018). The index is organized into

four distinct categories each with an overarching “theme”: socioeconomic status, household

composition/disability, minority status/language, and housing type/transportation. Each of

these larger categories have more focused metrics of vulnerability, such as poverty, minority

status, education level, age demographics, and crowded living spaces. The Social Vulnera-

bility Index is designed specifically with public health and safety in mind; for instance, the

overall categorical scores calculated through SVI can help governmental agencies determine

which communities need more resources and supplies during an emergency situation, as well

as where to evacuate people in the case of a natural disaster. In essence, SVI is designed for

determining the locations of need before, during, and after an emergency event.

This thesis will utilize the individual SVI categories to represent various intrinsic social

factors, as well as per-county voting percentages from the 2020 U.S. presidential election

as a proxy for the overall effect of political leaning. Each explanatory variable will be the

percentage-by-county metric in order to keep standardization across varying county sizes.

The full set of explanatory data for this thesis is given in Table 2.1.
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Table 2.1: Explanatory variable abbreviations and their descriptions for SVI and voting percentage

Variable Description
POV Percentage of individuals below poverty estimate

UNEMP Percentage of unemployed individuals
NOHSDP Percentage of individuals with no high school diploma
AGE65 Percentage of individuals over the age of 65
AGE17 Percentage of individuals under the age of 17
DISABL Percentage of individuals with a non-institutionalized disability
SNGPNT Percentage of individuals who are single parents with a child below the age of 18
MINRTY Percentage of minorities (all persons except white, non-hispanic)
LIMENG Percentage of individuals over the age of 5 who speak English “less than well”
MUNIT Percentage of housing in structures with 10 or more units
MOBILE Percentage of mobile homes
CROWD Percentage of occupied housing units with more people than rooms
NOVEH Percentage of households with no vehicle available
GROUPQ Percentage of persons in group quarters

pct Percentage of democratic vote in 2020 Presidential Election

The response variable for all analyses will be cumulative case counts per 1000 individuals

(calculated by dividing cumulative cases by county population, then multiplying the stan-

dardized result by 1000). The previous sociodemographic COVID-19 analysis by Karmakar,

Lantz, and Tipirneni (2021) utilized negative binomial regression due to having limited

county replicates (i.e., some counties, at the time of the aforementioned analysis, had little

to no cases of COVID-19). Given that data are available for two complete “waves,” this

model restriction is not necessary. For overall model organization, creating one model with

0
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Figure 2.1: Heat maps for cumulative COVID-19 case rate for pre-Delta and Delta waves
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each state using counties as replicates can limit the presentation of regional variance, since

many areas of the country have different health infrastructures and disease dynamics. To

remedy this, model subdivisions will be made using the Department of Health and Human

Services (HHS) regions as a basis to attempt to capture some of that regional variability

(note that all analyses will only be done for the continental United States). The use of HHS

regions maintains national-level healthcare policy structure, making for an informed method

of subdividing the United States for this thesis. The regions are generally known by number,

but for the purposes of this thesis will be given names referring to their general geographic

location. The plot of the HHS regions, along with their nicknames and abbreviations used

in this thesis, are shown in Figure 2.2.

Figure 2.2: Map of the 10 HHS Regions in the United States (U.S. Department of Health and
Human Services 2022)

Using this framework for organizing COVID-19 data in the U.S., the approach for analysis

will be computing these ten sub-models for both the pre-Delta wave (incorporating both the

original and Alpha variants, dating from March 22, 2020 to June 15, 2021) and the Delta
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Table 2.2: HHS region names, abbreviations, and list of states used for all analyses

Number Name Abbreviation States
1 Northeast NE CT, MA, ME, NH, RI, VT
2 Northeast Coast NEC NJ, NY
3 Mideast MDE DE, MD, PA, VA, WV
4 Southeast SE AL, FL, GA, KY, MS, NC, SC, TN
5 Midwest MDW IL, IN, MI, MN, OH, WI
6 Midsouth MDS AR, LA, NM, OK, TX
7 Middlewest MDL IA, KS, MO, NE
8 Midnorth MDN CO, MT, ND, SD, UT, WY
9 West WST AZ, CA, NV
10 Pacific Northwest PNW ID, OR, WA

wave (from June 15, 2021 to November 1, 2021), for a total of 20 models. These COVID-19

waves, of course, have some degree of overlap, so for the purposes of this research the cutoffs

were determined by the local minima in the cumulative United States COVID-19 rolling case

plot (The New York Times 2022). Figure 2.1 illustrates the distribution of cases per 1000

individuals across each county in the continental United States for both proposed pandemic

waves. Changes in disease protocol over the course of the pandemic, such as the introduction

of vaccines to the United States throughout the first quarter of 2021 (The New York Times

2022), may have an affect on the social response of individuals and for those at risk. As

such, not only will individual sociodemographic effects be monitored in each model, but the

comparison between significant factors from wave to wave will also be studied. The exact

modeling technique will be elaborated on in the next two sections, and the metrics used for

model comparison will be shown in Section 2.4.

2.2 Exploratory Analysis

The first modeling attempt for this study took a simple approach in using multiple

regression conducted in R. This exploratory analysis revealed several issues in terms of

model assumptions (and as such, most of the key results from the multiple regression will

be ignored).

First, incorporating every explanatory variable in the model resulted in predictor multi-
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Table 2.3: Variance Inflation Factor (VIF) for the Southeast HHS Region for cumulative data of
pre-Delta variant COVID-19

Variable VIF
POV 3.825

UNEMP 1.6217
NOHSDP 4.5653
AGE65 4.1719
AGE17 7.0804
DISABL 2.8828
SNGPNT 3.0779
MINRTY 8.7534
LIMENG 2.2571
MUNIT 2.9244
MOBILE 3.0128
CROWD 1.6046
NOVEH 3.5672
GROUPQ 2.5554

pct 6.6718

collinearity. Table 2.3 shows the Variance Inflation Factors (VIF) for the pre-Delta model

based in the Southeast HHS region. A VIF of greater than five signals concerning collinear-

ity, and a VIF of greater than 10 signals severe collinearity. As can be seen, many of these

variables, such as percentage of minorities, individuals under 17, and democratic voting per-

centage, have a VIF of greater than five, and as such are correlated with other explanatory

variables. This is no surprise, of course; the SVI metrics are grouped together based on

overarching categories of social risk, so commonalities and shared information between these

variables is to be expected. However, for statistical purpose, highly-correlated explanatory

variables result in regression coefficient estimates that are generally unreliable, and as such

we cannot make sound conclusions when high levels of collinearity are present. The reason

why this occurs is due to how the coefficient estimates are computed. Regression assumes ex-

planatory variables are independent, and will rely on this result for computing the minimum

sum of squares. When they are not independent, a closed form of the regression coefficients

cannot be found due to having to calculate a matrix inverse of a singular or nearly-singular

matrix, and as such, reliable results cannot be determined. Some may argue that a VIF
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of greater than 10 is when coefficient estimates delve into inaccuracy, though any amount

is undesirable, and for the purposes of this thesis, any amount greater than five will be

deemed detrimental given the dimensionality of the data set. The natural response to this

issue is to remove variables that present redundant information (i.e., have VIF values over

five). However, maintaining variables is desirable for this approach, as maintaining nuanced

variable significance is at the core of the questions being asked. Low socioeconomic status

and crowded housing may be correlated, for instance, but the individual influence of each

variable on COVID-19 spread is desired. As well, some models, such as the Southeast HHS

model for pre-Delta COVID-19 shown previously in Table 2.3, indicates a removal of the

percentage minority variable, in spite of the knowledge that: a) minorities have been shown

to be at higher risk for COVID-19 (Gayle and Childress 2021), and b) the Southeast HHS

region has an average minority population of 29.05% across every county, which is the third

highest among any HHS region behind the Midsouth and West regions. Clearly, we should

expect to maintain a variable of importance in such a region, but under the current assump-

tion we are unable to do so.

Table 2.4: R2 coefficients for training and testing data set, along with testing set root mean square
error (RMSE), for Pacific Northwest region pre-Delta multiple regression model

Metric Value
Training R2 0.7591
Testing R2 0.5234

RMSE 26.1974

Second, the multiple regression models overfit the data in most instances. Table 2.4

shows the result of model-fit assessments using a 70/30 training-testing set on the Pacific

Northwest region for pre-Delta variant COVID-19. Under well-fit models, the R2 coefficient

should be similar for both models, as the training and testing sets should, in theory, be

representative of the entire data set. However, given that the training set has a much higher

R2 value than the testing set, this indicates that the model suffers from overfitting. We
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would expect a multiple regression model to be able to adapt well to new data. The primary

reasoning for this overfitting is mainly due to the variance in the data. Given that the

model has a wide gap in training and testing R2 coefficients, we assume that the multiple

regression model is fit too tightly to the training data set. Models generally behave this

way when there is high variability in the data. Since multiple regression is shown here to fit

models that have high variability, have collinear explanatory variables, and have difficulty

generalizing to new data, multiple regression cannot provide accurate estimators for variable

coefficients. As such, since the unbiased estimators (unbiased, in this case, referring to the

sample regression coefficients having an expected value equal to the population coefficients)

of multiple regression are unreliable for these data, we can utilize a biased estimation method

that will not only reduce variability, but will also account for both collinear and redundant

predictors. One such method is elastic net regression.

2.3 Elastic Net Regression

Elastic net regression is a regularization technique developed by Hui Zou and Trevor Hastie

to overcome the limitations of l1 (lasso) and l2 (ridge) regularization (Zou and Hastie 2005).

l1 regularization is a penalty to the OLS estimators that results in feature selection, selecting

against unimportant variables, whereas l2 regularization is a penalty to the OLS (Ordinary

Least Squares) estimators that shrinks correlated predictors towards each other to overcome

multicollinearity (note: the specifications for the l1 and l2 penalties will be detailed below

when presenting the elastic net model) (Zou and Hastie 2005). What elastic net achieves is

a balance between these two penalties, resulting in a process by which models can be created

that deal with multicollinearity among explanatory variables while simultaneously selecting

the important features out of a large set of potential predictors. Zou and Hastie (paired with

simplified derivations from Friedman, Hastie, and Tibshirani (2010)) describe the set up for

the model as follows:

Suppose we have a vectorY = (y1, ..., yn), which is our observed data, andX= (x1| ... |xk)
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be our model matrix. Also suppose we have xj = (x1j, ..., xnj)
T , j = 1, ..., p are the predictor

variables. We can construct a regression model such that Y = β0 + xTβ + ϵ, where β0 is the

intercept of the regression equation, β are the coefficients for the p explanatory variables,

and ϵ is our residual vector. For the elastic net penalty, we assume that the response is

centered and the predictors are standardized. This means that the sum of our observed data

should equal 0, the sum of our explanatory variables should equal 0, and the mean squared

error of our explanatory variables should equal 1. This can be represented as:

n∑
i=1

y′i = 0,
n∑

i=1

x′
ij = 0,

1

n

n∑
i=1

(x′
ij)

2 = 1, j = 1, ..., p

Here, y′i is the centered observed response for the ith county, and x′
ij is the standardized

measurement for the jth explanatory variable in the ith county. Once this pre-processing has

been accomplished, we define the model. The proposition for this model is similar to that

of a standard regression model. In standard OLS, we wish to minimize the sum of squared

residuals in order to fit a linear model to the data. This is similar to that approach, but

with the added l1 and l2 penalties. As such, we wish to find:

β̂ = argmin
(β0,β)

Rλ(β0, β) = argmin
(β0,β)

[
1

2n

n∑
i=1

(yi − β0 − xT
i β)

2 + λPα(β)

]

Pα(β) = (1− α)
1

2
∥β∥2l2 + α∥β∥l1

=

p∑
i=1

[
1

2
(1− α)β2

j + α|βj|
]

(2.1)

This particular notation given for the derivation of the elastic net regression model comes

from Friedman, Hastie, and Tibshirani (2010), which defines Pα(β) as the elastic net penalty

first introduced by Zou and Hastie. α and λ are the hyperparameters for this model, and
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help to determine the mixture and amount of penalization, respectively. Intuitively, we can

see why elastic net is a generalization of lasso and ridge. Setting α = 1 results in the elastic

net penalty only contributing a penalty equivalent to the magnitude of the β coefficients

(also known as the l1 norm), thus resulting in strictly l1 regularization. Conversely, setting

α = 0 results in the elastic net penalty only contributing a penalty equivalent to the squared

Euclidean distance of the β coefficients (also known as the l2 norm), thus resulting in strictly

l2 regularization. These penalties together are scaled by λ; the higher the value for λ, the

higher the penalty accrued to the regression. We saw earlier that poor prediction results in

model overfitting. What λ does in this setting is scale the amount of bias we introduce into

the model. This bias helps to remove redundant information from our data, thus improving

prediction overall. This concept is known as a bias-variance tradeoff, and is a centerpiece

for the concept of regularization techniques. The more bias we introduce, the less variance

we have (note: this is shown through looking at the matrix form of the variance for the

estimated elastic net coefficients V̂ (β̂); for the scope of this thesis, the details of this inverse

relationship between bias and variance will not be discussed in-depth). Of course, there is

an optimal balance that minimizes the penalized regression shown earlier, and the metric to

measure this will be specified in Section 2.4. To summarize the model, elastic net is a hybrid

method that takes advantage of the bias-variance tradeoff that is beneficial from ridge while

also utilizing the feature selection of lasso, making for a highly-effective method to combat

overfitting.

This technique shows promise for modeling sociodemographic factors against COVID-19

cases given the previously described collinearity issues. Though Zou and Hastie describe a

best-case scenario for elastic net as one where the number of predictors is much greater than

the number of observations (i.e., p ≫ n), they also state that this technique is successful for

modeling data with highly-correlated predictors, as we have in this case.
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2.4 Metrics and Techniques

With the elastic net model in mind, we can organize and define the metrics that will

be most useful in these analyses. Model creation will be exactly the same as that done

in Section 2.2 during the exploratory analysis: ten HHS models for the pre-Delta wave,

and ten HHS models for the Delta wave. Constructing these elastic net models will utilize

the caret package in R, which is a package designed for machine learning of statistical

parameters that can search for the optimal α and λ values to minimize Rλ(β0, β). In terms

of theory, minimizing Rλ(β0, β) in a penalized regression is equivalent to minimizing the root

mean squared error (RMSE) of the model. RMSE, in regression, is the standard deviation

of the residuals and is an effective measure of how well a model fits the data. A 70/30

training/testing split will be used as previously, with the training data being utilized by the

caret package to calculate these optimal values.

10-fold repeated cross validation will also be utilized for determining the hyperparameters

with the lowest RMSE. Generally, repeated cross-validation is done five times in order to

guarantee consistent results. However, cross validation can be a noisy process in some

instances. For the data being used, each model has potentially high variance in cumulative

case numbers for each replicate due to smaller counties simply having less COVID-19 cases;

additionally, the caret package randomizes the selection of the mixing parameter α, so

finding the optimal hyperparameters overall will yield different results from iteration to

iteration. Figure 2.3 displays this concept; in Iteration 1, the α value with the lowest RMSE

is just below 0.1 (as shown by the starred point on the respective parameter scatter plot),

whereas Iteration 2 has an optimal α value of just under 0.2. It is important to note that the

minimized RMSE between these two models is approximately the same, meaning both sets

of tuning parameters yield similar model performance. Due to this stochasticity in selecting

optimal mixing parameters that minimize the RMSE, the cross validation will be repeated

15 times. This is somewhat arbitrary, and is chosen simply to ensure the best model is
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Figure 2.3: Display of varying optimal hyperparameters across two iterations of generating the
elastic net model for the Pacific Northwest HHS region

selected. The caret package handles repeated cross-validation natively, and will repeat the

procedure of randomly generating 20 potential α parameters for the alloted 15 iterations.

The R2 coefficients for the training and testing data will be used to determine the degree

of model overfitting. If they are fairly similar in value, we know that our model is correct in
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its choice of hyperparameters. To further evaluate the effectiveness of the model, the testing

set RMSE will be calculated to see how well the new data fits the pre-determined model.

Finally, the same data set partition will be used for a multiple regression case, and the same

metrics will be calculated. Since we know that multiple regression results in overfitting for

this data set, we will compare the testing set R2 and RMSE for the elastic net model and

the multiple regression model to see which model performs better overall. To summarize,

this thesis has three primary objectives:

1: Compare the features and coefficients present between models across the respective

HHS regions for pre-Delta and Delta COVID-19 data to see which factors have a significant

effect on COVID-19 cases,

2: Calculate the R2 coefficients for the training and testing data in the elastic net model

(and testing R2 for the multiple regression model) in order to evaluate the elastic net’s ability

to correct the model overfitting present in the multiple regression models, and

3: Compare the root mean squared error (RMSE) between the elastic net models and

standard multiple regression models for the testing data to see how each model performs

when introduced to new data.
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CHAPTER 3

Results

The results of these models will be grouped by pandemic wave (either pre-Delta or Delta)

in order to easily view the metrics and model performance across each HHS region at a glance.

The major modeling results and trends will be discussed both within and across each wave

of the pandemic, while the implications and evaluation of this modeling technique will be

discussed in Chapter 4. Despite needing to standardize our data to compute the elastic

net coefficients as stated in Section 2.3, the caret package reports coefficient estimates in

their original scale, allowing for ease in interpretability. Since each explanatory variable

is represented as a percentage, the interpretation of these coefficients can be thought of

in terms of the effects on COVID-19 cases per 1000 people by county while increasing the

percentage of a given explanatory variable by 1%, leaving all other explanatory variables

constant. Variable Importance Plots (VIP) will be used to help visualize the significance of

these variables across all HHS regions within the two pandemic waves. Given the lack of

a simple method to calculate p-values as with multiple regression coefficients (which use t-

statistics and estimated standard errors), VIPs are the most effective method of viewing the

significance of variables in regularized regression (note: some methods do exist for estimating

lasso p-values, such as the method defined by Lockhart et al. (2014), but these methods will

not be used in this thesis). Importance is calculated based on the absolute value of the

coefficients, which are then standardized to a 0-100 scale. A score of 100 is given to the

variable with the highest magnitude in the model. and 0 is given to the variable(s) with

the lowest. The remaining variables lie within this range. These plots will include both the

individual variable importances for each HHS region per wave, as well as box plots to view

the average importance of each explanatory variable.
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3.1 Pre-Delta

Table 3.1: Coefficients and metrics for the 10 HHS regions for the Pre-Delta COVID-19 wave,
recorded from March 22, 2020 to June 15, 2021

Coefficients
PNW MDW MDL MDS SE NE NEC MDN MDE WST

(Intercept) 71.515 106.127 106.377 107.568 109.204 65.139 87.203 113.583 85.057 88.214
In Poverty 3.159 −1.425 −5.51 0 0 −2.456 0 −1.804 −0.768 10.721
Unemployed −1.071 −5.224 0 0 −1.186 −0.139 0.402 1.274 −1.279 1.541
No HS Diploma 0 −2.632 3.843 2.166 3.817 3.702 0 6.362 −1.656 2.346
Over 65 −6.144 0 2.918 −1.909 −1.892 −3.625 0 0 −0.97 8.175
Under 17 12.319 1.768 1.669 4.554 2.498 2.304 5.548 2.242 0.651 4.268
Disability 0 3.205 −0.837 0 0 −2.954 −0.001 −4.604 0 −6.107
Single Parent 0 3.333 6.684 4.191 0 2.168 −1.422 8.357 2.78 0.843
Minority 0 8.181 −1.134 0 5.067 3.708 4.586 0 0 24.012
Limited English 0 3.528 5.189 0 0.311 6.873 6.202 −4.757 4.595 0
Multi-Unit Home 2.589 2.019 1.734 0 0.357 0 0.556 3.964 −0.136 4.398
Mobile Housing −1.025 −3.669 −6.612 −2.847 −6.157 −12.454 −7.949 −7.193 0 0
Crowded Housing 0 0 3.009 0.756 1.08 −2.001 2.471 1.798 1.054 −3.811
No Vehicle −1.847 −3.554 −0.186 1.056 0 0 −0.888 0 3.584 −4.65
Group Quarters 4.108 5.288 6.214 6.433 6.663 −0.593 −3.612 17.063 11.004 13.588
Voting Percentage −9.85 −10.495 −1.065 −0.865 −9.379 −5.676 −3.992 −1.773 −8.334 −11.205

Metrics
α 0.417 0.363 0.731 0.544 0.911 0.104 0.194 0.809 0.5 0.266
λ 3.575 0.093 0.373 2.096 0.195 4.305 2.608 0.992 0.461 0.811
ENR Train R2 0.659 0.405 0.353 0.282 0.196 0.781 0.784 0.40 0.444 0.706
ENR Test R2 0.637 0.366 0.352 0.243 0.148 0.778 0.778 0.372 0.419 0.641
MR Testing R2 0.601 0.322 0.297 0.203 0.107 0.764 0.631 0.247 0.339 0.456
ENR Test RMSE 19.265 15.683 21.052 23.945 19.997 15.479 11.52 28.114 12.88 26.789
MR Test RMSE 19.521 15.672 21.101 33.597 20.087 17.491 16.66 29.254 13.119 28.433

The complete list of coefficient estimates and metrics for the 10 pre-Delta elastic net

models are shown in Table 3.1. Since this table is high-dimensional and is difficult to interpret

upon first glance, we will break things down in the three steps stated at the end of Section 2.4

in order to aid in overall interpretation. As can be seen in the sparse matrix of coefficients

(i.e., the matrix produced when variables are removed via the penalization parameter), the

number of features removed across each model varied a fair amount, with regions such as

the Pacific Northwest and Midsouth having a third of their explanatory variables removed

from the final model, and regions such as the Middlewest having almost none removed. In

assessing overall variable trends, it is important to see the overall variable effects across

each region. Figure 3.1 displays the VIP plot for the pre-Delta COVID-19 wave. Here,

we see that percentage of individuals living in group quarters (GROUPQ) has the highest

overall variable importance across each region, with democratic voting percentage (pct) and
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Figure 3.1: Pre-Delta Variable Importance Plot, organized from lowest to highest overall importance

percentage of individuals in mobile homes (MOBILE) being the next highest variables in

terms of overall importance. As can be seen by the points in the dotplot portion of Figure

3.1, these three variables account for the highest variable importance across seven of the

ten HHS regions for this wave of the pandemic. Note that percentage of single parents

(SNGPNT) has the highest coefficient value for the Middlewest, yet has a nearly identical

importance to percentage of mobile homes (MOBILE), thus resulting in the appearance of

MOBILE having three models with which it has the highest importance, while it only has two.

The other variables that hold the highest importance within an HHS region are percentage

of individuals under 17 (AGE17), percentage of minorities (MINRTY), and percentage of

single parents (SNGPNT). The variable with the lowest overall importance is percentage of

unemployed individuals (UNEMP).

Turning now to the model metrics, not much can be assessed through analyzing the values

for λ, as they are entirely dependent on the value for α. However, it may still be worthwhile

to mention the trends for α in this pandemic wave, though these values can change quite a lot

across model iteration, as shown in Figure 2.3. Overall, the mixing percentages across each

HHS region do not show a consistent trend. Some models, such as the Southeast, display
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an alpha value that trends toward the pure l1 norm, whereas models such as the Northeast

Coast sit towards the opposite extreme in the l2 norm. However, most models display a fair

amount of mixture between the two penalties, which is desirable as it shows the optimal

RMSE for these models can be found in a more complex model than ridge or lasso alone. In

terms of the R2 results, the training set value, understandably, varies a significant amount

across each region. More importantly, however, is that the testing set R2 values for all HHS

regions are within 5% of their respective training set R2 values, showing that the models are

generalizing well to new data. Additionally, every testing set R2 for the elastic net models

perform significantly better than the multiple regression training set R2 counterpart, show-

ing that in cases where the multiple regression models overfit the data, the elastic net models

do not.
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Figure 3.2: Observed versus predicted COVID-19 case rate plot for pre-Delta PNW HHS model,
used to visualize the correlation between the observed data and the predicted data. The expected
correlation line shows a perfect one-to-one correlation between the observed data and the fitted
data (R2 = 0.6878).

In terms of overall model performance, the RMSEs for the elastic net models are lower

than their multiple regression counterparts in all but one model (Midwest, though the mul-

tiple regression model only slightly outperforms the elastic net model in terms of RMSE).
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This result shows better model performance for the elastic net model overall, while simul-

taneously eliminating the overfitting issue for this data set. We will now analyze the Delta

wave to evaluate how trends changed as the pandemic carried on.

3.2 Delta

Table 3.2: Coefficients and metrics for the 10 HHS regions for the Delta COVID-19 wave, recorded
from June 15, 2021 to November 1, 2021

Coefficients
PNW MDW MDL MDS SE NE NEC MDN MDE WST

(Intercept) 46.762 40.323 36.03 49.074 61.079 23.503 24.602 39.915 49.69 40.466
In Poverty −0.297 1.167 0 0.311 2.816 1.377 1.252 −2.505 5.145 2.691
Unemployed 2.526 −2.088 1.011 0 1.01 0 1.258 2.719 0 −1.233
No HS Diploma −0.203 −1.959 0 0.235 −1.193 0.225 0 −3.69 0 0.185
Over 65 −1.678 −0.523 −1.262 −2.493 0.756 0 0 −4.953 0 -7.405
Under 17 2.214 1.442 0 0 3.726 0 0.26 −0.435 0 3.039
Disability 4.159 3.771 3.755 0 2.202 1.308 0 6.638 0 2.571
Single Parent 4.696 1.87 1.475 0.898 1.12 0.522 0.995 −0.403 0 0.228
Minority 0 0.85 −1.338 −1.912 −2.34 −0.527 −0.685 −4.761 −2.302 −4.988
Limited English −0.902 −0.438 0 −3.226 0 0 −2.031 0.02 0 −2.234
Multi-Unit Home 0 2.356 0 0 4.577 −1.034 0 0.95 0 −4.615
Mobile Housing 3.372 2.348 1.829 1.373 1.812 0.489 −0.718 4.738 5.206 −2.614
Crowded Housing −2.334 −0.743 0 0.119 0.881 0 0 2.20 0 −1.562
No Vehicle 2.347 0.428 0.166 1.645 −0.086 0 0 2.171 0 3.605
Group Quarters 0.138 0.133 0 −0.976 0.192 0 −0.451 −1.729 −0.293 −1.459
Voting Percentage −5.905 −8.087 0 0 −9.776 −1.367 −2.225 −1.448 −7.175 −7.635

Metrics
α 0.201 0.67 0.954 0.903 0.655 0.298 0.841 0.115 0.709 0.144
λ 1.184 0.066 0.597 0.783 0.143 1.943 0.191 0.979 1.755 0.984
ENR Train R2 0.603 0.553 0.244 0.163 0.461 0.471 0.616 0.284 0.722 0.731
ENR Test R2 0.586 0.508 0.274 0.156 0.412 0.458 0.548 0.249 0.72 0.691
MR Testing R2 0.463 0.449 0.215 0.071 0.37 0.148 0.286 0.175 0.567 0.615
ENR Test RMSE 14.094 9.146 9.957 15.213 13.086 7.044 4.491 15.047 12.33 9.301
MR Test RMSE 14.855 9.183 10.358 14.92 13.156 12.051 4.769 16.04 14.834 9.787

The complete list of coefficient estimates and metrics for the 10 Delta elastic net models

are shown in Table 3.2. Compared to the pre-Delta wave, the range of removed features in

the Delta elastic models is much larger overall. Models such as the Mideast region have up

to two-thirds of their features removed through the penalization process. In contrast, the

West model for the Delta wave has no features removed on average. In terms of individual

features, the plot provided in Figure 3.3 gives some interesting insight. Percentage of group

quarters individuals per county (GROUPQ) went from having the highest average variable

importance in the pre-Delta wave to having the lowest average variable importance in the
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Figure 3.3: Delta Variable Importance Plot, organized from lowest to highest overall importance

Delta wave. Political voting percentage (pct) took its place as the variable with the highest

average variable importance across all regions, followed by percentage of non-institutionalized

disabled individuals (DISABL) and percentage of individuals in mobile homes (MOBILE).

Whereas groups quarters percentage held highest significane overall in the pre-Delta wave

with three individual regions of highest importance (i.e., group quarters percentage had a

variable importane of 100 in three of the HHS region models), voting percentage had the

highest individual variable importance in seven of the ten HHS regions for the Delta wave, as

shown in the dotplot overlay in Figure 3.3. This matches the number of highest-importance

variables for the first three explanatory variables combined in the pre-Delta wave. Overall,

several variables increased in importance from pre-Delta to Delta such as percentage of

individuals in poverty (POV) and percentage of individuals over 65 (AGE65), which can

be seen by their positions in Figure 3.3. Other variables, such as percentage of individuals

in crowded living spaces and percentage of individuals in group quarters housing, dropped

dramatically from pre-Delta to Delta, with GROUPQ experiencing the most dynamic shift

in variable importance overall.

The performance of the elastic net models in terms of RMSE was better in almost every
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Figure 3.4: Observed versus predicted COVID-19 case rate plot for Delta PNW HHS model, used
to visualize the correlation between the observed data and the predicted data. The expected
correlation line shows a perfect one-to-one correlation between the observed data and the fitted
data (R2 = 0.6077).

instance. Only the Midsouth HHS region had a multiple regression RMSE that outperformed

the elastic net RMSE. This reflects the same improvement in model performance that the

elastic net models had on the pre-Delta data, showing consistency across the two pandemic

waves.

For the metrics, the overall trends of the mixing percentages appear to be relatively

similar to that of the pre-Delta models, generally trending towards a balanced mixture

between l1 and l2 regularization. Some models in this wave had α values that appear to

trend more toward pure lasso, such as the Middlewest, which had an α value of 0.954, and

the Midsouth, which had an α value of 0.903. As with the previous wave, the training

set R2 values vary widely between HHS regions, with some explaining case variability well

(i.e., Mideast), and some explaining case variability poorly (i.e., Midsouth). The testing set

R2 values are nearly identical to their respective training set R2 values as in the previous

wave, showing that the Delta COVID-19 behaves similarly with respect to cross validation.

Further to this point, the multiple regression testing set R2 values perform much worse than

the elastic net testing set R2 values, showing that, just as in the previous wave, elastic net
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performs admirably in situations where multiple regression has difficulties. One model in

this data set, interestingly, has an elastic net testing set R2 value that is greater in value

than its training set R2 counterpart (Middlewest, with training/testing R2 values of 0.244

and 0.274, respectively), though this is not necessarily a point of concern; rather, it simply

indicates that the testing data set fits the model better, which could be due to either the

model being able to generalize to new data well, or the model having an overall weak fit as

shown in the low R2 values.
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CHAPTER 4

Discussion

4.1 Model Evaluation

Elastic net regression improved the prediction of COVID-19 cases when compared to

multiple regression. All but two of the HHS regions across both the pre-Delta and Delta waves

(Midwest, pre-Delta; Midsouth, Delta) had a lower testing set RMSE when compared to their

multiple regression counterparts. Even the two elastic net models that performed slightly

worse in terms of RMSE still corrected the overfitting of the multiple regression models

when generalizing to new data, as the testing set R2 values for the elastic net models always

outperformed multiple regression. It is important to note that this method is beneficial

when dealing with COVID-19 cases per 1000; in other words, this method is effective when

standardizing cases across replicates. Standardizing the response variables in this method

allows for use of standard multiple regression along with elastic net regression, as the case

rates approximately follow a normal distribution (Figure 4.1 displays the distribution shape

of the response variable for both pandemic waves, though it is important to note that the

shape of our distribution could be approaching a normal distribution due to a large sample

size). Previous predictive analyses for sociodemographic factors (many of which are used in

this thesis through SVI), including Karmakar, Lantz, and Tipirneni (2021) and Millar et al.

(2021), use similarly scaled COVID-19 cases/deaths (with Karmakar, Lantz, and Tipirneni

(2021) using cases per 100,000 and Millar et al. (2021) using adjusted case-fatality rate).

However, both of these models differ from the approach taken in this research by using

negative binomial regression, though the use of generalized linear models such as negative

binomial regression for COVID-19 cases is a natural path to take given that the response

is still capturing count data at its core. This distinction is acknowledged simply for the

purposes of identifying how this approach differs in its interpretation of the distribution for

the response variable.
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Figure 4.1: Distribution for pre-Delta and Delta cases per 1000 individuals per county

In looking at other analysis comparisons, Millar et al. (2021) also used the caret package

to asses collinearity issues in their analysis, though their approach was in removing variables

with correlation greater than 0.5, as opposed to the approach taken here where variables were

removed based on the set of elastic net hyperparameters that minimize RMSE (Millar et al.

2021). Both approaches have sufficient validity based on the respective research questions;

removing collinearity was done in the Millar et al. analysis to satisfy the assumptions of

negative binomial regression (with a simple cutoff of 0.5 for correlation), while this thesis

conducted elastic net for the purposes of outperforming standard multiple regression while

potentially preserving variables that are correlated with one another, yet still contain some

unique predictive information. All things considered, elastic net regression seems to provide a

successful method for modeling COVID-19 case rate data in scenarios when high collinearity

is present, and when maintaining important correlated features and removing unimportant

features is a desired outcome.

4.2 COVID-19 Implications

Many of the results found in this thesis support findings found in previous research.

For the pre-Delta wave, percentage of individuals in group quarters had the highest average

significance across all regions, with most HHS regions having a strongly positive correlation
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with cases (especially in regions where group quarters percentage was among the variables

with the highest importance). It was known early on in the pandemic that close-quarters

environments such as cruise ships were epicenters of COVID-19 spread, though nursing homes

and prisons (i.e., examples of group quarters environments) were also shown to be highly

dangerous environments for the spread of COVID-19 (Sloane 2020). Previous analyses from

Karmakar, Lantz, and Tipirneni (2021) and Millar et al. (2021) also support these claims

of group quarters being significant predictors for COVID-19 cases early on in the scope of

the pandemic, with Karmakar, Lantz, and Tipirneni (2021), for instance, conducting their

analysis through July of 2020. The results of this research not only confirm the dangers of

group quarters for the first few months of the pandemic, but also show the risk of group

quarters environments up through the end of the Alpha strain. It is interesting to observe

that group quarters has the least average importance for the Delta variant data, however.

This might be due to higher case rates in group quarters environments earlier on in the

pandemic; another contributing factor could be the distribution of vaccines through the first

half of 2021, as vaccines were shown to reduce the incidence of COVID-19 in nursing homes

through the beginning of the Delta variant’s emergence, which is an environment that is

under the umbrella of group quarters (White et al. 2021).

Voting percentage was the most important predictor in seven of the ten Delta models,

with each model containing negative coefficient values. The final model predicts that an

increase in percentage of democratic voting according to the 2020 U.S. presidential election

results in a decrease of case rate overall. Given that vaccines have shown high effectiveness in

reducing case incidence up through the Delta variant (Bernal et al. 2021) and that republican

individuals reportedly have 90% lower vaccination intent odds when compared to democrats

(Dolman et al. 2022), this presents itself as a potential cause of this correlation. Of course,

presidential voting is not the most foolproof proxy for the overall effect of political leaning

on COVID-19; it fails to capture much of the extrinsic social effects caused by such factors

as local legislature, personal risk evaluation, and media influence. However, this stands as a
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topic for further research into the effects of nuanced political leaning factors on COVID-19

incidence.

Interestingly, percentage of mobile homes per county seems to have a significant effect

on COVID-19 incidence according to this approach, being the third most important vari-

able on average across both COVID-19 waves. Even more interestingly, the correlation of

mobile home percentage per county shifts from negative in the pre-Delta wave across most

regions, to positive in the Delta wave across most regions. These results are also backed

by Karmakar, Lantz, and Tipirneni (2021) and Millar et al. (2021), which both reported

mobile home percentage as a significant factor. To explain the negative trend in the pre-

Delta model, Millar et al. (2021) elaborates on the potential cause of this effect being a

“built-environment effect,” since the ventilation and plumbing of mobile homes is separated

from other housing units, unlike multi-unit housing such as apartment complexes; this is

made even more significant when considering that fecal-aerosol transmission can occur for

COVID-19 (Millar et al. 2021). To potentially explain the trend for the Delta model, we can

explore data already gathered for this research, coupled with knowledge already presented

regarding vaccination behavior. We know that political ideology has an effect on case in-

cidence through overall behavior towards vaccination. As such, we can regress democratic

voting percentage on mobile home percentage in a simple linear regression to make inferences

on this relationship in order to possibly explain the positive trend of mobile home percentage

on case rate in the Delta wave. The results of this exploratory analysis are shown in Table 4.1.

Table 4.1: Simple Linear Regression result for relationship between political leaning and mobile
home percentage per county across the entire continental United States

Coefficients Estimate Std. Error t-value Pr(> |t|)
(Intercept) 39.244 0.509 77.09 < 2e− 16
MOBILE -0.456 0.032 -14.16 < 2e− 16

Mobile home percentage has a significantly negative effect on democratic voting per-
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centage. A 1% increase in mobile home percentage per-county decreases the percentage of

democratic voting by 0.456%. Since we already know that a) vaccination mentality played

a significant role in disease spread over the course of the Delta variant, and b) right-leaning

individuals had much lower odds of intent for receiving the vaccine, this relationship presents

itself as a possible explanation for the now-positive correlation between mobile home per-

centage and adjusted case rate. Of course, much like with this thesis as a whole, many factors

could contribute to this inverse relationship. However, according to trends presented in pre-

vious literature when considering vaccination (e.g., Bernal et al. (2021)), this result holds a

degree of significance. Overall, mobile home percentage seems like a strange predictor for

COVID-19 on the surface, but it ultimately presents itself as an excellent case study as to

how intrinsic and unchanging social factors can change in terms of predicting case incidence

as the disease progresses.

Finally, these analyses found differences in variable importance and significance when

compared to other sociodemographic analyses of COVID-19. Karmakar, Lantz, and Tipir-

neni (2021), for instance, found that every SVI entry was a significant predictor of COVID-19

in their negative binomial analysis. This result contrasts with many of the findings of this

research, as the elastic net regularization procedure resulted in sparse matrices that removed

features from most iterations of the included models. The VIP plots for both the pre-Delta

and Delta waves of the pandemic also reveal this trend. Karmakar, Lantz, and Tipirneni

(2021) presented percentage mobile homes as the least significant predictor among the SVI

subcategories (though still significant, with a p-value of 0.01 as opposed to <0.001 for every

other subcategory), contrasting directly with the high variable importance of mobile home

percentage within this thesis for approximately (though not exactly) the same time period.

Of course, their analysis was conducted somewhat earlier in the pandemic (through July 29,

2020), so this difference may be due in part to the cumulative gathering of data. Whatever

the case may be, the cumulative wave of data used for the pre-Delta models in these analyses

assists in establishing results that harbor higher accuracy in COVID-19 prediction due to
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being more representative of initial pandemic trends.

4.3 Limitations

As with any data analysis, there are some limitations to this approach. For one, the

analysis conducted on the pre-Delta wave had a much larger pool of data when compared

to the Delta model, since the pre-Delta model contained 15 months worth of cumulative

COVID-19 data, whereas the Delta model only contained five months worth of data. This

effect is seen in Figure 2.1 especially, as the heat map for the Delta data is much weaker in

terms of cases per 1000 people simply due to time. Further subdivision of COVID-19 waves

may be an appropriate approach for refining this research, separating the models out into

the original strain, Alpha, Delta, Omicron, etc. Additionally, many social factors were not

considered in this thesis that have clear implications towards COVID-19. As alluded to in the

discussion within Section 4.2, vaccine hesitancy is a highly-important extrinsic social factor

that has clear and obvious implications towards case incidence, especially during the time

frames used within these analyses. Inclusion of this factor (or, at minimum, a proxy for this

factor), likely would have yielded significant results. As such, a more robust analysis using

this modeling technique containing more social factors of perceived importance (such as a

more nuanced subdivision of minorities within the United States, vaccine hesitancy, full age

subdivisions, etc.) would be beneficial to our understanding of the spread and prevention of

COVID-19. Additionally, given that elastic net regression is intended for data sets with high-

dimensionality (Zou and Hastie 2005), inclusion of more sociodemographic factors would be

a seamless process from a computational standpoint. In general, this approach would benefit

from expansion on what features are included, as well as how the data are subdivided.



33
CHAPTER 5

Conclusion

Elastic net regression proved to be a highly successful modeling technique for predicting

the effect of sociodemographic risk factors on COVID-19 case rate, performing significantly

better than multiple regression in terms of prediction efficiency and accuracy. The results

of this research reflect the findings of previous research with regard to COVID-19 risk fac-

tors, while simultaneously contesting some of the findings in analyses done with differing

techniques earlier in the pandemic. This paper serves as both an introduction of the use of

elastic net regression for the purpose of modeling sociodemographic risk factors, as well as

a jumping-off point for expanding the analysis of risk factors on COVID-19 using a method

that accounts for the inherent collinearity present in large feature sets of sociodemographic

variables.
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