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ABSTRACT 

Performability is the composite measure of performance and reliability. This measure is 

a vital evaluation method for fault-tolerant systems that can undergo a graceful degradation of 

performance in the presence of faults, allowing continued “normal” operation. Performability 

analysis is the study of the performance of systems under non-optimal conditions. The non-

optimal conditions can be degraded, such as drive failure or with background tasks, such as 

background logical volume copy. The performability study of disk arrays is the study of a 

competitive challenge imposed to disk arrays. Now disk arrays are expected to guarantee low 

user latencies even under self-repairable failure conditions such as a disk failure and/or in the 

presence of background tasks such as data replication. Besides that expectation, the disk arrays 

are also expected to repair themselves and finish background tasks as quickly as possible. The 

two goals are opposing in nature. If the disk array allocates more of its resources to serve user 

requests, the self-repair and the background tasks take longer to be completed. But if the disk 

array allocates more of its resources to self-repair or the background tasks, the user requests 

will suffer a performance impact in terms of higher latencies or lower throughputs. This is a 

challenge that disk arrays have to meet in order to meet user expectations better. There is no 

perfect response to this challenge. The solution is to propose responses that optimize the use of 

the internal resources of a disk array. The problem of achieving the opposing goals is posed as 

a control problem and that is tackled by applying fuzzy logic and control. This dissertation 

makes two major contributions: 

1) Performability analysis of disk arrays using fuzzy logic that provides us with a practical, 

easy-to-use, numerical algorithm to achieve consistently high performability based on the 

reliability metrics of a RAID disk group. 

2) Fuzzy control approach to improve disk array performability that gives us a practical, 

effective, and easily-updated means to schedule the execution of customer requests and 

concurrent data protection tasks. This approach overcomes the lack of internal information of 

components by using a rule-based approach instead of a detailed control model. 
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CHAPTER 1: INTRODUCTION 

1.1 PERFORMABILITY OF DISK ARRAYS 

Fault-tolerant systems are expected to serve their purpose even in the presence of 

failures. Reliability analysis is the study of the estimation of how likely is a failure to occur in 

a fault-tolerant system. Performability was proposed over three decades ago as an answer to 

the question “what is the level of effectiveness of a system considering the likeliness of 

failures?’ In other words, “what is the performance of a system based on its reliability”. 

Performability answers this question by the unification of performance and reliability analysis 

applied to fault-tolerant systems. 

Performability was proposed and defined by Meyer [Meyer 78a] as “the unification of 

performance and reliability.” Meyer presented a performability evaluation of fault-tolerant 

computers for aircraft control [Meyer 80a] as one the first examples of performability 

evaluations published. Based on Meyer’s definition of performability, other authors published 

performability analysis of different fault-tolerant systems such as disk arrays [Islam 

93a][Barnett 98a].  

 The concept of performability was extended by Zhang et al. [Zhang 06a] to consider 

background tasks in addition to failure conditions. Zhang in [Zhang 06a] presented a 

performability evaluation of a disk array under the presence of background jobs, i.e., tasks the 

disk array executes with no user intervention and have a soft deadline. The background jobs 

are independent of the user jobs, i.e., user reads and writes. 

Redundant arrays of inexpensive disk (RAID) [Patterson 88a] systems were proposed 

with the goal of avoiding the loss of data stored on disks and increasing the throughput of a 

group of disks. The research in RAID systems was jumpstarted by the seminal paper by 

Patterson in 1988.  

Disk arrays are fundamentally RAID systems but with an advanced set of features 

added over the years since the late 1980s. One example of such features is local and remote 

logical volume copy between disk arrays. Another example is intelligent data caching 

schemes between different storage media such as Solid State Drives (SSD) and magnetic Hard 

Disk Drives (HDD). Disk arrays are fault-tolerant systems that are expected to deliver the 

storage and retrieval of data even under the presence of failures or background jobs. 
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The presence of failures or background jobs can be considered a non-optimal state of a 

disk array from the point of view of a user issuing read/write requests. Both failures and 

background jobs can be then considered non-optimal conditions. The optimal state of a disk 

array can be defined as the state in which the disk array has no failure and background jobs 

and can dedicate the resources (CPU, memory, IO ports, Hard Disk Drives) exclusively to the 

service of user reads and writes. Based on Meyer’s original definition of performability and 

Zhang’s extension of Meyer’s definition, we will define performability of disk arrays as a 

measure of the probability of user requests to achieve a performance level under non-optimal 

conditions. A more precise definition of performability is presented in section 2.2. 

1.2 OBJECTIVE OF THIS DISSERTATION 

As part of the progress made in the development of new disk array features, the 

challenges imposed to disk arrays are greater. Now disk arrays are expected to guarantee low 

latencies (response times) and high throughputs (in I/O requests per second) for user requests 

(read/writes) even under self-repairable failure conditions such as a disk failure and/or in the 

presence of background tasks such as data replication. Besides that expectation, the disk 

arrays are also expected to repair themselves and finish background tasks as quickly as 

possible. The two goals are opposing in nature. If the disk array allocates more of its 

resources to serve user requests, the self-repair and the background tasks take longer to be 

completed. But if the disk array allocates more of its resources to self-repair or the 

background tasks, the user requests will suffer a performance impact in terms of higher 

latencies or lower throughputs. Clearly, there is a challenge for disk arrays to provide the best 

performability.  

The research reported in this dissertation seeks to improve the performability of disk 

arrays by: 

1) Proposing an algorithm for estimating the performability of disk arrays considering 

failure rates. The algorithm makes use of fuzzy logic to deal with the uncertainty of some of 

the parameters.  

2) Proposing control strategies based on the use of fuzzy logic and control. The fuzzy 

control will be used to control the execution of background tasks based on external 

requirements such as desired latency of user requests and time to complete background tasks. 
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The purpose of the fuzzy logic as well as fuzzy control solutions is to minimize the 

performance impact of the background jobs on the user request latency and throughput.  The 

fuzzy logic and fuzzy control approach was chosen because it overcomes the limitation of the 

lack of internal information of components such as disk drives. 

There is no perfect response to the disk array performability challenge. The solution is 

to propose responses that optimize the use of the internal resources of a disk array. The 

optimization is understood in this dissertation as the balancing of the use of resources such as 

Hard Disk Drives (HDDs), to achieve the goal of accomplishing mutually exclusive goals. 

The balancing of the resources to provide an optimal response to competing processes 

requires considering a number of parameters such as disk latencies, disk array controller 

latencies, bandwidth of the communication ports, data transfer sizes, memory caching 

algorithms, RAID levels, data access patterns such as random or sequential, type of data 

accesses (read or writes), and queue lengths. This list of parameters is not a comprehensive 

list of all the parameters to consider for the optimization problem, but it gives an idea that the 

problem can have a dimensionality that makes it complex. This is the challenge that this 

dissertation approaches by proposing fuzzy control schemes for disk array performability.  

1.3 ASSUMPTIONS OF THE DISSERTATION 

Certain assumptions are made throughout this dissertation. The first is that no cache 

memory is considered when proposing the performability solutions for the disk array. The 

disk array will be considered to be in write-through mode, i.e., the user writes will go directly 

to the disks. The second assumption is that the bottlenecks can be the hard disks or the disk 

array controller. Other components, such as front-end and back-end communication links 

(Fibre Channel, Serial Attached SCSI (SAS), and Ethernet) are not considered a bottleneck 

for the purposes of this study. 

There is no intention in this dissertation to do an exhaustive modeling of disk array 

components. In other words, it is not the intention to present comprehensive analysis of disk 

drive behavior, the disk array controller board or the communication links. There is no 

intention to study the different kinds and patterns of user data workloads applied to disk 

arrays. The type of user data workload used for this study will be the On-line Transaction 

Processing (OLTP) workloads, the kind of workload produced by databases such Oracle ™. 
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The OLTP workload is dominated by small transfer sizes (8KiB or 16KiB) and random 

accesses over virtual disks (VDs), which are also referred to as logical volumes (LVs). 

1.4 CONTRIBUTIONS OF THIS DISSERTATION 

This dissertation presents two major contributions: 

1) First, this dissertation contributes in the performability analysis of disk arrays using 

fuzzy logic that provides us with a practical, easy-to-use, numerical algorithm to achieve 

consistently high performability based on the reliability metrics of a RAID disk group. 

2) Second, this dissertation contributes by proposing a fuzzy control approach to 

improve disk array performability that gives us a practical, effective, and easily-updated 

means to schedule the execution of customer requests and concurrent data protection tasks. 

This approach overcomes the lack of internal information of components such as disk drives 

by using a rule-based approach instead of a detailed control model. The fuzzy control schemes 

presented in this dissertation have resulted in patents awarded by the United States Patent and 

Trademark Office (USPTO) [US Patents 8,201,018, 8,650,145, and 9,063,835]. 

1.5 ORGANIZATION OF THIS DISSERTATION 

Chapter 2 is a background on disk arrays, performability and fuzzy control. The 

description of a generic disk array and the current technologies used for disk arrays are 

provided as well as an introduction to the data protection policies used by disk arrays. Also, 

the fundamental concept of virtualization as understood for disk arrays is explained. The 

performability concept is explained in detail and an example is provided. Finally, 

fundamentals of fuzzy control theory are provided for the reader. 

Chapter 3 tackles the disk array performability analysis problem by the use of fuzzy 

performability applied to an e-mail server. Chapter 3 presents contribution 1) mentioned in 

the previous section, i.e., the estimation of performability of disk arrays by using a fuzzy 

numerical method. The application of this algorithm in the sizing of an e-mail server shows 

how this numerical method to estimate performability can be applied to size IT services such 

as Email. 

Chapter 4 approaches the problem applied to the sparing (rebuild) and a solution using 

fuzzy logic control and neural-fuzzy control. This chapter makes the contribution of new 

patented fuzzy control schemes that provide better performability of disk arrays when 
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reconstructing data redundancy (sparing) due to a disk failure. This performability is 

improved by reducing the sparing time by half while at the same time ensuring a proper 

latency of user requests (reads and writes) under the presence of the background sparing 

process. 

Chapter 5 tackles the problem of point-in-time copy of logical volume (LV) snapshots 

solved using fuzzy logic. This problem is addressed by proposing a novel patented scheme to 

deal with the Copy-On-Write problem along with a novel fuzzy control scheme that ensures 

that the latency of user requests will not be as impacted by the snapshot copy of LVs and the 

same time it guarantees the progress of the LV snapshots. 

Chapter 6 proposes a solution to the problem of point-in-time copy of LV cloning 

replication using fuzzy logic. This problem is managed by proposing a new patented scheme 

that throttles the rate of cloning replication when the user latency is high but speeds up the 

rate of replication when the user latency is low. This balance between goals is achieved by 

using a fuzzy controller scheme that balances the need of a low latency of user requests vs. a 

quick LV cloning replication. 

Chapters 4, 5 and 6 present the fuzzy control approaches related to contribution 2) 

mentioned in the previous section. These three chapters show how the fuzzy control approach 

can be practically applied overcoming the lack of internal information of components such as 

disk drives. The purpose of the fuzzy control schemes in these three chapters is to improve the 

latency of the user requests (reads and writes) in the presence of a background job. 
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CHAPTER 2: BACKGROUND ON DISK ARRAYS, PERFORMABILITY AND FUZZY 

CONTROL 

This chapter provides an introduction to the three areas of knowledge that compose this 

dissertation: disk array technology, performability, and fuzzy control. 

2.1 DISK ARRAYS 

 Disk array is the term used for the Redundant Array of Independent Disks (RAID) 

with additional features that have been added to the original RAID concept. The concept of 

RAID is first patented by N. K. Ouchi in 1978 (US Patent 4,092,732). Disk arrays are now an 

essential part of the IT centers. The Storage Networking Industry Association (SNIA) 

http://www.snia.org is an organization of member companies with the mission to promote 

standards, technologies and educational services related to storage technologies. The SNIA 

defines a disk array as a set of disks from one or more commonly accessible disk subsystems, 

combined with a body of control software. The control software presents the disks' storage 

capacity to hosts as one or more virtual disks. The term virtual disk is defined as the disk 

array object that most closely resembles a physical disk from the operating environment’s 

point of view [SNIA 13a]. The term logical volume is also used as a synonym of virtual disk. 

Disk arrays are fault tolerant since they can continue to operate under the failure of a 

drive or a controller. Fig. 2.1 shows two pictures of modern disk arrays. Disk arrays provide 

not only the means to store huge amounts of data, but means to ensure the survival of the data 

in case of failures or catastrophes. The disk array business market share was US $22.3 billion 

in 2012 [Gartner 13a]. For example, Facebook, the social networking service, use disk arrays 

to store user profiles. The user profiles contain text, picture, audio and video. As of the end of 

 

(a) HP 3PAR 7400                                        (b) Ace Powerworks 466 

Fig. 2.1: Examples of modern disk arrays 
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2013, Facebook had over 240 billion photos in disk arrays and 350 million photos were added 

per day. This translated into 7 Petabytes of new storage per day. 

The concept of redundant arrays of inexpensive disks (RAID) was first published in a 

peer-reviewed journal by Patterson [Patterson 88a] to improve the dependability and 

performance of storage systems [Patterson 94a]. The RAID systems have fault tolerance to 

disk failures by storing redundant copies of the user data (RAID1) or by using parity as a 

means to rebuild the data in case of disk failure. When a disk fails, the disk array loses the 

data redundancy of the data on the failed disk. The process of reconstructing the data 

redundancy is known as rebuild [Menon 94a] or sparing [Thomasian 97a]. Issues related to 

reliability have been researched before [Schulze 89a], [Burkhard 93a], [Ganger 94a]. The 

performance under optimal conditions has been studied before [Lee 93a], [Catania 95a], 

[Schwarz 92a], [Varki 03a]. The performance under degraded conditions and performability 

estimation has been researched before as well [Islam 93a], [Muntz 90a], [Reddy 91a], 

[Thomasian 97a], [Barnett 98a]. 

Disk arrays provide storage service by two basic data transfer operations: user reads 

and user writes. Users send read or writes requests through the computer host, as shown in 

Fig. 2.2. The computer host relays the requests for data (read) and to save data (write). The 

two most important performance metrics of the Reads/Writes are throughput and latency. The 

reads and writes have other attributes such as data transfer size. The number of data transfer 

operations (reads or writes) per unit of time is the throughput, usually measured in 

requests/second. The definition of throughput by the SNIA is the number of I/O requests 

satisfied per unit time. The throughput is expressed in I/O requests/second (IO/s), where a 

request is an application request to a storage subsystem to perform a read or write operation. 

 

Fig. 2.2: Storage as a service: typical scenario 
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The time it takes for a request to be satisfied is the latency, usually measured in milliseconds. 

The definition of latency proposed by the SNIA is synonym for I/O request execution time, the 

time between the making of an I/O request and completion of the request’s execution. The 

term response time is used in the Storage community as a synonym for latency. For this 

dissertation, both terms will be used. Another attribute of a user request is the transfer size, 

which is measured in Kibibytes (KiB), 1024 bytes.  

2.1.1 DISK ARRAY ARCHITECTURE 

A modern disk array is basically composed of two main sections: the controllers and 

the array of disks. The disks used by disk arrays are most commonly hard disk drives (HDDs) 

or solid state drives (SSDs). Disk arrays achieve fault tolerant capability by the use of 

redundancy. The number of controllers of a fault tolerant disk array is at least two. The 

minimum number of drives varies from product to product but is usually at least eight HDDs. 

Fig. 2.3 shows the basic block diagram of a disk array. 

The disks store the user data using the controller as the link between the storage 

provided by the drives and the users of the storage space. The disks are installed in specially 

designed enclosures (disk enclosures) that hold a number of disks, e.g. 20, that have 

connectors and electronic circuitry to allow all disks in the disk enclosure to be “visible” 

(accessible) and communicate with the disk array controllers. In modern disk arrays, the disk 

enclosures connect to the disk array controllers usually through Fibre Channel (FC) or Serial-

Attached SCSI (SAS) interfaces. 

 The controllers provide three essential functions: 1) provide virtual storage capacity to 

computer systems; 2) interface with computer systems and 3) provide data redundancy so data 

can be recovered in the event of a disk failure. The first essential function of presenting the 

virtual storage capacity means that the capacity of all disks combined is presented as one 

single big capacity. In other words, the disk array controllers abstract out all the physical 

details of the disk configuration such as number and storage capacity of the disks, and present 

a logical combined storage capacity of all disks. For example, if a user has a disk array with 

20 disks with 300GB of capacity each, the disk array controller may present a single 20 x 

300GB = 6,000GB capacity to the users. This allows users of the disk array to allocate 

capacity easily by leaving all decisions about the physical details (which disks and sectors 
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within the drives to use) up to the controllers. The virtual storage capacity depends on the 

RAID level. This will be explained in subsection 2.1.2. 

The disk array controllers also perform the essential function of interfacing with the 

computer systems, e.g., Windows or Linux, that make use of the virtual storage capacity 

provided by the disk array. The most common communication interfaces used by the 

controllers are FC and Internet SCSI (iSCSI). The communication ports used by the 

controllers to interface with the computer systems are referred to as the front-end I/O ports. 

The ports used to communicate with the disks (through the disk enclosures) are referred to as 

back-end I/O ports. The controllers communicate with each other most commonly using FC 

or Peripheral Component Interconnect (PCI) interfaces. 

 

Fig. 2.3: Block Diagram of a Modern Disk Array 
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The disk array controllers contain central processing unit (CPU) along with random 

access memory (RAM) and read-only memory (ROM) to implement and execute the 

algorithms that carry out the essential functions of the controllers and more features, such as 

local replication. 

2.1.2 RAID LEVELS 

RAID systems make use of two orthogonal concepts: data striping across disks for 

improved performance, and redundancy for improved reliability. Data striping allocates data 

over multiple disks to make them appear as one single, large, fast disk. This allows multiple 

I/Os to be serviced in parallel. Most of the redundant disk array organizations can be 

distinguished based on two features: 1) the granularity of the data interleaving and 2) the 

method and pattern in which the redundant information is computed and distributed across the 

disk array [Patterson 94a].  

The basic RAID levels that were introduced by Patterson, Gibson and Katz in 

[Patterson 88a] are RAID1 through RAID5. The term level is used to denote the method and 

pattern used to maintain the redundancy of the data. There are very complete descriptions of 

the RAID levels in [Shooman 03a] and [Patterson 07a]. In this section a basic presentation of 

the RAID levels is given. 

1. RAID0 – This level has no redundancy. The data is striped across the disks. This level is 

not as used in practice.  

2. RAID1 – This level implements redundancy by copying or mirroring data across drives. 

The most common number of copies is two. This means that data is written to two disks. 

When data is read, then either disk can be picked to provide the data. This RAID level is 

used a lot in practice because it is simple and does not require any special parity 

computation. The drawback of this RAID level is cost in terms of space efficiency; if two 

copies of the data are stored, that reduces in half the available storage capacity for the 

users to store data. 

3. RAID2 – This level implements memory-style error correcting code. This RAID level is 

practically not used in commercial disk arrays. It is mentioned here for completeness. 

4. RAID3 – This is a bit-interleaved parity level. In other words, the parity is computed at 

the bit level. Levels 3, 4 and 5 make use of the XOR function to compute parity [Shooman 
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03a]. The data is striped across a group of N disks including a parity disk. When reading 

or writing, all N disks have to be read or written. This level has been used rarely in 

practice 

5. RAID4 – This is a block-interleaved parity level. The parity-bit code is applied at a block 

level, e.g., 512 or 2048 byte-blocks. The parity bits are stored on a dedicated parity disk. 

The fundamental difference between level 3 and 4 is that the data is interleaved between 

disks at the sector level in 4 and at the bit level in 3. 

6.  RAID5 – This is a block-interleaved parity level, like level 4, but the parity blocks are 

distributed across the disks. This level is widely used in practice by the disk array 

companies such as EMC, IBM and Hewlett Packard.  

7. RAID6 – This is a block interleaved parity level, like level 5, but the two parity blocks are 

computed instead of one as in level 5. The computation of two different independent 

parity blocks allows the disk array to recover from two disk failures. This level is 

becoming very widely used in practice as the size of disks increases.  

Since the introduction of RAID systems in Patterson’s seminal paper in the late 

eighties [Patterson 88a], disk arrays have been an active area of research. The analysis of the 

Table 2.1: RAID Levels and Number of disk failures tolerated 

RAID Level Disk failures tolerated and parity overhead for data striped 

across G disks 

0 Non-redundant striped 0 failures and 0 parity disks (no overhead) 

1 Mirrored 1 failure and G/2 disks 

2 Memory-style ECC 1 failure and G/2 disks 

3 Bit-interleaved  parity 1 failure and 1 parity disk 

4 Block-interleaved parity 1 failure and 1 parity disk 

5 Block-interleaved parity 1 failure and 1 parity disk 

6 Block-interleaved parity 

computed in two ways 

2 failures and 2 parity disks 
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reliability and the performance of the RAID systems and the different RAID levels have been 

studied since then [Schulze 89a],[Patterson 94a],[Burkhard 93a],[Ganger 94a],[Patterson 

07a],[Rezaul 93a],Barnett 98a]. 

2.1.3 STORAGE VIRTUALIZATION 

This dissertation makes use of the virtual disk or logical volume concept, explained in 

this section. The SNIA defines a virtual disk as a set of disk blocks presented to an operating 

environment as a range of consecutively numbered logical blocks with disk-like storage and 

I/O semantics. The virtual disk is the disk array object that most closely resembles a physical 

disk from the operating environment's viewpoint. For this dissertation, the term logical volume 

will be used as a synonym of virtual disk. 

Disk arrays store user data using a technique named storage virtualization. In order to 

explain what storage virtualization is, we need to explain what a logical volume is in the 

context of disk array technology.  

The disk arrays combine the storage capacity of all the disks connected to the array in 

one single capacity that is referred to as total capacity. The total capacity is usually in the 

order of Terabytes (TB) or Petabytes (PB). Disk arrays are designed to share the total capacity 

among different users and to allow the allocation of capacity in stages. The way these two 

goals are accomplished is by the use of logical volumes. Logical volumes are partitions of the 

total storage capacity offered by the disk array. For example, if the total storage capacity 

offered by a disk array is 10 TB, a user may allocate only 1 TB for a logical volume and leave 

all the other 9 TB available for some other time. This allows customers to save time because 

the disk array only has to be create tables in memory for the actually allocated space, e.g. 

1TB, but at the same time the disk array is prepared to grow those tables easily when more 

space demanded, e.g. 2TB more. A logical volume is presented to a user as a set of 

consecutive and individually addressable bytes. The number of bytes in a logical volume 

depends on the size that the user allocated. Following the example of the 1 TB logical 

volume, the disk array would allocate 240 bytes for the user presented as one set of 

consecutive bytes encapsulated in the 1 TB logical volume. This is known as the virtual disk 

or logical volume presentation. In set form: 

 



  13 

 

 

},...,,{  21 SID bbbLV                                                                                                  (2.1) 

 

where b is a byte and S is the total number of bytes allocated to the logical volume. 

The ID is a unique identifier assigned to a logical volume. The ID can numerical or alpha-

numeric. Fig. 2.4 shows an example of the physical implementation of a logical volume using 

RAID1 (R1). 

The disk array presents the logical volume in a logical form, but the physical 

allocation is different and depends on factors such as the RAID level to use, the number of 

disks on which the logical volume will be stored, and the granularity of the physical 

allocation.  

The disk array keeps track of the allocated space and whether or not it has been 

written to or moved from one disk to another. The tracking of this information is kept in 

tables known as metadata. It is impractical to have the metadata keep track of the activity at 

the byte level. As a consequence, the disk arrays keep data for logical volumes using a 

minimum unit of allocation much bigger than a byte. This minimum unit of allocation will be 

referred to as data block and its size varies in practice for different disk arrays. Typical data 

block sizes in practice are 128KiB, 256KiB, 512KiB, 1MiB and sometimes bigger. The 

 

Fig. 2.4: Storage Virtualization: LV logical and physical implementation 
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number of data blocks B, to allocate to a logical volume depends on the size of the logical 

volume, S, and the data block size, Sb. 

 

bSSB /                                                                                                                      (2.2) 

 

The logical volume is allocated on the disks as a physical volume. The physical 

volume contains the data blocks and the mirrored copies in the case of RAID1 or the parity 

blocks in the case of RAID3, RAID4 and RAID5. The transformation from logical to physical 

volume depends on logical volume ID, the size of the data block Sb, the RAID level RL, and 

the number of disks in the RAID group or group size, G, e.g., two disks for RAID1.The PVID 

is a function that maps a logical volume into a list of data blocks. 

 

 ) ,, ,(   GRSLVPV LbIDID                                                                                          (2.3) 

 

The number of data blocks in the physical volume depends on the RAID level and the 

group size G. The group size G determines the sequence of data and mirror or parity blocks 

according to the number of disks G in the disk group. The example in Fig. 2.4 shows a 

physical implementation of a logical volume using R1, and a group size of two. Since G = 2, 

each data block has a mirrored copy on another drive. The physical volume transformation of 

the logical volume is shown in Fig. 2.4 is 

 

},,...,,,,{) ,2 , ,(   ''
22

'
111 BBbIDID dbdbdbdbdbdbSRLVPV                                      (2.4) 

 

where each data block dbi has its corresponding copy db’
i. 

The disk array has a total number of disks D. The physical volume is allocated across 

all the D disks in groups of G disks. 

2.1.4 DATA PROTECTION POLICIES 

Data protection policies are the procedures a disk array executes to copy (replicate) the 

data on a disk array to protect against data loss. The typical data protection policies are 

sparing, snapshot and cloning (mirroring). Sparing is different from snapshot and cloning 
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because sparing has the goal of recovering the RAID redundancy in a disk group and is only 

executed when a drive failure occurs. Snapshot and cloning have the goal of replicating 

logical volumes at some point in time and are executed by user request, not because of a 

failure. Table 2.2 shows a comparison of the data protection policies. 

2.1.5 SPARING DATA PROTECTION POLICY 

Sparing is the data protection policy that is executed when a drive fails and the data on 

the failing drive loses its RAID level redundancy. This policy restores the redundancy of the 

data that was stored on the failing disk by copying the non-redundant data to the surviving 

disks, therefore restoring the redundancy of that data. This policy operates at the RAID level, 

i.e., this policy does not create new logical volumes, only ensures that all data blocks that lack 

Table 2.2: Comparison of data protection policies 

 Purpose Time of 

execution 

Procedure used Data level 

affected 

Sparing Reconstruct the 

redundancy of data 

in RAID disk group 

When a drive 

failure occurs 

The data that was 

on the failed drive 

is read from the 

surviving disks 

RAID level 

Snapshot Replicate the data 

stored in a logical 

volume at some 

point in time 

On user request Copy only 

modified parts of 

a source logical 

volume to a 

backup logical 

volume 

Logical 

volume 

Cloning Replicate the data 

stored in a logical 

volume at some 

point in time 

On user request Copy an entire 

source logical 

volume to a 

backup logical 

volume 

Logical 

volume 
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redundancy are copied so they have redundancy again according to their RAID level. Sparing 

is also known as Rebuild. The SNIA defines rebuild as the regeneration and writing onto one 

or more replacement disks of all of the user data and check data from a failed disk in a 

mirrored or RAID array. In most arrays, a rebuild can occur while applications are accessing 

data on the array’s logical volumes.  

Fig. 2.5 shows an example of a RAID 5 disk group with a group size of G = 5 disks. In 

this example the disk labeled “DISK 3” failed and the regeneration of the data that was stored 

on the failed disk is being regenerated from the parity and data from the surviving four disks 

of this disk group. The dotted lines show the copy of data from the surviving disks to the 

spare disk. The copy of data to the spare disk recovers the RAID level redundancy lost by the 

failed disk. The sparing process is executed in the background and therefore is considered a 

background job. Chapter 4 presents a fuzzy control scheme for sparing and explains the 

sparing process in more detail. 

2.1.6 POINT-IN-TIME DATA PROTECTION POLICY 

 Disk arrays protect the data in logical volumes using a Point-In-Time (PIT) data 

protection policy. The SNIA defines the Point-In-Time copy as a fully usable copy of a 

defined collection of data that contains an image of the data as it appeared at a single instant 

 

Fig. 2.5: Sparing data protection policy example 
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in time. A PIT copy is considered to have logically occurred at that point in time, but 

implementations may perform part or all of the copy at other times (e.g., via database log 

replay or rollback) as long as the result is a consistent copy of the data as it appeared at that 

point in time. Implementations may restrict point in time copies to be read-only or may permit 

subsequent writes to the copy. The snapshot and cloning data protection policies are PIT data 

protection policies that are now standard features of disk arrays. 

2.1.7 SNAPSHOT DATA PROTECTION POLICY 

 Snapshot or Delta Snapshot is a Point-In-Time data protection policy. By using the 

snapshot feature, users can create a point-in-time copy of a logical volume. From the user’s 

standpoint, the snapshot feature creates an instant copy of the original logical volume. This 

gives users the means to preserve a point-in-time copy (the snapshot) of the data in a source 

logical volume. If the data in the source gets corrupted or lost, the user can go back to the 

snapshot and recover the data from that point in time. The SNIA defines delta snapshot as a 

type of point in time copy that preserves the state of data at an instant in time, by storing only 

those blocks that are different from an already existing full copy of the data. 

 

Fig. 2.6: Snapshot data protection policy example 
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Snapshot is a data protection feature that produces a point-in-time copy of a logical 

volume. The logical volume data blocks are copied on-demand when a user modifies a data 

block by writing to it. The data block is replicated before allowing the user write to proceed. 

A Copy-on-Write (CoW) takes place when a data block has to be copied before a user write 

can proceed on said data block. The example in Fig. 2.6 shows a source logical volume that is 

protected by the snapshot policy. The original volume with the data to be replicated will be 

referred to as the source volume or just the source, for short. The copy of the original volume 

will be referred to as the snapshot or replica volume or the snapshot, for short. The user writes 

to data block B2,1 but since that data block has not been copied (snapped) then the user write 

has to wait for the CoW to proceed to copy the data block to the  snapshot logical volume.  

The snapshot data protection feature is space-efficient by only copying the modified 

(written to) data blocks but it impacts user request latency by forcing a user write to wait for a 

data block to be copied if the data block has not been copied before. Also, the source and the 

snapshot logical volumes are attached (linked) because the snapshot logical volume only 

contains the modified data blocks and the rest of the data blocks are still in the source logical 

volume. Chapter 5 presents a fuzzy control scheme for snapshot and explains the snapshot 

data protection policy in more detail. 

2.1.8 CLONING DATA PROTECTION POLICY 

Cloning, like snapshot, is a Point-In-Time data protection policy; but cloning, unlike 

snapshot, is not an on-demand data protection policy. Cloning does not wait for the user to 

modify (write to) a data block to copy it. Cloning copies all the logical volume data regardless 

of the state of the data blocks modified or unmodified. From the user’s point of view, the 

cloning replication takes some time because the cloning replication copies all the data in a 

logical volume. This replication of data blocks gives users the means to preserve a point-in-

time copy (clone) of the data from a source logical volume. The original volume with the data 

to be replicated will be referred to as the source volume or just the source, for short. The copy 

of the original volume will be referred to as the clone or replica volume or the clone, for short. 

This data protection feature is not space-efficient like snapshot but it provides 

complete separation of the source and clone logical volumes. Users choose this feature 

because unlike snapshot, when cloning finishes replicating the source logical volume, they 
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can operate on each logical volume (source and clone) separately, since both logical volumes 

have all the data blocks that were originally in the source logical volume. 

The cloning data protection policy can impact user request latency due to the cloning 

background activity or CoWs generated by users writing to data blocks in the source logical 

volume during the cloning replication process. The example in Fig. 2.7 shows a source logical 

volume that is protected by the cloning policy. The dotted lines show the copy of all the data 

blocks from the source logical volume to the clone logical volume. The cloning process 

occurs in the background as already said and can be processed serially, i.e., one data block at 

a time) or in parallel, i.e., multiple data blocks being copied at a time. Chapter 6 presents a 

fuzzy control scheme for cloning and explains the cloning data protection policy in more 

detail. 

2.1.9 DISK ARRAY PERFORMABILITY AND DATA PROTECTION POLICIES 

Sparing, snapshot, and cloning, are data protection policies that operate in the 

background, i.e., concurrently with the service of user reads and writes. Those three data 

protection policies make use of the same resources (CPU, disks, memory, IO ports) to make 

copies of data instead of serving user reads and writes. Therefore, those three data protection 

 

Fig. 2.7: Cloning data protection policy example 
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policies can potentially impact the user read/write performance in both throughput and 

latency. The purpose of the fuzzy controllers presented by this dissertation in chapters 4, 5 

and 6 is to minimize the performance impact of the data protection policies running in the 

background (background jobs), therefore, improving the performability of the disk array 

under those three data protection policies. The performability approach of chapter 4, 5 and 6 

is background-jobs based. In those chapters the purpose is to improve the performance of the 

user services under non-optimal conditions, i.e., in the presence of a background job that can 

be sparing, snapshot or cloning.  

2.2 PERFORMABILITY 

2.2.1 PERFORMABILITY OF DISK ARRAYS 

In section 1.1, a general performability definition was presented. This section will 

refine the definition of performability, but first, effectiveness is defined. Effectiveness is the 

ability of a system to meet its specified needs. A quantitative measure of effectiveness (MoE) 

was proposed by Smith and Clark in [Smith 04]. The definition of performability has evolved 

since it was first proposed by Meyer [Meyer 78a],[Tai 96a]. Meyer first defined performance 

as the effectiveness of an object to deliver a specified service in a time interval [0,t]; and 

reliability as the probability of an object to deliver a specified service in a time interval [0,t]. 

With these two definitions, Meyer then defines performability as the unification of 

performance and reliability. We consider this definition of performability a reliability-based 

performability.  

As described in section 1.1, the concept of performability was extended by Zhang et 

al. [Zhang 06a] to consider background tasks or jobs besides failure conditions. Zhang goes 

over the use of background jobs in disk arrays but did not present a formal definition of 

background jobs. Therefore, for this dissertation we propose two definitions for disk arrays. 

We define a foreground task (job) as an interactive task with a hard, short deadline. We 

define a background task (job) as a non-interactive task with a soft deadline that is 

independent of the foreground jobs. We consider the performability proposed by Zhang as the 

background-jobs based performability. We define the background-jobs based performability 

as the measure of the probability of the performance impact on foreground tasks caused by 

the execution of background tasks.  
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It is possible to unify both Meyer’s and Zhang’s definitions of performability for disk 

arrays if we consider the performability from the point of view of foreground jobs. For a 

foreground job the optimal condition exists when there are neither failures nor background 

jobs present in a disk array. Conversely, we can consider that for a foreground job a non-

optimal condition exists when there is either a failure or a background job in the disk array. 

Based on the definitions of optimal and non-optimal conditions, we define 

performability of disk arrays as a measure of the probability of user requests to achieve a 

performance level under non-optimal conditions. 

2.2.2 FUNDAMENTAL CONCEPTS 

The system under performability evaluation is referred to as the total system S. For 

performability evaluations a total system S is considered to have an object system C and an 

environment E. The object system C is the system or component that provides the service and 

is the object of the performability evaluation. The environment E is the system of components 

or events that affect the ability to perform of the object system C. A good example of E is the 

workload that the environment E applies to C. 

The dynamics of the object system C are modeled by a stochastic process referred to 

as the object system model XC: 

 

 }    | ),({   TttSXX CC                                                                                              (2.5) 

 

where X(SC,t) is a random variable with sample space SC and index t, where t is time 

and is in the range of the total interval of time T. The dynamics of the environment E are also 

modeled by a stochastic process referred to as the environment system model XE: 

 

 }    | ),({   TttSXX EE                                                                                              (2.6) 

 

where X(SE,t) is a random variable with sample space SE and index t, where t is time 

and is in the range of the total interval of time T. Modeling the environment E with a 

stochastic process can be optional. Sometimes the environment can be replaced with a set or 

list of values used as inputs to the object system C. 
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The stochastic process is defined by a set of events based on a probability space. The 

events are also referred to as states in stochastic models such as in Markov models. 

The stochastic process developed to model XC can consist of a set of states QC. The 

stochastic model developed for XE can also consist of a set of states QE. A stochastic model 

that includes both QC and QE makes use of the product space Q, which is the space product of 

QE and QC: 

 

    EC QQQ                                                                                                              (2.7) 

 

The total system S can be modeled using a stochastic model X that includes both XC 

and XE: 

 

 ) , ( EC XXX                                                                                                           (2.8) 

 

The stochastic process X makes use of the state space Q. Some common stochastic 

models used to model X and estimate performability are:  

1) Markov Chains (MC) with rewards (Markov Reward Models) 

2) Queueing models 

3) Stochastic Petri Nets (SPNs) 

4) Series-parallel graphs 

5) Simulations packages such as CSIM 

Depending on the specific performability evaluation, sometimes only the object 

system model XC and the states QC are used: 

 

               CC QQXX                                                                                             (2.9) 

 

Or only the environment model XE and the states QE are used: 

 

               EE QQXX                                                                                           (2.10) 

 



  23 

 

 

The second important definition in performability is the performability variable Y, a 

random variable from the stochastic model X. The third important definition in performability 

is accomplishment: A desired value or range of values for the performability variable Y is 

defined, usually at design time. The performability variable Y and the accomplishment A are 

related by the probability of achieving the accomplishment: 

 

 ]Pr[)( HL AYAAPerf                                                                                      (2.11) 

 

The Perf(A) is the performability of the accomplishment A and is defined as the 

probability of the performability variable Y to be in the range of the values of accomplishment 

A. AL (AH) is the lower (high) value of A. This definition comes from the intention of 

performability evaluations to obtain the probability density function, and therefore the 

cumulative distribution function. If the cumulative distribution can be obtained then the 

accomplishment can be expressed as: 

 

 ]Pr[)( AYAPerf                                                                                                 (2.12) 

 

The Perf(A) is also referred to as the performability measure.  

2.2.3 PERFORMABILITY EVALUATIONS 

A performability evaluation consists of the three parts mentioned in the previous 

section as part of the fundamental concepts: 1) a model of the system or feature under study 

with a stochastic process X, for example, a Markov model; 2) a performability variable Y, for 

example, probability of completing a service, financial benefit, latency, or throughput; 3) a 

value or range of values for the accomplishment A. The result of the performability evaluation 

is a relation between the performability variable Y and some other variable; usually time, but 

the result can also be Y vs. an input to the system under study. This result is most commonly 

presented as an x-y graph with time or an input to the system on the horizontal axis and the 

performability variable Y on the vertical axis. The three parts are related in the following way: 

1) By the performability model (PM), which is the pair (X,Y): 
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 Y) , ()( XYPM                                                                                                     (2.13) 

 

2) By the performability of the accomplishment A, as shown in (2.12) 

It is important to state that solving a performability problem means to use the 

stochastic process X as the approach to obtain values for the variable Y of Perf(A). The best 

solution is to obtain the probability density function of Y but that may be difficult and 

sometimes one or two moments is the acceptable solution. Solving a performability problem 

is also known as doing a performability evaluation or estimation. 

2.2.4 PERFORMABILITY MEASURES 

Different mathematical models have been used for performability analysis. Markov 

Chains (MC), Series-Parallel Graphs, Stochastic Activity Networks (SANs) and Markov 

Reward Models (MRMs) have been used, among others. The MRM has been one of the most 

used models for performability estimation.  

The MRM will be used as the base model to explain the performability concept in a 

more mathematical form. MRMs extend the Markov Model by attaching a value r to each 

state of a Markov Model. This is referred to as state reward or simply reward and can be 

constant or time dependent. The reward value is what makes the MRM very suitable for 

performability analysis because the performability variable Y can be represented or estimated 

by a reward value or combined reward values of an MRM. 

Let N be the number of possible states a system can operate in. The state of the system 

is defined by a time stochastic process X = {X(t), t ≥ 0}. The state reward ri is specified by 

some performance measurement Examples of reward measures are throughput and latency 

(response time). The reward can be time dependent r(t)i or time independent ri. The random 

variable 

 

)(
)(

tX
rtZ                                                                                                                (2.14) 

 

Is the instantaneous reward rate of a MRM at time t. There is a difference between 

reward rates ri associated with individual states and the overall reward rate Z(t) of the MRM 
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characterizing the whole stochastic process. With this definition, the cumulative 

performability, Y(t), can be: 

 

  
t

X

t

drdZtY
0

)(
0

  )()(                                                                                    (2.15) 

 

The general definition of performability by Meyer was [Meyer 78a]: 

 

])([),( ytYPtyPerf                                                                                           (2.16) 

 

The probability at time t, of being in state i is denoted by πi(t). The transient 

performability (TP) is defined as in [Bolch 06a],[Haverkort 01a]: 

 





N

1

 )()()]([
i

ii rttTPtZE                                                                          (2.17) 

 

The expected reward rate when t →∞ is:  

 





N

i

ii rSSPZE
1

 )]([                                                                                          (2.18) 

 

This is the measure used as the steady state performability (SSP) [Haverkort 01a]. The 

πi is the steady state probability of the state i in N. 

2.2.5 PERFORMABILITY EXAMPLE 

We present an example that illustrates the performability concept and estimation. This 

example makes use of the MRM presented in section 3.1 and the equations in section 3.5. The 

reader is advised to read those two sections first.  

For this example we assume we have a disk array that we want to use as a video 

server. Each video stream corresponds to one user. Therefore, the number of streams equals 

the number of users. Each user requires 8 Mbps (Megabits per second) of bandwidth. This 

translates into 1MB/s (Megabyte per second) of bandwidth per user. Each user (stream) is 
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charged $3.99 as long as we can provide 1MB/s of bandwidth for each user. The goal of this 

example is to evaluate the probability of loss in revenue up to 15% with respect to the original 

revenue when the servers start providing service for the first time (t = 0), and we want to 

estimate the time t when the 15% percentage of loss may occur. For this example, the 

parameters for the performability estimation are: 

 

BWu = 1MB/s ≡ Bandwidth per user 

Mc = $3.99 ≡ Membership price 

T = time period of the 15% loss in revenue. The time is expressed in months. 

Rev(0) ≡ Original revenue obtained from the media server at the beginning of the 

performability evaluation (t = 0) 

Rev(t) ≡ Current revenue obtained from the media server at time t. The time t will be 

expressed in months.  

L(t) ≡ Loss in revenue with respect to R(0) at time t. The time t will be expressed in 

months.  

The loss in revenue at time t, L(t),with respect to the original revenue R(0.) is: 

 

)()0()( tRevRevtL                                                                                              (2.19) 

 

For this example, a disk array with the following parameters is considered: 

λ = 1 failure / 50,000 hours = 0.00002 failures/hour 

µ = 1 repair / 24 hours = 0. 0417 repairs/hour 

N = 200 total disks in the disk array 

G = 4 disks per disk group 

BWd = 25MB/s ≡ Bandwidth provided by each of the N disks. 

Sd  ≡ Number of streams supported by each of the N disks 

Sd = BWd / BWu = 25MB/s / 1MB/s = 25 

Ds = 0.15 ≡ Percentage of performance degradation suffered by the disk array 

performance while sparing non-redundant data due to a drive failure. 

The performability variable Y is the loss in revenue at time t, L(t): 

 



  27 

 

 

Performability variable Y ≡ Loss in Revenue ≡  L(t) 

 

The accomplishment A is that loss in revenue should be at most 15% for the first 36 

months. 

Accomplishment A ≡ 15% of loss in revenue in the first 36 months 

 

The performability measure, Perf(A),  is then: 

 

Perf(A) = Pr [Y ≤ A] ≡ Probability of having a loss in revenue of up to 15% in the 

first 36 months. 

 

In this example the disk array is the object system C. To define the object system 

model XC, we use the Markov Model of a RAID disk group that is presented in section 3.1. 

That Markov Model defines three states for the state space QC. The equations for the Markov 

Model used as the stochastic process XC are presented in section 3.5. The estimation of the 

probability of the three states QC of the Markov Model could be accomplished with the 

equation presented in section 3.5. We are not modeling the environment with a stochastic 

process XE, therefore for this example X = XC. 

The reliability at time t (in months) of the model is defined as the probability of the 

Markov Model of the RAID group to be in S0 and S1: 

 

)()()( 10 tPtPtRel SS                                                                                              (2.20) 

 

The probability of failure at time t (in months) of the model is defined as unreliability 

or the complement of the reliability: 

 

)(1)( tReltFail                                                                                                    (2.21) 

 

The unreliability is the probability of having a second fault on the same disk group 

while the RAID group is trying to reconstruct the data of the first fault. The reward function r0 

is defined as: 
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cd MNSr 0                                                                                                              (2.22) 

 

where r0 is the reward of state S0, N is the number of disks in the disk array, Sd is 

number of streams supported by each disk in the disk array and Mc is the membership cost 

($3.99). The reward function r1 is defined as: 

 

cds MSDNr )1)(1(1                                                                                           (2.23) 

 

where r1 is the reward of state S1, N is the number of disks in the disk array, Sd is 

number of streams supported by each disk in the disk array and Ds is the percentage of 

performance degradation due to the disk array executing the sparing data protection policy in 

the background. The reward function r2 is defined as: 

 

02 r                                                                                                                        (2.24) 

 

The transient performability TP(t) is used to estimate the revenue at time t, R(t), based 

on the probability of the two states S0 and S1: 

 

i

i

Si rtPtRevtTP 



1

0

)()()(                                                                                       (2.25) 

 

Once the equations are applied for a period of 40 months (t = 0,1,…,40), the results of 

the revenue per month based on the state rewards and their probabilities are computed. Based 

on the revenue per month the performability variable Y, the loss in revenue can be estimated. 

First, Fig.2.8 shows how the revenue drops monthly according to the reliability of the 

disk array for this example. It can be seen that after 36 months the revenue per month drops 

15% down to $17,000. 

Second, Fig.2.9 shows the probability loss in revenue drops according to the reliability 

of the disk array. 
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Fig. 2.8, shows that the initial revenue, R(0) is $20,000 per month. Therefore, a 15% 

loss in revenue would be a $20,000 x 0.15 = $3,000 loss. The performability evaluation, as 

shown by Fig. 2.9, provides the answer to the performability measure: that the probability is 

13% of Y, the loss in revenue, to be lower than or equal to the accomplishment A, which is 

$3,000. 

 

13.0]000,3$Pr[]Pr[)(  YAYAPerf                                                          (2.26) 

 

 

Fig. 2.8: Revenue per month for performability example 
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Fig. 2.9: Loss in revenue per month for performability example 
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2.3 FUZZY CONTROL 

2.3.1 FUZZY NUMBERS AND ARITHMETIC 

A crisp set A, defined in terms of a relevant universal set X can be described, 

according to classical set theory, in several ways including listing all of its members, 

providing a conditional description of all members of A, or by specifying a certain binary 

characteristic function such as  1,0A , in which an element x either completely belongs to 

set A or it does not. Therefore, this crisp set A can be described as: 

                   
Xx

Axif

Axif

xA 












 ,

,0

,1

)(
                                                         (2.27) 

 

This kind of belonging to a set will be referred to as crisp membership. The set theory 

that assumes crisp membership will be referred to as crisp set theory.  

An example of a classical set could be a set A = {1, 3, 5, 7}. In this example, we can 

say that the number 3 is part of the set A, thus, μA(3) =1. The number 3 belongs in the set A, 

while μA(4) =0. 

Unlike classical set theory, fuzzy set theory states that an element can have a degree of 

belonging to a particular set. Fuzzy set theory can be seen as a generalization of crisp set 

theory, because the degree of belonging of an element x to set A is determined by a 

membership grade μA(x) taking on value from the unit interval [0, 1]. The fuzzy set A in the 

universe of discourse X can be defined as a set of ordered pairs of element x and its degree of 

membership μA(x):  

 

  XxxxA A  )(,                                                                                               (2.28) 

 

The fuzzy set concept arose from the need to deal with imprecise data. A fuzzy set A, 

is defined in terms of a relevant universal set X, by a membership function. This function 

assigns to each element x of X a number μA(x), in the closed unit interval [0,1] that 

characterizes the degree of membership of x in A. Membership functions are functions of the 

form μA(x): X→[0,1]. The reader is referred to [Klir 95a], [Hanss 10a] for a complete 
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treatment of the definition and representations of fuzzy sets and fuzzy numbers. In this 

document triangular fuzzy numbers will be used. The representation used in this document for 

a triangular fuzzy number is A=[xl,xc,xh], where xl is the low value, xc is the central value and 

xh is the high value (Fig. 2.10). 

The two basic methods to compute fuzzy arithmetic are: 1) extension principle and 2) 

α-cuts and interval arithmetic. Fuzzy numbers can be discretized so they can be represented as 

a finite set of ),( )(
i

l
ix  and ),( )(

i
r

ix  tuples.  There is the value of x for the μi on the left side of the 

central value (apex), in the case of a triangular fuzzy number, and )(r
ix is the value of x for the 

same μi on the right side of the apex. With this, discrete fuzzy sets for which the fuzzy 

arithmetical operations can be defined using Zadeh’s extension principle. One approach to 

discretized a fuzzy number is to split the μ-axis into a number of equally space n segments, 

each with Δμ = 1/n. The fuzzy number then is turned into a discrete fuzzy number that can be 

represented in the form shown in Fig. 2.11. The fuzzy number A, then can be discretized in a 

form proposed in [Hanss 10a]. 

 

)()( )()( r
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l
iAi xx                                                                                       (2.29) 
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l xxxx                                                       (2.30) 

 

μi = μi-1 + Δμ, i = 1,…,n, where μ0 = 0 and μn = 1.                                                 (2.31) 

 

Fig. 2.10: Triangular fuzzy number A=[xl, xc, xh] 
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In [Hanss 10a], it is shown that using the discretized fuzzy numbers as in (2.30) and 

(2.31), the arithmetical operations can be implemented by defining the operations to be 

executed separately for the elements of each degree of membership μi.  The arithmetical 

operations can be implemented by combining only the elements of the low (left) and right 

(high) value side of the apex (central value) of the triangular fuzzy number. The four basic 

arithmetic operations are implemented in the following form: 

 

)()()( l
i

l
i

l
i yxz   , )()()( r

i
r

i
r

i yxz  and i = 0,1,2,…,n                                              (2.32) 

 

where   represents the four basic arithmetic operations ( /,,,  ). For a complete 

explanation, the reader is referred to [Hanss 10a]. 

 

Fig. 2.12: Triangular fuzzy number SEVEN=[4.5,7,9.5]  

 

Fig. 2.11: Triangular fuzzy number A=[xl, xc, xh] and its discretization 
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An example of a fuzzy number is shown in Fig. 2.12. In this figure a triangular fuzzy 

number is defined as SEVEN=[4.5,7,9.5]. The degree of membership for the value x=5.5 is 

µSEVEN(5.5)=0.4 

2.3.2 JUSTIFICATION FOR FUZZY CONTROL 

Fuzzy control can be considered an alternative to classical design for controllers 

[Michels 06a] which requires differential equations that model the system to control. In 

control theory the system to control is usually referred to as the plant. If a differential 

equation of the plant is available, then using classical control theory has advantages. A 

systematic mathematical process can be followed to predict the stability, robustness and 

response of the controller. It can be said that classical control is model-based.  

Fuzzy control has a different approach to the control of the process because no model 

of the plant is constructed. Fuzzy control approaches the problem of controlling a plant by the 

design of rules. It can be said that fuzzy control is rule-based. Of course, the rules are not 

arbitrary. The rules are based on the available knowledge of the plant. The understanding of 

the plant can be analytical, heuristic (rule of thumb or educated guess), or a combination of 

both. 

There are situations in which the components of a plant are ruled by complex 

algorithms and provided by manufacturers that do not reveal their algorithms. The 

manufacturers reveal only the external behavior of the products they sell, which is not usually 

enough to model a component using a differential equation. This is the case in disk arrays. 

The disks to be controlled are ruled by non-linear complex logic embedded in them. The only 

information available about the disks’ behavior comes from the manuals, which usually do 

not cover the entire spectrum of conditions the disk will be subjected to, or by experiment. 

Thus, a different approach for control must be used for disk arrays.  

Fuzzy control is based on heuristics [Michel 06a] and can be applied successfully in 

situations where classical control would difficult or impossible to apply. The term “plant” is 

used in control theory to refer to the system or component to control. Using fuzzy control 

makes the most sense when [Michels 06a]: 

1. No model of the plant exists in a differential or difference equation form. 

2. The behavior of the plant is non-linear. 
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3. The goals are fuzzy, e.g., “ensure a proper latency of user requests and a proper 

completion time for disk repair when both are executed concurrently” 

4. The plant and the control strategy are simple enough that the design of a fuzzy 

controller takes less time than the classical controller modeling and design. 

In addition to this, fuzzy logic opens up the possibility of using other computational 

intelligence techniques such as neural networks for the performability control of disk arrays. 

2.3.3 FUZZY LOGIC CONTROLLER 

The first model of fuzzy controller was introduced by Mamdani [Mamdani 75a]. Like 

a classical controller, a fuzzy controller takes crisp inputs from the plant and a reference or 

references to compare against. Also, like a classical controller, the fuzzy logic controller 

(FLC) produces crisp control outputs that control the process in the plant. There are four parts 

to a fuzzy controller that must be designed: fuzzifier, rule base, inference engine and 

defuzzifier. Fig. 2.13 shows the block diagram of an FLC. Fuzzy inputs and outputs are fuzzy 

numbers, which means that the numbers have a degree of membership to a particular set. 

2.3.4 FUZZY LOGIC CONTROLLER: FUZZIFIER 

The fuzzifier performs the fuzzification of the crisp control inputs. There are two types 

of crisp inputs: 

1) Outputs from the plant that are fed back into the control scheme to compute the 

difference with respect to the reference(s). 

2) Parameters of the plant, x1,…,xn . These are known as state parameters or state 

variables. 

 

Fig. 2.13: Fuzzy Logic Controller (FLC) model with error computation 
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The fuzzifier performs the fuzzification of the crisp control inputs into fuzzy values. 

For example, a FLC can accept an error input e for which three fuzzy sets are defined: big 

error (BE); medium error (ME) and small error (SE). The crisp input error e can be computed 

subtracting the fed back output from the plant with a reference r. Then the crisp input error e 

can be fuzzified by computing its degree of membership (number between 0 and 1) in each of 

three fuzzy sets mentioned. Fig. 2.14 shows an example. 

2.3.5 FUZZY LOGIC CONTROLLER: RULE BASE 

A rule base contains the knowledge related to the particular control model. It contains 

the control actions (rules) in the form of if-then-conclusion statements. These statements use 

the fuzzy values provided by the fuzzifier. It can be said that the rules provide policies [Zhang 

05a] for the control of the specific process or system to control. 

2.3.5.1 MAMDANI CONTROLLERS 

The Mamdani controllers were introduced by Mamdani in 1975 [Mamdani 75a]. They 

comprise a finite set of rules of the form 

 

Rinni FSyFSxFSxR      then    and ... and        if   : 11                                           (2.33) 

 
Fig. 2.14: Fuzzification of a value of error e 

 

m
e

m
b

e
rs

h
ip

SE ME BE
1

0

0.5

0.3

Value of e has membership of 0.5 in SE fuzzy set

Value of e has membership of 0.3 in ME fuzzy set

Value of e has membership of    0 in BE fuzzy set

e

(example value of e) 

SE = Small Error fuzzy set

ME = Medium Error fuzzy set

BE = Big Error fuzzy set



  36 

 

 

Ri is rule i; FSi are fuzzy sets; x1…xn are input variables and y is the output variable. 

For example, the error e and the change in error Δe can be compared to the fuzzy sets 

shown in the previous section. We can also define a fuzzy set named small output, SO, for the 

output y and we could build a rule like this: 

 

O  then E     and E      if   : SySeSeRi                                                               (2.34) 

 

This would say that if the e and the Δe have small values, i.e., belong to the SE fuzzy 

set, then the output value y should belong to the SO fuzzy set. 

2.3.5.2 TAKAGI-SUGENO-KANG CONTROLLERS 

The Takagi-Sugeno-Kang (TSK) controllers were introduced in 1985 [Takagi 85a]. 

The TSK controllers have rules of the form: 

 

),..., (    then    and ... and        if   : 111 nnni xxfyFSxFSxR                               (2.35) 

 

 where the difference with respect to the Mamdani rules (2.33) is that the output can be 

a mathematical function using crisp values for both the inputs x1…xn and the output y. 

For example, the error e and the change in error Δe can be compared to the fuzzy sets 

shown in the previous section. We can also define a function f(y) = x1 + 0.5 for the output y in 

which x1 is a state variable. Then we could build a rule like this: 

 

5.0 then E     and E      if   : 1  xySeSeRi                                                     (2.36) 

 

This would say that if the e and the Δe have small values, i.e., belong to the SE fuzzy 

set then the output value y should be the crisp value x1 + 0.5. 

2.3.5.3 TABULAR REPRESENTATION OF FUZZY CONTROLLERS 

Rule bases can be represented in a tabular format, which is used extensively in the 

fuzzy control literature. Each row of the table represents a rule. The columns represent the 

input variables and the leftmost column represents the output. Table 2.2 shows an example of 
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a tabular representation of a TSK controller based on the rules of the form in (2.36). In this 

example there are nine rules Ri and the function f(y) to be applied for the output y depends on 

the rule that becomes valid according to the fuzzification of the input values e and Δe. 

2.3.6 FUZZY LOGIC CONTROLLER: INFERENCE ENGINE  

The inference engine performs the evaluation of all rules in order to choose the result 

that will become the fuzzy output of the controller. One technique is to aggregate all the rules 

in one fuzzy relation; this is known as composition inference. The composition inference is 

not a common technique in fuzzy control. The most common technique is to compute each 

rule individually using min or product t-norms [Hanss 05a ] and compute the output based on 

the individual results from each rule by using the max (supremum) s-norm [Hanss 05a] This 

technique is known as individual rule firing. [Zhang 05a]  

Table 2.2: Example of tabular representation of a TSK controller 

 
Inputs Output 

Rule e Δe y 

R1 SE SE y = x1 + 0.5 

R2 SE ME y = x1 + 1 

R3 SE BE y = x1 + 1.5 

R4 ME SE y = x1 + 2 

R5 ME ME y = x1 + 2.5 

R6 ME BE y = x1 + 3 

R7 BE SE y = x1 + 3.5 

R8 BE ME y = x1 + 4 

R9 BE BE y = x1 + 4.5 

SE=Small error                ME=Medium error                BE=Big error 
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2.3.7 FUZZY LOGIC CONTROLLER: DEFUZZIFIER 

The defuzzifier converts the fuzzy output of the inference engine into a crisp number 

that can be used as a control value for the plant to control. The deffuzification depends on the 

type of fuzzy controller.  

For the Mamdani controllers, the rules can be converted to a crisp value using the 

center of gravity method [Zhang 05a][Michels 06a]. When the output of the inference engine 

is a fuzzy set, there is the problem of which value to use from the set. Several solutions have 

been proposed, but at the end the best option is to adapt the conversion to the specific control. 

For the TSK controllers the output y is already a crisp value, therefore no 

defuzzification is needed. 
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CHAPTER 3: PERFORMABILITY ANALYSIS OF DISK ARRAYS USING FUZZY LOGIC 

 

This chapter presents a numerical fuzzy logic performability model for disk arrays. 

The performability of disk arrays systems has been studied before in analytic form by 

presenting closed-form solutions of Markov Models [Islam 93a], [Barnett 98a]. The numerical 

method presented in this chapter is a simpler and adaptable alternative to closed-form 

solutions: simpler because it does not require the closed-form solution of a Markov Model, 

and adaptable because it can be adapted to particular conditions, e.g., a RAID level like 

RAID6 that supports double disk failure, or a function can be introduced to change the reward 

of the states, or make the reward time-dependent instead of fixed. 

Also, in this chapter a performability analysis of a disk array used as an e-mail server 

is presented [Navarro 06a], [Navarro 07a]. We base the analysis on some of the rules of 

thumb for the configuration of an MSExchange Server 2003 [Microsoft 07a], [Microsoft 07b], 

[Microsoft 04a]. It is not claimed this document presents a complete performability study of a 

MSExchange e-mail server. Rather, based on a selected number of MSExchange 

configuration recommendations, the author demonstrates the following proof of concept: 

performability analysis enhanced by fuzzy arithmetic can be effectively used for a predictive 

performability analysis of an e-mail server, also referred to as mail server. 

3.1 MARKOV MODEL OF A DISK ARRAY 

For the purposes of the fuzzy performability analysis of disk arrays using fuzzy logic, 

a disk array with a total of N disks divided in groups of G disks is considered. The Markov 

Chain (MC) used for the reliability analysis of this configuration is shown in Fig. 3.1.  

This Markov Chain does not consider the failure of other components of a disk array, 

such as controller failures. RAID reliability studies with the consideration of failure of 

components besides disks can be found in the literature [Schulze 89a]. 

The MC makes use of a parameter named disk failure rate, λ, number of failures per 

time unit. For example, if a disk fails one time in 1000 hours, the failure rate, λ = 1 failure / 

1000 hours, or λ = 0.001 failures/hour. The inverse of the failure rate is the time to failure: 1/λ 

= 1000 hours / 1 failure = 1000 hours/failure 
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When a single disk fails, the disk array goes to the non-optimal state S1. This implies 

the loss of the data redundancy. But the data is still not completely lost, since it is available on 

one of the G-1 disks that are still working in the group. The data lost on the failed disk must 

be then rebuilt from the redundant data. The repair rate μ is referred to as the repair rate or 

rebuild rate and is measured in the number of repairs per time unit, for example, a data drive 

repair requires 10 hours to rebuild the data redundancy lost by a failed drive; then we can say 

a repair takes 10 hours and the repair rate μ = 1repair/10hours or μ = 0.1 repairs/hour. From 

this example we can clearly see that the ratio 1/μ gives us the repair time. In the MC model, 

after a time 1/μ, the disk array completes the rebuild of the redundancy and the disk array 

goes back to state S0 (back to the state with G working disks).  

If during the time 1/μ while the disk array is in state S1 another disk within the disk 

group with the non-redundant data fails, the data is lost. In this case the disk array goes to 

failure state S2. It can be said that the unreliability (or probability of failure) for a RAID disk 

group is nothing but the probability of a second failure in the same disk group. If this event 

occurs, the user must restore the data using the backup on tape or some other media. The MC 

shown in Fig. 3.1 is for a disk group with G disks and one parity disk. That is why it has three 

states. For RAID levels with two parity disks, like RAID6 [Patterson 94a], the number of 

states would be four. The reward of the states, r0, r1 and r2 are the reward values associated to 

each state. For the performability analysis presented in this chapter, the reward values of each 

state are performance levels that the disk array can deliver, e.g., IO/s, latency, number of 

Mailboxes supported by the disk array or number of Users supported by the disk array. 

The system of differential equations for the Markov Model of the reliability of a disk 

array group (Fig. 3.1) is described via probabilities of being in state S0, S1 and S2: 

 

Fig. 3.1: Markov Reward Model of a RAID disk group 
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The system of differential equations gives rise to the following system of equations 

using the Laplace transform: 
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With the system of equations (3.2), we find that the reliability of the disk array 

represented by the Markov Model from Fig. 3.1 is as (3.3): 
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By applying the Final-value theorem of Laplace transform we get: 
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We derive an equation that we can use as the MTTFRAID.: 
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The rebuild process is performed automatically. Certainly, the failed disk must be 

manually replaced at some point [Patterson 88a].  

Equation (3.5) can be verified against the equation proposed by Chen in [Patterson 

94a]. If we have a high lambda, like λ=500,000 and a disk array with N=200 disks using 

RAID1, so G=2, and with a rebuild time of 8 hours, we have: 

 (N+G-1) λ = (200+2-1) * (1/500,000) = 0.000402 

And μ = 1/8hrs. = 0.125. 

It is easy to see that (N+G-1) λ << μ and we can again make the same approximation 

made in Shooman [Shooman 02a] and remove the (N+G-1) λ term. This turns (3.5) in 

 

2)1( 






GN
MTTFRAID                                                                                     (3.6) 

 

Equation (3.6) is the classical MTTFRAID estimation proposed by Patterson and Chen 

in [Patterson 94a]. We can use the Markov Model shown in Fig. 3.1 for the reliability 

estimation of the disk array. 

If we consider a lower lambda, like λ=10,000 and again, a disk array with N=200 disks 

using RAID1, so G=2, and with a rebuild time of 8 hours. We have: 

 (N+G-1) λ = (200+2-1) * (1/10,000) = 0.0201 

It is easy to see that in this case (N+G-1) λ << μ does not hold and we would have to 

use the (3.5) with all its terms for the estimation of MTTFRAID. This is the same consideration 

as the MTTF equation obtained by Shooman in [Shooman 02a]. 

In order to estimate the system reliability we need to estimate the probability of the 

Markov Chain being in state Si at time t. This probability is designated as PSi(t) and can be 

estimated by means of the initial probability vector PS(0) = [PS0(0), PS1(0), …, PSm(0)] of the 

(m+1) states and the state transition probability matrix (TPM) of the Markov Model of the 

disk array. The transition probabilities among states S0, S1 and S2 are shown in Fig. 3.1 and 

can be translated into the TPM matrix (3.7):  
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The initial probability of S0 is PS0(0)=1 while the initial probabilities for S1 and S2 are 

PS2(0)=0, and PS3(0)=0. Therefore, the initial probability vector is PS(0)=[1,0,0]. Failure rate 

(λ) and repair rate (μ) are assumed to be constant during the life of the disk array.  

The estimation of probabilities of the states for the disk array was done during discrete 

iterations of time. Thus, the time t at which the probabilities of all states (S0, S1, S2) was 

evaluated was using a value n that ranged from 0 to certain maximum value, i.e., n = 

(0,1,2,…,nmax). The time t was obtained by multiplying this value n by a time increment Δt 

(one hour delta for the example in this section). We estimated the reliability of the disk array 

every hour from 0 through nmax hours. The criterion to choose the hour-based discretization 

steps is consistent with disk manufacturers that provide their failure rates in hours.  

The probabilities of all states PS(t) = [P(t)S0,P(t)S1,P(t)S2] at some time t=nΔt was 

estimated using:  

 

)0()( PSPtnPS n                                                                                             (3.8) 

 

Once the probabilities PS(t) are calculated, the reliability of the RAID system can be 

obtained as: 

 

)()()( 10 tnPtnPtnR SS                                                                          (3.9) 

 

It can be seen from (3.9) that the unreliability of a disk RAID group is nothing more 

than the probability of having a second failure on a disk in the same disk group. The PS2(t)  is 

the unreliability, i.e., the probability of the second failure.  
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3.2 PERFORMABILITY MODEL OF DISK ARRAYS 

The two performance measures used for the performability evaluation of the disk array 

were: 1) the throughput in IO/s (I/O requests per second) and 2) the number of mailboxes the 

mail server can support based on the performance and reliability.  

The throughput that a disk array can deliver depends on three factors: 1) the total 

number of IO/s that can be delivered by the disks installed in the disk array; 2) the RAID level 

used, and 3) the ratio of reads and writes.  

In order to estimate the IO/s a disk array with N disks can yield, a model for the 

throughput of a single disk must be used. The model used is based on [Patterson 07a] with 

some modifications. The average disk service time (τd) per I/O is estimated using the 

equation: 

 

b

s
ttd

B
RS


                                                                                                 (3.10) 

where St is the average seek time, Rt is the average rotational latency, Bs is the size of 

the transferred block of data, and χb is the bandwidth of the bus that connects the disk with the 

disk array controller. We are considering the same St for both reads and writes. Although in 

reality disks have different average seek times St for reads and writes, for the purposes of this 

analysis this simplification was made. 

The inverse of the τd time gives us the throughput of one disk (χd) in IO/s: 

 

d
d
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

1


                                                                                                                (3.11) 

This is another simplification, since the throughput of a disk also depends on the 

internal seek reordering algorithms [Patterson 07a]. The throughput of N disks is then: 

 

dd NN  )(
                                                                                                       (3.12) 
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The equations shown so far can be used to calculate the number of IO/s we can get 

from the disks in a disk array without considering the RAID level. For this document a 

RAID1 and a RADI5 disk array is assumed. If RAID1 is used the data must be mirrored and 

G=2. If RAID5 is used, then G=5.  

For RAID1 we have to consider that every data write is translated into two writes to 

different disks. Therefore, for RAID1 writes, the total number of IO/s that can be delivered by 

the disks must be divided by two. For the RAID1 reads it is only required to read the data 

from one disk. Thus, the number of IO/s that can be delivered by the disks is the number of 

IO/s for the reads. The ratio of reads Rp is also a factor that determines the disk array 

throughput (χDA) in IO/s. Thus, the equation to estimate the RAID1 disk array throughput is: 
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                                                                (3.13) 

 

The reward r0 of the optimal state S0 for a RAID1 disk array is therefore:  

 

)(11

0 Nr R

DA

R                                                                                                       (3.14) 

 

For RAID5 we have to consider the kind of writes used for the analysis. In our case 

we used the typical small 4KiB accesses that an Exchange 2003 Server performs. The RAID5 

level suffers from what is known as the “read-modify-writes” [Patterson 88a]. Every write is 

translated into two reads and two writes. Therefore, for RAID5 writes, the total number of 

IO/s that can be delivered by the disks must be divided by four. For the RAID5 reads it is only 

required to read the data from one disk. Thus, the number of IO/s that can be delivered by the 

disks is the number of IO/s for the reads. Again, the ratio of reads Rp is also a factor that 

determines the disk array throughput (χDA) in IO/s. Thus, the equation to estimate the RAID5 

disk array throughput is: 
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The reward r0 of the optimal state S0 for a RAID5 disk array is therefore:  

 

)(55

0 Nr R

DA

R                                                                                                       (3.16) 

 

The reward r1 for S1, the non-optimal state, can be estimated by two factors: 1) One 

disk failed so we now have the throughput of N-1 disks. 2) The disk array is also copying the 

data that was stored on the failed disk on other disk besides servicing user requests. Besides 

estimating the throughput for the case of N-1 disks we need to add a factor that will drop the 

throughput a little more. We introduced a factor, Rf , with a value from [0,1]. This factor was 

the same for RAID1 and RAID5. For example, if the drop in performance caused by the 

reconstruction of the data redundancy is 5%, we assign Rf = 0.05. If more accuracy is needed, 

we introduce two factors, one for RAID1 and one for RAID5. So, the reward estimated for r1 

is: 
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R                                                                                          (3.18) 

 

Finally, the reward for r2 = 0, since the disk array is the failed state.  

The transient performability (TP) was defined in section 2.2.4. The TPM (3.7) gives us 

the probability of each state and with that we can estimate the performability of the disk array 

for every nth iteration of Δt time by using: 
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where (3.19) and (3.20) are used to estimate the disk array performability in IO/s 
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Now we need to come up with a way to estimate the performability of the mail server 

in number of users based on the performability in IO/s. We base the analysis on some of the 

recommendations for the configuration of an Exchange Server 2003 [Microsoft 07b].  

The formula to estimate the performability in mailboxes, i.e., users the mail server can 

support is based on three factors: 1) user profiles shown in Table 3.1; 2) the formula (3.21) for 

the IO/s needed to support a number of mailboxes depending on the user type [Microsoft 

07b]:  

 

)()__(/ UTypeMailboxesofNumbersIO                                                         (3.21) 

 

and 3) the fact that 90% of the IO/s are user interaction and the other 10% go to the 

logs maintained by the mail server. The formulas are: 
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where UType = (Light,Average,Heavy,Large). PMR1 and PMR5 and the performability 

in mailboxes for a R1 and R5 mail server. 

Table 3.1: User profiles and corresponding usage patterns 

User Type  Database Volume IO/s Send/Receive per day Mailbox Size 

Light .5 20 sent/50 received 50 MB 

Average .75 30 sent/75 received 100 MB 

Heavy 1.0 40 sent/100 received 200 MB 

Large 1.5 60 sent/150 received 500 MB 
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3.3 RESULTS OF THE FUZZY PERFORMABILITY ANALYSIS OF THE E-MAIL SERVER 

The intention of applying the fuzzy arithmetic to the performability analysis is to deal 

methodically with uncertainty. For the purpose of this example the authors decided to use a 

λ=1/10000 failure/hrs. Some of the parameters do not have a crisp value but a fuzzy value 

expressed in discretized form [Hanss 10a]. The discretized representation of fuzzy numbers 

used to deal with the Markov Chain model of performability can be expressed as fuzzy sets 

with five tuples (xi,μ(xi)) where xi is the value of the number and μ(xi) is the corresponding 

membership value of xi.  

 

 )]0,(),5.0,(),1,(),5.0,(),0,[( 54321

~
* xxxxxP                                                           (3.24) 

 

The fuzzy parameters for the this analysis are shown in a more concise form, where 

the μ(xi) is omitted for brevity: 

],,,,[ 54321

~

xxxxxp                                                                                               (3.25) 

The parameters for this analysis were the following: 

The life span of the mail server is 43,800 hours (5 years). 

G for R1 = 2, Number of disks for a R1 group 

G for R5 = 5, Number of disks for a R5 group  

N = 200, Total number of disks 

λ=[0.3x104, 0.5x104, 1x104, 2x104, 3x104] Failure rate 

μ=[1/24, 1/16, 1/8, 1/4, 3/8] Repair Rate 

Rp = [0.55, 0.6, 0.65, 0.7, 0.75], Percentage of Reads 

Rt = [0.002,0.002,0.002,0.002,0.002] , Time for a rotation 

St = [0.0038,0.0039,0.004,0.0041,0.0042], Time for a seek 

Bs = [4096,4096,4096,4096,4096], Block size 

χb = [2x108, 2x108, 2x108, 2x108, 2x108], Transfer rate 

Rf = [0.03,0.04,0.05,0.06,0.07], Rebuild impact on reward 
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The resulting performability estimation is a fuzzy number with five values. For every 

iteration of the time t given by t=nΔt (3.8), a fuzzy number representing a transient 

performability result is generated. The algorithm used to estimate the reliability and transient 

performability is presented in Table 3.2. 

 The discretized representation of the fuzzy number 𝑃̃∗ as shown in (3.25) is shown in 

graphical format in Fig. 3.2. The number 𝑃̃∗ is a triangular fuzzy number. The five xi values 

are shown with their respective membership value μ(xi) forming the five tuples that were 

obtained in each iteration of the algorithm presented in Table 3.2. 

 

 

 

Table 3.2: Algorithm to compute the performability of disk array 

I: Total number of iterations 

P: Transition Probability Matrix 

Δt: Time delta, e.g., 1 hour 

t: Time elapsed at iteration i with a Δt 

PS(t): Vector with state probabilities at time t 

PSk(t): Probability of being in state k at time t 

R(t): Reliability of at time t 

TP(t): Transient Performability at time t 

For i=1 to I do: 

{ 

    PPP ii 1    

    Matrix P is normalized 

     tit   

     iPPStPS )0()(       

     )()()( 21 tPtPtR SS    

     2211 )()()( SSSS rtPrtPtTP    

} 
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The continuous line is the central value of the fuzzy result, x3. The lower, x2, and 

upper, x4, dotted lines are values in between the central and both boundaries. The dashed 

lower line, x1, is the lowest boundary of the fuzzy result. The dashed upper line, x5, is the 

highest boundary of the fuzzy triangular result. 

 Fig. 3.3 shows the fuzzy RAID1 reliability of the mail server. It can be seen that there 

is a linear drop from 1 to 0.5 after 5 years of use. This is an indication that the mail server 

 

Fig. 3.2: Fuzzy number used for fuzzy performability estimation  
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Fig. 3.3: Family of curves for fuzzy reliability RAID1  
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most likely will not have any problems at the beginning of its life. At the end of its life there 

should be some provisions in case of failure.  

Fig. 3.4 shows the fuzzy RAID5 reliability of the mail server. It can be seen that there 

is a linear drop from 1 to 0.1 after 5 years of use. This is an indication that the mail server 

most likely will fail as it gets closer to the end of its life. Here it is clear that provisions must 

be made to counter this. For example, a backup server should be considered or budgeted 

within the next 5 years in case the “main” mail server fails. 

Fig. 3.5 shows the fuzzy RAID1 performability of the mail server. It can be seen that 

the IO/s range from around 40,000 to 20,000 at the beginning of the life of the mail server. 

The performability analysis tells us that after five years we can have throughputs in the order 

of 10,000IO/s to 25,000IO/s considering the reliability of the server. Depending on what level 

of service is expected in the next five years, plans should be made to adjust the amount of 

service the mail server will provide. 

 

 

Fig. 3.4: Family of curves for fuzzy reliability RAID5 
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Fig. 3.6 shows the fuzzy RAID5 performability of the mail server. It can be seen that 

the IO/s range from around 35,000 to almost 15,000 at the beginning of the life. The 

performability analysis tells us that after five years we can have no throughput. Here is very 

clear that if backup plans should be put in place to counter this future problem. 

 

 

 

Fig. 3.5: Family of curves for fuzzy performability RAID1 in IO/s  

 
Fig. 3.6: Family of curves for fuzzy performability RAID5 in IO/s 
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Figures 3.7 and 3.8 show the performability in number of users over the life of the 

RAID1 mail server. This measure can serve to plan for the amount of service the system can 

yield. As we can see, at the beginning of the life of the mail server it can serve up to 30,000 

light users or around 23,000 of the heavy users. If we want to keep this number of users 

constant we need to plan for the performability over the entire life of the product. In real life, 

figures 3.7 and 3.8 can be used to make the decision to use either RAID1 or RAID5 very easy 

based on the amount of service a business wants to provide. 

 

Fig. 3.7: Family of curves for fuzzy performability in Users (mailboxes) R1 
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Fig. 3.8: Family of curves for fuzzy performability in Users (mailboxes) R5 
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3.4 CONCLUSIONS 

It has been shown how performability analysis can be a tool for the analysis of the 

future capacity of service a computer system, and by extension, a service that a business can 

provide. In this section, it has been shown how performability based on specific fuzzy 

arithmetic approach can be a tool for planning the future in a way that allows a business to 

keep the quality of service promised to customers.  

This section has also presented a numerical method in the form of an algorithm that 

can be used to estimate the reliability and performability of a Markov Model. The algorithm 

presented in this section can be a starting point for the estimation of the reliability and 

performability. But this algorithm is extensible because it can be adapted to particular 

conditions, e.g., a RAID level like RAID6 that supports double disk failure, or a function can 

be introduced to change the reward of the states, rSk(t), and make the reward time-dependent 

instead of fixed. 

Using the fuzzy arithmetic approach, all assets of the model presented were taken as 

they were – uncertain. By employing fuzzy arithmetic, aggregated inherent uncertainties of 

such a RAID system were modeled in one run. Extreme system performability behaviors 

illustrated by boundary curves paint an immediate picture of what are the worst and best case 

scenarios under given system parameter uncertainties. The approach of performability 

modeling based on a numerical method and using fuzzy arithmetic therefore provides a 

powerful tool for the effective design and business planning. 
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CHAPTER 4: FUZZY CONTROL OF SPARING FOR DISK ARRAYS 

The analysis and modeling of the disk arrays under failure has been studied before 

[Muntz 90a], [Menon 93a], [Navarro 07b], [Navarro 07c]. But schemes of control of sparing 

have not been proposed in the literature before. This chapter presents two control schemes for 

the sparing data protection policy. The first is based on fuzzy logic and the second on a 

neural-fuzzy approach. Both schemes achieve a faster sparing than the traditional empty/no-

empty control model, but without impacting the latency of user request.  

Section 4.1 shows the fundamental model used in the fuzzy control scheme proposed 

in this chapter. The first model shown is the Queuing System with Vacations (QSV). The 

second model is of a disk array based on the QSV with the addition of the modeling of disks 

using disk-performance related measures. Also, models for the RAID1 and RAID5 rebuild 

processes are presented. 

Section 4.2 presents a fuzzy-logic controller that uses three input parameters: 1) 

latency of user requests, 2) queue length and 3) time of sparing, to make the decision whether 

to allow user requests to proceed or continue with the sparing. This controller makes use of 

control of queues as proposed in [Phillips 99a] and [Zhang 05a].  

Section 4.3 presents a neural-fuzzy controller (NFC) that uses three input parameters: 

1) latency of user requests, 2) fraction of data spared and 3) time of sparing, to make the 

decision whether to allow user requests to be carried out or continue with the sparing. 

Both sections, 4.2 and 4.3, compare their respective controllers against the traditional 

Queuing System with Vacations (QSV) model, or also referred to as empty/no-empty control 

model, where the sparing process only takes place when the queue is empty, or, in other 

words, when there are no users requests. 

4.1 FUNDAMENTAL MODELS 

4.1.1QUEUING SYSTEM WITH VACATIONS (QSV) 

A queuing system in which the server may be disconnected (turned off) or removed is 

said to be a queuing system with vacations [Medhi 03a]. Fig. 4.1 illustrates the concept of 

queuing systems with vacations (QSV). 
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The requests arrive at a rate λ to the queuing system. The requests are processed at a 

rate μ. When the queue is empty, the server is idle. Then the server can turn itself off and 

execute some background process (go on vacation). After some time the server returns from 

executing the background process and rechecks the queue. If the queue is not empty, then the 

server turns itself on and serves the requests that arrived during the vacation of the server. But 

if the queue is still empty, the server keeps itself off and goes on vacation (execute the 

background process) again. This is referred to in this document as the empty/no-empty 

approach to control of the QSV. 

 

4.1.2 DISK ARRAY QUEUING MODEL 

The complete model of the disk array is based on a central server model with the 

addition of the queuing system with vacations (QSV). One of the advantages of fuzzy logic is 

the possibility of easily modeling and controlling systems in which mathematical models can 

be hard to derive. The problem of finding optimal policies for networks of queues is not 

trivial. Some queue optimization problems are probably intractable [Papadimitriou 94a]. Fig. 

4.2 shows the model used for the disk array controller and the disks. This model combines the 

QSV with the queuing network formed by the disk array controller and the disks. The user 

requests to the queuing system arrive at a rate λ. The disk array controller then processes 

requests at a μ service rate.  

The first approximation to a latency for the user requests can be obtained by saying the 

user request latency (response time) is the sum of the latency of the disk array controller, rtdac, 

and the latency of the disk (for reads) or disks (for writes), rtdisk: 

 

diskdact rtrtr                                                                                                   (4.1) 

 

 

Fig. 4.1: Queuing System with Vacations (QSV) 

 

 

 

µ λ 

λ = arrival rate µ = service rate
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Estimating the latency of the disk array controller is not easy since it depends on two 

main factors: 1) the performance of the electronic components, e.g., CPU, memory; and 2) the 

software logic programmed in the disk array. This makes the modeling and estimation of the 

disk array controller latency, rtdac, hard to obtain. This section shows that even with the lack 

of an exhaustive and detailed mathematical model, fuzzy logic can be applicable to the control 

of the sparing process. Also, because of the complexity of the model, this section uses 

simulation to show the improvements made by the fuzzy controller. 

The model used in the simulation is based on the ST373454FC Seagate disk [Seagate 

05a]. The service time, Td, of a disk request depends on three factors: 1) rotational latency, trot,  

2) seek time, tseek, and 3) transfer time, txfer: 

  

xferseekrotd tttT                                                                                               (4.2) 

 

The disk positioning time is defined this way: 

 

seekrot ttDPT                                                                                                   (4.3) 

 

The disks will be modeled using the following equation: 

 

 

Fig. 4.2: Queuing system of controller and disks. 
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xferd tDPTT                                                                                                       (4.4) 

 

The disk service times are difficult to estimate since some factors, like disk 

specifications, disk caching and scheduling policy are hard to determine [Varki 03a]. The data 

used for this simulation came from measurements made on the ST373454FC Seagate disk. 

For random workloads the disk positioning time can be modeled by this equation in [Varki 

03a]: 

 

queuedisk

b
aDPT

_1
                                                                               (4.5) 

 

 

Fig. 4.3: Disk Position Times measured for Random Reads 
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Measurements were obtained from a ST37345FC disk to determine the parameters a 

and b for (4.5) for both random reads and writes. Fig. 4.3 shows the parameters were obtained 

for random reads, a = 2 and b = 4.75. The root-mean-square deviation (RMSD) between the 

measured and the estimated disk positioning time (DPT) was RMSD = 0.159. 

 Fig. 4.4 shows the parameters that were obtained for random writes, a = 2 and b = 

4.75. The root-mean-square deviation (RMSD) between the measured and the estimated DPT 

was RMSD = 0.324. 

The measured transfer time for random 4KiB transfers was txfer = 0.06ms and for 

random 128KiB transfers the txfer = 1.96ms. The simulations used later in this chapter made 

use of the parameters estimated for the DPT for random reads and writes as well as the txfer 

for 4KiB and 128KiB transfers.   

4.1.3 RAID1 REBUILD MODEL 

In this section, the new approach for sparing will be presented on the analysis of a 

RAID1 system. The RAID1 system can be in one of three modes: 1) optimal, when all the 

disks are working; 2) degraded, when one disk fails; 3) failed, when one pair of disks with the 

same data fail so there is no way to recover the data.  

 

Fig. 4.4: Disk Position Times measured 
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The RAID1 system consists of D disks, where D is an even number. The mirroring of 

the disks is by pairs of the dth with dth+1 disk, where d=1,3,5,…,D-1. The capacity of the disk 

is referred to as Cd. The disks are divided up in Nb number of disk blocks of size Sb. The 

number of Nb blocks per disk depends on the storage capacity of the disk Cd: 

 

bdb SCN /                                                                                                          (4.6) 

 

The disk block is the atomic unit of storage for the RAID1 system. When newly 

arrived data has to be stored on a disk, a new disk block is allocated. For this section, a block 

size Sb=128KiB will be used. This is the default size for the HP StorageWorks 1000/1500 

MSA [HP 06a]. Each disk block is referred to as Bi, where i=1,2,3,…,Nb.  

Fig. 4.5 shows the data layout of the RAID1 system in optimal mode. Each block Bi 

has a corresponding mirror on the other disk indicated by B’i. For example, disk 1 (disk dth) 

and 2 (disk dth+1) form a pair of data and its mirror. The spare disk is in standby mode and no 

data blocks have been allocated on it. 

 

 

Fig. 4.5: RAID1 disk array data layout 
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A workload with arrival rate λ is applied to the RAID1 system controller by the users. 

The throughput χ in IOs requests per second (IO/s), can be specified by: 

 

             𝜒 = 1
𝜆⁄                                                                                                   (4.7) 

 

 

The throughput is distributed across the disks. A balanced workload across the disks is 

considered in this section. 

When a disk fails, the sparing process is started and the copy of the data on the 

surviving disk to the spare disk is performed on a block by block basis. Fig. 4.6 shows an 

example of a failed disk; in this case, disk D-1 failed and the spare disk is now in process of 

replacing disk D-1. The sparing process copies the disk blocks Bi from disk D to the spare 

disk that is now the new disk D-1. 

The fraction of the Nb blocks copied is fsp. If Bc is the number of disk blocks already 

copied to the spare disk, then fraction of the Nb blocks is: 

 

bcsp NBf /
                                                                                                            (4.8) 

 

Fig. 4.6: Sparing process to replace failed disk D-1 
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When the RAID1 system is sparing, the combined throughput of the disks changes 

from that of the optimal state, since now we have two different conditions: 1) the surviving 

disk is now serving its share of user requests and reading its disk blocks; 2) the spare disk is 

writing its disk blocks and serving read requests for the data already copied and new writes to 

the data on it. The other D-2 disks are serving requests as they would normally do. This 

procedure to reconstruct the RAID1 redundancy is known as the baseline copy procedure 

[Muntz 90a]. There are other ways to proceed with the reconstruction of the data that are also 

mentioned in [Muntz 90a] 

4.1.4 RAID5 REBUILD MODEL 

For this section, a RAID5 disk array will be used for the analysis. The disk array can 

be in one of three modes: 1) optimal, when all the disks are working; 2) degraded, when one 

disk fails; 3) failed, when one pair of disks with the same data fail so there is no way to 

recover the data. For this section, the disk array will be considered to be in the degraded state. 

The disk array consists of D disks. The D disks are divided up in RAID5 disk groups 

of G disks [Patterson 88a]. Fig. 4.7 shows the data layout of the disk array in optimal mode. 

For the example shown in Fig. 4.7, G=5. The number of RAID5 groups is Ng: 

 

GDN g /
                                                                                                             (4.9) 

 

The data on the disks is divided up in data blocks. The spare disk is in standby mode 

and no data blocks have been allocated on it. In each disk group, one data block disk stores 

the parity of the data blocks of the other G-1 disks. Each data block is referred to as Bi,j, where 

i=1,2,3,…,Nb and j=1,2,..,G. The group of data blocks Bi,j where i is constant and j goes from 

j=1,2,…,G is referred to as a stripe. The number of Nb blocks per disk depends on the 

capacity of the disk, Cd as shown (4.6). The size of each data block Bi,j is Sb. A practical 

example of the size of the disks blocks is taken from the Storage Works 1000/1500 MSA [HP 

06a]. This disk array uses a default block size of 128KiB. Thus, for this section, a block size 

Sb=128KiB will be used. 

The user reads and writes are executed differently depending on which disk is the data 

to be accessed. The possible cases considered for this example are:  
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1) Optimal reads. If the disk on which the data is located is a working disk, a read 

requested to the RAID5 disk array controller translates into one read on that particular disk.  

2) Degraded reads. If the sparing process has already regenerated the data and written 

it on the spare disk, then it is possible to read the data from the spare disk directly, in this case 

this is an optimal read as in the previous case. But, if the disk on which the data is located is 

the failed disk, and the data has not been regenerated on the spare disks, then we have a 

degraded read. A degraded read requested to the RAID5 disk array controller translates into 

G-1 reads. This is because the data on the failed disk cannot be read and has to be 

reconstructed by reading the data (and the parity) on the other G-1 disks of the RAID5 disk 

group. 

3) Optimal writes. The example used in this section was of a disk array under small 

block (4KiB) randomly distributed writes. These are translated on the disks into the four 

accesses: two accesses to read the old data and the old parity, and two more accesses to write 

the new data and the new parity. This kind of writes is known as the read-modify-write 

(RMW) [Patterson 88a]. For the rest of this section, an optimal write is a RMW. 

4) Degraded write with a failed parity disk. If the disk on which the parity is located is 

the failed disk, then only the new data is written on the working disk where the old data was 

located. Later on, the sparing process will reconstruct the parity on the spare disk. Of course, 

there is also the possibility that the parity on the failed disk has already been reconstructed on 

 

Fig. 4.7: RAID5 disk array data layout 

 

Disk Array 

Controller

DISK 1

B1,1

B2,1

B3,1

P5,1

Bb,d

DISK 2 DISK 3 DISK 4 SPARE DISK

λ

λd λd λd
λd

B1,2

B2,2

B3,2

B1,3

B2,3

P3,3

B1,4

P2.4

B3,4

B5,3

Bb,d

B5,4

Bb,d

B5,2

Bb,d

DISK 5

λd

P1,5

B2,5

B3,5

B5,5

Pb,d

B4,1 P4,2 B4,3 B4,4 B4,5



  64 

 

 

the spare disk. If this is the case, then instead of a degraded write, this write is executed as an 

optimal write.  

5) Degraded write with a failed data disk. If the disk on which the data is located is 

the failed disk, then it is necessary to read the data on the other G-2 disks in the disk group. 

The data of the G-2 drives along with the new data to be written is used to compute a new 

parity. This new parity is then written on the working parity disk. 

6) Sparing write. The reconstruction (sparing) of the data is performed this way: the 

data (and parity, depending on the stripe being reconstructed), of the other surviving G-1 

disks is read. The data blocks Bs,j where j=1,2,..,G-1 and s is the stripe being spared, are read. 

Then the G-1 data blocks are used to compute the Bs,G block, which can be data or parity 

according to the rotating scheme of parity on the G disks. And then, the Bs,G block is written 

on the spare disk. Fig. 4.8 shows a RAID5 disk group where one disk failed and the spare disk 

is in the sparing process. 

In this model the fraction of the total Nb blocks copied is also fsp as shown in (4.8). A 

workload with throughput λ is applied to the disk array controller by the users. The percentage 

of read requests in the workload applied to the disk array controller is represented by ρ and 

the percentage of write requests in the workload is represented by ω. Both percentages are 

related by: 

 

 

Fig. 4.8: RAID5 disk sparing process to replace failed disk 
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 1
                                                                                                              (4.10) 

 

The throughput of the user reads, λR, is:  

 

 R                                                                                                                   (4.11) 

 

The throughput of the user writes, λRMW, is:  

 

 RMW                                                                                                   (4.12) 

 

One way to estimate the disk throughput is subdividing the throughput in two groups. 

One throughput, λOPT, is made up by the D-G disks that make up the Ng-1 optimal groups. The 

other throughput, λDEG,, is composed of the G disks where the failed disk is located. We can 

say, then, that the total throughput on the disks, λD, is: 

 

DEGOPTD  
                                                                                      (4.13) 

 

For this section, a balanced workload is assumed. We know that for optimal reads, 

there is a one-to-one correspondence between the user reads and disk reads. For the read-

modify-writes, two reads and two writes are performed for each one. With this, the throughput 

of the disks in the optimal groups is: 

 

)(
)4(

GD
D

RMWR

OPT 






                                                                                     (4.14) 

 

The throughput of the disks in the degraded group has to consider the fact that as the 

sparing process progresses, the fraction of data spared, fsp, goes to one and the accesses 

become optimal as more and more data has its redundancy reconstructed. Also, besides the 

user workload, the sparing process adds more requests on the disks. First, the reads in the 

degraded disk group can be estimated by reasoning this way: this is a balanced workload, so 
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each drive get its λR/D share of reads. For the G-1 working disks in the group, this translates 

into one disk read. But if the read is directed to the failed disk and the data has not been 

reconstructed on the spare drive, this translates into reads from the other G-1 disks. So, we 

can say that the throughput in the degraded disk group caused by the user reads, λDEG_READ, is: 

 

D

GffG spRspR

READDEG







)1()1(2
_

                                                                  (4.15) 

 

The writes in the degraded disk group can be estimated by reasoning this way: again, 

this is a balanced workload, so each drive get its λRMW/D share of reads. For the G-1 working 

disks in the group, this translates into two reads and two writes. But if the write is directed to 

the failed disk and the data (or parity) has not been reconstructed on the spare drive, this gives 

rise to one of two possibilities:  

1) the parity of the RMW was on the failed disk. Since the parity block rotates, we 

know that 1/G of each disk is used to store parity, so the probability of this case, ppar, is:  

 

Gp par /1
                                                                                                              (4.16) 

 

And the equation that estimates the throughput caused by the degraded writes with a 

failed parity disk, λDEG_PAR, is: 

D

pf RMWparsp

PARDEG




)1(
_




                                                                                 (4.17) 

 

2) the data of the RMW was on the failed disk The probability of this, pdat, is:  

 

GGpdat /)1( 
                                                                                               (4.18) 

 

And the equation that estimates the throughput caused by degraded writes with a failed 

data disk, λDEG_DATA, is: 
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                                                                          (4.19) 

 

So, we can say that the throughput in the degraded disk group caused by the user 

reads, λDEG_WRITE, is: 

 

PARDEGDATADEG

RMWsp

WRITEDEG
D
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___
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
 




                                          (4.20) 

 

The throughput in the degraded disk group also includes the throughput of the sparing 

process. The sparing writes, as mentioned above, require G-1 reads and one write. These 

accesses are of size Sb, and the throughput, λSPARING, depends on the characteristics of the 

drive, the throughput imposed by the user and the algorithm used for sparing. Putting the 

λDEG_READ, λDEG_WRITE, and the λSPARING, we have: 

 

SPARINGWRITEDEGREADDEGDEG   __                                                        (4.21) 

 

With (4.13) and (4.21) together is now easier to understand why the throughput of a 

disk array drops when a disk fails. 

4.2 FUZZY CONTROL OF THE SPARING PROCESS 

The proposed solution to find the optimal policy that balances the time needed to 

complete the sparing and the latency of the user requests is by using a fuzzy controller. This 

solution will be more flexible than the traditional QSV model, where the sparing process only 

occurs when the queue is empty. In this proposed solution more parameters will be 

considered. The input parameters will be fuzzified so we can base the decisions on fuzzy 

values. The use of fuzzy values allowed us the use of a rule base with the logic to control the 

sparing process. In Fig. 4.9 we show a graphical model of the proposed solution. 

The input parameters of the fuzzy controller are three: 1) The queue length of the 

controller, ql; 2) the latency of the disk array controller rt; and 3) the time elapsed since a disk 

failed and the sparing process started, tsp. 
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For this example the three parameters were normalized. The first parameter ql, is 

considered to make an improvement of the traditional QSV, empty/no-empty approach. The 

idea is to allow the sparing process to execute even if there are requests in the queue waiting 

to be served. The ql can be normalized by using Little’s theorem [Zhang 05a]. The 

normalization of variables make it easier to map the crisp values of the variable to fuzzy 

values. For example, if we assume an average latency of RTavg = 10ms for the users and an 

average throughput of λavg = 1,000 IO/s, then we can use Little’s theorem and estimate the 

average queue length: 

 

101000*010.0*  avgavgRTL 
                                                                     (4.22) 

 

The ql then can be considered to be 10 as an average. We considered 20 as the qlmax 

and the normalization of the ql was using this formula: 

 

maxql

ql
qln                                                                                                                (4.23) 

 

 

 

 

Fig. 4.9: Fuzzy controller of the QSV for sparing 
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The other two parameters are normalized by making two assumptions: 

1) The latency, rt, can be normalized if we consider that there are some upper limits to 

the latency the user applications can withstand without causing problems; such as high user 

latencies or timeouts of user applications. One example is with the Microsoft Exchange 

Servers. There are some latencies that are considered the maximum acceptable (50ms) 

[Microsoft 06a] and above those latencies there can be problems. For the simulation shown in 

this section, it was assumed that a delay of rtmax=50ms was the maximum that can be 

tolerated. The normalized response time (latency), rtn, used by the fuzzy controller is then: 

 

maxrt

r
rt t

n                                                                                                                (4.24) 

 

2) The time elapsed in the sparing process since a disk failed, tsp, is normalized also. 

The assumption made is that there is a maximum time acceptable for the user without the 

redundancy of the data restored. This is a reasonable assumption since the purpose of a disk 

array is to guarantee the redundancy of the data so there is no data loss when a disk fails. The 

maximum time allowed for a sparing to finish was assumed to be tspmax=24 hours. With this 

assumption the normalized time elapsed in the sparing process, tspn is: 

 

maxtsp

t
tsp

sp

n                                                                                                            (4.25) 

 

 

Fig. 4.10: Membership functions for the normalized values 
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With the three input parameters normalized, now the membership function can be 

defined. Three linguistic values were assigned three fuzzy descriptors, ZRO, MID, and ONE, 

which stand for “zero”, “middle value” and “one”. The fuzzification of the three fuzzy 

descriptors was performed via a triangular membership function for each descriptor. This 

technique is shown in [Zhang 05a]. Fig. 4.10 shows the triangular membership functions for 

all three input parameters. The graph shows also an example using a dummy variable ρ that 

can be replaced by any one of the three normalized parameters, qln, rtn and tspn. The 

membership function µZRO(ρ) for the fuzzy descriptor ZRO is: 

 

𝜇𝑍𝑅𝑂(𝜌) =   {
−2𝜌 + 1     𝑖𝑓  0 ≤ 𝜌 ≤ 0.5

   
0           𝑖𝑓  𝜌 > 0.5

                                                             (4.26)                                                                          

 

The membership function µMID(ρ) for the fuzzy descriptor MID is: 

 

𝜇𝑀𝐼𝐷(𝜌) =   {
 2𝜌                   𝑖𝑓  0 ≤ 𝜌 ≤ 0.5

   
−2𝜌 + 2        𝑖𝑓  0.5 < 𝜌 ≤ 1

                                                         (4.27)                                                                          

 

The membership function µONE(ρ) for the fuzzy descriptor ONE is: 

 

𝜇𝑂𝑁𝐸(𝜌) =   {
0               𝑖𝑓  𝜌 < 0.5

   
 2𝜌 + 1           𝑖𝑓  0.5 ≤ 𝜌 ≤ 1

                                                         (4.28)                                                                          

 

The fuzzy value of rtn is defined as Frtn: 

𝐹𝑟𝑡𝑛 = max  [ 𝜇𝑍𝑅𝑂(𝑟𝑡𝑛),  𝜇𝑀𝐼𝐷(𝑟𝑡𝑛), 𝜇𝑍𝑅𝑂(𝑟𝑡𝑛) ]                                                 (4.29) 

 

The fuzzy value of qln is defined as Fqln: 

𝐹𝑞𝑙𝑛 = max  [ 𝜇𝑍𝑅𝑂(𝑞𝑙𝑛),  𝜇𝑀𝐼𝐷(𝑞𝑙𝑛), 𝜇𝑍𝑅𝑂(𝑞𝑙𝑛) ]                                                 (4.30) 

 

The fuzzy value of tspn is defined as Ftspn: 

𝐹𝑡𝑠𝑝𝑛 = max  [ 𝜇𝑍𝑅𝑂(𝑡𝑠𝑝𝑛),  𝜇𝑀𝐼𝐷(𝑡𝑠𝑝𝑛), 𝜇𝑍𝑅𝑂(𝑡𝑠𝑝𝑛) ]                                         (4.31) 
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Now the next step is the specification of the rules for the rule base. The linguistic 

criteria can be summarized: 

1) The latency of the disk array controller, rt, should be kept as low as possible. This is 

one of the features that must be balanced during the sparing process. If the latency rt, is low, 

we can proceed with the sparing. 

2) The sparing process should be finished as soon as possible. This is the other feature 

that must be balanced. The closer we are to the maximum time allowed for a sparing process 

to finish, tspmax, more priority should be given to the sparing process. 

3) The lower the queue length is, the more we can spare since just few processes will 

be delayed.  

With these linguistic criteria, the rule base can be built. The output of each rule is a 

binary value of YES, which means continue the sparing process, or NO, which means to hold 

off the sparing process. The complete rule base of the fuzzy control of sparing is in Table 4.1. 

The output of the fuzzy controller is the decision to turn on/off the disk array 

controller to server user requests (on) or regenerate the redundancy (off). The deffuzification 

of the output is done by applying the rule and the result is a zero (NO) or a one (YES). We 

define the output set as the crisp set: 

 

𝐶𝑜𝑢𝑡_𝑓 = { YES, NO }                                                                                              (4.32) 

Table 4.1: Rule base of the fuzzy control of Sparing 

Rules 1-9 Rules 10-18 Rules 19-27 

rtn  qln tspn out rtn    qln tspn out rtn  qln   tspn out 

ZRO ZRO ZRO YES MID ZRO ZRO YES ONE ZRO ZRO YES 

ZRO ZRO MID YES MID ZRO MID YES ONE ZRO MID YES 

ZRO ZRO ONE YES MID ZRO ONE YES ONE ZRO ONE YES 

ZRO MID ZRO YES MID MID ZRO YES ONE MID ZRO NO 

ZRO MID MID YES MID MID MID YES ONE MID MID NO 

ZRO MID ONE YES MID MID ONE YES ONE MID ONE YES 

ZRO ONE ZRO YES MID ONE ZRO YES ONE ONE ZRO NO 

ZRO ONE ONE YES MID ONE MID YES ONE ONE MID NO 

ZRO ONE ONE YES MID ONE ONE YES ONE ONE ONE YES 
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The rules are of the form: 

𝑖𝑓  𝒓𝒕𝒏 ∈ 𝐹𝑟𝑡𝑛  𝑎𝑛𝑑  𝒒𝒍𝒏 ∈ 𝐹𝑞𝑙𝑛  𝑎𝑛𝑑  𝒕𝒔𝒑𝒏 ∈ 𝐹𝑡𝑠𝑝𝑛 𝑡ℎ𝑒𝑛  𝒐𝒖𝒕 ∈ 𝐶𝑜𝑢𝑡_𝑓               (4.33) 

 

4.2.1 SIMULATION AND RESULTS 

The model of the RAID5 system used for the simulation is based on the description in 

4.1.4 with that addition of a central server and the QSV as shown in Fig. 4.9. The user 

requests to the queuing system arrive at a rate λ. The RAID controller (the server) processes 

requests at a μ service rate. A simulation of the queuing system in Fig. 4.2 was the approach 

used in this section to show the improvements made by the fuzzy controller. The disk 

parameters used for this simulation were presented at the end of section 4.1.2. The simulation 

was done using the CSIM19 simulation package [Mesquite 07a]. The workload applied was 

75% reads (3:1 ratio), as typical for Exchange Server environments [Microsoft 06b]. A disk 

array with 80 ST373454FC disks was simulated using a RAID5 model as shown in section 

4.14. The disk array controller 1/μ used was 0.08ms with an exponential distribution. The 

throughputs applied for comparison were 1000, 2500, 5000, and 7500 IO/s. The throughputs 

were maintained constant during the entire duration of the simulation. The intention was to 

measure the variations in latency and the duration of the sparing process. 

The graphs used for the comparison show on the horizontal axis the total time taken 

for the sparing process to complete, and on the vertical axis the latency measured for the user 

requests. 

Fig. 4.11 shows the result for the 1000 IO/s throughput applied to the disk array. This 

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing. The graph shows the fuzzy-controlled sparing finishing in 1.5 hours after the disk 

failed; whereas the empty/no-empty sparing finished in 3.2 hours. For both cases, the latency 

was around 10ms. There is a great improvement in the reduction of the sparing time by half 

with no impact on the user request latency 
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Fig. 4.12 shows the result for the 2,500 IO/s throughput applied to the disk array. This 

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing. The graph shows the fuzzy-controlled sparing finishing in 2.1 hours after the disk 

failed, whereas the empty/no-empty sparing finished in 3.9 hours. For both cases, the latency 

 

Fig. 4.12:  User request latency comparison for 2,500 IO/s with fuzzy control 
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Fig. 4.11:  User request latency comparison for 1,000 IO/s with fuzzy control 
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was around 12.5ms. There is an improvement in the reduction of the sparing time by half with 

no impact on the user request latency. 

Fig. 4.13 shows the result for the 5,000 IO/s throughput applied to the disk array. This 

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing. The graph shows the fuzzy-controlled sparing finishing in 3.1 hours after the disk 

failed; whereas the empty/no-empty sparing finished in 5.4 hours. For both cases, the latency 

was around 17.5ms. There is an improvement in the reduction of the sparing time by half with 

no impact on the user request latency. 

Fig. 4.14 shows the result for the 7,500 IO/s throughput applied to the disk array. This 

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing again. The graph shows the fuzzy-controlled sparing finishing in 8.1 hours after the 

disk failed; whereas the empty/no-empty sparing finished in 4.6 hours. For both cases, the 

latency was around 24.5ms. There is an improvement in the reduction of the sparing time by 

half with no impact on the user request latency. 

 

Fig. 4.13:  User request latency comparison for 5,000 IO/s with fuzzy control 
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Table 4.2 with a comparison of the four results, shows an improvement of the sparing 

process by cutting the duration in half with no impact on the user request latency. This 

simulation shows the value of using fuzzy controlled logic for the improvement of the sparing 

process. 

 

Fig. 4.14: User request latency comparison for 7,500 IO/s with fuzzy control 
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Table 4.2: Comparison of results of the fuzzy control of sparing 

IO/s Empty/No-empty controlled sparing Fuzzy-controlled sparing 

 Sparing 

Duration (hrs) 

Latency (ms) Sparing 

Duration (hrs) 

Latency (ms) 

1,000 3.2 10 1.5 10 

2,500 3.9 12.5 2.1 12.5 

5,000 5.4 17.5 3.1 12.5 

7,500 8.1 24.5 4.6 24.5 
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4.3 NEURAL-FUZZY ALGORITHM FOR SPARING IN RAID SYSTEMS 

This neural-fuzzy sparing control scheme is based on the fuzzy sparing control scheme 

presented in section 4.2 but with two differences: 1) the rule base was implemented with an 

artificial neural network; and 2) the fraction of data that has been already spared from the 

surviving disks is used instead of the queue length. This neural-fuzzy sparing control scheme 

proposed to balance the time needed to complete the sparing and the latency of the user 

requests is composed of two neural nets with the following features: 1) the input parameters to 

the neural net controller are normalized so they are in the [0,1] range; 2) the input parameters 

are fuzzified using three membership functions, LOW, MED and HIG; 3) the fuzzification of 

the input parameters is made by the first neural net; 4) the second neural net implements the 

rule base and makes the decision whether to keep sparing or hold the sparing temporarily, 

based on the fuzzified parameters from the first neural net. In Fig. 4.15 we show a graphical 

model of the proposed solution. 

The input parameters of the fuzzy controller are three: 1) The fraction of data already 

spared from the surviving disks, i.e., the fraction of sparing, fsp; 2) the latency of the RAID 

controller rt; and 3) the time elapsed since a disk failed and the sparing process started, tsp.  

For this implementation of the neural-fuzzy controller the three parameters were 

normalized. The first parameter fsp from (4.8), is in the range [0,1]. The other two parameters 

are normalized by making two assumptions.  

The first assumption is that the latency rt can be normalized with respect to certain 

upper limits of the latency that the user applications consider excessive. One example is with 

 

Fig. 4.15: Neural-Fuzzy controller of the QSV for sparing 
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the Microsoft Exchange Servers for which there are some latencies that are considered the 

maximum acceptable and above those latencies there can be problems such as slow response 

experienced by customers or timeouts in applications [Microsoft 06a]. Here, it was assumed 

that a delay of rtmax=50ms was the maximum that can be tolerated, and that was the value 

used in the simulation of the sparing. The normalized response time (latency) rtn used by the 

fuzzy controller is the same as in (4.24) 

The second assumption made is that there is a maximum time acceptable for the user 

without the redundancy of the data restored. This is a reasonable assumption since the purpose 

of a RAID system is to guarantee the redundancy of the data so there is no data loss when a 

disk fails. The time elapsed in the sparing process since a disk failed tsp is normalized also. 

The maximum time allowed for a sparing to finish was assumed to be tspmax=12 hours. With 

this assumption the normalized time elapsed in the sparing process tspn is the same as in 

(4.25) 

With the three input parameters normalized, the membership function can be defined. 

Three linguistic values were assigned, LOW, MED, and HIG, which stand for “low”, 

“medium” and “high” value. This is following the same technique shown by Philips et. al. 

[Zhang 05a]. Fig. 4.16 shows the triangular fuzzy membership functions for all three input 

parameters. As it can be seen, the triangular functions are the same as the ones used for the 

fuzzy sparing control scheme presented in the previous section 4.2. And like in the previous 

section, Fig.4.16 shows also an example using a dummy variable ρ that can be replaced by 

any one of the three normalized parameters, fsp, rtn and tspn. The membership function for 

LOW is the same (4.26), the MED membership function is the same as (4.27) and the HIG 

membership function is the same as (4.28). 

 

The fuzzy value of rtn is defined as Frtn: 

𝐹𝑟𝑡𝑛 = max  [ 𝜇𝐿𝑂𝑊(𝑟𝑡𝑛),  𝜇𝑀𝐸𝐷(𝑟𝑡𝑛), 𝜇𝐻𝐼𝐺(𝑟𝑡𝑛) ]                                                (4.34) 

 

The fuzzy value of fsp is defined as Ffsp: 

𝐹𝑓𝑠𝑝 = max  [ 𝜇𝐿𝑂𝑊(𝑓𝑠𝑝),  𝜇𝑀𝐸𝐷(𝑓𝑠𝑝), 𝜇𝐻𝐼𝐺(𝑓𝑠𝑝) ]                                                 (4.35) 
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The fuzzy value of tspn is defined as Ftspn: 

𝐹𝑡𝑠𝑝𝑛 = max  [ 𝜇𝐿𝑂𝑊(𝑡𝑠𝑝𝑛),  𝜇𝑀𝐸𝐷(𝑡𝑠𝑝𝑛), 𝜇𝐻𝐼𝐺(𝑡𝑠𝑝𝑛) ]                                        (4.36) 

 

The three normalized parameters (fsp, rtn, tspn) in the range [0,1] are the input to the 

fuzzifier neural net. Fig. 4.17 shows the structure of the neural net used. Notice the two 

sections. The first neural net section, based on the value of the normalized parameter, will 

output a number 0, 0.5 or 1 that will correspond to one of the three possible fuzzy values 

(LOW, MED, HIG). The second section implements the rule base. 

The rule base can be implemented according to the following linguistic criteria: 1) the 

latency of the RAID controller rt, should be kept as low as possible. If the latency rt, is LOW, 

the sparing can continue without any risk of affecting the user request latency. 2) the sparing 

process should be finished within the maximum allowed, tspmax. The closer we are to HIG, the 

 

Fig. 4.17: Neural net layers of the Neural-Fuzzy controller for sparing 
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Fig. 4.16: Membership functions for the normalized parameters 
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more priority should be given to the sparing process. 3) the fraction of sparing data spared fsp, 

should be as close to HIG as possible. If the fraction of data already spared is close to zero, 

then the sparing process is favored over the latency. 

With these linguistic criteria, the rule base can be built. The output of each rule is a 

binary value of KEEP (1), which means continue the sparing process, or HOLD (0), which 

means to hold off the sparing process. The complete rule base is in Table 4.3. The output of 

the fuzzy controller is the decision to turn on/off the RAID controller to serve user requests 

(on) or regenerate the redundancy (off). The deffuzification of the output is done by applying 

the rule and the result is a zero (HOLD) or a one (KEEP) 

The output of the fuzzy controller is the decision to turn on/off the disk array 

controller to server user requests (on) or regenerate the redundancy (off). The deffuzification 

of the output is done by applying the rule and the result is a zero (NO) or a one (YES). We 

define the output set as the crisp set: 

𝐶𝑜𝑢𝑡_𝑛𝑓 = { KEEP, HOLD }                                                                                     (4.37) 

 

The rules are of the form: 

𝑖𝑓  𝒓𝒕𝒏 ∈ 𝐹𝑟𝑡𝑛  𝑎𝑛𝑑  𝒇𝒔𝒑 ∈ 𝐹𝑓𝑠𝑝  𝑎𝑛𝑑  𝒕𝒔𝒑𝒏 ∈ 𝐹𝑡𝑠𝑝𝑛 𝑡ℎ𝑒𝑛  𝒐𝒖𝒕 ∈ 𝐶𝑜𝑢𝑡_𝑛𝑓             (4.38) 

 

Table 4.3: Rule base Neural-Fuzzy controller for Sparing 

Rules 1-9 Rules 10-18 Rules 19-27 

rtn fsp tspn OUT rtn fsp tspn OUT rtn fsp tspn OUT 

LOW LOW LOW KEEP MED LOW LOW KEEP HIG LOW LOW HOLD 

LOW LOW MED KEEP MED LOW MED KEEP HIG LOW MED HOLD 

LOW LOW HIG KEEP MED LOW HIG KEEP HIG LOW HIG KEEP 

LOW MED LOW KEEP MED MED LOW KEEP HIG MED LOW HOLD 

LOW MED MED KEEP MED MED MED KEEP HIG MED MED HOLD 

LOW MED HIG KEEP MED MED HIG KEEP HIG MED HIG KEEP 

LOW HIG LOW KEEP MED HIG LOW HOLD HIG HIG LOW HOLD 

LOW HIG HIG KEEP MED HIG MED KEEP HIG HIG MED HOLD 

LOW HIG HIG KEEP MED HIG HIG KEEP HIG HIG HIG KEEP 
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4.3.1 SIMULATION AND RESULTS 

The complete model of the RAID1 system is based on the model described in 4.1.3 

with that addition of a central server and the QSV as shown in Fig. 4.2. The user requests to 

the queuing system arrive at a rate λ. The RAID controller (the server) processes requests at a 

μ service rate. Fuzzy logic offers the possibility of easily modeling and controlling systems in 

which mathematical models can be hard to derive. A simulation of the queuing system in Fig. 

4.15 shows the improvements made by the neural-fuzzy controller. The disk parameters used 

for this simulation were presented at the end for section 4.1.2. The neural network training 

was performed in Matlab. The resulting weights and biases were translated into the 

simulation. The simulation was done using the CSIM19 toolkit, which allows the discrete-

event simulation models [Mesquite 07a]. The testing parameters were chosen to resemble a 

typical Exchange Server environment [Microsoft 06b]: 75% reads (3:1 ratio). A RAID1 

system with 60 ST373454FC Seagate disks was simulated. The RAID controller had a μ = 

10,000 IO/s. 

The throughputs 1000, 2000, 4000 and 8000 IO/s, were maintained constant during the 

entire duration of the simulation, in order to measure the variations in latency and the duration 

of the sparing process. 

 

Fig. 4.18:  User request latency comparison for 1,000 IO/s with neural-fuzzy control 
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The horizontal axis shows the total time taken for the sparing process to complete. The 

vertical axis shows the latency seen by the user requests.  

Fig. 4.18 shows the result for the 1,000 IO/s applied to the disk array. This result 

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing. The graph shows the neurro-fuzzy-controlled sparing finishing in 1.4 hours after the 

disk failed; whereas the empty/no-empty sparing finished in 2.9 hours. For both cases, the 

latency was around 8ms. There is an improvement in the reduction of the sparing time by half 

with no impact on the user request latency. 

Fig. 4.19 shows the result for the 2,000 IO/s applied to the disk array. This result 

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 1.5 hours after the 

disk failed; whereas the empty/no-empty sparing finished in 3.1 hours. For both cases, the 

latency was around 9ms. There is an improvement in the reduction of the sparing time by half 

with no impact on the user request latency. 

 Fig. 4.20 shows the result for the 4,000 IO/s applied to the disk array. This result 

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 1.7 hours after the 

disk failed; whereas the empty/no-empty sparing finished in 3.8 hours. For both cases, the 

 
Fig. 4.19: User request latency comparison for 2,000 IO/s with neural-fuzzy control 
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latency was around 11ms. There is an improvement in the reduction of the sparing time of 

55% less time with no impact on the user request latency. 

Fig. 4.21 shows the result for the 8,000 IO/s applied to the disk array. This result 

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled 

sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 4.2 hours after the 

disk failed; whereas the empty/no-empty sparing finished in 7.5 hours. For both cases, the 

latency was around 19.5ms. There is an improvement in the reduction of the sparing time of 

44% with no impact on the user request latency. 

Table 4.4 presents a comparison of the four results, showing an improvement of the 

sparing process by cutting the duration in half with no impact on the user request latency.  

 

 

  
Fig. 4.20: User request latency comparison for 4,000 IO/s with neural-fuzzy control 
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4.4 CONCLUSIONS 

This chapter demonstrated that fuzzy and neural-fuzzy logic can be applied 

successfully to improve the sparing process in disk arrays. Both, the fuzzy-based and the 

neural-fuzzy controllers presented in this chapter outperformed the traditional empty/no-

empty sparing process by finishing in half the time without impacting the user request latency. 

  

 
Fig. 4.21: User request latency comparison for 8,000 IO/s with neural-fuzzy control 
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Table 4.4: Comparison of results of the neural-fuzzy control of sparing 

IO/s Empty/No-empty controlled sparing Fuzzy-controlled sparing 

 Sparing Duration (hrs) Latency (ms) Sparing Duration (hrs) Latency (ms) 

1,000 2.9 8 1.4 8 

2,000 3.1 9 1.5 9 

4,000 3.8 11 1.7 11 

8,000 7.5 19.5 4.2 19.5 
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CHAPTER 5: FUZZY CONTROL OF LV SNAPSHOT REPLICATION 

Snapshot of logical volumes is an area of research of high interest for storage 

companies that aim at improving the availability of the data while at the same time providing 

data replication [Simitci 03a], [NetApp 07a]. Logical volume snapshot is a feature that 

translates into easier backup management, faster recovery, and reduced exposure to data loss 

[Simitci 03a], [Xiao 06a]. The snapshot feature is typically provided by storage companies 

like IBM (Tivoli Storage Manager), HP (Business Copy), EMC (SnapView), NetApp 

(SnapDrive), and Hitachi (Copy-on-Write Snapshot) [Brooks 06a][HP 08a][EMC 

08a][NetApp 07a][Betrand 04a][Dufrasne 09a].  

By using the snapshot feature, users can create a point-in-time copy of a logical 

volume (LV). From the user’s standpoint, the snapshot feature creates an instant copy of the 

original logical volume. This gives users the means to preserve a point-in-time copy (the 

snapshot) of the data in a source logical volume. If the data in the source gets corrupted or 

lost, the user can go back to the snapshot and recover the data from that point in time. The 

original volume with the data to be replicated will be referred to as source volume, or just 

source, for short. The copy of the original volume will be referred to as the snapshot volume, 

or the snapshot, for short. 

Improvements in the management of snapshot replication have been proposed in 

[Azagury 02a][Elnikety 05a][Shira 05a][Brinkmann 06a]. Performance improvement in terms 

of data transfer have been shown in [Guangjun 08a] by Guangjun. Shah proposed a Logical 

Volume Manager 2 (LVM2) scheme that is an optimization of LVM that improved the read 

performance of the snapshot volume by 40% in [Shah 06a]. Variations of the basic snapshot 

algorithm such incremental or iterative snapshots have been proposed before in [Zhenjun 

06a][Guanping 05a][Zhong 04a]. Brinkman et al. proposed a scheme for snapshot in cluster 

environments [Brinkmann 07a]. 

This section presents a snapshot fuzzy control algorithm that significantly improves 

the latency of the user requests (reads or writes) during the snapshot process. The organization 

of this section is as follows: Section 5.1 presents the copy-on-write and redirect-on-write 

snapshot techniques. Section 5.2 presents a model for the snapshot and the modified process 

deriving a new equation for the snapshot replication process. Section 5.3 presents the fuzzy 
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control algorithm. Section 5.4 presents the experimental results. Section 5.5 presents the 

conclusions. 

5.1 BACKGROUND OF POINT-IN-TIME COPY TECHNOLOGIES 

The snapshot fuzzy controller improves the latency during the snapshot process by 

providing an intelligent way of combining two snapshot technologies: 1) Copy-on-Write 

(CoW) and 2) Redirect-on-Write (RoW). These two snapshot technologies will be described 

in two following subsections. The classification of snapshot techniques will be based mostly 

on Simitci in [Simitci 03a] and Xiao in [Xiao 06a]. 

5.1.1 COPY-ON-WRITE (COW) 

Source logical volumes are divided into DBv data blocks, where Bv is the total number 

of data blocks composing the source volume. Right after the snapshot volume is created, the 

pointers to data blocks on each volume (source and snapshot), point to the source volume 

(these pointers to data blocks are in some papers also referred to as metadata [Shah 06a]). 

This is illustrated in Fig. 5.1. If the user reads a block of data that has not been written to since 

the creation of the snapshot volume, the data will be read from the source volume. On the 

other hand, if the user reads a data block that has been written to since the creation of the 

snapshot, the data will be read from the snapshot volume. The first user write to a data block 

after the snapshot volume has been created will be referred to as the first user write.  

 

Fig. 5.1: Snapshot right after creation 
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If a first user write occurs to one of the data blocks in the source volume, for example 

Dj, then this block of data must be copied to the snapshot volume before that first user write 

occurs so that the original point-in-time data block Dj is preserved. Once the first user write 

occurs, the Dj data block in the source volume is modified so it is now referred to as the 

updated Dj’ data block. This snapshot technology is called copy-on-write (CoW) because 

every first user write to the source volume causes the disk array to copy the original data 

block from the source to the snapshot volume before proceeding with the user write. The copy 

of a data block to the snapshot volume before the first user write can occur adds an extra 

delay to that first user write, as it has to wait for the copy. The extra delay is called the copy-

 

 

Fig. 5.3: Snapshot after copy-on-write 

 

 

 

Fig. 5.2: Snapshot copy-on-write process 
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on-write penalty. When a data block from the source volume has been copied to the snapshot 

volume, then the original data block is said to have been snapped.  

After the copy-on-write is accomplished, the pointers to the respective data blocks 

(metadata) must be updated. Fig 5.3 now shows the source volume with the updated Dj’ block 

and the snapshot volume with the original Dj block. The snapshot volume data block pointers 

have to point to the original data blocks to maintain access to the point-in-time data. 

Therefore, the snapshot volume data block pointer to the original Dj block now points to the 

snapshot volume because that is where the original Dj block is preserved now. If the user 

accesses the snapshot volume, the user will be able to read the original Dj data block. If the 

user accesses the source volume, the user will read the newly updated Dj’ data block. Fig 5.3 

illustrates the space efficiency advantage of the snapshot solution. The space used on the 

snapshot volume is used only if there are new first writes to the source volume. Hence, 

subsequent writes to the same data block will not cause a copy-on-write.  

5.1.2 REDIRECT-ON-WRITE (ROW) 

In case of RoW, the new user writes to the source volume are redirected to another 

volume, set aside for the snapshot [Xiao 06a]. This redirection avoids the copy-on-write 

penalty since the writes proceed without the need of a copy-on-write of the original data to the 

snapshot volume. But in this case, the original volume still contains the original point-in-time 

 

 

Fig. 5.4: User data write after redirect-on-write 
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data, while the snapshot volume contains the updated block, which is the reversal of the copy-

on-write scenario. See Fig. 5.4. 

5.2 MODELING OF THE COPY-ON-WRITE SNAPSHOT 

5.2.1 MARKOV CHAIN MODEL OF THE PROBABILITY OF A SNAP 

The purpose of this section is to derive the equations for the probability of a copy-on-

write (CoW). In this section, the term snap will be used as a synonym for copy-on-write. The 

snapshot process can be modeled by a Markov Chain (MC) with a finite number of states 

under three considerations: 1) the write workload applied to the source volume is randomly 

distributed over the source volume, 2) the size (in KiB) of the user writes to the source 

volume is constant, and 3) writes to the source volume do not cross data block boundaries, 

that is, a write will only modify the data within one data block. These assumptions are in line 

with the accesses to databases, like Oracle ™ [Chan 08a]. The process can be understood 

intuitively by explaining how the snapping occurs. At the beginning, right after a snapshot 

volume has been created, the snapshot volume is empty. After the creation of the snapshot 

volume, write requests from a user come at a constant rate λ into the source volume. Since no 

data blocks have been snapped, the writes will cause a snap to occur. In other words, the 

probability is one that a write will cause a snap right after the snapshot volume is created. As 

more data blocks are snapped, the probability of a user write causing a snap will decrease. 

The sum of the snapped data blocks for a volume will be denoted by b and Bv is the total 

number of blocks that make up the source volume. The probability of a write causing a snap 

then is: 

 

 
v

v
snap

B

bB
P


                                                                                                      (5.1) 

 

This formula corresponds to the intuitive expectation. If no data blocks have been 

snapped, then b = 0 and the probability of a user write causing a snap is 1. If all of the data 

blocks have been snapped, then b = Bv, and the probability of a write causing a snap is zero, 

which means no more snaps will occur. The Markov Chain that models those probabilities is 

shown in Fig. 5.5 



  89 

 

 

To derive the equation for the transient analysis of the MC, differential equations were 

obtained assuming equilibrium in terms of the input and output flow from each state 

[Kleinrock 75a]. The differential equation for the probability of being in the state P0 at time t 

is: 

)(
)(

0

0 tP
dt

tdP
   with 1)0(0 P                                                                              (5.2) 

 

The solution of (5.2) is: 

 
tetP )(0                                                                                                             (5.3) 

 

The differential equation for the probability of P1(t) is: 
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The solution of (5.4) is: 
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The differential equation for the probability of P2(t) is: 
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Fig. 5.5: Markov chain of copy-on-write Snapshot 
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The solution of (5.6) is: 
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By induction, the probability of being in state b is: 
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The factorial term in equation (5.8) is a binomial coefficient, so the equation now 

becomes: 
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Equation (5.9) can be interpreted as the probability of having b blocks snapped at time 

t.; the snapshot process for a constant write arrival rate λ is governed by a binomial 

distribution.  

5.2.2 PRACTICAL SNAPSHOT PROBABILITY EQUATION 

Since the generation of CoW is a binary event in which a user write may or may not generate 

a CoW, it is not unexpected to have obtained an equation of a binomial probability. Equation 

(5.9) has the form of a binomial probability mass function (p.m.f.): 
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where the equivalent terms are: 
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The problem with (5.9) is that for practical uses, the number of blocks Bv that make up 

a volume is large. For example, a 64GiB source volume will be made up of Bv = 

64GiB/128KiB = 524,288 blocks. Obtaining the factorial of such big numbers can render the 

use of (5.9) impractical. Factorials as big as this are not computed in practice. That is why the 

authors propose the use of the equivalent terms p and q of the binomial p.m.f: 
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Consider the behavior of (5.11) and (5.12) at t=0 and as t→∞. At t=0, or at the 

beginning of the snapshot process, the probability of causing a snap is one, as it has been 

established by (5.9). It can be observed that (5.11) has a value of one at t=0 and (5.12) has a 

value of zero. As time goes by and the user writes keep arriving at a λ rate into the source 

volume, the value of (5.11) goes to zero. The snapshot probability equation psnap(t) is then: 
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The probability of not causing a snap would be described by (5.12) and it could be 

now taken as the probability of not having a snapshot: 
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Equations (5.13) and (5.14) can be used to determine how the disk array will recover 

the latency and throughput that it had before the snapshot process started. These equations 

explain why user requests may experience high latencies at the start of a snapshot when the 

disk array is subjected to a constant arrival OLTP workload. Equation (5.13) was tested 

against a snapshot setup to confirm its usefulness as a prediction of the behavior of a snapshot 

volume under a constant OLTP workload of user writes. Fig. 5.6 shows a comparison of the 

predicted probability of a snapshot occurring vs. the percentage of data blocks snapped. The 

equation lines up almost perfectly with observed fraction (percentage) of unsnapped data 

blocks, i.e., data blocks to still to be snapped. 
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5.2.3 MODEL OF THE COW PROCESS  

The model of the copy-on-write process is based on the latency delivered by disks 

under an OLTP workload. The two most important measures of the OLTP workload imposed 

on the disk array are the arrival rate in IO requests per second (IO/s) and the latency in 

milliseconds [ms]. Assuming the write cache memory is in write-through mode, the latency 

that disks deliver under certain IO/s arrival rate is the key feature that will determine the 

latency of the user accesses (reads or writes).  

The latency of an access (read or write), tacc, from a disk is a function of the arrival 

rate on the disk, λd: 

 

( )acc dt f 
                                                                                                         (5.15) 

 

The latency introduced by the copy-on-write process, Tcow, is influenced by the delay 

of a read of the data block, Tr, from the disk where the source data block is located plus the 

delay of the write of that data block, Tw, to the disks where the snapshot data block will be 

located. This can be expressed as: 

 

 

 
Fig. 5.6: Graph of the psnap equation predicting the fraction of unsnapped blocks 
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𝑇𝑐𝑜𝑤 = 𝑇𝑟 + 𝑇𝑤                                                                                                   (5.16)  

 

The capital “T” letters indicate that the latency is for large block transfers. The data 

blocks copied during the copy-on-write process are large in size compared to the user writes. 

For example, data blocks can be 128KiB in size whereas user writes can be 8KiB in size. 

A flow of user writes is received by a disk array. Some of the user writes, according to 

the psnap probability will cause a snap, and therefore those user writes will have to wait for the 

copy-on-write before being carried out (copy-on-write penalty). And some of the other writes, 

according to the 1-psnap probability, will be carried out immediately. The arrival rate of the 

user writes, λw, along with the psnap probability, determines the arrival rate all disks in the disk 

array will receive, λD. Fig. 5.7 illustrates this process. 

The copy-on-write process causes extra disk accesses on the disk array. If a write to a 

data block causes a snap that triggers a copy-on-write, then a data block (for example, 128KiB 

in size), has to be read from a disk and it has to be written on some other disks depending on 

the RAID level used by the snapshot volume. For example, if RAID1 is used on the snapshot 

volume, then a copy-on-write will generate one read of a data block from a disk and two 

writes to different disks. Therefore, three more accesses on disks in the disk array were 

generated in the background. The accesses generated by the copy-on-write that depend on the 

RAID level of the snapshot volume defined by the αRL factor. For RAID1 the αRL =2, which is 

the number of disk writes needed for each user data write.  

 

 
 

Fig. 5.7: User writes arrival rate and arrival rate caused by snaps 
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The total extra arrival rate on the disk array generated by the copy-on-writes, λcow, is: 

 

𝜆𝑐𝑜𝑤 = (1 + 𝛼𝑅𝐿)𝜆𝑤𝑝𝑠𝑛𝑎𝑝                                                                               (5.17)  

 

The total arrival rate on the disk array, λD, including user reads, is: 

 

𝜆𝐷 = 𝜆𝑟 + 𝛼𝑅𝐿𝜆𝑤 + 𝜆𝑐𝑜𝑤                                                                                 (5.18)  

 

For the sake of simplicity, it was assumed that the arrival rate is balanced across all the 

disks in a disk array, Nd, and the arrival rate on each disk is  

 

/d D dN 
                                                                                                       (5.19)  

 

The snapshot process occurs while users are accessing a disk array. If a user write 

causes a snap to occur, then it has to wait for the snap to take place before proceeding (the 

copy-on-write penalty):  

 

𝑡𝑐𝑜𝑤 = 𝑡𝑤 + 𝑇𝑐𝑜𝑤                                                                                               (5.20)  

 

The average time for the user writes is: 

 

𝑡𝑤̅̅ ̅ = 𝑡𝑐𝑜𝑤𝑝𝑠𝑛𝑎𝑝 + (1 − 𝑝𝑠𝑛𝑎𝑝)𝑡𝑤                                                                  (5.21)  

 

This can be more simply expressed by combining (5.20) and (5.21): 

 

𝑡𝑤̅̅ ̅ = 𝑡𝑤 + 𝑇𝑐𝑜𝑤𝑝𝑠𝑛𝑎𝑝                                                                                        (5.22) 
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5.2.4 MODEL OF THE PROPOSED COW-ROW PROCESS  

This dissertation presents a snapshot process that reduces the latency during the 

snapping of the source volume. It is a combination of the CoW and RoW processes, facilitated 

by the fuzzy controller.  

The snapshot process is modified by introducing a control input parameter named 

snap throttle factor uth. This actuating variable (control input), represents the percentage of 

copy-on-write that will be allowed out of the all the snaps generated by user writes. The other 

snaps will generate a redirect-on-write. The modified CoW-RoW process is illustrated in Fig. 

5.8. 

The modified CoW-RoW process now redirects a fraction of the copy-on-writes to 

redirects-on-write. The reduction in the number of copy-on-writes reduces the arrival on the 

disks which in turn reduces their latency. The extra arrival rate on the drives is now:  

 

𝜆𝑟𝑜𝑤−𝑐𝑜𝑤 = 𝜆𝑤[𝑢𝑡ℎ(1 + 𝛼𝑅𝐿)𝑝𝑠𝑛𝑎𝑝 + (1 − 𝑢𝑡ℎ)𝛼𝑅𝐿]                             (5.23)  

 

And the total arrival rate on the disk array, λD, including user reads, is: 

 

𝜆𝐷 = 𝜆𝑟 + 𝜆𝑤𝛼𝑅𝐿 + 𝜆𝑟𝑜𝑤−𝑐𝑜𝑤                                                                         (5.24) 

 

 
Fig. 5.8: Modified CoW-RoW process 
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The user writes now will experience smaller latencies since the delay introduced by 

the redirect-on-writes, trow is significantly lower than tcow. The average latency experienced by 

user writes with the modified CoW-RoW process is expressed in the following equation: 

 

 𝑡𝑤̅̅ ̅ = (1 − 𝑝𝑠𝑛𝑎𝑝)𝑡𝑤 + [𝜇𝑡ℎ𝑡𝑐𝑜𝑤 + (1 − 𝜇𝑡ℎ)𝑡𝑟𝑜𝑤]𝑝𝑠𝑛𝑎𝑝                                      (5.25) 

 

One possible simplification can be made if it is assumed that the redirects-on-write are 

the same as user writes, since the user write is redirected to the snapshot volume instead of the 

source volume but with no other extra step in the process. This further entails that trow ≈ tw, 

and (5.25) can be simplified as:  

 

 𝑡𝑤̅̅ ̅ = 𝑡𝑤 + 𝜇𝑡ℎ𝑇𝑐𝑜𝑤𝑝𝑠𝑛𝑎𝑝                                                                                        (5.26) 

 

This equation shows why the latency is better with the CoW-RoW process if the snap 

throttle factor, uth, is less than 1. The determination of the input control uth and the control of 

the snapshot process with the fuzzy control are explained in the next section. 

5.3 SNAPSHOT FUZZY CONTROL 

5.3.1 PURPOSE AND RATIONALE OF THE SNAPSHOT FUZZY CONTROLLER  

The snapshot fuzzy controller can be considered as a dynamic and optimal Takagi-

Sugeno fuzzy-logic based controller. The block diagram of the snapshot fuzzy controller is 

illustrated in Fig. 5.9. The purpose is to minimize the average latency of user accesses tw, and 

tr during a snapshot process by controlling the dynamics of the snapshot process.  

5.3.2 HIGH LEVEL MODELING OF THE SNAPSHOT FUZZY CONTROLLER 

From a control standpoint the disk array is the controlled system. The controlled 

system has two inputs: the arrival rate of writes, λw, and the arrival rate of reads, λr. 

The total arrival rate, λ, is the sum of the input parameters: 

 

r w   
                                                                                                        (5.27) 
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The outputs of the system to be controlled (disk array) are the average latencies 

experienced by the user accesses (reads or writes), tr, and tw: 

  

1 2( ) [ ] [ ]i w ry t y y t t 
                                                                               (5.28) 

 

The state variables required for the snapshot fuzzy controller are 1) the probability of 

snapped blocks in the volume, psnap, which is a value in the [0,1] range; and 2) the numbers of 

copy-on-writes per time unit, in other words, the arrival rate of copy-on-writes in the disk 

array, λcow.  

 

1 2( ) [ ] [ ]i snap row cowx t x x p   
                                                                (5.29) 

 

The control input variable is the snap throttle factor, uth 

 

1( ) [ ] [ ]i thu t u u 
                                                                                               (5.30) 

 

The snapshot fuzzy controller also requires a reference variable, the reference latency 

wrt, the maximum acceptable user request latency during the snapshot process. The maximum 

latency used in this section was 30ms, from the Oracle ™ performance tuning guide [Chan 

08a] as a latency value that gives a good indication of an overly active I/O system. 

 

 
 

Fig. 5.9: Snapshot fuzzy controller 
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The outputs have to be periodically monitored every Tm seconds. The decision on how 

often to monitor can be based on the maximum acceptable latency and the performance of the 

disk array controller. Each sample is denoted by (ti), where i is the i-th sample of the output 

that occurred at a time ti, as in: 

 

mi iTt     where  i = 0,1,2,…                                                                         (5.31) 

 

5.3.3 DECISION LOGIC  

If a user write causes a snap, then the snapshot fuzzy controller makes a decision 

about the three possible choices to execute: 1) perform a copy-on-write at the time when the 

user write is being served; 2) defer the copy-on-write operation by executing a redirect-on-

write; 3) perform a copy-on-write of the target data block if a redirect-on-write already took 

place for that data block. The fuzzy controller throttles the snapshot process by controlling the 

percentage of copy-on-writes that are caused by user writes (option 1), versus the percentage 

of user writes with deferred copy-on-write (option 2). This percentage is the output of the 

snapshot fuzzy controller and is named snap throttle factor uth. For example, if uth = 0.4, this 

means that only 40% of the user writes that cause a snap will also generate a copy-on-write. 

The other 60% of the user writes that are causing a snap will generate a redirect-on-write. 

5.3.4 ESTIMATION AND FUZZIFICATION OF THE PROBABILITY OF A SNAP  

The probability of a snap is used as part of the determination of the snap throttle 

factor. The fsnap(ti), in addition to being an indication of the percentage of blocks snapped at a 

time ti, also denotes the probability of further snaps. For example, if 90% of the blocks in a 

volume have been snapped, the probability of user accesses causing further snaps is only 10% 

(assuming a random user access over the volume). The probability of a snap at time ti is: 

 

)(1)( isnapisnap tftp 
                                                                                   (5.32) 

 

The probability of a snap psnap(ti), the error e(ti), and the change in error Δe(ti), are the 

three variables used by the fuzzy controller to compute the snap throttle factor, uth(ti). These 
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three variables need to be first fuzzified as shown in [Michels 06a]. The fuzzification of psnap 

is done in very straightforward fashion. If the probability of snap is less than or equal to 0.5, it 

is mapped to the Low Probability (LP) fuzzy descriptor. If the probability of a snap is greater 

than 0.5, it is mapped to the the High Probability (HP) fuzzy descriptor. The membership 

function of probability of a snap is therefore defined by: 

 










5.01

5.00
)(

snap

snap

snappsnap pif

pif
p

                                                                            (5.33) 

 

The final fuzzification of the psnap value is denoted by Fpsnap(μsnap), and is defined as: 

 










1

0
)(

snap

snap

snappsnap ifHP

ifLP
F






                                                                          (5.34) 

 

5.3.5 CONTROL ERROR COMPUTATION AND FUZZIFICATION  

The output y(ti) is compared with the reference latency wrt to compute the control 

error, e:  

rtii wtyte  )()(
                                                                                               (5.35) 

 

The change in the control error, Δe, is also computed: 

 

)()()( 1 iii tetete
                                                                                          (5.36) 

 

The final goal in the fuzzification of the control error e and change in the control error 

Δe is to map them to one of three fuzzy descriptors, Zero (ZE), Positive Error (PE), and 

Negative Error (NE), respectively. These fuzzy descriptors apply to both the control error e 

and change in control error Δe. The purpose of these fuzzy descriptors is to indicate when the 

control error is close to zero, or in case where the error does exist, whether the control error is 

positive or negative. This fuzzification is first performed via three triangular membership 
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functions, μZE, μNE and μPE, based on the reference latency wrt. The membership functions are 

described using a dummy variable error, ε, since these membership functions are the same for 

both e and Δe: 
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Fig. 5.10: Membership functions for e and Δe 
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The membership functions (5.37), (5.38) and (5.39) here shown are for the control 

error e (if ε = e), and for the change in control error Δe (if ε = Δe). The graphical 

representation of the membership functions is shown in Fig. 5.10.  

To finish the fuzzification, the control error e and the change in control error Δe are 

mapped into one of the fuzzy descriptors (NE, ZE, or PE). This is accomplished by comparing 

the values obtained for the three membership functions (5.37), (5.38), and (5.39). Depending 

on which of the three has the maximum value the fuzzy value of the error Fe, and the fuzzy 

value of the change in error FΔe, are mapped into one of the fuzzy descriptors NE, ZE or PE: 

 

),,max( PE

e

ZE

e

NE

eeF 
                                                                                   (5.44) 

  

),,max( PE

e

ZE

e

NE

eeF   
                                                                                   (5.45) 

 

For example, if the output y(t1) is 45ms, then using (5.35) the error e is 15ms. The 

membership values, obtained by using (5.37), (5.38) and (5.39), are μZE=0, μNE =0, and μPE=1. 

It is clear that the maximum value corresponds to μPE. Using (5.44), the fuzzy value of the 

error Fe will be mapped to Positive Error, PE. This same procedure is used for the change in 

error to map it into one of the fuzzy descriptors, NE, ZE or PE.  

5.3.6 RULE BASE TO OBTAIN UTH  

The rule base can now be built based on the following heuristic criteria: (1) if the user 

request latency is high, then the control error, e, is fuzzy positive error, PE, and the controller 

needs to reduce the number of copy-on-writes occurring. Therefore, the snap throttle factor uth 

is reduced. (2) if the user request latency is low, then the controller can increase the number of 

copy-on-writes occurring. Therefore, the snap throttle factor uth is increased. Otherwise, uth 

stays the same. The probability of more copy-on-writes and the change in error are also taken 

into account.  

Once the three fuzzified input variables e, Δe, and psnap, are estimated, is the 

evaluation of the fuzzy rules. The output of the fuzzy rules is the change in snap throttle 
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factor Δuth(ti). This value will denote the change in the snap throttle factor for the current 

iteration. The rule base is in Table 5.1. The rules are of the form: 

 

𝑖𝑓 𝑝𝑠𝑛𝑎𝑝 ∈  𝐹𝑠𝑛𝑎𝑝 𝑎𝑛𝑑 𝑒 ∈ 𝐹𝑒 𝑎𝑛𝑑 Δ𝑒 ∈ 𝐹Δ𝑒 𝑡ℎ𝑒𝑛 𝜇𝑡ℎ(𝑡𝑖) = 𝜇𝑡ℎ(𝑡𝑖−1) + Δ𝜇𝑡ℎ(𝑡𝑖)          (5.46) 

 

where Δuth(ti) can be in the [-1,1] range. Based on the chosen rule, an equation (5.46) 

is computed for the snapshot fuzzy controller. The snap throttle factor uth value is in the 

[0.05,1] range. The value 0.05 as the minimum for uth was based on empirical observations of 

actual snapshot processes. This value allows some copy-on-writes to proceed and make a little 

progress with the snapshot. The initial values when a snapshot volume is created are uth(0) 

=0.05 and e(0) = 0. 

5.3.7 STABILITY OF THE FUZZY CONTROLLER 

The fuzzy system presented here is globally asymptotically stable based on the fact 

that it meets the stability condition for the state variables, which according to [Michels 06a] 

Table 5.1: Rule base for Snapshot Fuzzy Controller 

Rule Number 

Rule Input Variables Rule Output 

psnap e Δe Δuth 

R1 HP PE PE -0.2 

R2 HP PE ZE -0.1 

R3 HP PE NE -0.1 

R4 HP ZE PE -0.1 

R5 HP NE ZE +0.05 

R6 HP NE NE +0.05 

R7 LP PE PE -0.05 

R8 LP PE ZE -0.05 

R9 LP ZE ZE +0.05 

R10 LP ZE NE +0.05 

R11 LP NE ZE +0.05 

R12 LP NE NE +0.05 
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shows that state variables converge to a reference vector as time goes to infinity. In the case 

of the snapshot fuzz controller, the probability of a snap, psnap and therefore the λrow-cow arrival 

rate (5.33) converges to zero as user writes access more source volume data blocks as time 

goes by. The exponential decrease of the probability of a snap decreases the possibility of 

CoWs and therefore the probability of processing the user writes with no delay is greater, 

which makes the snapshot fuzzy controller less likely to intervene and cause instability. The 

stability of the fuzzy controller is then guaranteed by the condition: 

 

lim
t→∞

𝑝𝑠𝑛𝑎𝑝(𝑡) → 0                                                                                                (5.47) 

 

5.4 EXPERIMENTAL RESULTS 

The snapshot fuzzy controller was tested with a setup that consisted of an HP 7640 

Itanium workstation with 48GiB of memory and with RedHat Linux 6.2 installed. The disk 

setup consisted of 118 BF1465A477 15K RPM disks. The traditional copy-on-write and the 

 
Fig. 5.11: Comparison of latency at 3,000 IO/s, 100% User writes 
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ACHIEVEMENT:
The fuzzy controlled snapshot could decrease the early impact  on latency 
of the initial burst of snaps that occur with the traditional snapshot. 
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snapshot fuzzy controller were implemented in C language and compiled with GCC 4.4.6. 

The implementation was executed as a parent process in the user space and not as a part of the 

kernel. The parent process performed the following functions: 1) spawned user requests at a 

constant rate using the fork() Unix function; 2) kept track of the data blocks written, snapped 

and or with a redirect-on-write. The data block table was in shared memory so it could be 

updated by the spawned user requests; 3) monitored the latency of the user requests; 4) 

implemented the snapshot fuzzy control logic.   

A comparison was run with an 8KiB workload, 0% reads at 3,000 IO/s.  The source 

volume was a RAID1 128GiB in size using data blocks of 256KiB laid out in an evenly 

fashion over all the 118 disks. The results in Fig. 5.11 show the traditional copy-on-write 

implementation delivering initial latencies for user writes (black line) in the 65 ms range. The 

snapshot fuzzy controller implementation proved superior since it could keep the initial 

latency for user writes (red line) in the low 30 ms range.  

Another comparison was run with an 8KiB workload, 50% reads at 5,000 IO/s.  The 

source volume was a RAID1 128GiB in size using data blocks of 256KiB laid out in an 

evenly fashion over all the 118 disks. The results in Fig. 5.12 show the traditional copy-on-

write implementation delivering initial latencies for user writes (black line) in the 65 ms 

range. For user reads (purple line) the traditional copy-on-write delivered a latency in the 10-

 
Fig. 5.12: Comparison of latency at 5,000 IO/s, 50% User writes 
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15ms range. The snapshot fuzzy controller implementation proved superior since it could 

keep the initial latency for user writes (red line) in the low 35-40ms range. For the user reads 

(orange line), the latency delivered by snapshot fuzzy controller was in the 10-12ms range. 

5.5 CONCLUSIONS 

The greatest benefit the snapshot fuzzy controller delivers is to avoid the high latency 

peak at the beginning of a snapshot process as predicted by the equations (5.13) and (5.14) 

developed for the traditional copy-on-write snapshot. These equations can provide a guide for 

the snapshot behavior even for different disks speeds and disk arrays if the snapshot process is 

the traditional copy-on-write. The improvements in latency the snapshot fuzzy controller 

delivers show how computationally intelligent techniques, namely fuzzy logic, 1) can be 

applied to the data backup management for disk arrays; 2) can outperform traditional 

techniques like copy-on-write; 3) can be used to control the nonlinear response of disks. The 

reduction of the impact caused by the traditional copy-on-write is the accomplishment that 

meets the performability challenge imposed by the copy-on-writes.  

  



  106 

 

 

CHAPTER 6: T2 FUZZY CONTROL OF LOGICAL VOLUME CLONING REPLICATION 

The logical volume cloning replication feature offered by disk arrays provides point-

in-time copies of the logical volumes to guarantee data protection to users if an event like data 

corruption or if accidental deletion occurs. Disk array manufacturers offer this option as part 

of their set of data replication features. The SnapClone feature offered by Hewlett Packard 

[HP 08a] and the EMC TimeFinder/Clone [EMC 05a] and the IBM Flashcopy [Garimella 

06a] provide full-volume point-in-time copies of logical source volumes. The logical volume 

cloning replication features mentioned provide some form of background copy of the logical 

source volume. The details of the algorithms used for the replication are kept confidential by 

the vendors. This kind of logical volume replication is referred to as background because it 

occurs in the background while the disk array is servicing user requests (reads and writes). 

The term local is used to refer to the fact that the copy of the logical volume is stored in the 

same disk array that holds the original logical volume and the copy. In this chapter the term 

cloning or cloning replication will be used to refer to the local background copy of all the data 

in an LV (source) to another LV (clone or replica). 

Interval Type-2 Fuzzy Logic Controllers (IT2 FLCs) have been proposed as a better 

alternative to Type-1 Fuzzy Logic Controllers (T1 FLCs) [Hagras 07a]. As stated by Mendel 

in [Mendel 10a], the question of establishing when and by how much Type-2 Fuzzy System 

(T2 FS) or Interval Type-2 Fuzzy Systems (IT2 FS) will outperform a Type-1 Fuzzy System 

(T1 FS) may be the most important unanswered question in the T2 field. Wu in [Wu 12b] 

presents a comparison between IT2 FLCs and T1 FLCs and the results show that IT2 FLCs 

are more adaptive and can implement more complex control surfaces than a T1 FLC with the 

same rule base. 

The purpose of the type-2 fuzzy based control is to balance the impact on the latency 

of the user requests with the speed (or rate) of the replication. On one hand, the users want 

very little (or no) impact on the latency of the requests (read and writes) and on the other 

hand, the users want the replication of the data to take the shortest time possible to protect as 

much data as possible in the shortest time possible.  

This chapter presents a type-2 fuzzy based control of background local cloning 

replication. Section 6.1 explains the basic theory of type-2 fuzzy logic. Section 6.2 describes 

the fundamental blocks of a type-2 fuzzy controller. Section 6.3 explains the process of local 
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replication and the copy-on-writes requests that impact the user request latency. Section 6.4 

shows the queuing scheme for the local replication. Section 6.5 presents a mathematical 

description of the cloning replication process and a new formula. Section 6.6 presents the 

type-2 fuzzy controller used for local replication. Section 6.7 will present the experimental 

results and section 6.8 will present the conclusions.  

6.1 INTERVAL TYPE 2 FUZZY SETS 

Interval Type-2 fuzzy sets (IT2 FS) are an extension of type-1 fuzzy sets [Karnik 99a]. 

The Interval Type-2 Fuzzy Set in Fig. 6.1 shows the graph of the membership function of a 

triangular IT2 FS. The horizontal axis denotes the values x in the domain X, e.g., real or 

integer numbers. The vertical axis denotes the membership function u(x) ∈ [0,1] for each 

value of x in the domain X. An IT2 FS denoted 𝑋̃ can be characterized by a type-2 

membership function 𝜇𝑋̃(𝑥, 𝑢) where x ∈ X and 𝑢(𝑥) ∈ 𝐽𝑥 ⊆ [0,1] in which 0 ≤ 𝜇𝑋̃(𝑥, 𝑢) ≤ 1 

and can be expressed as [Karnik 99a]: 

 

𝑋̃ = ∫ ∫ 𝜇𝑋̃(𝑥, 𝑢)/(𝑥, 𝑢(𝑥))
𝑢(𝑥)∈𝐽𝑥⊆[0,1]𝑥∈𝑋

                                                                 (6.1) 

 

where ∫ denotes the fuzzy cardinality operator [Hanss 10a]. The 𝜇𝑋̃(𝑥, 𝑢)/(𝑥, 𝑢(𝑥) 

denotes the tuple (x,u(x)) with membership function 𝜇𝑋̃(𝑥, 𝑢). The x and u are called the 

primary and secondary variables. Here, Jx is the primary membership of x and 𝜇𝑋̃(𝑥, 𝑢) is the 

secondary grade of 𝑋̃. For the IT2 FS the secondary grade equals 1 for ∀𝑥 ∈ 𝑋 and ∀𝑢 ∈ 𝐽𝑥 ⊆

[0,1]. Assuming 𝐽𝑥 ⊆ [0,1], an IT2 FS 𝑋̃can be characterized by: 

 

 

Fig. 6.1: Example of Type-2 Fuzzy Set 
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𝑋̃ = ∫ ∫ 1/(𝑥, 𝑢(𝑥)) = 
𝑢(𝑥)∈𝐽𝑥𝑥∈𝑋

∫ [∫ 1/𝑢
𝑢(𝑥)∈𝐽𝑥

] /𝑥
𝑥∈𝑋

                                            (6.2) 

 

The fuzzy cardinality operation inside the square brackets in (6.2) is a vertical slice of 

the IT2 FS. As shown in Fig. 6.1, the vertical slice for the specific value of x’ the vertical slice 

is:  

 𝜇𝑋̃(𝑥′, 𝑢) = ∫ 1/𝑢
𝑢(𝑥)∈𝐽𝑥

       𝐽𝑥 ⊆ [0,1]                                                                     (6.3) 

 

An IT2 FS is completely determined by the union of all primary memberships, Jx, 

called the footprint of uncertainty (FOU): 

 

𝐹𝑂𝑈(𝑋̃) = ⋃ 𝐽𝑥∀𝑥∈𝑋 = {(𝑥, 𝑢(𝑥)): 𝑢 ∈ 𝐽𝑥 ⊆ [0,1]                                                   (6.4) 

 

An IT2 FS has an FOU that is bounded by two T1 MFs: the upper membership 

function (UMF) and the lower membership function (LMF). Fig.6.1 shows the FOU, UMF 

and LMF of a IT2 FS. With the UMF and LMF another definition of the FOU is: 

 

  𝐹𝑂𝑈(𝑋̃) = ⋃ (𝜇𝑋̃(𝑥), 𝜇
𝑋̃

(𝑥))∀𝑥∈𝑋                                                                            (6.5) 

 

where 𝜇𝑋̃(𝑥) is the LMF and 𝜇
𝑋̃

(𝑥) is the UMF. These two functions are important 

because an IT2 FS is fully determined by if they are known. 

6.2 TYPE 2 FUZZY LOGIC CONTROLLERS (T2 FLCS) 

Fig. 6.2 shows the block diagram of an IT2 Proportional-Integral-Derivative (PID) 

FLC. The fuzzifier maps the crisp inputs into IT2 FLC.  

The rule base is composed of implicative rules of the following form: 

 

IF 𝑥1 is 𝑋̃1
𝑛AND 𝑥2 is 𝑋̃2

𝑛 … AND 𝑥𝐼 is 𝑋̃𝐼
𝑛 THEN  𝑦 𝑖𝑠 𝑌̃𝑛                                        (6.6) 
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where I is the number of inputs (i=1,2,…,I) and N is the number of rules (n=1,2,…,N). 

The 𝑌̃𝑛 are the consequent IT2 FS that are replaced by an interval 𝑌̃𝑛 = [𝑦
𝑛

, 𝑦𝑛] when the 

popular center-of-sets type reduction is used [Wu 12a]. The typical procedure performed by 

an IT2 FLC is the following [Wu 12a][Mendel 12a]: 

1) For each input of the input vector 𝐱′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝐼
′) obtain the interval of 

membership [𝜇𝑋̃(𝑥𝑖
′), 𝜇

𝑋̃
(𝑥𝑖

′)] (LMF and UMF) on each 𝑋𝑖
𝑛 where (i=1,2,…,I) and 

(n=1,2,…,N). 

2) Now the firing interval of each rule is computed, e.g., for the nth rule 

 𝐹𝑛(𝐱′) = [𝑓𝑛(𝐱′), 𝑓
𝑛

(𝐱′)] = [𝑓𝑛, 𝑓
𝑛

]                                                                     (6.7) 

where: 

 

 𝑓𝑛(𝐱′) = [𝜇𝑋̃1
𝑛(𝑥1

′ ) × 𝜇𝑋̃2
𝑛(𝑥2

′ ) × … × 𝜇𝑋̃𝐼
𝑛(𝑥𝐼

′)]                                                 (6.8) 

 𝑓
𝑛

(𝐱′) = [𝜇
𝑋̃1

𝑛(𝑥1
′ ) × 𝜇

𝑋̃2
𝑛(𝑥2

′ ) × … × 𝜇
𝑋̃𝐼

𝑛(𝑥𝐼
′)]                                                 (6.9) 

 

The product t-norm was used in (6.8) and (6.9) but the minimum t-norm can be used 

instead. 

3) The type reduction is the next step. After computing the firing intervals then the 

centroids of all consequent sets 𝑌̃𝑛are computed. The result is a set of R interval fuzzy sets: 

 

  𝑌𝑌̃𝑛(𝑦) = [𝑦𝑙(𝑌̃𝑛), 𝑦𝑟(𝑌̃𝑛)] = [𝑦𝑛, 𝑦
𝑛

]                                                                (6.10) 

 

 

Fig. 6.2: Block diagram of an interval type-2 fuzzy controller (IT2FLC) 
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The centroid is an interval T1 fuzzy set. The centroids are computed using Karnik-

Mendel (KM) [Mendel 12a][Wu 12a] algorithms. 

4) The firing intervals (6.8), (6.9) and their respective centroids (6.10) are combined 

by means of the center-of-sets (cos) type reduction [Karnik 99a]. There are other methods 

[Karnik 99a] but the center-of-sets is the most common.  

 

𝑌𝑐𝑜𝑠(𝑦|𝐱′) =
∑ 𝐹𝑛(𝑥′) 𝑌𝑌̃𝑛(𝑦)𝑁

𝑛=1

∑ 𝐹𝑛(𝑥′) 𝑁
𝑛=1

= [𝑦𝑙(𝐱′), 𝑦𝑟(𝐱′)]                                                   (6.11) 

 

where yl(x’) and yr(x’) are computed using KM algorithms. The yl(x’) and yr(x’) can 

be computed by: 

 

               𝑦𝑙(𝐱′) =
∑ 𝑓

𝑛
𝑦𝑛+𝐿

𝑛=1 ∑ 𝑓𝑛𝑦𝑛𝑁
𝑛=𝐿+1

∑ 𝑓
𝑛

+𝐿
𝑛=1 ∑ 𝑓𝑛𝑁

𝑛=𝐿+1

                                                                              (6.12) 

 

               𝑦𝑟(𝐱′) =
∑ 𝑓𝑛𝑦

𝑛
+𝑅

𝑛=1 ∑ 𝑓
𝑛

𝑦
𝑛𝑁

𝑛=𝑅+1

∑ 𝑓
𝑛

+𝑅
𝑛=1 ∑ 𝑓𝑛𝑁

𝑛=𝑅+1

                                                                          (6.13) 

 

where L and R are the switch points determined by the KM algorithms [Mendel 12a]. 

5) Finally, the crisp (defuzzified) output is computed by using the average value of the 

two end-points [Karnik 99a]: 

 

                 𝑦(𝐱′) =
[𝑦𝑙(𝐱′),𝑦𝑟(𝐱′)]

2
                                                                                     (6.14) 

6.3 LOGICAL VOLUME (LV) CLONING REPLICATION 

There are features offered by the disk array manufactures to create a point-in-time 

replication the data in a logical volume. The background local cloning replication copies all 

the data present in a logical volume, therefore creating a mirror copy (clone or replica) of the 

original (source) logical volume on the same disk array, thus, the clones (replicas) provide a 

high-availability, disaster recovery of the data. In case of a complete data loss of the source 

logical volume, the replica can replace the source logical volume instantaneously. Unlike the 
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local snapshot replication, there is no need to reconcile the source data and the updated 

sections. This is one of the disadvantages of the snapshot method [Preston 02a]. The 

drawback of the background cloning replication is that it requires the same space as the source 

logical volume, therefore doubling the space needed to have the source data and its clone on 

the disk array. But with the advent of new fast and high capacity disks, like 1 TiB magnetic 

drives, that is becoming less and less of a drawback. Therefore, the method of background 

local cloning replication of logical volumes is still a good solution for data protection. 

Logical volumes can be created and deleted by users.  The size of the logical volume 

is determined by the user at creation time. This size can be big, for example, 500 GiB. But the 

disk array manages the logical volume in units named data blocks of 128KiB, 256KiB, or 

other sizes depending on the manufacturer and model of the disk array. For the purpose of 

giving an example of the procedure used to replicate a logical volume, it is assumed in this 

paper that the logical volumes are managed in data blocks of 256KiB each. The first case to 

present is when the source logical volume is replicated (cloned) and there is no user workload 

(reads or writes) applied to the source logical volume. In this case, the disk array copies block 

by block sequentially in incremental order until all the blocks that make up the source, BV, 

have been copied to the clone (replica) logical volume. This case is shown in Fig. 6.3. The 

circled numbers indicate the sequence of events. At the end, every single block that makes up 

the source logical volume is replicated into the clone logical volume. It is clear from this 

 

Fig. 6.3: Example of replication of a source volume 
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example why the clone logical volume takes up as much space as the source logical volume 

The source logical volume (or source volume, for short) can be available during the 

cloning replication process. This means that the source volume can still be read or written to 

during the replication. Reading from the source volume does not disrupt the sequence of 

copying (cloning) the data blocks. Writing to the source volume after the replication process 

started is potentially disrupting to the cloning replication. To understand why a write can 

disrupt the cloning replication process it is important to remember that the clone volume is a 

point-in-time copy of the data in the source volume. Therefore, once the user decides to start 

replicating a source volume, the data at that particular point in time has to be preserved. Any 

further updates (writes) to the source volume should not be reflected in the replicated (cloned) 

volume. There are two possible results of a user write to the source volume during cloning 

replication: 1) if the user writes to a data block that has been already cloned then the write can 

proceed normally. There is no problem with the write since the original data block is already 

copied in the clone volume; 2) if the user writes to a data block that has not been cloned, then 

the incremental sequence of data block cloning has to be interrupted and that data block has to 

take priority and be cloned before the user write can proceed. The copy (replica) of a data 

block before the user write can be served is referred to as the copy-on-write (CoW) problem. 

Therefore, there is the possibility of generating copy-on-writes during the replication process 

by writing to the source volume. 

Copy-on-writes cause a user write to have a high latency since the write has to wait for 

the copy (replication) of the data block before the write can be executed in the source volume. 

The CoW problem has been studied before [Navarro 11a] in the context of the logical volume 

snapshot replication. In that context, each snapshot replication is called a snap, and each snap 

causes a CoW to occur. That is why the terms snap and CoW are used interchangeably. A 

data block is said to be snapped if a user write to that data block caused a CoW to occur. An 

example of how a copy-on-write occurs during replication is shown in Fig. 6.4. The cloning 

replication is proceeding in sequential order and has copied data blocks B1 and B2. Before 

replicating the next data block, B3, there is a user write to B4. Now the replication process is 

forced to skip temporarily the replication of data block B3 and clone data block B4 to ensure it 

is a point-in-time copy. After the data block B4 is cloned then the user write can proceed. 

After the replicated of B4 the cloning replication process can resume where it left off, data 
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block B3, and clone it. As expected, after cloning data block B3, then data block B4 is skipped 

since it is already cloned and the cloning replication proceeds sequentially with next un-

cloned data block, B5. This example shows that the logical volume cloning replication can 

occur interacting with logical volume snapshot replication. 

6.4 QUEUING DESCRIPTION OF THE LV CLONING REPLICATION 

There are three queues directly involved in the Logical Volume (LV) cloning 

replication process: 1) the LV clone queue; 2) the LV user writes queue; and 3) LV the 

snapshot (CoW) queue. The LV user reads queue increases the utilization of the CPU and 

disks; but the user reads queue does not alter the cloning replication process in any way. Fig. 

6.5 shows the queueing scheme considered for the analysis of the cloning process. The reason 

the LV user reads queue is included in the queueing scheme is because the type-2 fuzzy 

controller presented in this chapter takes the average of the LV user reads and writes as an 

input parameter. 

The disk array controller sends the requests for cloning all the data blocks of an LV. 

The disk array keeps track at all times of which data blocks have been already been cloned 

and which ones are still pending.  The cloning algorithm sends a request to clone a data block 

every zc seconds. The zc is the cloning interarrival time. Typical times for zc can be in the 

 

  Fig. 6.4: Example of a CoW during the replication of a source volume 
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milliseconds or microseconds range. The zc can also be considered a think time between 

requests for the LV Clone queue. The zc is the parameter that controls the arrival rate of clone 

requests, χc, to the disks. Typical values for χc can be hundreds or thousands of IO requests 

per second (IO/s). The type-2 fuzzy controller will regulate the arrival rate of clone requests 

to the disk, χc, by regulating zc. 

The LV user writes queue sends the user writes to through the disk array controller 

onto the disk. For the purpose of this analysis, an Online Transaction Processing (OLTP) 

workload is considered. In OLTP workloads user writes and reads are randomly spread over 

the LV. The arrival rate of user writes, λw, on an LV in replication causes snaps to occur. The 

arrival rate of snaps caused by user writes was studied in the previous chapter and in [Navarro 

11a] and shown in (5.13), where psnap(t) is the probability of a snapshot caused by the arrival 

rate of user writes, λw. This is the psnap term studied in the previous in section 5.2.2 of this 

dissertation.  

The rate arrival of user reads, λr, is considered as part of the estimation of the average 

latency of user requests (reads and writes) for the purpose of the fuzzy control. 

 

Fig. 6.5: Queueing scheme of LV Cloning with Snapshot 
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The combined arrival rate to the disks, λD, is the combination of the four arrival rates 

(χc, λw, , λs, λr) but considering the transformation of writes according to RAID level. For 

example, if the RAID level used for the data redundancy of the LV is RAID1, then the writes 

doubles because the data is written to separate disks.  

6.5 MATHEMATICAL DESCRIPTION OF THE LV CLONING REPLICATION 

The cloning replication process is a deterministic process. The cloning replication 

algorithm keeps track of the replicated vs. the un-replicated data blocks. By doing this, the 

cloning replication always copies the un-replicated data blocks and never accesses again any 

already-replicated data block. This is an important distinction with respect to the snapshot 

replication process. The snapshot process is an on-demand process based on user writes to a 

logical volume. The user accesses to databases (SQL, Oracle) are typically randomly spread 

over a logical volume in what is referred to as the OLTP workload. This means that a user 

write may or may not cause a snap (CoW) to occur depending on whether the user write will 

write to an already-replicated or to a to-be-replicated data block. The understanding of the 

impact of randomly distributed user writes on logical volume replication through snapshots 

was studied in the previous chapter and in [Navarro 11a]. The formulas proposed in those two 

cited sources will be applied here for the purpose of showing the interaction of snapshot and 

cloning. 

The estimation of the fraction of data blocks cloned at time t, fc(t), during the logical 

volume cloning replication, can be computed by:  

 

𝑓𝑐(𝑡) =
𝜒𝑐

𝐵𝑣
𝑡                                                                                                           (6.15) 

 

where the Bv is the number of data blocks that make up the Logical volume. Fig. 6.6 

shows a measured fraction of data blocks cloned during a logical volume cloning replication 

vs. the estimated fraction of data blocks using (6.15). It can be seen that the deterministic 

behavior of the cloning algorithm translates into a linear progress of the logical volume 

replication 
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The estimation of the fraction of data blocks snapped at time t, fs(t), is a problem that 

was approached in the previous chapter and in [Navarro 11a]. ].  The main conclusion in 

[Navarro 11a] is that the snapshot replication under a randomly distributed user writes 

workload, like the on-line transaction processing (OLTP) workload, behaves in an exponential 

manner. The formula in presented in the previous chapter and in [Navarro 11a] is:  

 

𝑓𝑠(𝑡) = 1 − 𝑒
−

𝜆𝑤
𝐵𝑣

𝑡
                                                                                               (6.16) 

 

where λw is the user write arrival rate in IO/s and fs(t) is the estimated fraction of 

snapped data blocks.  Fig. 6.7 shows the fraction of snapped data blocks, i.e., the fraction of 

data blocks replicated by snapshot vs. the estimated fraction of snapped data blocks using 

(6.16). In this example the logical volume is only being subjected to user writes so the 

replication shown in this figure is a snapshot replication, not a cloning replication. 

 

Fig. 6.6: Graph of the fc(t) equation predicting the fraction of cloned blocks 
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The equation for a logical volume combined replication, both cloning and snapshot, is 

derived here and shown to agree with a measured combined replication. We derive the 

equation for the fraction of replicated data blocks for a combined replication, using the 

equations and knowledge of the behavior of the both cloning and snapshot. The fraction of 

combined replicated data blocks, fr(t), is the sum of the cloned and the snapped data blocks 

 

𝑓𝑟(𝑡) = 𝑓𝑐(𝑡) + 𝑓𝑠(𝑡)                                                                                         (6.17) 

 

The derivative of fr is: 

 

𝑑𝑓𝑟

𝑑𝑡
=

𝑑𝑓𝑐

𝑑𝑡
+

𝑑𝑓𝑠

𝑑𝑡
                                                                                                  (6.18) 

 

The derivative of fc is: 

𝑑𝑓𝑐

𝑑𝑡
=

𝜒𝑐

𝐵𝑣
                                                                                                                (6.19) 

 

 

Fig. 6.7: Graph of the fs(t) equation predicting the fraction of snapped blocks 
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We know that the probability of a snap is greater if there are more non-replicated data 

blocks. The fraction of non-replicated data blocks, fn(t), is: 

 

𝑓𝑛(𝑡) = 1 − 𝑓𝑟(𝑡)                                                                                               (6.20) 

 

We also know that the probability of a snap is an exponential function that depends on 

the ratio of the user write arrival rate, λw,, and the number of data blocks in a logical volume, 

Bv. The differential equation for the derivative of the fraction of data blocks snapped at time t, 

fs(t), is then:  

 

𝑑𝑓𝑠

𝑑𝑡
=

𝜆𝑤

𝐵𝑣
𝑓𝑛 =

𝜆𝑤

𝐵𝑣
(1 − 𝑓𝑟)                                                                                  (6.21) 

 

The differential equation for fr is: 

 

𝑑𝑓𝑟

𝑑𝑡
=

𝜒𝑐

𝐵𝑣
+

𝜆𝑤

𝐵𝑣
(1 − 𝑓𝑟)                                                                                       (6.22) 

 

And the fraction of replicated data blocks in a combined replication, fr(t) at time t is: 

 

𝑓𝑟(𝑡) = (1 +
𝜒𝑐

𝜆𝑤
) (1 − 𝑒

−
𝜆𝑤
𝐵𝑣

𝑡
)                                                                         (6.23) 

 

The equation is compared against the measured fraction of replicated data blocks in a 

combined (cloning and snapshot) replication of a logical volume as shown in Fig. 6.8. The 

graph shows that (6.23) estimates fr(t) very accurately. 
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6.6 LOCAL LV CLONING REPLICATION TYPE-2 FUZZY LOGIC CONTROLLER  

6.6.1 PURPOSE OF THE LV CLONING T2 FUZZY CONTROLLER 

The primary goal of this controller is to regulate the rate at which the cloning process 

occurs so the latency of customer reads and writes is at or below a target latency. If the 

primary goal cannot be accomplished, then the secondary goal is to minimize the impact to 

the latency of customer reads and writes. The way the controller achieves the goal of 

regulating the cloning process is by adjusting the cloning interarrival value, zc, therefore, 

regulating the time between each clone request to the . Every time sample iteration, ti, the 

controller estimates the zc to be used in the next time sample, ti+1.  

The logical volume cloning replication Type-2 (T2) fuzzy controller is a Takagi-

Sugeno Type-2 fuzzy-logic based controller. The T2 fuzzy PI controllers are more robust than 

 

Fig. 6.8: Graph of the fr(t) equation predicting the fraction of replicated blocks 
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their Type-1 counterparts [Wu 2010a]. The T2 fuzzy PI controllers can cope better with 

disturbances, uncertainties and eliminate oscillations better than their T1 counterparts.  

6.6.2 DESCRIPTION OF THE LV CLONING T2 FUZZY CONTROLLER 

The block diagram of the logical volume cloning type-2 fuzzy controller is illustrated 

in Fig. 6.9. From a control standpoint, the disk array is the controlled system. The controlled 

system has one input: λD, which is the combined arrival rate of user writes, λw, user reads, λr, 

snapshots, λcow, and cloning arrival rate χc. The combined arrival rate on the disk array, λD, is: 

 

𝜆𝐷 = 𝜆𝑟 + 𝛼𝑅𝐿𝜆𝑤 + 𝜆𝑐𝑜𝑤 + 𝜒𝑐                                                                               (6.24) 

 

The cloning arrival rate, χc, depends on the cloning interarrival time, zc: 

 

𝜒𝑐 =
1

𝑧𝑐
                                                                                                                   (6.25) 

 

The number of data blocks writes needed for a snapshot (CoW) is dependent on the 

RAID level of the snapshot volume. The number of data block writes is defined by the αRL 

factor. For RAID1 the αRL = 2, which is the number of writes needed for each data write. This 

was explained in section 5.2.3. 

The total extra arrival rate on the disk array generated by the copy-on-writes, λcow, is 

already shown in (5.17) but show here again: 

𝜆𝑐𝑜𝑤 = 𝑝𝑠𝑛𝑎𝑝𝜆𝑤(1 + 𝛼𝑅𝐿)                                                                                      (6.26) 

 

 
 

Fig. 6.9: Cloning type-2 fuzzy controller 
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The output of the system to be controlled (disk array) is the average latency 

experienced by the user accesses (reads or writes), τavg. 

The logical volume cloning type-2 fuzzy controller makes use of a reference variable: 

the reference latency, τref. The reference latency represents the maximum acceptable average 

latency during the cloning process. The maximum latency used in this section was 30ms, 

same as in chapter 5. 

The output τavg is compared with the reference latency τref to compute the control error, 

e:  

 

𝑒(𝑡𝑖) = 𝜏𝑎𝑣𝑔(𝑡𝑖) − 𝜏𝑟𝑒𝑓                                                                                           (6.27) 

 

The change in the control error, Δe, is also computed:  

 

Δ𝑒(𝑡𝑖) = 𝑒(𝑡𝑖) − 𝑒(𝑡𝑖−1)                                                                                        (6.28) 

  

The cloning rate is kept within limits by setting two variables also used by the logical 

volume cloning type-2 fuzzy controller: 1) the minimum cloning interarrival time 𝑧𝑐
𝑚𝑖𝑛, which 

determines the maximum cloning arrival rate, i.e., the cloning throughput,  𝜒𝑐
𝑚𝑎𝑥; and 2) the 

maximum cloning interarrival time, 𝑧𝑐
𝑚𝑎𝑥, which determines the minimum cloning arrival rate 

(cloning throughput)  𝜒𝑐
𝑚𝑖𝑛.   

In order to control the outputs, they have to be periodically monitored every tm 

seconds. The decision on how often to monitor can be based on the maximum acceptable 

latency and the performance of the disk array controller. The sampling of the outputs is 

performed at intervals of time tm. Each sample is denoted by (ti), where i is the i-th sample of 

the output that occurred at a time ti, as in: 

 

mi itt                   where i = 0,1,2,…                                                                       (6.29) 
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6.6.3 LV CLONING CONTROLLER FUZZIFICATION  

This section shows how the step 1 of the typical procedure performed by an IT2 FLC 

as shown in section 6.2, is implemented for the logical volume cloning T2 fuzzy controller. 

The goal of the fuzzification is to map the control error e into a fuzzy value Fe and the change 

in the control error, Δe, into a fuzzy value FΔe. This stage corresponds to the blocks shown in 

Fig. 6.9 with the symbols Fe and FΔe. Both fuzzy values, Fe and FΔe, can be mapped into one 

of three T2 fuzzy descriptors: Zero (ZE), Positive Error (PE), and Negative Error (NE). The 

first step is to normalize e and Δe with respect to the reference latency, τref. 

 

𝑒𝑛 =
𝑒

𝜏𝑟𝑒𝑓
                                                                                                             (6.30) 

 

Δ𝑒𝑛 =
Δ𝑒

𝜏𝑟𝑒𝑓
                                                                                                          (6.31) 

 

The normalized control error, en, and normalized change in the control error, Δen, are 

limited in their values to make the T2 fuzzification possible to the interval [-1,1]: 

 

𝑒𝑛 ∈ [−1,1]     𝑎𝑛𝑑     Δ𝑒𝑛 ∈ [−1,1]                                                                        (6.32) 

 

The mapping for the en and Δen values into the Zen and to ZΔen fuzzy values is done by 

defining the following equations: 

 

𝑈𝑀𝐹𝑍𝑒𝑛(𝑒𝑛) =  𝜇
𝑍𝑒𝑛

=  {

−𝑒𝑛 + (1 +
𝐷𝑂𝑈

2
)      𝑖𝑓  𝑒𝑛  ≥ 0

   

𝑒𝑛 + (1 +
𝐷𝑂𝑈

2
)      𝑖𝑓  𝑒𝑛  < 0

                                   (6.33)  

 

𝐿𝑀𝐹𝑍𝑒𝑛(𝑒𝑛) =  𝜇 𝑍𝑒𝑛 =  {

−𝑒𝑛 + (1 −
𝐷𝑂𝑈

2
)      𝑖𝑓  𝑒𝑛  ≥ 0

   

𝑒𝑛 + (1 −
𝐷𝑂𝑈

2
)      𝑖𝑓  𝑒𝑛  < 0

                                  (6.34)  
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The intervals for UMFZen and LMFZen are: 

 

𝑈𝑀𝐹𝑍𝑒𝑛 ∈ [−1,1]     𝑎𝑛𝑑     𝐿𝑀𝐹𝑍𝑒𝑛 ∈ [−1,1]                                                        (6.35) 

 

Equations (6.33) and (6.34) map the en value to the T2 fuzzy value Zen. The equations 

for mapping Δen to ZΔen are the same as (6.33) and (6.34) just with the Δen variable instead of 

the en as the input variable. The intervals for the UMFZΔen and LMFZΔen are the same as the 

UMFZen and LMFZen shown in (6.35).  

The mapping for the en and Δen values into the Nen and to NΔen fuzzy values is done by 

defining the following equations: 

 

𝑈𝑀𝐹𝑁𝑒𝑛(𝑒𝑛) =  𝜇
𝑁𝑒𝑛

= −𝑒𝑛 +
𝐷𝑂𝑈

2
                                                                       (6.36)  

  

𝐿𝑀𝐹𝑁𝑒𝑛(𝑒𝑛) =  𝜇 𝑁𝑒𝑛 = −𝑒𝑛 −
𝐷𝑂𝑈

2
                                                                       (6.37) 

 

 
Fig. 6.10: T2 Fuzzy values Zen and ZΔen  
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The intervals for UMFNen and LMFNen are: 

 

𝑈𝑀𝐹𝑁𝑒𝑛 ∈ [−1,1]     𝑎𝑛𝑑     𝐿𝑀𝐹𝑁𝑒𝑛 ∈ [−1,1]                                                       (6.38) 

 

Equations (6.36) and (6.37) map the en value to the T2 fuzzy value Nen. The equations 

for mapping Δen to NΔen are the same as (6.36) and (6.37) just with the Δen variable instead of 

the en as the input variable. The intervals for the UMFNΔen and LMFNΔen are the same as the 

UMFNen and LMFNen shown in equation (6.38). 

The mapping for the en and Δen values into the Pen and to PΔen fuzzy values is done by 

defining the following equations: 

 

𝑈𝑀𝐹𝑃𝑒𝑛(𝑒𝑛) =  𝜇
𝑃𝑒𝑛

= 𝑒𝑛 +
𝐷𝑂𝑈

2
                                                                           (6.39)  

 

 

 
Fig. 6.11: T2 Fuzzy values (a) Nen, Pen and (b)  NΔen. PΔen  
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𝐿𝑀𝐹𝑃𝑒𝑛(𝑒𝑛) =  𝜇 𝑃𝑒𝑛 = 𝑒𝑛 −
𝐷𝑂𝑈

2
                                                                          (6.40)  

 

The intervals for UMFPen and LMFPen are: 

 

𝑈𝑀𝐹𝑃𝑒𝑛 ∈ [−1,1]     𝑎𝑛𝑑     𝐿𝑀𝐹𝑃𝑒𝑛 ∈ [−1,1]                                                       (6.41) 

 

Equations (6.39) and (6.40) map the en value to the T2 fuzzy value Pen. The equations 

for mapping Δen to PΔen are the same as (6.39) and (6.40) just with the Δen variable instead of 

the en as the input variable. The intervals for the UMFPΔen and LMFPΔen are the same as the 

UMFPen and LMFPen shown in equation (6.41). 

6.6.4 RULE BASE TO OBTAIN TU  

This section shows how the step 2 of the typical procedure performed by an IT2 FLC 

as shown in section 6.2, is implemented for the logical volume cloning T2 fuzzy controller. 

The rule base applies the logic to determine how to alter the cloning interarrival time, zc at 

every time iteration ti. In order to alter zc incrementally, the change in zc has to be in some 

range that modifies zc in a way that does not change the cloning arrival rate, χc erratically (up 

and down) and causes the controller to oscillate. The throttling unit, Tu, is a quantity of time 

used by this controller as a unit of change of the cloning interarrival time, zc. The outputs of 

the rules, i.e., the subsequent sets, are expressed in terms of the throttling units. 

The rule base can now be built based on the following heuristic criteria. The first 

criterion is that if the user request latency is high, then the control error, e, is fuzzy positive 

error, PE, and the controller needs to reduce the cloning rate. Therefore, the cloning 

interarrival time zc is increased. The second criterion is that if the user request latency is low, 

then the controller can increase the cloning rate. Therefore, the cloning interarrival time zc is 

reduced. Based on those two heuristics criteria, the rules are developed of the form: 

 

𝑖𝑓 𝑒 ∈ 𝐹𝑒  𝑎𝑛𝑑 Δ𝑒 ∈ 𝐹Δ𝑒 𝑡ℎ𝑒𝑛   [∆𝑇𝑢
ℎ , ∆𝑇𝑢

𝑙]                                                           (6.42) 

 

where Fe and FΔe can take the fuzzy values shown in section 6.6.3: 
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𝐹𝑒 ∈ {𝑁𝑒𝑛, 𝑍𝑒𝑛, 𝑃𝑒𝑛}                                                                                                 (6.43) 

 

𝐹∆𝑒𝑛 ∈ {𝑁∆𝑒𝑛, 𝑍∆𝑒𝑛, 𝑃∆𝑒𝑛}                                                                                        (6.44) 

 

And the consequent sets are of the form [ΔTu, ΔTu] where Δ is a multiplier of the 

throttling unit Tu as shown in Table 6.1. 

6.6.5 TYPE REDUCTION (DEFUZZIFICATION)  

The steps 3 and 4 of the typical procedure performed by an IT2 FLC as shown in 

section 6.2, are implemented for the LV cloning T2 fuzzy controller are implemented using 

the Karnik-Mendel (KM) algorithms. References [Mendel 12][Wu 12a] are recommended to 

learn about the KM algorithm. The output of the type reduction is the pair:  

 

                   [ Δ𝑧𝑐
𝑙  , Δ𝑧𝑐

𝑟 ]                                                                                                       (6.45) 

 

where Δ𝑧𝑐
𝑙   and Δ𝑧𝑐

𝑟 are the left and right values of the Type 1 output fuzzy set 

produced by the KM algorithm. 

Table 6.1: Rule base for LV Cloning Type-2 Fuzzy Controller 

Rule 

Number 

Rule Input Variables Rule Output Comments 

e Δe Tu Range  

R1 Nen NΔen [-4Tu, -2Tu] Reduce zc, increase χc heavily 

R2 Nen ZΔen [-2Tu, 0Tu] Reduce zc, increase χc lightly 

R3 Nen PΔen [-3Tu, -1Tu] Reduce zc, increase χc  

R4 Zen NΔen [0Tu, 2Tu] Increase zc, reduce χc lightly 

R5 Zen ZΔen [-Tu, +Tu] Keep zc, thus, χc  

R6 Zen PΔen [-2Tu, 0Tu] Reduce zc, increase χc lightly 

R7 Pen NΔen [+Tu, 3Tu] Increase zc, reduce χc  

R8 Pen ZΔen [0Tu, 2Tu] Increase zc, reduce χc lightly 

R9 Pen PΔen [2Tu, 4Tu] Increase zc, reduce χc heavily 
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6.6.6 CRISP DELTA OF THE CLONING INTERARRIVAL TIME 

The step 5 of the typical procedure performed by an IT2 FLC as shown in section 6.2, 

is the calculation of the crisp value of the change in the cloning interarrival time. The 

calculation is the middle point of the two values in the T1 fuzzy set produced in the previous 

step: 

 Δ𝑧𝑐 =
Δ𝑧𝑐

𝑙+Δ𝑧𝑐
𝑟

2
                                                                                                     (6.46) 

 

where Δzc is the delta to be added to the current zc for the next time sample of the 

controller: 

 

𝑧𝑐(𝑡𝑖+1) = 𝑧𝑐(𝑡𝑖) + Δ𝑧𝑐(𝑡𝑖)                                                                        (6.47) 

 

where Δzc(ti) is the delta of the cloning interarrival time obtained by (6.45); zc(ti) is the 

current cloning interarrival time and zc(ti+1) is the cloning interarrival time computed to be 

used in the next time sample by the logical volume cloning T2 fuzzy controller. 

This is the final step of the controlling process and it is repeated at the next time 

iteration starting from the steps shown in section 6.6.3. 

6.7 EXPERIMENTAL RESULTS 

The type-2 fuzzy logical volume replication controller was tested with a setup that 

consisted of an HP 7640 Itanium workstation with 48GiB of memory and with RedHat Linux 

6.2 installed. The disk setup consisted of 118 BF1465A477 15K RPM disks. The logical 

volume replication and the type-2 fuzzy control was implemented in C language and compiled 

with GCC 4.4.6. The implementation was executed as a parent process in the user space and 

not as a part of the kernel. The parent process performed the following functions: 1) generated 

(forked) a process that acted as foreground user request process generator for 8KiB user reads 

and writes; 2) generated a process that acted as the background logical volume replication by 

generating a process for 256KiB data block that had to be cloned; 3) kept track of the data 

blocks replicated and the data blocks that required a replication by doing a copy-on-write. The 

logical volume data block table was in shared memory so it was visible to all processes; 4) 
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monitored the latency of the user requests and 5) implemented the IT2 FLC logic of the LV 

cloning controller. 

A comparison of an LV cloning replication process with and without the T2 fuzzy 

control was run. For the comparison a RAID1 128GiB source volume was used. The source 

volume was comprised of data blocks of 256KiB in size and laid out in an even fashion over 

all the 118 disks.  

First, the LV cloning process is shown with no fuzzy control in Fig. 6.12. The left 

vertical axis shows the latency values in milliseconds. The right vertical axis shows the IO/s 

values. A cloning process is replicating the 128GiB at a constant rate of χc = 4,000 IO/s as 

shown by the black line. After 60 seconds into the replication process, a user workload of 

2,000 IO/s, 70% reads, (1,400 IO/s for reads and 600 for IO/s writes) was applied during 3 

minutes. The blue line shows the latency of user reads during the 3 minutes. It can be seen 

that the read latency (blue line) is around the 15ms range. The user reads do not show a 

significant change during the duration of the user workload (3 minutes). The user writes, on 

the other hand, show how significantly can be affected by the cloning process. At first, the 

 
Fig. 6.12: Cloning of an LV with no fuzzy control  
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user writes show a latency of 60ms. This high latency was caused by the combined effects of 

the copy-on-writes generated by the user writes themselves, and the background cloning 

replication in progress. As the probability of generating copy-on-writes lowers, then the user 

writes show less impact on their latency. At the end of the 3 minute run, the user write latency 

is around 25ms. 

Second, The LV cloning process was run with the T2 fuzzy controller. The reference 

latency used was τref = 15ms; a throttling unit, Tu = 200us and a delta of uncertainty, DOU = 

0.2. Fig. 6.13 shows how the T2 fuzzy controller could achieve a reduction in the user request 

latency for both writes and reads. The controller is cloning in the background at a rate of χc = 

4,000 IO/s when 60 seconds into the cloning a user workload of 2,000 IO/s, 70% reads, (1,400 

IO/s for reads and 600 for IO/s writes) was applied during 3 minutes just like in the case with 

no fuzzy control. But in this case the T2 fuzzy controller detects an error because the user 

write latency is in the 60 millisecond range and responds by increasing the cloning interarrival 

time which in turns reduces the cloning rate from χc = 4,000 IO/s down to χc = 1,500 IO/s. 

This brings down the user write latency down from 60 to 25ms, which in conjunction with the 

reduction in the user read latency from 15 to 10ms, brings the user average (reads and writes) 

 
Fig. 6.13: Cloning of an LV with T2 fuzzy control  
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latency down to the reference latency of τref = 15ms. The T2 fuzzy controller achieved the 

purpose of reducing the cloning rate so the reference latency could be achieved. 

6.7 CONCLUSIONS 

The Type-2 LV cloning fuzzy controller accomplished the goal of reducing the impact 

on the user reads and writes latency caused by an LV cloning background process in a disk 

array. The improvements in latency the Type-2 LV cloning fuzzy controller delivers show 

how fuzzy logic can be applied to improve the performability of data backup management for 

disk arrays. The Type-2 LV cloning fuzzy controller can be used to control a disk array with 

complex components such as disks, for which we don’t have any knowledge of their internal 

logic and are hard to model mathematically. Another contribution of this chapter is the 

equation (6.23) that predicts the fraction of replicated data blocks in a combined (clone and 

snapshot) replication.  
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

Chapter 3 presented a numerical method in the form of an extensible algorithm that 

can be used to estimate the reliability and performability of a disk array. This method can be 

used to achieve high performability based on the reliability of a RAID group. 

Chapters 4, 5 and 6 present improvements in disk array performability based on fuzzy 

control schemes. 

Chapter 4 showed that fuzzy logic can be applied to improve the sparing process in 

disk arrays. The patented fuzzy-controlled sparing process outperformed the traditional QSV 

sparing process by finishing in half the time and without impacting the user request latency. 

Chapter 5 showed the benefit of the proposed snapshot fuzzy controller, which is to 

avoid the high latency peak at the beginning of a snapshot process. Chapter 5 also presented a 

Markov Model and equations for the snapshot process. These equations can provide a guide 

for the snapshot behavior even for different disks speeds and disk arrays if the snapshot 

process is the traditional copy-on-write.  

Chapter 6 showed the benefit of a cloning fuzzy controller, which is to reduce the 

impact of the background cloning process on the user request latency but ensuring the cloning 

occurs in the background at the maximum possible rate. Chapter 6 also presented an equation 

for the combined cloning and snapshot of a logical volume. 

7.2 FUTURE WORK 

The first area of proposed future work is the development of probabilistic models for 

the performability evaluation of the background-jobs-based performability for sparing, 

snapshot and cloning. These models can leverage off the probabilistic equations already 

presented for snapshot and cloning in chapters 5 and 6. The second area of future work is the 

stability analysis of the fuzzy controllers presented in chapters 4, 5 and 6. 
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