

Improved Performability of Disk Arrays by the Use of Fuzzy Control

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctorate of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Guillermo Navarro

Major Professor: Gregory Donohoe, Ph.D.

Committee Members: Milos Manic, Ph.D.; Axel Krings, Ph.D.; David Umberger, Ph.D.

Department Administrator: Frederick Sheldon, Ph.D.

November 2015

 ii

AUTHORIZATION TO SUBMIT DISSERTATION

This dissertation of Guillermo Navarro, submitted for the degree of Doctor of

Philosophy (Ph.D.) with a Major in Computer Science and titled "Improved Performability of

Disk Arrays by the Use of Fuzzy Control," has been reviewed in final form. Permission, as

indicated by the signatures and dates below, is now granted to submit final copies to the

College of Graduate Studies for approval.

 Major Professor: ___________________________________ Date: ______________

 Gregory Donohoe, Ph.D.

 Committee Members: ___________________________________ Date: ______________

 Axel Krings, Ph.D.

 ___________________________________ Date: ______________

 Milos Manic, Ph.D.

 ___________________________________ Date: ______________

 David Umberger, Ph.D.

 Department

 Administrator: ____________________________________ Date: ______________

 Frederick Sheldon, Ph.D.

 iii

ABSTRACT

Performability is the composite measure of performance and reliability. This measure is

a vital evaluation method for fault-tolerant systems that can undergo a graceful degradation of

performance in the presence of faults, allowing continued “normal” operation. Performability

analysis is the study of the performance of systems under non-optimal conditions. The non-

optimal conditions can be degraded, such as drive failure or with background tasks, such as

background logical volume copy. The performability study of disk arrays is the study of a

competitive challenge imposed to disk arrays. Now disk arrays are expected to guarantee low

user latencies even under self-repairable failure conditions such as a disk failure and/or in the

presence of background tasks such as data replication. Besides that expectation, the disk arrays

are also expected to repair themselves and finish background tasks as quickly as possible. The

two goals are opposing in nature. If the disk array allocates more of its resources to serve user

requests, the self-repair and the background tasks take longer to be completed. But if the disk

array allocates more of its resources to self-repair or the background tasks, the user requests

will suffer a performance impact in terms of higher latencies or lower throughputs. This is a

challenge that disk arrays have to meet in order to meet user expectations better. There is no

perfect response to this challenge. The solution is to propose responses that optimize the use of

the internal resources of a disk array. The problem of achieving the opposing goals is posed as

a control problem and that is tackled by applying fuzzy logic and control. This dissertation

makes two major contributions:

1) Performability analysis of disk arrays using fuzzy logic that provides us with a practical,

easy-to-use, numerical algorithm to achieve consistently high performability based on the

reliability metrics of a RAID disk group.

2) Fuzzy control approach to improve disk array performability that gives us a practical,

effective, and easily-updated means to schedule the execution of customer requests and

concurrent data protection tasks. This approach overcomes the lack of internal information of

components by using a rule-based approach instead of a detailed control model.

 iv

TABLE OF CONTENTS

Authorization to Submit Dissertation .. ii

Abstract.. iii

Table of Contents ...iv

Table of Figures .. viii

Table of Tables ...xi

Chapter 1: Introduction ... 1

1.1 Performability of Disk Arrays ... 1

1.2 Objective of this Dissertation .. 2

1.3 Assumptions of the Dissertation ... 3

1.4 Contributions of this Dissertation ... 4

1.5 Organization of this Dissertation .. 4

Chapter 2: Background on disk arrays, performability and fuzzy control 6

2.1 Disk Arrays ... 6

2.1.1 Disk Array Architecture .. 8

2.1.2 RAID Levels .. 10

2.1.3 Storage Virtualization .. 12

2.1.4 Data Protection Policies .. 14

2.1.5 Sparing Data Protection Policy ... 15

2.1.6 Point-In-Time Data Protection Policy ... 16

2.1.7 Snapshot Data Protection Policy ... 17

2.1.8 Cloning Data Protection Policy ... 18

2.1.9 Disk Array Performability and Data Protection Policies 19

2.2 Performability ... 20

2.2.1 Performability of Disk Arrays ... 20

2.2.2 Fundamental Concepts .. 21

2.2.3 Performability Evaluations .. 23

2.2.4 Performability Measures ... 24

2.2.5 Performability Example... 25

2.3 Fuzzy Control .. 30

2.3.1 Fuzzy Numbers and Arithmetic ... 30

 v

2.3.2 Justification for Fuzzy Control .. 33

2.3.3 Fuzzy Logic Controller .. 34

2.3.4 Fuzzy Logic Controller: Fuzzifier ... 34

2.3.5 Fuzzy Logic Controller: Rule Base ... 35

2.3.6 Fuzzy Logic Controller: Inference Engine .. 37

2.3.7 Fuzzy Logic Controller: Defuzzifier ... 38

Chapter 3: Performability Analysis of Disk Arrays using Fuzzy Logic 39

3.1 Markov Model of a Disk Array ... 39

3.2 Performability Model of Disk Arrays ... 44

3.3 Results of the Fuzzy Performability Analysis of the E-Mail Server 48

3.4 Conclusions ... 54

Chapter 4: Fuzzy Control of Sparing for Disk Arrays.. 55

4.1 Fundamental Models ... 55

4.1.1Queuing System with Vacations (QSV) ... 55

4.1.2 Disk Array Queuing Model ... 56

4.1.3 Raid1 Rebuild Model .. 59

4.1.4 Raid5 Rebuild Model .. 62

4.2 Fuzzy Control of the Sparing Process ... 67

4.2.1 Simulation and Results .. 72

4.3 Neural-Fuzzy Algorithm for Sparing in RAID Systems 76

4.3.1 Simulation and Results .. 80

Chapter 5: Fuzzy Control of LV Snapshot Replication .. 84

5.1 Background of Point-In-Time Copy Technologies ... 85

5.1.1 Copy-on-Write (CoW)... 85

5.1.2 Redirect-on-Write (RoW) .. 87

5.2 Modeling of the Copy-On-Write Snapshot ... 88

5.2.1 Markov Chain Model of the Probability of a Snap 88

5.2.2 Practical Snapshot probability equation .. 90

5.2.3 Model of the CoW process .. 92

5.2.4 Model of the proposed CoW-RoW process... 95

5.3 Snapshot Fuzzy Control .. 96

 vi

5.3.1 Purpose and Rationale of the Snapshot Fuzzy Controller 96

5.3.2 High Level Modeling of the Snapshot Fuzzy Controller 96

5.3.3 Decision Logic... 98

5.3.4 Estimation and fuzzification of the probability of a snap 98

5.3.5 Control Error computation and fuzzification .. 99

5.3.6 Rule Base to obtain uth ... 101

5.3.7 Stability of the Fuzzy Controller ... 102

5.4 Experimental Results .. 103

5.5 Conclusions ... 105

Chapter 6: T2 Fuzzy Control of Logical Volume Cloning Replication 106

6.1 Interval Type 2 Fuzzy Sets .. 107

6.2 Type 2 Fuzzy Logic Controllers (T2 FLCs) ... 108

6.3 Logical Volume (LV) Cloning Replication .. 110

6.4 Queuing Description of the LV Cloning Replication ... 113

6.5 Mathematical Description of the LV Cloning Replication 115

6.6 Local LV Cloning Replication Type-2 Fuzzy Logic Controller 119

6.6.1 Purpose of the LV Cloning T2 Fuzzy Controller .. 119

6.6.2 Description of the LV Cloning T2 Fuzzy Controller 120

6.6.3 LV Cloning Controller Fuzzification .. 122

6.6.4 Rule Base to obtain Tu ... 125

6.6.5 Type Reduction (Defuzzification) ... 126

6.6.6 Crisp delta of the cloning interarrival time.. 127

6.7 Experimental Results .. 127

6.7 Conclusions ... 130

Chapter 7: Conclusions and Future Work ... 131

7.1 Conclusions ... 131

7.2 Future Work .. 131

References .. 132

List of Publications ... 137

Publications in Conferences .. 137

Publications in Journals ... 138

 vii

Publications in Progress .. 139

Patents ... 139

Patent Applications ... 140

 viii

TABLE OF FIGURES

Fig. 2.1: Examples of modern disk arrays ... 6

Fig. 2.2: Storage as a service: typical scenario .. 7

Fig. 2.3: Block Diagram of a Modern Disk Array ... 9

Fig. 2.4: Storage Virtualization: LV logical and physical implementation 13

Fig. 2.5: Sparing data protection policy example .. 16

Fig. 2.6: Snapshot data protection policy example .. 17

Fig. 2.7: Cloning data protection policy example .. 19

Fig. 2.8: Revenue per month for performability example ... 29

Fig. 2.9: Loss in revenue per month for performability example 29

Fig. 2.10: Triangular fuzzy number A=[xl, xc, xh] ... 31

Fig. 2.11: Triangular fuzzy number A=[xl, xc, xh] and its discretization 32

Fig. 2.12: Triangular fuzzy number SEVEN=[4.5,7,9.5] .. 32

Fig. 2.13: Fuzzy Logic Controller (FLC) model with error computation...................... 34

Fig. 2.14: Fuzzification of a value of error e ... 35

Fig. 3.1: Markov Reward Model of a RAID disk group.. 40

Fig. 3.2: Fuzzy number used for fuzzy performability estimation 50

Fig. 3.3: Family of curves for fuzzy reliability RAID1 ... 50

Fig. 3.4: Family of curves for fuzzy reliability RAID5 ... 51

Fig. 3.5: Family of curves for fuzzy performability RAID1 in IO/s 52

Fig. 3.6: Family of curves for fuzzy performability RAID5 in IO/s 52

Fig. 3.7: Family of curves for fuzzy performability in Users (mailboxes) R1 53

Fig. 3.8: Family of curves for fuzzy performability in Users (mailboxes) R5 53

Fig. 4.1: Queuing System with Vacations (QSV) .. 56

Fig. 4.2: Queuing system of controller and disks. ... 57

Fig. 4.3: Disk Position Times measured for Random Reads ... 58

Fig. 4.4: Disk Position Times measured .. 59

Fig. 4.5: RAID1 disk array data layout .. 60

Fig. 4.6: Sparing process to replace failed disk D-1 .. 61

Fig. 4.7: RAID5 disk array data layout .. 63

Fig. 4.8: RAID5 disk sparing process to replace failed disk ... 64

file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971360
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971361
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971362
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971363
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971364
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971365
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971366
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971368
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971367
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971369
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971370
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971371
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971372
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971373
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971374
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971376
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971375
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971377
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971378
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971379
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971380
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971381
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971382
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971383
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971384
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971385
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971386
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971387
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971388
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971389

 ix

Fig. 4.9: Fuzzy controller of the QSV for sparing ... 68

Fig. 4.10: Membership functions for the normalized values ... 69

Fig. 4.11: User request latency comparison for 1,000 IO/s with fuzzy control 73

Fig. 4.12: User request latency comparison for 2,500 IO/s with fuzzy control 73

Fig. 4.13: User request latency comparison for 5,000 IO/s with fuzzy control 74

Fig. 4.14: User request latency comparison for 7,500 IO/s with fuzzy control 75

Fig. 4.15: Neural-Fuzzy controller of the QSV for sparing ... 76

Fig. 4.16: Membership functions for the normalized parameters 78

Fig. 4.17: Neural net layers of the Neural-Fuzzy controller for sparing 78

Fig. 4.18: User request latency comparison for 1,000 IO/s with neural-fuzzy control 80

Fig. 4.19: User request latency comparison for 2,000 IO/s with neural-fuzzy control . 81

Fig. 4.20: User request latency comparison for 4,000 IO/s with neural-fuzzy control . 82

Fig. 4.21: User request latency comparison for 8,000 IO/s with neural-fuzzy control . 83

Fig. 5.1: Snapshot right after creation.. 85

Fig. 5.2: Snapshot copy-on-write process .. 86

Fig. 5.3: Snapshot after copy-on-write .. 86

Fig. 5.4: User data write after redirect-on-write .. 87

Fig. 5.5: Markov chain of copy-on-write Snapshot ... 89

Fig. 5.6: Graph of the psnap equation predicting the fraction of unsnapped blocks 92

Fig. 5.7: User writes arrival rate and arrival rate caused by snaps 93

Fig. 5.8: Modified CoW-RoW process .. 95

Fig. 5.9: Snapshot fuzzy controller .. 97

Fig. 5.10: Membership functions for e and Δe .. 100

Fig. 5.11: Comparison of latency at 3,000 IO/s, 100% User writes 103

Fig. 5.12: Comparison of latency at 5,000 IO/s, 50% User writes 104

Fig. 6.1: Example of Type-2 Fuzzy Set ... 107

Fig. 6.2: Block diagram of an interval type-2 fuzzy controller (IT2FLC)................... 109

Fig. 6.3: Example of replication of a source volume ... 111

Fig. 6.4: Example of a CoW during the replication of a source volume 113

Fig. 6.5: Queueing scheme of LV Cloning with Snapshot .. 114

Fig. 6.6: Graph of the fc(t) equation predicting the fraction of cloned blocks 116

file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971390
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971391
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971393
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971392
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971394
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971395
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971396
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971397
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971398
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971399
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971400
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971401
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971402
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971403
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971405
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971404
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971406
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971407
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971408
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971409
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971410
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971411
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971412
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971413
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971414
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971415
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971416
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971417
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971418
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971419
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971420

 x

Fig. 6.7: Graph of the fs(t) equation predicting the fraction of snapped blocks 117

Fig. 6.8: Graph of the fr(t) equation predicting the fraction of replicated blocks 119

Fig. 6.9: Cloning type-2 fuzzy controller .. 120

Fig. 6.10: T2 Fuzzy values Zen and ZΔen .. 123

Fig. 6.11: T2 Fuzzy values (a) Nen, Pen and (b) NΔen. PΔen .. 124

Fig. 6.12: Cloning of an LV with no fuzzy control ... 128

Fig. 6.13: Cloning of an LV with T2 fuzzy control ... 129

file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971421
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971422
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971423
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971424
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971425
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971426
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971427

 xi

TABLE OF TABLES

Table 2.1: RAID Levels and Number of disk failures tolerated 11

Table 2.2: Comparison of data protection policies .. 15

Table 2.2: Example of tabular representation of a TSK controller 37

Table 3.1: User profiles and corresponding usage patterns ... 47

Table 3.2: Algorithm to compute the performability of disk array 49

Table 4.1: Rule base of the fuzzy control of Sparing .. 71

Table 4.2: Comparison of results of the fuzzy control of sparing 75

Table 4.3: Rule base Neural-Fuzzy controller for Sparing .. 79

Table 4.4: Comparison of results of the neural-fuzzy control of sparing 83

Table 5.1: Rule base for Snapshot Fuzzy Controller ... 102

Table 6.1: Rule base for LV Cloning Type-2 Fuzzy Controller 126

 1

CHAPTER 1: INTRODUCTION

1.1 PERFORMABILITY OF DISK ARRAYS

Fault-tolerant systems are expected to serve their purpose even in the presence of

failures. Reliability analysis is the study of the estimation of how likely is a failure to occur in

a fault-tolerant system. Performability was proposed over three decades ago as an answer to

the question “what is the level of effectiveness of a system considering the likeliness of

failures?’ In other words, “what is the performance of a system based on its reliability”.

Performability answers this question by the unification of performance and reliability analysis

applied to fault-tolerant systems.

Performability was proposed and defined by Meyer [Meyer 78a] as “the unification of

performance and reliability.” Meyer presented a performability evaluation of fault-tolerant

computers for aircraft control [Meyer 80a] as one the first examples of performability

evaluations published. Based on Meyer’s definition of performability, other authors published

performability analysis of different fault-tolerant systems such as disk arrays [Islam

93a][Barnett 98a].

 The concept of performability was extended by Zhang et al. [Zhang 06a] to consider

background tasks in addition to failure conditions. Zhang in [Zhang 06a] presented a

performability evaluation of a disk array under the presence of background jobs, i.e., tasks the

disk array executes with no user intervention and have a soft deadline. The background jobs

are independent of the user jobs, i.e., user reads and writes.

Redundant arrays of inexpensive disk (RAID) [Patterson 88a] systems were proposed

with the goal of avoiding the loss of data stored on disks and increasing the throughput of a

group of disks. The research in RAID systems was jumpstarted by the seminal paper by

Patterson in 1988.

Disk arrays are fundamentally RAID systems but with an advanced set of features

added over the years since the late 1980s. One example of such features is local and remote

logical volume copy between disk arrays. Another example is intelligent data caching

schemes between different storage media such as Solid State Drives (SSD) and magnetic Hard

Disk Drives (HDD). Disk arrays are fault-tolerant systems that are expected to deliver the

storage and retrieval of data even under the presence of failures or background jobs.

 2

The presence of failures or background jobs can be considered a non-optimal state of a

disk array from the point of view of a user issuing read/write requests. Both failures and

background jobs can be then considered non-optimal conditions. The optimal state of a disk

array can be defined as the state in which the disk array has no failure and background jobs

and can dedicate the resources (CPU, memory, IO ports, Hard Disk Drives) exclusively to the

service of user reads and writes. Based on Meyer’s original definition of performability and

Zhang’s extension of Meyer’s definition, we will define performability of disk arrays as a

measure of the probability of user requests to achieve a performance level under non-optimal

conditions. A more precise definition of performability is presented in section 2.2.

1.2 OBJECTIVE OF THIS DISSERTATION

As part of the progress made in the development of new disk array features, the

challenges imposed to disk arrays are greater. Now disk arrays are expected to guarantee low

latencies (response times) and high throughputs (in I/O requests per second) for user requests

(read/writes) even under self-repairable failure conditions such as a disk failure and/or in the

presence of background tasks such as data replication. Besides that expectation, the disk

arrays are also expected to repair themselves and finish background tasks as quickly as

possible. The two goals are opposing in nature. If the disk array allocates more of its

resources to serve user requests, the self-repair and the background tasks take longer to be

completed. But if the disk array allocates more of its resources to self-repair or the

background tasks, the user requests will suffer a performance impact in terms of higher

latencies or lower throughputs. Clearly, there is a challenge for disk arrays to provide the best

performability.

The research reported in this dissertation seeks to improve the performability of disk

arrays by:

1) Proposing an algorithm for estimating the performability of disk arrays considering

failure rates. The algorithm makes use of fuzzy logic to deal with the uncertainty of some of

the parameters.

2) Proposing control strategies based on the use of fuzzy logic and control. The fuzzy

control will be used to control the execution of background tasks based on external

requirements such as desired latency of user requests and time to complete background tasks.

 3

The purpose of the fuzzy logic as well as fuzzy control solutions is to minimize the

performance impact of the background jobs on the user request latency and throughput. The

fuzzy logic and fuzzy control approach was chosen because it overcomes the limitation of the

lack of internal information of components such as disk drives.

There is no perfect response to the disk array performability challenge. The solution is

to propose responses that optimize the use of the internal resources of a disk array. The

optimization is understood in this dissertation as the balancing of the use of resources such as

Hard Disk Drives (HDDs), to achieve the goal of accomplishing mutually exclusive goals.

The balancing of the resources to provide an optimal response to competing processes

requires considering a number of parameters such as disk latencies, disk array controller

latencies, bandwidth of the communication ports, data transfer sizes, memory caching

algorithms, RAID levels, data access patterns such as random or sequential, type of data

accesses (read or writes), and queue lengths. This list of parameters is not a comprehensive

list of all the parameters to consider for the optimization problem, but it gives an idea that the

problem can have a dimensionality that makes it complex. This is the challenge that this

dissertation approaches by proposing fuzzy control schemes for disk array performability.

1.3 ASSUMPTIONS OF THE DISSERTATION

Certain assumptions are made throughout this dissertation. The first is that no cache

memory is considered when proposing the performability solutions for the disk array. The

disk array will be considered to be in write-through mode, i.e., the user writes will go directly

to the disks. The second assumption is that the bottlenecks can be the hard disks or the disk

array controller. Other components, such as front-end and back-end communication links

(Fibre Channel, Serial Attached SCSI (SAS), and Ethernet) are not considered a bottleneck

for the purposes of this study.

There is no intention in this dissertation to do an exhaustive modeling of disk array

components. In other words, it is not the intention to present comprehensive analysis of disk

drive behavior, the disk array controller board or the communication links. There is no

intention to study the different kinds and patterns of user data workloads applied to disk

arrays. The type of user data workload used for this study will be the On-line Transaction

Processing (OLTP) workloads, the kind of workload produced by databases such Oracle ™.

 4

The OLTP workload is dominated by small transfer sizes (8KiB or 16KiB) and random

accesses over virtual disks (VDs), which are also referred to as logical volumes (LVs).

1.4 CONTRIBUTIONS OF THIS DISSERTATION

This dissertation presents two major contributions:

1) First, this dissertation contributes in the performability analysis of disk arrays using

fuzzy logic that provides us with a practical, easy-to-use, numerical algorithm to achieve

consistently high performability based on the reliability metrics of a RAID disk group.

2) Second, this dissertation contributes by proposing a fuzzy control approach to

improve disk array performability that gives us a practical, effective, and easily-updated

means to schedule the execution of customer requests and concurrent data protection tasks.

This approach overcomes the lack of internal information of components such as disk drives

by using a rule-based approach instead of a detailed control model. The fuzzy control schemes

presented in this dissertation have resulted in patents awarded by the United States Patent and

Trademark Office (USPTO) [US Patents 8,201,018, 8,650,145, and 9,063,835].

1.5 ORGANIZATION OF THIS DISSERTATION

Chapter 2 is a background on disk arrays, performability and fuzzy control. The

description of a generic disk array and the current technologies used for disk arrays are

provided as well as an introduction to the data protection policies used by disk arrays. Also,

the fundamental concept of virtualization as understood for disk arrays is explained. The

performability concept is explained in detail and an example is provided. Finally,

fundamentals of fuzzy control theory are provided for the reader.

Chapter 3 tackles the disk array performability analysis problem by the use of fuzzy

performability applied to an e-mail server. Chapter 3 presents contribution 1) mentioned in

the previous section, i.e., the estimation of performability of disk arrays by using a fuzzy

numerical method. The application of this algorithm in the sizing of an e-mail server shows

how this numerical method to estimate performability can be applied to size IT services such

as Email.

Chapter 4 approaches the problem applied to the sparing (rebuild) and a solution using

fuzzy logic control and neural-fuzzy control. This chapter makes the contribution of new

patented fuzzy control schemes that provide better performability of disk arrays when

 5

reconstructing data redundancy (sparing) due to a disk failure. This performability is

improved by reducing the sparing time by half while at the same time ensuring a proper

latency of user requests (reads and writes) under the presence of the background sparing

process.

Chapter 5 tackles the problem of point-in-time copy of logical volume (LV) snapshots

solved using fuzzy logic. This problem is addressed by proposing a novel patented scheme to

deal with the Copy-On-Write problem along with a novel fuzzy control scheme that ensures

that the latency of user requests will not be as impacted by the snapshot copy of LVs and the

same time it guarantees the progress of the LV snapshots.

Chapter 6 proposes a solution to the problem of point-in-time copy of LV cloning

replication using fuzzy logic. This problem is managed by proposing a new patented scheme

that throttles the rate of cloning replication when the user latency is high but speeds up the

rate of replication when the user latency is low. This balance between goals is achieved by

using a fuzzy controller scheme that balances the need of a low latency of user requests vs. a

quick LV cloning replication.

Chapters 4, 5 and 6 present the fuzzy control approaches related to contribution 2)

mentioned in the previous section. These three chapters show how the fuzzy control approach

can be practically applied overcoming the lack of internal information of components such as

disk drives. The purpose of the fuzzy control schemes in these three chapters is to improve the

latency of the user requests (reads and writes) in the presence of a background job.

 6

CHAPTER 2: BACKGROUND ON DISK ARRAYS, PERFORMABILITY AND FUZZY

CONTROL

This chapter provides an introduction to the three areas of knowledge that compose this

dissertation: disk array technology, performability, and fuzzy control.

2.1 DISK ARRAYS

 Disk array is the term used for the Redundant Array of Independent Disks (RAID)

with additional features that have been added to the original RAID concept. The concept of

RAID is first patented by N. K. Ouchi in 1978 (US Patent 4,092,732). Disk arrays are now an

essential part of the IT centers. The Storage Networking Industry Association (SNIA)

http://www.snia.org is an organization of member companies with the mission to promote

standards, technologies and educational services related to storage technologies. The SNIA

defines a disk array as a set of disks from one or more commonly accessible disk subsystems,

combined with a body of control software. The control software presents the disks' storage

capacity to hosts as one or more virtual disks. The term virtual disk is defined as the disk

array object that most closely resembles a physical disk from the operating environment’s

point of view [SNIA 13a]. The term logical volume is also used as a synonym of virtual disk.

Disk arrays are fault tolerant since they can continue to operate under the failure of a

drive or a controller. Fig. 2.1 shows two pictures of modern disk arrays. Disk arrays provide

not only the means to store huge amounts of data, but means to ensure the survival of the data

in case of failures or catastrophes. The disk array business market share was US $22.3 billion

in 2012 [Gartner 13a]. For example, Facebook, the social networking service, use disk arrays

to store user profiles. The user profiles contain text, picture, audio and video. As of the end of

(a) HP 3PAR 7400 (b) Ace Powerworks 466

Fig. 2.1: Examples of modern disk arrays

 7

2013, Facebook had over 240 billion photos in disk arrays and 350 million photos were added

per day. This translated into 7 Petabytes of new storage per day.

The concept of redundant arrays of inexpensive disks (RAID) was first published in a

peer-reviewed journal by Patterson [Patterson 88a] to improve the dependability and

performance of storage systems [Patterson 94a]. The RAID systems have fault tolerance to

disk failures by storing redundant copies of the user data (RAID1) or by using parity as a

means to rebuild the data in case of disk failure. When a disk fails, the disk array loses the

data redundancy of the data on the failed disk. The process of reconstructing the data

redundancy is known as rebuild [Menon 94a] or sparing [Thomasian 97a]. Issues related to

reliability have been researched before [Schulze 89a], [Burkhard 93a], [Ganger 94a]. The

performance under optimal conditions has been studied before [Lee 93a], [Catania 95a],

[Schwarz 92a], [Varki 03a]. The performance under degraded conditions and performability

estimation has been researched before as well [Islam 93a], [Muntz 90a], [Reddy 91a],

[Thomasian 97a], [Barnett 98a].

Disk arrays provide storage service by two basic data transfer operations: user reads

and user writes. Users send read or writes requests through the computer host, as shown in

Fig. 2.2. The computer host relays the requests for data (read) and to save data (write). The

two most important performance metrics of the Reads/Writes are throughput and latency. The

reads and writes have other attributes such as data transfer size. The number of data transfer

operations (reads or writes) per unit of time is the throughput, usually measured in

requests/second. The definition of throughput by the SNIA is the number of I/O requests

satisfied per unit time. The throughput is expressed in I/O requests/second (IO/s), where a

request is an application request to a storage subsystem to perform a read or write operation.

Fig. 2.2: Storage as a service: typical scenario

 8

The time it takes for a request to be satisfied is the latency, usually measured in milliseconds.

The definition of latency proposed by the SNIA is synonym for I/O request execution time, the

time between the making of an I/O request and completion of the request’s execution. The

term response time is used in the Storage community as a synonym for latency. For this

dissertation, both terms will be used. Another attribute of a user request is the transfer size,

which is measured in Kibibytes (KiB), 1024 bytes.

2.1.1 DISK ARRAY ARCHITECTURE

A modern disk array is basically composed of two main sections: the controllers and

the array of disks. The disks used by disk arrays are most commonly hard disk drives (HDDs)

or solid state drives (SSDs). Disk arrays achieve fault tolerant capability by the use of

redundancy. The number of controllers of a fault tolerant disk array is at least two. The

minimum number of drives varies from product to product but is usually at least eight HDDs.

Fig. 2.3 shows the basic block diagram of a disk array.

The disks store the user data using the controller as the link between the storage

provided by the drives and the users of the storage space. The disks are installed in specially

designed enclosures (disk enclosures) that hold a number of disks, e.g. 20, that have

connectors and electronic circuitry to allow all disks in the disk enclosure to be “visible”

(accessible) and communicate with the disk array controllers. In modern disk arrays, the disk

enclosures connect to the disk array controllers usually through Fibre Channel (FC) or Serial-

Attached SCSI (SAS) interfaces.

 The controllers provide three essential functions: 1) provide virtual storage capacity to

computer systems; 2) interface with computer systems and 3) provide data redundancy so data

can be recovered in the event of a disk failure. The first essential function of presenting the

virtual storage capacity means that the capacity of all disks combined is presented as one

single big capacity. In other words, the disk array controllers abstract out all the physical

details of the disk configuration such as number and storage capacity of the disks, and present

a logical combined storage capacity of all disks. For example, if a user has a disk array with

20 disks with 300GB of capacity each, the disk array controller may present a single 20 x

300GB = 6,000GB capacity to the users. This allows users of the disk array to allocate

capacity easily by leaving all decisions about the physical details (which disks and sectors

 9

within the drives to use) up to the controllers. The virtual storage capacity depends on the

RAID level. This will be explained in subsection 2.1.2.

The disk array controllers also perform the essential function of interfacing with the

computer systems, e.g., Windows or Linux, that make use of the virtual storage capacity

provided by the disk array. The most common communication interfaces used by the

controllers are FC and Internet SCSI (iSCSI). The communication ports used by the

controllers to interface with the computer systems are referred to as the front-end I/O ports.

The ports used to communicate with the disks (through the disk enclosures) are referred to as

back-end I/O ports. The controllers communicate with each other most commonly using FC

or Peripheral Component Interconnect (PCI) interfaces.

Fig. 2.3: Block Diagram of a Modern Disk Array

Disk 1

Disk Ne

DISK ARRAY CONTROLLER 1

Front-End Port 1

(FC, iSCSI)

F
ro

n
t-

E
n

d
 p

o
rt

s
 c

o
n

n
e

c
te

d

to
 a

 c
o

m
p

u
te

r
h

o
s
t

Disk Enclosure 1

Disk 1

Disk Ne

Back-End Port 1

(FC, SAS, SATA)

Disk 1

Disk Ne

Disk Enclosure 2

Disk Enclosure E

Back-End Port 2

(FC, SAS, SATA)

Back-End Port E

(FC, SAS, SATA)

Front-End Port 2

(FC, iSCSI)

Front-End Port F

(FC, iSCSI)

DISK ARRAY CONTROLLER 2

Front-End Port 1

(FC, iSCSI)

Back-End Port 1

(FC, SAS, SATA)

Back-End Port 2

(FC, SAS, SATA)

Back-End Port E

(FC, SAS, SATA)

Front-End Port 2

(FC, iSCSI)

Front-End Port F

(FC, iSCSI)

Controller-to-Controller

Links (PCI, FC)

Controller-to-Controller

Links (PCI, FC)

F
ro

n
t-

E
n

d
 p

o
rt

s
 c

o
n

n
e

c
te

d

to
 a

 c
o

m
p

u
te

r
h

o
s
t

Ne = Number of disks per disk enclosure

E = Number of disk enclosures

D = Total number of disks

D = E * Ne

FRONT-END

I/O PORTS

BACK-END

I/O PORTS

I/O PORTS

MEMORY (RAM)

CPU

READ-ONLY MEMORY

RTOS stored here

Acronyms:

RTOS – Real Time Operating System

FC – Fibre Channel

iSCSI – Internet Small Computer System Interface (SCSI)

SATA – Serial ATA (AT Attachment)

SAS - Serial Attached SCSI

PCI – Peripheral Component Interconnect

FRONT-END

I/O PORTS

I/O PORTS BACK-END

I/O PORTS

MEMORY (RAM)

CPU

READ-ONLY MEMORY

RTOS stored here

 10

The disk array controllers contain central processing unit (CPU) along with random

access memory (RAM) and read-only memory (ROM) to implement and execute the

algorithms that carry out the essential functions of the controllers and more features, such as

local replication.

2.1.2 RAID LEVELS

RAID systems make use of two orthogonal concepts: data striping across disks for

improved performance, and redundancy for improved reliability. Data striping allocates data

over multiple disks to make them appear as one single, large, fast disk. This allows multiple

I/Os to be serviced in parallel. Most of the redundant disk array organizations can be

distinguished based on two features: 1) the granularity of the data interleaving and 2) the

method and pattern in which the redundant information is computed and distributed across the

disk array [Patterson 94a].

The basic RAID levels that were introduced by Patterson, Gibson and Katz in

[Patterson 88a] are RAID1 through RAID5. The term level is used to denote the method and

pattern used to maintain the redundancy of the data. There are very complete descriptions of

the RAID levels in [Shooman 03a] and [Patterson 07a]. In this section a basic presentation of

the RAID levels is given.

1. RAID0 – This level has no redundancy. The data is striped across the disks. This level is

not as used in practice.

2. RAID1 – This level implements redundancy by copying or mirroring data across drives.

The most common number of copies is two. This means that data is written to two disks.

When data is read, then either disk can be picked to provide the data. This RAID level is

used a lot in practice because it is simple and does not require any special parity

computation. The drawback of this RAID level is cost in terms of space efficiency; if two

copies of the data are stored, that reduces in half the available storage capacity for the

users to store data.

3. RAID2 – This level implements memory-style error correcting code. This RAID level is

practically not used in commercial disk arrays. It is mentioned here for completeness.

4. RAID3 – This is a bit-interleaved parity level. In other words, the parity is computed at

the bit level. Levels 3, 4 and 5 make use of the XOR function to compute parity [Shooman

 11

03a]. The data is striped across a group of N disks including a parity disk. When reading

or writing, all N disks have to be read or written. This level has been used rarely in

practice

5. RAID4 – This is a block-interleaved parity level. The parity-bit code is applied at a block

level, e.g., 512 or 2048 byte-blocks. The parity bits are stored on a dedicated parity disk.

The fundamental difference between level 3 and 4 is that the data is interleaved between

disks at the sector level in 4 and at the bit level in 3.

6. RAID5 – This is a block-interleaved parity level, like level 4, but the parity blocks are

distributed across the disks. This level is widely used in practice by the disk array

companies such as EMC, IBM and Hewlett Packard.

7. RAID6 – This is a block interleaved parity level, like level 5, but the two parity blocks are

computed instead of one as in level 5. The computation of two different independent

parity blocks allows the disk array to recover from two disk failures. This level is

becoming very widely used in practice as the size of disks increases.

Since the introduction of RAID systems in Patterson’s seminal paper in the late

eighties [Patterson 88a], disk arrays have been an active area of research. The analysis of the

Table 2.1: RAID Levels and Number of disk failures tolerated

RAID Level Disk failures tolerated and parity overhead for data striped

across G disks

0 Non-redundant striped 0 failures and 0 parity disks (no overhead)

1 Mirrored 1 failure and G/2 disks

2 Memory-style ECC 1 failure and G/2 disks

3 Bit-interleaved parity 1 failure and 1 parity disk

4 Block-interleaved parity 1 failure and 1 parity disk

5 Block-interleaved parity 1 failure and 1 parity disk

6 Block-interleaved parity

computed in two ways

2 failures and 2 parity disks

 12

reliability and the performance of the RAID systems and the different RAID levels have been

studied since then [Schulze 89a],[Patterson 94a],[Burkhard 93a],[Ganger 94a],[Patterson

07a],[Rezaul 93a],Barnett 98a].

2.1.3 STORAGE VIRTUALIZATION

This dissertation makes use of the virtual disk or logical volume concept, explained in

this section. The SNIA defines a virtual disk as a set of disk blocks presented to an operating

environment as a range of consecutively numbered logical blocks with disk-like storage and

I/O semantics. The virtual disk is the disk array object that most closely resembles a physical

disk from the operating environment's viewpoint. For this dissertation, the term logical volume

will be used as a synonym of virtual disk.

Disk arrays store user data using a technique named storage virtualization. In order to

explain what storage virtualization is, we need to explain what a logical volume is in the

context of disk array technology.

The disk arrays combine the storage capacity of all the disks connected to the array in

one single capacity that is referred to as total capacity. The total capacity is usually in the

order of Terabytes (TB) or Petabytes (PB). Disk arrays are designed to share the total capacity

among different users and to allow the allocation of capacity in stages. The way these two

goals are accomplished is by the use of logical volumes. Logical volumes are partitions of the

total storage capacity offered by the disk array. For example, if the total storage capacity

offered by a disk array is 10 TB, a user may allocate only 1 TB for a logical volume and leave

all the other 9 TB available for some other time. This allows customers to save time because

the disk array only has to be create tables in memory for the actually allocated space, e.g.

1TB, but at the same time the disk array is prepared to grow those tables easily when more

space demanded, e.g. 2TB more. A logical volume is presented to a user as a set of

consecutive and individually addressable bytes. The number of bytes in a logical volume

depends on the size that the user allocated. Following the example of the 1 TB logical

volume, the disk array would allocate 240 bytes for the user presented as one set of

consecutive bytes encapsulated in the 1 TB logical volume. This is known as the virtual disk

or logical volume presentation. In set form:

 13

},...,,{ 21 SID bbbLV  (2.1)

where b is a byte and S is the total number of bytes allocated to the logical volume.

The ID is a unique identifier assigned to a logical volume. The ID can numerical or alpha-

numeric. Fig. 2.4 shows an example of the physical implementation of a logical volume using

RAID1 (R1).

The disk array presents the logical volume in a logical form, but the physical

allocation is different and depends on factors such as the RAID level to use, the number of

disks on which the logical volume will be stored, and the granularity of the physical

allocation.

The disk array keeps track of the allocated space and whether or not it has been

written to or moved from one disk to another. The tracking of this information is kept in

tables known as metadata. It is impractical to have the metadata keep track of the activity at

the byte level. As a consequence, the disk arrays keep data for logical volumes using a

minimum unit of allocation much bigger than a byte. This minimum unit of allocation will be

referred to as data block and its size varies in practice for different disk arrays. Typical data

block sizes in practice are 128KiB, 256KiB, 512KiB, 1MiB and sometimes bigger. The

Fig. 2.4: Storage Virtualization: LV logical and physical implementation

disk 3

db2

disk 4 disk D-1 disk D

db’2 dbD/2 db’D/2

disk 1

db1

disk 2

db’1

db(D/2)+1 db’(D/2)+1 db(D/2)+2 db’(D/2)+2 dbD db’D

dbD+1 db’D+1 dbD+2 db’D+2 db3D/2 db’3D/2

Stripe (2*B)/D

Stripe 3

Stripe 2

Stripe 1

db’BdbBdbB-(D/2)+1 db’B-(D/2)+1 dbB-(D/2)+2 db’B-(D/2)+2

db2db1 dbB

Physical allocation of the LV data blocks using a striped version of R1 redundancy using D disks

Logical View of the LVID

B = Number of data blocks in LV

db = data block

b2b1 bS

Number of bytes in LV
data block sizeB =

S = Number of bytes in LV

Physical View (PVID) of the LVID

Physical Volume PVID

Logical Volume LVID

 14

number of data blocks B, to allocate to a logical volume depends on the size of the logical

volume, S, and the data block size, Sb.

bSSB /  (2.2)

The logical volume is allocated on the disks as a physical volume. The physical

volume contains the data blocks and the mirrored copies in the case of RAID1 or the parity

blocks in the case of RAID3, RAID4 and RAID5. The transformation from logical to physical

volume depends on logical volume ID, the size of the data block Sb, the RAID level RL, and

the number of disks in the RAID group or group size, G, e.g., two disks for RAID1.The PVID

is a function that maps a logical volume into a list of data blocks.

) ,, ,(GRSLVPV LbIDID  (2.3)

The number of data blocks in the physical volume depends on the RAID level and the

group size G. The group size G determines the sequence of data and mirror or parity blocks

according to the number of disks G in the disk group. The example in Fig. 2.4 shows a

physical implementation of a logical volume using R1, and a group size of two. Since G = 2,

each data block has a mirrored copy on another drive. The physical volume transformation of

the logical volume is shown in Fig. 2.4 is

},,...,,,,{) ,2 , ,(''
22

'
111 BBbIDID dbdbdbdbdbdbSRLVPV  (2.4)

where each data block dbi has its corresponding copy db’
i.

The disk array has a total number of disks D. The physical volume is allocated across

all the D disks in groups of G disks.

2.1.4 DATA PROTECTION POLICIES

Data protection policies are the procedures a disk array executes to copy (replicate) the

data on a disk array to protect against data loss. The typical data protection policies are

sparing, snapshot and cloning (mirroring). Sparing is different from snapshot and cloning

 15

because sparing has the goal of recovering the RAID redundancy in a disk group and is only

executed when a drive failure occurs. Snapshot and cloning have the goal of replicating

logical volumes at some point in time and are executed by user request, not because of a

failure. Table 2.2 shows a comparison of the data protection policies.

2.1.5 SPARING DATA PROTECTION POLICY

Sparing is the data protection policy that is executed when a drive fails and the data on

the failing drive loses its RAID level redundancy. This policy restores the redundancy of the

data that was stored on the failing disk by copying the non-redundant data to the surviving

disks, therefore restoring the redundancy of that data. This policy operates at the RAID level,

i.e., this policy does not create new logical volumes, only ensures that all data blocks that lack

Table 2.2: Comparison of data protection policies

 Purpose Time of

execution

Procedure used Data level

affected

Sparing Reconstruct the

redundancy of data

in RAID disk group

When a drive

failure occurs

The data that was

on the failed drive

is read from the

surviving disks

RAID level

Snapshot Replicate the data

stored in a logical

volume at some

point in time

On user request Copy only

modified parts of

a source logical

volume to a

backup logical

volume

Logical

volume

Cloning Replicate the data

stored in a logical

volume at some

point in time

On user request Copy an entire

source logical

volume to a

backup logical

volume

Logical

volume

 16

redundancy are copied so they have redundancy again according to their RAID level. Sparing

is also known as Rebuild. The SNIA defines rebuild as the regeneration and writing onto one

or more replacement disks of all of the user data and check data from a failed disk in a

mirrored or RAID array. In most arrays, a rebuild can occur while applications are accessing

data on the array’s logical volumes.

Fig. 2.5 shows an example of a RAID 5 disk group with a group size of G = 5 disks. In

this example the disk labeled “DISK 3” failed and the regeneration of the data that was stored

on the failed disk is being regenerated from the parity and data from the surviving four disks

of this disk group. The dotted lines show the copy of data from the surviving disks to the

spare disk. The copy of data to the spare disk recovers the RAID level redundancy lost by the

failed disk. The sparing process is executed in the background and therefore is considered a

background job. Chapter 4 presents a fuzzy control scheme for sparing and explains the

sparing process in more detail.

2.1.6 POINT-IN-TIME DATA PROTECTION POLICY

 Disk arrays protect the data in logical volumes using a Point-In-Time (PIT) data

protection policy. The SNIA defines the Point-In-Time copy as a fully usable copy of a

defined collection of data that contains an image of the data as it appeared at a single instant

Fig. 2.5: Sparing data protection policy example

 17

in time. A PIT copy is considered to have logically occurred at that point in time, but

implementations may perform part or all of the copy at other times (e.g., via database log

replay or rollback) as long as the result is a consistent copy of the data as it appeared at that

point in time. Implementations may restrict point in time copies to be read-only or may permit

subsequent writes to the copy. The snapshot and cloning data protection policies are PIT data

protection policies that are now standard features of disk arrays.

2.1.7 SNAPSHOT DATA PROTECTION POLICY

 Snapshot or Delta Snapshot is a Point-In-Time data protection policy. By using the

snapshot feature, users can create a point-in-time copy of a logical volume. From the user’s

standpoint, the snapshot feature creates an instant copy of the original logical volume. This

gives users the means to preserve a point-in-time copy (the snapshot) of the data in a source

logical volume. If the data in the source gets corrupted or lost, the user can go back to the

snapshot and recover the data from that point in time. The SNIA defines delta snapshot as a

type of point in time copy that preserves the state of data at an instant in time, by storing only

those blocks that are different from an already existing full copy of the data.

Fig. 2.6: Snapshot data protection policy example

 18

Snapshot is a data protection feature that produces a point-in-time copy of a logical

volume. The logical volume data blocks are copied on-demand when a user modifies a data

block by writing to it. The data block is replicated before allowing the user write to proceed.

A Copy-on-Write (CoW) takes place when a data block has to be copied before a user write

can proceed on said data block. The example in Fig. 2.6 shows a source logical volume that is

protected by the snapshot policy. The original volume with the data to be replicated will be

referred to as the source volume or just the source, for short. The copy of the original volume

will be referred to as the snapshot or replica volume or the snapshot, for short. The user writes

to data block B2,1 but since that data block has not been copied (snapped) then the user write

has to wait for the CoW to proceed to copy the data block to the snapshot logical volume.

The snapshot data protection feature is space-efficient by only copying the modified

(written to) data blocks but it impacts user request latency by forcing a user write to wait for a

data block to be copied if the data block has not been copied before. Also, the source and the

snapshot logical volumes are attached (linked) because the snapshot logical volume only

contains the modified data blocks and the rest of the data blocks are still in the source logical

volume. Chapter 5 presents a fuzzy control scheme for snapshot and explains the snapshot

data protection policy in more detail.

2.1.8 CLONING DATA PROTECTION POLICY

Cloning, like snapshot, is a Point-In-Time data protection policy; but cloning, unlike

snapshot, is not an on-demand data protection policy. Cloning does not wait for the user to

modify (write to) a data block to copy it. Cloning copies all the logical volume data regardless

of the state of the data blocks modified or unmodified. From the user’s point of view, the

cloning replication takes some time because the cloning replication copies all the data in a

logical volume. This replication of data blocks gives users the means to preserve a point-in-

time copy (clone) of the data from a source logical volume. The original volume with the data

to be replicated will be referred to as the source volume or just the source, for short. The copy

of the original volume will be referred to as the clone or replica volume or the clone, for short.

This data protection feature is not space-efficient like snapshot but it provides

complete separation of the source and clone logical volumes. Users choose this feature

because unlike snapshot, when cloning finishes replicating the source logical volume, they

 19

can operate on each logical volume (source and clone) separately, since both logical volumes

have all the data blocks that were originally in the source logical volume.

The cloning data protection policy can impact user request latency due to the cloning

background activity or CoWs generated by users writing to data blocks in the source logical

volume during the cloning replication process. The example in Fig. 2.7 shows a source logical

volume that is protected by the cloning policy. The dotted lines show the copy of all the data

blocks from the source logical volume to the clone logical volume. The cloning process

occurs in the background as already said and can be processed serially, i.e., one data block at

a time) or in parallel, i.e., multiple data blocks being copied at a time. Chapter 6 presents a

fuzzy control scheme for cloning and explains the cloning data protection policy in more

detail.

2.1.9 DISK ARRAY PERFORMABILITY AND DATA PROTECTION POLICIES

Sparing, snapshot, and cloning, are data protection policies that operate in the

background, i.e., concurrently with the service of user reads and writes. Those three data

protection policies make use of the same resources (CPU, disks, memory, IO ports) to make

copies of data instead of serving user reads and writes. Therefore, those three data protection

Fig. 2.7: Cloning data protection policy example

 20

policies can potentially impact the user read/write performance in both throughput and

latency. The purpose of the fuzzy controllers presented by this dissertation in chapters 4, 5

and 6 is to minimize the performance impact of the data protection policies running in the

background (background jobs), therefore, improving the performability of the disk array

under those three data protection policies. The performability approach of chapter 4, 5 and 6

is background-jobs based. In those chapters the purpose is to improve the performance of the

user services under non-optimal conditions, i.e., in the presence of a background job that can

be sparing, snapshot or cloning.

2.2 PERFORMABILITY

2.2.1 PERFORMABILITY OF DISK ARRAYS

In section 1.1, a general performability definition was presented. This section will

refine the definition of performability, but first, effectiveness is defined. Effectiveness is the

ability of a system to meet its specified needs. A quantitative measure of effectiveness (MoE)

was proposed by Smith and Clark in [Smith 04]. The definition of performability has evolved

since it was first proposed by Meyer [Meyer 78a],[Tai 96a]. Meyer first defined performance

as the effectiveness of an object to deliver a specified service in a time interval [0,t]; and

reliability as the probability of an object to deliver a specified service in a time interval [0,t].

With these two definitions, Meyer then defines performability as the unification of

performance and reliability. We consider this definition of performability a reliability-based

performability.

As described in section 1.1, the concept of performability was extended by Zhang et

al. [Zhang 06a] to consider background tasks or jobs besides failure conditions. Zhang goes

over the use of background jobs in disk arrays but did not present a formal definition of

background jobs. Therefore, for this dissertation we propose two definitions for disk arrays.

We define a foreground task (job) as an interactive task with a hard, short deadline. We

define a background task (job) as a non-interactive task with a soft deadline that is

independent of the foreground jobs. We consider the performability proposed by Zhang as the

background-jobs based performability. We define the background-jobs based performability

as the measure of the probability of the performance impact on foreground tasks caused by

the execution of background tasks.

 21

It is possible to unify both Meyer’s and Zhang’s definitions of performability for disk

arrays if we consider the performability from the point of view of foreground jobs. For a

foreground job the optimal condition exists when there are neither failures nor background

jobs present in a disk array. Conversely, we can consider that for a foreground job a non-

optimal condition exists when there is either a failure or a background job in the disk array.

Based on the definitions of optimal and non-optimal conditions, we define

performability of disk arrays as a measure of the probability of user requests to achieve a

performance level under non-optimal conditions.

2.2.2 FUNDAMENTAL CONCEPTS

The system under performability evaluation is referred to as the total system S. For

performability evaluations a total system S is considered to have an object system C and an

environment E. The object system C is the system or component that provides the service and

is the object of the performability evaluation. The environment E is the system of components

or events that affect the ability to perform of the object system C. A good example of E is the

workload that the environment E applies to C.

The dynamics of the object system C are modeled by a stochastic process referred to

as the object system model XC:

 } |),({ TttSXX CC  (2.5)

where X(SC,t) is a random variable with sample space SC and index t, where t is time

and is in the range of the total interval of time T. The dynamics of the environment E are also

modeled by a stochastic process referred to as the environment system model XE:

 } |),({ TttSXX EE  (2.6)

where X(SE,t) is a random variable with sample space SE and index t, where t is time

and is in the range of the total interval of time T. Modeling the environment E with a

stochastic process can be optional. Sometimes the environment can be replaced with a set or

list of values used as inputs to the object system C.

 22

The stochastic process is defined by a set of events based on a probability space. The

events are also referred to as states in stochastic models such as in Markov models.

The stochastic process developed to model XC can consist of a set of states QC. The

stochastic model developed for XE can also consist of a set of states QE. A stochastic model

that includes both QC and QE makes use of the product space Q, which is the space product of

QE and QC:

 EC QQQ  (2.7)

The total system S can be modeled using a stochastic model X that includes both XC

and XE:

) , (EC XXX  (2.8)

The stochastic process X makes use of the state space Q. Some common stochastic

models used to model X and estimate performability are:

1) Markov Chains (MC) with rewards (Markov Reward Models)

2) Queueing models

3) Stochastic Petri Nets (SPNs)

4) Series-parallel graphs

5) Simulations packages such as CSIM

Depending on the specific performability evaluation, sometimes only the object

system model XC and the states QC are used:

 CC QQXX  (2.9)

Or only the environment model XE and the states QE are used:

 EE QQXX  (2.10)

 23

The second important definition in performability is the performability variable Y, a

random variable from the stochastic model X. The third important definition in performability

is accomplishment: A desired value or range of values for the performability variable Y is

defined, usually at design time. The performability variable Y and the accomplishment A are

related by the probability of achieving the accomplishment:

]Pr[)(HL AYAAPerf  (2.11)

The Perf(A) is the performability of the accomplishment A and is defined as the

probability of the performability variable Y to be in the range of the values of accomplishment

A. AL (AH) is the lower (high) value of A. This definition comes from the intention of

performability evaluations to obtain the probability density function, and therefore the

cumulative distribution function. If the cumulative distribution can be obtained then the

accomplishment can be expressed as:

]Pr[)(AYAPerf  (2.12)

The Perf(A) is also referred to as the performability measure.

2.2.3 PERFORMABILITY EVALUATIONS

A performability evaluation consists of the three parts mentioned in the previous

section as part of the fundamental concepts: 1) a model of the system or feature under study

with a stochastic process X, for example, a Markov model; 2) a performability variable Y, for

example, probability of completing a service, financial benefit, latency, or throughput; 3) a

value or range of values for the accomplishment A. The result of the performability evaluation

is a relation between the performability variable Y and some other variable; usually time, but

the result can also be Y vs. an input to the system under study. This result is most commonly

presented as an x-y graph with time or an input to the system on the horizontal axis and the

performability variable Y on the vertical axis. The three parts are related in the following way:

1) By the performability model (PM), which is the pair (X,Y):

 24

 Y) , ()(XYPM  (2.13)

2) By the performability of the accomplishment A, as shown in (2.12)

It is important to state that solving a performability problem means to use the

stochastic process X as the approach to obtain values for the variable Y of Perf(A). The best

solution is to obtain the probability density function of Y but that may be difficult and

sometimes one or two moments is the acceptable solution. Solving a performability problem

is also known as doing a performability evaluation or estimation.

2.2.4 PERFORMABILITY MEASURES

Different mathematical models have been used for performability analysis. Markov

Chains (MC), Series-Parallel Graphs, Stochastic Activity Networks (SANs) and Markov

Reward Models (MRMs) have been used, among others. The MRM has been one of the most

used models for performability estimation.

The MRM will be used as the base model to explain the performability concept in a

more mathematical form. MRMs extend the Markov Model by attaching a value r to each

state of a Markov Model. This is referred to as state reward or simply reward and can be

constant or time dependent. The reward value is what makes the MRM very suitable for

performability analysis because the performability variable Y can be represented or estimated

by a reward value or combined reward values of an MRM.

Let N be the number of possible states a system can operate in. The state of the system

is defined by a time stochastic process X = {X(t), t ≥ 0}. The state reward ri is specified by

some performance measurement Examples of reward measures are throughput and latency

(response time). The reward can be time dependent r(t)i or time independent ri. The random

variable

)(
)(

tX
rtZ  (2.14)

Is the instantaneous reward rate of a MRM at time t. There is a difference between

reward rates ri associated with individual states and the overall reward rate Z(t) of the MRM

 25

characterizing the whole stochastic process. With this definition, the cumulative

performability, Y(t), can be:

  
t

X

t

drdZtY
0

)(
0

)()(  (2.15)

The general definition of performability by Meyer was [Meyer 78a]:

])([),(ytYPtyPerf  (2.16)

The probability at time t, of being in state i is denoted by πi(t). The transient

performability (TP) is defined as in [Bolch 06a],[Haverkort 01a]:





N

1

)()()]([
i

ii rttTPtZE  (2.17)

The expected reward rate when t →∞ is:





N

i

ii rSSPZE
1

)]([ (2.18)

This is the measure used as the steady state performability (SSP) [Haverkort 01a]. The

πi is the steady state probability of the state i in N.

2.2.5 PERFORMABILITY EXAMPLE

We present an example that illustrates the performability concept and estimation. This

example makes use of the MRM presented in section 3.1 and the equations in section 3.5. The

reader is advised to read those two sections first.

For this example we assume we have a disk array that we want to use as a video

server. Each video stream corresponds to one user. Therefore, the number of streams equals

the number of users. Each user requires 8 Mbps (Megabits per second) of bandwidth. This

translates into 1MB/s (Megabyte per second) of bandwidth per user. Each user (stream) is

 26

charged $3.99 as long as we can provide 1MB/s of bandwidth for each user. The goal of this

example is to evaluate the probability of loss in revenue up to 15% with respect to the original

revenue when the servers start providing service for the first time (t = 0), and we want to

estimate the time t when the 15% percentage of loss may occur. For this example, the

parameters for the performability estimation are:

BWu = 1MB/s ≡ Bandwidth per user

Mc = $3.99 ≡ Membership price

T = time period of the 15% loss in revenue. The time is expressed in months.

Rev(0) ≡ Original revenue obtained from the media server at the beginning of the

performability evaluation (t = 0)

Rev(t) ≡ Current revenue obtained from the media server at time t. The time t will be

expressed in months.

L(t) ≡ Loss in revenue with respect to R(0) at time t. The time t will be expressed in

months.

The loss in revenue at time t, L(t),with respect to the original revenue R(0.) is:

)()0()(tRevRevtL  (2.19)

For this example, a disk array with the following parameters is considered:

λ = 1 failure / 50,000 hours = 0.00002 failures/hour

µ = 1 repair / 24 hours = 0. 0417 repairs/hour

N = 200 total disks in the disk array

G = 4 disks per disk group

BWd = 25MB/s ≡ Bandwidth provided by each of the N disks.

Sd ≡ Number of streams supported by each of the N disks

Sd = BWd / BWu = 25MB/s / 1MB/s = 25

Ds = 0.15 ≡ Percentage of performance degradation suffered by the disk array

performance while sparing non-redundant data due to a drive failure.

The performability variable Y is the loss in revenue at time t, L(t):

 27

Performability variable Y ≡ Loss in Revenue ≡ L(t)

The accomplishment A is that loss in revenue should be at most 15% for the first 36

months.

Accomplishment A ≡ 15% of loss in revenue in the first 36 months

The performability measure, Perf(A), is then:

Perf(A) = Pr [Y ≤ A] ≡ Probability of having a loss in revenue of up to 15% in the

first 36 months.

In this example the disk array is the object system C. To define the object system

model XC, we use the Markov Model of a RAID disk group that is presented in section 3.1.

That Markov Model defines three states for the state space QC. The equations for the Markov

Model used as the stochastic process XC are presented in section 3.5. The estimation of the

probability of the three states QC of the Markov Model could be accomplished with the

equation presented in section 3.5. We are not modeling the environment with a stochastic

process XE, therefore for this example X = XC.

The reliability at time t (in months) of the model is defined as the probability of the

Markov Model of the RAID group to be in S0 and S1:

)()()(10 tPtPtRel SS  (2.20)

The probability of failure at time t (in months) of the model is defined as unreliability

or the complement of the reliability:

)(1)(tReltFail  (2.21)

The unreliability is the probability of having a second fault on the same disk group

while the RAID group is trying to reconstruct the data of the first fault. The reward function r0

is defined as:

 28

cd MNSr 0 (2.22)

where r0 is the reward of state S0, N is the number of disks in the disk array, Sd is

number of streams supported by each disk in the disk array and Mc is the membership cost

($3.99). The reward function r1 is defined as:

cds MSDNr)1)(1(1  (2.23)

where r1 is the reward of state S1, N is the number of disks in the disk array, Sd is

number of streams supported by each disk in the disk array and Ds is the percentage of

performance degradation due to the disk array executing the sparing data protection policy in

the background. The reward function r2 is defined as:

02 r (2.24)

The transient performability TP(t) is used to estimate the revenue at time t, R(t), based

on the probability of the two states S0 and S1:

i

i

Si rtPtRevtTP 



1

0

)()()((2.25)

Once the equations are applied for a period of 40 months (t = 0,1,…,40), the results of

the revenue per month based on the state rewards and their probabilities are computed. Based

on the revenue per month the performability variable Y, the loss in revenue can be estimated.

First, Fig.2.8 shows how the revenue drops monthly according to the reliability of the

disk array for this example. It can be seen that after 36 months the revenue per month drops

15% down to $17,000.

Second, Fig.2.9 shows the probability loss in revenue drops according to the reliability

of the disk array.

 29

Fig. 2.8, shows that the initial revenue, R(0) is $20,000 per month. Therefore, a 15%

loss in revenue would be a $20,000 x 0.15 = $3,000 loss. The performability evaluation, as

shown by Fig. 2.9, provides the answer to the performability measure: that the probability is

13% of Y, the loss in revenue, to be lower than or equal to the accomplishment A, which is

$3,000.

13.0]000,3$Pr[]Pr[)( YAYAPerf (2.26)

Fig. 2.8: Revenue per month for performability example

$15,000

$16,000

$17,000

$18,000

$19,000

$20,000

0 5 10 15 20 25 30 35 40

R
ev

e
n

u
e

 R
(t

)
in

 d
o

lla
rs

Time t in months

Media Server Revenue per month

Fig. 2.9: Loss in revenue per month for performability example

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

$0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500

P
ro

b
ab

ili
ty

 o
f

fa
ilu

re

Fa
il(

t)

Loss in Revenue per month L(t)

Probability of Loss in Revenue per month

 30

2.3 FUZZY CONTROL

2.3.1 FUZZY NUMBERS AND ARITHMETIC

A crisp set A, defined in terms of a relevant universal set X can be described,

according to classical set theory, in several ways including listing all of its members,

providing a conditional description of all members of A, or by specifying a certain binary

characteristic function such as  1,0A , in which an element x either completely belongs to

set A or it does not. Therefore, this crisp set A can be described as:

Xx

Axif

Axif

xA 












 ,

,0

,1

)(
 (2.27)

This kind of belonging to a set will be referred to as crisp membership. The set theory

that assumes crisp membership will be referred to as crisp set theory.

An example of a classical set could be a set A = {1, 3, 5, 7}. In this example, we can

say that the number 3 is part of the set A, thus, μA(3) =1. The number 3 belongs in the set A,

while μA(4) =0.

Unlike classical set theory, fuzzy set theory states that an element can have a degree of

belonging to a particular set. Fuzzy set theory can be seen as a generalization of crisp set

theory, because the degree of belonging of an element x to set A is determined by a

membership grade μA(x) taking on value from the unit interval [0, 1]. The fuzzy set A in the

universe of discourse X can be defined as a set of ordered pairs of element x and its degree of

membership μA(x):

  XxxxA A )(,  (2.28)

The fuzzy set concept arose from the need to deal with imprecise data. A fuzzy set A,

is defined in terms of a relevant universal set X, by a membership function. This function

assigns to each element x of X a number μA(x), in the closed unit interval [0,1] that

characterizes the degree of membership of x in A. Membership functions are functions of the

form μA(x): X→[0,1]. The reader is referred to [Klir 95a], [Hanss 10a] for a complete

 31

treatment of the definition and representations of fuzzy sets and fuzzy numbers. In this

document triangular fuzzy numbers will be used. The representation used in this document for

a triangular fuzzy number is A=[xl,xc,xh], where xl is the low value, xc is the central value and

xh is the high value (Fig. 2.10).

The two basic methods to compute fuzzy arithmetic are: 1) extension principle and 2)

α-cuts and interval arithmetic. Fuzzy numbers can be discretized so they can be represented as

a finite set of),()(
i

l
ix  and),()(

i
r

ix  tuples. There is the value of x for the μi on the left side of the

central value (apex), in the case of a triangular fuzzy number, and)(r
ix is the value of x for the

same μi on the right side of the apex. With this, discrete fuzzy sets for which the fuzzy

arithmetical operations can be defined using Zadeh’s extension principle. One approach to

discretized a fuzzy number is to split the μ-axis into a number of equally space n segments,

each with Δμ = 1/n. The fuzzy number then is turned into a discrete fuzzy number that can be

represented in the form shown in Fig. 2.11. The fuzzy number A, then can be discretized in a

form proposed in [Hanss 10a].

)()()()(r
iA

l
iAi xx   (2.29)

Ad =)},(),...,,(),,(),...,,{()(
0

)(
0

)(
0

)(
0 n

r
n

r
n

l
n

l xxxx  (2.30)

μi = μi-1 + Δμ, i = 1,…,n, where μ0 = 0 and μn = 1. (2.31)

Fig. 2.10: Triangular fuzzy number A=[xl, xc, xh]

 32

In [Hanss 10a], it is shown that using the discretized fuzzy numbers as in (2.30) and

(2.31), the arithmetical operations can be implemented by defining the operations to be

executed separately for the elements of each degree of membership μi. The arithmetical

operations can be implemented by combining only the elements of the low (left) and right

(high) value side of the apex (central value) of the triangular fuzzy number. The four basic

arithmetic operations are implemented in the following form:

)()()(l
i

l
i

l
i yxz  ,)()()(r

i
r

i
r

i yxz  and i = 0,1,2,…,n (2.32)

where  represents the four basic arithmetic operations (/,,, ). For a complete

explanation, the reader is referred to [Hanss 10a].

Fig. 2.12: Triangular fuzzy number SEVEN=[4.5,7,9.5]

Fig. 2.11: Triangular fuzzy number A=[xl, xc, xh] and its discretization

 33

An example of a fuzzy number is shown in Fig. 2.12. In this figure a triangular fuzzy

number is defined as SEVEN=[4.5,7,9.5]. The degree of membership for the value x=5.5 is

µSEVEN(5.5)=0.4

2.3.2 JUSTIFICATION FOR FUZZY CONTROL

Fuzzy control can be considered an alternative to classical design for controllers

[Michels 06a] which requires differential equations that model the system to control. In

control theory the system to control is usually referred to as the plant. If a differential

equation of the plant is available, then using classical control theory has advantages. A

systematic mathematical process can be followed to predict the stability, robustness and

response of the controller. It can be said that classical control is model-based.

Fuzzy control has a different approach to the control of the process because no model

of the plant is constructed. Fuzzy control approaches the problem of controlling a plant by the

design of rules. It can be said that fuzzy control is rule-based. Of course, the rules are not

arbitrary. The rules are based on the available knowledge of the plant. The understanding of

the plant can be analytical, heuristic (rule of thumb or educated guess), or a combination of

both.

There are situations in which the components of a plant are ruled by complex

algorithms and provided by manufacturers that do not reveal their algorithms. The

manufacturers reveal only the external behavior of the products they sell, which is not usually

enough to model a component using a differential equation. This is the case in disk arrays.

The disks to be controlled are ruled by non-linear complex logic embedded in them. The only

information available about the disks’ behavior comes from the manuals, which usually do

not cover the entire spectrum of conditions the disk will be subjected to, or by experiment.

Thus, a different approach for control must be used for disk arrays.

Fuzzy control is based on heuristics [Michel 06a] and can be applied successfully in

situations where classical control would difficult or impossible to apply. The term “plant” is

used in control theory to refer to the system or component to control. Using fuzzy control

makes the most sense when [Michels 06a]:

1. No model of the plant exists in a differential or difference equation form.

2. The behavior of the plant is non-linear.

 34

3. The goals are fuzzy, e.g., “ensure a proper latency of user requests and a proper

completion time for disk repair when both are executed concurrently”

4. The plant and the control strategy are simple enough that the design of a fuzzy

controller takes less time than the classical controller modeling and design.

In addition to this, fuzzy logic opens up the possibility of using other computational

intelligence techniques such as neural networks for the performability control of disk arrays.

2.3.3 FUZZY LOGIC CONTROLLER

The first model of fuzzy controller was introduced by Mamdani [Mamdani 75a]. Like

a classical controller, a fuzzy controller takes crisp inputs from the plant and a reference or

references to compare against. Also, like a classical controller, the fuzzy logic controller

(FLC) produces crisp control outputs that control the process in the plant. There are four parts

to a fuzzy controller that must be designed: fuzzifier, rule base, inference engine and

defuzzifier. Fig. 2.13 shows the block diagram of an FLC. Fuzzy inputs and outputs are fuzzy

numbers, which means that the numbers have a degree of membership to a particular set.

2.3.4 FUZZY LOGIC CONTROLLER: FUZZIFIER

The fuzzifier performs the fuzzification of the crisp control inputs. There are two types

of crisp inputs:

1) Outputs from the plant that are fed back into the control scheme to compute the

difference with respect to the reference(s).

2) Parameters of the plant, x1,…,xn . These are known as state parameters or state

variables.

Fig. 2.13: Fuzzy Logic Controller (FLC) model with error computation

Rulebase

Inference

Engine

Defuzzier

Fuzzifier
Plant

Fuzzy Logic Controller (FLC)

Δe

e

-

+

Reference

r

Crisp

Output

Crisp

Input

Crisp

Input

Output

y(t)

r - y(t)

e = r - y(t)

Δe = e(tk) - e(tk-1)

 35

The fuzzifier performs the fuzzification of the crisp control inputs into fuzzy values.

For example, a FLC can accept an error input e for which three fuzzy sets are defined: big

error (BE); medium error (ME) and small error (SE). The crisp input error e can be computed

subtracting the fed back output from the plant with a reference r. Then the crisp input error e

can be fuzzified by computing its degree of membership (number between 0 and 1) in each of

three fuzzy sets mentioned. Fig. 2.14 shows an example.

2.3.5 FUZZY LOGIC CONTROLLER: RULE BASE

A rule base contains the knowledge related to the particular control model. It contains

the control actions (rules) in the form of if-then-conclusion statements. These statements use

the fuzzy values provided by the fuzzifier. It can be said that the rules provide policies [Zhang

05a] for the control of the specific process or system to control.

2.3.5.1 MAMDANI CONTROLLERS

The Mamdani controllers were introduced by Mamdani in 1975 [Mamdani 75a]. They

comprise a finite set of rules of the form

Rinni FSyFSxFSxR then and ... and if : 11  (2.33)

Fig. 2.14: Fuzzification of a value of error e

m
e

m
b

e
rs

h
ip

SE ME BE
1

0

0.5

0.3

Value of e has membership of 0.5 in SE fuzzy set

Value of e has membership of 0.3 in ME fuzzy set

Value of e has membership of 0 in BE fuzzy set

e

(example value of e)

SE = Small Error fuzzy set

ME = Medium Error fuzzy set

BE = Big Error fuzzy set

 36

Ri is rule i; FSi are fuzzy sets; x1…xn are input variables and y is the output variable.

For example, the error e and the change in error Δe can be compared to the fuzzy sets

shown in the previous section. We can also define a fuzzy set named small output, SO, for the

output y and we could build a rule like this:

O then E and E if : SySeSeRi  (2.34)

This would say that if the e and the Δe have small values, i.e., belong to the SE fuzzy

set, then the output value y should belong to the SO fuzzy set.

2.3.5.2 TAKAGI-SUGENO-KANG CONTROLLERS

The Takagi-Sugeno-Kang (TSK) controllers were introduced in 1985 [Takagi 85a].

The TSK controllers have rules of the form:

),..., (then and ... and if : 111 nnni xxfyFSxFSxR  (2.35)

 where the difference with respect to the Mamdani rules (2.33) is that the output can be

a mathematical function using crisp values for both the inputs x1…xn and the output y.

For example, the error e and the change in error Δe can be compared to the fuzzy sets

shown in the previous section. We can also define a function f(y) = x1 + 0.5 for the output y in

which x1 is a state variable. Then we could build a rule like this:

5.0 then E and E if : 1  xySeSeRi (2.36)

This would say that if the e and the Δe have small values, i.e., belong to the SE fuzzy

set then the output value y should be the crisp value x1 + 0.5.

2.3.5.3 TABULAR REPRESENTATION OF FUZZY CONTROLLERS

Rule bases can be represented in a tabular format, which is used extensively in the

fuzzy control literature. Each row of the table represents a rule. The columns represent the

input variables and the leftmost column represents the output. Table 2.2 shows an example of

 37

a tabular representation of a TSK controller based on the rules of the form in (2.36). In this

example there are nine rules Ri and the function f(y) to be applied for the output y depends on

the rule that becomes valid according to the fuzzification of the input values e and Δe.

2.3.6 FUZZY LOGIC CONTROLLER: INFERENCE ENGINE

The inference engine performs the evaluation of all rules in order to choose the result

that will become the fuzzy output of the controller. One technique is to aggregate all the rules

in one fuzzy relation; this is known as composition inference. The composition inference is

not a common technique in fuzzy control. The most common technique is to compute each

rule individually using min or product t-norms [Hanss 05a] and compute the output based on

the individual results from each rule by using the max (supremum) s-norm [Hanss 05a] This

technique is known as individual rule firing. [Zhang 05a]

Table 2.2: Example of tabular representation of a TSK controller

Inputs Output

Rule e Δe y

R1 SE SE y = x1 + 0.5

R2 SE ME y = x1 + 1

R3 SE BE y = x1 + 1.5

R4 ME SE y = x1 + 2

R5 ME ME y = x1 + 2.5

R6 ME BE y = x1 + 3

R7 BE SE y = x1 + 3.5

R8 BE ME y = x1 + 4

R9 BE BE y = x1 + 4.5

SE=Small error ME=Medium error BE=Big error

 38

2.3.7 FUZZY LOGIC CONTROLLER: DEFUZZIFIER

The defuzzifier converts the fuzzy output of the inference engine into a crisp number

that can be used as a control value for the plant to control. The deffuzification depends on the

type of fuzzy controller.

For the Mamdani controllers, the rules can be converted to a crisp value using the

center of gravity method [Zhang 05a][Michels 06a]. When the output of the inference engine

is a fuzzy set, there is the problem of which value to use from the set. Several solutions have

been proposed, but at the end the best option is to adapt the conversion to the specific control.

For the TSK controllers the output y is already a crisp value, therefore no

defuzzification is needed.

 39

CHAPTER 3: PERFORMABILITY ANALYSIS OF DISK ARRAYS USING FUZZY LOGIC

This chapter presents a numerical fuzzy logic performability model for disk arrays.

The performability of disk arrays systems has been studied before in analytic form by

presenting closed-form solutions of Markov Models [Islam 93a], [Barnett 98a]. The numerical

method presented in this chapter is a simpler and adaptable alternative to closed-form

solutions: simpler because it does not require the closed-form solution of a Markov Model,

and adaptable because it can be adapted to particular conditions, e.g., a RAID level like

RAID6 that supports double disk failure, or a function can be introduced to change the reward

of the states, or make the reward time-dependent instead of fixed.

Also, in this chapter a performability analysis of a disk array used as an e-mail server

is presented [Navarro 06a], [Navarro 07a]. We base the analysis on some of the rules of

thumb for the configuration of an MSExchange Server 2003 [Microsoft 07a], [Microsoft 07b],

[Microsoft 04a]. It is not claimed this document presents a complete performability study of a

MSExchange e-mail server. Rather, based on a selected number of MSExchange

configuration recommendations, the author demonstrates the following proof of concept:

performability analysis enhanced by fuzzy arithmetic can be effectively used for a predictive

performability analysis of an e-mail server, also referred to as mail server.

3.1 MARKOV MODEL OF A DISK ARRAY

For the purposes of the fuzzy performability analysis of disk arrays using fuzzy logic,

a disk array with a total of N disks divided in groups of G disks is considered. The Markov

Chain (MC) used for the reliability analysis of this configuration is shown in Fig. 3.1.

This Markov Chain does not consider the failure of other components of a disk array,

such as controller failures. RAID reliability studies with the consideration of failure of

components besides disks can be found in the literature [Schulze 89a].

The MC makes use of a parameter named disk failure rate, λ, number of failures per

time unit. For example, if a disk fails one time in 1000 hours, the failure rate, λ = 1 failure /

1000 hours, or λ = 0.001 failures/hour. The inverse of the failure rate is the time to failure: 1/λ

= 1000 hours / 1 failure = 1000 hours/failure

 40

When a single disk fails, the disk array goes to the non-optimal state S1. This implies

the loss of the data redundancy. But the data is still not completely lost, since it is available on

one of the G-1 disks that are still working in the group. The data lost on the failed disk must

be then rebuilt from the redundant data. The repair rate μ is referred to as the repair rate or

rebuild rate and is measured in the number of repairs per time unit, for example, a data drive

repair requires 10 hours to rebuild the data redundancy lost by a failed drive; then we can say

a repair takes 10 hours and the repair rate μ = 1repair/10hours or μ = 0.1 repairs/hour. From

this example we can clearly see that the ratio 1/μ gives us the repair time. In the MC model,

after a time 1/μ, the disk array completes the rebuild of the redundancy and the disk array

goes back to state S0 (back to the state with G working disks).

If during the time 1/μ while the disk array is in state S1 another disk within the disk

group with the non-redundant data fails, the data is lost. In this case the disk array goes to

failure state S2. It can be said that the unreliability (or probability of failure) for a RAID disk

group is nothing but the probability of a second failure in the same disk group. If this event

occurs, the user must restore the data using the backup on tape or some other media. The MC

shown in Fig. 3.1 is for a disk group with G disks and one parity disk. That is why it has three

states. For RAID levels with two parity disks, like RAID6 [Patterson 94a], the number of

states would be four. The reward of the states, r0, r1 and r2 are the reward values associated to

each state. For the performability analysis presented in this chapter, the reward values of each

state are performance levels that the disk array can deliver, e.g., IO/s, latency, number of

Mailboxes supported by the disk array or number of Users supported by the disk array.

The system of differential equations for the Markov Model of the reliability of a disk

array group (Fig. 3.1) is described via probabilities of being in state S0, S1 and S2:

Fig. 3.1: Markov Reward Model of a RAID disk group

 41

)()1(
)(

)(])1[()(
)(

)()(
)(

1

2

10

1

10

0

tPG
dt

tdP

tPGtPN
dt

tdP

tPtPN
dt

tdP

S

S

SS

S

SS

S













 (3.1)

The system of differential equations gives rise to the following system of equations

using the Laplace transform:

})1(])1[({

)1(
)(

)1(])1[(
)(

)1(])1[(

)1(
)(

22

2

2

221

220


























GNsGNss

GN
sP

GNsGNs

N
sP

GNsGNs

Gs
sP

S

S

S

 (3.2)

With the system of equations (3.2), we find that the reliability of the disk array

represented by the Markov Model from Fig. 3.1 is as (3.3):

22)1(])1[(

)1(
)(










GNsGNs

NGs
sR (3.3)

By applying the Final-value theorem of Laplace transform we get:

)(lim
0

sRMTTF
s

GROUP


 (3.4)

We derive an equation that we can use as the MTTFRAID.:

2)1(

)1(










GN

GN
MTTFRAID (3.5)

 42

The rebuild process is performed automatically. Certainly, the failed disk must be

manually replaced at some point [Patterson 88a].

Equation (3.5) can be verified against the equation proposed by Chen in [Patterson

94a]. If we have a high lambda, like λ=500,000 and a disk array with N=200 disks using

RAID1, so G=2, and with a rebuild time of 8 hours, we have:

 (N+G-1) λ = (200+2-1) * (1/500,000) = 0.000402

And μ = 1/8hrs. = 0.125.

It is easy to see that (N+G-1) λ << μ and we can again make the same approximation

made in Shooman [Shooman 02a] and remove the (N+G-1) λ term. This turns (3.5) in

2)1(






GN
MTTFRAID (3.6)

Equation (3.6) is the classical MTTFRAID estimation proposed by Patterson and Chen

in [Patterson 94a]. We can use the Markov Model shown in Fig. 3.1 for the reliability

estimation of the disk array.

If we consider a lower lambda, like λ=10,000 and again, a disk array with N=200 disks

using RAID1, so G=2, and with a rebuild time of 8 hours. We have:

 (N+G-1) λ = (200+2-1) * (1/10,000) = 0.0201

It is easy to see that in this case (N+G-1) λ << μ does not hold and we would have to

use the (3.5) with all its terms for the estimation of MTTFRAID. This is the same consideration

as the MTTF equation obtained by Shooman in [Shooman 02a].

In order to estimate the system reliability we need to estimate the probability of the

Markov Chain being in state Si at time t. This probability is designated as PSi(t) and can be

estimated by means of the initial probability vector PS(0) = [PS0(0), PS1(0), …, PSm(0)] of the

(m+1) states and the state transition probability matrix (TPM) of the Markov Model of the

disk array. The transition probabilities among states S0, S1 and S2 are shown in Fig. 3.1 and

can be translated into the TPM matrix (3.7):

 43























100

)1(])1[(1

01

2

1

0

210

tGtGt

tNtN

S

S

S

P

SSS




 (3.7)

The initial probability of S0 is PS0(0)=1 while the initial probabilities for S1 and S2 are

PS2(0)=0, and PS3(0)=0. Therefore, the initial probability vector is PS(0)=[1,0,0]. Failure rate

(λ) and repair rate (μ) are assumed to be constant during the life of the disk array.

The estimation of probabilities of the states for the disk array was done during discrete

iterations of time. Thus, the time t at which the probabilities of all states (S0, S1, S2) was

evaluated was using a value n that ranged from 0 to certain maximum value, i.e., n =

(0,1,2,…,nmax). The time t was obtained by multiplying this value n by a time increment Δt

(one hour delta for the example in this section). We estimated the reliability of the disk array

every hour from 0 through nmax hours. The criterion to choose the hour-based discretization

steps is consistent with disk manufacturers that provide their failure rates in hours.

The probabilities of all states PS(t) = [P(t)S0,P(t)S1,P(t)S2] at some time t=nΔt was

estimated using:

)0()(PSPtnPS n (3.8)

Once the probabilities PS(t) are calculated, the reliability of the RAID system can be

obtained as:

)()()(10 tnPtnPtnR SS  (3.9)

It can be seen from (3.9) that the unreliability of a disk RAID group is nothing more

than the probability of having a second failure on a disk in the same disk group. The PS2(t) is

the unreliability, i.e., the probability of the second failure.

 44

3.2 PERFORMABILITY MODEL OF DISK ARRAYS

The two performance measures used for the performability evaluation of the disk array

were: 1) the throughput in IO/s (I/O requests per second) and 2) the number of mailboxes the

mail server can support based on the performance and reliability.

The throughput that a disk array can deliver depends on three factors: 1) the total

number of IO/s that can be delivered by the disks installed in the disk array; 2) the RAID level

used, and 3) the ratio of reads and writes.

In order to estimate the IO/s a disk array with N disks can yield, a model for the

throughput of a single disk must be used. The model used is based on [Patterson 07a] with

some modifications. The average disk service time (τd) per I/O is estimated using the

equation:

b

s
ttd

B
RS


  (3.10)

where St is the average seek time, Rt is the average rotational latency, Bs is the size of

the transferred block of data, and χb is the bandwidth of the bus that connects the disk with the

disk array controller. We are considering the same St for both reads and writes. Although in

reality disks have different average seek times St for reads and writes, for the purposes of this

analysis this simplification was made.

The inverse of the τd time gives us the throughput of one disk (χd) in IO/s:

d
d




1


 (3.11)

This is another simplification, since the throughput of a disk also depends on the

internal seek reordering algorithms [Patterson 07a]. The throughput of N disks is then:

dd NN  )(
 (3.12)

 45

The equations shown so far can be used to calculate the number of IO/s we can get

from the disks in a disk array without considering the RAID level. For this document a

RAID1 and a RADI5 disk array is assumed. If RAID1 is used the data must be mirrored and

G=2. If RAID5 is used, then G=5.

For RAID1 we have to consider that every data write is translated into two writes to

different disks. Therefore, for RAID1 writes, the total number of IO/s that can be delivered by

the disks must be divided by two. For the RAID1 reads it is only required to read the data

from one disk. Thus, the number of IO/s that can be delivered by the disks is the number of

IO/s for the reads. The ratio of reads Rp is also a factor that determines the disk array

throughput (χDA) in IO/s. Thus, the equation to estimate the RAID1 disk array throughput is:

2

)(
)1()()(1 N

RNRN d
pdp

R

DA


  (3.13)

The reward r0 of the optimal state S0 for a RAID1 disk array is therefore:

)(11

0 Nr R

DA

R  (3.14)

For RAID5 we have to consider the kind of writes used for the analysis. In our case

we used the typical small 4KiB accesses that an Exchange 2003 Server performs. The RAID5

level suffers from what is known as the “read-modify-writes” [Patterson 88a]. Every write is

translated into two reads and two writes. Therefore, for RAID5 writes, the total number of

IO/s that can be delivered by the disks must be divided by four. For the RAID5 reads it is only

required to read the data from one disk. Thus, the number of IO/s that can be delivered by the

disks is the number of IO/s for the reads. Again, the ratio of reads Rp is also a factor that

determines the disk array throughput (χDA) in IO/s. Thus, the equation to estimate the RAID5

disk array throughput is:

4

)(
)1()()(5 N

RNRN d

pdp

R

DA


  (3.15)

 46

The reward r0 of the optimal state S0 for a RAID5 disk array is therefore:

)(55

0 Nr R

DA

R  (3.16)

The reward r1 for S1, the non-optimal state, can be estimated by two factors: 1) One

disk failed so we now have the throughput of N-1 disks. 2) The disk array is also copying the

data that was stored on the failed disk on other disk besides servicing user requests. Besides

estimating the throughput for the case of N-1 disks we need to add a factor that will drop the

throughput a little more. We introduced a factor, Rf , with a value from [0,1]. This factor was

the same for RAID1 and RAID5. For example, if the drop in performance caused by the

reconstruction of the data redundancy is 5%, we assign Rf = 0.05. If more accuracy is needed,

we introduce two factors, one for RAID1 and one for RAID5. So, the reward estimated for r1

is:

)1()1(11

1  NRfr R

DA

R  (3.17)

)1()1(55

1  NRfr R

DA

R  (3.18)

Finally, the reward for r2 = 0, since the disk array is the failed state.

The transient performability (TP) was defined in section 2.2.4. The TPM (3.7) gives us

the probability of each state and with that we can estimate the performability of the disk array

for every nth iteration of Δt time by using:

1

11

1

00

1)()()(R

S

R

S

R rtnPrtnPtnTP 
 (3.19)

5

11

5

00

5)()()(R

S

R

S

R rtnPrtnPtnTP  (3.20)

where (3.19) and (3.20) are used to estimate the disk array performability in IO/s

 47

Now we need to come up with a way to estimate the performability of the mail server

in number of users based on the performability in IO/s. We base the analysis on some of the

recommendations for the configuration of an Exchange Server 2003 [Microsoft 07b].

The formula to estimate the performability in mailboxes, i.e., users the mail server can

support is based on three factors: 1) user profiles shown in Table 3.1; 2) the formula (3.21) for

the IO/s needed to support a number of mailboxes depending on the user type [Microsoft

07b]:

)()__(/ UTypeMailboxesofNumbersIO  (3.21)

and 3) the fact that 90% of the IO/s are user interaction and the other 10% go to the

logs maintained by the mail server. The formulas are:

Type

R
R

UT

TP
tnPM

)(9.0
)(

1
1  (3.22)

Type

R
R

UT

TP
tnPM

)(9.0
)(

5
5  (3.23)

where UType = (Light,Average,Heavy,Large). PMR1 and PMR5 and the performability

in mailboxes for a R1 and R5 mail server.

Table 3.1: User profiles and corresponding usage patterns

User Type Database Volume IO/s Send/Receive per day Mailbox Size

Light .5 20 sent/50 received 50 MB

Average .75 30 sent/75 received 100 MB

Heavy 1.0 40 sent/100 received 200 MB

Large 1.5 60 sent/150 received 500 MB

 48

3.3 RESULTS OF THE FUZZY PERFORMABILITY ANALYSIS OF THE E-MAIL SERVER

The intention of applying the fuzzy arithmetic to the performability analysis is to deal

methodically with uncertainty. For the purpose of this example the authors decided to use a

λ=1/10000 failure/hrs. Some of the parameters do not have a crisp value but a fuzzy value

expressed in discretized form [Hanss 10a]. The discretized representation of fuzzy numbers

used to deal with the Markov Chain model of performability can be expressed as fuzzy sets

with five tuples (xi,μ(xi)) where xi is the value of the number and μ(xi) is the corresponding

membership value of xi.

)]0,(),5.0,(),1,(),5.0,(),0,[(54321

~
* xxxxxP  (3.24)

The fuzzy parameters for the this analysis are shown in a more concise form, where

the μ(xi) is omitted for brevity:

],,,,[54321

~

xxxxxp  (3.25)

The parameters for this analysis were the following:

The life span of the mail server is 43,800 hours (5 years).

G for R1 = 2, Number of disks for a R1 group

G for R5 = 5, Number of disks for a R5 group

N = 200, Total number of disks

λ=[0.3x104, 0.5x104, 1x104, 2x104, 3x104] Failure rate

μ=[1/24, 1/16, 1/8, 1/4, 3/8] Repair Rate

Rp = [0.55, 0.6, 0.65, 0.7, 0.75], Percentage of Reads

Rt = [0.002,0.002,0.002,0.002,0.002] , Time for a rotation

St = [0.0038,0.0039,0.004,0.0041,0.0042], Time for a seek

Bs = [4096,4096,4096,4096,4096], Block size

χb = [2x108, 2x108, 2x108, 2x108, 2x108], Transfer rate

Rf = [0.03,0.04,0.05,0.06,0.07], Rebuild impact on reward

 49

The resulting performability estimation is a fuzzy number with five values. For every

iteration of the time t given by t=nΔt (3.8), a fuzzy number representing a transient

performability result is generated. The algorithm used to estimate the reliability and transient

performability is presented in Table 3.2.

 The discretized representation of the fuzzy number 𝑃̃∗ as shown in (3.25) is shown in

graphical format in Fig. 3.2. The number 𝑃̃∗ is a triangular fuzzy number. The five xi values

are shown with their respective membership value μ(xi) forming the five tuples that were

obtained in each iteration of the algorithm presented in Table 3.2.

Table 3.2: Algorithm to compute the performability of disk array

I: Total number of iterations

P: Transition Probability Matrix

Δt: Time delta, e.g., 1 hour

t: Time elapsed at iteration i with a Δt

PS(t): Vector with state probabilities at time t

PSk(t): Probability of being in state k at time t

R(t): Reliability of at time t

TP(t): Transient Performability at time t

For i=1 to I do:

{

 PPP ii 1

 Matrix P is normalized

 tit 

 iPPStPS)0()(

)()()(21 tPtPtR SS 

 2211)()()(SSSS rtPrtPtTP 

}

 50

The continuous line is the central value of the fuzzy result, x3. The lower, x2, and

upper, x4, dotted lines are values in between the central and both boundaries. The dashed

lower line, x1, is the lowest boundary of the fuzzy result. The dashed upper line, x5, is the

highest boundary of the fuzzy triangular result.

 Fig. 3.3 shows the fuzzy RAID1 reliability of the mail server. It can be seen that there

is a linear drop from 1 to 0.5 after 5 years of use. This is an indication that the mail server

Fig. 3.2: Fuzzy number used for fuzzy performability estimation

x1 x2 x3 x4 x5

x

µ(x)

0.5

0

1

Triangular fuzzy number used for the fuzzy performability estimation

 x5 : uppermost dashed line

 x4 : mid-upper dotted line

 x3 : center solid line

 x2 : mid-lower dotted line

 x1 : lowermost dashed line

Fig. 3.3: Family of curves for fuzzy reliability RAID1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Fuzzy Reliability of the Mail Server for RAID1

Time in Years

F
u
z
z
y
 R

e
lia

b
ili

ty

 x5 : uppermost dashed line

 x4 : mid-upper dotted line

 x3 : center solid line

 x2 : mid-lower dotted line

 x1 : lowermost dashed line

 51

most likely will not have any problems at the beginning of its life. At the end of its life there

should be some provisions in case of failure.

Fig. 3.4 shows the fuzzy RAID5 reliability of the mail server. It can be seen that there

is a linear drop from 1 to 0.1 after 5 years of use. This is an indication that the mail server

most likely will fail as it gets closer to the end of its life. Here it is clear that provisions must

be made to counter this. For example, a backup server should be considered or budgeted

within the next 5 years in case the “main” mail server fails.

Fig. 3.5 shows the fuzzy RAID1 performability of the mail server. It can be seen that

the IO/s range from around 40,000 to 20,000 at the beginning of the life of the mail server.

The performability analysis tells us that after five years we can have throughputs in the order

of 10,000IO/s to 25,000IO/s considering the reliability of the server. Depending on what level

of service is expected in the next five years, plans should be made to adjust the amount of

service the mail server will provide.

Fig. 3.4: Family of curves for fuzzy reliability RAID5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fuzzy Reliability of the Mail Server for RAID5

Time in Years

F
u
z
z
y
 R

e
lia

b
ili

ty

 x5 : uppermost dashed line

 x4 : mid-upper dotted line

 x3 : center solid line

 x2 : mid-lower dotted line

 x1 : lowermost dashed line

 52

Fig. 3.6 shows the fuzzy RAID5 performability of the mail server. It can be seen that

the IO/s range from around 35,000 to almost 15,000 at the beginning of the life. The

performability analysis tells us that after five years we can have no throughput. Here is very

clear that if backup plans should be put in place to counter this future problem.

Fig. 3.5: Family of curves for fuzzy performability RAID1 in IO/s

Fig. 3.6: Family of curves for fuzzy performability RAID5 in IO/s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000
Fuzzy Performability of the Mail Server for RAID5

Time in Years

F
u
z
z
y
 P

e
rf

o
rm

a
b
ili

ty
 i
n
 I

O
/s

 x5 : uppermost dashed line

 x4 : mid-upper dotted line

 x3 : center solid line

 x2 : mid-lower dotted line

 x1 : lowermost dashed line

 53

Figures 3.7 and 3.8 show the performability in number of users over the life of the

RAID1 mail server. This measure can serve to plan for the amount of service the system can

yield. As we can see, at the beginning of the life of the mail server it can serve up to 30,000

light users or around 23,000 of the heavy users. If we want to keep this number of users

constant we need to plan for the performability over the entire life of the product. In real life,

figures 3.7 and 3.8 can be used to make the decision to use either RAID1 or RAID5 very easy

based on the amount of service a business wants to provide.

Fig. 3.7: Family of curves for fuzzy performability in Users (mailboxes) R1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000
Fuzzy Performability of the Mail Server for RAID1

Time in Years

P
e
rf

o
rm

a
b
ili

ty
 i
n
 U

s
e
rs

 (
M

a
ilb

o
x
e
s
)

 x5 : uppermost dashed line

 x4 : mid-upper dotted line

 x3 : center solid line

 x2 : mid-lower dotted line

 x1 : lowermost dashed line

Fig. 3.8: Family of curves for fuzzy performability in Users (mailboxes) R5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000
Fuzzy Performability of the Mail Server for RAID5

Time in Years

P
e
rf

o
rm

a
b
ili

ty
 i
n
 U

s
e
rs

 (
M

a
ilb

o
x
e
s
)

 x5 : uppermost dashed line

 x4 : mid-upper dotted line

 x3 : center solid line

 x2 : mid-lower dotted line

 x1 : lowermost dashed line

 54

3.4 CONCLUSIONS

It has been shown how performability analysis can be a tool for the analysis of the

future capacity of service a computer system, and by extension, a service that a business can

provide. In this section, it has been shown how performability based on specific fuzzy

arithmetic approach can be a tool for planning the future in a way that allows a business to

keep the quality of service promised to customers.

This section has also presented a numerical method in the form of an algorithm that

can be used to estimate the reliability and performability of a Markov Model. The algorithm

presented in this section can be a starting point for the estimation of the reliability and

performability. But this algorithm is extensible because it can be adapted to particular

conditions, e.g., a RAID level like RAID6 that supports double disk failure, or a function can

be introduced to change the reward of the states, rSk(t), and make the reward time-dependent

instead of fixed.

Using the fuzzy arithmetic approach, all assets of the model presented were taken as

they were – uncertain. By employing fuzzy arithmetic, aggregated inherent uncertainties of

such a RAID system were modeled in one run. Extreme system performability behaviors

illustrated by boundary curves paint an immediate picture of what are the worst and best case

scenarios under given system parameter uncertainties. The approach of performability

modeling based on a numerical method and using fuzzy arithmetic therefore provides a

powerful tool for the effective design and business planning.

 55

CHAPTER 4: FUZZY CONTROL OF SPARING FOR DISK ARRAYS

The analysis and modeling of the disk arrays under failure has been studied before

[Muntz 90a], [Menon 93a], [Navarro 07b], [Navarro 07c]. But schemes of control of sparing

have not been proposed in the literature before. This chapter presents two control schemes for

the sparing data protection policy. The first is based on fuzzy logic and the second on a

neural-fuzzy approach. Both schemes achieve a faster sparing than the traditional empty/no-

empty control model, but without impacting the latency of user request.

Section 4.1 shows the fundamental model used in the fuzzy control scheme proposed

in this chapter. The first model shown is the Queuing System with Vacations (QSV). The

second model is of a disk array based on the QSV with the addition of the modeling of disks

using disk-performance related measures. Also, models for the RAID1 and RAID5 rebuild

processes are presented.

Section 4.2 presents a fuzzy-logic controller that uses three input parameters: 1)

latency of user requests, 2) queue length and 3) time of sparing, to make the decision whether

to allow user requests to proceed or continue with the sparing. This controller makes use of

control of queues as proposed in [Phillips 99a] and [Zhang 05a].

Section 4.3 presents a neural-fuzzy controller (NFC) that uses three input parameters:

1) latency of user requests, 2) fraction of data spared and 3) time of sparing, to make the

decision whether to allow user requests to be carried out or continue with the sparing.

Both sections, 4.2 and 4.3, compare their respective controllers against the traditional

Queuing System with Vacations (QSV) model, or also referred to as empty/no-empty control

model, where the sparing process only takes place when the queue is empty, or, in other

words, when there are no users requests.

4.1 FUNDAMENTAL MODELS

4.1.1QUEUING SYSTEM WITH VACATIONS (QSV)

A queuing system in which the server may be disconnected (turned off) or removed is

said to be a queuing system with vacations [Medhi 03a]. Fig. 4.1 illustrates the concept of

queuing systems with vacations (QSV).

 56

The requests arrive at a rate λ to the queuing system. The requests are processed at a

rate μ. When the queue is empty, the server is idle. Then the server can turn itself off and

execute some background process (go on vacation). After some time the server returns from

executing the background process and rechecks the queue. If the queue is not empty, then the

server turns itself on and serves the requests that arrived during the vacation of the server. But

if the queue is still empty, the server keeps itself off and goes on vacation (execute the

background process) again. This is referred to in this document as the empty/no-empty

approach to control of the QSV.

4.1.2 DISK ARRAY QUEUING MODEL

The complete model of the disk array is based on a central server model with the

addition of the queuing system with vacations (QSV). One of the advantages of fuzzy logic is

the possibility of easily modeling and controlling systems in which mathematical models can

be hard to derive. The problem of finding optimal policies for networks of queues is not

trivial. Some queue optimization problems are probably intractable [Papadimitriou 94a]. Fig.

4.2 shows the model used for the disk array controller and the disks. This model combines the

QSV with the queuing network formed by the disk array controller and the disks. The user

requests to the queuing system arrive at a rate λ. The disk array controller then processes

requests at a μ service rate.

The first approximation to a latency for the user requests can be obtained by saying the

user request latency (response time) is the sum of the latency of the disk array controller, rtdac,

and the latency of the disk (for reads) or disks (for writes), rtdisk:

diskdact rtrtr  (4.1)

Fig. 4.1: Queuing System with Vacations (QSV)

µ λ

λ = arrival rate µ = service rate

 57

Estimating the latency of the disk array controller is not easy since it depends on two

main factors: 1) the performance of the electronic components, e.g., CPU, memory; and 2) the

software logic programmed in the disk array. This makes the modeling and estimation of the

disk array controller latency, rtdac, hard to obtain. This section shows that even with the lack

of an exhaustive and detailed mathematical model, fuzzy logic can be applicable to the control

of the sparing process. Also, because of the complexity of the model, this section uses

simulation to show the improvements made by the fuzzy controller.

The model used in the simulation is based on the ST373454FC Seagate disk [Seagate

05a]. The service time, Td, of a disk request depends on three factors: 1) rotational latency, trot,

2) seek time, tseek, and 3) transfer time, txfer:

xferseekrotd tttT  (4.2)

The disk positioning time is defined this way:

seekrot ttDPT  (4.3)

The disks will be modeled using the following equation:

Fig. 4.2: Queuing system of controller and disks.

λ µ

λd µd

DISK 1

DISK D

DISK ARRAY CONTROLLER

ON/OFF

µd λd

 58

xferd tDPTT  (4.4)

The disk service times are difficult to estimate since some factors, like disk

specifications, disk caching and scheduling policy are hard to determine [Varki 03a]. The data

used for this simulation came from measurements made on the ST373454FC Seagate disk.

For random workloads the disk positioning time can be modeled by this equation in [Varki

03a]:

queuedisk

b
aDPT

_1
 (4.5)

Fig. 4.3: Disk Position Times measured for Random Reads

 59

Measurements were obtained from a ST37345FC disk to determine the parameters a

and b for (4.5) for both random reads and writes. Fig. 4.3 shows the parameters were obtained

for random reads, a = 2 and b = 4.75. The root-mean-square deviation (RMSD) between the

measured and the estimated disk positioning time (DPT) was RMSD = 0.159.

 Fig. 4.4 shows the parameters that were obtained for random writes, a = 2 and b =

4.75. The root-mean-square deviation (RMSD) between the measured and the estimated DPT

was RMSD = 0.324.

The measured transfer time for random 4KiB transfers was txfer = 0.06ms and for

random 128KiB transfers the txfer = 1.96ms. The simulations used later in this chapter made

use of the parameters estimated for the DPT for random reads and writes as well as the txfer

for 4KiB and 128KiB transfers.

4.1.3 RAID1 REBUILD MODEL

In this section, the new approach for sparing will be presented on the analysis of a

RAID1 system. The RAID1 system can be in one of three modes: 1) optimal, when all the

disks are working; 2) degraded, when one disk fails; 3) failed, when one pair of disks with the

same data fail so there is no way to recover the data.

Fig. 4.4: Disk Position Times measured

 60

The RAID1 system consists of D disks, where D is an even number. The mirroring of

the disks is by pairs of the dth with dth+1 disk, where d=1,3,5,…,D-1. The capacity of the disk

is referred to as Cd. The disks are divided up in Nb number of disk blocks of size Sb. The

number of Nb blocks per disk depends on the storage capacity of the disk Cd:

bdb SCN / (4.6)

The disk block is the atomic unit of storage for the RAID1 system. When newly

arrived data has to be stored on a disk, a new disk block is allocated. For this section, a block

size Sb=128KiB will be used. This is the default size for the HP StorageWorks 1000/1500

MSA [HP 06a]. Each disk block is referred to as Bi, where i=1,2,3,…,Nb.

Fig. 4.5 shows the data layout of the RAID1 system in optimal mode. Each block Bi

has a corresponding mirror on the other disk indicated by B’i. For example, disk 1 (disk dth)

and 2 (disk dth+1) form a pair of data and its mirror. The spare disk is in standby mode and no

data blocks have been allocated on it.

Fig. 4.5: RAID1 disk array data layout

Disk Array

Controller

DISK 1

B1

B2

B3

BDb-2

BDb-1

BDb

DISK 2 DISK D-1 DISK D SPARE DISK

λ

λd λd λd λd

B’1
B’2
B’3

B1

B2

B3

B’1
B’2
B’3

BDb-2

BDb-1

BDb

B’Db-2

B’Db-1

B’Db

B’Db-2

B’Db-1

B’Db

 61

A workload with arrival rate λ is applied to the RAID1 system controller by the users.

The throughput χ in IOs requests per second (IO/s), can be specified by:

 𝜒 = 1
𝜆⁄ (4.7)

The throughput is distributed across the disks. A balanced workload across the disks is

considered in this section.

When a disk fails, the sparing process is started and the copy of the data on the

surviving disk to the spare disk is performed on a block by block basis. Fig. 4.6 shows an

example of a failed disk; in this case, disk D-1 failed and the spare disk is now in process of

replacing disk D-1. The sparing process copies the disk blocks Bi from disk D to the spare

disk that is now the new disk D-1.

The fraction of the Nb blocks copied is fsp. If Bc is the number of disk blocks already

copied to the spare disk, then fraction of the Nb blocks is:

bcsp NBf /
 (4.8)

Fig. 4.6: Sparing process to replace failed disk D-1

Disk Array

Controller

DISK 1 DISK 2 FAILED DISK-1 DISK D SPARE DISK

REPLACING

DISK D-1

λ

λd λd λsu λsp

λc
fsp

1-fsp

B1

B2

B3

B1

B2

B3

B’1
B’2
B’3

B’1
B’2
B’3

BDb-2

BDb-1

BDb

BDb-2

BDb-1

BDb

B’Db-2

B’Db-1

B’Db

 62

When the RAID1 system is sparing, the combined throughput of the disks changes

from that of the optimal state, since now we have two different conditions: 1) the surviving

disk is now serving its share of user requests and reading its disk blocks; 2) the spare disk is

writing its disk blocks and serving read requests for the data already copied and new writes to

the data on it. The other D-2 disks are serving requests as they would normally do. This

procedure to reconstruct the RAID1 redundancy is known as the baseline copy procedure

[Muntz 90a]. There are other ways to proceed with the reconstruction of the data that are also

mentioned in [Muntz 90a]

4.1.4 RAID5 REBUILD MODEL

For this section, a RAID5 disk array will be used for the analysis. The disk array can

be in one of three modes: 1) optimal, when all the disks are working; 2) degraded, when one

disk fails; 3) failed, when one pair of disks with the same data fail so there is no way to

recover the data. For this section, the disk array will be considered to be in the degraded state.

The disk array consists of D disks. The D disks are divided up in RAID5 disk groups

of G disks [Patterson 88a]. Fig. 4.7 shows the data layout of the disk array in optimal mode.

For the example shown in Fig. 4.7, G=5. The number of RAID5 groups is Ng:

GDN g /
 (4.9)

The data on the disks is divided up in data blocks. The spare disk is in standby mode

and no data blocks have been allocated on it. In each disk group, one data block disk stores

the parity of the data blocks of the other G-1 disks. Each data block is referred to as Bi,j, where

i=1,2,3,…,Nb and j=1,2,..,G. The group of data blocks Bi,j where i is constant and j goes from

j=1,2,…,G is referred to as a stripe. The number of Nb blocks per disk depends on the

capacity of the disk, Cd as shown (4.6). The size of each data block Bi,j is Sb. A practical

example of the size of the disks blocks is taken from the Storage Works 1000/1500 MSA [HP

06a]. This disk array uses a default block size of 128KiB. Thus, for this section, a block size

Sb=128KiB will be used.

The user reads and writes are executed differently depending on which disk is the data

to be accessed. The possible cases considered for this example are:

 63

1) Optimal reads. If the disk on which the data is located is a working disk, a read

requested to the RAID5 disk array controller translates into one read on that particular disk.

2) Degraded reads. If the sparing process has already regenerated the data and written

it on the spare disk, then it is possible to read the data from the spare disk directly, in this case

this is an optimal read as in the previous case. But, if the disk on which the data is located is

the failed disk, and the data has not been regenerated on the spare disks, then we have a

degraded read. A degraded read requested to the RAID5 disk array controller translates into

G-1 reads. This is because the data on the failed disk cannot be read and has to be

reconstructed by reading the data (and the parity) on the other G-1 disks of the RAID5 disk

group.

3) Optimal writes. The example used in this section was of a disk array under small

block (4KiB) randomly distributed writes. These are translated on the disks into the four

accesses: two accesses to read the old data and the old parity, and two more accesses to write

the new data and the new parity. This kind of writes is known as the read-modify-write

(RMW) [Patterson 88a]. For the rest of this section, an optimal write is a RMW.

4) Degraded write with a failed parity disk. If the disk on which the parity is located is

the failed disk, then only the new data is written on the working disk where the old data was

located. Later on, the sparing process will reconstruct the parity on the spare disk. Of course,

there is also the possibility that the parity on the failed disk has already been reconstructed on

Fig. 4.7: RAID5 disk array data layout

Disk Array

Controller

DISK 1

B1,1

B2,1

B3,1

P5,1

Bb,d

DISK 2 DISK 3 DISK 4 SPARE DISK

λ

λd λd λd
λd

B1,2

B2,2

B3,2

B1,3

B2,3

P3,3

B1,4

P2.4

B3,4

B5,3

Bb,d

B5,4

Bb,d

B5,2

Bb,d

DISK 5

λd

P1,5

B2,5

B3,5

B5,5

Pb,d

B4,1 P4,2 B4,3 B4,4 B4,5

 64

the spare disk. If this is the case, then instead of a degraded write, this write is executed as an

optimal write.

5) Degraded write with a failed data disk. If the disk on which the data is located is

the failed disk, then it is necessary to read the data on the other G-2 disks in the disk group.

The data of the G-2 drives along with the new data to be written is used to compute a new

parity. This new parity is then written on the working parity disk.

6) Sparing write. The reconstruction (sparing) of the data is performed this way: the

data (and parity, depending on the stripe being reconstructed), of the other surviving G-1

disks is read. The data blocks Bs,j where j=1,2,..,G-1 and s is the stripe being spared, are read.

Then the G-1 data blocks are used to compute the Bs,G block, which can be data or parity

according to the rotating scheme of parity on the G disks. And then, the Bs,G block is written

on the spare disk. Fig. 4.8 shows a RAID5 disk group where one disk failed and the spare disk

is in the sparing process.

In this model the fraction of the total Nb blocks copied is also fsp as shown in (4.8). A

workload with throughput λ is applied to the disk array controller by the users. The percentage

of read requests in the workload applied to the disk array controller is represented by ρ and

the percentage of write requests in the workload is represented by ω. Both percentages are

related by:

Fig. 4.8: RAID5 disk sparing process to replace failed disk

Disk Array

Controller

DISK 1

B1,1

B2,1

B3,1

P5,1

Bb,d

DISK 2 DISK 3 DISK 4 SPARE DISK

(replacing

DISK 3)

λ

λd λd λd λd

B1,2

B2,2

B3,2

B1,3

B2,3

P3,3

B1,4

P2.4

B3,4

B5,3

Bb,d

B5,4

Bb,d

B5,2

Bb,d

DISK 5

λd

P1,5

B2,5

B3,5

B5,5

Pb,d

B4,1 P4,2 B4,3 B4,4 B4,5

B1,3

B2,3

P3,3

B5,3

B4,3

fsp

1-fsp

 65

 1
 (4.10)

The throughput of the user reads, λR, is:

 R (4.11)

The throughput of the user writes, λRMW, is:

 RMW (4.12)

One way to estimate the disk throughput is subdividing the throughput in two groups.

One throughput, λOPT, is made up by the D-G disks that make up the Ng-1 optimal groups. The

other throughput, λDEG,, is composed of the G disks where the failed disk is located. We can

say, then, that the total throughput on the disks, λD, is:

DEGOPTD  
 (4.13)

For this section, a balanced workload is assumed. We know that for optimal reads,

there is a one-to-one correspondence between the user reads and disk reads. For the read-

modify-writes, two reads and two writes are performed for each one. With this, the throughput

of the disks in the optimal groups is:

)(
)4(

GD
D

RMWR

OPT 






 (4.14)

The throughput of the disks in the degraded group has to consider the fact that as the

sparing process progresses, the fraction of data spared, fsp, goes to one and the accesses

become optimal as more and more data has its redundancy reconstructed. Also, besides the

user workload, the sparing process adds more requests on the disks. First, the reads in the

degraded disk group can be estimated by reasoning this way: this is a balanced workload, so

 66

each drive get its λR/D share of reads. For the G-1 working disks in the group, this translates

into one disk read. But if the read is directed to the failed disk and the data has not been

reconstructed on the spare drive, this translates into reads from the other G-1 disks. So, we

can say that the throughput in the degraded disk group caused by the user reads, λDEG_READ, is:

D

GffG spRspR

READDEG







)1()1(2
_

 (4.15)

The writes in the degraded disk group can be estimated by reasoning this way: again,

this is a balanced workload, so each drive get its λRMW/D share of reads. For the G-1 working

disks in the group, this translates into two reads and two writes. But if the write is directed to

the failed disk and the data (or parity) has not been reconstructed on the spare drive, this gives

rise to one of two possibilities:

1) the parity of the RMW was on the failed disk. Since the parity block rotates, we

know that 1/G of each disk is used to store parity, so the probability of this case, ppar, is:

Gp par /1
 (4.16)

And the equation that estimates the throughput caused by the degraded writes with a

failed parity disk, λDEG_PAR, is:

D

pf RMWparsp

PARDEG




)1(
_




 (4.17)

2) the data of the RMW was on the failed disk The probability of this, pdat, is:

GGpdat /)1(
 (4.18)

And the equation that estimates the throughput caused by degraded writes with a failed

data disk, λDEG_DATA, is:

 67

D

pGf RMWdatsp

DATADEG




)1)(1(
_




 (4.19)

So, we can say that the throughput in the degraded disk group caused by the user

reads, λDEG_WRITE, is:

PARDEGDATADEG

RMWsp

WRITEDEG
D

fG

4)1(



 




 (4.20)

The throughput in the degraded disk group also includes the throughput of the sparing

process. The sparing writes, as mentioned above, require G-1 reads and one write. These

accesses are of size Sb, and the throughput, λSPARING, depends on the characteristics of the

drive, the throughput imposed by the user and the algorithm used for sparing. Putting the

λDEG_READ, λDEG_WRITE, and the λSPARING, we have:

SPARINGWRITEDEGREADDEGDEG   __ (4.21)

With (4.13) and (4.21) together is now easier to understand why the throughput of a

disk array drops when a disk fails.

4.2 FUZZY CONTROL OF THE SPARING PROCESS

The proposed solution to find the optimal policy that balances the time needed to

complete the sparing and the latency of the user requests is by using a fuzzy controller. This

solution will be more flexible than the traditional QSV model, where the sparing process only

occurs when the queue is empty. In this proposed solution more parameters will be

considered. The input parameters will be fuzzified so we can base the decisions on fuzzy

values. The use of fuzzy values allowed us the use of a rule base with the logic to control the

sparing process. In Fig. 4.9 we show a graphical model of the proposed solution.

The input parameters of the fuzzy controller are three: 1) The queue length of the

controller, ql; 2) the latency of the disk array controller rt; and 3) the time elapsed since a disk

failed and the sparing process started, tsp.

 68

For this example the three parameters were normalized. The first parameter ql, is

considered to make an improvement of the traditional QSV, empty/no-empty approach. The

idea is to allow the sparing process to execute even if there are requests in the queue waiting

to be served. The ql can be normalized by using Little’s theorem [Zhang 05a]. The

normalization of variables make it easier to map the crisp values of the variable to fuzzy

values. For example, if we assume an average latency of RTavg = 10ms for the users and an

average throughput of λavg = 1,000 IO/s, then we can use Little’s theorem and estimate the

average queue length:

101000*010.0*  avgavgRTL 
 (4.22)

The ql then can be considered to be 10 as an average. We considered 20 as the qlmax

and the normalization of the ql was using this formula:

maxql

ql
qln  (4.23)

Fig. 4.9: Fuzzy controller of the QSV for sparing

DISK 1

DISK D

DISK ARRAY CONTROLLER

ON/OFF

FUZZY CONTROLLER
rt

tsp

ql

µ

µd

µd

λ

λd

λd

 69

The other two parameters are normalized by making two assumptions:

1) The latency, rt, can be normalized if we consider that there are some upper limits to

the latency the user applications can withstand without causing problems; such as high user

latencies or timeouts of user applications. One example is with the Microsoft Exchange

Servers. There are some latencies that are considered the maximum acceptable (50ms)

[Microsoft 06a] and above those latencies there can be problems. For the simulation shown in

this section, it was assumed that a delay of rtmax=50ms was the maximum that can be

tolerated. The normalized response time (latency), rtn, used by the fuzzy controller is then:

maxrt

r
rt t

n  (4.24)

2) The time elapsed in the sparing process since a disk failed, tsp, is normalized also.

The assumption made is that there is a maximum time acceptable for the user without the

redundancy of the data restored. This is a reasonable assumption since the purpose of a disk

array is to guarantee the redundancy of the data so there is no data loss when a disk fails. The

maximum time allowed for a sparing to finish was assumed to be tspmax=24 hours. With this

assumption the normalized time elapsed in the sparing process, tspn is:

maxtsp

t
tsp

sp

n  (4.25)

Fig. 4.10: Membership functions for the normalized values

 70

With the three input parameters normalized, now the membership function can be

defined. Three linguistic values were assigned three fuzzy descriptors, ZRO, MID, and ONE,

which stand for “zero”, “middle value” and “one”. The fuzzification of the three fuzzy

descriptors was performed via a triangular membership function for each descriptor. This

technique is shown in [Zhang 05a]. Fig. 4.10 shows the triangular membership functions for

all three input parameters. The graph shows also an example using a dummy variable ρ that

can be replaced by any one of the three normalized parameters, qln, rtn and tspn. The

membership function µZRO(ρ) for the fuzzy descriptor ZRO is:

𝜇𝑍𝑅𝑂(𝜌) = {
−2𝜌 + 1 𝑖𝑓 0 ≤ 𝜌 ≤ 0.5

0 𝑖𝑓 𝜌 > 0.5

 (4.26)

The membership function µMID(ρ) for the fuzzy descriptor MID is:

𝜇𝑀𝐼𝐷(𝜌) = {
 2𝜌 𝑖𝑓 0 ≤ 𝜌 ≤ 0.5

−2𝜌 + 2 𝑖𝑓 0.5 < 𝜌 ≤ 1

 (4.27)

The membership function µONE(ρ) for the fuzzy descriptor ONE is:

𝜇𝑂𝑁𝐸(𝜌) = {
0 𝑖𝑓 𝜌 < 0.5

 2𝜌 + 1 𝑖𝑓 0.5 ≤ 𝜌 ≤ 1

 (4.28)

The fuzzy value of rtn is defined as Frtn:

𝐹𝑟𝑡𝑛 = max [𝜇𝑍𝑅𝑂(𝑟𝑡𝑛), 𝜇𝑀𝐼𝐷(𝑟𝑡𝑛), 𝜇𝑍𝑅𝑂(𝑟𝑡𝑛)] (4.29)

The fuzzy value of qln is defined as Fqln:

𝐹𝑞𝑙𝑛 = max [𝜇𝑍𝑅𝑂(𝑞𝑙𝑛), 𝜇𝑀𝐼𝐷(𝑞𝑙𝑛), 𝜇𝑍𝑅𝑂(𝑞𝑙𝑛)] (4.30)

The fuzzy value of tspn is defined as Ftspn:

𝐹𝑡𝑠𝑝𝑛 = max [𝜇𝑍𝑅𝑂(𝑡𝑠𝑝𝑛), 𝜇𝑀𝐼𝐷(𝑡𝑠𝑝𝑛), 𝜇𝑍𝑅𝑂(𝑡𝑠𝑝𝑛)] (4.31)

 71

Now the next step is the specification of the rules for the rule base. The linguistic

criteria can be summarized:

1) The latency of the disk array controller, rt, should be kept as low as possible. This is

one of the features that must be balanced during the sparing process. If the latency rt, is low,

we can proceed with the sparing.

2) The sparing process should be finished as soon as possible. This is the other feature

that must be balanced. The closer we are to the maximum time allowed for a sparing process

to finish, tspmax, more priority should be given to the sparing process.

3) The lower the queue length is, the more we can spare since just few processes will

be delayed.

With these linguistic criteria, the rule base can be built. The output of each rule is a

binary value of YES, which means continue the sparing process, or NO, which means to hold

off the sparing process. The complete rule base of the fuzzy control of sparing is in Table 4.1.

The output of the fuzzy controller is the decision to turn on/off the disk array

controller to server user requests (on) or regenerate the redundancy (off). The deffuzification

of the output is done by applying the rule and the result is a zero (NO) or a one (YES). We

define the output set as the crisp set:

𝐶𝑜𝑢𝑡_𝑓 = { YES, NO } (4.32)

Table 4.1: Rule base of the fuzzy control of Sparing

Rules 1-9 Rules 10-18 Rules 19-27

rtn qln tspn out rtn qln tspn out rtn qln tspn out

ZRO ZRO ZRO YES MID ZRO ZRO YES ONE ZRO ZRO YES

ZRO ZRO MID YES MID ZRO MID YES ONE ZRO MID YES

ZRO ZRO ONE YES MID ZRO ONE YES ONE ZRO ONE YES

ZRO MID ZRO YES MID MID ZRO YES ONE MID ZRO NO

ZRO MID MID YES MID MID MID YES ONE MID MID NO

ZRO MID ONE YES MID MID ONE YES ONE MID ONE YES

ZRO ONE ZRO YES MID ONE ZRO YES ONE ONE ZRO NO

ZRO ONE ONE YES MID ONE MID YES ONE ONE MID NO

ZRO ONE ONE YES MID ONE ONE YES ONE ONE ONE YES

 72

The rules are of the form:

𝑖𝑓 𝒓𝒕𝒏 ∈ 𝐹𝑟𝑡𝑛 𝑎𝑛𝑑 𝒒𝒍𝒏 ∈ 𝐹𝑞𝑙𝑛 𝑎𝑛𝑑 𝒕𝒔𝒑𝒏 ∈ 𝐹𝑡𝑠𝑝𝑛 𝑡ℎ𝑒𝑛 𝒐𝒖𝒕 ∈ 𝐶𝑜𝑢𝑡_𝑓 (4.33)

4.2.1 SIMULATION AND RESULTS

The model of the RAID5 system used for the simulation is based on the description in

4.1.4 with that addition of a central server and the QSV as shown in Fig. 4.9. The user

requests to the queuing system arrive at a rate λ. The RAID controller (the server) processes

requests at a μ service rate. A simulation of the queuing system in Fig. 4.2 was the approach

used in this section to show the improvements made by the fuzzy controller. The disk

parameters used for this simulation were presented at the end of section 4.1.2. The simulation

was done using the CSIM19 simulation package [Mesquite 07a]. The workload applied was

75% reads (3:1 ratio), as typical for Exchange Server environments [Microsoft 06b]. A disk

array with 80 ST373454FC disks was simulated using a RAID5 model as shown in section

4.14. The disk array controller 1/μ used was 0.08ms with an exponential distribution. The

throughputs applied for comparison were 1000, 2500, 5000, and 7500 IO/s. The throughputs

were maintained constant during the entire duration of the simulation. The intention was to

measure the variations in latency and the duration of the sparing process.

The graphs used for the comparison show on the horizontal axis the total time taken

for the sparing process to complete, and on the vertical axis the latency measured for the user

requests.

Fig. 4.11 shows the result for the 1000 IO/s throughput applied to the disk array. This

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled

sparing. The graph shows the fuzzy-controlled sparing finishing in 1.5 hours after the disk

failed; whereas the empty/no-empty sparing finished in 3.2 hours. For both cases, the latency

was around 10ms. There is a great improvement in the reduction of the sparing time by half

with no impact on the user request latency

 73

Fig. 4.12 shows the result for the 2,500 IO/s throughput applied to the disk array. This

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled

sparing. The graph shows the fuzzy-controlled sparing finishing in 2.1 hours after the disk

failed, whereas the empty/no-empty sparing finished in 3.9 hours. For both cases, the latency

Fig. 4.12: User request latency comparison for 2,500 IO/s with fuzzy control

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 0.5 1 1.5 2 2.5 3 3.5 4

U
s
e
r

re
q

u
e
s
t

la
te

n
c
y
 i

n
 m

il
li
s
e
c
o

n
d

s

Sparing completion time in hours

Average user request latency for 2,500 I/Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

Empty/No-Empty Fuzzy Controlled

Fuzzy controlled sparing finished in 2.1 hours (black line)

Empty/No-Empty controlled sparing finished in 3.9 hours (red line)

The fuzzy controller finished in half the time with no impact on the
user response time

Fig. 4.11: User request latency comparison for 1,000 IO/s with fuzzy control

0

1

2

3

4

5

6

7

8

9

10

11

12

0 0.5 1 1.5 2 2.5 3 3.5

U
s

e
r

re
q

u
e

s
t

la
te

n
c

y
 i

n
 m

il
li

s
e

c
o

n
d

s

Sparing completion time in hours

Average user request latency for 1,000 I/Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

Empty/No-Empty Fuzzy Controlled

Fuzzy controlled sparing finished in 1.5 hours (black line)

Empty/No-Empty controlled sparing finished in 3.2 hours (red line)

The fuzzy controller finished in half the time with practically no
impact on the user response time

 74

was around 12.5ms. There is an improvement in the reduction of the sparing time by half with

no impact on the user request latency.

Fig. 4.13 shows the result for the 5,000 IO/s throughput applied to the disk array. This

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled

sparing. The graph shows the fuzzy-controlled sparing finishing in 3.1 hours after the disk

failed; whereas the empty/no-empty sparing finished in 5.4 hours. For both cases, the latency

was around 17.5ms. There is an improvement in the reduction of the sparing time by half with

no impact on the user request latency.

Fig. 4.14 shows the result for the 7,500 IO/s throughput applied to the disk array. This

result shows the fuzzy controller outperforming the traditional empty/no-empty controlled

sparing again. The graph shows the fuzzy-controlled sparing finishing in 8.1 hours after the

disk failed; whereas the empty/no-empty sparing finished in 4.6 hours. For both cases, the

latency was around 24.5ms. There is an improvement in the reduction of the sparing time by

half with no impact on the user request latency.

Fig. 4.13: User request latency comparison for 5,000 IO/s with fuzzy control

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

U
s

e
r

re
q

u
e

s
t

la
te

n
c

y
 i

n
 m

il
li

s
e

c
o

n
d

s

Sparing completion time in hours

Average user request latency for 5,000 I/Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

Empty/No-Empty Fuzzy Controlled

Fuzzy controlled sparing finished in 3.1 hours (black line)

Empty/No-Empty controlled sparing finished in 5.4 hours (red line)

The fuzzy controller finished in little over half the time with no impact
on the user response time

 75

Table 4.2 with a comparison of the four results, shows an improvement of the sparing

process by cutting the duration in half with no impact on the user request latency. This

simulation shows the value of using fuzzy controlled logic for the improvement of the sparing

process.

Fig. 4.14: User request latency comparison for 7,500 IO/s with fuzzy control

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

U
s
e
r

re
q

u
e
s
t

la
te

n
c
y
 i

n
 m

il
li
s
e
c
o

n
d

s

Sparing completion time in hours

Average user request latency for 7,500 I/Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

Empty/No-Empty Fuzzy Controlled

Fuzzy controlled sparing finished in 4.6 hours (black line)

Empty/No-Empty controlled sparing finished in 8.1 hours (red line)

The fuzzy controller finished in little over half the time with no impact
on the user response time

Table 4.2: Comparison of results of the fuzzy control of sparing

IO/s Empty/No-empty controlled sparing Fuzzy-controlled sparing

 Sparing

Duration (hrs)

Latency (ms) Sparing

Duration (hrs)

Latency (ms)

1,000 3.2 10 1.5 10

2,500 3.9 12.5 2.1 12.5

5,000 5.4 17.5 3.1 12.5

7,500 8.1 24.5 4.6 24.5

 76

4.3 NEURAL-FUZZY ALGORITHM FOR SPARING IN RAID SYSTEMS

This neural-fuzzy sparing control scheme is based on the fuzzy sparing control scheme

presented in section 4.2 but with two differences: 1) the rule base was implemented with an

artificial neural network; and 2) the fraction of data that has been already spared from the

surviving disks is used instead of the queue length. This neural-fuzzy sparing control scheme

proposed to balance the time needed to complete the sparing and the latency of the user

requests is composed of two neural nets with the following features: 1) the input parameters to

the neural net controller are normalized so they are in the [0,1] range; 2) the input parameters

are fuzzified using three membership functions, LOW, MED and HIG; 3) the fuzzification of

the input parameters is made by the first neural net; 4) the second neural net implements the

rule base and makes the decision whether to keep sparing or hold the sparing temporarily,

based on the fuzzified parameters from the first neural net. In Fig. 4.15 we show a graphical

model of the proposed solution.

The input parameters of the fuzzy controller are three: 1) The fraction of data already

spared from the surviving disks, i.e., the fraction of sparing, fsp; 2) the latency of the RAID

controller rt; and 3) the time elapsed since a disk failed and the sparing process started, tsp.

For this implementation of the neural-fuzzy controller the three parameters were

normalized. The first parameter fsp from (4.8), is in the range [0,1]. The other two parameters

are normalized by making two assumptions.

The first assumption is that the latency rt can be normalized with respect to certain

upper limits of the latency that the user applications consider excessive. One example is with

Fig. 4.15: Neural-Fuzzy controller of the QSV for sparing

λ μ

λd μd

DISK 1

λd μd

DISK DRAID

CONTROLLER

User2

User1

UserN

USER QUEUE

NEURO-FUZZY

CONTROLLER

rtn

fsp

tspn

OUTPUT:

KEEP SPARING (1)

HOLD SPARING (0)

 77

the Microsoft Exchange Servers for which there are some latencies that are considered the

maximum acceptable and above those latencies there can be problems such as slow response

experienced by customers or timeouts in applications [Microsoft 06a]. Here, it was assumed

that a delay of rtmax=50ms was the maximum that can be tolerated, and that was the value

used in the simulation of the sparing. The normalized response time (latency) rtn used by the

fuzzy controller is the same as in (4.24)

The second assumption made is that there is a maximum time acceptable for the user

without the redundancy of the data restored. This is a reasonable assumption since the purpose

of a RAID system is to guarantee the redundancy of the data so there is no data loss when a

disk fails. The time elapsed in the sparing process since a disk failed tsp is normalized also.

The maximum time allowed for a sparing to finish was assumed to be tspmax=12 hours. With

this assumption the normalized time elapsed in the sparing process tspn is the same as in

(4.25)

With the three input parameters normalized, the membership function can be defined.

Three linguistic values were assigned, LOW, MED, and HIG, which stand for “low”,

“medium” and “high” value. This is following the same technique shown by Philips et. al.

[Zhang 05a]. Fig. 4.16 shows the triangular fuzzy membership functions for all three input

parameters. As it can be seen, the triangular functions are the same as the ones used for the

fuzzy sparing control scheme presented in the previous section 4.2. And like in the previous

section, Fig.4.16 shows also an example using a dummy variable ρ that can be replaced by

any one of the three normalized parameters, fsp, rtn and tspn. The membership function for

LOW is the same (4.26), the MED membership function is the same as (4.27) and the HIG

membership function is the same as (4.28).

The fuzzy value of rtn is defined as Frtn:

𝐹𝑟𝑡𝑛 = max [𝜇𝐿𝑂𝑊(𝑟𝑡𝑛), 𝜇𝑀𝐸𝐷(𝑟𝑡𝑛), 𝜇𝐻𝐼𝐺(𝑟𝑡𝑛)] (4.34)

The fuzzy value of fsp is defined as Ffsp:

𝐹𝑓𝑠𝑝 = max [𝜇𝐿𝑂𝑊(𝑓𝑠𝑝), 𝜇𝑀𝐸𝐷(𝑓𝑠𝑝), 𝜇𝐻𝐼𝐺(𝑓𝑠𝑝)] (4.35)

 78

The fuzzy value of tspn is defined as Ftspn:

𝐹𝑡𝑠𝑝𝑛 = max [𝜇𝐿𝑂𝑊(𝑡𝑠𝑝𝑛), 𝜇𝑀𝐸𝐷(𝑡𝑠𝑝𝑛), 𝜇𝐻𝐼𝐺(𝑡𝑠𝑝𝑛)] (4.36)

The three normalized parameters (fsp, rtn, tspn) in the range [0,1] are the input to the

fuzzifier neural net. Fig. 4.17 shows the structure of the neural net used. Notice the two

sections. The first neural net section, based on the value of the normalized parameter, will

output a number 0, 0.5 or 1 that will correspond to one of the three possible fuzzy values

(LOW, MED, HIG). The second section implements the rule base.

The rule base can be implemented according to the following linguistic criteria: 1) the

latency of the RAID controller rt, should be kept as low as possible. If the latency rt, is LOW,

the sparing can continue without any risk of affecting the user request latency. 2) the sparing

process should be finished within the maximum allowed, tspmax. The closer we are to HIG, the

Fig. 4.17: Neural net layers of the Neural-Fuzzy controller for sparing

NEURO-FUZZY

CONTROLLER

rtn

fsp

tspn

FUZZIFIER:

Output is one of LOW, MED, HIG

CONTROLLER:

Rule base

implementation

OUTPUT:

KEEP SPARING (1)

HOLD SPARING (0)

Fig. 4.16: Membership functions for the normalized parameters

 79

more priority should be given to the sparing process. 3) the fraction of sparing data spared fsp,

should be as close to HIG as possible. If the fraction of data already spared is close to zero,

then the sparing process is favored over the latency.

With these linguistic criteria, the rule base can be built. The output of each rule is a

binary value of KEEP (1), which means continue the sparing process, or HOLD (0), which

means to hold off the sparing process. The complete rule base is in Table 4.3. The output of

the fuzzy controller is the decision to turn on/off the RAID controller to serve user requests

(on) or regenerate the redundancy (off). The deffuzification of the output is done by applying

the rule and the result is a zero (HOLD) or a one (KEEP)

The output of the fuzzy controller is the decision to turn on/off the disk array

controller to server user requests (on) or regenerate the redundancy (off). The deffuzification

of the output is done by applying the rule and the result is a zero (NO) or a one (YES). We

define the output set as the crisp set:

𝐶𝑜𝑢𝑡_𝑛𝑓 = { KEEP, HOLD } (4.37)

The rules are of the form:

𝑖𝑓 𝒓𝒕𝒏 ∈ 𝐹𝑟𝑡𝑛 𝑎𝑛𝑑 𝒇𝒔𝒑 ∈ 𝐹𝑓𝑠𝑝 𝑎𝑛𝑑 𝒕𝒔𝒑𝒏 ∈ 𝐹𝑡𝑠𝑝𝑛 𝑡ℎ𝑒𝑛 𝒐𝒖𝒕 ∈ 𝐶𝑜𝑢𝑡_𝑛𝑓 (4.38)

Table 4.3: Rule base Neural-Fuzzy controller for Sparing

Rules 1-9 Rules 10-18 Rules 19-27

rtn fsp tspn OUT rtn fsp tspn OUT rtn fsp tspn OUT

LOW LOW LOW KEEP MED LOW LOW KEEP HIG LOW LOW HOLD

LOW LOW MED KEEP MED LOW MED KEEP HIG LOW MED HOLD

LOW LOW HIG KEEP MED LOW HIG KEEP HIG LOW HIG KEEP

LOW MED LOW KEEP MED MED LOW KEEP HIG MED LOW HOLD

LOW MED MED KEEP MED MED MED KEEP HIG MED MED HOLD

LOW MED HIG KEEP MED MED HIG KEEP HIG MED HIG KEEP

LOW HIG LOW KEEP MED HIG LOW HOLD HIG HIG LOW HOLD

LOW HIG HIG KEEP MED HIG MED KEEP HIG HIG MED HOLD

LOW HIG HIG KEEP MED HIG HIG KEEP HIG HIG HIG KEEP

 80

4.3.1 SIMULATION AND RESULTS

The complete model of the RAID1 system is based on the model described in 4.1.3

with that addition of a central server and the QSV as shown in Fig. 4.2. The user requests to

the queuing system arrive at a rate λ. The RAID controller (the server) processes requests at a

μ service rate. Fuzzy logic offers the possibility of easily modeling and controlling systems in

which mathematical models can be hard to derive. A simulation of the queuing system in Fig.

4.15 shows the improvements made by the neural-fuzzy controller. The disk parameters used

for this simulation were presented at the end for section 4.1.2. The neural network training

was performed in Matlab. The resulting weights and biases were translated into the

simulation. The simulation was done using the CSIM19 toolkit, which allows the discrete-

event simulation models [Mesquite 07a]. The testing parameters were chosen to resemble a

typical Exchange Server environment [Microsoft 06b]: 75% reads (3:1 ratio). A RAID1

system with 60 ST373454FC Seagate disks was simulated. The RAID controller had a μ =

10,000 IO/s.

The throughputs 1000, 2000, 4000 and 8000 IO/s, were maintained constant during the

entire duration of the simulation, in order to measure the variations in latency and the duration

of the sparing process.

Fig. 4.18: User request latency comparison for 1,000 IO/s with neural-fuzzy control

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5

U
s

e
r

re
q

u
e

s
t

la
te

n
c

y
 i

n
 m

il
li

s
e

c
o

n
d

s

Sparing completion time in hours

Average user request latency for 1,000 I/Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Neural-Fuzzy controlled sparing finished in 1.4 hours (black line)

Empty/No-Empty controlled sparing finished in 2.9hours (red line)

The neural-fuzzy controller finished in half the time with no impact on the user
response time

 81

The horizontal axis shows the total time taken for the sparing process to complete. The

vertical axis shows the latency seen by the user requests.

Fig. 4.18 shows the result for the 1,000 IO/s applied to the disk array. This result

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled

sparing. The graph shows the neurro-fuzzy-controlled sparing finishing in 1.4 hours after the

disk failed; whereas the empty/no-empty sparing finished in 2.9 hours. For both cases, the

latency was around 8ms. There is an improvement in the reduction of the sparing time by half

with no impact on the user request latency.

Fig. 4.19 shows the result for the 2,000 IO/s applied to the disk array. This result

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled

sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 1.5 hours after the

disk failed; whereas the empty/no-empty sparing finished in 3.1 hours. For both cases, the

latency was around 9ms. There is an improvement in the reduction of the sparing time by half

with no impact on the user request latency.

 Fig. 4.20 shows the result for the 4,000 IO/s applied to the disk array. This result

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled

sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 1.7 hours after the

disk failed; whereas the empty/no-empty sparing finished in 3.8 hours. For both cases, the

Fig. 4.19: User request latency comparison for 2,000 IO/s with neural-fuzzy control

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5

U
s

e
r

re
q

u
e

s
t

la
te

n
c

y
 i

n
 m

il
li

s
e

c
o

n
d

s

Sparing completion time in hours

Average user request latency for 2,000 I/Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Neural-Fuzzy controlled sparing finished in 1.5 hours (black line)

Empty/No-Empty controlled sparing finished in 3.1hours (red line)

The neural-fuzzy controller finished in half the time with no impact on the user
response time

 82

latency was around 11ms. There is an improvement in the reduction of the sparing time of

55% less time with no impact on the user request latency.

Fig. 4.21 shows the result for the 8,000 IO/s applied to the disk array. This result

shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled

sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 4.2 hours after the

disk failed; whereas the empty/no-empty sparing finished in 7.5 hours. For both cases, the

latency was around 19.5ms. There is an improvement in the reduction of the sparing time of

44% with no impact on the user request latency.

Table 4.4 presents a comparison of the four results, showing an improvement of the

sparing process by cutting the duration in half with no impact on the user request latency.

Fig. 4.20: User request latency comparison for 4,000 IO/s with neural-fuzzy control

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0.5 1 1.5 2 2.5 3 3.5 4

U
s

e
r

re
q

u
e

s
t

la
te

n
c

y
 i

n
 m

il
li

s
e

c
o

n
d

s

Sparing completion time in hours

Average user request latency for 4,000 I/Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Neural-Fuzzy controlled sparing finished in 1.7 hours (black line)

Empty/No-Empty controlled sparing finished in 3.8 hours (red line)

The neural-fuzzy controller finished in less than half the time with no impact on the user
response time

 83

4.4 CONCLUSIONS

This chapter demonstrated that fuzzy and neural-fuzzy logic can be applied

successfully to improve the sparing process in disk arrays. Both, the fuzzy-based and the

neural-fuzzy controllers presented in this chapter outperformed the traditional empty/no-

empty sparing process by finishing in half the time without impacting the user request latency.

Fig. 4.21: User request latency comparison for 8,000 IO/s with neural-fuzzy control

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

U
s

e
r

re
q

u
e

s
t

la
te

n
c

y
 i

n
 m

il
li

s
e

c
o

n
d

s

Sparing completion time in hours

Average user request latency for 8,000 I/Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

Empty/No-Empty Ctlr Neuro-Fuzzy Ctlr

Neural-Fuzzy controlled sparing finished in 4.2 hours (black line)

Empty/No-Empty controlled sparing finished in 7.5 hours (red line)

The neural-fuzzy controller finished in little over half the time with no impact on the
user response time

Table 4.4: Comparison of results of the neural-fuzzy control of sparing

IO/s Empty/No-empty controlled sparing Fuzzy-controlled sparing

 Sparing Duration (hrs) Latency (ms) Sparing Duration (hrs) Latency (ms)

1,000 2.9 8 1.4 8

2,000 3.1 9 1.5 9

4,000 3.8 11 1.7 11

8,000 7.5 19.5 4.2 19.5

 84

CHAPTER 5: FUZZY CONTROL OF LV SNAPSHOT REPLICATION

Snapshot of logical volumes is an area of research of high interest for storage

companies that aim at improving the availability of the data while at the same time providing

data replication [Simitci 03a], [NetApp 07a]. Logical volume snapshot is a feature that

translates into easier backup management, faster recovery, and reduced exposure to data loss

[Simitci 03a], [Xiao 06a]. The snapshot feature is typically provided by storage companies

like IBM (Tivoli Storage Manager), HP (Business Copy), EMC (SnapView), NetApp

(SnapDrive), and Hitachi (Copy-on-Write Snapshot) [Brooks 06a][HP 08a][EMC

08a][NetApp 07a][Betrand 04a][Dufrasne 09a].

By using the snapshot feature, users can create a point-in-time copy of a logical

volume (LV). From the user’s standpoint, the snapshot feature creates an instant copy of the

original logical volume. This gives users the means to preserve a point-in-time copy (the

snapshot) of the data in a source logical volume. If the data in the source gets corrupted or

lost, the user can go back to the snapshot and recover the data from that point in time. The

original volume with the data to be replicated will be referred to as source volume, or just

source, for short. The copy of the original volume will be referred to as the snapshot volume,

or the snapshot, for short.

Improvements in the management of snapshot replication have been proposed in

[Azagury 02a][Elnikety 05a][Shira 05a][Brinkmann 06a]. Performance improvement in terms

of data transfer have been shown in [Guangjun 08a] by Guangjun. Shah proposed a Logical

Volume Manager 2 (LVM2) scheme that is an optimization of LVM that improved the read

performance of the snapshot volume by 40% in [Shah 06a]. Variations of the basic snapshot

algorithm such incremental or iterative snapshots have been proposed before in [Zhenjun

06a][Guanping 05a][Zhong 04a]. Brinkman et al. proposed a scheme for snapshot in cluster

environments [Brinkmann 07a].

This section presents a snapshot fuzzy control algorithm that significantly improves

the latency of the user requests (reads or writes) during the snapshot process. The organization

of this section is as follows: Section 5.1 presents the copy-on-write and redirect-on-write

snapshot techniques. Section 5.2 presents a model for the snapshot and the modified process

deriving a new equation for the snapshot replication process. Section 5.3 presents the fuzzy

 85

control algorithm. Section 5.4 presents the experimental results. Section 5.5 presents the

conclusions.

5.1 BACKGROUND OF POINT-IN-TIME COPY TECHNOLOGIES

The snapshot fuzzy controller improves the latency during the snapshot process by

providing an intelligent way of combining two snapshot technologies: 1) Copy-on-Write

(CoW) and 2) Redirect-on-Write (RoW). These two snapshot technologies will be described

in two following subsections. The classification of snapshot techniques will be based mostly

on Simitci in [Simitci 03a] and Xiao in [Xiao 06a].

5.1.1 COPY-ON-WRITE (COW)

Source logical volumes are divided into DBv data blocks, where Bv is the total number

of data blocks composing the source volume. Right after the snapshot volume is created, the

pointers to data blocks on each volume (source and snapshot), point to the source volume

(these pointers to data blocks are in some papers also referred to as metadata [Shah 06a]).

This is illustrated in Fig. 5.1. If the user reads a block of data that has not been written to since

the creation of the snapshot volume, the data will be read from the source volume. On the

other hand, if the user reads a data block that has been written to since the creation of the

snapshot, the data will be read from the snapshot volume. The first user write to a data block

after the snapshot volume has been created will be referred to as the first user write.

Fig. 5.1: Snapshot right after creation

 86

If a first user write occurs to one of the data blocks in the source volume, for example

Dj, then this block of data must be copied to the snapshot volume before that first user write

occurs so that the original point-in-time data block Dj is preserved. Once the first user write

occurs, the Dj data block in the source volume is modified so it is now referred to as the

updated Dj’ data block. This snapshot technology is called copy-on-write (CoW) because

every first user write to the source volume causes the disk array to copy the original data

block from the source to the snapshot volume before proceeding with the user write. The copy

of a data block to the snapshot volume before the first user write can occur adds an extra

delay to that first user write, as it has to wait for the copy. The extra delay is called the copy-

Fig. 5.3: Snapshot after copy-on-write

Fig. 5.2: Snapshot copy-on-write process

Source Volume Snapshot Volume

1. USER WRITE ON UNSNAPPED BLOCK

(Dj) IS HELD OFF IN CACHE MEMORY

2. COPY ON WRITE TAKES PLACE

3. USER WRITE ON Dj CAN PROCEED

1

2
3

CACHE MEMORY

D1

D2

DBv

Dj

Dj’

 87

on-write penalty. When a data block from the source volume has been copied to the snapshot

volume, then the original data block is said to have been snapped.

After the copy-on-write is accomplished, the pointers to the respective data blocks

(metadata) must be updated. Fig 5.3 now shows the source volume with the updated Dj’ block

and the snapshot volume with the original Dj block. The snapshot volume data block pointers

have to point to the original data blocks to maintain access to the point-in-time data.

Therefore, the snapshot volume data block pointer to the original Dj block now points to the

snapshot volume because that is where the original Dj block is preserved now. If the user

accesses the snapshot volume, the user will be able to read the original Dj data block. If the

user accesses the source volume, the user will read the newly updated Dj’ data block. Fig 5.3

illustrates the space efficiency advantage of the snapshot solution. The space used on the

snapshot volume is used only if there are new first writes to the source volume. Hence,

subsequent writes to the same data block will not cause a copy-on-write.

5.1.2 REDIRECT-ON-WRITE (ROW)

In case of RoW, the new user writes to the source volume are redirected to another

volume, set aside for the snapshot [Xiao 06a]. This redirection avoids the copy-on-write

penalty since the writes proceed without the need of a copy-on-write of the original data to the

snapshot volume. But in this case, the original volume still contains the original point-in-time

Fig. 5.4: User data write after redirect-on-write

Source Volume Snapshot Volume

SOURCE VOLUME

DATA BLOCK

POINTERS

SNAPSHOT

VOLUME DATA

BLOCK POINTERS

dw

RoW

Pointer

D1

D2

Dj

DBv

1

CACHE

MEMORY

dw

2

1. USER WRITE dw ARRIVES TO CACHE MEMORY

2. USER WRITE dw IS CARRIED OUT DIRECTLY

ONTO THE SNAPSHOT VOLUME

 88

data, while the snapshot volume contains the updated block, which is the reversal of the copy-

on-write scenario. See Fig. 5.4.

5.2 MODELING OF THE COPY-ON-WRITE SNAPSHOT

5.2.1 MARKOV CHAIN MODEL OF THE PROBABILITY OF A SNAP

The purpose of this section is to derive the equations for the probability of a copy-on-

write (CoW). In this section, the term snap will be used as a synonym for copy-on-write. The

snapshot process can be modeled by a Markov Chain (MC) with a finite number of states

under three considerations: 1) the write workload applied to the source volume is randomly

distributed over the source volume, 2) the size (in KiB) of the user writes to the source

volume is constant, and 3) writes to the source volume do not cross data block boundaries,

that is, a write will only modify the data within one data block. These assumptions are in line

with the accesses to databases, like Oracle ™ [Chan 08a]. The process can be understood

intuitively by explaining how the snapping occurs. At the beginning, right after a snapshot

volume has been created, the snapshot volume is empty. After the creation of the snapshot

volume, write requests from a user come at a constant rate λ into the source volume. Since no

data blocks have been snapped, the writes will cause a snap to occur. In other words, the

probability is one that a write will cause a snap right after the snapshot volume is created. As

more data blocks are snapped, the probability of a user write causing a snap will decrease.

The sum of the snapped data blocks for a volume will be denoted by b and Bv is the total

number of blocks that make up the source volume. The probability of a write causing a snap

then is:

v

v
snap

B

bB
P


 (5.1)

This formula corresponds to the intuitive expectation. If no data blocks have been

snapped, then b = 0 and the probability of a user write causing a snap is 1. If all of the data

blocks have been snapped, then b = Bv, and the probability of a write causing a snap is zero,

which means no more snaps will occur. The Markov Chain that models those probabilities is

shown in Fig. 5.5

 89

To derive the equation for the transient analysis of the MC, differential equations were

obtained assuming equilibrium in terms of the input and output flow from each state

[Kleinrock 75a]. The differential equation for the probability of being in the state P0 at time t

is:

)(
)(

0

0 tP
dt

tdP
 with 1)0(0 P (5.2)

The solution of (5.2) is:

tetP )(0 (5.3)

The differential equation for the probability of P1(t) is:

)(
1

)(
)(

10
1 tP

B

B
tP

dt

tdP

v

v










 
  (5.4)

The solution of (5.4) is:

)1(

1)1()(







v

v
v

B
B

t

B

t

v eeBtP



 (5.5)

The differential equation for the probability of P2(t) is:

)(
2

)(
1)(

21

2 tP
B

B
tP

B

B

dt

tdP

v

v

v

v










 










 
  (5.6)

Fig. 5.5: Markov chain of copy-on-write Snapshot

0 1 b-1 b+1b Bv

v

v

B

bB)1(


v

v

B

bB 


v

v

B

BB)1(


v

v

B

B 0


v

v

B

B 1


v

v

B

bB)1(


 90

The solution of (5.6) is:

)2(
2

2)1(
2

)1(
)(










v

v
v

B
B

t

B

t
vv ee

BB
tP




 (5.7)

By induction, the probability of being in state b is:

)(

)1(
)!(!

!
)(

bB
B

t

b
B

t

v

v

b

v
v

v ee
bBb

B
tP














 (5.8)

The factorial term in equation (5.8) is a binomial coefficient, so the equation now

becomes:

)(

)1()(
bB

B

t

b
B

t
v

b

v
v

v ee
b

B
tP



















 (5.9)

Equation (5.9) can be interpreted as the probability of having b blocks snapped at time

t.; the snapshot process for a constant write arrival rate λ is governed by a binomial

distribution.

5.2.2 PRACTICAL SNAPSHOT PROBABILITY EQUATION

Since the generation of CoW is a binary event in which a user write may or may not generate

a CoW, it is not unexpected to have obtained an equation of a binomial probability. Equation

(5.9) has the form of a binomial probability mass function (p.m.f.):

)()(knk

n qp
k

n
kp 









 (5.10)

where the equivalent terms are:

 qpeqbkBn
t

B

v
v 



1,,,



The problem with (5.9) is that for practical uses, the number of blocks Bv that make up

a volume is large. For example, a 64GiB source volume will be made up of Bv =

64GiB/128KiB = 524,288 blocks. Obtaining the factorial of such big numbers can render the

use of (5.9) impractical. Factorials as big as this are not computed in practice. That is why the

authors propose the use of the equivalent terms p and q of the binomial p.m.f:

 91

t
Bveq




 (5.11)

t
Bvep




1 (5.12)

Consider the behavior of (5.11) and (5.12) at t=0 and as t→∞. At t=0, or at the

beginning of the snapshot process, the probability of causing a snap is one, as it has been

established by (5.9). It can be observed that (5.11) has a value of one at t=0 and (5.12) has a

value of zero. As time goes by and the user writes keep arriving at a λ rate into the source

volume, the value of (5.11) goes to zero. The snapshot probability equation psnap(t) is then:

t
B

snap
vetp




)((5.13)

The probability of not causing a snap would be described by (5.12) and it could be

now taken as the probability of not having a snapshot:

t
B

snap
vetp




1)((5.14)

Equations (5.13) and (5.14) can be used to determine how the disk array will recover

the latency and throughput that it had before the snapshot process started. These equations

explain why user requests may experience high latencies at the start of a snapshot when the

disk array is subjected to a constant arrival OLTP workload. Equation (5.13) was tested

against a snapshot setup to confirm its usefulness as a prediction of the behavior of a snapshot

volume under a constant OLTP workload of user writes. Fig. 5.6 shows a comparison of the

predicted probability of a snapshot occurring vs. the percentage of data blocks snapped. The

equation lines up almost perfectly with observed fraction (percentage) of unsnapped data

blocks, i.e., data blocks to still to be snapped.

 92

5.2.3 MODEL OF THE COW PROCESS

The model of the copy-on-write process is based on the latency delivered by disks

under an OLTP workload. The two most important measures of the OLTP workload imposed

on the disk array are the arrival rate in IO requests per second (IO/s) and the latency in

milliseconds [ms]. Assuming the write cache memory is in write-through mode, the latency

that disks deliver under certain IO/s arrival rate is the key feature that will determine the

latency of the user accesses (reads or writes).

The latency of an access (read or write), tacc, from a disk is a function of the arrival

rate on the disk, λd:

()acc dt f 
 (5.15)

The latency introduced by the copy-on-write process, Tcow, is influenced by the delay

of a read of the data block, Tr, from the disk where the source data block is located plus the

delay of the write of that data block, Tw, to the disks where the snapshot data block will be

located. This can be expressed as:

Fig. 5.6: Graph of the psnap equation predicting the fraction of unsnapped blocks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Fr
ac

ti
o

n
 o

f
u

n
sn

ap
p

e
d

 d
at

a
b

lo
ck

s

Time t

Comparison of the Probability of a snap as predicted by psnap(t)
vs. the fraction of unsnapped data blocks at time t

Probability of a snap Fraction of unsnapped blocks

The red dashed line was the measured fraction of unsnapped
data blocks from a Logical Volume (LV) of 16GB with 131,072
data blocks.
The workload imposed on this LV was 8KB random writes with
an arrival rate of 2,000 IO/s.

The black dashed line was obtained using the equation

with parameters
λ = 2000 and Bv = 131,072

 93

𝑇𝑐𝑜𝑤 = 𝑇𝑟 + 𝑇𝑤 (5.16)

The capital “T” letters indicate that the latency is for large block transfers. The data

blocks copied during the copy-on-write process are large in size compared to the user writes.

For example, data blocks can be 128KiB in size whereas user writes can be 8KiB in size.

A flow of user writes is received by a disk array. Some of the user writes, according to

the psnap probability will cause a snap, and therefore those user writes will have to wait for the

copy-on-write before being carried out (copy-on-write penalty). And some of the other writes,

according to the 1-psnap probability, will be carried out immediately. The arrival rate of the

user writes, λw, along with the psnap probability, determines the arrival rate all disks in the disk

array will receive, λD. Fig. 5.7 illustrates this process.

The copy-on-write process causes extra disk accesses on the disk array. If a write to a

data block causes a snap that triggers a copy-on-write, then a data block (for example, 128KiB

in size), has to be read from a disk and it has to be written on some other disks depending on

the RAID level used by the snapshot volume. For example, if RAID1 is used on the snapshot

volume, then a copy-on-write will generate one read of a data block from a disk and two

writes to different disks. Therefore, three more accesses on disks in the disk array were

generated in the background. The accesses generated by the copy-on-write that depend on the

RAID level of the snapshot volume defined by the αRL factor. For RAID1 the αRL =2, which is

the number of disk writes needed for each user data write.

Fig. 5.7: User writes arrival rate and arrival rate caused by snaps

CoW

psnap

λw*psnap

λw*(1-psnap)
λw

User Write

RAID group

RAID group

λD
+

λr

 94

The total extra arrival rate on the disk array generated by the copy-on-writes, λcow, is:

𝜆𝑐𝑜𝑤 = (1 + 𝛼𝑅𝐿)𝜆𝑤𝑝𝑠𝑛𝑎𝑝 (5.17)

The total arrival rate on the disk array, λD, including user reads, is:

𝜆𝐷 = 𝜆𝑟 + 𝛼𝑅𝐿𝜆𝑤 + 𝜆𝑐𝑜𝑤 (5.18)

For the sake of simplicity, it was assumed that the arrival rate is balanced across all the

disks in a disk array, Nd, and the arrival rate on each disk is

/d D dN 
 (5.19)

The snapshot process occurs while users are accessing a disk array. If a user write

causes a snap to occur, then it has to wait for the snap to take place before proceeding (the

copy-on-write penalty):

𝑡𝑐𝑜𝑤 = 𝑡𝑤 + 𝑇𝑐𝑜𝑤 (5.20)

The average time for the user writes is:

𝑡𝑤̅̅ ̅ = 𝑡𝑐𝑜𝑤𝑝𝑠𝑛𝑎𝑝 + (1 − 𝑝𝑠𝑛𝑎𝑝)𝑡𝑤 (5.21)

This can be more simply expressed by combining (5.20) and (5.21):

𝑡𝑤̅̅ ̅ = 𝑡𝑤 + 𝑇𝑐𝑜𝑤𝑝𝑠𝑛𝑎𝑝 (5.22)

 95

5.2.4 MODEL OF THE PROPOSED COW-ROW PROCESS

This dissertation presents a snapshot process that reduces the latency during the

snapping of the source volume. It is a combination of the CoW and RoW processes, facilitated

by the fuzzy controller.

The snapshot process is modified by introducing a control input parameter named

snap throttle factor uth. This actuating variable (control input), represents the percentage of

copy-on-write that will be allowed out of the all the snaps generated by user writes. The other

snaps will generate a redirect-on-write. The modified CoW-RoW process is illustrated in Fig.

5.8.

The modified CoW-RoW process now redirects a fraction of the copy-on-writes to

redirects-on-write. The reduction in the number of copy-on-writes reduces the arrival on the

disks which in turn reduces their latency. The extra arrival rate on the drives is now:

𝜆𝑟𝑜𝑤−𝑐𝑜𝑤 = 𝜆𝑤[𝑢𝑡ℎ(1 + 𝛼𝑅𝐿)𝑝𝑠𝑛𝑎𝑝 + (1 − 𝑢𝑡ℎ)𝛼𝑅𝐿] (5.23)

And the total arrival rate on the disk array, λD, including user reads, is:

𝜆𝐷 = 𝜆𝑟 + 𝜆𝑤𝛼𝑅𝐿 + 𝜆𝑟𝑜𝑤−𝑐𝑜𝑤 (5.24)

Fig. 5.8: Modified CoW-RoW process

 96

The user writes now will experience smaller latencies since the delay introduced by

the redirect-on-writes, trow is significantly lower than tcow. The average latency experienced by

user writes with the modified CoW-RoW process is expressed in the following equation:

 𝑡𝑤̅̅ ̅ = (1 − 𝑝𝑠𝑛𝑎𝑝)𝑡𝑤 + [𝜇𝑡ℎ𝑡𝑐𝑜𝑤 + (1 − 𝜇𝑡ℎ)𝑡𝑟𝑜𝑤]𝑝𝑠𝑛𝑎𝑝 (5.25)

One possible simplification can be made if it is assumed that the redirects-on-write are

the same as user writes, since the user write is redirected to the snapshot volume instead of the

source volume but with no other extra step in the process. This further entails that trow ≈ tw,

and (5.25) can be simplified as:

 𝑡𝑤̅̅ ̅ = 𝑡𝑤 + 𝜇𝑡ℎ𝑇𝑐𝑜𝑤𝑝𝑠𝑛𝑎𝑝 (5.26)

This equation shows why the latency is better with the CoW-RoW process if the snap

throttle factor, uth, is less than 1. The determination of the input control uth and the control of

the snapshot process with the fuzzy control are explained in the next section.

5.3 SNAPSHOT FUZZY CONTROL

5.3.1 PURPOSE AND RATIONALE OF THE SNAPSHOT FUZZY CONTROLLER

The snapshot fuzzy controller can be considered as a dynamic and optimal Takagi-

Sugeno fuzzy-logic based controller. The block diagram of the snapshot fuzzy controller is

illustrated in Fig. 5.9. The purpose is to minimize the average latency of user accesses tw, and

tr during a snapshot process by controlling the dynamics of the snapshot process.

5.3.2 HIGH LEVEL MODELING OF THE SNAPSHOT FUZZY CONTROLLER

From a control standpoint the disk array is the controlled system. The controlled

system has two inputs: the arrival rate of writes, λw, and the arrival rate of reads, λr.

The total arrival rate, λ, is the sum of the input parameters:

r w   
 (5.27)

 97

The outputs of the system to be controlled (disk array) are the average latencies

experienced by the user accesses (reads or writes), tr, and tw:

1 2() [] []i w ry t y y t t 
 (5.28)

The state variables required for the snapshot fuzzy controller are 1) the probability of

snapped blocks in the volume, psnap, which is a value in the [0,1] range; and 2) the numbers of

copy-on-writes per time unit, in other words, the arrival rate of copy-on-writes in the disk

array, λcow.

1 2() [] []i snap row cowx t x x p   
 (5.29)

The control input variable is the snap throttle factor, uth

1() [] []i thu t u u 
 (5.30)

The snapshot fuzzy controller also requires a reference variable, the reference latency

wrt, the maximum acceptable user request latency during the snapshot process. The maximum

latency used in this section was 30ms, from the Oracle ™ performance tuning guide [Chan

08a] as a latency value that gives a good indication of an overly active I/O system.

Fig. 5.9: Snapshot fuzzy controller

Decision

Logic:

1) CoW

2) RoW

psnap

uth

 λ

wrt

Plant

(Disk Array)
tw
tr

e
-

Rule

Base

uth

Fpsnap

Fe

FΔeet-1
Δe-

 98

The outputs have to be periodically monitored every Tm seconds. The decision on how

often to monitor can be based on the maximum acceptable latency and the performance of the

disk array controller. Each sample is denoted by (ti), where i is the i-th sample of the output

that occurred at a time ti, as in:

mi iTt  where i = 0,1,2,… (5.31)

5.3.3 DECISION LOGIC

If a user write causes a snap, then the snapshot fuzzy controller makes a decision

about the three possible choices to execute: 1) perform a copy-on-write at the time when the

user write is being served; 2) defer the copy-on-write operation by executing a redirect-on-

write; 3) perform a copy-on-write of the target data block if a redirect-on-write already took

place for that data block. The fuzzy controller throttles the snapshot process by controlling the

percentage of copy-on-writes that are caused by user writes (option 1), versus the percentage

of user writes with deferred copy-on-write (option 2). This percentage is the output of the

snapshot fuzzy controller and is named snap throttle factor uth. For example, if uth = 0.4, this

means that only 40% of the user writes that cause a snap will also generate a copy-on-write.

The other 60% of the user writes that are causing a snap will generate a redirect-on-write.

5.3.4 ESTIMATION AND FUZZIFICATION OF THE PROBABILITY OF A SNAP

The probability of a snap is used as part of the determination of the snap throttle

factor. The fsnap(ti), in addition to being an indication of the percentage of blocks snapped at a

time ti, also denotes the probability of further snaps. For example, if 90% of the blocks in a

volume have been snapped, the probability of user accesses causing further snaps is only 10%

(assuming a random user access over the volume). The probability of a snap at time ti is:

)(1)(isnapisnap tftp 
 (5.32)

The probability of a snap psnap(ti), the error e(ti), and the change in error Δe(ti), are the

three variables used by the fuzzy controller to compute the snap throttle factor, uth(ti). These

 99

three variables need to be first fuzzified as shown in [Michels 06a]. The fuzzification of psnap

is done in very straightforward fashion. If the probability of snap is less than or equal to 0.5, it

is mapped to the Low Probability (LP) fuzzy descriptor. If the probability of a snap is greater

than 0.5, it is mapped to the the High Probability (HP) fuzzy descriptor. The membership

function of probability of a snap is therefore defined by:










5.01

5.00
)(

snap

snap

snappsnap pif

pif
p

 (5.33)

The final fuzzification of the psnap value is denoted by Fpsnap(μsnap), and is defined as:










1

0
)(

snap

snap

snappsnap ifHP

ifLP
F






 (5.34)

5.3.5 CONTROL ERROR COMPUTATION AND FUZZIFICATION

The output y(ti) is compared with the reference latency wrt to compute the control

error, e:

rtii wtyte )()(
 (5.35)

The change in the control error, Δe, is also computed:

)()()(1 iii tetete
 (5.36)

The final goal in the fuzzification of the control error e and change in the control error

Δe is to map them to one of three fuzzy descriptors, Zero (ZE), Positive Error (PE), and

Negative Error (NE), respectively. These fuzzy descriptors apply to both the control error e

and change in control error Δe. The purpose of these fuzzy descriptors is to indicate when the

control error is close to zero, or in case where the error does exist, whether the control error is

positive or negative. This fuzzification is first performed via three triangular membership

 100

functions, μZE, μNE and μPE, based on the reference latency wrt. The membership functions are

described using a dummy variable error, ε, since these membership functions are the same for

both e and Δe:





















0
2

1

01

0
2

1

),(











if
w

if

if
w

w

rt

rt

rt

ZE

e

 (5.37)























rt

rtrt

rt

rt

rt

PE

e

wif

wwinif
w

wif

w

4

1
0

),
4

1
(

3

1

3

4

1

),(










 (5.38)






















rt

rtrt

rt

rt

rt

NE

e

wif

wwinif
w

wif

w










1

),
4

1
(

3

1

3

4
4

1
0

),(

 (5.39)

Fig. 5.10: Membership functions for e and Δe

½wrt

m
e

m
b

e
rs

h
ip

NE ZE PE

0-¼wrt-½wrt ¼wrt wrt-wrt

1

 101

The membership functions (5.37), (5.38) and (5.39) here shown are for the control

error e (if ε = e), and for the change in control error Δe (if ε = Δe). The graphical

representation of the membership functions is shown in Fig. 5.10.

To finish the fuzzification, the control error e and the change in control error Δe are

mapped into one of the fuzzy descriptors (NE, ZE, or PE). This is accomplished by comparing

the values obtained for the three membership functions (5.37), (5.38), and (5.39). Depending

on which of the three has the maximum value the fuzzy value of the error Fe, and the fuzzy

value of the change in error FΔe, are mapped into one of the fuzzy descriptors NE, ZE or PE:

),,max(PE

e

ZE

e

NE

eeF 
 (5.44)

),,max(PE

e

ZE

e

NE

eeF   
 (5.45)

For example, if the output y(t1) is 45ms, then using (5.35) the error e is 15ms. The

membership values, obtained by using (5.37), (5.38) and (5.39), are μZE=0, μNE =0, and μPE=1.

It is clear that the maximum value corresponds to μPE. Using (5.44), the fuzzy value of the

error Fe will be mapped to Positive Error, PE. This same procedure is used for the change in

error to map it into one of the fuzzy descriptors, NE, ZE or PE.

5.3.6 RULE BASE TO OBTAIN UTH

The rule base can now be built based on the following heuristic criteria: (1) if the user

request latency is high, then the control error, e, is fuzzy positive error, PE, and the controller

needs to reduce the number of copy-on-writes occurring. Therefore, the snap throttle factor uth

is reduced. (2) if the user request latency is low, then the controller can increase the number of

copy-on-writes occurring. Therefore, the snap throttle factor uth is increased. Otherwise, uth

stays the same. The probability of more copy-on-writes and the change in error are also taken

into account.

Once the three fuzzified input variables e, Δe, and psnap, are estimated, is the

evaluation of the fuzzy rules. The output of the fuzzy rules is the change in snap throttle

 102

factor Δuth(ti). This value will denote the change in the snap throttle factor for the current

iteration. The rule base is in Table 5.1. The rules are of the form:

𝑖𝑓 𝑝𝑠𝑛𝑎𝑝 ∈ 𝐹𝑠𝑛𝑎𝑝 𝑎𝑛𝑑 𝑒 ∈ 𝐹𝑒 𝑎𝑛𝑑 Δ𝑒 ∈ 𝐹Δ𝑒 𝑡ℎ𝑒𝑛 𝜇𝑡ℎ(𝑡𝑖) = 𝜇𝑡ℎ(𝑡𝑖−1) + Δ𝜇𝑡ℎ(𝑡𝑖) (5.46)

where Δuth(ti) can be in the [-1,1] range. Based on the chosen rule, an equation (5.46)

is computed for the snapshot fuzzy controller. The snap throttle factor uth value is in the

[0.05,1] range. The value 0.05 as the minimum for uth was based on empirical observations of

actual snapshot processes. This value allows some copy-on-writes to proceed and make a little

progress with the snapshot. The initial values when a snapshot volume is created are uth(0)

=0.05 and e(0) = 0.

5.3.7 STABILITY OF THE FUZZY CONTROLLER

The fuzzy system presented here is globally asymptotically stable based on the fact

that it meets the stability condition for the state variables, which according to [Michels 06a]

Table 5.1: Rule base for Snapshot Fuzzy Controller

Rule Number

Rule Input Variables Rule Output

psnap e Δe Δuth

R1 HP PE PE -0.2

R2 HP PE ZE -0.1

R3 HP PE NE -0.1

R4 HP ZE PE -0.1

R5 HP NE ZE +0.05

R6 HP NE NE +0.05

R7 LP PE PE -0.05

R8 LP PE ZE -0.05

R9 LP ZE ZE +0.05

R10 LP ZE NE +0.05

R11 LP NE ZE +0.05

R12 LP NE NE +0.05

 103

shows that state variables converge to a reference vector as time goes to infinity. In the case

of the snapshot fuzz controller, the probability of a snap, psnap and therefore the λrow-cow arrival

rate (5.33) converges to zero as user writes access more source volume data blocks as time

goes by. The exponential decrease of the probability of a snap decreases the possibility of

CoWs and therefore the probability of processing the user writes with no delay is greater,

which makes the snapshot fuzzy controller less likely to intervene and cause instability. The

stability of the fuzzy controller is then guaranteed by the condition:

lim
t→∞

𝑝𝑠𝑛𝑎𝑝(𝑡) → 0 (5.47)

5.4 EXPERIMENTAL RESULTS

The snapshot fuzzy controller was tested with a setup that consisted of an HP 7640

Itanium workstation with 48GiB of memory and with RedHat Linux 6.2 installed. The disk

setup consisted of 118 BF1465A477 15K RPM disks. The traditional copy-on-write and the

Fig. 5.11: Comparison of latency at 3,000 IO/s, 100% User writes

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

U
se

r
w

ri
te

 la
te

n
cy

 in
 m

ill
is

e
co

n
d

s

Time elapsed during the snapshot in seconds

User write latency during snapshot process
Traditional vs Fuzzy-Controlled snapshot

User write latency with traditional Snapshot User write latency with Fuzzy-Controlled Snapshot

The setup for this comparison was a 118 disk array.
The LV size was 128GB and the workload was an
OLTP 3,000 IO/s, 100% writes, 8KiB in size.
The reference time to maintain, wrt, was 30ms

ACHIEVEMENT:
The fuzzy controlled snapshot could decrease the early impact on latency
of the initial burst of snaps that occur with the traditional snapshot.

ACHIEVEMENT:
The fuzzy controlled
snapshot was able to
keep the user write

latency at 30ms or less.

The traditional snapshot caused
an initial user write latency of up
to 65ms and exponentially
decreased down to 30ms in 240

seconds.

The slight spike in the fuzzy-controlled
latency is the point at which the
controller stopped throttling snapshot,
i.e., no more RoWs, just CoWs, (uth = 1).

 104

snapshot fuzzy controller were implemented in C language and compiled with GCC 4.4.6.

The implementation was executed as a parent process in the user space and not as a part of the

kernel. The parent process performed the following functions: 1) spawned user requests at a

constant rate using the fork() Unix function; 2) kept track of the data blocks written, snapped

and or with a redirect-on-write. The data block table was in shared memory so it could be

updated by the spawned user requests; 3) monitored the latency of the user requests; 4)

implemented the snapshot fuzzy control logic.

A comparison was run with an 8KiB workload, 0% reads at 3,000 IO/s. The source

volume was a RAID1 128GiB in size using data blocks of 256KiB laid out in an evenly

fashion over all the 118 disks. The results in Fig. 5.11 show the traditional copy-on-write

implementation delivering initial latencies for user writes (black line) in the 65 ms range. The

snapshot fuzzy controller implementation proved superior since it could keep the initial

latency for user writes (red line) in the low 30 ms range.

Another comparison was run with an 8KiB workload, 50% reads at 5,000 IO/s. The

source volume was a RAID1 128GiB in size using data blocks of 256KiB laid out in an

evenly fashion over all the 118 disks. The results in Fig. 5.12 show the traditional copy-on-

write implementation delivering initial latencies for user writes (black line) in the 65 ms

range. For user reads (purple line) the traditional copy-on-write delivered a latency in the 10-

Fig. 5.12: Comparison of latency at 5,000 IO/s, 50% User writes

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

U
se

r
re

q
u

e
st

 la
te

n
cy

 in
 m

ill
is

e
co

n
d

s

Time elapsed during the snapshot in seconds

User latency during snapshot process
Traditional vs Fuzzy-Controlled snapshot

Read Latency Traditional Snapshot Write Latency Traditional Snapshot

Read Latency Fuzzy Controlled Write Latency Fuzzy Controlled

The setup for this comparison was a 118 disk
array. The LV size was 128GB and the workload
was an OLTP 5,000 IO/s, 50% writes, 8KiB in size.
The reference latency to maintain, wrt, was 30ms

The traditional snapshot caused an
initial user write latency of 65ms and
exponentially decreased down to

40ms in 180 seconds.

The fuzzy controlled snapshot
was able to keep the user write

latency at 30ms or less.

 105

15ms range. The snapshot fuzzy controller implementation proved superior since it could

keep the initial latency for user writes (red line) in the low 35-40ms range. For the user reads

(orange line), the latency delivered by snapshot fuzzy controller was in the 10-12ms range.

5.5 CONCLUSIONS

The greatest benefit the snapshot fuzzy controller delivers is to avoid the high latency

peak at the beginning of a snapshot process as predicted by the equations (5.13) and (5.14)

developed for the traditional copy-on-write snapshot. These equations can provide a guide for

the snapshot behavior even for different disks speeds and disk arrays if the snapshot process is

the traditional copy-on-write. The improvements in latency the snapshot fuzzy controller

delivers show how computationally intelligent techniques, namely fuzzy logic, 1) can be

applied to the data backup management for disk arrays; 2) can outperform traditional

techniques like copy-on-write; 3) can be used to control the nonlinear response of disks. The

reduction of the impact caused by the traditional copy-on-write is the accomplishment that

meets the performability challenge imposed by the copy-on-writes.

 106

CHAPTER 6: T2 FUZZY CONTROL OF LOGICAL VOLUME CLONING REPLICATION

The logical volume cloning replication feature offered by disk arrays provides point-

in-time copies of the logical volumes to guarantee data protection to users if an event like data

corruption or if accidental deletion occurs. Disk array manufacturers offer this option as part

of their set of data replication features. The SnapClone feature offered by Hewlett Packard

[HP 08a] and the EMC TimeFinder/Clone [EMC 05a] and the IBM Flashcopy [Garimella

06a] provide full-volume point-in-time copies of logical source volumes. The logical volume

cloning replication features mentioned provide some form of background copy of the logical

source volume. The details of the algorithms used for the replication are kept confidential by

the vendors. This kind of logical volume replication is referred to as background because it

occurs in the background while the disk array is servicing user requests (reads and writes).

The term local is used to refer to the fact that the copy of the logical volume is stored in the

same disk array that holds the original logical volume and the copy. In this chapter the term

cloning or cloning replication will be used to refer to the local background copy of all the data

in an LV (source) to another LV (clone or replica).

Interval Type-2 Fuzzy Logic Controllers (IT2 FLCs) have been proposed as a better

alternative to Type-1 Fuzzy Logic Controllers (T1 FLCs) [Hagras 07a]. As stated by Mendel

in [Mendel 10a], the question of establishing when and by how much Type-2 Fuzzy System

(T2 FS) or Interval Type-2 Fuzzy Systems (IT2 FS) will outperform a Type-1 Fuzzy System

(T1 FS) may be the most important unanswered question in the T2 field. Wu in [Wu 12b]

presents a comparison between IT2 FLCs and T1 FLCs and the results show that IT2 FLCs

are more adaptive and can implement more complex control surfaces than a T1 FLC with the

same rule base.

The purpose of the type-2 fuzzy based control is to balance the impact on the latency

of the user requests with the speed (or rate) of the replication. On one hand, the users want

very little (or no) impact on the latency of the requests (read and writes) and on the other

hand, the users want the replication of the data to take the shortest time possible to protect as

much data as possible in the shortest time possible.

This chapter presents a type-2 fuzzy based control of background local cloning

replication. Section 6.1 explains the basic theory of type-2 fuzzy logic. Section 6.2 describes

the fundamental blocks of a type-2 fuzzy controller. Section 6.3 explains the process of local

 107

replication and the copy-on-writes requests that impact the user request latency. Section 6.4

shows the queuing scheme for the local replication. Section 6.5 presents a mathematical

description of the cloning replication process and a new formula. Section 6.6 presents the

type-2 fuzzy controller used for local replication. Section 6.7 will present the experimental

results and section 6.8 will present the conclusions.

6.1 INTERVAL TYPE 2 FUZZY SETS

Interval Type-2 fuzzy sets (IT2 FS) are an extension of type-1 fuzzy sets [Karnik 99a].

The Interval Type-2 Fuzzy Set in Fig. 6.1 shows the graph of the membership function of a

triangular IT2 FS. The horizontal axis denotes the values x in the domain X, e.g., real or

integer numbers. The vertical axis denotes the membership function u(x) ∈ [0,1] for each

value of x in the domain X. An IT2 FS denoted 𝑋̃ can be characterized by a type-2

membership function 𝜇𝑋̃(𝑥, 𝑢) where x ∈ X and 𝑢(𝑥) ∈ 𝐽𝑥 ⊆ [0,1] in which 0 ≤ 𝜇𝑋̃(𝑥, 𝑢) ≤ 1

and can be expressed as [Karnik 99a]:

𝑋̃ = ∫ ∫ 𝜇𝑋̃(𝑥, 𝑢)/(𝑥, 𝑢(𝑥))
𝑢(𝑥)∈𝐽𝑥⊆[0,1]𝑥∈𝑋

 (6.1)

where ∫ denotes the fuzzy cardinality operator [Hanss 10a]. The 𝜇𝑋̃(𝑥, 𝑢)/(𝑥, 𝑢(𝑥)

denotes the tuple (x,u(x)) with membership function 𝜇𝑋̃(𝑥, 𝑢). The x and u are called the

primary and secondary variables. Here, Jx is the primary membership of x and 𝜇𝑋̃(𝑥, 𝑢) is the

secondary grade of 𝑋̃. For the IT2 FS the secondary grade equals 1 for ∀𝑥 ∈ 𝑋 and ∀𝑢 ∈ 𝐽𝑥 ⊆

[0,1]. Assuming 𝐽𝑥 ⊆ [0,1], an IT2 FS 𝑋̃can be characterized by:

Fig. 6.1: Example of Type-2 Fuzzy Set

 108

𝑋̃ = ∫ ∫ 1/(𝑥, 𝑢(𝑥)) =
𝑢(𝑥)∈𝐽𝑥𝑥∈𝑋

∫ [∫ 1/𝑢
𝑢(𝑥)∈𝐽𝑥

] /𝑥
𝑥∈𝑋

 (6.2)

The fuzzy cardinality operation inside the square brackets in (6.2) is a vertical slice of

the IT2 FS. As shown in Fig. 6.1, the vertical slice for the specific value of x’ the vertical slice

is:

 𝜇𝑋̃(𝑥′, 𝑢) = ∫ 1/𝑢
𝑢(𝑥)∈𝐽𝑥

 𝐽𝑥 ⊆ [0,1] (6.3)

An IT2 FS is completely determined by the union of all primary memberships, Jx,

called the footprint of uncertainty (FOU):

𝐹𝑂𝑈(𝑋̃) = ⋃ 𝐽𝑥∀𝑥∈𝑋 = {(𝑥, 𝑢(𝑥)): 𝑢 ∈ 𝐽𝑥 ⊆ [0,1] (6.4)

An IT2 FS has an FOU that is bounded by two T1 MFs: the upper membership

function (UMF) and the lower membership function (LMF). Fig.6.1 shows the FOU, UMF

and LMF of a IT2 FS. With the UMF and LMF another definition of the FOU is:

 𝐹𝑂𝑈(𝑋̃) = ⋃ (𝜇𝑋̃(𝑥), 𝜇
𝑋̃

(𝑥))∀𝑥∈𝑋 (6.5)

where 𝜇𝑋̃(𝑥) is the LMF and 𝜇
𝑋̃

(𝑥) is the UMF. These two functions are important

because an IT2 FS is fully determined by if they are known.

6.2 TYPE 2 FUZZY LOGIC CONTROLLERS (T2 FLCS)

Fig. 6.2 shows the block diagram of an IT2 Proportional-Integral-Derivative (PID)

FLC. The fuzzifier maps the crisp inputs into IT2 FLC.

The rule base is composed of implicative rules of the following form:

IF 𝑥1 is 𝑋̃1
𝑛AND 𝑥2 is 𝑋̃2

𝑛 … AND 𝑥𝐼 is 𝑋̃𝐼
𝑛 THEN 𝑦 𝑖𝑠 𝑌̃𝑛 (6.6)

 109

where I is the number of inputs (i=1,2,…,I) and N is the number of rules (n=1,2,…,N).

The 𝑌̃𝑛 are the consequent IT2 FS that are replaced by an interval 𝑌̃𝑛 = [𝑦
𝑛

, 𝑦𝑛] when the

popular center-of-sets type reduction is used [Wu 12a]. The typical procedure performed by

an IT2 FLC is the following [Wu 12a][Mendel 12a]:

1) For each input of the input vector 𝐱′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝐼
′) obtain the interval of

membership [𝜇𝑋̃(𝑥𝑖
′), 𝜇

𝑋̃
(𝑥𝑖

′)] (LMF and UMF) on each 𝑋𝑖
𝑛 where (i=1,2,…,I) and

(n=1,2,…,N).

2) Now the firing interval of each rule is computed, e.g., for the nth rule

 𝐹𝑛(𝐱′) = [𝑓𝑛(𝐱′), 𝑓
𝑛

(𝐱′)] = [𝑓𝑛, 𝑓
𝑛

] (6.7)

where:

 𝑓𝑛(𝐱′) = [𝜇𝑋̃1
𝑛(𝑥1

′) × 𝜇𝑋̃2
𝑛(𝑥2

′) × … × 𝜇𝑋̃𝐼
𝑛(𝑥𝐼

′)] (6.8)

 𝑓
𝑛

(𝐱′) = [𝜇
𝑋̃1

𝑛(𝑥1
′) × 𝜇

𝑋̃2
𝑛(𝑥2

′) × … × 𝜇
𝑋̃𝐼

𝑛(𝑥𝐼
′)] (6.9)

The product t-norm was used in (6.8) and (6.9) but the minimum t-norm can be used

instead.

3) The type reduction is the next step. After computing the firing intervals then the

centroids of all consequent sets 𝑌̃𝑛are computed. The result is a set of R interval fuzzy sets:

 𝑌𝑌̃𝑛(𝑦) = [𝑦𝑙(𝑌̃𝑛), 𝑦𝑟(𝑌̃𝑛)] = [𝑦𝑛, 𝑦
𝑛

] (6.10)

Fig. 6.2: Block diagram of an interval type-2 fuzzy controller (IT2FLC)

 110

The centroid is an interval T1 fuzzy set. The centroids are computed using Karnik-

Mendel (KM) [Mendel 12a][Wu 12a] algorithms.

4) The firing intervals (6.8), (6.9) and their respective centroids (6.10) are combined

by means of the center-of-sets (cos) type reduction [Karnik 99a]. There are other methods

[Karnik 99a] but the center-of-sets is the most common.

𝑌𝑐𝑜𝑠(𝑦|𝐱′) =
∑ 𝐹𝑛(𝑥′) 𝑌𝑌̃𝑛(𝑦)𝑁

𝑛=1

∑ 𝐹𝑛(𝑥′) 𝑁
𝑛=1

= [𝑦𝑙(𝐱′), 𝑦𝑟(𝐱′)] (6.11)

where yl(x’) and yr(x’) are computed using KM algorithms. The yl(x’) and yr(x’) can

be computed by:

 𝑦𝑙(𝐱′) =
∑ 𝑓

𝑛
𝑦𝑛+𝐿

𝑛=1 ∑ 𝑓𝑛𝑦𝑛𝑁
𝑛=𝐿+1

∑ 𝑓
𝑛

+𝐿
𝑛=1 ∑ 𝑓𝑛𝑁

𝑛=𝐿+1

 (6.12)

 𝑦𝑟(𝐱′) =
∑ 𝑓𝑛𝑦

𝑛
+𝑅

𝑛=1 ∑ 𝑓
𝑛

𝑦
𝑛𝑁

𝑛=𝑅+1

∑ 𝑓
𝑛

+𝑅
𝑛=1 ∑ 𝑓𝑛𝑁

𝑛=𝑅+1

 (6.13)

where L and R are the switch points determined by the KM algorithms [Mendel 12a].

5) Finally, the crisp (defuzzified) output is computed by using the average value of the

two end-points [Karnik 99a]:

 𝑦(𝐱′) =
[𝑦𝑙(𝐱′),𝑦𝑟(𝐱′)]

2
 (6.14)

6.3 LOGICAL VOLUME (LV) CLONING REPLICATION

There are features offered by the disk array manufactures to create a point-in-time

replication the data in a logical volume. The background local cloning replication copies all

the data present in a logical volume, therefore creating a mirror copy (clone or replica) of the

original (source) logical volume on the same disk array, thus, the clones (replicas) provide a

high-availability, disaster recovery of the data. In case of a complete data loss of the source

logical volume, the replica can replace the source logical volume instantaneously. Unlike the

 111

local snapshot replication, there is no need to reconcile the source data and the updated

sections. This is one of the disadvantages of the snapshot method [Preston 02a]. The

drawback of the background cloning replication is that it requires the same space as the source

logical volume, therefore doubling the space needed to have the source data and its clone on

the disk array. But with the advent of new fast and high capacity disks, like 1 TiB magnetic

drives, that is becoming less and less of a drawback. Therefore, the method of background

local cloning replication of logical volumes is still a good solution for data protection.

Logical volumes can be created and deleted by users. The size of the logical volume

is determined by the user at creation time. This size can be big, for example, 500 GiB. But the

disk array manages the logical volume in units named data blocks of 128KiB, 256KiB, or

other sizes depending on the manufacturer and model of the disk array. For the purpose of

giving an example of the procedure used to replicate a logical volume, it is assumed in this

paper that the logical volumes are managed in data blocks of 256KiB each. The first case to

present is when the source logical volume is replicated (cloned) and there is no user workload

(reads or writes) applied to the source logical volume. In this case, the disk array copies block

by block sequentially in incremental order until all the blocks that make up the source, BV,

have been copied to the clone (replica) logical volume. This case is shown in Fig. 6.3. The

circled numbers indicate the sequence of events. At the end, every single block that makes up

the source logical volume is replicated into the clone logical volume. It is clear from this

Fig. 6.3: Example of replication of a source volume

 112

example why the clone logical volume takes up as much space as the source logical volume

The source logical volume (or source volume, for short) can be available during the

cloning replication process. This means that the source volume can still be read or written to

during the replication. Reading from the source volume does not disrupt the sequence of

copying (cloning) the data blocks. Writing to the source volume after the replication process

started is potentially disrupting to the cloning replication. To understand why a write can

disrupt the cloning replication process it is important to remember that the clone volume is a

point-in-time copy of the data in the source volume. Therefore, once the user decides to start

replicating a source volume, the data at that particular point in time has to be preserved. Any

further updates (writes) to the source volume should not be reflected in the replicated (cloned)

volume. There are two possible results of a user write to the source volume during cloning

replication: 1) if the user writes to a data block that has been already cloned then the write can

proceed normally. There is no problem with the write since the original data block is already

copied in the clone volume; 2) if the user writes to a data block that has not been cloned, then

the incremental sequence of data block cloning has to be interrupted and that data block has to

take priority and be cloned before the user write can proceed. The copy (replica) of a data

block before the user write can be served is referred to as the copy-on-write (CoW) problem.

Therefore, there is the possibility of generating copy-on-writes during the replication process

by writing to the source volume.

Copy-on-writes cause a user write to have a high latency since the write has to wait for

the copy (replication) of the data block before the write can be executed in the source volume.

The CoW problem has been studied before [Navarro 11a] in the context of the logical volume

snapshot replication. In that context, each snapshot replication is called a snap, and each snap

causes a CoW to occur. That is why the terms snap and CoW are used interchangeably. A

data block is said to be snapped if a user write to that data block caused a CoW to occur. An

example of how a copy-on-write occurs during replication is shown in Fig. 6.4. The cloning

replication is proceeding in sequential order and has copied data blocks B1 and B2. Before

replicating the next data block, B3, there is a user write to B4. Now the replication process is

forced to skip temporarily the replication of data block B3 and clone data block B4 to ensure it

is a point-in-time copy. After the data block B4 is cloned then the user write can proceed.

After the replicated of B4 the cloning replication process can resume where it left off, data

 113

block B3, and clone it. As expected, after cloning data block B3, then data block B4 is skipped

since it is already cloned and the cloning replication proceeds sequentially with next un-

cloned data block, B5. This example shows that the logical volume cloning replication can

occur interacting with logical volume snapshot replication.

6.4 QUEUING DESCRIPTION OF THE LV CLONING REPLICATION

There are three queues directly involved in the Logical Volume (LV) cloning

replication process: 1) the LV clone queue; 2) the LV user writes queue; and 3) LV the

snapshot (CoW) queue. The LV user reads queue increases the utilization of the CPU and

disks; but the user reads queue does not alter the cloning replication process in any way. Fig.

6.5 shows the queueing scheme considered for the analysis of the cloning process. The reason

the LV user reads queue is included in the queueing scheme is because the type-2 fuzzy

controller presented in this chapter takes the average of the LV user reads and writes as an

input parameter.

The disk array controller sends the requests for cloning all the data blocks of an LV.

The disk array keeps track at all times of which data blocks have been already been cloned

and which ones are still pending. The cloning algorithm sends a request to clone a data block

every zc seconds. The zc is the cloning interarrival time. Typical times for zc can be in the

 Fig. 6.4: Example of a CoW during the replication of a source volume

 114

milliseconds or microseconds range. The zc can also be considered a think time between

requests for the LV Clone queue. The zc is the parameter that controls the arrival rate of clone

requests, χc, to the disks. Typical values for χc can be hundreds or thousands of IO requests

per second (IO/s). The type-2 fuzzy controller will regulate the arrival rate of clone requests

to the disk, χc, by regulating zc.

The LV user writes queue sends the user writes to through the disk array controller

onto the disk. For the purpose of this analysis, an Online Transaction Processing (OLTP)

workload is considered. In OLTP workloads user writes and reads are randomly spread over

the LV. The arrival rate of user writes, λw, on an LV in replication causes snaps to occur. The

arrival rate of snaps caused by user writes was studied in the previous chapter and in [Navarro

11a] and shown in (5.13), where psnap(t) is the probability of a snapshot caused by the arrival

rate of user writes, λw. This is the psnap term studied in the previous in section 5.2.2 of this

dissertation.

The rate arrival of user reads, λr, is considered as part of the estimation of the average

latency of user requests (reads and writes) for the purpose of the fuzzy control.

Fig. 6.5: Queueing scheme of LV Cloning with Snapshot

 115

The combined arrival rate to the disks, λD, is the combination of the four arrival rates

(χc, λw, , λs, λr) but considering the transformation of writes according to RAID level. For

example, if the RAID level used for the data redundancy of the LV is RAID1, then the writes

doubles because the data is written to separate disks.

6.5 MATHEMATICAL DESCRIPTION OF THE LV CLONING REPLICATION

The cloning replication process is a deterministic process. The cloning replication

algorithm keeps track of the replicated vs. the un-replicated data blocks. By doing this, the

cloning replication always copies the un-replicated data blocks and never accesses again any

already-replicated data block. This is an important distinction with respect to the snapshot

replication process. The snapshot process is an on-demand process based on user writes to a

logical volume. The user accesses to databases (SQL, Oracle) are typically randomly spread

over a logical volume in what is referred to as the OLTP workload. This means that a user

write may or may not cause a snap (CoW) to occur depending on whether the user write will

write to an already-replicated or to a to-be-replicated data block. The understanding of the

impact of randomly distributed user writes on logical volume replication through snapshots

was studied in the previous chapter and in [Navarro 11a]. The formulas proposed in those two

cited sources will be applied here for the purpose of showing the interaction of snapshot and

cloning.

The estimation of the fraction of data blocks cloned at time t, fc(t), during the logical

volume cloning replication, can be computed by:

𝑓𝑐(𝑡) =
𝜒𝑐

𝐵𝑣
𝑡 (6.15)

where the Bv is the number of data blocks that make up the Logical volume. Fig. 6.6

shows a measured fraction of data blocks cloned during a logical volume cloning replication

vs. the estimated fraction of data blocks using (6.15). It can be seen that the deterministic

behavior of the cloning algorithm translates into a linear progress of the logical volume

replication

 116

The estimation of the fraction of data blocks snapped at time t, fs(t), is a problem that

was approached in the previous chapter and in [Navarro 11a].]. The main conclusion in

[Navarro 11a] is that the snapshot replication under a randomly distributed user writes

workload, like the on-line transaction processing (OLTP) workload, behaves in an exponential

manner. The formula in presented in the previous chapter and in [Navarro 11a] is:

𝑓𝑠(𝑡) = 1 − 𝑒
−

𝜆𝑤
𝐵𝑣

𝑡
 (6.16)

where λw is the user write arrival rate in IO/s and fs(t) is the estimated fraction of

snapped data blocks. Fig. 6.7 shows the fraction of snapped data blocks, i.e., the fraction of

data blocks replicated by snapshot vs. the estimated fraction of snapped data blocks using

(6.16). In this example the logical volume is only being subjected to user writes so the

replication shown in this figure is a snapshot replication, not a cloning replication.

Fig. 6.6: Graph of the fc(t) equation predicting the fraction of cloned blocks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Fr
ac

ti
o

n
 o

f
d

at
a

b
lo

ck
s

re
p

lic
at

e
d

 b
y

cl
o

n
in

g

Time t in seconds

LV Cloning Replication with a constant Cloning rate (χc)

Comparison of estimated fraction of data blocks cloned
at time t versus the fraction predicted by Fc(t)

Measured fraction of Cloned data blocks Estimated fraction of Cloned data blocks

The red dashed line is the measured fraction
of cloned data blocks during the cloning of a
Logical Volume (LV) of 32GB with Bv = 262,144
data blocks of 128KB each. The clone arrival
rate was χc = 1000 IO/s, i.e., 1000 data blocks
cloned per second.

The black dashed line is the graph of the
estimated fraction of data blocks using the

equation

Both lines overlap showing the cloning process
is linear and with a Xc/Bv rate of progress.

 117

The equation for a logical volume combined replication, both cloning and snapshot, is

derived here and shown to agree with a measured combined replication. We derive the

equation for the fraction of replicated data blocks for a combined replication, using the

equations and knowledge of the behavior of the both cloning and snapshot. The fraction of

combined replicated data blocks, fr(t), is the sum of the cloned and the snapped data blocks

𝑓𝑟(𝑡) = 𝑓𝑐(𝑡) + 𝑓𝑠(𝑡) (6.17)

The derivative of fr is:

𝑑𝑓𝑟

𝑑𝑡
=

𝑑𝑓𝑐

𝑑𝑡
+

𝑑𝑓𝑠

𝑑𝑡
 (6.18)

The derivative of fc is:

𝑑𝑓𝑐

𝑑𝑡
=

𝜒𝑐

𝐵𝑣
 (6.19)

Fig. 6.7: Graph of the fs(t) equation predicting the fraction of snapped blocks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Fr
ac

ti
o

n
 o

f
d

at
a

b
lo

ck
s

re
p

lic
at

e
d

 b
y

sn
ap

sh
o

t

Time t in seconds

LV Snapshot Replication caused by user writes with arrival rate λw

Comparison of estimated fraction of data blocks snapped at time t versus

the fraction predicted by Fs(t)

Measured fraction of Snapped data blocks Estimated fraction of Snapped data blocks

The red dashed line is the measured fraction of snapped
data blocks during the cloning of a Logical Volume (LV) of
32GB with Bv = 262,144 data blocks of 128KB each. The user
write arrival rate was λw = 1000 IO/s
The black dashed line is the graph of the estimated
snapped data blcoks using the equation

Both lines overlap showing the snapshot process is
exponential due to its random behavior.

 118

We know that the probability of a snap is greater if there are more non-replicated data

blocks. The fraction of non-replicated data blocks, fn(t), is:

𝑓𝑛(𝑡) = 1 − 𝑓𝑟(𝑡) (6.20)

We also know that the probability of a snap is an exponential function that depends on

the ratio of the user write arrival rate, λw,, and the number of data blocks in a logical volume,

Bv. The differential equation for the derivative of the fraction of data blocks snapped at time t,

fs(t), is then:

𝑑𝑓𝑠

𝑑𝑡
=

𝜆𝑤

𝐵𝑣
𝑓𝑛 =

𝜆𝑤

𝐵𝑣
(1 − 𝑓𝑟) (6.21)

The differential equation for fr is:

𝑑𝑓𝑟

𝑑𝑡
=

𝜒𝑐

𝐵𝑣
+

𝜆𝑤

𝐵𝑣
(1 − 𝑓𝑟) (6.22)

And the fraction of replicated data blocks in a combined replication, fr(t) at time t is:

𝑓𝑟(𝑡) = (1 +
𝜒𝑐

𝜆𝑤
) (1 − 𝑒

−
𝜆𝑤
𝐵𝑣

𝑡
) (6.23)

The equation is compared against the measured fraction of replicated data blocks in a

combined (cloning and snapshot) replication of a logical volume as shown in Fig. 6.8. The

graph shows that (6.23) estimates fr(t) very accurately.

 119

6.6 LOCAL LV CLONING REPLICATION TYPE-2 FUZZY LOGIC CONTROLLER

6.6.1 PURPOSE OF THE LV CLONING T2 FUZZY CONTROLLER

The primary goal of this controller is to regulate the rate at which the cloning process

occurs so the latency of customer reads and writes is at or below a target latency. If the

primary goal cannot be accomplished, then the secondary goal is to minimize the impact to

the latency of customer reads and writes. The way the controller achieves the goal of

regulating the cloning process is by adjusting the cloning interarrival value, zc, therefore,

regulating the time between each clone request to the . Every time sample iteration, ti, the

controller estimates the zc to be used in the next time sample, ti+1.

The logical volume cloning replication Type-2 (T2) fuzzy controller is a Takagi-

Sugeno Type-2 fuzzy-logic based controller. The T2 fuzzy PI controllers are more robust than

Fig. 6.8: Graph of the fr(t) equation predicting the fraction of replicated blocks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Fr
ac

ti
o

n
 o

f
d

at
a

b
lo

ck
s

re
p

lic
at

e
d

Time t in seconds

LV cloning replication with a constant cloning rate χc

and Snapshots caused by user writes with arrival λw

Measured fraction of Replicated (Clone and Snapped) data blocks Measured fraction of Cloned data blocks

Measured fraction of Snapped data blocks Estimated fraction of Replicated (Cloned and Snapped) data blocks

The red dashed line is the measured fraction of the combined replicated data
blocks, both cloned and snapped data blocks, during the cloning of a Logical
Volume (LV) of 32GB with Bv = 262,144 data blocks of 128KB each.
The clone arrival rate was χc = 1000 IO/s
The user write arrival rate was λw = 1000 IO/s

The black dashed line is the graph of the estimated
combined replicated data blocks using the equation

Both lines overlap showing the
equation estimates the combined
replicated blocks at time t.

Measured fraction of cloned
data blocks.

Measured fraction of snapped
data blocks.

 120

their Type-1 counterparts [Wu 2010a]. The T2 fuzzy PI controllers can cope better with

disturbances, uncertainties and eliminate oscillations better than their T1 counterparts.

6.6.2 DESCRIPTION OF THE LV CLONING T2 FUZZY CONTROLLER

The block diagram of the logical volume cloning type-2 fuzzy controller is illustrated

in Fig. 6.9. From a control standpoint, the disk array is the controlled system. The controlled

system has one input: λD, which is the combined arrival rate of user writes, λw, user reads, λr,

snapshots, λcow, and cloning arrival rate χc. The combined arrival rate on the disk array, λD, is:

𝜆𝐷 = 𝜆𝑟 + 𝛼𝑅𝐿𝜆𝑤 + 𝜆𝑐𝑜𝑤 + 𝜒𝑐 (6.24)

The cloning arrival rate, χc, depends on the cloning interarrival time, zc:

𝜒𝑐 =
1

𝑧𝑐
 (6.25)

The number of data blocks writes needed for a snapshot (CoW) is dependent on the

RAID level of the snapshot volume. The number of data block writes is defined by the αRL

factor. For RAID1 the αRL = 2, which is the number of writes needed for each data write. This

was explained in section 5.2.3.

The total extra arrival rate on the disk array generated by the copy-on-writes, λcow, is

already shown in (5.17) but show here again:

𝜆𝑐𝑜𝑤 = 𝑝𝑠𝑛𝑎𝑝𝜆𝑤(1 + 𝛼𝑅𝐿) (6.26)

Fig. 6.9: Cloning type-2 fuzzy controller

 121

The output of the system to be controlled (disk array) is the average latency

experienced by the user accesses (reads or writes), τavg.

The logical volume cloning type-2 fuzzy controller makes use of a reference variable:

the reference latency, τref. The reference latency represents the maximum acceptable average

latency during the cloning process. The maximum latency used in this section was 30ms,

same as in chapter 5.

The output τavg is compared with the reference latency τref to compute the control error,

e:

𝑒(𝑡𝑖) = 𝜏𝑎𝑣𝑔(𝑡𝑖) − 𝜏𝑟𝑒𝑓 (6.27)

The change in the control error, Δe, is also computed:

Δ𝑒(𝑡𝑖) = 𝑒(𝑡𝑖) − 𝑒(𝑡𝑖−1) (6.28)

The cloning rate is kept within limits by setting two variables also used by the logical

volume cloning type-2 fuzzy controller: 1) the minimum cloning interarrival time 𝑧𝑐
𝑚𝑖𝑛, which

determines the maximum cloning arrival rate, i.e., the cloning throughput, 𝜒𝑐
𝑚𝑎𝑥; and 2) the

maximum cloning interarrival time, 𝑧𝑐
𝑚𝑎𝑥, which determines the minimum cloning arrival rate

(cloning throughput) 𝜒𝑐
𝑚𝑖𝑛.

In order to control the outputs, they have to be periodically monitored every tm

seconds. The decision on how often to monitor can be based on the maximum acceptable

latency and the performance of the disk array controller. The sampling of the outputs is

performed at intervals of time tm. Each sample is denoted by (ti), where i is the i-th sample of

the output that occurred at a time ti, as in:

mi itt  where i = 0,1,2,… (6.29)

 122

6.6.3 LV CLONING CONTROLLER FUZZIFICATION

This section shows how the step 1 of the typical procedure performed by an IT2 FLC

as shown in section 6.2, is implemented for the logical volume cloning T2 fuzzy controller.

The goal of the fuzzification is to map the control error e into a fuzzy value Fe and the change

in the control error, Δe, into a fuzzy value FΔe. This stage corresponds to the blocks shown in

Fig. 6.9 with the symbols Fe and FΔe. Both fuzzy values, Fe and FΔe, can be mapped into one

of three T2 fuzzy descriptors: Zero (ZE), Positive Error (PE), and Negative Error (NE). The

first step is to normalize e and Δe with respect to the reference latency, τref.

𝑒𝑛 =
𝑒

𝜏𝑟𝑒𝑓
 (6.30)

Δ𝑒𝑛 =
Δ𝑒

𝜏𝑟𝑒𝑓
 (6.31)

The normalized control error, en, and normalized change in the control error, Δen, are

limited in their values to make the T2 fuzzification possible to the interval [-1,1]:

𝑒𝑛 ∈ [−1,1] 𝑎𝑛𝑑 Δ𝑒𝑛 ∈ [−1,1] (6.32)

The mapping for the en and Δen values into the Zen and to ZΔen fuzzy values is done by

defining the following equations:

𝑈𝑀𝐹𝑍𝑒𝑛(𝑒𝑛) = 𝜇
𝑍𝑒𝑛

= {

−𝑒𝑛 + (1 +
𝐷𝑂𝑈

2
) 𝑖𝑓 𝑒𝑛 ≥ 0

𝑒𝑛 + (1 +
𝐷𝑂𝑈

2
) 𝑖𝑓 𝑒𝑛 < 0

 (6.33)

𝐿𝑀𝐹𝑍𝑒𝑛(𝑒𝑛) = 𝜇 𝑍𝑒𝑛 = {

−𝑒𝑛 + (1 −
𝐷𝑂𝑈

2
) 𝑖𝑓 𝑒𝑛 ≥ 0

𝑒𝑛 + (1 −
𝐷𝑂𝑈

2
) 𝑖𝑓 𝑒𝑛 < 0

 (6.34)

 123

The intervals for UMFZen and LMFZen are:

𝑈𝑀𝐹𝑍𝑒𝑛 ∈ [−1,1] 𝑎𝑛𝑑 𝐿𝑀𝐹𝑍𝑒𝑛 ∈ [−1,1] (6.35)

Equations (6.33) and (6.34) map the en value to the T2 fuzzy value Zen. The equations

for mapping Δen to ZΔen are the same as (6.33) and (6.34) just with the Δen variable instead of

the en as the input variable. The intervals for the UMFZΔen and LMFZΔen are the same as the

UMFZen and LMFZen shown in (6.35).

The mapping for the en and Δen values into the Nen and to NΔen fuzzy values is done by

defining the following equations:

𝑈𝑀𝐹𝑁𝑒𝑛(𝑒𝑛) = 𝜇
𝑁𝑒𝑛

= −𝑒𝑛 +
𝐷𝑂𝑈

2
 (6.36)

𝐿𝑀𝐹𝑁𝑒𝑛(𝑒𝑛) = 𝜇 𝑁𝑒𝑛 = −𝑒𝑛 −
𝐷𝑂𝑈

2
 (6.37)

Fig. 6.10: T2 Fuzzy values Zen and ZΔen

 124

The intervals for UMFNen and LMFNen are:

𝑈𝑀𝐹𝑁𝑒𝑛 ∈ [−1,1] 𝑎𝑛𝑑 𝐿𝑀𝐹𝑁𝑒𝑛 ∈ [−1,1] (6.38)

Equations (6.36) and (6.37) map the en value to the T2 fuzzy value Nen. The equations

for mapping Δen to NΔen are the same as (6.36) and (6.37) just with the Δen variable instead of

the en as the input variable. The intervals for the UMFNΔen and LMFNΔen are the same as the

UMFNen and LMFNen shown in equation (6.38).

The mapping for the en and Δen values into the Pen and to PΔen fuzzy values is done by

defining the following equations:

𝑈𝑀𝐹𝑃𝑒𝑛(𝑒𝑛) = 𝜇
𝑃𝑒𝑛

= 𝑒𝑛 +
𝐷𝑂𝑈

2
 (6.39)

Fig. 6.11: T2 Fuzzy values (a) Nen, Pen and (b) NΔen. PΔen

 125

𝐿𝑀𝐹𝑃𝑒𝑛(𝑒𝑛) = 𝜇 𝑃𝑒𝑛 = 𝑒𝑛 −
𝐷𝑂𝑈

2
 (6.40)

The intervals for UMFPen and LMFPen are:

𝑈𝑀𝐹𝑃𝑒𝑛 ∈ [−1,1] 𝑎𝑛𝑑 𝐿𝑀𝐹𝑃𝑒𝑛 ∈ [−1,1] (6.41)

Equations (6.39) and (6.40) map the en value to the T2 fuzzy value Pen. The equations

for mapping Δen to PΔen are the same as (6.39) and (6.40) just with the Δen variable instead of

the en as the input variable. The intervals for the UMFPΔen and LMFPΔen are the same as the

UMFPen and LMFPen shown in equation (6.41).

6.6.4 RULE BASE TO OBTAIN TU

This section shows how the step 2 of the typical procedure performed by an IT2 FLC

as shown in section 6.2, is implemented for the logical volume cloning T2 fuzzy controller.

The rule base applies the logic to determine how to alter the cloning interarrival time, zc at

every time iteration ti. In order to alter zc incrementally, the change in zc has to be in some

range that modifies zc in a way that does not change the cloning arrival rate, χc erratically (up

and down) and causes the controller to oscillate. The throttling unit, Tu, is a quantity of time

used by this controller as a unit of change of the cloning interarrival time, zc. The outputs of

the rules, i.e., the subsequent sets, are expressed in terms of the throttling units.

The rule base can now be built based on the following heuristic criteria. The first

criterion is that if the user request latency is high, then the control error, e, is fuzzy positive

error, PE, and the controller needs to reduce the cloning rate. Therefore, the cloning

interarrival time zc is increased. The second criterion is that if the user request latency is low,

then the controller can increase the cloning rate. Therefore, the cloning interarrival time zc is

reduced. Based on those two heuristics criteria, the rules are developed of the form:

𝑖𝑓 𝑒 ∈ 𝐹𝑒 𝑎𝑛𝑑 Δ𝑒 ∈ 𝐹Δ𝑒 𝑡ℎ𝑒𝑛 [∆𝑇𝑢
ℎ , ∆𝑇𝑢

𝑙] (6.42)

where Fe and FΔe can take the fuzzy values shown in section 6.6.3:

 126

𝐹𝑒 ∈ {𝑁𝑒𝑛, 𝑍𝑒𝑛, 𝑃𝑒𝑛} (6.43)

𝐹∆𝑒𝑛 ∈ {𝑁∆𝑒𝑛, 𝑍∆𝑒𝑛, 𝑃∆𝑒𝑛} (6.44)

And the consequent sets are of the form [ΔTu, ΔTu] where Δ is a multiplier of the

throttling unit Tu as shown in Table 6.1.

6.6.5 TYPE REDUCTION (DEFUZZIFICATION)

The steps 3 and 4 of the typical procedure performed by an IT2 FLC as shown in

section 6.2, are implemented for the LV cloning T2 fuzzy controller are implemented using

the Karnik-Mendel (KM) algorithms. References [Mendel 12][Wu 12a] are recommended to

learn about the KM algorithm. The output of the type reduction is the pair:

 [Δ𝑧𝑐
𝑙 , Δ𝑧𝑐

𝑟] (6.45)

where Δ𝑧𝑐
𝑙 and Δ𝑧𝑐

𝑟 are the left and right values of the Type 1 output fuzzy set

produced by the KM algorithm.

Table 6.1: Rule base for LV Cloning Type-2 Fuzzy Controller

Rule

Number

Rule Input Variables Rule Output Comments

e Δe Tu Range

R1 Nen NΔen [-4Tu, -2Tu] Reduce zc, increase χc heavily

R2 Nen ZΔen [-2Tu, 0Tu] Reduce zc, increase χc lightly

R3 Nen PΔen [-3Tu, -1Tu] Reduce zc, increase χc

R4 Zen NΔen [0Tu, 2Tu] Increase zc, reduce χc lightly

R5 Zen ZΔen [-Tu, +Tu] Keep zc, thus, χc

R6 Zen PΔen [-2Tu, 0Tu] Reduce zc, increase χc lightly

R7 Pen NΔen [+Tu, 3Tu] Increase zc, reduce χc

R8 Pen ZΔen [0Tu, 2Tu] Increase zc, reduce χc lightly

R9 Pen PΔen [2Tu, 4Tu] Increase zc, reduce χc heavily

 127

6.6.6 CRISP DELTA OF THE CLONING INTERARRIVAL TIME

The step 5 of the typical procedure performed by an IT2 FLC as shown in section 6.2,

is the calculation of the crisp value of the change in the cloning interarrival time. The

calculation is the middle point of the two values in the T1 fuzzy set produced in the previous

step:

 Δ𝑧𝑐 =
Δ𝑧𝑐

𝑙+Δ𝑧𝑐
𝑟

2
 (6.46)

where Δzc is the delta to be added to the current zc for the next time sample of the

controller:

𝑧𝑐(𝑡𝑖+1) = 𝑧𝑐(𝑡𝑖) + Δ𝑧𝑐(𝑡𝑖) (6.47)

where Δzc(ti) is the delta of the cloning interarrival time obtained by (6.45); zc(ti) is the

current cloning interarrival time and zc(ti+1) is the cloning interarrival time computed to be

used in the next time sample by the logical volume cloning T2 fuzzy controller.

This is the final step of the controlling process and it is repeated at the next time

iteration starting from the steps shown in section 6.6.3.

6.7 EXPERIMENTAL RESULTS

The type-2 fuzzy logical volume replication controller was tested with a setup that

consisted of an HP 7640 Itanium workstation with 48GiB of memory and with RedHat Linux

6.2 installed. The disk setup consisted of 118 BF1465A477 15K RPM disks. The logical

volume replication and the type-2 fuzzy control was implemented in C language and compiled

with GCC 4.4.6. The implementation was executed as a parent process in the user space and

not as a part of the kernel. The parent process performed the following functions: 1) generated

(forked) a process that acted as foreground user request process generator for 8KiB user reads

and writes; 2) generated a process that acted as the background logical volume replication by

generating a process for 256KiB data block that had to be cloned; 3) kept track of the data

blocks replicated and the data blocks that required a replication by doing a copy-on-write. The

logical volume data block table was in shared memory so it was visible to all processes; 4)

 128

monitored the latency of the user requests and 5) implemented the IT2 FLC logic of the LV

cloning controller.

A comparison of an LV cloning replication process with and without the T2 fuzzy

control was run. For the comparison a RAID1 128GiB source volume was used. The source

volume was comprised of data blocks of 256KiB in size and laid out in an even fashion over

all the 118 disks.

First, the LV cloning process is shown with no fuzzy control in Fig. 6.12. The left

vertical axis shows the latency values in milliseconds. The right vertical axis shows the IO/s

values. A cloning process is replicating the 128GiB at a constant rate of χc = 4,000 IO/s as

shown by the black line. After 60 seconds into the replication process, a user workload of

2,000 IO/s, 70% reads, (1,400 IO/s for reads and 600 for IO/s writes) was applied during 3

minutes. The blue line shows the latency of user reads during the 3 minutes. It can be seen

that the read latency (blue line) is around the 15ms range. The user reads do not show a

significant change during the duration of the user workload (3 minutes). The user writes, on

the other hand, show how significantly can be affected by the cloning process. At first, the

Fig. 6.12: Cloning of an LV with no fuzzy control

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 30 60 90 120 150 180 210 240 270

LV
 c

lo
n

in
g

re
p

lic
at

io
n

 a
rr

iv
al

 r
at

e
 in

 d
at

a
b

lo
ck

s
cl

o
n

e
d

 p
e

r
se

co
n

d

U
se

r
re

q
u

e
st

 la
te

n
cy

 in
 m

ill
is

e
co

n
d

s

LV cloning duration in seconds

LV cloning replication process with fixed cloning replication rate
under a user request workload of 2000 IO/s, 70% reads, 8KiB

User Read Latency User Write Latency Clone IO/s

The user writes arrival rate was λw = 600 IO/s
The user writes latency started around 60ms and
went down to 26ms as the probablity of a snap
decreased.

The clone arrival rate was χc = 4000 IO/s
The black line shows the clone arrival rate
during the cloning replication process

The user reads arrival rate was λr = 1400 IO/s
The user reads latency stayed around 15ms

 129

user writes show a latency of 60ms. This high latency was caused by the combined effects of

the copy-on-writes generated by the user writes themselves, and the background cloning

replication in progress. As the probability of generating copy-on-writes lowers, then the user

writes show less impact on their latency. At the end of the 3 minute run, the user write latency

is around 25ms.

Second, The LV cloning process was run with the T2 fuzzy controller. The reference

latency used was τref = 15ms; a throttling unit, Tu = 200us and a delta of uncertainty, DOU =

0.2. Fig. 6.13 shows how the T2 fuzzy controller could achieve a reduction in the user request

latency for both writes and reads. The controller is cloning in the background at a rate of χc =

4,000 IO/s when 60 seconds into the cloning a user workload of 2,000 IO/s, 70% reads, (1,400

IO/s for reads and 600 for IO/s writes) was applied during 3 minutes just like in the case with

no fuzzy control. But in this case the T2 fuzzy controller detects an error because the user

write latency is in the 60 millisecond range and responds by increasing the cloning interarrival

time which in turns reduces the cloning rate from χc = 4,000 IO/s down to χc = 1,500 IO/s.

This brings down the user write latency down from 60 to 25ms, which in conjunction with the

reduction in the user read latency from 15 to 10ms, brings the user average (reads and writes)

Fig. 6.13: Cloning of an LV with T2 fuzzy control

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 30 60 90 120 150 180 210 240 270 300 330 360

LV
 c

lo
n

in
g

re
p

lic
at

io
n

 a
rr

iv
al

 r
at

e
 in

 d
at

a
b

lo
ck

s
cl

o
n

e
d

 p
e

r
se

co
n

d

U
se

r
re

q
u

e
st

 la
te

n
cy

 in
 m

ill
is

e
co

n
d

s

LV cloning duration in seconds

LV cloning replication process with T2 fuzzy control of the cloning replication rate
under a user request workload of 2,000 IO/s, 70% reads, 8KiB

User Read Latency User Write Latency Clone IO/s

ACHIEVEMENT TO NOTE:
The T2 fuzzy controller reduced the clone
arrival rate down to χc = 1,500 IO/s in
order to meet the specified refence user
latency of τref = 15ms

The user writes arrival rate was λw = 600 IO/s
ACHIEVEMENT TO NOTE:
The user writes latency started around 60ms like in the traditional
cloning but this time with the T2 fuzzy control the user writes
latency was quickly lowered to 28ms average by reducing the
cloning arrival rate from 4,000 IO/s down to 1,500 IO/s.

The user reads arrival rate was λr = 1400 IO/s
ACHIEVEMENT TO NOTE:
The user reads latency started around 15ms
and was lowered to 10ms average by
reducing the cloning arrival rate.

The clone arrival rate (dashed line)
was χc = 4000 IO/s before the 3
minute user request workload.

As soon as the controller detects no
activity, the clone arrival rate goes
back to χc = 4000 IO/s

 130

latency down to the reference latency of τref = 15ms. The T2 fuzzy controller achieved the

purpose of reducing the cloning rate so the reference latency could be achieved.

6.7 CONCLUSIONS

The Type-2 LV cloning fuzzy controller accomplished the goal of reducing the impact

on the user reads and writes latency caused by an LV cloning background process in a disk

array. The improvements in latency the Type-2 LV cloning fuzzy controller delivers show

how fuzzy logic can be applied to improve the performability of data backup management for

disk arrays. The Type-2 LV cloning fuzzy controller can be used to control a disk array with

complex components such as disks, for which we don’t have any knowledge of their internal

logic and are hard to model mathematically. Another contribution of this chapter is the

equation (6.23) that predicts the fraction of replicated data blocks in a combined (clone and

snapshot) replication.

 131

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

Chapter 3 presented a numerical method in the form of an extensible algorithm that

can be used to estimate the reliability and performability of a disk array. This method can be

used to achieve high performability based on the reliability of a RAID group.

Chapters 4, 5 and 6 present improvements in disk array performability based on fuzzy

control schemes.

Chapter 4 showed that fuzzy logic can be applied to improve the sparing process in

disk arrays. The patented fuzzy-controlled sparing process outperformed the traditional QSV

sparing process by finishing in half the time and without impacting the user request latency.

Chapter 5 showed the benefit of the proposed snapshot fuzzy controller, which is to

avoid the high latency peak at the beginning of a snapshot process. Chapter 5 also presented a

Markov Model and equations for the snapshot process. These equations can provide a guide

for the snapshot behavior even for different disks speeds and disk arrays if the snapshot

process is the traditional copy-on-write.

Chapter 6 showed the benefit of a cloning fuzzy controller, which is to reduce the

impact of the background cloning process on the user request latency but ensuring the cloning

occurs in the background at the maximum possible rate. Chapter 6 also presented an equation

for the combined cloning and snapshot of a logical volume.

7.2 FUTURE WORK

The first area of proposed future work is the development of probabilistic models for

the performability evaluation of the background-jobs-based performability for sparing,

snapshot and cloning. These models can leverage off the probabilistic equations already

presented for snapshot and cloning in chapters 5 and 6. The second area of future work is the

stability analysis of the fuzzy controllers presented in chapters 4, 5 and 6.

 132

REFERENCES

[Barnett 98a] S. A. Barnett, G. J. Anido, “Performability of disk-array-based video

servers”, Multimedia Systems, 1998.

[Bolch 06a] G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi, “Queueuing Networks

and Markov Chains: Modeling and Performance Evaluation with

Computer Science Applications”, John Wiley & Sons, 2006.

[Burkhard 93a] W.A. Burkhard, J. Menon; “Disk array storage system reliability”, Fault-

Tolerant Computing, 1993. FTCS-23.

[Catania 95a] V. Catania, A. Puliafito, S. Riccobene, L. Vita, “Design and performance

analysis of a disk array system”, IEEE Transactions on Computers, 1995.

[EMC 05a] EMC Corporation, “Ensuring Data Availability with TimeFinder Family

Local Replicas”, http://www.emc.com/collateral/software /white-

papers/h1618-ensuring-data.pdf , 2005.

[Ganger 94a] G.R Ganger; B.L. Worthington; R.Y. Hou; Y.N. Patt, “Disk arrays: high-

performance, high-reliability storage subsystems”, Computer, Volume

27, Issue 3, March 1994.

[Garimella 06a] N. Garimella, “Understanding and exploiting snapshot technology for

data protection, Part 1: Snapshot technology overview”, http://www-

128.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html, IBM

Tivoli Software Group, 2006.

[Gartner 13a] J. Rivera, R. van der Meulen; “Garnet Says Worlwide External

Controller-Based Disk Storage Market Grew 1.9 Percent in Fourth

Quarter of 2012”, http://www.gartner.com/newsroom/id/2380815, March

21, 2013.

[Hagras 07a] H. Hagras, “Type-2 FLCs: A New Generation of Fuzzy Controllers”,

IEEE Computational Inteligence Magazine, Feb. 2007.

[Hanss 10a] M. Hanss, “Applied Fuzzy Arithmetic; An Introduction with Engineering

Applications”, Springer, 2010.

[Haverkort 01a] B. R. Haverkort, R. Marie, G. Rubino, K. Trivedi, “Performability

Modeling: Technique and Tools”, John Wiley & Sons, Ltd, 2001.

[Hanss 05a] M. Hanss, “Applied Fuzzy Arithmetic”, Springer-Verlag, 2005.

[Hou 93a] R.Y. Hou, J. Menon, Y.N. Patt, “Balancing I/O response time and disk

rebuild time in a RAID5 disk array”, HICSS, 1993.

 133

[HP 06a] Hewlett-Packard, “HP StorageWorks 1000/1500 Modular Smart Array

Command Line Interface”, May 2006, http://h20000.www2.hp.com/bc/

docs/support/SupportManual/c00683579/c00683579.pdf

[HP 08a] Hewlett-Packard, “HP StoreageWorks Business Copy EVA”,

http://h18000.www1.hp.com/products/quickspecs/11616_div/11616_div.

pdf, 2008.

[Islam 93a] S.M. Rezaul Islam, “Performability Analysis of Disk Arrays”, IEEE

Circuits and Systems, 1993.

[Karnik 99a] N. Karnik, J. M. Mendel, Q. Liang, “Type-2 Fuzzy Logic Systems”,

IEEE Transactions on Fuzzy Systems, Vol. 7, No. 6, Dec. 1999.

[Kleinrock 75a] L. Kleinrock, “Queuing Systems, Vol. 1: Theory”, John Wiley & Sons,

1975.

[Klir 95a] G.J. Klir, B. Yuan, “Fuzzy Sets and Fuzzy Logic – Theory and

Applications”, Prentice Hall, 1995.

[Lee 93a] Edward K. Lee, Randy H. Katz, “An analytic performance model of disk

arrays”, ACM SIGMETRICS '93.

[Mamdani 75a] E. H. Mamdami, S. Assilian, “An Experiment in Linguistic Synthesis

with a Fuzzy Logic Controller”, International Journal of Man Machine

Studies, 7:1-13, 1975.

[Medhi 03a] J. Medhi, “Stochastic Models in Queueing Theory”, Academic Press,

2003.

[Mendel 10a] J. M. Mendel, “A Quantitive Comparison of Interval Type-2 and Type-1

Fuzzy Logic Systems: First Results”, Proceedings of World Congress on

Computational Intelligence, Barcelona, Spain, July 2010.

[Mendel 12a] J. M. Mendel, “On KM algorithms for Solving Type-2 Fuzzy Sets

Problens”, IEEE Transactions on Fuzzy Logic, 2012.

[Menon 93a] R.Y. Hou, J. Menon, Y.N. Patt, “Balancing I/O response time and disk

rebuild time in a RAID5 disk array”, Proc. Hawaii Int’l Conf. on System

Science, Jan. 1993.

[Menon 94a] J. Menon, A. Thomasian, “Performance Analysis of RAID5 Disk Arrays

with a Vacationing Server Model for Rebuild Mode Operation”, Proc.

IEEE 10th International Conference on Data Engineering, 1994.

[Mesquite 07a] CSIM19, Mesquite Software, www.mesquite.com

http://www.mesquite.com/

 134

[Meyer 78a] J. F. Meyer, “On Evaluating the Performability of Degradable Computing

Systems”, Proceedings of FTCS-8 pp. 44-49 IEEE, 1978.

[Meyer 80a] J. F. Meyer, “Performability Evaluation of the SIFT Computer”, IEEE

Transaction on Computers, vol C-29, pp. 501-509, June 1980.

[Michels 06a] K. Michels, F. Klawonn, R. Kruse, A. Nurnbeger, “Fuzzy Control:

Fundamentals, Stability and Design of Fuzzy Controllers”, Springer-

Verlag, 2006.

[Microsoft 04a] Microsoft, “Disk Subsystem Performance Analysis for Windows”,

http://download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-

9281-92cdfeae4b45/subsys_perf.doc, March 2004.

[Microsoft 06a] Microsoft, “Disk Bottleneck Detected”, 2006,

http://technet.microsoft.com/en-us/library/29f01985-7b44-47cb-96f7-

d7c92fd8e867.aspx

[Microsoft 06b] Microsoft, “Calculate Your Server Size”, 2006,

http://technet.microsoft.com/en-us/library/bb124226.aspx

[Microsoft 07a] Microsoft, “Exchange Server 2003”, http://technet.microsoft.com/en-

us/library/bb123872.aspx

[Microsoft 07b] Microsoft, “How to Calculate Your Disk I/O Requirements”,

http://technet.microsoft.com/en-us/library/bb125019.aspx

[Muntz 90a] R. R. Muntz, John C.S. Lui, “Performance Analysis of Disk Arrays under

failure”, 16th VLDB Conference, 1990.

[Navarro 06a] G. Navarro, M. Manic, “Fuzzy Performability Analysis of Disk Arrays”,

IEEE ISIE, 2006.

[Navarro 07a] G. Navarro, M. Manic, “Predictive E-Mail Server Performability

Analysis Based on Fuzzy Arithmetic”, IJCNN, 2007.

[Navarro 07b] G. Navarro, M. Manic, “Fuzzy Control of Sparing in Disk Arrays”, 12th

IEEE Conference on Emerging Technologies and Factory Automation,

ETFA 2007.

[Navarro 07c] G. Navarro, M. Manic, “NFuSA – Neuro-Fuzzy Algorithm for Sparing in

RAID Systems”, IEEE IECON, 2007.

[Navarro 11a] G. Navarro, M. Manic, “FuSnap: Fuzzy Control of Logical Volume

Snapshot Replication for Disk Arrays’, IEEE Transactions on Industrial

Electronics, Vol. 58, No. 9, Sep. 2011.

http://technet.microsoft.com/en-us/library/bb123872.aspx
http://technet.microsoft.com/en-us/library/bb123872.aspx
http://technet.microsoft.com/en-us/library/bb125019.aspx

 135

[Papadimitriou 94a] C.H. Papadimitriou. J. H. Tsitsiklis, “The Complexity of Optimal

Queuing Network Control”, SCTC, 1994.

[Patterson 88a] D. A. Patterson, G. Gibson, R. H. Katz, “A case for redundant arrays of

inexpensive disks (RAID)”, ACM SIGMOD, 1988.

[Patterson 94a] D. A Patterson, P. M. Chen, E. K. Lee, G. A. Gibson, R. H Katz, “RAID:

High-Performance, Reliable Secondary Storage”, ACM Computing

Surveys, 1994.

[Patterson 07a] Patterson David A., Hennessy John L., “Computer Architecture, a

quantitative approach”, Morgan Kaufman Publishers, 2003.

[Phillips 99a] Y. A. Phillips, R. Zhang, “Fuzzy Service Control of Queuing Systems”,

IEEE Transactions on Systems, Man and Cybernetics, Vol. 29, No. 4,

August 1999.

[Preston 02a] W. C. Preston, “Using SANs and NAS”, O’Reilly, 2002.

[Reddy 91a] Reddy, A.L.N.; Banerjee, P, “Gracefully degradable disk arrays”, Fault-

Tolerant Computing, 1991. FTCS-21.

[Rezaul 93a] Islam, S.M. Rezaul, “Performability Analysis of Disk Arrays”, IEEE

Circuits and Systems, 1993.

[Schulze 89a] M. Schulze; G. Gibson; R. Katz; D. A. Patterson, “How reliable is a

RAID?”, COMPCON Spring '89.

[Schwarz 92a] Schwarz, T.J.E.; Buckhard, W.A.; “RAID organization and

performance”, Distributed Computing Systems, 1992.

[Seagate 05a] “Cheetah 15K.4 FC Product Manual”, 2005, http://www.seagate.com/

staticfiles/support/disc/manuals/enterprise/cheetah/15K.4/FC/100220449

c.pdf

[Smith 04a] Smith, N.; Clark, T.; “An Exploration of C2 Effectiveness: A Holistic

Approach”, 2004 Command and Control Research and Technology

Symposium, June 2004.

[SNIA 13a] SNIA Dictionary, http://www.snia.org/education/dictionary, Storage

Networking Industry Association, 2013.

[Shooman 02a] Martin L. Shooman, “Reliability of Computer Systems and Networks”,

John Wiley & Sons, 2002.

[Tai 96a] A. Tai, J. F. Meyer, A. Avizienis, “Software Performability: From

Concepts to Applications”, Kluwer Academic Publishers, 1996.

http://ieeexplore.ieee.org.ezproxy.hpl.hp.com/xpl/RecentCon.jsp?punumber=341
http://ieeexplore.ieee.org.ezproxy.hpl.hp.com/xpl/RecentCon.jsp?punumber=341
http://ieeexplore.ieee.org.ezproxy.hpl.hp.com/xpl/RecentCon.jsp?punumber=231

 136

[Takagi 85a] T. Takagi, M. Sugeno, “Fuzzy Identification of Systems and its

Applicatons to Modeling and Control”, IEEE Transactions on Systems,

Man and Cybernetics, vol. 15, Jan.-Feb. 1985..

[Thomasian 97a] A. Thomasian, J. Menon, “RAID5 Performance with Distributed

Sparing”, IEEE Transactions on Parallel and Distributed Systems, 1997.

[Varki 03a] Varki, E.; Merchant, A.; Xu, J.; Qiu, X.; “An Integrated Performance

Model of Disk Arrays” ; MASCOTS 2003.

[Weber 94a] D.P. Weber, “Fuzzy Fault Tree Analysis”, Fuzzy Systems, 1994, IEEE

World Congress on Computational Intelligence.

[Wu 12a] D. Wu, “On the Fundamental Differences Between Interval Type-2 and

Type-1 Fuzzy Logic Controllers”, IEEE Transactions on Fuzzy Systems,

Vol. 20, No. 5, pp 832-848, Oct. 2012.

[Zhang 05a] R. Zhang, Y. A. Phillis, V. S. Kouikoglou, “Fuzzy Control of Queuing

Systems”, Springer-Verlag, 2005.

[Zhang 06a] Q. Zhang, A. Riska, N. Mi, E. Riedel, E. Smirni, “Evaluating the

Performability of Systems with Background Jobs”, Proceedings of the

2006 International Conference on Dependable Systems and Networks

(DSN’06), IEEE, 2006.

 137

LIST OF PUBLICATIONS

This section presents a list of the author’s published publications and work in

progress.

PUBLICATIONS IN CONFERENCES

[1] G. Navarro, M. Manic, “Fuzzy Performability Analysis of Disk Arrays”, IEEE ISIE,

2006.

 Abstract: The performability of disk arrays systems has been studied before [Islam 93a][Barnett 98a].

However, in the case of imprecise data, a fuzzy model can be the base for the performability analysis. In this

paper a performability analysis of a disk array using a Markov Reward Model (MRM) is presented. The model

considers the repair as the reconstruction (rebuild) of the redundancy, not as a hard drive replacement. With

traditional, crisp arithmetic, for each change in a single model parameter the model would need to be run again,

resulting in a family of curves difficult to interpret. In the approach presented in this paper, the rewards for each

of the states of the MRM, as well as other disk array parameters are expressed through fuzzy numbers. The use

of fuzzy arithmetic for the performability estimation of a disk array proved significant advantages. First, the

model was able to capture the uncertainty variance of each of the model parameters. Secondly, as opposed to

traditional, crisp arithmetic approach, the presented model provides the estimation of the lower and upper

boundary of the system performability with a single run of the model.

[2] G. Navarro, M. Manic, “Predictive E-Mail Server Performability Analysis Based on

Fuzzy Aritmetic”, IEEE IJCNN, 2007.

Abstract: The performability of disk arrays systems has been studied before. However, in the case of

imprecise data, a fuzzy model can be the base for the performability analysis. This paper presents a

performability analysis of an MSExchange-like e-mail server. The analysis is based on a Markov Reward model.

The performability analysis is accomplished through the use of fuzzy arithmetic. Unlike traditional Markov

Chains, Fuzzy Markov Chains can successfully handle uncertain, imprecise probabilities. In cases where the

failure rates, repair rates, or the workload parameters are uncertain, Markov Chains enhanced with fuzzy

arithmetic provide means for comprehensive predictive performability analysis of a system. This performability

analysis provides a valuable guideline regarding required resources such as the number of mailboxes, and

therefore, the number of users the mail server can support with regards to the reliability and performance of the

disk array used by the mail server. The fuzzy arithmetic helps in better visualization and estimation of the range

of number of users the mail server is capable of servicing over long periods of time.

[3] G. Navarro, M. Manic, “Fuzzy Control of Sparing in Disk Arrays”, IEEE ETFA, 2007.

Abstract: The redundancy regeneration (sparing or rebuild) algorithms in disk arrays face the problem

of balancing between the data recovery activity within the array and the user workload acting upon the array at

 138

the same time [Hou 93a]. If the algorithm favors the user workload so the user requests can always preempt the

internal data recovery, then the data sparing can stall in the presence of a sustained workload. But on the

contrary, if the data recovery is favored over the user requests, the latency of the user requests can be so high to

reach unacceptable levels for the data transactions.

Using computationally intelligent techniques, like fuzzy logic, better algorithms to balance the level of

user requests and the internal data recovery can be achieved. The disk array and data recovery process are

modeled using the queue systems with vacations (QSV) [Medhi 03a]. A fuzzy algorithm to control the sparing is

presented in this paper. The results indicate that by using fuzzy logic, a better balancing is achieved between the

need to have an acceptable response time for the user requests and the data recovered as soon as possible.

[4] G. Navarro, M. Manic, “NFuSA – Neuro-Fuzzy Algorithm for Sparing in RAID

Systems”, IEEE IECON, 2007.

Abstract: Sparing, the process of rebuilding data in case of disk failure, has been a target of research

since early 1990‘s [Muntz 90a]. The problem that these specific hardware/software control systems typically

face in sparing is the tradeoff between serving requests – user’s versus internal [Hou 93a]. If the algorithm favors

user requests, in the presence of heavy workloads, the internal data recovery gets preempted resulting in risky

delay of the data sparing. On the other hand, favoring internal data recovery requests over the user requests can

result in high latencies per transaction that are unacceptable for the users of the RAID system. Intelligent, neuro-

fuzzy controllers (NFCs) offer a way to improve the control process and enhance the ability of a system to

achieve faster system response, while serving the internal requests at the same time. This paper presents the

neuro-fuzzy enhancement of the traditional data recovery of a RAID system modeled with a Queue System with

Vacations (QSV) [Medhi 03a]. Experimental results demonstrated better balancing between an acceptable

response time for the user requests and the time for the data to be redundant again, resulting in both higher user

satisfaction and better system reliability.

PUBLICATIONS IN JOURNALS

[5] G. Navarro, M. Manic, “FuSnap: Fuzzy Control of Logical Volume Snapshot Replication

for Disk Arrays”, IEEE Transactions on Industrial Engineering, 2011.

Abstract: This manuscript presents FuSnap, a fuzzy logic based controller that monitors and controls

the snapshot process of a logical storage volume in a disk array. As disks do not linearly respond to the arrival

rate of user accesses, FuSnap makes use of fuzzy logic as the means to achieve better control of their response

time. The goal of the FuSnap controller is to reduce the response time caused by the copy-on-writes that occur

during the snapping of a storage logical volume. The FuSnap controller, based on the response time of user

accesses, makes the decision on whether to proceed with a copy-on-write or a redirect-on-write when a source

logical volume is being copied to a snapshot logical volume. The benefits of FuSnap approach are twofold.

Firstly, significant reductions in response time of user requests are obtained with the FuSnap approach over the

 139

traditional Copy-on-Write snap approach. Secondly, these reductions in response time make the point-in-time

copy of data a process less disruptive for database users. FuSnap was verified with two setups using HPUX

workstations, one setup with 8 and the other with 32 disks.

PUBLICATIONS IN PROGRESS

[6] G. Navarro, M. Manic, D. Umberger, “Virtual Disk Replication on Disk Arrays using a

Type-2 Fuzzy Controller”, work in progress, 2015.

Abstract: Virtual Disk (VD) cloning is a data protection technique used by disk arrays to replicate the

data in a VD. A typical consequence of the cloning on the disk array is the increase in response time of user

reads and writes. A method for VD cloning using Type-2 fuzzy control is presented. This method is capable of

balancing data replication on one side and impact on the response time of user reads and writes on the other. The

method we present here can significantly reduce the throughput of the VD replication to reduce the impact on

user response time. On the other hand, when user response time is below the maximum allowed, the background

VD cloning can increase the cloning rate. The first contribution of this manuscript is: 1) a formula for data

backup planning. This formula predicts the fraction of replicated data blocks in a combined (clone and snap)

replication. 2) a novel FT2 control scheme that reduces latencies of user reads/writes response time in half; This

control scheme was tested on an Itanium workstation with 120 disks and proved shortening user latencies in half

(high response time of 60ms in half within 30 seconds only) as an average case.

PATENTS

[7] G. Navarro, M. Manic, David K. Umberger, inventors; Hewlett Packard, assignee;

“Control of Sparing in a Storage System”, US Patent number 8,201,018; issued June 12,

2012.

Abstract: Embodiments include methods, apparatus, and systems for controlling of sparing in a storage

system. In one embodiment, a method compares a first amount of time to complete sparing of data from a failed

disk in a storage system with a second amount of time to complete a user request to the storage system in order

to determine when to create a copy of the data from the failed disk.

[8] G. Navarro, David K. Umberger, inventors; Hewlett Packard, assignee; “Creating

Snapshots of Data Using a Selected One of Different Snapshot Algorithms”, US Patent

8,650,145; February 11, 2014.

Abstract: Embodiments include methods, apparatus, and systems for controlling of sparing in a storage

system. In one embodiment, a method compares a first amount of time to complete sparing of data from a failed

 140

disk in a storage system with a second amount of time to complete a user request to the storage system in order

to determine when to create a copy of the data from the failed disk.

 [9] G. Navarro, M. Manic, David K. Umberger, inventors, “Managing Processing of User

Requests and Data Replication for a Mass Storage System”, US Patent 9,063,835; June

23, 2015.

Abstract: A technique includes determining a workload on mass storage system that is associated will

user requests during a time in which mass storage system is replicating data from a source data unit of the mass

storage system to a replica storage unit of the mass storage system. The technique includes determining a

progress rate associated with the replication and managing processing of the user requests and the data

replication for the mass storage system, including initiating corrective action in response to determining that the

workload is near a predetermined maximum workload threshold and the progress rate is near a predetermined

minimum threshold.

PATENT APPLICATIONS

[10] G. Navarro, M. Manic, David K. Umberger, inventors, “Regulating Power Consumption

of a Mass Storage System”, US Patent Application 20130326249; December 5, 2013.

Abstract: A technique includes receiving first work requests that are associated with a user workload.

The technique includes using a machine to transform the first work requests into second work requests that are

provided to components of a mass storage system to cause the components to perform work associated with a

workload of the mass storage system; and regulating a power consumption of the mass storage system, including

regulating a rate at which the second work requests are provided to the components of the mass storage system.

	Authorization to Submit Dissertation
	Abstract
	Table of Contents
	Table of Figures
	Table of Tables
	Chapter 1: Introduction
	1.1 Performability of Disk Arrays
	1.2 Objective of this Dissertation
	1.3 Assumptions of the Dissertation
	1.4 Contributions of this Dissertation
	1.5 Organization of this Dissertation

	Chapter 2: Background on disk arrays, performability and fuzzy control
	2.1 Disk Arrays
	2.1.1 Disk Array Architecture
	2.1.2 RAID Levels
	2.1.3 Storage Virtualization
	2.1.4 Data Protection Policies
	2.1.5 Sparing Data Protection Policy
	2.1.6 Point-In-Time Data Protection Policy
	2.1.7 Snapshot Data Protection Policy
	2.1.8 Cloning Data Protection Policy
	2.1.9 Disk Array Performability and Data Protection Policies

	2.2 Performability
	2.2.1 Performability of Disk Arrays
	2.2.2 Fundamental Concepts
	2.2.3 Performability Evaluations
	2.2.4 Performability Measures
	2.2.5 Performability Example

	2.3 Fuzzy Control
	2.3.1 Fuzzy Numbers and Arithmetic
	2.3.2 Justification for Fuzzy Control
	2.3.3 Fuzzy Logic Controller
	2.3.4 Fuzzy Logic Controller: Fuzzifier
	2.3.5 Fuzzy Logic Controller: Rule Base
	2.3.6 Fuzzy Logic Controller: Inference Engine
	2.3.7 Fuzzy Logic Controller: Defuzzifier

	Chapter 3: Performability Analysis of Disk Arrays using Fuzzy Logic
	3.1 Markov Model of a Disk Array
	3.2 Performability Model of Disk Arrays
	3.3 Results of the Fuzzy Performability Analysis of the E-Mail Server
	3.4 Conclusions

	Chapter 4: Fuzzy Control of Sparing for Disk Arrays
	4.1 Fundamental Models
	4.1.1Queuing System with Vacations (QSV)
	4.1.2 Disk Array Queuing Model
	4.1.3 Raid1 Rebuild Model
	4.1.4 Raid5 Rebuild Model

	4.2 Fuzzy Control of the Sparing Process
	4.2.1 Simulation and Results

	4.3 Neural-Fuzzy Algorithm for Sparing in RAID Systems
	4.3.1 Simulation and Results

	Chapter 5: Fuzzy Control of LV Snapshot Replication
	5.1 Background of Point-In-Time Copy Technologies
	5.1.1 Copy-on-Write (CoW)
	5.1.2 Redirect-on-Write (RoW)

	5.2 Modeling of the Copy-On-Write Snapshot
	5.2.1 Markov Chain Model of the Probability of a Snap
	5.2.2 Practical Snapshot probability equation
	5.2.3 Model of the CoW process
	5.2.4 Model of the proposed CoW-RoW process

	5.3 Snapshot Fuzzy Control
	5.3.1 Purpose and Rationale of the Snapshot Fuzzy Controller
	5.3.2 High Level Modeling of the Snapshot Fuzzy Controller
	5.3.3 Decision Logic
	5.3.4 Estimation and fuzzification of the probability of a snap
	5.3.5 Control Error computation and fuzzification
	5.3.6 Rule Base to obtain uth
	5.3.7 Stability of the Fuzzy Controller

	5.4 Experimental Results
	5.5 Conclusions

	Chapter 6: T2 Fuzzy Control of Logical Volume Cloning Replication
	6.1 Interval Type 2 Fuzzy Sets
	6.2 Type 2 Fuzzy Logic Controllers (T2 FLCs)
	6.3 Logical Volume (LV) Cloning Replication
	6.4 Queuing Description of the LV Cloning Replication
	6.5 Mathematical Description of the LV Cloning Replication
	6.6 Local LV Cloning Replication Type-2 Fuzzy Logic Controller
	6.6.1 Purpose of the LV Cloning T2 Fuzzy Controller
	6.6.2 Description of the LV Cloning T2 Fuzzy Controller
	6.6.3 LV Cloning Controller Fuzzification
	6.6.4 Rule Base to obtain Tu
	6.6.5 Type Reduction (Defuzzification)
	6.6.6 Crisp delta of the cloning interarrival time

	6.7 Experimental Results
	6.7 Conclusions

	Chapter 7: Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	List of Publications
	Publications in Conferences
	Publications in Journals
	Publications in Progress
	Patents
	Patent Applications

