Improved Performability of Disk Arrays by the Use of Fuzzy Control

A Dissertation
Presented in Partial Fulfillment of the Requirements for the
Degree of Doctorate of Philosophy
with a
Major in Computer Science
in the
College of Graduate Studies
University of Idaho
by

Guillermo Navarro

Major Professor: Gregory Donohoe, Ph.D.
Committee Members: Milos Manic, Ph.D.; Axel Krings, Ph.D.; David Umberger, Ph.D.

Department Administrator: Frederick Sheldon, Ph.D.

November 2015

i

AUTHORIZATION TO SUBMIT DISSERTATION

This dissertation of Guillermo Navarro, submitted for the degree of Doctor of
Philosophy (Ph.D.) with a Major in Computer Science and titled "Improved Performability of
Disk Arrays by the Use of Fuzzy Control," has been reviewed in final form. Permission, as
indicated by the signatures and dates below, is now granted to submit final copies to the

College of Graduate Studies for approval.

Major Professor: Date:

Gregory Donohoe, Ph.D.

Committee Members: Date:

Axel Krings, Ph.D.

Date:
Milos Manic, Ph.D.
Date:
David Umberger, Ph.D.
Department
Administrator: Date:

Frederick Sheldon, Ph.D.

i1

ABSTRACT

Performability is the composite measure of performance and reliability. This measure is
a vital evaluation method for fault-tolerant systems that can undergo a graceful degradation of
performance in the presence of faults, allowing continued “normal” operation. Performability
analysis is the study of the performance of systems under non-optimal conditions. The non-
optimal conditions can be degraded, such as drive failure or with background tasks, such as
background logical volume copy. The performability study of disk arrays is the study of a
competitive challenge imposed to disk arrays. Now disk arrays are expected to guarantee low
user latencies even under self-repairable failure conditions such as a disk failure and/or in the
presence of background tasks such as data replication. Besides that expectation, the disk arrays
are also expected to repair themselves and finish background tasks as quickly as possible. The
two goals are opposing in nature. If the disk array allocates more of its resources to serve user
requests, the self-repair and the background tasks take longer to be completed. But if the disk
array allocates more of its resources to self-repair or the background tasks, the user requests
will suffer a performance impact in terms of higher latencies or lower throughputs. This is a
challenge that disk arrays have to meet in order to meet user expectations better. There is no
perfect response to this challenge. The solution is to propose responses that optimize the use of
the internal resources of a disk array. The problem of achieving the opposing goals is posed as
a control problem and that is tackled by applying fuzzy logic and control. This dissertation
makes two major contributions:
1) Performability analysis of disk arrays using fuzzy logic that provides us with a practical,
easy-to-use, numerical algorithm to achieve consistently high performability based on the
reliability metrics of a RAID disk group.
2) Fuzzy control approach to improve disk array performability that gives us a practical,
effective, and easily-updated means to schedule the execution of customer requests and
concurrent data protection tasks. This approach overcomes the lack of internal information of

components by using a rule-based approach instead of a detailed control model.

v

TABLE OF CONTENTS

Authorization to Submit DiSSErtationcccueeciseecsseecssnnecssnnecssnncssneesssnecsssencsssssenes ii
AbStract......ccceeerercsneiseecnnes iii
Table 0f CONLENLS......ccieeiniiiiiiiiiistensiinniniseiistecstesssesssessssessssssssnsssassssessssssssssssassssasssns iv
Table Of FIGUIES ..cvvueiieiiirniicscssnnicssssnnressssssnsessssssssssssssssessass viii
Table Of TADIES c.ucceeueeieiiiiiniiiiriitieniniensniesstecssnstessssecssssecssssesssssnessssssssssssssssssssssssses Xi
Chapter 1: Introduction 1
1.1 Performability of DiSk ATTaYS.......ccccuiiiiiiiieiieeieecieeeee e 1
1.2 Objective of this DiSSertation...........cccuieeriiieiiieeiiee et ree e 2
1.3 Assumptions of the DiSSEItationcccueeevuiieriieeiiieecieeeie e vee e 3
1.4 Contributions of this DiSSETtationcccccevuerierierieniienieieeieseee e 4
1.5 Organization of this DiSSEItationcccueeruieeiiierieeiiierie et seeeree e 4
Chapter 2: Background on disk arrays, performability and fuzzy control 6
2.1 DISK ATTAYS ..etieniieeiieeiie ettt ettt ettt e et et et esate et esseeeabeesateenbeeneee 6
2.1.1 Disk Array ATChITECTUIEccvveivieiieeieeciie ettt ettt seae e seaeeaeesenes 8
2.1.2 RAID LEVEIS...uiiiiiiieiieieeiieeieeee ettt sttt sttt 10
2.1.3 Storage VirtualiZation............eeeveeruieeieeniienieeieeeee e eveeaeeeneesee e eseesnneenns 12
2.1.4 Data Protection POIICIEScccueeiuiiiiieiienieeiieee e 14
2.1.5 Sparing Data Protection POIICYccccevviiriiiiiiniiniiiiiicneccccccecee 15
2.1.6 Point-In-Time Data Protection POliCYccceveviveviiiiniiiiiieeiee e 16
2.1.7 Snapshot Data Protection POIICYccccevviiiiiriiiiniieeiie e 17
2.1.8 Cloning Data Protection POIICYcccceeieriiiiiniiniiiiiicnccnccceecee 18
2.1.9 Disk Array Performability and Data Protection Policiescccceceevennnenee. 19

2.2 Performabilityc.ceeviieiiiieiiie et et e e et e e e e e 20
2.2.1 Performability of DiSk ATTaYScceouviiriiiiiiiieeriie e 20
2.2.2 Fundamental CONCEPLSc.eevvieriieriieiieeieeiee ettt ettt e e s ene 21
2.2.3 Performability Evaluations...........cccocueeviiniiiiiieniieiieceeeee e 23
2.2.4 Performability MEASUIESccccvieririeriieeeiieeeieeeeieeeereeeveeesereeeereeseaee e 24
2.2.5 Performability EXample........ccccovvieeiiiiiiiiiiecceee e 25

2.3 FUZZY CONLIOL.....iiiiiiiiiiiiieie ettt ettt ettt e e e eneeens 30

2.3.1 Fuzzy Numbers and ArithmetiC...........cccueviieviieniieiieiieeiieeie e 30

2.3.2 Justification for Fuzzy Control...........ccccoeviieiiiniiieiieiieeieceeeeee e 33
2.3.3 Fuzzy Logic Controller..........cccveriiieiieiiieeiieiieee et 34
2.3.4 Fuzzy Logic Controller: FUzzifier........c.ccooovieviiiieiii e, 34
2.3.5 Fuzzy Logic Controller: Rule Basecccvvvviiieviiiiiciieecie e 35
2.3.6 Fuzzy Logic Controller: Inference Engine...........cccceevveevieniienieniieenieenee, 37
2.3.7 Fuzzy Logic Controller: Defuzzifierc.ccccuevviieriiriieiecieeiecieeee, 38
Chapter 3: Performability Analysis of Disk Arrays using Fuzzy Logicccc....... 39
3.1 Markov Model of @ DisSk ATTaY.......cccouveeiiieeiiieeieeeiieeee e 39
3.2 Performability Model of Disk AITAYScccceecvieriieiiieiieeieeiie et 44
3.3 Results of the Fuzzy Performability Analysis of the E-Mail Server..................... 48
3.4 CONCIUSIONS ...ttt ettt ettt et ettt et e st e b te et e e btesateesbeesnbeesseesnseesneeens 54
Chapter 4: Fuzzy Control of Sparing for Disk Arrays........eeeeeensennsnecsencsnennns 55
4.1 Fundamental MOEIScc.oooiiiiiiiiiiiieieeececeee s 55
4.1.1Queuing System with Vacations (QSV).....cccceeviieviiriieiienieeeeeie e 55
4.1.2 Disk Array Queuing Modelcooiiiiiiiiiiiiee e 56
4.1.3 Raidl Rebuild Modelcccoooiiiiiiiieee e 59
4.1.4 Raid5 Rebuild Modelcoooiiiiiiiiiiiieeeeeee e 62

4.2 Fuzzy Control of the Sparing ProCessc.covuveriiieriieeiiieeiieeieeeee e 67
4.2.1 Simulation and ReSults...........ccceeriiiiiiiiiiiiee e 72

4.3 Neural-Fuzzy Algorithm for Sparing in RAID Systems........cccccceeeeveriieneenennne. 76
4.3.1 Simulation and ReSultS..........cooeiiiiiiiiiiiiie e 80
Chapter 5: Fuzzy Control of LV Snapshot Replicationcueeneecseiseecsnensnnenns 84
5.1 Background of Point-In-Time Copy Technologies...........ccccocevieneriiinicnennennens 85
5.1.1 Copy-0n-WIite (COW)...coueiriiiiiiiiiniieienieeteeeit ettt 85
5.1.2 Redirect-on-Write (ROW).....cociiieiiieeiieeeeeeeeee e e 87

5.2 Modeling of the Copy-On-Write Snapshotcccccueeeeiieiiiieiiiieeieeeee e 88
5.2.1 Markov Chain Model of the Probability of a Snapccceeceveeiienieiiiennnnn 88
5.2.2 Practical Snapshot probability equationcccceeeueevieeiiienieeiieieeieeee 90
5.2.3 Model 0f the COW PIOCESS ...ccvviieirieeiiieeiieeeieeeeiieeeieeesreeeereeesaeessnaeeeaeees 92
5.2.4 Model of the proposed COW-ROW Process........ccccueeveuveerrieenreeencieeenieesnnen. 95

5.3 Snapshot FUzzy Controlccccuieiiiiiiiiiiciieie ettt 96

vi

5.3.1 Purpose and Rationale of the Snapshot Fuzzy Controller................ccoc......... 96
5.3.2 High Level Modeling of the Snapshot Fuzzy Controllerccceun..... 96
5.3.3 DECISION LOZIC...ccciuiiiiiiiieiiieecieeeiie ettt te st sve e e eesere e e eaeeenaeeenneeas 98
5.3.4 Estimation and fuzzification of the probability of a snap...........cccceeeuveenneen. 98
5.3.5 Control Error computation and fuzzificationccceecvevieeiienieinieennnne. 99
5.3.6 Rule Base t0 ODLAIN Uthe.veeuvereeerierieniieiieieniiesieeeeieencee e 101
5.3.7 Stability of the Fuzzy Controllercccouveviiieeciiieeieecee e 102

5.4 Experimental RESUILScoocuiiiiiiieiiecciie e 103
5.5 CONCIUSIONS ...ttt sttt sttt sae e 105
Chapter 6: T2 Fuzzy Control of Logical Volume Cloning Replication 106
6.1 Interval Type 2 FUZZY SetS.....ccccoieviiriiniiiieiiiecenceeeeee e 107
6.2 Type 2 Fuzzy Logic Controllers (T2 FLCS) ...cccoeviiiiiiiieeiiesieeeeeeeeee e 108
6.3 Logical Volume (LV) Cloning Replicationcccccceeveeerieenieeciienieeieeneeennenn 110
6.4 Queuing Description of the LV Cloning Replicationcccceevverieeieennneennen. 113
6.5 Mathematical Description of the LV Cloning Replicationcccceeveenennnnen. 115
6.6 Local LV Cloning Replication Type-2 Fuzzy Logic Controller......................... 119
6.6.1 Purpose of the LV Cloning T2 Fuzzy Controller...........ccecoveviievrienreennnn. 119
6.6.2 Description of the LV Cloning T2 Fuzzy Controllercccceeeveernnnnnee. 120
6.6.3 LV Cloning Controller Fuzzificationcccceeceeveeiiniiinennincnicenne 122
6.6.4 Rule Base t0 0btain Tu.....cooeeeiieiiiiiieiieciee et 125
6.6.5 Type Reduction (Defuzzification)ccceeeeiieeniieeniieeeiieciee e 126
6.6.6 Crisp delta of the cloning interarrival time...........ccccoecvveevciieiniieenieeeieeee 127

6.7 Experimental RESUILScccooiiiiiiiiniiiiiiiice e 127
6.7 CONCIUSIONS ...ttt et sttt e 130
Chapter 7: Conclusions and Future Work 131
7.1 CONCIUSIONS ...ttt ettt et ettt e sbe e et e sae e s abe e bt e e e nbeesareas 131
T2 FULUIE WOTK ..ottt 131
References.......cueevueesnecsunennee 132
List of Publications .137
Publications 1n CONTEIENCESccvuieriiiiiiiiieiie et 137

Publications in Journals

Publications 1N PTOGIESScccuvieiiiiieeiieiieeieeiie ettt ettt et saae e ee

Patents

Patent APPLICALIONS ...c.viieeeiiieiiieeiiee ettt e e ste e e e e et e e e tae e s e e e s nreeesaseees

vil

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

viil

TABLE OF FIGURES
2.1: Examples of modern disk arraysc.cccccuveeviieeiiieciieeeee e 6
2.2: Storage as a service: typical SCENATIOccueevveeriieriieeiieiie et eeiie e sere e 7
2.3: Block Diagram of a Modern Disk Array........ccccceevveeciienieeiiienieeieenie e 9
2.4: Storage Virtualization: LV logical and physical implementation................... 13
2.5: Sparing data protection policy €Xamplec..ccccuveeviieeeiieeniie e 16
2.6: Snapshot data protection policy eXample..........ccoeeieriieriieniiieiienieeieeeie e 17
2.7: Cloning data protection policy eXample..........ccceevieriieriieniieeiienieeieesie e 19
2.8: Revenue per month for performability exampleccccveeeevieeiciiriniieenieenee, 29
2.9: Loss in revenue per month for performability example............cccceeiieniennen. 29
2.10: Triangular fuzzy number A=/X/[, XC, XR]cc.ccccvvviireiiaiiiiiieiieeieeieeeie e 31
2.11: Triangular fuzzy number A=[x;, x., xx] and its discretization 32
2.12: Triangular fuzzy number SEVEN=[4.5,7,9.5]ccceviiiiniiniiiniieeieeeee 32
2.13: Fuzzy Logic Controller (FLC) model with error computation...................... 34
2.14: Fuzzification of @ value of €IT0r €cccevvevieiiiiieiiccecee e 35
3.1: Markov Reward Model of a RAID disk group........cccceeeveeviieriieniienieeiieeenee, 40
3.2: Fuzzy number used for fuzzy performability estimationccceeevvennennne. 50
3.3: Family of curves for fuzzy reliability RAIDTcccooiiiiiiiie 50
3.4: Family of curves for fuzzy reliability RAIDScccoooiiiiiiiiie 51
3.5: Family of curves for fuzzy performability RAID1 in [O/sccccouvveennnnnne. 52
3.6: Family of curves for fuzzy performability RAIDS in [O/sccccouvveennnnnnne. 52
3.7: Family of curves for fuzzy performability in Users (mailboxes) R1 53
3.8: Family of curves for fuzzy performability in Users (mailboxes) RS 53
4.1: Queuing System with Vacations (QSV).....ccocuveeriieeiiieeieeeie e 56
4.2: Queuing system of controller and disks.cccccuveeiiieniiiiniiiirie e 57
4.3: Disk Position Times measured for Random Readsccccooevveniininiennenne. 58
4.4: Disk Position Times Measured..........ccoeevuerierierienieneiieneeneeienieese e 59
4.5: RAIDI disk array data 1ayout..........cccceeeiiieeiiieeiieecieeeee e 60
4.6: Sparing process to replace failed disk D-1.......ccccoeviiiiiiiiiniiiiee e 61
4.7: RAIDS disk array data 1ayout..........ceeeeeiiiiiiiiiieeiieeeeee et 63
4.8: RAIDS disk sparing process to replace failed diskccccoeevieniiiiiinnnnnn. 64

file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971360
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971361
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971362
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971363
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971364
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971365
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971366
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971368
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971367
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971369
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971370
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971371
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971372
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971373
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971374
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971376
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971375
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971377
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971378
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971379
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971380
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971381
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971382
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971383
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971384
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971385
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971386
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971387
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971388
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971389

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

X

4.9: Fuzzy controller of the QSV for Sparing...........ccoeecvevvieeiiencieeiienieeieesre e 68
4.10: Membership functions for the normalized values.............ccccccveviieiiienieenen. 69
4.11: User request latency comparison for 1,000 10/s with fuzzy control............ 73
4.12: User request latency comparison for 2,500 10/s with fuzzy control............ 73
4.13: User request latency comparison for 5,000 IO/s with fuzzy control............ 74
4.14: User request latency comparison for 7,500 10/s with fuzzy control............. 75
4.15: Neural-Fuzzy controller of the QSV for sparing..........cccceeevveerciveivveeenneennne 76
4.16: Membership functions for the normalized parameters............ccceeeveeennrennee. 78
4.17: Neural net layers of the Neural-Fuzzy controller for sparing 78
4.18: User request latency comparison for 1,000 10/s with neural-fuzzy control 80

4.19: User request latency comparison for 2,000 10/s with neural-fuzzy control . 81
4.20: User request latency comparison for 4,000 10/s with neural-fuzzy control . 82
4.21: User request latency comparison for 8,000 10/s with neural-fuzzy control . 83
5.1: Snapshot right after Creation...........c.eecveevieeiieriiecieeeece e e 85
5.2: Snapshot COPY-0N-WIIE PIOCESS.cecueerurieriierieertierieerieeeteesieeeteesieeseeesaeeene 86
5.3: Snapshot after COPY-0N-WIILEc.eerieriiiriiiiiieie et 86
5.4: User data write after redir€Ct-0n-WIiteceoerriereerieeiienienieeie e 87
5.5: Markov chain of copy-on-write Snapshot..........ccceecvveeriiieniieeniiie e 89
5.6: Graph of the psnap equation predicting the fraction of unsnapped blocks........ 92
5.7: User writes arrival rate and arrival rate caused by snapsc..ccoceeververeennns 93
5.8: Modified COW-ROW PIrOCESS.......eeeviiiiriiieniieeriieeeiee e s e 95
5.9: Snapshot fuzzy controller..........ccuveviiiiriiiinieeeee e 97
5.10: Membership functions for € and A€cccceevieniieiieniieieeeeeee e 100
5.11: Comparison of latency at 3,000 10/s, 100% User Writescccceerueerunenn. 103
5.12: Comparison of latency at 5,000 10/s, 50% User Writescccceeerveerrunennne 104
6.1: Example of Type-2 FUZZY Set.......ccooiieeiiiiiiiieeeeee e 107
6.2: Block diagram of an interval type-2 fuzzy controller (IT2FLC)................... 109
6.3: Example of replication of a source volume.............ccceevieeiienienciienieeeenee. 111
6.4: Example of a CoW during the replication of a source volume...................... 113
6.5: Queueing scheme of LV Cloning with Snapshot...........ccccoeeevvviiiiiiieinnen. 114
6.6: Graph of the f.(¢) equation predicting the fraction of cloned blocks............. 116

file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971390
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971391
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971393
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971392
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971394
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971395
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971396
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971397
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971398
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971399
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971400
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971401
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971402
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971403
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971405
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971404
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971406
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971407
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971408
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971409
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971410
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971411
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971412
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971413
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971414
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971415
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971416
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971417
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971418
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971419
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971420

Fig. 6.7: Graph of the f;(?) equation predicting the fraction of snapped blocks........... 117
Fig. 6.8: Graph of the f,(¢) equation predicting the fraction of replicated blocks........ 119
Fig. 6.9: Cloning type-2 fuzzy controllercceeeviieeiiieeiieeie e 120
Fig. 6.10: T2 Fuzzy values Zen and Zaen «eveeeeeveeesveeeiieeeiieeeiieeeiieesreeesveeeseveeennseeenens 123
Fig. 6.11: T2 Fuzzy values (a) Nen, Pen and (b) Naen. Paen.veeeveeveeriieviieiinieiicieeien, 124
Fig. 6.12: Cloning of an LV with no fuzzy controlccccovieviiiinininninieneee 128

Fig. 6.13: Cloning of an LV with T2 fuzzy control.............cccceeveriiiniieenieeiee e 129

file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971421
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971422
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971423
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971424
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971425
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971426
file:///C:/files/phd/dissertation/Navarro_Dissertation_Approved.docx%23_Toc434971427

Table 2.1:
Table 2.2:
Table 2.2:
Table 3.1:
Table 3.2:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 5.1:
Table 6.1:

xi

TABLE OF TABLES
RAID Levels and Number of disk failures tolerated...........cccceeveeniennennnee. 11
Comparison of data protection POliCIESccceevieriiieriieeiiienieeieesre e 15
Example of tabular representation of a TSK controller............c.cccoeruennnenne. 37
User profiles and corresponding usage patternscceeeeveeerveeerveeerveeenne 47
Algorithm to compute the performability of disk arraycccceeveeennennnne. 49
Rule base of the fuzzy control of Sparingccccceeveeveiieiieniiienieeieeeeee, 71
Comparison of results of the fuzzy control of sparingcccceevuveenennnee. 75
Rule base Neural-Fuzzy controller for Sparing...........ccccoeeveeviveenieeenneenne, 79
Comparison of results of the neural-fuzzy control of sparing...................... 83
Rule base for Snapshot Fuzzy Controller............ccceeevieriiiiiienieeiienieenen, 102

Rule base for LV Cloning Type-2 Fuzzy Controller..........c.cccceeevvenvennnenn. 126

CHAPTER 1: INTRODUCTION

1.1 PERFORMABILITY OF DISK ARRAYS

Fault-tolerant systems are expected to serve their purpose even in the presence of
failures. Reliability analysis is the study of the estimation of how likely is a failure to occur in
a fault-tolerant system. Performability was proposed over three decades ago as an answer to
the question “what is the level of effectiveness of a system considering the likeliness of
failures?’ In other words, “what is the performance of a system based on its reliability”.
Performability answers this question by the unification of performance and reliability analysis
applied to fault-tolerant systems.

Performability was proposed and defined by Meyer [Meyer 78a] as “the unification of
performance and reliability.” Meyer presented a performability evaluation of fault-tolerant
computers for aircraft control [Meyer 80a] as one the first examples of performability
evaluations published. Based on Meyer’s definition of performability, other authors published
performability analysis of different fault-tolerant systems such as disk arrays [Islam
93a][Barnett 98a].

The concept of performability was extended by Zhang et al. [Zhang 06a] to consider
background tasks in addition to failure conditions. Zhang in [Zhang 06a] presented a
performability evaluation of a disk array under the presence of background jobs, i.e., tasks the
disk array executes with no user intervention and have a soft deadline. The background jobs
are independent of the user jobs, i.e., user reads and writes.

Redundant arrays of inexpensive disk (RAID) [Patterson 88a] systems were proposed
with the goal of avoiding the loss of data stored on disks and increasing the throughput of a
group of disks. The research in RAID systems was jumpstarted by the seminal paper by
Patterson in 1988.

Disk arrays are fundamentally RAID systems but with an advanced set of features
added over the years since the late 1980s. One example of such features is local and remote
logical volume copy between disk arrays. Another example is intelligent data caching
schemes between different storage media such as Solid State Drives (SSD) and magnetic Hard
Disk Drives (HDD). Disk arrays are fault-tolerant systems that are expected to deliver the

storage and retrieval of data even under the presence of failures or background jobs.

The presence of failures or background jobs can be considered a non-optimal state of a
disk array from the point of view of a user issuing read/write requests. Both failures and
background jobs can be then considered non-optimal conditions. The optimal state of a disk
array can be defined as the state in which the disk array has no failure and background jobs
and can dedicate the resources (CPU, memory, IO ports, Hard Disk Drives) exclusively to the
service of user reads and writes. Based on Meyer’s original definition of performability and
Zhang’s extension of Meyer’s definition, we will define performability of disk arrays as a
measure of the probability of user requests to achieve a performance level under non-optimal

conditions. A more precise definition of performability is presented in section 2.2.

1.2 OBJECTIVE OF THIS DISSERTATION

As part of the progress made in the development of new disk array features, the
challenges imposed to disk arrays are greater. Now disk arrays are expected to guarantee low
latencies (response times) and high throughputs (in I/O requests per second) for user requests
(read/writes) even under self-repairable failure conditions such as a disk failure and/or in the
presence of background tasks such as data replication. Besides that expectation, the disk
arrays are also expected to repair themselves and finish background tasks as quickly as
possible. The two goals are opposing in nature. If the disk array allocates more of its
resources to serve user requests, the self-repair and the background tasks take longer to be
completed. But if the disk array allocates more of its resources to self-repair or the
background tasks, the user requests will suffer a performance impact in terms of higher
latencies or lower throughputs. Clearly, there is a challenge for disk arrays to provide the best
performability.

The research reported in this dissertation seeks to improve the performability of disk
arrays by:

1) Proposing an algorithm for estimating the performability of disk arrays considering
failure rates. The algorithm makes use of fuzzy logic to deal with the uncertainty of some of
the parameters.

2) Proposing control strategies based on the use of fuzzy logic and control. The fuzzy
control will be used to control the execution of background tasks based on external

requirements such as desired latency of user requests and time to complete background tasks.

The purpose of the fuzzy logic as well as fuzzy control solutions is to minimize the
performance impact of the background jobs on the user request latency and throughput. The
fuzzy logic and fuzzy control approach was chosen because it overcomes the limitation of the
lack of internal information of components such as disk drives.

There is no perfect response to the disk array performability challenge. The solution is
to propose responses that optimize the use of the internal resources of a disk array. The
optimization is understood in this dissertation as the balancing of the use of resources such as
Hard Disk Drives (HDDs), to achieve the goal of accomplishing mutually exclusive goals.
The balancing of the resources to provide an optimal response to competing processes
requires considering a number of parameters such as disk latencies, disk array controller
latencies, bandwidth of the communication ports, data transfer sizes, memory caching
algorithms, RAID levels, data access patterns such as random or sequential, type of data
accesses (read or writes), and queue lengths. This list of parameters is not a comprehensive
list of all the parameters to consider for the optimization problem, but it gives an idea that the
problem can have a dimensionality that makes it complex. This is the challenge that this

dissertation approaches by proposing fuzzy control schemes for disk array performability.

1.3 ASSUMPTIONS OF THE DISSERTATION

Certain assumptions are made throughout this dissertation. The first is that no cache
memory is considered when proposing the performability solutions for the disk array. The
disk array will be considered to be in write-through mode, i.e., the user writes will go directly
to the disks. The second assumption is that the bottlenecks can be the hard disks or the disk
array controller. Other components, such as front-end and back-end communication links
(Fibre Channel, Serial Attached SCSI (SAS), and Ethernet) are not considered a bottleneck
for the purposes of this study.

There is no intention in this dissertation to do an exhaustive modeling of disk array
components. In other words, it is not the intention to present comprehensive analysis of disk
drive behavior, the disk array controller board or the communication links. There is no
intention to study the different kinds and patterns of user data workloads applied to disk
arrays. The type of user data workload used for this study will be the On-line Transaction

Processing (OLTP) workloads, the kind of workload produced by databases such Oracle ™.

The OLTP workload is dominated by small transfer sizes (8KiB or 16KiB) and random

accesses over virtual disks (VDs), which are also referred to as logical volumes (LVs).

1.4 CONTRIBUTIONS OF THIS DISSERTATION

This dissertation presents two major contributions:

1) First, this dissertation contributes in the performability analysis of disk arrays using
fuzzy logic that provides us with a practical, easy-to-use, numerical algorithm to achieve
consistently high performability based on the reliability metrics of a RAID disk group.

2) Second, this dissertation contributes by proposing a fuzzy control approach to
improve disk array performability that gives us a practical, effective, and easily-updated
means to schedule the execution of customer requests and concurrent data protection tasks.
This approach overcomes the lack of internal information of components such as disk drives
by using a rule-based approach instead of a detailed control model. The fuzzy control schemes
presented in this dissertation have resulted in patents awarded by the United States Patent and

Trademark Office (USPTO) [US Patents 8,201,018, 8,650,145, and 9,063,835].

1.5 ORGANIZATION OF THIS DISSERTATION

Chapter 2 is a background on disk arrays, performability and fuzzy control. The
description of a generic disk array and the current technologies used for disk arrays are
provided as well as an introduction to the data protection policies used by disk arrays. Also,
the fundamental concept of virtualization as understood for disk arrays is explained. The
performability concept is explained in detail and an example is provided. Finally,
fundamentals of fuzzy control theory are provided for the reader.

Chapter 3 tackles the disk array performability analysis problem by the use of fuzzy
performability applied to an e-mail server. Chapter 3 presents contribution 1) mentioned in
the previous section, i.e., the estimation of performability of disk arrays by using a fuzzy
numerical method. The application of this algorithm in the sizing of an e-mail server shows
how this numerical method to estimate performability can be applied to size IT services such
as Email.

Chapter 4 approaches the problem applied to the sparing (rebuild) and a solution using
fuzzy logic control and neural-fuzzy control. This chapter makes the contribution of new

patented fuzzy control schemes that provide better performability of disk arrays when

reconstructing data redundancy (sparing) due to a disk failure. This performability is
improved by reducing the sparing time by half while at the same time ensuring a proper
latency of user requests (reads and writes) under the presence of the background sparing
process.

Chapter 5 tackles the problem of point-in-time copy of logical volume (LV) snapshots
solved using fuzzy logic. This problem is addressed by proposing a novel patented scheme to
deal with the Copy-On-Write problem along with a novel fuzzy control scheme that ensures
that the latency of user requests will not be as impacted by the snapshot copy of LVs and the
same time it guarantees the progress of the LV snapshots.

Chapter 6 proposes a solution to the problem of point-in-time copy of LV cloning
replication using fuzzy logic. This problem is managed by proposing a new patented scheme
that throttles the rate of cloning replication when the user latency is high but speeds up the
rate of replication when the user latency is low. This balance between goals is achieved by
using a fuzzy controller scheme that balances the need of a low latency of user requests vs. a
quick LV cloning replication.

Chapters 4, 5 and 6 present the fuzzy control approaches related to contribution 2)
mentioned in the previous section. These three chapters show how the fuzzy control approach
can be practically applied overcoming the lack of internal information of components such as
disk drives. The purpose of the fuzzy control schemes in these three chapters is to improve the

latency of the user requests (reads and writes) in the presence of a background job.

CHAPTER 2: BACKGROUND ON DISK ARRAYS, PERFORMABILITY AND FUZZY

CONTROL

This chapter provides an introduction to the three areas of knowledge that compose this

dissertation: disk array technology, performability, and fuzzy control.

2.1 DISK ARRAYS

Disk array is the term used for the Redundant Array of Independent Disks (RAID)
with additional features that have been added to the original RAID concept. The concept of
RAID is first patented by N. K. Ouchi in 1978 (US Patent 4,092,732). Disk arrays are now an
essential part of the IT centers. The Storage Networking Industry Association (SNIA)
http://www.snia.org is an organization of member companies with the mission to promote
standards, technologies and educational services related to storage technologies. The SNIA
defines a disk array as a set of disks from one or more commonly accessible disk subsystems,
combined with a body of control software. The control sofiware presents the disks' storage
capacity to hosts as one or more virtual disks. The term virtual disk is defined as the disk
array object that most closely resembles a physical disk from the operating environment’s

point of view [SNIA 13a]. The term logical volume is also used as a synonym of virtual disk.

(a) HP 3PAR 7400 (b) Ace Powerworks 466

Fig. 2.1: Examples of modern disk arrays

Disk arrays are fault tolerant since they can continue to operate under the failure of a
drive or a controller. Fig. 2.1 shows two pictures of modern disk arrays. Disk arrays provide
not only the means to store huge amounts of data, but means to ensure the survival of the data
in case of failures or catastrophes. The disk array business market share was US $22.3 billion
in 2012 [Gartner 13a]. For example, Facebook, the social networking service, use disk arrays

to store user profiles. The user profiles contain text, picture, audio and video. As of the end of

2013, Facebook had over 240 billion photos in disk arrays and 350 million photos were added
per day. This translated into 7 Petabytes of new storage per day.

The concept of redundant arrays of inexpensive disks (RAID) was first published in a
peer-reviewed journal by Patterson [Patterson 88a] to improve the dependability and
performance of storage systems [Patterson 94a]. The RAID systems have fault tolerance to
disk failures by storing redundant copies of the user data (RAID1) or by using parity as a
means to rebuild the data in case of disk failure. When a disk fails, the disk array loses the
data redundancy of the data on the failed disk. The process of reconstructing the data
redundancy is known as rebuild [Menon 94a] or sparing [Thomasian 97a]. Issues related to
reliability have been researched before [Schulze 89a], [Burkhard 93a], [Ganger 94a]. The
performance under optimal conditions has been studied before [Lee 93a], [Catania 95a],
[Schwarz 92a], [Varki 03a]. The performance under degraded conditions and performability
estimation has been researched before as well [Islam 93a], [Muntz 90a], [Reddy 91a],
[Thomasian 97a], [Barnett 98a].

Computer
Host

Disk Array

Fig. 2.2: Storage as a service: typical scenario

Disk arrays provide storage service by two basic data transfer operations: user reads
and user writes. Users send read or writes requests through the computer host, as shown in
Fig. 2.2. The computer host relays the requests for data (read) and to save data (write). The
two most important performance metrics of the Reads/Writes are throughput and latency. The
reads and writes have other attributes such as data transfer size. The number of data transfer
operations (reads or writes) per unit of time is the throughput, usually measured in
requests/second. The definition of throughput by the SNIA is the number of I/O requests
satisfied per unit time. The throughput is expressed in I/O requests/second (10/s), where a

request is an application request to a storage subsystem to perform a read or write operation.

The time it takes for a request to be satisfied is the latency, usually measured in milliseconds.
The definition of latency proposed by the SNIA is synonym for 1/0O request execution time, the
time between the making of an 1/O request and completion of the request’s execution. The
term response time is used in the Storage community as a synonym for latency. For this
dissertation, both terms will be used. Another attribute of a user request is the transfer size,

which is measured in Kibibytes (KiB), 1024 bytes.

2.1.1 DISK ARRAY ARCHITECTURE

A modern disk array is basically composed of two main sections: the controllers and
the array of disks. The disks used by disk arrays are most commonly hard disk drives (HDDs)
or solid state drives (SSDs). Disk arrays achieve fault tolerant capability by the use of
redundancy. The number of controllers of a fault tolerant disk array is at least two. The
minimum number of drives varies from product to product but is usually at least eight HDDs.
Fig. 2.3 shows the basic block diagram of a disk array.

The disks store the user data using the controller as the link between the storage
provided by the drives and the users of the storage space. The disks are installed in specially
designed enclosures (disk enclosures) that hold a number of disks, e.g. 20, that have
connectors and electronic circuitry to allow all disks in the disk enclosure to be “visible”
(accessible) and communicate with the disk array controllers. In modern disk arrays, the disk
enclosures connect to the disk array controllers usually through Fibre Channel (FC) or Serial-
Attached SCSI (SAS) interfaces.

The controllers provide three essential functions: 1) provide virtual storage capacity to
computer systems; 2) interface with computer systems and 3) provide data redundancy so data
can be recovered in the event of a disk failure. The first essential function of presenting the
virtual storage capacity means that the capacity of all disks combined is presented as one
single big capacity. In other words, the disk array controllers abstract out all the physical
details of the disk configuration such as number and storage capacity of the disks, and present
a logical combined storage capacity of all disks. For example, if a user has a disk array with
20 disks with 300GB of capacity each, the disk array controller may present a single 20 x
300GB = 6,000GB capacity to the users. This allows users of the disk array to allocate

capacity easily by leaving all decisions about the physical details (which disks and sectors

within the drives to use) up to the controllers. The virtual storage capacity depends on the
RAID level. This will be explained in subsection 2.1.2.

The disk array controllers also perform the essential function of interfacing with the
computer systems, e.g., Windows or Linux, that make use of the virtual storage capacity
provided by the disk array. The most common communication interfaces used by the

controllers are FC and Internet SCSI (iSCSI). The communication ports used by the

Disk Encl 1

rronTEno | DISKARRAY CONTROLLER 1 isk Enclosure

- I/O PORTS READ-ONLY MEMORY Back-End Port 1

Q Front-End Port 1 RTOS stored here (FC, SAS, SATA)

3 B FC, iSCSI)

2Z (FC, Back-End Port 2

S Front-End Port 2 (FC, SAS, SATA)

es (FC, iSCSl) CcPU °

Q.

o [J []

a g ° °

2e .) MEMORY (RAM) Back-End Port E

< 9 Front-End Port F T l (FC, SAS, SATA)

5 FC,isCSI

£ () 110 PORTS BACK-END :
Controller-to-Controller 1/0 PORTS Disk Enclosure 2

Links (PCI, FC)

Controller-to-Controller
Links (PCI, FC)

'
[]
[]
[]
I/O PORTS BACK-END
FRONT-END 11 /O PORTS
/0 PORTS MEMORY (RAM) »| Back-End Port 1
Front-End Port 1 (FC, SAS, SATA)
:I (FC, iSCSI) Back-End Port 2 .
[]

Front-End Port 2 CPU (FC, SAS, SATA)
(FC, fCSD : Disk Enclosure E
J
: READ-ONLY MEMORY Back-End Port E |g— .
RTOS stored here (FC, SAS, SATA)
Front-End Port F

Front-End ports connected
to a computer host

_T (FC.i5CS)__| pjsk ARRAY CONTROLLER 2

Acronyms:
RTOS - Real Time Operating System
FC — Fibre Channel

D-0)

iSCSI — Internet Small Computer System Interface (SCSI) Ne = Number of disks per disk enclosure
SATA — Serial ATA (AT Attachment) E = Number of disk enclosures

SAS - Serial Attached SCSI D = Total number of disks

PCI — Peripheral Component Interconnect D=E*Ne

Fig. 2.3: Block Diagram of a Modern Disk Array
controllers to interface with the computer systems are referred to as the front-end I/0 ports.
The ports used to communicate with the disks (through the disk enclosures) are referred to as
back-end 1/O ports. The controllers communicate with each other most commonly using FC

or Peripheral Component Interconnect (PCI) interfaces.

10

The disk array controllers contain central processing unit (CPU) along with random
access memory (RAM) and read-only memory (ROM) to implement and execute the
algorithms that carry out the essential functions of the controllers and more features, such as

local replication.

2.1.2 RAID LEVELS

RAID systems make use of two orthogonal concepts: data striping across disks for
improved performance, and redundancy for improved reliability. Data striping allocates data
over multiple disks to make them appear as one single, large, fast disk. This allows multiple
I/Os to be serviced in parallel. Most of the redundant disk array organizations can be
distinguished based on two features: 1) the granularity of the data interleaving and 2) the
method and pattern in which the redundant information is computed and distributed across the
disk array [Patterson 94a].

The basic RAID levels that were introduced by Patterson, Gibson and Katz in
[Patterson 88a] are RAID1 through RAIDS. The term level is used to denote the method and
pattern used to maintain the redundancy of the data. There are very complete descriptions of
the RAID levels in [Shooman 03a] and [Patterson 07a]. In this section a basic presentation of
the RAID levels is given.

1. RAIDO — This level has no redundancy. The data is striped across the disks. This level is
not as used in practice.

2. RAIDI — This level implements redundancy by copying or mirroring data across drives.
The most common number of copies is two. This means that data is written to two disks.
When data is read, then either disk can be picked to provide the data. This RAID level is
used a lot in practice because it is simple and does not require any special parity
computation. The drawback of this RAID level is cost in terms of space efficiency; if two
copies of the data are stored, that reduces in half the available storage capacity for the
users to store data.

3. RAID2 — This level implements memory-style error correcting code. This RAID level is
practically not used in commercial disk arrays. It is mentioned here for completeness.

4. RAID3 — This is a bit-interleaved parity level. In other words, the parity is computed at
the bit level. Levels 3, 4 and 5 make use of the XOR function to compute parity [Shooman

11

03a]. The data is striped across a group of N disks including a parity disk. When reading
or writing, all N disks have to be read or written. This level has been used rarely in
practice

5. RAID4 — This is a block-interleaved parity level. The parity-bit code is applied at a block
level, e.g., 512 or 2048 byte-blocks. The parity bits are stored on a dedicated parity disk.
The fundamental difference between level 3 and 4 is that the data is interleaved between
disks at the sector level in 4 and at the bit level in 3.

6. RAIDS — This is a block-interleaved parity level, like level 4, but the parity blocks are
distributed across the disks. This level is widely used in practice by the disk array

companies such as EMC, IBM and Hewlett Packard.

Table 2.1: RAID Levels and Number of disk failures tolerated

RAID Level Disk failures tolerated and parity overhead for data striped
across G disks
0 | Non-redundant striped 0 failures and 0 parity disks (no overhead)
1 Mirrored 1 failure and G/2 disks
2 Memory-style ECC 1 failure and G/2 disks
3 Bit-interleaved parity 1 failure and 1 parity disk
4 | Block-interleaved parity 1 failure and 1 parity disk
5 | Block-interleaved parity 1 failure and 1 parity disk
6 | Block-interleaved parity 2 failures and 2 parity disks
computed in two ways

7. RAID6 — This is a block interleaved parity level, like level 5, but the two parity blocks are
computed instead of one as in level 5. The computation of two different independent
parity blocks allows the disk array to recover from two disk failures. This level is
becoming very widely used in practice as the size of disks increases.

Since the introduction of RAID systems in Patterson’s seminal paper in the late

eighties [Patterson 88a], disk arrays have been an active area of research. The analysis of the

12

reliability and the performance of the RAID systems and the different RAID levels have been
studied since then [Schulze 89a],[Patterson 94a],[Burkhard 93a],[Ganger 94a],[Patterson
07a],[Rezaul 93a],Barnett 98a].

2.1.3 STORAGE VIRTUALIZATION

This dissertation makes use of the virtual disk or logical volume concept, explained in
this section. The SNIA defines a virtual disk as a set of disk blocks presented to an operating
environment as a range of consecutively numbered logical blocks with disk-like storage and
1/0 semantics. The virtual disk is the disk array object that most closely resembles a physical
disk from the operating environment's viewpoint. For this dissertation, the term logical volume
will be used as a synonym of virtual disk.

Disk arrays store user data using a technique named storage virtualization. In order to
explain what storage virtualization is, we need to explain what a logical volume is in the
context of disk array technology.

The disk arrays combine the storage capacity of all the disks connected to the array in
one single capacity that is referred to as tofal capacity. The total capacity is usually in the
order of Terabytes (TB) or Petabytes (PB). Disk arrays are designed to share the total capacity
among different users and to allow the allocation of capacity in stages. The way these two
goals are accomplished is by the use of logical volumes. Logical volumes are partitions of the
total storage capacity offered by the disk array. For example, if the total storage capacity
offered by a disk array is 10 TB, a user may allocate only 1 TB for a logical volume and leave
all the other 9 TB available for some other time. This allows customers to save time because
the disk array only has to be create tables in memory for the actually allocated space, e.g.
1TB, but at the same time the disk array is prepared to grow those tables easily when more
space demanded, e.g. 2TB more. A logical volume is presented to a user as a set of
consecutive and individually addressable bytes. The number of bytes in a logical volume
depends on the size that the user allocated. Following the example of the 1 TB logical
volume, the disk array would allocate 2*° bytes for the user presented as one set of
consecutive bytes encapsulated in the 1 TB logical volume. This is known as the virtual disk

or logical volume presentation. In set form:

13

LVID:{blabza'--abS} (21)

where b is a byte and S is the total number of bytes allocated to the logical volume.
The ID is a unique identifier assigned to a logical volume. The /D can numerical or alpha-
numeric. Fig. 2.4 shows an example of the physical implementation of a logical volume using
RAIDI1 (R1).

The disk array presents the logical volume in a logical form, but the physical
allocation is different and depends on factors such as the RAID level to use, the number of

disks on which the logical volume will be stored, and the granularity of the physical

allocation.
|47 Logical Volume LVp 4;|
Logical View of the LV|p | b, | b, | ooe | bs | S = Number of bytes in LV
¢———Physical Volume PVip ———| db = data block
.) B = Number of data blocks in LV
Physical View (PVip) of the LV.D| db; | db, | coe | dbg |
B = Number of bytes in LV
B data block size
_ K v) ~5
Stﬂpﬁ 1_ db db’4 db, db’s dbp, db’p
Stripe 2 dbp2)+1 db’(pr2)+1 dbpp)+2 db’(pr2y+2 % db’p
Stripe 3 dbp+q db’pes dbp:2 db’p+z dbspp db’spp
] ° ° ° ° ° N\ .
. ° ° ° ° XX ° °
. ° ° ° ° ° °
___ \, -
Stripe (2*B)/D de»(D/2)+1 db’B—(D/2)+1 de.(D/g)+2 db'B.(D/2)+2 dbg db’s
\ disk1 disk2 /\ disk3 disk4 / \ disk D-1 diskD /
\ \

Physical allocation of the LV data blocks using a striped version of R1 redundancy using D disks
Fig. 2.4: Storage Virtualization: LV logical and physical implementation
The disk array keeps track of the allocated space and whether or not it has been
written to or moved from one disk to another. The tracking of this information is kept in
tables known as metadata. It is impractical to have the metadata keep track of the activity at
the byte level. As a consequence, the disk arrays keep data for logical volumes using a
minimum unit of allocation much bigger than a byte. This minimum unit of allocation will be
referred to as data block and its size varies in practice for different disk arrays. Typical data

block sizes in practice are 128KiB, 256KiB, 512KiB, 1MiB and sometimes bigger. The

14

number of data blocks B, to allocate to a logical volume depends on the size of the logical

volume, S, and the data block size, Sp.
B=S/S, (2.2)

The logical volume is allocated on the disks as a physical volume. The physical
volume contains the data blocks and the mirrored copies in the case of RAIDI or the parity
blocks in the case of RAID3, RAID4 and RAIDS. The transformation from logical to physical
volume depends on logical volume /D, the size of the data block Sy, the RAID level R, and
the number of disks in the RAID group or group size, G, e.g., two disks for RAID1.The PVip

is a function that maps a logical volume into a list of data blocks.
PV]D = (LVlDosvaLaG) (23)

The number of data blocks in the physical volume depends on the RAID level and the
group size G. The group size G determines the sequence of data and mirror or parity blocks
according to the number of disks G in the disk group. The example in Fig. 2.4 shows a
physical implementation of a logical volume using R1, and a group size of two. Since G = 2,
each data block has a mirrored copy on another drive. The physical volume transformation of

the logical volume is shown in Fig. 2.4 is

PVip = (LV;p, Ry,2,Sy) = {dby,dby,dby,db, ..., dby, dby} (2.4)

where each data block db; has its corresponding copy db ;.
The disk array has a total number of disks D. The physical volume is allocated across

all the D disks in groups of G disks.

2.1.4 DATA PROTECTION POLICIES

Data protection policies are the procedures a disk array executes to copy (replicate) the
data on a disk array to protect against data loss. The typical data protection policies are

sparing, snapshot and cloning (mirroring). Sparing is different from snapshot and cloning

15

because sparing has the goal of recovering the RAID redundancy in a disk group and is only
executed when a drive failure occurs. Snapshot and cloning have the goal of replicating
logical volumes at some point in time and are executed by user request, not because of a

failure. Table 2.2 shows a comparison of the data protection policies.

Table 2.2: Comparison of data protection policies

Purpose Time of Procedure used Data level
execution affected
Sparing | Reconstruct the When a drive The data that was RAID level
redundancy of data | failure occurs on the failed drive
in RAID disk group is read from the
surviving disks
Snapshot | Replicate the data On user request Copy only Logical
stored in a logical modified parts of volume
volume at some a source logical
point in time volume to a
backup logical
volume
Cloning | Replicate the data On user request Copy an entire Logical
stored in a logical source logical volume
volume at some volume to a
point in time backup logical
volume

2.1.5 SPARING DATA PROTECTION POLICY

Sparing is the data protection policy that is executed when a drive fails and the data on
the failing drive loses its RAID level redundancy. This policy restores the redundancy of the
data that was stored on the failing disk by copying the non-redundant data to the surviving
disks, therefore restoring the redundancy of that data. This policy operates at the RAID level,

1.e., this policy does not create new logical volumes, only ensures that all data blocks that lack

16

redundancy are copied so they have redundancy again according to their RAID level. Sparing
is also known as Rebuild. The SNIA defines rebuild as the regeneration and writing onto one
or more replacement disks of all of the user data and check data from a failed disk in a

mirrored or RAID array. In most arrays, a rebuild can occur while applications are accessing

g%ié User
=

IUser Reads & Writes

data on the array’s logical volumes.

Computer Host

User Reads & Writes

. DISK
Disk Arr ntroller
s ay Controlle ARRAY
- 3I 2 E!I) 3I - 3I s I >
- 10 1.3 13 14 P, r
-] B - B.. \E. J Paa B -
II:_ 3. ; By 385’ ; 34 : 3 :—1
- By | P. Y (% Ba: |/ B. |-
[P.. | B, 4 B, |« B |-
I I I I I
I * . . I c . I *
I M I . . I . I . I M
I * I . * I . I . I .
:4_ Bis :+ B Bis :4 Bis Iu Fia :__..
| DISK1 | DISK2 ¥ DISK3 | DISK4, DISK5 | SPAREDISK
| | | | | (replacing
| AN Yy ¥y v —»! failed disk 3)

Fig. 2.5: Sparing data protection policy example

Fig. 2.5 shows an example of a RAID 5 disk group with a group size of G =5 disks. In
this example the disk labeled “DISK 3” failed and the regeneration of the data that was stored
on the failed disk is being regenerated from the parity and data from the surviving four disks
of this disk group. The dotted lines show the copy of data from the surviving disks to the
spare disk. The copy of data to the spare disk recovers the RAID level redundancy lost by the
failed disk. The sparing process is executed in the background and therefore is considered a
background job. Chapter 4 presents a fuzzy control scheme for sparing and explains the

sparing process in more detail.

2.1.6 POINT-IN-TIME DATA PROTECTION POLICY

Disk arrays protect the data in logical volumes using a Point-In-Time (PIT) data
protection policy. The SNIA defines the Point-In-Time copy as a fully usable copy of a

defined collection of data that contains an image of the data as it appeared at a single instant

17

in time. A PIT copy is considered to have logically occurred at that point in time, but
implementations may perform part or all of the copy at other times (e.g., via database log
replay or rollback) as long as the result is a consistent copy of the data as it appeared at that
point in time. Implementations may restrict point in time copies to be read-only or may permit
subsequent writes to the copy. The snapshot and cloning data protection policies are PIT data

protection policies that are now standard features of disk arrays.

2.1.7 SNAPSHOT DATA PROTECTION POLICY

Snapshot or Delta Snapshot is a Point-In-Time data protection policy. By using the
snapshot feature, users can create a point-in-time copy of a logical volume. From the user’s
standpoint, the snapshot feature creates an instant copy of the original logical volume. This
gives users the means to preserve a point-in-time copy (the snapshot) of the data in a source
logical volume. If the data in the source gets corrupted or lost, the user can go back to the
snapshot and recover the data from that point in time. The SNIA defines delta snapshot as a
type of point in time copy that preserves the state of data at an instant in time, by storing only

those blocks that are different from an already existing full copy of the data.

IUser Reads & Writes

Computer Host

I User Reads & Writes

DISK ARRAY

er Write Disk Array Controller WITH N

.I for CoW DISKS

Logical |
LB | Buoa Brg i » Volume

- — 1+ — —]

"DISKN-1 DISKN

_ = 4+ = — —] — |—

DISK1. DISKZ DISK3
Snapshot (CoW) of data block Bs,

Fig. 2.6: Snapshot data protection policy example

18

Snapshot is a data protection feature that produces a point-in-time copy of a logical
volume. The logical volume data blocks are copied on-demand when a user modifies a data
block by writing to it. The data block is replicated before allowing the user write to proceed.
A Copy-on-Write (CoW) takes place when a data block has to be copied before a user write
can proceed on said data block. The example in Fig. 2.6 shows a source logical volume that is
protected by the snapshot policy. The original volume with the data to be replicated will be
referred to as the source volume or just the source, for short. The copy of the original volume
will be referred to as the snapshot or replica volume or the snapshot, for short. The user writes
to data block Ba,1 but since that data block has not been copied (snapped) then the user write
has to wait for the CoW to proceed to copy the data block to the snapshot logical volume.

The snapshot data protection feature is space-efficient by only copying the modified
(written to) data blocks but it impacts user request latency by forcing a user write to wait for a
data block to be copied if the data block has not been copied before. Also, the source and the
snapshot logical volumes are attached (linked) because the snapshot logical volume only
contains the modified data blocks and the rest of the data blocks are still in the source logical
volume. Chapter 5 presents a fuzzy control scheme for snapshot and explains the snapshot

data protection policy in more detail.

2.1.8 CLONING DATA PROTECTION POLICY

Cloning, like snapshot, is a Point-In-Time data protection policy; but cloning, unlike
snapshot, is not an on-demand data protection policy. Cloning does not wait for the user to
modify (write to) a data block to copy it. Cloning copies all the logical volume data regardless
of the state of the data blocks modified or unmodified. From the user’s point of view, the
cloning replication takes some time because the cloning replication copies all the data in a
logical volume. This replication of data blocks gives users the means to preserve a point-in-
time copy (clone) of the data from a source logical volume. The original volume with the data
to be replicated will be referred to as the source volume or just the source, for short. The copy
of the original volume will be referred to as the clone or replica volume or the clone, for short.

This data protection feature is not space-efficient like snapshot but it provides
complete separation of the source and clone logical volumes. Users choose this feature

because unlike snapshot, when cloning finishes replicating the source logical volume, they

19

can operate on each logical volume (source and clone) separately, since both logical volumes
have all the data blocks that were originally in the source logical volume.

The cloning data protection policy can impact user request latency due to the cloning
background activity or CoWs generated by users writing to data blocks in the source logical
volume during the cloning replication process. The example in Fig. 2.7 shows a source logical
volume that is protected by the cloning policy. The dotted lines show the copy of all the data
blocks from the source logical volume to the clone logical volume. The cloning process
occurs in the background as already said and can be processed serially, i.e., one data block at
a time) or in parallel, i.e., multiple data blocks being copied at a time. Chapter 6 presents a

fuzzy control scheme for cloning and explains the cloning data protection policy in more

detail.
; E i“' é User

IUser Reads & Writes

Computer Host

I User Reads & Writes

DISK ARRAY

Disk Array Controller WITHN
DISKS

I - B 2 B o 1 1 [Source
T 6, |«1_B *t B - Pos > - Logical |
I 1+ — Bas [B, [+ Pas [+ 34 e 1 Bas Volume |
= Bpg 1 By 1 Big 1+ nd e L Pra —
| - —grrr=/T-""—T0-""-1T =
I R Iy 3
- —— b —] —— e — —— e —— e — -
[F»_B. |- B: |r# 8o % B. |ba P Clone
-+ E% ~ By ~% B = Pis % Bos (Replica)
| =B ~9 B % Pas 4 Bis 4 OB Logical I
I_l_ + B = Bua - Big - Bag —#% Pug Volume
DISK 1 DISK 2 DISK 3 DISK N-1 DISK N

Fig. 2.7: Cloning data protection policy example

2.1.9 DISK ARRAY PERFORMABILITY AND DATA PROTECTION POLICIES

Sparing, snapshot, and cloning, are data protection policies that operate in the
background, i.e., concurrently with the service of user reads and writes. Those three data
protection policies make use of the same resources (CPU, disks, memory, IO ports) to make

copies of data instead of serving user reads and writes. Therefore, those three data protection

20

policies can potentially impact the user read/write performance in both throughput and
latency. The purpose of the fuzzy controllers presented by this dissertation in chapters 4, 5
and 6 is to minimize the performance impact of the data protection policies running in the
background (background jobs), therefore, improving the performability of the disk array
under those three data protection policies. The performability approach of chapter 4, 5 and 6
is background-jobs based. In those chapters the purpose is to improve the performance of the
user services under non-optimal conditions, i.e., in the presence of a background job that can

be sparing, snapshot or cloning.
2.2 PERFORMABILITY

2.2.1 PERFORMABILITY OF DISK ARRAYS

In section 1.1, a general performability definition was presented. This section will
refine the definition of performability, but first, effectiveness is defined. Effectiveness is the
ability of a system to meet its specified needs. A quantitative measure of effectiveness (MoE)
was proposed by Smith and Clark in [Smith 04]. The definition of performability has evolved
since it was first proposed by Meyer [Meyer 78a],[Tai 96a]. Meyer first defined performance
as the effectiveness of an object to deliver a specified service in a time interval [0,t]; and
reliability as the probability of an object to deliver a specified service in a time interval [0,t].
With these two definitions, Meyer then defines performability as the unification of
performance and reliability. We consider this definition of performability a reliability-based
performability.

As described in section 1.1, the concept of performability was extended by Zhang et
al. [Zhang 06a] to consider background tasks or jobs besides failure conditions. Zhang goes
over the use of background jobs in disk arrays but did not present a formal definition of
background jobs. Therefore, for this dissertation we propose two definitions for disk arrays.
We define a foreground task (job) as an interactive task with a hard, short deadline. We
define a background task (job) as a nonm-interactive task with a soft deadline that is
independent of the foreground jobs. We consider the performability proposed by Zhang as the
background-jobs based performability. We define the background-jobs based performability
as the measure of the probability of the performance impact on foreground tasks caused by

the execution of background tasks.

21

It is possible to unify both Meyer’s and Zhang’s definitions of performability for disk
arrays if we consider the performability from the point of view of foreground jobs. For a
foreground job the optimal condition exists when there are neither failures nor background
jobs present in a disk array. Conversely, we can consider that for a foreground job a non-
optimal condition exists when there is either a failure or a background job in the disk array.

Based on the definitions of optimal and non-optimal conditions, we define
performability of disk arrays as a measure of the probability of user requests to achieve a

performance level under non-optimal conditions.

2.2.2 FUNDAMENTAL CONCEPTS

The system under performability evaluation is referred to as the total system S. For
performability evaluations a total system S is considered to have an object system C and an
environment E. The object system C is the system or component that provides the service and
is the object of the performability evaluation. The environment E is the system of components
or events that affect the ability to perform of the object system C. A good example of E is the
workload that the environment E applies to C.

The dynamics of the object system C are modeled by a stochastic process referred to

as the object system model Xc:

X, = {X(S..0)| teT} (2.5)

where X(Sc,#) 1s a random variable with sample space Sc and index ¢, where ¢ is time
and is in the range of the total interval of time 7. The dynamics of the environment E are also

modeled by a stochastic process referred to as the environment system model Xg:

X, = {X(S,.t)| teT} (2.6)

where X(Sgt) is a random variable with sample space Sg and index ¢, where ¢ is time
and is in the range of the total interval of time 7. Modeling the environment E with a
stochastic process can be optional. Sometimes the environment can be replaced with a set or

list of values used as inputs to the object system C.

22

The stochastic process is defined by a set of events based on a probability space. The
events are also referred to as states in stochastic models such as in Markov models.

The stochastic process developed to model X¢ can consist of a set of states Qc. The
stochastic model developed for Xz can also consist of a set of states QOr. A stochastic model

that includes both Oc and QOr makes use of the product space O, which is the space product of
QO and QOc:

O=0:%x0; 2.7)

The total system S can be modeled using a stochastic model X that includes both X¢

and Xg:

X=(X.,X;) (2.8)

The stochastic process X makes use of the state space Q. Some common stochastic
models used to model X and estimate performability are:

1) Markov Chains (MC) with rewards (Markov Reward Models)

2) Queueing models

3) Stochastic Petri Nets (SPNs)

4) Series-parallel graphs

5) Simulations packages such as CSIM

Depending on the specific performability evaluation, sometimes only the object

system model X¢ and the states Qc are used:

X=X 0=0, 2.9)

Or only the environment model Xz and the states Qf are used:

X=X, 0=0, (2.10)

23

The second important definition in performability is the performability variable Y, a
random variable from the stochastic model X. The third important definition in performability
is accomplishment. A desired value or range of values for the performability variable Y is
defined, usually at design time. The performability variable Y and the accomplishment 4 are

related by the probability of achieving the accomplishment:

Perf(A)=Pr{4, <Y< A4,] (2.11)

The Perf(A) is the performability of the accomplishment 4 and is defined as the
probability of the performability variable Y to be in the range of the values of accomplishment
A. Ar (Ag) is the lower (high) value of A. This definition comes from the intention of
performability evaluations to obtain the probability density function, and therefore the
cumulative distribution function. If the cumulative distribution can be obtained then the

accomplishment can be expressed as:

Perf (A) =PrY < A] (2.12)

The Perf(A) is also referred to as the performability measure.

2.2.3 PERFORMABILITY EVALUATIONS

A performability evaluation consists of the three parts mentioned in the previous
section as part of the fundamental concepts: 1) a model of the system or feature under study
with a stochastic process X, for example, a Markov model; 2) a performability variable Y, for
example, probability of completing a service, financial benefit, latency, or throughput; 3) a
value or range of values for the accomplishment 4. The result of the performability evaluation
is a relation between the performability variable ¥ and some other variable; usually time, but
the result can also be Y vs. an input to the system under study. This result is most commonly
presented as an x-y graph with time or an input to the system on the horizontal axis and the
performability variable Y on the vertical axis. The three parts are related in the following way:

1) By the performability model (PM), which is the pair (X, Y):

24

PM(Y)=(X,Y) (2.13)

2) By the performability of the accomplishment 4, as shown in (2.12)

It is important to state that solving a performability problem means to use the
stochastic process X as the approach to obtain values for the variable Y of Perf(A). The best
solution is to obtain the probability density function of Y but that may be difficult and
sometimes one or two moments is the acceptable solution. Solving a performability problem

is also known as doing a performability evaluation or estimation.

2.2.4 PERFORMABILITY MEASURES

Different mathematical models have been used for performability analysis. Markov
Chains (MC), Series-Parallel Graphs, Stochastic Activity Networks (SANs) and Markov
Reward Models (MRMs) have been used, among others. The MRM has been one of the most
used models for performability estimation.

The MRM will be used as the base model to explain the performability concept in a
more mathematical form. MRMs extend the Markov Model by attaching a value » to each
state of a Markov Model. This is referred to as state reward or simply reward and can be
constant or time dependent. The reward value is what makes the MRM very suitable for
performability analysis because the performability variable Y can be represented or estimated
by a reward value or combined reward values of an MRM.

Let N be the number of possible states a system can operate in. The state of the system
is defined by a time stochastic process X = {X(?), ¢t > 0}. The state reward r; is specified by
some performance measurement Examples of reward measures are throughput and latency
(response time). The reward can be time dependent r(?); or time independent 7;. The random
variable

Z(0)=r,, (2.14)

)]

Is the instantaneous reward rate of a MRM at time ¢. There is a difference between

reward rates ; associated with individual states and the overall reward rate Z(?) of the MRM

25

characterizing the whole stochastic process. With this definition, the cumulative

performability, Y(t), can be:

! t
Y(t) = jo Z(r)dr = L Fee AT (2.15)
The general definition of performability by Meyer was [Meyer 78a]:
Perf (y,1)=P[Y(1)<] (2.16)

The probability at time ¢, of being in state i is denoted by mi(?). The transient
performability (TP) is defined as in [Bolch 06a],[Haverkort Ola]:

N

E[ZO]=TP@) =) 7,(t)7; (2.17)
i=l1

The expected reward rate when ¢ —oo is:

E[Z(oo)]:SSP=i7ri 7, (2.18)

i=1

This is the measure used as the steady state performability (SSP) [Haverkort Ola]. The
m; is the steady state probability of the state i in N.

2.2.5 PERFORMABILITY EXAMPLE

We present an example that illustrates the performability concept and estimation. This
example makes use of the MRM presented in section 3.1 and the equations in section 3.5. The
reader is advised to read those two sections first.

For this example we assume we have a disk array that we want to use as a video
server. Each video stream corresponds to one user. Therefore, the number of streams equals
the number of users. Each user requires 8 Mbps (Megabits per second) of bandwidth. This

translates into 1MB/s (Megabyte per second) of bandwidth per user. Each user (stream) is

26

charged $3.99 as long as we can provide 1MB/s of bandwidth for each user. The goal of this
example is to evaluate the probability of loss in revenue up to 15% with respect to the original
revenue when the servers start providing service for the first time (¢ = 0), and we want to
estimate the time ¢ when the 15% percentage of loss may occur. For this example, the

parameters for the performability estimation are:

BW, = 1MB/s = Bandwidth per user

M. = $3.99 = Membership price

T = time period of the 15% loss in revenue. The time is expressed in months.

Rev(0) = Original revenue obtained from the media server at the beginning of the
performability evaluation (¢ = 0)

Rev(t) = Current revenue obtained from the media server at time ¢. The time ¢ will be
expressed in months.

L(t) = Loss in revenue with respect to R(0) at time ¢. The time ¢ will be expressed in
months.

The loss in revenue at time ¢, L(?),with respect to the original revenue R(0.) is:

L(t) = Rev(0) — Rev(?) (2.19)

For this example, a disk array with the following parameters is considered:

A =1 failure / 50,000 hours = 0.00002 failures/hour

1 = 1repair / 24 hours = 0. 0417 repairs/hour

N =200 total disks in the disk array

G = 4 disks per disk group

BWa=25MB/s = Bandwidth provided by each of the N disks.

Sas = Number of streams supported by each of the N disks

Si=BW,/BW,=25MB/s / IMB/s =25

Ds; = 0.15 = Percentage of performance degradation suffered by the disk array
performance while sparing non-redundant data due to a drive failure.

The performability variable Y is the loss in revenue at time ¢, L(?):

27

Performability variable Y = Loss in Revenue = L(t)

The accomplishment A is that loss in revenue should be at most 15% for the first 36
months.

Accomplishment A = 15% of loss in revenue in the first 36 months

The performability measure, Perf(4), is then:

Perf(4) = Pr [Y < A] = Probability of having a loss in revenue of up to 15% in the
first 36 months.

In this example the disk array is the object system C. To define the object system
model Xc, we use the Markov Model of a RAID disk group that is presented in section 3.1.
That Markov Model defines three states for the state space Oc. The equations for the Markov
Model used as the stochastic process Xc are presented in section 3.5. The estimation of the
probability of the three states Qc of the Markov Model could be accomplished with the
equation presented in section 3.5. We are not modeling the environment with a stochastic
process X, therefore for this example X = Xc.

The reliability at time ¢ (in months) of the model is defined as the probability of the
Markov Model of the RAID group to be in Sy and S;:

Rel(t) = Pyy(£)+ Py (1) (2.20)

The probability of failure at time t (in months) of the model is defined as unreliability

or the complement of the reliability:
Fail(t)=1-Rel(¢) (2.21)
The unreliability is the probability of having a second fault on the same disk group

while the RAID group is trying to reconstruct the data of the first fault. The reward function ry

18 defined as:

28

v =NS,M. (2.22)

where 79 is the reward of state Sy, N is the number of disks in the disk array, Sy is
number of streams supported by each disk in the disk array and M. is the membership cost

($3.99). The reward function r; is defined as:
r=(N-1)(1-D)S,M, (2.23)

where 7; is the reward of state S;, N is the number of disks in the disk array, Sy is
number of streams supported by each disk in the disk array and D; is the percentage of
performance degradation due to the disk array executing the sparing data protection policy in

the background. The reward function r; is defined as:
r,=0 (2.24)

The transient performability 7P() is used to estimate the revenue at time #, R(z), based

on the probability of the two states Sy and S;:

TP(t) = Rev(t) = ZIZPSI () (2.25)

i=0

Once the equations are applied for a period of 40 months (¢ = 0,1,...,40), the results of
the revenue per month based on the state rewards and their probabilities are computed. Based
on the revenue per month the performability variable Y, the loss in revenue can be estimated.

First, Fig.2.8 shows how the revenue drops monthly according to the reliability of the
disk array for this example. It can be seen that after 36 months the revenue per month drops
15% down to $17,000.

Second, Fig.2.9 shows the probability loss in revenue drops according to the reliability

of the disk array.

29

Fig. 2.8, shows that the initial revenue, R(0) is $20,000 per month. Therefore, a 15%
loss in revenue would be a $20,000 x 0.15 = $3,000 loss. The performability evaluation, as
shown by Fig. 2.9, provides the answer to the performability measure: that the probability is

13% of Y, the loss in revenue, to be lower than or equal to the accomplishment 4, which is
$3,000.

Perf (A) =Pr[Y < A]=Pr[Y < $3,000]=0.13 (2.26)

Media Server Revenue per month
$20,000

$19,000 \

$18,000

$17,000

Revenue R(t) indollars

$16,000

$15,000

0 s 10 15 0 2 2 3 10
Time t in months

Fig. 2.8: Revenue per month for performability example

Probability of Loss in Revenue per month

o
o
Y

o
s
IS

o
o
~

o
s

o
=
®

=4
o
&

o
°
4

Probability of failure Fail(t)

=4
o
N

o

$0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500
Loss in Revenue per month L(t)

Fig. 2.9: Loss in revenue per month for performability example

30

2.3 Fuzzy CONTROL

2.3.1 Fuzzy NUMBERS AND ARITHMETIC

A crisp set 4, defined in terms of a relevant universal set X can be described,
according to classical set theory, in several ways including listing all of its members,
providing a conditional description of all members of 4, or by specifying a certain binary
characteristic function such as x, € {0,1}, in which an element x either completely belongs to
set A or it does not. Therefore, this crisp set 4 can be described as:

1, if xe A
Hy(x) = , VxelX
0, if x¢ A

(2.27)

This kind of belonging to a set will be referred to as crisp membership. The set theory
that assumes crisp membership will be referred to as crisp set theory.

An example of a classical set could be a set A = {1, 3, 5, 7}. In this example, we can
say that the number 3 is part of the set A, thus, ©4(3) =1. The number 3 belongs in the set A,
while 4(4) =0.

Unlike classical set theory, fuzzy set theory states that an element can have a degree of
belonging to a particular set. Fuzzy set theory can be seen as a generalization of crisp set
theory, because the degree of belonging of an element x to set 4 is determined by a
membership grade w4(x) taking on value from the unit interval [0, 1]. The fuzzy set A4 in the
universe of discourse X can be defined as a set of ordered pairs of element x and its degree of

membership p(x):

A:{(x, yA(x))‘xeX} (2.28)

The fuzzy set concept arose from the need to deal with imprecise data. A fuzzy set A4,
is defined in terms of a relevant universal set X, by a membership function. This function
assigns to each element x of X a number u4(x), in the closed unit interval [0,1] that
characterizes the degree of membership of x in 4. Membership functions are functions of the

form wua(x): X—[0,1]. The reader is referred to [Klir 95a], [Hanss 10a] for a complete

31

treatment of the definition and representations of fuzzy sets and fuzzy numbers. In this
document triangular fuzzy numbers will be used. The representation used in this document for
a triangular fuzzy number is A=[x;x.x»], where x; is the low value, x. is the central value and

xp, 1s the high value (Fig. 2.10).

Representation of fuzzy number X = [x,X¢,Xn]

Membership function
T
el

0 X X Xp Px
X, : low value, X.: central value, X;: high value
Fig. 2.10: Triangular fuzzy number A=/xl, xc, xh]
The two basic methods to compute fuzzy arithmetic are: 1) extension principle and 2)

a-cuts and interval arithmetic. Fuzzy numbers can be discretized so they can be represented as

a finite set of (x", »)and (x, 4,)tuples. There is the value of x for the x; on the left side of the
central value (apex), in the case of a triangular fuzzy number, and x” is the value of x for the

same ;i on the right side of the apex. With this, discrete fuzzy sets for which the fuzzy
arithmetical operations can be defined using Zadeh’s extension principle. One approach to
discretized a fuzzy number is to split the p-axis into a number of equally space n segments,
each with 4u = I/n. The fuzzy number then is turned into a discrete fuzzy number that can be
represented in the form shown in Fig. 2.11. The fuzzy number 4, then can be discretized in a

form proposed in [Hanss 10a].
!
t =1, () = 4 (x{”) (2.29)

Aa= {8, 1) XD 10, (557, 1) X, 12,)} (2.30)

Wi = w1 +Ap, i=1,...,n, where po =0 and p, = 1. (2.31)

32

Ha(x)

A,uI
.ui'

L - - - - - T - - - = _—— e — — —

0 X JC-QT))-(c x;” Xh X
i

Fig. 2.11: Triangular fuzzy number A=[x;, x., xx] and its discretization
In [Hanss 10a], it is shown that using the discretized fuzzy numbers as in (2.30) and
(2.31), the arithmetical operations can be implemented by defining the operations to be
executed separately for the elements of each degree of membership p;. The arithmetical
operations can be implemented by combining only the elements of the low (left) and right
(high) value side of the apex (central value) of the triangular fuzzy number. The four basic

arithmetic operations are implemented in the following form:
2D =xD@yD | 20 =" @y and i=0,1,2,....n (2.32)

where ® represents the four basic arithmetic operations (+,—x,/). For a complete

explanation, the reader is referred to [Hanss 10a].

1

Ha(x)

pa(5.5) = 0.4

0 ; E >
45 55 7 9.5 X

Fig. 2.12: Triangular fuzzy number SEVEN=[4.5,7,9.5]

33

An example of a fuzzy number is shown in Fig. 2.12. In this figure a triangular fuzzy
number is defined as SEVEN=[4.5,7,9.5]. The degree of membership for the value x=5.5 is
,USEVEN(S-S):O-4

2.3.2 JUSTIFICATION FOR Fuzzy CONTROL

Fuzzy control can be considered an alternative to classical design for controllers
[Michels 06a] which requires differential equations that model the system to control. In
control theory the system to control is usually referred to as the plant. If a differential
equation of the plant is available, then using classical control theory has advantages. A
systematic mathematical process can be followed to predict the stability, robustness and
response of the controller. It can be said that classical control is model-based.

Fuzzy control has a different approach to the control of the process because no model
of the plant is constructed. Fuzzy control approaches the problem of controlling a plant by the
design of rules. It can be said that fuzzy control is rule-based. Of course, the rules are not
arbitrary. The rules are based on the available knowledge of the plant. The understanding of
the plant can be analytical, heuristic (rule of thumb or educated guess), or a combination of
both.

There are situations in which the components of a plant are ruled by complex
algorithms and provided by manufacturers that do not reveal their algorithms. The
manufacturers reveal only the external behavior of the products they sell, which is not usually
enough to model a component using a differential equation. This is the case in disk arrays.
The disks to be controlled are ruled by non-linear complex logic embedded in them. The only
information available about the disks’ behavior comes from the manuals, which usually do
not cover the entire spectrum of conditions the disk will be subjected to, or by experiment.
Thus, a different approach for control must be used for disk arrays.

Fuzzy control is based on heuristics [Michel 06a] and can be applied successfully in
situations where classical control would difficult or impossible to apply. The term “plant” is
used in control theory to refer to the system or component to control. Using fuzzy control
makes the most sense when [Michels 06a]:

1. No model of the plant exists in a differential or difference equation form.

2. The behavior of the plant is non-linear.

34

3. The goals are fuzzy, e.g., “ensure a proper latency of user requests and a proper
completion time for disk repair when both are executed concurrently”

4. The plant and the control strategy are simple enough that the design of a fuzzy
controller takes less time than the classical controller modeling and design.

In addition to this, fuzzy logic opens up the possibility of using other computational

intelligence techniques such as neural networks for the performability control of disk arrays.

2.3.3 Fuzzy LoGIiC CONTROLLER

The first model of fuzzy controller was introduced by Mamdani [Mamdani 75a]. Like
a classical controller, a fuzzy controller takes crisp inputs from the plant and a reference or
references to compare against. Also, like a classical controller, the fuzzy logic controller
(FLC) produces crisp control outputs that control the process in the plant. There are four parts
to a fuzzy controller that must be designed: fuzzifier, rule base, inference engine and
defuzzifier. Fig. 2.13 shows the block diagram of an FLC. Fuzzy inputs and outputs are fuzzy

numbers, which means that the numbers have a degree of membership to a particular set.

2.3.4 Fuzzy LoGIC CONTROLLER: FUZZIFIER

The fuzzifier performs the fuzzification of the crisp control inputs. There are two types
of crisp inputs:
1) Outputs from the plant that are fed back into the control scheme to compute the
difference with respect to the reference(s).

2) Parameters of the plant, x;,...,x, . These are known as state parameters or state

variables.
Fuzzy Logic Controller (FLC)
e=r-y(t)
Reference > Crisp | Crisp
r IL'Input v Rulebase Defuzzier || Output
_: r- Y(t) —p! A Crisp _ Plant OUtpUt
. © _[mput| ™| Fuzzifier }) y(t)
Ae = e(ty) - e(tk-1) _| Inference
Engine

Fig. 2.13: Fuzzy Logic Controller (FLC) model with error computation

35

The fuzzifier performs the fuzzification of the crisp control inputs into fuzzy values.
For example, a FLC can accept an error input e for which three fuzzy sets are defined: big
error (BE); medium error (ME) and small error (SE). The crisp input error e can be computed
subtracting the fed back output from the plant with a reference . Then the crisp input error e
can be fuzzified by computing its degree of membership (number between 0 and 1) in each of

three fuzzy sets mentioned. Fig. 2.14 shows an example.

SE = Small Error fuzzy set
ME = Medium Error fuzzy set
BE = Big Error fuzzy set

1 SE ME BE
A

0.5
0.3

membership

e
(example value of e)

Value of e has membership of 0.5 in SE fuzzy set
Value of e has membership of 0.3 in ME fuzzy set
Value of e has membership of 0 in BE fuzzy set

Fig. 2.14: Fuzzification of a value of error e

2.3.5 Fuzzy LoGIiCc CONTROLLER: RULE BASE

A rule base contains the knowledge related to the particular control model. It contains
the control actions (rules) in the form of if-then-conclusion statements. These statements use
the fuzzy values provided by the fuzzifier. It can be said that the rules provide policies [Zhang

05a] for the control of the specific process or system to control.

2.3.5.1 MAMDANI CONTROLLERS

The Mamdani controllers were introduced by Mamdani in 1975 [Mamdani 75a]. They

comprise a finite set of rules of the form

R : if x; € FS| and...and x,, € FS, then y e FSgy; (2.33)

36

R; is rule i; F'S; are fuzzy sets; x;...x, are input variables and y is the output variable.
For example, the error e and the change in error 4e can be compared to the fuzzy sets
shown in the previous section. We can also define a fuzzy set named small output, SO, for the

output y and we could build a rule like this:

R : if e € SEand Aee SE then y € SO (2.34)

This would say that if the e and the 4e have small values, i.e., belong to the SE fuzzy
set, then the output value y should belong to the SO fuzzy set.

2.3.5.2 TAKAGI-SUGENO-KANG CONTROLLERS

The Takagi-Sugeno-Kang (TSK) controllers were introduced in 1985 [Takagi 85a].
The TSK controllers have rules of the form:

R. -

o if x; € FSy and...and x,, € FS, then y= f(x,....,x,) (2.35)
where the difference with respect to the Mamdani rules (2.33) is that the output can be
a mathematical function using crisp values for both the inputs x;...x, and the output y.
For example, the error e and the change in error 4e can be compared to the fuzzy sets
shown in the previous section. We can also define a function f(y) = x; + 0.5 for the output y in

which x; is a state variable. Then we could build a rule like this:

R, : if e € SEand Aee SEtheny =x, +0.5 (2.36)

This would say that if the e and the 4e have small values, i.e., belong to the SE fuzzy

set then the output value y should be the crisp value x; + 0.5.

2.3.5.3 TABULAR REPRESENTATION OF FUZZY CONTROLLERS

Rule bases can be represented in a tabular format, which is used extensively in the
fuzzy control literature. Each row of the table represents a rule. The columns represent the

input variables and the leftmost column represents the output. Table 2.2 shows an example of

37

a tabular representation of a TSK controller based on the rules of the form in (2.36). In this

example there are nine rules R; and the function f{) to be applied for the output y depends on

the rule that becomes valid according to the fuzzification of the input values e and Ae.

Table 2.2: Example of tabular representation of a TSK controller

Inputs Output
Rule e Ae y
R1 SE SE y=x1+0.5
R2 SE ME y=x1+1
R3 SE BE y=x1+15
R4 ME SE y=x1+2
RS ME ME y=x1+25
R6 ME BE y=x;+3
R7 BE SE y=x;+3.5
R8 BE ME y=x;t+4
R9 BE BE y=x;+45
SE=Small error ME=Medium error BE=Big error

2.3.6 Fuzzy LoGIC CONTROLLER: INFERENCE ENGINE

The inference engine performs the evaluation of all rules in order to choose the result

that will become the fuzzy output of the controller. One technique is to aggregate all the rules

in one fuzzy relation; this is known as composition inference. The composition inference is

not a common technique in fuzzy control. The most common technique is to compute each

rule individually using min or product t-norms [Hanss 05a] and compute the output based on

the individual results from each rule by using the max (supremum) s-norm [Hanss 05a] This

technique is known as individual rule firing. [Zhang 05a]

38

2.3.7 Fuzzy LoGIC CONTROLLER: DEFUZZIFIER

The defuzzifier converts the fuzzy output of the inference engine into a crisp number
that can be used as a control value for the plant to control. The deffuzification depends on the
type of fuzzy controller.

For the Mamdani controllers, the rules can be converted to a crisp value using the
center of gravity method [Zhang 05a][Michels 06a]. When the output of the inference engine
is a fuzzy set, there is the problem of which value to use from the set. Several solutions have
been proposed, but at the end the best option is to adapt the conversion to the specific control.

For the TSK controllers the output y is already a crisp value, therefore no

defuzzification is needed.

39

CHAPTER 3: PERFORMABILITY ANALYSIS OF DISK ARRAYS USING Fuzzy LOGIC

This chapter presents a numerical fuzzy logic performability model for disk arrays.
The performability of disk arrays systems has been studied before in analytic form by
presenting closed-form solutions of Markov Models [Islam 93a], [Barnett 98a]. The numerical
method presented in this chapter is a simpler and adaptable alternative to closed-form
solutions: simpler because it does not require the closed-form solution of a Markov Model,
and adaptable because it can be adapted to particular conditions, e.g., a RAID level like
RAIDG6 that supports double disk failure, or a function can be introduced to change the reward
of the states, or make the reward time-dependent instead of fixed.

Also, in this chapter a performability analysis of a disk array used as an e-mail server
is presented [Navarro 06a], [Navarro 07a]. We base the analysis on some of the rules of
thumb for the configuration of an MSExchange Server 2003 [Microsoft 07a], [Microsoft 07b],
[Microsoft 04a]. It is not claimed this document presents a complete performability study of a
MSExchange e-mail server. Rather, based on a selected number of MSExchange
configuration recommendations, the author demonstrates the following proof of concept:
performability analysis enhanced by fuzzy arithmetic can be effectively used for a predictive

performability analysis of an e-mail server, also referred to as mail server.

3.1 MARKOV MODEL OF A DISK ARRAY

For the purposes of the fuzzy performability analysis of disk arrays using fuzzy logic,
a disk array with a total of N disks divided in groups of G disks is considered. The Markov
Chain (MC) used for the reliability analysis of this configuration is shown in Fig. 3.1.

This Markov Chain does not consider the failure of other components of a disk array,
such as controller failures. RAID reliability studies with the consideration of failure of
components besides disks can be found in the literature [Schulze 89a].

The MC makes use of a parameter named disk failure rate, A, number of failures per
time unit. For example, if a disk fails one time in 1000 hours, the failure rate, A = 1 failure /
1000 hours, or A =0.001 failures/hour. The inverse of the failure rate is the time to failure: 1/A

= 1000 hours / 1 failure = 1000 hours/failure

40

When a single disk fails, the disk array goes to the non-optimal state S;. This implies
the loss of the data redundancy. But the data is still not completely lost, since it is available on
one of the G-/ disks that are still working in the group. The data lost on the failed disk must
be then rebuilt from the redundant data. The repair rate u is referred to as the repair rate or
rebuild rate and is measured in the number of repairs per time unit, for example, a data drive
repair requires 10 hours to rebuild the data redundancy lost by a failed drive; then we can say
a repair takes 10 hours and the repair rate 4 = lrepair/10hours or x« = 0.1 repairs/hour. From
this example we can clearly see that the ratio //u gives us the repair time. In the MC model,
after a time //u, the disk array completes the rebuild of the redundancy and the disk array
goes back to state Sy (back to the state with G working disks).

N: drivesin disk array

G: drivesin RAID group Transition cocurswhen redundancy for

44— allnon-redundant dats has been rebuil

Optimal
state

Suboptimal Failure
state state

>

A NA
rD Transition occurs r:l
when a drive fails

W : repair rate or rebuild rate [number of repairs per time unit)
A disk failure rate [number of failures per time unit)

4 (GDA

Transition occurswhen a I
second drivein group fails

r0, r1, r2: reward rates. These are performance levels 10/, response time)
Fig. 3.1: Markov Reward Model of a RAID disk group

If during the time //u while the disk array is in state S; another disk within the disk
group with the non-redundant data fails, the data is lost. In this case the disk array goes to
failure state S>. It can be said that the unreliability (or probability of failure) for a RAID disk
group is nothing but the probability of a second failure in the same disk group. If this event
occurs, the user must restore the data using the backup on tape or some other media. The MC
shown in Fig. 3.1 is for a disk group with G disks and one parity disk. That is why it has three
states. For RAID levels with two parity disks, like RAID6 [Patterson 94a], the number of
states would be four. The reward of the states, r0, r1 and r2 are the reward values associated to
each state. For the performability analysis presented in this chapter, the reward values of each
state are performance levels that the disk array can deliver, e.g., I0/s, latency, number of
Mailboxes supported by the disk array or number of Users supported by the disk array.

The system of differential equations for the Markov Model of the reliability of a disk
array group (Fig. 3.1) is described via probabilities of being in state Sy, S; and S2:

41

% = —NAP,, (t) + 1P, (1)

aPa @) _ NAPy, (t) = [(G = DA+ u]Py, (1) G.1
dP,(t) .,

—y - (G-DAR ()

The system of differential equations gives rise to the following system of equations

using the Laplace transform:

P (s) = s+(G-DA+u
50 s2+[(N+G =1)A+ uls + N(G -1 12

NA
Fals)= S +[(N+G-=DA+ uls+ NG -DA’ (3.2)
P, (s) = NG DA

s{s> +[(N+G-DA+ uls + N(G-1A*}

With the system of equations (3.2), we find that the reliability of the disk array
represented by the Markov Model from Fig. 3.1 is as (3.3):

s+(G—-DA+ u+ NA

R(s) = 33
) s> +[(N+G=DA+ uls+ N(G-DA? G-
By applying the Final-value theorem of Laplace transform we get:
MTTF o0 = lig(} R(s) (3.4)
We derive an equation that we can use as the MTTFra.:
N+G-DA+
MTTF,, =" A+ (3.5)

N(G-D2

42

The rebuild process is performed automatically. Certainly, the failed disk must be
manually replaced at some point [Patterson 88a].

Equation (3.5) can be verified against the equation proposed by Chen in [Patterson
94a]. If we have a high lambda, like A=500,000 and a disk array with N=200 disks using
RAIDI1, so G=2, and with a rebuild time of 8 hours, we have:

(N+G-1) 2= (200+2-1) * (1/500,000) = 0.000402

And u = 1/8hrs. = 0.125.

It is easy to see that (N+G-1) 4 << u and we can again make the same approximation

made in Shooman [Shooman 02a] and remove the (N+G-1) A term. This turns (3.5) in

M
MTTFRAID :m (3.6)

Equation (3.6) is the classical MTTFraip estimation proposed by Patterson and Chen
in [Patterson 94a]. We can use the Markov Model shown in Fig. 3.1 for the reliability
estimation of the disk array.

If we consider a lower lambda, like A=10,000 and again, a disk array with N=200 disks
using RAID1, so G=2, and with a rebuild time of 8 hours. We have:

(N+G-1) 2 =(200+2-1) * (1/10,000) = 0.0201

It is easy to see that in this case (N+G-1) A << u does not hold and we would have to
use the (3.5) with all its terms for the estimation of MTTFram. This is the same consideration
as the MTTF equation obtained by Shooman in [Shooman 02a].

In order to estimate the system reliability we need to estimate the probability of the
Markov Chain being in state S; at time ¢. This probability is designated as Psi(z) and can be
estimated by means of the initial probability vector PS(0) = [Pso(0), Psi(0), ..., Psu(0)] of the
(m+1) states and the state transition probability matrix (TPM) of the Markov Model of the
disk array. The transition probabilities among states Sy, S; and S2 are shown in Fig. 3.1 and

can be translated into the TPM matrix (3.7):

43

So S, S,
S, [1= NiAr NAA! 0
P=S| uAt 1-[(G-DA+ulAt (G-1)iAr (3.7)
s,| o 0]

The initial probability of Sy is Pso(0)=1 while the initial probabilities for S; and S> are
Ps2(0)=0, and Ps3(0)=0. Therefore, the initial probability vector is PS(0)=[1,0,0]. Failure rate
(4) and repair rate («) are assumed to be constant during the life of the disk array.

The estimation of probabilities of the states for the disk array was done during discrete
iterations of time. Thus, the time ¢ at which the probabilities of all states (So, S;, S2) was
evaluated was using a value n that ranged from 0 to certain maximum value, i.e., n =
(0,1,2,...,nmax). The time ¢ was obtained by multiplying this value » by a time increment A¢
(one hour delta for the example in this section). We estimated the reliability of the disk array
every hour from 0 through 7. hours. The criterion to choose the hour-based discretization
steps is consistent with disk manufacturers that provide their failure rates in hours.

The probabilities of all states PS(z) = [P(t)so,P(t)s1,P(t)s2] at some time ¢=nAt was

estimated using:

PS(nAt) = P"PS(0) (3.8)

Once the probabilities PS(t) are calculated, the reliability of the RAID system can be

obtained as:

R(nAt) = P (nAt) + Py, (nAt) (3.9)

It can be seen from (3.9) that the unreliability of a disk RAID group is nothing more
than the probability of having a second failure on a disk in the same disk group. The Psz(?) is
the unreliability, i.e., the probability of the second failure.

44

3.2 PERFORMABILITY MODEL OF DISK ARRAYS

The two performance measures used for the performability evaluation of the disk array
were: 1) the throughput in I0/s (I/O requests per second) and 2) the number of mailboxes the
mail server can support based on the performance and reliability.

The throughput that a disk array can deliver depends on three factors: 1) the total
number of IO/s that can be delivered by the disks installed in the disk array; 2) the RAID level
used, and 3) the ratio of reads and writes.

In order to estimate the 10/s a disk array with N disks can yield, a model for the
throughput of a single disk must be used. The model used is based on [Patterson 07a] with
some modifications. The average disk service time (zz) per I/O is estimated using the

equation:

%=&+&+§i (3.10)
X
where S; is the average seek time, R; is the average rotational latency, By is the size of
the transferred block of data, and y; is the bandwidth of the bus that connects the disk with the
disk array controller. We are considering the same S; for both reads and writes. Although in
reality disks have different average seek times S; for reads and writes, for the purposes of this
analysis this simplification was made.

The inverse of the 7 time gives us the throughput of one disk (y) in 10/s:

1

Zdzg
(3.11)

This is another simplification, since the throughput of a disk also depends on the

internal seek reordering algorithms [Patterson 07a]. The throughput of N disks is then:

Xa(N) =Ny, (3.12)

45

The equations shown so far can be used to calculate the number of 10/s we can get
from the disks in a disk array without considering the RAID level. For this document a
RAID1 and a RADIS disk array is assumed. If RAID1 is used the data must be mirrored and
G=2. If RAIDS is used, then G=5.

For RAID1 we have to consider that every data write is translated into two writes to
different disks. Therefore, for RAID1 writes, the total number of IO/s that can be delivered by
the disks must be divided by two. For the RAIDI reads it is only required to read the data
from one disk. Thus, the number of I0/s that can be delivered by the disks is the number of
10/s for the reads. The ratio of reads R, is also a factor that determines the disk array

throughput (ypa) in IO/s. Thus, the equation to estimate the RAID1 disk array throughput is:

Xa(N)
Zos(N) =R, 2,(N)+(1=R,) = (3.13)
The reward ry of the optimal state Sy for a RAID1 disk array is therefore:
Rl Rl
Yo = Xps(N) (3.14)

For RAIDS we have to consider the kind of writes used for the analysis. In our case
we used the typical small 4KiB accesses that an Exchange 2003 Server performs. The RAIDS
level suffers from what is known as the “read-modify-writes” [Patterson 88a]. Every write is
translated into two reads and two writes. Therefore, for RAIDS writes, the total number of
10/s that can be delivered by the disks must be divided by four. For the RAIDS reads it is only
required to read the data from one disk. Thus, the number of 10/s that can be delivered by the
disks is the number of 10/s for the reads. Again, the ratio of reads R, is also a factor that
determines the disk array throughput (ypa) in 10/s. Thus, the equation to estimate the RAIDS
disk array throughput is:

Xa(N)

Xpa(N)=R,x,(N)+(1-R,) 1

(3.15)

46

The reward ry of the optimal state Sy for a RAIDS disk array is therefore:

o = Xpa(N) (3.16)

The reward »; for S;, the non-optimal state, can be estimated by two factors: 1) One
disk failed so we now have the throughput of N-/ disks. 2) The disk array is also copying the
data that was stored on the failed disk on other disk besides servicing user requests. Besides
estimating the throughput for the case of N-/ disks we need to add a factor that will drop the
throughput a little more. We introduced a factor, Ry, with a value from [0,1]. This factor was
the same for RAID1 and RAIDS. For example, if the drop in performance caused by the
reconstruction of the data redundancy is 5%, we assign Rf'= 0.05. If more accuracy is needed,
we introduce two factors, one for RAID1 and one for RAIDS. So, the reward estimated for 7,

1S:
1 =1=Rf) ypy (N 1) (3.17)

R =(1-RNxp(N -1 (3.18)

Finally, the reward for > = 0, since the disk array is the failed state.
The transient performability (TP) was defined in section 2.2.4. The TPM (3.7) gives us
the probability of each state and with that we can estimate the performability of the disk array

for every ny, iteration of At time by using:

TP® (nAt) = P,y (nA)r," + Py, (nAt)r™ (3.19)

TP® (nAt) = Py (nA)1® + Py (At (3.20)

where (3.19) and (3.20) are used to estimate the disk array performability in 10/s

47

Table 3.1: User profiles and corresponding usage patterns

User Type Database Volume 10/s Send/Receive per day Mailbox Size
Light 5 20 sent/50 received 50 MB
Average 75 30 sent/75 received 100 MB
Heavy 1.0 40 sent/100 received 200 MB
Large 1.5 60 sent/150 received 500 MB

Now we need to come up with a way to estimate the performability of the mail server
in number of users based on the performability in I0/s. We base the analysis on some of the
recommendations for the configuration of an Exchange Server 2003 [Microsoft 07b].

The formula to estimate the performability in mailboxes, i.e., users the mail server can
support is based on three factors: 1) user profiles shown in Table 3.1; 2) the formula (3.21) for
the 10/s needed to support a number of mailboxes depending on the user type [Microsoft

07b]:

10/ s =(Number of Mailboxes)x(UType) (3.21)

and 3) the fact that 90% of the IO/s are user interaction and the other 10% go to the

logs maintained by the mail server. The formulas are:

R1
PM ®' (nAt) = 09(P") (3.22)
UTy,,.
RS
PM ™ (nAt) = i) (3.23)
UT,

Type

where UType = (Light,Average,Heavy,Large). PM® and PM® and the performability

in mailboxes for a R1 and R5 mail server.

48

3.3 RESULTS OF THE FUZZY PERFORMABILITY ANALYSIS OF THE E-MAIL SERVER

The intention of applying the fuzzy arithmetic to the performability analysis is to deal
methodically with uncertainty. For the purpose of this example the authors decided to use a
A=1/10000 failure/hrs. Some of the parameters do not have a crisp value but a fuzzy value
expressed in discretized form [Hanss 10a]. The discretized representation of fuzzy numbers
used to deal with the Markov Chain model of performability can be expressed as fuzzy sets
with five tuples (x;u(x;)) where x; is the value of the number and u(x;) is the corresponding

membership value of x;.

P’ =[(x,,0),(x,,0.5), (x;,1),(x,,0.5), (x5,0)] (3.24)

The fuzzy parameters for the this analysis are shown in a more concise form, where

the u(x;) is omitted for brevity:

éz[xl,xz,x”x“xs] (3.25)
The parameters for this analysis were the following:

The life span of the mail server is 43,800 hours (5 years).
G for R1 =2, Number of disks for a R1 group

G for RS =5, Number of disks for a R5 group

N =200, Total number of disks

J=[0.3x10% 0.5x10%, 1x10%, 2x10%, 3x10%] Failure rate
u=[1/24,1/16, 1/8, 1/4, 3/8] Repair Rate

R,=10.55, 0.6, 0.65, 0.7, 0.75], Percentage of Reads
R;=10.002,0.002,0.002,0.002,0.002] , Time for a rotation
S:=10.0038,0.0039,0.004,0.0041,0.0042], Time for a seek
B; =[4096,4096,4096,4096,4096], Block size

xXb= [2x10%, 2x108, 2x108%, 2x10%, 2x10®%], Transfer rate
Rr=10.03,0.04,0.05,0.06,0.07], Rebuild impact on reward

49

The resulting performability estimation is a fuzzy number with five values. For every
iteration of the time ¢ given by t=nAdt (3.8), a fuzzy number representing a transient
performability result is generated. The algorithm used to estimate the reliability and transient

performability is presented in Table 3.2.

Table 3.2: Algorithm to compute the performability of disk array

I: Total number of iterations

P: Transition Probability Matrix

At: Time delta, e.g., 1 hour

t: Time elapsed at iteration i with a A¢

PS(t): Vector with state probabilities at time ¢
Pgi(2): Probability of being in state k at time ¢
R(?): Reliability of at time ¢

TP(t): Transient Performability at time ¢

For i=1 to I do:

{
P =pP'p
Matrix P is normalized
t=IAt

PS(t) = PS(0)P'
R(#) = P51 (1) + P, ()

TP(t) = Pg1(Drg; + Psy (Drgy

The discretized representation of the fuzzy number P* as shown in (3.25) is shown in
graphical format in Fig. 3.2. The number P* is a triangular fuzzy number. The five x; values
are shown with their respective membership value u(x;) forming the five tuples that were

obtained in each iteration of the algorithm presented in Table 3.2.

Triangular fuzzy number used for the fuzzy performability estimation

u(x)

0.5

1

A
Xs . uppermost dashed line
x4 . mid-upper dotted line
X3 : center solid line
X, . mid-lower dotted line
----------------------- x; . lowermost dashed line
, >
X
: |
: I
X3 X4 X5

P. = [(x1: 0)! (xZJ 05)1 (X3, 1): (x4-l 05)! (x5, 0)]

Fig. 3.2: Fuzzy number used for fuzzy performability estimation

50

The continuous line is the central value of the fuzzy result, x3. The lower, x,, and

upper, x4, dotted lines are values in between the central and both boundaries. The dashed

lower line, x;, is the lowest boundary of the fuzzy result. The dashed upper line, xs, is the

highest boundary of the fuzzy triangular result.

Fuzzy Reliability

Fuzzy Reliability of the Mail Server for RAID1

13 T T T T T T T T T T
12l Xs : uppermost dashed line | |
’ x4 : mid-upper dotted line
11k \ x3 : center solid line ,
™~ T X, : mid-lower dotted line
1 B \\ x; : lowermost dashed line | 1
\‘\7\\
0.9
0.8
0.7
0.6
0.5
04 r r r r r r r r r r

o
o
[$)]
-
-
[6,]
N

2.5
Time in Years

3 3.5

Fig. 3.3: Family of curves for fuzzy reliability RAID1

Fig. 3.3 shows the fuzzy RAIDI1 reliability of the mail server. It can be seen that there

is a linear drop from 1 to 0.5 after 5 years of use. This is an indication that the mail server

51

most likely will not have any problems at the beginning of its life. At the end of its life there
should be some provisions in case of failure.

Fig. 3.4 shows the fuzzy RAIDS reliability of the mail server. It can be seen that there
is a linear drop from 1 to 0.1 after 5 years of use. This is an indication that the mail server
most likely will fail as it gets closer to the end of its life. Here it is clear that provisions must
be made to counter this. For example, a backup server should be considered or budgeted

within the next 5 years in case the “main” mail server fails.

Fuzzy Reliability of the Mail Server for RAID5

1.4 T T T T T T T T T T

X5 . uppermost dashed line

12r x4 . mid-upper dotted line

\ X3 : center solid line

URN X, : mid-lower dotted line | 1
x; : lowermost dashed line

o
0
77

Fuzzy Reliability
o
(o2}
T

0.4

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time in Years

Fig. 3.4: Family of curves for fuzzy reliability RAIDS
Fig. 3.5 shows the fuzzy RAID1 performability of the mail server. It can be seen that
the IO/s range from around 40,000 to 20,000 at the beginning of the life of the mail server.
The performability analysis tells us that after five years we can have throughputs in the order
of 10,000I0/s to 25,000I0/s considering the reliability of the server. Depending on what level
of service is expected in the next five years, plans should be made to adjust the amount of

service the mail server will provide.

52

Fuzzy Perormability ofthe Mail Serer or RAID1
ﬂ.:’:":‘ T T T T T T

Fuzzy Performability in 108&

10,0001 *+ @ uppermost dashed line -

%4 . mid-upper dotted line

%y center solid line

x; mid-lower dotted line

11+ Jowermost dashed line |

4] 05 1 15 2z 15 3 15 4 4.5]
Time in Years

Fig. 3.5: Family of curves for fuzzy performability RAID1 in 10/s

Fig. 3.6 shows the fuzzy RAIDS performability of the mail server. It can be seen that
the 10/s range from around 35,000 to almost 15,000 at the beginning of the life. The
performability analysis tells us that after five years we can have no throughput. Here is very

clear that if backup plans should be put in place to counter this future problem.

Fuzzy Performability of the Mail Sener for RAIDS

35,000 T T T T T 15 T T T 15
X5 : uppermost dashed line
30,000 - . . K
. x4 : mid-upper dotted line
AN X3 . center solid line
£ 25000 . . N
= N\ X, : mid-lower dotted line
% 20,0001 : lowermost dashed line | |
5 :
E
o
S 15,000 i
o
>
N
2 10,000 il
5,000 A
0 r r r r r r r r r r

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time in Years

Fig. 3.6: Family of curves for fuzzy performability RAIDS in 10/s

53

Fuzzy Performability of the Mail Server for RAID1
40,000 T T T T T T T T T T

35,000]
30,000
250001 -

20,000

15,000 -
Xs : uppermost dashed line

10,000 - | X4 : mid-upper dotted line |
X3 . center solid line
5000 | X : mid-lower dotted line .
x; : lowermost dashed line

0 r r r r r r r r r r
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time in Years

Performability in Users (Mailboxes)

Fig. 3.7: Family of curves for fuzzy performability in Users (mailboxes) R1

Figures 3.7 and 3.8 show the performability in number of users over the life of the
RAIDI mail server. This measure can serve to plan for the amount of service the system can
yield. As we can see, at the beginning of the life of the mail server it can serve up to 30,000
light users or around 23,000 of the heavy users. If we want to keep this number of users
constant we need to plan for the performability over the entire life of the product. In real life,
figures 3.7 and 3.8 can be used to make the decision to use either RAIDI or RAIDS very easy

based on the amount of service a business wants to provide.

Fuzzy Performability of the Mail Server for RAIDS

40,000 T T T T T T T T T T
35,000 - Xs . uppermost dashed line | |
x4 . mid-upper dotted line
30,000 X3 . center solid line y
25,000 - \\ X, : mid-lower dotted line |
\ x; . lowermost dashed line

20,000 Y\

15,000

Performability in Users (Mailboxes)

10,000

5,000

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time in Years

Fig. 3.8: Family of curves for fuzzy performability in Users (mailboxes) RS

54

3.4 CONCLUSIONS

It has been shown how performability analysis can be a tool for the analysis of the
future capacity of service a computer system, and by extension, a service that a business can
provide. In this section, it has been shown how performability based on specific fuzzy
arithmetic approach can be a tool for planning the future in a way that allows a business to
keep the quality of service promised to customers.

This section has also presented a numerical method in the form of an algorithm that
can be used to estimate the reliability and performability of a Markov Model. The algorithm
presented in this section can be a starting point for the estimation of the reliability and
performability. But this algorithm is extensible because it can be adapted to particular
conditions, e.g., a RAID level like RAID6 that supports double disk failure, or a function can
be introduced to change the reward of the states, rsi(?), and make the reward time-dependent
instead of fixed.

Using the fuzzy arithmetic approach, all assets of the model presented were taken as
they were — uncertain. By employing fuzzy arithmetic, aggregated inherent uncertainties of
such a RAID system were modeled in one run. Extreme system performability behaviors
illustrated by boundary curves paint an immediate picture of what are the worst and best case
scenarios under given system parameter uncertainties. The approach of performability
modeling based on a numerical method and using fuzzy arithmetic therefore provides a

powerful tool for the effective design and business planning.

55

CHAPTER 4: Fuzzy CONTROL OF SPARING FOR DISK ARRAYS

The analysis and modeling of the disk arrays under failure has been studied before
[Muntz 90a], [Menon 93a], [Navarro 07b], [Navarro 07c]. But schemes of control of sparing
have not been proposed in the literature before. This chapter presents two control schemes for
the sparing data protection policy. The first is based on fuzzy logic and the second on a
neural-fuzzy approach. Both schemes achieve a faster sparing than the traditional empty/no-
empty control model, but without impacting the latency of user request.

Section 4.1 shows the fundamental model used in the fuzzy control scheme proposed
in this chapter. The first model shown is the Queuing System with Vacations (QSV). The
second model is of a disk array based on the QSV with the addition of the modeling of disks
using disk-performance related measures. Also, models for the RAID1 and RAIDS rebuild
processes are presented.

Section 4.2 presents a fuzzy-logic controller that uses three input parameters: 1)
latency of user requests, 2) queue length and 3) time of sparing, to make the decision whether
to allow user requests to proceed or continue with the sparing. This controller makes use of
control of queues as proposed in [Phillips 99a] and [Zhang 05a].

Section 4.3 presents a neural-fuzzy controller (NFC) that uses three input parameters:
1) latency of user requests, 2) fraction of data spared and 3) time of sparing, to make the
decision whether to allow user requests to be carried out or continue with the sparing.

Both sections, 4.2 and 4.3, compare their respective controllers against the traditional
Queuing System with Vacations (QSV) model, or also referred to as empty/no-empty control
model, where the sparing process only takes place when the queue is empty, or, in other

words, when there are no users requests.
4.1 FUNDAMENTAL MODELS

4.1.1QUEUING SYSTEM WITH VACATIONS (QSV)

A queuing system in which the server may be disconnected (turned off) or removed is
said to be a queuing system with vacations [Medhi 03a]. Fig. 4.1 illustrates the concept of

queuing systems with vacations (QSV).

56

The requests arrive at a rate A to the queuing system. The requests are processed at a
rate L. When the queue is empty, the server is idle. Then the server can turn itself off and
execute some background process (go on vacation). After some time the server returns from
executing the background process and rechecks the queue. If the queue is not empty, then the
server turns itself on and serves the requests that arrived during the vacation of the server. But
if the queue is still empty, the server keeps itself off and goes on vacation (execute the
background process) again. This is referred to in this document as the empty/no-empty

approach to control of the QSV.

RN R \—@

A = arrival rate = service rate

Fig. 4.1: Queuing System with Vacations (QSV)

4.1.2 DISK ARRAY QUEUING MODEL

The complete model of the disk array is based on a central server model with the
addition of the queuing system with vacations (QSV). One of the advantages of fuzzy logic is
the possibility of easily modeling and controlling systems in which mathematical models can
be hard to derive. The problem of finding optimal policies for networks of queues is not
trivial. Some queue optimization problems are probably intractable [Papadimitriou 94a]. Fig.
4.2 shows the model used for the disk array controller and the disks. This model combines the
QSV with the queuing network formed by the disk array controller and the disks. The user
requests to the queuing system arrive at a rate A. The disk array controller then processes
requests at a u service rate.

The first approximation to a latency for the user requests can be obtained by saying the
user request latency (response time) is the sum of the latency of the disk array controller, 7t4ac,

and the latency of the disk (for reads) or disks (for writes), 7Z4is:

rt = rtdac + rtdisk (4-1)

57

Estimating the latency of the disk array controller is not easy since it depends on two
main factors: 1) the performance of the electronic components, e.g., CPU, memory; and 2) the
software logic programmed in the disk array. This makes the modeling and estimation of the
disk array controller latency, 4., hard to obtain. This section shows that even with the lack
of an exhaustive and detailed mathematical model, fuzzy logic can be applicable to the control
of the sparing process. Also, because of the complexity of the model, this section uses
simulation to show the improvements made by the fuzzy controller.

The model used in the simulation is based on the ST373454FC Seagate disk [Seagate
05a]. The service time, T4, of a disk request depends on three factors: 1) rotational latency, z.,
2) seek time, fseek, and 3) transfer time, tyfer:

T, =t

Fl o+l (4.2)

rot seek

The disk positioning time is defined this way:
DPT = trot + tseek (43)

The disks will be modeled using the following equation:

DISK1

DISK ARRAY CONTROLLER > Ag
’..'...............'.......Q...............

: ON/OFF : o

. A +— s °

. : °

Fig. 4.2: Queuing system of controller and disks.

T,=DPT +1

Xfer

58

(4.4)

The disk service times are difficult to estimate since some factors, like disk

specifications, disk caching and scheduling policy are hard to determine [Varki 03a]. The data

DPTin millseconds [ms)

5]

-~

[=2]

[%)]

s

w

[y

o

Seagate ST373454FC Disk Positioning Times (DPT) measured

for Random Reads

| | \ | \
\ DPT parameters for random reads used in the
. _ b
\ equation: dpt =a+ [irqueue tength
a=2
b=4.75
N
% RMSD = 0.159
\""‘\-'——"-.":-__--..;
0 5 10 15 20 25 30 35 40 45 50 55
Queue Length

= Measured DPT in ms

= Estimated DPT

Fig. 4.3: Disk Position Times measured for Random Reads

used for this simulation came from measurements made on the ST373454FC Seagate disk.

For random workloads the disk positioning time can be modeled by this equation in [Varki

03a]:

DPT =a+

b
\/ 1+disk queue

(4.5)

59

Seagate ST373454FC Disk Positioning Times (DPT) measured
for Random Writes

ca

| | | | | |
; \ DPT parameters for random reads used in the
. _ b T
\\\ equation: dpt =a+ [rqueue tength

6 ag=2.8 —
'E“ \\\ b=4.7
E 5 ~ T I
£ RMSD = 0.324
g4
] —
E —
£3
i
o
(=]

2

1

0

0 5 10 15 20 25 30 35 40 45 50 55 60
Queue Length

Measured DPT in ms Estimated DPT

Fig. 4.4: Disk Position Times measured

Measurements were obtained from a ST37345FC disk to determine the parameters a
and b for (4.5) for both random reads and writes. Fig. 4.3 shows the parameters were obtained
for random reads, a = 2 and b = 4.75. The root-mean-square deviation (RMSD) between the
measured and the estimated disk positioning time (DPT) was RMSD = 0.159.

Fig. 4.4 shows the parameters that were obtained for random writes, a = 2 and b =
4.75. The root-mean-square deviation (RMSD) between the measured and the estimated DPT
was RMSD = 0.324.

The measured transfer time for random 4KiB transfers was #yr = 0.06ms and for
random 128KiB transfers the #r = 1.96ms. The simulations used later in this chapter made
use of the parameters estimated for the DPT for random reads and writes as well as the txfer

for 4KiB and 128KiB transfers.

4.1.3 RAID] REBUILD MODEL

In this section, the new approach for sparing will be presented on the analysis of a
RAIDI system. The RAID1 system can be in one of three modes: 1) optimal, when all the
disks are working; 2) degraded, when one disk fails; 3) failed, when one pair of disks with the

same data fail so there is no way to recover the data.

60

The RAID1 system consists of D disks, where D is an even number. The mirroring of
the disks is by pairs of the di with dy+1 disk, where d=1,3,5,...,D-1. The capacity of the disk
is referred to as Cq. The disks are divided up in N, number of disk blocks of size S,. The
number of N, blocks per disk depends on the storage capacity of the disk Cq:

N,=C,/S, (4.6)

The disk block is the atomic unit of storage for the RAID1 system. When newly
arrived data has to be stored on a disk, a new disk block is allocated. For this section, a block
size Sy=128KiB will be used. This is the default size for the HP StorageWorks 1000/1500
MSA [HP 06a]. Each disk block is referred to as B;, where i=1,2,3,...,Ns.

Fig. 4.5 shows the data layout of the RAID1 system in optimal mode. Each block B;
has a corresponding mirror on the other disk indicated by B’:. For example, disk 1 (disk du)
and 2 (disk dy+1) form a pair of data and its mirror. The spare disk is in standby mode and no

data blocks have been allocated on it.

]
Disk Array
Controller
B, B’ B, B
Bz B,Q Bz B‘Z
B; B’; Bs B's
[]
[] [] o 00 [] [] []
[] [] [] [] []
Bob-2 B’pb-2 Bpb-2 B’bb-2
Bpb-1 B’pb-1 Bpb-1 B’bb-1
Boo B’pb Bob B'pb
DISK 1 DISK 2 DISK D-1 DISK D SPARE DISK

Fig. 4.5: RAID1 disk array data layout

61

A workload with arrival rate 4 is applied to the RAID1 system controller by the users.
The throughput x in 10s requests per second (IO/s), can be specified by:

1
x="/; @.7)
i
Disk Array
Controller
)fd)\q/ \ / Nsp
1 B’1 \ / B4 B’
B, B’, \ / B2)\C B fSp
B, B, \ / B, <, B,
[] [] [] [) 7V
[] [] [N N] [)
[] ® [] [) [] 1 f
fsp
Bob-2 B’bb-2 / \ Bpb-2
BDb—’l B’Db-’l BDb»’I
Boo B'pb Boo A
FAILED DISK-1 DISK D SPARE DISK
DISK 1 DISK 2 REPLACING
DISK D-1

Fig. 4.6: Sparing process to replace failed disk D-1

The throughput is distributed across the disks. A balanced workload across the disks is
considered in this section.

When a disk fails, the sparing process is started and the copy of the data on the
surviving disk to the spare disk is performed on a block by block basis. Fig. 4.6 shows an
example of a failed disk; in this case, disk D-1 failed and the spare disk is now in process of
replacing disk D-1. The sparing process copies the disk blocks B; from disk D to the spare
disk that is now the new disk D-1.

The fraction of the N, blocks copied is fp. If B is the number of disk blocks already
copied to the spare disk, then fraction of the N, blocks is:

fsp:Bc/Nb (48)

62

When the RAID1 system is sparing, the combined throughput of the disks changes
from that of the optimal state, since now we have two different conditions: 1) the surviving
disk is now serving its share of user requests and reading its disk blocks; 2) the spare disk is
writing its disk blocks and serving read requests for the data already copied and new writes to
the data on it. The other D-2 disks are serving requests as they would normally do. This
procedure to reconstruct the RAIDI redundancy is known as the baseline copy procedure
[Muntz 90a]. There are other ways to proceed with the reconstruction of the data that are also

mentioned in [Muntz 90a]

4.1.4 RAIDS REBUILD MODEL

For this section, a RAIDS5 disk array will be used for the analysis. The disk array can
be in one of three modes: 1) optimal, when all the disks are working; 2) degraded, when one
disk fails; 3) failed, when one pair of disks with the same data fail so there is no way to
recover the data. For this section, the disk array will be considered to be in the degraded state.

The disk array consists of D disks. The D disks are divided up in RAIDS disk groups
of G disks [Patterson 88a]. Fig. 4.7 shows the data layout of the disk array in optimal mode.
For the example shown in Fig. 4.7, G=5. The number of RAIDS groups is Ng:

N,=D/G
(4.9)

The data on the disks is divided up in data blocks. The spare disk is in standby mode
and no data blocks have been allocated on it. In each disk group, one data block disk stores
the parity of the data blocks of the other G-1 disks. Each data block is referred to as B;;, where
i=1,2,3,....Np and j=1,2,..,G. The group of data blocks B;; where i is constant and j goes from
j=1,2,...,G is referred to as a stripe. The number of N, blocks per disk depends on the
capacity of the disk, Cus as shown (4.6). The size of each data block B;; is S. A practical
example of the size of the disks blocks is taken from the Storage Works 1000/1500 MSA [HP
06a]. This disk array uses a default block size of 128KiB. Thus, for this section, a block size
S»=128KiB will be used.

The user reads and writes are executed differently depending on which disk is the data

to be accessed. The possible cases considered for this example are:

63

1) Optimal reads. If the disk on which the data is located is a working disk, a read
requested to the RAIDS disk array controller translates into one read on that particular disk.

2) Degraded reads. If the sparing process has already regenerated the data and written
it on the spare disk, then it is possible to read the data from the spare disk directly, in this case
this is an optimal read as in the previous case. But, if the disk on which the data is located is
the failed disk, and the data has not been regenerated on the spare disks, then we have a
degraded read. A degraded read requested to the RAIDS disk array controller translates into
G-1 reads. This is because the data on the failed disk cannot be read and has to be
reconstructed by reading the data (and the parity) on the other G-1 disks of the RAIDS disk
group.

]

Disk Array

Controller
Bi.1 Bi2 B3 B4 Pis
By Ba2 Bas P24 Bas
Ba.1 B3z P33 Bag Bas
=% Pa2 B3 Bsa Baus
Ps 4 Bs. Bss Bsa Bss
° ° ° ° . °
° . ° ° °
i . ° ° ° °
Bb.d By, Bp,dg Bb.d Pb,dg

DISK 1 DISK 2 DISK 3 DISK 4 DISK 5 SPARE DISK

Fig. 4.7: RAIDS disk array data layout

3) Optimal writes. The example used in this section was of a disk array under small
block (4KiB) randomly distributed writes. These are translated on the disks into the four
accesses: two accesses to read the old data and the old parity, and two more accesses to write
the new data and the new parity. This kind of writes is known as the read-modify-write
(RMW) [Patterson 88a]. For the rest of this section, an optimal write is a RMW.

4) Degraded write with a failed parity disk. If the disk on which the parity is located is
the failed disk, then only the new data is written on the working disk where the old data was
located. Later on, the sparing process will reconstruct the parity on the spare disk. Of course,

there is also the possibility that the parity on the failed disk has already been reconstructed on

64

the spare disk. If this is the case, then instead of a degraded write, this write is executed as an
optimal write.

5) Degraded write with a failed data disk. If the disk on which the data is located is
the failed disk, then it is necessary to read the data on the other G-2 disks in the disk group.
The data of the G-2 drives along with the new data to be written is used to compute a new

parity. This new parity is then written on the working parity disk.

]
Disk Array
Controller
Aﬂ/q/\ / \N“ Mg

*1 Bi; *1 B Bs Je*{ B *] P g B [f
e B2+ e Bao \ By /| 1« P24 e Bas [Bas
e B34 e B3z gs.s il Bsg il Bss > P33 fsp
* Ba.1 * Pao 4.3 * Baa * Bas g Bas
}* 7 Ps4 }*] Bs2 }*] Bs4 }*] Bss :F > Bs3 X
} . } . | N | o | .
I . I I I ‘ ° '] _f
\ | ° ° | ° | ° sp
I ° I I I ! L]
I I ° ° I ° I ° |
i* 8 B, i* 1 Bp,dg Boa :;* . B, :ﬁ 1 Phb,d g
[DISK 1! DISK 2 DISK 3 DISK 4 [DISK 5 ! SPARE DISK
| | |
| | ! ! | (replacing
| 2 Y 0 \ A y o > DISK 3)

Fig. 4.8: RAIDS disk sparing process to replace failed disk

6) Sparing write. The reconstruction (sparing) of the data is performed this way: the
data (and parity, depending on the stripe being reconstructed), of the other surviving G-1
disks is read. The data blocks Bs; where j=1,2,..,G-1 and s is the stripe being spared, are read.
Then the G-1 data blocks are used to compute the B block, which can be data or parity
according to the rotating scheme of parity on the G disks. And then, the By block is written
on the spare disk. Fig. 4.8 shows a RAIDS disk group where one disk failed and the spare disk
is in the sparing process.

In this model the fraction of the total N, blocks copied is also f, as shown in (4.8). A
workload with throughput 4 is applied to the disk array controller by the users. The percentage
of read requests in the workload applied to the disk array controller is represented by p and

the percentage of write requests in the workload is represented by w. Both percentages are

related by:

65

w=1-p (4.10)
The throughput of the user reads, Az, is:

Ay =P @.11)
The throughput of the user writes, Azyw, is:

Araaw = @A (4.12)

One way to estimate the disk throughput is subdividing the throughput in two groups.
One throughput, Aopr, is made up by the D-G disks that make up the Ng-1 optimal groups. The
other throughput, Aprc,, is composed of the G disks where the failed disk is located. We can
say, then, that the total throughput on the disks, Ap, is:

Ap = Aopr + Apsc (4.13)

For this section, a balanced workload is assumed. We know that for optimal reads,
there is a one-to-one correspondence between the user reads and disk reads. For the read-
modify-writes, two reads and two writes are performed for each one. With this, the throughput

of the disks in the optimal groups is:

_ (e +4py)

Ropr === (D— G

(4.14)

The throughput of the disks in the degraded group has to consider the fact that as the
sparing process progresses, the fraction of data spared, fy, goes to one and the accesses
become optimal as more and more data has its redundancy reconstructed. Also, besides the
user workload, the sparing process adds more requests on the disks. First, the reads in the

degraded disk group can be estimated by reasoning this way: this is a balanced workload, so

66

each drive get its Az/D share of reads. For the G-1 working disks in the group, this translates
into one disk read. But if the read is directed to the failed disk and the data has not been
reconstructed on the spare drive, this translates into reads from the other G-1 disks. So, we

can say that the throughput in the degraded disk group caused by the user reads, ApeG re4p, 1S:

N 2AG-DA (- f,)+ 4G,
DEG _READ ~— D (4 15)

The writes in the degraded disk group can be estimated by reasoning this way: again,
this is a balanced workload, so each drive get its Aruw/D share of reads. For the G-1 working
disks in the group, this translates into two reads and two writes. But if the write is directed to
the failed disk and the data (or parity) has not been reconstructed on the spare drive, this gives
rise to one of two possibilities:

1) the parity of the RMW was on the failed disk. Since the parity block rotates, we
know that 1/G of each disk is used to store parity, so the probability of this case, ppar, is:

P =1/G (4.16)

And the equation that estimates the throughput caused by the degraded writes with a
failed parity disk, ApeG par, is:

1- fvp)Ppa/lRMW
D 4.17)

/,i’DEG _PAR —

2) the data of the RMW was on the failed disk The probability of this, pda, is:

Paa =(G—-1D/G (4.18)

And the equation that estimates the throughput caused by degraded writes with a failed

data disk, ApeG para, 1s:

67

N (A= £,)G D) Py
DEG _DATA — D (4 19)

So, we can say that the throughput in the degraded disk group caused by the user

reads, iDEG_WRlTE, is:

(G141,

;{’DEG _WRITE — D Z’DEG para T ADEG _PAR

(4.20)

The throughput in the degraded disk group also includes the throughput of the sparing
process. The sparing writes, as mentioned above, require G-1 reads and one write. These
accesses are of size Sp, and the throughput, Asp4rivG, depends on the characteristics of the
drive, the throughput imposed by the user and the algorithm used for sparing. Putting the

ADEG READ, ADEG wriTE, and the AspirivG, we have:
Apec = Apgc reap T Apic wrire T Asparive 421)

With (4.13) and (4.21) together is now easier to understand why the throughput of a
disk array drops when a disk fails.

4.2 Fuzzy CONTROL OF THE SPARING PROCESS

The proposed solution to find the optimal policy that balances the time needed to
complete the sparing and the latency of the user requests is by using a fuzzy controller. This
solution will be more flexible than the traditional QSV model, where the sparing process only
occurs when the queue is empty. In this proposed solution more parameters will be
considered. The input parameters will be fuzzified so we can base the decisions on fuzzy
values. The use of fuzzy values allowed us the use of a rule base with the logic to control the
sparing process. In Fig. 4.9 we show a graphical model of the proposed solution.

The input parameters of the fuzzy controller are three: 1) The queue length of the
controller, g/; 2) the latency of the disk array controller 7;; and 3) the time elapsed since a disk

failed and the sparing process started, Z.

68

For this example the three parameters were normalized. The first parameter g/, is
considered to make an improvement of the traditional QSV, empty/no-empty approach. The
idea is to allow the sparing process to execute even if there are requests in the queue waiting
to be served. The ¢/ can be normalized by using Little’s theorem [Zhang 05a]. The
normalization of variables make it easier to map the crisp values of the variable to fuzzy
values. For example, if we assume an average latency of R7,,, = 10ms for the users and an
average throughput of Aae = 1,000 1IO/s, then we can use Little’s theorem and estimate the

average queue length:

L=RT,, *2,,=0.010¥1000=10

(4.22)

The gl then can be considered to be 10 as an average. We considered 20 as the glnax

and the normalization of the g/ was using this formula:

_ 4l
=T (4.23)
Gl ax
DISK1
> Ad ‘
penenrend DISKARRAY CONTROLLER | _......
: ONJOFF :
: . °
—: A p—e n °
. . °
SRR A : DISK D
] > Ad 1
FUZZY CONTROLLER
It +

ql—>
tep—

Fig. 4.9: Fuzzy controller of the QSV for sparing

69

The other two parameters are normalized by making two assumptions:

1) The latency, 7, can be normalized if we consider that there are some upper limits to
the latency the user applications can withstand without causing problems; such as high user
latencies or timeouts of user applications. One example is with the Microsoft Exchange
Servers. There are some latencies that are considered the maximum acceptable (50ms)
[Microsoft 06a] and above those latencies there can be problems. For the simulation shown in
this section, it was assumed that a delay of r,=50ms was the maximum that can be

tolerated. The normalized response time (latency), 7z, used by the fuzzy controller is then:

rt ="t (4.24)

2) The time elapsed in the sparing process since a disk failed, #;,, is normalized also.
The assumption made is that there is a maximum time acceptable for the user without the
redundancy of the data restored. This is a reasonable assumption since the purpose of a disk
array is to guarantee the redundancy of the data so there is no data loss when a disk fails. The
maximum time allowed for a sparing to finish was assumed to be #spma=24 hours. With this

assumption the normalized time elapsed in the sparing process, tsp is:

ts
tsp, =—= (4.25)
ISP vax

ZRO MID ONE

0 05 ps 1 P

Fic. 4.10: Membershin functions for the normalized values

70

With the three input parameters normalized, now the membership function can be
defined. Three linguistic values were assigned three fuzzy descriptors, ZRO, MID, and ONE,
which stand for “zero”, “middle value” and “one”. The fuzzification of the three fuzzy
descriptors was performed via a triangular membership function for each descriptor. This
technique is shown in [Zhang 05a]. Fig. 4.10 shows the triangular membership functions for
all three input parameters. The graph shows also an example using a dummy variable p that

can be replaced by any one of the three normalized parameters, gl,, rt, and tsp,. The

membership function u“®°(p) for the fuzzy descriptor ZRO is:

—2p+1 if 0<p <05

'uZRO(p) — { (426)
0 if p>05

The membership function u*P(p) for the fuzzy descriptor MID is:

2p if 0 <p <05

uMIP (o) = { (4.27)
—-2p+2 if 05 <p <1

The membership function u?"E(p) for the fuzzy descriptor ONE is:

0 if p <0.5

uONE(p) = { (4.28)
20 + 1 if 05 <p <1

The fuzzy value of rt, is defined as Fiu:

Frtn = max [:uZRO (Ttn); ,uMID (rtn): ,uZRO (Ttn)] (4.29)

The fuzzy value of g/, is defined as Fy:
Fqln = max [.HZRO (qln), .uMID (qln), .uZRO (qln)] (4.30)

The fuzzy value of tsp, 1s defined as Fispn:

Ftspn = max [.uZRO (tspn), /’LMID (tspp), .uZRO(tSpn)] (4.31)

71

Now the next step is the specification of the rules for the rule base. The linguistic
criteria can be summarized:

1) The latency of the disk array controller, 7, should be kept as low as possible. This is
one of the features that must be balanced during the sparing process. If the latency r;, is low,
we can proceed with the sparing.

2) The sparing process should be finished as soon as possible. This is the other feature
that must be balanced. The closer we are to the maximum time allowed for a sparing process
to finish, zspmax, more priority should be given to the sparing process.

3) The lower the queue length is, the more we can spare since just few processes will
be delayed.

With these linguistic criteria, the rule base can be built. The output of each rule is a
binary value of YES, which means continue the sparing process, or NO, which means to hold

off the sparing process. The complete rule base of the fuzzy control of sparing is in Table 4.1.

Table 4.1: Rule base of the fuzzy control of Sparing

Rules 1-9 Rules 10-18 Rules 19-27

Tt qln 1Spn out | rt qln ISpn out |rt qln 1Spn out

ZRO | ZRO | ZRO | YES jMID | ZRO | ZRO | YES JONE | ZRO | ZRO | YES

ZRO | ZRO | MID | YES jMID | ZRO | MID | YES JONE | ZRO | MID | YES

ZRO | ZRO |ONE | YES jMID | ZRO |ONE | YES JONE | ZRO | ONE | YES

ZRO | MID | ZRO | YES jMID | MID | ZRO | YES JONE | MID | ZRO | NO

ZRO | MID | MID | YES jMID |MID | MID | YES JONE | MID | MID | NO

ZRO | MID |ONE | YES jMID | MID |ONE | YES JONE | MID | ONE | YES

ZRO | ONE | ZRO | YES JMID |ONE | ZRO | YES JONE |ONE | ZRO | NO

ZRO |ONE |ONE | YES jMID | ONE | MID | YES JONE |ONE | MID | NO

ZRO |ONE |ONE | YES jMID | ONE |ONE | YES JONE | ONE | ONE | YES

The output of the fuzzy controller is the decision to turn on/off the disk array
controller to server user requests (on) or regenerate the redundancy (off). The deffuzification
of the output is done by applying the rule and the result is a zero (NO) or a one (YES). We

define the output set as the crisp set:

Couts = { YES, NO} (4.32)

72

The rules are of the form:

if rt, € Fyny and ql, € Fy,, and tsp, € Figppn then out € Coyt (4.33)

4.2.1 SIMULATION AND RESULTS

The model of the RAIDS system used for the simulation is based on the description in
4.1.4 with that addition of a central server and the QSV as shown in Fig. 4.9. The user
requests to the queuing system arrive at a rate 4. The RAID controller (the server) processes
requests at a u service rate. A simulation of the queuing system in Fig. 4.2 was the approach
used in this section to show the improvements made by the fuzzy controller. The disk
parameters used for this simulation were presented at the end of section 4.1.2. The simulation
was done using the CSIM19 simulation package [Mesquite 07a]. The workload applied was
75% reads (3:1 ratio), as typical for Exchange Server environments [Microsoft 06b]. A disk
array with 80 ST373454FC disks was simulated using a RAIDS model as shown in section
4.14. The disk array controller 1/u used was 0.08ms with an exponential distribution. The
throughputs applied for comparison were 1000, 2500, 5000, and 7500 10/s. The throughputs
were maintained constant during the entire duration of the simulation. The intention was to
measure the variations in latency and the duration of the sparing process.

The graphs used for the comparison show on the horizontal axis the total time taken
for the sparing process to complete, and on the vertical axis the latency measured for the user
requests.

Fig. 4.11 shows the result for the 1000 10/s throughput applied to the disk array. This
result shows the fuzzy controller outperforming the traditional empty/no-empty controlled
sparing. The graph shows the fuzzy-controlled sparing finishing in 1.5 hours after the disk
failed; whereas the empty/no-empty sparing finished in 3.2 hours. For both cases, the latency
was around 10ms. There is a great improvement in the reduction of the sparing time by half

with no impact on the user request latency

73

Average user request latency for 1,000 I/Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

N

7]
T 1
c
S0
[
29
E s
£
2 " 1" Fuzzy controlled sparing finished in 1.5 hours (black line)]
€ 6 —
[]
3 5 | Empty/No-Empty controlled sparing finished in 3.2 hours (red line) |
I _ |
% The fuzzy controller finished in half the time with practically no
e T impact on the user response time T
s 27 1
(7]
D 1

0

0 0.5 1 1.5 2 25 3 3.5

Sparing completion time in hours

‘ ——Empty/No-Empty ——Fuzzy Controlled ‘

Fig. 4.11: User request latency comparison for 1,000 10/s with fuzzy control

Average user request latency for 2,500 1/0Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

13
[7) R
g 12
8 11
(]
2 10
Z o
fi s
§ 7 - Fuzzy controlled sparing finished in 2.1 hours (black line) —
& 61 —
% 5 | Empty/No-Empty controlled sparing finished in 3.9 hours (red line) |
=] 1 —
g,' “1 The fuzzy controller finished in half the time with no impact on the
5 37 user response time 1
»n 2
>

1

0

0 0.5 1 1.5 2 25 3 3.5 4

Sparing completion time in hours

‘ ——Empty/No-Empty ~====Fuzzy Controlled ‘

Fig. 4.12: User request latency comparison for 2,500 10/s with fuzzy control
Fig. 4.12 shows the result for the 2,500 I0/s throughput applied to the disk array. This
result shows the fuzzy controller outperforming the traditional empty/no-empty controlled
sparing. The graph shows the fuzzy-controlled sparing finishing in 2.1 hours after the disk

failed, whereas the empty/no-empty sparing finished in 3.9 hours. For both cases, the latency

74

was around 12.5ms. There is an improvement in the reduction of the sparing time by half with
no impact on the user request latency.

Fig. 4.13 shows the result for the 5,000 10/s throughput applied to the disk array. This
result shows the fuzzy controller outperforming the traditional empty/no-empty controlled
sparing. The graph shows the fuzzy-controlled sparing finishing in 3.1 hours after the disk
failed; whereas the empty/no-empty sparing finished in 5.4 hours. For both cases, the latency
was around 17.5ms. There is an improvement in the reduction of the sparing time by half with
no impact on the user request latency.

Fig. 4.14 shows the result for the 7,500 1O/s throughput applied to the disk array. This
result shows the fuzzy controller outperforming the traditional empty/no-empty controlled
sparing again. The graph shows the fuzzy-controlled sparing finishing in 8.1 hours after the
disk failed; whereas the empty/no-empty sparing finished in 4.6 hours. For both cases, the
latency was around 24.5ms. There is an improvement in the reduction of the sparing time by

half with no impact on the user request latency.

Average user request latency for 5,000 I/Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

9 — Fuzzy controlled sparing finished in 3.1 hours (black line)

| Empty/No-Empty controlled sparing finished in 5.4 hours (red line)

1— The fuzzy controller finished in little over half the time with no impact
| on the user response time

| | | | | | | | | |

! ! ! ! ! ! ! ! ! !
0 0.5 1 15 2 25 3 3.5 4 45 5 5.5
Sparing completion time in hours

User request latency in milliseconds
3

O N WA N ®

‘ ——Empty/No-Empty =——Fuzzy Controlled ‘

Fig. 4.13: User request latency comparison for 5,000 I10/s with fuzzy control

75

User request latency in milliseconds

Average user request latency for 7,500 1/0Os during the sparing
process for both Empty/No-empty and Fuzzy-controlled sparing

| Fuzzy controlled sparing finished in 4.6 hours (black line)

| Empty/No-Empty controlled sparing finished in 8.1 hours (red line)

8 —
6 17— The fuzzy controller finished in little over half the time with no impact ——
4 {—on the user response time —
2
o [[[[[[[[]

0 0.5 1 1.5 2 25 3 35 4 4.5 5 55 6 6.5 7 75 8

Sparing completion time in hours

‘ ——Empty/No-Empty =~ ——Fuzzy Controlled ‘

Fig. 4.14: User request latency comparison for 7,500 10/s with fuzzy control

Table 4.2 with a comparison of the four results, shows an improvement of the sparing

process by cutting the duration in half with no impact on the user request latency. This

simulation shows the value of using fuzzy controlled logic for the improvement of the sparing

process.
Table 4.2: Comparison of results of the fuzzy control of sparing
10/s Empty/No-empty controlled sparing Fuzzy-controlled sparing
Sparing Latency (ms) Sparing Latency (ms)
Duration (hrs) Duration (hrs)
1,000 3.2 10 1.5 10
2,500 3.9 12.5 2.1 12.5
5,000 5.4 17.5 3.1 12.5
7,500 8.1 24.5 4.6 24.5

76

4.3 NEURAL-FUZZY ALGORITHM FOR SPARING IN RAID SYSTEMS

This neural-fuzzy sparing control scheme is based on the fuzzy sparing control scheme
presented in section 4.2 but with two differences: 1) the rule base was implemented with an
artificial neural network; and 2) the fraction of data that has been already spared from the
surviving disks is used instead of the queue length. This neural-fuzzy sparing control scheme
proposed to balance the time needed to complete the sparing and the latency of the user
requests is composed of two neural nets with the following features: 1) the input parameters to
the neural net controller are normalized so they are in the [0,1] range; 2) the input parameters
are fuzzified using three membership functions, LOW, MED and HIG; 3) the fuzzification of
the input parameters is made by the first neural net; 4) the second neural net implements the
rule base and makes the decision whether to keep sparing or hold the sparing temporarily,
based on the fuzzified parameters from the first neural net. In Fig. 4.15 we show a graphical

model of the proposed solution.

DISK]J
.

DISK D

RAID
CONTROLLER

KEEP SPARING (1)
HOLD SPARING (0)

NEURO-FUZZY
CONTROLLER

Fig. 4.15: Neural-Fuzzy controller of the QSV for sparing

The input parameters of the fuzzy controller are three: 1) The fraction of data already
spared from the surviving disks, i.e., the fraction of sparing, fsp; 2) the latency of the RAID
controller r;; and 3) the time elapsed since a disk failed and the sparing process started, .

For this implementation of the neural-fuzzy controller the three parameters were
normalized. The first parameter f;, from (4.8), is in the range [0,1]. The other two parameters
are normalized by making two assumptions.

The first assumption is that the latency »; can be normalized with respect to certain

upper limits of the latency that the user applications consider excessive. One example is with

77

the Microsoft Exchange Servers for which there are some latencies that are considered the
maximum acceptable and above those latencies there can be problems such as slow response
experienced by customers or timeouts in applications [Microsoft 06a]. Here, it was assumed
that a delay of 7£,,=50ms was the maximum that can be tolerated, and that was the value
used in the simulation of the sparing. The normalized response time (latency) r¢, used by the
fuzzy controller is the same as in (4.24)

The second assumption made is that there is a maximum time acceptable for the user
without the redundancy of the data restored. This is a reasonable assumption since the purpose
of a RAID system is to guarantee the redundancy of the data so there is no data loss when a
disk fails. The time elapsed in the sparing process since a disk failed 7, is normalized also.
The maximum time allowed for a sparing to finish was assumed to be tspuw=12 hours. With
this assumption the normalized time elapsed in the sparing process tsp, is the same as in
(4.25)

With the three input parameters normalized, the membership function can be defined.
Three linguistic values were assigned, LOW, MED, and HIG, which stand for “low”,
“medium” and ‘“high” value. This is following the same technique shown by Philips et. al.
[Zhang 05a]. Fig. 4.16 shows the triangular fuzzy membership functions for all three input
parameters. As it can be seen, the triangular functions are the same as the ones used for the
fuzzy sparing control scheme presented in the previous section 4.2. And like in the previous
section, Fig.4.16 shows also an example using a dummy variable p that can be replaced by
any one of the three normalized parameters, fsp, 7#, and tsp,. The membership function for
LOW is the same (4.26), the MED membership function is the same as (4.27) and the HIG

membership function is the same as (4.28).

The fuzzy value of rt, is defined as Fiu:

Frtn = max [MLOW(rtn)’ HMED (Ttn)f UHIG (Ttn)] (4.34)

The fuzzy value of f;, is defined as Ff:
Frop = max [1% (fip), w2 (fip) "¢ (fip) 1 (4.35)

78

The fuzzy value of tsp, is defined as Fispn:
Ftspn = max [.ULOW(tSpn); .UMED (tspp), ,uHIG (tspy)] (4.36)

The three normalized parameters (fsp, 7fs, tsps) in the range [0,1] are the input to the
fuzzifier neural net. Fig. 4.17 shows the structure of the neural net used. Notice the two
sections. The first neural net section, based on the value of the normalized parameter, will
output a number 0, 0.5 or 1 that will correspond to one of the three possible fuzzy values

(LOW, MED, HIG). The second section implements the rule base.

LOW MED HIG
14
pe(pr) [~
p*(o1)
0 5, 05 1 P

Fig. 4.16: Membership functions for the normalized parameters

NEURO-FUzzY
CONTROLLER

OUTPUT:
KEEP SPARING (1)
HOLD SPARING (0)

CONTROLLER:
Rule base
implementation

FUZZIFIER: :
Output is one of LOW, MED, HIG

Fig. 4.17: Neural net layers of the Neural-Fuzzy controller for sparing
The rule base can be implemented according to the following linguistic criteria: 1) the
latency of the RAID controller 7, should be kept as low as possible. If the latency 7, is LOW,
the sparing can continue without any risk of affecting the user request latency. 2) the sparing

process should be finished within the maximum allowed, zspm.x. The closer we are to HIG, the

79

more priority should be given to the sparing process. 3) the fraction of sparing data spared f;p,
should be as close to HIG as possible. If the fraction of data already spared is close to zero,
then the sparing process is favored over the latency.

With these linguistic criteria, the rule base can be built. The output of each rule is a
binary value of KEEP (1), which means continue the sparing process, or HOLD (0), which
means to hold off the sparing process. The complete rule base is in Table 4.3. The output of
the fuzzy controller is the decision to turn on/off the RAID controller to serve user requests
(on) or regenerate the redundancy (off). The deffuzification of the output is done by applying
the rule and the result is a zero (HOLD) or a one (KEEP)

The output of the fuzzy controller is the decision to turn on/off the disk array
controller to server user requests (on) or regenerate the redundancy (off). The deffuzification
of the output is done by applying the rule and the result is a zero (NO) or a one (YES). We
define the output set as the crisp set:

Cout.ns = { KEEP, HOLD } (4.37)

The rules are of the form:

if rty, € Frpp and fgp € Frgp and tspy € Figpyn then out € Coyp oy (4.38)

Table 4.3: Rule base Neural-Fuzzy controller for Sparing

Rules 1-9 Rules 10-18 Rules 19-27

't Sfp tspn | OUT Tt fp tspn | OUT | rta fsp tspn | OUT
LOW | LOW | LOW | KEEP | MED | LOW | LOW | KEEP | HIG | LOW | LOW | HOLD
LOW | LOW | MED | KEEP | MED | LOW | MED | KEEP | HIG | LOW | MED | HOLD
LOW | LOW | HIG | KEEP | MED | LOW | HIG | KEEP | HIG | LOW | HIG | KEEP
LOW | MED | LOW | KEEP | MED | MED | LOW | KEEP | HIG | MED | LOW | HOLD
LOW | MED | MED | KEEP | MED | MED | MED | KEEP | HIG | MED | MED | HOLD
LOW | MED | HIG | KEEP | MED | MED | HIG | KEEP | HIG | MED | HIG | KEEP
LOW | HIG | LOW | KEEP | MED | HIG | LOW | HOLD | HIG | HIG | LOW | HOLD
LOW | HIG | HIG | KEEP | MED | HIG | MED | KEEP | HIG | HIG | MED | HOLD
LOW | HIG | HIG | KEEP | MED | HIG | HIG | KEEP | HIG | HIG | HIG | KEEP

80

4.3.1 SIMULATION AND RESULTS

The complete model of the RAID1 system is based on the model described in 4.1.3
with that addition of a central server and the QSV as shown in Fig. 4.2. The user requests to
the queuing system arrive at a rate .. The RAID controller (the server) processes requests at a
1 service rate. Fuzzy logic offers the possibility of easily modeling and controlling systems in
which mathematical models can be hard to derive. A simulation of the queuing system in Fig.
4.15 shows the improvements made by the neural-fuzzy controller. The disk parameters used
for this simulation were presented at the end for section 4.1.2. The neural network training
was performed in Matlab. The resulting weights and biases were translated into the
simulation. The simulation was done using the CSIM19 toolkit, which allows the discrete-
event simulation models [Mesquite 07a]. The testing parameters were chosen to resemble a
typical Exchange Server environment [Microsoft 06b]: 75% reads (3:1 ratio). A RAIDI1
system with 60 ST373454FC Seagate disks was simulated. The RAID controller had a u =
10,000 IO/s.

The throughputs 1000, 2000, 4000 and 8000 10/s, were maintained constant during the
entire duration of the simulation, in order to measure the variations in latency and the duration

of the sparing process.

Average user request latency for 1,000 I/Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

o

©

©

~

)

o

| Neural-Fuzzy controlled sparing finished in 1.4 hours (black line)

IS

| Empty/No-Empty controlled sparing finished in 2.9hours (red line) |

w

1 The neural-fuzzy controller finished in half the time with no impact on the user —
response time

| | | | | |
0 0.5 1 15 2 2.5 3 35
Sparing completion time in hours

User request latency in milliseconds
~

o

‘ ——Empty/No-Empty Ctir ——Neuro-Fuzzy Ctir ‘

Fig. 4.18: User request latency comparison for 1,000 I0/s with neural-fuzzy control

81

The horizontal axis shows the total time taken for the sparing process to complete. The
vertical axis shows the latency seen by the user requests.

Fig. 4.18 shows the result for the 1,000 10/s applied to the disk array. This result
shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled
sparing. The graph shows the neurro-fuzzy-controlled sparing finishing in 1.4 hours after the
disk failed; whereas the empty/no-empty sparing finished in 2.9 hours. For both cases, the
latency was around 8ms. There is an improvement in the reduction of the sparing time by half
with no impact on the user request latency.

Fig. 4.19 shows the result for the 2,000 IO/s applied to the disk array. This result
shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled
sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 1.5 hours after the
disk failed; whereas the empty/no-empty sparing finished in 3.1 hours. For both cases, the
latency was around 9ms. There is an improvement in the reduction of the sparing time by half

with no impact on the user request latency.

Average user request latency for 2,000 1/0Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

4 1 Neural-Fuzzy controlled sparing finished in 1.5 hours (black line) |

3 | Empty/No-Empty controlled sparing finished in 3.1hours (red line) |

User request latency in milliseconds
(%)

, | The neural-fuzzy controller finished in half the time with no impact on the user
response time

14 —

0 | | | | | |
0 0.5 1 15 2 2.5 3 3.5
Sparing completion time in hours

‘ pty/No-Empty Ctir Fuzzy Ctir ‘

Fig. 4.19: User request latency comparison for 2,000 1O/s with neural-fuzzy control
Fig. 4.20 shows the result for the 4,000 10/s applied to the disk array. This result
shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled
sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 1.7 hours after the

disk failed; whereas the empty/no-empty sparing finished in 3.8 hours. For both cases, the

82

latency was around 11ms. There is an improvement in the reduction of the sparing time of

55% less time with no impact on the user request latency.

Average user request latency for 4,000 I/Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

| Neural-Fuzzy controlled sparing finished in 1.7 hours (black line)

5 { Empty/No-Empty controlled sparing finished in 3.8 hours (red line) R

User request latency in milliseconds

| The neural-fuzzy controller finished in less than half the time with no impact on the user |
3 | response time 7

21 4

14
0 T ! ‘ T ‘ !

0 0.5 1 1.5 2 25 3 35 4
Sparing completion time in hours

‘ pty/No-Empty Ctir o-Fuzzy Ctir ‘

Fig. 4.20: User request latency comparison for 4,000 10/s with neural-fuzzy control

Fig. 4.21 shows the result for the 8,000 10/s applied to the disk array. This result
shows the neural-fuzzy controller outperforming the traditional empty/no-empty controlled
sparing. The graph shows the neural-fuzzy-controlled sparing finishing in 4.2 hours after the
disk failed; whereas the empty/no-empty sparing finished in 7.5 hours. For both cases, the
latency was around 19.5ms. There is an improvement in the reduction of the sparing time of
44% with no impact on the user request latency.

Table 4.4 presents a comparison of the four results, showing an improvement of the

sparing process by cutting the duration in half with no impact on the user request latency.

&3

Average user request latency for 8,000 I/Os during the sparing process for both
Empty/No-empty and Neural-Fuzzy-controlled sparing

22
\ \ \ \

T A S—

M ALA Ao, AAA A Al
\" W v

| Neural-Fuzzy controlled sparing finished in 4.2 hours (black line)

8 1 J
7 |- Empty/No-Empty controlled sparing finished in 7.5 hours (red line) |
61 J
5 1~ The neural-fuzzy controller finished in little over half the time with no impact on the 1
: T user response time 1
21 J
1 | | | | | | | | | | | | | | |
0 - [[[[[[|

0 0.5 1 1.5 2 25 3 35 4 4.5 5 55 6 6.5 7 75 8

Sparing completion time in hours

‘ ——Empty/No-Empty Ctir ——Neuro-Fuzzy Ctir ‘

Fig. 4.21: User request latency comparison for 8,000 10/s with neural-fuzzy control

Table 4.4: Comparison of results of the neural-fuzzy control of sparing

10/s Empty/No-empty controlled sparing Fuzzy-controlled sparing
Sparing Duration (hrs) | Latency (ms) | Sparing Duration (hrs) | Latency (ms)
1,000 2.9 8 1.4 8
2,000 3.1 9 1.5 9
4,000 3.8 11 1.7 11
8,000 7.5 19.5 4.2 19.5

4.4 CONCLUSIONS

This chapter demonstrated that fuzzy and neural-fuzzy logic can be applied

successfully to improve the sparing process in disk arrays. Both, the fuzzy-based and the

neural-fuzzy controllers presented in this chapter outperformed the traditional empty/no-

empty sparing process by finishing in half the time without impacting the user request latency.

84

CHAPTER 5: Fuzzy CONTROL OF LV SNAPSHOT REPLICATION

Snapshot of logical volumes is an area of research of high interest for storage
companies that aim at improving the availability of the data while at the same time providing
data replication [Simitci 03a], [NetApp 07a]. Logical volume snapshot is a feature that
translates into easier backup management, faster recovery, and reduced exposure to data loss
[Simitci 03a], [Xiao 06a]. The snapshot feature is typically provided by storage companies
like IBM (Tivoli Storage Manager), HP (Business Copy), EMC (SnapView), NetApp
(SnapDrive), and Hitachi (Copy-on-Write Snapshot) [Brooks 06a][HP 08a][EMC
08a][NetApp 07a][Betrand 04a][Dufrasne 09a].

By using the snapshot feature, users can create a point-in-time copy of a logical
volume (LV). From the user’s standpoint, the snapshot feature creates an instant copy of the
original logical volume. This gives users the means to preserve a point-in-time copy (the
snapshot) of the data in a source logical volume. If the data in the source gets corrupted or
lost, the user can go back to the snapshot and recover the data from that point in time. The
original volume with the data to be replicated will be referred to as source volume, or just
source, for short. The copy of the original volume will be referred to as the snapshot volume,
or the snapshot, for short.

Improvements in the management of snapshot replication have been proposed in
[Azagury 02a][Elnikety 05a][Shira 05a][Brinkmann 06a]. Performance improvement in terms
of data transfer have been shown in [Guangjun 08a] by Guangjun. Shah proposed a Logical
Volume Manager 2 (LVM2) scheme that is an optimization of LVM that improved the read
performance of the snapshot volume by 40% in [Shah 06a]. Variations of the basic snapshot
algorithm such incremental or iterative snapshots have been proposed before in [Zhenjun
06a][Guanping 05a][Zhong 04a]. Brinkman et al. proposed a scheme for snapshot in cluster
environments [Brinkmann 07a].

This section presents a snapshot fuzzy control algorithm that significantly improves
the latency of the user requests (reads or writes) during the snapshot process. The organization
of this section is as follows: Section 5.1 presents the copy-on-write and redirect-on-write
snapshot techniques. Section 5.2 presents a model for the snapshot and the modified process

deriving a new equation for the snapshot replication process. Section 5.3 presents the fuzzy

85

control algorithm. Section 5.4 presents the experimental results. Section 5.5 presents the

conclusions.

5.1 BACKGROUND OF POINT-IN-TIME COPY TECHNOLOGIES

The snapshot fuzzy controller improves the latency during the snapshot process by
providing an intelligent way of combining two snapshot technologies: 1) Copy-on-Write
(CoW) and 2) Redirect-on-Write (RoW). These two snapshot technologies will be described
in two following subsections. The classification of snapshot techniques will be based mostly

on Simitci in [Simitci 03a] and Xiao in [Xiao 06a].

5.1.1 CoPY-ON-WRITE (COW)

Source logical volumes are divided into Dp, data blocks, where By is the total number
of data blocks composing the source volume. Right after the snapshot volume is created, the
pointers to data blocks on each volume (source and snapshot), point to the source volume
(these pointers to data blocks are in some papers also referred to as metadata [Shah 06a]).
This is illustrated in Fig. 5.1. If the user reads a block of data that has not been written to since
the creation of the snapshot volume, the data will be read from the source volume. On the
other hand, if the user reads a data block that has been written to since the creation of the
snapshot, the data will be read from the snapshot volume. The first user write to a data block

after the snapshot volume has been created will be referred to as the first user write.

SOURCE VOLUME
DATA BLOCK

Source Volume / POINTERS Snapshot Volume
-

eoe [Oleee (OO

DBV SNAPSHOT VOLUME
DATA BLOCK POINTERS

Fig. 5.1: Snapshot right after creation

86

If a first user write occurs to one of the data blocks in the source volume, for example
Dj, then this block of data must be copied to the snapshot volume before that first user write
occurs so that the original point-in-time data block D; is preserved. Once the first user write
occurs, the D; data block in the source volume is modified so it is now referred to as the

updated D;’ data block. This snapshot technology is called copy-on-write (CoW) because

e

| CACHE MEMORY |

Source Volume Snapshot Volume

D, D;
2 3 2
o
[J
[]
D/
J 1. USER WRITE ON UNSNAPPED BLOCK
4 (D) IS HELD OFF IN CACHE MEMORY
[J
L 2. COPY ON WRITE TAKES PLACE
DBV 3. USER WRITE ON D; CAN PROCEED

Fig. 5.2: Snapshot copy-on-write process

every first user write to the source volume causes the disk array to copy the original data
block from the source to the snapshot volume before proceeding with the user write. The copy
of a data block to the snapshot volume before the first user write can occur adds an extra

delay to that first user write, as it has to wait for the copy. The extra delay is called the copy-

SOURCE VOLUME
DATA BLOCK
Source Volume / POINTERS Snapshot Volume
D‘l [Dj
L]
Dz b
L J
L]
L
D;
J
-
-
L]
Dgy SNAPSHOT
S——— | VOLUMEDATA

BLOCK POINTERS

Fig. 5.3: Snapshot after copy-on-write

87

on-write penalty. When a data block from the source volume has been copied to the snapshot
volume, then the original data block is said to have been snapped.

After the copy-on-write is accomplished, the pointers to the respective data blocks
(metadata) must be updated. Fig 5.3 now shows the source volume with the updated D;’ block
and the snapshot volume with the original D; block. The snapshot volume data block pointers
have to point to the original data blocks to maintain access to the point-in-time data.
Therefore, the snapshot volume data block pointer to the original D; block now points to the
snapshot volume because that is where the original D; block is preserved now. If the user
accesses the snapshot volume, the user will be able to read the original D; data block. If the
user accesses the source volume, the user will read the newly updated D;’ data block. Fig 5.3
illustrates the space efficiency advantage of the snapshot solution. The space used on the
snapshot volume is used only if there are new first writes to the source volume. Hence,

subsequent writes to the same data block will not cause a copy-on-write.

5.1.2 REDIRECT-ON-WRITE (ROW)

In case of RoW, the new user writes to the source volume are redirected to another
volume, set aside for the snapshot [Xiao 06a]. This redirection avoids the copy-on-write
penalty since the writes proceed without the need of a copy-on-write of the original data to the

snapshot volume. But in this case, the original volume still contains the original point-in-time

1
1. USER WRITE d., ARRIVES TO CACHE MEMORY \
2. USER WRITE d,, IS CARRIED OUT DIRECTLY

ONTO THE SNAPSHOT VOLUME d,, CACHE
MEMORY
SOURCE VOLUME
DATA BLOCK 9
Source Volume/ POINTERS Snapshot Volume
D S
1
D>
[)
[)
° RoW
D Point
]
[)
[)
[)
D SNAPSHOT
Bv S—— \oLumeData

BLOCK POINTERS

Fig. 5.4: User data write after redirect-on-write

88

data, while the snapshot volume contains the updated block, which is the reversal of the copy-

on-write scenario. See Fig. 5.4.
5.2 MODELING OF THE COPY-ON-WRITE SNAPSHOT

5.2.1 MARKOV CHAIN MODEL OF THE PROBABILITY OF A SNAP

The purpose of this section is to derive the equations for the probability of a copy-on-
write (CoW). In this section, the term snap will be used as a synonym for copy-on-write. The
snapshot process can be modeled by a Markov Chain (MC) with a finite number of states
under three considerations: 1) the write workload applied to the source volume is randomly
distributed over the source volume, 2) the size (in KiB) of the user writes to the source
volume is constant, and 3) writes to the source volume do not cross data block boundaries,
that is, a write will only modify the data within one data block. These assumptions are in line
with the accesses to databases, like Oracle ™ [Chan 08a]. The process can be understood
intuitively by explaining how the snapping occurs. At the beginning, right after a snapshot
volume has been created, the snapshot volume is empty. After the creation of the snapshot
volume, write requests from a user come at a constant rate 4 into the source volume. Since no
data blocks have been snapped, the writes will cause a snap to occur. In other words, the
probability is one that a write will cause a snap right after the snapshot volume is created. As
more data blocks are snapped, the probability of a user write causing a snap will decrease.
The sum of the snapped data blocks for a volume will be denoted by b and B, is the total
number of blocks that make up the source volume. The probability of a write causing a snap

then is:

Rmap - B (5.1)

This formula corresponds to the intuitive expectation. If no data blocks have been
snapped, then » = 0 and the probability of a user write causing a snap is 1. If all of the data
blocks have been snapped, then b = B,, and the probability of a write causing a snap is zero,
which means no more snaps will occur. The Markov Chain that models those probabilities is

shown in Fig. 5.5

89

To derive the equation for the transient analysis of the MC, differential equations were
obtained assuming equilibrium in terms of the input and output flow from each state
[Kleinrock 75a]. The differential equation for the probability of being in the state Py at time ¢
is:

dl:‘}t(t) =-AF,(t) with £(0)=1 (5.2)

The solution of (5.2) is:

P()=e" (5.3)

B,-0 - —(b— - - —(B-
i ﬂBV 1 le (b-1) /IBV b ﬂBv b+) lBV l(gB D

B, B, B, B, B,
a . [] . a @ e o o @

Fig. 5.5: Markov chain of copy-on-write Snapshot

The differential equation for the probability of P;(?) is:

dh (@)
dt

= AP,(1) - /I[B }3 ljpl) (5.4)

v

The solution of (5.4) is:

At - ﬁ(B,-1)

P(t)=B,(1-e8)e (5.5)

The differential equation for the probability of P»(%) is:

ar,(t) (B, -1 B -2
dt“#[:]Pl(t)—l[I jpz(o 56

v v

90

The solution of (5.6) is:

A

_ At B, —
PZ(I)ZM(I—eWT\‘)ze 5 (5.7)
By induction, the probability of being in state b is:
B A)
= v — » v 5.8
BO= g e)" (5.8)

The factorial term in equation (5.8) is a binomial coefficient, so the equation now

becomes:

B, A s,
@)=\, [d-en)e ™ (5.9)

Equation (5.9) can be interpreted as the probability of having b blocks snapped at time
t.; the snapshot process for a constant write arrival rate A is governed by a binomial

distribution.

5.2.2 PRACTICAL SNAPSHOT PROBABILITY EQUATION

Since the generation of CoW is a binary event in which a user write may or may not generate
a CoW, it is not unexpected to have obtained an equation of a binomial probability. Equation

(5.9) has the form of a binomial probability mass function (p.m.f.):
BT
p, ()= |P°q (5.10)
where the equivalent terms are:

n=B, k=b, g=e®, p=1—gq

The problem with (5.9) is that for practical uses, the number of blocks B, that make up
a volume is large. For example, a 64GiB source volume will be made up of B, =
64GiB/128KiB = 524,288 blocks. Obtaining the factorial of such big numbers can render the
use of (5.9) impractical. Factorials as big as this are not computed in practice. That is why the

authors propose the use of the equivalent terms p and ¢ of the binomial p.m.f:

91

g=e” (5.11)

p=1-e? (5.12)

Consider the behavior of (5.11) and (5.12) at =0 and as t—o. At =0, or at the
beginning of the snapshot process, the probability of causing a snap is one, as it has been
established by (5.9). It can be observed that (5.11) has a value of one at /=0 and (5.12) has a
value of zero. As time goes by and the user writes keep arriving at a A rate into the source

volume, the value of (5.11) goes to zero. The snapshot probability equation psuqp(?) is then:

A
—1

Panap(t) =€ By (5.13)

The probability of not causing a snap would be described by (5.12) and it could be

now taken as the probability of not having a snapshot:

A
-t
B

Ponap@) =1—e ™ (5.14)

Equations (5.13) and (5.14) can be used to determine how the disk array will recover
the latency and throughput that it had before the snapshot process started. These equations
explain why user requests may experience high latencies at the start of a snapshot when the
disk array is subjected to a constant arrival OLTP workload. Equation (5.13) was tested
against a snapshot setup to confirm its usefulness as a prediction of the behavior of a snapshot
volume under a constant OLTP workload of user writes. Fig. 5.6 shows a comparison of the
predicted probability of a snapshot occurring vs. the percentage of data blocks snapped. The
equation lines up almost perfectly with observed fraction (percentage) of unsnapped data

blocks, i.e., data blocks to still to be snapped.

92

Comparison of the Probability of a snap as predicted by p,,,,(t)
vs. the fraction of unsnapped data blocks at time t
1 The red dashed line was the measured fraction of unsnapped
data blocks from a Logical Volume (LV) of 16GB with 131,072
0.9 \
\ data blocks.
" 0.8 \ The workload imposed on this LV was 8KB random writes with
-~
S \ an arrival rate of 2,000 10/s.
'T; 0.7 N
§ AN The black dashed line was obtained using the equation
3 0.6 \ =
. « Psnap(t) = € Bv with parameters
s N A=2000 and Bv = 131,072
c
304 N
2 ~
.§ 0.3 ~
g ~o
w 0.2 S~
\\
—
01 Te—— e
e e
0
0 50 100 Time t 150 200 250
== == Probability of a snap === Fraction of unsnapped blocks

Fig. 5.6: Graph of the psnap equation predicting the fraction of unsnapped blocks

5.2.3 MODEL OF THE COW PROCESS

The model of the copy-on-write process is based on the latency delivered by disks
under an OLTP workload. The two most important measures of the OLTP workload imposed
on the disk array are the arrival rate in 1O requests per second (IO/s) and the latency in
milliseconds [ms]. Assuming the write cache memory is in write-through mode, the latency
that disks deliver under certain 10/s arrival rate is the key feature that will determine the
latency of the user accesses (reads or writes).

The latency of an access (read or write), .., from a disk is a function of the arrival

rate on the disk, A4
ZLacc :f(/ld) (5.15)

The latency introduced by the copy-on-write process, Tcow, i influenced by the delay
of a read of the data block, 7, from the disk where the source data block is located plus the
delay of the write of that data block, 7., to the disks where the snapshot data block will be

located. This can be expressed as:

93

Toow =T + T, (5.16)

The capital “7” letters indicate that the latency is for large block transfers. The data
blocks copied during the copy-on-write process are large in size compared to the user writes.
For example, data blocks can be 128KiB in size whereas user writes can be 8KiB in size.

A flow of user writes is received by a disk array. Some of the user writes, according to
the psnap probability will cause a snap, and therefore those user writes will have to wait for the
copy-on-write before being carried out (copy-on-write penalty). And some of the other writes,
according to the 1-psu.qp probability, will be carried out immediately. The arrival rate of the
user writes, Ay, along with the p.qp probability, determines the arrival rate all disks in the disk
array will receive, Ap. Fig. 5.7 illustrates this process.

The copy-on-write process causes extra disk accesses on the disk array. If a write to a
data block causes a snap that triggers a copy-on-write, then a data block (for example, 128KiB
in size), has to be read from a disk and it has to be written on some other disks depending on
the RAID level used by the snapshot volume. For example, if RAID1 is used on the snapshot
volume, then a copy-on-write will generate one read of a data block from a disk and two
writes to different disks. Therefore, three more accesses on disks in the disk array were
generated in the background. The accesses generated by the copy-on-write that depend on the
RAID level of the snapshot volume defined by the ar. factor. For RAID1 the ar. =2, which is

the number of disk writes needed for each user data write.

Ar
. User Write
Aw Psnap Aw (1'psnap) ’@ ADP é é ¢
CoW RAID group
AwPsnap ’é é ¢
RAID group

Fig. 5.7: User writes arrival rate and arrival rate caused by snaps

94

The total extra arrival rate on the disk array generated by the copy-on-writes, Acow, is:

Aeow = (1 + aRL)/lwpsnap (5.17)

The total arrival rate on the disk array, Ap, including user reads, is:

For the sake of simplicity, it was assumed that the arrival rate is balanced across all the

disks in a disk array, Ny, and the arrival rate on each disk is

A, =4,/ N, (5.19)

The snapshot process occurs while users are accessing a disk array. If a user write
causes a snap to occur, then it has to wait for the snap to take place before proceeding (the
copy-on-write penalty):

teow = tw + Teow (5.20)

The average time for the user writes is:

tw = tcowpsnap + (1 - psnap)tw (5.21)

This can be more simply expressed by combining (5.20) and (5.21):

q =ty + Tcowpsnap (5.22)

95

5.2.4 MODEL OF THE PROPOSED COW-ROW PROCESS

This dissertation presents a snapshot process that reduces the latency during the
snapping of the source volume. It is a combination of the CoW and RoW processes, facilitated
by the fuzzy controller.

The snapshot process is modified by introducing a control input parameter named
snap throttle factor uy. This actuating variable (control input), represents the percentage of
copy-on-write that will be allowed out of the all the snaps generated by user writes. The other
snaps will generate a redirect-on-write. The modified CoW-RoW process is illustrated in Fig.

5.8.

A

User Write
Aw*(1'psnap) + AD

CoW RAD group

Hin *}‘ w*psnan ..

L L]

1”9 RAID group

RoW
(1'1u rﬂ) *A w*psnap N

RAID group
Fig. 5.8: Modified CoW-RoW process

The modified CoW-RoW process now redirects a fraction of the copy-on-writes to
redirects-on-write. The reduction in the number of copy-on-writes reduces the arrival on the

disks which in turn reduces their latency. The extra arrival rate on the drives is now:

Arow—cow = Aw [uth(l + aRL)psnap + (1 - uth)aRL] (5.23)

And the total arrival rate on the disk array, Ap, including user reads, is:

Ap = A + Ay agy + Arow—cow (5.24)

96

The user writes now will experience smaller latencies since the delay introduced by
the redirect-on-writes, #-ow 1S significantly lower than z..,.. The average latency experienced by

user writes with the modified CoW-RoW process is expressed in the following equation:

5 = (1 - psnap)tw + [.uthtcow + (1 - .uth)trow]psnap (525)

One possible simplification can be made if it is assumed that the redirects-on-write are
the same as user writes, since the user write is redirected to the snapshot volume instead of the
source volume but with no other extra step in the process. This further entails that ¢, = t,

and (5.25) can be simplified as:

tw = tw + UenTeowPsnap (5.26)

This equation shows why the latency is better with the CoW-RoW process if the snap
throttle factor, us, is less than 1. The determination of the input control us and the control of

the snapshot process with the fuzzy control are explained in the next section.
5.3 SNAPSHOT Fuzzy CONTROL

5.3.1 PURPOSE AND RATIONALE OF THE SNAPSHOT FUzzy CONTROLLER

The snapshot fuzzy controller can be considered as a dynamic and optimal Takagi-
Sugeno fuzzy-logic based controller. The block diagram of the snapshot fuzzy controller is
illustrated in Fig. 5.9. The purpose is to minimize the average latency of user accesses ¢, and

t- during a snapshot process by controlling the dynamics of the snapshot process.

5.3.2 HIGH LEVEL MODELING OF THE SNAPSHOT FUzzY CONTROLLER

From a control standpoint the disk array is the controlled system. The controlled
system has two inputs: the arrival rate of writes, 4., and the arrival rate of reads, /..

The total arrival rate, 4, is the sum of the input parameters:

A=A +A4, (527)

97

The outputs of the system to be controlled (disk array) are the average latencies

experienced by the user accesses (reads or writes), ¢, and #,:

yE)=n »l=lk,] (5.28)

The state variables required for the snapshot fuzzy controller are 1) the probability of
snapped blocks in the volume, pjsuqp, which is a value in the [0,1] range; and 2) the numbers of

copy-on-writes per time unit, in other words, the arrival rate of copy-on-writes in the disk

array, Acow.

x(tl) = [xl x2] = [pymp ﬂ'row—cow] (529)
The control input variable is the snap throttle factor, us
A F A
Ae
ot 2 Rule Decision l
Base Logic: Plant
F Uth A Lty
Wit ° N 2wy > 1) CoW [>|(Disk Array) > ¢
2) Row

A

F
" pSnap
Zm .

Fig. 5.9: Snapshot fuzzy controller

The snapshot fuzzy controller also requires a reference variable, the reference latency
Wi, the maximum acceptable user request latency during the snapshot process. The maximum
latency used in this section was 30ms, from the Oracle ™ performance tuning guide [Chan

08a] as a latency value that gives a good indication of an overly active I/O system.

98

The outputs have to be periodically monitored every 7, seconds. The decision on how
often to monitor can be based on the maximum acceptable latency and the performance of the
disk array controller. Each sample is denoted by (%), where i is the i-th sample of the output

that occurred at a time ¢, as in:

t,=iT, where i=0,1,2,... (5.31)

5.3.3 DECISION LOGIC

If a user write causes a snap, then the snapshot fuzzy controller makes a decision
about the three possible choices to execute: 1) perform a copy-on-write at the time when the
user write is being served; 2) defer the copy-on-write operation by executing a redirect-on-
write; 3) perform a copy-on-write of the target data block if a redirect-on-write already took
place for that data block. The fuzzy controller throttles the snapshot process by controlling the
percentage of copy-on-writes that are caused by user writes (option 1), versus the percentage
of user writes with deferred copy-on-write (option 2). This percentage is the output of the
snapshot fuzzy controller and is named snap throttle factor us. For example, if uys = 0.4, this
means that only 40% of the user writes that cause a snap will also generate a copy-on-write.

The other 60% of the user writes that are causing a snap will generate a redirect-on-write.

5.3.4 ESTIMATION AND FUZZIFICATION OF THE PROBABILITY OF A SNAP

The probability of a snap is used as part of the determination of the snap throttle
factor. The fsuap(t;), in addition to being an indication of the percentage of blocks snapped at a
time #, also denotes the probability of further snaps. For example, if 90% of the blocks in a
volume have been snapped, the probability of user accesses causing further snaps is only 10%

(assuming a random user access over the volume). The probability of a snap at time ¢ is:
t)=1- t
psnap(l) fsnap(l) (5.32)

The probability of a snap psuap(ti), the error e(t;), and the change in error de(t;), are the

three variables used by the fuzzy controller to compute the snap throttle factor, u:m(z;). These

99

three variables need to be first fuzzified as shown in [Michels 06a]. The fuzzification of psuap
is done in very straightforward fashion. If the probability of snap is less than or equal to 0.5, it
is mapped to the Low Probability (LP) fuzzy descriptor. If the probability of a snap is greater
than 0.5, it is mapped to the the High Probability (HP) fuzzy descriptor. The membership
function of probability of a snap is therefore defined by:

0 l.f psnup S 05

H psnap (psﬂap) - {1 ljf Py > 0.5 (5 33)

The final fuzzification of the psup value is denoted by Fpsnap(iisnap), and is defined as:

LP lf‘ /'lsnap = 0

psnap snap FIP 1
gf llsnap (534)

5.3.5 CONTROL ERROR COMPUTATION AND FUZZIFICATION

The output y(z;) is compared with the reference latency w, to compute the control

error, e:

e(t,)=y()—w, (5.35)
The change in the control error, e, is also computed:
Aet;) =elt;)—elt,,) (5.36)

The final goal in the fuzzification of the control error e and change in the control error
Ae is to map them to one of three fuzzy descriptors, Zero (ZE), Positive Error (PE), and
Negative Error (NE), respectively. These fuzzy descriptors apply to both the control error e
and change in control error de. The purpose of these fuzzy descriptors is to indicate when the
control error is close to zero, or in case where the error does exist, whether the control error is

positive or negative. This fuzzification is first performed via three triangular membership

functions, u?E, Mt

100

and 1%, based on the reference latency w,. The membership functions are

described using a dummy variable error, €, since these membership functions are the same for

both e and 4e:
2
-2 ifeso0
Wrt
wrew,)=< 1 ife=0
1+ 2¢ if €<0
Wre (5.37)
1 ifezw,
O e B AL AON
0 if €< 1 w,
4 (5.38)
0 #ez—lw
4 rt
(8w, = —;‘vf”—; i & (- w,mw,)
1 if‘g S _Wrr
(5.39)
NE ZE PE
A
£
(]
£
) =Wt '%Wn '%Wrt 0 %Wrt %Wrt Wrt g

Fig. 5.10: Membership functions for e and Ae

101

The membership functions (5.37), (5.38) and (5.39) here shown are for the control
error e (if € = e), and for the change in control error de (if € = Ae). The graphical
representation of the membership functions is shown in Fig. 5.10.

To finish the fuzzification, the control error e and the change in control error de are
mapped into one of the fuzzy descriptors (NE, ZE, or PE). This is accomplished by comparing
the values obtained for the three membership functions (5.37), (5.38), and (5.39). Depending
on which of the three has the maximum value the fuzzy value of the error F., and the fuzzy

value of the change in error F 4., are mapped into one of the fuzzy descriptors NE, ZE or PE:

. NE ZE . PE
F'e _Imx(ﬂe ’ll’le 5lLle) (544)
FAe :II’BX(,UiVEE,,Uf,ﬂf) (545)

For example, if the output y(¢;) is 45ms, then using (5.35) the error e is 15ms. The

ZE—(), 1N PE_|

membership values, obtained by using (5.37), (5.38) and (5.39), are u =0, and pu
It is clear that the maximum value corresponds to u%. Using (5.44), the fuzzy value of the
error F. will be mapped to Positive Error, PE. This same procedure is used for the change in

error to map it into one of the fuzzy descriptors, NE, ZE or PE.

5.3.6 RULE BASE TO OBTAIN Uty

The rule base can now be built based on the following heuristic criteria: (1) if the user
request latency is high, then the control error, e, is fuzzy positive error, PE, and the controller
needs to reduce the number of copy-on-writes occurring. Therefore, the snap throttle factor us
is reduced. (2) if the user request latency is low, then the controller can increase the number of
copy-on-writes occurring. Therefore, the snap throttle factor us is increased. Otherwise, us
stays the same. The probability of more copy-on-writes and the change in error are also taken
into account.

Once the three fuzzified input variables e, de, and psu.p, are estimated, is the

evaluation of the fuzzy rules. The output of the fuzzy rules is the change in snap throttle

102

Table 5.1: Rule base for Snapshot Fuzzy Controller

Rule Input Variables Rule Output
Rule Number Dsnap e Ae Autsh
Ri HP PE PE -0.2
R> HP PE ZE -0.1
R3 HP PE NE -0.1
R4 HP ZE PE -0.1
Rs HP NE ZE +0.05
Re HP NE NE +0.05
Ry LP PE PE -0.05
Rsg LP PE ZE -0.05
Ro LP ZE ZE +0.05
Rio LP ZE NE +0.05
Ri LP NE ZE +0.05
Riz LP NE NE +0.05

factor Aug(t;). This value will denote the change in the snap throttle factor for the current

iteration. The rule base is in Table 5.1. The rules are of the form:

if Psnap € Fsnap and e € F, and Ae € Fy then pyn (t;) = pen(ti-1) + Dpen(8) (5.46)

where Ausm(t;) can be in the [-1,1] range. Based on the chosen rule, an equation (5.46)
is computed for the snapshot fuzzy controller. The snap throttle factor us value is in the
[0.05,1] range. The value 0.05 as the minimum for u,, was based on empirical observations of
actual snapshot processes. This value allows some copy-on-writes to proceed and make a little
progress with the snapshot. The initial values when a snapshot volume is created are u:(0)

=0.05 and e(0) = 0.

5.3.7 STABILITY OF THE Fuzzy CONTROLLER

The fuzzy system presented here is globally asymptotically stable based on the fact

that it meets the stability condition for the state variables, which according to [Michels 06a]

103

shows that state variables converge to a reference vector as time goes to infinity. In the case
of the snapshot fuzz controller, the probability of a snap, ps.ap and therefore the A,ow-cow arrival
rate (5.33) converges to zero as user writes access more source volume data blocks as time
goes by. The exponential decrease of the probability of a snap decreases the possibility of
CoWs and therefore the probability of processing the user writes with no delay is greater,
which makes the snapshot fuzzy controller less likely to intervene and cause instability. The

stability of the fuzzy controller is then guaranteed by the condition:

Eim Psnap (t)—-0 (5.47)

5.4 EXPERIMENTAL RESULTS

The snapshot fuzzy controller was tested with a setup that consisted of an HP 7640
Itanium workstation with 48GiB of memory and with RedHat Linux 6.2 installed. The disk
setup consisted of 118 BF1465A477 15K RPM disks. The traditional copy-on-write and the

User write latency during snapshot process
Traditional vs Fuzzy-Controlled snapshot

70
65 . The setup for this comparison was a 118 disk array. —
60 The traditional snapshot caused The LV size was 128GB and the workload was an
an initial user write latency of up OLTP 3,000 I0/s, 100% writes, 8KiB in size.
55 to 65ms and exponentially The reference time to maintain, w,, was 30ms —
decreased down to 30ms in 240
50 A seconds.

y The slight spike in the fuzzy-controlled
/ latency is the point at which the

~ controller stopped throttling snapshot,
/ i.e., no more RoWs, just CoWs, (uy, = 1).

45
40

35 A

30

25

20

User write latency in milliseconds

ACHIEVEMENT:

15 4~ The fuzzy controlled Wi " - ' Poand
snapshot was able to hat)
10— Pnop : - ACHIEVEMENT: —
p the user write .
5 +— latency at 30ms or less. - The fuzzy controlled snapshot could decrease the early impact on latency |
’ of the initial burst of snaps that occur with the traditional snapshot.
0 T T T T T T T T T T T T T T)
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900
Time elapsed during the snapshot in seconds
- User write latency with traditional Snapshot - User write latency with Fuzzy-Controlled Snapshot

Fig. 5.11: Comparison of latency at 3,000 10/s, 100% User writes

104

snapshot fuzzy controller were implemented in C language and compiled with GCC 4.4.6.
The implementation was executed as a parent process in the user space and not as a part of the
kernel. The parent process performed the following functions: 1) spawned user requests at a
constant rate using the fork() Unix function; 2) kept track of the data blocks written, snapped
and or with a redirect-on-write. The data block table was in shared memory so it could be
updated by the spawned user requests; 3) monitored the latency of the user requests; 4)
implemented the snapshot fuzzy control logic.

A comparison was run with an 8KiB workload, 0% reads at 3,000 IO/s. The source
volume was a RAIDI 128GiB in size using data blocks of 256KiB laid out in an evenly
fashion over all the 118 disks. The results in Fig. 5.11 show the traditional copy-on-write
implementation delivering initial latencies for user writes (black line) in the 65 ms range. The
snapshot fuzzy controller implementation proved superior since it could keep the initial

latency for user writes (red line) in the low 30 ms range.

User latency during snapshot process
Traditional vs Fuzzy-Controlled snapshot

(<)}
(%2}

The traditional snapshot caused an The setup for this comparison was a 118 disk
initial user write latency of 65ms and array. The LV size was 128GB and the workload
exponentially decreased down to was an OLTP 5,000 10/s, 50% writes, 8KiB in size.
40ms in 180 seconds. The reference latency to maintain, w,, was 30ms

D
o

w
wv
I

w
o

S
[

N
o
I

w
wv
I

w
o
I

The fuzzy controlled snapshot
was able to keep the user write
latency at 30ms or less.

User request latency in milliseconds

5

0 T T T T T T T T
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900
Time elapsed during the snapshot in seconds

Read Latency Traditional Snapshot ====\Nrite Latency Traditional Snapshot

Read Latency Fuzzy Controlled = \\rite Latency Fuzzy Controlled

Fig. 5.12: Comparison of latency at 5,000 10/s, 50% User writes

Another comparison was run with an 8KiB workload, 50% reads at 5,000 IO/s. The
source volume was a RAIDI 128GiB in size using data blocks of 256KiB laid out in an
evenly fashion over all the 118 disks. The results in Fig. 5.12 show the traditional copy-on-
write implementation delivering initial latencies for user writes (black line) in the 65 ms

range. For user reads (purple line) the traditional copy-on-write delivered a latency in the 10-

105

15ms range. The snapshot fuzzy controller implementation proved superior since it could
keep the initial latency for user writes (red line) in the low 35-40ms range. For the user reads

(orange line), the latency delivered by snapshot fuzzy controller was in the 10-12ms range.

5.5 CONCLUSIONS

The greatest benefit the snapshot fuzzy controller delivers is to avoid the high latency
peak at the beginning of a snapshot process as predicted by the equations (5.13) and (5.14)
developed for the traditional copy-on-write snapshot. These equations can provide a guide for
the snapshot behavior even for different disks speeds and disk arrays if the snapshot process is
the traditional copy-on-write. The improvements in latency the snapshot fuzzy controller
delivers show how computationally intelligent techniques, namely fuzzy logic, 1) can be
applied to the data backup management for disk arrays; 2) can outperform traditional
techniques like copy-on-write; 3) can be used to control the nonlinear response of disks. The
reduction of the impact caused by the traditional copy-on-write is the accomplishment that

meets the performability challenge imposed by the copy-on-writes.

106

CHAPTER 6: T2 Fuzzy CONTROL OF LOGICAL VOLUME CLONING REPLICATION

The logical volume cloning replication feature offered by disk arrays provides point-
in-time copies of the logical volumes to guarantee data protection to users if an event like data
corruption or if accidental deletion occurs. Disk array manufacturers offer this option as part
of their set of data replication features. The SnapClone feature offered by Hewlett Packard
[HP 08a] and the EMC TimeFinder/Clone [EMC 05a] and the IBM Flashcopy [Garimella
06a] provide full-volume point-in-time copies of logical source volumes. The logical volume
cloning replication features mentioned provide some form of background copy of the logical
source volume. The details of the algorithms used for the replication are kept confidential by
the vendors. This kind of logical volume replication is referred to as background because it
occurs in the background while the disk array is servicing user requests (reads and writes).
The term local is used to refer to the fact that the copy of the logical volume is stored in the
same disk array that holds the original logical volume and the copy. In this chapter the term
cloning or cloning replication will be used to refer to the local background copy of all the data
in an LV (source) to another LV (clone or replica).

Interval Type-2 Fuzzy Logic Controllers (IT2 FLCs) have been proposed as a better
alternative to Type-1 Fuzzy Logic Controllers (T1 FLCs) [Hagras 07a]. As stated by Mendel
in [Mendel 10a], the question of establishing when and by how much Type-2 Fuzzy System
(T2 FS) or Interval Type-2 Fuzzy Systems (IT2 FS) will outperform a Type-1 Fuzzy System
(T1 FS) may be the most important unanswered question in the T2 field. Wu in [Wu 12b]
presents a comparison between T2 FLCs and T1 FLCs and the results show that IT2 FLCs
are more adaptive and can implement more complex control surfaces than a T1 FLC with the
same rule base.

The purpose of the type-2 fuzzy based control is to balance the impact on the latency
of the user requests with the speed (or rate) of the replication. On one hand, the users want
very little (or no) impact on the latency of the requests (read and writes) and on the other
hand, the users want the replication of the data to take the shortest time possible to protect as
much data as possible in the shortest time possible.

This chapter presents a type-2 fuzzy based control of background local cloning
replication. Section 6.1 explains the basic theory of type-2 fuzzy logic. Section 6.2 describes

the fundamental blocks of a type-2 fuzzy controller. Section 6.3 explains the process of local

107

replication and the copy-on-writes requests that impact the user request latency. Section 6.4
shows the queuing scheme for the local replication. Section 6.5 presents a mathematical
description of the cloning replication process and a new formula. Section 6.6 presents the
type-2 fuzzy controller used for local replication. Section 6.7 will present the experimental

results and section 6.8 will present the conclusions.

6.1 INTERVAL TYPE 2 FUZZY SETS

Interval Type-2 fuzzy sets (IT2 FS) are an extension of type-1 fuzzy sets [Karnik 99a].
The Interval Type-2 Fuzzy Set in Fig. 6.1 shows the graph of the membership function of a
triangular IT2 FS. The horizontal axis denotes the values x in the domain X, e.g., real or
integer numbers. The vertical axis denotes the membership function u(x) € [0,1] for each
value of x in the domain X. An IT2 FS denoted X can be characterized by a type-2
membership function pg(x, u) where x € X and u(x) € J, € [0,1] in which 0 < ug(x,u) <1

and can be expressed as [Karnik 99a]:

UMF(X)
4 / "\..\ FOU Footprint of Uncertainty
/o
1 S A N LMF Lower Membership Function
- g \\‘\\ UMF | Upper Membership Function
x)---——-----—-———= NN
S _f:d \ ./?}\\
_ /i IMFR) N)
FOU(X)/ | \ FOU(X) R
0 o "X
Fig. 6.1: Example of Type-2 Fuzzy Set
X = fxEX fu(x)E]xg[O,l] MX(X’ u’)/(x'u(x)) (61)

where | denotes the fuzzy cardinality operator [Hanss 10a]. The pg(x,u)/(x, u(x)
denotes the tuple (x,u(x)) with membership function pug(x,u). The x and u are called the
primary and secondary variables. Here, J, is the primary membership of x and ug(x, u) is the
secondary grade of X. For the IT2 FS the secondary grade equals 1 for Vx € X and Vu € J, €
[0,1]. Assuming J, € [0,1], an IT2 FS Xcan be characterized by:

108

X = o Suwen, V@) = [y [foe,. 174] 1 (6.2)

The fuzzy cardinality operation inside the square brackets in (6.2) is a vertical slice of
the IT2 FS. As shown in Fig. 6.1, the vertical slice for the specific value of x’ the vertical slice
is:

wg(x'uw) = fu(x)ejx 1/u], <[01] (6.3)

An IT2 FS is completely determined by the union of all primary memberships, Jx,
called the footprint of uncertainty (FOU):

FOU(X) = UyxexJx = {(x u(x)):u € J, € [0,1] (6.4)

An IT2 FS has an FOU that is bounded by two T1 MFs: the upper membership
function (UMF) and the lower membership function (LMF). Fig.6.1 shows the FOU, UMF
and LMF of a IT2 FS. With the UMF and LMF another definition of the FOU is:

FOU(X) = Uyxex(pz(x), Bz (%)) (6.5)

where pig(x) is the LMF and iz (x) is the UMF. These two functions are important

because an IT2 FS is fully determined by if they are known.

6.2 TYPE 2 Fuzzy LoGIC CONTROLLERS (T2 FLCS)

Fig. 6.2 shows the block diagram of an IT2 Proportional-Integral-Derivative (PID)
FLC. The fuzzifier maps the crisp inputs into IT2 FLC.

The rule base is composed of implicative rules of the following form:

IF x; is X' AND x, is X2 ... AND x; is X! THEN y is Y™ 6.6
1 2 1

109

Crisp
e |Crisp | Rulebase || Defuzzier | Qutput
Input L~ Tnput 'y Output
reference § o g LMD l TIFS Plant from
! i plan
mpuff'| Fuzzifier Type-reducer >
de/dt ICrisP » Inference
1 [Input IT2FS | Engine T3S

Fig. 6.2: Block diagram of an interval type-2 fuzzy controller IT2FLC)
where / is the number of inputs (i=1,2,...,/) and N is the number of rules (n=1,2,...,N).
The Y™ are the consequent IT2 FS that are replaced by an interval Y™ = [y", y"] when the

popular center-of-sets type reduction is used [Wu 12a]. The typical procedure performed by
an IT2 FLC is the following [Wu 12a][Mendel 12a]:

1) For each input of the input vector X' = (xg,x5,...,x;) obtain the interval of

membership [Eg(x{),ﬁ)?(x{)] (LMF and UMF) on each X' where (i=1,2,...,/) and

(n=1,2,...,N).
2) Now the firing interval of each rule is computed, e.g., for the n” rule
—Nn —n
Frx) = [F &) = [(6.7)
where:
) = [ap () X g (xg) X o X pgn ()] (6:8)
—-n — 1] —_ r —_ ’
f &)= [M;}f(%) X Hg;l(xz) XX llgln(xl)] (6.9)

The product t-norm was used in (6.8) and (6.9) but the minimum t-norm can be used

instead.

3) The type reduction is the next step. After computing the firing intervals then the

centroids of all consequent sets ¥™are computed. The result is a set of R interval fuzzy sets:

Yen(@) = (7). 3(F7)] = [y, 5" (6.10)

110

The centroid is an interval T1 fuzzy set. The centroids are computed using Karnik-
Mendel (KM) [Mendel 12a][Wu 12a] algorithms.

4) The firing intervals (6.8), (6.9) and their respective centroids (6.10) are combined
by means of the center-of-sets (cos) type reduction [Karnik 99a]. There are other methods

[Karnik 99a] but the center-of-sets is the most common.

’ Zﬁ: F*(x' Yon(y) ! l
Veos (1) = ZEEEEDO) 1y, (), 3, ()] (6.11)

where y)(x’) and y.(x’) are computed using KM algorithms. The y;(x’) and y,(x’) can

be computed by:
Yh=1 fnyn"' Sn=r+1f"Y"
N = = == 6.12
Y () Th=if +Z£VI.=L+1_n ()
R ns", N Fh=n
Yo (x7) = ZnmiLY HEnera Y (6.13)

R4 7+ N=R+1 fr

where L and R are the switch points determined by the KM algorithms [Mendel 12a].
5) Finally, the crisp (defuzzified) output is computed by using the average value of the
two end-points [Karnik 99a]:

N _ i(xn),yr(xn)]
) = D

y(x (6.14)

6.3 LOoGICAL VOLUME (LV) CLONING REPLICATION

There are features offered by the disk array manufactures to create a point-in-time
replication the data in a logical volume. The background local cloning replication copies all
the data present in a logical volume, therefore creating a mirror copy (clone or replica) of the
original (source) logical volume on the same disk array, thus, the clones (replicas) provide a
high-availability, disaster recovery of the data. In case of a complete data loss of the source

logical volume, the replica can replace the source logical volume instantaneously. Unlike the

111

local snapshot replication, there is no need to reconcile the source data and the updated
sections. This is one of the disadvantages of the snapshot method [Preston 02a]. The
drawback of the background cloning replication is that it requires the same space as the source
logical volume, therefore doubling the space needed to have the source data and its clone on
the disk array. But with the advent of new fast and high capacity disks, like 1 TiB magnetic
drives, that is becoming less and less of a drawback. Therefore, the method of background
local cloning replication of logical volumes is still a good solution for data protection.

Logical volumes can be created and deleted by users. The size of the logical volume
is determined by the user at creation time. This size can be big, for example, 500 GiB. But the
disk array manages the logical volume in units named data blocks of 128KiB, 256KiB, or
other sizes depending on the manufacturer and model of the disk array. For the purpose of
giving an example of the procedure used to replicate a logical volume, it is assumed in this
paper that the logical volumes are managed in data blocks of 256KiB each. The first case to
present is when the source logical volume is replicated (cloned) and there is no user workload
(reads or writes) applied to the source logical volume. In this case, the disk array copies block
by block sequentially in incremental order until all the blocks that make up the source, By,
have been copied to the clone (replica) logical volume. This case is shown in Fig. 6.3. The
circled numbers indicate the sequence of events. At the end, every single block that makes up

the source logical volume is replicated into the clone logical volume. It is clear from this

- The circled numbers indicate the sequence of events

Source Logical Volume Clone Logical Volume
B, (D Copyof B, B,
B, @) Copyof B, B,
B, (3 CopyofB, B,
° o °
: . :
By A CopyofB, B

- V'is the number of data blocks that make up the source logical volume,

Fig. 6.3: Example of replication of a source volume

112

example why the clone logical volume takes up as much space as the source logical volume

The source logical volume (or source volume, for short) can be available during the
cloning replication process. This means that the source volume can still be read or written to
during the replication. Reading from the source volume does not disrupt the sequence of
copying (cloning) the data blocks. Writing to the source volume after the replication process
started is potentially disrupting to the cloning replication. To understand why a write can
disrupt the cloning replication process it is important to remember that the clone volume is a
point-in-time copy of the data in the source volume. Therefore, once the user decides to start
replicating a source volume, the data at that particular point in time has to be preserved. Any
further updates (writes) to the source volume should not be reflected in the replicated (cloned)
volume. There are two possible results of a user write to the source volume during cloning
replication: 1) if the user writes to a data block that has been already cloned then the write can
proceed normally. There is no problem with the write since the original data block is already
copied in the clone volume; 2) if the user writes to a data block that has not been cloned, then
the incremental sequence of data block cloning has to be interrupted and that data block has to
take priority and be cloned before the user write can proceed. The copy (replica) of a data
block before the user write can be served is referred to as the copy-on-write (CoW) problem.
Therefore, there is the possibility of generating copy-on-writes during the replication process
by writing to the source volume.

Copy-on-writes cause a user write to have a high latency since the write has to wait for
the copy (replication) of the data block before the write can be executed in the source volume.
The CoW problem has been studied before [Navarro 11a] in the context of the logical volume
snapshot replication. In that context, each snapshot replication is called a snap, and each snap
causes @ CoW to occur. That is why the terms snap and CoW are used interchangeably. A
data block is said to be snapped if a user write to that data block caused a CoW to occur. An
example of how a copy-on-write occurs during replication is shown in Fig. 6.4. The cloning
replication is proceeding in sequential order and has copied data blocks B; and B>. Before
replicating the next data block, B3, there is a user write to Bs. Now the replication process is
forced to skip temporarily the replication of data block B3 and clone data block B4 to ensure it
is a point-in-time copy. After the data block By is cloned then the user write can proceed.

After the replicated of B4 the cloning replication process can resume where it left off, data

113

block B3, and clone it. As expected, after cloning data block B3, then data block By is skipped
since it is already cloned and the cloning replication proceeds sequentially with next un-
cloned data block, Bs. This example shows that the logical volume cloning replication can

occur interacting with logical volume snapshot replication.

- The circled numbers indicate the sequence of events

Source Logical Volume Clone Logical Volume
B ® Copy of B, B,
B @ Copy of B; B
2 2
USER B, ® Copy of B, B,
WRITE : :
to B Copy-on-Write of B
0 by B4 @ P 4 B4
Copy of B
5 @ opy ol Bs BS
° L °
° L (]
° e (]
By @ Copy of By By

= Vis the number of data blocks that make up the source logical volume.

Fig. 6.4: Example of a CoW during the replication of a source volume

6.4 QUEUING DESCRIPTION OF THE LV CLONING REPLICATION

There are three queues directly involved in the Logical Volume (LV) cloning
replication process: 1) the LV clone queue; 2) the LV user writes queue; and 3) LV the
snapshot (CoW) queue. The LV user reads queue increases the utilization of the CPU and
disks; but the user reads queue does not alter the cloning replication process in any way. Fig.
6.5 shows the queueing scheme considered for the analysis of the cloning process. The reason
the LV user reads queue is included in the queueing scheme is because the type-2 fuzzy
controller presented in this chapter takes the average of the LV user reads and writes as an
input parameter.

The disk array controller sends the requests for cloning all the data blocks of an LV.
The disk array keeps track at all times of which data blocks have been already been cloned
and which ones are still pending. The cloning algorithm sends a request to clone a data block

every z. seconds. The z. is the cloning interarrival time. Typical times for z. can be in the

114

milliseconds or microseconds range. The z. can also be considered a think time between
requests for the LV Clone queue. The z. is the parameter that controls the arrival rate of clone
requests, ¢, to the disks. Typical values for y. can be hundreds or thousands of 10 requests
per second (I0/s). The type-2 fuzzy controller will regulate the arrival rate of clone requests
to the disk, y, by regulating z..

The LV user writes queue sends the user writes to through the disk array controller
onto the disk. For the purpose of this analysis, an Online Transaction Processing (OLTP)
workload is considered. In OLTP workloads user writes and reads are randomly spread over
the LV. The arrival rate of user writes, 44, on an LV in replication causes snaps to occur. The
arrival rate of snaps caused by user writes was studied in the previous chapter and in [Navarro
11a] and shown in (5.13), where psap(?) 1s the probability of a snapshot caused by the arrival
rate of user writes, Ay. This is the psqp term studied in the previous in section 5.2.2 of this
dissertation.

The rate arrival of user reads, 4., is considered as part of the estimation of the average

latency of user requests (reads and writes) for the purpose of the fuzzy control.

=1z r——""—"—"— 7
| DISKARRAY |
LV Clone Queug f—pp O O O C>\ | CONTROLLER !
[N I] |
Zc Z: | :
|
I
LV User Reads | O O O O&' |
Queue ee @ I |
| LMo
+
: }\w . !
LV User Writes |
Queue o . o | :
| .
! ARRAY OF
LV Snaps ! : DISK DRIVES
(CaoWs) Queue] see e/ |——————___
)\s AwPsnap(t) D|SK ARRAY

A = User Writes Arrival Rate in 1Q/s

k. = Snaps (CoWs) Arrival Rate in 1O/s _ _ _ _
P.ns(f) = Probability of a Snap (Cow) hp = Combined arrival rate to the disk drives

¥= = Cloning Arrival Rate in 10/s (clone throughput)

Fig. 6.5: Queueing scheme of LV Cloning with Snapshot

115

The combined arrival rate to the disks, Ap, is the combination of the four arrival rates
(%e, Aw, » As, A) but considering the transformation of writes according to RAID level. For
example, if the RAID level used for the data redundancy of the LV is RAIDI1, then the writes

doubles because the data is written to separate disks.

6.5 MATHEMATICAL DESCRIPTION OF THE LV CLONING REPLICATION

The cloning replication process is a deterministic process. The cloning replication
algorithm keeps track of the replicated vs. the un-replicated data blocks. By doing this, the
cloning replication always copies the un-replicated data blocks and never accesses again any
already-replicated data block. This is an important distinction with respect to the snapshot
replication process. The snapshot process is an on-demand process based on user writes to a
logical volume. The user accesses to databases (SQL, Oracle) are typically randomly spread
over a logical volume in what is referred to as the OLTP workload. This means that a user
write may or may not cause a snap (CoW) to occur depending on whether the user write will
write to an already-replicated or to a to-be-replicated data block. The understanding of the
impact of randomly distributed user writes on logical volume replication through snapshots
was studied in the previous chapter and in [Navarro 11a]. The formulas proposed in those two
cited sources will be applied here for the purpose of showing the interaction of snapshot and
cloning.

The estimation of the fraction of data blocks cloned at time ¢, f.(?), during the logical

volume cloning replication, can be computed by:
_ Xc
f(t) =%t (6.15)
v

where the B, is the number of data blocks that make up the Logical volume. Fig. 6.6
shows a measured fraction of data blocks cloned during a logical volume cloning replication
vs. the estimated fraction of data blocks using (6.15). It can be seen that the deterministic
behavior of the cloning algorithm translates into a linear progress of the logical volume

replication

116

LV Cloning Replication with a constant Cloning rate (xc)
Comparison of estimated fraction of data blocks cloned
at time t versus the fraction predicted by F(t)
1
L . -
0.9 The red dashed line is the measured fraction 4,/
w | of cloned data blocks during the cloning of a //'
S 08 | Logical Volume (LV) of 32GB with B, = 262,144 -~
v data blocks of 128KB each. The clone arrival /o/
% 0.7 +— rate was x,=1000 10/s, i.e., 1000 data blocks ,r‘
B cloned per second. prad
L 0.6 -
g -~
e -~
205 -~
2 ,-«"
E 04 Padd The black dashed line is the graph of the -
] Prad . - -
303 P estimated fraction of data blocks using the
g ,// equation f.(t) = g—;t
5 0.2 - -
& -~
* 01 //‘ Both lines overlap showing the cloning process
g is linear and with a X/B, rate of progress.
0 4= ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250
Time t in seconds
= == Measured fraction of Cloned data blocks === Estimated fraction of Cloned data blocks

Fig. 6.6: Graph of the f.(?) equation predicting the fraction of cloned blocks

The estimation of the fraction of data blocks snapped at time ¢, fs(2), is a problem that
was approached in the previous chapter and in [Navarro 11a].]. The main conclusion in
[Navarro 1la] is that the snapshot replication under a randomly distributed user writes
workload, like the on-line transaction processing (OLTP) workload, behaves in an exponential

manner. The formula in presented in the previous chapter and in [Navarro 11a] is:

Aw

fiH)=1—e B (6.16)

where A, is the user write arrival rate in 10/s and fs(z) is the estimated fraction of
snapped data blocks. Fig. 6.7 shows the fraction of snapped data blocks, i.e., the fraction of
data blocks replicated by snapshot vs. the estimated fraction of snapped data blocks using
(6.16). In this example the logical volume is only being subjected to user writes so the

replication shown in this figure is a snapshot replication, not a cloning replication.

117

LV Snapshot Replication caused by user writes with arrival rate A,
Comparison of estimated fraction of data blocks snapped at time t versus
the fraction predicted by Fs(t)
1 —————
E - - —-———=T
% 0.9 - - =
g ="
% 08 Pl The red dashed line is the measured fraction of snapped
5 07 - data blocks during the cloning of a Logical Volume (LV) of
5 0.6 ’ i’ 32GB with B, = 262,144 data blocks of 128KB each. The user
g- 05 e write arrival rate was A, = 1000 10/s
£ ' 7 The black dashed line is the graph of the estimated
£ 04 , 7 snapped data blcoks using the equation
© _Aw
5% ’ f=1-¢e5
5 02 ’/ Both lines overlap showing the snapshot process is
c
201+ exponential due to its random behavior.
I:-‘E 0 T T T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time t in seconds
= == |Measured fraction of Snapped data blocks = == Estimated fraction of Snapped data blocks

Fig. 6.7: Graph of the fi(?) equation predicting the fraction of snapped blocks

The equation for a logical volume combined replication, both cloning and snapshot, is
derived here and shown to agree with a measured combined replication. We derive the
equation for the fraction of replicated data blocks for a combined replication, using the
equations and knowledge of the behavior of the both cloning and snapshot. The fraction of

combined replicated data blocks, f-(2), is the sum of the cloned and the snapped data blocks

fr(@©) = f(O) + £(8) (6.17)
The derivative of f; is:

afy _ dfe dfs
dt ~ dt t dt (6.18)

The derivative of f. is:

dfc Xc
2Jec _ AcC B!
dt B, 6.19)

118

We know that the probability of a snap is greater if there are more non-replicated data

blocks. The fraction of non-replicated data blocks, f,(2), is:

@) =1-£() (6.20)
We also know that the probability of a snap is an exponential function that depends on

the ratio of the user write arrival rate, A.,, and the number of data blocks in a logical volume,

B,. The differential equation for the derivative of the fraction of data blocks snapped at time ¢,

fs(t), 1s then:

afs _ Aw Aw
= mh =525 (6.21)

The differential equation for f- is:

Afr _ Xe 4 2w q _
ety + 2 1-1) (6.22)

And the fraction of replicated data blocks in a combined replication, f.(?) at time ¢ is:

£ =1+ jf—;) (1 - e—;—‘gt) (6.23)

The equation is compared against the measured fraction of replicated data blocks in a
combined (cloning and snapshot) replication of a logical volume as shown in Fig. 6.8. The

graph shows that (6.23) estimates f-(z) very accurately.

119

LV cloning replication with a constant cloning rate x,
and Snapshots caused by user writes with arrival A,

-
0.95 = The red dashed line is the measured fraction of the combined replicated data Prd -
0.9 -+ blocks, both cloned and snapped data blocks, during the cloning of a Logical 7
0.85 - Volume (LV) of 32GB with B, = 262,144 data blocks of 128KB each. P
os L The clone arrival rate was y.= 1000 10/s PR s
’ The user write arrival rate was A, = 1000 10/s P -
0.75 P
0.7 - The black dashed line is the graph of the estimated \’ Pid
2 0.65 combined replicated data blocks using the equation P A
5 ' T X ~Aw, rd g
S 06 £ =0+)0 e B \ o
3 W
£ o055 +— . . c-.. 0 -
8 Both lines overlap showing the P s e
g 05 1 equation estimates the combined , s .-
3 045 +— replicated blocks at time t. et . —
'g P # s Measured fraction of cloned
s 4 Id ’ L data blocks.]
§ 0.35 P Ty
0.3 s e eeemmm—c——a—-.
s ==
0.25 e o=,
Pid e —
02 s '___—"‘— Measured fraction of snapped —
0.15 7 # et eeT data blocks. —
01 =T
_ur”
0.05 F
(L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Time t in seconds
= == Measured fraction of Replicated (Clone and Snapped) data blocks ~«c<+<- Measured fraction of Cloned data blocks
= == Measured fraction of Snapped data blocks = == Estimated fraction of Replicated (Cloned and Snapped) data blocks

r 0.45
r 0.4

r 0.2
r 0.15

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

0.35
0.3
0.25

0.1
0.05.
0

Fig. 6.8: Graph of the f.(?) equation predicting the fraction of replicated blocks

6.6 LocAL LV CLONING REPLICATION TYPE-2 Fuzzy LOGIC CONTROLLER

6.6.1 PURPOSE OF THE LV CLONING T2 Fuzzy CONTROLLER

The primary goal of this controller is to regulate the rate at which the cloning process

occurs so the latency of customer reads and writes is at or below a target latency. If the

primary goal cannot be accomplished, then the secondary goal is to minimize the impact to

the latency of customer reads and writes. The way the controller achieves the goal of

regulating the cloning process is by adjusting the cloning interarrival value, z., therefore,

regulating the time between each clone request to the . Every time sample iteration, ¢, the

controller estimates the z. to be used in the next time sample, #+;.

The logical volume cloning replication Type-2 (T2) fuzzy controller is a Takagi-

Sugeno Type-2 fuzzy-logic based controller. The T2 fuzzy PI controllers are more robust than

120

their Type-1 counterparts [Wu 2010a]. The T2 fuzzy PI controllers can cope better with

disturbances, uncertainties and eliminate oscillations better than their T1 counterparts.

6.6.2 DESCRIPTION OF THE LV CLONING T2 Fuzzy CONTROLLER

The block diagram of the logical volume cloning type-2 fuzzy controller is illustrated
in Fig. 6.9. From a control standpoint, the disk array is the controlled system. The controlled
system has one input: Ap, which is the combined arrival rate of user writes, 4., user reads, 4,

snapshots, Acow, and cloning arrival rate y.. The combined arrival rate on the disk array, Ap, is:

Ap = A + agpdy + Aeow + Xc (029
A Ff.‘te._]
=T .&m. = T2 Fuzzy Qutput Az, = (ﬂT”h+ dTUWZ
Rule h !
[ﬂ TH ’ ﬂ TU-IF i f
e Fe | Base Type 2" =7+ Az,
Tref — - ZXX& > Defuzzyfies + (controller output)
Ao Disk Array |

T

Fig. 6.9: Cloning type-2 fuzzy controller

The cloning arrival rate, y., depends on the cloning interarrival time, z.:

P (6.25)

The number of data blocks writes needed for a snapshot (CoW) is dependent on the
RAID level of the snapshot volume. The number of data block writes is defined by the ar.
factor. For RAIDI1 the arz = 2, which is the number of writes needed for each data write. This
was explained in section 5.2.3.

The total extra arrival rate on the disk array generated by the copy-on-writes, Acow, 18

already shown in (5.17) but show here again:

Acow = psnapﬂ-w(1 + agL) (6.26)

121

The output of the system to be controlled (disk array) is the average latency
experienced by the user accesses (reads or writes), Tavg.

The logical volume cloning type-2 fuzzy controller makes use of a reference variable:
the reference latency, 7.z. The reference latency represents the maximum acceptable average
latency during the cloning process. The maximum latency used in this section was 30ms,
same as in chapter 5.

The output 7. is compared with the reference latency z..r to compute the control error,

e(t) = Tavg () — Tref (6.27)
The change in the control error, 4e, is also computed:
Ae(t;) = e(t;) — e(ti—1) (6.28)

The cloning rate is kept within limits by setting two variables also used by the logical
volume cloning type-2 fuzzy controller: 1) the minimum cloning interarrival time z™", which
determines the maximum cloning arrival rate, i.e., the cloning throughput, x***; and 2) the
maximum cloning interarrival time, z***, which determines the minimum cloning arrival rate
(cloning throughput) Y™™,

In order to control the outputs, they have to be periodically monitored every #»
seconds. The decision on how often to monitor can be based on the maximum acceptable
latency and the performance of the disk array controller. The sampling of the outputs is
performed at intervals of time #,. Each sample is denoted by (#;), where i is the i-th sample of

the output that occurred at a time #, as in:

t=it, where i =0,1,2,... (6.29)

122

6.6.3 LV CLONING CONTROLLER FUZZIFICATION

This section shows how the step 1 of the typical procedure performed by an IT2 FLC
as shown in section 6.2, is implemented for the logical volume cloning T2 fuzzy controller.
The goal of the fuzzification is to map the control error e into a fuzzy value F. and the change
in the control error, Ae, into a fuzzy value F.. This stage corresponds to the blocks shown in
Fig. 6.9 with the symbols F. and F.. Both fuzzy values, F. and F., can be mapped into one
of three T2 fuzzy descriptors: Zero (ZE), Positive Error (PE), and Negative Error (NE). The

first step is to normalize e and Ade with respect to the reference latency, 7.

ey = (6.30)
Tref
A
Ae, = c (6.31)
Tref

The normalized control error, e,, and normalized change in the control error, de,, are

limited in their values to make the T2 fuzzification possible to the interval [-1,1]:
e, €[-1,1] and Ae, €[-1,1] (6.32)

The mapping for the e, and 4e, values into the Z., and to Zs., fuzzy values is done by

defining the following equations:

—en +(1+22) if e, 20

UMPFyen(en) = flzpy, = . (6.33)
ent(1+722%) if e, <0
—en+(1—%) if e, 20

LMFzen(en) = Hzen = (6.34)

ent(1-22) if e, <0

123

The intervals for UMF 7., and LMF 7., are:

UMFy,, € [-1,1] and LMF,,, € [-1,1] (6.35)

Equations (6.33) and (6.34) map the e, value to the T2 fuzzy value Z.,. The equations
for mapping Ae, to Zsen are the same as (6.33) and (6.34) just with the 4e, variable instead of
the e, as the input variable. The intervals for the UMF7en and LMF74en are the same as the

UMF 7en, and LMF 7., shown in (6.35).

UMF zen(€n) = Tzen

LMFer(eq) = £ 7on

|
!
-1 0 +1

€n
(a)
UMFzsen(fen) = FZaan
1f ‘_ gﬁ_eﬁ ________ Zaen
|
|
u(de) |
|
|
LMFZAen(ﬁlbn) = f_Z&an
: Aep

-1 0

+1

(b)
Fig. 6.10: T2 Fuzzy values Zen and Zaen

The mapping for the e, and de, values into the Ne, and to N, fuzzy values is done by

defining the following equations:

DOU

UMFNen(en) = >

T (6.36)

DOU
LMFNen(en) = HnNen = —én — > (6.37)

124

The intervals for UMFye, and LMF ., are:

UMFy,, € [-1,1] and LMFy,, € [-1,1] (6.38)

Equations (6.36) and (6.37) map the e, value to the T2 fuzzy value N... The equations
for mapping Ae, to Nen are the same as (6.36) and (6.37) just with the 4e, variable instead of
the e, as the input variable. The intervals for the UMFnjen and LMFnjen are the same as the

UMFNen and LMFne, shown in equation (6.38).

LMFNEr\(en) = I Man

UMFNAEn(ﬁen) = ? Mhen

LMFuaen(Aen) = fnen

-1 0 +1

(b)
Fig. 6.11: T2 Fuzzy values (a) Nen, Pen and (b) Naen. Paen

The mapping for the e, and 4e, values into the P., and to P., fuzzy values is done by

defining the following equations:

UMFpon(ey) = I, = e, + 2 (6.39)

125

DoOU
LMFpen(en) = K pen = €n = —— (6.40)

The intervals for UMFp., and LMF pe,, are:
UMFp,, € [-1,1] and LMFp,, € [—1,1] (6.41)

Equations (6.39) and (6.40) map the e, value to the T2 fuzzy value P... The equations
for mapping 4e, to Pen are the same as (6.39) and (6.40) just with the e, variable instead of
the e, as the input variable. The intervals for the UMFpje, and LMFpjen are the same as the
UMF pen and LMFpe, shown in equation (6.41).

6.6.4 RULE BASE TO OBTAIN Ty

This section shows how the step 2 of the typical procedure performed by an IT2 FLC
as shown in section 6.2, is implemented for the logical volume cloning T2 fuzzy controller.
The rule base applies the logic to determine how to alter the cloning interarrival time, z. at
every time iteration #. In order to alter z. incrementally, the change in z. has to be in some
range that modifies z. in a way that does not change the cloning arrival rate, y. erratically (up
and down) and causes the controller to oscillate. The throttling unit, T,, is a quantity of time
used by this controller as a unit of change of the cloning interarrival time, z.. The outputs of
the rules, i.e., the subsequent sets, are expressed in terms of the throttling units.

The rule base can now be built based on the following heuristic criteria. The first
criterion is that if the user request latency is high, then the control error, e, 1s fuzzy positive
error, PE, and the controller needs to reduce the cloning rate. Therefore, the cloning
interarrival time z. is increased. The second criterion is that if the user request latency is low,
then the controller can increase the cloning rate. Therefore, the cloning interarrival time z. is

reduced. Based on those two heuristics criteria, the rules are developed of the form:
if e € F, and Ae € F,, then [AT]},AT!] (6.42)

where F, and F 4. can take the fuzzy values shown in section 6.6.3:

Fe € {Nenr Zen: Pen}

FAen € {NAenr ZAen' PAen}

126

(6.43)

(6.44)

And the consequent sets are of the form [4T,, AT,] where 4 is a multiplier of the

throttling unit 75 as shown in Table 6.1.

Table 6.1: Rule base for LV Cloning Type-2 Fuzzy Controller

Rule Rule Input Variables Rule Output Comments
Number e Ae T, Range
R Nen NAen [-4Ty, -2Ty] Reduce z, increase yc heavily
Ro Nen ZAe, [-2Tu, 0Ty] Reduce z, increase Y lightly
R3 Nen PAen [-3Tu, -1Ty] Reduce z, increase ¢
R4 Zen NAen [0Ty, 2Ty] Increase z., reduce y. lightly
Rs Zey Zhen [-Tu, +Tu] Keep z, thus, ¢
Rs Zen PAen [-2Ty, 0Ty] Reduce z., increase Y. lightly
R Pen NAe, [+Ty, 3Tu] Increase z., reduce
Rs Pe, Zhen [0Ty, 2Ty] Increase z., reduce . lightly
Ro Pex PAe, [2Ty, 4Ty] Increase z., reduce y. heavily

6.6.5 TYPE REDUCTION (DEFUZZIFICATION)

The steps 3 and 4 of the typical procedure performed by an IT2 FLC as shown in

section 6.2, are implemented for the LV cloning T2 fuzzy controller are implemented using

the Karnik-Mendel (KM) algorithms. References [Mendel 12][Wu 12a] are recommended to

learn about the KM algorithm. The output of the type reduction is the pair:

[Azé ,Az]]

(6.45)

where Azl and Azl are the left and right values of the Type 1 output fuzzy set

produced by the KM algorithm.

127

6.6.6 CRISP DELTA OF THE CLONING INTERARRIVAL TIME

The step 5 of the typical procedure performed by an IT2 FLC as shown in section 6.2,
is the calculation of the crisp value of the change in the cloning interarrival time. The

calculation is the middle point of the two values in the T1 fuzzy set produced in the previous

step:
Azi+AzT
Az, = % (6.46)
where A4z, is the delta to be added to the current z. for the next time sample of the
controller:

Zc(tiv1) = z:(t) + Az (t;) (6.47)

where 4z.(t;) is the delta of the cloning interarrival time obtained by (6.45); z¢(t;) is the
current cloning interarrival time and z.(#;+;) is the cloning interarrival time computed to be
used in the next time sample by the logical volume cloning T2 fuzzy controller.

This is the final step of the controlling process and it is repeated at the next time

iteration starting from the steps shown in section 6.6.3.

6.7 EXPERIMENTAL RESULTS

The type-2 fuzzy logical volume replication controller was tested with a setup that
consisted of an HP 7640 Itanium workstation with 48GiB of memory and with RedHat Linux
6.2 installed. The disk setup consisted of 118 BF1465A477 15K RPM disks. The logical
volume replication and the type-2 fuzzy control was implemented in C language and compiled
with GCC 4.4.6. The implementation was executed as a parent process in the user space and
not as a part of the kernel. The parent process performed the following functions: 1) generated
(forked) a process that acted as foreground user request process generator for 8KiB user reads
and writes; 2) generated a process that acted as the background logical volume replication by
generating a process for 256KiB data block that had to be cloned; 3) kept track of the data
blocks replicated and the data blocks that required a replication by doing a copy-on-write. The

logical volume data block table was in shared memory so it was visible to all processes; 4)

128

monitored the latency of the user requests and 5) implemented the IT2 FLC logic of the LV
cloning controller.

A comparison of an LV cloning replication process with and without the T2 fuzzy
control was run. For the comparison a RAID1 128GiB source volume was used. The source
volume was comprised of data blocks of 256KiB in size and laid out in an even fashion over

all the 118 disks.

LV cloning replication process with fixed cloning replication rate
under a user request workload of 2000 10/s, 70% reads, 8KiB

(o2}
w

4500

- 4000

w1 D
v o
-4

The clone arrival rate was x,= 4000 10/s

-]
<
o
o
3
g
50 The black line shows the clone arrival rate - 3500
8 i / during the cloning replication process é

c -
g / A - 3000 £
£ 40 +— The user writes arrival rate was \,, = 600 10/s A =
E The user writes latency started around 60ms and wv\-v_‘\ R | 2500 2
- | - . A ©
Z 35 went down to 26ms as the probablity of a snap MY £
s [
i_,; 30 | decreased. | 000 &
..- K]
H >
325 £
= L 1500 £
a 20 E=
3 2
15 - 1000 @
/ vV 0
c
10 t
The user reads arrival rate was A, = 1400 10/s [500 3
5 The user reads latency stayed around 15ms -

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0
0 30 60 90 120 150 180 210 240 270

LV cloning duration in seconds

User Read Latency == User Write Latency Clone 10/s

Fig. 6.12: Cloning of an LV with no fuzzy control

First, the LV cloning process is shown with no fuzzy control in Fig. 6.12. The left
vertical axis shows the latency values in milliseconds. The right vertical axis shows the 10/s
values. A cloning process is replicating the 128GiB at a constant rate of y. = 4,000 10/s as
shown by the black line. After 60 seconds into the replication process, a user workload of
2,000 1O/s, 70% reads, (1,400 IO/s for reads and 600 for 10/s writes) was applied during 3
minutes. The blue line shows the latency of user reads during the 3 minutes. It can be seen
that the read latency (blue line) is around the 15ms range. The user reads do not show a
significant change during the duration of the user workload (3 minutes). The user writes, on

the other hand, show how significantly can be affected by the cloning process. At first, the

129

user writes show a latency of 60ms. This high latency was caused by the combined effects of
the copy-on-writes generated by the user writes themselves, and the background cloning
replication in progress. As the probability of generating copy-on-writes lowers, then the user
writes show less impact on their latency. At the end of the 3 minute run, the user write latency

1s around 25ms.

LV cloning replication process with T2 fuzzy control of the cloning replication rate
under a user request workload of 2,000 10/s, 70% reads, 8KiB

o
o

The clone arrival rate (dashed line) 4500

was X, = 4000 10/s before the 3
p minute user request workload. AL

S~

— 1 Assoon as the controller detects no - 3500
activity, the clone arrival rate goes
—}—— backto x.=400010/s 4

-
o

4000

)
&

The user writes arrival rate was A, = 600 10/s
ACHIEVEMENT TO NOTE:
The user writes latency started around 60ms like in the traditional

v
o

&
gl

cloning but this time with the T2 fuzzy control the user writes L 3000
w0 latency was quickly lowered to 28ms average by reducing the

cloning arrival rate from 4,000 10/s down to 1,500 10/s. ACHIEVEMENT TO NOTE:
35 N \ The T2 fuzzy controller reduced the clone _| 2500

\M\\\/‘m \ arrival rate down to x, = 1,500 10/s in
V-, order to meet the specified refence user _|
¥ _ L 2000
latency of r,.; = 15ms
AN
/ 1500

w
o

E
g

User request latency in milliseconds

N
o

i
@

+ 1000
The user reads arrival rate was A, = 1400 10/s
ACHIEVEMENT TO NOTE:

I—The user reads latency started around 15ms
and was lowered to 10ms average by
reducing the cloning arrival rate.

LV cloning replication arrival rate in data blocks cloned per second

i

w
o
o
S

o

0 30 60 90 120 150 180 210 240 270 300 330 360
LV cloning duration in seconds

= User Read Latency ~ ====User Write Latency =~ =====Clone 10/s

Fig. 6.13: Cloning of an LV with T2 fuzzy control

Second, The LV cloning process was run with the T2 fuzzy controller. The reference
latency used was 7or= 15ms; a throttling unit, 7, = 200us and a delta of uncertainty, DOU =
0.2. Fig. 6.13 shows how the T2 fuzzy controller could achieve a reduction in the user request
latency for both writes and reads. The controller is cloning in the background at a rate of y. =
4,000 10/s when 60 seconds into the cloning a user workload of 2,000 10/s, 70% reads, (1,400
10/s for reads and 600 for 10/s writes) was applied during 3 minutes just like in the case with
no fuzzy control. But in this case the T2 fuzzy controller detects an error because the user
write latency is in the 60 millisecond range and responds by increasing the cloning interarrival
time which in turns reduces the cloning rate from y. = 4,000 10/s down to y. = 1,500 IO/s.
This brings down the user write latency down from 60 to 25ms, which in conjunction with the

reduction in the user read latency from 15 to 10ms, brings the user average (reads and writes)

130

latency down to the reference latency of 7.r= 15ms. The T2 fuzzy controller achieved the

purpose of reducing the cloning rate so the reference latency could be achieved.

6.7 CONCLUSIONS

The Type-2 LV cloning fuzzy controller accomplished the goal of reducing the impact
on the user reads and writes latency caused by an LV cloning background process in a disk
array. The improvements in latency the Type-2 LV cloning fuzzy controller delivers show
how fuzzy logic can be applied to improve the performability of data backup management for
disk arrays. The Type-2 LV cloning fuzzy controller can be used to control a disk array with
complex components such as disks, for which we don’t have any knowledge of their internal
logic and are hard to model mathematically. Another contribution of this chapter is the
equation (6.23) that predicts the fraction of replicated data blocks in a combined (clone and

snapshot) replication.

131

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

Chapter 3 presented a numerical method in the form of an extensible algorithm that
can be used to estimate the reliability and performability of a disk array. This method can be
used to achieve high performability based on the reliability of a RAID group.

Chapters 4, 5 and 6 present improvements in disk array performability based on fuzzy
control schemes.

Chapter 4 showed that fuzzy logic can be applied to improve the sparing process in
disk arrays. The patented fuzzy-controlled sparing process outperformed the traditional QSV
sparing process by finishing in half the time and without impacting the user request latency.

Chapter 5 showed the benefit of the proposed snapshot fuzzy controller, which is to
avoid the high latency peak at the beginning of a snapshot process. Chapter 5 also presented a
Markov Model and equations for the snapshot process. These equations can provide a guide
for the snapshot behavior even for different disks speeds and disk arrays if the snapshot
process is the traditional copy-on-write.

Chapter 6 showed the benefit of a cloning fuzzy controller, which is to reduce the
impact of the background cloning process on the user request latency but ensuring the cloning
occurs in the background at the maximum possible rate. Chapter 6 also presented an equation

for the combined cloning and snapshot of a logical volume.

7.2 FUTURE WORK

The first area of proposed future work is the development of probabilistic models for
the performability evaluation of the background-jobs-based performability for sparing,
snapshot and cloning. These models can leverage off the probabilistic equations already
presented for snapshot and cloning in chapters 5 and 6. The second area of future work is the

stability analysis of the fuzzy controllers presented in chapters 4, 5 and 6.

[Barnett 98a]

[Bolch 06a]

[Burkhard 93a]

[Catania 95a]

[EMC 05a]

[Ganger 94a]

[Garimella 06a]

[Gartner 13a]

[Hagras 07a]

[Hanss 10a]

[Haverkort Ola]

[Hanss 05a]

[Hou 93a]

132

REFERENCES

S. A. Barnett, G. J. Anido, “Performability of disk-array-based video
servers”, Multimedia Systems, 1998.

G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi, “Queueuing Networks
and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications”, John Wiley & Sons, 2006.

W.A. Burkhard, J. Menon; “Disk array storage system reliability”, Fault-
Tolerant Computing, 1993. FTCS-23.

V. Catania, A. Puliafito, S. Riccobene, L. Vita, “Design and performance
analysis of a disk array system”, IEEE Transactions on Computers, 1995.

EMC Corporation, “Ensuring Data Availability with TimeFinder Family
Local Replicas”, http://www.emc.com/collateral/software /white-
papers/h1618-ensuring-data.pdf, 2005.

G.R Ganger; B.L. Worthington; R.Y. Hou; Y.N. Patt, “Disk arrays: high-
performance, high-reliability storage subsystems”, Computer, Volume
27, Issue 3, March 1994,

N. Garimella, “Understanding and exploiting snapshot technology for
data protection, Part 1: Snapshot technology overview”, http://www-
128.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html, IBM
Tivoli Software Group, 2006.

J. Rivera, R. van der Meulen; “Garnet Says Worlwide External
Controller-Based Disk Storage Market Grew 1.9 Percent in Fourth
Quarter of 20127, http://www.gartner.com/newsroom/id/2380815, March
21, 2013.

H. Hagras, “Type-2 FLCs: A New Generation of Fuzzy Controllers”,
IEEE Computational Inteligence Magazine, Feb. 2007.

M. Hanss, “Applied Fuzzy Arithmetic; An Introduction with Engineering
Applications”, Springer, 2010.

B. R. Haverkort, R. Marie, G. Rubino, K. Trivedi, ‘“Performability
Modeling: Technique and Tools”, John Wiley & Sons, Ltd, 2001.

M. Hanss, “Applied Fuzzy Arithmetic”, Springer-Verlag, 2005.

R.Y. Hou, J. Menon, Y.N. Patt, “Balancing I/O response time and disk
rebuild time in a RAIDS disk array”, HICSS, 1993.

[HP 06a]

[HP 08a]

[Islam 93a]

[Karnik 99a]

[Kleinrock 75a]

[Klir 95a]

[Lee 93a]

[Mamdani 75a]

[Medhi 03a]

[Mendel 10a]

[Mendel 12a]

[Menon 93a]

[Menon 94a]

[Mesquite 07a]

133

Hewlett-Packard, “HP StorageWorks 1000/1500 Modular Smart Array
Command Line Interface”, May 2006, http://h20000.www2.hp.com/bc/
docs/support/SupportManual/c00683579/c00683579.pdf

Hewlett-Packard, “HP StoreageWorks Business Copy EVA”,
http://h18000.www 1.hp.com/products/quickspecs/11616 div/11616 div.
pdf, 2008.

S.M. Rezaul Islam, “Performability Analysis of Disk Arrays”, IEEE
Circuits and Systems, 1993.

N. Karnik, J. M. Mendel, Q. Liang, “Type-2 Fuzzy Logic Systems”,
IEEE Transactions on Fuzzy Systems, Vol. 7, No. 6, Dec. 1999.

L. Kleinrock, “Queuing Systems, Vol. 1: Theory”, John Wiley & Sons,
1975.

G.J. Klir, B. Yuan, “Fuzzy Sets and Fuzzy Logic — Theory and
Applications”, Prentice Hall, 1995.

Edward K. Lee, Randy H. Katz, “An analytic performance model of disk
arrays”, ACM SIGMETRICS '93.

E. H. Mamdami, S. Assilian, “An Experiment in Linguistic Synthesis
with a Fuzzy Logic Controller”, International Journal of Man Machine
Studies, 7:1-13, 1975.

J. Medhi, “Stochastic Models in Queueing Theory”, Academic Press,
2003.

J. M. Mendel, “A Quantitive Comparison of Interval Type-2 and Type-1
Fuzzy Logic Systems: First Results”, Proceedings of World Congress on
Computational Intelligence, Barcelona, Spain, July 2010.

J. M. Mendel, “On KM algorithms for Solving Type-2 Fuzzy Sets
Problens”, IEEE Transactions on Fuzzy Logic, 2012.

R.Y. Hou, J. Menon, Y.N. Patt, “Balancing I/O response time and disk
rebuild time in a RAIDS disk array”, Proc. Hawaii Int’l Conf. on System
Science, Jan. 1993.

J. Menon, A. Thomasian, “Performance Analysis of RAIDS5 Disk Arrays
with a Vacationing Server Model for Rebuild Mode Operation”, Proc.
IEEE 10™ International Conference on Data Engineering, 1994.

CSIM19, Mesquite Software, www.mesquite.com

http://www.mesquite.com/

[Meyer 78a]

[Meyer 80a]

[Michels 06a]

[Microsoft 04a]

[Microsoft 06a]

[Microsoft 06b]

[Microsoft 07a]

[Microsoft 07b]

[Muntz 90a]

[Navarro 06a]

[Navarro 07a]

[Navarro 07b]

[Navarro 07c¢]

[Navarro 11a]

134

J. F. Meyer, “On Evaluating the Performability of Degradable Computing
Systems”, Proceedings of FTCS-8 pp. 44-49 IEEE, 1978.

J. F. Meyer, “Performability Evaluation of the SIFT Computer”, IEEE
Transaction on Computers, vol C-29, pp. 501-509, June 1980.

K. Michels, F. Klawonn, R. Kruse, A. Nurnbeger, “Fuzzy Control:
Fundamentals, Stability and Design of Fuzzy Controllers”, Springer-
Verlag, 2006.

Microsoft, “Disk Subsystem Performance Analysis for Windows”,
http://download.microsoft.com/download/e/b/a/ebal050f-a31d-436b-
9281-92cdfeae4b45/subsys perf.doc, March 2004.

Microsoft, “Disk Bottleneck Detected”, 2006,
http://technet.microsoft.com/en-us/library/29f01985-7b44-47¢cb-9617-
d7¢92fd8e867.aspx

Microsoft, “Calculate Your Server Size”, 2006,
http://technet.microsoft.com/en-us/library/bb124226.aspx

Microsoft, “Exchange Server 2003”, http://technet.microsoft.com/en-
us/library/bb123872.aspx

Microsoft, “How to Calculate Your Disk I/O Requirements”,
http://technet.microsoft.com/en-us/library/bb125019.aspx

R. R. Muntz, John C.S. Lui, “Performance Analysis of Disk Arrays under
failure”, 16™ VLDB Conference, 1990.

G. Navarro, M. Manic, “Fuzzy Performability Analysis of Disk Arrays”,
IEEE ISIE, 2006.

G. Navarro, M. Manic, “Predictive E-Mail Server Performability
Analysis Based on Fuzzy Arithmetic”, [JCNN, 2007.

G. Navarro, M. Manic, “Fuzzy Control of Sparing in Disk Arrays”, 12th
IEEE Conference on Emerging Technologies and Factory Automation,
ETFA 2007.

G. Navarro, M. Manic, “NFuSA — Neuro-Fuzzy Algorithm for Sparing in
RAID Systems”, IEEE IECON, 2007.

G. Navarro, M. Manic, “FuSnap: Fuzzy Control of Logical Volume
Snapshot Replication for Disk Arrays’, IEEE Transactions on Industrial
Electronics, Vol. 58, No. 9, Sep. 2011.

http://technet.microsoft.com/en-us/library/bb123872.aspx
http://technet.microsoft.com/en-us/library/bb123872.aspx
http://technet.microsoft.com/en-us/library/bb125019.aspx

135

[Papadimitriou 94a] C.H. Papadimitriou. J. H. Tsitsiklis, “The Complexity of Optimal

[Patterson 88a]

[Patterson 94a]

[Patterson 07a]

[Phillips 99a]

[Preston 02a]

[Reddy 91a]

[Rezaul 93a]

[Schulze 89a]

[Schwarz 92a]

[Seagate 05a]

[Smith 04a]

[SNIA 13a]

[Shooman 02a]

[Tai 96a]

Queuing Network Control”, SCTC, 1994.

D. A. Patterson, G. Gibson, R. H. Katz, “A case for redundant arrays of
inexpensive disks (RAID)”, ACM SIGMOD, 1988.

D. A Patterson, P. M. Chen, E. K. Lee, G. A. Gibson, R. H Katz, “RAID:
High-Performance, Reliable Secondary Storage”, ACM Computing
Surveys, 1994.

Patterson David A., Hennessy John L., “Computer Architecture, a
quantitative approach”, Morgan Kaufman Publishers, 2003.

Y. A. Phillips, R. Zhang, “Fuzzy Service Control of Queuing Systems”,
IEEE Transactions on Systems, Man and Cybernetics, Vol. 29, No. 4,
August 1999.

W. C. Preston, “Using SANs and NAS”, O’Reilly, 2002.

Reddy, A.L.N.; Banerjee, P, “Gracefully degradable disk arrays”, Fault-
Tolerant Computing, 1991. FTCS-21.

Islam, S.M. Rezaul, “Performability Analysis of Disk Arrays”, IEEE
Circuits and Systems, 1993.

M. Schulze; G. Gibson; R. Katz; D. A. Patterson, “How reliable is a
RAID?”, COMPCON Spring '89.

Schwarz, T.J.E.; Buckhard, W.A.; “RAID organization and
performance”, Distributed Computing Systems, 1992.

“Cheetah 15K.4 FC Product Manual”, 2005, http://www.seagate.com/
staticfiles/support/disc/manuals/enterprise/cheetah/15K.4/FC/100220449
c.pdf

Smith, N.; Clark, T.; “An Exploration of C2 Effectiveness: A Holistic
Approach”, 2004 Command and Control Research and Technology
Symposium, June 2004.

SNIA Dictionary, http://www.snia.org/education/dictionary, Storage
Networking Industry Association, 2013.

Martin L. Shooman, “Reliability of Computer Systems and Networks”,
John Wiley & Sons, 2002.

A. Tai, J. F. Meyer, A. Avizienis, “Software Performability: From
Concepts to Applications”, Kluwer Academic Publishers, 1996.

http://ieeexplore.ieee.org.ezproxy.hpl.hp.com/xpl/RecentCon.jsp?punumber=341
http://ieeexplore.ieee.org.ezproxy.hpl.hp.com/xpl/RecentCon.jsp?punumber=341
http://ieeexplore.ieee.org.ezproxy.hpl.hp.com/xpl/RecentCon.jsp?punumber=231

[Takagi 85a]

[Thomasian 97a]

[Varki 03a]

[Weber 94a]

[Wu 12a]

[Zhang 05a]

[Zhang 06a]

136

T. Takagi, M. Sugeno, “Fuzzy Identification of Systems and its
Applicatons to Modeling and Control”, IEEE Transactions on Systems,
Man and Cybernetics, vol. 15, Jan.-Feb. 1985..

A. Thomasian, J. Menon, “RAIDS5 Performance with Distributed
Sparing”, IEEE Transactions on Parallel and Distributed Systems, 1997.

Varki, E.; Merchant, A.; Xu, J.; Qiu, X.; “An Integrated Performance
Model of Disk Arrays” ; MASCOTS 2003.

D.P. Weber, “Fuzzy Fault Tree Analysis”, Fuzzy Systems, 1994, IEEE
World Congress on Computational Intelligence.

D. Wu, “On the Fundamental Differences Between Interval Type-2 and
Type-1 Fuzzy Logic Controllers”, IEEE Transactions on Fuzzy Systems,
Vol. 20, No. 5, pp 832-848, Oct. 2012.

R. Zhang, Y. A. Phillis, V. S. Kouikoglou, “Fuzzy Control of Queuing
Systems”, Springer-Verlag, 2005.

Q. Zhang, A. Riska, N. Mi, E. Riedel, E. Smirni, “Evaluating the
Performability of Systems with Background Jobs”, Proceedings of the

2006 International Conference on Dependable Systems and Networks
(DSN’06), IEEE, 2006.

137

LIST OF PUBLICATIONS
This section presents a list of the author’s published publications and work in

progress.

PUBLICATIONS IN CONFERENCES

[1] G. Navarro, M. Manic, “Fuzzy Performability Analysis of Disk Arrays”, IEEE ISIE,
2006.

Abstract: The performability of disk arrays systems has been studied before [Islam 93a][Barnett 98a].
However, in the case of imprecise data, a fuzzy model can be the base for the performability analysis. In this
paper a performability analysis of a disk array using a Markov Reward Model (MRM) is presented. The model
considers the repair as the reconstruction (rebuild) of the redundancy, not as a hard drive replacement. With
traditional, crisp arithmetic, for each change in a single model parameter the model would need to be run again,
resulting in a family of curves difficult to interpret. In the approach presented in this paper, the rewards for each
of the states of the MRM, as well as other disk array parameters are expressed through fuzzy numbers. The use
of fuzzy arithmetic for the performability estimation of a disk array proved significant advantages. First, the
model was able to capture the uncertainty variance of each of the model parameters. Secondly, as opposed to
traditional, crisp arithmetic approach, the presented model provides the estimation of the lower and upper

boundary of the system performability with a single run of the model.

[2] G. Navarro, M. Manic, “Predictive E-Mail Server Performability Analysis Based on
Fuzzy Aritmetic”, IEEE [JCNN, 2007.

Abstract: The performability of disk arrays systems has been studied before. However, in the case of
imprecise data, a fuzzy model can be the base for the performability analysis. This paper presents a
performability analysis of an MSExchange-like e-mail server. The analysis is based on a Markov Reward model.
The performability analysis is accomplished through the use of fuzzy arithmetic. Unlike traditional Markov
Chains, Fuzzy Markov Chains can successfully handle uncertain, imprecise probabilities. In cases where the
failure rates, repair rates, or the workload parameters are uncertain, Markov Chains enhanced with fuzzy
arithmetic provide means for comprehensive predictive performability analysis of a system. This performability
analysis provides a valuable guideline regarding required resources such as the number of mailboxes, and
therefore, the number of users the mail server can support with regards to the reliability and performance of the
disk array used by the mail server. The fuzzy arithmetic helps in better visualization and estimation of the range

of number of users the mail server is capable of servicing over long periods of time.

[3] G. Navarro, M. Manic, “Fuzzy Control of Sparing in Disk Arrays”, IEEE ETFA, 2007.

Abstract: The redundancy regeneration (sparing or rebuild) algorithms in disk arrays face the problem

of balancing between the data recovery activity within the array and the user workload acting upon the array at

138

the same time [Hou 93a]. If the algorithm favors the user workload so the user requests can always preempt the
internal data recovery, then the data sparing can stall in the presence of a sustained workload. But on the
contrary, if the data recovery is favored over the user requests, the latency of the user requests can be so high to
reach unacceptable levels for the data transactions.

Using computationally intelligent techniques, like fuzzy logic, better algorithms to balance the level of
user requests and the internal data recovery can be achieved. The disk array and data recovery process are
modeled using the queue systems with vacations (QSV) [Medhi 03a]. A fuzzy algorithm to control the sparing is
presented in this paper. The results indicate that by using fuzzy logic, a better balancing is achieved between the

need to have an acceptable response time for the user requests and the data recovered as soon as possible.

[4] G. Navarro, M. Manic, “NFuSA — Neuro-Fuzzy Algorithm for Sparing in RAID
Systems”, IEEE IECON, 2007.

Abstract: Sparing, the process of rebuilding data in case of disk failure, has been a target of research
since early 1990°s [Muntz 90a]. The problem that these specific hardware/software control systems typically
face in sparing is the tradeoff between serving requests — user’s versus internal [Hou 93a]. If the algorithm favors
user requests, in the presence of heavy workloads, the internal data recovery gets preempted resulting in risky
delay of the data sparing. On the other hand, favoring internal data recovery requests over the user requests can
result in high latencies per transaction that are unacceptable for the users of the RAID system. Intelligent, neuro-
fuzzy controllers (NFCs) offer a way to improve the control process and enhance the ability of a system to
achieve faster system response, while serving the internal requests at the same time. This paper presents the
neuro-fuzzy enhancement of the traditional data recovery of a RAID system modeled with a Queue System with
Vacations (QSV) [Medhi 03a]. Experimental results demonstrated better balancing between an acceptable
response time for the user requests and the time for the data to be redundant again, resulting in both higher user

satisfaction and better system reliability.

PUBLICATIONS IN JOURNALS

[5] G. Navarro, M. Manic, “FuSnap: Fuzzy Control of Logical Volume Snapshot Replication
for Disk Arrays”, IEEE Transactions on Industrial Engineering, 2011.

Abstract: This manuscript presents FuSnap, a fuzzy logic based controller that monitors and controls
the snapshot process of a logical storage volume in a disk array. As disks do not linearly respond to the arrival
rate of user accesses, FuSnap makes use of fuzzy logic as the means to achieve better control of their response
time. The goal of the FuSnap controller is to reduce the response time caused by the copy-on-writes that occur
during the snapping of a storage logical volume. The FuSnap controller, based on the response time of user
accesses, makes the decision on whether to proceed with a copy-on-write or a redirect-on-write when a source
logical volume is being copied to a snapshot logical volume. The benefits of FuSnap approach are twofold.

Firstly, significant reductions in response time of user requests are obtained with the FuSnap approach over the

139

traditional Copy-on-Write snap approach. Secondly, these reductions in response time make the point-in-time
copy of data a process less disruptive for database users. FuSnap was verified with two setups using HPUX

workstations, one setup with 8 and the other with 32 disks.

PUBLICATIONS IN PROGRESS

[6] G. Navarro, M. Manic, D. Umberger, “Virtual Disk Replication on Disk Arrays using a

Type-2 Fuzzy Controller”, work in progress, 2015.

Abstract: Virtual Disk (VD) cloning is a data protection technique used by disk arrays to replicate the
data in a VD. A typical consequence of the cloning on the disk array is the increase in response time of user
reads and writes. A method for VD cloning using Type-2 fuzzy control is presented. This method is capable of
balancing data replication on one side and impact on the response time of user reads and writes on the other. The
method we present here can significantly reduce the throughput of the VD replication to reduce the impact on
user response time. On the other hand, when user response time is below the maximum allowed, the background
VD cloning can increase the cloning rate. The first contribution of this manuscript is: 1) a formula for data
backup planning. This formula predicts the fraction of replicated data blocks in a combined (clone and snap)
replication. 2) a novel FT2 control scheme that reduces latencies of user reads/writes response time in half; This
control scheme was tested on an Itanium workstation with 120 disks and proved shortening user latencies in half

(high response time of 60ms in half within 30 seconds only) as an average case.

PATENTS

[7] G. Navarro, M. Manic, David K. Umberger, inventors; Hewlett Packard, assignee;
“Control of Sparing in a Storage System”, US Patent number 8,201,018; issued June 12,
2012.

Abstract: Embodiments include methods, apparatus, and systems for controlling of sparing in a storage
system. In one embodiment, a method compares a first amount of time to complete sparing of data from a failed
disk in a storage system with a second amount of time to complete a user request to the storage system in order

to determine when to create a copy of the data from the failed disk.

[8] G. Navarro, David K. Umberger, inventors; Hewlett Packard, assignee; ‘“Creating
Snapshots of Data Using a Selected One of Different Snapshot Algorithms”, US Patent
8,650,145; February 11, 2014.

Abstract: Embodiments include methods, apparatus, and systems for controlling of sparing in a storage

system. In one embodiment, a method compares a first amount of time to complete sparing of data from a failed

140

disk in a storage system with a second amount of time to complete a user request to the storage system in order

to determine when to create a copy of the data from the failed disk.

[9] G. Navarro, M. Manic, David K. Umberger, inventors, “Managing Processing of User
Requests and Data Replication for a Mass Storage System”, US Patent 9,063,835; June
23,2015.

Abstract: A technique includes determining a workload on mass storage system that is associated will
user requests during a time in which mass storage system is replicating data from a source data unit of the mass
storage system to a replica storage unit of the mass storage system. The technique includes determining a
progress rate associated with the replication and managing processing of the user requests and the data
replication for the mass storage system, including initiating corrective action in response to determining that the
workload is near a predetermined maximum workload threshold and the progress rate is near a predetermined

minimum threshold.

PATENT APPLICATIONS

[10] G. Navarro, M. Manic, David K. Umberger, inventors, “Regulating Power Consumption

of a Mass Storage System”, US Patent Application 20130326249; December 5, 2013.

Abstract: A technique includes receiving first work requests that are associated with a user workload.
The technique includes using a machine to transform the first work requests into second work requests that are
provided to components of a mass storage system to cause the components to perform work associated with a
workload of the mass storage system; and regulating a power consumption of the mass storage system, including

regulating a rate at which the second work requests are provided to the components of the mass storage system.

	Authorization to Submit Dissertation
	Abstract
	Table of Contents
	Table of Figures
	Table of Tables
	Chapter 1: Introduction
	1.1 Performability of Disk Arrays
	1.2 Objective of this Dissertation
	1.3 Assumptions of the Dissertation
	1.4 Contributions of this Dissertation
	1.5 Organization of this Dissertation

	Chapter 2: Background on disk arrays, performability and fuzzy control
	2.1 Disk Arrays
	2.1.1 Disk Array Architecture
	2.1.2 RAID Levels
	2.1.3 Storage Virtualization
	2.1.4 Data Protection Policies
	2.1.5 Sparing Data Protection Policy
	2.1.6 Point-In-Time Data Protection Policy
	2.1.7 Snapshot Data Protection Policy
	2.1.8 Cloning Data Protection Policy
	2.1.9 Disk Array Performability and Data Protection Policies

	2.2 Performability
	2.2.1 Performability of Disk Arrays
	2.2.2 Fundamental Concepts
	2.2.3 Performability Evaluations
	2.2.4 Performability Measures
	2.2.5 Performability Example

	2.3 Fuzzy Control
	2.3.1 Fuzzy Numbers and Arithmetic
	2.3.2 Justification for Fuzzy Control
	2.3.3 Fuzzy Logic Controller
	2.3.4 Fuzzy Logic Controller: Fuzzifier
	2.3.5 Fuzzy Logic Controller: Rule Base
	2.3.6 Fuzzy Logic Controller: Inference Engine
	2.3.7 Fuzzy Logic Controller: Defuzzifier

	Chapter 3: Performability Analysis of Disk Arrays using Fuzzy Logic
	3.1 Markov Model of a Disk Array
	3.2 Performability Model of Disk Arrays
	3.3 Results of the Fuzzy Performability Analysis of the E-Mail Server
	3.4 Conclusions

	Chapter 4: Fuzzy Control of Sparing for Disk Arrays
	4.1 Fundamental Models
	4.1.1Queuing System with Vacations (QSV)
	4.1.2 Disk Array Queuing Model
	4.1.3 Raid1 Rebuild Model
	4.1.4 Raid5 Rebuild Model

	4.2 Fuzzy Control of the Sparing Process
	4.2.1 Simulation and Results

	4.3 Neural-Fuzzy Algorithm for Sparing in RAID Systems
	4.3.1 Simulation and Results

	Chapter 5: Fuzzy Control of LV Snapshot Replication
	5.1 Background of Point-In-Time Copy Technologies
	5.1.1 Copy-on-Write (CoW)
	5.1.2 Redirect-on-Write (RoW)

	5.2 Modeling of the Copy-On-Write Snapshot
	5.2.1 Markov Chain Model of the Probability of a Snap
	5.2.2 Practical Snapshot probability equation
	5.2.3 Model of the CoW process
	5.2.4 Model of the proposed CoW-RoW process

	5.3 Snapshot Fuzzy Control
	5.3.1 Purpose and Rationale of the Snapshot Fuzzy Controller
	5.3.2 High Level Modeling of the Snapshot Fuzzy Controller
	5.3.3 Decision Logic
	5.3.4 Estimation and fuzzification of the probability of a snap
	5.3.5 Control Error computation and fuzzification
	5.3.6 Rule Base to obtain uth
	5.3.7 Stability of the Fuzzy Controller

	5.4 Experimental Results
	5.5 Conclusions

	Chapter 6: T2 Fuzzy Control of Logical Volume Cloning Replication
	6.1 Interval Type 2 Fuzzy Sets
	6.2 Type 2 Fuzzy Logic Controllers (T2 FLCs)
	6.3 Logical Volume (LV) Cloning Replication
	6.4 Queuing Description of the LV Cloning Replication
	6.5 Mathematical Description of the LV Cloning Replication
	6.6 Local LV Cloning Replication Type-2 Fuzzy Logic Controller
	6.6.1 Purpose of the LV Cloning T2 Fuzzy Controller
	6.6.2 Description of the LV Cloning T2 Fuzzy Controller
	6.6.3 LV Cloning Controller Fuzzification
	6.6.4 Rule Base to obtain Tu
	6.6.5 Type Reduction (Defuzzification)
	6.6.6 Crisp delta of the cloning interarrival time

	6.7 Experimental Results
	6.7 Conclusions

	Chapter 7: Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	List of Publications
	Publications in Conferences
	Publications in Journals
	Publications in Progress
	Patents
	Patent Applications

