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Abstract 

 Black bears populations have historically been managed using harvest data and mark-

recapture methods. New methods such as the time to event and space to event models have 

opted to estimate unmarked populations using trail cameras and have so far been tested on 

high density ungulate species and low density carnivore species.  

 In the first chapter, we apply these two models to estimating black bear populations in 

several study areas across Idaho. Black bears represent an optimal species to test these 

models because they occur at a medium density between most carnivores and ungulates and 

have different movement patterns and life histories. We tested the efficacy of these models 

by comparing the resulting densities to comparable black bear densities found throughout 

similar habitats. We found that while the models did sometimes find comparable density 

estimates, they were often dependent upon camera placement style and the time to event 

model tended to overestimate populations frequently. Incorporating bootstrapping worked to 

bring some estimates into the comparable density range (particularly with time to event), but 

still resulted in high estimates. Bootstrapping the space to event model, however, often 

biased estimates quite low, presenting an issue where bootstrapping the models was not 

always the best course of action. 

 Black bear recruitment in Idaho is strongly correlated with the late summer 

huckleberry crop, with low crops affecting fall black bear weights and the capability to 

successfully reproduce. In chapter two, we attempted to create a model predicting the 

huckleberry crop for the upcoming year so that managers could have a preemptive tool for 

managing black bear populations. Models for 2020 and 2021 found that there was some 

overlap in predictive covariates for huckleberry productivity, but several additional 

covariates were included in 2021. We also did not find a strong correlation between our 2020 

model and black bear recruitment for the following year, possibly due to the short duration of 

our study.  
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Chapter 1: Estimating unmarked black bear populations using remote cameras 

 

Introduction 

 Wildlife agencies are often tasked with managing game populations using limited 

resources or information. Many agencies rely on hunter reporting through various methods as 

their primary source for annual harvest estimates, ranging from mail-in surveys to check 

stations (Rupp et al. 2000, Beston and Mace 2012). While some states use mandatory or 

incentivized programs to increase hunter response, rarely is a 100% reporting rate achieved 

(Rupp et al. 2000). Lack of hunter response can lead to biased estimates of harvests (and 

therefore populations) and requires managers to account for imperfect reporting rates 

(Rosenberry et al. 2004). While estimating populations with imperfect reporting rates is 

possible, there are other drawbacks and it often requires additional information (Roseberry 

and Woolf 1991). Many models rely on data such as hunter effort that often varies year to 

year (Beston and Mace 2012). Population models that rely on harvest can be reliable tools for 

demonstrating trends in population abundance over time (Davis et al. 2007), however, they 

fail to show trends until several years of data have been analyzed, giving managers less time 

to react and alter significant changes in the population trend (Beston and Mace 2012). 

Additionally, most species have differing rates of harvest dependent upon size and sex that 

further limit the accuracy of harvest based abundance models due to unequal sample sizes 

(Tilton 2005).  

 Striving to understand population trends more precisely, some states have opted for 

other methods of estimating populations. Premiere among these has been mark-recapture 

models using noninvasive genetic data because it is useful on less abundant and cryptic 

species and provides a variety of information beyond simple abundance estimates (Stenglein 

et al. 2010, McCall et al. 2013). The widespread use of noninvasive genetic sampling has 

significantly decreased the number of personnel hours required for sampling and the need for 

invasive handling procedures (Mumma et al. 2015). Even with its relatively low costs 

compared to traditional capture and mark approaches, noninvasive genetic sampling can be 

difficult to scale to the levels in which most states usually manage species (Coster et al. 

2011). 
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 Mark-recapture methods have been expanded through the use of passive detectors 

(e.g. trail camera) when individual animals are uniquely marked or individually identifiable 

(Karanth 1995, Rowcliffe et al. 2008, Parsons et al. 2017). Identifying individuals through 

trail cameras has successfully been applied primarily with large cat species using features 

such as the stripe patterns of tigers (Panthera tigris; Karanth 1995) and the spot patterns of 

snow leopards (Uncia uncia; Jackson et al. 2006). However, most game species of 

management concern in the United States do not have these unique features. Animals must 

be physically captured and marked before being ‘recaptured’ with a trail camera (Chandler 

and Royle 2013).  

New modeling approaches have found ways to estimate unmarked population 

abundance (Rowcliffe et al. 2008, Chandler and Royle 2013). These models, while useful, 

often require additional information or are only adequate for populations that occur at high 

densities (Loonam 2019). The random encounter model developed by Rowcliffe et al. (2008) 

circumvents many of these problems by using randomly placed cameras that estimate density 

as a function of trapping rate. Issues arise with the random encounter model when factoring 

in the tendency of trail cameras’ infrared sensors to be highly variable at detecting species 

based on body size and the effect that habitat, temperature, and camera malfunctions have on 

detection rate (Rowcliffe et al. 2011, Burton et al. 2015).  

The time-to-event and space-to-event models further the random encounter model and 

address the issue of variable detection rate (Moeller et al. 2018). The time-to-event model 

(TTE) follows similar assumptions as the REM, requiring independent estimates of 

movement rate and randomly placed cameras with measured viewsheds (Moeller et al. 2018). 

The TTE estimates density by measuring the amount of elapsed time until an animal is 

photographed (or captured). When a species persists at higher densities, there will be shorter 

time periods between photographs. Encounter histories for the TTE are determined by 

separating a photograph stream from a single camera into occasions and periods. A period is 

how long it would take an animal to cross a camera viewshed using a mean movement rate of 

the population. Occasions contain a set number of periods with a ‘rest’ time in between 

occasions. The period in which an animal is counted in the viewshed becomes the TTE. 

Occasions with no TTE are right censored. 
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The space-to-event model (STE) removes the variability of motion detection that can 

occur in the TTE using most trail camera’s built in abilities to take photographs at specific 

intervals (Moeller et al. 2018). By using timelapse photographs and a measurable viewshed 

area, the need for movement rate and motion triggered photos is eliminated, removing 

variability that can occur in both. Animal density instead is determined by the amount of 

space surveyed (i.e., camera viewsheds) between detections. If less space is surveyed 

between detections, animals occur at higher densities. In the STE, the period length becomes 

the interval at which time-lapse photographs are taken (e.g., 10 minutes) with the occasion 

becoming the number of cameras that must be surveyed before coming across an animal. 

Both the TTE and STE models have shown promise and successfully been used to estimate 

elk (Cervus canadensis; Moeller et al.) and mountain lion (Puma concolor; Loonam 2019) 

population sizes in Idaho.  

 Black bears (Ursus americanus) in Idaho have historically been managed using 

harvest data from mandatory hunter checks. Black bear harvest is not equal among all age 

and sex classes nor are all bears equally susceptible to capture methods, making both 

population reconstruction and mark-recapture modeling difficult (Diefenbach et al. 2004). 

Additionally, black bears are found in the majority of mountain forests throughout the state 

(Beecham and Rohlman 1994) making large scale capture projects not financially viable. 

Finding accurate and precise methods of estimating black populations in Idaho, while 

keeping costs low, is a critical goal of managers in the state. Black bears are an ideal study 

species to test the utility of the TTE and STE models. Their preference for forested habitat 

makes aerial and sight surveys difficult and leave trail cameras as one of the most effective 

methods of ‘capture’. Randomly placed cameras that are not stratified to roads and trails are 

likely to observe black bears since they move randomly throughout the landscape and use 

roads and trails less frequently than other carnivores (Young and Beecham 1986, Kasworm 

and Manley 1990). 

 The objective of my study is to test the utility of the TTE and STE models as a new, 

noninvasive, and cost-effective method to estimate black bear populations in Idaho. We aim 

to test several methods of camera deployments and address all assumptions of the model so 

that these models can be applied to black bears in other states and additional species. 
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Methods 

Study Areas 

 The study areas for my project were selected by the Idaho Department of Fish and 

Game (IDFG) across three different regions (Panhandle, Clearwater, and Southwest) and 

consisted of a Game Management Unit as the study area in each region: GMUs 6, 10A, and 

32A, respectively (Fig. 1.1). The most northern of these units, GMU 6 (hereafter St. Joe 

study area), is 2,726 km2 and located in Region 1, the Panhandle Region. Around 40% of the 

unit is managed by the U.S. Forest Service (USFS) within the St. Joe National Forest and is a 

frequented location for summer recreation. The remaining land contains 40% privately 

owned land (largely by the logging company PotlatchDeltic), 10% state of Idaho, and 10% 

split between BLM and Bureau of Indian Affairs.  
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Figure 1.1: A satellite map of Idaho, USA with the outlines of three IDFG Game Management Units used as 

study areas to estimate black bear density from cameras: St. Joe (GMU 6), Clearwater (GMU 10A), and Council 

(GMU 32A). 

 

Black bears in the St. Joe study area are managed through general harvest spring 

(Apr. 15 – June 30) and fall (Aug 30. – Nov. 30) hunting seasons. Dog training is allowed 

July 1 – July 31 and dogs allowed during all open seasons except for Aug. 30 – Sep. 14 and 

Oct. 10 – Oct. 31. Hunters may also purchase a second bear tag for use during the season and 

baiting is allowed. During the 2018 season prior to the start of this project 117 bears were 

harvested from the unit with 90 of those during the spring season. 

The largest of the three study areas, GMU 10A (hereafter Clearwater study area), is 
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4,028 km2 and is in the Clearwater Region (R2). Approximately 50% of the unit consists of 

private land, 24% USFS managed land within the Nez Perce-Clearwater National Forest, and 

24% State of Idaho Managed Land. Black bears in the Clearwater study area are also 

managed through a general harvest spring (Apr. 15 – May 31) and fall (Aug. 30 – Oct. 31) 

hunting season with dog training allowed June 1 – July 31. Dogs are prohibited Apr. 15 – 30, 

Aug. 30 – Sep. 14, and Oct. 10 – Oct. 31. Baiting was prohibited until the fall 2019 season. 

In 2018, 110 bears were harvested split evenly between both fall and spring seasons. 

The southernmost unit is GMU 32A (hereafter Council study area) located in the 

Southwest Region (R3) and is the smallest study area at 1,545 km2. The Council study area is 

majority public land (70%) with the eastern two-thirds in the Payette National Forest and the 

southern areas within the Boise National Forest. The remaining public land is a mixture of 

BLM (9%) and State of Idaho (3%) intermixed with private. The entire unit is used for cattle 

grazing throughout the summer months as part of grazing permits and allotments. Black 

bears in the Council study area are managed through controlled hunts. The spring (Apr. 1 – 

May 22) hunting season has a draw of 40 tags and the fall (Aug. 15 – Aug. 31) hunting 

season a draw of 100 tags on private land only and Sep. 1 – Oct. 31 for the whole unit (these 

tags can be used in this unit and an adjacent GMU). The 2018 season had a total harvest of 2 

bears with both bears harvested during the fall season.   

 

Field Methods 

Captures & Movement Rates 

 The TTE model requires an independent estimate of movement rate. To obtain 

independent estimates of movement rate, we captured and collared black bears in each of the 

three study areas. Bears were captured using Aldrich spring-activated foot snares set in 

‘cubbies’ at the base of trees. We set traplines in summer 2019 for the St. Joe and Council 

study areas, all three study areas in summer 2020, and only the St. Joe study area in 2021.  

 We darted captured bears using a Pneu-Dart (Pneu-Dart, Inc., Williamsport, PA) 

pressurized rifle and immobilized them with 2cc darts at 1.1 mg/45 kg of a Telazol® (286 mg 

Tiletamine, 286 mg Zolazepam)/Xylazine mixture (3.3 ml of 100 mg of Xylazine to 1 bottle 
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of 572 mg Telazol®) and water. Tolazoline (200 mg/ml) was used for the reversal of 

Xylazine. All our captures were conducted under the University of Idaho Institutional 

Animal Care and Use Committee protocol (IACUC 2019-05 – Developing Methods for Black 

Bear Population Monitoring).  

 Bears of various sex and age classes greater than 34kg were given a Telonics TGW-

4570-4 GPS/Iridium collar. Initially, we collected bear location frequencies every four hours 

during peak activity months (May – September). Low numbers of captures in 2019 provided 

extra battery life for the remainder of the study and allowed us to increase location 

frequencies to 24 locations/day from May 1 – October 1 in 2020 and 2021. The GPS collars 

had automatic drop offs set to detonate August 1, 2021. We obtained hourly movement rates 

using only location points during the camera deployment period to coincide with seasonal 

changes in black bear movement.  

 

Camera Deployment 

 In 2019, we attempted to strictly uphold the requirements and assumptions of the TTE 

and STE models; primarily that cameras be placed randomly without regards to roads or 

trails (Moeller et al. 2018). Black bears use roads and trails less frequently than other 

carnivores like mountain lions or wolves (Canis lupus) which frequent remote roads, trails, 

and game trails (Beecham and Rohlman 1994, Loonam 2019, Ausband et al. 2022). As such, 

we assumed that completely random cameras would have obtain sufficient detections of 

black bears to run the TTE and STE models.  

 We overlaid each study area (ArcGIS 2020) with a grid containing squares of 25km2 

in 2019. Grids containing more than 50% of the grid inside the unit boundary received a true 

random primary location. The actual camera location could be within 200 meters of the 

random location to ensure the clearest viewshed. The camera was placed approximately 1.5 – 

2 meters high on a tree 15 meters south of the random point and pointed north. We 

established and marked with flagging the viewshed area at 30m distance from the center of 

the camera. The viewshed width was established by placing flagging at 3.5m distances from 

the 30m center point to a maximum of 10.5 meters. We cleared as much dense vegetation as 



8 
 

 
 

possible to ensure clear viewsheds and measured the farthest viewable distance for each 

cone. The cameras were set at high sensitivity to take a group of three photos upon motion 

detection. Additionally, cameras were set to take a timelapse photograph every 10 minutes 

(e.g., 13:10:00, 13:20:00) 

 We cooperated with IDFG to increase the number of deployed cameras in 2020 and 

2021. IDFG personnel deployed cameras in the St. Joe and Clearwater study areas; ungulate 

style cameras (or cameras deployed with complete randomness; hereafter “random cameras”) 

and paired predator style cameras (cameras targeted to the closest road or trail to the random 

point to increase predator detections; hereafter “targeted cameras”). In the Council study 

area, we deployed only targeted cameras. The change in deployment allowed for comparison 

between random deployment and targeted deployment styles for each of the models. 

 

TTE Model 

 The TTE model assumes that animals are Poisson-distributed across the landscape 

and the time until an encounter event occurs is exponentially distributed around density (Eq. 

1, Moeller et al. 2018). For example, 

TTE ~ Exp(λ) (Equation 1) 

imagine we are looking for a bear on a mountain side with a spotting scope. The spotting 

scope is stationary on a set location while we wait for a bear to come into view. Assuming 

that bears are Poisson distributed, the amount of time it takes to spot a bear is indicative of 

the density of bears on the mountainside. 

The TTE follows these assumptions using randomly placed trail cameras set to take 

motion trigger photos. Separating each camera i = 1, 2, …, M, into sampling occasions j = 1, 

2, …, J, and sampling periods k = 1, 2, …, K we can begin to create an encounter history. 

The sampling period requires independent estimates of movement rate and is a function of 

the bear’s movement rate divided by the square root of the viewshed area, or the time it 

would take a bear to cross the viewshed. When accounting for right-censored data (no 

detections) the result is Eq. 2 (Moeller et al. 2018) representing the exponential likelihood 
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and giving 𝜆̂, or the number of animals present in a 

                           ℒ (𝜆|𝑇𝑖𝑗) =  ∏  𝐽
𝑗=1 ∏  𝑀

𝑖=1  (
𝐼

(𝑇𝑖𝑗≤𝐾) 
𝜆𝑒

𝑇𝑖𝑗

+(1−𝐼(𝑇𝑖𝑗≤𝐾))𝑒
−𝜆𝑇𝑖𝑗

) (Equation 2)  

camera’s viewshed. The density of bears can be derived by dividing 𝜆̂ by the mean area of all 

the camera’s viewsheds 𝒶̅. Total abundance can then be found by multiplying density by the 

size of the study area.   

 Our analysis of the TTE model included a “single run” (or non-bootstrapped estimate) 

of all models for both the random and targeted style deployments. We populated the TTE 

using two sets of data for comparisons, 1) motion triggered photos only, and 2) motion 

triggered photos and timelapse photos (or “all photos”). We generated population estimates 

in Program R (R Core Team 2021) using the spaceNtime package (Moeller et al. 2018). 

There was an increase in motion triggered photographs from cameras in 2021. 

Additionally, there were often “outlier” cameras present, or cameras that contained a high 

percentage of all motion triggered photographs. To reduce this potential bias, we 

bootstrapped the TTE models 1,000 times by sampling with replacement. This bootstrapping 

method was applied to all TTE model iterations.  

 

STE Model 

  The STE functions similarly to the TTE but removes variability from motion 

detections by collapsing each sampling occasion to a single instance in time. Returning to our 

example with the spotting scope, instead of leaving the scope on one location as in the TTE 

model, we move the spotting scope around the mountainside at set intervals hoping to locate 

a bear. In this scenario (under the same assumption of Poisson distribution), we are 

measuring the amount of space between bears to determine density.  

 The STE model uses the same breakdown of encounter histories Sj where j = 1, 2, …, 

J, and sampling occasions i = 1, 2, …, M (where M equals number of cameras). The equation 

is the TTE model with the movement rate dimension removed (Eq. 3, Moeller et al. 2018).  
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ℒ(𝜆|𝑆𝑗) =   ∏  

𝐽

𝑗=1

(𝐼(𝑆𝑗≤𝐾) 𝜆𝑒𝑆𝑗 + (1 − 𝐼(𝑆𝑗 ≤ 𝑀)) 𝑒−𝜆𝑆𝑗) (Equation 3) 

Since the model relies on accurate measurements of camera viewshed area for each camera, 

we did not use an average area as in the TTE, but measured each camera’s viewshed 

individually. Abundance is found by multiplying density by the size of the study area. We 

generated population estimates in Program R (R Core Team 2021) using the spaceNtime 

package (Moeller et al. 2018).  

 We populated the STE using two sets of data for comparisons, 1) timelapse photos 

only, and 2) timelapse photos and motion triggered photos. The sampling length of the STE 

model (10 seconds) allows for motion photos that occurred close to the timelapse interval of 

10 minutes to be included in the model. There are frequently few timelapse photographs 

despite extensive camera deployments. Including an additional 10 seconds on either side of 

the interval allows for the inclusion of photos that were not quite on the exact 10 minute 

mark but is not an extensive interval to where it would violate assumptions. 

 

Bootstrapping 

There was an increase in motion triggered photographs from cameras in 2021. 

Additionally, there were often “outlier” cameras present, or cameras that contained a high 

percentage of all motion triggered photographs. To reduce this potential bias, we 

bootstrapped the TTE models 1,000 times by sampling with replacement. This bootstrapping 

method was applied to all TTE model iterations. We also bootstrapped the STE across all 

model iterations as a means of comparison for the TTE. 

 

Density Comparisons 

 We compared abundance and density estimates of historic black bear populations in 

the three study areas and those of populations found in similar habitats in the montane west 

(Beecham and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019). 

Loosen et al. (2019) estimated black bear densities in Alberta across different land use types 
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using spatially explicit capture-recapture (SECR) and resource-selection functions (RSF). We 

only used those results from SECR estimates and combined their estimates of male and 

female black bears. Black bear densities differed dependent upon land use types with a mean 

of 12.6 bears/100 km2 on private land, 5.44 bears/100 km2 on public, and 33.13 bears/100 

km2 in protected areas (Loosen et al. 2019). We simplified this to a mean density of 12.6 

bears/100 km2.  

Stetz et al. (2014) estimated black bear densities in Glacier National Park using non-

invasive genetic sampling from hair traps and bear rubs and increased the precision of their 

estimates using a correction for sampling effort in the form of a full and one-half mean 

maximum distance moved. Their results found a density estimate of 11.4 bears/100 km2 

(Stetz et al. 2014). Welfelt et al. (2019) estimated black bear densities in the North Cascades 

with their study area separated into two areas: western north Cascades and eastern North 

Cascades. Their research was a four year project that used non-invasive DNA collection and 

physical captures of black bears. Bear densities in the eastern North Cascades, with habitat 

comparable to the Council study area, had black bear densities ranging from 7.1 bears/100 

km2 to 33.6 bears/100 km2 (Welfelt et al. 2019). We used the mean of this range with 20.1 

bears/100 km2. The western North Cascades, with habitat comparable to the St. Joe and 

Clearwater study areas, had black bear densities ranging from 13.5 bears/100 km2 to 27.8 

bears/100 km2 with a mean of 20.1 bears/100 km2 (Welfelt et al. 2019). 

The most comparable studies were conducted by Beecham and Rohlman (1994) in six 

different locations in Idaho with capture efforts conducted in two of our study areas, the 

Council and St. Joe study areas. Using capture-mark-recapture and population reconstruction 

methods they found bear density estimates of 38.61 bears/100 km2 in areas analogous to the 

St. Joe and Clearwater study areas. Bear densities within the Council study area were 

estimated at 57.9 bears/100 km2. Overall, the comparable density ranges from the literature 

were 11.4 – 38.61 bears/100 km2 in the St. Joe and Clearwater study areas while Council 

ranged from 11.4 – 57.9 bears/100 km2. Black bears in the Council study area are managed 

through a controlled hunt and historic estimates were much higher in that unit, account for 

the higher upper end of the comparable density ranges. 
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Results 

Camera Deployment 

 In 2019, we deployed 195 randomly placed cameras across the three units (84, 67, 

and 44 cameras in the St. Joe, Clearwater, and Council study areas, respectively). In 2020 

and 2021, we deployed 150 randomly placed cameras in both the St. Joe and Clearwater 

study areas. These study areas used 100 of the 150 random points to place a paired targeted 

on the nearest road or trail. The Council study area had only 75 targeted cameras but 

followed the same process as the other units by creating random points first, then placing a 

camera location on the closest road or trail to that point. 

 Across all cameras from 2019 there were only 9 timelapse photographs of bears, 

leading to the change in camera deployment size and style in 2020 and 2021 as we attempted 

to increase probability of detection. The results was an increase in both timelapse and motion 

photos for both years (Table 1.1). 

Table 1.1: Number of cameras deployed and total number of timelapse and motion photos for each deployment 

type (i.e., random and targeted) in three study areas in Idaho, USA, 2019 – 2021. 

2019 

Study Area 

Number of Cameras Timelapse Photos Motion Photos 

Random Targeted Random Targeted Random Targeted 

St. Joe 84 - 1 - 61 - 

Clearwater 67 - 4 - 52 - 

Council 44 - 4 - 15 - 

2020 

St. Joe 150 100 12 9 484 949 

Clearwater 150 100 6 2 480 808 

Council - 61 - 19 - 1,579 

2021 
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St. Joe 150 100 30 9 2,086 949 

Clearwater 150 100 12 4 1,397 933 

Council - 75 - 8 - 2,347 

 

Movement Rates 

 Over the course of our three field seasons, we had a total of 49 captures (Table 1.2). 

We divided hourly movement rates by 3,600 seconds to obtain the time in meters/second 

needed for the TTE model. The hourly movement rates in 2020 ranged from 227 – 279 m/hr. 

and ranged from 210 – 224 m/hr. in 2021 (Table 1.3). We did not pool movement data across 

study areas or years due to variability in bear movement rates between years and each study 

area consisting of different habitat types with varying harvest pressure. Additionally, mean 

movement rate was skewed high from larger movement rates of adult males and juvenile 

bears, therefore we used a median movement rate for each study area and year.  

 

Table 1.2: Number of black bears captured and radiocollared (Global Positioning System) in three study areas 

in Idaho, USA, 2019 – 2021. Resulting location data were used to estimate movement rates and populate a time 

to event model for density estimation. 

Study Areas 2019 2020 2021 

St. Joe 1 12 2 

Clearwater 0 17 0 

Council 4 13 0 

Total 5 42 2 
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Table 1.3: Median movement rates of black bears in meters/hour and meters/second for three study areas in 

Idaho, USA, 2019 – 2021. Movement rates were used to populate a time to event model and estimate bear 

density. 

Study Area 
 

2019 2020  2021  

m/hr m/sec m/hr m/sec 
N (Number of 

Bears) 
m/hr m/sec 

N (Number of 

Bears) 

St. Joe - - 279.16 0.078 8 224.13 0.0623 8 

Clearwater - - 264.36 0.073 12 209.96 0.0583 7 

Council 169.19 0.047 227.03 0.063 11 209.96 0.0583 7 

 

Time to Event (TTE) 

Abundance and density estimates were similar when using just motion photos or 

motion and timelapse photos (Table 1.4). In 2020, the St. Joe study area had TTE abundance 

estimates of 776 (586 – 1,027, 95% CI) bears and a density of 28 bears/100 km2 (21 – 38, 

95% CI) from random camera deployment and 6,858 (5,141 – 9,148, 95% CI) bears and a 

density of 251 (189 – 335, 95% CI) from targeted camera deployment (Fig. 1.2). The 

Clearwater study area had abundance estimates of 738 (114 – 545, 95% CI) bears and 1,787 

(1,302 – 2,453, 95% CI) bears from random and targeted camera deployments, respectively, 

with density estimates of 18 bears/100 km2 (14 – 25, 95% CI) and 44 bears/100 km2 (32 – 61, 

95% CI; Fig. 1.3). The Council study area had an abundance estimate of 908 (759 – 1,086, 

95% CI) bears and a density estimate of 59 bears/100 km2 (49 – 70, 95% CI) from the 

targeted deployment (Fig. 1.4). These estimates represent models ran including all data 

sources since there tended to be minimal difference between using a single data source or 

both. Results from all model iterations are represented in Table 1.4.
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Table 1.4: Black bear (Ursus americanus) population estimates using cameras and a time-to-event model for three study areas, two camera deployment styles, 

and multiple data sources in Idaho, USA, 2020 – 2021. M = motion-trigger photos, T = timelapse photos. Comparable density ranges derived from Beecham and 

Rohlman 1994, McCall et al. 2013, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. 

Study Area Deployment Type 

Data Source 

(Photo Type) N 95% CI 

Density 

(bears/100 

km2) 

% Within 

Comparable 

Range N 

95% 

CI 

Density 

(bears/100 

km2) 

% Within 

Comparable 

Range 

   2020 2021 

St. Joe Random M 759 
571 – 

1,008 
21 – 37 100% 1,044 

837 – 

1,302 
31 – 48 47% 

St. Joe Random M & T 776 
586 – 

1,027 
21 – 38 100% 1,118 

903 – 

1,384 
33 – 51 33% 

St. Joe Targeted M 6,770 
5,066 – 

9,047 
186 – 332 0% 721 

549 – 

945 
21 – 35 100% 

St. Joe Targeted M & T 6,858 
5,141 – 

9,148 
189 – 335 0% 733 

561 – 

959 
21 – 35 100% 

Clearwater Random M 728 
537 - 

987 
13 - 24 100% 2,277 

1,869 

– 

2,776 

46 – 69 0% 

Clearwater Random M & T 738 
545 – 

998 
14 – 25 100% 2,321 

1,908 

– 

2,824 

47 – 70 0% 

Clearwater Targeted M 1,743 
1,265 – 

2,402 
31 – 60 28% 5,661 

4,475 

– 
111 – 178 0% 
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7,160 

Clearwater Targeted M & T 1,787 
1,302 – 

2,453 
32 – 61 24% 5,661 

4,475 

– 

7,160 

111 – 178 0% 

Council Targeted M 891 
744 – 

1,067 
48 – 69 48% 4,226 

3,650 

– 

4,893 

236 – 317 0% 

Council Targeted M & T 908 
759 – 

1,086 
49 – 70 43% 4,227 

3,651 

– 

4,895 

236 – 317 0% 
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Figure 1.2: Black bear (Ursus americanus) population estimates in 2020 using cameras and a time-to-event and space-to-event model for two 

deployment styles and multiple data sources in the St. Joe study area (2,727 km2), Idaho, USA, 2020. Comparable density (CD) estimates are derived 

from Beecham and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. Results far outside of comparable density were removed 

from figures to make scales more viewable. 
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Figure 1.3: Black bear (Ursus americanus) population estimates in 2020 using cameras and a time-to-event and space-to-event model for two deployment 

styles and multiple data sources in the Clearwater study area (4,029 km2), Idaho, USA, 2020. Comparable density (CD) estimates are derived from 

Beecham and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. Results far outside of comparable density were removed from 

figures to make scales more viewable. 
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Figure 1.4: Black bear (Ursus americanus) population estimates in 2020 using cameras and a time-to-event and space-to-event model for two deployment styles 

and multiple data sources in the Council study area (1,546 km2), Idaho, USA, 2020. Comparable density (CD) estimates are derived from Beecham and Rohlman 

1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. Results far outside of comparable density were removed from figures to make scales more 

viewable. 
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TTE single run (i.e., non-bootstrapped) estimates for 2021 varied considerably using 

random and targeted camera deployments. Both motion photos and motion and timelapse 

photo estimates were again similar (Table 1.5). St. Joe study area abundance estimates were 

1,118 (903 – 1,1384, 95% CI) bears with density estimates of 44 bears/100 km2 (33 – 51) and 

abundance estimates of 733 (561 – 959, 95% CI) bears and density estimates of 27 bears/100 

km2 (21 – 35, 95% CI) for random and targeted deployment, respectively (Fig. 1.6). 

Clearwater study area abundance estimates for random deployment were 2,321 (1,908 – 

2,824, 95% CI) bears and density estimates of 58 bears/100 km2 (47 – 70, 95% CI). Targeted 

deployment abundance estimates were 5,661 (4,475 – 7,160, 95% CI) with density estimates 

of 140 bears/100 km2 (111 – 178, 95% CI; Fig. 1.3). Abundance estimates were 4,227 (3,651 

– 4,895, 95% CI) bears and density estimates of 273 bears/100 km2 (236 – 317, 95% CI) in 

the Council study area (Fig. 1.7). Population estimates from TTE models in 2020 and 2021 

were higher than comparable density from the literature in 14 of 20 (70%) of comparisons 

(Table 1.4). 
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Figure 1.5: Black bear (Ursus americanus) population estimates in 2021 using cameras and a time-to-event and space-to-event model for two deployment styles 

and multiple data sources in the St. Joe study area (2,727 km2), Idaho, USA, 2021. Comparable density (CD) estimates are derived from Beecham and Rohlman 

1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. Results far outside of comparable density were removed from figures to make scales more 

viewable. 
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Figure 1.6: Black bear (Ursus americanus) population estimates in 2021 using cameras and a time-to-event and space-to-event model for two deployment 

styles and multiple data sources in the Clearwater study area (4,029 km2), Idaho, USA, 2021. Comparable density (CD) estimates are derived from Beecham 

and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. Results far outside of comparable density were removed from figures to make 

scales more viewable. 
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Figure 1.7: Black bear (Ursus americanus) population estimates in 2021 using cameras and a time-to-event and space-to-event model for two 

deployment styles and multiple data sources in the Council study area (1,546 km2), Idaho, USA, 2021. Comparable density (CD) estimates are derived 

from Beecham and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. Results far outside of comparable density were removed 

from figures to make scales more viewable. 
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Space to Event (STE) 

Model iterations from STE estimates were also similar between timelapse only photo 

estimates and timelapse and motion photo estimates in 2020. Including the few motion 

trigger photos that occur within the 10 second bounding interval for cameras with low 

timelapse photo slightly increased STE estimates. In 2020, the St. Joe study area had 

abundance estimates of 493 (295 – 825, 95% CI) bears and density estimates of 18 bears/100 

km2 (11 – 30, 95% CI) from random deployment and abundance estimates of 1,294 (764 – 

2,193, 95% CI) bears and density estimates of 47 bears/100 km2 (28 – 80, 95% CI) from 

targeted deployment (Fig. 1.2). The Clearwater study area had abundance estimates of 430 

(227 – 814, 95% CI) bears from random deployment and 305 bears (106 – 876, 95% CI) 

bears from targeted deployment. Density estimates were 11 bears/100 km2 (6 – 20, 95% CI) 

and 8 bears/100 km2 (3 – 22, 95% CI), respectively (Fig 1.3). Abundance estimates from 

targeted deployment in Council were 619 (405 – 945, 95% CI) bears with a density estimate 

of 40 bears/100 km2 (26 – 61, 95% CI; Fig. 1.4) 
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Table 1.5: Black bear (Ursus americanus) population estimates using cameras and a space-to-event model for three study areas, two deployment styles, and 

multiple data sources in Idaho, USA, 2020 – 2021. M = motion-trigger photos, T = timelapse photos. Comparable density ranges derived from Beecham and 

Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. 

Study Area Deployment Type 

Data Source 

(Photo Type) N 

95% 

CI 

Density 

(bears/100 

km2) 

% Within 

Comparable 

Range N 

95% 

CI 

Density 

(bears/100 

km2) 

% Within 

Comparable 

Range 

   2020 2021 

St. Joe Random M 421 
241 – 

733 
9 – 27 89% 841 

589 – 

1199 
22 – 44 77% 

St. Joe Random M & T 493 
295 – 

825 
11 – 30 100% 952 

681 – 

1330 
25 – 49 58% 

St. Joe Targeted M 877 
465 – 

1,656 
17 – 61 50% 220 

116 – 

415 
4 – 15 55% 

St. Joe Targeted M & T 1,294 
764 – 

2,193 
28 – 80 21% 219 

116 – 

415 
4 – 15 55% 

Clearwater Random M 287 
132 – 

620 
3 – 15 33% 523 

300 - 

910 
7 – 23 75% 

Clearwater Random M & T 430 
144 – 

227 
6 – 20 64% 651 

395 – 

1,071 
10 – 27 94% 

Clearwater Targeted M 206 
59 – 

716 
1 – 18 41% 99 

39 – 

248 
1 – 6 

0% 
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Clearwater Targeted M & T 305 
106 – 

876 
3 – 22 58% 147 

68 – 

317 
2 – 8 0% 

Council Targeted M 529 
335 – 

836 
22 – 54 100% 204 

108 – 

384 
7 – 25 78% 

Council Targeted M & T 619 
405 – 

945 
22 – 61 91% 380 

238 – 

608 
15 - 39 100% 
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Similar to TTE, STE single run estimates for 2021 varied considerably using both 

random and targeted camera deployment types. Models ran using either timelapse only or 

timelapse and motion photos remained similar as in 2020. In the St. Joe study area for 2021, 

abundance and density estimates for random deployment were 952 (681 – 1,330, 95% CI) 

bears and 35 bears/100 km2 (25 – 49, 95% CI), respectively. Targeted deployment abundance 

estimates were 219 (116 – 415, 95% CI) bears and density estimates were 8 bears/100 km2 (4 

– 15, 95% CI; Fig. 1.5). The Clearwater study area abundance estimates were 651 bears (395 

– 1,071, 95% CI) and density estimates were 16 bears/100 km2 (10 – 27, 95% CI) from 

random deployment. Clearwater study area targeted deployment abundance estimates were 

147 (68 – 317, 95% CI) bears with a density estimate of 4 bears/100 km2 (2 – 8, 95% CI; Fig. 

1.6). Abundance estimates in the Council study area were 380 (238 – 608, 95% CI) bears 

with a density of 25 bears/100 km2 (15 – 39, 95% CI; Figure 1.7). Estimates from the STE 

models had 95% CI’s with at least 80% overlap with the range of comparable density from 

the literature in just 6 of 20 (30`%) comparisons (Table 1.5). 

 

Time to Event Bootstrapping 

Bootstrapping the TTE model across all camera deployment styles generally resulted 

in decreased estimates when single run estimates were high, although estimates from targeted 

camera deployments remained higher (approx. 120 – 350%) than density from comparable 

studies. Like the single run estimates of the TTE model, estimates did not vary considerably 

between analysis with only motion trigger and motion and timelapse photos. After 

bootstrapping over 1,000 iterations, the St. Joe Study area had a 3.5% lower bootstrapped 

abundance estimate in 2020 of 803 (SD = 320) bears and a mean density estimate of 29 

bears/100 km2 from random deployment and a 66% lower bootstrapped abundance estimate 

of 2,301 (SD = 1,537) bears and a mean density estimate of 84 bears/100 km2 from targeted 

deployment. The Clearwater study area a 6% higher bootstrapped abundance estimates of 

781 (SD = 132) bears from random deployment and an 8% higher targeted deployment 

estimate of 1,935 (SD = 983) bears with mean densities of 19 bears/100 km2 and 48 

bears/100 km2, respectively. Council study area targeted deployment estimates increased by 
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128% with bootstrapping to an abundance estimate of 2,076 (SD = 1292) bears and a mean 

density estimate of 134 bears/100 km2 (Table 1.6; Appendix A).  
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Table 1.6: Black bear (Ursus americanus) population estimates using cameras and a time-to-event model bootstrapped 1,000 times by sampling from 

cameras with replacement. Density estimates represent combined data sources of motion-trigger photos and timelapse photos. Comparable density estimate 

ranges derived from Beecham and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. 

 

Study Area Deployment Type N SD 

Density 

(bears/100 

km2) 

% Within 

Comparable 

Range N SD 

Density 

(bears/100 

km2) 

% Within 

Comparable 

Range 

  2020 2021 

St. Joe Random 803 320 29 – 30 100% 1,204 188 44 – 45 0% 

St. Joe Targeted 2,301 1,537 81 – 88 0% 910 796 32 – 35 100% 

Clearwater Random 781 132 19 – 20 100% 1,884 285 46 – 47 0% 

Clearwater Targeted 1,935 983 47 – 50 0% 1,852 1,043 44 – 48 0% 

Council Targeted 2,076 1,292 129 – 139 0% 3,162 1,793 197 – 212 0% 
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Bootstrapping the TTE in 2021 followed the same general trend as 2020. The St. Joe 

TTE abundance estimate in 2020 with random deployment was 8% higher after 

bootstrapping and was 1,204 (SD = 188) bears and a mean density estimate of 44 bears/100 

km2. Targeted deployment estimates were 24% higher post bootstrapping and were 910 (SD 

= 796) bears and 33 bears/100 km2 for abundance and density, respectively. Clearwater study 

area abundance estimates from random deployment were approximately 20% lower at 1,884 

(SD = 285) bears with a mean density of 47 bears/100km2 and targeted deployment 

abundance estimates were 67% lower at 1,852 (SD = 1,043) bears and mean density 

estimates of 46 bears/100 km2. Council had a 25% lower abundance estimate after 

bootstrapping of 3,162 (SD = 1,793) bears and mean density estimate of 205 bears/100 km2 

(Table 6). Bootstrapped estimates of the TTE model produced 3 out of 10 (30%) density 

estimates that fell within the comparable density estimates from the literature (Table 6).  

 

Space to Event Bootstrapping  

STE model population estimates generally decreased after bootstrapping to less than 

estimates of a single iteration of the STE model and lower than comparable studies. The STE 

bootstrapping abundance estimates again followed the pattern of timelapse or motion and 

timelapse photos not making a considerable difference in the estimate. The St. Joe study area 

estimates in 2020 decreased 56% to an abundance estimate of 218 (SD = 53) bears and a 

mean density estimate of 8 bears/100 km2 from random deployment. Targeted deployment 

estimates decreased 41% to an abundance estimate of 768 (SD = 176) bears and mean 

density estimates of 29 bears/100 km2. The Clearwater study area abundance estimates were 

10% lower with 388 (SD = 136) bears and mean density estimates of 10 bears/100 km2 and 

40% lower with 183 (SD = 79) bears and a density estimate of 5 bears/100 km2 from random 

and targeted deployments, respectively. The Council study area abundance estimates also 

decreased 43% to 351 (SD = 78) bears and a mean density estimate of 23 bears/100 km2 

(Table 1.7; Appendix A). 
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Table 1.7: Black bear (Ursus americanus) population estimates using cameras and a space-to-event model bootstrapped 1,000 times by sampling from cameras 

with replacement. Density estimates represent combined data sources of motion-trigger photos and timelapse photos. Comparable density estimate ranges derived 

from Beecham and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019. 

Study Area Deployment Type N SD 

Density 

(bears/100 

km2) 

Within 

Comparable 

Range N SD 

Density 

(bears/100 

km2) 

Comparable 

Range 

  2020 2021 

St. Joe Random 218 53 8 0% 536 116 19 – 20 100% 

St. Joe Targeted 768 176 28 – 29 100% 131 51 5 0% 

Clearwater Random 388 136 9 – 10 0% 367 79 9 0% 

Clearwater Targeted 183 79 4 – 5 0% 98 43 2 0% 

Council Targeted 351 78 22 – 23 100% 224 68 14 – 15 100% 
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In 2021, STE bootstrapping abundance estimates for the St. Joe study area were 44% 

lower with 536 (SD = 116) bears and density estimates of 8 bears/100km2 and 40% lower 

with 131 (SD = 51) bears and 5 bears/100 km2 for random and targeted deployments, 

respectively. Clearwater study area abundance and density estimates decreased 44% and 

were 367 (SD = 79) bears and 9 bears/100 km2 for random deployment and decreased 33% 

and were 98 (SD = 43) bears and 2 bears/100 km2 for targeted deployment. Council 

abundance estimates decreased 41% and were 224 (SD = 68) bears and density estimates of 8 

bears/100 km2 (Table 7). Bootstrapped estimates from the STE model fell within the range of 

comparable density estimates in only 4 out of 10 (40%) comparisons (Table 7). 

 

Discussion 

There was no single combination of model, photo type, and camera deployment that 

produced consistent density estimates across all years or study areas. Due to the sensitivity of 

the TTE and STE models, there are several possible reasons for these inconsistent results. 

The TTE model appears most sensitive to violations of random camera placement, as 

evidenced by targeted camera deployments density estimates not comparing well and being 

higher than black bear density ranges from the literature. Targeted cameras also had a higher 

number of motion photographs per camera, often aided by the influence of cameras with a 

higher proportion of motion trigger photos. The STE model produced density estimates that 

were most comparable with those in the literature. These STE estimates, however, were often 

lower than the comparable density estimate ranges demonstrating the STE is highly 

dependent upon obtaining sufficient timelapse photographs of bears.  

 There was no consistency in the number of photos taken each year and within each 

study area. Different years and camera deployments had considerable differences in both the 

number of timelapse and motion photos. From 2020 to 2021, the random camera deployment 

from the St. Joe study area had a 200% increase in the number of timelapse photographs and 

an almost 250% increase in the number of motion photographs. The number of photos in the 

Clearwater study area followed a similar trend with random deployment photo increases, but 

targeted deployment cameras showed little change in the number of timelapse or motion 

photos between years.  
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 Targeted deployments generally had a higher number of motion photographs per 

camera when compared to random deployments, likely due to the larger camera area 

surveyed without obstructions. This tendency of targeted cameras to have an increased 

number of motion trigger photos was echoed in several years by the random deployment 

cameras (ex. 2021 random deployments in the St. Joe and Clearwater study areas). 

Variability in detections per camera leads to certain cameras with a higher proportion of 

motion trigger photos, or ‘outlier’ cameras. When estimates were higher than comparable 

densities from the literature, there often tended to be several outlier cameras. 

More effort is required to define what constitutes as an ‘outlier’ camera, whether it 

simply be a high number of counts or specific animals that stayed in the camera viewshed for 

an extended period. For example, the St. Joe study area’s randomly deployed cameras in 

2021 had a total of 2,086 motion trigger photos. Out of the 135 cameras containing count 

data within the deployment period, 74 of those had 0 motion photos of black bears. The five 

cameras with the highest number of motion trigger photos had 15%, 13%, 9%, 7%, and 5% 

of the total motion triggered photos. The remaining 58 cameras with motion triggered photos 

all contained 0.05 – 4% of the photos. Removing these five top percentage cameras reduced 

the TTE density estimates to 31 bears/100 km2 (24 – 40, 95% CI) from 42 bears/100 km2 (33 

– 51, 95% CI), overlapping 94% with comparable densities from the literature (Beecham and 

Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019). In this example, the 

camera with the highest percentage of photos (15%) was due to 6 groupings of photos where 

a bear stayed in the camera for an extended period instead of simply passing by. Based on 

these findings, a criterion could be set to remove cameras containing a percentage of the 

motion triggered photos over a certain threshold. Another possibility would be to extend the 

length between sampling occasions to reduce chances of an individual remaining in the 

viewshed and increasing the adherence to assumptions of independent observations. 

 Across all years (except the St. Joe and Clearwater study areas in 2020, and St. Joe in 

2021), the TTE model had estimates that were higher than the comparable density range. An 

assumption for the TTE and STE models is random camera placement (Moeller et al. 2018). 

Violation of this assumption was echoed in our results that found targeted cameras tended to 

be as much as 1,300% over the highest comparable density estimates for each study area 



34 
 

 
 

(Beecham and Rohlman 1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019). In 

some cases, bootstrapping the TTE reduced the density estimates from targeted cameras and 

yielded comparable density estimates to both the literature and the TTE estimate from 

randomly deployed cameras. More frequently, the TTE model estimates remained high post-

bootstrapping, potentially due to outlier cameras still maintaining their strong effect on the 

overall estimate. 

 The single run estimates from the STE tended to overlap more than the TTE model 

with the comparable densities, regardless of camera deployment style. Since the STE only 

uses time trigger photos, there is no variation associated with individual camera motion 

trigger detections or a need for bear movement rates (Rowcliffe et al. 2011, Moeller et al. 

2018). The placement of cameras showed no bias in the number of timelapse photographs 

taken. In our analysis, it was common for randomly deployed cameras to have a greater 

frequency of timelapse photographs of bears than targeted cameras, potentially due to a 

greater density of cameras than targeted deployment. Both the St. Joe and Clearwater study 

areas had a higher frequency of timelapse photographs of bears per random deployed camera 

than targeted camera in 2021. Despite the increase in number of timelapse photographs, the 

STE model density estimates were not biased high. STE estimates instead were still regularly 

lower than those estimates from the TTE models. Bootstrapping the STE model drove 

estimates even lower to unrealistic levels compared to the literature (Beecham and Rohlman 

1994, Stetz et al. 2014, Loosen et al. 2019, Welfelt et al. 2019). These results were likely due 

to random sampling of cameras often losing the few cameras that did have timelapse 

photographs of bears. 

 These results demonstrate that the STE model is strongly dependent upon obtaining 

enough timelapse photos of black bears regardless of random or targeted camera deployment. 

In 2020, the Clearwater study area had few (n < 6) timelapse photos of black bears with both 

camera deployments and the STE model was not able to produce comparable estimates of 

density. In 2021, only the St. Joe study area had sufficient timelapse detections to produce 

comparable density estimates. While the estimates from the Council study area were within 

the range of comparable densities, estimates were considerably lower in 2021 than 2020. 

Given our lack of knowledge to any major changes in black bear abundance, there is little 
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evidence to support these drastic population drops. Including all data sources (timelapse and 

motion triggered photos) does increase the number of photographs available for analysis, 

however, with so few photos it does little to increase the overall density estimate. Widening 

the sample length can include more motion photographs in analysis, but introduces new 

biases and can inflate the density estimate (Loonam 2019). Sparse data coupled with the 

randomization of each run of the STE model (i.e., the order in which cameras are sampled), 

leads to varying estimates over each iteration. 

 Random deployment appears to be critical when using both the TTE and STE. 

However, obtaining enough timelapse photos is not guaranteed, even with a large-scale 

camera deployment. Increasing the density of cameras most likely would increase timelapse 

photos in either random or targeted deployment and increase the area in which density is 

calculated since the TTE and STE are simply calculating density for the camera areas 

surveyed. Future research could determine the minimum number of cameras required to 

produce accurate and precise estimates from timelapse photos. Additionally, motion photos 

from random deployed cameras can still be biased by ‘outlier’ cameras, the same issue that 

arises from targeted deployed cameras. Determining a criterion for outlier cameras (e.g., if 

animals are sleeping in front of cameras) would make the TTE and STE model function 

regardless of deployment style and could eliminate the need for a double camera deployment 

type (i.e., random and targeted) as used in our project. 

 

Management Implications 

 Our research found that black bear density estimates are most comparable to density 

estimates from the literature and adhere most strictly to the assumptions of the TTE and STE 

when deploying cameras randomly. When deploying cameras randomly, however, we 

recommend increasing the number of cameras deployed over our sample sizes to increase the 

probability of obtaining enough timelapse photos of bears and area surveyed. Additionally, 

the length of the occasion can be increased to include more motion trigger photos, however, 

we do not recommend including all motion-trigger photos because it can bias estimates high. 

Finally, quantifying outlier cameras and determining the reason for the high frequency of 

photos (i.e., many animals vs. one animal resting in front of camera) will allow managers to 
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potentially remove or keep certain cameras in their analyses. Addressing the sensitivities of 

the STE and TTE models will make them more precise and reliable. 

A bootstrapping process such as the one we used would also aid in the removal of 

undue bias from outlier cameras (e.g., cameras where images are not independent in time 

such as when an individual remains in the viewshed for multiple trigger events) and is 

generally recommended with the TTE model because of the high number of motion photos. 

We recommend removing cameras when an individual has rested for a period of time in the 

camera’s viewshed. However, despite removal of outlier cameras and individuals remaining 

in the camera viewshed, the bootstrapped iterations of the time to event model tended to 

remain high (Appendix A). Additionally, bootstrapping the space to event model consistently 

biased estimates low (Appendix A). The variability in the bootstrapping process, while 

useful, does not necessarily mean that bootstrapping estimates is always the best course of 

action.  
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Chapter 2: Predicting Black Bear Population Trends Using Yearly Huckleberry 

Productivity 

 

Introduction 

 One of the most critical variables of interest in wildlife population management is 

recruitment (Chandler et al. 2018). Obtaining yearly counts of young is feasible when a 

species is found in open landscapes but becomes increasingly difficult when animals are 

found in forested areas (Serrouya et al. 2017). Numerous methods and models have been 

developed to estimate recruitment and life-history of populations that would otherwise be 

difficult to study. Among these are the use of artificial breeding sites (Pilastro et al. 2003), 

capture-recapture techniques (Chandler et al. 2018), and more recently, camera surveys 

(Chitwood et al. 2017). Each of these techniques has its uses along with its own set of 

limitations. 

Artificial breeding sites often miss animals that recruit in natural areas resulting in 

partial monitoring of the population (Pilastro et al. 2003). Capture-recapture methods, while 

used extensively in wildlife management has similar restrictions in that it is often 

representative of only a small subpopulation (Chandler et al. 2018). The time, effort, and 

funding necessary for an intensive capture-recapture project is also prohibitive for many 

organizations to do for an extended period of time if at all (Mumma et al. 2015). The use of 

passive detectors such as motion triggered trail cameras has significantly decreased the cost 

(after initial investment) and personnel required for abundance estimates (Karanth 1995, 

Rowcliffe et al. 2008, Parsons et al. 2017) but the application of passive detectors to 

estimating recruitment is relatively new and fraught with its own issues. An actual measure 
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of recruitment can only be estimated when getting a percentage of females with young and 

only applicable when there are clear difference between males and females of the species 

such as white-tailed deer (Odocoileus virginianus; Chitwood et al. 2017).     

Food availability is often a limiting factor for both wildlife and fish species, affecting 

both survival rates and recruitment. Quantifying the relationship between food availability 

and recruitment could be a strong step toward estimating population trends when the amount 

of available food is quantifiable. The American black bear (Ursus americanus) is one such 

species in which fecundity, and subsequently recruitment, can be highly variable depending 

on yearly variations in habitat productivity and mast abundance (Beston and Mace 2012). In 

practically every region they are found, black bears rely on a fall mast to gain enough weight 

for overwintering survival and reproduction (Eiler et al. 1989). Black bear fecundity is highly 

subject to variation in habitat productivity as females must reach a certain weight capable of 

supporting cubs or implantation can be halted and fertilized eggs rejected (Beston 2011). The 

fecundity and survival of black bears differs between the eastern and western portions of 

their range in the United States (Beston 2011). Eastern black bears benefit from a longer 

growing season and more nutritious hard mast resulting in greater fecundity but lower adult 

survival; western black bears (particularly in the northwest) rely on soft mast and have a 

much shorter growing season, leading to lower fecundity but higher adult survival (Beston 

2011). 

In Idaho, black bears rely heavily on the late summer huckleberry crop in preparation 

for their winter denning. Availability of berries and other forage in the fall affects black bear 

weights before denning when low, but can also delay denning in years when food is abundant 

(Reynolds and Beecham 1980). Black bear fecundity also follows the general trend of other 
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western bears, having low fecundity but higher adult survival rates. Years of lower mast and 

berry crop abundance have been correlated with lower fall weights for bears that lead to 

decreased recruitment and survival of cubs (Rogers 1976, Eiler et al. 1989, Costello et al. 

2003). The heavy reliance of black bears on huckleberry crops can affect yearly population 

trends, particularly due to the immense variation that environmental effects can have on 

huckleberry crops. 

The reliance of black bears on huckleberries for both overwintering and survival and 

recruitment suggests that population trends for the following year could be estimated were 

huckleberry abundance quantified. Previous studies have predicted the presence and 

abundance of huckleberries to relate to black bear and grizzly bear (U. arctos) recruitment 

(Holden et al. 2012, Proctor et al. 2018), however, these studies were catered to specific 

regions and not generalizable to Idaho. Therefore, we aimed to create a simple huckleberry 

productivity model that could then be related to black bear abundance between years. We 

hypothesized that environmental variables such as precipitation and canopy cover would be 

significant predictors of huckleberry abundance. We also hypothesized that increased 

huckleberry productivity would result in increased black bear recruitment the following year. 

 

Methods 

Study Areas 

 The study areas for my project were selected by the Idaho Department of Fish and 

Game (IDFG) across three different regions (Panhandle, Clearwater, and Southwest) and 

consisted of a Game Management Unit as the study area in each region: GMUs 6, 10A, and 

32A, respectively (Fig. 1.1). The most northern of these units, GMU 6 (hereafter St. Joe 
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study area), is 2,726 km2. Around 40% of the unit is managed by the U.S. Forest Service 

(USFS) within the St. Joe National Forest and is a frequented location for summer recreation. 

The reaming land contains 40% privately owned land (largely by the logging company 

PotlatchDeltic), 10% state of Idaho, and 10% split between BLM and Bureau of Indian 

Affairs. The area is notably a more Pacific climate and lower elevation than areas in southern 

Idaho but consists of steep slopes created by streams. Areas that are unlogged consist of 

cedar (Cedrus spp.), hemlock (Tsuga spp.), and pine (Pinus spp.) below the treeline with 

mountain hemlock (Tsuga mertensiana), subalpine fir (Abies lasiocarpa), Engelmann spruce 

(Picea engelmannii), and whitebark pine (Pinus albicaulis) occurring around and near the 

treeline. 

 The largest of the three study areas, GMU 10A (Clearwater study area), is 4,028 km2. 

Approximately 50% of the unit consists of private land, 24% USFS managed land within the 

Nez Perce-Clearwater National Forest, and 24% State of Idaho Managed Land. The area 

north of the Dworshak Reservoir is of a similar climate and species makeup as that of the St. 

Joe study area. South of the Reservoir, the area within the Nez Perce-Clearwater National 

Forest is a transition stage to drier forests and typically lacks the hemlocks found in the 

northern half. Additionally, the area in the southwestern portion of the unit around Orofino, 

ID and along the Clearwater River are much warmer and drier with an overstory of Douglas-

fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) forest and open grassy 

areas that are typically livestock grazed and hay farmed. 

  GMU 32A (Council study area) is the southernmost unit of the project and the 

smallest study area t 1,545km2. The northwestern portion of the unit is bordered by Hwy. 95 

and stretches south to Banks, ID containing the East Fork Weiser River and the Middle Fork 
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Weiser River. GMU 32A is majority public land (70%) with the eastern two-thirds consisting 

of the Payette National Forest and a small section of Boise National Forest (58%). The 

remaining public land occurs on the western side and is a mixture of BLM (9%) and State of 

Idaho Land (3%) intermixed with private land. At higher elevations the area is dominated by 

alpine meadows, rocky soils and jagged peaks. The areas immediately surrounding these tend 

to be more mesic and have an overstory of subalpine fir, lodgepole pine (Pinus contorta), 

whitebark pine, mountain hemlock, and alpine larch (Larix lyallii). Huckleberry shrubs are 

most likely to be found in these more mesic areas than in the surrounding drier zones. When 

not in the immediate vicinity of these zones, ponderosa pine is dominant. West of the 

mountain ranges, the GMU is dominated by sagebrush (Artemisia spp.) and grasses and 

primarily used for livestock grazing. During mid- to late-summer months, the entire unit is 

used for cattle grazing as part of grazing permits and allotments.  

 

Field Methods & Analysis 

Huckleberry Sampling 

 We used a model predicting various shrub species in Idaho developed by IDFG 

(unpublished data) in 2020 and 2021. We randomly selected potential huckleberry shrub 

locations to visit from over 1 million predicted sites. Our transect survey protocols were 

loosely based on those developed by Holden et al. (2012). We identified a patch suitable for 

survey when there were continuous huckleberry shrubs in 25 meters in any direction. To 

begin our survey, a random azimuth was selected through the densest patch of Vaccinium 

spp. available and ran a measuring tape through the patch from 25 – 30 meters. Using a 0.04 

m2 quadrat and a starting location of 0 m, we counted all ripe and unripe berries (not 
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including failed berries) within the quadrat. We advanced the measuring tape at intervals of 

0.5 meters with quadrats containing less than 50% huckleberry shrub recorded as NA and the 

quadrat moved forward. We repeated the survey process until 50 quadrats containing 

huckleberry shrubs had been surveyed. Additionally, we recorded the overstory cover, 

elevation, and habitat type for each transect plot and a qualitative assessment of overall shrub 

health in each quadrat. 

 

Calculating Bear Abundances 

 We initially ran a time to event and space to event model on black bear cub photos to 

predict abundance, but results varied widely and were not realistic for the population 

estimates of the study areas. We also attempted to use a black bear cub index of cubs/trap 

night but lacked sufficient data to do so. Alternatively, we opted to create an index of bear 

abundances that was a function of bears/trap night. To obtain an index of bear abundances for 

comparisons between years, we used black bear photos (adult and cubs) obtained from 

targeted deployment cameras (i.e., along roads and trails) due to that deployment style begin 

used in all three study areas throughout the two years. Bears/trap night was established using 

the analyzed range of camera abundances for each year and study area (e.g., June 1 – Aug. 31 

for 2020 in the St. Joe and Clearwater study area). We used a Pearson correlation to test 

whether estimated huckleberry abundance in year t (2020) was correlated with bears/trap 

night in year t+1 (2021).  
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Model Analysis 

 We initially included nine variables in our huckleberry predictive model: mean 

temperature from December (of the previous year) to March, mean temperature from April to 

July, total precipitation from December (of the previous year) to March, total precipitation 

from April to July (PRISM Climate Group 2022), canopy cover, aspect (0 – 360°), slope, 

elevation, and soil type (14 soil types; gSSURGO 2020). We also included an interaction 

term between mean temperature and canopy cover to account for shading during extreme 

temperatures. A histogram of the data showed that our transect totals were highly zero-

inflated, leading us to pursue a zero-inflated Poisson and a zero-inflated negative binomial 

regression. We scaled all variables to a z-scale due to measurement types differing between 

each covariate. To determine whether to use a zero-inflated Poisson or a zero-inflated 

negative binomial regression, we compared models containing all covariates and compared 

Akaike information criterion estimator corrected for small sample size (AICc) scores 

between the two models (Zuur et al. 2009).  

  After selecting the type of model to use, we dropped terms sequentially based on the 

covariate with the highest p-value after each model iteration. We also used a likelihood ratio 

test to compare each model with the dropped term to the model that included all variables. To 

validate the models, we plotted Pearson residuals against the fitted values, each explanatory 

variable, and the original data versus the fitted data in the count model to ensure they formed 

a straight line. Additionally, we took the predicted data and plotted the probability of zeroes 

(including false zeroes) for a range of values of each predictive covariate.  
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Results 

Huckleberry Surveys 

Using the IDFG huckleberry predictive model we surveyed 120 sites in 2020 and 200 

sites in 2021 (Table 2.1). The total number of berries counted in 2020 was 11,472 and 17,879 

in 2021. 

Table 2.1: Total number of huckleberry (Vaccinium spp.) transects surveyed in Idaho, USA, 2020 – 2021. 

Transect totals from surveys were used to determine which environmental variables were effective in predicting 

total huckleberry productivity.   

Study Areas 

2020 2021 

No. of 

Transects 

Total 

Huckleberries 

𝑥̅ 

Berries/Transect 

No. of 

Transects 

Total 

Huckleberries 

𝑥̅ 

Berries/ 

Transect 

St. Joe 50 6,864 137.28 71 9,122 128.48 

Clearwater 46 3,088 67.13 74 3,544 47.89 

Council 20 1,520 76 46 5,213 113.33 

Total 116 11,472 98.90 191 17,879 93.61 

 

Model Analysis 

 Mean temperature between December and March and mean temperature between 

April and July were highly correlated in both 2020 and 2021 (0.73, 0.64). Therefore, we 

combined these two covariates into a single covariate of mean temperature between 

December and July. Total precipitation in December through March and total precipitation in 

April through July were highly correlated in 2020 (0.83), so we combined these values into a 

single covariate of total precipitation in December through July. Total precipitation between 

these two ranges were not correlated in 2021. 
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Our initial comparisons of a zero-inflated Poisson and zero-inflated negative binomial 

found that positive transect totals were not Poisson distributed, with the zero-inflated Poisson 

producing an Akaike information criterion estimator corrected for small sample size (AICc) 

of 8,944 and an AICc of 1,297 when using the negative binomial in 2020. The AICc for the 

zero-inflated Poisson in 2021 was 20,603 and the AICc for the zero-inflated negative 

binomial was 2,031. Therefore, we used a zero-inflated negative binomial model for both 

years. 

We dropped terms sequentially based on the highest p-value after each model 

iteration, regardless of count or zero model. Significant environmental covariates in 2020 for 

the count model were mean temperature between December and July and canopy cover along 

with an interaction term between the two. For the zero model only mean temperature 

between December and July was significant (Table 1.2). This model was most supported of 

all tested models and when compared to an intercept only null model (ΔAICc = 21). In 2021, 

the significant covariates for the count model included mean temperature between December 

and July, canopy cover, and the addition of aspect and elevation. The zero model had 

significant covariates of canopy cover and elevation (Table 2.3). The model was most 

supported out of all models including the intercept only null model (ΔAICc = 64). 

The total number of bears per trap night for 2020 in the St. Joe study area was 0.188 

bears/trap night, 0.149 bears/trap night in the Clearwater study area, and 0.422 bears/trap 

night in the Council study area. In 2021, the number of bears/trap night was 0.22 bears/trap 

night in the St. Joe study area, 0.207 bears/trap night in the Clearwater study area, and 0.489 

bears/trap night in the Council study area (Table 2.4). We found that the mean transect totals 

for each unit in 2020 were not correlated with bears/trap night in 2021 (Pearson’s r = -0.165). 
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Table 2.2: Zero-inflated negative binomial model (ZINB) analysis of environmental and climatic variables that affect huckleberry productivity in three study 

areas of Idaho, USA, 2020. The variables included were mean temperature between December and July, total precipitation between December and July, canopy 

cover, slope, aspect, elevation, soil type, and an interaction term between mean temperature between December and July and canopy cover. Covariates to the 

right of the bar are the covariates used in the zero portion of the ZINB model. 

Model k LogLik AICc ΔAICc 

Transect Totals ~ MeanTemp + Canopy Cover + MeanTemp*CanopyCover | 

MeanTemp 

4 -672.2 1,269 0 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover | 

Mean Temp + Canopy Cover 

5 -627.2 1,272 3 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover | 

Mean Temp + Canopy Cover + Mean Temp*Canopy Cover 

6 -626.5 1,272 3 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect | Mean Temp + Canopy Cover + Mean Temp*Canopy Cover 

7 -626.0 1,274 5 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope | Mean Temp + Canopy Cover + Mean Temp*Canopy Cover 

8 -625.4 1,275 6 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation | Mean Temp + Canopy Cover + Mean 

Temp*Canopy Cover 

9 -625.0 1,278 9 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation | Mean Temp + Canopy Cover + Mean 

Temp*Canopy Cover + Precip 

10 -624.7 1,279 11 
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Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation | Mean Temp + Canopy Cover + Mean 

Temp*Canopy Cover + Precip + Aspect 

11 -624.4 1,281 13 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation | Mean Temp + Canopy Cover + Mean 

Temp*Canopy Cover + Precip + Aspect + Elevation 

12 -624.2 1,283 15 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation | Mean Temp + Canopy Cover + Mean 

Temp*Canopy Cover + Precip + Aspect + Elevation + Slope 

13 -623.7 1,285 17 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation + Soil Type | Mean Temp + Canopy Cover + Mean 

Temp*Canopy Cover + Precip + Aspect + Elevation + Slope 

14 -623.6 1,287 19 

(Null Model) Transect Totals ~ 1 | 1 1 -641.5 1,289 21 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation + Soil Type + Precip | Mean Temp + Canopy Cover 

+ Mean Temp*Canopy Cover + Precip + Aspect + Elevation + Slope 

15 -623.4 1,290 22 

Transect Totals ~ Mean Temp + Canopy Cover + Mean Temp*Canopy Cover + 

Aspect + Slope + Elevation + Soil Type + Precip | Mean Temp + Canopy Cover 

16 -623.3 1,293 24 
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+ Mean Temp*Canopy Cover + Precip + Aspect + Elevation + Slope + Soil 

Type 

 

Table 2.3: Zero-inflated negative binomial model (ZINB) analysis of environmental and climatic variables that affect huckleberry productivity in three study 

areas of Idaho, USA, 2021. The variables included were mean temperature between December and July, total precipitation between December and March and 

April and July, canopy cover, slope, aspect, elevation, soil type, and an interaction term between mean temperature between December and July and canopy 

cover. Covariates to the right of the bar are covariates used in the zero portion of the ZINB model. 

Model k LogLik AICc ΔAICc 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation | Canopy 

Cover + Elevation + Aspect 

6 -998.4 2,018 0 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation | Canopy 

Cover + Elevation + Aspect + Precip (Apr. – Jul.) + Precip (Dec. – Mar.) 

8 -997.3 2,020 2 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation | Canopy 

Cover + Elevation + Aspect + Precip (Apr. – Jul.) 

7 -998.8 2,021 3 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation + Slope | 

Canopy Cover + Elevation + Aspect + Precip (Apr. – Jul.) + Precip (Dec. – 

Mar.) 

9 -996.2 2,021 3 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation + Slope + 

Soil | Canopy Cover + Elevation + Aspect + Precip (Apr. – Jul.) + Precip (Dec. 

– Mar.) 

10 -996.2 2,023 5 
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Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation + Slope + 

Soil + Precip (Dec. – Mar.) | Canopy Cover + Elevation + Aspect + Precip 

(Apr. – Jul.) + Precip (Dec. – Mar.) 

11 -996.1 2,025 7 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation + Slope + 

Soil + Precip (Dec. – Mar.) | Canopy Cover + Elevation + Aspect + Precip 

(Apr. – Jul.) + Precip (Dec. – Mar.) + Slope 

12 -996.1 2,027 9 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation + Slope + 

Soil + Precip (Dec. – Mar.) | Canopy Cover + Elevation + Aspect + Precip 

(Apr. – Jul.) + Precip (Dec. – Mar.) + Slope + Mean Temp 

13 -996 2,030 12 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation + Slope + 

Soil + Precip (Dec. – Mar.) + Precip (Apr. – Jul.) | Canopy Cover + Elevation + 

Aspect + Precip (Apr. – Jul.) + Precip (Dec. – Mar.) + Slope + Mean Temp 

14 -996 2,032 14 

Transect Totals ~ Mean Temp + Canopy Cover + Aspect + Elevation + Slope + 

Soil + Precip (Dec. – Mar.) + Precip (Apr. – Jul.) | Canopy Cover + Elevation + 

Aspect + Precip (Apr. – Jul.) + Precip (Dec. – Mar.) + Slope + Mean Temp + 

Soil 

15 -996 2,034 16 

(Null model) Transect Totals ~ 1 | 1 1 -1038 2,082 64 
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Table 2.4: Total number of trap nights and motion triggered photos of bears from a targeted camera deployment in three study areas in Idaho, USA, 2020 – 2021.   

 2020 2021 

Study area Trap Nights 

Motion Trigger Bear 

Photos 

Bears/Trap Night Trap Nights 

Motion Trigger Bear 

Photos 

Bears/Trap Night 

St. Joe 5,050 949 0.188 4,303 949 0.221 

Clearwater 5,441 808 0.149 4,508 933 0.207 

Council 3,738 1,579 0.422 4,802 2,347 0.489 
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Discussion 

 The most supported model for predicting huckleberry abundance was not identical 

between years. The interaction term between mean temperature and canopy cover was not 

included in the 2021 model, but aspect and elevation were. The top model in each year, 

however, had much more support than both an intercept only null model and a model 

containing all environmental covariates suggesting good predictive ability. We found support 

that increasing canopy cover would negatively affect huckleberry productivity. Total 

precipitation was not significant in either year. In 2020, huckleberry productivity was 

negatively correlated with mean temperature which has been found in other studies of 

huckleberry productivity (Holden et al. 2012). Conversely the mean temperature (December 

to July) in 2021 was positively correlated with huckleberry productivity.  

Mean temperatures were extremely different between 2020 and 2021. Mean 

temperatures (including day and night temperatures) were 25% higher in 2021 than 2020. 

This drastic increase in mean temperature follows with future climatic predictors of 

huckleberry ranges that expect huckleberry shrubs at higher elevations to be more productive 

as they escape withering from extreme heat (Prevéy et al. 2020). Additionally, this could be 

the potential cause for why elevation and aspect were included as significant covariates in the 

2021 model as higher elevation transects and those on north facing slopes were more likely 

to escape high heat events and produce more berries. The coefficient values from our models 

in both years seem to support this hypothesis as mean temperature had a strong negative 

effect on huckleberry productivity in 2020 (β = -0.26) and elevation had a strong positive 

effect on huckleberry productivity in 2021 (β = 0.788). Aspect also had a positive correlation 

with huckleberry productivity in 2021 (e.g., north facing slopes; β = 0.194; Table 5). 
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Table 2.5: Coefficients (β) and p-values from top models (i.e., zero-inflated negative binomial) using 

environmental and climatic variables to predict huckleberry productivity in three study areas of Idaho, USA, 

2020 and 2021.  

Covariate β SE P 

2020 

Intercept 4.54 0.095  < 0.0001 

Mean Temperature (Dec. – 

Jul.) 

-0.338 0.100 < 0.0007 

Canopy Cover -0.317 0.115 0.006 

Mean Temperature (Dec. – 

Jul.) * Canopy Cover 

-0.260 0.113 0.22 

2021 

Intercept 4.33 0.082 < 0.0001 

Mean Temperature (Dec. – 

Jul.) 

0.357 0.104 0.0006 

Canopy Cover -0.218 0.092 0.017 

Aspect 0.194 0.080 0.016 

Elevation 0.788 0.107 < 0.0001 

 

 While we attempted to test the predictive capabilities of our huckleberry models for 

black bear abundances, the mean transect totals in 2020 were not strongly correlated (r = -

0.165) with our bear abundance index in 2021. Possible reasons for this are the variability in 

detection and motion trigger photographs (Rowcliffe et al. 2008). Future research should 

attempt to quantify a baseline for numbers of berries in a ‘good’ huckleberry year. Our means 

for total number of huckleberries were similar each year with averages of 98.90 (SD = 105.5) 

and 93.61 (SD = 137.8) in 2020 and 2021, respectively (Table 1). Additional years of 

huckleberry transect surveys would establish varying years of huckleberry abundance. Due to 
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similar means of transects in both years we were not able to adequately predict black bear 

abundances based on changes in huckleberry productivity. We note that our correlation test 

used just three data points. Although we did not find a strong correlation between 

huckleberry productivity and an index of bear abundance, it does not mean one does not 

exist. More years of sampling are necessary to adequately test for a relationship between 

vegetation productivity and bear abundance. 

 Other huckleberry models have been constructed to predict the environmental 

variables critical to huckleberry patch occurrence (Holden et al. 2012, Proctor et al. 2018, 

Prevéy et al. 2020). These occurrence models found similar covariates affecting patch 

occurrence such as canopy cover, which was found to be a significant covariate in our 

productivity model. However, the occurrence models from the literature did not attempt to 

predict huckleberry crop productivity trends and attempts to expand the model into the 

United States from British Columbia, Canada, were unsuccessful (Proctor et al. 2018, 

personal correspondence). Our goal was to create a portable and generalizable model that 

could predict huckleberry productivity based on a few key predictive variables. Although our 

top models were not identical in 2020 and 2021, there was overlap between the models 

suggesting some covariates (i.e., canopy cover, mean temperature) would be strongly 

predictive across years. There was little variation in bear detections or fruit abundances 

between years in our study limiting our ability to test for a relationship between vegetation 

and bear abundance.  

 We would recommend a more extensive survey containing more transects that are 

surveyed at different times of the growing season as fruiting is variable dependent upon 

elevation and aspect (Anzinger 2002). Future models should also obtain sufficient transect 
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plots to have a separate set of data to test model fit. The environmental variables we found to 

be significant covariates in our models were found in other studies on huckleberry 

productivity and should remain influential in future years of research (Anzinger 2002, 

Holden et al. 2012, Prevéy et al. 2020). 
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 Figure A.1: The effect of bootstrapping on the space to event estimates in the St. Joe study area (2,727 km2), Idaho, USA, 2020. 

Appendix A 
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Figure A.2: The effect of bootstrapping on the time to event estimates in the St. Joe study area (2,727 km2), Idaho, USA, 2020. 
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Figure A.3: The effect of bootstrapping on the space to event estimates in the Clearwater Study Area (4,029 km2), Idaho, USA, 2020. 
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Figure A.4: The effect of bootstrapping on the time to event estimates in the Clearwater Study Area (4,029 km2), Idaho, USA, 2020. 
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Figure A.5: The effect of bootstrapping on the space to event estimates in the Council study area (1,546 km2), Idaho, USA, 2020. 
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Figure A.6: The effect of bootstrapping on the time to event estimates in the Council study area (1,546 km2), Idaho, USA, 2020. 
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Figure A.7: The effect of bootstrapping on the space to event estimates in the St. Joe study area (2,727 km2), Idaho, USA, 2021. 
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Figure A.8: The effect of bootstrapping on the time to event estimates in the St. Joe study area (2,727 km2), Idaho, USA, 2021. 
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Figure A.9: The effect of bootstrapping on the space to event estimates in the Clearwater Study Area (4,029 km2), Idaho, USA, 2021. 
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Figure A.10: The effect of bootstrapping on the time to event estimates in the Clearwater Study Area (4,029 km2), Idaho, USA, 2021. 
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Figure A.11: The effect of bootstrapping on the space to event estimates in the Council study area (1,546 km2), Idaho, USA, 2021. 
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Figure A.12: The effect of bootstrapping on the time to event estimates in the Council study area (1,546 km2), Idaho, USA, 2021. 

 

 


