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Abstract

Matched case-control designs are used in ecology and wildlife management to esti-

mate resource selection functions, which provide insight into habitat use by animals.

Recent suggestions to incorporate random effects into these models have little statis-

tical justification because they incorrectly assume unconstrained sampling of study

sites, ignoring matching in the study design. Matched case-control designs have been

used extensively in epidemiology, where conditional likelihood functions are used

to account for constrained sampling. Here, we illustrate the discrepancies between

the constrained and unconstrained models, and evaluate the bias of parameter esti-

mates using simulation. We evaluated the conditional logistic model, which produces

consistent estimates, and compared results with estimates from prospective logistic

models, stratified case-control models, and marginal logistic models. Conditional

logistic models had the lowest bias across a wide range of sampling schemes and

parameter values. In contrast, marginal logistic models tended to have greater bias

and poor confidence interval coverage rates.
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chapter 1

Introduction

overview

Understanding how animals select habitat and resources is of fundamental impor-

tance in ecological studies and natural resource management. Resource selection

plays a critical role in population regulation, coexistence, and evolution (Morris, 2003).

On a practical level, resource and habitat selection are vital considerations when de-

veloping management strategies for threatened and endangered species (Chetkiewicz

and Boyce, 2009; Johnson et al., 2004). The importance of estimating and predicting

resource selection has given rise to resource selection functions (RSF), a class of

models that produce estimates that are proportional to the probability of resource

use (Boyce et al., 2002; McLoughlin et al., 2010). Combined with information about

available habitat characteristics, RSF models can provide predictions of habitat use

across a wide variety of scales (Boyce, 2006; Johnson, 1980).

Many of the approaches for statistical modeling of RSFs have origins in epidemi-

ology (Keating and Cherry, 2004). Instead of modeling habitat use or nonuse, epi-

demiologists model the probability of disease incidence and the effects of various

exposure variables (Breslow and Day, 1980; Collett, 2003). A thorough understanding

of the history and development of these models provides context and guidance for

appropriate methods of data analysis. In particular, unbiased inference depends on

using the correct likelihood function, based on the probability model specified for the

data, including the sampling design. However, recent suggestions to use mixed-effects

logistic regression to estimate RSF models fail to account for the sampling design

(Gillies et al., 2006). Ignoring the sampling design results in an incorrect likelihood

function that produces biased parameter estimates.

In the following introduction, we discuss the estimation of RSFs and present per-

tinent epidemiological literature. We describe models developed for prospective and

retrospective sampling designs, including the conditional logistic model for matched
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case-control data. In Chapter 2, we present the derivation of the likelihood for data

collected using a matched case-control design (i.e., the conditional logistic model),

and highlight discrepancies between it and the suggested mixed-effects likelihood

function. In Chapter 3, we use simulations to evaluate the bias of estimates from

the mixed-effects model relative to the conditional model. Finally, in Chapter 4, we

discuss the implications of estimating parameters of retrospective RSF models using

models for prospective designs.

prospective and cross -sectional designs

When habitat use is common and animals are easily observed, researchers can make

inference about the probability of resource use from a random sample of locations

across a landscape (Keating and Cherry, 2004). This design is analogous to a prospec-

tive or cross-sectional study in epidemiology, where a random sample is taken from

the population of interest and patients are followed or observed to see if the disease

develops (Collett, 2003). In the random sampling RSF design, a sample (e.g., simple

random sample or stratified by covariates) of sites is observed. A binary response

variable y is defined such that yi = 1 if the site is used and yi = 0 if it is unused,

where i indicates the observation from the i-th site. In addition, p covariates are

measured at each site x′i = (xi1, . . . , xip). Then the probability of use conditional on

the observed site characteristics is modeled: P(yi|xi, α, β), where α is the intercept

parameter and β′ = (β1, . . . , βp) is the vector of covariate coefficients. A logistic

model for the probability of use can be assumed

P(yi = 1|xi, α, β) =
exp(α + β′xi)

1 + exp(α + β′xi)
. (1.1)

The joint likelihood is the product over all n sites

L(α, β) =
n

∏
i=1

exp(α + β′xi)

1 + exp(α + β′xi)
. (1.2)
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Parameters of the logistic model can be estimated using maximum likelihood (Hosmer

et al., 2013). Since all the parameters are identifiable, the probability of site use given

the habitat characteristics (i.e., P[yi = 1|xi, α, β]) can be estimated or predicted given

habitat covaraite values at a new site(Keating and Cherry, 2004).

retrospective designs

When habitat use is rare, a random sample of sites from the landscape may not yield

a sufficient number of used sites for analysis (Keating and Cherry, 2004). This is

analogous to the study of rare diseases in epidemiology, where a random sample from

the population may not capture any individuals who develop the disease (Breslow,

1996; Mann, 2003). Therefore, sampling is conducted retrospectively, once disease

status is already known. In these situations, a retrospective case-control design may

be used (Breslow, 1996; Thomas and Taylor, 2006). In contrast to the random sampling

approach, sampling in case-control studies is stratified by the outcome variable y, and

a random sample is taken from each stratum (i.e., cases y = 1 and controls y = 0). As

a consequence, the number of used sites (cases) and unused sites (controls) are fixed

by design. Covariates (x) are also measured. The retrospective sampling approach

effectively reverses the prospective model; y is now the independent variable instead

of x. Since sampling is conducted conditional on the outcome variable, the form of

the likelihood function is based on P(xi|yi = 1), which reverses the conditioning

from Equation 1.1. An assumption of this model is that sampling is conducted

independently of the covariates. That is, if t is an indicator variable for inclusion

of the observation in the sample, then given y, x and t are independent.

The retrospective design requires two main changes in inference from the prospec-

tive design. First, the probability of use in the sample no longer reflects the probability

of use in the population because it depends on the sampling rates (Keating and

Cherry, 2004). To illustrate this, we let t be an indicator variable for site inclusion

in the sample, such that t = 1 for observed sites and t = 0 for unobserved sties. Then

τ1 = P(t = 1|y = 1) is the probability of selection for a case, and τ0 = P(t = 1|y = 0)

is the probability of selection for a control. Assuming a logistic model, the probability
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that a site in the sample will be a used site (i.e., a case) is

P(yi = 1|xi, α, β, t = 1) =
exp[ln(τ1/τ0) + α + β′xi]

1 + exp[ln(τ1/τ0) + α + β′xi]
. (1.3)

If τ1 and τ0 are unknown, then the probability of habitat use cannot be evaluated

because τ1, τ0, and α are not individually identifiable; only their sum [ln(τ1/τ0) + α]

can be estimated. However, the odds ratios can still be estimated because the intercept

cancels from the term.

The second consequence is that the case-control likelihood function is in terms

of P(x|y), rather than the desired P(y|x). Although y is treated as the independent

variable for sampling convenience, we ultimately wish to make inference about y

dependent on x. Using P(y|x) avoids making multivariate distributional assumptions

for x and also allows prediction of y from x. Anderson (1972) used the fact that

P(x|y) = P(y|x)P(x)/P(y) to factor the case-control likelihood function into a contri-

bution from the prospective logistic model (Equation 1.1) and a contribution from the

marginal probabilities of the covariates, which results in a likelihood function where

the parameters are constrained by the marginal probabilities of the outcome variable

(Breslow, 1996). Anderson (1972) used Lagrange multipliers to demonstrate that β̂ ob-

tained from the constrained maximum likelihood are algebraically equivalent to those

using the unconstrained maximization of Equation 1.3. Farewell (1979) and Prentice

and Pyke (1979) used slightly different approaches from Anderson, but also illus-

trated the mathematical equivalence of the unconstrained and constrained estimates.

Furthermore, Prentice and Pyke (1979) showed that the unconstrained maximization

also yielded consistent estimates of the covariance matrix for β̂. The derivations of

Anderson (1972), Farewell (1979), and Prentice and Pyke (1979) demonstrated that

although the number of cases and controls is fixed by design in retrospective sampling,

the likelihood function can be maximized without constraints to obtain equivalent

maximum likelihood estimates and standard errors.

Using the unconstrained likelihood function for estimation of case-control models

is convenient; however, the observations are dependent due to the sampling design.

The prospective logistic regression model produces appropriate parameter estimates
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and standard errors, but is not the true retrospective likelihood function for case-

control data. Farewell (1979) emphasized this point, stating that mathematical equiva-

lency does not imply the independence of the samples from the case-control study, as

given by Equation 1.3. As a result, we cannot assume that the prospective likelihood

function will provide unbiased parameter estimates and standard errors for more

complex study designs or modeling approaches, such as the matched case-control

design (Farewell, 1979; Prentice and Pyke, 1979).

matched case -control designs

Matched case-control studies are an extension of case-control studies, and arise due

stratification of cases and controls by another variable or variables (Hosmer et al.,

2013). The design within each stratum or level of the matching variable is a case-

control study, but the effects of the other covariates are assumed to be identical after

accounting for stratification. In epidemiological studies, patients may be matched

based on factors such as age, sex, or location, which affect disease incidence but

are not the main factors of interest in the study. Matching based on these nuisance

variables can reduce confounding with the variables of interest and can increase

statistical efficiency (Breslow, 1996; Rose and van der Laan, 2009). In RSF studies,

stratification may result from making multiple observations of used sites from an

individual animal (e.g., from telemetry), and pairing them with a random sample of

nearby unused sites (Johnson et al., 2004; Gillies et al., 2006). When multiple animals

are observed in this manner, observations from each animal comprise a stratum (i.e.,

matched set or cluster of observations). For example, mi sites may be observed for

the i-th animal in a matched case-control RSF study. Of these observations, ci sites

are used and mi − ci sites are unused by design. If there are i = 1, 2, . . . , n animals in

the study, then there are n clusters of observations. Although matching by individual

animal is the most common type of stratification in RSF studies (Thomas and Taylor,

2006), matching may also arise due to seasonal sampling or measurement by differ-

ent observers. In addition to providing logistical advantages, matched case-control

studies may also provide insight into the process of habitat selection at finer, more
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ecologically relevant scales than either case-control or random sampling RSF studies

(Boyce, 2006; McLoughlin et al., 2010; Northrup et al., 2013). Therefore, appropriate

inference and estimation are important.

Stratification in matched case-control designs can be accommodated by incorpo-

rating design variables (i.e., indicator variables; Hosmer et al. 2013) for strata, since

ignoring matching may result in biased parameter estimates (Breslow and Day, 1980;

Pike et al., 1980; Breslow and Cain, 1988). The model therefore allows the intercept to

vary for each matched set

P(yij = 1|xij, αi, β) =
exp(αi + β′xij)

1 + exp(αi + β′xij)
, (1.4)

where αi is the effect for the i-th cluster and j = 1, 2, . . . mi indexes the observations

within the i-th cluster. Model parameters are estimated consistently when when the

number of observations per cluster is large. However, estimators are not consistent

if the number of parameters increases with sample size (Neyman and Scott, 1948;

Prentice and Pyke, 1979). The model can be modified in two ways to reduce the

number of parameters to estimate.

The first approach is to treat the individual-specific effects (i.e., α1, . . . , alphan)

as nuisance parameters and condition on a sufficient statistic for those parameters

(i.e., the number of used locations in each cluster; Molenberghs and Verbeke 2006).

Conditioning on a sufficient statistic eliminates the nuisance parameters from the like-

lihood function (Gail et al., 1981; Scott and Wild, 1991), which reduces the number of

parameters to estimate, thereby improving the asymptotic behavior of the likelihood

function. Additionally, conditioning on the total number of used sites per cluster

accounts for the dependency among the observations due to the sampling design

(Craiu et al., 2011). Despite the benefits of using a conditional likelihood function,

a closed form may not exist for all model parameters. Therefore developing closed-

form conditional likelihood functions for other parameters (e.g., slope parameters) is

not possible outside of special cases (Diggle et al., 1998).

The second approach for handling individual-specific parameters is to use random

effects (Molenberghs and Verbeke, 2006). In the random-effects approach, the cluster-
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specific effects are considered random draws from a population of effects, for which a

distribution can be assumed. The parameters are then eliminated by marginalization

(Molenberghs and Verbeke, 2006). Recently, a random-effects approach has been

suggested to estimate the parameters of RSF models for matched case-control designs

(Gillies et al., 2006; Nielson et al., 2012), and has been used in a number of applications

(e.g., Hebblewhite and Merrill 2008; Chetkiewicz and Boyce 2009; Koper and Manseau

2009). As we illustrate in the next section, there is no theoretical justification to

use such a random-effects approach. Intuitively, the random-effects approach is

incorrect because it only accounts for one source of dependency present in the data.

Specifically, Gillies et al. (2006) state that "using logistic regression. . . assumes inde-

pendence among observations", and suggested that generalized linear mixed effects

models (GLMM) could account for dependency and pseudoreplication. However,

this is precisely the conclusion that Farewell (1979) warns against in his derivation

of the use of logistic regression for case-control studies. The proposal to use random

effects accounts for the nesting of observations within each animal, but neglects the

dependence among observations due to conditional sampling.

In the next section, we illustrate the conditional logistic model for matched case-

control data (Breslow and Day, 1980) and contrast it with the GLMM proposed by

Gillies et al. (2006). We then evaluate the effects of the misspecified model on param-

eter estimation using simulation. Finally, we identify sampling and design consider-

ations that are important for study design, and discuss the consequences for natural

resource managers.
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chapter 2

Models for Matched Case-Control Data

conditional logistic models

A number of derivations for the conditional likelihood model have been presented

(Breslow and Day, 1980; Collett, 2003; Hosmer et al., 2013). Here, we review previous

work and provide a simple example for illustration. Finally, we contrast the condi-

tional logistic model with the mixed-effects logistic model proposed by Gillies et al.

(2006).

Consider a matched case-control study with i = 1, 2, . . . , n animals. For the i-

th animal, j = 1, 2, . . . , mi sites are observed, of which ci used locations and mi −
ci unused locations are observed. The response, yij, is equal to one for used sites

and equal to zero for unused sites. Thus the total number of sites used by the i-th

individual is ci = ∑mi
j=1 yij. Because sampling is conducted conditional on y, mi and ci

are fixed by design. We also define Si to be the set of indices of the observations of

individual i for which yij = 1, and S̄i to be the set of indices of the observations of the

individual for which yij = 0. Habitat covariates of interest are measured at each site.

For simplicity, we assume that a single discrete covariate xij is measured.

As a simple example, assume we have collected data for a single animal (n = 1),

and omit the subscript i for simplicity. We observe a total of m = 4 observations,

where the first two sites are used (c = 2) and the second two sites are unused (m− c =

2). We also measure a habitat covariate (x) from each site. The data are presented in

Table 2.1. Here, S = {1, 2} and S̄ = {3, 4}.
Since the observations are made conditional on the status of the sites (i.e., used or

unused), we begin with the retrospective likelihood function of the form P(xij|yij, α, β),

where α is the intercept parameter and β is the parameter corresponding to x. For

brevity, conditioning on α and β in the following derivation is implied throughout.

Under the assumption of independence between observations, the joint likelihood
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Table 2 .1 : Example data set of m = 4 observations (indexed by j) from a single
animal. One covariate x is measured for each observation. The status (response) of
each site is given by y, where 1 indicates use and 0 indicates nonuse.

i j x y

1 1 x1 1

1 2 x2 1

1 3 x3 0

1 4 x4 0
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function is given by the product of stratum-specific likelihood functions

mi

∏
j=1

P(xij|yij) = ∏
j∈Si

P(xij|yij = 1)×∏
j/∈Si

P(xij|yij = 0). (2.1)

The conditional likelihood function is given by the probability of the observed data

conditional on the probability of ci used sites out of the total mi observed sites (i.e.,

the stratum sums) with the values of xij. This probability of observing the data is

related to the sum of all the possible assignments of the ci used and (mi − ci) unused

sites to the mi observed locations. The number of possible assignments is

ui =

(
mi

ci

)
=

mi!
ci!(mi − ci)!

.

We let z = 1, 2, . . . , ui denote the z-th assignment of used and unused statuses among

the locations and their habitat values. Then for the z-th assignment of the observed

data, Sz is a set of indices of the ci used locations. This gives the probability of the

observed data set, given the values of xij and the sum ci

∏
j∈Si

P(xij|yij = 1)×∏
j/∈Si

P(xij|yij = 0)

ui

∑
z=1

{
∏
j∈Sz

P(xij|yij = 1)× ∏
j/∈Sz

P(xij|yij = 0)

} . (2.2)

For our example data set, the numerator of Equation 2.2 is the probability of the

observed data, given by

∏
j∈S

P(xj|yj = 1)×∏
j/∈S

(xj|yj = 0) =

P(x1|y1 = 1)P(x2|y2 = 1)P(x3|y3 = 0)P(x4|y4 = 0).

For the denominator, there are u = (4
2) = 6 possible ways to permute the indices of

the statuses (i.e., used or unused). For this example, we can write out all possible

combinations of the c used locations among the observations (Table 2.2).
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Table 2 .2 : For c = 2 used and (m− c) = 2 unused sites, there are u = 6 possible
assignments of the statuses to the m = 4 observations. The permutations are indexed
by z, with the observed data set given by z = 1. Sz indicates the set of indices of the
cases (i.e., used sites).

z Sz Cases Controls

1 {1, 2} (x1, y1), (x2, y2) (x3, y3), (x4, y4)

2 {1, 3} (x1, y1), (x3, y3) (x2, y2), (x4, y4)

3 {1, 4} (x1, y1), (x4, y4) (x3, y3), (x2, y2)

4 {2, 3} (x2, y2), (x3, y3) (x1, y1), (x4, y4)

5 {2, 4} (x2, y2), (x4, y4) (x1, y1), (x3, y3)

6 {3, 4} (x3, y3), (x4, y4) (x1, y1), (x2, y2)
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The denominator of Equation 2.2 is the union of the probabilities P(xj|yj) for all

reorderings of j given by Sz

6

∑
z=1

{
∏
j∈Sz

P(xj|yj = 1)× ∏
j/∈Sz

(xj|yj = 0)

}
=

P(x1|y1 = 1)P(x2|y2 = 1)P(x3|y3 = 0)P(x4|y4 = 0)

+ P(x1|y1 = 1)P(x3|y3 = 1)P(x2|y2 = 0)P(x4|y4 = 0)

+ P(x1|y1 = 1)P(x4|y4 = 1)P(x3|y3 = 0)P(x2|y2 = 0)

+ P(x2|y2 = 1)P(x3|y3 = 1)P(x1|y1 = 0)P(x4|y4 = 0)

+ P(x2|y2 = 1)P(x4|y4 = 1)P(x1|y1 = 0)P(x3|y3 = 0)

+ P(x3|y3 = 1)P(x4|y4 = 1)P(x1|y1 = 0)P(x2|y2 = 0).

Since we aim to make inference about P(yij|xij), we apply Bayes’ theorem to each

of the P(xij|yij) terms, using

P(xij|yij = 1) =
P(yij = 1|xij)P(xij)

P(yij = 1)

and

P(xij|yij = 0) =
P(yij = 0|xij)P(xij)

P(yij = 0)
,

to give

∏
j∈Si

P(yij = 1|xij)P(xij)

P(yij = 1)
×∏

j/∈Si

P(yij = 0|xij)P(xij)

P(yij = 0)

ui

∑
z=1

{
∏
j∈Sz

P(yij = 1|xij)P(xij)

P(yij = 1)
× ∏

j/∈Sz

P(yij = 0|xij)P(xij)

P(yij = 0)

} . (2.3)

We can factor further

mi

∏
j=1

P(xij)

P(yij)
×∏

j∈Si

P(yij = 1|xij)×∏
j/∈Si

P(yij = 0|xij)

mi

∏
j=1

P(xij)

P(yij)
×

ui

∑
z=1

{
∏
j∈Sz

P(yij = 1|xij)× ∏
j/∈Sz

P(yij = 0|xij)

} (2.4)
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and simplify to yield

∏
j∈Si

P(yij = 1|xij)×∏
j/∈Si

P(yij = 0|xij)

ui

∑
z=1

{
∏
j∈Sz

P(yij = 1|xij)× ∏
j/∈Sz

P(yij = 0|xij)

} . (2.5)

Note that the likelihood function is now in terms of P(yij|xij), as in the prospective

model.

Let β be the corresponding coefficient of xij, which we assume is common among

the observed individuals. Additionally, let αi be the individual-specific effect on the

probability of habitat use. We assume that the correct logistic model is given by

P(yij = 1|xij, αi, β) =
eαi+βxij

1 + eαi+βxij
, (2.6)

and

P(yij = 0|xij, αi, β) =
1

1 + eαi+βxij
. (2.7)

We can substitute Equations 2.6 and 2.7 into the likelihood function (Equation 2.5)

and simplify algebraically to obtain

∏
j∈Si

eαi+βxij

1 + eαi+βxij
×∏

j/∈Si

1
1 + eαi+βxij

ui

∑
z=1

{
∏
j∈Sz

eαi+βxij

1 + eαi+βxij
× ∏

j/∈Sz

1
1 + eαi+βxij

} . (2.8)

As in Equation 2.4, the (1 + eαi+βxij)−1 term will cancel. The αi term, which is

constant for a given individual (i.e., for fixed value of i), will also cancel due to

conditioning on the sufficient statistic, ci = ∑mi
j=1 yij. Thus, the joint likelihood function

for observations from an individual animal is given by

Li(β) =

∏
j∈Si

eβxij

ui

∑
z=1

{
∏
j∈Sz

eβxij

} . (2.9)
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Finally, we can take the product over all matched sets to obtain the joint likelihood

function of all animals, conditional on the number of observed sites for each animal

L(β) =
n

∏
i=1

∏
j∈Si

eβxij

ui

∑
z=1

{
∏
j∈Sz

eβxij

} , (2.10)

which does not depend on the individual specific effects (αi). Except in special cases,

such as 1:1 matching of cases and controls, Equation 2.10 cannot be maximized using

standard logistic regression software (Breslow and Day, 1980; Hosmer et al., 2013).

Additionally, maximization can be computationally intensive because the denomina-

tor contains a sum with u elements, where u grows as m increases and when c/m is

close to 0.5. Numerical methods must therefore be used to maximize Equation 2.10

(Gail et al., 1981; Smith et al., 1981; Scott and Wild, 1991).

marginal logistic models

If the number of observed sites were not fixed by design, then a prospective or cohort

likelihood function could be used, which does not condition on ci. In contrast to the

conditional logistic model, the likelihood function for logistic regression applicable

for cohort data is given by

L(α, β) =
n

∏
i=1

mi

∏
j=1

P(yij|xij, αi, β) =
n

∏
i=1

mi

∏
j=1

eyij(αi+βxij)

1 + eαi+βxij
, (2.11)

which includes the animal-specific effects, α′ = (α1, . . . , αn). If the αi are treated as

fixed effects, this model can be used to estimate parameters of the retrospective model

in Equation 1.3, as long as the matching is coarse (i.e., there are few, large clusters), or

if the sampling fractions are known (Prentice and Pyke, 1979; Fears and Brown, 1986).

However, Gillies et al. (2006) suggest that the model in Equation 2.11 can be

extended to incorporate a random effect for the individuals to allow for heterogeneity

in habitat selection and unbalanced designs. Consider the animal-specific effects to
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be drawn independently from a distribution, F(α) such as αi ∼ Normal(0, σα). The

distribution function, F(α), may also depend on other parameters (Molenberghs and

Verbeke, 2006). We can make inference about β by marginalizing over the distribution

of αi

Li(β, σα) =

∫ mi

∏
j=1

eyij(α+βxij)

1 + e(α+βxij)
dF(α). (2.12)

Specifying the αi as random effects would solve the problem of an increasing number

of parameters with sample size (i.e., number of animals) if the data were collected

from a prospective design (Hosmer et al., 2013). For matched case-control data,

however, a retrospective likelihood function such as Equation 2.10 is required. Using

2.12 assumes that given αi, the yij are independent, which they are not due to the sam-

pling design. Although the work of Anderson (1972), Prentice and Pyke (1979), and

Farewell (1979) demonstrated the equivalence of the maximum likelihood estimates

and standard errors from fixed effects logistic regression were equivalent to those

from the constrained model, there is no justification to extend this approach to the

mixed effects case. That is, the equivalence between constrained and unconstrained

estimation only holds when the αi are treated as additional, fixed-effects parameters.

The consequences of estimating β using an incorrect likelihood function, however, are

unclear and are evaluated using simulation in the next chapter.
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chapter 3

Simulations

methods

The likelihood function for a matched-case control design is not equivalent to the

likelihood function for logistic regression for a prospective design. Consequently, the

likelihood function for a mixed-effects logistic regression model is consistent with

a prospective or cross-sectional design, but not a retrospective case-control design.

Despite the application of mixed-effects logistic regression models for RSFs, little is

known about the effects of using these incorrectly specified models for matched case-

control data. Furthermore, although the consequences of improperly specifying the

model for matched case-control designs can be evaluated for very simple models

(e.g., ignoring matching in single binary covariates; Breslow and Day 1980), resource

selection models tend to include multiple covariates. We therefore developed a sim-

ulation study for matched case-control designs with three continuous covariates of

different magnitudes, and a random individual-specific effect. We evaluated a variety

of values for the variance of the random effect, as well as the number of individuals

(i.e., clusters), the number of cases per cluster (ci), and the ratio of cases to controls

within each cluster. The objectives of the simulation study were to 1) evaluate the

behavior of the incorrect mixed-effects logistic regression model in comparison to

three other methods, and 2) to evaluate the effects of sampling design on parameter

estimates.

Data Generation

A rejection sampler was used to generate data sets that were sampled under a matched

case-control design (Appendix a). As in Chapter 2, we considered a design with

i = 1, 2, . . . , n animals, from which j = 1, 2, . . . , mi sites are observed. Of the mi sites,

ci are used (i.e., cases) and (mi − ci) are unused (i.e., controls). Since sampling is

conducted conditional on the use status, mi and ci are known quantities that are fixed
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by design, not random variables. The data-generating model was of the form:

P(yij = 1|xij, αi, β) =
exp(αi + β1xij1 + β2xij2 + β3xij3)

1 + exp(αi + β1xij1 + β2xij2 + β3xij3)
, (3.1)

where P(yij = 1|xij, αi, β) is the probability that the j-th site from the i-th animal is

used, αi is the individual-specific effect for the i-th animal, and xij = (xij1, xij2, xij3) are

the measured covariates. We assumed that the αi were independently drawn from a

population of individual-specific effects, such that αi ∼ Normal(0, σα). Each of the xijk

were independently and identically distributed as xijk ∼ Uniform(−2, 2). To simulate

sampling for the i-th individual under a matched case-control design, we used the

following algorithm:

Begin Algorithm

Step 0. Specify σα, mi, ci, and β. Set l1 = 0 and l0 = 0

Step 1. Sample αi from Normal(0, σα)

Step 2. While l1 < ci

2a. Sample each xijk independently of each other from Uniform(−2, 2)

2b. Calculate P(yij = 1|xij, αi, β) using Equation 3.1

2c. Sample y∗ij from Bernoulli(P[yij = 1|xij, αi, β])

2d. If y∗ij = 1, accept (xij, y∗ij) as an observation and set l1 = l1 + 1.

2e. Return to 2.

Step 3. While l0 < (mi − ci)

3a. Sample each xijk independently of each other from Uniform(−2, 2)

3b. Calculate P(yij = 1|xij, αi, β) using Equation 3.1

3c. Sample y∗ij from Bernoulli(P[yij = 1|xij, αi, β])

3d. If y∗ij = 0, accept (xij, y∗ij) as an observation and set l0 = l0 + 1.

3e. Return to 3.

End Algorithm.

The process above was repeated for each of the n individuals, drawing a new αi for

each cluster of observations.
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Parameter Estimation

We evaluated parameter estimates using models that assumed four different forms

for the likelihood function, each corresponding to a particular model and sampling

design. The first model was the conditional logistic model (CLM), which is an ap-

propriate model for the data that avoids estimation of the cluster-specific effects via

the conditioning argument in Equation 2.10. The second model was based on Equa-

tion 2.12, which was a mixed effects or marginal logistic model (MLM) suggested by

Gillies et al. (2006). The third model was a fixed effects logistic regression model for a

stratified case control (SCC) design. The SCC leverages the mathematical equivalence

of the prospective likelihood and the case-control likelihood for a single strata, and

incorporates a fixed effect for each individual (i.e., design variable for cluster). That is,

in contrast to the MLM which treats the αi as random effects, the SCC model treats the

αi as fixed effects. Based on work by Prentice and Pyke (1979) and Fears and Brown

(1986), we expect this model to perform well so long as the clusters become large as

the number of clusters increases, but the exact sample sizes required are unknown.

Finally, the fourth model was a prospective logistic model (PLM), which ignored the

matching and sampling constraints of the data. In the PLM, the αi are assumed to

be equivalent for all individuals. Based on work by Breslow and Day (1980) and Pike

et al. (1980), ignoring these key factors should lead to biased parameter estimates.

We were primarily interested in comparing estimates from CLM with those from

MLM. However, results from SCC and PLM were evaluated to provide further context

for the comparison of CLM and MLM. In particular, SCC can be viewed as a special

case of MLM where the variance of the random effect is zero. PLM can also be viewed

as a special case of SCC, where the individual-specific fixed effects are equal for all

animals in the study.

Simulations

Parameter values and sampling designs for the simulations were based on values

found in the literature (Thomas et al., 2003; Gillies et al., 2006; Thomas and Taylor,

2006). For simplicity, we assumed that all clusters were of equal size (mi = m, ∀i)
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and contained the same number of cases (ci = c, ∀i). We also set β′ = (1, 2, 3), which

allowed us to investigate the effect of parameter magnitude. Values of σα used in

simulations were 0.1, 1, and 2. We also evaluated the effects of the sampling design

by varying the number of used sites per cluster (i.e., cluster size; c), and the ratio of

cases to controls (r = c/m0). Values of c were 1, 2, 5, 10, 20, or 80, and values of r

were 0.5, 0.2, or 0.1. Finally, combinations of σα, c, and r were evaluated for scenarios

with n = 100 clusters and n = 30 clusters. For each combination of parameter values,

150 data sets were randomly generated using the algorithm above.

All models were fit to the simulated data sets using R (R Core Team, 2016), and

code is available in Appendix b. We used the clogit function in the survival pack-

age (Therneau and Grambsch, 2000; Therneau, 2015) to fit CLMs, the glmer func-

tion in the lme4 package (Bates et al., 2014) to fit MLMs, and the glm function

to fit SCCs and PLMs. All four models were fit to each simulated data set, and

results from models that failed to converge were discarded. Rates of convergence

failure were 4.7-5.6% for CLM, 0.6-0.8% for MLM, 3.0-8.0% for SCC, and 0-0.04% for

PLM. Estimated parameters and standard errors for β were extracted. We calculated

B̂ias(β̂p, βp) =
1
b ∑b

i=1(β̂pi − βpi), where b is the number of simulations, for p = 1, 2, 3.

We also determined whether the estimated 95% confidence interval contained the

true parameter value for each βp. Monte Carlo margin of error for β̂p was calculated

as 1.96
√

V̂ar(β̂p)/b, where b is the number of simulations that converged for the

combination of parameter values. In addition, σ̂α was retained and evaluated for the

MLMs.

results

The results from the simulations were largely consistent with previous research. Re-

sults from all four methods are available in Appendix c. For simulations with n =

100, results for the estimated bias are provided in Table c.1 and coverage rates are

provided in Table c.2. For simulations with n = 30, results for the estimated bias are

provided in Table c.3 and coverage rates are provided in Table c.4.
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Simulation Results for n = 100

PLM, which ignored matching in the data by assuming a common intercept, was

biased for most values of β, r, c, and especially for large σα (Table c.1). Estimated bias

of PLM was negative, except for data sets with σα = 0.1, which were not biased or

were slightly positively biased (by up to 4%). The largest magnitude of bias for PLM

occurred for β3 with σα = 2, when β̂3 was 25% below the true value. Bias of PLM did

not vary with r or c, and was approximately equal to the bias from MLM except when

σα = 2. Coverage rates were correlated with the degree of bias; unbiased estimates

(when σα = 0.1) had appropriate coverage rates (Table c.2). Since the bias of PLM

did not change greatly across the sampling designs evaluated (i.e., values of r and c),

results are excluded from the figures below.

SCC treats the αi as fixed effects, and accounting for clustering in this manner

tended to provide improvements over PLM when the individual-specific effects were

the greatest (i.e., σα = 2). For example, bias for β3 was 4% for SCC when c = 20, r =

0.5, and σα = 2 (Figure 3.1), compared to -25% for PLM (Table c.1). However, the

improvement of SCC over PLM disappeared if c was less than 5, and bias was worse

for SCC when c = 1, 2. Bias was close to zero for the largest clusters (c = 80), but

increased as the number of cases per cluster decreased. As with PLM, bias increased

with parameter magnitude. Interestingly, SCC exhibited the largest magnitude of bias

out of the four models. In the scenario with 1 case and 2 controls (i.e., r = 0.5), β̂3

was 85% greater than β3. Coverage rates were less than the nominal value when bias

was greater than about 2% (Figure 3.2).

In contrast to SCC, MLM treats the αi as random effects. Patterns in bias for MLM

were similar to PLM; both produced negatively biased estimates when σα was large

(Figure 3.1). However, bias of PLM was the same regardless of c and r, whereas

the bias of MLM decreased as c increased. When clusters were large, MLM was an

improvement over SCC. Estimated bias was essentially zero for MLM with c = 80,

even for β3 and with σα = 2, which resulted in 25% bias for PLM. Coverage rates for

MLM were better than for PLM or SCC, especially when σα = 0.1, which met nominal

rates for all βp, r, and c (Figure 3.2).
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CLM was the least biased of all four methods (Figure 3.1). For most simulations,

the bias was well below 5%. Bias was largest for the smallest clusters (i.e., r =

0.5, c = 1), where the bias was as large as 26%. However, these cluster sizes also

posed estimation challenges for SCC and MLM, which had the highest bias for those

values of c and r. Coverage rates were also the most accurate for CLM, even when

the parameter estimates were biased. The lowest coverage rate for CLM was 89%,

in contrast to the other three models, which had coverage rates as low as 0-21%

(Figure 3.2). Although CLM performed well for most values of r, c, β, and σα, it

had the highest rates of convergence failure, which prohibited estimation for data

sets with r = 0.5, c = 80, and σα = 2.

Overall, for SCC, MLM, and CLM, the magnitude of the bias was greatest for

data sets with the fewest observations per cluster, particularly for SCCs (Figure 3.3).

Although bias tended to decrease for MLM and CLM as c increased, the ratio of cases

to controls did not have as great an effect as for SCCs (Figure 3.4). With sufficiently

large cluster sizes (i.e., large c and low r), both SCC and MLM performed similarly

to CLM. Patterns in coverage rates generally mirrored patterns in bias; sampling

designs and models that produced the largest magnitude of bias also contained the

true parameter value in fewer than 95% of simulations (Figure 3.2). In particular,

PLM had the worst coverage rates, which persisted until c > 20. MLM performed

slightly better than PLM, and required c > 10 to attain nominal coverage rates. CLM

performed well across all simulations.

For MLM, bias in estimates of β for small cluster sizes may be due to underes-

timation of σα (Figure 3.5). Indeed, for the smallest cluster sizes, σ̂α was zero. In

these cases, MLM is equivalent to SCC, which treats the σα as fixed effects. Although

estimates approached the true value as the cluster size increased, the largest clusters

evaluated in this study (i.e., c = 80, m = 800) did not produce accurate estimates of

σα (Figure 3.6).

Simulation Results for n = 30

Simulation results for n = 30 showed similar patterns in bias and converage rates

as simulations with n = 100, though variation was higher (Figure 3.7, 3.8). The
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F igure 3 .1 : Bias of β̂ estimated from a matched case-control design with n = 100
using a stratified case-control model (SCC), marginal logistic model (MLM), and
conditional logistic model (CLM). The number of cases (c) and ratio of cases to
controls (r) varied between simulations. Note the change in scale for bias across
different values of c.
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F igure 3 .2 : Realized coverage rates of 95% confidence intervals for β estimated
from a matched case-control design with n = 100 using a stratified case-control model
(SCC), marginal logistic model (MLM), and conditional logistic model (CLM). The
number of cases (c) and ratio of cases to controls (r) varied between simulations.
Horizontal line indicates 95% coverage.
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F igure 3 .3 : Bias of β̂3 estimated from a matched case-control design with n =
100 using a stratified case-control model (SCC), marginal logistic model (MLM), and
conditional logistic model (CLM). The number of cases varied but r was fixed at 0.5
and σα = 2.
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F igure 3 .4 : Bias of β̂3 estimated from a matched case-control design with n =
100 using a stratified case-control model (SCC), marginal logistic model (MLM), and
conditional logistic model (CLM). The ratio of cases to controls varied but c was fixed
at 10 and σα = 2.
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F igure 3 .5 : Estimates of σα from a matched case-control design with n = 100 fit
using a marginal logistic model (MLM) with varying numbers of cases (c) and ratio
of cases to controls (r). Unbiased estimates fall on the diagonal (1:1) line.
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F igure 3 .6 : Estimates of σα from a matched case-control design with n = 100 fit
using a marginal logistic model (MLM) with varying numbers of cases (c) and ratio
of cases to controls equal to 0.5.
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main differences occurred for very small cluster sizes (c = 1, r = 0.5), where all

three methods produced positively biased estimates of β. However, increasing c > 1

produced the same patterns as the n = 100 simulations (Figure 3.9). Likewise, for

some values of c, bias tended to increase slightly as r decreased (Figure 3.10), but

most values resembled the results in Figure 3.4. Although the patterns in bias were

similar between n = 100 and n = 30, the magnitude of the bias was higher for small

sample sizes for MLM and CLM. For MLM, the maximum percent bias was nearly

twice as high with the smaller sample sizes (for β3 with c = 1, r = 0., and σα = 2;

Figure 3.7). For CLM, the bias was as high as 140% for β1 with c = 1, r = 0.5, and

σα = 0.1. However, for CLM, bias greather than 10% of the true value was restricted

c = 1, and in a few cases, c = 2. Estimates from CLM for clusters with more than two

observations were nearly unbiased. Maximum bias for PLM and SCC did not change

for the larger sample size.

Coverage rates for data sets with n = 30 were closer to nominal rates than for

n = 100 (Figure 3.8). Most methods and sampling designs had appropriate coverage

rates for c > 5, in contrast to n = 100, which required c > 10. For CLM, large cluster

sizes (i.e., r = 0.1 and c = 80) once again produced high rates of convergence failure,

and models that were estimated tended to produce inaccurate confidence intervals.

Similar to MLM estimates of σα with n = 100, estimates with n = 30 tended to be

negatively biased (Figure 3.11). The estimates, particularly for σα = 2, also tended to

be much more variable. While increasing the number of cases improved accuracy, σα

was still underestimated with c = 80 (Figure 3.12).
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F igure 3 .7 : Bias of β̂ estimated from a matched case-control design with n = 30
using a stratified case-control model (SCC), marginal logistic model (MLM), and
conditional logistic model (CLM). The number of cases (c) and ratio of cases to
controls (r) varied between simulations. Note the change in scale for bias across
different values of c.
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F igure 3 .8 : Realized coverage rates of 95% confidence intervals for β estimated from
a matched case-control design with n = 30 using a stratified case-control model (SCC),
marginal logistic model (MLM), and conditional logistic model (CLM). The number
of cases (c) and ratio of cases to controls (r) varied between simulations. Horizontal
line indicates 95% coverage.
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F igure 3 .9 : Bias of β̂3 estimated from a matched case-control design with n =
30 using a stratified case-control model (SCC), marginal logistic model (MLM), and
conditional logistic model (CLM). The number of cases varied but r was fixed at 0.5
and σα = 2.
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F igure 3 .10 : Bias of β̂3 estimated from a matched case-control design with n =
30 using a stratified case-control model (SCC), marginal logistic model (MLM), and
conditional logistic model (CLM). The ratio of cases to controls varied but c was fixed
at 10 and σα = 2.
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F igure 3 .11 : Estimates of σα from a matched case-control design with n = 30 fit
using a marginal logistic model (MLM) with varying numbers of cases (c) and ratio
of cases to controls (r). Unbiased estimates fall on the diagonal (1:1) line.
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F igure 3 .12 : Estimates of σα from a matched case-control design with n = 30 fit
using a marginal logistic model (MLM) with varying numbers of cases (c) and ratio
of cases to controls equal to 0.5.
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chapter 4

Discussion

In this thesis, we illustrated the differences in parameter estimates between condi-

tional logistic regression and mixed-effects logistic regression approaches for matched

case-control data. Simulations confirmed that using the MLM results in biased param-

eter estimates and confidence intervals that did not achieve nominal coverage rates,

except when the number of cases is large and clusters are relatively homogeneous

(i.e., small σα). Furthermore, increasing the number of clusters had little effect on

the bias, consistent with previous studies (Lubin, 1981; Craiu et al., 2011). Except for

large cluster sizes, this bias was substantial. For example, consider the data set with

observations of 5 used sites and 25 unused sites (i.e., r = 0.2, c = 5) from each of

n = 30 animals. If σα = 1 and βp = 1, then the bias in the estimated odds (eβ) for the

covariate was, on average, -27% for SCC and 10% for MLM, whereas the bias for CLM

was <1%. Biases on the observed order of 10-30% could be problematic when trying

to understand resource selection for sensitive species. Although remote sensing may

allow for large cluster sizes encompassing thousands of observations (e.g., Johnson

et al. 2004; Gillies et al. 2006), RSF studies often involve fewer, small clusters (Thomas

and Taylor, 2006).

The bias of SCC was positive, consistent with previous studies for case-control

designs with fine stratification (Lubin, 1981). Pike et al. (1980) showed that for clusters

comprised of one case and one control, and with an indicator variable as the sole

covariate, the quantity estimated is actually 2β. Consistent with Lubin (1981), we

found that the number of cases should be at least 20 to substantially reduce the bias

from SCC. However, the bias tended to be higher than for MLM, and SCC also had

slightly higher rates of convergence failure. This indicates that MLM may provide a

more stable approximation to the stratified case-control likelihood function than SCC.

The bias observed for MLM was consistent with the attenuation observed in other

marginal logistic models. When averaging over individual-specific effects in the MLM,

the population-level logistic function is less steep than for the individuals (Diggle
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et al., 1998). This results in parameter values that are closer to zero for the population

mean. In addition to biased population-level estimates from MLM, care must also

be taken when making inferences about individual or cluster-specific effects. For

example, Hebblewhite and Merrill (2008) suggests using estimated random effects

from logistic regression models in a hierarchical setting to evaluate the relationship

between resource selection and fitness. However, as indicated by our simulation

studies, neglecting to incorporate the sampling design into the model causes vari-

ance components (i.e., σα) to be underestimated. This will, in turn, attenuate the

estimates of the random effects. Intuitively, using MLM instead of CLM results in

bias because a fixed number of observations from a single cluster are dependent,

and hence their variance is lower than if the number of observed sites were random.

Without accounting for this dependency in the model, the variance components will

be underestimated. As shown in Chapter 2, there is no statistical justification to

use MLM for matched case-control data. Since the MLM likelihood function is not

a correct likelihood function for the data, likelihood-based values, such as Akaike’s

Information Criterion (Akaike, 1973; Burnham and Anderson, 2002) used for model

selection, may be of questionable value.

Conditional logistic models provided the least biased estimates of β, except when

clusters were very small (i.e., one case and two controls) or very large (i.e., 80 cases

and 800 controls). For both of these scenarios, convergence failure (a numerical

problem) led to no or poor estimates. For small clusters, one option would be

to increase the number of controls sampled, if increasing the number of cases was

impossible. Compared to r = 0.5, decreasing the ratio to r = 0.1, even for a single

observed case, improved convergence and bias for CLM. If neither the number of

cases nor controls can be increased, an alternative may be to use a paired logistic

model (i.e., 1:1 matching of cases and controls; Compton et al. 2002). For large

clusters, numerical instability may have resulted from evaluating the sum in the

denominator of Equation 2.10. For example, in the c = 80, r = 0.1 scenario, there

are u = (880
80 ) ≈ 1.2× 10115 terms in the denominator of the likelihood function for a

single animal. Numerical instability may occur when σα is large and there are many

clusters (i.e., n = 100). However, for clusters of this size, MLM performed well as
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long as the variance of the random effect was low. Therefore, MLM may be a viable

alternative to CLM for very large clusters, though variance components will likely be

negatively biased.

Complex model building and extensions of models for matched case-control data,

such as the suggestion to incorporate random effects for the slope parameters, should

be undertaken with care. Gillies et al. (2006) suggested that MLMs with random

slopes can provide insight into functional responses in RSFs for matched case-control

data. They extend the model with a single random intercept (α) in Equation 2.12 to

include a random slope parameter for each individual. If we let γ denote the random

effect for the habitat covariate for each individual, and specify the joint distribution

of α and γ be F(α, γ), then the likelihood function for the i-th individual is given by

Li(β) =

∫∫ mi

∏
j=1

eyij[α+(β+γ)xij]

1 + e[α+(β+γ)xij]
dF(α, γ). (4.1)

As with the MLM for a single random effect (Equation 2.12), Equation 4.1 is based

on an incorrect prospective likelihood function. Despite this, the approach has been

adopted by a number of researchers (Boyce et al., 2003; Hebblewhite and Merrill,

2008).

Duchesne et al. (2010) and Craiu et al. (2011) described appropriate mixed-effects

models for matched case-control data based on the conditional logistic likelihood

function. The simplest case is a mixed-effects conditional logistic model with a

random intercept only, which is motivated by considering the cluster-specific effects

α′ = (α1, α2, . . . , αn) to be drawn independently from a distribution, such as αi ∼
Normal(0, σα). Then the contribution of the i-th cluster to the mixed-effects condi-

tional likelihood function (from Equation 2.8) is given by

Li(β) =

∫
∏
j∈S

eα+βxj

1 + eα+βxj
×∏

j/∈S

1
1 + eα+βxj

dF(α)

∫ u

∑
z=1

{
∏
j∈Sz

eα+βxj

1 + eα+βxj
× ∏

j/∈Sz

1
1 + eα+βxj

}
dF(α)

. (4.2)



38

Additional random effects can be specified for the other parameters, such as a random

slope as suggested by Gillies et al. (2006). We let α be the cluster-specific intercepts

and γ be the random effects for the habitat covariate for each individual with the joint

distribution F(α, γ). Then, integrating over the distribution of each random effect, the

likelihood function is given by

Li(β) =

∫∫
∏
j∈S

eα+(β+γ)xj

1 + eα+(β+γ)xj
×∏

j/∈S

1

1 + eα+(β+γ)xj
dF(α, γ)

∫∫ u

∑
z=1

{
∏
j∈Sz

eα+(β+γ)xj

1 + eα+(β+γ)xj
× ∏

j/∈Sz

1

1 + eα+(β+γ)xj

}
dF(α, γ)

, (4.3)

which is not equivalent to the likelihood function proposed by (Gillies et al. 2006;

Equation 4.1). The estimation of model parameters in Equation 4.3 is challenging

because of the high dimensional integrals contributed by each of the clusters. Some es-

timation procedures have been proposed, including generalized estimating equations

(Craiu et al., 2008) and a two-step procedure involving an expectation-maximization

algorithm to implement restricted maximum likelihood estimation (Craiu et al., 2011)).

Estimation of mixed conditional logistic models remains an area of active research

(Duchesne et al., 2010). However, given the bias associates with the estimation of a

single variance component (σα) using MLM, accurate estimation of multiple variance

components seems challenging, especially for a small number of clusters (e.g., n ≤ 30).

Our work illustrates the need for caution and deeper understanding of model

development before extending or increasing the complexity of existing models. The

use MLMs in place of the correct CLM resulted from misunderstanding about the use

of PLM for case-control data. Appropriate management of natural resources requires

careful inference from models and data (Holden and Ellner, 2016).
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appendix a

Supplementary Information to Chapter 3

rejection sampler for matched case -control data

The following code corresponds the rejection sampler described in Chapter 3. The

code is written for a more general implementation that can include fixed and random

effects for the intercept and the slope, in addition to multiple fixed-effect slope pa-

rameters. The first section is the implementation in C. The second section of code

provides the R commands to call and compile the code.

C Code for Rejection Sampler

/*C Rejection Sampler to generate matched case-control data*/

#include <stdlib.h>

#include <math.h>

#include <R.h>

#include <Rmath.h>

double g(double x)

{

return 1.0/(1.0 + exp(-x));

}

/* Function to simulate a case control study with n strata (clusters),

* mcase cases per strata, and mcont controls per strata. The model for

* the unconditional probability is

*

* p_ij = g[beta_0 + zeta_0i + (beta_1 + zeta_1i)*x_ij1

* + beta_2*x_ij2 + beta_3*x_ij3]

*

* The marginal distribution of each x_ijk is U(-2,2), and

* the x_ijk's are assumed to be independent.

*/

void casecontrol2(int *n, int *mcase, int *mcont,

double *beta, double *sigm, double *x1, double *x2, double *x3, double *y)

{
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double beta0 = beta[0], beta1 = beta[1], beta2 = beta[2], beta3 = beta[3];

double sigm0 = sigm[0], sigm1 = sigm[1];

double ytmp, x1tmp, x2tmp, x3tmp, zeta0, zeta1;

int i, j, t = 0;

GetRNGstate();

for (i = 0; i < *n; i++) {

zeta0 = rnorm(0.0, sigm0);

zeta1 = rnorm(0.0, sigm1);

for (j = 0; j < *mcase; j++) {

do {

x1tmp = runif(-2.0, 2.0);

x2tmp = runif(-2.0, 2.0);

x3tmp = runif(-2.0, 2.0);

ytmp = rbinom(1, g(beta0 + zeta0 + (beta1 + zeta1) * x1tmp

+ beta2 * x2tmp + beta3 * x3tmp));

} while (ytmp != 1.0);

y[t] = ytmp;

x1[t] = x1tmp;

x2[t] = x2tmp;

x3[t] = x3tmp;

++t;

}

for (j = 0; j < *mcont; j++) {

do {

x1tmp = runif(-2.0, 2.0);

x2tmp = runif(-2.0, 2.0);

x3tmp = runif(-2.0, 2.0);

ytmp = rbinom(1, g(beta0 + zeta0 + (beta1 + zeta1) * x1tmp

+ beta2 * x2tmp + beta3 * x3tmp));

} while (ytmp != 0.0);

y[t] = ytmp;

x1[t] = x1tmp;

x2[t] = x2tmp;

x3[t] = x3tmp;

++t;

}

}

PutRNGstate();

}
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R Code for Rejection Sampler

# R code to call and compile C rejection sampler

system("R CMD SHLIB casecontrol2.c")

# Model:

# logit(Y_{ij}) = beta_0 + zeta_{0i} + (beta_1 + zeta_{1i})*x_{ij1}

+ beta_2*x_{ij2} + beta_3*x_{ij3}

# zeta_{0i} ~ N(0,sigma_1), zeta_{1i} ~ N(0,sigma_2)

# n = number of clusters

# m.case = number of cases

# m.cont = number of controls

# Note: Not set up to include random slopes for any of the new slopes.

casecontrol2 <- function(n, m.case, m.cont, beta = c(0, 1, 2, 3), sigm = c(1,0))

{

if (!is.loaded("casecontrol2")) {

dyn.load("casecontrol2")

}

if (as.integer(n) < 1) stop("n < 1")

if (as.integer(m.case < 1)) stop("m.case < 1")

if (as.integer(m.cont < 1)) stop("m.cont < 1")

if (any(sigm < 0)) stop("sigm < 0")

y <- rep(0, n * (m.case + m.cont))

x1 <- rep(0, n * (m.case + m.cont))

x2 <- rep(0, n * (m.case + m.cont))

x3 <- rep(0, n * (m.case + m.cont))

tmp <- .C("casecontrol2",

n = as.integer(n),

m.case = as.integer(m.case),

m.cont = as.integer(m.cont),

beta = as.double(beta), sigm = as.double(sigm),

x1 = as.double(x1),

x2 = as.double(x2),

x3 = as.double(x3),

y = as.double(y))

return(data.frame(y = tmp$y, x1 = tmp$x1, x2 = tmp$x2, x3 = tmp$x3,

cluster = factor(rep(1:n, each = m.case + m.cont))))

}
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rejection sampler proof

In this section, we demonstrate that the sampler used to generate matched case-

control data (Appendix a.1) is a special case of the Accept-Reject method (Robert

and Casella, 2013), and therefore samples the correct conditional distribution. In the

standard rejection algorithm, f (x) is the target distribution and g(x) is the proposal

distribution. The algorithm for the standard algorithm (Robert and Casella, 2013) is:

Begin Algorithm

Step 1. Simulate x∗ ∼ g(x)

Step 2. Calculate the acceptance ratio:

α =
f (x∗)

k · g(x∗)
,

where f (x∗) and g(x∗) are the likelihoods evaluated at x∗ for the target and

proposal distributions, respectively, and k > sup
z

{
f (z)
g(z)

}
is a constant.

Step 3. If α > u∗ ∼ Uniform(0, 1), accept x∗ as drawn from f (x), else return to 1.

End Algorithm.

For the rejection sampler in Appendix a.1, we assume that probabilities of use,

pij = eαi+βxij /(1+ eαi+βxij), are given. The target distribution is the logistic model, con-

ditional on the number of used and unused sites in y, which is given by f (y|p, m, c).

The proposal distribution is the unconditional model, g(y|p). That is, the model not

constrained by the number of used and unused sites in each cluster (i.e., m and c). As

in Chapter 2, we define:

f (y|p, m, c) = ∏
j∈S

pij ×∏
j/∈S

(1− pij), (a.1)

and

g(y|p) =
u

∑
z=1

∏
j∈S

pij ×∏
j/∈S

(1− pij), (a.2)

where S is the set of indices of the used locations and u is the number of possible

assignments of c used locations among m observations.
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Assume we propose y∗ from g(y|p). We let the set of indices corresponding to y∗

be S∗. If S∗ 6≡ S, then the target likelihood evaluated at y∗ will be f (y∗|p, m, c) = 0,

since f is only defined on S. The acceptance ratio in this case is

α =
f (y∗|p, m, c)
k · g(y∗|p) = 0, (a.3)

which is always less than or equal to u∗ ∼ Uniform(0, 1). Therefore, if S∗ 6≡ S, the

proposals are always rejected. If S∗ ≡ S, then we note that f (y∗|p, m, c) = g(y∗|p),
and that

k > sup
z

{
f (z|p, m, c)

g(z|p)

}
= 1, (a.4)

since f and g conditional on S∗ ≡ S are the same model. The acceptance ratio in this

case, choosing c= 1, is

α =
f (y∗|p, m, c)
1 · g(y∗|p) = 1, (a.5)

which is always greater than or equal to u∗ ∼ Uniform(0, 1). So if S∗ ≡ S, proposals

are always accepted.
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appendix b

Supplementary Information to Chapter 3

code for simulation study

This section provides the wrappers for R functions to fit prospective logistic models

(PLM), stratified case-control models (SCC), marginal logistic models (MLM), and

conditional logistic models (CLM) to data generated using the rejection sampler in

Appendix a.

Wrappers for Model Fitting

### Description

# This group of functions takes the data from casecontrol()

# [x, y, and cluster] and fits a fixed effects logistic

# regression model ("glm"), a mixed effects logistic

# regression model with a random intercept ("glmer1") or

# random intercept and random slope ("glmer2), or a

# conditional logistic regression model without a

# random slope ("clogit").

# The get.() functions fit the models and return parameter

# values. tryCatch.W.E. handles warnings and stores them

# in a list element $warning, and returns NA if an error

# occurred.

# fit.safe() combines both functions, using switch() to

# specify the desired method. It returns a list with the

# parameter estimates in $value and any warnings in $warning.

require(lme4)

require(survival)

# Functions to get the results ------------------------------

get.glm.2 = function(data){

model = glm(y ~ x1 + x2 + x3, data = data, family = binomial)

results = data.frame(b0 = coef(model)[1],
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b1 = coef(model)[2],

b2 = coef(model)[3],

b3 = coef(model)[4],

b0.SE = sqrt(diag(vcov(model)))[1],

b1.SE = sqrt(diag(vcov(model)))[2],

b2.SE = sqrt(diag(vcov(model)))[3],

b3.SE = sqrt(diag(vcov(model)))[4],

method = "glm", row.names = NULL)

return(results)

}

get.glm.int.2 = function(data){

model = glm(y ~ x1 + x2 + x3 + cluster, data = data,

family = binomial)

results = data.frame(b0 = coef(model)[1],

b1 = coef(model)[2],

b2 = coef(model)[3],

b3 = coef(model)[4],

b0.SE = sqrt(diag(vcov(model)))[1],

b1.SE = sqrt(diag(vcov(model)))[2],

b2.SE = sqrt(diag(vcov(model)))[3],

b3.SE = sqrt(diag(vcov(model)))[4],

method = "glm.int", row.names = NULL)

return(results)

}

get.glmer1.2 = function(data){

model = glmer(y ~ x1 + x2 + x3 + (1 |cluster),

data = data, family = binomial)

results = data.frame(b0 = fixef(model)[1],

b1 = fixef(model)[2],

b2 = fixef(model)[3],

b3 = fixef(model)[4],

b0.SE = sqrt(diag(vcov(model)))[1],

b1.SE = sqrt(diag(vcov(model)))[2],

b2.SE = sqrt(diag(vcov(model)))[3],

b3.SE = sqrt(diag(vcov(model)))[4],

s1 = as.data.frame(VarCorr(model))$vcov[1],

method = "glmer1", row.names = NULL)

return(results)

}

get.glmer2.2 = function(data){

model = glmer(y ~ x1 + x2 + x3 + (1 + x1|cluster),

data = data, family = binomial)
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results = data.frame(b0 = fixef(model)[1],

b1 = fixef(model)[2],

b2 = fixef(model)[3],

b3 = fixef(model)[4],

b0.SE = sqrt(diag(vcov(model)))[1],

b1.SE = sqrt(diag(vcov(model)))[2],

b2.SE = sqrt(diag(vcov(model)))[3],

b3.SE = sqrt(diag(vcov(model)))[4],

s1 = as.data.frame(VarCorr(model))$vcov[1],

s2 = as.data.frame(VarCorr(model))$vcov[2],

method = "glmer2", row.names = NULL)

return(results)

}

get.clogit.2 = function(data){

model = clogit(y ~ x1 + x2 + x3 + strata(cluster),

data = data)

results = data.frame(b1 = coef(model)[1],

b2 = coef(model)[2],

b3 = coef(model)[3],

b1.SE = sqrt(diag(vcov(model)))[1],

b2.SE = sqrt(diag(vcov(model)))[2],

b3.SE = sqrt(diag(vcov(model)))[3],

method = "clogit", row.names = NULL)

return(results)

}

# Function for error handling --------------------------------

tryCatch.W.E <- function(expr){

W <- NA

w.handler <- function(w){ # warning handler

W <<- w # store the warning message

invokeRestart("muffleWarning")

}

list(value = withCallingHandlers(tryCatch(expr, error = function(e) NA),

warning = w.handler),warning = W)

}

# Combined fit safe function ---------------------------------

fit.safe2 = function(data = data, type = NULL){

switch(type,
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glm = tryCatch.W.E(get.glm.2(data)),

glm.int = tryCatch.W.E(get.glm.int.2(data)),

glmer1 = tryCatch.W.E(get.glmer1.2(data)),

glmer2 = tryCatch.W.E(get.glmer2.2(data)),

clogit = tryCatch.W.E(get.clogit.2(data))

)

}



51

Fit Models and Format Data

# Simulations for "ordered" series of plots.

# Use a model with three slope parameters.

set.seed(100)

source("clogit2.R")

source("fit_safe_function2.R")

require(plyr)

# Parameter value summary:

# c = 1, 2, 5, 10

# (m - c) = c/(0.5, 0.2, and 0.1)

# n = 100 or 30

# beta_vec = 0, 1, 2, 3

# sig1 = 0.1, 1, 2

# sig2 = 0

# Import parameter values

parm_vals_031916 = read.csv("parm_vals_031916.csv")

# Small number of clusters ------------------------------------------------

parm_vals_031916$n = 30

### Expand the parameter values by reps

reps = 150 # Number of simulations

parms = data.frame(sapply(parm_vals_031916, rep.int, times = reps))

### Generate the datasets

data1 = lapply(seq_along(1:nrow(parms)),

function(i){casecontrol2(n = parms$n[i],

m.case = parms$cases[i],

m.cont = parms$controls[i],

sigm = parms[i, c("s1", "s2")])})

### Fit glm, glm.int, glmer1, and clogit

results1 = lapply(data1, function(x) fit.safe2(x, "glm"))

results4 = lapply(data1, function(x) fit.safe2(x, "glm.int"))

results2 = lapply(data1, function(x) fit.safe2(x, "glmer1"))

results3 = lapply(data1, function(x) fit.safe2(x, "clogit"))

### Format results
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# glm

glm_error_parms = parms[is.na(sapply(results1, "[", "value")), ]

write.csv(glm_error_parms, "lown_glm_error_parms.csv")

results1_drop = results1[is.na(sapply(results1, "[", "value"))==F]

parms_drop = parms[is.na(sapply(results1, "[", "value"))==F, ]

glm_res = ldply(results1_drop, "[[", "value")

glm_res$warn = ifelse(is.na(sapply(results1_drop,

"[[", "warning")), FALSE, TRUE)

glm_out = data.frame(parms_drop, glm_res)

write.csv(glm_out, "lown_glm_out.csv")

# glm.int

glm.int_error_parms = parms[is.na(sapply(results4, "[", "value")), ]

write.csv(glm.int_error_parms, "lown_glmint_error_parms.csv")

results4_drop = results4[is.na(sapply(results4, "[", "value"))==F]

parms_drop = parms[is.na(sapply(results4, "[", "value"))==F, ]

glm.int_res = ldply(results4_drop, "[[", "value")

glm.int_res$warn = ifelse(is.na(sapply(results4_drop,

"[[", "warning")), FALSE, TRUE)

glm.int_out = data.frame(parms_drop, glm.int_res)

write.csv(glm.int_out, "lown_glmint_out.csv")

# glmer

glmer_error_parms = parms[is.na(sapply(results2, "[", "value")), ]

write.csv(glmer_error_parms, "lown_glmer_error_parms.csv")

results2_drop = results2[is.na(sapply(results2, "[", "value"))==F]

parms_drop = parms[is.na(sapply(results2, "[", "value"))==F, ]

glmer1_res = ldply(results2_drop, "[[", "value")

glmer1_res$warn = ifelse(is.na(sapply(results2_drop,

"[[", "warning")), FALSE, TRUE)

glmer1_out = data.frame(parms_drop, glmer1_res)

write.csv(glmer1_out, "lown_glmer1_out.csv")

#clogit

clogit_error_parms = parms[is.na(sapply(results3, "[", "value")), ]

write.csv(clogit_error_parms, "lown_clogit_error_parms.csv")
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results3_drop = results3[is.na(sapply(results3, "[", "value"))==F]

parms_drop3 = parms[is.na(sapply(results3, "[", "value"))==F,]

clogit_res = ldply(results3_drop, "[[", "value")

clogit_res$warn = ifelse(is.na(sapply(results3_drop,

"[[", "warning")), FALSE, TRUE)

clogit_out = data.frame(parms_drop3, clogit_res)

write.csv(clogit_out, "lown_clogit_out.csv")

# Large number of clusters ------------------------------------------------

parm_vals_031916$n = 100

### Expand the parameter values by reps

reps = 150

parms = data.frame(sapply(parm_vals_031916, rep.int, times = reps))

### Generate the datasets

data1 = lapply(seq_along(1:nrow(parms)),

function(i){casecontrol2(n = parms$n[i],

m.case = parms$cases[i],

m.cont = parms$controls[i],

sigm = parms[i, c("s1", "s2")])})

### Fit glm, glmer1, and clogit

results1 = lapply(data1, function(x) fit.safe2(x, "glm"))

results4 = lapply(data1, function(x) fit.safe2(x, "glm.int"))

results2 = lapply(data1, function(x) fit.safe2(x, "glmer1"))

results3 = lapply(data1, function(x) fit.safe2(x, "clogit"))

### Format results

# glm

glm_error_parms = parms[is.na(sapply(results1, "[", "value")), ]

write.csv(glm_error_parms, "bign_glm_error_parms.csv")

results1_drop = results1[is.na(sapply(results1, "[", "value"))==F]

parms_drop = parms[is.na(sapply(results1, "[", "value"))==F, ]

glm_res = ldply(results1_drop, "[[", "value")

glm_res$warn = ifelse(is.na(sapply(results1_drop,

"[[", "warning")), FALSE, TRUE)
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glm_out = data.frame(parms_drop, glm_res)

write.csv(glm_out, "bign_glm_out.csv")

# glm.int

glm.int_error_parms = parms[is.na(sapply(results4, "[", "value")), ]

write.csv(glm.int_error_parms, "bign_glmint_error_parms.csv")

results4_drop = results4[is.na(sapply(results4, "[", "value"))==F]

parms_drop = parms[is.na(sapply(results4, "[", "value"))==F, ]

glm.int_res = ldply(results4_drop, "[[", "value")

glm.int_res$warn = ifelse(is.na(sapply(results4_drop,

"[[", "warning")), FALSE, TRUE)

glm.int_out = data.frame(parms_drop, glm.int_res)

write.csv(glm.int_out, "bign_glmint_out.csv")

# glmer

glmer_error_parms = parms[is.na(sapply(results2, "[", "value")), ]

write.csv(glmer_error_parms, "bign_glmer_error_parms.csv")

results2_drop = results2[is.na(sapply(results2, "[", "value"))==F]

parms_drop = parms[is.na(sapply(results2, "[", "value"))==F, ]

glmer1_res = ldply(results2_drop, "[[", "value")

glmer1_res$warn = ifelse(is.na(sapply(results2_drop, "[[", "warning")), FALSE, TRUE)

glmer1_out = data.frame(parms_drop, glmer1_res)

write.csv(glmer1_out, "bign_glmer1_out.csv")

#clogit

clogit_error_parms = parms[is.na(sapply(results3, "[", "value")), ]

write.csv(clogit_error_parms, "bign_clogit_error_parms.csv")

results3_drop = results3[is.na(sapply(results3, "[", "value"))==F]

parms_drop3 = parms[is.na(sapply(results3, "[", "value"))==F,]

clogit_res = ldply(results3_drop, "[[", "value")

clogit_res$warn = ifelse(is.na(sapply(results3_drop,

"[[", "warning")), FALSE, TRUE)

clogit_out = data.frame(parms_drop3, clogit_res)

write.csv(clogit_out, "bign_clogit_out.csv")
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appendix c

Supplementary Information to Chapter 3

simulation results for n = 100

Table c .1 : Estimated bias and Monte Carlo standard errors estimated from
simulations with n = 100. The model included three slope parameters (βp).
Simulations varied the number of cases (c), the ratio of cases to controls (r), and
the magnitude of the variance of the individual-specific random effect (σα). Models
used were the prospective logistic model (PLM), stratified case-control model (SCC),
marginal logistic model (MLM), and the conditional logistic model (CLM). Empty
cells indicate complete convergence failure for the given model and simulation
parameter values. Superscripts indicate the exponents of scientific notation.

c r βp σα PLM SE SCC SE MLM SE CLM SE

1 0.1 1 1.0 −7.3−2 1.3−2 0.53 2.7−2 −7.3−2 1.3−2 3.9−2 1.8−2

1 0.1 1 2.0 −2.4−1 1.2−2 0.55 2.5−2 −2.3−1 1.3−2 5.2−2 1.7−2

1 0.1 2 0.1 4.4−2 1.9−2 1.07 3.5−2 4.4−2 1.9−2 9.5−2 2.7−2

1 0.1 2 1.0 −1.6−1 1.7−2 1.02 3.6−2 −1.6−1 1.7−2 5.5−2 2.5−2

1 0.1 2 2.0 −4.7−1 1.5−2 1.09 3.5−2 −4.5−1 1.5−2 8.3−2 2.2−2

1 0.1 3 0.1 3.9−2 2.4−2 1.56 4.9−2 3.9−2 2.4−2 1.0−1 3.2−2

1 0.1 3 1.0 −2.2−1 2.1−2 1.57 5.1−2 −2.2−1 2.1−2 1.2−1 3.4−2

1 0.1 3 2.0 −7.1−1 1.7−2 1.63 4.8−2 −6.8−1 1.8−2 1.3−1 2.9−2

1 0.2 1 0.1 2.5−2 1.6−2 0.65 3.4−2 2.5−2 1.6−2 8.2−2 2.3−2

1 0.2 1 1.0 −6.7−2 1.4−2 0.67 3.3−2 −6.7−2 1.4−2 6.0−2 2.3−2

1 0.2 1 2.0 −2.7−1 1.4−2 0.57 3.7−2 −2.7−1 1.4−2 2.0−3 2.4−2

1 0.2 2 0.1 5.2−2 2.1−2 1.37 4.7−2 5.2−2 2.1−2 1.6−1 3.3−2

1 0.2 2 1.0 −1.6−1 1.9−2 1.33 4.4−2 −1.6−1 1.9−2 1.3−1 3.6−2

1 0.2 2 2.0 −4.8−1 1.6−2 1.30 4.7−2 −4.8−1 1.7−2 8.1−2 3.0−2

1 0.2 3 0.1 7.9−2 2.9−2 2.08 7.3−2 7.9−2 2.9−2 2.6−1 4.7−2

1 0.2 3 1.0 −2.0−1 2.4−2 2.06 5.9−2 −2.0−1 2.4−2 2.1−1 4.4−2

1 0.2 3 2.0 −7.2−1 2.1−2 1.93 6.6−2 −7.2−1 2.2−2 1.3−1 4.4−2

1 0.5 1 0.1 4.0−2 2.3−2 0.80 5.7−2 4.0−2 2.3−2 1.6−1 5.4−2
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Table c.1 continued

1 0.1 1 0.1 2.9−2 1.4−2 0.54 2.6−2 2.9−2 1.4−2 4.2−2 1.8−2

1 0.5 1 1.0 −6.6−2 1.8−2 0.82 5.6−2 −6.6−2 1.8−2 1.8−1 4.9−2

1 0.5 1 2.0 −2.4−1 1.6−2 0.74 5.5−2 −2.4−1 1.6−2 2.5−1 7.7−2

1 0.5 2 0.1 6.0−2 2.7−2 1.59 7.1−2 6.0−2 2.7−2 2.5−1 6.3−2

1 0.5 2 1.0 −1.1−1 2.4−2 1.72 7.5−2 −1.1−1 2.4−2 3.3−1 7.0−2

1 0.5 2 2.0 −4.6−1 1.8−2 1.55 6.1−2 −4.6−1 1.8−2 5.1−1 1.6−1

1 0.5 3 0.1 1.1−1 3.8−2 2.51 9.1−2 1.1−1 3.8−2 4.7−1 1.0−1

1 0.5 3 1.0 −1.9−1 2.7−2 2.56 7.8−2 −1.9−1 2.7−2 4.6−1 9.1−2

1 0.5 3 2.0 −7.0−1 2.3−2 2.37 7.8−2 −7.0−1 2.3−2 7.6−1 2.1−1

2 0.1 1 0.1 1.1−2 9.4−3 0.27 1.3−2 1.1−2 9.4−3 2.1−2 1.0−2

2 0.1 1 1.0 −7.7−2 8.4−3 0.26 1.3−2 −7.6−2 8.4−3 1.8−2 9.4−3

2 0.1 1 2.0 −2.5−1 8.8−3 0.26 1.5−2 −1.4−1 1.0−2 7.8−3 1.1−2

2 0.1 2 0.1 4.1−2 1.2−2 0.57 2.0−2 4.1−2 1.2−2 5.7−2 1.4−2

2 0.1 2 1.0 −1.7−1 1.1−2 0.51 2.1−2 −1.7−1 1.2−2 1.5−2 1.5−2

2 0.1 2 2.0 −4.7−1 9.2−3 0.52 2.0−2 −2.5−1 1.3−2 1.7−2 1.4−2

2 0.1 3 0.1 5.5−2 1.5−2 0.82 2.5−2 5.5−2 1.5−2 7.1−2 1.6−2

2 0.1 3 1.0 −2.6−1 1.5−2 0.76 2.6−2 −2.5−1 1.5−2 2.7−2 1.8−2

2 0.1 3 2.0 −7.1−1 1.2−2 0.77 2.8−2 −3.8−1 1.8−2 3.1−2 1.9−2

2 0.2 1 0.1 1.6−2 1.1−2 0.38 1.8−2 1.6−2 1.1−2 2.0−2 1.2−2

2 0.2 1 1.0 −7.0−2 9.7−3 0.38 1.7−2 −7.0−2 9.7−3 2.8−2 1.2−2

2 0.2 1 2.0 −2.3−1 9.6−3 0.39 1.8−2 −1.4−1 1.1−2 2.9−2 1.2−2

2 0.2 2 0.1 1.1−2 1.6−2 0.73 3.0−2 1.1−2 1.6−2 2.3−2 1.9−2

2 0.2 2 1.0 −1.4−1 1.3−2 0.75 2.6−2 −1.4−1 1.3−2 4.0−2 1.8−2

2 0.2 2 2.0 −4.7−1 1.1−2 0.80 2.8−2 −3.0−1 1.5−2 6.4−2 1.8−2

2 0.2 3 0.1 3.7−2 2.0−2 1.12 3.7−2 3.7−2 2.0−2 5.4−2 2.2−2

2 0.2 3 1.0 −2.4−1 1.7−2 1.10 3.7−2 −2.4−1 1.7−2 4.8−2 2.4−2

2 0.2 3 2.0 −7.2−1 1.3−2 1.17 3.6−2 −4.6−1 1.8−2 7.7−2 2.2−2

2 0.5 1 0.1 8.1−4 1.4−2 0.58 3.1−2 8.1−4 1.4−2 2.3−2 1.9−2

2 0.5 1 1.0 −6.5−2 1.4−2 0.65 3.1−2 −6.4−2 1.4−2 6.8−2 1.9−2

2 0.5 1 2.0 −2.3−1 1.1−2 0.64 2.7−2 −2.0−1 1.3−2 6.4−2 2.0−2

2 0.5 2 0.1 2.3−2 1.8−2 1.18 3.9−2 2.3−2 1.8−2 6.5−2 2.4−2

2 0.5 2 1.0 −1.2−1 1.8−2 1.27 4.4−2 −1.2−1 1.8−2 1.1−1 2.7−2
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Table c.1 continued

1 0.1 1 0.1 2.9−2 1.4−2 0.54 2.6−2 2.9−2 1.4−2 4.2−2 1.8−2

2 0.5 2 2.0 −4.6−1 1.3−2 1.27 4.0−2 −4.0−1 1.5−2 1.1−1 2.4−2

2 0.5 3 0.1 5.1−2 2.4−2 1.84 5.9−2 5.1−2 2.4−2 1.3−1 3.4−2

2 0.5 3 1.0 −2.1−1 2.3−2 1.86 6.2−2 −2.1−1 2.3−2 1.4−1 3.8−2

2 0.5 3 2.0 −7.1−1 1.8−2 1.88 5.3−2 −6.2−1 2.2−2 1.5−1 3.4−2

5 0.1 1 0.1 −1.2−4 5.6−3 0.08 6.3−3 −1.2−4 5.6−3 4.0−3 5.7−3

5 0.1 1 1.0 −7.4−2 5.5−3 0.09 6.7−3 −3.7−2 6.1−3 1.3−2 6.0−3

5 0.1 1 2.0 −2.4−1 5.5−3 0.09 6.2−3 −4.3−2 5.6−3 4.9−3 5.6−3

5 0.1 2 0.1 1.5−2 7.6−3 0.18 9.1−3 1.5−2 7.6−3 2.2−2 8.0−3

5 0.1 2 1.0 −1.6−1 7.9−3 0.17 1.1−2 −8.4−2 9.1−3 1.3−2 9.4−3

5 0.1 2 2.0 −4.7−1 7.8−3 0.17 9.6−3 −8.1−2 8.6−3 1.0−2 8.5−3

5 0.1 3 0.1 2.2−2 9.4−3 0.27 1.2−2 2.2−2 9.4−3 2.9−2 1.0−2

5 0.1 3 1.0 −2.4−1 9.1−3 0.26 1.4−2 −1.3−1 1.1−2 2.3−2 1.2−2

5 0.1 3 2.0 −7.1−1 9.1−3 0.26 1.1−2 −1.3−1 1.0−2 1.6−2 9.8−3

5 0.2 1 0.1 6.1−3 7.5−3 0.12 8.9−3 6.1−3 7.5−3 6.2−3 7.8−3

5 0.2 1 1.0 −8.1−2 6.1−3 0.13 7.6−3 −4.7−2 6.4−3 1.2−2 6.5−3

5 0.2 1 2.0 −2.5−1 5.9−3 0.11 8.6−3 −6.1−2 7.1−3 −6.2−4 7.4−3

5 0.2 2 0.1 5.7−3 9.8−3 0.24 1.2−2 5.7−3 9.8−3 9.4−3 9.8−3

5 0.2 2 1.0 −1.6−1 8.4−3 0.25 1.2−2 −9.7−2 9.6−3 1.8−2 1.0−2

5 0.2 2 2.0 −5.1−1 7.6−3 0.23 1.2−2 −1.2−1 9.7−3 −1.4−3 9.9−3

5 0.2 3 0.1 1.3−2 1.2−2 0.36 1.5−2 1.3−2 1.2−2 1.8−2 1.3−2

5 0.2 3 1.0 −2.5−1 1.1−2 0.36 1.7−2 −1.6−1 1.3−2 1.9−2 1.4−2

5 0.2 3 2.0 −7.6−1 9.5−3 0.35 1.6−2 −1.8−1 1.3−2 5.4−3 1.3−2

5 0.5 1 0.1 1.7−2 8.4−3 0.21 1.1−2 1.7−2 8.4−3 2.0−2 8.4−3

5 0.5 1 1.0 −7.4−2 6.8−3 0.21 1.1−2 −5.8−2 7.1−3 1.8−2 8.7−3

5 0.5 1 2.0 −2.5−1 7.1−3 0.20 1.1−2 −8.3−2 8.3−3 6.0−3 8.6−3

5 0.5 2 0.1 2.9−2 1.1−2 0.42 1.6−2 2.9−2 1.1−2 3.3−2 1.2−2

5 0.5 2 1.0 −1.7−1 1.0−2 0.40 1.7−2 −1.4−1 1.1−2 1.1−2 1.3−2

5 0.5 2 2.0 −5.0−1 8.2−3 0.41 1.5−2 −1.5−1 1.1−2 2.0−2 1.2−2

5 0.5 3 0.1 4.3−2 1.4−2 0.63 2.1−2 4.3−2 1.4−2 4.9−2 1.5−2

5 0.5 3 1.0 −2.5−1 1.3−2 0.61 2.3−2 −2.0−1 1.4−2 3.0−2 1.6−2

5 0.5 3 2.0 −7.5−1 1.1−2 0.61 2.1−2 −2.3−1 1.4−2 2.6−2 1.5−2
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Table c.1 continued

1 0.1 1 0.1 2.9−2 1.4−2 0.54 2.6−2 2.9−2 1.4−2 4.2−2 1.8−2

10 0.1 1 0.1 2.0−3 4.3−3 0.04 4.6−3 2.0−3 4.3−3 2.5−3 4.4−3

10 0.1 1 1.0 −8.3−2 4.2−3 0.04 4.6−3 −1.9−2 4.4−3 3.1−3 4.4−3

10 0.1 1 2.0 −2.4−1 4.4−3 0.04 5.0−3 −2.0−2 4.7−3 1.2−3 4.8−3

10 0.1 2 0.1 2.8−4 5.1−3 0.07 5.4−3 2.8−4 5.1−3 −6.5−4 5.1−3

10 0.1 2 1.0 −1.7−1 5.6−3 0.08 6.4−3 −4.1−2 6.0−3 2.2−3 6.0−3

10 0.1 2 2.0 −4.8−1 5.8−3 0.09 5.4−3 −2.9−2 5.1−3 1.4−2 5.1−3

10 0.1 3 0.1 7.3−4 6.6−3 0.11 7.1−3 7.3−4 6.6−3 −2.6−4 6.6−3

10 0.1 3 1.0 −2.6−1 7.4−3 0.11 8.3−3 −7.0−2 7.7−3 −2.3−3 7.7−3

10 0.1 3 2.0 −7.3−1 8.1−3 0.12 7.8−3 −5.8−2 7.3−3 7.9−3 7.3−3

10 0.2 1 0.1 3.5−3 4.7−3 0.06 5.3−3 3.5−3 4.7−3 5.3−3 4.9−3

10 0.2 1 1.0 −8.4−2 4.2−3 0.06 4.7−3 −2.3−2 4.4−3 5.6−3 4.4−3

10 0.2 1 2.0 −2.5−1 4.5−3 0.05 5.4−3 −2.8−2 5.0−3 −1.2−3 5.1−3

10 0.2 2 0.1 8.3−3 6.7−3 0.11 7.7−3 8.3−3 6.7−3 1.1−2 7.0−3

10 0.2 2 1.0 −1.7−1 5.4−3 0.11 6.6−3 −5.2−2 5.9−3 2.3−3 6.0−3

10 0.2 2 2.0 −4.8−1 6.0−3 0.11 6.9−3 −4.7−2 6.4−3 5.5−3 6.4−3

10 0.2 3 0.1 1.3−2 8.9−3 0.17 1.0−2 1.3−2 8.9−3 1.7−2 9.4−3

10 0.2 3 1.0 −2.7−1 7.1−3 0.16 8.8−3 −8.1−2 7.9−3 1.4−3 8.1−3

10 0.2 3 2.0 −7.3−1 7.5−3 0.16 9.1−3 −7.4−2 8.2−3 6.8−3 8.3−3

10 0.5 1 0.1 −4.5−3 5.8−3 0.08 6.4−3 −4.5−3 5.8−3 −3.8−3 5.8−3

10 0.5 1 1.0 −9.5−2 5.2−3 0.08 6.2−3 −4.4−2 5.4−3 −7.1−3 5.6−3

10 0.5 1 2.0 −2.5−1 4.9−3 0.09 6.1−3 −3.3−2 6.0−3 9.3−3 5.6−3

10 0.5 2 0.1 1.2−2 7.0−3 0.18 8.1−3 1.2−2 7.0−3 1.4−2 7.1−3

10 0.5 2 1.0 −1.7−1 7.2−3 0.18 8.8−3 −6.3−2 7.6−3 1.3−2 7.7−3

10 0.5 2 2.0 −5.0−1 6.6−3 0.18 9.4−3 −8.1−2 8.9−3 1.2−2 8.3−3

10 0.5 3 0.1 1.5−2 9.0−3 0.27 1.1−2 1.5−2 9.0−3 1.9−2 9.5−3

10 0.5 3 1.0 −2.6−1 9.4−3 0.26 1.2−2 −1.1−1 1.0−2 5.7−3 1.0−2

10 0.5 3 2.0 −7.5−1 9.0−3 0.26 1.2−2 −1.3−1 1.1−2 8.0−3 1.0−2

20 0.1 1 0.1 9.0−4 2.8−3 0.02 2.9−3 9.0−4 2.8−3 2.0−3 2.8−3

20 0.1 1 1.0 −8.8−2 2.8−3 0.02 2.9−3 −1.3−2 2.9−3 −2.5−3 2.9−3

20 0.1 1 2.0 −2.4−1 3.0−3 0.02 3.1−3 −4.3−3 3.0−3 6.0−3 3.0−3

20 0.1 2 0.1 −1.2−4 4.5−3 0.04 4.7−3 −1.2−4 4.5−3 1.6−3 4.5−3
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Table c.1 continued

1 0.1 1 0.1 2.9−2 1.4−2 0.54 2.6−2 2.9−2 1.4−2 4.2−2 1.8−2

20 0.1 2 1.0 −1.7−1 4.0−3 0.04 4.1−3 −2.0−2 4.0−3 4.3−4 3.9−3

20 0.1 2 2.0 −4.7−1 5.1−3 0.04 4.3−3 −1.8−2 4.2−3 1.6−3 4.2−3

20 0.1 3 0.1 2.2−3 5.8−3 0.06 6.0−3 2.2−3 5.8−3 4.1−3 5.8−3

20 0.1 3 1.0 −2.5−1 5.4−3 0.06 5.4−3 −2.6−2 5.3−3 6.2−3 5.3−3

20 0.1 3 2.0 −7.2−1 6.7−3 0.06 5.3−3 −2.9−2 5.1−3 1.9−3 5.1−3

20 0.2 1 0.1 −3.8−3 3.3−3 0.02 3.4−3 −3.8−3 3.3−3 −2.9−3 3.3−3

20 0.2 1 1.0 −8.7−2 3.1−3 0.03 3.2−3 −1.3−2 3.1−3 3.8−4 3.1−3

20 0.2 1 2.0 −2.4−1 3.2−3 0.03 3.6−3 −6.2−3 3.5−3 6.4−3 3.5−3

20 0.2 2 0.1 5.5−3 4.6−3 0.06 4.9−3 5.5−3 4.6−3 7.0−3 4.7−3

20 0.2 2 1.0 −1.6−1 4.3−3 0.06 4.7−3 −1.5−2 4.5−3 1.1−2 4.5−3

20 0.2 2 2.0 −4.9−1 4.9−3 0.06 4.4−3 −1.4−2 4.2−3 1.1−2 4.2−3

20 0.2 3 0.1 1.4−3 5.4−3 0.08 5.8−3 1.4−3 5.4−3 3.3−3 5.5−3

20 0.2 3 1.0 −2.5−1 4.9−3 0.08 5.6−3 −3.4−2 5.3−3 6.3−3 5.3−3

20 0.2 3 2.0 −7.5−1 6.7−3 0.08 6.0−3 −2.9−2 5.7−3 8.2−3 5.7−3

20 0.5 1 0.1 −3.0−3 4.0−3 0.04 4.3−3 −3.0−3 4.0−3 −1.1−3 4.1−3

20 0.5 1 1.0 −9.2−2 4.1−3 0.04 4.8−3 −1.8−2 4.5−3 1.0−3 4.6−3

20 0.5 1 2.0 −2.5−1 3.5−3 0.04 4.5−3 −2.0−2 4.2−3 −2.4−3 4.3−3

20 0.5 2 0.1 −6.3−3 5.4−3 0.07 6.0−3 −6.2−3 5.4−3 −3.8−3 5.6−3

20 0.5 2 1.0 −1.8−1 5.7−3 0.08 6.3−3 −3.4−2 5.9−3 3.0−3 5.9−3

20 0.5 2 2.0 −5.1−1 5.0−3 0.07 6.0−3 −4.6−2 5.6−3 −9.3−3 5.6−3

20 0.5 3 0.1 8.1−4 6.9−3 0.12 7.7−3 8.8−4 6.9−3 4.8−3 7.2−3

20 0.5 3 1.0 −2.7−1 7.2−3 0.12 8.1−3 −4.9−2 7.6−3 7.1−3 7.6−3

20 0.5 3 2.0 −7.6−1 6.7−3 0.11 8.5−3 −6.0−2 7.9−3 −5.3−3 8.0−3

80 0.1 1 0.1 −3.5−3 1.5−3 0.00 1.5−3 −3.5−3 1.5−3 −2.7−3 1.5−3

80 0.1 1 1.0 −8.2−2 1.7−3 0.01 1.5−3 1.1−3 1.5−3 −1.7−4 2.6−3

80 0.1 1 2.0 −2.4−1 2.1−3 0.00 1.3−3 −2.7−3 1.3−3

80 0.1 2 0.1 −2.2−3 2.0−3 0.01 2.0−3 −2.2−3 2.0−3 −3.2−4 2.0−3

80 0.1 2 1.0 −1.7−1 2.6−3 0.01 2.0−3 −3.8−3 2.0−3 −4.3−3 3.4−3

80 0.1 2 2.0 −4.8−1 4.0−3 0.01 2.1−3 −6.7−3 2.1−3

80 0.1 3 0.1 −2.8−3 2.6−3 0.01 2.6−3 −2.8−3 2.6−3 6.4−5 2.6−3

80 0.1 3 1.0 −2.6−1 3.7−3 0.02 2.7−3 −5.2−3 2.6−3 −7.0−3 4.4−3
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Table c.1 continued

1 0.1 1 0.1 2.9−2 1.4−2 0.54 2.6−2 2.9−2 1.4−2 4.2−2 1.8−2

80 0.1 3 2.0 −7.3−1 5.9−3 0.01 2.5−3 −1.0−2 2.5−3

80 0.2 1 0.1 −1.7−3 1.6−3 0.01 1.6−3 −1.7−3 1.6−3 −8.3−4 1.6−3

80 0.2 1 1.0 −8.6−2 1.8−3 0.01 1.7−3 −7.4−4 1.7−3 2.4−3 1.7−3

80 0.2 1 2.0 −2.5−1 2.1−3 0.01 1.6−3 −9.0−5 1.6−3 −6.8−3 5.1−3

80 0.2 2 0.1 −1.1−3 2.1−3 0.01 2.1−3 −1.1−3 2.1−3 8.8−4 2.1−3

80 0.2 2 1.0 −1.7−1 2.8−3 0.01 2.2−3 −4.2−3 2.2−3 1.8−3 2.2−3

80 0.2 2 2.0 −5.0−1 4.0−3 0.02 2.1−3 −2.1−3 2.1−3 −1.9−2 6.9−3

80 0.2 3 0.1 −1.3−3 2.8−3 0.02 2.8−3 −1.3−3 2.8−3 1.6−3 2.8−3

80 0.2 3 1.0 −2.6−1 3.9−3 0.02 2.9−3 −6.2−3 2.9−3 3.1−3 2.9−3

80 0.2 3 2.0 −7.5−1 5.6−3 0.02 2.9−3 −4.8−3 2.9−3 −1.8−2 9.8−3

80 0.5 1 0.1 −7.5−4 1.8−3 0.01 1.9−3 −7.5−4 1.8−3 2.9−4 1.8−3

80 0.5 1 1.0 −9.0−2 2.1−3 0.01 2.1−3 −3.0−3 2.1−3 1.5−3 2.1−3

80 0.5 1 2.0 −2.5−1 2.6−3 0.01 2.0−3 −2.3−3 2.0−3 1.8−3 2.1−3

80 0.5 2 0.1 −4.9−3 2.8−3 0.02 2.9−3 −4.9−3 2.8−3 −2.6−3 2.9−3

80 0.5 2 1.0 −1.8−1 3.2−3 0.02 2.8−3 −5.5−3 2.8−3 3.3−3 2.8−3

80 0.5 2 2.0 −5.0−1 4.1−3 0.02 2.6−3 −1.0−2 2.6−3 −2.8−3 2.6−3

80 0.5 3 0.1 −8.5−3 3.6−3 0.02 3.7−3 −8.5−3 3.6−3 −5.0−3 3.6−3

80 0.5 3 1.0 −2.8−1 4.1−3 0.03 3.7−3 −1.3−2 3.6−3 2.2−5 3.6−3

80 0.5 3 2.0 −7.6−1 5.8−3 0.02 3.7−3 −1.7−2 3.6−3 −5.5−3 3.7−3
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Table c .2 : 95% confidence interval coverage rates for simulations with n = 100.
The model included three slope parameters (βp). Simulations varied the number
of cases (c), the ratio of cases to controls (r), and the magnitude of the variance of
the individual-specific random effect (σα). Models used were the prospective logistic
model (PLM), stratified case-control model (SCC), marginal logistic model (MLM),
and the conditional logistic model (CLM). Empty cells indicate complete convergence
failure for the given model and simulation parameter values. Superscripts indicate
the exponents of scientific notation.

c r βp σα PLM SCC MLM CLM

1 0.1 1 1.0 0.89 0.47 0.89 0.95

1 0.1 1 2.0 0.59 0.45 0.65 0.95

1 0.1 2 0.1 0.95 0.14 0.95 0.95

1 0.1 2 1.0 0.84 0.14 0.84 0.94

1 0.1 2 2.0 0.25 0.10 0.33 0.98

1 0.1 3 0.1 0.97 0.04 0.97 0.97

1 0.1 3 1.0 0.81 0.06 0.81 0.97

1 0.1 3 2.0 0.10 0.04 0.21 0.98

1 0.2 1 0.1 0.95 0.52 0.95 0.97

1 0.2 1 1.0 0.94 0.48 0.94 0.96

1 0.2 1 2.0 0.59 0.56 0.59 0.92

1 0.2 2 0.1 0.96 0.12 0.96 0.98

1 0.2 2 1.0 0.88 0.14 0.88 0.95

1 0.2 2 2.0 0.31 0.17 0.33 0.96

1 0.2 3 0.1 0.95 0.06 0.95 0.97

1 0.2 3 1.0 0.84 0.01 0.84 0.99

1 0.2 3 2.0 0.18 0.05 0.21 0.96

1 0.5 1 0.1 0.93 0.58 0.93 0.96

1 0.5 1 1.0 0.91 0.60 0.91 0.97

1 0.5 1 2.0 0.76 0.65 0.76 0.96

1 0.5 2 0.1 0.96 0.30 0.96 0.97

1 0.5 2 1.0 0.93 0.20 0.93 0.98

1 0.5 2 2.0 0.48 0.23 0.48 0.98

1 0.5 3 0.1 0.94 0.07 0.94 0.96

1 0.5 3 1.0 0.89 0.03 0.89 0.98
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Table c.2 continued

1 0.1 1 0.1 0.95 0.40 0.95 0.93

1 0.5 3 2.0 0.32 0.05 0.32 0.97

2 0.1 1 0.1 0.94 0.55 0.94 0.95

2 0.1 1 1.0 0.91 0.55 0.91 0.97

2 0.1 1 2.0 0.27 0.61 0.74 0.94

2 0.1 2 0.1 0.96 0.21 0.96 0.96

2 0.1 2 1.0 0.72 0.35 0.75 0.93

2 0.1 2 2.0 0.03 0.30 0.59 0.95

2 0.1 3 0.1 0.96 0.13 0.96 1.00

2 0.1 3 1.0 0.63 0.21 0.66 0.95

2 0.1 3 2.0 0.00 0.17 0.51 0.94

2 0.2 1 0.1 0.93 0.47 0.93 0.95

2 0.2 1 1.0 0.93 0.48 0.93 0.94

2 0.2 1 2.0 0.46 0.43 0.80 0.97

2 0.2 2 0.1 0.93 0.22 0.93 0.95

2 0.2 2 1.0 0.81 0.15 0.81 0.96

2 0.2 2 2.0 0.08 0.11 0.61 0.95

2 0.2 3 0.1 0.94 0.09 0.94 0.96

2 0.2 3 1.0 0.71 0.12 0.71 0.94

2 0.2 3 2.0 0.03 0.07 0.46 0.96

2 0.5 1 0.1 0.94 0.41 0.94 0.93

2 0.5 1 1.0 0.90 0.35 0.90 0.94

2 0.5 1 2.0 0.51 0.31 0.62 0.93

2 0.5 2 0.1 0.96 0.07 0.96 0.96

2 0.5 2 1.0 0.85 0.10 0.86 0.95

2 0.5 2 2.0 0.19 0.07 0.43 0.98

2 0.5 3 0.1 0.95 0.03 0.95 0.97

2 0.5 3 1.0 0.78 0.05 0.78 0.91

2 0.5 3 2.0 0.09 0.02 0.34 0.98

5 0.1 1 0.1 0.95 0.81 0.95 0.94

5 0.1 1 1.0 0.83 0.81 0.90 0.95

5 0.1 1 2.0 0.03 0.85 0.91 0.96
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Table c.2 continued

1 0.1 1 0.1 0.95 0.40 0.95 0.93

5 0.1 2 0.1 0.96 0.65 0.96 0.95

5 0.1 2 1.0 0.55 0.59 0.79 0.93

5 0.1 2 2.0 0.00 0.64 0.83 0.95

5 0.1 3 0.1 0.96 0.49 0.96 0.95

5 0.1 3 1.0 0.39 0.52 0.77 0.91

5 0.1 3 2.0 0.00 0.55 0.82 0.97

5 0.2 1 0.1 0.92 0.74 0.92 0.93

5 0.2 1 1.0 0.79 0.70 0.89 0.97

5 0.2 1 2.0 0.07 0.72 0.87 0.96

5 0.2 2 0.1 0.92 0.56 0.92 0.96

5 0.2 2 1.0 0.63 0.54 0.78 0.95

5 0.2 2 2.0 0.00 0.62 0.79 0.95

5 0.2 3 0.1 0.96 0.39 0.96 0.94

5 0.2 3 1.0 0.49 0.43 0.73 0.95

5 0.2 3 2.0 0.00 0.49 0.71 0.93

5 0.5 1 0.1 0.96 0.57 0.96 0.94

5 0.5 1 1.0 0.85 0.59 0.91 0.94

5 0.5 1 2.0 0.13 0.61 0.83 0.97

5 0.5 2 0.1 0.97 0.33 0.97 0.94

5 0.5 2 1.0 0.67 0.40 0.79 0.93

5 0.5 2 2.0 0.00 0.38 0.80 0.96

5 0.5 3 0.1 0.95 0.21 0.95 0.97

5 0.5 3 1.0 0.55 0.19 0.75 0.93

5 0.5 3 2.0 0.00 0.23 0.75 0.98

10 0.1 1 0.1 0.96 0.87 0.96 0.94

10 0.1 1 1.0 0.57 0.88 0.91 0.93

10 0.1 1 2.0 0.01 0.85 0.91 0.91

10 0.1 2 0.1 0.99 0.83 0.99 0.99

10 0.1 2 1.0 0.27 0.79 0.89 0.94

10 0.1 2 2.0 0.00 0.79 0.93 0.98

10 0.1 3 0.1 0.97 0.79 0.97 0.96
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Table c.2 continued

1 0.1 1 0.1 0.95 0.40 0.95 0.93

10 0.1 3 1.0 0.15 0.78 0.83 0.95

10 0.1 3 2.0 0.00 0.77 0.91 0.95

10 0.2 1 0.1 0.96 0.84 0.96 0.93

10 0.2 1 1.0 0.67 0.88 0.93 0.94

10 0.2 1 2.0 0.00 0.83 0.91 0.92

10 0.2 2 0.1 0.93 0.73 0.93 0.94

10 0.2 2 1.0 0.33 0.79 0.93 0.98

10 0.2 2 2.0 0.00 0.76 0.91 0.97

10 0.2 3 0.1 0.93 0.69 0.93 0.93

10 0.2 3 1.0 0.17 0.69 0.89 0.97

10 0.2 3 2.0 0.00 0.73 0.91 0.95

10 0.5 1 0.1 0.95 0.83 0.95 0.95

10 0.5 1 1.0 0.67 0.85 0.91 0.95

10 0.5 1 2.0 0.03 0.77 0.93 0.97

10 0.5 2 0.1 0.97 0.65 0.97 0.97

10 0.5 2 1.0 0.53 0.64 0.93 0.96

10 0.5 2 2.0 0.00 0.62 0.89 0.94

10 0.5 3 0.1 0.97 0.49 0.97 0.96

10 0.5 3 1.0 0.33 0.58 0.88 0.95

10 0.5 3 2.0 0.00 0.54 0.83 0.95

20 0.1 1 0.1 0.97 0.92 0.97 0.97

20 0.1 1 1.0 0.28 0.91 0.95 0.94

20 0.1 1 2.0 0.00 0.89 0.95 0.93

20 0.1 2 0.1 0.89 0.86 0.89 0.89

20 0.1 2 1.0 0.05 0.89 0.91 0.95

20 0.1 2 2.0 0.00 0.87 0.93 0.95

20 0.1 3 0.1 0.91 0.85 0.91 0.91

20 0.1 3 1.0 0.01 0.84 0.90 0.93

20 0.1 3 2.0 0.00 0.86 0.91 0.95

20 0.2 1 0.1 0.96 0.95 0.96 0.97

20 0.2 1 1.0 0.40 0.94 0.95 0.97
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Table c.2 continued

1 0.1 1 0.1 0.95 0.40 0.95 0.93

20 0.2 1 2.0 0.00 0.85 0.97 0.97

20 0.2 2 0.1 0.93 0.83 0.93 0.94

20 0.2 2 1.0 0.13 0.81 0.95 0.97

20 0.2 2 2.0 0.00 0.85 0.95 0.97

20 0.2 3 0.1 0.97 0.84 0.97 0.97

20 0.2 3 1.0 0.01 0.83 0.96 0.97

20 0.2 3 2.0 0.00 0.82 0.93 0.94

20 0.5 1 0.1 0.95 0.87 0.95 0.95

20 0.5 1 1.0 0.51 0.83 0.91 0.91

20 0.5 1 2.0 0.00 0.89 0.91 0.94

20 0.5 2 0.1 0.96 0.84 0.96 0.95

20 0.5 2 1.0 0.21 0.76 0.93 0.95

20 0.5 2 2.0 0.00 0.83 0.89 0.93

20 0.5 3 0.1 0.96 0.77 0.96 0.97

20 0.5 3 1.0 0.11 0.72 0.89 0.95

20 0.5 3 2.0 0.00 0.75 0.89 0.90

80 0.1 1 0.1 0.97 0.97 0.97 0.98

80 0.1 1 1.0 0.02 0.92 0.96 0.96

80 0.1 1 2.0 0.00 0.99 0.98

80 0.1 2 0.1 0.95 0.95 0.95 0.95

80 0.1 2 1.0 0.00 0.93 0.95 0.96

80 0.1 2 2.0 0.00 0.93 0.94

80 0.1 3 0.1 0.93 0.92 0.93 0.93

80 0.1 3 1.0 0.00 0.93 0.93 0.92

80 0.1 3 2.0 0.00 0.95 0.93

80 0.2 1 0.1 0.97 0.95 0.97 0.99

80 0.2 1 1.0 0.00 0.92 0.93 0.94

80 0.2 1 2.0 0.00 0.96 0.96 1.00

80 0.2 2 0.1 0.95 0.96 0.95 0.95

80 0.2 2 1.0 0.00 0.96 0.95 0.95

80 0.2 2 2.0 0.00 0.93 0.98 1.00
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Table c.2 continued

1 0.1 1 0.1 0.95 0.40 0.95 0.93

80 0.2 3 0.1 0.95 0.93 0.95 0.96

80 0.2 3 1.0 0.00 0.91 0.96 0.97

80 0.2 3 2.0 0.00 0.93 0.94 1.00

80 0.5 1 0.1 0.97 0.95 0.97 0.97

80 0.5 1 1.0 0.05 0.92 0.95 0.94

80 0.5 1 2.0 0.00 0.93 0.95 0.95

80 0.5 2 0.1 0.97 0.90 0.97 0.95

80 0.5 2 1.0 0.00 0.90 0.93 0.93

80 0.5 2 2.0 0.00 0.93 0.95 0.97

80 0.5 3 0.1 0.94 0.93 0.94 0.97

80 0.5 3 1.0 0.00 0.89 0.94 0.96

80 0.5 3 2.0 0.00 0.93 0.93 0.95



67

simulation results for n = 30

Table c .3 : Estimated bias and Monte Carlo standard errors estimated from
simulations with n = 30. The model included three slope parameters (βp).
Simulations varied the number of cases (c), the ratio of cases to controls (r),
and the magnitude of the variance of the individual-specific random effect (σα).
Methods used were the prospective logistic model (PLM), stratified case-control
model (SCC), marginal logistic model (MLM), and the conditional logistic model
(CLM). Superscripts indicate the exponents of scientific notation.

c r βp σα PLM SE SCC SE MLM SE CLM SE

1 0.1 1 1.0 −3.8−2 2.5−2 0.42 4.4−2 −3.6−2 2.5−2 1.0−1 4.0−2

1 0.1 1 2.0 −1.8−1 2.4−2 0.52 4.7−2 −1.6−1 2.5−2 1.8−1 4.2−2

1 0.1 2 0.1 1.7−1 3.5−2 1.12 6.3−2 1.8−1 3.7−2 4.4−1 7.5−2

1 0.1 2 1.0 −5.4−2 3.6−2 1.00 6.2−2 −5.0−2 3.6−2 3.5−1 6.5−2

1 0.1 2 2.0 −3.6−1 3.0−2 1.00 6.1−2 −3.2−1 3.3−2 3.5−1 6.9−2

1 0.1 3 0.1 2.6−1 4.5−2 1.69 8.4−2 2.6−1 4.6−2 7.1−1 1.1−1

1 0.1 3 1.0 −7.3−2 4.6−2 1.48 8.6−2 −6.6−2 4.7−2 4.8−1 8.7−2

1 0.1 3 2.0 −5.7−1 3.5−2 1.44 8.3−2 −5.1−1 4.2−2 5.1−1 9.8−2

1 0.2 1 0.1 7.8−2 3.5−2 0.71 7.2−2 7.9−2 3.5−2 5.8−1 1.6−1

1 0.2 1 1.0 1.3−2 3.2−2 0.60 6.4−2 1.8−2 3.3−2 2.6−1 7.9−2

1 0.2 1 2.0 −1.8−1 2.4−2 0.71 6.5−2 −1.7−1 2.4−2 2.5−1 5.3−2

1 0.2 2 0.1 1.9−1 4.7−2 1.26 9.3−2 2.0−1 4.8−2 2.10 9.8−1

1 0.2 2 1.0 −3.3−2 4.0−2 1.14 8.2−2 −2.4−2 4.2−2 5.2−1 1.4−1

1 0.2 2 2.0 −3.5−1 2.9−2 1.32 7.8−2 −3.3−1 3.0−2 5.4−1 9.1−2

1 0.2 3 0.1 2.7−1 5.7−2 1.97 1.1−1 2.8−1 5.8−2 2.60 1.10

1 0.2 3 1.0 −9.4−3 5.1−2 1.87 1.0−1 5.5−3 5.6−2 7.7−1 1.8−1

1 0.2 3 2.0 −5.0−1 3.8−2 2.01 1.2−1 −4.4−1 4.2−2 9.6−1 1.6−1

1 0.5 1 0.1 1.9−1 4.3−2 1.00 1.5−1 2.8−1 1.1−1 1.40 8.2−1

1 0.5 1 1.0 1.1−1 4.9−2 0.73 1.1−1 2.5−1 1.3−1 5.3−1 1.7−1

1 0.5 1 2.0 −8.1−2 3.8−2 0.61 1.2−1 5.0−1 3.3−1 2.6−1 1.4−1

1 0.5 2 0.1 3.6−1 6.5−2 1.62 1.6−1 4.5−1 1.3−1 2.10 1.20

1 0.5 2 1.0 1.7−1 5.9−2 1.66 1.5−1 4.0−1 2.2−1 1.00 2.2−1

1 0.5 2 2.0 −1.8−1 5.8−2 1.32 1.4−1 9.5−1 5.8−1 8.7−1 2.5−1

1 0.5 3 0.1 5.1−1 9.1−2 2.56 2.3−1 6.5−1 1.9−1 2.80 1.50
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Table c.3 continued

1 0.1 1 0.1 1.0−1 2.8−2 0.57 4.7−2 1.1−1 2.9−2 3.0−1 5.5−2

1 0.5 3 1.0 2.7−1 8.2−2 2.34 1.7−1 6.2−1 3.4−1 1.40 3.2−1

1 0.5 3 2.0 −2.9−1 7.0−2 2.32 1.9−1 1.50 1.00 1.40 3.2−1

2 0.1 1 0.1 3.7−2 1.7−2 0.30 2.5−2 3.7−2 1.7−2 3.9−2 1.9−2

2 0.1 1 1.0 −3.3−2 1.8−2 0.32 2.7−2 −2.1−2 1.9−2 5.9−2 2.3−2

2 0.1 1 2.0 −2.1−1 1.4−2 0.32 2.8−2 −9.8−2 1.7−2 5.6−2 2.1−2

2 0.1 2 0.1 5.5−2 2.6−2 0.58 4.0−2 5.5−2 2.6−2 7.0−2 2.9−2

2 0.1 2 1.0 −8.8−2 2.4−2 0.60 4.0−2 −5.9−2 2.6−2 9.6−2 3.4−2

2 0.1 2 2.0 −4.1−1 2.0−2 0.63 4.3−2 −1.9−1 2.8−2 1.1−1 3.3−2

2 0.1 3 0.1 9.3−2 3.3−2 0.88 5.1−2 9.3−2 3.3−2 1.2−1 3.7−2

2 0.1 3 1.0 −1.2−1 3.0−2 0.96 5.6−2 −7.3−2 3.4−2 1.8−1 4.4−2

2 0.1 3 2.0 −6.4−1 2.6−2 0.93 6.1−2 −3.0−1 3.8−2 1.5−1 4.4−2

2 0.2 1 0.1 3.2−2 2.0−2 0.44 3.4−2 3.2−2 2.0−2 6.5−2 2.3−2

2 0.2 1 1.0 −5.9−2 1.7−2 0.40 3.0−2 −4.2−2 1.8−2 5.6−2 2.4−2

2 0.2 1 2.0 −2.2−1 1.8−2 0.39 3.4−2 −1.2−1 2.0−2 6.8−2 2.6−2

2 0.2 2 0.1 2.7−2 2.6−2 0.80 4.9−2 2.7−2 2.6−2 7.5−2 3.3−2

2 0.2 2 1.0 −1.0−1 2.4−2 0.88 5.3−2 −7.3−2 2.5−2 1.6−1 3.6−2

2 0.2 2 2.0 −4.3−1 2.7−2 0.81 5.4−2 −2.3−1 3.3−2 1.7−1 4.5−2

2 0.2 3 0.1 7.9−2 3.6−2 1.29 7.2−2 7.9−2 3.6−2 1.7−1 4.6−2

2 0.2 3 1.0 −1.4−1 3.4−2 1.32 7.6−2 −8.7−2 3.8−2 2.4−1 5.4−2

2 0.2 3 2.0 −6.6−1 3.2−2 1.18 7.0−2 −3.8−1 4.2−2 2.4−1 6.0−2

2 0.5 1 0.1 9.2−2 2.3−2 0.68 4.8−2 9.6−2 2.4−2 2.7−1 5.6−2

2 0.5 1 1.0 −1.8−2 2.7−2 0.70 5.1−2 4.4−3 2.9−2 2.3−1 5.8−2

2 0.5 1 2.0 −1.8−1 2.1−2 0.64 6.0−2 −9.1−2 3.5−2 2.3−1 6.1−2

2 0.5 2 0.1 1.7−1 3.7−2 1.29 7.3−2 1.8−1 3.8−2 4.8−1 9.3−2

2 0.5 2 1.0 −1.1−1 3.1−2 1.25 7.2−2 −6.1−2 3.9−2 3.2−1 9.4−2

2 0.5 2 2.0 −3.7−1 2.3−2 1.30 7.2−2 −2.0−1 6.3−2 4.1−1 7.3−2

2 0.5 3 0.1 2.6−1 4.9−2 1.95 8.9−2 2.8−1 5.1−2 7.5−1 1.4−1

2 0.5 3 1.0 −9.4−2 4.6−2 1.98 1.0−1 −2.3−2 5.8−2 5.5−1 1.5−1

2 0.5 3 2.0 −5.9−1 3.0−2 1.94 1.0−1 −3.1−1 9.6−2 6.3−1 1.2−1

5 0.1 1 0.1 1.7−2 1.1−2 0.10 1.2−2 1.7−2 1.1−2 1.4−2 1.1−2

5 0.1 1 1.0 −4.8−2 1.1−2 0.12 1.2−2 −6.8−3 1.1−2 4.0−2 1.1−2
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Table c.3 continued

1 0.1 1 0.1 1.0−1 2.8−2 0.57 4.7−2 1.1−1 2.9−2 3.0−1 5.5−2

5 0.1 1 2.0 −2.4−1 9.5−3 0.07 1.3−2 −5.5−2 1.1−2 −7.3−3 1.2−2

5 0.1 2 0.1 3.6−2 1.5−2 0.20 1.7−2 3.6−2 1.5−2 3.1−2 1.5−2

5 0.1 2 1.0 −1.5−1 1.3−2 0.19 1.6−2 −6.6−2 1.4−2 2.2−2 1.4−2

5 0.1 2 2.0 −4.6−1 1.3−2 0.18 1.7−2 −7.8−2 1.5−2 1.8−2 1.5−2

5 0.1 3 0.1 5.5−2 2.0−2 0.29 2.3−2 5.5−2 2.0−2 4.6−2 2.0−2

5 0.1 3 1.0 −2.1−1 1.7−2 0.30 2.1−2 −8.4−2 1.8−2 5.1−2 1.8−2

5 0.1 3 2.0 −7.0−1 1.7−2 0.25 2.3−2 −1.3−1 2.0−2 6.6−3 2.0−2

5 0.2 1 0.1 −3.6−3 1.3−2 0.12 1.6−2 −2.6−3 1.3−2 8.8−5 1.4−2

5 0.2 1 1.0 −6.6−2 1.1−2 0.14 1.4−2 −3.2−2 1.2−2 2.9−2 1.2−2

5 0.2 1 2.0 −2.2−1 1.1−2 0.16 1.6−2 −2.2−2 1.3−2 4.0−2 1.4−2

5 0.2 2 0.1 4.6−2 1.8−2 0.29 2.5−2 4.8−2 1.8−2 5.2−2 2.1−2

5 0.2 2 1.0 −1.7−1 1.4−2 0.24 2.0−2 −1.0−1 1.6−2 7.3−3 1.7−2

5 0.2 2 2.0 −4.6−1 1.5−2 0.29 2.4−2 −7.6−2 1.9−2 4.7−2 2.0−2

5 0.2 3 0.1 4.6−2 2.2−2 0.42 3.0−2 4.9−2 2.2−2 6.2−2 2.4−2

5 0.2 3 1.0 −2.4−1 1.9−2 0.37 2.8−2 −1.5−1 2.2−2 2.1−2 2.3−2

5 0.2 3 2.0 −7.1−1 1.8−2 0.42 3.2−2 −1.3−1 2.5−2 6.5−2 2.6−2

5 0.5 1 0.1 2.9−2 1.6−2 0.24 2.5−2 3.2−2 1.7−2 3.4−2 1.9−2

5 0.5 1 1.0 −7.0−2 1.5−2 0.22 2.2−2 −4.8−2 1.5−2 2.1−2 1.7−2

5 0.5 1 2.0 −2.3−1 1.2−2 0.22 2.0−2 −7.1−2 1.5−2 1.7−2 1.6−2

5 0.5 2 0.1 1.4−2 2.0−2 0.42 3.5−2 1.9−2 2.1−2 2.5−2 2.5−2

5 0.5 2 1.0 −9.9−2 2.2−2 0.49 3.5−2 −5.5−2 2.3−2 7.6−2 2.6−2

5 0.5 2 2.0 −4.5−1 1.8−2 0.48 3.7−2 −1.1−1 2.5−2 6.6−2 2.7−2

5 0.5 3 0.1 5.1−2 2.8−2 0.67 4.8−2 5.9−2 2.9−2 6.8−2 3.4−2

5 0.5 3 1.0 −1.7−1 2.5−2 0.71 4.5−2 −1.0−1 2.7−2 9.8−2 3.2−2

5 0.5 3 2.0 −6.8−1 2.2−2 0.73 5.1−2 −1.7−1 3.5−2 1.0−1 3.6−2

10 0.1 1 0.1 1.6−2 8.1−3 0.05 8.4−3 1.6−2 8.1−3 1.5−2 8.0−3

10 0.1 1 1.0 −8.3−2 7.4−3 0.04 7.8−3 −2.3−2 7.3−3 −1.2−3 7.5−3

10 0.1 1 2.0 −2.4−1 8.0−3 0.04 8.3−3 −2.2−2 7.9−3 −2.9−4 7.9−3

10 0.1 2 0.1 2.3−3 1.1−2 0.08 1.1−2 2.4−3 1.1−2 2.8−3 1.1−2

10 0.1 2 1.0 −1.5−1 1.0−2 0.09 1.1−2 −3.0−2 9.9−3 1.2−2 1.0−2

10 0.1 2 2.0 −4.5−1 1.0−2 0.10 1.2−2 −2.2−2 1.1−2 2.2−2 1.1−2
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Table c.3 continued

1 0.1 1 0.1 1.0−1 2.8−2 0.57 4.7−2 1.1−1 2.9−2 3.0−1 5.5−2

10 0.1 3 0.1 −4.8−3 1.3−2 0.11 1.4−2 −4.8−3 1.3−2 −4.1−3 1.3−2

10 0.1 3 1.0 −2.4−1 1.3−2 0.12 1.3−2 −6.0−2 1.2−2 7.7−3 1.2−2

10 0.1 3 2.0 −6.9−1 1.5−2 0.15 1.5−2 −3.5−2 1.4−2 3.1−2 1.4−2

10 0.2 1 0.1 1.2−2 9.2−3 0.07 9.8−3 1.2−2 9.2−3 1.4−2 9.2−3

10 0.2 1 1.0 −7.1−2 8.5−3 0.08 9.9−3 −8.7−3 9.1−3 2.2−2 9.2−3

10 0.2 1 2.0 −2.3−1 8.6−3 0.07 9.5−3 −1.4−2 9.0−3 1.4−2 8.9−3

10 0.2 2 0.1 2.3−2 1.3−2 0.13 1.4−2 2.3−2 1.3−2 2.4−2 1.3−2

10 0.2 2 1.0 −1.5−1 1.2−2 0.13 1.4−2 −3.1−2 1.3−2 2.4−2 1.3−2

10 0.2 2 2.0 −4.7−1 1.1−2 0.12 1.2−2 −4.4−2 1.1−2 1.2−2 1.1−2

10 0.2 3 0.1 1.9−2 1.6−2 0.18 1.7−2 1.9−2 1.6−2 2.0−2 1.6−2

10 0.2 3 1.0 −2.2−1 1.5−2 0.20 1.8−2 −3.9−2 1.6−2 4.4−2 1.6−2

10 0.2 3 2.0 −7.1−1 1.5−2 0.18 1.6−2 −6.0−2 1.5−2 2.5−2 1.4−2

10 0.5 1 0.1 2.2−2 1.1−2 0.11 1.2−2 2.2−2 1.1−2 2.0−2 1.1−2

10 0.5 1 1.0 −8.5−2 9.9−3 0.09 1.2−2 −3.4−2 1.0−2 2.5−3 1.1−2

10 0.5 1 2.0 −2.4−1 9.9−3 0.09 1.3−2 −4.5−2 1.2−2 1.4−3 1.1−2

10 0.5 2 0.1 3.4−2 1.5−2 0.21 1.8−2 3.4−2 1.5−2 3.7−2 1.6−2

10 0.5 2 1.0 −1.5−1 1.4−2 0.22 1.9−2 −3.9−2 1.6−2 4.4−2 1.6−2

10 0.5 2 2.0 −4.7−1 1.3−2 0.17 1.8−2 −8.4−2 1.6−2 7.3−3 1.6−2

10 0.5 3 0.1 5.1−2 2.1−2 0.31 2.4−2 5.1−2 2.1−2 5.3−2 2.1−2

10 0.5 3 1.0 −2.2−1 1.8−2 0.32 2.5−2 −5.3−2 2.1−2 6.3−2 2.2−2

10 0.5 3 2.0 −7.2−1 1.7−2 0.25 2.3−2 −1.4−1 2.1−2 3.1−3 2.0−2

20 0.1 1 0.1 1.4−2 5.8−3 0.03 5.9−3 1.4−2 5.8−3 1.4−2 5.8−3

20 0.1 1 1.0 −7.5−2 5.6−3 0.03 5.8−3 −1.9−3 5.6−3 8.6−3 5.6−3

20 0.1 1 2.0 −2.3−1 5.2−3 0.02 5.0−3 −1.0−2 4.8−3 −1.8−4 4.9−3

20 0.1 2 0.1 2.9−3 7.7−3 0.04 8.1−3 3.0−3 7.7−3 3.4−3 7.9−3

20 0.1 2 1.0 −1.6−1 7.2−3 0.05 7.3−3 −1.2−2 7.0−3 9.0−3 7.1−3

20 0.1 2 2.0 −4.6−1 8.7−3 0.04 7.8−3 −1.7−2 7.6−3 3.5−3 7.6−3

20 0.1 3 0.1 1.5−2 9.7−3 0.07 1.0−2 1.5−2 9.7−3 1.5−2 9.8−3

20 0.1 3 1.0 −2.4−1 9.5−3 0.06 9.4−3 −2.4−2 9.0−3 9.0−3 9.0−3

20 0.1 3 2.0 −7.1−1 1.2−2 0.06 8.7−3 −2.8−2 8.4−3 3.1−3 8.4−3

20 0.2 1 0.1 8.4−3 5.7−3 0.03 5.8−3 8.4−3 5.7−3 7.2−3 5.6−3
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Table c.3 continued

1 0.1 1 0.1 1.0−1 2.8−2 0.57 4.7−2 1.1−1 2.9−2 3.0−1 5.5−2

20 0.2 1 1.0 −8.8−2 6.5−3 0.03 6.6−3 −1.3−2 6.4−3 2.4−4 6.4−3

20 0.2 1 2.0 −2.4−1 6.0−3 0.03 6.1−3 −4.9−3 5.8−3 7.8−3 5.9−3

20 0.2 2 0.1 1.2−2 7.2−3 0.06 7.7−3 1.3−2 7.2−3 1.3−2 7.4−3

20 0.2 2 1.0 −1.7−1 7.7−3 0.06 8.0−3 −1.8−2 7.6−3 7.9−3 7.6−3

20 0.2 2 2.0 −4.8−1 9.2−3 0.05 8.5−3 −2.0−2 8.2−3 4.5−3 8.2−3

20 0.2 3 0.1 1.5−2 9.9−3 0.09 1.0−2 1.5−2 9.9−3 1.6−2 9.9−3

20 0.2 3 1.0 −2.6−1 1.0−2 0.08 1.1−2 −3.2−2 1.0−2 7.8−3 1.0−2

20 0.2 3 2.0 −7.3−1 1.3−2 0.08 1.1−2 −3.2−2 1.0−2 6.0−3 1.0−2

20 0.5 1 0.1 1.7−3 7.9−3 0.04 8.4−3 1.7−3 7.9−3 8.6−4 8.0−3

20 0.5 1 1.0 −8.8−2 6.8−3 0.04 7.7−3 −1.4−2 7.3−3 4.4−3 7.3−3

20 0.5 1 2.0 −2.5−1 6.5−3 0.05 8.4−3 −1.2−2 8.0−3 7.5−3 8.0−3

20 0.5 2 0.1 4.6−3 9.4−3 0.08 1.0−2 4.6−3 9.4−3 2.6−3 9.4−3

20 0.5 2 1.0 −1.6−1 9.6−3 0.10 1.2−2 −1.5−2 1.1−2 2.1−2 1.1−2

20 0.5 2 2.0 −4.9−1 9.0−3 0.09 1.1−2 −2.5−2 1.0−2 1.1−2 1.0−2

20 0.5 3 0.1 1.1−2 1.4−2 0.13 1.6−2 1.1−2 1.4−2 8.8−3 1.4−2

20 0.5 3 1.0 −2.4−1 1.3−2 0.16 1.6−2 −1.4−2 1.4−2 4.0−2 1.4−2

20 0.5 3 2.0 −7.4−1 1.3−2 0.13 1.4−2 −4.8−2 1.3−2 7.3−3 1.3−2

80 0.1 1 0.1 4.3−3 2.6−3 0.01 2.6−3 4.3−3 2.6−3 5.1−3 2.6−3

80 0.1 1 1.0 −8.2−2 2.8−3 0.00 2.6−3 −5.5−3 2.5−3 −6.3−3 3.2−3

80 0.1 1 2.0 −2.4−1 4.1−3 0.00 2.3−3 −2.3−3 2.3−3 −1.8−2 1.1−2

80 0.1 2 0.1 2.7−3 3.1−3 0.01 3.1−3 2.8−3 3.1−3 4.3−3 3.1−3

80 0.1 2 1.0 −1.6−1 4.3−3 0.01 3.7−3 −7.1−3 3.7−3 −9.5−3 4.2−3

80 0.1 2 2.0 −4.8−1 7.3−3 0.01 3.9−3 −4.4−3 3.9−3 −5.3−2 2.5−2

80 0.1 3 0.1 2.1−3 4.2−3 0.02 4.2−3 2.2−3 4.2−3 4.6−3 4.2−3

80 0.1 3 1.0 −2.4−1 6.2−3 0.01 4.7−3 −8.5−3 4.7−3 −1.2−2 5.3−3

80 0.1 3 2.0 −7.2−1 1.0−2 0.02 4.6−3 −4.6−3 4.5−3 −8.4−2 2.1−2

80 0.2 1 0.1 −3.1−3 3.0−3 0.00 3.1−3 −3.1−3 3.0−3 −2.4−3 3.1−3

80 0.2 1 1.0 −8.4−2 3.6−3 0.01 3.5−3 7.7−4 3.5−3 3.9−3 3.5−3

80 0.2 1 2.0 −2.4−1 4.2−3 0.00 3.1−3 −4.7−3 3.1−3 −1.0−2 4.2−3

80 0.2 2 0.1 −3.4−3 4.2−3 0.01 4.2−3 −3.3−3 4.2−3 −1.9−3 4.2−3

80 0.2 2 1.0 −1.7−1 5.2−3 0.01 4.7−3 −5.8−3 4.6−3 −1.1−3 4.6−3
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Table c.3 continued

1 0.1 1 0.1 1.0−1 2.8−2 0.57 4.7−2 1.1−1 2.9−2 3.0−1 5.5−2

80 0.2 2 2.0 −4.7−1 6.9−3 0.02 4.1−3 3.1−3 4.1−3 −4.3−3 5.9−3

80 0.2 3 0.1 −5.9−3 5.4−3 0.01 5.5−3 −5.8−3 5.4−3 −3.7−3 5.4−3

80 0.2 3 1.0 −2.6−1 6.7−3 0.02 5.6−3 −4.8−3 5.6−3 3.4−3 5.6−3

80 0.2 3 2.0 −7.2−1 1.0−2 0.03 5.4−3 5.5−4 5.3−3 −5.6−3 7.5−3

80 0.5 1 0.1 −1.5−3 3.4−3 0.01 3.5−3 −1.4−3 3.4−3 −5.7−4 3.4−3

80 0.5 1 1.0 −8.7−2 3.9−3 0.01 4.0−3 3.0−4 4.0−3 4.8−3 4.0−3

80 0.5 1 2.0 −2.4−1 4.4−3 0.01 3.5−3 −7.3−3 3.4−3 −3.1−3 3.4−3

80 0.5 2 0.1 −3.1−3 5.3−3 0.02 5.5−3 −2.8−3 5.3−3 −7.2−4 5.4−3

80 0.5 2 1.0 −1.8−1 5.3−3 0.02 5.0−3 −7.3−3 4.9−3 1.3−3 4.9−3

80 0.5 2 2.0 −4.8−1 7.2−3 0.03 5.0−3 1.7−4 4.9−3 8.0−3 4.9−3

80 0.5 3 0.1 −2.7−3 6.7−3 0.03 6.8−3 −2.4−3 6.7−3 1.1−4 6.7−3

80 0.5 3 1.0 −2.6−1 7.0−3 0.04 6.7−3 −4.3−3 6.5−3 8.9−3 6.6−3

80 0.5 3 2.0 −7.2−1 1.1−2 0.03 6.4−3 −6.6−3 6.3−3 6.2−3 6.3−3
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Table c .4 : 95% confidence interval coverage rates for simulations with n = 30.
The model included three slope parameters (βp). Simulations varied the number of
cases (c), the ratio of cases to controls (r), and the magnitude of the variance of the
individual-specific random effect (σα). Methods used were the prospective logistic
model (PLM), stratified case-control model (SCC), marginal logistic model (MLM),
and the conditional logistic model (CLM). Superscripts indicate the exponents of
scientific notation.

c r βp σα PLM SCC MLM CLM

1 0.1 1 1.0 0.95 0.95 0.95 0.97

1 0.1 1 2.0 0.87 0.87 0.88 0.99

1 0.1 2 0.1 0.95 0.73 0.95 0.95

1 0.1 2 1.0 0.91 0.79 0.91 0.97

1 0.1 2 2.0 0.71 0.81 0.73 0.99

1 0.1 3 0.1 0.96 0.64 0.97 0.99

1 0.1 3 1.0 0.89 0.68 0.89 0.97

1 0.1 3 2.0 0.63 0.75 0.66 0.97

1 0.2 1 0.1 0.96 0.87 0.96 0.99

1 0.2 1 1.0 0.93 0.94 0.93 0.95

1 0.2 1 2.0 0.92 0.89 0.94 0.98

1 0.2 2 0.1 0.95 0.83 0.95 0.96

1 0.2 2 1.0 0.94 0.94 0.94 0.96

1 0.2 2 2.0 0.82 0.86 0.84 1.00

1 0.2 3 0.1 0.97 0.78 0.97 0.99

1 0.2 3 1.0 0.95 0.82 0.95 0.99

1 0.2 3 2.0 0.71 0.80 0.74 0.99

1 0.5 1 0.1 0.96 0.95 0.95 0.96

1 0.5 1 1.0 0.93 0.93 0.93 0.98

1 0.5 1 2.0 0.89 0.97 0.86 0.99

1 0.5 2 0.1 0.96 0.98 0.95 0.96

1 0.5 2 1.0 0.99 0.97 0.99 0.98

1 0.5 2 2.0 0.81 0.98 0.78 0.97

1 0.5 3 0.1 0.99 0.98 0.99 0.95

1 0.5 3 1.0 0.98 0.98 0.98 0.98
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Table c.4 continued

1 0.1 1 0.1 0.96 0.86 0.96 0.97

1 0.5 3 2.0 0.80 0.98 0.77 0.96

2 0.1 1 0.1 0.97 0.82 0.97 0.96

2 0.1 1 1.0 0.93 0.83 0.94 0.93

2 0.1 1 2.0 0.77 0.83 0.91 0.95

2 0.1 2 0.1 0.96 0.71 0.96 0.95

2 0.1 2 1.0 0.93 0.72 0.93 0.96

2 0.1 2 2.0 0.51 0.72 0.83 0.95

2 0.1 3 0.1 0.95 0.64 0.95 0.98

2 0.1 3 1.0 0.91 0.64 0.93 0.96

2 0.1 3 2.0 0.37 0.64 0.75 0.95

2 0.2 1 0.1 0.95 0.78 0.95 0.95

2 0.2 1 1.0 0.95 0.85 0.96 0.97

2 0.2 1 2.0 0.77 0.82 0.87 0.98

2 0.2 2 0.1 0.97 0.66 0.97 0.96

2 0.2 2 1.0 0.94 0.67 0.95 0.96

2 0.2 2 2.0 0.51 0.66 0.81 0.94

2 0.2 3 0.1 0.95 0.56 0.95 0.95

2 0.2 3 1.0 0.91 0.52 0.92 0.95

2 0.2 3 2.0 0.40 0.65 0.79 0.93

2 0.5 1 0.1 0.97 0.83 0.97 0.99

2 0.5 1 1.0 0.93 0.79 0.93 0.97

2 0.5 1 2.0 0.88 0.81 0.91 0.98

2 0.5 2 0.1 0.97 0.69 0.97 0.97

2 0.5 2 1.0 0.91 0.71 0.93 0.97

2 0.5 2 2.0 0.74 0.70 0.83 0.97

2 0.5 3 0.1 0.98 0.53 0.98 0.98

2 0.5 3 1.0 0.87 0.55 0.89 0.97

2 0.5 3 2.0 0.63 0.55 0.72 0.98

5 0.1 1 0.1 0.95 0.92 0.95 0.95

5 0.1 1 1.0 0.90 0.89 0.94 0.95

5 0.1 1 2.0 0.42 0.94 0.92 0.96
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Table c.4 continued

1 0.1 1 0.1 0.96 0.86 0.96 0.97

5 0.1 2 0.1 0.96 0.85 0.96 0.98

5 0.1 2 1.0 0.83 0.89 0.92 0.95

5 0.1 2 2.0 0.11 0.90 0.92 0.96

5 0.1 3 0.1 0.94 0.81 0.94 0.96

5 0.1 3 1.0 0.80 0.82 0.93 0.99

5 0.1 3 2.0 0.07 0.86 0.90 0.97

5 0.2 1 0.1 0.95 0.91 0.95 0.95

5 0.2 1 1.0 0.95 0.90 0.94 0.96

5 0.2 1 2.0 0.51 0.86 0.93 0.92

5 0.2 2 0.1 0.94 0.79 0.94 0.91

5 0.2 2 1.0 0.83 0.87 0.90 0.96

5 0.2 2 2.0 0.25 0.79 0.91 0.93

5 0.2 3 0.1 0.95 0.81 0.95 0.95

5 0.2 3 1.0 0.77 0.84 0.90 0.95

5 0.2 3 2.0 0.12 0.75 0.87 0.93

5 0.5 1 0.1 0.94 0.85 0.94 0.94

5 0.5 1 1.0 0.92 0.85 0.94 0.96

5 0.5 1 2.0 0.67 0.87 0.95 0.98

5 0.5 2 0.1 0.97 0.83 0.97 0.95

5 0.5 2 1.0 0.86 0.73 0.88 0.91

5 0.5 2 2.0 0.33 0.74 0.87 0.93

5 0.5 3 0.1 0.95 0.73 0.95 0.96

5 0.5 3 1.0 0.86 0.67 0.90 0.95

5 0.5 3 2.0 0.21 0.73 0.82 0.91

10 0.1 1 0.1 0.94 0.94 0.94 0.95

10 0.1 1 1.0 0.79 0.98 0.95 0.97

10 0.1 1 2.0 0.26 0.92 0.95 0.97

10 0.1 2 0.1 0.95 0.92 0.96 0.95

10 0.1 2 1.0 0.70 0.93 0.95 0.96

10 0.1 2 2.0 0.03 0.89 0.95 0.94

10 0.1 3 0.1 0.94 0.93 0.94 0.94
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Table c.4 continued

1 0.1 1 0.1 0.96 0.86 0.96 0.97

10 0.1 3 1.0 0.61 0.93 0.93 0.95

10 0.1 3 2.0 0.01 0.87 0.93 0.93

10 0.2 1 0.1 0.97 0.91 0.97 0.97

10 0.2 1 1.0 0.85 0.89 0.95 0.94

10 0.2 1 2.0 0.29 0.89 0.95 0.94

10 0.2 2 0.1 0.93 0.86 0.93 0.95

10 0.2 2 1.0 0.72 0.87 0.91 0.93

10 0.2 2 2.0 0.03 0.91 0.95 0.97

10 0.2 3 0.1 0.96 0.85 0.96 0.97

10 0.2 3 1.0 0.72 0.87 0.93 0.95

10 0.2 3 2.0 0.02 0.89 0.93 0.98

10 0.5 1 0.1 0.96 0.87 0.96 0.95

10 0.5 1 1.0 0.87 0.92 0.95 0.96

10 0.5 1 2.0 0.44 0.91 0.89 0.95

10 0.5 2 0.1 0.95 0.83 0.95 0.95

10 0.5 2 1.0 0.80 0.83 0.93 0.93

10 0.5 2 2.0 0.11 0.86 0.89 0.94

10 0.5 3 0.1 0.91 0.79 0.91 0.93

10 0.5 3 1.0 0.79 0.78 0.91 0.92

10 0.5 3 2.0 0.05 0.84 0.88 0.95

20 0.1 1 0.1 0.95 0.91 0.95 0.95

20 0.1 1 1.0 0.76 0.93 0.93 0.93

20 0.1 1 2.0 0.04 0.97 0.96 0.97

20 0.1 2 0.1 0.93 0.93 0.93 0.93

20 0.1 2 1.0 0.53 0.93 0.95 0.97

20 0.1 2 2.0 0.00 0.91 0.94 0.95

20 0.1 3 0.1 0.94 0.93 0.94 0.95

20 0.1 3 1.0 0.37 0.94 0.96 0.96

20 0.1 3 2.0 0.00 0.96 0.97 0.96

20 0.2 1 0.1 0.96 0.97 0.96 0.97

20 0.2 1 1.0 0.72 0.91 0.92 0.93
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Table c.4 continued

1 0.1 1 0.1 0.96 0.86 0.96 0.97

20 0.2 1 2.0 0.07 0.94 0.95 0.95

20 0.2 2 0.1 0.98 0.95 0.98 0.99

20 0.2 2 1.0 0.59 0.95 0.98 0.97

20 0.2 2 2.0 0.01 0.93 0.94 0.96

20 0.2 3 0.1 0.95 0.91 0.95 0.96

20 0.2 3 1.0 0.41 0.92 0.95 0.96

20 0.2 3 2.0 0.00 0.93 0.93 0.97

20 0.5 1 0.1 0.93 0.91 0.93 0.93

20 0.5 1 1.0 0.81 0.94 0.94 0.95

20 0.5 1 2.0 0.13 0.90 0.93 0.95

20 0.5 2 0.1 0.97 0.93 0.97 0.95

20 0.5 2 1.0 0.67 0.89 0.90 0.93

20 0.5 2 2.0 0.01 0.91 0.94 0.95

20 0.5 3 0.1 0.92 0.85 0.92 0.95

20 0.5 3 1.0 0.61 0.86 0.92 0.93

20 0.5 3 2.0 0.00 0.91 0.92 0.96

80 0.1 1 0.1 0.97 0.97 0.97 0.97

80 0.1 1 1.0 0.25 0.95 0.95 0.94

80 0.1 1 2.0 0.00 0.98 0.98 1.00

80 0.1 2 0.1 0.99 0.97 0.99 0.99

80 0.1 2 1.0 0.05 0.95 0.96 0.96

80 0.1 2 2.0 0.00 0.93 0.93 0.75

80 0.1 3 0.1 0.97 0.96 0.97 0.97

80 0.1 3 1.0 0.05 0.94 0.93 0.95

80 0.1 3 2.0 0.00 0.96 0.95 0.75

80 0.2 1 0.1 0.95 0.93 0.95 0.95

80 0.2 1 1.0 0.38 0.89 0.88 0.89

80 0.2 1 2.0 0.00 0.93 0.95 0.96

80 0.2 2 0.1 0.95 0.94 0.95 0.93

80 0.2 2 1.0 0.12 0.91 0.93 0.93

80 0.2 2 2.0 0.00 0.95 0.95 0.93
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Table c.4 continued

1 0.1 1 0.1 0.96 0.86 0.96 0.97

80 0.2 3 0.1 0.95 0.95 0.95 0.95

80 0.2 3 1.0 0.05 0.93 0.93 0.93

80 0.2 3 2.0 0.00 0.94 0.93 0.93

80 0.5 1 0.1 0.95 0.96 0.95 0.95

80 0.5 1 1.0 0.44 0.93 0.94 0.94

80 0.5 1 2.0 0.01 0.95 0.95 0.95

80 0.5 2 0.1 0.93 0.91 0.93 0.93

80 0.5 2 1.0 0.17 0.95 0.95 0.96

80 0.5 2 2.0 0.00 0.93 0.97 0.97

80 0.5 3 0.1 0.95 0.93 0.95 0.95

80 0.5 3 1.0 0.07 0.95 0.93 0.95

80 0.5 3 2.0 0.00 0.95 0.98 0.98
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