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Abstract

Vector Fitting (VF) is one of the most well-known techniques in calculating a

rational approximation based on given frequency responses, and VF has been used in

modeling different electrical systems. This thesis focuses on three main areas. First,

the VF algorithm will be studied in depth regarding its advantages, weaknesses and

strengths. Second, the implementation of the VF algorithm using python scripting

language, and validation of the performance and the functionality of VF in python

through numerical examples; this includes the original VF and the relaxed VF. Third, the

analysis of the stability and the passivity of the results of each numerical example that

is generated by VF. Semi-analytic and cellular method is used to analyze the stability

and passivity of each RLC circuit branch, while the Hamiltonian Matrix method is

used to verify the passivity of the network. Also, one of applications of VF discussed

in this thesis is using VF to approximate poles and residues for Scattering (S-) and

Admittance (Y-) parameters of a two-port network to synthesize the RLC circuit based

on the approximated poles and residues.

The results show that the VF method demonstrates accurate approximation with

very small error between actual frequency response and fitted frequency response. The

relaxed VF (RVF) method produces a more accurate approximation compared to non-

relaxed VF when the values of responses are small. The VF feature to enforce stability

is confirmed and its result is in agreement with the result from stability analysis (i.e.,

the real part of all poles is less than zero). Also, ability of the VF algorithm to detect

unstable systems is investigated and verified. Passivity analysis shows that even though

there might be no passivity at one or more RLRC circuit branches in the network,

the network could still be passive. Finally, the frequency responses of S-parameters of

synthesized equivalent RLC circuits, which are approximated by VF, are well matched

against the given tabulated frequency responses.
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1Chapter 1

Introduction

1.1 Introduction

With the rapid growth in microelectronic systems, multi-port network systems, and

many other high-speed systems, the design becomes more complicated and challenged.

To have an accurate approximation of the system, a good simulation tool or approxi-

mation method is always a benefit in the design process as well as in understanding the

characteristics of the system. And in the designs, frequency dependent effects play a

major role because they impact the performance of the system. Therefore, the accuracy

of a model of a system is very important. These frequency dependent responses can often

be obtained through physical measurement or calculation and present them as discrete

functions of frequency, and this often might not provide a precise system model.

f(s) =
r0 + r1 ∗ s+ r2 ∗ s2 + ...+ rN ∗ sN

p0 + p1 ∗ s+ p2 ∗ s2 + ...+ pN ∗ sN
(1.1)

A better method is to replace the frequency domain responses with rational function

approximation, which is shown in equation - Fitting a ratio of two polynomials to the

obtained data (tabulated data). The rational function approximation is a nonlinear

[1], but it can be rewritten as a linear system Ax=b by multiplying both sides by

the denominator. The convolution can be achieved through a recursively method. This

method is known as the Vector Fitting (VF) method (macromodeling technique) in state

space to approximate the original frequency response f(s). Vector Fitting (VF) [1] is one

of the well-known and excellent techniques in calculating a rational approximation based

on given frequency responses. VF has also been used in modeling different electrical

systems [1, 4, 8, 26, 45].

In the high-speed interconnects, packages, vias, on-chip passive components, trans-
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mission lines, and other high frequency devices, stability and passivity of a system are

very important properties. They go hand in hand when describing the characteristics

of a system. For example, if the subsystem is stable but nonpassive, this might lead to

an unstable system when it connects to other passive components within the system.

Therefore, stability and passivity of the results from VF should be discussed. [2, 51].

And Matlab is been used to implement VF algorithms and it has been widely used.

However, each user has pay for license fees for using Matlab. Python scripting language

is another excellent language script for VF algorithms. Python is simple, easy to learn

and use. The edit test debug cycle is very fast, and low cost. Users can use python script

without cost. According to math.harvard.edu, program development using python is 5-

10 times faster than with C/C++ and 3-5 times faster than using Java. So python is

another good programming language, which can be used for VF algorithm.

This thesis endeavors to focus on three main points: 1) an in depth study of the VF

algorithm and its advantages, weaknesses and strengths; 2) an implementation of the

VF algorithm using python scripting language and validation of the performance and

the functionality of VF in python codes through numerical examples, (and this includes

comparing the results of the original VF and the relaxed VF [1, 4]); and 3) analysis of the

stability and the passivity of the results of each numerical example that is generated by

VF. Semi-Analytic and Cellular method is used to analyze the stability and the passivity

for each RLC branch, and the Hamiltonian Matrix method is used to verify the passivity

of the network. A simple flow diagram is presented and shows the application of VF

combined with RLRC equations in [3] when converting frequency domain of s (scattering)

parameters of a two-port network to a synthesized RLRC equivalent circuit. (i.e. use

VF to approximate poles and residues from frequency responses of s and y parameters,

and use RLRC equations in [3] to determine the value of each R, L, and C based on the

approximated poles and residues from VF, and then use LTSpice software to synthesize

the pi-equivalent circuit for the two-port network).
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Vector Fitting Algorithm

Another way to describe about Vector Fitting is that the Vector Fitting (VF) method

is a robust numerical technique to approximate a model in state space of a system,

which is using poles and residues (rational partial-fraction transfer function), based on

the calculated or measured frequency responses. The form of rational partial-faction

transfer function in state space representation can be seen in equation (2.1). Poles and

residues can be either real, complex conjugate numbers, or both.

The VF method requires using the system identification procedure to approximate

poles and residues, which is the iterative linear Least Square technique [10]. In other

words, the procedure is to replace the approximated poles with an improved set of

poles through the pole relocation technique, which would improve the approximation

iteratively. Once the approximated poles of the system are identified, the residues can

be identified from the approximated poles through linear Least Square technique.

In this chapter, the VF will be explored thoroughly as following: identify initial

poles, stage 1 − pole relocation method, stage 2 − residue identification, pseudo-codes

of VF. Both pole identification and residue identification methods are solved linearly.

Therefore, linear transfer function will be reviewed before pole identification and residue

identification can be described in detail.

2.1 Formulation of Vector Fitting in State Space

Consider a model of a system in equation (1.2) is written in rational transfer function

form below [1].

f(s) =
N∑

n=1

rn

s−an
+ d+ sh (2.1)

Where s = jω, which is a complex frequency. ω is angular frequency. rn, pn, d, h are
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residues, poles, constant term, and linear term, respectively. N is the order of the ap-

proximation of the system. Obviously, the (2.1) is nonlinear due to unknown variables,

and plus, an appears in the denominator. So in order to resolve the rational approxima-

tion method, it is required to introduce another unknown rational transfer function σ(s).

Without σ, Least Square solution might not able to provide a precise approximation [1].

And at very high frequency, the σ(s) becomes very small or approaches zero unity. More

in depth discussion will be discussed held later on in this section.

2.2 Stage 1 - Poles Relocation

In this stage, VF method will resolve the poles, pn, but first, σ(s) and the product

of σ(s)f(s) can be assumed that they can be approximated as rational approximation

functions below in (2.2) and also both f(s) and σ(s)f(s) have a same set of poles [1], [4],

[22].

∣∣∣∣∣∣∣
σ(s)f(s)

σ(s)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑N

n=1
rn

s−p̄n + d+ sh∑N
n=1

r̃n
s−p̄n + 1

∣∣∣∣∣∣∣ (2.2)

Now, we take the 2nd row of the equation (2.2) and multiply it by f(s), and the

equation can be re-arranged [1] such as:

(
N∑

n=1

rn

s−p̄n
+ d+ sh

)
≈

(
N∑

n=1

r̃n

s−p̄n
+ 1

)
f(s) (2.3)

(σf)fit(s) = σfit(s)f(s) (2.4)

Solve for f(s) from equation (2.3)

f(s) ≈
(∑N

n=1
rn

s−p̄n+d+sh
)

(∑N
n=1

r̃n
s−p̄n+1

) (2.5)
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The rational function in (2.3) can be re-written as a fraction as follow,

(σf)fit(s) = h
∏N+1
n=1 s−zn∏N
n=1 s−p̄n

(2.6)

(σ)fit(s) =
∏N
n=1 s−z̄n∏N
n=1 s−p̄n

(2.7)

f(s) =
(σf)fit(s)

(σ)fit(s)
= h

∏N+1
n=1 s−zn∏N
n=1 s−z̄n

(2.8)

Based on equation (2.8), the initial guessed poles or previous set of poles (s− p̄n) of

f(s) has been cancelled out after the division. The new set of poles of f(s) is now the z̄n,

which are the zeros of (σ)fit(s).

Now transform equation (2.5) into a format that would be easier to add into the ma-

trices by multiplying both sides of (2.5) by denumerator of (2.5). f(s) is now transformed

as following.

(
N∑

n=1

rn

s−p̄n
+ d+ sh

)
≈

(
N∑

n=1

r̃n

s−p̄n
+ 1

)
f(s) (2.9)

Expand equation (2.9) into

(
N∑

n=1

rn

s−p̄n
+ d+ sh

)
≈ f(s)

(
N∑

n=1

r̃n

s−p̄n

)
+ f(s) (2.10)

Solve for f(s)

f(s) ≈
( N∑

n=1

rn

s−p̄n
+ d+ sh

)
−
(∑N

n=1
r̃n

s−p̄n

)
f(s) (2.11)

Equation 2.11 can be represented in linear matrix algebra as follow:
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1
s1−p1 · · ·

1
s1−pN

1 s1
−f(s1)
s1−p1 · · · −f(s1)

s1−pN

1
s2−p1 · · ·

1
s2−pN

1 s2
−f(s2)
s2−p1 · · · −f(s2)

s2−pN
...

...
...

...
...

...
...

...

1
sk−p1

· · · 1
sk−pN

1 sk
−f(sk)
sk−p1

· · · −f(sk)
sk−pN





r1

...

rN

d

h

r̃1

...

r̃N



=



f(s1)

f(s2)

...

f(sk−1)

f(sk)


(2.12)

In equation (2.11), there are too many unknown variables rn, pn, d, h, r̃n, and it is

considered as a nonlinear system. VF method wants the equation in linear system form,

which is,

Ax = b (2.13)

The first step in pole identification is providing the guessed starting poles. When

the guessed starting poles, p̄n, are in place, the equation (2.11) now becomes a linear

system with four unknowns, rn, d, h, and r̃n. As mentioned before, f(s) is a set of data

points (tabulated data), which can be obtained either via measurement or calculation.

This set of data points must exceed number of frequency samples (N), which results in

an overdetermined set of equations for Ax=b. The Least Square method can solve this

system without any problem.

The poles of f(s) are the poles of 1/σ(s) or zeros of σ(s) based on previous derivation

in (2.8); so the 1/σ also can be defined as 1/y(t)/u(t), which is u(t)/y(t), where u(t)

is input and y(t) is output. We can replace y(t) with u(t) and u(t) with y(t) in the

following conventional linear system in state space equation (2.14). The linear system

equation in (2.15) is after interchanging output y(t) with input u(t), and vice versa.

Conventional linear system equations can be seen in (2.14), where x’(t)=dx/dt, u(t)
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= input, y(t) = output. The (σ(s)) can be represented as following: A is the diagonal of

poles matrix. C contains residues. B is the column of ones, and D is the unity constant.

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(2.14)

After linear system equation has interchanged input and output, we are going to

solve for y(t) in second equation and plug y(t) into first equation and re-arrange the

equation to match with first equation in (2.14). [18, 19, 20] also show derivation in

similar way [1, 8].

x′(t) = Ax(t) +By(t)

u(t) = Cx(t) +Dy(t)

(2.15)

Solve the 2nd equation in term of y(t)

u(t) = Cx(t) +Dy(t)

u(t)− Cx(t) = Dy(t)

(u(t)− Cx(t))D−1 = y(t)

(2.16)

Now substitute y(t) into first equation of (2.15), and solve for x’(t) as following

x′(t) = Ax(t) +B((u(t)− Cx(t))D−1)

x′(t) = Ax(t) +Bu(t)D−1 −BD−1Cx(t)

x′(t) = (A−BD−1C)x(t) +BD−1u(t)

(2.17)

According appendix A of [1] (how to solve for poles of a linear system transfer func-

tion), the poles of 1/σ are the roots of determinant of equation (2.18), i.e. determinant

can be solved through equation (2.18). A is row vector, NxN matrix, which contains

diag(pn) and C is the row vectors, 1xN matrix, which contains residues. B is the column

vectors of ones, and D is a constant term (assume D is unity in most cases).
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Now the poles can be solved by determining eigenvalues of equation (2.18). If the

given frequency responses are greater than N, then equation is the overdetermined linear

system [1],[4].

det[sI − (A−BD−1C)] (2.18)

Since D is set to unity in this case

pn = eigen(A−BD−1C) = egen(A−BC) (2.19)

Define variables A, C, and B in equations

A =



p̄1 0 0 0 · · · 0

0 p̄2 0 0 · · · 0

· · · . . . · · · 0

· · · . . . · · · 0

· · · 0

0 · · · p̄N



C =

[
r̄1 r̄2 r̄3 · · · r̄N

]

B =



1

1

...

1

1


The poles are identified through results of (2.19). If the error is not within acceptable

range when compare with tabulated set of frequency samples, use the new set of poles as
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the starting poles and repeat the pole identification procedure until the convergence is

achieved. This is also called iteration method. Normally, it takes about 2 to 4 iterations

before it reaches convergence or within acceptable error. In some cases(unstable sys-

tems), the VF might not able to achieve the convergent point. There is more discussion

on this later on.

Keys points in the poles identification procedure:

1. Assume sampled frequency domain responses, f(s) and s, are given, and if number

of data points is greater than N order approximation, equation is overdetermined

linear system. Else, system is undertermined linear system.

2. Initial poles must be guessed (for complex poles, will discuss in later section).

3. (σf)fit(s)/(σ)fit(s) would cause the set of poles cancelled out, and that makes the

system becoming a linear system [1].

4. The poles of f(s) are poles of 1/σ(s) or zero of σ(s).

5. Solve for poles (eigenvalues) through least square method.

2.3 Stage 2 - Residue Identification

In stage 2, the residues will be identified. Technically, the residues can be identified

from stage one, but in order to get the most accurate approximation for the residues,

the newly starting poles from stage 1 should be used in calculating residues in this

stage. Again, looking back to equation (2.1), the poles, pn, has been identified. So

the remaining unknowns are residues (cn), constant term (d), and linear constant (h).

All these parameters are in the matrix [C], which is the column vector. The number

of sampled frequency data points is more than number of unknowns; therefore, this is

the overdetermined linear equation. Least square method is used again to identify these

parameters through equation (2.20), which is linear Ax=b [1], [4].
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1
s1−p1

1
s1−p2 · · ·

1
s−pN 1 s1

1
s2−p1

1
s2−p2 · · ·

1
s−pN 1 s2

...
...

. . .
...

...
...

1
sk−p1

1
sk−p2 · · ·

1
sk−pN 1 sk





r1

r2

...

rN

d

h


=



f(s1)

f(s2)

...

f(sk−1)

f(sk)


(2.20)

Note that data points (tabulated data set) of f(s) are given through either calulcation

or measurement. So now the residues are identified, and the VF method is completed.

Of course, the results might not exactly matched with actual data because the VF

method only provides approximated results, which are close to actual data. If the error

is not within acceptable error or not within error range when compared with actual data

(tabulated data set), the pole identification and residue identification procedure can be

repeated using iteration method. Normally, it might take 2-5 iterations to achieve an

accurate result within error range.

2.4 VF Modification for Complex Poles

When fitting the very smooth function, the initial poles or starting poles can be

guessed real starting poles over equal spaces of frequency. However, for functions with

the resonance peaks, we need to guess starting poles carefully; else, it might take longer

time to get to a convergent point or lead to inaccurate result. Guessing a starting pole

is a critical step in the pole relocation process because if poor starting poles are selected

and the starting poles are real, the linear system might become ill-conditioned and lead

to an inaccurate solution. Second problem is that if poor starting poles are selected,

there could be large variations in σ(s) and σ(s)f(s), and the poor fitting may result.

However, the paper in [1] has addressed the technique for overcoming these problems.

The ill-conditioned problem can be overcome by using the complex starting poles, and
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the poor fitting also can be minimized by using the new poles as starting poles in an

iterative procedure.

One recommendation from the author of VF method [1] in selecting complex starting

poles is the imaginary part β linearly distributed over the interested frequency interval.

The real part, α, should be small about 1/100 of imaginary part. This small real is

sufficient enough to prevent the ill-conditioning problem. Guessing starting poles are

defined as following,

pn = −α + jβ, pn = −α− jβ (2.21)

where

α = β/100 (2.22)

The poles are either real or occurred in form of complex-conjugate pairs. For the

complex poles, the matrix A needs to be reformulated as following when we want to

solve for residues.

A =

Ar

Ai

x =

f r

f i

 (2.23)

The results of residues are now in terms of real terms.

C =

[
rr1 ri1 · · · rrN riN , d, h, r̃1

r r̃1
i · · · r̃rN r̃iN

]
(2.24)

In order to solve for the new set of poles, we need to modify the matrices A, B, C as

sub-matrices as follows.

A =

 pr pi

−pi pr

 (2.25)
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B =

2

0

 (2.26)

C =

[
r̃r r̃i

]
(2.27)

2.5 Relaxed VF Method

Relaxed VF method will provide an accurate approximation for the fitting elements.

On paper [4], the function used in relaxed VF method is called array weight function,

which includes independent elements of f(s) and frequency samples, s. Weight=(1,Ns)

or weight(n,Ns), where n is the number elements to be fitted, and Ns is the number of

frequency samples used in VF. There are three schemes that can be used in the weight

function: 1) No Weight, 2) Strong inverse weight, 3) Weaker inverse weight [1], [4], [22].

Now the weight scheme does not need the inversed weight. That means it assumes

that the original VF method would able to provide the accurate result. Strong inverse

weight is to provide strong weight on elements in f(s), where they are small. The

main reason is to minimize the deviation during fitting computation. Lastly, weaker

inverse weight is often used when response f(s) contains noise. In many cases, when the

elements of f(s) are small and inverse weight is not used, the fitting variables would not

be convergent even high number of iteration is used. These are illustrated in numerical

example sections.

The weighting scheme approaches are presented in the table below [21].
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Table 2.1: RVF Weighting Schemes

Scheme Independent Weighting Common Weighting
1) No Weight weight=ones(Nc,Ns) weight=ones(1,Ns)
2) Strong inverse weight weight=1./(abs(f)) weight=zeros(1,Nx)

for k=1:Ns
weight(1,k)=1/norm(f(:,k))

end
3) Weaker inverse weight weight=1./sqrt(abs(f)) weight=zeros(1,Nx)

for k=1:Ns
weight(1,k)=1/sqrt(norm(f(:,k)))

end

As we will be going through numerous numerical examples in later section, the RVF

method is used, and majority weight function is used with strong inverse weight scheme.
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Python Codes

As mentioned briefly earlier, Python is a programming language, which is very well

known in the computer programing today. Python is simple, easy to learn syntax, and

low cost of program maintenance. It highly supports modules and packages. The edit-

test-debug cycle is very fast, and debugging Python programs is quite easy than most

other programming languages in terms of how the error messages displace for user to

understand. Because Python is easy to learn and has fast debugging, most users feel

productive and efficient when they use Python. Python also consists of an extensive

standard library. This library helps programing in general. When it comes to scientific

computation, Python allows the use of additional packages, such as, Numpy, Scrip, and

Matplotlib. These packages are very useful, powerful, and fast.

3.1 VF Algorithm in Python Language

3.1.1 Introduction

In this section, python codes [23] will be explained briefly in term of how the program is

designed and worked for VF algorithm. The program consists of main function and mul-

tiple other module functions. Module functions include main function, vectfit_step

function, calculate_residues function, vectfit_auto function.

At the end of this section, a simple test is demonstrated on 18th poles system to

ensure the codes are worked correctly, and the result is matched against the result from

the paper [1].
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3.1.2 Main Function

This module represents the scope of the entire program. When the program is ex-

ecuted, it will run all the codes within the main function. In other words, this main

function allows users to block certain codes from being run when the modules are im-

ported.

Once the input data is calculated, this data is sent to vectfit_auto module, and

this modue will return residues, poles, h, and d values. The following remaining codes

[23] in the main function are to plot fitted data and their errors compared to actual f(s).

3.1.3 Vectfit Auto Function

In vectfit_auto function, it receives responses, frequencies, number of itera-

tion from the main function. This data is then passed into vectfit_step function

and calculate_residues function, which will be discussed in detailed in later sec-

tions. And vectfit_step function [23] returns the new set poles of fitted f(s). The

calculate_residues function [23] returns the residues, h value, and d value of the

fitted f(s).

3.1.4 Vectfit Step Function

With the variables (responses, frequency, initial poles) are passed to this module

function from the vectfit_auto, the codes in this vectfit_step approximate the poles

of the fitted f(s). The first part is to determine the initial poles. The second part is the

algorithm for appendix A in paper [1], and the third part is the algorithm of the Appendix

B of paper [1]. The algorithm is identical and equivalent to the Matlab algorithm codes

in original paper, and the python algorithm used in paper [14], [21, 22, 23].
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3.1.5 Calculate Residues Function

Computing residues is part of computing the poles. The codes will compute the

residues based on the fitted poles from calculated previously. The main difference of

codes in this module compared to vectfit_step module is that it does not request

going through iteration or forcing stability. However, it is required to assign right array

values for x, h, and d. This function returns the residues, h, and d after it completed

[21, 22, 23].

3.1.6 Codes Verification for VF with Stable System

The vectfit.py has been explained in previous sections. This section will verify the

codes to make sure it can generate the fitted data and match with the result of the

Matlab codes generated. To do this, we use data from 18th poles system that was

provided in paper [1], which can be seen below, and calculated the f(s) for 100 frequency

samples. These data are used as frequency responses to be fitted by vectfit.py. The

result of vectfit.py should be matched with the given poles-residues and input f(s).
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Table 3.1: Given 18 Poles System

Given Poles Given Residues

-4500 -3000
-41000 -83000
-100 + j5000 -5 + j7000
-100 - j5000 -5 + j7000
-120 + j15000 -20 + j18000
-120 - j15000 -20 - j18000
-3000 + j35000 6000 + j45000
-3000 - j35000 6000 - j45000
-200 + j45000 40 + j60000
-200 - j45000 40 - j60000
-1500 + j45000 90 + j10000
-1500 - j45000 90 - j10000
-500 + j70000 50000 + j80000
-500 - j 70000 50000 - j80000
-1000 + j73000 1000 + j45000
-1000 - j73000 1000 - j45000
-2000 + j90000 -5000 + j92000
-2000 - j90000 -5000 - j92000
d=0.2, h=2E-5

We use the above poles-residues, h, and d to compute 100 frequency responses. These

100 responses along with its respective frequencies are fed to vectfit.py and the results

are showed in figure 3.1. The error is well within the range, which also can be seen in
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figure 3.2. Total time to execute the entire program is 3.49 seconds.
	  	  

	  
	  	  

Figure 3.1: Fitted f(s) from Vecfit.py compared with Actual f(s) of 18 Poles System.

	  	  

	  
	  	  

Figure 3.2: Error between Fitted f(s) from vectfit.py and Actual f(s) of 18 Poles System.

The fitted poles, residues, and zeros are output and stored in the Output.csv file,

which locates in the same directory where the vectfit.py saved, and it is in the format
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similar to the tables below. The program also prints out the Poles, Residues, h, and d.

relaxed vector fitting codes also has been tried to run this data, and it yields the

results similarly as vectfit.py.
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3.1.7 VF Verification for Unstable System

One of the VF features is able to detect unstable system, not converge accurately if

the given model (tabulated data) is unstable. Following is a given tabulated data set

(Insertion loss data of a differential microstrip transmission line), which is known as an

unstable system. This data is simulated by VF to see if VF can converge or not. And
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as you can see in figure 3.3 that VF is able to detect unstable system.

	  

	  
	  Figure 3.3: Fitted f(s) vs. Actual f(s) of an Unstable System.

3.1.8 Conclusion

Based on the result from Output.csv and plots of Actual f(s) versus fitted f(s), the

error is very small and the mrse is very low. The VF program is working as expected.

There will be more numerical examples used to justify functionality of two programs.
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Stability and Passivity

4.1 Introduction

The VF can generate a good approximated rational transfer function representa-

tion based on measured or calculated data, and the transfer function is presented in

terms of poles and residues or poles and zeros. From the approximated rational trans-

fer function, an equivalent circuit or macromodel/netlist can be synthesized through

Spice-compatible. The VF algorithm is written to force the results to be stabilized.

However, how do we know that the results from VF are stable? What is the passivity

of the approximated model? Note that the stability is achieved from VF approximated

macromodel, if even one component of a circuit is nonpassive, it might lead to unstable

system when it is connected to other network within the system. Therefore, passivity is

a critical property for the macromodel circuit.

As mentioned earlier, other contributions of this thesis are to verify that the ap-

proximated models, which are generated by VF algorithm written in python, are stable

as desired. There are two ways to look at to make sure the system is stable or not.

One way is to look at the poles of the transfer function. The second way is to look at

the stability of each branch if the transfer function is written in such a way that each

partial fraction term is in term of admittance (Y), and the approach in paper [3] will

be used to determine the stability of the system per branch. In this thesis, we are going

to look into how to present poles and residues rational TF as a model for an equivalent

RLCG circuit in terms admittance (Y), and the RLCG parameters will be determined.

In order to understand if the approximated model is passive or not, this paper will check

the passivity of the approximated TF model in two ways. One is to look at the passivity

of the TF model by using the passivity verification technique in paper [2], which is to

confirm the value of the Re(Y), and the second way is to verify the passivity of the
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each branch of the synthesized macromodel via approaches provided in paper [3]. This

process might help the user to determine stability and passivity of the results of VF.

Later in this thesis, there are numerical examples presented and discussions on stability

and passivity for each example.

4.2 Formulation

4.2.1 Stability

The stability of a system or a branch within a circuit is defined by bounded input

and bounded output (BIBO). Basically, if the variables are increased without a bound-

ary ended, they are consider unstable, whereas, if the variables are increased within a

boundary over time, then those are considered stable. One simple way to describe the

stability of a system is to look at the poles of the transfer function. The transfer func-

tion is a rational function in the complex variables, s=σ+jω, a ratio of two polynomial

functions [18, 19].

H(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

(4.1)

The transfer function can be rewriten in the poles-zeros TF 4.2 or partial fraction

TF 4.3.

H(s) =
N(s)

D(s)
= K

s− z1)(s− z2) · · · (s− zm−1(s− zm)

(s− p1)(s− p2) · · · (s− pn−1)(s− pn)
(4.2)

H(s) =
N∑

n=1

cn
s− pn

(4.3)

Now looking at each term of the partial fraction TF in time domains by taking

inverse Fourier transfer function, and it yields to equation (4.4). Now if pi > 0, the

(4.4) continues increasing as t approaches ∞, and this means the system is unstable.

While if pi < 0, as t approaches ∞, the y(t) is decayed to 0. In other words, in order

for response y(t) to be stable, the pi must be negative (pi < 0). If pi > 0, the y(t) is
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unstable. When plotting the poles on the s-plane (Laplace-plane) plot, the poles must

be on the left half of the s-plane. Also if the poles are lying on the imaginary axis of the

s-plane, it’s considered an imaginary stable [1], [4], [26].

y(t) = lim
t→∞

N∑
i=1

cie
pit (4.4)

4.2.2 Passivity

The passivity is a critical property of a network or a system. If a macromodel

is nonpassive and it connects to other passive components, it might lead to unstable

system. This section will discuss an existing method of how to verify the passivity of a

network. Assume that the network studied here contains Y-parameters and the data is

given in form of tabulated data. In other words, we use this method to determine the

passivity of the macromodel (approximated TF model), which is generated by VF. A

numerical example in a later section will present more in depth.

There are several ways to determine the passivity of a macromodel: 1) Considered

traditional method, which is based on a frequency sweep of eigenvalues of the real part

of the admittance matrix, Re(Y (jω)); 2) determine based on tabulated data set [9], 3)

based on the eigenvalues of Hamiltonian matrix (M). However, in this paper, method 3

will be used to verify the passivity of the macromodel because methods 1 and 2 depend

on frequency or involved with frequency whereas method 3 does not depend on frequency,

and is easy to compute.

Where A is row vector, NxN matrix, which contains diagonal poles, C is the row

vectors, 1xN matrix, which contains residues. D is an unity constant term, and B is the

column vectors of ones [2], [52].

M =

A−B(D +Dt)−1C B(D +Dt)−1Bt

(−Ct(D +D−t)− 1 −At + C + (D +Dt)−1Bt

 (4.5)
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There are two theorems for passivity verification in using the Hamiltonian matrix

technique. Theorem 1: If the Hamiltonian matrix (M) has no imaginary eigenvalues,

then the state space system (A, B, C, D) is passive. Theorem 2: If jω is an imaginary

eigenvalue corresponding to Hamiltonian Matrix, M [2, 3], then the state space system

is nonpassive.

4.2.3 Stability and Passivity Per RLCG Branch

As mentioned before, the stability of a system or a branch is defined by bounded

input and bounded output (BIBO). Basically, if the variables are increased without a

boundary ended, they are considering unstable. The passivity of a passive system is

where its average power is greater than zero watt (Savg > 0), whereas, a nonpassive

system is where the average power is less than zero Watt (Savg < 0). The equation

of Savg will be presented later in this section. Most formulas in this section have been

derived in [3].

The transfer function can be written in partial fraction form in terms of admittances

and where unit of impedance is ohms and unit of admittance is Siemen [3].

H(s) =
N∑

n=1

cn
s− pn

=
N∑

n=1

Yn = Y1 + · · ·+ YN = YNetwork =
1

Z1

+ · · ·+ 1

ZN

(4.6)

Expanding each term Yn in terms of poles and residues transfer function, it shows

below, where c and p can be real number or complex number:

Y =
c

s− p
(4.7)

Therefore,

Z = Y −1 = −p
c

+
1

c
s (4.8)

For complex poles and residues, sometimes they are presented in pairs of complex

conjugate as showed below [3].
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Y =
N∑

n=1

cn
s− pn

+
c∗n

s− p∗n
=

N∑
n=1

Yn = Y1 + · · ·+ YN = YNetwork =
1

Z1

+ · · ·+ 1

ZN

(4.9)

For the single term Y with a pair complex conjugate, it can be expressed as [3]

Y =
cr + jci

s− (pr + pi)
+

cr − jci
s− (pr − jpi)

Z = Y −1 =
cipi − crpr

2c2
r

+
1

2cr
s+

((
(c2

i + c2
r)p

2
i

2c2
r(cipi + crpr)

)−1

+ s
2c3

r

(c2
i 2 + c2

r)p
2
i

)−1 (4.10)

For real poles and residues, each term Y is a single arbitrary RL branch. The R, L,

and Save are expressed in equations 4.11 - 4.13. And readers want more details how to

derive these equations, please refer to the paper [3].

R = −p
c
, L =

1

c
c =

1

L
p = −R

L
(4.11)

From (4.11), the inverse Fourier transform will yield to this:

y(t) =
sgn(R)

|L|
e−

R
L
tus

(
tsgn

(
R

L

))
(4.12)

SITFRL

avg =
i20R

2
(4.13)

The ITF stands for Impedance Transfer Function, which is mainly driven by Ideal

Current Source (ICS). Now for Admittance Transfer Function (ATF), which is driven by

Ideal Voltage Source (IVS), and its cumulative average power can be seen in equation

(4.14) below and where m is integer number of the cumulative periods [3].

SATFRL

cavg =
LR2v2

0ω0(e
− 2πmR

Lω0 − 1)

2πm(L2ω2
0 +R2)2

+
Rv2

0

2(L2ω2
0 +R2)

(4.14)
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Since R and L of each term Y have been determined, we can synthesize equation 4.9

to a RL equivalent circuit.

	  

Figure 4.1: RL Equivalent Circuit

Each branch of YNetwork, there are four paramatric states that can be defined. From

definitions previously defined, stability and passive of each parametric state are described

in table below. For ATF with real pole and residue, only states 1 and 4 are stable [3].

Table 4.1: Summary of parametric states of a single arbitrary branch of RL equivalent
circuit presented with R and L condition

State No. Equivalent Circuit

1 R > 0 and L > 0
2 R > 0 and L < 0
3 R < 0 and L > 0
4 R < 0 and L < 0

Table 4.2: Summary of pole/residue states of a single arbitrary branch of RL equivalent
circuit with pole and residue condition

State No. Poles/Residue

1 p < 0 and c > 0
2 p > 0 and c < 0
3 p > 0 and c > 0
4 p < 0 and c < 0
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Table 4.3: Stability and Passivity of each branch for ATF case

State No. Stability Passive

1 Yes Yes
2 No Omit
3 No Omit
4 Yes No

Table 4.4: Stability and Passivity of each branch for ITF case

State No. Stability Passive

1 Yes Yes
2 Yes Yes
3 Yes No
4 Yes No

These are brief discussions for each parametric state for the real poles and raly

residues of TF. For the ATF, states 1 and 4 are stable given equation (4.12) will decay

to zero. And only state 1 is passive due to equation (4.14) is greater than zero as m

(number of cumulative periods) approaches to infinity. States 2 and 3 are omitted and

not to discuss due to states 2 and 3 are unstable.

For the ITF, all four states are stable because there are no poles for each state.

Passivity occurs on states 1 and 2. Again, this is because average power (defined in

equation (4.13)) is greater than zero.

Now we are moving on to the ATF and the ITF with pair complex conjugates. With

the same approach, the Ra, L, Rb, C are determined from equation 4.10, which yield to

following equations [3]:

Ra = −cipi − crpr
2c2

r

, Rb =
p2
i (c

2
i + c2

r)

2c2
r(cipi + crpr)

L =
1

2cr
C = − 2c3

r

p2
i (c

2
i + c2

r

(4.15)
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With Ra, Rb, L, and C are determined, the RLCG equivalent circuit can be synthe-

sized as following:

	  
Figure 4.2: RLCG Equivalent Circuit

According to paper [3], there are a total of 16 parametric states that can occur both

in terms of Ra, Rb, L, C and pr, pi, cr, ci. Each could be negative or positive. So since

Ra, Rb, L, C have been determined in equation 4.15, pr, pi, cr can be determined in term

of R, L, C as show below [3].

cr =
1

2L
,

pr =
−Ra

2L
+
−1

2CRb

ci =
L− CRaRb)

2L
√
−C2R2

aR
2
b + 2CLRb(Ra + 2Rb)− L2

pi =

√
−C2R2

aR
2
b + 2CLRb(Ra + 2Rb)− L2

2CLRb

(4.16)

Next are the cumulative average power of the ITF and the cumulative average power
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of the ATF, respectively [3].

SITFRLCG

cavg =
i20(πm(Ra +Rb)− Cω0R

2
b)

2πm(C2ω2
0R

b
b + 1)2

+
Ci20ω0R

2
be

( −1
CRb

2πm
ω0

)

2πm(C2ω2
0R

2
b + 1)2

+
C2i20ω

2
0R

2
b(Ra(C

2ω2
0R

2
b + 2) +Rb)

2(C2ω2
0R

2
b + 1)2

(4.17)

SATFRLCG

cavg =
f4v

2
0

2πf 2
6m

+
f5v

2
0

2m
+
v2

0ω0

2πm
e
πm
ω0

(−Ra
L

+ −1
CRb

)

+

(
(

f2

f 2
6

√
f1

sin

(
π
√
f1m

CLω0Rb

)
+
f3

f 2
6

cos

(
π
√
f1m

CLω0Rb

)) (4.18)

And where f’s are defined as follows [3]:

f1 = −C2R2
aR

2
b + 2CLRb(Ra + 2Rb)− L2

f2 = −(Ra +Rb)
2(C2RaR

3
b + CLRb(Ra + 3Rb)− L2)

+2C2Lω2
0R

2
b(Ra +Rb)

2(L− CRaRb)

+C3Lω4
0R

4
b(−C2R3

aRb + CLRa(Ra + 3Rb) + L2)

f3 = C3Lω4
0R

4
b(−C2R3

a − L)− 2C2Lω02R2
b(Ra +Rb)

2 + (Ra +Rb)
2(L− CR2

b)

f4 = C3Lω5
0R

4
b(L− CR2

a)− 2C2Lω3
0R

2
b(Ra +Rb)

2 + ω0(Ra +Rb)
2(CR2

b − L)

f5 = C2ω2
0RaR

2
b +Ra +Rb

f6 = R2
z(C

2ω2
0R

2
b + 1) + 2RaRb +R2

b(CLω
2
0 − 1)2 + L2ω2

0

(4.19)

SITFRLCG

cavg = lim
m→∞

SATFRLCG

cavg =
Rv2

0

2L2ω2
0 + 2R2

(4.20)

SATFRLCG

cavg = lim
m→∞

SITFRLCG

cavg =
i20(C2ω2

0RaR
2
b +Ra+Rb)

2C2ω2
0R

2
b + 2

(4.21)

The equation 4.21 can be simplified to[3]:
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Ra +
Rb

1 + C2ω2
0R

2
b

> 0 (4.22)

And if pr < 0, the condition is equivalent to the following:

−Ra

2L
+
−1

2CRb

< 0 (4.23)

In term of stability and passivity of each state, they are described in following table

for both ATF and ITF. Note that states 2, 3, 6, 7, 10, 10, 11, 14, and 15 are not

producing pair complex conjugate for poles and residues. However, they produce real

poles and real residues; therefore, they are not included in the tables because they can

use tables 4.1, 4.2 , 4.3, and 4.4 to determine the stability and passivity.

Table 4.5: Summary of R/L states of a single arbitrary branch of RLRC equivalent
circuit [3]

State No. Equivalent Circuit

1 Ra > 0 and Rb > 0 and L > 0 and C > 0 and condC
2 Ra > 0 and Rb > 0 and L > 0 and C < 0
3 Ra > 0 and Rb > 0 and L < 0 and C > 0
4 Ra > 0 and Rb > 0 and L < 0 and C < 0 and condC
5 Ra > 0 and Rb < 0 and L > 0 and C > 0 and condC
6 Ra > 0 and Rb < 0 and L > 0 and C < 0
7 Ra > 0 and Rb < 0 and L < 0 and C > 0
8 Ra > 0 and Rb < 0 and L < 0 and C < 0 and condC
9 Ra < 0 and Rb > 0 and L > 0 and C > 0 and condC
10 Ra < 0 and Rb > 0 and L > 0 and C < 0
11 Ra < 0 and Rb > 0 and L < 0 and C > 0
12 Ra < 0 and Rb > 0 and L < 0 and C < 0 and condC
13 Ra < 0 and Rb < 0 and L > 0 and C > 0 and condC
14 Ra < 0 and Rb < 0 and L > 0 and C < 0
15 Ra < 0 and Rb < 0 and L < 0 and C > 0
16 Ra < 0 and Rb < 0 and L < 0 and C < 0 and condC
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Table 4.6: Summary of pole/residue states of a single arbitrary branch of RLRC equiv-
alent circuit [3]

State No. Pole/Residue

1 pr < 0 and cr > 0 and pi 6= 0 and crpr < cipi
and crpr + cipi < 0

2 Incompatible with a complex-conjugate pole/residue pair
3 Incompatible with a complex-conjugate pole/residue pair
4 pr > 0 and cr < 0 and pi 6= 0 and crpr < cipi

and cipi + crpr < 0
5 cr > 0 and pi 6= 0 and (crpr < cipi or pr ≤ 0)

and (pr > 0 or cipi + crpr > 0)
6 Incompatible with a complex-conjugate pole/residue pair
7 Incompatible with a complex-conjugate pole/residue pair
8 cr < 0 and pi 6= 0 and (crpr < cipi or pr > 0)

and (pr ≤ 0 or cipi + crpr > 0)
9 cr > 0 and pi 6= 0 and (cipi < crpr or pr > 0)

and (cipi + crpr < 0 or pr ≤ 0)
10 Incompatible with a complex-conjugate pole/residue pair
11 Incompatible with a complex-conjugate pole/residue pair
12 cr < 0 and pi 6= 0 and (cipi < crpr or pr <= 0

and (cipi + crpr < 0 or pr > 0
13 pr > 0 and cr > 0 and pi 6= 0 and cipi < crpr

and cipi + crpr > 0
14 Incompatible with a complex-conjugate pole/residue pair
15 Incompatible with a complex-conjugate pole/residue pair
16 pr < 0 and cr < 0 and pi 6= 0 and cipi < crpr

and cipi + crpr > 0

Table 4.7: Stability and Passivity of each branch for IFT case for pair complex-conjugate
of poles/residues [3].

State No. Stable Passive

1 Yes Yes
4 No Omit
5 No Omit
8 Yes CondPIFT
9 Yes CondPIFT
12 No Omit
13 No Omit
16 Yes No
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Table 4.8: Stability and Passivity of each branch for AFT case for pair complex-conjugate
of poles/residues [3].

State No. Stable Passive

1 Yes Yes
4 No Omit
5 CondSC CondPAFT
8 CondSC CondPAFT
9 CondSC CondPAFT
12 CondSC CondPAFT
13 No Omit
16 Yes No

As you notice that some of the states need to meet condition (CondPATF ) in order

to be passive in ATF, and similarly to ITF, it must meet condition (CondPIFT ) in order

to be passive in ITF. What that means is that if the power of each TF branch must

greater than zero according to equation 4.22 or 4.21 for ITF, and 4.20 for ATF, the

circuit branch is passive. Readers are asked to accept the definitions listed in the table

for parametric states. All the mathematical equation derivations are provided in the

paper [3]. In states 5, 8, 9, 12 are conditional stable (CondSC), the equivalent circuit

branch is stable or unstable is depending on the condition of parameters so that the

exponential term goes to zeros as time increases (i.e. only the real part of pole value,

pr, is less than 0), then system is stable.
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Numerical Examples

5.1 Numerical Example 1 - Buck Power Converter

5.1.1 Introduction

The switching voltage regulator is very popular in circuit system and design, such

as, motherboard, communication board, and other devices. It also helps to increase the

design flexibilty, where it can provide localized converting power from high voltage to

lower voltage depending on the need. One of the most common uses in switching voltage

regulator is the ”Buck Power Converter.” The buck converter sends energy from input to

output, and store it in the inductors and capacitors in a fraction of a period, and use it in

the remaining time of the full period. The buck converter is a simple step-down voltage

converter, where it provides output voltage less than input voltage. The authors in [15]

had modeled transfer function for Buck Power Converter to ensure the stability between

input and output voltage, the stability between load and output voltage, and a good

transient response between different disturbance signals. From the modeled transfer

funtion of Z0, VF will generate the poles and residues of transfer function Z0 based on

actual given discrete Z0 frequency responses.

5.1.2 Overview

Through this section, we will look at the formulation of load impedance transfer

function, and use that to generate actual frequency samples. The data is then fed into

VF Python codes to identify poles and residues. The generated poles and residues from

Python VF codes will be used to compute the fitting response, and then compare the

fitting responses (fitted Z0) against the actual (Z0). The stability and the passivity will
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be discussed based on result [15].

	  	  
	  

	  

Figure 5.1: Buck Control Loop Block Schematic
.

5.1.3 Formulation

The buck converter, in most cases, the control loop is a closed loop circuit. The figure

5.1 is the control loop block schematic, where Y(t) represents the output, or the process

variable (PV), yM(t) are the detected values of the PV, and r(t) is the set point (SP)

of the process. Also, the circuit schematic for the buck converter is showed in 5.2 [15].

	  	  
	  

	  

Figure 5.2: Voltage Control Loop for Buck Converter.

For the transfer function between input and output (voltage/current), it is obtained

as:
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Hth(s) =
D

1+s(L/R)+s2LC
(5.1)

	  	  
	  

	  

Figure 5.3: Block Converter

To obtain the output impedance, Z0, we need to obtain it from following circuit, 5.4.

From the circuit schematic, the circuit equivalent as following:
	  	  
	  

	  
Figure 5.4: Output Impedance for Buck Converter.

Expanding equation (5.2) into

Z0(s) = R||ZL||ZC

Z0(s) =
R

1−jR(1/XC+1/XL)

Z0(s) =
R

1−jR(1/wC−+1/wL)

Z0(s) =
sL

1+s(L/R)+s2LC

(5.2)

5.1.4 Generate Frequency Response

In the paper, the author used following parameter values: R=30 Ohms, L = 2mH,

and C = 100uF. S = jω. With these values, the frequency responses for N samples
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(N=100) are calculated. In this case the discrete samples and responses are calculated

from original function from equation 5.2.

The magnitude of actual f(s), VectFit f(s) and Relaxed VectFit f(s) are shown in

figure 5.5.

	  

Figure 5.5: Responses of Buck Power Converter

The errors are very small between them, which also can be seen in figure 5.6. The

error between f(s) and RVF f(s) is smaller than the error between f(s) and VF f(s). RVF

codes generate data as expected, which is more accurate compared to VF codes.
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Figure 5.6: Errors of VF and RVF

5.1.5 Poles and Residues Identification by VF and RVF using

Python Codes

From the VF codes, fitted poles and fitted residues are identified as showed in

the table below. Poles and Residues from table 5.1 and table 5.2 are almost identical.

The fitted d and h values are 8.55572e-06 , -5.82077e-11, respectively. However, when

compare the error of the two, RVF provides a more accurate approximation compared

to VF. One side note, the total time for this program to run this computation is 0.665

second.
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Table 5.1: VF Poles and Residues of 2nd Order Buck Power Converter

VF Poles VF Residues

-317589.7523023 10521573.00
-15743.58103104 -521576.25

Table 5.2: RVF Poles and Residues of 2nd Order Buck Power Converter

RVF Poles RVF Residues

-317589.7523023 10521576.00
-15743.58103104 -521576.28

5.1.6 Stability and Passivity Discussion for VF Result

Based on fitted poles and fitted residues data generated from VF and RVF methods,

we might able to conclude that the macromodel is stable. There are three main reasons

to support that the fitted data is stable: 1) the fitted real pole values are negative,

which land on left half plane of real/imaginary plane [18] - [19], [33] - [36] and this result

is expected because the VF algorithm is written to force stability; 2) since stability

is defined as the conventional method, bounded input bounded output (BOBO) [3].

And as t increases, y(t) decays to zero, and from figure 5.5, it can be concluded that

the impedance is approaching a constant as frequency or time increases; 3) if the Z is

converted to Y (i.e. Y=Z−1), and according to paper [3] or table 4.1, the response falls

into for state one (p < 0 and c > 0) and state 4 (p < 0 and c < 0), therefore, fitted

impedance generated by VF is stable.

In term of passivity, according to paper [3] or table 4.1, the first pole/residue pair is

passive. The second pair pole/residue is not passive due to its average power (Ri20/2)

is less than zero [3]. However, that is passivity for per branch. We are now exploring

the passivity of the network instead of per branch level. According to theorem 1 and

2 of paper [2], it is concluded that the results generated from VF algorithm is passive

because the eigenvalues of Hamiltonian matrix (4.5) are not jω0. The eigenvalues of the
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Hamiltonian is showed in table below. Based on these data, the branch level could be

nonpassive but the whole network is passive.

Table 5.3: Eigenvalues of Hamiltonian for Buck Converter

Eigenvalues

-5.84404335e+11 + 5.84404335e+11j
-5.84404335e+11 - 5.84404335e+11j
-4.27962435e-03 + 4.20289549e-03j
-4.27962435e-03 - 4.20289549e-03j

5.2 Numerical Example 2 - Efficient Symbolic Circuit Analy-

sis Based Transfer Function and Input Impedance Com-

putation

5.2.1 Introduction

In the high performance systems such as microprocessor, IC packages or others, the

methods or tools using in the design play a significant role in the design process. The

more efficient technique would provide advantages to design engineers to understand

the effects of the electrical parameters of the device. In the high performance logic

circuits design, one of tools that has been used is called, the symbolic circuit analysis

methodology. This method computes various transfer functions of the circuits, such as,

current, voltage, input impedance, etc. One of the commercial available software’s that

is highly used in generating transfer functions for a complicated circuit system is field

solver and SPICE. However, these softwares are not powerful built-in functions that

could to provide more efficient computation of transfer function. In other words, the

softwares can generate the transfer function in term of the symbolic circuit variables,

which requires additional computation to transform the transfer function to a simplified

form. In paper [17], the author has developed a new methodology, which will compute
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the required transfer functions without any algebraic manipulations of circuit equations,

and the final transfer function equation is in form of two polynomials in terms of ’s’,

and the power of ’s’ in both numerator and denominator are in the descending format.

And the coefficients are in term of circuit parameters (i.e. R, L, C). A physical system

of high performance system, microprocessor, will be discussed in later section.

With the VF method, it can be used to approximate the transfer function based on

input frequencies and responses. And transfer function can be in different forms either

a ratio of two polynomials, a poles-zeros, or pole-residues.

5.2.2 Overview

In this section, it is a brief discussion of transfer function in electrical circuit sys-

tem. A microprocessor system will be discussed and the novel symbolic circuit analysis

methodology given in paper [17] is applied to generate a transfer function for an input

impedance. Next, the VF method is used to approximate the transfer function of input

impedance and compare it with the given numerical transfer function, which is gener-

ated by the novel symbolic method. The stability and the passivity are discussed at the

end. In a microprocessor system, the input impedance of the Core-PDN (Core-Power

Delivery Network) must be resonant free and the value must be less than or equal to

a target impedance value, specified over a frequency range; therefore, knowing input

impedance is critical for characterization.

The Core-PDN model of a microprocessor system consists of ground planes, Via of the

PCB, the IC-package, and the microprocessor die. The parasitic parameters (resistances,

capacitances, inductances) associated with each component above play important role

in the power integrity performance of the Core-PND. In this specific example, we want

to look at the Core-PDN in the IC Package and the PCB, which can be represented by

a single-section stage R-L-C lump linear circuit model or multiple stages R-L-C lump

circuit model.



42

5.2.3 Transfer Function of Electrical Circuit

In the electrical system, the linear differential equation can be described in 5.3. The

y(t) is the response corresponding to an excitation x(t) in a linear electrical. Assuming

that the response y(t) = Y est and the excitation x(t) = Xest [17].

an
dn−1y(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a2

d2y(t)

dtn−2
+ a1

d1y(t)

dtn−1
+ a0y(t) = bn

dn−1x(t)

dtn

+bn−1
dn−1x(t)

dtn−1
+ · · ·+ b2

d2x(t)

dtn−2
+ b1

d1x(t)

dtn−1
+ b0x(t)

(5.3)

The transfer function can be defined as following:

H(s) =
Y

X
=

Magnitude of the response

Magnitude of excitation
(5.4)

So the transfer function can be obtained as a ratio of two polynomials in term of s,

which is the response to excitation in electrical circuit system, and s = jω:

H(s) =
Y

X
=

bns
n + bn−1s

n−1 + ·+ b2s
2 + b1s+ b0

amam + bm−1sm−1 + ·+ a2s2 + a1s+ a0

=
B(s)

A(s)
(5.5)

So in order to obtain frequency domain transfer function for the impedance parame-

ters of circuit elements, R, L, C, we need to convert these circuit elements into transfer

function impedances accordingly.

5.2.4 Transfer Functions of Microprocessor System

Before getting into actual numerical analysis of the transfer functions of the micro-

processor system, the basic concepts of the microprocessor system will be discussed in

this section. As mentioned earlier, the microprocessor system is considered as a high-

performance digital system. It consists of a printed circuit board (PCB) mounted on a

switch voltage regulator (VRMs) and PCV Decaps, and the core/die and the package
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Decaps are attached to microprocessor package. The PCB and the microprocessor cir-

cuits are connected by microprocessor package using flip-chip ball-grid array (FCBGA)

and wirebond-BGA.

The core/die power delivery network is combined of the Vias of the PCB, the IC-

package, microprocessor die, and the power planes, and ground planes.

	  	  
	  

	  

Figure 5.7: Single Stage and Multi Stage R-L-C Circuit Model

Because of the complication of the structure of power and ground planes, PCB,

Package of microprocessor system, the parasitic elements play significant roles in the

power performance of the Core-DPN and for doing the characterization of the system

[17]. And the characterization is using lumped linear circuit model either single section
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or multiple sections

	  	  
	  

	  
Figure 5.8: Single Stage and Multi Stage R-L-C Circuit Model for low frequency range
[17]

In the case of optimizing the input impedance, use small signal closed loop circuit

like in figure 5.8. However, when there is the impedance in the low frequency range, it

might need to be analyzed with the small-close loop linear circuit model with VRM.

Based on the discussion above, the input impedance parameter is very critical in the

microprocessor system. Input impedance can be simulated by Field Solver or PSPICE

software without problem. In the complicated system, the computation is a little time

consuming. One example is that the conventional commercial symbolic analysis did not

put transfer function in the best known form which is power of s descended. In paper

[17], the author has been modified the method to provide the transfer function in the

form of descending the power of s, and it is easier to read and interpret.

Here is an overview of how available commercial Field Solver software works. Assume

that using Field Solver to solve for transfer function of figure 5.9, in order to compute

an equivalent input impedance for this circuit, Z1, Z2, Z3, and Z4 are computed and

Zd is computed from Z1 and Z4. The symbolic functions below in Field Solver software
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outputs the transfer function of Zd. However, the transfer function is not generated in

the descending power of s, and the coefficients are described in terms of passive elements,

which are little hard to read.	  	  
	  

	  

Figure 5.9: Simple R-L-C Linear Lump Circuit Model, [17]

5.2.5 Generate Frequency Response

Here we use a specific example, which computes the input impedance of IC-Package-

core-PDN. The transfer function of input impedance is derived using field solver appli-

cation, which is also shown below [17].

Zinput =
(
1.78e− 071s7 + 9.76e− 062s6 + 4.06e− 050s5 + 2.15e− 40s4

+1.98e− 029s3 + 1.02e− 19s2 + 3.54e− 011s+ 0.000357)/
(9.72e− 61s6 + 5.33e− 51s5 + 1.87e− 39s4

+9.87e− 30s3 + 5.78e− 19s2 + 2.97e− 9s+ 1)

The VF and the RVF methods can be used to approximate the poles- residues, and

the poles-zeros for this transfer function. Assume the sample frequency and response
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are given or calculated from input impedance above, which are 1000 samples (could

be measured from physical device or calculated from the given transfer function), and

this is 6 poles transfer function with 5 iterations. In this case, the VF is not able to

approximate neither poles nor residues because the response elements are very small. As

shown in figure 5.10 that the VF method does not converge for approximated response,

even though the stability has been forced, and the error is still very large, which is

displaced in figure 5.11.

	  
	  
	  

Figure 5.10: Magnitude of Response Computed by VF Method with Stability Forced, 6
poles and 5 iterations
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	   Figure 5.11: Error between Actual f(s) and Fitted f(s)

	  
	  

	  
	  

Figure 5.12: Magnitude of Response Computed by RVF Method with Stability Forced,
6 poles and 5 iterations
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Figure 5.13: Error between Actual f(s) and Fitted f(s)

In this numerical example, R_VF method would be used to provide a more accurate

results, and the outcome is very precise and well matched with the actual response. As

figure 5.12 shows very close to actual response, and the error in figure 5.13. Total time

to execute the program is 5.5 seconds.

5.2.6 Poles and Residues Identification by VF and RVF

Since the VF method is not providing convergence for the response, so poles-residues

and poles-zeros would not be mentioned here. However, for the R_VF method, the poles-

residues and the poles-zeros can be seen in the table below. And d, and h values are

-7.19776927223e-06 , and 1.83127576937e-11, respectively.
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Table 5.4: RVF Poles and Residues of Input Impedance of Core-PDN

RVF Poles RVF Residues

-4814418747 1722058
-362069418.1 -9836.78
-112647209.5 - 39196245466 j 253312864 - 671121.68 j
-112647209.5 + 39196245466 j 253312864 + 671121.68 j
-40877395.58 - 19599895649 j 3014957312 - 5986366.00 j
-40877395.58 + 19599895649 j 3014957312 + 5986366.00 j

Table 5.5: RVF Poles and Zeros of Input Impedance of Core-PDN

RVF Poles RVF Zeros

-4814418747 -111659588.2- 3.968E+10 j
-362069418.1 -111659588.2 + 3.9681E+10 j
-112647209.5 - 39196245466 j -41420407.46 - 2.651E+10 j
-112647209.5 +39196245466 j -41420407.46 + 2.6512E+10 j
-40877395.58 - 19599895649 j -4803702837.34 - 3.94E-08 j
-40877395.58 + 19599895649 j -362885999.58 + 7.78E-10 j
- -10395500.18 +1.08E-12 j

5.2.7 Stability and Passivity Discussion for VF Results

Once again, the reals part of the poles are negative values; therefore, it is a guarantee

that this system is stable, which is expected because the VF algorithm is desired to

force stability; also, since stability is defined as the conventional method bounded input

bounded output (BOBO) [3] and equation 4.4, as t increases, y(t) decays to zero, so

it can be concluded that the output impedance is approaching a constant as frequency

increases. According to paper [3], branches a and b (first pole and second pole) are

stable because p < 0 and c > 0, p < 0 and c > 0 , and branches c, d, e, f (3rd-6th

poles/residues), they are also stable and matched conditions stated in [3].

Regarding to passivity, according to paper [3], table 4.1 and table 4.5 to 4.8, the

second pole/residue is not passive and all remaining pole/residue pairs are passive. For

the entire system, according to theorem 1 and 2 of paper [2], it is concluded that the
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result generated from VF algorithm is passive because the eigenvalues of Hamiltonian

matrix (4.5) are not jω0. The eigenvalues of the Hamiltonian is showed in table below.

Again, even though one out of five branches in this system is nonpassive, and the network

is still passive.

Table 5.6: Eigenvalues of Hamiltonian M for Core PDN

Eigenvalues

4.54186034e+14 +4.54186036e+14j
4.54186034e+14 -4.54186036e+14j

-1.07272308e+08 +3.80402482e+10j
1.07344511e+08 +3.80402478e+10j
-1.07272308e+08 -3.80402482e+10j
1.07344511e+08 -3.80402478e+10j
-4.79068474e+09 +4.38433209e-06j
4.79068001e+09 -1.38753286e-04j
-3.63885401e+08 -9.76290750e-04j
-2.22641203e+07 +8.52829265e-04j
2.31617811e+07 +3.97974731e-04j
3.63890214e+08 -5.56722350e-06j])

5.3 Numerical Example 3 - Two-Port Network S and Y Pa-

rameters

5.3.1 Introduction

The two-port network is an electrical network (electrical circuit) and been widely used

in circuit analysis for electrical engineering, microelectronic, wireless communication,

filter, transformer, and small-signal models. In the circuit analysis, the two-port network

model is used to isolate portions of larger circuits. The properties of two-port network

can be specified by a matrix of numbers. In other words, it describes the how the

network responds at each port when signals are applied to the ports, and the responses

can be calculated through the matrix form as well. Scattering parameters (S-parameters)

matrix is commonly used in the electrical network characterization for two-port network,
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three-port network, four-port network, or n-port network. The S-parameter allows a

device to be treated as a ”black box” with inputs and resulting outputs, and makes

it possible to model a system without having to deal with complexity of the actual

structure inside of the device. For a two-port network, the network is described by 2x2

square matrix. There are many other parameter models that can be used to describe

the n-port networks, such as, Z-parameters, Y-parameters, H-parameters, G-parameters,

and ABCD-parameters.

In the electrical engineering field, engineers are always looking for an efficient ap-

proach or an improved circuit analysis technique for their works either in design, model

simulation, or data analysis. There are many ways to synthesize the network into equiv-

alent circuit and ensure the system is stable such as in papers [1] [31]. However, it

appears that the combined VF approximation method and approach converting numeri-

cal TF to synthesized RLRG circuit in paper [3] is a simple procedure, straight forward,

and guarantee that the system will be stable. Therefore, in this numerical example,

the S-parameters and Y-parameters of a two-port network will be discussed. And the

vector fitting method demonstrates that it can be used in analyzing TF for the S and

Y parameters. With the combination of the technique in paper [3] and the VF method,

they can determine the equivalent circuit elements of the two-port network based on

the given calculated or the measured S-parameter data. Stability and passivity of this

two-port system will be discussed.

5.3.2 Overview

Assuming that the S-parameters of a two-port network are measured or calculated,

and in this case, the data set of S-parameters of a power plane square 500mil x 500mil

is used for this study purpose. The relaxed vector fitting (RVF) is used to determine

the transfer function (TF) for each S-parameter at each port (i.e. S11, S12, S21, S22).

And again, the RVF is used to determine the transfer function for Y-parameters at
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each port (i.e. Y11, Y12, Y21, Y22). Once the approximated transfer function of each

Y-parameter is found, the Python script is used to convert the network system from S-

parameters to Y-parameters (admittance parameters). With the Y-parameters available,

they are arranged in a pi-circuit configuration, which represents a Y-equivalent circuit for

a reciprocal two-port network. Y11+Y11, -Y12, Y22+Y12 are three main components

of pi-equivalent circuit. We use equations in paper [3] and along with Python codes

to determine the RLRC elements. At the end, the stability and the passivity will be

discussed for each component..

5.3.3 Formulation of Two-Port Network

S-Parameters:

Considering a two-port network typical example in figure 5.14 below, where I1

is current into port 1; V1 is voltage across port 1; V2 is voltage across port 2; and I2

is current into port 2. The current enters at one terminal and leaves at other terminal

of the port. Sometime, it is called a black box, and its properties are described by

parameter matrix.

	  Figure 5.14: Two-Port Network Configuration

Figure 5.14 is simple and mainly for a low frequency network where parameters are

defined in term of currents and voltages at ports. However, for the high frequency net-

work, such as in ultra high frequency range or microwave frequency (GHz) range, there

is difficulty in measuring the voltages, the currents, the admittance and the impedance
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directly from the network, the s-parameters are used and defined as described in figure

5.15, where a1 and a2 are the incident power waves, b1 and b2 are the reflected power

waves [27]-[29].

	  
Figure 5.15: S-Parameters Two-Port Network Configuration

In this case, the relationship of these parameters is determined in equation 5.6 and

equation

b1

b2

 =

S11 S12

S21 S22


a1

a2

 (5.6)

Expanding the s-matrices, and we have:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

(5.7)

S11 is the input port voltage reflection coefficient. S11 = b1/a1 = V −1 /V
+

1 .

S12 is the reverse voltage gain. S12 = b1/a2 = V −1 /V
+

2 .

S21 is the forward voltage gain. S21 = b2/a1 = V −2 /V
+

1 .

S22 is the output port voltage reflection coefficient. S22 = b2/a2 = V −2 /V
+

2 .

Where V + and V − are forward wave and reverse wave, respectively.

Y-Parameters:

Y-parameters are also one of the common models used for the two-port network.

The equivalent circuit for an arbitrary two-port admittance matrix and relationship

between i-v characteristics are described below.
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Figure 5.16: Equivalent circuit of an arbitrary two-port network

I1

I2

 =

Y11 Y12

Y21 Y22


V1

V2

 (5.8)

Expand the y-matrices, and we have:

I1 = Y11V1 + Y12V2

I2 = Y21a1 + Y22V2

(5.9)

From the following equations and the circuit in figure 5.16, we can derive and obtain

the Y-equivalent circuit for a reciprocal two-port network with pi-topology in terms of

Y-parameters. So in order to measure the admittance parameters, we apply excitation

at one port and short circuit at other port [33]-[38]. That means when measurement or

computation occurs at port 1, the port 2 is shorted (V2 = 0):

y11 = (I1/V1)|V2=0

y21 = (I2/V1)|V2=0

(5.10)

When measurement or computation occurs at port 2, the port 1 is shorted (V1 = 0):

y12 = (I1/V2)|V1=0

y22 = (I2/V2)|V1=0

(5.11)

To summarize the equations of Y-parameters above, the y11 is the input admittance

with the output port shorted. y21 is the forward transfer admittance with the output
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port shorted. y12 is the reverse transfer admittance with the input port shorted. y22 is

output admittance with the input port shorted. To simplify the circuit configuration,

Y-equivalent circuit for a reciprocal two-port network can be achieved, which can be

seen in figure 5.17.

To derive YA, YB, and YC , output port 2 shorted, and now short circuit at port 2

connects admittances YA and YB in parallels. So the admittance looking in at port 1,

y11 = YA + YB. Also, I2 = −YBV1; therefore, y21 = −YB.

With the same approach, output port 1 shorted, and now short circuit at port 2

connects admittances YB and YC in parallels. So the admittances looking in at port 2,

y22 = YB + YC . Also, I1 = −YCV2. Therefore, y12 = −YC .

y11 = YA + YB

y21 = y11 = −YB

y22 = YB + YC

(5.12)

Solve for YA, YB, and YC :

YA = y11 + y12

YB = −y12

YC = y22 + y12

(5.13)

Now YA, YB and YC of the pi circuit can be replaced by Y-parameters, which are

shown in figure 5.17.

	  
Figure 5.17: Y-equivalent circuit with Y-parameters for a reciprocal two-port network
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Finally, the relationship between S-parameters and Y-parameters can be described

by following equations, where 1N is the identity matrix and
√
y is a diagonal matrix:

Y =
√
y(1N − S)(1N + S)−1√y

√
y = (

√
z)−1

(5.14)

5.3.4 Poles and Residues and Zeros Identification for S-Parameter

The goal of this numerical example is to use RVF algorithm method combined with

other approach to determine the circuit elements, which are converted from the TF of the

Y-parameters, and arrange them in form of equivalent pi-circuit in figure 5.17. The set of

S-parameters of square power plane 500milx500mil, (500mil_planes_Log500_10M5G.s2p),

is used. It contains of 1351 frequency response samples, and the frequency range are

from 10MHz to 5GHz. In order to pull S11, S12, S21, S21 from this s2p file, the relaxed

vector fitting has been modified by adding the following codes (note that Test1.s2p is

the 500mil_planes_Log500_10M5G.s2p:

Test1 = rf.Network(rf.data.pwd+’/Test1.s2p’) ####read s2p file.

S11=Test1.s[:,0,0] ####assign S11 in Test1 to S11 variable.

freq=Test1.f ####read the frequency from Test1.s2p

Actual_f = S11 ####assign S11 as the actual f(s)

Also, note that if we want to pull S21, the codes we need to use is S21=Test1.s[:,1,0].

After modification, the relaxed vector fitting is able to read the S-Parameters file, pull

S-parameter at each terminal and generate the fitted poles-residues, poles-zeros, d, and

h values. The Python codes write an output.csv file. The outpout.csv file contains vari-

ables, which are shown in tables 5.7 and 5.8. The values of d, and h are 0.998605269104,
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and -2.03719477524e-15, respectively.

Table 5.7: Fitted Poles and Residues of S11 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2851596767 0 -46426280 0
-1698304537 -50538923338 -180649840 42968088
-1698304537 50538923338 -180649840 -42968088
-1040642002 0 -964501120 0
-791828239.4 -22878305474 -675556608 25730972
-791828239.4 22878305474 -675556608 -25730972
-273616394.7 0 -13356906 0
-11467071.63 0 -143.1921387 0

Table 5.8: Fitted Poles and Zeros of S11 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2851596767 0 4.90184E+14 -4.64E-11
-1698304537 -50538923338 -1515710193 50571773456
-1698304537 50538923338 -1515710193 -50571773456
-1040642002 0 -116045216.6 -22866650812
-791828239.4 -22878305474 -116045216.6 22866650812
-791828239.4 22878305474 -2821734193 -1.09E-10
-273616394.7 0 -312663902 5.28E-10
-11467071.63 0 -11501203.65 -1.51E-09
- - -7659768.42 1.29E-09

To validate the result of the RVF python codes, the magnitude of the Fitted f(s)

of Poles-Residues and the magnitude of the Fitted f(s) of the Poles-Zeros are plotted

against the actual f(s) of S11, S12, S21, and S22. Also, the error between the actual f(s)

and the fitted f(s) have been plotted. The plots showed that the fitted and the actual

data are very matched.
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Figure 5.18: S11 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted f and Actual f

Next are the fitted poles-residues and fitted poles-zeros, which are generated from

actual S12 and shown in table below, and once again, the plots have shown the fitted

data and the actual data are matched. The values of d and h are 0.998605269104, and
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-2.03719477524e-15, respectively.

Table 5.9: Fitted Poles and Residues of S12 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2846964496 0 49799248 0
-1594938745 -50411707643 -122971424 -7664338
-1594938745 50411707643 -122971424 7664338
-1040536841 0 963040512 0
-791827676.7 -22878304727 -414793824 2670030
-791827676.7 22878304727 -414793824 -2670030
-273429909.7 0 13376316 0
-13042530.8 0 -148.7841797 0

Table 5.10: Fitted Poles and Zeros of S12 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2846964496 0 4.65094E+11 1.52588E-05
-1594938745 -50411707643 56826375803 91174822188
-1594938745 50411707643 56826375803 -91174822188
-1040536841 0 -76466213959 6.47459E-06
-791827676.7 -22878304727 -770071042.5 37373914015
-791827676.7 22878304727 -770071042.5 -37373914015
-273429909.7 0 -2758301643 0
-13042530.8 0 -283781274.9 0
- - -13042382.89 0
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Figure 5.19: S12 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted f and Actual f

Below is the S21 parameter result. The results have demonstrated the data is

matched among the actual f(s) (i.e. S21) and the fitted S21. The values of d and

h values are 0.00120827885705, and -2.38492259281e-15, respectively. S21 is matched
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with S12 result.

Table 5.11: Fitted Poles and Residues of S21 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2846964496 0 49799248 0
-1594938745 -50411707643 -122971424 -7664338
-1594938745 50411707643 -122971424 7664338
-1040536841 0 963040512 0
-791827676.7 -22878304727 -414793824 2670030
-791827676.7 22878304727 -414793824 -2670030
-273429909.7 0 13376316 0
-13042530.8 0 -148.7841797 0

Table 5.12: Fitted Poles and Zeros of S21 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2846964496 0 4.65094E+11 1.52588E-05
-1594938745 -50411707643 56826375803 91174822188
-1594938745 50411707643 56826375803 -91174822188
-1040536841 0 -76466213959 6.47459E-06
-791827676.7 -22878304727 -770071042.5 37373914015
-791827676.7 22878304727 -770071042.5 -37373914015
-273429909.7 0 -2758301643 0
-13042530.8 0 -283781274.9 0
- - -13042382.89 0
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Figure 5.20: S21 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted and Actual

Finally, the fitted f(s) of S22 parameter can be seen below. And the values of d and
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h are 0.998295676941 and -1.3293793129e-15, respectively.

Table 5.13: Fitted Poles and Residues of S22 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2851314294 0 -47917824 0
-1702969011 -50700454303 -741793216 82072056
-1702969011 50700454303 -741793216 -82072056
-1040640565 0 -962818560 0
-791828110.8 -22878305092 -254282720 -6251064.5
-791828110.8 22878305092 -254282720 6251064.5
-273614312.5 0 -13372677 0
-11145627.82 0 -139.6633301 0

Table 5.14: Fitted Poles and Zeros of S22 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2851314294 0 7.50946E+14 -4.68390E-11
-1702969011 -50700454303 -958480539 50752788294
-1702969011 50700454303 -958480539 -50752788294
-1040640565 0 -537989016.8 -22863508461
-791828110.8 -22878305092 -537989016.8 22863508461
-791828110.8 22878305092 -2820396136 1.59553E-10
-273614312.5 0 -312730200.5 5.17530E-10
-11145627.82 0 -11181956.84 1.32842E-10
- - -7655107.036 1.73907E-10
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Figure 5.21: S22 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted and Actual

As the results of S-parameters, the python program has forced the real part of the

poles to be negative; therefore, the poles-residues of the S-parameters are stable. We will

discuss further both stability and passivity of this system when it gets to Y-parameter



65

analysis.

5.3.5 Poles and Residues Identification for Y-Parameter

In order to determine and find the pi equivalent circuit in term of the admittances, the

Y-parameters need to be determined. To do this, the Python codes convert S-parameters

of the system to Y-parameters. The code [y_param=rf.network.s2y(Test1.s, z0=[0.1+0.j,

0.1+0.j])] can do the job easily, where file Test1 contains S-parameters, and z0 is

the characteristic impedance of the network. Once S-parameters are converted to Y-

parameters, poles-residues and poles-zeros transfer function of Y11, Y12, -Y21, and Y22

can be generated through RVF Python codes, similarly to how transfer functions of S11,

S12, S21, and S22 are generated. The fitted poles, fitted residues, and fitted zeros can

be seen in table 5.15 and table 5.16, and the magnitude of fitted f(s) and actuals f(s)

are shown in 5.22. The values of d and h are 0.00756353757021 and -1.0305001589e-14,

respectively.

Table 5.15: Fitted Poles and Residues of Y11 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2811484324 0 91698000 0
-1760229740 -50915726227 949572672 -182932560
-1760229740 50915726227 949572672 182932560
-1065467427 0 1196216 0
-326964909.8 -22884492884 3378653952 -21642676
-326964909.8 22884492884 3378653952 21642676
-312594039.9 0 472312768 0
-7676854.43 0 4554145280 0
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Table 5.16: Fitted Poles and Zeros of Y11 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2811484324 0 1.579249E+12 1.81980E-06
-1760229740 -50915726227 -8.468016E+11 3.90498E-06
-1760229740 50915726227 -1.141373E+09 47760702506
-1065467427 0 -1.141373E+09 -47760702506
-326964909.8 -22884492884 -228392976 14871406390
-326964909.8 22884492884 -228392976 -14871406390
-312594039.9 0 -2762703086 2.79397E-08
-7676854.43 0 -1065222896 2.80845E-08
- - -283882537.4 1.08143E-08
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Figure 5.22: Y11 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted and Actual
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Next are the results of Y12, Y21, and Y22 of Y-parameters.

Table 5.17: Fitted Poles and Residues of Y12 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2.81932E+09 0 -106823688 0
-1.11898E+09 0 1330723.25 0
-698174696.9 -4.98129E+10 563616320 87218288
-698174696.9 4.98129E+10 563616320 -87218288
-326983812.8 -2.28845E+10 2070813568 -10916837
-326983812.8 2.28845E+10 2070813568 10916837
-312573133.7 0 -472273280 0
-7676873.839 0 -4554151936 0

Table 5.18: Fitted Poles and Zeros of Y12 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2.81932E+09 0 1.74336E+11 1.52588E-05
-1.11898E+09 0 3.73045E+10 94536643107
-698174696.9 -4.98129E+10 3.73045E+10 -94536643107
-698174696.9 4.98129E+10 -7.26920E+10 3.30444E-05
-326983812.8 -2.28845E+10 -737797632.7 3.73453E+10
-326983812.8 2.28845E+10 -737797632.7 -3.73453E+10
-312573133.7 0 -2760703379 1.75473E-07
-7676873.839 0 -1119264726 -1.78448E-07
- - -283856339.3 -3.35363E-09

The values of d and h are -0.00646493582417 and 3.65411910549e-14, respectively.
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Figure 5.23: Y12 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted and Actual

The Y12 parameter and the Y21 parameter are identical, which indicates that the

S-parameter to Y-parameter conversion is working correctly. The values of d and h are
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-0.00646493582417, and 3.65411910549e-14, respectively.

Table 5.19: Fitted Poles and Residues of Y21 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2.81932E+09 0 -106823688 0
-1.11898E+09 0 1330723.25 0
-698174696.9 -4.98129E+10 563616320 87218288
-698174696.9 4.98129E+10 563616320 -87218288
-326983812.8 -2.28845E+10 2070813568 -10916837
-326983812.8 2.28845E+10 2070813568 10916837
-312573133.7 0 -472273280 0
-7676873.839 0 -4554151936 0

Table 5.20: Fitted Poles and Zeros of Y21 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2.81932E+09 0 1.74336E+11 3.05176E-05
-1.11898E+09 0 37304454248 94536643107
-698174696.9 -4.98129E+10 37304454248 -94536643107
-698174696.9 4.98129E+10 -72692007427 7.09240E-06
-326983812.8 -2.28845E+10 -737797632.7 37345323544
-326983812.8 2.28845E+10 -737797632.7 -3.73453E+10
-312573133.7 0 -2760703379 1.81106E-08
-7676873.839 0 -1119264726 -6.18774E-08
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Figure 5.24: Y21 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted and Actual

Here is the result of Y22-parameter. And the values of d and h are 0.0097563591181
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and -3.99638749067e-14, respectively.

Table 5.21: Fitted Poles and Residues of Y22 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2.80925E+09 0 96972304 0
-1.44866E+09 -5.09386E+10 3808147968 -303361248
-1.44866E+09 5.09386E+10 3808147968 303361248
-1.03592E+09 0 1130995 0
-326931309.2 -22884450854 1268715264 -5905514.5
-326931309.2 22884450854 1268715264 5905514.5
-312592839 0 471964416 0
-7676854.767 0 4554157568 0

Table 5.22: Fitted Poles and Zeros of Y22 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2.80925E+09 0 7.50416E+11 -1.34706E-05
-1.44866E+09 -5.09386E+10 -5.08245E+11 -1.77806E-06
-1.44866E+09 5.09386E+10 -570352505.5 -3.76696E+10
-1.03592E+09 0 -570352505.5 3.76696E+10
-326931309.2 -22884450854 -270218451.2 -1.79462E+10
-326931309.2 22884450854 -270218451.2 1.79462E+10
-312592839 0 -2757340774 -2.12006E-08
-7676854.767 0 -1035691407 9.02205E-08
- - -283896062 -2.31489E-08
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Figure 5.25: Y22 Parameter- Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted and Actual
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5.3.6 Y-Equivalent Pi-Network Circuit

Recall Y-equivalent circuit network:

	  

Figure 5.26: Y-equivalent circuit with Y-parameters for a reciprocal two-port network

One of the approaches to generate an equivalent circuit from S-parameters is to

convert S-parameters to Y-parameters and generate an equivalent circuit in terms of

Y-parameters. We have already converted S-parameters to Y-parameters in previous

section. Let’s recall figure 5.26, which represents an equivalent circuit with pi network

circuit configuration. Again, Python RVF codes can be used to generate transfer func-

tions for Y11 + Y12 and Y22 + Y12. Once the poles and residues are determined from the

Y11 + Y12 and Y22 + Y12, another set of Python codes program is used to determine the

circuit elements (i.e. R, L, and C) of each component (Y11 + Y12, Y12, Y22 + Y12).

From the Python codes, the RVF algorithm generates fitted poles, residues, and zeros

as shown in table 5.23 and the magnitude of fitted f(s) and actual f(s) and error can be

seen in figure 5.27. The values of d and h are 0.000896109079092, and 2.65256325898e-14,
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respectively.

Table 5.23: Fitted Poles and Residues of Y11+Y12 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2847315292 0 -15116824 0
-1369399005 -50427689311 1513837952 -88409112
-1369399005 50427689311 1513837952 88409112
-1078295408 0 2620513.75 0
-326972025.89 -22884502843 5449466880 -32557866
-326972025.89 22884502843 5449466880 32557866
-71455124.96 0 -10195.80 0
-790696.34 0 -2717.10 0

Table 5.24: Fitted Poles and Zeros of Y11+Y12 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2847315292 0 -17511681669 7.24743E+11
-1369399005 -50427689311 -17511681669 -7.24743E+11
-1369399005 50427689311 -1007048174 -45855678069
-1078295408 0 -1007048174 45855678069
-326972025.89 -22884502843 -3078864114 -3.19787E-07
-326972025.89 22884502843 -980068627.3 2.46886E-07
-71455124.96 0 -78063521.48 2.41686E-07
-790696.34 0 11351876.19 1.69054E-08
- - -10254490.07 -1.79889E-08
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Figure 5.27: Y11+Y12 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error
between Fitted and Actual

Now let’s find the poles and residues of −Y12 parameter using RVF Python codes,

which are showed below. The values of d and h are 0.00646493582417, and -3.65411910549e-
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14, respectively.

Table 5.25: Fitted Poles and Residues, of -Y12 Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2819321842 0 106823688 0
-1118976014 0 -1330723.25 0
-698174696.9 -49812907680 -563616320 -87218288
-698174696.9 49812907680 -563616320 87218288
-326983812.8 -22884518839 -2070813568 10916837
-326983812.8 22884518839 -2070813568 -10916837
-312573133.7 0 472273280 0
-7676873.839 0 4554151936 0

Table 5.26: Fitted Poles and Zeros of -Y12 Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2819321842 0 1.74336E+11 1.52588E-05
-1118976014 0 37304454248 94536643107
-698174696.9 -49812907680 37304454248 -94536643107
-698174696.9 49812907680 -72692007426 3.13721E-06
-326983812.8 -22884518839 -737797632.7 37345323544
-326983812.8 22884518839 -737797632.7 -37345323544
-312573133.7 0 -2760703379 1.69425E-08
-7676873.839 0 -1119264726 -3.15608E-08
- - -283856339.3 -2.84612E-08
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Figure 5.28: -Y12 Parameter - Top: Fitted f(s) and Actual f(s); Bottom: Error between
Fitted and Actual

Finally, the pi-network circuit component Y22 + Y12 is generated. Table of the data
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and its figure are showed following.

Table 5.27: Fitted Poles and Residues of (Y22+Y12) Parameter from RVF

Pole Real Pole Imag Residue Real Residue Imag

-2725880182 0 -10641444 0
-1334360533 -50754631329 4363649536 -201806288
-1334360533 50754631329 4363649536 201806288
-1250467832 0 3389945.75 0
-326963589.2 -22884493357 3339526144 -16818378
-326963589.2 22884493357 3339526144 16818378
-260985683.8 0 -256793.9844 0
-5050197.20 0 7016.69 0

Table 5.28: Fitted Poles and Zeros of (Y22+Y12) Parameter from RVF

Pole Real Pole Imag Zeros Real Zero Imag

-2725880182 0 -6.95203E+11 2.64154E+12
-1334360533 -50754631329 4363649536 -201806288
-1334360533 50754631329 -612711131.4 37591660961
-1250467832 0 -612711131.4 -37591660961
-326963589.2 -22884493357 -2952492846 -2.43714E-06
-326963589.2 22884493357 -1094557689 3.62225E-06
-260985683.8 0 -326478655 -2.07617E-06
-5050197.20 0 -1628477.185 18809537.21
- - -1628477.185 -18809537.21
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Figure 5.29: Y22+Y12 - Left: Fitted f(s) and Actual f(s); Right: Error between Fitted
and Actual
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5.3.7 Network Synthesis-RLRG Derivation

Paper [3] presents how to synthesize the RLRC network circuit based on poles and

residues of the transfer functions. Since the poles and residues of Y11 + Y12,−Y12, Y22 +

Y12 have been determined in a previous section, the RLRC netlist will be determined

using equation in paper [3]. Also, the Python algorithm codes have been generated and

provided by the author of [3] to compute RLRC elements from numerical TF. Also, [32]

- [39] have explained a lot of basic RLC circuits and fundamentals of two port networks,

and synthesis of electrical networks.

For Y11 + Y12, the RLRC results show in table below.

Table 5.29: RLRC Netlist for Y11+Y12

Branch Ra L Rb C

1 -188.35 -6.62E-08 0 0
2 1.425 3.30E-10 -534.88 -1.1903E-12
3 411.48 3.82E-07 0 0
4 0.04255 9.18E-11 252.58 2.08E-11
5 -7008.29 -9.81E-05 0 0
6 -291.01 -0.000368 0 0

Here is the RLRC for -Y12, which is showed in table below

Table 5.30: RLRC Netlist for -Y12

Branch Ra L Rb C

1 26.39 9.36E-09 0 0
2 -840.88 -7.51E-07 0 0
3 6.22 -8.87E-10 -268.12 -4.44E-13
4 -0.11 -2.41E-10 -612.83 -7.91E-12
5 0.662 2.12E-09 0 0
6 0.001686 2.2E-10 0 0



82

Here is the RLRC for Y22 + Y12, which is showed in table below.

Table 5.31: RLRC Netlist for Y22+Y12

Branch Ra L Rb C

1 -256.16 -9.40E-08 0 0
2 0.42 1.15E-10 -292.03 1.38E-12
3 368.875 2.95E-07 0 0
4 0.0662 1.50E-10 370.36 1.28E-11
5 -1016.32 -3.89E-06 0 0
6 719.74 0.000143 0 0

5.3.8 Stability and Passivity Discussion

First, look at the stability of the equivalent pi circuit components Y11+Y12, -Y12,

and Y22+Y12. As we can see from the fitted poles and the fitted residues, all real parts

of the poles are negative (see tables: 5.25, 5.23, 5.27), which indicates that the system

is stable.

However, what about the passivity of each component of pi-circuit? To understand if

each component or the whole network is passive or not, we need to find the eigenvalues

of the Hamiltonian matrix (M). Eigenvalues of Hamiltonian matrix (M) below show

that none of the eigenvalues is the jω0, so according to paper [2], these components are

passive. We are confident to say that whole pi equivalent circuit is passive.

To conclude about stability and passivity in this study, the system is passive based on

result from Hamiltonian matrix method. The real parts of poles carry negative values;

therefore, the system is stable.
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Table 5.32: Eigenvalues of Hamiltonian for Y11+Y12

Eigenvalues

7.76355782e+12 -7.76368174e+12j
7.76355782e+12 +7.76368174e+12j
-9.87452101e+08 +4.58721159e+10j
-9.87452101e+08 -4.58721159e+10j
1.00864946e+09 +4.58700574e+10j
1.00864946e+09 -4.58700574e+10j
-3.07329561e+09 +1.25050818e-05j
3.07909388e+09 +3.25418843e-05j
-9.86860017e+08 -1.00798197e-06j
9.80126408e+08 +1.07002448e-05j
6.77990842e+07 +9.88511854e+06j
-7.41750424e+07 -1.44523847e-06j
6.77990842e+07 -9.88511854e+06j
2.73891623e+07 -6.47077136e-05j

-3.12010769e+06 -1.66621961e+06j
-3.12010769e+06 +1.66621961e+06j

Below are the eigenvalues of M matrix

Table 5.33: Eigenvalues of Hamiltonian for -Y12

Eigenvalues

-2.26182090e+10 +8.87221298e+10j
-5.54646116e+10 +5.74262205e+10j
-2.26182090e+10 -8.87221298e+10j
-5.54646116e+10 -5.74262205e+10j
6.87170470e+10 +1.88085180e+10j
6.87170470e+10 -1.88085180e+10j

-1.82832431e+09 +3.73360691e+10j
6.03207398e+08 +3.74838486e+10j
-1.82832431e+09 -3.73360691e+10j
6.03207398e+08 -3.74838486e+10j
-2.76111140e+09 +2.43431824e-07j
2.76070729e+09 -9.40589053e-07j

-1.11926391e+09 +8.59622259e-06j
-2.83876792e+08 -1.45739142e-06j
1.11926472e+09 -5.34145912e-07j
2.83856360e+08 -6.87523973e-07j
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Below are the eigenvalues of M matrix of Y22+Y12

Table 5.34: Eigenvalues of Hamiltonian for Y22+Y12

Eigenvalues

1.19024324e+12 -1.19165813e+12j
1.19024324e+12 +1.19165813e+12j
-3.68665039e+08 -3.76059855e+10j
6.75852729e+08 -3.75881930e+10j

-3.68665039e+08 +3.76059855e+10j
6.75852729e+08 +3.75881930e+10j
-2.91405135e+09 -3.21731932e-07j
2.96442701e+09 -4.98772979e-07j
-1.15097574e+09 -7.37879016e-06j
1.10273072e+09 +9.27526180e-07j
4.21039452e+08 -3.85067182e+08j
4.21039452e+08 +3.85067182e+08j
-2.75652141e+08 +1.35063450e-06j
2.32387266e+08 +3.69009059e-07j
5.89611161e+06 -1.12235337e-10j
-4.68144136e+06 -3.64021417e-07j

Based on the results of RLRC synthesis for Y11+Y12, -Y12, and Y11+Y12, the

equivalent synthesized RLRC circuit can be generated, and the synthsized netlist is

shown in appendix B and C, respective.
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Figure 5.30: S11 Parameter comparison between RLRC circuit and given Numerical TF.

	  
	  

	  
	  

Figure 5.31: S12 Parameter comparison between RLRC circuit and given Numerical TF.
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Figure 5.32: S21 Parameter comparison between RLRC circuit and given Numerical TF.

	  
	  

	  
	  

Figure 5.33: S22 Parameter comparison between RLRC circuit and given Numerical TF.
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Figure 5.34: Y11 Parameter comparison between RLRC circuit and given Numerical
TF. 	  

	  

	  
	  

Figure 5.35: Y12 Parameter comparison between RLRC circuit and given Numerical
TF.
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Figure 5.36: Y21 Parameter comparison between RLRC circuit and given Numerical
TF. 	  

	  

	  
	  

Figure 5.37: Y22 Parameter comparison between RLRC circuit and given Numerical
TF.

The flow diagram below summarizes the procedure of how to apply VF to synthesize

admittance RLRC pi-equivalent circuit based on S-parameters:
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Figure 5.38: Flow Diagram of Conversion from S-parameters to Synthesized RLRC
Equivalent Circuit [3], [39].

To ensure the RLRC circuit has the output as desired, the magnitude of the S-

parameters and the Y-parameters of the RLRC circuit are compared with the original

S-parameters and Y-parameters of numerical transfer function (TF in form of poles and

residues). The results are well matched between the two models (TF and Synthesized

RLRC circuit). The results are provided in figure from 5.30 to figure 5.38, Therefore,

the VF approximation works properly as desired and very accurate.

5.4 Numerical Results and Discussion

In numerical example one, both VF and RVF methods are able to approximate buck

converter output impedance, and the error is very small error (error < 10−5) between

actual frequency response and fitted frequency response. RVF method has a smaller

error compared to VF method. This indicates that VF written in Python is working

properly. This example contains 100 frequency responses, 2 poles and 5 iterations. Total

time of executing Python script is 0.66 seconds. The fitted impedance (i.e. poles and

residues TF) of VF is stable because the real part of each pole is negative, which lies on
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left-hand side of the Laplace-plane [51, 18, 19]. The stability analysis from approach in

[3] also shows that each branch is stable, therefore the stability of the model is confirmed.

The passivity analysis using the approach in [3] shows one of the branches nonpassive;

however, Hamiltonian Matrix analyzes the results of VF, and it shows the system is

passive.

In numerical example two, because the actual responses, f(s), are small, the VF is

not able to converge, and it contains a very large error between the fitted f(s) and actual

f(s); whereas, the RVF produces a very small error (less than 10−5). The total time of

executing this python program of VF with 1000 tabulated frequency responses and 5

iterations and 6 poles is 3.8 seconds. The results show that the model is stable because

the real part of poles is negative. And the approach in [3] is also used analyze the

stability of each RLC branch, and the results show that the model is stable. This is in

agreement with the stability theory. There are a couple branches of the equivalent circuit

showing nonpassive according to the approach in paper [3]. However, the Hamiltonian

Matrix is used to verify the whole system, and result shows the system is passive.

For numerical example three, RVF successfully approximates each component model

for Y parameters (Y11+Y12, -Y12, Y22+Y12), and the error is small less than 10−5. The

stability analysis shows that the system is stable. The Hamiltonian Matrix verifies the

model and the results show that the model is passive. The total time of executing this

program is about 1.02 seconds for each component (this is Synthesized S22 parameters,

has 177 frequency samples, 5 iterations, and 8 poles).

Each of the numerical examples has demonstrated that the VF algorithm written in

Python working properly and yield accurate approximation. The computational time is

proportional to the number of iteration in the program, amount of fitting data (number

of samples), and number of poles. The computational time for either RVF method or

the VF method is very similar. Based on the data that are generated from numerical

examples, there are a few key points to highlight about VF:
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• Advantages - VF is been widely used in different electrical systems. VF algorithm is

not too difficult to understand for a new user. Computational time is fast based on

data generated from Matlab and Python. VF Software is available for everyone.

• Strength - VF has capability to force stability for the approximated model. That

means an unstable pole can be stabilized through a non-linear pole flipping in [1],

and the flipping does not affect the algorithm convergence.

• Weakness - in these VF methods (original VF method and relaxed VF method), it

may generate nonpassive macromodels, which could be due to numerical errors.

This has been illustrated in numerical examples. The VF might need integrated

with the passivity enforcement to ensure the macromodel is passive. The passive

enforcement has been studied in [47], [2].
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Conclusion

In this thesis, we have performed and discussed three main points about vector

fitting. 1) We perform an in-depth study of the vector fitting method, and its advantages,

weaknesses and strengths; this includes VF method and RVF method. There are some

advantages of VF found, such as, being widely used in different electrical systems, being

easy to follow and understand, and ease of implementation in Matlab and Python. One

of the useful features of the VF method is the stability enforcement feature. One of the

weaknesses of the VF method is that it might generate slightly nonpassive macromodel.

2) The VF algorithm has been successfully implemented in Python scripting language

and verified through numerical examples. Numerical results show that the VF method

is very accurate. The error between fitted responses and actual responses is well within

acceptable range (< 10−5). A smaller error is seen from the RVF method compared to

the normal VF method. Computational time of VF is fast, and it is proportional to

the amount of fitting data, number of iterations, and number of poles. 3) The stability

and the passivity analyses have been done on the numerical results, obtained through

VF. The data confirms that enabling the stability enforcement feature of VF indeed

produces a stable approximant, verified by poles being located in the left-hand side of

the Laplace plane. We use semi-analytic and cellular methods to analyze passivity for

each RLC circuit branch, and we also use the Hamiltonian Matrix method to analyze

the passivity of the network. The results from passivity analysis show that even though

there might be no passivity at one or more RLC circuit branches in the network, the

network could still be passive. Finally, the application of VF method in RLC circuit

synthesis for a two-port network is presented in this thesis; from the result analysis, the

fitted frequency responses of S-parameters is well matched against the given tabulated

frequency responses.
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Appendix A: 100 frequency samples used for VF and

RVF codes verification

Solve how to find poles of linear system transfer function . . .

Table 6.1: 18 Poles Responses f(s)

Frequency f Real f Imaginary

795.7981856 -16.54213408 70.9116496
948.5271303 -9.34430753 1.77421324
1101.256075 -13.0691022 1.31131556
1253.98502 -14.51599799 1.30875843
1406.713964 -15.47806592 1.38007892
1559.442909 -16.36472356 1.48139626
1712.171854 -17.39306157 1.6097904
1864.900799 -18.82612053 1.78421239
2017.629743 -21.24940308 2.08134727
2170.358688 -26.78252254 2.93435267
2323.087633 -54.79427389 14.0199006
2475.816577 16.94252953 8.74309455
2628.545522 -2.37403994 3.09228969
2781.274467 -7.10946231 2.63323864
2934.003411 -9.33447824 2.6000125
3086.732356 -10.69997763 2.67639163
3239.461301 -11.68171046 2.80128763
3392.190246 -12.46972214 2.9586455
3544.91919 -13.15672127 3.14552261
3697.648135 -13.79516899 3.3647989
3850.37708 -14.41874942 3.62348179
4003.106024 -15.05166922 3.93294955
4155.834969 -15.7129344 4.31038747
4308.563914 -16.41790735 4.78152258
4461.292859 -17.17737145 5.38521256
4614.021803 -17.99249303 6.18075191
4766.750748 -18.84083523 7.25839201
4919.479693 -19.64178029 8.74964187
5072.208637 -20.17879282 10.8150907
5224.937582 -19.96576607 13.5223533
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Frequency f Real f Imaginary

5377.666527 -18.22557589 16.4207306
5530.395472 -14.67648227 18.0046244
5683.124416 -10.95944955 16.8339056
5835.853361 -9.26429176 13.831542
5988.582306 -9.77493608 10.8999437
6141.31125 -11.63692315 8.82284052
6294.040195 -14.32329386 7.58120464
6446.76914 -17.82397229 7.02096912
6599.498084 -22.62461211 7.12778261
6752.227029 -30.09247529 8.25679985
6904.955974 -44.5747616 12.1473736
7057.684919 -91.32257897 35.4823143
7210.413863 133.4663952 101.589764
7363.142808 43.29869291 15.4199856
7515.871753 23.02220549 8.70283788
7668.600697 14.01927628 6.65687221
7821.329642 8.78309099 5.81832602
7974.058587 5.27466382 5.444665
8126.787532 2.69558826 5.29413996
8279.516476 0.66588779 5.27028616
8432.245421 -1.02027814 5.32979213
8584.974366 -2.48605202 5.45228934
8737.70331 -3.81171618 5.62887099
8890.432255 -5.05417671 5.85734604
9043.1612 -6.25752813 6.14031225
9195.890144 -7.45946902 6.48464799
9348.619089 -8.69582575 6.90195516
9501.348034 -10.00445229 7.40993739
9654.076979 -11.42945567 8.03506286
9806.805923 -13.02679812 8.817382
9959.534868 -14.87289918 9.81940704
10112.26381 -17.0792939 11.1433705
10264.99276 -19.81981613 12.9674774
10417.7217 -23.38527029 15.6304454
10570.45065 -28.30272894 19.8587945
10723.17959 -35.60899953 27.5149684
10875.90854 -47.26321333 44.942373
11028.63748 -55.96972369 105.846808
11181.36643 126.7525404 94.9335986
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Frequency f Real f Imaginary

11334.09537 48.70422047 1.3178631
11486.82432 14.8379374 15.5796875
11639.55326 30.14631552 34.7877855
11792.2822 39.1601162 12.7079894
11945.01115 29.68803534 2.43498068
12097.74009 22.09976048 -0.450561758
12250.46904 16.7493843 -1.20474037
12403.19798 12.75693749 -1.24202068
12555.92693 9.57145927 -0.989168963
12708.65587 6.86679287 -0.587433261
12861.38482 4.43354579 -0.075792079
13014.11376 2.12038434 0.556028962
13166.84271 -0.19848673 1.35637122
13319.57165 -2.64305302 2.42214171
13472.3006 -5.33790864 3.93338502
13625.02954 -8.40213171 6.23211081
13777.75849 -11.8594193 9.99161398
13930.48743 -15.22269301 16.5197946
14083.21638 -15.94414612 27.7200358
14235.94532 -6.81727567 41.8773721
14388.67426 13.51438774 44.6109977
14541.40321 26.34857474 32.6002477
14694.13215 28.01235285 20.9493745
14846.8611 25.8080161 13.7889644
14999.59004 23.07135807 9.64267685
15152.31899 20.62718431 7.15827006
15305.04793 18.58687808 5.59442973
15457.77688 16.9012785 4.56441844
15610.50582 15.49973731 3.85995397
15763.23477 14.32106448 3.36333753
15915.96371 13.31759474 3.00479948
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Appendix B: 2 Port-Network Schematic

The synthesized RLRC circuit from VF and PRtoRLRC algorithm (I don’t expect

readers to read values on the circuit schematic. This circuit schematic just shows the

configuration of Y11+Y12, -Y12, Y22+Y12 in terms of RLRC, which generated by VF

and [3]:
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Appendix C: 2 port-Network Netlist

Netlist for Synthesized RLRC Circuit
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Appendix D: Command to execute and Read CSV

File Codes.

Execute vectfit.py under MAC Terminal Prompt: python vectfit.py


