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Abstract 
This study sought to explore whether access to definitions and general representations 

influences the construction of general direct arguments. Data was collected in college 

mathematics courses for prospective elementary school teachers. Participant arguments were 

analyzed along two variables: the generality of the representations and the viability of the 

conceptual insight they included. Participants were given one of three proving tasks. One 

task included no definitions, one task included definitions in the conceptual register, and the 

third task included definitions in the symbolic register. A randomized block design was used 

to explore the relationship between the definitions and the two variables. Qualitative methods 

were used to explore how participants intended their arguments. This study found that: 1) the 

inclusion of definitions on proving tasks does not have a substantial influence on the 

generality of the arguments or the viability of the conceptual insight used and 2) examples 

and algebraic representations were used as placeholders to demonstrate a procedure and to 

stand for the domain as a class of objects. The findings also indicate that the manner in which 

students are generalizing about the domain of the claim determines the structure of the 

domain they attend to, the conceptual insights available to them, and thus their ability to 

construct a viable argument. Future research is needed to connect the existing understanding 

of actions that support student generalization to supporting students in developing viable 

general direct proof. 
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Chapter 1: Introduction  
“This is trippy because I’m trying to find a way to prove it. There are infinite ways and it’s 

messing with my head.” 

 

This was a statement made by Preston (pseudonym), a student asked to think aloud as 

he worked to develop an argument to the claim all terminating decimals are rational numbers. 

Preston used his understanding of place value to justify the truth of the claim for terminating 

decimals that end in the tens place, hundredths place, and thousands place individually and 

then he paused and was not sure how to proceed. He realized the domain of the claim1 was 

infinite and was not sure how he could possibly address those “infinite decimal places.” 

In recent years, proof has been included in school mathematics classrooms across grade 

levels. The change in curriculum reflects the importance of proving activities to doing and 

understanding mathematics (Ball & Bass, 2000; Ball & Bass, 2003; Kitcher, 1984; Polya, 

1981). Since proving activities are now more prominent in mathematics classrooms, research 

has sought to understand student experiences with proof and proving.  

Fundamental to all explorations of student proving activities in response to a general 

claim is a focus on students’ expression of generality. In mathematics, proving a general 

claim with an infinite domain with a direct proof requires some sort of description or 

representation of the domain of the claim that is general and can be operated upon using 

sequences of logical inferences that demonstrate that all objects in the domain of the claim 

have the properties of the conclusion of the claim. Key to developing a direct proof of a 

general claim is using representations and logical inferences that attend to all cases in the 

domain of the claim (Esty & Esty, 2009). In direct proofs, generality must be expressed in 

two ways: 1) in the representation of the domain of the claim and 2) in the logical inferences 

applied to the representations of the domain. Since generality of representations and logic is 

an essential requirement for general direct proof it is of interest to consider when students 

develop responses that are general and how they communicate generality.  

 
1 I define the domain of the claim to be the set of objects described by the conditions of the claim. In the case of 
Preston, the domain of the claim is the set of all terminating decimals. 
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 It is well documented that students often develop empirical arguments in response to 

general claims (Coe & Ruthven, 1994; Goetting, 1995; Harel & Sowder, 1998; Healy & 

Hoyles, 2000; Sowder & Harel, 2003). These are non-general arguments that use a few 

examples as evidence that a general claim is true for a larger set. In much of the existing 

literature on proof, to understand student empiricism the theoretical assumption was made by 

researchers that what is taken by proof is equivalent to what the person finds convincing. 

Basically, expert mathematicians are convinced of the truth of a claim if there is a deductive 

proof that relies on logic and accepted prior results while students are convinced by a few 

conforming examples. In more recent literature, alternative explanations are emerging for 

why students may not create the deductive arguments the mathematical community craves. 

Among the more recent research is a study by Weber, Lew, and Mejía-Ramos (2020) which 

found that students and mathematicians consider multiple factors when deciding whether to 

produce a deductive or empirical argument. These factors include the perceived cost (which 

includes time) as well as their perceived likelihood of finding a deductive argument as factors 

when deciding whether to develop an empirical argument or a deductive one.  

 To Preston, not having a way to represent or describe all terminating decimals could 

be considered a cost as well as a perceived hurdle to his ability to produce a deductive 

argument. He continued to search for a way to objectify the set of all terminating decimals in 

a general manner but during the interview he was unable to find a way that allowed him 

access the structure of the domain that necessitates the conclusion of the claim. He finally 

settled on describing his approach to terminating decimals terminating in the tens, hundreds, 

and thousands place and saying “etcetera, etcetera” but was not able to identify why 

identifying the place value of the final digit in every terminating decimal was useful to 

demonstrating why the claim is true for all terminating decimals.  

 Preston’s search for a general representation highlights the importance of general 

representations in the development of deductive arguments. The general representation 

allows for all cases of the domain to be addressed and it gives access to describing and 

manipulating the set of objects for the purpose of demonstrating the conclusion is always 

true. This interaction led me to wonder how would Preston’s proof construction differ if there 

was a general representation available to him for the set of all terminating decimals? Would a 
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representation have supported Preston to identify the mathematical structure of the set of all 

terminating decimals to write a general direct argument showing the truth of the claim? 

While there is a plethora of research determining the ways in which student proof differs 

from that of experts, a modest amount of research has been dedicated to identifying factors 

that influence student construction of general direct (Stylianides, Stylianides, & Weber, 

2017). Existing studies have found that student skepticism of empirical data (Brown, 2014; 

Stylianides & Stylianides, 2009;), understanding of axiomatic systems (Jahnke & Wambach, 

2013; Mariotti, 2000a, 2000b), as well as the practice of participating in self-explanation 

while writing proofs (Hodds, Alcock, & Inglis, 2014) improve student proving outcomes. 

Studies have yet to adequately study the role of definitions and general representations to 

mathematical objects in the claim influence argument construction. This study explores how 

access to definitions with general representations of objects in a mathematical claim 

influences proof writing by examining the generality of representations and viability of 

conceptual insights used across responses to similar tasks with variations in the definitions 

included. The research questions guiding the study are: 

1. How does access to a general representation or general description of the 

mathematical objects in the claim influence the generality of a student’s 

argument and the way the student represents the domain? 

2. How does access to a general representation or general description of the 

mathematical objects in the claim influence the conceptual insights that are 

used in the argument? 

3. How do students describe the representations they develop or choose to utilize 

in their arguments? 
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Chapter 2: Literature Review 

2.1 Proof Construction and Validation 

Proof has been centered in mathematics education as a fundamental part of learning 

and doing mathematics (Gokkurt, Soylu, & Sahin, 2014: Ingelis & Alcock, 2012; NCTM, 

2000; Selden & Selden, 2003; Weber, 2008). Proving is viewed as an essential activity to 

deepen mathematical understanding (Hanna, 1990; Kitcher, 1984) and a necessary part of 

every student’s mathematical education (Ball & Bass, 2003; Ball, Hoyles, Jahnke, & 

Movshovitz-Hadar, 2002; Hanna & Jahnke, 1996; Mariotti, 2006; NCTM, 2000; Stylianides, 

2007, 2016; Yackle & Hanna, 2003). 

There are many methods of proof. Some methods are only appropriate for certain 

types of claims. For example, consider the claim “there exists an integer x, such that x >3 and 

x <5.” To address this claim, an existence proof is needed. An existence proof involves 

exhibiting a candidate and demonstrating that the candidate has the properties outlined in the 

claim (Esty & Esty, 2009). Other claims, called general claims, have some domain, often an 

infinitely large set, and assert that the set of objects shares some property or set of properties. 

For example, “all sums of three consecutive natural numbers are divisible by three.” This 

claim asserts that every object in the domain shares the property “divisible by three” and as 

there are infinitely many sums of three consecutive natural numbers, the domain is an 

infinitely large set.  

The proof methods used to demonstrate the truth of general claims fall into two 

classifications: direct proof and indirect proof. This study focuses on direct proof. For a 

general direct proof, the properties of the conditions are assumed. From the example above, I 

would assume the properties of sums of three consecutive natural numbers (Esty & Esty, 

2009). Then prior results, definitions, and theorems are used to demonstrate that the 

properties of sums of three consecutive natural numbers necessitate that the sum is divisible 

by three. In contrast, indirect proof methods (contrapositive and contradiction) both begin 

with the negation of the conclusion and either demonstrate that this necessitates that the 

conditions are not true or leads to something that is false (Esty & Esty, 2009). In the case of 

the claim used in this study, students are unlikely to develop indirect proofs because they 

have likely not had instruction on how to develop these types of arguments and in the set 
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“not divisible by three” is an unintuitive set to represent or describe in a general manner. 

Thus, the research described in my literature review is a subset of the proof research that is 

relevant to general direct proof and argument. 

 Two lines of inquiry have become prominent in the research on proof and proving: 

(1) student construction of proof and (2) student comprehension and validation of proof. 

Research has been drawn to these two lines of inquiry because students have persistently 

struggled with writing and reading proofs (Stylianides, Stylianides, & Weber, 2017). Proof 

construction and validation are connected because “one constructs a proof with an eye 

toward ultimately validating it” (Selden & Selden, 2003, p.6). Since validation and 

construction are connected results from studies exploring proof validation are relevant to my 

study. So while my study is situated within the proof construction, and I will primarily focus 

on the studies examining proof construction I will also touch on relevant findings from proof 

validation studies.  

In explorations of how students read proofs and what they deem viable, researchers 

have found that students do not reliably make correct judgements about the viability of a 

proof. This has been found in studies of grade school students (Ahmadpour et al., 2019; 

Bieda & Lepak, 2014; Healy & Hoyles, 2000), undergraduate students (Alcock & Weber, 

2005; Inglis & Alcock, 2012; Ko & Knuth, 2013; Selden & Selden, 2003; Weber, 2010), and 

even mathematicians have been found to disagree (Inglis & Alcock, 2012; Weber, 2010). In 

these studies, students were consistently focused on surface features such as the proof 

framework, or specific equations and manipulations of representations, rather than 

underlying mathematical structure. For example, Ahmadpour et al. (2019) found that students 

chose arguments with algebraic representations to be viable but when asked about the 

representation students did not connect the algebraic notation to the structure of the 

mathematical objects it represented. 

 Researchers have consistently shown that, across grade levels and through university, 

students are often not successful at writing proofs (Healy & Hoyles, 2000; Iannone & Inglis, 

2010; Knuth, Choppin, & Bieda, 2009; Senk, 1989;). Researchers have hypothesized many 

sources for student difficulties including choosing an appropriate proof framework (Selden & 

Selden, 1995), making sense of the logical structures (Zandieh, Roh, & Knapp, 2014), 



6 
 

lacking the means to communicate a proof (Mamona-Downs & Downs, 2009), mastery of the 

mathematical content (Azrou & Khelladi, 2019), understanding proof methods (Stylianides, 

Stylianides, & Pililppou, 2007), and transitioning from informal arguments that utilize 

diagrams and examples to form proofs (Pedemonte, 2007). Researchers have observed 

numerous ways that students fall short of the expectations of mathematicians when 

developing and validating proofs yet a very limited amount of research has explored methods 

of improving students’ proof validation and construction (Stylianides et al. 2017).  

  Stylianides et al. (2017) summarize teaching intervention studies that were intended 

to explore ways of improving student proof outcomes. Within their synthesis of prominent 

intervention studies, progress has been made in promoting student skepticism of empirical 

evidence (Brown, 2014; Stylianides & Stylianides, 2009), understanding the axiomatic 

assumptions of a proof within the context of geometry (Jahnke & Wambach, 2013; Mariotti, 

2000a, 2000b), and student understanding of induction (Brown, 2008; Harel, 2001; Ron & 

Dreyfus, 2004). Hodds, Alcock, and Inglis (2014) explored the influence of self-explanation 

training on student proof construction and validation. Self-explanation, explaining how the 

new information connects to what they know or the previous steps in the proof process, 

increased the quality of student-constructed proofs as well as student comprehension of 

written proofs. The intervention studies described above have demonstrated some factors that 

support student success in proof construction. My study contributes to the field by exploring 

factors that influence student construction of general direct arguments.  

2.2 Proof Classification  

When exploring the proofs students construct, it becomes apparent that there is a 

spectrum of types of responses that students develop that are not proof as is known and 

accepted by mathematicians. Classification schemes were developed to organize the types of 

arguments students develop based on varying criteria for the purpose of examining student 

progress towards deductive proof (Balacheff, 1988; Harel and Sowder, 1998). Balacheff’s 

Hierarchy of Student Proofs and Harel and Sowder’s Classification of Students’ Proof 

Schemes hierarchy provide the foundation for how student proofs are discussed and 

classified.  
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Balacheff’s Hierarchy of Student Proofs consists of four categories: Naïve 

Experience, the Crucial Experiment, the Generic Example, and the Thought Experiment 

(1988). Each category is distinguished by a different level of awareness and execution of 

generality. The first two categories include no generality. Naïve Empiricism classifies 

arguments that rely solely on examples. Either the student does not engage in the proving 

process and gives only conforming examples, or the argument suggests that a selection of 

conforming examples is sufficient to form a valid general proof. While the Crucial 

Experiment does not involve generality, it does mark a transition from pure empiricism 

because here students will seek specific examples that they see as extreme cases. By testing 

cases that are perceived by the student as extreme the student gains the belief that the claim is 

true for all cases (Knuth & Elliott, 1998). If the domain is integers, a Crucial Experiment 

may involve confirming that the claim holds for a really large number.  

The final two categories include an awareness of the need for generality: the Generic 

Example and the Thought Experiment. In Balacheff’s original description, Generic Example 

is defined as “making explicit the reasons for the truth of the conjecture by means of actions 

on an object which is not there in its own right, but as a characteristic representative of its 

class” (Balacheff, 1891, p.7). The Thought Experiment is then distinguished from the generic 

example as involving internalizing the reasoning and detaching the proof from a particular 

representation. 

 On first consideration it is not clear how a student can use an object as a 

representative of a class and not have internalized the properties of the class, leading to the 

necessity of the conclusion. Knuth and Elliot clarify this distinction by describing the 

Generic Example as relying on inductive reasoning, i.e., an observation is made based on 

empirical data and assumed to be true for a larger set. Hence the representation is 

representing a class of objects but the shared properties of those objects that are used in the 

transformation are derived from observation. In contrast the Thought Experiment uses 

deductive reasoning and thus the properties defining the class stem from the definition of the 

domain (Knuth & Elliot, 1998). When considering work produced by students, the distinction 

then between Generic Example and Thought Experiment may be as subtle as the student 
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stating that a transformation can always be applied because everything in the domain has a 

certain observed structure versus connecting the structure to the definition of the objects.  

Elements of Balacheff’s hierarchy laid the groundwork for the classification of 

student proof. It is important to note that the definition of Generic Example is not consistent 

across the literature. The manner in which it is defined determines whether it is considered an 

to be part of a non-general proof (Balacheff, 1988; Leron & Zaslavsky, 2013) or a way for 

students to develop general proof (Yopp & Ely, 2016). Various definitions of Generic 

Example are described and compared in section 2.2.2. 

While Balacheff’s hierarchy distinguished student work by generality, Harel and 

Sowder classified student proof by the source of the student’s conviction (1998). In their 

work, Harel and Sowder found that students draw conviction from a variety of sources, 

including empirical evidence, authority, or analytical systems. These sources of conviction 

then form the categories of a hierarchy, each with subcategories formed by distinctions found 

within the given source of conviction.  

Harel and Sowder’s taxonomy relies on the assumption that conviction and validity 

are intertwined—if an argument convinces the reader of the truth, then the argument is valid 

and vice versa. If students produce an empirical argument, they are considered to have used 

an empirical proof scheme which means they derive conviction from the section of 

confirming cases they include in their argument.  

Generic examples and the notion that conviction and validity are intertwined are two 

aspects from these frameworks that are particularly relevant to my study and thus will be 

further explored in the following sections. Balcheff’s hierarchy is useful as it identified 

features of student proving activity that is between empiricism and formal deductive proof. 

Primarily, the concept of Generic Example Proof is of interest and useful to me in this study 

as generic examples can be used by students to represent an infinite domain of a claim. The 

key assumption to Harel and Sowder’s classification system—that the source of student 

conviction determines the type of proofs they create and choose, shaped the manner in which 

student empiricism was understood and researched. The findings from studies searching for 

answers to why students write empirical proofs motivated my study.  
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2.2.1 Generic Example Argument 

Early definitions of generic example proof (sometimes called generic proof or generic 

example argument) include the following: 1) an example featuring a particular object in the 

domain, 2) a transformation or procedure applied to the object transforming the object to 

demonstrate that the conclusion holds, and 3) the property that the transformation or 

procedure can be applied to any object in the domain (e.g., Tall, 1979; Mason & Pimm, 

1984; Balacheff, 1988). The generic examples and generic example proof are relevant to the 

discussion of student arguments and the classroom proving experience because they are often 

used in instruction, they have been found to have pedagogical benefits in the teaching of 

proof and are commonly seen in student arguments. In the literature, the definition of generic 

example is not consistent and thus there have been different theoretical interpretations of 

whether generic examples can be used to form a proof of viable argument. 

One of the reasons generic examples are relevant to a discussion about proving is that      

they have been determined to be a valuable pedagogical tool when teaching proof. 

Researchers have encouraged educators to use generic examples as an argumentation method 

when teaching (Rowland, 1998; Russell et al., 2011). In his study, Tall (1979) found that 

students reported understanding the generic example argument better than the formal general 

proof. Tall’s work suggested that generic proofs have more explanatory power for beginning 

students than general proofs. Generic examples have been found to have the power to 

convince and explain in all levels of mathematics (Rowland, 1998). Some researchers have 

suggested that generic example proofs are more accessible to learners as they do not require 

formal notation (Balacheff, 1988; Dreyfus et al., 2012; Stylianides, 2008). Others have 

concluded that generic examples can be a tool to express generality when formal 

mathematics notation may not be available (Harel & Sowder, 1996; Russell et al., 2011). As 

such, they have been viewed as a tool to bridge the gap between empirical arguments and 

formal arguments (Dreyfus et al., 2012; Leron & Zaslavsky, 2014). 

 In the literature, the definition of generic example and generic example proof has 

evolved over the last forty years. In the early definitions found in Tall (1979), Mason and 

Pimm (1984), and Balacheff (1988a) a common thread in the definitions is that the generality 
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of the example is perceived by the reader but not directly stated by the author of the 

argument. 

 

[The proof] is generic in the sense that it contains within it a complete spectrum of 

proofs for all square roots of non-squares. It shows why no square of a rational equals 

2 and the same proof readily adapts to 5/8 or any other non-square (Tall, 1979, p. 5). 

 

The generic proof, although given in terms of a particular number, nowhere relies on 

any specific properties of that number (Mason & Pimm, 1984, p. 284).  

 

The generic example involves making explicit the reasons for the truth of an assertion 

by means of operations or transformations on an object that is not there in its own 

right, but as a characteristic representative of the class. The transparent presentation 

of the example is such that analogy with other instances is readily achieved, and their 

truth is thereby made manifest. Ultimately the audience can conceive of no possible 

instance in which the analogy could not be achieved (Balacheff, 1988, p. 219). 

 

In these early descriptions and examples of generic examples and generic proof there is no 

criteria that works to include an explicit statement addressing how the example is 

representative of its class or an explanation of why the reasoning used on the example can be 

applied to all objects of its type.  

Without the requirement to be explicit about the generality and reasoning at hand it is 

not surprising that there is dispute in the literature about whether a generic example argument 

can be taken as proof. In early classifications of student argument, generic example proofs 

are not considered to be proof. Harel and Sowder (1996) assert that generic example proofs 

reflect a “students’ inability to express their justification in general terms” (p. 43). Similarly, 

in Balacheff’s classification of student work, generic proof was not considered full or proper 

proof. This perception persisted and is present in Leron and Zaslavsky’s (2013) reflection on 
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generic example and its role in pedagogy and proof. In contrast, Rowland (1998) disagreed 

with what he referred to as the deficit view of generic proof taken by researchers, stating in 

some cases the generic example “adequately bears the intended generality and is fully 

sufficient for purposes of conviction and explanation” (p. 70). At the heart of these two 

opinions is a difference in opinion about who is responsible for seeing the generality of the 

example—author or reader. Those who say that generic proof is not proof using early 

definitions seem to be saying that the author is responsible for communicating why their 

example is general. Those who say generic example proof is proof are saying that if the 

reader can perceive the generality of the example, then the generic proof is proof. However, 

if the goal is assessment of student understanding, a generic example presented as defined in 

this manner leads to challenges because how would the teacher or researcher know whether 

the example was intended as generic? 

 Kemper and Biehler (2015) present a solutsion to this challenge by emphasizing that 

the inclusion of narrative reasoning is what makes the generic proof a valid general 

argument. They do not explicitly define “narrative reasoning” but in their example the 

narrative reasoning describes the structure of the example that is general to all objects of the 

domain and why that structure allows for the procedure or transformation that is completed to 

demonstrate the truth of the claim.  

 

 

 

Figure 1: Example of a generic example in a valid argument according to Kempen and 
Biehlers’ criteria (2015, p. 136-137) 
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In their handling of generic example, Yopp and Ely (2016) state, “…in a generic 

example argument, the generality lies not in the representation but in the way the example is 

appealed to.” In contrast, “formal proof often uses general representations, such as quantified 

variables or symbolic placeholders” (p.41). Yopp and Ely present a framework for evaluating 

whether an example used in an argument is a generic example and thus they argue can be 

part of a viable argument. Their framework requires that at each step in the example the 

argument appeals to a general property of the example. In their paper, they highlight that in 

the previous literature the generality and hence viability of a generic example argument has 

been determined by the readers’ assumptions and that this does not allow for researchers and 

teachers to assess student work without making assumptions that may mischaracterize the 

student’s intended reasoning.  

Reid and Vallejo Vargas sought to navigate the challenge of sorting authors’ intent 

from readers’ assumptions by defining generic proof in terms of two factors: psychology of 

the readers and the social conventions of the context.  

 

Psychologically, for a generic argument to be a proof it must result in a convincing 

deductive reasoning process occurring in the mind of the reader. Socially, for a 

generic argument to be a proof it must conform to the social conventions of the 

context (Reid & Vallejo Vargas, 2018, p. 239). 

 

They acknowledge that determining the psychology of a student can be challenging and 

suggest sharing two criteria with students to support students in writing arguments that give 

the teacher sufficient evidence to determine whether the example is used by the student 

generically or empirically. The criteria are: 1) evidence of awareness of generality and 2) 

mathematical evidence of reasoning (p. 247). 

 Reid and Vallejo Vargas (2010) interpret phrases such as “the same reasoning can be 

used for the other cases”, “it also applies to the other cases involved”, or “this is true for all 

[objects in the domain]” as evidence of awareness of generality (p. 247). Reid and Vallejo 

Vargas state the “main reason for considering this as relevant evidence is the need to be sure 
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whether or not the students are aware that they are not only dealing with empirical evidence, 

but that their work shows general structures through the use of their examples” (p.247). They 

explain “[mathematical evidence of reasoning] mainly points to the mathematical reasons for 

why the same structure can be extrapolated for other cases from the example(s) given, and it 

is based not only on the conditions of the problem given but also on the ground knowledge 

the community shares at that point (the social aspect)” (p.247). Figure 2 shows an example 

they give of a generic example proof satisfying their criteria. The proof is in response to the 

statement “Prove that the sum of the first n natural numbers is 𝑛𝑛(𝑛𝑛+1)
2

.” 

 

 

 

 

Figure 2: Example of a generic example proof given by Reid and Vallejo Vargas (2018, p. 
248-249) 

 

 The example given by Reid and Vallejo Vargas (2018) above includes a narrative 

reasoning as described by Kempen and Biehler (2015). Reid and Vallejo Vargas proclaim 

that there are other ways besides the use of narratives for students to communicate generality. 

They suggest that students who struggle with linguistic formulations may be able to express 
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generality in alternative ways such as symbols, arrows, and other indications to the general 

structure of the example with some statement saying the procedure or transformation 

completed can be done with all objects in the domain. Figure 3 shows such an argument. 

They claim that the argument is proof because the symbols express the same generality that 

was captured in the written words in the prior argument. 

 
 

Figure 3: Example of a generic example proof given by Reid and Vallejo Vargas that does 
not include a narrative (2018, p. 249) 

 

 The definition given by Reid and Vallejo Vargas has since been used and adapted by 

researchers to classify generic examples in studies exploring characteristics of arguments 

written using generic example proofs (Rø & Arnesen, 2020) and the perceptions of generic 

example proofs by in-service teachers (Dogan & Williams-Pierce, 2021). Rø and Areneson 

used the definition given by Reid and Vallejo Vargas and explored the arguments developed 

by student teachers when asked to write a generic example proof. They found that none of 

the teachers wrote arguments that fully satisfied their criteria for generic example proof and 

thus suggest that generic example proof has an opaque nature requiring attending to criteria 

and emphasizing the structural nature of generic examples. Dogan and Williams-Pierce also 
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utilized the definition by Reid and Vallejo Vargas in tandem with Stylianides sociocultural 

definition of proof: 

 

…a mathematical argument, a connected sequence of assertions for or against a 

mathematical claim, with the following characteristic: 

1) It uses statements accepted by the classroom community that are true and available 

without further justification. 

2) It employs forms of reasoning that are valid and known to, or within the conceptual 

reach of, the classroom community. 

3) It is communicated with forms of expression that are appropriate and known to, or 

within the conceptual reach of, the classroom community (Stylianides, 2007, p. 291). 

 

In their analysis, they found three categories of proof using generic examples: 1) empirical 

arguments enhanced with generic language, 2) incomplete generic examples, and 3) complete 

generic arguments (p. 133). The first category is characterized by examples accompanied by 

what Rowland (1998) defined as empirical generalization—a generalization “derived from 

the form of results (usually numerical) and observed relationships” (p. 67). Rowland 

elaborates, stating “empirical generalizations may possess predictive potential but lack 

explanatory power” (p.67). This can be seen in the examples given by Dogan and Williams-

Pierce of empirical arguments enhanced with generic language. In these examples, the 

student teachers consider several examples and then notice patterns in the results which they 

describe generically. Incomplete generic examples are characterized as satisfying the 

awareness of generality criteria but not including sufficient mathematical reasoning. In the 

example given by Dogan and Williams-Pierce, the in-service teacher generalizes their 

example but relies on example-based reasoning to test her generalization. The in-service 

teacher does not provide valid justification for why the generalization will work for all 

objects in the domain. In their study they found that the Reid and Vallejo Vargas criteria for 

generic example proof was well suited for analyzing classroom proving activity in 

combination with the Stylianides (2007) framework.  
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 The definitions and interpretations of generic example have evolved since the 

conception of the idea in the seventies from an example that a reader can perceive as 

representative of generality to an example that includes work showing awareness of 

generality and mathematical reasoning. Within the recent body of research, the criteria given 

by Reid and Vallejo Vargas have allowed for researchers to identify generic examples in 

their analysis and classify generic arguments as proof when they meet the outlined criteria 

and even find nuanced categories of arguments when one of the criteria is met and the other 

is not. What has not been explored is whether the definitions or representations students have 

access to influences their decision to use generic examples as opposed to empirical examples, 

or more formally accepted algebraic notation. 

2.2.2 Empiricism 

 To understand the motivation for my study and my focus on general representations, 

it is important to discuss the prevalence of empiricism in both proof construction and proof 

validation. Research exploring the work produced by students in response to proof prompts 

has found that students often respond with empirical work (Chazan, 1993; Harel & Sowder, 

1998; Healy & Hoyles, 2000; Knuth et al., 2002; Martin & Harel, 1989; Simon & Blume, 

1996; Stylianides & Stylianides, 2009). This means that when given a statement that is 

general, or referring to a set of objects, students demonstrate the truth of the claim for some 

finite subset of the domain. For example, when given the claim “the sum of three consecutive 

natural numbers is divisible by three,” a student may develop the following argument: 

 

2+3+4=9, 9/3=3. I showed it worked so the claim is true. 

 

This argument uses one example in the domain to demonstrate that the claim is true for all 

sums of three consecutive natural numbers.  

 Empiricism has been of interest to mathematics education researchers because it has 

been found to be incredibly prevalent in student work and thinking. Students across grade 

levels and ages have been found to develop empirical responses (Chazan, 1993; Harel & 

Sowder, 1998; Healy & Hoyles, 2000; Knuth et al., 2002; Martin & Harel, 1989; Simon & 
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Blume, 1996; A. J. Stylianides & G. J. Stylianides, 2009). Knuth et al. found in their study 

that 70% of the middle school students participating used examples to justify the truth for 

infinite domains. Goetting (1995) found 80% of participating preservice teachers accepted 

empirical arguments and more recently Morris (2007) found 41% of preservice teachers 

accepted empirical arguments.  

These findings are troublesome to mathematics education researchers because 

empirical proof is not in alignment with what mathematicians view as proof and is perceived 

by many in the mathematical community as evidence of unsophisticated or immature 

mathematical thinking (Balacheff, 1988; Harel & Sowder, 1998). Thus, mathematics 

education research has been interested in understanding why students develop empirical 

arguments and exploring how to shift student proofs from empirical proof to analytical proof.  

To make sense of student empiricism many researchers ascribe to the theoretical 

assumption that student proof is indicative of the student’s scheme for what is convincing 

(Weber et al., 2020). This theoretical assumption, referred to by Weber et al. as the “proof as 

convincing” paradigm, means that an empirical argument is interpreted as evidence that the 

writer believes that their empirical work is convincing and sufficient to prove the claim at 

hand (2020). The writer of the proof is then described as having an empirical proof scheme 

(Harel and Sowder, 1998). Conversely, a deductive proof is then considered evidence that a 

student is convinced by deductive reasoning. Weber et al. (2020) summarizes this body of 

research categorizing the studies into two different categories: 1) justification studies where 

researchers ask a group to justify mathematical statements and examine what is produced and 

2) evaluation studies where researchers present a claim and justification for the claim to a 

participant and ask the participant whether they are convinced that the claim is true by the 

justification. In both types of studies, when participants either develop an empirical proof or 

choose an empirical proof as convincing, the participants are classified as having an 

empirical proof scheme. The “proof as convincing” paradigm dictates how researchers 

propose supporting students to produce deductive proofs as their theoretical framing assumes 

that if students learn that empiricism is not convincing in mathematics and that deductive 

reasoning is convincing, then they will develop deductive arguments.  
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In recent research the “proof as convincing” paradigm has been challenged by 

findings that suggest that empirical proofs may be developed independent of an empirical 

proof scheme. Findings that challenge the paradigm include that students have different 

criteria for viable proofs than for convincing proofs (Knuth, 2002), the percentage of 

empirical responses is dependent on the difficulty of the claim (Knuth et al., 2009), 

participants that develop empirical arguments do not always consider these arguments to be 

convincing nor do they necessarily believe they are valid (Healy & Hoyles, 2000; Stylianides 

& Stylianides, 2009; Weber, 2010), participants reported not gaining certainty from empirical 

proofs (Bieda & Lepak, 2014), and participants apply different criteria or use different 

conceptions of proof depending on the context in which the proof is presented or developed 

(Healy & Hoyles, 2000; Stylianides & Al-Murani, 2010). These findings were detailed by 

Weber et. al (2020) and motivated their exploration of an expectancy value model to explain 

student empiricism. 

Weber et al. (2020) used expectancy value theories to account for the types of proofs 

students develop. Expectancy value theories are theories of motivation that study the 

relationship of beliefs, values, and goals with actions (Eccles & Wigfield, 2002). Using their 

study, Weber et al. investigated three alternative factors that may dictate whether participants 

develop empirical justifications: 

 

(a) Participants might not be interested in being certain of the conjecture in question 

and thus settle for the first empirical justification that they produce (an issue of 

values); (b) they might find searching for a proof to be an unpleasant endeavor that is 

not worth the effort and thus prefer an empirical justification that takes less time and 

effort to generate (an issue of cost); or (c) they might settle for the empirical 

justification because they believe that they lack the capacity to find a proof (an issue 

of likelihood of success) (Weber et al., 2020, p. 32).  

 

These factors demonstrated to be relevant to the participants in their study and furthermore 

reflect the practices of mathematicians. The work by Weber et al. and the prior research that 

challenges the “proof as convincing” paradigm demonstrates that there is more to discover 
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about why students generate empirical justifications for the purpose of supporting their 

development of deductive arguments. In particular, how does a participant’s familiarity with 

the domain and ability to represent it in a general manner contribute to their perceived cost of 

developing an argument or their perceived likeliness of success? 

2.3 Components of Deductive Proofs 

In section 2.2 I summarize how the spectrum of arguments produced by students has 

been classified. The classification of proofs affords ways of sanctioning student general 

direct arguments that are “proof-like”—including general and valid representations and 

reasoning which are not necessarily presented in a manner that is accepted as formal 

mathematical proof. These arguments are called “proofs” by some researchers (Balacheff, 

1988a; Russell et al., 2011; Stylianides, 2007), but are sometimes called “deductive 

arguments” (Chazan, 2009; Knuth, Choppin & Bieda, 2009; Morris, 2009) or “viable 

arguments,” (Yopp & Ely, 2016). In this section I summarize a model for arguments and 

features of arguments that influence the construction of viable arguments to general claims. 

2.3.1 Models for Argumentation 

Toulmin’s 1958 model for argumentation was developed to examine moral reasoning. 

The model was adopted and used by mathematics education researchers to analyze 

components of student proof and argument. The model has three base structures: 1) a claim, 

assertion, or opinion, 2) data produced to support eh claim, and 3) a warrant that serves as 

justification for why the data supports the claim. In mathematics the warrant is often an 

axiom, theorem, or definition. The model has 3 additional elements. Qualifiers which 

acknowledge limitations of the claim, rebuttals which indicate circumstances where the 

warrant will not hold, and backing which is the theoretical framework that supports the 

warrant. 

The model for argumentation has been used to analyze and document proof in various 

contexts. It has been used to analyze the process of students learning proof in classrooms 

(Forman, Larreamendy-Joerns, Stein, & Brown, 1998; Moore-Russo, Conner, & Rugg, 2011; 

Krummheuer, 1995; Yackel, 2001; Yackel & Rasmussen, 2002; Stephan & Rasmussen, 

2002), student and teacher interview data (Hollebrands, Conner, & Smith, 2010; Inglis, 

Mejia-Ramos, & Simpson, 2007; Nardi, Biza, & Zachariades, 2012; Steele, 2005), the nature 
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of student arguments under certain conditions (Hollebrands et al., 2010), how student and 

teachers connect parts of their arguments (Gonzales & Herbst, 2013), and to consider the 

relationship between argumentation and proof (Knipping, 2008; Lavy, 2006; Pedemonte, 

2007, 2008; Weber & Alcock, 2005). 

The model is not specific to mathematical argumentation and such researchers have 

found some limitations of using the model for understanding student proving activity. In 

particular, warrants as defined by Toulmin seem to have distinct meanings. Stranieri and 

Zeleznikow (1999) found that warrants can be a reason for a fact or a rule that leads to an 

inference. This was then extended by Pedemonte and Balcheff (2016) into three distinct 

meanings of a warrant: 1) a method of inference, 2) reasons that explain how the data 

demonstrates the truth of the claim, and 3) reasons that explain why the method of inference 

is appropriate.  

To better account for warrants, Pedemonte and Balacheff (2016) used Toulmin’s 

model in conjunction with the ck¢ Model, a model of a learner conception. The ck¢ Model 

was developed by Pedemonte and Balacheff and has four elements. The first is the sphere of 

practice which is the “set of problem-situations within which [a conception] proves to be an 

efficient tool for building a solution” (p. 109). The second and third elements are the 

operators and representations used within the sphere of practice. The fourth element is the 

control structure, “the set of means learners have” to make decisions and to assess to take 

decisions, and to assess their production (p. 105). The ck¢ Model affords more nuance when 

considering the warrants and backings in mathematical arguments. Pedemonte and Balacheff 

described how the model appears in proof construction. They stated, 

a given conception a mathematical problem can be represented by a set of 

statements expressed using the representation system. Hence, the application 

of a rule transforms an initial set of statements data into a new claim. The 

series of transformation ends when it reaches an ultimate statement claimed 

“true” based on the control structure (p. 108). 

 

This characterization of an argument includes a reoccurring theme that the original claim, or 

domain of the claim, is transformed, operated on, and then reinterpreted. This 
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characterization appears in the work of Weiss and Herbst (2007) and Duval (2006) in their 

discussions of registers and representations as well as the model for definition use outlined 

by Esty and Esty (2009).  

 Pedemonte (2007, 2008, 2016) utilized Toulmin’s model and the ck¢ Model of a 

learner conception to explore the challenges students experience in proof writing by 

analyzing the transition from informal explorations to formal proof. Among the findings of 

her studies were the following: the validity of the operator influenced whether students 

successfully developed proof, abductive and inductive reasoning with empirical data at times 

led to larger structural distance between the informal argument and the proof, and 

generalization about the process observed in empirical data was useful to students to 

transition to proof. 

 When students used operators that were valid in their informal arguments, they were 

able to directly replace the operator with a theorem (Pedemonte, 2005). When the operator 

was not mathematically valid, two possible outcomes resulted: 1) the proof was not 

constructed because the student could not replace the operator with a theorem or 2) an 

incorrect proof was constructed based in the conceptions of the informal argument. 

Pedemonte and Balacheff found instances where the operator was not valid, correlating with 

the use of empirical data in tandem with abductive and inductive reasoning. What was useful 

for students in their transition was generalizing the process. This finding fits with the 

findings of Harel’s (2001) teaching intervention where he found that generalizing the result 

of a pattern resulted in empirical proofs and generalizing the process of a pattern resulted in 

more deductive proofs. 

 An additional finding from Pedemonte and Balacheff’s study was that interpreting the 

role that a representation is playing within a student proof is difficult; “it can be read as the 

actual mathematical object or as its representation” (p. 121). This supports the need to 

examine how students are intending to use the representations they develop or choose in a 

given argument. 
 

2.3.2 Registers and Representations 

The notion of representation has various meaning attributed to it in literature on 

teaching and learning mathematics (Zazkis & Liljedahl, 2004). Researchers and educators 
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have struggled to define representation as it is considered both a dynamic process tied to an 

individual’s mathematical thoughts (Vergnaud, 1998), a product (NCTM, 2000), and is 

further complicated by researchers viewing representations as existing internally and 

externally (Goldin & Shteingold, 2001; Goldin, 2003; Zhang, 1997). Internal representations 

describe mental processes (Goldin, 2001) or arrangements of ideas in an individual’s mind 

(Janvier, 1987). Internal representations are not observable and difficult to study 

(Haciomeroglu, Aspinwall & Persmeg, 2010). External representations are forms of 

communication of mathematical ideas such as diagrams, signs, figures, characters, symbols, 

etc. (Mainali, 2021). Stylianou defined them as “configuration[s] that stand for something 

else” (2011, p. 266). This study is exploring how the inclusion of definitions which include 

symbols and characters to stand for classes of objects influence the construction of student 

argument. Hence, I will focus on external representations and refer to them as 

representations. 

Representations are a fundamental part of communicating proof as seen by their 

inclusion in the model for learner conception. Pedemonte and Balacheff stated, “for 

researchers as well as for teachers making sense of students’ understanding and activity 

always starts from the evidence provided by representations” (p.121). Frameworks 

leveraging registers and representations have been used to understand what it takes to prove. 

Mathematical objects can only be accessed through their representations and transformations 

that are made on those representations (Duval, 2006). Duval defined representational register 

as a semiotic system in which transformations can be completed on the representations. He 

outlined two types of transformations critical to mathematical activity.  

Treatments are transformations that remain within the same register. For example, 

simplifying an expression or visually reconfiguring a diagram of a parallelogram into a 

rectangle of equivalent area. Conversions are transformations that “change the register 

without changing the objects” (p. 112). For example, converting a written description of a 

relationship into algebraic notation, or converting algebraic notation into a graphical 

representation. Duval stated that these types of transformations are more complex than 

treatments because “any change of register first requires recognition of the same represented 

object between two representations whose contents have very often nothing in common” (p. 
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112). Interpreting this within the notion of structure,2 this seems to mean that the forms have 

little in common and recognition of the same represented object means identifying the 

structure of the object within the different form.  

Duval (2006) used his framework to identify conversions as a source of difficulty for 

students. He found that students not successfully converting a relationship from a Cartesian 

graph representation to an equation representation did not correspond with the students not 

understanding the concept of function. Conversions are challenging to students and from 

Pedemonte and Balcheff’s (2016) model they appear fundamental to argument and proof. 

Weiss and Herbst (2007) used Duval’s notion of conversions to examine proving 

activity in geometry classrooms. They defined three distinct registers: conceptual, generic, 

and diagrammatic. The conceptual register describes when objects are referred to by the 

name of their abstract class. The generic register describes when “particular instances of the 

class are taken as generic representations” (p. 2). And the diagrammatic register describes 

when a diagram is used to represent a class of objects. Weiss and Herbst found that students 

had very few opportunities to complete conversions between the registers. Most conversions 

were completed by the teacher or by the textbook. In particular, they noted that when 

students were presented theorems, the conceptual register was used and when students were 

asked to prove, they were presented representations in either the generic or diagrammatic 

register.  

 Duval highlights the importance of representations in mathematics. General, direct 

proofs are about infinite sets of abstract mathematical objects. Can we expect students to be 

successful at communicating their proof without access to a general representation of the 

domain? Furthermore, does the presence of a definition support students converting into that 

representation system?  

2.3.3 Mathematical Structure 

In observing how a student use representations and the warrants they develop I found  

there was a need to identify the properties of the mathematical objects and the ways in which 

 
2 Definitions of structure vary across the literature. In this study I use structure to describe the characterization 

of properties of a mathematical object (see the theoretical framework for more detail). 
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those properties are seen and characterized by student. The term “structure” has been used in 

various contexts across mathematics education research. Yet there is a certain degree of 

vagueness about its meaning as it has been used to describe many different phenomena. 

Kieran noted in 2018 that: 

 

Structure is often treated within the mathematics education community as if it were 

tantamount to an undefined term; it is further assumed that there is universal 

agreement on its meaning (p. 80). 

 

In existing literature there are several distinct ways that structure is defined and the 

connections between structure and generalization, abstraction, representation, and properties 

are neither consistent nor clear (Venkat, Askew, Watson, & Mason, 2019). In the existing 

literature there are four distinct ways that structure has been defined: 1) the class or syntax of 

a problem, 2) the relationship between features within an object, 3) the external 

interrelationship between objects, and 4) as one of the two ways to conceive of mathematical 

objects. 

Class or Syntax of a Problem 

Hoch and Dreyfus (2004) used structure to refer to the class of problems that can be 

solved similarly. The use of the word structure to identify syntactic components of math 

tasks is not uncommon and also appears in Vergnaud (1992) along with other studies. This 

view of structure has been used to examine the relationship between the syntax of a problem 

and student response. This definition of structure does not address the structure of the 

mathematical objects themselves. 

Features within an object 

 Malle (1993) considered recognizing structure as identifying partial terms. For 

instance, Malle identified three different partial structures within the equation 4 ∗ 𝑥𝑥 + 3 =

11.  
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Figure 4: Depiction of structure from Malle (1993, p. 189) 

 

This definition of structure was used to investigate unpacking features within algebraic 

equations and applying order of operations.  

 Within the specific content of arithmetic and algebra, Banerjee and Subramaniam 

(2012) defined structure as “identifying the components of expressions which contribute to 

its value and which remain invariant through valid transformations " (p. 356). The instruction 

with a focus on structure involved stating the information contained in the expression, the 

units that compose the expression, the values of each of the units and discussing the 

transformations that will not alter the value of the expression. They stated that perceiving 

expressions using a structural way allows students to develop a deeper understanding of the 

equality of expressions (Banerjee & Subramaniam, 2012). Similarly, Kieran (2018) saw 

structure in activities that decompose and recompose arithmetical or algebraic 

representations. These definitions focus on relationships between internal elements of 

mathematical objects or representations.  

Kieran (1989) defined two types of structure within the context of algebra—surface 

(internal) and systemic (external) structure. Surface structure is similar to the definition used 

by Banerjee and Subramaniam (2012). As defined by Kieran (1989), surface structure 

“describes the relationship between the partial terms of the term in accordance with the 

hierarchy of operations, as well as the equality of two terms on the left and right side of an 

equal sign” (Kieran, 1989, p. 387). System structure “comprises all equivalent forms into 

which a term can be transformed in accordance with mathematical laws, or rather, all 

equations that are equivalent to an equation” (Kieran, 1989, p. 387). With these definitions, 
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Kieran distinguishes between the structures found within an object and external structure 

found by making a comparison to equivalent objects. 

Relationships Between Objects 

The third category of definitions are those that view structure as the relationships 

between objects, i.e., external relationships. Morris (1999) defined mathematical structure to 

be knowledge about mathematical objects themselves and the knowledge of the relationships 

between the objects and the properties of the object. Warren (2003) expanded this definition 

into four parts: 1) relationship between quantities, 2) group properties of operations, 3) 

relationships between the operations, and 4) relationships across the quantities (Warren 2003, 

p. 123). Simpson and Stehlíková (2006) define apprehending structure as “the shift of 

attention from the familiarity and specificity of objects and operations to the sense of 

interrelationships between the objects caused by the operations” (p. 532).  

Mason, Stephens and Watson (2009) define mathematical structure as "the 

identification of general properties which are instantiated in particular situations as 

relationships between elements or subsets of elements of a set" (Mason 2009, et. al, p.10). 

This definition makes it unclear if transformations of an object due to the interpretation of a 

definition, for instance 22 = 2 ∗ 2, are considered to reveal structure. If the object is the 

expression, then it can be considered the instantiation of the exponent definition but if the 

object is 22 then the object is unchanged, and the expression is merely an equivalence 

relationship. 

Kieran’s systemic definition and the definitions from Morris (1999), Simpson and 

Stehlíková (2006), and Mason, Stephens, and Watson (2009) all share a focus on 

interrelationships between objects. The definitions given by Morris (1999) and Warren 

(2003) are less specific. Kieran’s (1989) definition is distinct in that she categorizes the 

equivalent forms as structure; in contrast Mason, Stephens, and Watson (2009) name the 

“identification of general properties” as structure (p.10). 

Rüede (2013) expands on the idea of external structure and defines personal structure 

within algebra to be a person’s individual interpretation of an expression. The personal 

structure identified will impact which systemic structures, as defined by Kieran (1989), are 

used as a person interacts with an expression or an equation. 
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Structure as A Way of Conception 

Sfard (1992) discusses what she refers to as the “dual nature of mathematical 

conceptions”. The dual nature includes a coexisting operational and structural conception of 

mathematical objects. She defines operational conception to be viewing a notion as a process 

and structural conceptions as viewing a notion as an object (Sfard, 1992, p.60). Sfard reports 

a “deep ontological gap between operational and structural conceptions” (Sfard, 1991, p.4). 

This gap is partly attributed to the nature of the two conceptions, mainly that structural 

conceptions develop after operational conceptions through reifications (Sfard & Linchevski, 

1994, p. 191). She characterizes reification as “an instantaneous quantum leap: a process 

solidifies into an object, into a static structure.” She clarifies that multiple representations are 

unified, the object is “detached from the process which produced it” and it becomes defined 

by the abstract category to which it belongs (Sfard, 1991, p. 20). To better support the 

development of structural thinking Sfard lists four factors to consider: 

1. Supporting students to gain understanding of the processes that underlie mathematical 

concepts 

2. Proficiency with executing algorithms 

3. An adequate representation and exposure to many kinds of representations 

4. Open discussion on the nature of mathematical entities and the differences between 

processes and objects (Sfard, 1991, p. 78) 

 
Sfard’s duality framework differs from the other definitions of structure in that she is 

describing, in general, the two ways of conceiving of all mathematical objects. Sfard’s work 

also differs as it suggests a progression for development of structural thinking. 

Path of Structure to Reading Proof 

The model developed by Ahmadpour et al. (2019) describing how students read 

proofs identified structure as a defining component of one of three pathways to 

understanding proof when reading. Ahmadpour et al.’s model contains three pathways to 

characterize formally accepted proof for students reading a proof: path of structure, path of 

procedure, and path of form. They define formally accepted proof as a proof presented in a 

form that is acceptable to a given community.  
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 In their study they examined how students made sense of different arguments to the 

claim “all sums of three consecutive natural numbers are divisible by three.” The path of 

form is characterized by students focusing on the symbols and surface-level characteristics of 

a proof without an understanding of the argument. Ahmadpour et al. examined how students 

read arguments, thus the path of form was evidenced by the reader considering a proof to be 

viable because it had familiar surface-level features that they recognize from class. However, 

they do not attribute any deeper understanding to the notation. Ahmadpour et al. include as 

an example a student who selected an argument that used algebra to demonstrate the truth of 

the claim, i.e., n+n+1+n+2 = 3n+3=3(n+1). When asked what n is, the student responded it 

was an unknown. When asked the meaning of adding n, n+1, n+2, the student responded 

“now we should calculate them.” This demonstrated that the student did not have an 

understanding of how the algebraic representation captures the structure of sums of three 

consecutive numbers. When writing arguments, the phenomenon of the path of form would 

be captured by the Formal Mimicry Scheme detailed by Harel and Sowder (1998). 

 The remaining two pathways, the path of structure and the path of procedure, share 

two states: Naïve Experience and General Procedure. Naïve Experience is defined as students 

considering examples sufficient to justify a general claim. Students in the General Procedure 

state identify a procedure that can be applied to all cases to show the result, but they do not 

identify why the procedure can be generalized. As an example of this state, Ahmadpour et al. 

use the following interview excerpt: 

 

If we separate them into threes, for example if 13 is separated into threes, it makes 12; 

If 14 is separated into threes, it makes 12 again. Here is 1 [left over], and here is 2 

[left over], we add 3 to it. 15 itself is divisible by 3 (p. 8). 

 

In the excerpt the student uses an example to demonstrate how to divide each addend in a 

sum of three consecutive numbers by three and sum the remainders to show that the claim is 

true for that example. At this state there is no evidence of the student understanding why the 
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procedure can be applied to all cases in the domain or any case in the domain. The two paths 

split from the General Procedure state to form the two distinct paths. 

 

Figure 5: Model for how students understand proof while reading (Ahmadpour et al., 2019, p. 
3) 

 For students who follow the path of procedure to read a proof as a Procedural Proof, 

the transition from the General Procedural state to the Procedural Proof state involves 

connecting surface-level symbols with a procedure, which the authors described as a 

formalization. Students on the path of procedure read notation that is designed to represent a 

procedure for transforming the domain as a recipe for inputting cases in the domain, 

following steps, and then confirming that the conclusion holds. Ahmadpour et al. (2019) state 

that in a procedural proof a representation “records a general procedure rather than 

representing an abstract structure” (p. 11). Their examples include a student reading an 

algebraic proof but conceptualizing it as a recipe for confirming individual proofs.  

Students are classified as being on the path of structure if abstraction has taken place. 

Ahmadpour et. al (2019) define abstraction as “the construction of an idea that stands for a 

class” (p. 9). Student understanding is classified as being in the Abstract Structure state if 

students abstracted the general procedure. They take as evidence of abstraction instances 

where students identify how the algebraic notation 𝑛𝑛 + 𝑛𝑛 + 1 + 𝑛𝑛 + 2 describes all sums of 
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three consecutive natural numbers. Specifically, instances where students connect 

components of the algebraic expression with sums of three consecutive natural numbers. 

In their model, abstract structure, abstraction, and thus generality are necessarily 

connected. They use as evidence of abstraction students identifying the abstract structure of 

the domain which is their indication that the student perceives the representation as standing 

for all objects in the domain, i.e., the representation is general.  

2.3.4 Conceptual Insight and Technical Handle 

 Sandefur et al. (2013) developed a theoretical framework that ties together the 

representation used by a student in their proof construction with the idea the student is 

seeking to communicate with the representation using mathematical structure. Their 

framework builds on the ideas presented by Raman (2003). Raman identified three important 

components in proof evaluation and production: heuristic ideas, procedural ideas, and key 

ideas. Heuristic ideas give a sense of understanding that a claim is true from empirical data. 

Procedural ideas are based on logic and formal manipulation and lead to a sense of 

conviction that a claim is true without understanding of why. Finally, key ideas are “heuristic 

ideas that can map to a formal proof” (p. 323). They give both a sense of conviction that a 

claim is true and an understanding of why this is so.  

 Key ideas are critical in the construction of proofs. Raman et al. (2009) explored how 

novices and experts develop proofs and identified three significant moments: 1) getting a key 

idea, 2) discovering a technical handle, and 3) culminating the argument into a standard 

form. They further clarify from Raman’s (2003) definition that key ideas are properties of a 

proof that give a sense of understanding but which do not always indicate a way to develop 

the formal proof. They used plural to describe key ideas because some proofs have multiple 

key ideas. The technical handle is used to “communicate a particular idea” (p.155). It can be 

based on a key idea, or it can be based on “informal thoughts or intuition” (p. 155). The final 

moment, culminating the argument into a standard form, involves “logically connecting 

given information to the conclusion” in a form that is the correct level of rigor for the given 

audience (p.155). In their study Raman et al (2009) found instances where students found a 

key idea and did not have access to a technical handle or had access to a technical handle but 

did not have a key idea. 
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 Raman et al.’s (2009) key ideas and technical handle were then used and adapted by 

Sandefur et al. (2013) to explore how students use examples while developing proofs. 

Sandefur et al. refined key ideas into conceptual insights which they defined as “a sense of a 

structural relationship pertinent to the phenomenon of interest that indicates why the 

statement is likely to be true” (p. 328). They used the term technical handle and defined them 

to be “ways of manipulating or making use of the structural relations that support the 

conversion of conceptual insights into acceptable proofs” (p. 328). Sandefur et al. 

hypothesized that this framework would afford them access to the connections the 

representations used and the properties they are being used to represent.  

 Sandefur et al. (2013) found that example generation supported students in clarifying 

concepts and producing proofs. They witnessed that through generating examples, students 

developed conceptual insight and technical handles they could use to develop proofs. The 

discovery of conceptual insight and technical handle does not occur in a set order. Some 

students developed one before the other, as Raman et al found, and at times students will 

have access to one and not the other. Sandefur et al. also observed that some students stayed 

within the given representation system in hope of producing a proof quickly.  

 In the last few years conceptual insight has been used to examine the process of 

student proof production (Reed, 2021) and to examine the viability of student arguments 

(Yopp, 2020; Yopp, Ely, Adams, & Nielsen, 2022). When classifying student arguments, 

Yopp (2020) searched for a viable conceptual insight to categorize student responses that 

included evidence of argumentation but were too vague to classify as viable arguments. He 

defined viable conceptual insights as a conceptual insight, that could be developed into a 

viable argument3. Conceptual insight and technical handle in tandem with a focus on 

structure provide useful tools for examining student argument.  

 
3 Yopp defined a viable argument as “an argument that can be taken as proof but may have features that are less 

than formal, such as implicit inferences or intuitive argumentation/proof approaches that may not align with or 

attend to canonical methods or modes of proof” (2020, p. 5). 
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2.3.5 Definitions 

Mathematical definitions relate registers and technical handles through conversions. 

Esty and Esty (2009) describe mathematical definitions as connecting a sentence with a new 

term to equivalent sentences expressed in more primitive terms. They give the example that a 

function 𝑓𝑓 is increasing if and only if for all 𝑥𝑥 and 𝑧𝑧 in the domain if 𝑥𝑥 < 𝑧𝑧 then 𝑓𝑓(𝑥𝑥)  <

 𝑓𝑓(𝑧𝑧). In this example, we see that the mathematical definition outlines a conversion between 

the conceptual register and symbolic notation. The symbolic notation can serve as a technical 

handle giving access to the structure of increasing functions that could be leveraged to 

develop an accepted argument about increasing functions. In their model for “a way to work 

with a new term,” Esty and Esty show how a definition can be used to translate or convert a 

sentence to “primitive terms.” Esty and Esty show how the primitive terms can be used to 

“do work” and then a translation can occur back to interpret the result of the work (p. 121) 

 

 
Figure 6: Esty and Esty model for working with a new term (2009, p. 121)  
 

The model Esty and Esty developed for working with a new term (see Figure 6) can 

be natural extended to model completing a general direct argument with access to definitions 

that can serve as technical handles. The claim refers to some general domain. The definitions 

then describe a possible conversion from the language of the claim to a different register. 

Within the new register, treatments can be applied to the representation of the domain to 

demonstrate the desired property. The product of the treatments can then be translated back 
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to the original register of the claim using definitions. This mirrors the model described by 

Pedemonte and Balacheff (2016). 

 

 
Figure 7: Extension of Esty and Esty's model to writing a general direct argument. 

 

The model in Figure 7shows one possible path to developing a general direct 

argument. Key to this path is the conversion from the register in which the claim is presented 

to some register that the student sees as useful to communicating the structure of the domain 

they see as pertinent.  

 

2.4 Relation of Previous Research to my Research Questions 

 Studies demonstrate that students of all ages find developing proofs to be challenging. 

Studies consistently find that students develop empirical proofs in response to general claims 

(Coe & Ruthven, 1994; Goetting, 1995; Harel & Sowder, 1998; Healy & Hoyles, 2000; 

Sowder & Harel, 2003). Historically, this phenomenon has been explained by asserting that 

students find examples are sufficient for demonstrating the truth of an infinite set because 

they have immature mathematical thinking (Balacheff, 1988; Harel & Sowder, 1998). 

However, there is a growing body of research finding that empirical arguments are not 

evidence of students being empiricists. My study is situated within this growing body of 
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research that is seeking to understand when and why empirical arguments happen as I 

explored whether the presence or absence of definitions and general representations 

influenced whether students developed arguments that were empirical or deductive. 

In my study I decided to examine student responses to tasks when varying definitions 

are provided because of the role definitions may play in supporting students with discovering 

pertinent structure of the domain and discovering a technical handle they can use to access 

the structure. Duval (2006) highlighted that the conversion from one register to another is 

significant mathematical work that is challenging to students. Combining the ideas of Duval 

and Sandefur et al., there is likely a conversion that must take place from the statement of the 

claim within the conceptual register to a register that supports the technical handle.  

Definitions as described by Esty and Esty (2009) provide a means of converting from 

one register to another. I hypothesized that deductive arguments would happen more 

frequently when students were given definitions. The mechanism that I hypothesized would 

be at work is that by utilizing the given definitions, students would be more likely to perform 

a conversion to a register that would support them in discovering a conceptual insight and 

technical handle.  
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Chapter 3:  Theoretical Framework 

3.1 Proof and Argument 

Mathematicians and researchers disagree the criteria for proof (Balacheff, 2008; 

Cirillo, Kosko, Newton, Staples, & Weber, 2015; Reid & Knipping, 2010; Stylianides, 2007). 

Yet to teach proof and study student proving it is essential to know what constitutes a 

classroom proof (Czocher & Weber, 2020). Stylianides (2007) naviagated the challenge of 

defining proof by developing a definition specific to a mathematical community. The criteria 

he presents are all situated in what is appropriate and acceible for the community in which 

the proof is developed or presented. Proof, as defined by Stylianides (2007), is a “connected 

sequence of assertions for or against a mathematical claim, with the following characteristics: 

1) It uses statements accepted by the classroom community that are true and available 

without further justification; 2) It employs forms of reasoning that are valid and known to, or 

within the conceptual reach of, the classroom community; and 3) It is communicated with 

forms of expression that are appropriate and known to, our within the conceptual reach of, 

the classroom community” (p. 291). In this manner referring to a response to a claim as a 

proof includes an assertion of validity of the statements and logic contained in the response. 

Mathematical argument as defined by Reid and Knipping (2010) includes three components: 

a claim, data, and a warrant. The claim is a mathematical conjecture, the data is information 

that supports the claim, and the warrant provides the link between the data and the claim. 

Mathematical argument provides a less restrictive definition than proof as it includes work 

that is not based on deductive reasoning or work that has invalid steps or conclusions.  

 For the purposes of this study, “argument” will be used to describe the work produced 

by students in response to a claim. Argument will be used as it has no assumption of validity, 

allowing the study to explore what students produce and how they approach producing a 

proof. The term “viable argument” will be used to describe arguments that share the 

properties of proof as described by Stylianides (2007).  

 A general direct claim asserts that all objects in one set belong to a second set. With 

this framing we can consider the first set to be the set defined by the conditions of the claim. 

This set will be referred to as the domain of the claim, and the second set to be defined by the 

conclusions of the claim. Thus, for the claim “all sums of three consecutive natural numbers 



36 
 

are divisible by three”, the domain is the set of all sums of three consecutive natural numbers 

and the set defined by the conclusion is the set of numbers divisible by three. A viable 

argument to this claim is tasked with demonstrating that every object or all objects in the 

domain are in the set of numbers divisible by three.  

 A general direct argument is one way to form a proof to a general claim. A general 

direct argument starts with objects in the domain and demonstrates that they must be in the 

set defined by the conclusion. An argument can be formed by considering all objects in the 

domain simultaneously and demonstrating that they all satisfy the conclusion. One way to 

accomplish this is to represent all possible objects in the domain of the claim as a single 

entity and to perform a transformation on that representation to demonstrate that the 

properties of the conclusion are satisfied. Alternatively, the argument can be formed by 

representing an arbitrary object in the domain of the claim and demonstrating via 

transformations that the object satisfies the conclusion. These approaches sound similar, yet 

they are distinct in how the representation is viewed and used. The first approach uses a 

representation as a stand-in for all objects in the domain of the claim; this will be referred to 

as a class representation as it stands for the class of objects. The second approach uses a 

representation that is a placeholder where any of its kind can go; this will be referred to as a 

placeholder representation. For each of these approaches there is a set, the perceived domain, 

that describes the set of objects the arguer intends the representation to capture. In the case of 

a class representation, the perceived domain is the set of objects the arguer intends the class 

representation to stand for. In the case of the placeholder representation, this is the set of 

objects from which the arguer draws to then place into the placeholder representation. For the 

representation to be of the domain, the perceived domain and the domain must be the same or 

equivalent sets. 

3.2 Mathematical Structure 

 In existing literature, structure has been used to describe the syntax of problems 

(Hoch & Dreyfus, 2004), the relationships between internal parts of an object (Banerjee & 

Subramaniam; Kieran, 2018; Malle, 1993), the relationship between an object and other 

objects (Morris, 1999; Simpson &Stehlíková, 2006; Warren, 2003), and one of two ways to 
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conceive of mathematical objects (Sfard, 1992). In this study I will use structure to describe 

the way a participant characterizes the properties of the mathematical objects. 

 Using only properties and representations to describe arguments is not sufficient 

because there is variation in how properties and representations are used that is identified in 

the argument’s conceptual insight. To illustrate this, I will outline two example arguments 

that are attending to the property consecutiveness using the conceptual register, yet which 

have fundamental differences that structure as described above allows me to describe. 

When students develop a viable argument for the claim “any sum of three consecutive 

natural numbers is divisible by three”, they attend to the property of consecutive numbers 

and sums of three such numbers. The way they attend to this property can differ.  

 

Argument 1: Since the numbers are consecutive the first addend will be one less than 

the second addend and the third addend will be one greater than the second addend. 

This means I can always take one from the greatest addend in the sum and add it to 

the smallest addend to get three copies of the middle number. 

 

Argument 2: Since the numbers are consecutive the second addend is one more than 

the first and the third addend is two more than the first addend making a total of three. 

This means I can think of each sum as three copies of the first number plus an extra 

three. 

 

Each of these arguments represents the domain using the conceptual register. So there is no 

notable difference in representation usage. Each argument attends to the properties of the 

domain (i.e., sums of three numbers where each number is one greater than the previous). 

However, the manner in which “consecutive” is characterized is different. Argument one is 

characterizing “consecutive” as (𝑥𝑥 − 1) + 𝑥𝑥 + (𝑥𝑥 + 1) while the second is characterizing 

“consecutive” as 𝑥𝑥 + (𝑥𝑥 + 1) + (𝑥𝑥 + 2). Thus while the representation used and the property 
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described is the same the manner in which the student is characterizing the objects is quite 

different.  

The structure the student is attending to may be inferred by a representation, for 

example if one student constructs the representation 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 and another constructs the 

representation (𝑥𝑥 − 1) + 𝑥𝑥 + (𝑥𝑥 + 1) to represent the set of all sums of three consecutive 

natural numbers a researcher could infer that the first student is attending to the objects being 

sums of three numbers and the other is attending to consecutiveness centered around the 

middle addend. By defining structure to be the manner in which students characterize the 

properties of the domain I can examine the possible conceptual insights available to the 

student  

Table 1 shows four different structures of the domain which a student could identify. 

The structures are depicted using the conceptual register and the symbolic register. Some 

structures seem to lend themselves more easily to particular representations. It is, for 

example, easier to imagine a student identifying the structure that all sums of three 

consecutive natural numbers will have one remainder equal to 0, 1, and 2 respectively using 

the conceptual register than when using the symbolic register. It is possible to imagine how a 

student might build a generic example to depict the first two characterizations of 

consecutiveness. However, a generic example may be less intuitive in some of these cases.  
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 Register 

Conceptual Register Symbolic Register 
St

ru
ct

ur
e 

The second addend is one greater than the first 
and the third addend is one greater than the 
second or two greater than the first. 

𝑥𝑥 + (𝑥𝑥 + 1) + (𝑥𝑥 + 2)  

for 𝑥𝑥 ∈ 𝑁𝑁 

The first addend is one less than the second and 
the third addend is one greater than the second. 

(𝑥𝑥 − 1) + 𝑥𝑥 + (𝑥𝑥 + 1)  

for 𝑥𝑥 ∈ 𝑁𝑁 

One addend is divisible by three. Another will 
have a remainder of 1 when divided by three 
because it is either one greater than or two less 
than the number divisible by three. The final 
addend will have a remainder of 2 when divided 
by three because it is either one less than or it is 
two greater than the number divisible by three. 

Every sum is one of three 
forms: 

 

3𝑘𝑘 + (3𝑘𝑘 + 1) + (3𝑘𝑘 + 2) 

Or 

(3𝑘𝑘 − 1) + 3𝑘𝑘 + (3𝑘𝑘 + 1) 

Or 

(3𝑘𝑘 − 2) + (3𝑘𝑘 − 1) + 3𝑘𝑘 

for k∈ 𝑁𝑁 

 

The sum 1+2+3 is divisible by three. Every sum 
of three consecutive natural numbers can be built 
by adding one to each addend repeatedly. 

1 + 2 + 3 
2 + 3 + 4 
3 + 4 + 5 … 
(1 + 𝑘𝑘) + (2 + 𝑘𝑘) + (3 + 𝑘𝑘) 

for k∈ 𝑁𝑁 

Table 1: Structure communicated in the conceptual and symbolic registers. 

 

3.3 Generic Example Argument 

Within the wide breadth of types of arguments produced by students participating in 

proving activities is the generic example proof. Generic example proofs are formed using a 

generic example—an example that is seen by the arguer as representative of a typical object 

in the domain. Rø and Arnesen (2020) define a generic example argument as an argument 

that “takes as its basis an example of the claim to be proved, continues with a mathematical 

reasoning on why the claim holds for the example, and winds up with a lifting of this 

mathematical reasoning to the general claim” (p.13). To determine whether the reasoning is 
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“lifted” to the general claim in my coding I will check two criteria: 1) Do the actions 

performed demonstrate either a transformation that can be applied to all objects in the 

domain or a procedure that can be applied to any object drawn from the domain? And 2) 

Does the arguer reference the domain in a general manner in connection to their example and 

the actions they perform? If an arguer produces a generic example satisfying these 

conditions, the work will be interpreted as general and can be used to form a viable 

argument.  

3.4 Representations and Registers 

Representations are attributed different meanings depending on whether they are 

taken to describe the “act of capturing a mathematical concept or relationship in some form” 

or the form itself (NCTM, 2000, p.67). Some researchers consider three modes of 

representation: enactive, iconic, and symbolic (Bruner, 1964). Where enactive 

representations are characterized by a sensory-motor actions, iconic representations are 

characterized by bearing a selective organization of the perceived event or object, and 

symbolic representations words or symbols are used to communicate particular referents. 

Other frameworks for representations include classifying the representation as either internal 

or external (Goldin & Shteingold, 2001; Goldin, 2003; Zhang, 1997). In this study as I was 

studying proofs constructed by students, I was interested in external, symbolic 

representations, in particular the form in which students communicated the mathematical 

concepts.  

Stylianou (2011) defines representations as “configuration[s] that stand for something 

else” (p. 266). She identifies “symbolic expressions, drawings, written words, graphical 

displays, numerals, and diagrams” as examples of representations of mathematical concepts 

(p. 266). Stylianou’s definition of representation is useful for this study as it attends to 

written and drawn notation students create to communicate their reasoning. This study is 

exploring the written arguments students construct and the examples detailed by Stylianou 

are the tools students use to communicate written arguments. This definition has been used in 

similar studies to explore student proving activity in classrooms (Weiss & Herbst, 2007). 

Representations are important in the study of mathematics as mathematical objects can only 

be accessed through representations and transforming representations is at the heart of 

mathematical activity (Duval, 2006).  



41 
 

Registers have been defined to discuss and distinguish between systems of 

representations. Duval (2006) defines register as a representation system that allows for 

transformations on the representation. Transformations can take one of two forms: 1) 

treatments, which remain within the same register, and 2) conversions, which translate a 

representation from one register to another without altering the object that is represented. The 

registers defined by Weiss and Herbst (2007) allow them to consider three distinct categories 

of representations within geometry: 

 

1. the conceptual register: objects are referred to by the abstract classes they belong to 

i.e., isosceles triangle,  

2. the generic register: a particular instance is used as a representative of the class of 

objects i.e., ∆ABC with the property 𝐴𝐴𝐵𝐵���� = 𝐵𝐵𝐶𝐶����. And, 

3. the diagrammatic register: a diagram is used to represent a class of objects i.e., a 

diagram of a triangle with vertices labeled A, B, and C with tick marks to indicate 

that sides AB and BC are congruent. 

 

In their definitions, Weiss and Herbst (2007) focus on the conversion from one register to 

another. They do not emphasize the ideas of treatments within registers.  

Extending the generic and diagrammatic register outside of the context of geometry 

introduces ambiguity. This is because whether students intend their representation to 

objectify the domain as an abstract class or as a particular instance that stands for the class 

involves assuming how the student conceives of their representation. For any given 

representation the way it is conceived may not be universal in a manner that fits with the 

three categories provided by Weiss and Herbst. 

In this study, I use the categories for the conceptual register as defined by Weiss and 

Herbst (2007). The generic register will not be used as it assumes that the representation 

stands for a particular case. Instead, additional categories will be used that can be applied 

from examining written work alone: 1) symbolic notation, 2) generic examples, 3) partial 

examples, and 4) conforming examples. Symbolic notation includes representations where 

symbols are used to objectify the domain. This includes classic mathematical notation, i.e., 
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n+n+1+n+2, and student generated symbolic notation, i.e., dots drawn on a diagonal with the 

vertical distance labeled as “+1.” Generic examples are as defined above. Conforming 

examples have no indication of generality; they are examples in the domain that demonstrate 

that the example satisfies the conclusion of the claim, i.e., 1+2+3=6, 6/3=2. Partial examples 

are sets of three consecutive natural numbers such as 3, 4, 5. If partial examples are the only 

representations present, it is not clear that the participant knows what the domain of the claim 

is or what properties of the domain the claim is asserting. 

3.5 Conceptual Insight  

Conceptual insight and technical handle have become tools for researchers to 

consider features of student proof with more nuance than considering only whether the 

argument counts as proof (Reed, 2021; Yopp, 2020; Yopp, Ely, Adams, & Nielsen, 2022). It 

is widely accepted that determining what is proof is context dependent. Consider Stylianides’ 

(2007) commonly used definition of proof, 

 

connected sequence of assertions for or against a mathematical claim, with the 

following characteristics: 1) It uses statements accepted by the classroom community 

that are true and available without further justification; 2) It employs forms of 

reasoning that are valid and known to, or within the conceptual reach of, the 

classroom community; and 3) It is communicated with forms of expression that are 

appropriate and known to, our within the conceptual reach of, the classroom 

community (p. 291). 

 

Utilizing this definition to evaluate a proof requires immense knowledge about the 

community in which the proof was made. Each statement, form of reasoning, and form of 

expression must be assessed within the context to determine whether it is appropriate for the 

given community.  

The notion of conceptual insight can be used to classify the variety of arguments 

produced that are general without making judgements about the viability of the argument or 

proof. Sandefur et al. (2013) defined conceptual insight to be "a sense of a structural 



43 
 

relationship pertinent to the phenomenon of interest that indicates why the statement is likely 

to be true” (p. 328). Given a general claim there may be multiple possible ways the pertinent 

structure can be related to the phenomenon, resulting in multiple possible conceptual insights 

for a student to leverage. Consider the claim that the sum of three consecutive natural 

numbers is divisible by three. One possible conceptual insight a student could leverage is that 

all sums of three consecutive natural numbers have the form 𝑛𝑛 + 𝑛𝑛 + 1 + 𝑛𝑛 + 2 = 3(𝑛𝑛 + 1) 

where n is a natural number. Alternatively, a student could note that 1 + 2 + 3 is divisible by 

three and that they can construct any sum of three consecutive natural numbers by adding 

one to each addend recursively, i.e., 2 + 3 + 4 = (1 + 1) + (2 + 1) + (3 + 1) = (1 + 2 +

3)  + 3. So, any sum of three consecutive natural numbers is equal to 1 + 2 + 3 plus some 

multiple of three. These two conceptual insights lead to different arguments that require 

different uses of representations as well as different uses of logic.  

Above, conceptual insights are given that can be used to form a viable argument. 

They will be referred to as viable conceptual insights (Yopp, 2020). However, a student can 

identify structural relationships that are not pertinent. For example, students can identify the 

alternating even and odd structure of consecutive numbers and seek to use that structure to 

demonstrate why the claim is true. This is a non-viable conceptual insight because this 

structure cannot be used to demonstrate that the sum is divisible by three without relying on 

an additional structure, property, or prior result. The distinction between viable and non-

viable conceptual insight is not always clear and will involve some degree of reader bias 

because whether the reader perceives the conceptual insight to be viable depends on whether 

the reader sees a path to proof using that conceptual insight.  
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Chapter 4: Methods 
An embedded mixed method approach was used in this study utilizing both 

quantitative and qualitative data. This is a popular design for investigating an intervention 

within a school setting (Creswell & Creswell, 2017). Quantitative data was collected from 

participants to address research questions one and two. Within the quantitative study, 

assumptions are made about the arguments students make. For example, the coding scheme 

for the quantitative study classifies written arguments as including general representations. 

However, non-conventional representations may be interpreted as not general when the 

student developing them intended them to be general or, as Ahmadpour et al. (2019) found, 

when students used variable expressions in ways that were not general that would be 

assumed by the mathematical community as being general. 

 The embedded qualitative study was used to explore the arguments as intended by 

the participants. In particular, how participants perceived their representations in relationship 

to the domain of the claim. The embedded mixed method approach is appropriate for this 

study as it allows for the quantitative results to be contextualized by qualitative data 

(Creswell & Creswell, 2017). Table 2 includes a summary of the methods including the 

research questions, the data collected, and the data analysis. 
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Research Question Data Collected Data Analysis 
(1) How does access to a 
definition or general 
representation of the 
mathematical objects in the 
claim influence the 
generality of a student’s 
argument and the way the 
student represents the 
domain? 
 

170 written arguments 
from 15 different math 
classes. 
 
Coded using coding 
scheme (Table 3). 

Randomized Block Design 
to consider the relationship 
between task version and 
generality of participants’ 
written work (Kuehl, 
2000). 

(2) How does access to a 
definition or general 
representation of the 
mathematical objects in the 
claim influence the 
conceptual insights that are 
used in the argument? 
 

170 written arguments 
from 15 different math 
classes. 
 
Coded using coding 
scheme (Table 4). 

Randomized Block Design 
to consider the relationship 
between task version and 
viability of the conceptual 
insight used in the written 
response (Kuehl, 2000). 
 

(3) How do students 
describe the representations 
they develop or choose to 
utilize in their arguments? 
 

9 filmed interviews 
 
Thematic analysis (Table 
14) with a combination of 
open and closed coding 
(Table 13). 
 

Thematic Analysis was 
used with both inductive 
themes and theoretical 
themes that are drawn from 
extending the work of 
Ahmadpour et al. (2019) 
(Braun & Clarke, 2006). 

Table 2: Summary of Methods 

 

4.1 Quantitative Study 

4.1.2 Participants 

This study took place at universities in Washington, Idaho, Montana, and Oregon in 

courses designed to support mathematics content knowledge for elementary school teachers 

and prospective elementary school teachers. These students have met an algebra requirement. 

The math courses for elementary school teachers and prospective elementary school teachers 

do not focus algebraic solving methods. I anticipated that these students would have seen and 

worked with algebraic notation in previously and would not be primed by their current 

coursework to immediately produce and algebraic representation to solve a problem. 
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4.1.3 Recruitment  

Participating instructors were contacted first with a summary of the project and a 

detailed explanation of what participation in the study would involve. Follow-up 

conversations by phone were used to connect with instructors or clarify any questions that 

arose. To recruit student participants, a mixture of methods were used depending on the 

instructors’ preferences and feasibility. For the courses that were located within accessible 

driving range, I supported recruitment in person by offering to attend in person to introduce 

my project and describe to the students what participation would entail. For courses that were 

located at a distance, the instructors were given a script introducing the project that they read 

to their students. It is possible that the different methods of recruiting students impacted how 

participants interacted with the tasks. However, the randomized block design controls for 

variations between classes.  

4.1.4 Instruments  

Participating instructors were sent a collated stack of the tasks and asked to distribute 

them in order by walking a systemic path through their class. This distribution technique 

ensures that each participating student is randomly given one of the three versions of the 

same task to complete and that roughly the same number of students will complete each 

version of the task. Each task includes the following prompt and claim: 

 

Prove that the sum of any three consecutive natural numbers is divisible by three. In 

your work, show and explain why this is true.  

Claim: The sum of any three consecutive natural numbers is divisible by three. 

 

The claim was chosen because the content is approachable, participants can develop their 

own general representations, there is a symbolic representation that will be of a familiar form 

to participants, and the same claim has been used in previous studies exploring how students 

interpret written arguments (Ahmadpour et al. , 2019). 
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 I felt the content of the claim would be approachable because I anticipated that 

students enrolled in university math courses for prospective elementary school teachers 

would have encountered consecutiveness, natural numbers, sums, and divisibility by three at 

some point in their mathematics educations. The structure of the domain is also accessible in 

non-symbolic representation systems. Students can access the domain using generic 

examples and informal representations. The participating students have also met an algebra 

requirement which led me to hypothesize that the algebraic representation for three 

consecutive natural numbers (𝑛𝑛, 𝑛𝑛 + 1,𝑛𝑛 + 2) would be familiar to the students. I further 

hypothesized that participants would see how this representation connects to consecutive 

numbers and that they would utilize the definition to represent the domain of the claim. 

Finally, Ahmadpour et al. (2019) examined students reading proofs to this claim to develop 

their model. Using the same claim allowed me to directly compare my findings to research 

question three to their model for how students understand proofs they read. 

The three versions of the task vary in the definitions that are provided or not 

provided. Task A includes no definitions. Task B includes definitions in the conceptual 

register for both consecutive and divisible by three as well as examples of those definitions 

(see Figure 8).  
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Task B 

Definitions: 

Definition:  Two natural numbers are consecutive if one of the numbers is one greater 

than the other number.  

Example: 4,5,6 are consecutive natural numbers because 5 is one greater than 4 and 6 is 

one greater than 5. 

 

Definition:  A number is divisible by three if there is no remainder when the number is 

divided by 3. 

Examples:  6 is divisible by three because 6 divided by 3 is 2 with no remainder. 

 

 

Prove that the sum of any three consecutive natural numbers is divisible by three. In your 

work, show and explain why this is true. 

 

Claim: The sum of any three consecutive natural numbers is divisible by three 

 

Figure 8: Task B 

 

Task C includes definitions in the symbolic register for both “three consecutive numbers” 

and “divisibility by three” as well as examples of the definition (see Figure 9).  
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Task C 

Definitions: 

Definition:  Three consecutive natural numbers are numbers that can be represented as 

n, n+1, n+2 for some natural number n.  

Example:  4, 5, 6 are three consecutive integers because they can be written as 4, 4+1, 

4+2 

Definition:  A number 𝑚𝑚 is divisible by 3 if it can be written as 3 ∗ 𝑘𝑘 for some integer k  

 

Example:  6 is divisible by three because 6 =  3 ∗ 2. This means 6 =  3 ∗ 𝑘𝑘 when 𝑘𝑘 = 2. 

 

 

Prove that the sum of any three consecutive natural numbers is divisible by three. In your 

work, show and explain why this is true. 

 

Claim: The sum of any three consecutive natural numbers is divisible by three 

 

Figure 9: Task C 

 

4.1.6 Measures  

To address the first and second research question, the written arguments were coded 

along two variables: 1) type of representation and 2) conceptual insight. The coding schemes 

were developed using prior literature and were fine-tuned during the pilot study. 

The closed coding scheme for the type of representation (Table 3) includes six codes 

that are drawn from previous literature as well as the pilot study. The conceptual register as 

defined by Weiss and Herbst (2007) is included. The generic register from their work has 

been further subdivided by the coding scheme into three subcategories: algebraic notation, 

informal symbolic notation, and generic example. It is worth noting that Weiss and Herbst 

assume that within the generic register, the representation is of a particular instance in the 

domain that is representative of the set. While these algebraic notations, informal symbolic 
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notations, and generic examples can be interpreted in this manner by a reader, the follow-up 

interviews were used to explore whether the writer intended the representations to stand for a 

particular instance or had some other intention. In the qualitative study I explored whether 

these types of representations belong to the generic register as defined by Weiss and Herbst 

or whether the student perceives their representation as defining an abstract class.  

Arguments that were coded as including the conceptual register, algebraic notation, 

informal symbolic notation, and/or generic examples will be coded as general as these ways 

of representing the domain are accepted in mathematics as being general. The other codes 

will be coded as not general. These codes include partial examples, conforming examples, 

and blank or unrelated work. 

The closed coding scheme for conceptual insight (Table 4) was initially developed by 

anticipating arguments that participating students may develop. Additional codes were added 

to describe the data collected in the pilot study. Arguments that include conceptual insights 

that are not included in the existing coding scheme were coded as other (viable) or other 

(non-viable). After initial coding I considered the arguments which were coded as other using 

inductive thematic analysis to determine what themes exist in the conceptual insights of these 

arguments (Braun & Clarke, 2006). This led to the formation of a new code to describe the 

viable conceptual insight that one of the addends will be divisible by three and the sum of the 

other two addends will also be divisible by three. The details of this revision of the coding 

scheme can be found in the results section. 

Conceptual insight is the structural relationship that is used to indicate the claim is 

true. Each conceptual insight present in the arguments will be coded. Viable conceptual 

insights will be defined as conceptual insights that are sufficient to form an argument without 

needing to reference another structure of the domain. Non-viable conceptual insights are 

conceptual insights that cannot be used to form a viable argument without referencing a 

different structure of the domain. For example, we can imagine a participant developing a 

viable argument by first starting with the structure “odd and even”. Perhaps they note that 

there are two cases; the sum’s addends are of the form odd-even-odd or even-odd-even. This 

conceptual insight cannot on its own be leveraged to form a viable argument to the claim. 

However, this is not to say that this line of reasoning would not support a student to develop 
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a viable argument by discovering some other structure. Non-viable, as defined here, includes 

no judgement on whether the insight is a useful tool for participants in the proof development 

or part of a successful learning trajectory. Non-viable in this study is used only to categorize 

conceptual insights that would need to pair with some other fundamental structure of the 

domain to form a viable argument to the claim.  

 

Code Sub Code Description  

General Conceptual 
Register 

The domain is described as an abstract class. Properties (correct 
or incorrect) are attributed to that set as a class.  

Ex. All sums of three consecutive numbers have the property 
that the next number is one greater than the previous… 

Ex. All sums of three consecutive numbers are divisible by 
three because they can be broken into three groups because the 
total is a sum of three numbers. 

Ex. It is true because they are consecutive and there are three 
numbers. 

Ex. The average of the three consecutive natural numbers will 
always be the middle number. 

Structural 
Algebraic 
Notation  

The domain is objectified using algebraic notation that 
demonstrates a structure shared by all objects in the domain. 
The representation may include a transformation that may or 
may not have an algebraic error (e.g., 3n+3=3(n+3)) 

Ex. n+n+1+n+2 

Ex. n+n+1+n+2=3(n+1) 

Ex. n+n+1+n+2=3n+3=3(n+3) 

Non-
Structural 
Algebraic 
Notation 

The domain is objectified using algebraic notation that does not 
objectify a pertinent structure shared by all objects in the 
domain.  

 

Ex. A+B+C 

Table 3: Closed coding scheme for type of representation and generality 
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Table 3 Continued 
General Informal 

Symbolic 
Notation 

The domain is objectified using symbols or diagrams that are 
not algebraic. The representation may depict a transformation.  

Ex.  

Ex.  
Generic 
Example 

A generic example is used. This includes an example in the 
domain, actions performed on the example that demonstrate a 
structure shared by all objects in the domain or a procedure that 
can be applied to any such object from the domain, and a 
statement or markings referencing the domain in a general 
manner in connection to the arguer’s example and the actions 
they performed. 
 
Ex. 4+5+6 
     +1     -1 
      5+5+5 
I can always even the sum into a sum of three copies of the 
middle number  

Other A representation that is general that does not fit the above 
categories. 

Not 
General 

Blank or 
non-
examples 

The argument includes calculations that are not examples in the 
domain, is blank, or has statements such as “I don’t know.” 

Partial 
Examples 

The argument includes examples that share some property of 
the domain. It is unclear from the work if the writer understood 
the full definition of the domain. 
 
Ex. 1, 2, 3 
Ex, 6, 6+1, 7+1 

Examples 
in the 
domain 

The argument includes an example in the domain. The example 
is not transformed to demonstrate the truth of the conclusion.  
 
Ex. 4+5+6 

Conforming 
examples 

The argument includes an example in the domain transformed 
to demonstrate the truth of the claim. 
 
Ex. 4+5+6=15, 15/3=5 

Other A representation that is not general that does not fit the above 
categories. 
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Code Sub Code Description of the Conceptual Insight 
Viable Redistribution The sum of three consecutive natural numbers can be 

redistributed as the sum of three copies of the middle addend. 
Symbolic 
Manipulation 

The sum of three consecutive natural numbers is represented 
symbolically and manipulated into a form that is recognized 
as demonstrating divisibility by 3. 
 
If the argument includes an interpretation of the algebraic 
work using another conceptual insight (ex. Redistributing or 
summing remainder), then code the argument as both 
symbolic manipulation and the other conceptual insight.  
 
Ex. The sum of three consecutive natural numbers can be 
written as x-1+x+x+1=3x so we know the sum is always 
divisible by 3. 
Ex. n+n+1+n+2=3n+3 
Ex. n+n+1+n+2=3n+3=3(n+1) 

Three copies 
plus three 

The sum of three consecutive numbers is equivalent to three 
copies of one number plus 3. Since three copies of a number 
is divisible by three and three is divisible by three the sum is 
divisible by three.  

Recursive 
 

The sums for a base case or a set of base cases satisfy the 
conclusion, and the remaining cases can be constructed by 
either adding sums from the set of base cases or adding some 
multiple of three. 
 
Ex. The sum 1+2+3 is divisible by three and every sum of 
three consecutive natural numbers can be constructed by 
adding one to each addend of 1+2+3 recursively. Thus, every 
sum of three consecutive numbers is of the form 1+2+3 + 3k 
for some natural number k. 
Ex. The claim is true for sums of three consecutive integers 
between 0 and 10 and all other sums of three consecutive 
integers can be constructed by adding combinations of those 
sums. 

Summing 
Remainders 
 

In any sum of three consecutive natural numbers one of the 
addends will be divisible by three. When divided by three, the 
remainders of the other two addends will be 1 and 2 
respectively. This means the sum of the remainders will be 3 
making the sum of the other two numbers divisible by 3. 

Average 
 

Adding three numbers and dividing by three finds the average 
of the three numbers. Since the three numbers we are adding 
are consecutive, the middle number is the average. 

Other A conceptual insight that is viable that does not fit the above 
categories. 

Table 4: Closed coding scheme for conceptual insight  
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Table 4 Continued 
Not 
Viable 

Even and 
Odd 
 

The sum of three consecutive natural numbers will always 
have either one even and two odd addends or two even and one 
odd addend. 

Groups of 
Three 
 

The sum of three consecutive natural numbers is divisible by 
three because we are adding three numbers. May describe 
three numbers as three groups. 

Division 
Mix up 

All numbers are divisible by three but there may or may not be 
a remainder. 

Observed 
Property 
 
 

A property or pattern observed from examples is used to 
justify the truth of the claim. The pattern may or may not hold 
for all cases in the domain. 
 
Ex. The claim is true because the quotient is the second 
number in the sum. 
Ex. For any sum of three consecutive natural numbers the sum 
of the first two numbers will be divisible by 3 and the last 
number will be divisible by three making the sum divisible by 
3. Like, 4+5+6 where 4+5 = 9 is divisible by 3 and 6 is 
divisible by 3. 

Empiricism The conforming examples show that the sum is divisible by 
three OR when you add the three numbers and divide by three 
you get a whole number so the sums are divisible by three.  
 
Ex. 4+5+6= 15, 15/3=5 The sum of any 3 consecutive natural 
number is divisible by 3 because as shown if you take any of 
the numbers and add them all together you get a number that 
will be divisible by 3. 
Ex. 4+5+6=15, 15/3=5 and 7+8+9= 24, 24/3=8. Using these 
two examples I can infer that the claim is true. 

Other A conceptual insight that is non-viable that does not fit the 
above categories. This may include arguments that do not 
appear to address the claim.  
 
Ex. An argument for why a multiple of three is divisible by 
three. 
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Table 4 Continued 
No 
Concep
tual 
Insight  

 The argument includes no reason or justification for why the 
objects in the perceived domain satisfy the conclusion. 
 
This may manifest as summarizing the conditions as the reason 
for the conclusion holding. Or student may state that they do 
not know why the claim is true. 
 
Ex. It’s true because if they are all divisible by 3 then they are 
all equal to the sum.  
 Perceived domain= factors of three 
 Conclusion = sums 
 No justification connecting the two sets. 

Ex. 4+5+6= 15, 15/3=5  
Ex. 3, 4, 5 are consecutive because they can be written as 3, 
3+1, 4+1. 12 is divisible by 3 because 3x4=1. This means 
12=3xk when k=4. 
No justification connecting the two sets sums of three 
consecutive natural numbers and numbers divisible by three. 

Unclear 
Conceptual 
Insight 

The conceptual insight is unclear.  

 

4.1.7 Interrater Reliability Study 

To determine the validity of coding, an interrater reliability study was completed. The 

study was used to provide objective evidence that the categories described in the coding 

scheme exist through identifying whether independent researchers could reliably code 

consistently (Stemler & Tsai, 2008).  

An additional mathematics education researcher was given a subset of the data and 

the coding schemes. We coded the subset of the data independently and then percent 

agreement and Cohen’s kappa were calculated. The random sample of the data was created 

by first collating all data into a single PDF. Each of the one hundred and seventy student 

work samples were numbered based on its sequential order in the document. A random 

number generator was used to generate 30 integers in the range 1-170. The tasks 

corresponding to these 30 integers formed the subsample. We coded the subsample 

independently using the schemes. Once the subsample was coded, the percent agreement was 

calculated. Each argument is assigned as zero or one depending on the properties of the 

argument. This means the data is nominal in nature as it is describing the presence of features 
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and will not be normally distributed. For that reason, using precent agreement for consensus 

estimates of interrater reliability is appropriate (Stemler & Tsai, 2008).  

In addition, Cohen’s kappa was calculated for the codes’ generality and viability of 

conceptual insight. Cohen’s kappa is interpreted as the level in which scores agree after 

taking into account the agreement that would occur simply by chance (Landis & Koch, 

1977). Percent agreement can become inflated if codes are of low or high incidence of 

occurrence (Hayes & Hatch, 1999). Thus, the value of Cohen’s kappa informs whether the 

percent agreement is due to chance.  

Cohen’s kappa is given by 𝜅𝜅 = 𝑃𝑃𝐴𝐴−𝑃𝑃𝐶𝐶
1−𝑃𝑃𝐶𝐶

, where 𝑃𝑃𝐴𝐴 is the proportion of arguments on 

which the scorers agree on the score and 𝑃𝑃𝐶𝐶 is the proportion of arguments for which 

agreement is expected by chance. The value 𝑃𝑃𝐶𝐶 is given by the below formula: 

  

𝑃𝑃𝐶𝐶 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 1 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 1𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 1 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 0 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 1𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 0 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

  

 

(McHugh, 2012). Then value 𝜅𝜅 can be interpreted as described in Table 5 (Cohen, 1960). A 

sample size of 11 to 30 is recommended for initial calculations of Cohen’s kappa (Bujang & 

Baharum, 2017). With this consideration, the 30 participant responses used for percent 

agreement are sufficient for the calculation. 

Range Interpretation 
𝜅𝜅 ≤ 0 No agreement 

0.01 ≤ 𝜅𝜅 ≤ 0.2 Slight agreement 
0.21 ≤ 𝜅𝜅 ≤ 0.4 Fair agreement 
0.41 ≤ 𝜅𝜅 ≤ 0.6 Moderate agreement 
0.61 ≤ 𝜅𝜅 ≤ 0.8 Substantial agreement 

0.81 ≤ 𝜅𝜅 ≤1 Almost Perfect agreement 
Table 5: Interpretation guidelines for Cohen’s kappa (Cohen, 1960)  
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Reliability of generality code.  

There was agreement on 27 of the 30 codes resulting in 90% agreement. This is 

comfortably over the 70% minimum agreement required (Stemler & Tsai, 2008). Cohen’s 

kappa for this code is approximately 0.8, suggesting there was substantial agreement. The 

calculations of Cohen’s kappa can be found in Appendix G. 

Reliability of viability of conceptual insight code.  

There was agreement on 27 of the 30 codes resulting in 90% agreement. This is 

comfortably over the 70% minimum agreement required (Stemler & Tsai, 2008). Cohen’s 

kappa for this code is approximately 0.7, suggesting there was substantial agreement. The 

calculations of Cohen’s kappa can be found in Appendix G. 

4.1.8 Power and Sample Size Analysis 

 The below calculations were performed to gain insight into what sample size will be 

needed to demonstrate a difference between the student responses to the three task conditions 

with the Randomized Block Design (RBD). Pilot data was gathered from two classes in the 

Fall of 2021. These student arguments were coded using the coding scheme. The full data set 

can be found in Appendix E. 

 I first considered what number of classes (blocks) needed to see a difference between 

the proportion of responses that are general and the proportion of those that contain viable 

conceptual insight for each of the three tasks. To gain a heuristic answer to this question, I 

grouped the two tasks (Task B and C) that include definitions and compared their proportion 

of responses that are general or contain a viable conceptual insight respective to the 

responses to task A which did not include a definition. This calculation has some limitations 

as it is comparing samples that are not equal in size. However, it indicated a reasonable 

number of classes to begin my investigation.  

 The formula 𝑛𝑛 = 𝜎𝜎2 2(𝑧𝑧∝ 2⁄ +𝑧𝑧𝛽𝛽)2

Δ2
 can be used for choosing a sample size when testing 

the difference between two means (Ott & Longnecker, 2015). Table 6 gives the meanings of 

each of the symbols in the formula for sample size. For this calculation, instead of means I 

considered the proportion of participant responses that are general or the proportion of 

participant responses that contain a viable conceptual insight (see Table 7 and Table 8). For 
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example, in block one of the pilot data, 2 of the 5 responses to Task A were coded as general. 

So, the proportion for Task A in block one is 2/5=0.4. The proportion of general responses 

for Tasks B and C, the tasks that include definitions, is 4/8=0.5. Thus, for block one the 

difference in proportions is 0.4 - 0.5 = -0.1.  

 

Symbol Meaning 
𝑛𝑛 Sample Size (number of classes or blocks needed for the RBD) 
𝜎𝜎2 Variance in the differences in proportions 
∆ Difference in proportions 

𝑧𝑧𝛼𝛼, 𝑧𝑧𝛽𝛽 The z-values associated with the chosen 𝛼𝛼 and 𝛽𝛽 values 
𝛼𝛼 The probability of incorrectly rejecting the null hypothesis (type I error) 
𝛽𝛽 The probability of incorrectly failing to reject the null hypothesis (type II 

error) 
Table 6: Meaning of symbols in the formula for sufficient sample size. 

 

Class Proportion of 
General Responses 
to Task A 

Proportion of 
General Responses 
to Tasks B and C 

Difference in 
Proportions 

1 2/5 = 0.4 4/8 = 0.5 -0.1 
2 3/3 = 1 3/8 = 0.375 0.4096 

Table 7: Summary of Pilot Data with Respect to Generality 

 

Class Proportion of Viable 
CI Responses to 
Task A 

Proportion of Viable 
CI Responses to 
Tasks B and C 

Difference in 
Proportions 

1 0/5 = 0 3/8 = 0.375 -0.375 
2 1/3 = 0.33 3/8 = 0.375 -0.045 

Table 8: Summary of Pilot Data with Respect to Viability of Conceptual Insight 

 

To calculate the sample size, i.e., the number of classes needed, I first found the 

variance in the difference in proportions for both Generality (𝜎𝜎𝐺𝐺2) and Viable Conceptual 

Insight (𝜎𝜎𝐶𝐶𝐶𝐶2) using the pilot data 𝜎𝜎𝐺𝐺2 ≈ 0.13 and 𝜎𝜎𝐶𝐶𝐶𝐶2 ≈ 0.027.and the standard accepted 

values for alpha and beta, 𝛼𝛼 = 0.05 and 𝛽𝛽 = 0.2. This corresponds to 5% probability of 

falsely rejecting a true null and a 20% probability of failing to reject a false null hypothesis. 
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The alpha and beta values have the corresponding z values 𝑧𝑧0.05
2�

= 1.96 and 𝑧𝑧.01 = 0.842. 

With the above values fixed we can now vary the desired difference in proportion to examine 

what sample sizes would be necessary to find that difference with confidence.  

 

 

 

 

 

 

 

Figure 10: The relationship between difference in proportion and the sample size needed to 
find that difference with confidence. 

 

Generality 
Difference in proportions (∆) Sample Size needed (𝑛𝑛) 

0.1 204 
0.15 11 
0.2 7 
0.25 4 
0.3 3 

Table 9: Relationship between difference in proportion of general responses and needed 
sample size. 
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Viable Conceptual Insight 
Difference in proportions (∆) Sample Size needed (𝑛𝑛) 

0.1 15 
0.15 7 
0.2 4 
0.25 0 

Table 10: Relationship between difference in proportion of responses with viable conceptual 
insight and needed sample size. 

 

Considering these calculations, it seems that to find a small difference in the 

generality of participant responses a larger sample size of approximately 73 classes is 

needed. However, to determine a larger difference, say of 0.2, 18 classes should be sufficient. 

The power and sample size analysis for viable conceptual insight resulted in much smaller 

sample sizes needed to find differences with confidence. Thus, a sample size of 

approximately 18 should be sufficient to find differences in viability of conceptual insight in 

student responses and differences in generality that are 0.2 or larger.  

4.1.9 Randomized Block Design 

Research questions one and two were addressed using statistical methods. A 

randomized block design was used to explore the two dependent variables: generality and 

conceptual insight, and their relationship to the task version respectively. This method is 

appropriate as the participants are naturally grouped by their setting (class). The randomized 

block design allowed for the differences from the class setting to be accounted for and 

removed from the error component (Kuehl, 2000). To apply the randomized block design the 

data must be continuous in nature. Each argument was assigned a 1 if general and a 0 if not 

general and a 1 if a viable conceptual insight is used and a 0 if a non-viable insight is used 

respectively. The model then examined the proportions of each task response that was 

general or viable respectively for each block making the data continuous in nature, and thus 

appropriate for the randomized block design. 
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The model for the Randomized Block Design is given by 

 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝐵𝐵𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 

 

where each of the variables is as described in Table 11 (Kuehl, 2000). 

 

Symbol Meaning 
𝑌𝑌𝑖𝑖𝑖𝑖 The proportion of students in classroom 𝑗𝑗 with treatment 𝑖𝑖 which include 

a general representation. 
OR 
The proportion of students in classroom 𝑗𝑗 with treatment 𝑖𝑖 which include 
a viable conceptual insight. * 
 
[Treatment 1 is Task A, treatment 2 is Task B, and treatment 3 is Task 
C.] 

𝜇𝜇 The mean. 
𝑇𝑇𝑖𝑖 The effect for being in the treatment 𝑖𝑖. 
𝐵𝐵𝑖𝑖 The effect for being in block 𝑗𝑗. 

Table 11: The meaning of the symbols in the Randomized Block Design Model  
*This model is used twice: Once for the variable generality of representation and once for the 
variable viability of conceptual insight. 
 

The model was applied twice resulting in two rounds of calculations. In the first 

round the dependent variable was generality of the argument and in the second round the 

dependent variable will be the viability of the conceptual insight. With the randomized block 

design both the block (𝐵𝐵𝑖𝑖) and treatment (𝑇𝑇𝑖𝑖) effects were tested. The block effect is included 

because I anticipated there would be an effect on the outcome based on the class in which the 

participant is enrolled. The null hypotheses and alternative hypotheses are given in the Table 

12.  

 

Hypotheses 
𝐻𝐻0: 𝐵𝐵𝑖𝑖 = 0 for all 𝑖𝑖 𝐻𝐻0: 𝑇𝑇𝑖𝑖 = 0 for all 𝑖𝑖 
𝐻𝐻1: 𝐵𝐵𝑖𝑖 ≠ 0 for some 𝑖𝑖 𝐻𝐻1: 𝑇𝑇𝑖𝑖 ≠ 0 for some 𝑖𝑖 

Table 12: The null and alternative hypothesis of the randomized block design  
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 The statistics program SAS was be used to perform the calculations. For each 

dependent variable (generality and viability of conceptual insight) an overall ANOVA was 

calculated. First the F-statistic for the model was considered. 

After determining whether the null hypothesis was accepted or rejected for each 

independent variable, I computed the effect size of the task version and blocking variable on 

generality and viability of conceptual insight using eta squared (𝜂𝜂2). Finding eta squared is 

done using values from the ANOVA table and the formula 𝜂𝜂2 = SSSOURCE
SS𝑇𝑇𝑇𝑇𝑇𝑇

 where SSSOURCE is 

the sum of squares for the variable in question and SS𝑇𝑇𝑇𝑇𝑇𝑇 is the total sum of squares. The 

value eta squared is interpreted as the percent of the variance of the dependent variable for 

which the independent variable accounts. 

4.2 Qualitative Study 

4.2.1 The Setting  

This portion of the study took place virtually with a subset of the participants 

involved in the quantitative study. Selected participants who indicated their willingness to be 

interviewed were contacted using the contact information provided by the student and 

follow-up interviews were scheduled within a week of the participant completing the written 

interview. Interviews were completed and recorded using Zoom. 

4.2.2 Recruitment  

On the bottom of the task, participants were asked to indicate whether they were 

willing to discuss their work in a follow-up interview (see Appendices A-C). They were then 

asked to give their preferred contact information and their preferred way of being addressed. 

All willing participants were contacted for follow up interviews.  

4.2.3 Instruments  

A semi-structured interview protocol was used to guide the interviews (see Appendix 

E). The protocol included two parts. The first part included questions meant to facilitate the 

researcher’s understanding of the written argument as the participant intended it to be 

understood. This method of exploring the intending meaning of student representations 

builds on the research by Weiss and Herbst (2007) and Ahmadpour et al (2019) who, through 

discussing arguments with students, determined students were interpreting representations 
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taken by mathematicians as general to be particular instances of objects from the domain of 

the claims.  

The second part of the interview sought to establish the set of objects the student 

intended to represent with their objectifications and how the objectifications represented 

those objects. In the second part of the interview the interviewer chose one of two lines of 

questioning depending on whether the domain is described using words or if there is some 

representation, either symbols, generic example, or some other student generated 

configuration, present in the work. This portion of the protocol is very exploratory because 

existing literature has not attempted to determine the set students intended to describe by a 

representation and whether they see themselves as characterizing the set as a class 

representation, a placeholder representation, or some other characterization.  

4.2.4 Thematic Analysis 

Thematic analysis was used to analyze the transcribed interviews. When using 

thematic analysis, Braun and Clarke (2006) outline a number of decisions the researcher must 

make and communicate in their work including: what counts as a theme, whether inductive 

or theoretical analysis is used, and whether the themes are semantic or latent. Below I will 

expand on each of these decisions and then I will detail how my research is situated within 

the framework for thematic analysis.  

Themes as defined by Braun and Clarke (2006) capture something important in the 

data in relation to the research question. They represent a pattern in the data. There is no one 

method for determining what level of pattern counts as a theme in thematic analysis. It is 

instead suggested that the researcher must use their judgement and, ultimately, key to the 

validity of the research is that the researcher is consistent in how they determine what counts 

as a theme throughout their analysis.  

When conducting thematic analysis, the themes can be predetermined by existing 

theoretical frameworks or the themes can arise directly from the data using inductive 

thematic analysis. From the prior literature I theorized that students could develop 

representations that are empirical, representations that serve as placeholder representations, 

or they could develop class representations (see Table 13). Thus, during the thematic analysis 
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I used these theoretical themes to explore how these themes arise as students describe their 

representations. 

 

Theorized Themes Description 
Empirical Representation The representation is described as standing 

for one specific case. 
Placeholder Representation The representation is described as standing 

in place of any object drawn from the 
perceived domain. 

Class Representation The representation is described as standing 
for a class of objects. 

Table 13: Theorized themes for theoretical thematic analysis. 

 

Furthermore, the themes were based on semantic rather than latent features of the 

data. I examined directly what the participants said and or wrote as they discussed their 

argument. Instances where students discussed their representation and or the domain of the 

claim were coded by characteristics of their descriptions. These codes were then used to first 

formulate the inductive themes. 

I followed the six phases of thematic analysis outlined by Braun and Clarke (2006) 

for the two rounds of thematic analysis. Each of the phases, with a description of my actions, 

is included in Table 14. For the second round of thematic analysis, the first two phases were 

completed identically to the first round. However, the following phases proceeded differently 

since the themes were drawn from theory rather than arising inductively from the data.  
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 Phase Description of the process 
Round 1: 
Inductive 
Thematic 
Analysis 

1. Familiarized myself with the 
data.  

I transcribed and read the data while 
reflecting on initial ideas. 

2. Generated initial codes. 
 

I identified instances where 
participants described their 
representation or the domain and 
assigned initial codes to characterize 
how the participant described their 
representation and or the domain of 
the claim. 

3. Searched for themes. 
 

I collated the codes into potential 
themes and gathered the data for 
each evolving theme.  

4. Reviewed themes. I reviewed the themes by first 
examining the data extracts for each 
theme and then reflecting on the 
entire data set with respect to the 
theme.  

5. Defined and named themes. I adjusted themes based on the 
review in Phase 4. I generated clear 
definitions and names for each 
theme. 

6. Produce the report. I selected extracts for each theme 
that concisely capture the theme and 
used them to address my research 
question. 

Round 2: 
Theoretical 
Thematic 
Analysis 

Phases 1 and 2 were repeated as 
described above. 

 

3. Searched for themes. In this round, I used theorized 
themes. Thus, I examined the coded 
data to see how the data fit within 
the existing themes. 

4. Reviewed themes. I collated the data extracts for each 
theme and reflected on whether the 
theme appropriately characterized 
the extracts with respect to the data 
set as a whole. 

5. Defined and named themes. I adjusted and expanded upon the 
definitions for the theorized themes 
as necessary. 

6. Produce the report. I selected extracts for each theme 
that concisely capture the theme and 
used them to address my research 
question. 

Table 14: Phases of thematic analysis.  
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Initial codes were generated (step 2 in Table 14) by highlighting sections of the 

student interview where students referred to representations they used in their argument or 

classified the domain of the claim and characterizing how the student was representing or 

classifying the domain. During this initial coding, 32 codes were generated and assigned to 

excerpts from the interviews. In step 2 of the data these 32 codes were collated into the 

following five themes:  

1. Examples as evidence 

2. Algebraic representation 

3. Patterns as a tool for seeing structure 

4. Shifting representation or procedure 

5. What it takes to prove. 

A table depicting the initial codes organized into themes with example excerpts can be found 

in Appendix E.  

 The initial codes and themes were then reviewed by first examining the excerpts and 

reflecting on the entire data set with respect to the theme. During this process the theme 

“what it takes to prove” was absorbed by the other themes as these codes fell into two 

categories. The first category are comments that solidified that the participant saw their 

representation as either general or not general and the second category of responses were 

ones where participants described what they thought would be needed to show the claim was 

true for all sums of three consecutive natural numbers. These excerpts did not pertain to the 

participant’s description of the domain or their representations. A summary of the final 

themes is given in the results section. 
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Chapter 5: Results 
The purpose of this study was to investigate whether access to definitions key to the 

domain of the claim and the conclusion influenced the manner in which participants 

objectified the domain and the conceptual insight they used to connect the conditions of the 

claim to the conclusion. The study was guided by three research questions: 

1. How does access to a definition or general representation of the mathematical objects 

in the claim influence the generality of a student’s argument and the way the student 

represents the domain? 

2. How does access to a definition or general representation of the mathematical objects 

in the claim influence the conceptual insights that are used in the argument? 

3. How do students describe the representations they develop or choose to utilize in their 

arguments? 

To address the first two research questions, the written arguments were first analyzed 

for their use of representation and conceptual insight using the coding scheme in chapter 4 

(see Table 3 and Table 4). A randomized block design was used to test the two independent 

hypotheses that a definition would influence 1) the generality of the representations used as 

well as 2) the viability of the conceptual insight. Both the models were found to not account 

for statistically significant variation in their respective dependent variables—generality of 

representation and viability of conceptual insight. To further contextualize the results and 

answer research questions one and two, the types of representations and conceptual insights 

used across the task versions were examined. 

To address the third research question, the participant interviews were analyzed using 

two rounds of thematic analysis. The first round used inductive thematic analysis and the 

following themes emerged: examples used as evidence, algebraic representations, shift in 

representations, and patterns as tools to see structure. In the second round of analysis, 

theoretical themes drawn from Ahmadpour et al. (2019) model for how students understand 

proof while reading were used to examine the manner in which students utilized the 

representations they chose and developed.  
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5.1 Research Question One  

How does access to a general representation or general description of the mathematical 

objects in the domain of the claim influence the generality of a student’s argument and the 

way the student represents the domain? 

5.1.2 Examining Generality of Representations with a Randomized Block Design (RBD) 

The ANOVA table for the RBD model with the dependent variable generality of 

representation shows that the model does not account for a significant portion of the variation 

in generality of participant representations (F=1.33, p=0.1849 > 0.05). Furthermore, with 

each of the Type I and Type III Sum of Squares, neither the task variety nor the block had a 

statistically significant effect on the generality of the representation (see Table 16 and 17). 

 

Source DF Sum of 
Squares Mean Square F Value Pr > F 

Model 16 5.1759 0.3234 1.33 0.1849 

Error 153 37.1769 0.2429   

Corrected 
Total 169 42.3529    

Table 15: ANOVA table for the dependent variable Generality of Representation 

 

Source DF Type I SS Mean Square F Value Pr > F 

Block 14 4.7440 0.3388 1.39 0.1618 

Variety 2 0.4319 0.2159 0.89 0.4133 

Table 16: Type I Sum of Squares 

 

Source DF Type III SS Mean Square F Value Pr > F 

Block 14 4.6707 0.3336 1.37 0.1726 

Variety 2 0.4319 0.2159 0.89 0.4133 

Table 17: Type III Sum of Squares 
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 Figure 11 and Table 18 below, show the relationship between the blocks and the 

generality of the representation used. Along the horizontal axis of the graph in Figure 11. are 

the 15 blocks that represent the 15 classes in which data was collected. Along the vertical 

axis is the mean or proportion of the arguments that included a general representation for 

each task version. The proportions for each task version are calculated by summing the total 

number of arguments in response to each task that include general representations and 

dividing that value by the total number of responses collected for that task. Table 18 shows 

the proportion of arguments including a general representation for each task version varied 

across the classes where data was collected. Furthermore, the number of responses for each 

task collected varied from one to nine. In some classes, as few as one response to each task 

version was collected. Also, in some classes significantly fewer responses to Task C were 

collected, compared to the other tasks.  

 

 
Figure 11: Interaction Plot for Blocks and Generality of Representations 
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Proportion of Arguments with General Representations by Block 

Block 
Task A Task B Task C 

Number of 
Arguments Mean Number of 

Arguments Mean Number of 
Arguments Mean 

1 5 1.00 5 0.80 5 0.80 

2 4 0.25 4 1.00 4 0.50 

3 3 1.00 6 0.67 2 0.50 

4 2 0.00 3 1.00 2 0.50 

5 8 0.13 9 0.33 8 0.50 

6 9 0.22 8 0.50 9 0.44 

7 1 1.00 2 0.50 1 0.00 

8 5 0.40 5 0.40 1 1.00 

9 4 0.50 3 0.33 1 1.00 

10 1 0.00 3 0.67 2 0.50 

11 1 0.00 1 0.00 1 1.00 

12 3 0.33 3 0.67 2 0.00 

13 4 0.75 3 0.33 2 1.00 

14 3 0.67 5 0.80 2 0.50 

15 5 0.80 4 0.75 6 0.33 

Mean  0.47  0.58  0.57 

Standard 
Deviation  0.36  0.27  0.32 

Table 18: Proportion of Arguments with General Representations by Block 

 

While the inferential statistics do not support the generalizability of these results, 

within the data collected the mean for Task B, the task with definitions in the conceptual 

register, was the highest, followed by Task C (symbolic definition), and followed by Task A 

(no definition) (see Table 19). 
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To examine the effect size, I calculated eta squared for both the variety in task and the 

blocking factor. The effect size for the version of the task is 0.0119, indicating that the task 

version was responsible for approximately 1% of the variation in generality of 

representations. The effect size for the blocking factor was 0.1102, corresponding to the class 

the data was collected in accounting for 11% of the variation in generality. 

 

Task Version Number of 
students 

Generality 

Mean Standard 
Deviation 

A 58 0.4655 0.4988 
B 64 0.5938 0.4911 
C 48 0.5208 0.4996 

Table 19: Mean and standard deviation of generality. 

 

 Table 19 shows the mean and standard deviation for each version of the task. The 

coding scheme resulted in codes of 0 for non-general responses and 1 for general responses. 

Consequently, with means very close to 0.5 it is logical that the standard deviation is close to 

0.5 as the standard deviation indicates the spread of the data.  

5.1.3 Power and Sample Size Analysis 

The power and sample size analysis suggests that more data is needed to determine 

whether the small difference in proportion of general responses is statistically significant. In 

the data collected, the difference between the proportion of general responses to any two of 

Task A, Task B, and Task C is less than 0.15. The power and sample size analysis suggests 

that to determine whether this difference is statistically significant, data from 204 classes 

would be needed. This means 189 additional classes of data are needed to determine whether 

the small difference in proportions is statistically significant. 

 

Task Version Proportion of General Responses 
Task A 0.47 
Task B 0.59 
Task C 0.52 

Table 20: Proportion of general responses.  
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5.1.4 Examining Representation Use with Descriptive Statistics 

 This section will examine the registers used within the arguments collected. Across 

the task versions the occurrence of each type of representation were often within a few 

percentages of each other. The precents are the number of occurrences of that representation 

out of the total number of tasks of that version. Since the arguments were coded to include 

every type of representation present in the argument, the total number representations is not 

necessarily equal to the number of arguments. For example, conforming examples occurred 

frequently in tandem with other types of representations. The use of conceptual register, 

structural algebraic notation, and blank or non-examples were the only categories that had 

variation greater than a few percentages.  

 

Task 
Version 

General Representations 

Conceptual 
Register 

Structural 
Algebraic 
Notation 

Non-
Structural 
Algebraic 
Notation 

Informal 
Symbolic 
Notation 

Generic 
Example 

Task A 
(58) 21 (36%) 2 (3%) 1 (2%) 0 (0%) 4 (7%) 

Task B 
(64) 28 (44%) 5 (8%) 0 (0%) 1 (2%) 3 (5%) 

Task C 
(48) 19 (40%) 7 (15%) 2 (4%) 1 (2%) 3 (6%) 

Table 21: Frequency and percent table for general representations in participant arguments. 

 

Task 
Version 

Non-General Representations 
Blank or Non-Examples Partial Examples Conforming Examples 

Task A 
(58) 12 (21%) 0 (0%) 46 (79%) 

Task B 
(64) 6 (7%) 5 (8%) 49 (77%) 

Task C 
(48) 5 (10%) 3 (6%) 37 (77%) 

Table 22: Frequency and percent table for non-general representations in participant 
arguments. 
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Figure 12: Comparing conceptual register to only conceptual register. 

 Task B had by percent the most responses, 44% of the responses (28 of 64), that 

included the conceptual register. Task C included 40% of responses in the conceptual register 

(19 of 48). Task A had 36% of the responses including the conceptual register (21 of 58). 

The arguments were coded to include all the representations present. This means arguments 

identified as having the conceptual register may also have included another general 

representation. The percentage of arguments that include the conceptual register as the only 

general representation of the domain is reported in Table 23. Participants who were given a 

definition in the conceptual register (Task B) developed more arguments using the 

conceptual register as the only general representation with 37.5% of arguments using only 

the conceptual register. In comparison, approximately 29% of responses to both Task A and 

Task C used only the conceptual register. Of the responses in the conceptual register to Task 

A, 6.9% included some other general representation. In response to Task B, 10.4% included 

some other general representation.  

 

l 

 

  

Task Version Conceptual Register Only Conceptual Register 

Task A 36.2% 29.3% 

Task B 43.8% 37.5% 

Task C 39.6% 29.2% 

Table 23: Responses with the conceptual register and only the conceptual 
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The use of structural algebra occurred with the highest proportion among responses to 

Task C, where approximately 15% of the arguments used structural algebra. In comparison 

approximately 8% of the responses to Task B and 3% of the responses to Task A included 

structural algebra. 

 By proportion, there were more responses that were blank or contained non-examples 

among responses to Task A than among the responses to the tasks that included definitions, 

Task B and Task C. In response to Task A, 21% of the participants included no work or non-

examples. For Task B and Task C, 9% and 10% of the responses, respectively, were blank or 

had non-examples. 

 
Figure 13: Arguments that were blank or included non-examples. 
 

5.2 Research Question Two 

How does access to a general representation or general description of the mathematical 

objects in the domain of the claim influence the conceptual insights that are used in the 

argument? 

5.2.1 Changes to the Coding Scheme 

While coding the data there were seven occurrences of other viable conceptual 

insight and 22 instances of other non-viable conceptual insight. Upon examination of the 

seven occurrences of the viable conceptual insight that did not fit the coding scheme, each 
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occurrence included two components: 1) recognizing that one of the three addends would be 

divisible by three and 2) a statement that the sum of the other two addends would be divisible 

by three as well. This conceptual insight is similar to summing remainders; however, these 

arguments do not reference remainders. They did not have any structural reason for why the 

sum of the two other addends would be divisible by three. I classified this conceptual insight 

as viable because it is possible to envision how an argument using this conceptual insight can 

be adapted to form a viable argument using remainders.  

No additional categories were added to the coding scheme to classify the occurrences 

of other non-viable conceptual insights. The instances of other non-viable conceptual insights 

did not form clear categories. The 22 instances of non-viable conceptual insights included 9 

non-examples demonstrating that the argument was not addressing the domain. These 

conceptual insights addressed domains such as products of three consecutive numbers and 

sums of the form 𝑛𝑛 + 𝑛𝑛 + 𝑛𝑛 for some natural number n. Of the 13 remaining instances of 

other non-viable conceptual insight there was a variety of responses including examining the 

place value, stating that the first and third addend are three apart, one number in the sum is 

divisible by three making the sum divisible by three. These responses also included 

justifications for why the claim is false. None of these conceptual insights reoccurred and so I 

did not add additional codes. 

5.2.2 Examining Viability of the Conceptual Insight with a Randomized Block Design 

(RBD) 

The ANOVA table for the RBD model with the dependent variable viability of the 

conceptual insight shows that the model does not account for a significant portion of the 

variation in viability of conceptual insights (F=1.30, p=0.2060>0.05). Furthermore, with both 

the type I and type III sum of squares, neither the task variety nor the block had a statistically 

significant effect on the viability of conceptual insight (see Table 24). 

 

 

  



76 
 

Source DF Sum of 
Squares Mean Square F Value Pr > F 

Model 16 3.9503 0.2468 1.30 0.2060 

Error 153 29.1379 0.1904   

Corrected 
Total 169 33.0882    

Table 24: ANOVA table for the dependent variable viability of conceptual insight 

 

Source DF Type I SS Mean Square F Value Pr > F 

Block 14 3.5596 0.2542 1.34 0.1929 

Variety 2 0.3907 0.1953 1.03 0.3610 

Table 25: Type I Sum of Squares 

 

Source DF Type III SS Mean Square F Value Pr > F 

Block 14 3.6338 0.2595 1.36 0.1778 

Variety 2 0.3907 0.1953 1.03 0.3610 

Table 26: Type III Sum of Squares 

 

Figure 14: Interaction Plot for Blocks and Viability of Conceptual Insight  
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Figure 14 and Table 27 show the relationship between the blocks and the viability of 

the conceptual insight used. The proportions for each task version are calculated by summing 

the total number of arguments in response to each task that include a viable conceptual 

insight and dividing that value by the total number of responses collected for that task. 

 

Proportion of Arguments with Viable Conceptual Insights by Block 

Block 
Task A Task B Task C 

Number of 
Arguments Mean Number of 

Arguments Mean Number of 
Arguments Mean 

1 5 0.40 5 0.00 5 0.80 

2 4 0.00 4 0.00 4 0.00 

3 3 0.00 6 0.33 2 0.50 

4 2 0.00 3 0.67 2 0.50 

5 8 0.00 9 0.11 8 0.25 

6 9 0.11 8 0.25 9 0.22 

7 1 1.00 2 0.50 1 0.00 

8 5 0.40 5 0.00 1 1.00 

9 4 0.50 3 0.00 1 1.00 

10 1 0.00 3 0.67 2 0.00 

11 1 0.00 1 0.00 1 1.00 

12 3 0.33 3 0.00 2 0.00 

13 4 0.50 3 0.33 2 1.00 

14 3 0.00 5 0.40 2 0.00 

15 5 0.60 4 0.50 6 0.17 

Mean  0.26  0.25  0.43 

Standard 
Deviation  0.30  0.25  0.41 

Table 27: Proportion of arguments with viable conceptual insight by block 
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Examining the means for each task version, within the data there was a greater 

proportion of arguments with viable conceptual insights on Task C where participants were 

given the symbolic definition (see the means in Table 28). The proportion of arguments with 

viable conceptual insights for participants responding to Task A and Task B were very 

similar. While this occurred within the data collected, the lack of statistical significance in 

the difference of means indicates that this variation may be due to chance instead of the 

variation between task versions. 

To examine the effect size, I calculated eta squared for both the variety in task and the 

blocking factor. The effect size for the version of the task is 0.0095, indicating that the task 

version was responsible for approximately 1% of the variation in viability of conceptual 

insight. The effect size for the blocking factor was 0.1098corresponding to the class the data 

was collected in accounting for 11% of the variation in viability of conceptual insight. 

 

Task Version Number of 
Students 

Viability of Conceptual Insight 
Mean Standard Deviation 

A 58 0.2414 0.4279 
B 64 0.2344 0.4236 
C 48 0.3333 0.4714 

Table 28: Mean and standard deviation of viability of conceptual insight 

 

 Table 13 shows the means and standard deviation for each version of the task. The 

coding scheme resulted in codes of 0 for responses with non-viable conceptual insights and 1 

for responses with viable conceptual insights. With means very close to 0.5, it is logical that 

the standard deviation is close to 0.5 as the standard deviation indicates the spread of the 

data.  

5.2.3 Power and Sample Size Analysis  

The power and sample size analysis suggests that more data is needed to determine 

whether the small difference in proportion of responses with viable conceptual insights is 

statistically significant. In the data collected, the difference between the proportion of general 

responses to any two of Task A, Task B, and Task C is less than 0.1. The power and sample 
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size analysis suggests that to determine whether a difference of 0.1 is statistically significant, 

data from 15 classes is needed. However, to determine whether a difference in proportions 

less than 0.1 is statistically significant data is needed from at least 61 classes. 

 

Task Version Proportion of Responses with Viable 
Conceptual Insights 

Task A 0.24 
Task B 0.23 
Task C 0.33 

Table 29: Proportion of responses with viable conceptual insights 

 

5.2.4 Examining Conceptual Insight with Descriptive Statistics 

 Table 30 and Table 31 report the frequency of each type of conceptual insight as well 

as the percent of the responses to each respective task version. Since the arguments were 

coded to include every type of conceptual insight present in the argument, the total number of 

conceptual insights is not necessarily equal to the number of arguments. For example, one 

student included both symbolic manipulation and redistribution as conceptual insights in 

their argument. Of the viable conceptual insights, the difference in the percentages across 

task versions were within a few percentages of each other for all except symbolic 

manipulation, three copies plus three, and recursive.  

For the conceptual insight symbolic manipulation, Task C had the most occurrences 

by five percentages. On Task C, 8% (4 of 48) of response included the conceptual insight 

symbolic manipulation. Participants made this algebraic argument on the tasks where they 

were not given the symbolic definition; on both Task A and Task B, approximately 3% (2 of 

58 and 2 of 64) included the symbolic manipulation conceptual insight. 

The three copies of three plus three conceptual insight occurred the most with Task C 

with 8% (4 of 48) of the tasks including this conceptual insight. For Task A and Task B this 

conceptual insight occurred less frequently with a total of 3 occurrences, 3% (2 of 58) of the 

Task A responses and 2% (1 of 64) of the Task B responses. 
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The recursive conceptual insight also occurred most frequently with Task C with 6% 

(3 of 48) of the response including this conceptual insight. The conceptual insight occurred in 

5% (3 of 64) of Task B responses and 2% (1 of 58) of Task A responses (see Figure 15). 

 

Task 
Version 

Viable Conceptual Insights 

Re-
distribution 

Symbolic 
Manipula-

tion 

Three 
copies plus 

three 
Recursive 

Summing 
Remainder

s 
Average 

One 
addend 

divides and 
sum of 

others does 
too 

Task A 
(58) 2 (3%) 2 (3%) 2 (3%) 1 (2%) 2 (3%) 1 (2%) 2 (3%) 

Task B 
(64) 4 (6%) 2 (3%) 1 (2%)  3 (5%) 1 (2%) 1 (2%) 3 (5%) 

Task C 
(48) 2 (4%) 4 (8%) 4 (8%) 3 (6%) 0 (0%) 1 (2%) 2 (4%) 

Table 30: Frequency and percent table for viable conceptual insight. 

 

 
Figure 15: Conceptual insights with the greatest variation across task versions. 

 

Table 31 shows the frequency of each of the non-viable conceptual insights as well as 

the percent of the total responses to each task these occurrences account for. Comparing the 

percents the occurrence of even and odd and unclear conceptual insight are within a few 

percentages of each other across tasks. The occurrence of observed property, empiricism, and 

other non-viable have a difference of less than 10%. The conceptual insight groups of three 
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was never used in response to Task C but showed up on 5 % of Task A responses and 15% of 

Task B responses. 

 

Task 
Version 

Non-Viable Conceptual Insights 

Even and 
Odd 

Groups of 
Three 

Observed 
Property Empiricism Other Non-

viable 

No 
Conceptual 

Insight 
Unclear CI 

Task A 
(58) 2 (3%) 3 (5%) 5 (9%) 10 (17%) 9 (16%) 16 (28%) 2 (3%) 

Task B 
(64) 3 (5%) 9 (15%) 4 (8%) 9 (15%) 8 (16%) 17 (27%) 1 (2%) 

Task C 
(48) 1 (2%) 0 (0%) 1 (2%) 5 (10%) 5 (10%) 19 (40%) 1 (2%) 

Table 31: Frequency and percent table for non-viable conceptual insights 

 

The largest difference occurred in the category no conceptual insight. For this code, 

40% (19 of 48) of the responses to Task C included no conceptual insight compared to only 

27% (17 of 64) for Task B and 28% (16 of 58) to Task A. To further examine this category, 

Table 32 shows the instances where no conceptual insight occurred simultaneously with the 

code blank or non-examples, partial example, and conforming example. This table shows that 

most of the responses of this type were responses that were conforming examples with no 

statements justifying the truth of the claim. 

 

Table 32: No conceptual insight and blank and non-examples 

 

Task 
Version 

No Conceptual 
Insight 

No Conceptual 
Insight AND Blank 
and non-examples 

No Conceptual 
Insight AND partial 

examples 

No Conceptual 
Insight AND 

conforming examples 
Task A 

(58) 16 (28%) 5 (9%) 0 (0%) 13 (22%) 

Task B 
(64) 17 (27%) 2 (3%) 1 (2%) 14 (22%) 

Task C 
(48) 19 (40%) 4 (8%) 2 (4%) 13 (27%) 
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5.3 Research Question Three 

How do students describe the representations they develop or choose to utilize in their 

arguments? 

5.3.1 Thematic Analysis 

The two rounds of thematic analysis resulted in themes that interact with each other. 

The inductive thematic analysis resulted in four themes:  

1. examples as evidence, 

2. algebraic representations, 

3. shifts in representations, and 

4. patterns as a tool to see structure. 

The first two themes were broad themes describing instances where participants described 

their representation as examples or algebraic. Examining the codes and the original excerpts, 

the purpose of the examples and the way the algebra was described had nuance that was not 

captured by the overarching categories titled examples as evidence and algebraic 

representations. The theoretical thematic analysis brought clarity to these inductive themes.  

During the theoretical thematic analysis the theme placeholder representation 

developed two distinct sub themes. There were instances where a representation was used to 

stand for any object form the domain and the conceptual insight leveraged by the student 

applied to all of the domain. In these instances the placeholder stands of any object drawn 

from the domain. In other instances representations were used to describe a general 

procedure that they have applied to some subset of the domain but the conceptual insight 

does not extend to all instances of the domain. In these instances the representation is 

intended to stand for any object from the domain however, either structure of the domain is 

not used to justify the steps of the procedure or the structure referenced only applies to a 

subset. I call these placeholder representations for some subset of the domain.  

After completing this round of thematic analysis, I found that the themes from the 

two rounds of thematic analysis interact with one another. The theoretical themes and the 

additional theme that arose from this framework characterized the purposes of example use 

as well as the characterizations of the algebraic notation described by participants. 
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The remaining inductive themes are strongly tied to each other. I observed three shifts 

in representations during the interviews. Two of these shifts occurred when the participant 

was asked to explain a pattern. Explaining patterns brought the participant’s attention to the 

structure of the domain when the prompt to prove the claim had previously not done so.  

Table 33 details the relationship between each of the inductive themes and the 

theoretical themes. The four uses of examples that arose within the category of examples fit 

within the theoretical themes. The two ways in which algebraic representations were 

described also fit within the theoretical themes. The table shows that patterns were a 

mechanism facilitating shifts in representations toward more general representations. 

 

 Theoretical Themes 
Empirical 
Representation 

Placeholder 
representation for 
some subset of the 
domain 

Placeholder 
Representation for 
any object from 
the domain 

Class 
Representations  

In
du

ct
iv

e 
Th

em
es

 

Examples as 
Evidence 

Examples used to 
show truth of 
claim 

Examples used to 
demonstrate a 
procedure without 
justification 
OR 
Examples used to 
demonstrate a 
procedure that 
cannot be 
generalized to the 
whole domain. 

Examples used to 
illustrate algebra 
with a particular 
case 

Examples used to 
demonstrate a 
transformation  

Algebra 
Representations 

  The expression 
stands for “any” 
object in the 
domain 
OR  
The variable 
stands or “any” 
natural number 

The expression 
represents the 
domain as a set 

Shifts in 
Representations 

    

Patterns as a tool 
to see structure 

 

Table 33: Interaction between inductive and theoretical themes 
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Examples as Evidence 

Examples were used by every participant interviewed. The purpose of the example 

and what the example was used to represent spanned the theoretical themes. Examples of 

each will be outlined below. 

Examples as Empirical Representations 

Jess, Marge, Kendra, and Lucy (pseudonyms) made arguments relying on examples. 

The participants chose their examples either because it was the example given, they 

perceived it as random, or it had some structure that they saw as useful or important. Kendra 

used the example that was given in the definition. She stated, 

 

I was like looking at the definition provided at the top and it was saying like I didn't 

really know what natural numbers really meant for some reason, but so I was saying 

that if they're consecutive, so like four, and they gave the example 4, 5, 6. So that's 

actually what I use for my first time up there… I just wanted to check with other 

numbers so I just did like kind of the basic numbers. 

 

Jess, on the other hand, chose what she perceived as three random numbers. She explained, 

 

I picked three random numbers. My dad one time told me when I was like in first 

grade that 47 is… the least common number to come up… and so I picked 48, 49, 50. 

Super easy to add up. 

 

After finding that 48+49+50 was divisible by three, Jess identified this example as having 

“friendly numbers.” In her process of adding the sum she used a commonly taught addition 

technique of making tens by taking one from 47 to add to 49 so that she could complete the 

easier sum 47+50+50. She saw this structure as important to the example and chose 

additional examples she characterized as “not having friendly numbers,” meaning no 

numbers that end in five or ten. Audrey also chose examples to include a particular structure. 
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She chose two examples “to show that single digit versus multi digit numbers would both 

work.”  

 

None of the participants were confident that their examples showed that the claim 

was true for all sums of three consecutive natural numbers. When asked, “does your work 

show that all sums of three consecutive natural numbers are divisible by three?” and 

following up with the question, “How do you know?” Jess, Marge, Lucy, and Audrey gave 

clear indication that the examples did not demonstrate truth for the whole domain. 

 

“Yes, I think so…um. I guess technically not.”—Jess  

 

“I don’t know, I feel like you would have to find it some sort of like proof that shows 

and I don’t know what that is… I feel like you have to come up with some sort of 

proof to prove that any three numbers can do it.”—Marge  

 

“It doesn't show that all numbers are, no, but it does prove that it is a pattern that can 

be seen at least with numbers extending up to 12. …[because] I did a few examples 

within that range, and kind of tested it out.” —Lucy 

 

“So the hard thing with that is it would be impossible to show every single example 

of that because there's infinitely natural numbers.”—Audrey 

 

Kendra indicated that the examples are not representative of the domain. However, 

she did find that confirming three examples verifies the truth of the claim. She stated, “So I 

felt like it was pretty accurate if I could verify it three times. So, I wrote that I said it's true 

because there's three natural consecutive numbers as defined and then I added them together, 

I divided them by three, and then each example was divisible by three. So, this claim is 
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correct.” Verifying the truth of the claim and showing that the claim is true for all objects in 

the domain are not the same for her. This is apparent when she responds to the question about 

whether her work shows that all sums of three consecutive numbers are divisible by three 

with, “No, because that would. Um, I would have to do so many numbers. I kind of just did 

the basic ones where I didn't need a calculator because I could do like 20, 21, 22 but I would 

have to like pull out a calculator and stuff like that. I probably should have done that just to 

verify.” 

Examples to Demonstrate a General Procedure 

 Nessa used three examples to illustrate a procedure that she views as applying to all 

objects in the domain. Her procedure has two steps: 1) find the number in the sum of three 

consecutive numbers that is divisible by three and 2) sum the other two numbers. She 

claimed that this procedure will result in a sum of two numbers divisible by three which 

shows that the original sum is divisible by three. She described the procedure using three 

examples below: 

 

First, I find the like the number who can directly be like divided by three like 3, 9, 21 

here. So, like 3 divided by 3, 9 divided by 3, 21 divided by 3 and 1 + 2 = 3 and here is 

7 + 8 = 15 and 22 + 23 = 45 which is also to be able to divide it by three so. Yeah, 

that's just how I thought. 

 

Figure 16: Nessa's representation of the transformed sum 
 

 Nessa does not use the defining structures of the domain to justify why her procedure 

will always work. When asked why the sum of the two remaining numbers is always 

divisible by three Nessa uses a prior result about divisibility she learned in elementary 

school. The prior result is that if the sum of the digits of the number is divisible by three than 
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the original number is divisible by three. This prior result is not used to connect structure 

belonging to all sums of the two remaining numbers. Rather, she uses it to identify that in the 

examples she works with the sum of the two remaining numbers is indeed divisible by three.  

 To Nessa, the examples are placeholders for any object from the domain. However, 

the structure she uses to justify the second step in her procedure is occurring at a case-by-

case level. For each example, she sums the digits to determine that the sum of the two 

addends will be divisible by three. She has not identified a structure of the domain shared by 

all for why the sum of the digits will always be three. Akin to a generic example, the purpose 

of her example is to show a procedure that can be applied to all. However, unlike a generic 

example, the examples do not illustrate structure shared by all objects in the domain. The 

examples illustrate steps she believes can be applied to any object in the domain to confirm 

that the particular sum of three consecutive natural numbers is divisible by three. 

Examples as Placeholder Representations 

 Cleo and Winston both chose to supplement their algebraic argument with examples. 

Cleo plugged seven in for n, simplified the expression, and confirmed that the result was 

divisible by three. She then stated, “obviously, that works with literally any number.” 

Winston did not discuss his example. He did however write under his algebra a conforming 

example. 

Examples as Class Representations 

 In the interview Freya used an example to describe a “leveling” procedure that she 

discovered while exploring examples and looking for a pattern. She stated, 

 

I realized that when you would add three consecutive numbers, you could take the 

number, the larger numbers, like in 5, 6 or 7, you can take seven and you can move 

one of the numbers from 7 to the 5 to make them all equal. And then that would kind 

of, which is why we need to divide by three you're gonna always get the middle 

number.  
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At this point in the interview, it was unclear if Freya was viewing this as a procedure that can 

be applied to any sum of three consecutive natural numbers or if she was leveraging the 

structure of the domain to view this as a transformation that applies to all objects in the 

domain. When asked if this procedure will always work, she replied, 

 

I think it'll always work with three consecutive numbers because. They're obviously 

all going to be like 9, 10 and 11 or one after the other, and so you can always take the 

top one which is 2 away from the bottom one. And take that extra 1 and put it over to 

9 so they're all equal. 

 

In her initial description of her pattern, she gave no evidence of why the procedure applies to 

all sums of three consecutive numbers. Using Ahmadpour et al.’s (2019) model, this 

description would indicate that she is in the general procedure state. When asked if her 

pattern will always work, Freya gave a justification that referenced the structure of 

consecutive numbers. She identified that they are “one after another” resulting in the “top” 

number being 2 more than the “bottom” number. This justification gives evidence of abstract 

structure and aligns with Ahmadpour et al’s classification of the representation standing for 

all objects in the domain. It is evidence Freya sees the structure of consecutive and thus her 

leveling is a transformation that applies to all objects in the domain. By the coding scheme 

this is now a class representation. 

 Interestingly, Freya does not see her transformation as being limited to only sums of 

three consecutive natural numbers. When asked if her leveling could be applied to other sums 

to show divisibility by three she responded, “I do think it's possible, but they would have to 

be like separated the same amount. So if you did like it would have to be like 1, 3, and 5.” 

The purpose of this question was to determine using set equivalence whether Freya intended 

her generic example to stand for exactly the domain. Instead, the interview question 

prompted her to imagine a larger domain for which the conclusion holds. 
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Algebraic Representations 

 Of the participants interviewed, two students had written algebraic arguments in their 

initial response. These participants moved fluidly between thinking of the representation as 

standing for all sum of three consecutive natural numbers and standing for any sum of three 

consecutive natural numbers. 

Algebra as placeholder representation for any 

 There were two participants who described their representation as standing for 

“any”—Winston stated his representation 𝑛𝑛 + (𝑛𝑛 + 1) + (𝑛𝑛 + 2) stood for any sum of three 

consecutive natural numbers and Cleo stated that 𝑥𝑥 in her representation 𝑥𝑥 + 𝑥𝑥 + 1 + 𝑥𝑥 + 2 

stood for any real number which she later corrected to be any natural number. 

Algebra as a class representation 

 Winston and Cleo both wrote arguments using algebra and indicated that their 

representation stood for all objects in the domain as a single class of objects. I used two 

forms of evidence to determine whether they considered their algebraic representation as 

standing for all. First, they described how the representation connects to the structure of the 

domain. This satisfies the criteria used by Ahmadpour et al. (2019) to distinguish whether a 

representation stands for a class of objects. Secondly, they indicated that the algebraic 

representation stood for the domain as a class. They also indicated that the set of objects that 

the representation stands for is equivalent to the domain by describing that their 

representation shows that all objects of in the domain are divisible by three and their notation 

does not include other objects that are not in the domain.  

Winston was given the task version with the algebraic definition, Task C. He used the 

given definition to write 𝑛𝑛 + (𝑛𝑛 + 1) + (𝑛𝑛 + 2). He simplified the expression to 3(𝑛𝑛 + 1) 

and concluded that the claim was true. In the interview, Winston indicated that the algebraic 

expression stands for the domain of the claim, standing for all sums of three consecutive 

natural numbers. He stated, 

 

[the work shows that all sums of three consecutive natural numbers are divisible by 

three] because we're using n as the variable, right? So, so long as we follow what's 
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given to us. Like if we can say whatever n as starting point and we can say then. Is 

that is the lowest number of the consecutive, right? Because that's what n stands for in 

this very specific case. That three of those plus 3 over 3 will always do that, but that's 

also the same as saying that number, it's next consecutive number and the one directly 

after that as well. And we can see that because that was the initial line is.  

 

In this excerpt Winston identifies how the algebraic notation connects to the mathematical 

objects sums of three consecutive natural numbers. In the model by Ahmadpour et al. (2019) 

they use this as evidence that the student is interpreting the representation as standing for the 

class of objects, the class of all sums of three consecutive natural numbers. However, 

Winston is utilizing the “specific cases” for particular values of n to describe how the 

notation stands for all. When asked if it is possible for his representation to stand for 

something else, he responded, 

 

I don’t think so…because no matter what, you substitute the, the problem with that is 

that it there's no other way to interpret it specifically because of the parenthesis. It 

might have been different if I hadn't parenthesized it, but the fact that each 

parenthesis is there indicates that. It itself is that n + 1 is an entire unit number. 

 

He clarifies that the “algebraic translation could definitely represent something else…and 

become any number” referring to the expression once the parenthesis are removed and like 

terms are potentially combined or partially combined. This indicates that the original 

expression stands for only sums of three consecutive natural numbers. Thus, Winston is 

using the algebra as a class representation. 

Cleo was given the task version with no definition, Task A, and started her work by 

writing 𝑥𝑥 + (𝑥𝑥 + 1) + (𝑥𝑥 + 2). She combined like terms, simplified to 3(𝑥𝑥 + 1), and 

identified that the expression is always divisible by three. She gave evidence that she views 

her representation as standing for all sums of three consecutive natural numbers when asked 
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if her work shows that all sums of three consecutive natural numbers are divisible by three. 

She responded, “Hopefully, uh, as I did use a variable which you can plug any number in and 

still get the same result that it's divisible by three.” She went on to clarify that x represents 

any natural number and “𝑥𝑥 + 1 would be the next number.” This also satisfies the criteria of 

Ahmadpour et al as evidence of abstract structure indicating, in their model, that her 

representation stands for the class of consecutive natural numbers.  

Cleo also indicated that the sum only represented sums in the domain by stating “it 

should represent only sums that are three consecutive natural numbers if we’re using the 

same number for 𝑥𝑥 repeatedly.” Thus, the set that she views the representation standing for is 

exactly the set made up by the domain. 

Shifts in Representations 

 During their interviews, Freya, Audrey, and Nessa described their written work in a 

way that did not align with the researcher’s interpretation of their work.  

 Freya’s written work includes two conforming examples and an objectification of the 

domain as a set where the sum of first and third addend will always be double the middle 

number in the sum. From this written work it is unclear if Freya had observed this property as 

a pattern in her two examples or if she saw the structure of three consecutive natural 

numbers. In her interview, Freya developed a generic example to explain her thinking: 

 

I realized that when you would add three consecutive numbers, you could take the 

number, the larger numbers, like in 5, 6 or 7, you can take seven and you can move 

one of the numbers from 7 to the 5 to make them all equal. And then that would kind 

of, which is why we need to divide by three you're gonna always get the middle 

number. So, I thought that was really interesting, but yeah, my thought process was 

just kind of like grouping it to make sure it was all level. 
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In her interview, her first example 5+6+7 is used to demonstrate the “leveling” process that 

can be applied to all sums of three consecutive natural numbers. She clarified why the 

process will always work by stating, 

 

I think it'll always work with three consecutive numbers because they're obviously all 

going to be like 9, 10 and 11 or one after the other, and so you can always take the top 

one which is 2 away from the bottom one. And take that extra one and put it over to 9 

so they're all equal.” 

 

 The property used in her written work, the first and third number are double the middle 

number, is a consequence of the leveling process as the leveling process results in three 

copies of the middle number. 

  

 
Figure 17: Freya's argument. 
 

 Audrey’s written work included conforming examples and the general statement “the 

quotient for each division problem is the 2nd natural number within the three consecutive 
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numbers.” The general statement can be interpreted as an objectification of the domain as a 

set where the sum divided by 3 is equal to the second addend. However, it can also be 

interpreted as an objectification of the set of quotients formed when dividing sums of three 

consecutive natural numbers by three. With either of these interpretations the claim is 

inherently assumed to be true because for the quotient to be the second natural number it 

must be an integer making the sum divisible by three. It seems likely then that Audrey 

observed the quotient was the second number in her examples and is assuming that this 

property will generalize. 

 In her interview, Audrey describes that she chose her examples “to show single digit 

versus multi digit numbers would both work.” She described her work further by stating “I 

discovered when doing both of these equations that my answer in the division… it ended up 

being the second number in the sequence. [The second number in the sequence] was the same 

as the quotient from the division problem.” When asked whether her work shows that all 

sums of three consecutive natural numbers are divisible by three she responded “so the hard 

thing with that is it would be impossible to show every single example of that because there’s 

infinitely [many] natural numbers.” She further clarified “I think that it’s a pattern within 

numbers that’s consistent throughout the numbers. So that’s kind of where I made that 

educated assumption.” 

When asked to explain the pattern and how she knows it can be used to justify the 

argument she responded, “I guess for both of my equations that was the case, but I think it’s 

because it’s the average of the three numbers. So, when you take the average of the sum, 

you’re always going to get the mean or the middle number, the median I guess. So, I think 

that’s why the pattern is consistent the whole way through.” She stated that the pattern does 

not work for any sum “it’s only with the sum when the three numbers are consecutive and 

it’s divisible by three…when you find the average of the consecutive numbers, it’s the 

median of the consecutive numbers and so that wouldn’t be the case if the numbers aren’t 

consecutive.”  

Originally Audrey’s written argument was coded as examples with the conceptual 

register used to generalize an observed pattern to the entirety of the domain however it is 

unclear if she is objectifying the domain or the transformation of the domain. In either case 



94 
 

the warrant appears circular. In the interview Audrey identifies that the observed pattern is 

specific to sums of consecutive numbers and uses the notion of average to explain the pattern 

for all sums in the domain. 

 

 
Figure 18: Audrey's argument. 
 

 Nessa’s written argument uses the conceptual register to objectify the domain as 

having the property that the domain will always have one addend that is divisible by three 

and the sum of the other two addends will be divisible by three. Her page has additional 

markings including parenthesis containing three numbers with two numbers boxed and one 

number circled. When asked she explained that the circled number was the number divisible 

by three and the boxed numbers sum to a number divisible by three.  

 When asked to share her thinking as she completed the task, she described first an 

algebraic argument. She stated, 
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So, when I saw like three natural like continuous national numbers. Um no three 

consecutive natural numbers so you just like 1,2, 3 or whatever. Like I use like n is 

the first number and the second is n + 1 and then it's n + 2. So those three that are like 

consecutive and if I just add them together and plus n + 1 + n + 2. So, it's 3n+3. And 

as we know that like any number which can like after multiply, not multiply, like 

adding up if they are like able to divide it by three, then that number is going to be 

able to divide it by three. So like 3n+3 no matter what n is, it will be able to divide it 

by three. 

 

When asked if there is anything in her written work that represents the algebraic 

argument, she stated that, “I just got the examples here I didn’t use like n. I used the 

examples like 1, 2, 3, or 7, 8, 9 or 21, 22, 23 or whatever numbers they are like consecutive.” 

She then describes the process of adding 21+22+23 to get 69 and confirming that 69 is 

divisible by 3. Describing this she realizes that the process she used in her written argument 

is different than the algebraic argument. She stated, 

 

Wait hold up. So, for 21, 22, 23 [it] is actually different. So, the work that I give here 

is first I find the like the number who can directly be like divided by three like 3, 9, 

21 here. So, like 3 divided by 3, 9 divided by 3, 21 divided by 3 and 1 + 2 = 3 and 

here is 7 + 8 = 15 and 22 + 23 = 45 which is also to be able to divide it by three so. 

Yeah, that's just how I thought. 

 

She found the addend divisible by three in the sum of three consecutive numbers (3, 

9, and 21, respectively) and then found that the sum of the remaining numbers in each sum is 

also divisible by three (1+2, 7+8, 22+23, respectively).When asked how she knows that the 

two remaining numbers will sum to a number divisible by three she cited a prior result from 
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elementary school where if the sum of the digits of a number is divisible by three the number 

is divisible by three.  

 
Figure 19: Nessa's argument. 
 

Patterns as a Tool to See Structure 

 Three of the 9 participants mentioned looking for patterns and or discovering patterns 

in their examples. Freya, who described a general procedure to transform any sum of three 

consecutive numbers to get three copies of the middle number, started her interview by 

stating, “I like to kind of think about things in terms of patterns.” Audrey discovered the 

pattern that the middle number in the sum is equal to the quotient when the sum is divided by 

three. Her written argument did not address why this pattern occurs and instead worded it as 

a property that is true for all sums of three consecutive numbers. In the interview Audrey 

expressed that it was not possible to show the truth of the claim for all sums in the domain 

because there are infinitely many of them. However, when instead she was asked about her 

pattern, she began to describe general mathematical structures that could be applied to all 

objects in the domain. 

 

Researcher: Does your work here show that all sums of three consecutive numbers 

are divisible by three? And how do you know?  
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Audrey: So, the hard thing with that is it would be impossible to show every single 

example of that because there's infinitely natural numbers. So, it's kind of a hard 

question to answer. I think that it's a pattern within numbers that's consistent 

throughout the numbers. So that's kind of where I made that educated assumption, I 

guess is what I would call it.  

Researcher: So, tell me more about that pattern. So, when you stated here that the 

when for the division problem, the quotient, it's the second natural number and then 

you kind of use that to justify, tell me more about why that is. How do you know?  

Audrey: I guess, um, well, for both of my equations that was the case, but I think it's 

because it's the average of the three numbers. So, when you take the average of the 

sum, you're always going to get the mean or the middle number, the median, I guess. 

So, I think that's why the pattern is consistent the whole way through.  

 

Her attention to the general mathematical structure became more explicit when asked if the 

pattern extended to other sums. This question elicited her to identify two structures of the 

domain: 1) addends are consecutive and 2) the number of addends is equal to the number the 

sum is divided by to test the truth of the claim (in this case 3). 

 

Researcher: OK, does that work for all sums or just special sums?  

Audrey: I think it's only with the sum when the three numbers are consecutive and 

it's divisible by three.  

Researcher: OK, why do you think that is?  

Audrey: I think that's the case because when you find the average of a set of 

numbers, you add all the numbers up and then you divide by the number of numbers. 

So this I think would also work if. Actually, I don't. I don't want to say that because I 

haven't done the work for it. I was going to say it's possible that it could work for 

another set of consecutive numbers that's a different amount of consecutive numbers.  
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Researcher: OK,  

Audrey: that I'm not certain that that is the case.  

Researcher: OK, what about instead of? If we was instead of 3 + 4 + 5? If it was like 

3 + 6, I'm sorry, 3 + 5 + 6. Would it still work?  

Audrey: And. No.  

Researcher: Why not?  

Audrey: Because they're not consecutive. So, when you find that average of when 

you find the average of the consecutive numbers, it's the median of the consecutive 

numbers, and so that wouldn't be the case if the numbers aren't consecutive.  

Researcher: gotcha. So, there's something about consecutive that makes it so the 

average and the median are the same.  

Audrey: Yes.  

Researcher: Do you have any thoughts on why that might be?  

Audrey: Um. Not really.  

 

Jess’s written work included one example and a statement that the “sum divided by 3 

will be the second number.” In her interview she described how she selected her example to 

be random and how she used adding strategies to redistribute the sum to make finding the 

sum “super easy.” After working the one example she described how she did a few more in 

her head and then noticed a pattern. She stated, 

 

I just noted that because I like did a couple other like sets of three in my head like 4, 

5, 6 and then like dividing that, I realized that, like the second number will always be 

the answer after it's divided by three, so I just kind of made a little note of that, but 

yeah, I don't know. 
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When asked “any ideas about why that might be?” She responded, “not really. I’m not like a 

big math whiz…I’m sure it has to do with the fact there are three consecutive numbers and 

like in doing the math, like adding them up, uh 49, 48, 49, 50 were pretty easy because I 

could make like 50 out of it. I could make like we called the friendly numbers in our classes 

like numbers that end in five or zero and so maybe this, like the second one coming up, has 

something to do with that, but like because they're all so close together.” When asked about 

the pattern she began to consider consecutiveness and the numbers being “close together.” 

She began to pay attention to structures shared by all objects in the domain. 
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Figure 20: Jess's argument. 
 

5.4 Examining Why the Results of the Quantitative Study were Not Statistically 

Significant 

 The amount of variations in the generality of representations and viability of 

conceptual insight across the task versions had far less variability than expected. The power 

and sample size analysis revealed that the sample size needed to be bigger to determine 

whether the small variation that existed was statistically significant. However, I am also left 

to wonder why there was so little variation in the arguments produced by students given no 

definition and students given definitions.  

 Upon completing the statistical analysis and finding that the results were not 

statistically significant I returned to the data to make sense of why the results were not as 

anticipated. Below I will detail four factors that may have contributed to the limited variation 

in generality of responses and viability of conceptual insight. The factors are the span of 
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experiences the participating students have had with mathematics, the prompt given on the 

tasks, the broadness of the code conceptual register, and the meaning of access to a 

representation.  

5.4.1 Prospective Elementary School Teachers 

I chose to use students enrolled in mathematics courses for prospective elementary 

school teachers because they had met an algebra requirement, but using algebra is not part of 

the day-to-day mathematical activity of mathematics courses for elementary school teachers. 

I anticipated that these two criteria would mean that the participants would be able to use 

algebra if given a symbolic definition for consecutive but that they would not be primed by 

their current course work to immediately approach the task algebraically. The lack of 

variation in student performance across the task versions can be partially explained by the 

variation in participating students’ experiences with mathematics and their comfort with 

algebra. 

  In the interviews, the span of student prior knowledge and experiences with 

mathematics was demonstrated. The interviews represent a non-random subsample of the 

whole data set as the participants who were interviewed volunteered. Disproportionally many 

of the students who volunteered had completed Task A where they were given no definitions.  

To highlight the span of student prior knowledge that exists within the participants, 

consider Cleo and Lucy. Both completed Task A. Cleo started to develop her argument by 

writing 𝑥𝑥 + (𝑥𝑥 + 1) + (𝑥𝑥 + 2). When asked to share about her thinking as she developed her 

argument she said, “honestly, when it said any three consecutive natural numbers is divisible 

by three, what I wrote out like 𝑥𝑥, 𝑥𝑥 +  1, 𝑥𝑥 + 2, that just makes sense to me.” When asked if 

she had seen the claim or the algebraic representation for sums of three consecutive natural 

numbers before, she responded "that's just how I thought of it. I don’t think I particularly, had 

somebody explain something like this to me before.” Cleo is very fluent with algebra, and it 

was a tool that she reached for immediately when she read the task.  

 Lucy’s experience with Task A is far different from Cleo’s because her first step was 

to use examples to determine the domain of the claim. She started her explanation of her 

thinking by saying, “I wasn’t exactly sure what it was asking, but then I realized like sum 

that’s like the total of something, usually adding.” Lucy realized that the claim was referring 
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to adding three consecutive natural numbers by testing what happens when multiplication, 

subtraction, and addition are performed on three consecutive natural numbers. Through using 

examples, she determined that the claim is “true” for multiplication and addition.  

Lucy may have been distracted from developing a proof by the work of determining 

what the domain is. Her final response does not include a conceptual insight and appears to 

be empirical. Her response includes the examples of adding, multiplying, and subtracting sets 

of three consecutive numbers with check marks indicating when the results is divisible by 

three and x’s indicating when the result is not divisible by three. However, in her interview 

Lucy stated that “[her] mind went immediately to proofs” after reading the task and she saw 

her examples not as proof but demonstrating “a pattern that can be seen at least with the 

numbers extending up to 12.” For Lucy a definition and general representation may have 

drastically changed the argument she produced.  

Finally, the number of tasks returned by each class was not equally distributed across 

the task versions. This suggests that students chose not to participate depending on the task 

they received. Most classes included a variation of one or two tasks, but three of the fifteen 

classes had variations of three to four, which is with the small number of student participants 

resulted in the number of task version C collected being a fifth the size of the number of tasks 

of version B. On average more tasks of version B were returned than Task A and Task C. 

Perhaps if all students had returned their tasks, the proportion of arguments that included a 

general representation and viable conceptual insight for Tasks A and C would be lower. 

5.4.2 Prove versus Explain a Pattern 

 The prompt “prove” has specific meaning within the mathematical community and it 

is unclear if the participants attribute the same meaning. During the interviews, two of the 

participants, Jess and Audrey, developed empirical proofs that did not attend to the structure 

of the domain. However, they both began to attend to the structure of the domain when asked 

to explain a pattern they had discovered. Both students identified that the result of dividing 

sums of three consecutive natural numbers by three is the middle addend of the sum. In their 

written arguments neither student referenced the structure of the domain. Audrey’s written 

argument used the pattern to justify the truth of the claim and Jess’s argument included a 

conforming example and no conceptual insight.  
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 In the interviews, when asked to explain why there is a pattern, both students began to 

consider the structure of the domain. When asked Audrey responded, 

 

I think it's only with the sum when the three numbers are consecutive and it's divisible 

by three… I think that's the case because when you find the average of a set of 

numbers, you add all the numbers up and then you divide by the number of numbers. 

So, this I think would also work if. Actually, I don't. I don't want to say that because I 

haven't done the work for it. I was going to say it's possible that it could work for 

another set of consecutive numbers that's a different amount of consecutive numbers.  

 

In her responses she identified that dividing the sum by three is finding the average. She 

initially states this will only work for sums of three consecutive natural numbers but then she 

wonders if it is possible for other “sets of consecutive numbers.” When Audrey described 

another set of consecutive numbers being "a different amount of consecutive," she may have 

been attending to the structure that each number was 1 apart from the previous number. She 

may have observed that when each number is a set amount apart from the previous number, 

the resulting sum is divisible by 3. With that interpretation, the question about a pattern 

resulted in Audrey noting that the sum divided by three is the same as finding the average 

because the number of addends is three, the divisor is three, and the first and third addends 

are spaced an equal amount form the second addend. These structures could be leveraged 

into a viable argument in the future. 

 Jess gave the following response when asked about the pattern she found. 

 

Uh, not really. Not like a big math whiz, but um, yeah, I. Yeah, I'm sure it has to do 

with the fact that there are three consecutive numbers, and…so maybe this, like the 

second one coming up, has something to do with that, but like because they're all so 

close together.  
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In considering the pattern, Jess notes that there is something about the conditions “three 

numbers” and “consecutive” that cause the pattern and that the numbers are “all so close 

together." These observations are not explicit references to the structure of the domain and 

would perhaps take more support to become a viable argument, but nevertheless Jess 

originally did not attend to structure and after discussing her pattern she began to consider 

the structure of the domain. 

 These two interviews suggest that the prompt “why is there a pattern?” prompted 

different mathematical activity than the prompt “prove.” When asked to explain a pattern, 

both students attended to the structure of the domain when they had not previously done so.  

5.4.3 Unpacking the Conceptual Register  

The code conceptual register in application was very broad. The code was described 

as follows: The domain is described as an abstract class. Properties (correct or incorrect) are 

attributed to that set as a class (see Table 3). In application this code arose almost any time a 

student wrote a sentence to explain their thinking. It captured descriptions of the domain that 

include a wide range of properties. In Table 34, I include some categories that arose when I 

went back and examined the conceptual register code.  

The first category is when the structure identified to the sums of three consecutive 

natural numbers stems directly from consecutiveness and summing three numbers. Of the 68 

arguments that used the conceptual register, 32 fell into this category (47%).  

The next category is when the properties stem from consecutiveness and summing 

three numbers but there is some intermediate transformation or result applied that is not 

described. Of the 68 arguments using the conceptual register, 7 (10%) fell into this category. 

This, for example, came up in Freya’s interview. Freya justified the truth of the claim by 

stating “…when adding three consecutive numbers the first number and the third number 

sum will be double the middle number.” Originally when I read this, I assumed she had 

observed a pattern in her examples. However, in the interview she very clearly explained 

how the sum is three copies of the middle number and connected consecutiveness to the 

transformation that redistributes the original sum of any three consecutive natural numbers 

into the sum of three copies of the middle number. With her further clarification in the 

interview, the structure described in the written argument appears to not be an observed 
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pattern. Rather, they are a consequence of the redistribution she was preforming but had not 

explicitly stated.  

The observed structure does seem to be a relevant category for conceptual register. It 

arose when students stated the claim was true and then cited a property of the results of 

actions on the domain. For example, Audrey attributed the property that “… the quotient for 

each division problem is the 2nd natural number within the 3 consecutive numbers.” In her 

interview Audrey called this property a pattern. She observed the pattern after completing 

several examples and noting that when sums of three consecutive numbers are divided by 

three, the result is the middle number of the sum. This is a structure of the domain that 

already assumes the conclusion as in the quotient (the sum divided by 3) is the 2nd number, 

which is by definition a natural number, meaning this structure already assumes that the sum 

is divisible by three. Of the 68 arguments coded as using the conceptual register, 6 

characterized the domain as having the structure that the sum divided by three is the middle 

number. 

 Non-pertinent structures were used 20 times to describe the domain. This category 

was made of instances of the domain being characterized by either the number of addends in 

the sum, odd and even structure and/or explicit restatements of the conditions of the claim. 

These structures are not unique to the objects in the domain and end up characterizing a 

much larger superset of the domain. Finally, there were three instances where the structure 

was unclear. 

  



106 
 

Types of Structure Example Excerpts Number of 
Occurrences 

Percent of 
total 

Conceptual 
Register 
Codes 

(1) Structure of 
consecutiveness 
and sums of three 
numbers is 
described  

“The sum of any three consecutive 
natural numbers is divisible by three 
because one number will be a multiple 
of three (or zero), one will be a multiple 
of three (or zero) plus one, and one will 
be a multiple of three (or zero) plus 
two.” 
 
“Each consecutive natural number 
sequence adds 3 to the previous 
consecutive natural number sequence. 
Every sequence of 3 consecutive 
numbers increases by 3 total when each 
individual number is increased by 1.” 

32 47% 

(2) Structure is 
related to 
consecutiveness 
and sums of three 
numbers  

“…each consecutive number increases 
the total by 3, making it divisible by 3.” 
 
“The average of the three consecutive 
natural numbers will always be the 
middle, or the second natural number.” 
 
“…when adding three consecutive 
numbers the first number and the third 
number sum will be double the middle 
number.” 

7 10% 

(3) Structure is an 
observed pattern in 
the result 

“… the quotient for each division 
problem is the 2nd natural number within 
the 3 consecutive numbers.” 
 
“The sum of any three consecutive 
natural numbers is divisible by three 
because of the middle number. Adding 
the first number and the middle number 
gives us a number divisible by 3. Then 
the final number keeps it like that.” 

6 9% 

Table 34: Variation in conceptual register 
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Table 34 Continued 
(4) Structure 
applies to a much 
larger superset of 
the domain 

“The sum of any 3 consecutive natural 
numbers is divisible by 3 because there 
are 3 numbers to begin with.” 
 
“…because they are consecutive and 
there’s three numbers…” 
 
“…because adding a number 3 times is 
the same as multiplying it by 3.” 

20 29% 

(5) Structure is 
unclear 

“… because from the first number to the 
third number, they are 3 apart.” 
 
“…because in the multiplies of 3 there is 
every number.” 
 
 

3 4% 

 

The original purpose of the code for conceptual register was to indicate whether the 

participant was using words to describe the domain in general. In practice, when interpreting 

student language use it is less clear whether students are intending to describe a class of 

objects using shared properties or using language that is general to observe structures that 

they see in their explorations. This nuance of whether the structure described is viewed by 

the participant as existing in the domain or as a byproduct of actions taken on the domain can 

help distinguish whether the student is intending the describe the domain using shared 

structure or is observing structure in their empirical data. Using this lens property, Types (1) 

and (2) lead to general characterizations of the domain. Type (3) instances of the conceptual 

register are describing a set that is the domain with some action taken on it. The structure is 

no longer inherent to the domain but rather the domain after undergoing some action. Type 

(4) characterizes a large superset of the domain. Two supersets that were characterized 

include the set of all sums of numbers of the forms 𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 +  𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 +

 𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 and the set of all sums of three numbers. These sets have too little in common 

with the domain to be productive for demonstrating the truth of the claim.  

What can be seen in the data is that the participants who were given tasks with 

definitions used the structure of “consecutiveness” and “sums of three numbers” or structures 

related to consecutiveness and sums of three numbers more often in their arguments. For 
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Task A approximately 48% (10 out of the 21), of the instances use of the conceptual register 

was type 1 of type 2 where the structure of consecutiveness is explicit. For comparison, for 

task B approximately 54% (15 of 28) and for Task C approximately 74% (14 of 19) of the 

responses in the conceptual register included this level of detail to the structure of the 

domain. 

 

Task 
Version 

Type 5 
Structure 
is unclear 

Type 4 
Structure 
applies to 
a much 
larger 

superset of 
the domain 

Type 3 
Structure 

is an 
observed 
pattern in 
the result 

Type 2 
Structure 
is related 

to 
consecutiv
eness and 
sums of 

three 
numbers 

Type 1 
Structure 

of 
consecutiv
eness and 
sums of 

three 
numbers is 
described 

Total in 
Conceptua
l Register 

Task A 0 8 3 2 8 21 
Task B 1 9 3 3 12 28 
Task C 2 3 0 2 12 19 

Table 35: Types of descriptions in the conceptual register 

 

 
Figure 21: Types of descriptions in the conceptual register 
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5.4.4 Access to Representations  

Part of the hypothesis was the assumption that giving a definition at the top of the 

task would give the participant “access” to the definition. I had assumed that a significant 

portion of the students given a task with a definition would read the definition, interpret it as 

a general representation of the domain, and use the representation to see and operate with the 

structure of the domain. Since the proportion of responses that contained general 

representations and viable conceptual insights was similar across task versions, there is more 

to participants using and identifying structure in a representation than having the definition 

given to them.  

 The participants given definitions did leave their responses blank or include non-

examples less often compared to the participants who were given no definition. The percent 

of tasks that were blank or included non-examples was similar for the two version of the task 

that include definitions, with about 7% for Task B and 10% for Task C. This is lower than 

the number for Tasks A which was about 21%. This suggests that the definitions did support 

some students to correctly develop examples of objects in the domain. 

Of the 48 participants that were given a symbolic definition only 7 used it to write the 

sum of three consecutive numbers algebraically and only 4 of these 7 simplified the 

expression to show that the sum is divisible by three. This means of the 48 students who were 

given the symbolic definition only 4 used it to develop an algebraic argument for the claim.  

 Examining responses to Task C suggests that for a student to use a representation as a 

technical handle representing the domain they must 1) see the representation as general, 2) 

identify structure of the domain within the representation that they can use to develop an 

argument, and 3) see the representation as useful in communicating the conceptual insight 

they have developed. To illustrate this, consider the following three responses to Task C. 

Figure 24 includes a structural algebraic representation of the domain that is set equal to 3k 

there is then an arrow drawn to the simplified equation 3n+3=3k followed by another arrow 

pointing to the equation n=k. The participant then wrote “This is false. Only certain groups of 

3 consecutive numbers can be divided by 3.” They also include 2 conforming examples. 

Instead of noticing 3n+3 is divisible by three, they simplified incorrectly, to n=k, which may 

have led them to determine that the claim is false except for when n is equal to k. This 
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participant was able to use the symbolic definition to develop a general algebraic 

representation of the domain however it seems that the general representation they created 

did not make the structure of sums of consecutive natural numbers visible to them. In other 

words, they manipulated the algebraic expression, but it was never a technical handle that 

they saw as expressing a structure belong to the domain that they could use to show the claim 

was true. 

 In Figure 22 the participant includes two sets of three consecutive natural numbers 

generated by inputting natural numbers into 𝑛𝑛, 𝑛𝑛 + 1,𝑛𝑛 + 2. The sets are then summed and 

the divisibility by three is confirmed. They then state that “this is true because three numbers 

that are the exact same and are added together will be divisible by 3 because there are 3 

groups of the same number. When doing 3 consecutive numbers you are just adding another 

group of 3.” This participant does not see the notation 𝑛𝑛,𝑛𝑛 + 1,𝑛𝑛 + 2 as operable. In their 

statement they identify the following structures as belonging to the domain: 1) “three 

numbers that are exactly the same” and 2) “another group of three.” It seems these structures 

that can be seen in the notation 𝑛𝑛,𝑛𝑛 + 1, 𝑛𝑛 + 2 did not become visible to the participant until 

they had used the notation to generate particular examples. It seems likely that for this 

participant, the symbolic definition eventually gave them access to the conceptual insight 

they used because this conceptual insight is far more visible when examining examples of the 

form 5, 5+1, 5+2 than when examining examples in the form 5, 6, 7. However, they did not 

see the symbolic definition as a technical handle that could represent the structure of the 

conceptual insight they discovered. 

 In Figure 23 the response includes examples that on the first line have the sum of 

three consecutive natural numbers. On the second line the sum is rewritten in the form of the 

symbolic definition. On the third line the sum is manipulated to show redistributing to form 

three copies of the middle number still shown with the same structure as the symbolic 

definition. Then on the final line the sum is simplified to be three copies of the middle 

number. The participant includes an explanation the uses the notation 𝑛𝑛,𝑛𝑛 + 1,𝑛𝑛 + 2 but 

never forms the algebraic expression 𝑛𝑛 + 𝑛𝑛 + 1 + 𝑛𝑛 + 2. Instead, they explain that 2 can be 

broken into 1+1 and so the 2 can be “distributed” to make any sum of the form 4 + 1, 4 +

1, 4 + 1. This participant also did not operate on the symbolic definition. They chose not to 
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show distributing the 2 by writing 𝑛𝑛 + 1,𝑛𝑛 + 1,𝑛𝑛 + 1. The symbolic definition seems to 

have given them access to the structure of consecutive to discover a conceptual insight. They 

did not, however, view the symbolic definition as a usable technical handle and instead chose 

to use the conceptual register and generic examples to form a general argument.  

 From this small subsample we see three examples of the symbolic definition being 

used but not being a technical handle for the student to communicate a conceptual insight. In 

one case the algebraic representation created using the definition does not seem to 

communicate general structure to the student. In the other two cases the definition seems to 

support the student to identify general structure and yet they seek other ways to communicate 

the structure and do not use the definition to develop a technical handle.  

 This shows that access to the definition in the form of having the definition presented 

at the top of the task is not sufficient. There are three related ingredients there are necessary: 

1) the student sees the representation as general, 2) the student identifies structure of the 

domain within the representation that they can use to develop an argument, and 3) the student 

sees the representation as useful in communicating the conceptual insight they have 

developed.  
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Figure 22: Response to Task C 



113 
 

 
Figure 23: Response to Task C 
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Figure 24: Response to Task C 
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Chapter 6: Discussion 

6.1 Motivation for the Study 

In 2019 I hypothesized that students would be more likely to develop arguments that 

were structural or procedural, as defined by Ahmadpour et al. (2019), if there was or was not, 

respectively, a general representation for the domain readily available to them. I observed 

Preston (pseudonym), a grade 8 student, think aloud as he developed arguments to two 

claims. The first claim was “all sums of three consecutive natural numbers are divisible by 

three.” What I observed was Preston spent most of the interview working to develop a 

general representation to represent all sums. An algebraic representation was not readily 

available to him, so he spent the interview working to invent a way to represent 

consecutiveness using dots along a diagonal. He drew three dots on a diagonal with arrows 

with +1 and -1 to indicate moving the highest dot on the diagonal down vertically to be in an 

alignment horizontally with the middle dot and moving the lowest dot up vertically to be in 

alignment with the other two dots. 

 It became apparent to me that for a student well versed with algebra who has the 

representation 𝑥𝑥 + 𝑥𝑥 + 1 + 𝑥𝑥 + 2 available to them, the process of developing a proof to this 

claim involves simplifying an algebraic expression and interpreting the simplified expression 

as a multiple of three. Once you have the algebraic expression it can be operated on and 

remain completely decontextualized. To write a proof that will be readily accepted, a student 

does not need to interpret the meaning of the representation along the way or keep track of 

any properties belonging to the original object. In many classes teachers would be satisfied to 

see the expression simplified to 3(𝑥𝑥 + 1) and a statement that says the claim is true. 

However, to a student without an algebraic expression, the task of developing this general 

argument involves much more. A student who instead must either develop their own general 

representation or use words to describe general properties has a much larger task. Without an 

algebraic definition, a student must develop a technical handle they can use to communicate 

the structure of the domain pertinent to the claim and discover a viable conceptual insight 

that uses that structure to connect the conditions to the conclusion of the claim.  

 I then became interested in how a student’s argument would be influenced by the 

student having access to a general representation. I was interested in 2 specific characteristics 
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of the argument: 1) the representations and 2) the conceptual insight. The representations 

interested me because I was curious whether access to a definition with a description or an 

algebraic representation would influence the generality of the student’s argument. Would 

students be more likely to represent or describe the domain in general if they were given a 

definition? I hypothesized that they would based off my interview with Preston and then a 

study by Weber et al. (2020). First, for Preston, finding a general representation that he 

confidently felt stood for all objects in the domain seemed to be the most challenging part of 

developing a general argument. Second, Weber et al. (2020) found that perceived cost, which 

includes cost in time, as well as perceived likelihood of finding a deductive proof were 

factors considered by students when deciding to develop a deductive proof or an empirical 

proof. Using this finding to contextualize what happened in my 2019 interview with Preston, 

I observed that while Preston did persevere to develop a deductive general argument, the 

brunt of his work was seeking a general representation, which he saw as pinnacle to his 

ability to develop the deductive argument. There was a high time cost for him to develop that 

argument because he did not have access to a general representation of the domain. This led 

me to hypothesize that students who do not have a readily available general representation 

may be more likely to develop empirical arguments. This hypothesis is situated within a 

growing body of research that is shifting away from judging students who produce empirical 

arguments as fundamentally believing that a few examples are sufficient to show the truth of 

a general claim. Instead, in recent years researchers have sought to consider the conditions 

that lead students to producing empirical versus deductive arguments. 

The conceptual insight used in the argument was also of interest to me because I 

hypothesized that the representation available to a student would influence the structures of 

objects in the domain that the student was attuned to. While all viable conceptual insights 

rely in some fashion on the structure of consecutiveness and that the objects are sums of three 

numbers, the way these structures show up in the conceptual insight seems to reveal how 

these structures are seen by the students. For example, one student may make the argument 

by noting that every sum of three consecutive natural numbers can be redistributed into the 

sum of three copies of the middle number. This transformation on all objects of the domain 

involves the student identifying that the first addend is one less than the middle addend and 

the last addend is one more. In contrast, if another student notes that the claim is true because 
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summing three consecutive natural numbers is the same as summing three copies of the first 

addend plus three, they are viewing consecutive as the first number, plus the first number 

plus one, plus the second number plus one which is equal to the first number plus two. I can 

imagine that if a student is given the symbolic definition 𝑛𝑛,𝑛𝑛 + 1,𝑛𝑛 + 2 for consecutive 

natural numbers they may be more likely to develop an argument noting that the sum is three 

copies of the first number plus 3. It is less intuitive perhaps for a student with this definition 

to redistribute to three copies of 𝑛𝑛 + 1.  

 

Conceptual 
Insight 

Structure of the Domain attended to 

Redistribution First number is one less than the middle number and the third 
number is one greater than the middle number. 

Symbolic 
Manipulation 

No explicit structure of domain needed once algebraic expression 
is generated. 

Three copies plus 
three 

Second number is one greater than the first number and the third 
number is 2 greater than the first number. 

Recursive 0 + 1 + 2 = 3 which is divisible by three. Every sum of three 
consecutive numbers is of the form (0 + 𝑛𝑛) + (1 + 𝑛𝑛) + (2 + 𝑛𝑛) 
for some natural number 𝑛𝑛. 

Summing 
remainders 

One number in every set of three consecutive natural numbers is 
divisible by three. The remainders of the two remaining numbers 
divided by three will be 1 and 2 respectively. 

One number 
divisible by three 
other two sum to 
number divisible 
by three 

One number in every set of three consecutive natural numbers is 
divisible by three.  

Average The number of addends is equal to the number that is being used to 
divide.  

Even and odd Every sum of three consecutive natural numbers will be of the 
form 𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 +  𝑟𝑟𝑟𝑟𝑟𝑟 or 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 +  𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛. 

Groups of three There are three addends, and the divisor is three. 
Division mix-up Unclear. 
Observed property The result of dividing the sum of three consecutive numbers by 

three is the middle addend of the sum. 
OR 
The first and last number sum to twice the middle number. 

Empiricism No general structure. 
Table 36: Descriptions of the structure behind each conceptual insight. 

Table 36: Description of the structure behind each conceptual insight.  
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 The work of Ahmadpour et al. (2019) and their model for how students read proof 

also sits in the foreground of this work, as in extending their model to how students develop 

or write proof lies the question: Do procedural proofs as defined by Ahmadpour et al. occur 

when students are writing proofs? There are two key distinctions between procedural and 

structural proofs. The first distinction lies in the representation, i.e., does it stand for all? Or 

is it a placeholder for any? The second is whether there is evidence that the student has 

abstracted the structure of the domain. Ahmadpour et al. used abstract structure as evidence 

for the representation standing for all objects in the domain. They classified students as 

having abstract structure when they connected the algebraic representation to the structure of 

the domain. However, it is unclear when the model is extended to students developing 

arguments if using representations as placeholders and abstraction are mutually exclusive. 

So, I was interested in the interviews in understanding how students intend their 

representations. I looked for whether they saw their representation as standing for a class of 

objects, a placeholder, or an example.  

In the following sections I discuss how my findings situate within existing literature 

and inform future research. First, I will discuss how my findings suggest another factor, 

student generalization about the domain, as contributing to student proof construction. Next, 

I will discuss how the consideration of how students intended their arguments underscored 

the distinction between student generalization of observed results and generalizations of 

procedures. In particular, how this distinction ties to research on transitioning from informal 

argument activity to viable arguments. Thirdly, I will discuss how an exploration of the role 

of examples and algebraic representations supported a need to focus instead on the structure 

students are attending to. I will conclude this chapter by discussing limitations and avenues 

for future research. 

6.2 Definitions Without Generalization 

My finding suggest that the inclusion of definitions does not have a high impact on 

student development of empirical arguments with the population of prospective elementary 

school teachers and the mathematical content of basic number theory. This builds on the 

work by Weber et al. (2020) by indicating that presence of definitions does not significantly 

influence the factors they identified: students’ perceived cost and their perceived likelihood 
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of success in developing a deductive proof. There are other factors at play that determine 

whether the student utilizes the definition and the register it is presented in to construct an 

argument. 

 One of these factors may be whether students have generalized about the domain. 

Ellis (2007) adapts Kaput’s (1999) definition to define generalization as “one of three 

activities: 1) identifying commonality across cases, 2) extending one’s reasoning beyond the 

range in which it originated, or 3) deriving broader results from particular cases” (p. 197). 

Utilizing the symbolic definition involves a conversion from the conceptual register in which 

the claim is presented to the symbolic register. Duval (2006) identified that performing 

conversions is a challenging activity for students. Key to student success in converting from 

one register to another is identifying the common structure of the mathematical objects that 

stays consistent across the differing forms the object takes in different registers (Duval, 

2006). This description of what conversion entails aligns directly with the first of the three 

generalization activities described by Ellis (2007). This indicates that identifying structure of 

the domain within an algebraic representation, viewing an algebraic representation as 

general, and having performed a generalization about the domain of the claim are one and the 

same.  

Generalizing about the domain of the claim is a prerequisite to developing a general 

direct proof for a claim with an infinite domain that is not given enough attention. Existing 

research on generalization may provide insight into how to support student proof 

construction. For example, upon examining actions in a seventh-grade classroom, Ellis 

(2011) found encouraging students to justify and clarify promoted students to generalization. 

She defined these actions to include asking students to “clarify a generalization, describe its 

origins, or explain why it makes sense” (p. 316). This aligns with the findings from my 

qualitative study where I found asking students to explain patterns they had discovered 

supported them to identify structure of the domain, i.e., generalize about the domain, when 

they had not previously attended to shared structure of the domain. In fact, in the interviews 

students who developed general arguments with viable conceptual insights had one of two 

experiences: the student had already generalized about the domain, or they strategically used 
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examples to identify the pertinent structure belonging to the domain that allowed them to 

generalize and develop their argument. 

If the mechanism for converting from the conceptual register to the symbolic register 

is as Duval (2006) suggests, then generalization is a key mechanism in the choice to adopt an 

algebraic representation from an available definition as a technical handle. Sandefur et al. 

(2013) and Raman (2003) found that the discovery of a conceptual insight and technical 

handle does not occur in a particular order and that a student can discover one without 

finding the other. In my study there were arguments collected where students used the 

algebraic representation to generate examples and ultimately identify a conceptual insight but 

chose not to utilize the algebraic representation as a technical handle. They instead used 

examples that followed the form of the algebraic representation (ex. 4 + (4 + 1) + (4 + 2)) 

to develop generic examples. These students did not volunteer to be interviewed so I can only 

hypothesize their approach to developing their arguments. Their written argument indicates 

that the algebraic representation likely is serving as a placeholder representation standing for 

a procedure that can be used to generate objects in the domain. Thus, they utilized the 

algebraic representation to generate examples and were able to discover a conceptual insight. 

However, the structure was not identified in the algebraic representation itself, or if it was the 

representation was not viewed as a means to communicate the conceptual insight. 

A student utilizing an algebraic representation to represent the domain of a claim as a 

class of mathematical objects necessitates that they have generalized. This means that a 

student’s ability to construct a proof and intend it as general is dependent on the 

mathematical content of the claim and whether the student has generalized the domain or is 

able to do so in the time given to develop a proof. When Ellis (2007) explored the 

relationship between justification and generalization, she found that when students explained 

their generalizations, they developed increasingly deductive justifications. She recommended 

proof writing be used as a tool to support students in generalizing more effectively. Proof 

writing with opportunities for feedback and revisions would allow for students to develop 

increasingly deductive justifications, allowing for students to attend to the pertinent structure 

of the domain by performing generalizations.  
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6.2 Examining the Arguments as Intended 

One of the common concerns that has arisen for previous researchers studying student 

proof construction is whether these assumptions align with the student’s intentions for the 

description or representation of the domain (Ahmadpour et al., 2019; Pedemonte, 2007, 

2008; Yopp & Ely, 2016). To evaluate the generality and viability of a student argument a 

reader makes assumptions based on the context of the proof and the reader’s own ability to 

see the generality in the student argument (Yopp & Ely, 2016). In my quantitative study, to 

examine the influence of the inclusion of definitions, it was necessary for me to make 

assumptions as to whether students were intending their descriptions, examples, and 

algebraic representations of the domain to be general. The interviews completed for this 

study served two purposes: 1) explore whether students are intending the descriptions, 

examples, and algebraic representations they develop and use as general or not and 2) see 

whether the interpretations of algebraic representations that define the states in the model for 

how students read proof are present when students construct proof. 

Through examining how students intended their arguments I found that: 1) the roles 

of examples and algebraic representation aligned with the states of student understanding 

while reading proof detailed by Ahmadpour et al. (2019), 2) the structure of the domain 

students attend to influences their ability to transition to a viable argument, and 3) whether 

students were generalizing a pattern in the results or a pattern in the process was critical to 

whether the student developed an argument that described a general procedure or used 

structure.  

6.2.1 The Role of Examples and Algebraic Representations  

From the model by Ahmadpour et al. (2019) I developed three classifications to 

describe the role of examples and algebraic representations within student argument—

empirical, placeholder, and class. I hypothesized these classifications based on the states of 

understanding found by Ahmadpour et al. (2019). Each state of understanding was 

characterized by how the student was interpreting the algebraic representation. Within the 

model of how students understand proof while reading was the procedural pathway where 

representations are used as recipes to check individual cases but not as representative of all 

objects of that class. This became my working definition of a placeholder representation. In 
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the interviews, students did use their representations in this manner falling into two 

subcategories: one in which the students simultaneously described the representation as 

standing for all, and the other where the student did not attend to structure of the domain 

belonging to all.  

I found that students who intended the algebraic representation as a class 

representation described it in a manner that aligned with the placeholder representation when 

asked how they knew the representation stood for all objects in the domain. Here they viewed 

the algebraic representation as standing for “any” object in the domain or x as standing for 

any natural number to create a representation for any object from the domain. This language 

of the variable representing “any” is also common within formal proofs in the mathematical 

community. The other instances were when students used examples to communicate a 

procedure. Examples were used to explain what Ahmadpour et al. (2019) referred to as 

general procedures. In these cases, the examples were used to communicate a procedure that 

they student believed could be applied to any object from the domain to show the truth of the 

claim. These instances did not include justifications that connected to the structure of the 

domain. The steps of the procedure were described in a manner that made them specific to 

each individual example.  

6.2.2 Transitioning to Viable Arguments 

Research studying the transition from informal argumentation activity to viable 

argument have found two primary factors at play: 1) the viability of the operators 

(Pedemonte, 2005) and 2) the type of generalizations (Harel, 2001; Pedemonte, 2005). The 

interviews with Nessa and Freya demonstrated how the structure of the domain the student is 

attending to is another factor to consider that is related to these existing factors. While Freya 

and Nessa both originally described general procedures without any justification, the 

conceptual insights they were using relied on different structures of the domain and 

ultimately Freya developed a viable argument while Nessa did not.  

To transition to a viable argument Freya needed to only identify the structure of the 

domain that the first addend is one less than the middle and the third is one greater than the 

middle and connect that structure to the “leveling” procedure she had described.  When asked 

to explain her general procedure she was able to use the structure to justify why the 
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procedure applies to all objects in the domain to transition to a viable argument. In her 

interview it becomes apparent that the two factors identified by Balacheff and Pedemonte are 

present in her argument. Her operator, the “leveling” process, is viable and she is 

generalizing the process of a pattern. In her explorations of the examples, Freya identified the 

structure of the domain by generalizing the about the process of the pattern she noticed and 

the operators available to her are determined by the structure she sees belonging to the 

domain. The structure Freya identified as belonging to the domain influenced how she was 

able to transition to a viable argument. 

In contrast, the conceptual insight used by Nessa requires attending to the remainders 

of the individual addends when divided by three. Nessa likely observed that every sum of 

three consecutive natural numbers has an addend divisible by three and was able to justify 

that observation however she was unable to justify why the sum of the other two addends 

was also divisible by three because she was not attending to the remainders of all the 

addends. The operator Nessa used in her original argument to justify the second part of her 

argument was dependent on a generalization she had made about the result of a pattern and 

the operator utilized was not viable. The structure she needed to complete her argument 

involves examining the remainders of those addends when divided by three and this structure 

was not available to her.  

This is important because some conceptual insights require more operators and 

operators that may not be familiar to the student. Perhaps if Nessa had returned to the domain 

and looked for different structures of the domain, she would have been able to identify 

another structure that allowed for her to construct a viable argument using a different 

conceptual insight. The structure available to a student dictates the conceptual insights they 

can form and thus influences their ability to construct viable arguments.  

6.2.3 Generalization of a Result Versus Generalization of the Domain 

 When examining how students intend their arguments, in particular, are they 

describing or representing the domain in general, I found identifying some forms of 

empiricism were easier than others. Empiricism is defined as a student using a finite subset of 

examples to justify the truth of a general claim for a larger set. In classic examples, students 

say things like “the claim is true because it worked for these three examples.”  However, 
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there is a form of empiricism that is tricker to identify. This is when students are using 

observations from their examples to justify the claim. For example, “the claim is true because 

when you divide the sum by three the answer is the middle number.” In the interviews it 

became apparent that students who made this statement were observing a pattern, finding the 

existence of a pattern convincing, and justifying the truth of the claim by describing the 

existence of a pattern that they believe will extend to the whole domain. These students 

described the domain as sharing a property using the conceptual register without having 

generalized about the domain. However, it is also very conceivable that a student could make 

this argument and see the underlying structure and just not see that structure or 

transformation as a necessary part of their proof. The student is either generalizing about the 

objects in the domain or they are generalizing the result of a pattern. 

The challenge of determining whether the student is generalizing an observed pattern 

or generalizing about the objects in the domain aligns with Pedemonte’s (2007, 2008) 

findings. The interviews were crucial to making these decisions. When I examined student 

use of conceptual insight within the written arguments collected for the quantitative study 

five categories arose: 1) the structure is of the domain 2) the structure is of the domain after 

treatment, 3) the structure is in the result of treatment 4) the structure belongs to a much 

larger superset of the domain, and 5) the structure is unclear. In the case where the structure 

described is not directly describing the structure of the domain, it is unclear if the student has 

performed a treatment on the domain or is making an empirical observation from their 

exploration of examples. Here researchers must make an assumption about the student’s 

understanding and intentions, and as proof is dependent on the context of the specific 

community those assumptions may not be appropriate for data sets that include arguments 

from different classrooms, universities, states. To address this in the future I suggest 

attending to the structure that students describe rather than seeking to make assumptions 

about student’s intentions. I found it my interviews that when the structure was of the domain 

but after undergoing a treatment the student had still generalized about the domain. However, 

when the structure was in the result of the treatment the student was describing a pattern they 

observed in their empirical observations. By examining the structure that students describe or 

represent researchers can consider the conceptual insights that a student may have access too 

as well as the generalizations about the domain the student has made.  
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6.3 Constructing Structure 

Primary and secondary mathematics educators are encouraged to support their 

students to “look for and make use of structure” (National Governors Association Center for 

Best Practices, 2010). My findings suggest that structure is not seen but rather constructed 

and the mechanism that supports the construction of structure is the generalizations made by 

students about the set of mathematical objects.  This is evident in the student arguments in 

response to Task C. Several students given the algebraic definition did not adopt the notation 

to form a technical handle as I had anticipated. Instead, they used the notation to generate 

examples. Through the process of generating examples in the domain of the claim and 

confirming the claim for those examples, they found a conceptual insight. Then developed a 

generic example to communicate the conceptual insight instead of using the algebraic 

notation.   

A possible explanation for how these students used the algebraic notation to develop 

examples but not to develop their argument is that they did not “see” the structure of the 

domain within the algebraic notation, 𝑛𝑛,𝑛𝑛 + 1,𝑛𝑛 + 2, making them not adopt the 

representation as technical handle to stand for all sums of three consecutive natural numbers. 

The students first saw the structure after generating examples and generalizing about the 

domain. The students process of developing an argument aligns with constructivist theory of 

learning wherein a student actively constructs knowledge by through a process of acting and 

reflecting (Mascolo & Fischer, 2005). The structure of the domain was constructed by the 

students as they acted on objects from the domain, observed outcomes, and generalized their 

understanding to the whole domain. 

The structure of the domain available to the student determines the conceptual 

insights they can imagine and thus the possible paths available to develop a viable argument. 

To successfully develop a viable general direct argument, students, need to identify pertinent 

structure of the domain and depict or describe how that structure guarantees the conclusion 

holds for all objects in the domain. Seeing the structure of the domain implies a familiarity 

with the domain that students won’t have unless they have constructed the structure of the 

domain previously or are in a position where they can construct that structure as part of their 

exploration of the claim. 
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6.4 Limitations 

 The results of this study are subject to some possible limitations. First, the sample 

size was not sufficient to determine with confidence that the variation in means, for both 

dependent variables, was not statistically significant. Second, the context of the study 

includes the mathematical content of the prompt used. While these findings might extend to 

proving situations outside of context of the specific claim used, this might not be the case. 

Third, the participants might not be representative of the general student population. These 

students may share specific mathematical experiences that have shaped the way they respond 

to proving tasks. An example of this is the conceptual insight “groups of three.” As part of 

the curriculum for math courses for elementary school teachers, students learn the definitions 

of multiplication and division. Their instruction may have primed students to be looking for 

groups of three after reading the conclusion of the claim, “divisible by three.” Furthermore, 

all students interviewed volunteered. This resulted in interviewing only one student who 

responded to Task C, and three students who responded to Task B. This limited the 

opportunities to understand the role of the representations for students who were given 

definitions.   

6.5 Avenues for Future Research 

 The results of this study provoked questions about the structures of the mathematical 

objects students perceive when given a definition. Using the framework by Sandefur et al. 

(2013), a successful proof development entails discovering a technical handle and a 

conceptual insight that are aligned. The role of the technical handle is to allow access to the 

structure of the domain that is pertinent to the conceptual insight. From the data it appeared 

that some students did see structure in the symbolic definition but rejected the notation as a 

viable technical handle. On the other hand, other students saw the notation as something that 

could be manipulated but did not see structure to form a conceptual insight. This leads me to 

wonder what mechanisms allow students to see structure in the definitions they are given, 

and what mechanisms allow students to view a representation in a definition as a candidate 

for representing an infinite domain.  

 In my tasks, I gave students definitions for consecutive and divisibility by three. I 

wonder how results would be affected if instead, the students were given general 
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representations of sums of three consecutive natural numbers. For instance, the statement “all 

sums of three consecutive natural numbers can be represented by 𝑛𝑛 + (𝑛𝑛 + 1) + (𝑛𝑛 + 2) 

where n is a natural number.” Or a statement with “all sums of three consecutive natural 

numbers can be represented by…” and then include an informal representation. In my current 

study participating students who used the definition they were given had to coordinate the 

definition with the definition of sum to develop a representation of the domain. The results of 

this study suggest that students did not coordinate the given definition of consecutive into a 

technical handle they could use to access the structure of the domain. If they were given a 

general representation of the domain, would more students have used the representation? 

And if they used it, would they have used it to develop a “formulaic proof,” a “procedural 

proof,” or a “formulated proof”? 

 Additional studies are needed to better understand how definitions and 

representations influence the construction of general direct arguments. The findings of this 

study are particular to the context of prospective elementary school teachers and the 

mathematical content of basic number theory. Zaslavsky and Shir (2005) explored the roles 

and features that students ascribe to definitions. In my study I found that students did not 

convert from the conceptual register to the symbolic register to use the algebraic 

representation of the domain. I have hypothesized how generalization of the domain may be 

a factor influencing their choice to not adopt the given representation to develop a technical 

handle. It is also possible that student conceptions of mathematical definitions are also at 

play as students are making these decisions.  
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Appendix B: Task B 
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Appendix C: Task C 
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Appendix D: Interview Protocol 
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Appendix E: Initial Codes and Themes from Inductive Thematic Analysis 
Themes and 
Codes Participants Number of 

Excerpts  Example Excerpt 

Examples as 
evidence 8 43 

 

example 

Marge, 
Lucy, 
Kendra, 
Nessa 7 

So I just did 7, 8, 9 because those are three 
consecutive numbers and seven, eight and 
nine add up to an answer of 24 and then I 
divided 24 by three to get eight, so it divided 
evenly by three with no remainders, no like 
fractions or decimals or anything, just 8 

selected 
examples 

Audrey, 
Jess 3 

I chose 3, 4 and 5 as one example, and then I 
chose 10, 11 and 12 as a different example 
just to show that single digit versus multi 
digit numbers would both work.  

random 
example Jess 1 I picked three random numbers 

examples show 
claim is true Jess 1 

I guess like technically not my work shows 
that, but Umm, I did like a few other sets of 
three because I was like I kind of noticed 
that like oh this is kind of cool. Like I can't 
like this one was divisible by three. And so I 
kind of did a few like in my head afterwards 
and I've been like, I don't know, I thought 
about it for a while afterwards. And realize 
that that's, from the ones that I've tested, it's 
pretty accurate 

more examples 
needed 

Marge, 
Kendra 2 

I think that if I wanted to show that it 
worked for all, I would probably do bigger 
numbers too, numbers that had like the ones 
and the tens place, ones, tens hundreds 
place, ones in the thousands. But there's a lot 
of numbers out there  

more examples 
to confirm Lucy 1 

I wasn't sure if it was just going to be true 
with one set of numbers, so I tried to do a 
few to make sure.  
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example to 
demonstrate 
procedure Nessa 1 

So I just find three like random three 
consecutive members. And use the way that 
I saw like first I found the number that is, 
cause three consecutive is for sure we'll have 
at least one, that like we'll be able to divide 
it by three directly. Feel like I see a bigger 
number like 102, 103 and 104. So for this 
one 102, 102 is going to be able to directly 
divide it by three and so. So for 101 no, 101 
+ 103 equals 204 which is also going to be 
able to divide it by three 

example to 
demonstrate 
algebra Cleo 1 

I mean they put seven in the example. 
Obviously that works with literally any 
number  

Algebraic 
Representation 3 13 

 

algebra mode 
Cleo, 
Winston 2 

because it specifically gave it the it as n + 1 
and +2 up there. I was already kind of in like 
algebra mode  

algebra as a 
procedure Winston 1 

it's just a practice in algebra, you know. 
What is this way to simplify what they're 
saying, you know? 

algebra 
representing 
any object in 
the domain Winston 1 

[n+(n+1)+(n+2) is] any three consecutive 
numbers starting with n  

algebra 
representing 
only objects in 
the domain 

Cleo, 
Winston 2 

[n+(n+1)+(n+2) cannot be anything other 
than 3 consecutive numbers] because no 
matter what, you substitute the, the problem 
with that is that it there's no other way to 
interpret it specifically because of the 
parenthesis. It might have been different if I 
hadn't parenthesized it, but the fact that each 
parenthesis is there indicates that. It itself is 
that n + 1 is an entire unit number 

description of 
algebra 

Cleo, Nessa 
Winston 4 

if you're always using X and then as the 
same number, then you have X, X + 1 is 
going to be the next number, and x + 2 will 
be the number following that one 
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variable 
represents any  Cleo 2 

Hopefully [my work shows that all sums of 
three consecutive natural numbers are 
divisible by three], uh, as I did use a variable 
which you can plug any number in to and 
still get the same result that it's divisible by 
three  

leveraging 
structure from 
algebra Cleo 1 

Obviously, it was just like, well, if you have 
three numbers that the difference between 
the top number and the middle number and 
the bottom number altogether is 3, obviously 
you're gonna be able to divide that number 
by three 

Patterns as a 
tool for 
generalization 5 25 

 
describing 
pattern leads to 
identifying 
general 
structure  

Audrey, 
Jess 3 

I think it would because the same pattern 
applies, that the numbers are all consecutive 
and so when you divide by three you're 
finding the average always ends up being 
that middle number for median 

justifying 
pattern using 
average and 
median 

Audrey, 
Freya 2 

I guess, um, well, for both of my equations 
that was the case, but I think it's because it's 
the average of the three numbers. So when 
you take the average of the sum, you're 
always going to get the mean or the middle 
number, the median I guess. So I think that's 
why the pattern is consistent the whole way 
through 

generalizing to 
all after 
identifying 
pattern for few Audrey 1 

I think that it's a pattern within numbers 
that's consistent throughout the numbers. So 
that's kind of where I made that educated 
assumption, I guess is what I would call it 

pattern or 
general 
procedure Nessa 1 

So the work that I give here is first I find the 
like the number who can directly be like 
divided by three like 3, 9, 21 here. So like 3 
divided by 3, 9 divided by 3, 21 divided by 3 
and 1 + 2 = 3 and here is 7 + 8 = 15 and 22 + 
23 = 45 which is also to be able to divide it 
by three so. Yeah, that's just how I thought.  
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discovered 
pattern 

Audrey, 
Jess 2 

Realized that, like the second number will 
always be the answer after it's divided by 
three, so I just kind of made a little note of 
that, but yeah, I don't know  

looking for 
patterns Freya 1 

I like to kind of think about things in terms 
of patterns  

result is a 
pattern Lucy 1 

it doesn't show that all numbers are, no, but 
it does prove that it is a pattern that can be 
seen at least with numbers extending up to 
12 

Shifting 
representation 
or procedure  3 7 

 

generic 
example Freya 1 

They're obviously all going to be like 9, 10 
and 11 or one after the other, and so you can 
always take the top one which is 2 away 
from the bottom one. And take that extra one 
and put it over to 9 so they're all equal 

new general 
objectification 
of domain Audrey 1 

I guess, um, well, for both of my equations 
that was the case, but I think it's because it's 
the average of the three numbers. So when 
you take the average of the sum, you're 
always going to get the mean or the middle 
number, the median I guess. So I think that's 
why the pattern is consistent the whole way 
through 

new general 
procedure Freya 1 

I realized that when you would add three 
consecutive numbers, you could take the 
number, the larger numbers, like in 5, 6 or 7, 
you can take seven and you can move one of 
the numbers from 7 to the 5 to make them all 
equal. And then that would kind of, which is 
why we need to divide by three you're gonna 
always get the middle number. 
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new 
representation 
not connected 
to original 
structure Nessa 1 

Like I use like n is the first number and the 
second is n + 1 and then it's n + 2. So those 
three that are like consecutive and if I just 
add them together and plus n + 1 + n + 2. So 
it's 3n+3. And as we know that like any 
number which can like after multiply, not 
multiply, like adding up if they are like able 
to divide it by three, then that number is 
going to be able to divide it by three. So like 
3n+3 no matter what n is, it will be able to 
divide it by three 

conflict 
between new 
and old 
representation Nessa 1 

Wait hold up. So for 21, 22, 23 is actually 
different 

pattern 
restricted to 
domain Audrey 1 

I think it's only with the sum when the three 
numbers are consecutive and it's divisible by 
three 

Procedure can 
be applied to a 
bigger domain  

Freya 1 

I do think it's possible [to do a leveling thing 
with other sums that aren’t consecutive 
natural numbers], but they would have to be 
like separated the same amount. So if you 
did like it would have to be like 1, 3 and 5 I 
think  

What it takes 
to prove 3 3 

 

proof needed to 
show for all Marge 1 

I feel like you would have to probably come 
up with some sort of proof whether that be… 
And I don't know if maybe that would be 
like the last number in the equation like 
knowing that the numbers in the ones unit 
add up together and divide by three. But I 
don't know what it would be. I feel like you 
have to come up with some sort of proof to 
prove that any three numbers can do it 

proof needed to 
show for all Lucy 1 

My mind immediately went to like proofs 
and stuff, so I just did like a few examples. 

showing all is 
not possible Audrey 1 

So, the hard thing with that is it would be 
impossible to show every single example of 
that because there's infinitely natural 
numbers 
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Appendix F: Initial Codes and Themes from Theoretical Thematic 

Analysis 

Initial Code Participant 
Task 
Version 

Number 
of 
Excerpts Excerpt 

class 
representation 

Winston, 
Cleo, 
Nessa A,C 5 

you have X, X + 1 is going to be 
the next number, and x + 2 will be 
the number following that one 

Type 1 
placeholder Winston C 1 

That's any three consecutive 
numbers starting with n [referring 
to n+(n+1)+(n+2)] 

Type 2 
placeholder 
representation Cleo A,C 3 

I did use a variable which you can 
plug number in two and still get 
the same result that it's divisible by 
three.  

Empirical 
Representation 

Kendra, 
Marge, 
Lucy, Jess, 
Audrey A,B 5 

they gave the example 4, 5, 6. So 
that's actually what I use for my 
first time up there. I added 4 + 5 + 
6, that's what they provided. So 
then they added that together and I 
got 15 which is basic math and 
then it says that if it's divisible by 
three, there's no remainder, so I 
divided that by three, which I got 
five, so I put true 

Empirical 
Representation 
(claim is 
accurate/correct) Kendra B 2 

I just wanted to check with other 
numbers so I just did like kind of 
the basic numbers. So like 1, 2 and 
3 is easy. So that was six. 6 divided 
3 was two and then I knew that 
was true. I just wanted to verify 
again for the third time because 
three lucky numbers was like OK, 
let's do it 7, 8, 9 and I got 24. 24 
divided by 3 was eight, simple 
math, which was true. So I I felt 
like it was pretty accurate if I could 
verify it three times 
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Empirical 
Representation 
(doesn't show all) 

Marge, 
Lucy A,B 2 

I just did 7, 8 and, 9. That doesn't 
mean that 64, 65 and 66 will also 
add together and divide by three 

general procdure 
with justification Freya A 1 

I think it'll always work with three 
consecutive numbers because. 
They're obviously all going to be 
like 9, 10 and 11 or one after the 
other, and so you can always take 
the top one which is 2 away from 
the bottom one. And take that extra 
one and put it over to 9 so they're 
all equal.  

general procedure Nessa A 1 

I used the example like 1, 2, 3 or 7, 
8, 9 or 21, 22, 23 or whatever 
numbers they're like consecutive. 
And so like the first two once they 
add up together like 21 + 22 equals 
43, yes, and so 43 and then is 23, 
43 + 23 = 69 so 69 you know is 
able to be divided by three.  
 
R: OK, so those are examples that 
you  
 
P: Wait hold up. So for 21, 22, 23 
is actually different. So the work 
that I give here is first I find the 
like the number who can directly 
be like divided by three like 3, 9, 
21 here. So like 3 divided by 3, 9 
divided by 3, 21 divided by 3 and 1 
+ 2 = 3 and here is 7 + 8 = 15 and 
22 + 23 = 45 which is also to be 
able to divide it by three so. Yeah, 
that's just how I thought.  

general 
procedure/pattern Freya A 1 

I realized that when you would add 
three consecutive numbers, you 
could take the number, the larger 
numbers, like in 5, 6 or 7, you can 
take seven and you can move one 
of the numbers from 7 to the 5 to 
make them all equal. And then that 
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would kind of, which is why we 
need to divide by three you're 
gonna always get the middle 
number.  

pattern Audrey A 1 

So I discovered when doing both 
of these equations that my answer 
in the division. So I I added to find 
the sum of the three and then when 
I divided it by three it ended up 
being the, um the second number 
in the sequence, it was the same as 
the quotient from the division 
problem. 

pattern Jess B 1 

Realized that, like the second 
number will always be the answer 
after it's divided by three, so I just 
kind of made a little note of that, 
but yeah, I don't know  
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Appendix G: Calculations of Cohen’s kappa for Interrater Reliability 

Study  
The calculation of Cohen’s kappa, 𝜅𝜅, for generality of representation code where 𝑃𝑃𝐴𝐴 is the 

proportion of arguments on which the scorers agree on the score and 𝑃𝑃𝐶𝐶 is the proportion of 

arguments for which agreement is expected by chance. 

𝑃𝑃𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 𝑤𝑤ℎ𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 𝑡𝑡𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

= 28
30

= 0.90   

𝑃𝑃𝐶𝐶 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 1 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 1𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 1 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 0 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 1𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 0 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

  

= 17
30
∗ 16
30

+ 13
30
∗ 14
30
≈ 0.504�  

𝜅𝜅 =
𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐶𝐶
1 − 𝑃𝑃𝐶𝐶

≈
0.9 − 0.504
1 − 0.504

≈ 0.798 

 

The calculation of Cohen’s kappa, 𝜅𝜅, for viability of the conceptual insight code where 𝑃𝑃𝐴𝐴 is 

the proportion of arguments on which the scorers agree on the score and 𝑃𝑃𝐶𝐶 is the proportion 

of arguments for which agreement is expected by chance. 

𝑃𝑃𝐴𝐴 = 27
30

= 0.9   

𝑃𝑃𝐶𝐶 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 1 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 1𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 1 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 0 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 1𝑠𝑠𝑡𝑡 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 0 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑠𝑠 𝑛𝑛𝑏𝑏 2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑛𝑛𝑛𝑛𝑠𝑠𝑟𝑟𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠

  

= 4
30
∗ 7
30

+ 26
30
∗ 23
30

= 626
900

≈ 0.695�  

𝜅𝜅 =
𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐶𝐶
1 − 𝑃𝑃𝐶𝐶

≈
0.9 − 0.696
1 − 0.696

≈ 0.671 
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