

A STUDY IN ACCELERATION OF SELECTED ARTIFICIAL INTE LLIGENCE

COMPUTATIONS USING THREAD-LEVEL PARALLELISM

A Thesis

Presented in Partial Fulfillment of the Requirement s for the

Degree of Master of Science

with a

Major in Electrical Engineering

in the

College of Graduate Studies

University of Idaho

by

Kisron Niles

July 2014

Major Professor: Gregory W. Donohoe, Ph.D.

ii

Authorization to Submit Thesis

This thesis of Kisron Niles, submitted for the degree of Master of Science with a

major in Electrical Engineering and titled "A Study in Acceleration of Selected

Artificial Intelligence Computations Using Thread-Level Parallelism," has been

reviewed in final form. Permission, as indicated by the signatures and dates given

below, is now granted to submit final copies to the College of Graduate Studies for

approval.

Major Professor:

Date:

 Dr. Gregory W. Donohoe

Committee
Members:

Date:

 Dr. Milos Manic

Date:

 Dr. James Frenzel

Department
Administrator:

Date:

 Dr. Fred Barlow

Discipline’s College
Dean:

Date:

 Dr. Larry Stauffer

Final Approval and Acceptance

Dean of the College
of Graduate Studies

Date:

 Dr. Jie Chen

iii

Abstract

This study demonstrates a practical implementation of selected Artificial Intelligence

computations using thread-level parallelism with C++11 on a four-core processor,

with a primary goal of reducing execution times. These programs spend a large

percentage of the execution time searching and learning, both of which can benefit

from the speed advantages offered by thread-level parallelism. As computer

hardware architectures have moved from serial execution to concurrent

multithreaded execution, new software programming techniques are needed to take

advantage of concurrent hardware. C++11 is a new C++ standard with many new

features and this study will focus on applying the new multithreading libraries

including the new atomic memory model available in C++11 to solve these problems.

Serial and multithreaded programs are compared in terms of execution time and

programming effort to help determine when thread-level parallel designs should be

considered.

iv

Acknowledgements

My sincere thanks go out to the University of Idaho for enabling me to pursue my

MSEE while working and living in Colorado through the excellent Engineering

Outreach program and to Dr. Donohoe and my thesis committee for all of their inputs

and wisdom in assisting me with the development of this thesis. Thank you also to all

of my friends and family who have been very patient through this entire process.

v

Table of Contents

Authorization to Submit Thesis ..ii

Abstract ... iii

Acknowledgements ...iv

Table of Contents .. v

List of Figures .. vii

List of Tables ...ix

List of Equations ... x

Chapter 1: Background ... 1

Chapter 2: Types of Parallelism .. 2

Chapter 3: Selected Artificial Intelligence Computations ... 5

3.1 Hill Climbing with Simulated Annealing: Tower Placement 6

3.2 Pathfinding: Breadth First Search .. 10

3.3 Game Playing: Connect 4 .. 14

3.4 Genetic Algorithms: Deciphering encryption .. 18

3.5 Artificial Neural Networks: Planetary Lander ... 23

Chapter 4: Parallel Implementation of Problems ... 29

4.1 Hill Climbing with Simulated Annealing: Tower Placement 29

4.2 Pathfinding: Breadth First Search .. 31

4.3 Game Playing: Connect 4 .. 33

vi

4.4 Genetic Algorithms: Deciphering encryption .. 35

4.5 Artificial Neural Networks: Planetary Lander ... 36

Chapter 5: Experimental Setup ... 39

Chapter 6: Experimental Results .. 42

6.1 Performance Profiling With Valgrind .. 42

6.2 Thread Performance Comparisons .. 48

Chapter 7: Conclusions ... 58

References .. 60

Appendix A – Glossary of Terms and Acronyms ... 61

Appendix B – Pseudocode .. 64

Appendix C – Additional Analysis Plots and Statistics .. 68

vii

List of Figures

Figure 1 Local and Global Optima .. 6

Figure 2 Visualization of Hill Climbing Problem Space ... 9

Figure 3 Flow Chart of Transmission Tower Placement Serial Program 10

Figure 4 Sample Map of Terrain for Searching ... 11

Figure 5 Pathfinding BFS Console Output After Search ... 13

Figure 6 Flow Chart of Pathfinding BFS Serial Program ... 14

Figure 7 Connect 4 Game Visualization .. 15

Figure 8 Minimax Algorithm .. 16

Figure 9 Connect 4 Gameplay in Console .. 17

Figure 10 Flow Chart of Connect 4 Serial Program .. 18

Figure 11 Sample Encryption Method ... 19

Figure 12 Mutation Example for 2-op and 3-op Operations 21

Figure 13 Flow Chart of Deciphering Encryption Serial Program 23

Figure 14 Planetary Lander Diagram .. 24

Figure 15 Planetary Lander Feed-Forward Multi-Layer ANN Structure 25

Figure 16 Flow Chart of Training for Planetary Lander Serial Program 28

Figure 17 Flow Chart of Transmission Tower Placement Parallel Implementation ... 31

Figure 18 Flow Chart of Pathfinding BFS Parallel Program 33

Figure 19 Flow Chart of Connect 4 Parallel Program .. 35

Figure 20 Flow Chart of Deciphering Encryption Parallel Program 36

Figure 21 Flow Chart of Planetary Lander Parallel Program 38

Figure 22 Test Architecture Diagram [10] ... 40

viii

Figure 23 Sample Kcachegrind Run ... 43

Figure 24 Sample Valgrind Memcheck Run .. 45

Figure 25 Sample Valgrind Helgrind Run .. 47

Figure 26 Average Execution Time Using 1 to 8 Threads for All Programs 50

Figure 27 Speedup Using 2 to 8 Threads for All Programs 51

Figure 28 Efficiency Using 2 to 8 Threads for All Programs 56

Figure 29 Total Memory Using 1 to 128 Threads for All Programs 57

Figure 30 Memory Allocs / Frees Using 1 to 128 Threads for All Programs 69

Figure 31 Average Best Fitness for Deciphering Encryption (Top) and Transmission

Tower Placement (Bottom) ... 70

ix

List of Tables

Table 1 Summary of Problems, Data Structures, Algorithms and Goals 5

Table 2 Map Terrain and Cost Legend ... 11

Table 3 Non-Normalized English Digraph Table Sample .. 19

Table 4 Sample Permutation Crossover ... 21

Table 5 Connect 4 Multithread Program Work Distribution 50

Table 6 Apparent Hyper-Threading Speedup for All Programs 53

Table 7 Speedup and Efficiency Comparison Between Program and OS 56

Table 8 Speedup and Efficiency Stats for All Programs Except Pathfinding* 68

x

List of Equations

Equation 1 Programming Efficiency Calculation ... 3

Equation 2 Annealing Calculation ... 8

Equation 3 Deciphering Encryption Fitness Calculation .. 22

Equation 4 ANN Fitness Calculation ... 26

1

Chapter 1: Background

Despite decades of increasing processor performance, there are still many current

problems that require even greater processing capability than a single processor can

provide such as drug discovery, climate modeling and big data analysis as stated in

[1]. As single processor performance has increased by Moore’s Law in terms of

execution frequency, the power consumption and associated heat have also

increased. As frequency scaling continued, the increase in heat grew to a point

where unreliable processor behavior existed, and this heat threshold has become the

upper limit for scaling the frequency. Increases in transistor density can still be

realized, so processor designers began attaching multiple single processors to the

same chip, yielding the current standard of multicore processors, where core is

synonymous with a Central Processing Unit (CPU) [1]. Since parallelism, including

multicore, constitutes the current path forward toward increasing processor

performance, industries requiring increased computational power have shifted to

parallel programming techniques including execution of multiple, concurrent process

instances at the operating system (OS) level. Multiple concurrent processes are

helpful when multiple programs must be executed at once, but they do not speed up

the execution of a single program instance. To increase the performance of a single

program, parallel programming techniques must be applied, using programming

language libraries to facilitate interaction with the multicore hardware [1].

2

Chapter 2: Types of Parallelism

Data-level parallelism uses a single instruction, multiple data streams (SIMD)

architecture, where the same operation is executed on multiple data items in parallel.

In SIMD computers, each processor has its own memory, but there is a single

instruction memory and a single control processor. Vector machines are the largest

class of SIMD architectures, where a traditional Graphics Processing Unit (GPU) is a

vector machine that is used to handle dedicated processing for high performance

graphics needs [6]. In graphics, the same operations are applied repeatedly to

streams of data to create complex graphics objects from basic building blocks such

as triangles and lines, tasks that are ideal for the SIMD model.

Thread-level parallelism uses a multiple instruction streams, multiple data streams

architecture (MIMD). In this architecture, each processor has its own instructions and

operates on its own data. Since multiple threads operate in parallel, this architecture

exploits thread-level parallelism [6]. The test computer used in this research is an

MIMD computer with four processors (cores), each capable of executing two threads

per core. As MIMD suggests, each core has its own instructions and memory

allowing for thread-level parallel tasks to be run simultaneously. Since thread-level

parallelism is generally more flexible than data-level parallelism, it is generally more

applicable to diverse implementations [6]. Since this research addresses parallel

programs for differing AI computations, thread-level parallelism is well-suited to tackle

the various parallel designs needed for all of the problems.

Hybrid parallel implementations exist, such as General Purpose Graphics Processing

Units (GPGPUs) which can be used for general purpose computations by using a

3

non-graphics application programming interface (API) such as NVIDIA’s CUDA which

allows the GPU to be programmed using C constructs [7]. GPU Algorithmic Logic

Units (ALUs) on a single GPU core use SIMD parallelism, but the cores of current

GPUs can execute independent instruction streams, behaving like a MIMD system

[1].

Each of these choices – SIMD, MIMD, or hybrid – requires an investment in hardware

purchase and software development. This thesis will focus on MIMD parallelism.

We focus on the use of thread-level parallelism to reduce the execution time required

by algorithms to maintain high efficiency and increase speedup relative to the serial

programs. The speedup value is a direct measure of the performance benefit gained,

but it comes with costs associated with software development. Speedup can be

justified when programming efforts in real-world cases use code that is frequently

applied and reused over time and in programs that require long execution times. A

quantitative measurement can be made by calculating a programming efficiency

value which is used to determine if a multithread implementation is worth the efforts

to develop it. The programming efficiency value Eprogramming was derived by the author

and is calculated as:

Equation 1 Programming Efficiency Calculation

4

The sum is over the lifecycle of the code and the efforts are justified when efficiency

values exceed 1.0. For real-time programs, it is the author’s opinion that qualitative

justification may outweigh any quantitative factors since increasing the quality of an

answer in a real-time program through multithreading may allow more calculations

per calculation cycle, yielding better answers. Determining the added value gained by

using a multithread program over a serial program requires estimates beforehand

that may not be exact, so expert judgment is a viable measurement for decision-

making in the real-world.

5

Chapter 3: Selected Artificial Intelligence Computa tions

This section covers the selected problems along with the serial designs and

implementations used to study the effects of multithreading in C++ 11 on a subset of

AI algorithms. Table 1 below shows a summary of the problems, associated data

structures, algorithms used and goal solutions.

Table 1 Summary of Problems, Data Structures, Algor ithms and Goals

Problem Data Structures Algorithm Goal

Transmission
Tower

Placement

2-D graph with
transmitter placements Hill Climbing with

Simulated
Annealing

Achieve a global or
near-global optimal

coverage of receivers 2-D graph with receiver
placements (static)

Pathfinding

2-D map representing
the terrain and
environment

Breadth First
Search, realized

with a First In First
Out Queue

Find a path to the goal
state on the 2-D map
from the start state Tree to realize search

states

Connect 4

Game board to keep
track of the current

game state

Recursive Minimax
search with Alpha-

Beta Pruning
A win for the AI player

Test board to simulate
moves and perform

heuristic evaluations on
the AI moves

Tree to realize all
moves to a user-defined

depth

Deciphering
Encryption

Population of keys Genetic Algorithm
with mutation,
crossover and
random key
generation

Find a key that
decrypts a cipher
passage into an
English passage

Tournament to evaluate
keys

Planetary
Lander

Artificial Neural Network
that takes various

inputs from the lander

Hill climbing with
random restarts

Train the lander to
successfully land in an

environment with
random wind

6

3.1 Hill Climbing with Simulated Annealing: Tower P lacement

Hill climbing is a search algorithm that continually moves in the direction of increasing

fitness, which is uphill in a “problem space” [3]. One of the major challenges to this

search occurs when a problem space has numerous peaks varying in fitness values

as shown in Figure 1 below. When the top of a peak is found there are no adjacent

states that are better, so the other peaks in the problem are not considered, causing

the search to potentially get stuck at a non-optimal peak which is commonly referred

to as a local optimum. One way to handle this issue is simulated annealing, a search

that combines hill climbing with a random walk which can yield both efficiency and

completeness [3].

Figure 1 Local and Global Optima

In this problem, 30 transmission towers are used to cover as many receivers as

possible within 129 US and Canadian cities using only hill climbing and simulated

annealing in 2-D space. The units are not to the scale of the actual US and

Canadian city locations but are meant to symbolically represent cities for the sake of

7

the problem relevance. Each transmission tower covers a radius of 1 unit and one

transmission tower must cover multiple cities if possible, since there are many more

receivers than towers. The towers are initially placed randomly and then moved

around using hill climbing and simulated annealing until a desired number of search

iterations is completed. The fitness value is calculated based on how many cities are

covered by the towers and by the distance of the closest receiver to a transmitter,

and vice versa. This problem has many local optima so it requires simulated

annealing to search widely which increases the likelihood of finding the global

optimum.

The program entails five key elements: random transmitter placement for

initialization, cumulative fitness evaluation of all the transmitter positions relative to

the receiver positions, simulated annealing to get out of local optima, movement of

the transmitter positions to search by hill climbing and checking for a goal state,

which indicates completion of the run. The goal state in this problem is a user-

defined count limit, and the run is complete when the number of iterations completed

equals the count limit value. After the transmitters are randomly placed at initial

locations, one transmitter is selected each search iteration, moved by a random x or

y value and the fitness of the new transmitter location is evaluated. If a better fitness

is found than the current best fitness, the new transmitter location is stored as the

best location for that transmitter and the best fitness value is updated. Otherwise, the

transmitter is returned to its previous position. Simulated annealing is achieved using

a temperature value with a warming and cooling schedule. A random unit generator

8

is used to get a random double from 0 to 1 which is compared to the annealing value.

The annealing value was chosen by the author and is shown below in Equation 2.

Equation 2 Annealing Calculation

The delta value is the difference between the most recent fitness calculated and the

best fitness. If the current fitness is better than the best fitness so far, delta will be a

positive value and the annealing value will always be greater than or equal to 1,

which will make the program accept this new fitness as the best fitness regardless of

the temperature. If the current fitness is less than the best fitness, it will be accepted

if the random number between 0 and 1 is less than the annealing value. The

temperature value is adjusted with a heating / cooling schedule. As the temperature

value approaches zero, the acceptance will approach that of hill climbing. When the

temperature value is raised again, the acceptance will allow more freedom of

exploration to move out of local optima. Figure 2 below illustrates a sample run of

the algorithm, showing the city / receiver locations, the initial random placement of

the transmitters and the placement of the transmitters after the search has

completed. Figure 3 below shows a flow chart of the serial program.

Figure 2 Visualization of

Visualization of Hill Climbing Problem Space

9

Figure 3 Flow Chart of Transmission Tower Placement Serial

3.2

Breadth first search (BFS) creates a search tree that always expands the shallowest

node using a first in first out (FIFO) queue.

state is reached. BFS is an

meaning it is guaranteed to find a

between states has the same cost then

BFS is not optimal if the path costs are not uniform. The downside to

has exponentially increasing time and spac

the search tree increases [3].

Flow Chart of Transmission Tower Placement Serial Program

3.2 Pathfinding: Breadth First Search

creates a search tree that always expands the shallowest

node using a first in first out (FIFO) queue. Each node is expanded until the g

n uninformed search that is exhaustive and complete

meaning it is guaranteed to find a goal state when one exists. If every movement

between states has the same cost then BFS is optimal and will find the best path.

if the path costs are not uniform. The downside to BFS

has exponentially increasing time and space complexities as the number of nodes in

[3].

10

Program

creates a search tree that always expands the shallowest

until the goal

complete,

when one exists. If every movement

will find the best path.

BFS is that it

e complexities as the number of nodes in

11

In this problem, an agent is used to search within a 2-D terrain which has associated

costs with each move. The terrain is represented as a map with ASCII characters

that indicate the terrain. An example terrain is shown below in Figure 4 and the start

and goal positions are given by the file that is read in which also includes the search

map. The program run completes when the goal position is found by the search. The

path cost and description for each character are shown below in Table 2.

M M M h h f f f f f f f f f

M M M M M h h f f f f f f f

f R f f f W W W W W F F F F

f R f f W W W W W W W W F F

f R R f f f W W W W W r W r

f f R R R R f f f f r r f f

f f f f f f R f f f f r f f

h f f f f f R R R R R R R R

M h h f f f f f f f f f f f

M M h h h f f f f f f f f f

Figure 4 Sample Map of Terrain for Searching

Table 2 Map Terrain and Cost Legend

Character Meaning Movement Cost
R Road 1

f Field 2

F Forest 4

h Hills 5

r River 7

M mountains 10

W Water cannot be
entered

The basic components of this algorithm are a search tree with node objects that

represent each searched state of the path. The nodes also contain an action that the

12

node performs relative to its parent’s location and a cost for that particular move.

Each node also contains a pointer back to its parent unless it is the root node. A

FIFO queue is used to store unexpanded nodes and a Boolean vector is used to

keep track of which nodes have been explored. Shared pointers were used since

C++ 11 supports them, and they handle memory management automatically so that

pointers are properly freed when they go out of scope. For this BFS, all path costs

are calculated but not used in the search since it is based solely on the FIFO queue

and not on path costs. A class object is used to organize the variables and functions

for the problem, and a structure is used to store and organize the data for each node

of the tree. The node structure holds a pointer to the child’s parent which creates an

upward associative tree. The tree is expanded with the FIFO queue until the goal

state is reached. During each search iteration, the next member from the queue is

popped and used as the parent to generate four children representing each move,

with each child pointing to the parent. A simple Boolean vector that is the same size

as the map array is also used to keep track of the explored set and each map

location is marked as true when that space has been searched. This strategy

ensures that redundant states are not searched. When the goal is reached, the goal

state is back-propagated to the start state to trace the search path and calculate the

path cost. The console output for a search is shown below in Figure 5.

13

Figure 5 Pathfinding BFS Console Output After Searc h

Figure 6 below shows a flow chart of the serial program.

Figure 6 Flow Chart of Pathfinding BFS Serial

Connect 4 is a 2-player, deterministic game that is fully observable

player drops checkers onto a vertical board in a top

black checkers and the other uses red. The first player to get four of his or her

checkers in a row on the board wins. Four in a row counts in vertical, horizontal and

diagonal directions. The board is shown below in Figure 7.

Flow Chart of Pathfinding BFS Serial Program

3.3 Game Playing: Connect 4

player, deterministic game that is fully observable where each

player drops checkers onto a vertical board in a top-down fashion. One player

black checkers and the other uses red. The first player to get four of his or her

checkers in a row on the board wins. Four in a row counts in vertical, horizontal and

diagonal directions. The board is shown below in Figure 7.

14

where each

One player uses

black checkers and the other uses red. The first player to get four of his or her

checkers in a row on the board wins. Four in a row counts in vertical, horizontal and

15

Figure 7 Connect 4 Game Visualization

In this problem, the computer is the AI player and the human is the opponent.

Connect 4 does not have a high depth compared to many other games since an

entire game can only consist of a maximum of 42 moves; however, this is too many

moves for the AI player to always see a goal state such as a win for either player or a

draw. The inability to see the goal state requires implementation of a heuristic

evaluation that will determine what move is best when neither an AI player win nor a

block against the human player’s win is available. Many search techniques can be

used in a 2-player game like Connect 4, but this project focuses solely on the

minimax algorithm. The minimax search algorithm used here is a recursive limited

depth-first search that creates a tree with each node representing a move in the

game. See Figure 8 below to visualize the minimax process. The AI player is the

“Max” player and the human player is “Min”. If it is Min’s turn at a given depth, the

function will return the minimum outcome move for that depth, based on the

assumption that Min will pick the best move available. If it is Max’s turn at a given

16

depth, the maximum outcome move for that depth will be returned since that is the

best move available for the Max player [3].

Figure 8 Minimax Algorithm

The heuristic evaluation is a function that evaluates a set of moves to determine their

value to the player whose turn it is. The function will determine the value of a move

from the perspective of the AI and adjust the return value based on whose turn is

being evaluated. A good evaluation function will set up multiple, redundant win

scenarios while also blocking optimal scenarios for the human. This evaluation can

be effectively implemented for Connect 4 with fast heuristic checking.

An important technique in optimizing the execution times of the minimax algorithm is

alpha-beta pruning. If a move is evaluated and found to be a worse choice than the

current best choice for the player whose turn is being evaluated, this entire branch all

the way down to the depth of the search can be disregarded. Applying this pruning

removes several branches and drastically minimizes the search space and time

complexity of the limited depth-first search without affecting the outcome of the

decision [3]. A sample of the game play is shown below in Figure 9.

17

Figure 9 Connect 4 Gameplay in Console

Figure 10 shows a flow chart of the serial program.

Figure 10

3.4 Genetic Algorithms: Deciphering encryption

Deciphering encryption or decryption is a common process used to apply a key to

sets of bits to convert an encrypted data set to an unencrypted set. This

uses a Genetic Algorithm (GA

text passage as best as possible

considered as a function optimization method [2].

an encrypted passage to English, using an English digraph table to determine a

fitness value that estimates the solution key’s

unknown, and the program runs until a count limit is reached, at which time the goal

is reached.

In this problem, the message is

uppercase letters to lowercase letters and

10 Flow Chart of Connect 4 Serial Program

Genetic Algorithms: Deciphering encryption

Deciphering encryption or decryption is a common process used to apply a key to

sets of bits to convert an encrypted data set to an unencrypted set. This

GA) that generates a key which is used to decrypt a clear

as best as possible. A GA is an evolutionary algorithm that is largely

considered as a function optimization method [2]. In this case, the goal is

passage to English, using an English digraph table to determine a

that estimates the solution key’s Englishness. The solution key is

he program runs until a count limit is reached, at which time the goal

the message is encoded by taking the clear text and changing

letters to lowercase letters and removing all whitespace and punctuation

18

Genetic Algorithms: Deciphering encryption

Deciphering encryption or decryption is a common process used to apply a key to

sets of bits to convert an encrypted data set to an unencrypted set. This program

which is used to decrypt a clear-

A GA is an evolutionary algorithm that is largely

In this case, the goal is to decipher

passage to English, using an English digraph table to determine a

The solution key is

he program runs until a count limit is reached, at which time the goal

and changing all

itespace and punctuation.

19

The message is then enciphered with a substitution cipher determined by the key and

the message is then broken up in to blocks of 5 letters each as shown below in

Figure 11.

Clear text: Hello World
Encrypted text: hzqqe oefqt
Unencrypted alphabet: abcdefghijklmnopqrstuvwxyz
Encrypted key: cpmtzkrhlsquniebdfaygwovjx

Figure 11 Sample Encryption Method

An English digraph table, also known as a contact table, is used to correlate

groupings or pairs of letters to their statistic occurrence within a large sample of

English text. By using this table, the occurrence of the encrypted pairings from a

given passage are compared to the unencrypted pairings of the digraph table to

determine a fitness value for a given key. It is apparent that this approach yields

diminishing results as the used encrypted passage grows smaller since the

correlation is based on a probability model which degrades for small samples. A

sample of the digraph table is shown below in Table 3. These pairings from the

digraph table are normalized by dividing the occurrence of a given pairing by the total

summed value of the occurrences from all of the pairings. The pairings from the

encrypted passage are also normalized in the same fashion so the results can be

compared accurately regardless of sample size.

Table 3 Non-Normalized English Digraph Table Sample

aa 11 ab 122 ac 298 ad 210 ae 19 af 54 ag 116 ah 23
ai 254 aj 6 ak 154 al 632 am 231 an 1614 ao 11 ap 1 05
aq 1 ar 861 as 451 at 973 au 123 av 214 aw 55 ax 13
ay 225 az 16 ba 108 bb 31 bc 1 bd 1 be 597 bf 0

20

A steady-state GA was used in this problem with a population size of 100. A class is

used to organize the variables, parameters and functions for the problem. Structures

are used to organize the data for the population individuals and the tournament. The

tournament function randomly picks a specified number of members from the

population and compares their fitness values. The population member with the best

fitness (smallest number in this case) is kept in the population while the losers are

replaced with random keys or crossover children. A tournament size of 3 was used

in this program. The tournament structure also holds a reference to the population

members that are being compared including a reference value to indicate the winner

of the tournament.

The population is a vector which serves as a holder for many individuals, each

containing a key and an associated fitness. Keys are randomly generated to initialize

the population and each population member’s fitness is evaluated. While determining

the fitness of the members, a best position reference value is updated to point to the

best member of the population.

The program runs for a set number of iterations, outlined by the atomic counter

“count” which is compared to the count limit “tries”. For each iteration, a mutation is

made to the key of a randomly selected member of the population. The mutate

function swaps a given number of key locations. A 2-op mutate will swap 2 key

elements while a 3-op will swap 3 as shown below in Figure 12. The mutated key is

then evaluated and assigned a fitness value. If the mutated key’s fitness is better

than the original key, it will replace it in the population. If the mutated key’s fitness is

worse, it will be discarded and the original key will remain unchanged. The mutation

21

method will start as a 2-op mutation. If a better fitness is not reached in 10 mutation

attempts, a 3-op mutation will be used. If a better fitness is not reached in 10

mutation attempts, a 2-op method will be used again. Alternating between 2-op and

3-op mutations helps the search move out of local optima.

Figure 12 Mutation Example for 2-op and 3-op Operat ions

A crossover function is applied periodically to replace losers of a tournament run with

crossover children of two randomly selected population members regardless of

fitness value. The crossover function randomly selects two parents from the

population, making sure not to select the members that have just lost in the

tournament. These parents are combined using a permutation crossover. The

permutation crossover randomly combines elements from each parent to create a

child. The child replaces the losing tournament member regardless of fitness value.

A permutation parameter of 14 is used so that approximately half of the key is taken

from each parent to create the child. Great caution should be used when creating a

permutation crossover function since it must include methods to ensure that duplicate

key elements do not appear in the child. A sample permutation crossover is shown

below in Table 4.

Table 4 Sample Permutation Crossover

original a b c d e f g h i j k l m n o p q r s t u v w x y z

2-op a b p d e f g h m j k l i n o c q r s t u v w x y z

3-op s b p d e f g h m j k l i n o c q r a t u v w x y z

22

Similarly, a key generation function periodically applies random replacement keys for

all losers of a tournament regardless of the fitness value.

The fitness function the author used for this program sums up the square of the

difference between the normalized English digraph values and the normalized Cipher

digraph values using Equation 3 shown below.

Equation 3 Deciphering Encryption Fitness Calculati on

This fitness function will determine if the English digraph and cipher digraph are close

matches. All cipher digraph frequencies are compared to the English digraph

frequencies, and the total sum of each comparison is the overall fitness for a

particular cipher key. The cipher key with the lowest overall fitness is the closest

match to the English key.

Figure 13 shows a flow chart of the serial program.

Figure 13 Flow Chart of Deciphering Encryption Serial

3.5 Artificial Ne

The goal for the ANN Planetary L

multi-layer ANN using hill climbing and random

planetary lander which is capable of landing within a

velocity given a constant gravity and random wind values for the environment where

the landing occurs. The training for this program optimizes a single landing, but

optimization over multiple landings could be trained as well.

on the training of the ANN. Once the ANN is trained

Parallelism could be applied to execute concurrent landings, but the execution phase

Flow Chart of Deciphering Encryption Serial Program

Artificial Ne ural Networks: Planetary Lander

Planetary Lander is to train the node weights of a feed

using hill climbing and random-restarts to control and safely land a

lander which is capable of landing within a small area at an acceptable

velocity given a constant gravity and random wind values for the environment where

The training for this program optimizes a single landing, but

optimization over multiple landings could be trained as well. This program will focus

on the training of the ANN. Once the ANN is trained, it can be executed at will

arallelism could be applied to execute concurrent landings, but the execution phase

23

Program

Lander

node weights of a feed-forward

to control and safely land a

small area at an acceptable

velocity given a constant gravity and random wind values for the environment where

The training for this program optimizes a single landing, but

This program will focus

it can be executed at will.

arallelism could be applied to execute concurrent landings, but the execution phase

24

is not covered since it is considered to be a standalone implementation at that point,

outside of the training scope. The wind is a random number between +-.3 and is set

at the start of each landing attempt. The problem space is 2-D and the ANN takes six

inputs: height, xPosition, Yvelocity, Xvelocity, wind and fuel. The ANN generates two

outputs, burn and thrust, to adjust the horizontal and vertical movement which offset

the vertical gravity force and the horizontal wind force as shown below in Figure 14.

Figure 14 Planetary Lander Diagram

Additionally, there are 2 parameters that denote a successful landing:

1. Yvelocity <= 4.0
2. -.2 =< xPosition <= .2

This program uses a 3-layer ANN with 6 total nodes: 2 input, 2 hidden and 2 output.

The algorithm implements a fully connected feed-forward multilayer network where

the final outputs are derived solely from the 6 inputs described above and the

node weights. By using a hidden layer, this network is able to extract higher

statistics from its inputs [4].

parameters, variables and functions

organize each node’s parameters

or resetting weights. The node objects are organized into an ANN using a vector

object. The ANN design is shown below in Figure 15

Figure 15 Planetary

The search algorithm used is a

weights are reset to random values when the search gets stuck

the fitness is considered stuck when a counter reaches a restart limit. The restart

counter is incremented for each cons

better than the best fitness. If the current fitness is better than the best fitness, the

restart counter is reset. For each training iteration, a single random input weight from

a random node is chosen a

the final outputs are derived solely from the 6 inputs described above and the

By using a hidden layer, this network is able to extract higher

stics from its inputs [4]. A lander class is used to provide the appropriate

parameters, variables and functions for the lander and a node class is used to

organize each node’s parameters and provide node-level functions such as updating

. The node objects are organized into an ANN using a vector

sign is shown below in Figure 15.

Planetary Lander Feed-Forward Multi-Layer ANN Structure

The search algorithm used is a random-restart hill climbing search algorithm where

weights are reset to random values when the search gets stuck. The optimization of

the fitness is considered stuck when a counter reaches a restart limit. The restart

each consecutive iteration that the current fitness is not

better than the best fitness. If the current fitness is better than the best fitness, the

For each training iteration, a single random input weight from

sen and adjusted to a random value between -1 to

25

the final outputs are derived solely from the 6 inputs described above and the ANN

By using a hidden layer, this network is able to extract higher-order

A lander class is used to provide the appropriate

is used to

level functions such as updating

. The node objects are organized into an ANN using a vector

ANN Structure

search algorithm where

The optimization of

the fitness is considered stuck when a counter reaches a restart limit. The restart

ecutive iteration that the current fitness is not

better than the best fitness. If the current fitness is better than the best fitness, the

For each training iteration, a single random input weight from

1 to 1. The

26

planetary lander is landed n times, where n is an internal user-defined landing limit

value. The combined fitness of these landings is then compared to the best fitness to

determine if the current weight set yields an equal or better total fitness than the

current best total fitness. If this case is true, the current weight will be updated to

reflect the new weight that yields the better fitness value. Otherwise, the new weight

will be reverted back to the original weight value. One landing was chosen per

evaluation in this program since it was found it profiled the wind characteristics well

and sped up execution times by limiting the total number of landings per run.

The fitness is calculated immediately following a landing by taking the xPosition and

Yvelocity after landing. The author developed Equation 4 below to calculate the

fitness for a landing.

Equation 4 ANN Fitness Calculation

Notice that the current_fitness value is negative and is being maximized, where the

absolute best fitness value possible is 0. The Yvelocity value is maximized to

Yvelocity – 2 or Yvelocity = 2 since the tested ideal Yvelocity is somewhere relatively

close to 2 on average. A Yvelocity value around 2 is ideal since it is centered

symmetrically between 0 and 4, which are both the limits of what a successful landing

Yvelocity is allowed to be.

When the lander is in the process of landing, an update function is called repeatedly

until the landing is completed and the update function applies a lander control

function. The lander update function calls the control function to feed the current

27

input values to the ANN and determine updated burn and thrust values. When being

sent to the ANN, the Yvelocity, fuel and height values are all normalized by dividing

their current values by their start values to get values between 0 and 1. These values

are scaled so they will be closer to other input values which are much smaller. For

each node, the inputs are multiplied by their corresponding weights and summed

before being sent through the activation function to produce the node’s output value.

The activation that is used in this problem is a hyperbolic tangent (tanh) function,

which yields an activation with outputs ranging from -1 to 1. A lambda value can be

used within the tanh function to scale the activation and create a harder or softer

activation. A lambda value of one, creating a Heaviside step function, is used for this

problem. The values are propagated through the ANN and burn and thrust outputs

are generated. A landing test is used for each update call to determine if a landing is

not complete, complete and successful or complete but unsuccessful.

When calculating the burn and thrust values in the control function, these two outputs

are both scaled to appropriate values to achieve a successful landing. The burn

output values are scaled from +-1 to 1-6. Notice the range 1-6 is centered on 3.5, and

this value was chosen based on testing and experimentation. Other ranges can be

used with similar results such as 1-5 or 0-6, but no obvious improvements were

observed using such ranges.

The thrust output values are scaled from +-1 to +-.5. This range of values is a good

balance between constraints that are too tight and too loose; however, it should be

noted that the random wind value makes it difficult to hone in on an exact best range.

Again, experimentation showed this range to be reasonable along with other ranges

that were not chosen.

A configured reset count is established, and if this limit is reached, all of the ANN

input weights are re-initialized to a random

keeps track of how many training cycles have been executed without an equal or

better fitness value being fou

was found that the hill climbing

Figure 16 shows a flow chart of the serial

Figure 16 Flow Chart of

Again, experimentation showed this range to be reasonable along with other ranges

is established, and if this limit is reached, all of the ANN

initialized to a random double between -1 and 1. The reset limit

keeps track of how many training cycles have been executed without an equal or

better fitness value being found. Simulated annealing could have been used,

hill climbing local search with resets yielded adequate

shows a flow chart of the serial program.

Flow Chart of Training for Planetary Lander Serial Program

28

Again, experimentation showed this range to be reasonable along with other ranges

is established, and if this limit is reached, all of the ANN

1 and 1. The reset limit

keeps track of how many training cycles have been executed without an equal or

nd. Simulated annealing could have been used, but it

adequate results.

Program

29

Chapter 4: Parallel Implementation of Problems

This section covers the detailed parallel designs used to convert the serial programs

listed in Section 3 to parallel programs. All of the algorithms from this section are

shown in greater detail in Appendix B – Pseudocode.

4.1 Hill Climbing with Simulated Annealing: Tower P lacement

The multithread programming design for this problem is very similar to the serial

design with the addition of several synchronization mechanisms. The hill climbing

and simulated annealing are treated the same, but multiple threads are used to

search the problem space. Each thread has its own set of transmitter location values

for x and y and searches independently with its own random number draws. If one

thread finds a better fitness or passes the simulated annealing criteria to allow a

poorer fitness, it will update the shared best transmitter locations to its current

locations. Otherwise, it will synchronize its transmitter locations back to the shared

best locations. The collection of the best transmitter locations is shared across all of

the threads as a class variable, giving all of the threads read / write access since they

are all executed within the class. Each thread is spawned with a function call to

hillclimb::solve(), and variables are created with a scope that is limited to the running

thread, giving local transmitter locations and other necessary non-synchronized

variables. A global atomic “totalCount” variable is also used and incremented by all

threads, and the program execution completes when this count limit is reached. This

method is used to ensure that the number of search iterations is uniform between

threads. Note that searching based on a fitness limit is misleading for this case since

the execution time will be based solely on the random initialization of the transmitter

30

locations including the random numbers generated for the search. By using a count

limit, this randomness does not influence the benchmarks for execution time. The

simulated annealing temperature value and the heating / cooling schedules are

shared between the threads so that the simulated annealing functionality is applied

uniformly regardless of the number of threads running the program. Unique locks

with mutexes are used to synchronize reads and writes associated with the best

transmitter locations. A unique_lock and mutex are used to lock read / write access to

the best transmitter collection’s x locations while another set are used to lock the

read / write access to its y locations. Using independent locks gives finer lock

granularity over the parameters than locking both x and y, allowing an x location and

y location to be updated simultaneously. An atomic variable is used for the best

fitness so that it does not require a lock to be read or updated.

Figure 17 shows a flow chart of the parallel program.

Figure 17 Flow Chart of Transmission

4.2

Since the FIFO queue is used in this problem, a producer

viable multithread design. One producer thread is used to produce search states

which are then pushed to a consumer queue where they are pulled by consumer

threads. When a state is pushed to the consumer queue by the producer, a condition

variable is used to notify a consumer thr

threads sleep and wait for the condition variable notification instead of polling until

the work is available. Polling decreases system performance by keeping threads

busy, while a condition variable allows threads

Flow Chart of Transmission Tower Placement Parallel Implementation

4.2 Pathfinding: Breadth First Search

Since the FIFO queue is used in this problem, a producer-consumer was deemed a

. One producer thread is used to produce search states

which are then pushed to a consumer queue where they are pulled by consumer

threads. When a state is pushed to the consumer queue by the producer, a condition

variable is used to notify a consumer thread that work is available. The consumer

threads sleep and wait for the condition variable notification instead of polling until

the work is available. Polling decreases system performance by keeping threads

busy, while a condition variable allows threads to sleep until the work is available. A

31

Implementation

consumer was deemed a

. One producer thread is used to produce search states

which are then pushed to a consumer queue where they are pulled by consumer

threads. When a state is pushed to the consumer queue by the producer, a condition

ead that work is available. The consumer

threads sleep and wait for the condition variable notification instead of polling until

the work is available. Polling decreases system performance by keeping threads

to sleep until the work is available. A

32

sleeping thread frees up system resources so that other software threads can then

make use of the available hardware thread. This strategy can be used in

complicated problems to keep the system resources as busy as possible with useful

work. Each consumer thread then searches the next state, updating information. A

determineTerrain() function was created to simulate calculations for determining the

terrain and associated movement cost. The original problem assumed the state was

known, but determining the terrain is more realistic and more appropriate for

comparing threads. Without a determineTerrain() function, multithreading was not as

fast since the synchronization efforts took longer than the search, but this method

was not practical for a real-world case. Once the state is searched, a thread waits

until its turn to synchronize since the states must be expanded sequentially to meet

the criteria for BFS. The consumer threads take the work from the consumer queue

sequentially, but they will commonly get out of order by the end of the state

expansion and determineTerrain() function call. When this sequence check is

successful, the consumer thread will then push its state to a second queue which is

the producer queue. A condition variable is then used to notify the producer queue

that a state is ready to be expanded. This process is applied repeatedly, using the

condition variables and queues to synchronize the work between the producer thread

and the consumer threads. This method also ensures that the threads only access

the queues when data is ready for use. Unique locks are used with two mutexes to

synchronize the queue accesses between the threads. One unique lock is used for

each queue and all queue accesses are locked since the queue is not a thread-safe

object. A run is complete when the goal state is reached.

user.

Figure 18 shows a flow chart of the parallel

Figure 18 Flow Ch

This problem posed some issues when designing for multithreading since it uses a

tree structure with recursive function calls. A producer

the one used in the BFS Pathfinding

more-straightforward implementation was selected. Each column represents a top

object. A run is complete when the goal state is reached. This state is defined by the

shows a flow chart of the parallel program.

Flow Ch art of Pathfinding BFS Parallel Program

4.3 Game Playing: Connect 4

This problem posed some issues when designing for multithreading since it uses a

tree structure with recursive function calls. A producer-consumer design

the one used in the BFS Pathfinding program could have been used, but a simpler,

straightforward implementation was selected. Each column represents a top

33

This state is defined by the

This problem posed some issues when designing for multithreading since it uses a

design, similar to

could have been used, but a simpler,

straightforward implementation was selected. Each column represents a top-

34

level branch of the tree, so the branches were split between the worker threads. For

example, a run with 7 threads assigns the search of each column or tree branch to 1

thread per branch. For a run with 3 threads, 2 branches are assigned to 2 of the

threads and 3 branches are assigned to the third thread to assign the work as evenly

as possible. This implementation makes the synchronization of picking the best move

very simple. The tree expansion and alpha-beta pruning techniques are still applied

for each thread’s search with the exception that each thread uses its own alpha and

beta values for simplicity in implementation. A “threadMember” structure is used to

store all of the local variables for each thread. For each AI turn, each thread copies

the game state over to its local variables before searching so it can execute

independently using up-to-date game information. The game state is locked during

this read operation in case a write were to occur at the same time with an updated

game state returned by another thread.

With this multithread design, each branch returns a fitness value and a corresponding

move after searching, which are synchronized with a unique lock and mutex back to

the best fitness variable and best move choice, both of which are shared across the

class. The best move from all of the branches is selected as the AI’s move. No other

locks or synchronization are needed since the rest of the required variables are

created within each thread’s scope. When one of the players wins or a draw is

reached, the run is complete.

Figure 19 shows a flow chart of the parallel program.

Figure 19

4.4 Genetic Algorithms: Deciphering encryption

The serial program is expanded

of 100 members times the number of threads being run. A run with 8 threads has a

population size of 800. This allows each thread to work on a sub

population that is 100 members, which is how the serial

same tournament runs, mutations, crossovers and random key generations are

applied to each thread’s populatio

best position variable which references the best member in the population. A unique

lock and mutex are used to serialize access to the best position. Counters related to

mutations, key generation and cros

they can operate independently, and individual random number generators are used

as well. A shared atomic counter is used to synchronize the iteration count. Again, a

count limit is used to determine when th

19 Flow Chart of Connect 4 Parallel Program

Genetic Algorithms: Deciphering encryption

program is expanded to a multithreaded program by creating a population

of 100 members times the number of threads being run. A run with 8 threads has a

size of 800. This allows each thread to work on a sub-group of the

population that is 100 members, which is how the serial program operates. The

same tournament runs, mutations, crossovers and random key generations are

applied to each thread’s population. The threads do not interact except to update the

best position variable which references the best member in the population. A unique

lock and mutex are used to serialize access to the best position. Counters related to

mutations, key generation and crossovers are all within the scope of the thread so

they can operate independently, and individual random number generators are used

as well. A shared atomic counter is used to synchronize the iteration count. Again, a

count limit is used to determine when the algorithm run is complete since this

35

Genetic Algorithms: Deciphering encryption

by creating a population

of 100 members times the number of threads being run. A run with 8 threads has a

group of the

operates. The

same tournament runs, mutations, crossovers and random key generations are

n. The threads do not interact except to update the

best position variable which references the best member in the population. A unique

lock and mutex are used to serialize access to the best position. Counters related to

sovers are all within the scope of the thread so

they can operate independently, and individual random number generators are used

as well. A shared atomic counter is used to synchronize the iteration count. Again, a

e algorithm run is complete since this

program and its fitness values are highly dependent on random number generation.

The count limit is a uniform comparison for runs of varying thread numbers.

Figure 20 shows a flow chart of the parallel

Figure 20 Flow Chart of Deciphering Encryption Parallel

4.5 Artificial Neural Networks:

The multithread program for this problem is similar to the hill climbing

in the Transmission Tower Placem

resets instead of simulated annealing. E

searches independently with its own random number draws. A best ANN is shared

across the threads and it contains the best set of weig

If one thread finds better ANN than the best ANN, it will update the nodes and the

fitness of the best ANN to reflect its own. Otherwise, it will synchronize its nodes and

and its fitness values are highly dependent on random number generation.

The count limit is a uniform comparison for runs of varying thread numbers.

shows a flow chart of the parallel program.

Flow Chart of Deciphering Encryption Parallel Program

Artificial Neural Networks: Planetary Lander

for this problem is similar to the hill climbing program

in the Transmission Tower Placement problem except this program uses random

resets instead of simulated annealing. Each thread implements its own ANN and

searches independently with its own random number draws. A best ANN is shared

across the threads and it contains the best set of weights and the best fitn

better ANN than the best ANN, it will update the nodes and the

fitness of the best ANN to reflect its own. Otherwise, it will synchronize its nodes and

36

and its fitness values are highly dependent on random number generation.

The count limit is a uniform comparison for runs of varying thread numbers.

Program

Lander

program used

uses random

its own ANN and

searches independently with its own random number draws. A best ANN is shared

hts and the best fitness value.

better ANN than the best ANN, it will update the nodes and the

fitness of the best ANN to reflect its own. Otherwise, it will synchronize its nodes and

37

fitness back to those of the best ANN. A unique lock with a mutex is used to provide

serial access to the best ANN. An atomic variable, no_change, is used to determine

when a reset should occur based on a tryLimit variable threshold. When no_change

is greater or equal to the tryLimit, the best ANN weights are reset randomly, and all of

the thread ANN’s are synced to reflect the changes. This process ensures that the

number of resets will be consistent regardless of how many threads are run. Each

iteration of the program sets the lander to initial values, runs the update function until

a landing is achieved, calculates a fitness value based on the landing and then trains

the ANN based on the fitness. The program runs for a defined number of iterations,

based on an atomic counter. Using a count limit instead of a fitness limit ensures that

the execution time comparisons are more consistent between runs for varying

numbers of threads.

Figure 21 shows a flow chart of the parallel program.

Figure 21 Flow Chart of Planetary Lander Parallel

Flow Chart of Planetary Lander Parallel Program

38

39

Chapter 5: Experimental Setup

For this study, a computer with a 2nd generation Intel Core i7-2670QM processor was

used. This processor has a 6 MB Intel Smart Cache which is shared across its 4

cores. The Intel Smart Cache is a last level cache (L3 in this case) that allows all of

the cores to access and share all of the cache space. This approach allows for more

flexibility and efficiency since the full cache space can be dedicated from a single

core up to all cores, depending on how many are active. Shared data between cores

only has to be loaded into the cache once in this design also [9].

Each physical core for this processor can simultaneously support 2 threads due to

the Intel Hyper-Threading technology which allows one physical core to present two

logical cores to the operating system. It is important to understand that this

technology is designed to make full use of each core’s performance, but it is not

equivalent to running 8 cores. For the processor used in this thesis, there are 8

threads, but only 4 cores, so performance gains similar to an 8 core system should

not be expected. This will be shown in Section 6.2 Thread Performance

Comparisons. The two logical processors in the Intel Hyper-Threading design share

most execution resources, and the desired benefit is to improve the efficiency of the

instruction scheduling for that core. Given this capability, there are cases where small

gains should be expected, such as bottlenecks from synchronizing shared data or

instruction scheduling for applications that are already extremely efficient in their

scheduling [8].

This processor’s architecture is illustrated in Figure 22 below. The test system has

8GB of RAM and is running openSUSE 13.1 x86_64 Linux as the OS, which is the

latest and most up-to-date OS

Threading are supported in this version of openSUSE and both

kernel and BIOS for the execution of these programs

C++ 11 was used for all programming and the

supports compilation of all C++11 features.

package was used which provides

only libraries used in this project.

Development Environment (

previously and were converted to parallel algorithms for this project.

Figure

date OS available from openSUSE. Multithreading and H

supported in this version of openSUSE and both were enabled in the

for the execution of these programs.

C++ 11 was used for all programming and the GCC 4.8.1 compiler was used which

all C++11 features. The libstdc++-devel 4.8-2.1.2 library

provides the necessary C++11 libraries, and these

only libraries used in this project. QtCreator 2.8.1 was used as an Integrated

Development Environment (IDE). All of the serial algorithms were developed

and were converted to parallel algorithms for this project.

Figure 22 Test Architecture Diagram [10]

40

Multithreading and Hyper-

enabled in the

was used which

2.1.2 library

, and these were the

Integrated

eloped

41

Debugging and program profiling were completed using several tools within Valgrind

3.9.0. These were Helgrind for multithread debugging, Memcheck for memory

management debugging and profiling and Callgrind for function and execution time

profiling.

For all of these programs, GCC compilation flags were used. The –std=c++11 flag

was used as the compiler currently supports the old and new standards and will

default to old standard without this flag. The –O3 optimization flag was used for

timing tests to ensure that the compiler optimized the code by rearranging it as

needed. The –g flag was used for debug runs with Valgrind since it provides more

detailed output from the debugging tools.

42

Chapter 6: Experimental Results

6.1 Performance Profiling With Valgrind

Valgrind is a suite of tools that is commonly used by developers to characterize

performance within a program and to identify issues associated with several

programming errors. One Valgrind tool called Callgrind helps determine how much

time a given function takes up in a program’s execution or how many times a function

is called during program execution [5]. This information can be helpful in identifying

where parallel code can be implemented in a program since the areas that take the

most time to run are potential candidates for large performance gains with parallel

coding. Since all of the programs covered in this study spawn threads that run at

high levels, function timing profiling was not necessary, but Callgrind outputs were

still observed to confirm the programs behaved as expected. Kcachegrind is a GUI

tool in Linux that displays Callgrind outputs in graphical form, making it much easier

to visualize the results from the Callgrind runs. A sample Callgrind run from the ANN

Planetary Lander problem, run with 4 threads, is shown in kcachegrind in Figure 23

below.

43

Both of the zoomed callouts from Figure 24 show the same information displayed in

two formats. The callout on the left shows all of the significant function calls. The top

function call start_thread and the lander::solve() functions both show that 99.99% of

the time running the program is used within thread calls. This is consistent with the

workload in this problem since the lander::solve() function is a top-level function used

Figure 23 Sample Kcachegrind Run

44

to spawn the threads and it is also expected that start_thread is the first call. Most of

the lander::solve() execution time, 91%, is spent calculating the ANN outputs for burn

and thrust with the function call ann::calcOutputs(). 47% of the time in

ann::calcOutputs() is used calling the cmath tanh function which is obviously very

time consuming. The rest of the time spent in the ann::calcOutputs() function is spent

feeding the inputs through the ANN and calculating the resultant outputs. Callgrind

and especially Kcachegrind make it much easier for the programmer to understand

how time is being used in a program and can help identify areas where inefficiencies

exist.

Memcheck is another tool within Valgrind which is used to identify memory issues

such as improper initialization and leaks due to improper allocation and freeing of

memory. It can also show memory usage statistics such as the total heap usage

during a run [5]. Since shared pointers were used in place of dumb pointers when

memory allocations were needed, it was expected that memory management issues

would not exist, but Memcheck was used to ensure this was the case and to ensure

that other non-pointer initializations were handled properly. A sample Memcheck run

from the BFS Pathfinding problem, running with 4 threads, is shown below in Figure

24. This problem creates a shared pointer for each node that is created.

45

Figure 24 Sample Valgrind Memcheck Run

Notice that there are no errors and that all of the allocated memory in the heap was

freed. This ensures the programmer that no memory leaks exist. There is also a heap

usage summary which shows how many total bytes of memory are allocated in the

heap. This statistic does not show real-time heap usage, but another Valgrind tool

called Massif is available if real-time sampling of the heap is needed [5]. The total

heap usage for all of the cases in this study are small so further information was not

gathered.

The last Valgrind tool that was used was Helgrind which is a multithreading tool that

was used for debugging the multithreaded code. Helgrind identifies potential errors in

pthreads parallel programs, and the C++11 thread libraries make use of pthreads at

the core, so this tool was ideal for these cases and was used to identify deadlocks

and race conditions. Race conditions are notoriously difficult to track down since they

either occur rarely or do not pose obvious differences in the outcome of the program

46

execution. Deadlocks are usually obvious since they will lock up the program during

execution. Several race conditions were found, mostly due to improper locking of

read accesses and were easily corrected with Helgrind outputs. Helgrind also has

many false positives when dealing with atomic variables since it currently sees them

as regular variables. As a result, Helgrind expects locking mechanisms to be used for

reads and writes to the atomic variables and produces errors as a result. Atomic

variable reads and writes are guaranteed to be thread-safe in C++ 11 [11], so these

warnings were disregarded. Helgrind can be configured to suppress specific outputs

such as this one to ease troubleshooting for the programmer. A sample Helgrind

output from the ANN Planetary Lander problem running with 2 threads is shown

below in Figure 25.

A thread announcement is printed for the creation of each new thread. There is also

a possible data race error shown which is labeled as a potential conflict by one

thread reading a memory location while another thread is writing to it. This error

message can indicate a race condition where a mutex was not properly included to

restrict the access to that data. After the lines telling whether the conflict is related to

a read or write access, the output tells whether or not a lock was held by either

access. In this case, both of the accesses do not hold a lock. The next line below

that shows a trace to help identify why this error is occurring, starting with the most

recent function call and working back to the highest level function call. Notice the

right side of the first line of the trace indicates that in the lander::solve() function, an

error is observed relating to the atomic_base header file which is a C++ 11 header

file for atomic variables. This same file is referenced by both accesses to the data

47

and indicates that Helgrind thinks that a data race is occurring with an atomic

variable.

Figure 25 Sample Valgrind Helgrind Run

48

As stated previously, Helgrind does not currently deal well with atomic variables in

C++ 11 since they do not use the mutex locking mechanism that is typically expected

to avoid race conditions. The C++11 standards have ensured that the memory model

within C++11 handles atomic variables in a way that will not allow race conditions

[11]. In the error summary, there are 2 errors shown from 1 context which indicates

Helgrind has seen 2 errors related to the one and only atomic context that was

printed. Notice also that many errors are suppressed by Helgrind by default. Although

Helgrind cannot currently handle all cases related to multithreading code, especially

those where locking is used more than necessary, it is still useful in identifying

potential issues. One must pay close attention to errors and understand which ones

are potential hazards and which ones are related to shortcomings in the error

detection.

6.2 Thread Performance Comparisons

Each program was created to run with a user-defined number of threads and was

designed for parallel execution. Multiple runs were completed for each problem to

benchmark several statistics. Average execution time, speedup, efficiency, total

memory usage, average best fitness and memory frees and allocations are all

compared between runs. For cases where the fitness is determined by the random

number generation, such as the Hill Climbing and Deciphering Encryption problems,

set iteration cutoffs were used instead of fitness cutoffs to ensure that runs were fair

between varying thread numbers in terms of execution time. For Connect 4, runs

were completed for 1 to 7 threads and a constant time was then used for values

above 7 since the design for that problem is bound by the number of columns, which

49

is 7. For all other problems, runs were completed for 1 to 8 threads in 2n increments.

Interpolation was applied in Matlab between these values to create smoother curves

for the analysis plots. Figure 26 below shows the average execution time for varying

threads on all of the problems. The average execution time was calculated over 10

runs for each thread value. On all of the programs, the execution times drop from 1 to

4 threads and then taper off for thread values above 4. The Connect 4 average

execution time has a curve that is not smooth due to the implementation that was

used. Because the number of columns could not be evenly distributed for all thread

values, some runs have asymmetric execution times that are directly associated with

the asymmetric column distributions. As described in Section 3.3 Game Playing:

Connect 4, the chosen implementation distributes the evaluation of AI moves by

columns as shown below in Table 5. The distribution of work is the number of

columns, which is 7 for Connect 4, divided by the number of threads used, and the

remainder is then handed to out to as many threads as needed to take care of the

remaining columns:

7 / 2 = 3 r.1 7 / 4 = 1 r.3

For a run with 2 threads, the first thread evaluates the minimax algorithm for columns

1-3 and 7. The second thread evaluates the algorithm for columns 4-6. An

asymmetry occurs when a remainder must be distributed among the threads, and this

additional workload becomes a bottleneck to the execution time. This implementation

was chosen since it made the parallel distribution of the workload much simpler to

program than other methods.

50

Table 5 Connect 4 Multithread Program Work Distribu tion

Total
Threads

Thread
Number

Columns
Per

Thread
Remainder Columns

Covered

1 1 7 0 7

2
1

3 2
1 , 2, 3, 7

2 4, 5, 6

4

1

1 3

1, 5
2 2, 6
3 3, 7
4 4, 7

7 1 - 7 1 0 1

Figure 26 Average Execution Time Using 1 to 8 Threa ds for All Programs

51

The average execution time is an important measure when looking at multithreading,

but the speedup and efficiency values are much more useful when trying to

determine performance gains. Speedup is the serial execution time divided by the

parallel execution time [1]. The highest theoretical speedup for a run is equal to the

number of threads where a 2 thread run shows a speedup of 2. The speedup values

for all of the programs with various thread counts are shown below in Figure 27.

Figure 27 Speedup Using 2 to 8 Threads for All Prog rams

This speedup plot helps in deriving many useful conclusions. Note that there is an

additional set of runs called Pathfinding BFS Multi-Run. These runs were added to

52

compare multithreaded execution at the OS process level. For varying thread

numbers, runs of the Pathfinding BFS program were executed as separate

processes. The values from these runs indicate running multiple single-threaded

processes of the program at the same time as opposed to running several threads

within the program. Using this method, all of the speedup values are based solely on

the hardware and OS since internal program locking and synchronization between

multiple threads will not exist. By comparing these runs to the multithreaded runs

inside the program, one can see how much the speedup values are affected by the

hardware and OS as opposed to the internal locking mechanisms associated with

mutex and atomic variables.

Note that the external multithread runs and internal runs for the Pathfinding problem

are almost identical in speedup values and that the speedup values for runs with 2

and 3 threads yield speedup values of approximately 2 and 3. The speedup value

stays close to 3.5 for runs where 4 or more threads are used. This outcome shows

that the speedup values are limited by the hardware and OS and almost unaffected

by the locking and synchronization for this particular problem. Remember that the

tested processor only has 4 cores and these results are consistent with 4 cores once

you take into account the system-level processing that is taking place within the OS

while the runs were being tested.

In the Pathfinding BFS curve, it appears that mild speedup increases occur from 4 to

8 threads, but these gains are not indicative of the gains one would expect with an 8

core system. These limited gains show that the Hyper-Threading technology does not

improve the performance to the level of an 8 core system, but there are still modest

53

gains when using the logical processors. The apparent speedup increase due to

Hyper-Threading is shown below in Table 6. In all cases, the Hyper-Threading

improves the results, but the improvements are limited due to the fact that there are

only 4 physical cores on the test system. Another explanation for the modest gains is

that thread contention increases as the number of threads used increases and they

all begin competing for access to the shared variables. This contention grows quickly

in all of these programs since frequent synchronization operations must be used.

Thread contention would yield diminished results for 8 physical cores as well.

Table 6 Apparent Hyper-Threading Speedup for All Pr ograms

Problem Threads Cores
Apparent Hyper -

Threading Speedup
Increase %

ANN Planetary Lander 8 4 36.06
Connect 4 8 4 10.46

Deciphering Encryption 8 4 10.64
Transmission Towers 8 4 2.58

Pathfinding BFS 8 4 4.80
Pathfinding Multi-Run 8 4 3.21

The ANN Planetary Lander results are misleading because of the random elements

used in the program. Using an iteration limit, it was expected that the runs would be

consistent in execution time, but closer observation showed that there is no way to

mitigate the impact of the randomness on the execution time since they are

interconnected. For example, one iteration is equivalent to one landing, but some

runs land much faster than others due to the varying of ANN weight values. Some

weight values cause the lander to execute little or no burn or thrust values, causing

the lander to crash quickly due to acceleration from gravity. Other weight values

54

cause the lander to run burn or thrust values that are too high which cause the lander

to overcome gravity, increase altitude and then crash later after the fuel runs out and

the gravity overtakes the vehicle’s upward speed. Combining these two cases will

cause large fluctuations in the execution times between iterations, especially since

they happen with completely random frequency. Using a Gaussian random number

generator would probably yield better results for execution times, but it is not ideal for

the search which should be uniformly random. Regardless of the randomness, it is

easy to see that the ANN Planetary Lander speedup is increased as threads are

increased, but the noise involved in the random number generation makes it difficult

to pinpoint how reliable these speedup values are.

Since the two Pathfinding curves match closely, they are a good baseline of

comparison for the other programs. Notice that all of the other programs, excluding

the ANN Planetary Lander, have similar speedup curves to the Pathfinding curves,

but they have decreased speedup values as the number of threads increases. These

differences can be attributed to inefficiencies related to locking, synchronization or

design. For example, the Connect 4 program has much worse speedup values for all

thread numbers, but this is expected since the program was designed to for simplicity

more so than efficiency. Even though the Connect 4 program is not as efficient as the

other programs, it still yields good results by increasing speedup to almost 3 using 7

threads. This speedup is near the maximum speedup value of 3.5 observed by the

Pathfinding program.

As a side note, the original implementation of the Pathfinding program put the

consumer threads to sleep to simulate work for determining the terrain costs for a

55

move. This was eventually changed to arbitrary calculations that keep the threads

busy since it was found the speedup results were misleading with the use of thread

sleeping. When a sleep is used, a thread is not busy and can be used for other work,

which is quite desirable in many cases. In this case, it made the speedup results look

as though they exceeded limits imposed by the processor architecture. It was found

that using sleep calls, all 4 processor cores were not fully used until the program was

run with 32 threads. Arbitrary calculations were added to ensure that comparisons

between programs were uniform.

The efficiency value divides the speedup by the number of threads used on a run to

give a value between 0 and 1 [1]. A value of 1 indicates 100% efficiency and is the

highest theoretical efficiency that can be obtained. Efficiency values for all programs

are shown below in Figure 28. Since efficiency values are calculated using speedup

values, the results are based on the same data as the previous speedup plots but

displayed in a different manner.

56

Figure 28 Efficiency Using 2 to 8 Threads for All P rograms

The speedup and efficiency values for the two Pathfinding runs are shown below in

Table 7 to give a clearer view of how close the different methods of execution were.

Table 7 Speedup and Efficiency Comparison Between P rogram and OS

Problem Threads Parallel
Speedup

Parallel
Efficiency

Pathfinding BFS
2 1.9 0.94
4 3.4 0.85
8 3.6 0.45

Pathfinding Multi-
Run

2 1.9 0.97
4 3.4 0.84
8 3.5 0.44

57

Plots of total memory allocated to heap space for thread runs from 1 to 128 are

shown below in Figure 29. Notice that the memory increases as the threads increase

but by a very small amount. These plots show that there are limited additional

memory resources used in multithreading for all of the cases covered in this study.

Additional analysis plots and statistics are available in Appendix C – Additional

Analysis Plots and Statistics.

Figure 29 Total Memory Using 1 to 128 Threads for A ll Programs

58

Chapter 7: Conclusions

The majority of time investment for this research was devoted to learning how the

new C++11 multithread libraries and the atomic memory model work. Several

experiments were then run to understand how to apply these concepts and create

usable programs. Once a programmer has a firm grasp of how to make use of the

tools, many of the concepts covered in this research can be implemented with

modest programming efforts. The most important aspect to consider when creating a

multithreaded program is the design. A simple design can oftentimes create large

performance gains without requiring too much refactoring as was demonstrated in

Section 4. The programs covered here have a small scope and there can be

potential issues when scaling the same concepts to much larger projects where

threads may need to be shared across multiple classes and functions. Some of these

issues were seen in these programs when threads were shared across many

functions, but altering the scope of variables was easily accomplished to make use of

the shared nature of class objects.

Taking the cost and benefits of multithread implementations into account, the benefits

gained from implementing parallel code were well worth the effort for all of the cases

covered in this research. As shown in Section 6.2, all of the programs provided high

speedup values compared to the boundaries imposed by the processor architecture

and OS.

I would recommend using thread-level parallelism to decrease the execution time of

all of these and similar algorithmic programs since they rely heavily on repetitive

iteration, which makes designing parallel programs straightforward based on the

59

iterative tasks as demonstrated in Section 4. The algorithms can also be restructured

in a more generic way to be reused many times, with each use building greater value

on the implementation.

60

References

[1] P. S. Pacheco, An Introduction to Parallel Programming, Burlington: Elsevier,
2011.

[2] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Berlin,
Germany: Springer-Verlag, 2003.

[3] S. Russell, P. Norvig, Artificial Intelligence A Modern Approach, 3rd ed. New
Jersey: Pearson, 2010.

[4] S. Haykin, Neural Networks and Learning Machines, 3rd ed. New Jersey:
Pearson, 2009.

[5] Valgrind Developers (2013, Oct.). Valgrind Documentation. [Online]. Available:
http://valgrind.org/docs/manual/manual.html

[6] J. L. Hennessy, D. A. Patterson, Computer Architecture A Quantitative
Approach, 4th ed. Oxford: Elsevier, 2007.

[7] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips
(2008, May). GPU Computing: Graphics Processing Unit – powerful,
programmable, and highly parallel – are increasingly targeting general-
purpose computing applications [Online]. Available: http://cs.utsa.edu/~qitian/
seminar/Spring11/03_04_11/GPU.pdf

[8] A. Valles (2009, Nov.). Performance Insights to Intel Hyper-Threading
Technology [Online]. Available: https://software.intel.com/en-us/articles/
performance-insights-to-intel-hyper-threading-technology

[9] T. Tian and C. Shih (2012, Mar.). Software Techniques for Shared-Cache
Multi-Core Systems [Online]. Available: https://software.intel.com/en-us/
articles/software-techniques-for-shared-cache-multi-core-systems

[10] Intel Corp. (2013, Jun.). 2nd Generation Intel Core Processor Family Desktop,
Intel Pentium Processor Family Desktop, and Intel Celeron Processor Family
Desktop Datasheet [Online]. Available: http://www.intel.com/content/www/
us/en/processors/core/2nd-gen-core-desktop-vol-1-datasheet.html

[11] B. Stroustrup, The C++ Programming Language, 4th ed. New Jersey: Pearson,
2014.

61

Appendix A – Glossary of Terms and Acronyms

Alpha-Beta Pruning – search method used to minimize the number of tree nodes that
must be expanded and searched by pruning away unnecessary branches

Application Programming Interface (API) – used in programming to specify how
software components should interact with each other

Arithmetic Logic Unit (ALU) – a digital circuit that performs integer arithmetic and
logical operations

Artificial Intelligence (AI) – the field of science dedicated to understanding and
building intelligent entities

Artificial Neural Network (ANN) – implementation based on the neuroscience
hypothesis that mental activity consists primarily of electrochemical activity in
networks of brain cells called neurons

Breadth First Search (BFS) – complete search that expands the shallowest nodes
first and is optimal for unit step costs, but has exponential space complexity

Concurrent Processing – a program where multiple tasks can be in progress at any
instant

Central Processing Unit (CPU) – traditional single processor, also referred to as a
core on a multicore system

Crossover – the process of selecting portions of each parent to create a successor in
GA’s

Efficiency – Speedup divided by the number of threads used to run a task

First In First Out (FIFO) Queue – a queue where the first item pushed is the first to be
popped and an item is pushed to the back of the queue and popped from the front of
the queue much like a line at a store

Fitness – a measured value of how good a given implementation is, used as
reinforcement for learning

Genetic Algorithm (GA) – Search where successor states are generated by
combining two parent states rather than by modifying a single state

General Purpose Graphics Processing Unit (GPGPU) – GPU ALUs on a single GPU
core use SIMD parallelism, but the cores of current GPUs can execute independent
instruction streams, behaving like an MIMD system, exhibiting hybrid characteristics

62

Heuristic – function that estimates the cost of an implementation or move
Hill climbing – search that continually moves in the direction of increasing value
(uphill)

Hyper-Threading – Intel technology that uses processor resources more efficiently,
enabling multiple threads to run on each core by allowing one physical core to
present two logical cores to the operating system

Integrated Development Environment (IDE) – a software application that provides
comprehensive facilities to programmers for software development

Learning – improvement of performance on future tasks after making observations
about an environment

Minimax – a recursive algorithm that selects a min or max value dependent on the
depth of the tree node it is evaluating, used in gameplay

Multicore – multiple cores on one chip where each core is a relatively simple,
complete processor

Multiple instruction streams, multiple data streams (MIMD) – each processor has its
own instructions and operates on its own data, exploits thread-level parallelism

Multiprocessor – more than one multicore processor in a system, typically used in
servers

Multithread – the use of multiple threads of control within a single process

Mutation – the process of selecting an element within a member and changing its
value in GA’s

Parallel Processing – a program where multiple tasks cooperate closely to solve a
problem

Parallel Programming – programming strategy that makes use of multiple cores

Population – Collection of individuals or solutions used in GA’s

Resource Acquisition Is Initialization (RAII) – technique for managing resources with
local objects by calling a destructor independently of whether a function is exited
normally or because of an exception

Reinforcement Learning – learning where reinforcements such as rewards and
punishments are used to drive the learning process

Searching – the process of looking for a sequence of actions that reaches a goal

63

Simulated Annealing – search that combines hill climbing with a random walk by
using a heating / cooling schedules and a temperature value with some probabilistic
acceptance criteria

Single instruction stream, multiple data streams (SIMD) – the same instruction is
executed by multiple processors using different data streams

Speedup – the execution time of a serial task divided by the execution time of a
multithreaded task

Standard Template Library (STL) – a framework of algorithms and containers used in
C++ since the 1998 standard

Supervised Learning – learning based on a training set of input-output pairs

Thread – a thread of control, which is a sequence of statements in a program

Thread-Level Parallelism – parallelism through the simultaneous execution of
multiple threads, providing coarse-grained control over parallel execution

64

Appendix B – Pseudocode

Hill Climbing with Simulated Annealing: Transmissio n Tower Placement

Main{
Create hillclimb class object ;
Spawn_threads(hillclimb::solve());
Join_threads;

}

Hillclimb::solve(){

While (count < count_limit){
Count++;
Local_count++;
If (local_count > local_count_limit) local_temper ature = start_temperature; // heating for annealing per
thread
Mutate_random_transmitter_x_or_y();
Fitness = getFit();
If (random_unit_draw) < e^ ((fitness – best_fit ness) / temperature){

Best_fitness = fitness; // atomic variable update, no lock needed
X_transmitter_lock.lock(); // unique locks used
Best_x_transmitter_positions = mutated_x_transmitte r_positions
X_transmitter_lock.unlock();
Y_transmitter_lock.lock();
Best_y_transmitter_positions = mutated_y_transmitte r_positions;
Y_trasmitter_lock.unlock();

}
Else{

X_transmitter_lock.lock();
Mutated_x_transmitter_positions = best_x_transmitte r_positions;
X_transmitter_lock.unlock();
Y_transmitter_lock.lock();
Mutated_y_transmitter_positions = best_y_transmitte r_positions;
Y_trasnmitter_lock.unlock();

}
Local_temperature = local_temperature / cooldown; / / cooldown schedule determined by cooldown
variable

}

Pathfinding: Breadth First Search

Main{
Create frontier class object ;
Spawn_producer_thread(frontier::produce());
Spawn_consumer_threads(frontier::consume());
Join_consumer_threads;
Join_producer_thread;

}

Frontier::produce(){

While(done == false){
Wait_for_produce_condition_variable_notify(produce r_lock); // acquire unique_lock producer_lock
when

// notified
Parent = producer_queue.front(); // parent is a sha red pointer used as a holder
Prodcuer_queue.pop();
Producer_lock.unlock();
Generate_child_states_from_parent;
Consumer_lock.lock();

65

Consumer_queue.push(child);
Notify_consumers_with_notify_condition_variable;
Consumer_lock.unlock();

}
}

Frontier::consume(){

Wait_for_consume_condition_variable_notify(consume r_lock);
Child = consumer_queue.front(); // child is a share d pointer used as a holder
Consumer_queue.pop();
Consumer_lock.unlock();
Apply_child_action_and_apply_move_cost;
Traveled_lock.lock();
Update_traveled_location_map; // prevents duplicate moves from being applied, saves time
Traveled_lock.unlock();
If (goal_has_been_reached) done = true;
While(child_operation != next_operation) thread_sl eep (1 nanosecond); //poll for status, this is use d to

// synchronize the moves as a
// serial execution would do

Producer_lock.lock();
Producer_queue.push(child);
Notify_producer_with_notify_condition_variable;
Producer_lock.unlock();

}

Game Playing: Connect 4

Main{
Create connect4 class object ;
Connect4::solve();

}

Connect4::solve(){

While(done == false){
AlternateTurn();
GetMove();
DoMove();
ShowBoard();
CheckForDraw();
If (draw == true) done = true;
TestForWin();
If (win == true) done = true;
If (done == true) playAgain(); // ask player if h e / she would like to play again, if yes, reset gam e and
set

// done back to false
}

}

Connect4::getMove(){

If (it_is_human_move) get_and_execute_human_move;
Else{

Spawn_threads(connect4::threadMinimax()); // get AI move
Join_threads;

}
}

Connect4::threadMinimax(){

Best_fitness = 0;
Update_best_lock.lock(); // unique_lock

66

Local_game_state = game_state; // set each thread’s game states to those of current game state
Update_best_lock.unlock();
Assign_search_branches_evenly_to_each_thread;
Local_fitness = Execute_search_for_my_branches; // gather heuristics, apply minimax, apply alpha-beta

// pruning, and get a best move and best
fitness
// for this thread’s search

If (local_fitness > best_fitness){
Best_fitness = local_fitness; // atomic so no lock needed
Update_best_lock.lock();
Game_state_score = local_score; // synchronize calc ulated best score found by this thread to the

// game state
Game_state_next_move = local_next_move; // synchron ize the best next move found by this thread to

// game state
Update_best_lock.unlock();

}
}

Genetic Algorithm: Deciphering encryption

Main{
Create geneticAlgorithm class object ;
Spawn_threads(geneticAlgorithm::solve());
Join_threads;

}

geneticAlgorithm::solve(){

While (count < count_limit){
Count++;
runTournament();
if (keygen_threshold_reached){

replace_loser_keys_with_random_keys();
get_new_key_fitness();
fitness_update_lock.lock(); //unique_lock
if (new_key_fitness < best_individual_fitness) be st_individual_in_population = new_key_individual;
fitness_update_lock.unlock();

}
Else if (crossover_threshold_reached){

replace_loser_keys_with_crossover_keys(); // crosso ver performed by combining two random
parents

// from population
get_new_key_fitness();
fitness_update_lock.lock();
if (new_key_fitness < best_individual_fitness) be st_individual_in_population = new_key_individual;
fitness_update_lock.unlock();

}
if (mutate_threshold_reached){

mutate_key_of_random_individual();
get_new_key_fitness();
if (mutated_key_fitness < original_key_fitness){
fitness_update_lock.lock();
update_individual_key;
if (new_key_fitness < best_individual_fitness) be st_individual_in_population = new_key_individual;
fitness_update_lock.unlock();
}

}
}

}

67

Artificial Neural Network: Planetary Lander

Main{
Create lander class object ;
Spawn_threads(lander::solve());
Join_threads;

}

lander::solve(){

While (count < count_limit){
Count++;
setANN(); // set initial values for landing attempt
while (lander_has_not_landed){

updateLander(); // update over and over until landi ng or crash has been completed
testLanding(); // test to see if landing or crash h as occurred

}
ANN_lock.lock(); //unique_lock
Calculate_my_thread_ANNFitness(); // must be locked since the fitness value can also be written

// elsewhere
ANN_lock.unlock();
train();

}
}

Lander::train(){

If (my_thread_ANN_fitness >= best_ANN_fitness){
Best_ANN_lock.lock(); // unique_lock
Best_ANN_nodes = my_thread_ANN_nodes;
Best_ANN_fitness = my_thread_ANN_fitness;
Best_ANN_lock.unlock();

}
Else if (reset_criteria_met){ // we are stuck, r andom reset everything
ANN_lock.lock();
ResetANNWeights();
all_other_thread_ANN = my_thread_ANN;
ANN_lock.unlock();
Best_ANN_lock.lock();
Best_ANN = my_thread_ANN;
Best_ANN_fitnes = -100000; // reset best fitness
Best_ANN_lock.unlock();

}
Else{

ANN_lock.lock();
My_thread_ANN_nodes = Best_ANN_nodes;
ANN_lock.unlock();

}
My_thread_ANN_randomize(); // update random weight with random value;
ANN_lock.lock();
My_thread_ANN_fitness = 0; // reset fitness to setu p for new landing attempt

}

68

Appendix C – Additional Analysis Plots and Statisti cs

Table 8 Speedup and Efficiency Stats for All Progra ms Except Pathfinding*

Problem Threads Parallel
Speedup

Parallel
Efficiency

ANN Planetary
Lander

2 2.1 1.05
4 2.8 0.69
8 4.3 0.54
16 4.1 0.25
32 4.4 0.14
64 4.6 0.07

128 4.4 0.03

Connect 4

2 1.7 0.84
3 2.1 0.69
4 2.7 0.67
5 2.5 0.49
6 2.5 0.41
7 3.0 0.43

Deciphering
Encryption

2 1.9 0.94
4 3.0 0.75
8 3.4 0.42
16 3.4 0.21
32 3.4 0.10
64 3.3 0.05

128 3.3 0.03

Transmission
Towers

2 1.9 0.95
4 3.0 0.76
8 3.1 0.39
16 3.3 0.20
32 3.3 0.10
64 3.3 0.05

128 3.2 0.03

*For Pathfinding Speedup and Efficiency Stats, see Table 7.

69

Figure 30 Memory Allocs / Frees Using 1 to 128 Thre ads for All Programs

70

Figure 31 Average Best Fitness for Deciphering Encr yption (Top)

and Transmission Tower Placement (Bottom)

