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Abstract 

This study demonstrates a practical implementation of selected Artificial Intelligence 

computations using thread-level parallelism with C++11 on a four-core processor, 

with a primary goal of reducing execution times. These programs spend a large 

percentage of the execution time searching and learning, both of which can benefit 

from the speed advantages offered by thread-level parallelism. As computer 

hardware architectures have moved from serial execution to concurrent 

multithreaded execution, new software programming techniques are needed to take 

advantage of concurrent hardware. C++11 is a new C++ standard with many new 

features and this study will focus on applying the new multithreading libraries 

including the new atomic memory model available in C++11 to solve these problems. 

Serial and multithreaded programs are compared in terms of execution time and 

programming effort to help determine when thread-level parallel designs should be 

considered.
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Chapter 1: Background 

Despite decades of increasing processor performance, there are still many current 

problems that require even greater processing capability than a single processor can 

provide such as drug discovery, climate modeling and big data analysis as stated in 

[1].  As single processor performance has increased by Moore’s Law in terms of 

execution frequency, the power consumption and associated heat have also 

increased. As frequency scaling continued, the increase in heat grew to a point 

where unreliable processor behavior existed, and this heat threshold has become the 

upper limit for scaling the frequency.  Increases in transistor density can still be 

realized, so processor designers began attaching multiple single processors to the 

same chip, yielding the current standard of multicore processors, where core is 

synonymous with a Central Processing Unit (CPU) [1]. Since parallelism, including 

multicore, constitutes the current path forward toward increasing processor 

performance, industries requiring increased computational power have shifted to 

parallel programming techniques including execution of multiple, concurrent process 

instances at the operating system (OS) level.  Multiple concurrent processes are 

helpful when multiple programs must be executed at once, but they do not speed up 

the execution of a single program instance. To increase the performance of a single 

program, parallel programming techniques must be applied, using programming 

language libraries to facilitate interaction with the multicore hardware [1]. 
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Chapter 2: Types of Parallelism 

Data-level parallelism uses a single instruction, multiple data streams (SIMD) 

architecture, where the same operation is executed on multiple data items in parallel. 

In SIMD computers, each processor has its own memory, but there is a single 

instruction memory and a single control processor. Vector machines are the largest 

class of SIMD architectures, where a traditional Graphics Processing Unit (GPU) is a 

vector machine that is used to handle dedicated processing for high performance 

graphics needs [6]. In graphics, the same operations are applied repeatedly to 

streams of data to create complex graphics objects from basic building blocks such 

as triangles and lines, tasks that are ideal for the SIMD model. 

Thread-level parallelism uses a multiple instruction streams, multiple data streams 

architecture (MIMD). In this architecture, each processor has its own instructions and 

operates on its own data. Since multiple threads operate in parallel, this architecture 

exploits thread-level parallelism [6]. The test computer used in this research is an 

MIMD computer with four processors (cores), each capable of executing two threads 

per core. As MIMD suggests, each core has its own instructions and memory 

allowing for thread-level parallel tasks to be run simultaneously. Since thread-level 

parallelism is generally more flexible than data-level parallelism, it is generally more 

applicable to diverse implementations [6].  Since this research addresses parallel 

programs for differing AI computations, thread-level parallelism is well-suited to tackle 

the various parallel designs needed for all of the problems. 

Hybrid parallel implementations exist, such as General Purpose Graphics Processing 

Units (GPGPUs) which can be used for general purpose computations by using a 
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non-graphics application programming interface (API) such as NVIDIA’s CUDA which 

allows the GPU to be programmed using C constructs [7].  GPU Algorithmic Logic 

Units (ALUs) on a single GPU core use SIMD parallelism, but the cores of current 

GPUs can execute independent instruction streams, behaving like a MIMD system 

[1]. 

Each of these choices – SIMD, MIMD, or hybrid – requires an investment in hardware 

purchase and software development. This thesis will focus on MIMD parallelism. 

We focus on the use of thread-level parallelism to reduce the execution time required 

by algorithms to maintain high efficiency and increase speedup relative to the serial 

programs.  The speedup value is a direct measure of the performance benefit gained, 

but it comes with costs associated with software development.  Speedup can be 

justified when programming efforts in real-world cases use code that is frequently 

applied and reused over time and in programs that require long execution times. A 

quantitative measurement can be made by calculating a programming efficiency 

value which is used to determine if a multithread implementation is worth the efforts 

to develop it. The programming efficiency value Eprogramming was derived by the author 

and is calculated as: 

 

Equation 1 Programming Efficiency Calculation 
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The sum is over the lifecycle of the code and the efforts are justified when efficiency 

values exceed 1.0. For real-time programs, it is the author’s opinion that qualitative 

justification may outweigh any quantitative factors since increasing the quality of an 

answer in a real-time program through multithreading may allow more calculations 

per calculation cycle, yielding better answers. Determining the added value gained by 

using a multithread program over a serial program requires estimates beforehand 

that may not be exact, so expert judgment is a viable measurement for decision-

making in the real-world. 
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Chapter 3: Selected Artificial Intelligence Computa tions 

This section covers the selected problems along with the serial designs and 

implementations used to study the effects of multithreading in C++ 11 on a subset of 

AI algorithms. Table 1 below shows a summary of the problems, associated data 

structures, algorithms used and goal solutions. 

Table 1 Summary of Problems, Data Structures, Algor ithms and Goals 

Problem Data Structures Algorithm Goal 

Transmission 
Tower 

Placement 

2-D graph with 
transmitter placements Hill Climbing with 

Simulated 
Annealing 

Achieve a global or 
near-global optimal 

coverage of receivers 2-D graph with receiver 
placements (static) 

Pathfinding 

2-D map representing 
the terrain and 
environment 

Breadth First 
Search, realized 

with a First In First 
Out Queue 

Find a path to the goal 
state on the 2-D map 
from the start state Tree to realize search 

states 

Connect 4 

Game board to keep 
track of the current 

game state 

Recursive Minimax 
search with Alpha-

Beta Pruning 
A win for the AI player 

Test board to simulate 
moves and perform 

heuristic evaluations on 
the AI moves 

Tree to realize all 
moves to a user-defined 

depth 

Deciphering 
Encryption 

Population of keys Genetic Algorithm 
with mutation, 
crossover and 
random key 
generation 

Find a key that 
decrypts a cipher 
passage into an 
English passage  

Tournament to evaluate 
keys 

Planetary 
Lander 

Artificial Neural Network 
that takes various 

inputs from the lander 

Hill climbing with 
random restarts 

Train the lander to 
successfully land in an 

environment with 
random wind 

 

 



6 

 

3.1 Hill Climbing with Simulated Annealing: Tower P lacement 

Hill climbing is a search algorithm that continually moves in the direction of increasing 

fitness, which is uphill in a “problem space” [3].  One of the major challenges to this 

search occurs when a problem space has numerous peaks varying in fitness values 

as shown in Figure 1 below. When the top of a peak is found there are no adjacent 

states that are better, so the other peaks in the problem are not considered, causing 

the search to potentially get stuck at a non-optimal peak which is commonly referred 

to as a local optimum. One way to handle this issue is simulated annealing, a search 

that combines hill climbing with a random walk which can yield both efficiency and 

completeness [3]. 

 

Figure 1 Local and Global Optima 

 

In this problem, 30 transmission towers are used to cover as many receivers as 

possible within 129 US and Canadian cities using only hill climbing and simulated 

annealing in 2-D space.  The units are not to the scale of the actual US and 

Canadian city locations but are meant to symbolically represent cities for the sake of 
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the problem relevance.  Each transmission tower covers a radius of 1 unit and one 

transmission tower must cover multiple cities if possible, since there are many more 

receivers than towers.  The towers are initially placed randomly and then moved 

around using hill climbing and simulated annealing until a desired number of search 

iterations is completed.  The fitness value is calculated based on how many cities are 

covered by the towers and by the distance of the closest receiver to a transmitter, 

and vice versa.  This problem has many local optima so it requires simulated 

annealing to search widely which increases the likelihood of finding the global 

optimum.  

The program entails five key elements: random transmitter placement for 

initialization, cumulative fitness evaluation of all the transmitter positions relative to 

the receiver positions, simulated annealing to get out of local optima, movement of 

the transmitter positions to search by hill climbing and checking for a goal state, 

which indicates completion of the run.  The goal state in this problem is a user-

defined count limit, and the run is complete when the number of iterations completed 

equals the count limit value. After the transmitters are randomly placed at initial 

locations, one transmitter is selected each search iteration, moved by a random x or 

y value and the fitness of the new transmitter location is evaluated. If a better fitness 

is found than the current best fitness, the new transmitter location is stored as the 

best location for that transmitter and the best fitness value is updated. Otherwise, the 

transmitter is returned to its previous position.  Simulated annealing is achieved using 

a temperature value with a warming and cooling schedule. A random unit generator 
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is used to get a random double from 0 to 1 which is compared to the annealing value. 

The annealing value was chosen by the author and is shown below in Equation 2. 

 

Equation 2 Annealing Calculation  

The delta value is the difference between the most recent fitness calculated and the 

best fitness. If the current fitness is better than the best fitness so far, delta will be a 

positive value and the annealing value will always be greater than or equal to 1, 

which will make the program accept this new fitness as the best fitness regardless of 

the temperature. If the current fitness is less than the best fitness, it will be accepted 

if the random number between 0 and 1 is less than the annealing value.  The 

temperature value is adjusted with a heating / cooling schedule. As the temperature 

value approaches zero, the acceptance will approach that of hill climbing. When the 

temperature value is raised again, the acceptance will allow more freedom of 

exploration to move out of local optima.  Figure 2 below illustrates a sample run of 

the algorithm, showing the city / receiver locations, the initial random placement of 

the transmitters and the placement of the transmitters after the search has 

completed. Figure 3 below shows a flow chart of the serial program. 



 

Figure 2 Visualization of 

 

Visualization of Hill Climbing Problem Space 
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Figure 3 Flow Chart of Transmission Tower Placement Serial 

3.2 

Breadth first search (BFS) creates a search tree that always expands the shallowest 

node using a first in first out (FIFO) queue. 

state is reached. BFS is an

meaning it is guaranteed to find a 

between states has the same cost then 

BFS is not optimal if the path costs are not uniform.  The downside to 

has exponentially increasing time and spac

the search tree increases [3].  

 

Flow Chart of Transmission Tower Placement Serial Program

3.2 Pathfinding: Breadth First Search 

creates a search tree that always expands the shallowest 

node using a first in first out (FIFO) queue. Each node is expanded until the g

n uninformed search that is exhaustive and complete

meaning it is guaranteed to find a goal state when one exists.  If every movement 

between states has the same cost then BFS is optimal and will find the best path.  

if the path costs are not uniform.  The downside to BFS

has exponentially increasing time and space complexities as the number of nodes in 

[3].   

10 

Program  

creates a search tree that always expands the shallowest 

until the goal 

complete, 

when one exists.  If every movement 

will find the best path.  

BFS is that it 

e complexities as the number of nodes in 
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In this problem, an agent is used to search within a 2-D terrain which has associated 

costs with each move.  The terrain is represented as a map with ASCII characters 

that indicate the terrain.  An example terrain is shown below in Figure 4 and the start 

and goal positions are given by the file that is read in which also includes the search 

map. The program run completes when the goal position is found by the search. The 

path cost and description for each character are shown below in Table 2.   

 

M M M h h f f f f f f f f f 

M M M M M h h f f f f f f f 

f R f f f W W W W W F F F F 

f R f f W W W W W W W W F F 

f R R f f f W W W W W r W r 

f f R R R R f f f f r r f f 

f f f f f f R f f f f r f f 

h f f f f f R R R R R R R R 

M h h f f f f f f f f f f f 

M M h h h f f f f f f f f f 

Figure 4 Sample Map of Terrain for Searching 

Table 2 Map Terrain and Cost Legend 

Character  Meaning Movement Cost 
R Road 1 

f Field 2 

F Forest 4 

h Hills 5 

r River 7 

M mountains 10 

W Water cannot be 
entered 

 

The basic components of this algorithm are a search tree with node objects that 

represent each searched state of the path.  The nodes also contain an action that the 
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node performs relative to its parent’s location and a cost for that particular move. 

Each node also contains a pointer back to its parent unless it is the root node. A 

FIFO queue is used to store unexpanded nodes and a Boolean vector is used to 

keep track of which nodes have been explored.  Shared pointers were used since 

C++ 11 supports them, and they handle memory management automatically so that 

pointers are properly freed when they go out of scope. For this BFS, all path costs 

are calculated but not used in the search since it is based solely on the FIFO queue 

and not on path costs. A class object is used to organize the variables and functions 

for the problem, and a structure is used to store and organize the data for each node 

of the tree. The node structure holds a pointer to the child’s parent which creates an 

upward associative tree. The tree is expanded with the FIFO queue until the goal 

state is reached. During each search iteration, the next member from the queue is 

popped and used as the parent to generate four children representing each move, 

with each child pointing to the parent.  A simple Boolean vector that is the same size 

as the map array is also used to keep track of the explored set and each map 

location is marked as true when that space has been searched.  This strategy 

ensures that redundant states are not searched.  When the goal is reached, the goal 

state is back-propagated to the start state to trace the search path and calculate the 

path cost. The console output for a search is shown below in Figure 5. 
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Figure 5 Pathfinding BFS Console Output After Searc h 

Figure 6 below shows a flow chart of the serial program. 



 

Figure 6 Flow Chart of Pathfinding BFS Serial

Connect 4 is a 2-player, deterministic game that is fully observable

player drops checkers onto a vertical board in a top

black checkers and the other uses red.  The first player to get four of his or her 

checkers in a row on the board wins. Four in a row counts in vertical, horizontal and 

diagonal directions. The board is shown below in Figure 7.

 

 

Flow Chart of Pathfinding BFS Serial  Program 

3.3 Game Playing: Connect 4 

player, deterministic game that is fully observable where each 

player drops checkers onto a vertical board in a top-down fashion. One player 

black checkers and the other uses red.  The first player to get four of his or her 

checkers in a row on the board wins. Four in a row counts in vertical, horizontal and 

diagonal directions. The board is shown below in Figure 7. 

14 

 

where each 

One player uses 

black checkers and the other uses red.  The first player to get four of his or her 

checkers in a row on the board wins. Four in a row counts in vertical, horizontal and 
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Figure 7 Connect 4 Game Visualization 

 

In this problem, the computer is the AI player and the human is the opponent. 

Connect 4 does not have a high depth compared to many other games since an 

entire game can only consist of a maximum of 42 moves; however, this is too many 

moves for the AI player to always see a goal state such as a win for either player or a 

draw. The inability to see the goal state requires implementation of a heuristic 

evaluation that will determine what move is best when neither an AI player win nor a 

block against the human player’s win is available. Many search techniques can be 

used in a 2-player game like Connect 4, but this project focuses solely on the 

minimax algorithm. The minimax search algorithm used here is a recursive limited 

depth-first search that creates a tree with each node representing a move in the 

game.  See Figure 8 below to visualize the minimax process. The AI player is the 

“Max” player and the human player is “Min”. If it is Min’s turn at a given depth, the 

function will return the minimum outcome move for that depth, based on the 

assumption that Min will pick the best move available.  If it is Max’s turn at a given 
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depth, the maximum outcome move for that depth will be returned since that is the 

best move available for the Max player [3].   

 

Figure 8 Minimax Algorithm 

The heuristic evaluation is a function that evaluates a set of moves to determine their 

value to the player whose turn it is. The function will determine the value of a move 

from the perspective of the AI and adjust the return value based on whose turn is 

being evaluated.  A good evaluation function will set up multiple, redundant win 

scenarios while also blocking optimal scenarios for the human. This evaluation can 

be effectively implemented for Connect 4 with fast heuristic checking.  

An important technique in optimizing the execution times of the minimax algorithm is 

alpha-beta pruning. If a move is evaluated and found to be a worse choice than the 

current best choice for the player whose turn is being evaluated, this entire branch all 

the way down to the depth of the search can be disregarded.  Applying this pruning 

removes several branches and drastically minimizes the search space and time 

complexity of the limited depth-first search without affecting the outcome of the 

decision [3]. A sample of the game play is shown below in Figure 9. 
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Figure 9 Connect 4 Gameplay in Console 

Figure 10 shows a flow chart of the serial program. 



 

Figure 10

3.4 Genetic Algorithms: Deciphering encryption

Deciphering encryption or decryption is a common process used to apply a key to 

sets of bits to convert an encrypted data set to an unencrypted set.  This 

uses a Genetic Algorithm (GA

text passage as best as possible

considered as a function optimization method [2].

an encrypted passage to English, using an English digraph table to determine a 

fitness value that estimates the solution key’s 

unknown, and the program runs until a count limit is reached, at which time the goal 

is reached. 

In this problem, the message is 

uppercase letters to lowercase letters and 

10 Flow Chart of Connect 4 Serial Program 

Genetic Algorithms: Deciphering encryption

Deciphering encryption or decryption is a common process used to apply a key to 

sets of bits to convert an encrypted data set to an unencrypted set.  This 

GA) that generates a key which is used to decrypt a clear

as best as possible.  A GA is an evolutionary algorithm that is largely 

considered as a function optimization method [2]. In this case, the goal is

passage to English, using an English digraph table to determine a 

that estimates the solution key’s Englishness. The solution key is 

he program runs until a count limit is reached, at which time the goal 

the message is encoded by taking the clear text and changing 

letters to lowercase letters and removing all whitespace and punctuation

18 

 

Genetic Algorithms: Deciphering encryption  

Deciphering encryption or decryption is a common process used to apply a key to 

sets of bits to convert an encrypted data set to an unencrypted set.  This program 

which is used to decrypt a clear-

A GA is an evolutionary algorithm that is largely 

In this case, the goal is to decipher 

passage to English, using an English digraph table to determine a 

The solution key is 

he program runs until a count limit is reached, at which time the goal 

and changing all 

itespace and punctuation. 
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The message is then enciphered with a substitution cipher determined by the key and 

the message is then broken up in to blocks of 5 letters each as shown below in 

Figure 11. 

Clear text:    Hello World 
Encrypted text:   hzqqe oefqt 
Unencrypted alphabet:  abcdefghijklmnopqrstuvwxyz 
Encrypted key:   cpmtzkrhlsquniebdfaygwovjx 

Figure 11 Sample Encryption Method 

An English digraph table, also known as a contact table, is used to correlate 

groupings or pairs of letters to their statistic occurrence within a large sample of 

English text.  By using this table, the occurrence of the encrypted pairings from a 

given passage are compared to the unencrypted pairings of the digraph table to 

determine a fitness value for a given key.  It is apparent that this approach yields 

diminishing results as the used encrypted passage grows smaller since the 

correlation is based on a probability model which degrades for small samples.  A 

sample of the digraph table is shown below in Table 3.  These pairings from the 

digraph table are normalized by dividing the occurrence of a given pairing by the total 

summed value of the occurrences from all of the pairings.  The pairings from the 

encrypted passage are also normalized in the same fashion so the results can be 

compared accurately regardless of sample size. 

Table 3 Non-Normalized English Digraph Table Sample  

aa 11 ab 122 ac 298 ad 210 ae 19 af 54 ag 116 ah 23  
ai 254 aj 6 ak 154 al 632 am 231 an 1614 ao 11 ap 1 05 
aq 1 ar 861 as 451 at 973 au 123 av 214 aw 55 ax 13  
ay 225 az 16 ba 108 bb 31 bc 1 bd 1 be 597 bf 0 
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A steady-state GA was used in this problem with a population size of 100. A class is 

used to organize the variables, parameters and functions for the problem. Structures 

are used to organize the data for the population individuals and the tournament. The 

tournament function randomly picks a specified number of members from the 

population and compares their fitness values.  The population member with the best 

fitness (smallest number in this case) is kept in the population while the losers are 

replaced with random keys or crossover children.  A tournament size of 3 was used 

in this program. The tournament structure also holds a reference to the population 

members that are being compared including a reference value to indicate the winner 

of the tournament.   

The population is a vector which serves as a holder for many individuals, each 

containing a key and an associated fitness.  Keys are randomly generated to initialize 

the population and each population member’s fitness is evaluated. While determining 

the fitness of the members, a best position reference value is updated to point to the 

best member of the population.  

The program runs for a set number of iterations, outlined by the atomic counter 

“count” which is compared to the count limit “tries”.  For each iteration, a mutation is 

made to the key of a randomly selected member of the population. The mutate 

function swaps a given number of key locations.  A 2-op mutate will swap 2 key 

elements while a 3-op will swap 3 as shown below in Figure 12.  The mutated key is 

then evaluated and assigned a fitness value. If the mutated key’s fitness is better 

than the original key, it will replace it in the population.  If the mutated key’s fitness is 

worse, it will be discarded and the original key will remain unchanged.  The mutation 
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method will start as a 2-op mutation.  If a better fitness is not reached in 10 mutation 

attempts, a 3-op mutation will be used.  If a better fitness is not reached in 10 

mutation attempts, a 2-op method will be used again.  Alternating between 2-op and 

3-op mutations helps the search move out of local optima.  

 

Figure 12 Mutation Example for 2-op and 3-op Operat ions 

A crossover function is applied periodically to replace losers of a tournament run with 

crossover children of two randomly selected population members regardless of 

fitness value. The crossover function randomly selects two parents from the 

population, making sure not to select the members that have just lost in the 

tournament.  These parents are combined using a permutation crossover.  The 

permutation crossover randomly combines elements from each parent to create a 

child.  The child replaces the losing tournament member regardless of fitness value. 

A permutation parameter of 14 is used so that approximately half of the key is taken 

from each parent to create the child.  Great caution should be used when creating a 

permutation crossover function since it must include methods to ensure that duplicate 

key elements do not appear in the child.  A sample permutation crossover is shown 

below in Table 4. 

Table 4 Sample Permutation Crossover 

 

original a b c d e f g h i j k l m n o p q r s t u v w x y z

2-op a b p d e f g h m j k l i n o c q r s t u v w x y z

3-op s b p d e f g h m j k l i n o c q r a t u v w x y z
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Similarly, a key generation function periodically applies random replacement keys for 

all losers of a tournament regardless of the fitness value.  

The fitness function the author used for this program sums up the square of the 

difference between the normalized English digraph values and the normalized Cipher 

digraph values using Equation 3 shown below. 

 

Equation 3 Deciphering Encryption Fitness Calculati on 

This fitness function will determine if the English digraph and cipher digraph are close 

matches.  All cipher digraph frequencies are compared to the English digraph 

frequencies, and the total sum of each comparison is the overall fitness for a 

particular cipher key.  The cipher key with the lowest overall fitness is the closest 

match to the English key.   

Figure 13 shows a flow chart of the serial program. 



 

Figure 13 Flow Chart of Deciphering Encryption Serial 

3.5 Artificial Ne

The goal for the ANN Planetary L

multi-layer ANN using hill climbing and random

planetary lander which is capable of landing within a 

velocity given a constant gravity and random wind values for the environment where 

the landing occurs. The training for this program optimizes a single landing, but 

optimization over multiple landings could be trained as well.  

on the training of the ANN. Once the ANN is trained

Parallelism could be applied to execute concurrent landings, but the execution phase 

Flow Chart of Deciphering Encryption Serial Program

Artificial Ne ural Networks: Planetary Lander

Planetary Lander is to train the node weights of a feed

using hill climbing and random-restarts to control and safely land a 

lander which is capable of landing within a small area at an acceptable 

velocity given a constant gravity and random wind values for the environment where 

The training for this program optimizes a single landing, but 

optimization over multiple landings could be trained as well.  This program will focus 

on the training of the ANN. Once the ANN is trained, it can be executed at will

arallelism could be applied to execute concurrent landings, but the execution phase 
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node weights of a feed-forward 

to control and safely land a 

small area at an acceptable 

velocity given a constant gravity and random wind values for the environment where 

The training for this program optimizes a single landing, but 

This program will focus 

it can be executed at will.  

arallelism could be applied to execute concurrent landings, but the execution phase 
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is not covered since it is considered to be a standalone implementation at that point, 

outside of the training scope. The wind is a random number between +-.3 and is set 

at the start of each landing attempt. The problem space is 2-D and the ANN takes six 

inputs: height, xPosition, Yvelocity, Xvelocity, wind and fuel.  The ANN generates two 

outputs, burn and thrust, to adjust the horizontal and vertical movement which offset 

the vertical gravity force and the horizontal wind force as shown below in Figure 14. 

 

Figure 14 Planetary Lander Diagram 

Additionally, there are 2 parameters that denote a successful landing: 

1. Yvelocity <= 4.0 
2. -.2 =< xPosition <= .2 

 

This program uses a 3-layer ANN with 6 total nodes: 2 input, 2 hidden and 2 output. 

The algorithm implements a fully connected feed-forward multilayer network where 



 

the final outputs are derived solely from the 6 inputs described above and the 

node weights.  By using a hidden layer, this network is able to extract higher

statistics from its inputs [4]. 

parameters, variables and functions 

organize each node’s parameters

or resetting weights.  The node objects are organized into an ANN using a vector 

object. The ANN design is shown below in Figure 15

Figure 15 Planetary

  

The search algorithm used is a 

weights are reset to random values when the search gets stuck

the fitness is considered stuck when a counter reaches a restart limit.  The restart 

counter is incremented for each cons

better than the best fitness.  If the current fitness is better than the best fitness, the 

restart counter is reset.  For each training iteration, a single random input weight from 

a random node is chosen a

the final outputs are derived solely from the 6 inputs described above and the 

By using a hidden layer, this network is able to extract higher

stics from its inputs [4]. A lander class is used to provide the appropriate 

parameters, variables and functions for the lander and a node class is used to 

organize each node’s parameters and provide node-level functions such as updating 

.  The node objects are organized into an ANN using a vector 

sign is shown below in Figure 15. 

Planetary  Lander Feed-Forward Multi-Layer ANN Structure

The search algorithm used is a random-restart hill climbing search algorithm where

weights are reset to random values when the search gets stuck. The optimization of 

the fitness is considered stuck when a counter reaches a restart limit.  The restart 

each consecutive iteration that the current fitness is not 

better than the best fitness.  If the current fitness is better than the best fitness, the 

For each training iteration, a single random input weight from 

sen and adjusted to a random value between -1 to

25 

the final outputs are derived solely from the 6 inputs described above and the ANN 

By using a hidden layer, this network is able to extract higher-order 

A lander class is used to provide the appropriate 

is used to 

level functions such as updating 

.  The node objects are organized into an ANN using a vector 

 

ANN Structure  

search algorithm where 

The optimization of 

the fitness is considered stuck when a counter reaches a restart limit.  The restart 

ecutive iteration that the current fitness is not 

better than the best fitness.  If the current fitness is better than the best fitness, the 

For each training iteration, a single random input weight from 

1 to 1. The 
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planetary lander is landed n times, where n is an internal user-defined landing limit 

value. The combined fitness of these landings is then compared to the best fitness to 

determine if the current weight set yields an equal or better total fitness than the 

current best total fitness. If this case is true, the current weight will be updated to 

reflect the new weight that yields the better fitness value. Otherwise, the new weight 

will be reverted back to the original weight value. One landing was chosen per 

evaluation in this program since it was found it profiled the wind characteristics well 

and sped up execution times by limiting the total number of landings per run. 

The fitness is calculated immediately following a landing by taking the xPosition and 

Yvelocity after landing. The author developed Equation 4 below to calculate the 

fitness for a landing. 

 

Equation 4 ANN Fitness Calculation 

Notice that the current_fitness value is negative and is being maximized, where the 

absolute best fitness value possible is 0.  The Yvelocity value is maximized to 

Yvelocity – 2 or Yvelocity = 2 since the tested ideal Yvelocity is somewhere relatively 

close to 2 on average. A Yvelocity value around 2 is ideal since it is centered 

symmetrically between 0 and 4, which are both the limits of what a successful landing 

Yvelocity is allowed to be.  

When the lander is in the process of landing, an update function is called repeatedly 

until the landing is completed and the update function applies a lander control 

function. The lander update function calls the control function to feed the current 
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input values to the ANN and determine updated burn and thrust values. When being 

sent to the ANN, the Yvelocity, fuel and height values are all normalized by dividing 

their current values by their start values to get values between 0 and 1. These values 

are scaled so they will be closer to other input values which are much smaller. For 

each node, the inputs are multiplied by their corresponding weights and summed 

before being sent through the activation function to produce the node’s output value. 

The activation that is used in this problem is a hyperbolic tangent (tanh) function, 

which yields an activation with outputs ranging from -1 to 1. A lambda value can be 

used within the tanh function to scale the activation and create a harder or softer 

activation. A lambda value of one, creating a Heaviside step function, is used for this 

problem. The values are propagated through the ANN and burn and thrust outputs 

are generated. A landing test is used for each update call to determine if a landing is 

not complete, complete and successful or complete but unsuccessful. 

When calculating the burn and thrust values in the control function, these two outputs 

are both scaled to appropriate values to achieve a successful landing. The burn 

output values are scaled from +-1 to 1-6. Notice the range 1-6 is centered on 3.5, and 

this value was chosen based on testing and experimentation. Other ranges can be 

used with similar results such as 1-5 or 0-6, but no obvious improvements were 

observed using such ranges. 

The thrust output values are scaled from +-1 to +-.5.  This range of values is a good 

balance between constraints that are too tight and too loose; however, it should be 

noted that the random wind value makes it difficult to hone in on an exact best range. 



 

Again, experimentation showed this range to be reasonable along with other ranges 

that were not chosen. 

A configured reset count is established, and if this limit is reached, all of the ANN 

input weights are re-initialized to a random 

keeps track of how many training cycles have been executed without an equal or 

better fitness value being fou

was found that the hill climbing

Figure 16 shows a flow chart of the serial 

Figure 16 Flow Chart of 

 

Again, experimentation showed this range to be reasonable along with other ranges 

is established, and if this limit is reached, all of the ANN 

initialized to a random double between -1 and 1. The reset limit 

keeps track of how many training cycles have been executed without an equal or 

better fitness value being found. Simulated annealing could have been used,

hill climbing local search with resets yielded adequate

shows a flow chart of the serial program. 

Flow Chart of Training for Planetary Lander Serial Program
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Again, experimentation showed this range to be reasonable along with other ranges 

is established, and if this limit is reached, all of the ANN 

1 and 1. The reset limit 

keeps track of how many training cycles have been executed without an equal or 

nd. Simulated annealing could have been used, but it 

adequate results. 

 

Program  
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Chapter 4: Parallel Implementation of Problems 

This section covers the detailed parallel designs used to convert the serial programs 

listed in Section 3 to parallel programs.  All of the algorithms from this section are 

shown in greater detail in Appendix B – Pseudocode. 

4.1 Hill Climbing with Simulated Annealing: Tower P lacement 

The multithread programming design for this problem is very similar to the serial 

design with the addition of several synchronization mechanisms. The hill climbing 

and simulated annealing are treated the same, but multiple threads are used to 

search the problem space. Each thread has its own set of transmitter location values 

for x and y and searches independently with its own random number draws.  If one 

thread finds a better fitness or passes the simulated annealing criteria to allow a 

poorer fitness, it will update the shared best transmitter locations to its current 

locations. Otherwise, it will synchronize its transmitter locations back to the shared 

best locations.  The collection of the best transmitter locations is shared across all of 

the threads as a class variable, giving all of the threads read / write access since they 

are all executed within the class.  Each thread is spawned with a function call to 

hillclimb::solve(), and variables are created with a scope that is limited to the running 

thread, giving local transmitter locations and other necessary non-synchronized 

variables.  A global atomic “totalCount” variable is also used and incremented by all 

threads, and the program execution completes when this count limit is reached. This 

method is used to ensure that the number of search iterations is uniform between 

threads.  Note that searching based on a fitness limit is misleading for this case since 

the execution time will be based solely on the random initialization of the transmitter 
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locations including the random numbers generated for the search.  By using a count 

limit, this randomness does not influence the benchmarks for execution time.  The 

simulated annealing temperature value and the heating / cooling schedules are 

shared between the threads so that the simulated annealing functionality is applied 

uniformly regardless of the number of threads running the program.  Unique locks 

with mutexes are used to synchronize reads and writes associated with the best 

transmitter locations. A unique_lock and mutex are used to lock read / write access to 

the best transmitter collection’s x locations while another set are used to lock the 

read / write access to its y locations. Using independent locks gives finer lock 

granularity over the parameters than locking both x and y, allowing an x location and 

y location to be updated simultaneously. An atomic variable is used for the best 

fitness so that it does not require a lock to be read or updated. 

Figure 17 shows a flow chart of the parallel program. 



 

Figure 17 Flow Chart of Transmission

4.2 

Since the FIFO queue is used in this problem, a producer

viable multithread design.  One producer thread is used to produce search states 

which are then pushed to a consumer queue where they are pulled by consumer 

threads. When a state is pushed to the consumer queue by the producer, a condition 

variable is used to notify a consumer thr

threads sleep and wait for the condition variable notification instead of polling until 

the work is available. Polling decreases system performance by keeping threads 

busy, while a condition variable allows threads 

Flow Chart of Transmission  Tower Placement Parallel Implementation

4.2 Pathfinding: Breadth First Search 

Since the FIFO queue is used in this problem, a producer-consumer was deemed a 

.  One producer thread is used to produce search states 

which are then pushed to a consumer queue where they are pulled by consumer 

threads. When a state is pushed to the consumer queue by the producer, a condition 

variable is used to notify a consumer thread that work is available. The consumer 

threads sleep and wait for the condition variable notification instead of polling until 

the work is available. Polling decreases system performance by keeping threads 

busy, while a condition variable allows threads to sleep until the work is available.  A 
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Implementation  

consumer was deemed a 

.  One producer thread is used to produce search states 

which are then pushed to a consumer queue where they are pulled by consumer 

threads. When a state is pushed to the consumer queue by the producer, a condition 

ead that work is available. The consumer 

threads sleep and wait for the condition variable notification instead of polling until 

the work is available. Polling decreases system performance by keeping threads 

to sleep until the work is available.  A 
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sleeping thread frees up system resources so that other software threads can then 

make use of the available hardware thread.  This strategy can be used in 

complicated problems to keep the system resources as busy as possible with useful 

work.  Each consumer thread then searches the next state, updating information.  A 

determineTerrain() function was created to simulate calculations for determining the 

terrain and associated movement cost.  The original problem assumed the state was 

known, but determining the terrain is more realistic and more appropriate for 

comparing threads.  Without a determineTerrain() function, multithreading was not as 

fast since the synchronization efforts took longer than the search, but this method 

was not practical for a real-world case. Once the state is searched, a thread waits 

until its turn to synchronize since the states must be expanded sequentially to meet 

the criteria for BFS. The consumer threads take the work from the consumer queue 

sequentially, but they will commonly get out of order by the end of the state 

expansion and determineTerrain() function call.  When this sequence check is 

successful, the consumer thread will then push its state to a second queue which is 

the producer queue. A condition variable is then used to notify the producer queue 

that a state is ready to be expanded. This process is applied repeatedly, using the 

condition variables and queues to synchronize the work between the producer thread 

and the consumer threads. This method also ensures that the threads only access 

the queues when data is ready for use. Unique locks are used with two mutexes to 

synchronize the queue accesses between the threads.  One unique lock is used for 

each queue and all queue accesses are locked since the queue is not a thread-safe 



 

object. A run is complete when the goal state is reached.

user.  

Figure 18 shows a flow chart of the parallel

Figure 18 Flow Ch

This problem posed some issues when designing for multithreading since it uses a 

tree structure with recursive function calls. A producer

the one used in the BFS Pathfinding 

more-straightforward implementation was selected.  Each column represents a top

object. A run is complete when the goal state is reached. This state is defined by the 

shows a flow chart of the parallel program. 

Flow Ch art of Pathfinding BFS Parallel Program 

4.3 Game Playing: Connect 4 

This problem posed some issues when designing for multithreading since it uses a 

tree structure with recursive function calls. A producer-consumer design

the one used in the BFS Pathfinding program could have been used, but a simpler, 

straightforward implementation was selected.  Each column represents a top
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This state is defined by the 

 

This problem posed some issues when designing for multithreading since it uses a 

design, similar to 

could have been used, but a simpler, 

straightforward implementation was selected.  Each column represents a top-
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level branch of the tree, so the branches were split between the worker threads.  For 

example, a run with 7 threads assigns the search of each column or tree branch to 1 

thread per branch.  For a run with 3 threads, 2 branches are assigned to 2 of the 

threads and 3 branches are assigned to the third thread to assign the work as evenly 

as possible. This implementation makes the synchronization of picking the best move 

very simple.  The tree expansion and alpha-beta pruning techniques are still applied 

for each thread’s search with the exception that each thread uses its own alpha and 

beta values for simplicity in implementation. A “threadMember” structure is used to 

store all of the local variables for each thread.  For each AI turn, each thread copies 

the game state over to its local variables before searching so it can execute 

independently using up-to-date game information. The game state is locked during 

this read operation in case a write were to occur at the same time with an updated 

game state returned by another thread.  

With this multithread design, each branch returns a fitness value and a corresponding 

move after searching, which are synchronized with a unique lock and mutex back to 

the best fitness variable and best move choice, both of which are shared across the 

class.  The best move from all of the branches is selected as the AI’s move.  No other 

locks or synchronization are needed since the rest of the required variables are 

created within each thread’s scope. When one of the players wins or a draw is 

reached, the run is complete. 

Figure 19 shows a flow chart of the parallel program. 



 

Figure 19

4.4 Genetic Algorithms: Deciphering encryption

The serial program is expanded 

of 100 members times the number of threads being run.  A run with 8 threads has a 

population size of 800.  This allows each thread to work on a sub

population that is 100 members, which is how the serial

same tournament runs, mutations, crossovers and random key generations are 

applied to each thread’s populatio

best position variable which references the best member in the population. A unique 

lock and mutex are used to serialize access to the best position. Counters related to 

mutations, key generation and cros

they can operate independently, and individual random number generators are used 

as well. A shared atomic counter is used to synchronize the iteration count. Again, a 

count limit is used to determine when th

19 Flow Chart of Connect 4 Parallel Program 

Genetic Algorithms: Deciphering encryption

program is expanded to a multithreaded program by creating a population 

of 100 members times the number of threads being run.  A run with 8 threads has a 

size of 800.  This allows each thread to work on a sub-group of the 

population that is 100 members, which is how the serial program operates.  The 

same tournament runs, mutations, crossovers and random key generations are 

applied to each thread’s population. The threads do not interact except to update the 

best position variable which references the best member in the population. A unique 

lock and mutex are used to serialize access to the best position. Counters related to 

mutations, key generation and crossovers are all within the scope of the thread so 

they can operate independently, and individual random number generators are used 

as well. A shared atomic counter is used to synchronize the iteration count. Again, a 

count limit is used to determine when the algorithm run is complete since this 
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e algorithm run is complete since this 



 

program and its fitness values are highly dependent on random number generation.  

The count limit is a uniform comparison for runs of varying thread numbers.

Figure 20 shows a flow chart of the parallel

Figure 20 Flow Chart of Deciphering Encryption Parallel 

4.5 Artificial Neural Networks: 

The multithread program for this problem is similar to the hill climbing 

in the Transmission Tower Placem

resets instead of simulated annealing. E

searches independently with its own random number draws.  A best ANN is shared 

across the threads and it contains the best set of weig

If one thread finds better ANN than the best ANN, it will update the nodes and the 

fitness of the best ANN to reflect its own. Otherwise, it will synchronize its nodes and 

and its fitness values are highly dependent on random number generation.  

The count limit is a uniform comparison for runs of varying thread numbers.

shows a flow chart of the parallel program. 

Flow Chart of Deciphering Encryption Parallel Program

Artificial Neural Networks: Planetary Lander

for this problem is similar to the hill climbing program

in the Transmission Tower Placement problem except this program uses random 

resets instead of simulated annealing. Each thread implements its own ANN and 

searches independently with its own random number draws.  A best ANN is shared 

across the threads and it contains the best set of weights and the best fitn

better ANN than the best ANN, it will update the nodes and the 

fitness of the best ANN to reflect its own. Otherwise, it will synchronize its nodes and 
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and its fitness values are highly dependent on random number generation.  

The count limit is a uniform comparison for runs of varying thread numbers. 
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hts and the best fitness value. 

better ANN than the best ANN, it will update the nodes and the 

fitness of the best ANN to reflect its own. Otherwise, it will synchronize its nodes and 
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fitness back to those of the best ANN.  A unique lock with a mutex is used to provide 

serial access to the best ANN. An atomic variable, no_change, is used to determine 

when a reset should occur based on a tryLimit variable threshold.  When no_change 

is greater or equal to the tryLimit, the best ANN weights are reset randomly, and all of 

the thread ANN’s are synced to reflect the changes.  This process ensures that the 

number of resets will be consistent regardless of how many threads are run. Each 

iteration of the program sets the lander to initial values, runs the update function until 

a landing is achieved, calculates a fitness value based on the landing and then trains 

the ANN based on the fitness.  The program runs for a defined number of iterations, 

based on an atomic counter.  Using a count limit instead of a fitness limit ensures that 

the execution time comparisons are more consistent between runs for varying 

numbers of threads. 

Figure 21 shows a flow chart of the parallel program. 



 

Figure 21 Flow Chart of Planetary Lander Parallel 
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Chapter 5: Experimental Setup 

For this study, a computer with a 2nd generation Intel Core i7-2670QM processor was 

used. This processor has a 6 MB Intel Smart Cache which is shared across its 4 

cores. The Intel Smart Cache is a last level cache (L3 in this case) that allows all of 

the cores to access and share all of the cache space. This approach allows for more 

flexibility and efficiency since the full cache space can be dedicated from a single 

core up to all cores, depending on how many are active. Shared data between cores 

only has to be loaded into the cache once in this design also [9].  

Each physical core for this processor can simultaneously support 2 threads due to 

the Intel Hyper-Threading technology which allows one physical core to present two 

logical cores to the operating system.  It is important to understand that this 

technology is designed to make full use of each core’s performance, but it is not 

equivalent to running 8 cores. For the processor used in this thesis, there are 8 

threads, but only 4 cores, so performance gains similar to an 8 core system should 

not be expected. This will be shown in Section 6.2 Thread Performance 

Comparisons.  The two logical processors in the Intel Hyper-Threading design share 

most execution resources, and the desired benefit is to improve the efficiency of the 

instruction scheduling for that core. Given this capability, there are cases where small 

gains should be expected, such as bottlenecks from synchronizing shared data or 

instruction scheduling for applications that are already extremely efficient in their 

scheduling [8]. 

This processor’s architecture is illustrated in Figure 22 below. The test system has 

8GB of RAM and is running openSUSE 13.1 x86_64 Linux as the OS, which is the 



 

latest and most up-to-date OS

Threading are supported in this version of openSUSE and both

kernel and BIOS for the execution of these programs

C++ 11 was used for all programming and the 

supports compilation of all C++11 features. 

package was used which provides 

only libraries used in this project. 

Development Environment (

previously and were converted to parallel algorithms for this project.

Figure 

 

date OS available from openSUSE.  Multithreading and H

supported in this version of openSUSE and both were enabled in the 

for the execution of these programs.  

C++ 11 was used for all programming and the GCC 4.8.1 compiler was used which 

all C++11 features. The libstdc++-devel 4.8-2.1.2 library 

provides the necessary C++11 libraries, and these 

only libraries used in this project. QtCreator 2.8.1 was used as an Integrated 

Development Environment (IDE). All of the serial algorithms were developed 

and were converted to parallel algorithms for this project. 

Figure 22 Test Architecture Diagram [10] 
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Debugging and program profiling were completed using several tools within Valgrind 

3.9.0. These were Helgrind for multithread debugging, Memcheck for memory 

management debugging and profiling and Callgrind for function and execution time 

profiling.  

For all of these programs, GCC compilation flags were used. The –std=c++11 flag 

was used as the compiler currently supports the old and new standards and will 

default to old standard without this flag. The –O3 optimization flag was used for 

timing tests to ensure that the compiler optimized the code by rearranging it as 

needed. The –g flag was used for debug runs with Valgrind since it provides more 

detailed output from the debugging tools. 
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Chapter 6: Experimental Results 

6.1 Performance Profiling With Valgrind 

Valgrind is a suite of tools that is commonly used by developers to characterize 

performance within a program and to identify issues associated with several 

programming errors. One Valgrind tool called Callgrind helps determine how much 

time a given function takes up in a program’s execution or how many times a function 

is called during program execution [5]. This information can be helpful in identifying 

where parallel code can be implemented in a program since the areas that take the 

most time to run are potential candidates for large performance gains with parallel 

coding.  Since all of the programs covered in this study spawn threads that run at 

high levels, function timing profiling was not necessary, but Callgrind outputs were 

still observed to confirm the programs behaved as expected. Kcachegrind is a GUI 

tool in Linux that displays Callgrind outputs in graphical form, making it much easier 

to visualize the results from the Callgrind runs. A sample Callgrind run from the ANN 

Planetary Lander problem, run with 4 threads, is shown in kcachegrind in Figure 23 

below. 
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Both of the zoomed callouts from Figure 24 show the same information displayed in 

two formats. The callout on the left shows all of the significant function calls. The top 

function call start_thread and the lander::solve() functions both show that 99.99% of 

the time running the program is used within thread calls.  This is consistent with the 

workload in this problem since the lander::solve() function is a top-level function used 

Figure 23 Sample Kcachegrind Run  
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to spawn the threads and it is also expected that start_thread is the first call.  Most of 

the lander::solve() execution time, 91%, is spent calculating the ANN outputs for burn 

and thrust with the function call ann::calcOutputs(). 47% of the time in 

ann::calcOutputs() is used calling the cmath tanh function which is obviously very 

time consuming. The rest of the time spent in the ann::calcOutputs() function is spent 

feeding the inputs through the ANN and calculating the resultant outputs. Callgrind 

and especially Kcachegrind make it much easier for the programmer to understand 

how time is being used in a program and can help identify areas where inefficiencies 

exist. 

Memcheck is another tool within Valgrind which is used to identify memory issues 

such as improper initialization and leaks due to improper allocation and freeing of 

memory. It can also show memory usage statistics such as the total heap usage 

during a run [5].  Since shared pointers were used in place of dumb pointers when 

memory allocations were needed, it was expected that memory management issues 

would not exist, but Memcheck was used to ensure this was the case and to ensure 

that other non-pointer initializations were handled properly. A sample Memcheck run 

from the BFS Pathfinding problem, running with 4 threads, is shown below in Figure 

24. This problem creates a shared pointer for each node that is created. 
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Figure 24 Sample Valgrind Memcheck Run 

Notice that there are no errors and that all of the allocated memory in the heap was 

freed. This ensures the programmer that no memory leaks exist. There is also a heap 

usage summary which shows how many total bytes of memory are allocated in the 

heap.  This statistic does not show real-time heap usage, but another Valgrind tool 

called Massif is available if real-time sampling of the heap is needed [5].  The total 

heap usage for all of the cases in this study are small so further information was not 

gathered. 

The last Valgrind tool that was used was Helgrind which is a multithreading tool that 

was used for debugging the multithreaded code. Helgrind identifies potential errors in 

pthreads parallel programs, and the C++11 thread libraries make use of pthreads at 

the core, so this tool was ideal for these cases and was used to identify deadlocks 

and race conditions. Race conditions are notoriously difficult to track down since they 

either occur rarely or do not pose obvious differences in the outcome of the program 
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execution.  Deadlocks are usually obvious since they will lock up the program during 

execution. Several race conditions were found, mostly due to improper locking of 

read accesses and were easily corrected with Helgrind outputs. Helgrind also has 

many false positives when dealing with atomic variables since it currently sees them 

as regular variables. As a result, Helgrind expects locking mechanisms to be used for 

reads and writes to the atomic variables and produces errors as a result.  Atomic 

variable reads and writes are guaranteed to be thread-safe in C++ 11 [11], so these 

warnings were disregarded. Helgrind can be configured to suppress specific outputs 

such as this one to ease troubleshooting for the programmer. A sample Helgrind 

output from the ANN Planetary Lander problem running with 2 threads is shown 

below in Figure 25. 

A thread announcement is printed for the creation of each new thread.  There is also 

a possible data race error shown which is labeled as a potential conflict by one 

thread reading a memory location while another thread is writing to it. This error 

message can indicate a race condition where a mutex was not properly included to 

restrict the access to that data.  After the lines telling whether the conflict is related to 

a read or write access, the output tells whether or not a lock was held by either 

access. In this case, both of the accesses do not hold a lock.  The next line below 

that shows a trace to help identify why this error is occurring, starting with the most 

recent function call and working back to the highest level function call. Notice the 

right side of the first line of the trace indicates that in the lander::solve() function, an 

error is observed relating to the atomic_base header file which is a C++ 11 header 

file for atomic variables. This same file is referenced by both accesses to the data 
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and indicates that Helgrind thinks that a data race is occurring with an atomic 

variable.  

 

Figure 25 Sample Valgrind Helgrind Run 
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As stated previously, Helgrind does not currently deal well with atomic variables in 

C++ 11 since they do not use the mutex locking mechanism that is typically expected 

to avoid race conditions. The C++11 standards have ensured that the memory model 

within C++11 handles atomic variables in a way that will not allow race conditions 

[11]. In the error summary, there are 2 errors shown from 1 context which indicates 

Helgrind has seen 2 errors related to the one and only atomic context that was 

printed. Notice also that many errors are suppressed by Helgrind by default. Although 

Helgrind cannot currently handle all cases related to multithreading code, especially 

those where locking is used more than necessary, it is still useful in identifying 

potential issues. One must pay close attention to errors and understand which ones 

are potential hazards and which ones are related to shortcomings in the error 

detection. 

6.2 Thread Performance Comparisons 

Each program was created to run with a user-defined number of threads and was 

designed for parallel execution. Multiple runs were completed for each problem to 

benchmark several statistics.  Average execution time, speedup, efficiency, total 

memory usage, average best fitness and memory frees and allocations are all 

compared between runs. For cases where the fitness is determined by the random 

number generation, such as the Hill Climbing and Deciphering Encryption problems, 

set iteration cutoffs were used instead of fitness cutoffs to ensure that runs were fair 

between varying thread numbers in terms of execution time. For Connect 4, runs 

were completed for 1 to 7 threads and a constant time was then used for values 

above 7 since the design for that problem is bound by the number of columns, which 
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is 7. For all other problems, runs were completed for 1 to 8 threads in 2n increments. 

Interpolation was applied in Matlab between these values to create smoother curves 

for the analysis plots.  Figure 26 below shows the average execution time for varying 

threads on all of the problems.  The average execution time was calculated over 10 

runs for each thread value. On all of the programs, the execution times drop from 1 to 

4 threads and then taper off for thread values above 4.  The Connect 4 average 

execution time has a curve that is not smooth due to the implementation that was 

used. Because the number of columns could not be evenly distributed for all thread 

values, some runs have asymmetric execution times that are directly associated with 

the asymmetric column distributions. As described in Section 3.3 Game Playing: 

Connect 4, the chosen implementation distributes the evaluation of AI moves by 

columns as shown below in Table 5. The distribution of work is the number of 

columns, which is 7 for Connect 4, divided by the number of threads used, and the 

remainder is then handed to out to as many threads as needed to take care of the 

remaining columns: 

7 / 2 = 3  r.1 7 / 4 = 1  r.3 

For a run with 2 threads, the first thread evaluates the minimax algorithm for columns 

1-3 and 7. The second thread evaluates the algorithm for columns 4-6. An 

asymmetry occurs when a remainder must be distributed among the threads, and this 

additional workload becomes a bottleneck to the execution time. This implementation 

was chosen since it made the parallel distribution of the workload much simpler to 

program than other methods. 
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Table 5 Connect 4 Multithread Program Work Distribu tion 

Total 
Threads  

Thread 
Number  

Columns 
Per 

Thread 
Remainder  Columns 

Covered 

1 1 7 0 7 

2 
1 

3 2 
1 , 2, 3, 7 

2 4, 5, 6 

4 

1 

1 3 

1, 5 
2 2, 6 
3 3, 7 
4 4, 7 

7 1 - 7  1 0 1 
 

 

Figure 26 Average Execution Time Using 1 to 8 Threa ds for All Programs 
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The average execution time is an important measure when looking at multithreading, 

but the speedup and efficiency values are much more useful when trying to 

determine performance gains. Speedup is the serial execution time divided by the 

parallel execution time [1].  The highest theoretical speedup for a run is equal to the 

number of threads where a 2 thread run shows a speedup of 2. The speedup values 

for all of the programs with various thread counts are shown below in Figure 27.  

 

Figure 27 Speedup Using 2 to 8 Threads for All Prog rams 

This speedup plot helps in deriving many useful conclusions. Note that there is an 

additional set of runs called Pathfinding BFS Multi-Run. These runs were added to 
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compare multithreaded execution at the OS process level. For varying thread 

numbers, runs of the Pathfinding BFS program were executed as separate 

processes. The values from these runs indicate running multiple single-threaded 

processes of the program at the same time as opposed to running several threads 

within the program. Using this method, all of the speedup values are based solely on 

the hardware and OS since internal program locking and synchronization between 

multiple threads will not exist. By comparing these runs to the multithreaded runs 

inside the program, one can see how much the speedup values are affected by the 

hardware and OS as opposed to the internal locking mechanisms associated with 

mutex and atomic variables. 

Note that the external multithread runs and internal runs for the Pathfinding problem 

are almost identical in speedup values and that the speedup values for runs with 2 

and 3 threads yield speedup values of approximately 2 and 3. The speedup value 

stays close to 3.5 for runs where 4 or more threads are used.  This outcome shows 

that the speedup values are limited by the hardware and OS and almost unaffected 

by the locking and synchronization for this particular problem. Remember that the 

tested processor only has 4 cores and these results are consistent with 4 cores once 

you take into account the system-level processing that is taking place within the OS 

while the runs were being tested.  

In the Pathfinding BFS curve, it appears that mild speedup increases occur from 4 to 

8 threads, but these gains are not indicative of the gains one would expect with an 8 

core system. These limited gains show that the Hyper-Threading technology does not 

improve the performance to the level of an 8 core system, but there are still modest 
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gains when using the logical processors. The apparent speedup increase due to 

Hyper-Threading is shown below in Table 6.  In all cases, the Hyper-Threading 

improves the results, but the improvements are limited due to the fact that there are 

only 4 physical cores on the test system. Another explanation for the modest gains is 

that thread contention increases as the number of threads used increases and they 

all begin competing for access to the shared variables. This contention grows quickly 

in all of these programs since frequent synchronization operations must be used. 

Thread contention would yield diminished results for 8 physical cores as well. 

Table 6 Apparent Hyper-Threading Speedup for All Pr ograms 

Problem Threads  Cores 
Apparent Hyper -

Threading Speedup 
Increase % 

ANN Planetary Lander 8 4 36.06 
Connect 4 8 4 10.46 

Deciphering Encryption 8 4 10.64 
Transmission Towers 8 4 2.58 

Pathfinding BFS 8 4 4.80 
Pathfinding Multi-Run 8 4 3.21 

 

The ANN Planetary Lander results are misleading because of the random elements 

used in the program. Using an iteration limit, it was expected that the runs would be 

consistent in execution time, but closer observation showed that there is no way to 

mitigate the impact of the randomness on the execution time since they are 

interconnected. For example, one iteration is equivalent to one landing, but some 

runs land much faster than others due to the varying of ANN weight values.  Some 

weight values cause the lander to execute little or no burn or thrust values, causing 

the lander to crash quickly due to acceleration from gravity.  Other weight values 
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cause the lander to run burn or thrust values that are too high which cause the lander 

to overcome gravity, increase altitude and then crash later after the fuel runs out and 

the gravity overtakes the vehicle’s upward speed. Combining these two cases will 

cause large fluctuations in the execution times between iterations, especially since 

they happen with completely random frequency. Using a Gaussian random number 

generator would probably yield better results for execution times, but it is not ideal for 

the search which should be uniformly random. Regardless of the randomness, it is 

easy to see that the ANN Planetary Lander speedup is increased as threads are 

increased, but the noise involved in the random number generation makes it difficult 

to pinpoint how reliable these speedup values are. 

Since the two Pathfinding curves match closely, they are a good baseline of 

comparison for the other programs. Notice that all of the other programs, excluding 

the ANN Planetary Lander, have similar speedup curves to the Pathfinding curves, 

but they have decreased speedup values as the number of threads increases. These 

differences can be attributed to inefficiencies related to locking, synchronization or 

design. For example, the Connect 4 program has much worse speedup values for all 

thread numbers, but this is expected since the program was designed to for simplicity 

more so than efficiency. Even though the Connect 4 program is not as efficient as the 

other programs, it still yields good results by increasing speedup to almost 3 using 7 

threads. This speedup is near the maximum speedup value of 3.5 observed by the 

Pathfinding program. 

As a side note, the original implementation of the Pathfinding program put the 

consumer threads to sleep to simulate work for determining the terrain costs for a 
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move. This was eventually changed to arbitrary calculations that keep the threads 

busy since it was found the speedup results were misleading with the use of thread 

sleeping. When a sleep is used, a thread is not busy and can be used for other work, 

which is quite desirable in many cases. In this case, it made the speedup results look 

as though they exceeded limits imposed by the processor architecture. It was found 

that using sleep calls, all 4 processor cores were not fully used until the program was 

run with 32 threads.  Arbitrary calculations were added to ensure that comparisons 

between programs were uniform.  

The efficiency value divides the speedup by the number of threads used on a run to 

give a value between 0 and 1 [1]. A value of 1 indicates 100% efficiency and is the 

highest theoretical efficiency that can be obtained. Efficiency values for all programs 

are shown below in Figure 28. Since efficiency values are calculated using speedup 

values, the results are based on the same data as the previous speedup plots but 

displayed in a different manner. 
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Figure 28 Efficiency Using 2 to 8 Threads for All P rograms 

The speedup and efficiency values for the two Pathfinding runs are shown below in 

Table 7 to give a clearer view of how close the different methods of execution were. 

Table 7 Speedup and Efficiency Comparison Between P rogram and OS 

Problem Threads  Parallel 
Speedup 

Parallel 
Efficiency  

Pathfinding BFS 
2 1.9 0.94 
4 3.4 0.85 
8 3.6 0.45 

Pathfinding Multi-
Run 

2 1.9 0.97 
4 3.4 0.84 
8 3.5 0.44 
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Plots of total memory allocated to heap space for thread runs from 1 to 128 are 

shown below in Figure 29.  Notice that the memory increases as the threads increase 

but by a very small amount. These plots show that there are limited additional 

memory resources used in multithreading for all of the cases covered in this study. 

Additional analysis plots and statistics are available in Appendix C – Additional 

Analysis Plots and Statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Total Memory Using 1 to 128 Threads for A ll Programs  
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Chapter 7: Conclusions 

The majority of time investment for this research was devoted to learning how the 

new C++11 multithread libraries and the atomic memory model work.  Several 

experiments were then run to understand how to apply these concepts and create 

usable programs.  Once a programmer has a firm grasp of how to make use of the 

tools, many of the concepts covered in this research can be implemented with 

modest programming efforts. The most important aspect to consider when creating a 

multithreaded program is the design. A simple design can oftentimes create large 

performance gains without requiring too much refactoring as was demonstrated in 

Section 4.  The programs covered here have a small scope and there can be 

potential issues when scaling the same concepts to much larger projects where 

threads may need to be shared across multiple classes and functions. Some of these 

issues were seen in these programs when threads were shared across many 

functions, but altering the scope of variables was easily accomplished to make use of 

the shared nature of class objects. 

Taking the cost and benefits of multithread implementations into account, the benefits 

gained from implementing parallel code were well worth the effort for all of the cases 

covered in this research.  As shown in Section 6.2, all of the programs provided high 

speedup values compared to the boundaries imposed by the processor architecture 

and OS.  

I would recommend using thread-level parallelism to decrease the execution time of 

all of these and similar algorithmic programs since they rely heavily on repetitive 

iteration, which makes designing parallel programs straightforward based on the 



59 

 

iterative tasks as demonstrated in Section 4. The algorithms can also be restructured 

in a more generic way to be reused many times, with each use building greater value 

on the implementation. 
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Appendix A – Glossary of Terms and Acronyms 

Alpha-Beta Pruning – search method used to minimize the number of tree nodes that 
must be expanded and searched by pruning away unnecessary branches 
 
Application Programming Interface (API) – used in programming to specify how 
software components should interact with each other 
 
Arithmetic Logic Unit (ALU) – a digital circuit that performs integer arithmetic and 
logical operations 
 
Artificial Intelligence (AI) – the field of science dedicated to understanding and 
building intelligent entities  
 
Artificial Neural Network (ANN) – implementation based on the neuroscience 
hypothesis that mental activity consists primarily of electrochemical activity in 
networks of brain cells called neurons  
 
Breadth First Search (BFS) – complete search that expands the shallowest nodes 
first and is optimal for unit step costs, but has exponential space complexity 
 
Concurrent Processing – a program where multiple tasks can be in progress at any 
instant  
 
Central Processing Unit (CPU) – traditional single processor, also referred to as a 
core on a multicore system 
 
Crossover – the process of selecting portions of each parent to create a successor in 
GA’s  
 
Efficiency – Speedup divided by the number of threads used to run a task 
 
First In First Out (FIFO) Queue – a queue where the first item pushed is the first to be 
popped and an item is pushed to the back of the queue and popped from the front of 
the queue much like a line at a store  
 
Fitness – a measured value of how good a given implementation is, used as 
reinforcement for learning 
 
Genetic Algorithm (GA) – Search where successor states are generated by 
combining two parent states rather than by modifying a single state 
 
General Purpose Graphics Processing Unit (GPGPU) – GPU ALUs on a single GPU 
core use SIMD parallelism, but the cores of current GPUs can execute independent 
instruction streams, behaving like an MIMD system, exhibiting hybrid characteristics 
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Heuristic – function that estimates the cost of an implementation or move 
Hill climbing – search that continually moves in the direction of increasing value 
(uphill) 
 
Hyper-Threading – Intel technology that uses processor resources more efficiently, 
enabling multiple threads to run on each core by allowing one physical core to 
present two logical cores to the operating system 
 
Integrated Development Environment (IDE) – a software application that provides 
comprehensive facilities to programmers for software development 
 
Learning – improvement of performance on future tasks after making observations 
about an environment 
 
Minimax – a recursive algorithm that selects a min or max value dependent on the 
depth of the tree node it is evaluating, used in gameplay  
 
Multicore – multiple cores on one chip where each core is a relatively simple, 
complete processor 
 
Multiple instruction streams, multiple data streams (MIMD) – each processor has its 
own instructions and operates on its own data, exploits thread-level parallelism 
 
Multiprocessor – more than one multicore processor in a system, typically used in 
servers 
 
Multithread – the use of multiple threads of control within a single process 
 
Mutation – the process of selecting an element within a member and changing its 
value in GA’s 
 
Parallel Processing – a program where multiple tasks cooperate closely to solve a 
problem 
 
Parallel Programming – programming strategy that makes use of multiple cores 
 
Population – Collection of individuals or solutions used in GA’s 
 
Resource Acquisition Is Initialization (RAII) – technique for managing resources with 
local objects by calling a destructor independently of whether a function is exited 
normally or because of an exception 
 
Reinforcement Learning – learning where reinforcements such as rewards and 
punishments are used to drive the learning process 
 
Searching – the process of looking for a sequence of actions that reaches a goal 
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Simulated Annealing – search that combines hill climbing with a random walk by 
using a heating / cooling schedules and a temperature value with some probabilistic 
acceptance criteria 
 
Single instruction stream, multiple data streams (SIMD) – the same instruction is 
executed by multiple processors using different data streams 
 
Speedup – the execution time of a serial task divided by the execution time of a 
multithreaded task 
 
Standard Template Library (STL) – a framework of algorithms and containers used in 
C++ since the 1998 standard 
 
Supervised Learning – learning based on a training set of input-output pairs 
 
Thread – a thread of control, which is a sequence of statements in a program 
 
Thread-Level Parallelism – parallelism through the simultaneous execution of 
multiple threads, providing coarse-grained control over parallel execution 
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Appendix B – Pseudocode 

Hill Climbing with Simulated Annealing: Transmissio n Tower Placement 

Main{ 
Create hillclimb class object ; 
Spawn_threads( hillclimb::solve() ); 
Join_threads; 

} 
 
Hillclimb::solve(){ 

While (count < count_limit){ 
Count++; 
Local_count++; 
If ( local_count > local_count_limit ) local_temper ature = start_temperature; // heating for annealing  per 
thread 
Mutate_random_transmitter_x_or_y(); 
Fitness = getFit(); 
If ( random_unit_draw ) < e^ ( ( fitness – best_fit ness ) / temperature ){ 

Best_fitness = fitness;  // atomic variable update,  no lock needed 
X_transmitter_lock.lock(); // unique locks used 
Best_x_transmitter_positions = mutated_x_transmitte r_positions 
X_transmitter_lock.unlock(); 
Y_transmitter_lock.lock(); 
Best_y_transmitter_positions = mutated_y_transmitte r_positions; 
Y_trasmitter_lock.unlock(); 

} 
Else{ 

X_transmitter_lock.lock(); 
Mutated_x_transmitter_positions = best_x_transmitte r_positions; 
X_transmitter_lock.unlock(); 
Y_transmitter_lock.lock(); 
Mutated_y_transmitter_positions = best_y_transmitte r_positions; 
Y_trasnmitter_lock.unlock(); 

} 
Local_temperature = local_temperature / cooldown; / / cooldown schedule determined by cooldown 
variable 

} 
 

Pathfinding: Breadth First Search 

Main{ 
Create frontier class object ; 
Spawn_producer_thread( frontier::produce() ); 
Spawn_consumer_threads( frontier::consume() ); 
Join_consumer_threads; 
Join_producer_thread; 

} 
 
Frontier::produce(){ 

While( done == false){ 
Wait_for_produce_condition_variable_notify( produce r_lock ); // acquire unique_lock producer_lock 
when  

// notified 
Parent = producer_queue.front(); // parent is a sha red pointer used as a holder 
Prodcuer_queue.pop(); 
Producer_lock.unlock(); 
Generate_child_states_from_parent; 
Consumer_lock.lock(); 
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Consumer_queue.push( child ); 
Notify_consumers_with_notify_condition_variable; 
Consumer_lock.unlock(); 

} 
} 
 
Frontier::consume(){ 

Wait_for_consume_condition_variable_notify( consume r_lock); 
Child = consumer_queue.front(); // child is a share d pointer used as a holder 
Consumer_queue.pop(); 
Consumer_lock.unlock(); 
Apply_child_action_and_apply_move_cost; 
Traveled_lock.lock(); 
Update_traveled_location_map; // prevents duplicate  moves from being applied, saves time 
Traveled_lock.unlock(); 
If ( goal_has_been_reached ) done = true; 
While( child_operation != next_operation) thread_sl eep ( 1 nanosecond); //poll for status, this is use d to  

// synchronize the moves as a  
// serial execution would do 

Producer_lock.lock(); 
Producer_queue.push( child ); 
Notify_producer_with_notify_condition_variable; 
Producer_lock.unlock(); 

} 
 

Game Playing: Connect 4 

Main{ 
Create connect4 class object ; 
Connect4::solve(); 

} 
 
Connect4::solve(){ 

While( done == false){ 
AlternateTurn(); 
GetMove(); 
DoMove(); 
ShowBoard(); 
CheckForDraw(); 
If ( draw == true ) done = true; 
TestForWin(); 
If ( win == true ) done = true; 
If ( done == true ) playAgain(); // ask player if h e / she would like to play again, if yes, reset gam e and 
set  

// done back to false 
} 

} 
 
Connect4::getMove(){ 

If ( it_is_human_move) get_and_execute_human_move; 
Else{ 

Spawn_threads( connect4::threadMinimax() ); // get AI move 
Join_threads; 

} 
} 
 
Connect4::threadMinimax(){ 

Best_fitness = 0; 
Update_best_lock.lock(); // unique_lock 
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Local_game_state = game_state; // set each thread’s  game states to those of current game state 
Update_best_lock.unlock(); 
Assign_search_branches_evenly_to_each_thread; 
Local_fitness = Execute_search_for_my_branches; // gather heuristics, apply minimax, apply alpha-beta 

// pruning, and get a best move and best 
fitness  
// for this thread’s search 

If ( local_fitness > best_fitness ){ 
Best_fitness = local_fitness; // atomic so no lock needed 
Update_best_lock.lock(); 
Game_state_score = local_score; // synchronize calc ulated best score found by this thread to the  

// game state 
Game_state_next_move = local_next_move; // synchron ize the best next move found by this thread to  

// game state 
Update_best_lock.unlock(); 

} 
} 
 

Genetic Algorithm: Deciphering encryption 

Main{ 
Create geneticAlgorithm class object ; 
Spawn_threads( geneticAlgorithm::solve() ); 
Join_threads; 

} 
 
geneticAlgorithm::solve(){ 

While (count < count_limit){ 
Count++; 
runTournament(); 
if ( keygen_threshold_reached ){ 

replace_loser_keys_with_random_keys(); 
get_new_key_fitness(); 
fitness_update_lock.lock(); //unique_lock 
if ( new_key_fitness < best_individual_fitness ) be st_individual_in_population = new_key_individual; 
fitness_update_lock.unlock(); 

} 
Else if ( crossover_threshold_reached ){ 

replace_loser_keys_with_crossover_keys(); // crosso ver performed by combining two random 
parents  

// from population 
get_new_key_fitness(); 
fitness_update_lock.lock(); 
if ( new_key_fitness < best_individual_fitness ) be st_individual_in_population = new_key_individual; 
fitness_update_lock.unlock(); 

} 
if ( mutate_threshold_reached ){ 

mutate_key_of_random_individual(); 
get_new_key_fitness(); 
if ( mutated_key_fitness < original_key_fitness ){ 
fitness_update_lock.lock(); 
update_individual_key; 
if ( new_key_fitness < best_individual_fitness ) be st_individual_in_population = new_key_individual; 
fitness_update_lock.unlock(); 
} 

} 
} 

} 
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Artificial Neural Network: Planetary Lander 

Main{ 
Create lander class object ; 
Spawn_threads( lander::solve() ); 
Join_threads; 

} 
 
lander::solve(){ 

While (count < count_limit){ 
Count++; 
setANN(); // set initial values for landing attempt  
while ( lander_has_not_landed ){ 

updateLander(); // update over and over until landi ng or crash has been completed 
testLanding(); // test to see if landing or crash h as occurred 

} 
ANN_lock.lock(); //unique_lock 
Calculate_my_thread_ANNFitness(); // must be locked  since the fitness value can also be written 

// elsewhere 
ANN_lock.unlock(); 
train(); 

} 
} 
 
Lander::train(){ 

If ( my_thread_ANN_fitness >= best_ANN_fitness ){ 
Best_ANN_lock.lock(); // unique_lock 
Best_ANN_nodes = my_thread_ANN_nodes; 
Best_ANN_fitness = my_thread_ANN_fitness; 
Best_ANN_lock.unlock(); 

} 
Else if ( reset_criteria_met ){  // we are stuck, r andom reset everything 
ANN_lock.lock(); 
ResetANNWeights(); 
all_other_thread_ANN = my_thread_ANN; 
ANN_lock.unlock(); 
Best_ANN_lock.lock(); 
Best_ANN = my_thread_ANN; 
Best_ANN_fitnes = -100000; // reset best fitness 
Best_ANN_lock.unlock(); 

} 
Else{ 

ANN_lock.lock(); 
My_thread_ANN_nodes = Best_ANN_nodes; 
ANN_lock.unlock(); 

} 
My_thread_ANN_randomize(); // update random weight with random value; 
ANN_lock.lock(); 
My_thread_ANN_fitness = 0; // reset fitness to setu p for new landing attempt 

} 
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Appendix C – Additional Analysis Plots and Statisti cs 

Table 8 Speedup and Efficiency Stats for All Progra ms Except Pathfinding* 

Problem Threads  Parallel 
Speedup 

Parallel 
Efficiency 

ANN Planetary 
Lander 

2 2.1 1.05 
4 2.8 0.69 
8 4.3 0.54 
16 4.1 0.25 
32 4.4 0.14 
64 4.6 0.07 

128 4.4 0.03 

Connect 4 

2 1.7 0.84 
3 2.1 0.69 
4 2.7 0.67 
5 2.5 0.49 
6 2.5 0.41 
7 3.0 0.43 

Deciphering 
Encryption 

2 1.9 0.94 
4 3.0 0.75 
8 3.4 0.42 
16 3.4 0.21 
32 3.4 0.10 
64 3.3 0.05 

128 3.3 0.03 

Transmission 
Towers 

2 1.9 0.95 
4 3.0 0.76 
8 3.1 0.39 
16 3.3 0.20 
32 3.3 0.10 
64 3.3 0.05 

128 3.2 0.03 
 

*For Pathfinding Speedup and Efficiency Stats, see Table 7. 
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Figure 30 Memory Allocs / Frees Using 1 to 128 Thre ads for All Programs  
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Figure 31 Average Best Fitness for Deciphering Encr yption (Top) 

and Transmission Tower Placement (Bottom)  


