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Abstract

While attempts to solve the equations of Quantum Chromodynamics (QCD) numerically in the low

energy limit are increasingly successful (”lattice QCD”), Chiral Effective Field Theory (ChEFT)

remains a potent alternative method for deriving nuclear force potentials. Previous calculations

within framework of ChEFT up to 4th order (next-to-next-to-next-to-leading order, N3LO) show

generally good agreement with experiment. However, some persistent problems with N3LO po-

tentials as well as the question of order-by-order convergence of ChEFT require calculations up to

higher orders. In this work, I present calculations of pion exchange contributions to nucleon-nucleon

potentials up to 5th and 6th order (N4LO and N5LO). N4LO calculations solve some of the previous

persistent problems and improve the agreement with nucleon-nucleon (NN) scattering experiments

in peripheral partial waves. N5LO contributions further improve the agreement with experiment

and also turn out to be smaller compared to N4LO, thus showing the trend for convergence. Finally,

I present the full NN potential at N4LO, which shows excellent agreement with experimental data

in all partial waves and can be applied further in nuclear structure calculations. Since a modi-

fied power counting scheme is used for N4LO potential, full NN potentials at NLO, NNLO and

N3LO are also recalculated using the modified scheme. This allows for systematic truncation error

estimation when applying potentials to calculations of nuclear structure and reactions.
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1CHAPTER 1

Introduction

The quest for a practically feasible, and yet fundamental, theory of hadronic interactions at low

energy (where QCD is non-perturbative) has spanned several decades. At the present time, there

exists a general consensus that chiral effective field theory (chiral EFT) may provide the best answer

to the quest. By its nature, chiral EFT is a model-independent approach with firm roots in QCD,

due to the fact that interactions are subjected to the constraints of the broken chiral symmetry of

low-energy QCD. Moreover, the approach is systematic in the sense that the various contributions

to a particular dynamical process can be arranged as an expansion in terms of powers of a suitable

“parameter”, (Q/Λχ)ν . Here, Q is the soft scale of the theory, represented by a typical external

momentum of the nucleon or pion, or a pion mass; Λχ is the chiral symmetry breaking scale (≈ 1

GeV, hard scale). Recent comprehensive reviews on the subject can be found in Refs. [1, 2].

In its early stages, chiral perturbation theory (ChPT) was applied mostly to ππ [3] and πN [4]

dynamics, because, due to the Goldstone-boson nature of the pion, these are the most natural

scenarios for a perturbative expansion to exist. In the meantime, though, chiral EFT has been

applied in nucleonic systems by numerous groups [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26]. Derivations of the nucleon-nucleon (NN) interaction up to fourth

order (next-to-next-to-next-to-leading order, N3LO) can be found in Refs. [7, 9, 10, 12, 13, 15],

with quantitative NN potentials making their appearance in the early 2000’s [16, 17].

Since then, a wealth of applications of N3LO NN potentials together with chiral three-nucleon

forces (3NFs) have been reported. These investigations include few-nucleon reactions, structure of

light- and medium-mass nuclei, and infinite matter. Although satisfactory predictions have been

obtained in many cases, persistent problems continue to pose serious challenges, such as the well-

known ‘Ay puzzle’ of nucleon-deuteron scattering [27]. Naturally, one would invoke 3NFs as the

most likely mechanism to solve this problem. Unfortunately, the chiral 3NF at NNLO does only

very little to improve the situation with nucleon-deuteron scattering [28, 29], while inclusion of

the N3LO 3NF produces an effect in the wrong direction [30]. The next step is then to proceed

systematically in the expansion, namely to look at N4LO (or fifth order). This order is interesting

for diverse reasons. From studies of some of the 3NF topologies at N4LO [31, 32], we know that a

complete set of isospin-spin-momentum 3NF structures (a total of 20) are present at this order [33]

and that contributions can be of substantial size. Even more promising, at this order a new set of

3NF contact interactions appears, which has recently been derived by the Pisa group [34]. Contact



2

terms are relatively easy to work with and, most importantly, come with free coefficients and, thus,

provide larger flexibility and a great likelihood to solve persistent problems such as the Ay puzzle

as well as other issues (like, the “radius problem” [35] and the overbinding of intermediate-mass

nuclei [36]).

A principle of all EFTs is that, for meaningful predictions, it is necessary to include all contribu-

tions that appear at the order at which the calculation is conducted. Thus, when nuclear structure

problems require for their solution the inclusion of 3NFs at N4LO, then also the two-nucleon force

involved in the calculation has to be of order N4LO. This is the main motivation for this study. We

derived the N4LO two-pion exchange (2PE) and three-pion exchange (3PE) contributions to the

NN interaction and tested them in peripheral partial waves [37]. Then, we developed a complete

N4LO NN potentials that also include the lower partial waves which receive contributions from

contact interactions [38].

It should be also mentioned that pion-exchange contributions are the only ones responsible

for long-range force and the πN coupling constants can be determined independently from πN

scattering experiments. Therefore, predictions for NN scattering results in peripheral partial waves

is a crucial test of how well the theory works, since behavior of peripheral waves is determined by

the long-range force.

In Ref. [37], we also demonstrated that the next-to-next-to-leading order (NNLO), the N3LO,

and the N4LO contributions to the NN interaction are all of about the same size, thus, not

showing much of a trend towards convergence. Therefore, in Ref. [39] we calculated the N5LO

(sixth order) contribution which, indeed, turned out to be small. The latter result implies that the

NN interaction is essentially converged at N4LO. This adds to the significance of order N4LO.

Besides the above, we are faced with another set of convergence issues: The convergence of

the predictions for the properties of nuclear few- and many-body systems, in which also chiral

many-body forces are involved. To investigate these issues, one needs (besides those many-body

forces) NN potentials at all orders of chiral EFT, ranging from leading order (LO) to N4LO, and

constructed consistently, i. e., using the same power-counting scheme, consistent LECs, etc..

For that reason, we present in this work NN potentials through five orders from LO to N4LO,

constructed with the above-stated consistencies and with a reproduction of the NN data of the

maximum quality possible at the respective orders. These potentials will allow for systematic

investigations of nuclear few- and many-body systems with clear implications for convergence and

uncertainty quantifications (truncation errors).
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Overview of Chiral EFT formalism

2.1 An effective field theory of low energy QCD

Our current fundamental theory of Strong interaction is Quantum Chromodynamics (QCD), which

is a part of Standard model of Particle Physics. According to this theory, Strong interactions

are interactions between color-charged quarks and gluons. Certain mathematical features of QCD

result in interaction between colored objects being weak at short distances, which corresponds to

high energies of interaction; conversely, interaction is strong at long distances ( >∼ 1 fm), i.e. at

low energies. The latter results in confinement of colored quarks into colorless composite particles,

hadrons. Thus, within the framework of QCD, the force between nucleons is a residual strong

interaction between colored objects within nucleons. This is qualitatively similar to van der Waals

force being a residual electromagnetic interaction between protons and electrons of neutral atoms

or molecules.

Since the Strong interaction is weak at high energies, the same perturbative analytical methods

work here as for Quantum Electrodynamics. However, at low energies typical of nuclear physics

QCD becomes non-perturbative. Therefore, deriving the nuclear force from QCD becomes a very

complex problem.

One approach here would be solving equations of QCD numerically, which is known as lattice

QCD. Recent attempts to use this method are increasingly successful. But it is too computationally

expensive. And so far only systems of few quarks were calculated. For typical nuclear physics

applications, a more efficient approach is needed.

Such an approach is offered by effective field theory (EFT). Based upon Weinberg’s ‘folk theo-

rem’ [40], we summarize the following prescription to construct the theory:

1. Identify the soft and hard scales, and the degrees of freedom appropriate for (low-energy)

nuclear physics.

2. Identify the relevant symmetries of low-energy QCD and investigate if and how they are

broken.

3. Construct the most general Lagrangian consistent with those symmetries and symmetry

breakings.

4. Design an organizational scheme that can distinguish between more and less important con-
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tributions: a low-momentum expansion.

5. Guided by the expansion, calculate Feynman diagrams for the problem under consideration

to the desired accuracy.

To deal with first item on the list, we can point out that there exists a large gap between the masses

of the pions and the masses of the vector mesons, like ρ(770) and ω(782). Thus, it is natural to

assume that the pion mass sets the soft scale, Q ∼ mπ, and the rho mass the hard scale, Λχ ∼ mρ,

also known as the chiral symmetry breaking scale. This is suggestive of considering an expansion

in terms of the soft scale over the hard scale, Q/Λχ. As for the relevant degrees of freedom, it is

reasonable to pick colorless nucleons and pions as low energy degrees of freedom instead of quarks

and gluons.

It may be helpful to mention how this situation is qualitatively similar to the approach for

deriving Lennard-Jones potential used to model van der Waals forces. Strictly speaking, one should

derive the force between the gas particles by considering the motion of individual electrons and

nuclei of the atoms. However, this is not a very trivial task. On the other hand, around room

temperature (low energies), molecules and atoms are usually not ionized and their electron shells

are not excited. The electron excitation energy of the molecule can be thought of as hard scale

here. Therefore, rather than thinking in terms of charged electrons and nuclei, it is more convenient

to think in terms of neutral gas particles, i.e. effective degrees of freedom. Then, the long range

attration term ∼ 1/r6 of the Lennard-Jones potential is easily derived as a force between induced

dipole moments of the gas particles. The artificial ∼ 1/r12 term is introduced to model short range

repulsion between overlapping electron shells of the atoms. Similarly, the long range force between

nucleons is successfully derived in Chiral EFT in terms of nucleons exchanging pions. Short range

force due to overlap of nucleons is taken care of by introducing nucleon-nucleon contact terms.

The second item on the list above requires our EFT to observe all relevant symmetries of QCD.

In particular, chiral symmetry (and its breaking) is of great importance here. This provides the

firm link with underlying QCD and ensures that Chiral EFT is not just another phenomenology.

It should be pointed out, that the first successful theory of nuclear force by Yukawa also involved

nucleons exchanging pions. However, certain multi-pion-exchange diagrams caused problems in the

theory. Chiral symmetry that transpired in QCD provides additional constraints and makes the

contributions of these diagrams reasonable.

We proceed to deal with the last three items on the list in subsequent chapters.
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2.2 Expansion of the NN potential

2.2.1 Effective Langrangians

In the ∆-less version of chiral EFT, which is the one we are pursuing here, the relevant degrees

of freedom are pions (Goldstone bosons) and nucleons. Since the interactions of Goldstone bosons

must vanish at zero momentum transfer and in the chiral limit (mπ → 0), the low-energy expansion

of the effective Lagrangian is arranged in powers of derivatives and pion masses. This effective

Lagrangian is subdivided into the following pieces,

Leff = Lππ + LπN + LNN + . . . , (2.1)

where Lππ deals with the dynamics among pions, LπN describes the interaction between pions and

a nucleon, and LNN contains two-nucleon contact interactions which consist of four nucleon-fields

(four nucleon legs) and no meson fields. The ellipsis stands for terms that involve two nucleons plus

pions and three or more nucleons with or without pions, relevant for nuclear many-body forces.

The individual Lagrangians are organized in terms of increasing orders:

Lππ = L(2)
ππ + L(4)

ππ + . . . , (2.2)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + . . . , (2.3)

LNN = L(0)
NN + L(2)

NN + L(4)
NN + . . . , (2.4)

where the superscript refers to the number of derivatives or pion mass insertions (chiral dimension)

and the ellipses stand for terms of higher dimensions. We use the heavy-baryon formulation of the

Lagrangians, the explicit expressions of which can be found in Refs. [1, 31].

2.2.2 Power counting

Based upon the above Langrangians, an infinite number of diagrams contributing to the interactions

among nucleons can be drawn. Nuclear potentials are defined by the irreducible types of these

graphs. By definition, an irreducible graph is a diagram that cannot be separated into two by

cutting only nucleon lines. These graphs are then analyzed in terms of powers of small external

momenta over the large scale: (Q/Λχ)ν , where Q is generic for a momentum (nucleon three-

momentum or pion four-momentum) or a pion mass and Λχ ∼ 1 GeV is the chiral symmetry
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breaking scale (hardronic scale, hard scale). Determining the power ν has become know as power

counting.

Following the Feynman rules of covariant perturbation theory, a nucleon propagator is Q−1, a

pion propagator Q−2, each derivative in any interaction is Q, and each four-momentum integration

Q4. This is also known as naive dimensional analysis or Weinberg counting.

Since we use the heavy-baryon formalism, we encounter terms which include factors of Q/MN ,

where MN denotes the nucleon mass. We count the order of such terms by the rule Q/MN ∼

(Q/Λχ)2, for reasons explained in Ref. [5].

Applying some topological identities, one obtains for the power of a connected irreducible dia-

gram involving A nucleons [1, 5]

ν = −2 + 2A− 2C + 2L+
∑
i

∆i , (2.5)

with

∆i ≡ di +
ni
2
− 2 , (2.6)

where L denotes the number of loops in the diagram; di is the number of derivatives or pion-mass

insertions and ni the number of nucleon fields (nucleon legs) involved in vertex i; the sum runs

over all vertexes i contained in the connected diagram under consideration. Note that ∆i ≥ 0 for

all interactions allowed by chiral symmetry.

An important observation from power counting is that the powers are bounded from below and,

specifically, ν ≥ 0. This fact is crucial for the convergence of the low-momentum expansion.

Furthermore, the power formula Eq. (2.5) allows to predict the leading orders of connected

multi-nucleon forces. Consider a m-nucleon irreducibly connected diagram (m-nucleon force) in an

A-nucleon system (m ≤ A). The number of separately connected pieces is C = A−m+1. Inserting

this into Eq. (2.5) together with L = 0 and
∑

i ∆i = 0 yields ν = 2m− 4. Thus, two-nucleon forces

(m = 2) appear at ν = 0, three-nucleon forces (m = 3) at ν = 2 (but they happen to cancel at that

order), and four-nucleon forces at ν = 4 (they don’t cancel).

For an irreducible NN diagram (A = 2, C = 1), the power formula collapses to the very simple

expression

ν = 2L+
∑
i

∆i . (2.7)

In summary, the chief point of the ChPT expansion of the potential is that, at a given order



7

ν, there exists only a finite number of graphs. This is what makes the theory calculable. The

expression (Q/Λχ)ν+1 provides an estimate of the relative size of the contributions left out and,

thus, of the uncertainty at order ν. The ability to calculate observables (in principle) to any degree

of accuracy gives the theory its predictive power.

+... +... +...

+... +... +...

+... +... +... +...

2N Force 3N Force 4N Force 5N Force

LO

(Q/Λχ)
0

NLO

(Q/Λχ)
2

NNLO

(Q/Λχ)
3

N3LO
(Q/Λχ)

4

N4LO
(Q/Λχ)

5

N5LO
(Q/Λχ)

6

Figure 2.1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines

pions. Small dots, large solid dots, solid squares, triangles, diamonds, and stars denote vertexes of

index ∆i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in the text.

Chiral perturbation theory and power counting imply that nuclear forces evolve as a hierarchy

controlled by the power ν, see Fig. 2.1 for an overview. In what follows, we will focus on the

two-nucleon force (2NF).



8

2.2.3 The long-range NN potential

The long-range part of the NN potential is built up from pion exchanges, which are ruled by chiral

symmetry. The various pion-exchange contributions may be analyzed according to the number of

pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + . . . , (2.8)

where the meaning of the subscripts is obvious and the ellipsis represents 4π and higher pion

exchanges. For each of the above terms, we have a low-momentum expansion:

V1π = V
(0)

1π + V
(2)

1π + V
(3)

1π + V
(4)

1π + V
(5)

1π + . . . (2.9)

V2π = V
(2)

2π + V
(3)

2π + V
(4)

2π + V
(5)

2π + . . . (2.10)

V3π = V
(4)

3π + V
(5)

3π + . . . , (2.11)

where the superscript denotes the order ν of the expansion.

Order by order, the long-range NN potential builds up as follows:

VLO ≡ V (0) = V
(0)

1π (2.12)

VNLO ≡ V (2) = VLO + V
(2)

1π + V
(2)

2π (2.13)

VNNLO ≡ V (3) = VNLO + V
(3)

1π + V
(3)

2π (2.14)

VN3LO ≡ V (4) = VNNLO + V
(4)

1π + V
(4)

2π + V
(4)

3π (2.15)

VN4LO ≡ V (5) = VN3LO + V
(5)

1π + V
(5)

2π + V
(5)

3π (2.16)

where LO stands for leading order, NLO for next-to-leading order, etc..

General form of pion exchanges

At leading order, there is only the 1π-exchange contribution (see appendix A.1 for details). Two-

pion exchange starts at NLO and continues through all higher orders. In Fig. 2.1, the corresponding

diagrams are show completely up to NNLO. Beyond that order, the number of diagrams increases

so dramatically that we show only a few symbolic graphs. The situation is similar for the 3PE con-

tributions which start at N3LO. Also the mathematical formulas are getting increasingly involved.

Note, that pion-exchange contributions at LO through N3LO have been derived in previous works,
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and are not the subject of this study. We omit them from the main part of the paper. A complete

collection of all formulas concerning the 1PE, 2PE and 3PE contributions through all orders from

LO to N3LO is given in Appendix A, as summarized in Ref. [37]. N4LO and N5LO contributions

are presented further in Chapters 3 and 4. In all 2PE and 3PE contributions, we use the average

pion mass, m̄π = 138.039 MeV. The charge-dependence caused by pion-mass splitting in 2PE has

been found to be negligible in all partial waves with L > 0 [41]. The small effect in 1S0 is absorbed

into the charge-dependence of the zeroth-order contact parameter C̃1S0
, see below.

The results in Chapters 3 and 4 will be stated in terms of contributions to the momentum-

space NN amplitudes in the center-of-mass system (CMS), which arise from the following general

decomposition:

V (~p ′, ~p) = VC + τ1 · τ2WC

+ [VS + τ1 · τ2WS ] ~σ1 · ~σ2

+ [VLS + τ1 · τ2WLS ]
(
−i~S · (~q × ~k)

)
+ [VT + τ1 · τ2WT ] ~σ1 · ~q ~σ2 · ~q

+ [VσL + τ1 · τ2WσL ] ~σ1 · (~q × ~k ) ~σ2 · (~q × ~k ) , (2.17)

where ~p ′ and ~p denote the final and initial nucleon momenta in the CMS, respectively. Moreover,

~q = ~p ′ − ~p is the momentum transfer, ~k = (~p ′ + ~p)/2 the average momentum, and ~S = (~σ1 + ~σ2)/2

the total spin, with ~σ1,2 and τ1,2 the spin and isospin operators, of nucleon 1 and 2, respectively.

For on-shell scattering, Vα and Wα (α = C, S, LS, T, σL) can be expressed as functions of q = |~q |

and p = |~p ′| = |~p |, only. Note that the one-pion exchange contribution in Eq. (2.9) is of the

form W
(1π)
T = −(gπN/2MN )2(m2

π + q2)−1 with physical values of the coupling constant gπN and

nucleon and pion masses MN and mπ. This expression fixes at the same time our sign-convention

for V (~p ′, ~p).

We consider loop contributions in terms of their spectral functions, from which the momentum-

space amplitudes Vα(q) and Wα(q) are obtained via the subtracted dispersion integrals:

VC,S(q) = −2q6

π

∫ Λ̃

nmπ

dµ
ImVC,S(iµ)

µ5(µ2 + q2)
,

VT,LS(q) =
2q4

π

∫ Λ̃

nmπ

dµ
ImVT,LS(iµ)

µ3(µ2 + q2)
, (2.18)
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Table 2.1: The πN LECs as determined in the Roy-Steiner-equation analysis of πN scattering
conducted in Ref. [44]. The given orders of the chiral expansion refer to the NN system. Note that
the orders, at which the LECs are extracted from the πN system, are always lower by one order
as compared of the NN system in which the LECs are applied. The ci, d̄i, and ēi are the LECs
of the second, third, and fourth order πN Lagrangian [31] and are in units of GeV−1, GeV−2, and
GeV−3, respectively. The uncertainties in the last digits are given in parentheses after the values.

NNLO N3LO N4LO

c1 –0.74(2) –1.07(2) –1.10(3)
c2 — 3.20(3) 3.57(4)
c3 –3.61(5) –5.32(5) –5.54(6)
c4 2.44(3) 3.56(3) 4.17(4)

d̄1 + d̄2 — 1.04(6) 6.18(8)
d̄3 — –0.48(2) –8.91(9)
d̄5 — 0.14(5) 0.86(5)

d̄14 − d̄15 — –1.90(6) –12.18(12)
ē14 — — 1.18(4)
ē17 — — –0.18(6)

up to N4LO and

VC,S(q) =
2q8

π

∫ Λ̃

nmπ

dµ
ImVC,S(iµ)

µ7(µ2 + q2)
,

VT (q) = −2q6

π

∫ Λ̃

nmπ

dµ
ImVT (iµ)

µ5(µ2 + q2)
, (2.19)

at N5LO. Similar equations are used for WC,S,T,LS . The thresholds are given by n = 2 for two-pion

exchange and n = 3 for three-pion exchange. For Λ̃ → ∞ the above dispersion integrals yield the

results of dimensional regularization, while for finite Λ̃ ≥ nmπ we employ the method known as

spectral-function regularization (SFR) [42]. The purpose of the finite scale Λ̃ is to constrain the

imaginary parts to the low-momentum region where chiral effective field theory is applicable. Thus,

a reasonable choice for Λ̃ is to keep it below the masses of the vector mesons ρ(770) and ω(782),

but above the f0(500) [also know as σ(500)] [43]. This suggests that the region 600-700 MeV is

appropriate for Λ̃. Consequently, we use Λ̃ = 650 MeV in all orders, except for N4LO where we

apply 700 MeV. (Note, that a slightly different cutoff range is used for the study of peripheral

partial waves, as explained in sections 5.3 and 5.4.)
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Table 2.2: Basic constants used throughout this work [43].

Quantity Value

Axial-vector coupling constant gA 1.29
Pion-decay constant fπ 92.4 MeV
Charged-pion mass mπ± 139.5702 MeV
Neutral-pion mass mπ0 134.9766 MeV
Average pion-mass m̄π 138.0390 MeV
Proton mass Mp 938.2720 MeV
Neutron mass Mn 939.5654 MeV
Average nucleon-mass M̄N 938.9183 MeV

The pion-nucleon low-energy constants

Chiral symmetry establishes a link between the dynamics in the πN -system and the NN -system

through common low-energy constants. Therefore, consistency requires that we use the LECs for

subleading πN -couplings as determined in analysis of low-energy πN -scattering. Over the years,

there have been many such determinations of questionable reliability. Fortunately, that has changed

recently with the analysis by Hoferichter and Ruiz de Elvira et al. [44], in which the Roy-Steiner

(RS) equations are applied. The RS equations are a set of coupled partial-wave dispersion relations

constraint by analyticity, unitarity, and crossing symmetry. In the work of Ref. [44], they are used

to extract the LECs from the subthreshold point in πN scattering instead of the physical region.

This is the preferred method for LECs to be applied in chiral potentials where, e. g., a one-loop πN

amplitude leads to a two-loop contribution in NN . Such diagrams are best evaluated by means

of Cutkosky rules [12, 37, 39]. The πN amplitude that enters the dispersion integrals is weighted

much closer to subthreshold kinematics than to the threshold point. The LECs determined in

Ref. [44] carry very small uncertainties (cf. Table 2.1) for, essentially, two reasons: first, because

of the constraints built into the RS equations; second, because of the use of the high-accuracy

πN scattering lengths extracted from pionic atoms. In fact, the uncertainties are so small that

they are negligible for our purposes. This makes the variation of the πN LECs in NN potential

construction obsolete and reduces the error budget in applications of these potentials. For the

potentials constructed in this paper, the central values of Table 2.1 are applied.

Other constants

Finally, we also summarize other constants related to pion-nucleon interaction in Table 2.2.
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2.2.4 The short-range NN potential

The short-range NN potential is described by contributions of the contact type, which are con-

strained by parity, time-reversal, and the usual invariances, but not by chiral symmetry. Terms that

include a factor τ1 ·τ2 (owing to isospin invariance) can be left out due to Fierz ambiguity. Because

of parity and time-reversal only even powers of momentum are allowed. Thus, the expansion of the

contact potential is formally written as

Vct = V
(0)

ct + V
(2)

ct + V
(4)

ct + V
(6)

ct + . . . , (2.20)

where the superscript denotes the power or order.

The zeroth order (leading order, LO) contact potential is given by

V
(0)

ct (~p′, ~p) = CS + CT ~σ1 · ~σ2 (2.21)

and, in terms of partial waves,

V
(0)

ct (1S0) = C̃1S0
= 4π (CS − 3CT ) (2.22)

V
(0)

ct (3S1) = C̃3S1
= 4π (CS + CT ) . (2.23)

To deal with the isospin breaking in the 1S0 state, we treat C̃1S0
in a charge-dependent way. Thus,

we will distinguish between C̃pp
1S0

, C̃np
1S0

, and C̃nn
1S0

.

At second order (NLO), we have

V
(2)

ct (~p′, ~p) = C1 q
2 + C2 k

2

+
(
C3 q

2 + C4 k
2
)
~σ1 · ~σ2

+ C5

(
−i~S · (~q × ~k)

)
+ C6 (~σ1 · ~q) (~σ2 · ~q)

+ C7 (~σ1 · ~k) (~σ2 · ~k) , (2.24)
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and partial-wave decomposition yields

V
(2)

ct (1S0) = C1S0
(p2 + p′

2
)

V
(2)

ct (3P0) = C3P0
pp′

V
(2)

ct (1P1) = C1P1
pp′

V
(2)

ct (3P1) = C3P1
pp′

V
(2)

ct (3S1) = C3S1
(p2 + p′

2
)

V
(2)

ct (3S1 −3 D1) = C3S1−3D1
p2

V
(2)

ct (3D1 −3 S1) = C3S1−3D1
p′

2

V
(2)

ct (3P2) = C3P2
pp′ . (2.25)

The relationship between the C(2S+1)LJ
and the Ci can be found in Ref. [1].

The fourth order (N3LO) contacts are

V
(4)

ct (~p′, ~p) = D1 q
4 +D2 k

4 +D3 q
2k2 +D4 (~q × ~k)2

+
(
D5 q

4 +D6 k
4 +D7 q

2k2 +D8 (~q × ~k)2
)
~σ1 · ~σ2

+
(
D9 q

2 +D10 k
2
) (
−i~S · (~q × ~k)

)
+

(
D11 q

2 +D12 k
2
)

(~σ1 · ~q) (~σ2 · ~q)

+
(
D13 q

2 +D14 k
2
)

(~σ1 · ~k) (~σ2 · ~k)

+ D15

(
~σ1 · (~q × ~k) ~σ2 · (~q × ~k)

)
, (2.26)



14

with contributions by partial waves,

V
(4)

ct (1S0) = D̂1S0
(p′

4
+ p4) +D1S0

p′
2
p2

V
(4)

ct (3P0) = D3P0
(p′

3
p+ p′p3)

V
(4)

ct (1P1) = D1P1
(p′

3
p+ p′p3)

V
(4)

ct (3P1) = D3P1
(p′

3
p+ p′p3)

V
(4)

ct (3S1) = D̂3S1
(p′

4
+ p4) +D3S1

p′
2
p2

V
(4)

ct (3D1) = D3D1
p′

2
p2

V
(4)

ct (3S1 −3 D1) = D̂3S1−3D1
p4 +D3S1−3D1

p′
2
p2

V
(4)

ct (3D1 −3 S1) = D̂3S1−3D1
p′

4
+D3S1−3D1

p′
2
p2

V
(4)

ct (1D2) = D1D2
p′

2
p2

V
(4)

ct (3D2) = D3D2
p′

2
p2

V
(4)

ct (3P2) = D3P2
(p′

3
p+ p′p3)

V
(4)

ct (3P2 −3 F2) = D3P2−3F2
p′p3

V
(4)

ct (3F2 −3 P2) = D3P2−3F2
p′

3
p

V
(4)

ct (3D3) = D3D3
p′

2
p2 . (2.27)

Reference [1] provides formulas that relate the D(2S+1)LJ
to the Di.

The next higher order is sixth order (N5LO) at which, finally, also F -waves are affected in the

following way:

V
(6)

ct (3F2) = E3F2
p′

3
p3

V
(6)

ct (1F3) = E1F3
p′

3
p3

V
(6)

ct (3F3) = E3F3
p′

3
p3

V
(6)

ct (3F4) = E3F4
p′

3
p3 . (2.28)

To obtain an optimal fit of the NN data at the highest order we consider in this paper, we include

the above F -wave contacts in our N4LO potentials.
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2.2.5 Charge dependence

This is to summarize what charge-dependence we include. Through all orders, we take the charge-

dependence of the 1PE due to pion-mass splitting into account, Eqs. (A.2) and (A.3). Charge-

dependence is seen most prominently in the 1S0 state at low energies, particularly, in the 1S0

scattering lengths. Charge-dependent 1PE cannot explain it all. The remainder is accounted for

by treating the 1S0 LO contact parameter, C̃1S0
, Eq. (2.22), in a charge-dependent way. Thus,

we will distinguish between C̃pp
1S0

, C̃np
1S0

, and C̃nn
1S0

. For pp scattering at any order, we include the

relativistic Coulomb potential [45, 46]. Finally, at N3LO and N4LO, we take into account irreducible

π-γ exchange [47], which affects only the np potential. We also take nucleon-mass splitting into

account, or in other words, we always apply the correct values for the masses of the nucleons

involved in the various charge-dependent NN potentials.

For a comprehensive discussion of all possible sources for the charge-dependence of the NN

interaction, see Ref. [1].

2.2.6 The full potential

The sum of long-range [Eqs. (2.12)-(2.16)] plus short-range potentials [Eq. (2.20)] results in:

VLO ≡ V (0) = V1π + V
(0)

ct (2.29)

VNLO ≡ V (2) = VLO + V
(2)

2π + V
(2)

ct (2.30)

VNNLO ≡ V (3) = VNLO + V
(3)

2π (2.31)

VN3LO ≡ V (4) = VNNLO + V
(4)

2π + V
(4)

3π + V
(4)

ct (2.32)

VN4LO ≡ V (5) = VN3LO + V
(5)

2π + V
(5)

3π , (2.33)

where we left out the higher order corrections to the 1PE because, as discussed, they are absorbed

by mass and coupling constant renormalizations (appendix A.1). It is also understood that the

charge-dependence discussed in the previous subsection is included.

In our systematic potential construction, we follow the above scheme, except for two physically

motivated modifications. We add to VN3LO the 1/MN correction of the NNLO 2PE proportional

to ci. This correction is proportional to ci/MN and appears nominally at fifth order, because we

count Q/MN ∼ (Q/Λχ)2. This contribution is given in Eqs. (2.19)-(2.23) of Ref. [37] and we denote
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it by V
(5)

2π,ci/MN
. In short, in Eq. (2.32), we replace

VN3LO 7−→ VN3LO + V
(5)

2π,ci/MN
. (2.34)

As demonstrated in Ref. [15], the 2PE bubble diagram proportional to c2
i that appears at N3LO

is unrealistically attractive, while the ci/MN correction is large and repulsive. Therefore, it makes

sense to group these diagrams together to arrive at a more realistic intermediate attraction at

N3LO.

The second modification consists of adding to VN4LO the four F -wave contacts listed in Eq. (2.28)

to ensure an optimal fit of the NN data for the potential of the highest order constructed in this

work.

The potential V is, in principle, an invariant amplitude (with relativity taken into account

perturbatively) and, thus, satisfies a relativistic scattering equation, like, e. g., the Blankenbeclar-

Sugar (BbS) equation [48], which reads explicitly,

T (~p ′, ~p) = V (~p ′, ~p) +

∫
d3p′′

(2π)3
V (~p ′, ~p ′′)

M2
N

Ep′′

1

p2 − p′′2 + iε
T (~p ′′, ~p) (2.35)

with Ep′′ ≡
√
M2
N + p′′2 and MN the nucleon mass. The advantage of using a relativistic scattering

equation is that it automatically includes relativistic kinematical corrections to all orders. Thus,

in the scattering equation, no propagator modifications are necessary when moving up to higher

orders.

Defining

V̂ (~p ′, ~p) ≡ 1

(2π)3

√
MN

Ep′
V (~p ′, ~p)

√
MN

Ep
(2.36)

and

T̂ (~p ′, ~p) ≡ 1

(2π)3

√
MN

Ep′
T (~p ′, ~p)

√
MN

Ep
, (2.37)

where the factor 1/(2π)3 is added for convenience, the BbS equation collapses into the usual,

nonrelativistic Lippmann-Schwinger (LS) equation,

T̂ (~p ′, ~p) = V̂ (~p ′, ~p) +

∫
d3p′′ V̂ (~p ′, ~p ′′)

MN

p2 − p′′2 + iε
T̂ (~p ′′, ~p) . (2.38)

Since V̂ satisfies Eq. (2.38), it may be regarded as a nonrelativistic potential. By the same token, T̂
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may be considered as the nonrelativistic T-matrix. All technical aspects associated with the solution

of the LS equation can be found in Appendix A of Ref. [49], including specific formulas for the

calculation of the np and pp phase shifts (with Coulomb). Additional details concerning the relevant

operators and their decompositions are given in section 4 of Ref. [50]. Finally, computational

methods to solve the LS equation are found in Ref. [51].

2.2.7 Regularization and non-perturbative renormalization

Iteration of V̂ in the LS equation, Eq. (2.38), requires cutting V̂ off for high momenta to avoid

infinities. This is consistent with the fact that ChPT is a low-momentum expansion which is valid

only for momenta Q < Λχ ≈ 1 GeV. Therefore, the potential V̂ is multiplied with the regulator

function f(p′, p),

V̂ (~p ′, ~p) 7−→ V̂ (~p ′, ~p) f(p′, p) (2.39)

with

f(p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] , (2.40)

such that

V̂ (~p ′, ~p) f(p′, p) ≈ V̂ (~p ′, ~p)

{
1−

[(
p′

Λ

)2n

+
( p

Λ

)2n
]

+ . . .

}
. (2.41)

For the cutoff parameter Λ, we apply three different values, namely, 450, 500, and 550 MeV.

Equation (2.41) provides an indication of the fact that the exponential cutoff does not necessarily

affect the given order at which the calculation is conducted. For sufficiently large n, the regulator

introduces contributions that are beyond the given order. Assuming a good rate of convergence of

the chiral expansion, such orders are small as compared to the given order and, thus, do not affect

the accuracy at the given order. Thus, we use n = 2 for 3PE and 2PE and n = 4 for 1PE (except in

LO and NLO, where we use n = 2 for 1PE). For contacts of order ν, n is chosen such that 2n > ν.

In our calculations, we apply, of course, the exponential form, Eq. (2.40), and not the expansion

Eq. (2.41). On a similar note, we also do not expand the square-root factors in Eqs. (2.36-2.37)

because they are kinematical factors which guarantee relativistic elastic unitarity.

It is pretty obvious that results for the T -matrix may depend sensitively on the regulator and its

cutoff parameter. The removal of such regulator dependence is known as renormalization. Proper

renormalization of the chiral NN interaction is a controversial issue, see Section 4.5 of Ref. [1] for

a more comprehensive discussion.
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For a successful EFT (in its domain of validity), one must be able to claim independence of the

predictions on the regulator within the theoretical error. Also, truncation errors must decrease as

we go to higher and higher orders. These are precisely the goals of renormalization.

Lepage [52] has stressed that the cutoff independence should be examined for cutoffs below the

hard scale and not beyond. Ranges of cutoff independence within the theoretical error are to be

identified using Lepage plots [52]. A systematic investigation of this kind has been conducted in

Ref. [53]. In that work, the error of the predictions was quantified by calculating the χ2/datum for

the reproduction of the np elastic scattering data as a function of the cutoff parameter Λ of the

regulator function Eq. (2.40). Predictions by chiral np potentials at order NLO and NNLO were

investigated applying Weinberg counting for the counter terms (NN contact terms). It is found

that the reproduction of the np data at lab. energies below 200 MeV is generally poor at NLO,

while at NNLO the χ2/datum assumes acceptable values (a clear demonstration of order-by-order

improvement). Moreover, at NNLO, a “plateau” of constant low χ2 for cutoff parameters ranging

from about 450 to 850 MeV can be identified. This may be perceived as cutoff independence (and,

thus, successful renormalization) for the relevant range of cutoff parameters.
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Pion exchange contributions at N4LO

In the following chapter, the N4LO contributions are summarized according to definitions made in

section 2.2.3. These calculations were carried out in Ref. [37].

3.1 Two-pion exchange contributions at N4LO

The 2π-exchange contributions that occur at N4LO are displayed graphically in Fig. 3.1. We present

now the corresponding analytical expressions separately for each class.

3.1.1 Spectral functions for class (a)

The N4LO 2π-exchange two-loop contributions of class (a) are shown in Fig. 3.1(a). For this class

the spectral functions are obtained by integrating the product of the leading one-loop πN amplitude

and the chiral ππNN vertex proportional to ci over the Lorentz-invariant 2π-phase space. In the

ππ center-of-mass frame this integral can be expressed as an angular integral
∫ 1
−1 dx [12]. The

results for the non-vanishing spectral functions read:

ImVC = − m5
π

(4fπ)6π2

{
g2
A

√
u2 − 4

(
5− 2u2 − 2

u2

)[
24c1 + c2(u2 − 4) + 6c3(u2 − 2)

]
ln
u+ 2

u− 2

+
8

u

[
3
(
4c1 + c3(u2 − 2)

)
(4g4

Au
2 − 10g4

A + 1) + c2(6g4
Au

2 − 10g4
A − 3)

]
B(u)

+
√
u2 − 4

[
3(2− u2)

(
4c1 + c3(u2 − 2)

)
+ c2(7u2 − 6− u4) +

4g2
A

u
(2u2 − 1)

×
[
4(6c1 − c2 − 3c3) + (c2 + 6c3)u2

]
+ 4g4

A

(
32

u+ 2
(2c1 + c3) +

64

3u
(6c1 + c2 − 3c3)

+14c3 − 5c2 − 92c1 +
8u

3
(18c3 − 5c2) +

u2

6
(36c1 + 13c2 − 156c3)

+
u4

6
(2c2 + 9c3)

)]}
, (3.1)

ImWS = µ2 ImWT =
c4 g

2
Am

5
π

(4fπ)6π2

{
8g2
Au(5− u2)B(u) +

1

3
(u2 − 4)5/2 ln

u+ 2

u− 2

+
u

3

√
u2 − 4

[
g2
A(30u− u3 − 64)− 4u2 + 16

]}
, (3.2)

with the dimensionless variable u = µ/mπ > 2 and the logarithmic function

B(u) = ln
u+
√
u2 − 4

2
. (3.3)
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(a)

(b)

(c)

= + + +

+ + + . . .

= + + +

+ + + +

+ + + + . . .

Figure 3.1: Two-pion-exchange contributions at N4LO. (a) The leading one-loop πN amplitude
is folded with the chiral ππNN vertices proportional to ci. (b) The one-loop πN amplitude pro-
portional to ci is folded with the leading order chiral πN amplitude. (c) Relativistic corrections
of NNLO diagrams. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and triangles denote vertices of index di+ni/2−2 = 0, 1, 2, and 3, respectively.
Open circles are relativistic 1/MN corrections.
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3.1.2 Spectral functions for class (b)

The N4LO 2π-exchange two-loop contributions of class (b) are displayed in Fig. 3.1(b). For this

class, the product of the one-loop πN amplitude proportional to ci (see Ref. [31] for details) and

the leading order chiral πN amplitude is integrated over the 2π-phase space. We obtain:

ImVS = µ2 ImVT =
g4
Am

5
π(c3 − c4)u

(4fπ)6π2

{√
u2 − 4 (u3 − 30u+ 64) + 24(u2 − 5)B(u)

}
, (3.4)

ImWS = µ2 ImWT =
g2
Am

5
π

(4fπ)6π2
(4− u2)

{
c4

3

[√
u2 − 4 (2u2 − 8)B(u)

+4u(2 + 9g2
A)− 5u3

3

]
+ 2ē17(8πfπ)2(u3 − 2u)

}
, (3.5)

ImVC =
g2
Am

5
π

(4fπ)6π2
(u2 − 2)

(
1

u2
− 2

){
2
√
u2 − 4

[
24c1 + c2(u2 − 4) + 6c3(u2 − 2)

]
B(u)

+u

[
c2

(
8− 5u2

3

)
+ 6c3(2− u2)− 24c1

]}
+

3g2
Am

5
π

(2fπ)4u
(2− u2)3 ē14 , (3.6)

ImWC = − c1m
5
π

(2fπ)6π2

{
3g2
A + 1

8

√
u2 − 4 (2− u2) +

(
3g2
A + 1

u
− 2g2

A u

)
B(u)

}
− c2m

5
π

(2fπ)6π2

×
{

1

96

√
u2 − 4

[
7u2 − 6− u4 + g2

A(5u2 − 6− 2u4)
]

+
1

4u
(g2
Au

2 − 1− g2
A)B(u)

}
− c3m

5
π

(4fπ)6π2

{
2

9

√
u2 − 4

[
3(7u2 − 6− u4) + 4g2

A

(
32

u
− 12− 20u+ 7u2 − u4

)
+g4

A

(
114− 512

u
+ 368u− 169u2 + 7u4 +

192

u+ 2

)]
+

16

3u

[
g4
A(6u4 − 30u2 + 35) + g2

A(6u2 − 8)− 3
]
B(u)

}

−
c4g

2
Am

5
π

(4fπ)6π2

{
2

9

√
u2 − 4

[
30− 128

u
+ 80u− 13u2 − 2u4 + g2

A

(
512

u
− 114− 368u

+169u2 − 7u4 − 192

u+ 2

)]
+

16

3u

[
5− 3u2 + g2

A(30u2 − 35− 6u4)
]
B(u)

}
. (3.7)

Consistent with the calculation of the πN amplitude in Ref. [31], we applied relations between

LECs, such that only ē14 and ē17 remain in the final result.
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3.1.3 Relativistic corrections

This group consists of diagrams with one vertex proportional to ci and one 1/MN correction. A

few representative graphs are shown in Fig. 3.1(c). Since in this investigation we count Q/MN ∼

(Q/Λχ)2, these relativistic corrections are formally of order N4LO. The result for this group of

diagrams read in our sign-convention [12]:

VC =
g2
A L(Λ̃; q)

32π2MNf4
π

[
(6c3 − c2)q4 + 4(3c3 − c2 − 6c1)q2m2

π

+6(2c3 − c2)m4
π − 24(2c1 + c3)m6

πw
−2
]
, (3.8)

WC = − c4

192π2MNf4
π

[
g2
A(8m2

π + 5q2) + w2
]
q2 L(Λ̃; q) , (3.9)

WT = − 1

q2
WS =

c4

192π2MNf4
π

[
w2 − g2

A(16m2
π + 7q2)

]
L(Λ̃; q) , (3.10)

VLS =
c2 g

2
A

8π2MNf4
π

w2L(Λ̃; q) , (3.11)

WLS = − c4

48π2MNf4
π

[
g2
A(8m2

π + 5q2) + w2
]
L(Λ̃; q) , (3.12)

where the (regularized) logarithmic loop function is given by:

L(Λ̃; q) =
w

2q
ln

Λ̃2(2m2
π + q2)− 2m2

πq
2 + Λ̃

√
Λ̃2 − 4m2

π q w

2m2
π(Λ̃2 + q2)

(3.13)

with w =
√

4m2
π + q2. Note that

lim
Λ̃→∞

L(Λ̃; q) =
w

q
ln
w + q

2mπ
, (3.14)

is the logarithmic loop function of dimensional regularization.

3.2 Three-pion exchange contributions at N4LO

The 3π-exchange of order N4LO is shown in Fig. 3.2. The spectral functions for these diagrams

have been calculated in Ref. [11]. We use here the classification scheme introduced in that reference

and note that class XI vanishes. Moreover, we find that the class X and part of class XIV make

only negligible contributions. Thus, we include in our calculations only class XII and XIII, and

the VS contribution of class XIV. In Ref. [11] the spectral functions were presented in terms of an

integral over the invariant mass of a pion pair. We have solved these integrals analytically and



23

Class X Class XI

Class XII Class XIII Class XIV

Figure 3.2: Three-pion exchange contributions at N4LO. The classification scheme of Ref. [11] is
used. Notation as in Fig. 3.1.

obtain the following spectral functions for the non-negligible cases:

ImV
(XII)
S = −

g2
Ac4m

5
π

(4fπ)6π2u3

[
y

12
(u− 1)(100u3 − 27− 50u− 151u2 + 185u4 − 14u5 − 7u6)

+4D(u) (2 + 10u2 − 9u4)

]
, (3.15)

ImV
(XII)
T =

1

µ2
ImV

(XII)
S −

g2
Ac4m

3
π

(4fπ)6π2u5

[
y

6
(u− 1)(u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27)

+8D(u) (3u4 − 10u2 + 2)

]
, (3.16)

ImW
(XII)
S = −

g2
Am

5
π

(4fπ)6π2u3

{
y (u− 1)

[
4c1u

3

(
u3 + 2u2 − u+ 4

)
+
c2

72

(
u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27

)
+
c3

12

(
u6 + 2u5 − 31u4 + 4u3 + 57u2 − 18u− 27

)
+
c4

72

(
7u6 + 14u5 − 185u4 − 100u3 + 151u2 + 50u+ 27

)]
+D(u)

[
16c1(4u2 − 1− u4) +

2c2

3

(
2− 10u2 + 3u4

)
+4c3u

2(u2 − 2) +
2c4

3

(
9u4 − 10u2 − 2

)]}
, (3.17)
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ImW
(XII)
T =

1

µ2
ImW

(XII)
S −

g2
Am

3
π

(4fπ)6π2u5

{
y (u− 1)

[
16c1u

3

(
2 + u− 2u2 − u3

)
+
c2

36

(
73u4 − 6u5 − 3u6 + 44u3 − 43u2 − 50u− 27

)
+
c3

2

(
19u4 − 2u5 − u6 + 4u3 − 9u2 − 6u− 9

)
+
c4

36

(
39u4 − 2u5 − u6 + 12u3 − 65u2 + 50u+ 27
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+4D(u)

[
8c1(u4 − 1) + c2

(
2

3
− u4

)
− 2c3u

4 +
c4

3

(
10u2 − 2− 3u4
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, (3.18)

ImW
(XIII)
C = −

g4
Ac4m

5
π

(4fπ)6π2

[
8y

3
(u− 1)(u− 4− 2u2 − u3) + 32D(u)

(
u3 − 4u+

1

u
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, (3.19)

ImV
(XIII)
S = −

g4
Ac4m

5
π

(4fπ)6π2u3

[
y

24
(u− 1)(37u6 + 74u5 − 251u4 − 268u3 + 349u2 − 58u− 135)

+2D(u) (39u4 − 2− 52u2 − 6u6)

]
, (3.20)

ImV
(XIII)
T =

1
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g4
Ac4m

3
π

(4fπ)6π2u5

[
y
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−58u− 135) + 4D(u) (3u4 + 22u2 − 2)

]
, (3.21)

ImW
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S = −

g4
Am

5
π

(4fπ)6π2u3

{
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+
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(
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)
+
c3

8

(
7u6 + 14u5 − 145u4 − 20u3 + 111u2 + 18u+ 27

)
+
c4

6

(
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24c1(1 + 4u2 − 3u4) + c2(2 + 2u2 − 3u4)
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,

(3.22)
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ImW
(XIII)
T =

1

µ2
ImW

(XIII)
S −

g4
Am

3
π

(4fπ)6π2u5

{
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+
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+6c3u
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, (3.23)

ImV
(XIV)
S = −

g4
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5
π

(4fπ)6π2u3

[
y
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(u− 1)(637u2 − 58u− 135 + 116u3 − 491u4 − 22u5 − 11u6)

+2D(u) (6u6 − 9u4 + 8u2 − 2)

]
, (3.24)

where y =
√

(u− 3)(u+ 1) and D(u) = ln[(u− 1 + y)/2] with u = µ/mπ > 3.
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Dominant pion exchange contributions at N5LO

In the following chapter, the N5LO contributions are summarized according to definitions made in

section 2.2.3. These calculations were carried out in Ref. [39].

4.1 Two-pion exchange contributions at N5LO

The 2π-exchange contributions that occur at N5LO are displayed graphically in Fig. 4.1. We will

now discuss each class separately.

4.1.1 Spectral functions for 2π-exchange class (a)

The N5LO 2π-exchange two-loop contributions, denoted by class (a), are shown in Fig. 4.1(a). For

this class the spectral functions are obtained by integrating the product of the subleading one-loop

πN -amplitude (see Ref. [31] for details) and the chiral ππNN -vertex proportional to ci over the

Lorentz-invariant 2π-phase space. In the ππ center-of-mass frame this integral can be expressed

as an angular integral
∫ 1
−1 dx [12]. Altogether, the results for the non-vanishing spectral functions

read:

ImVC =
m6
π

√
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(8πf2
π)3
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)[
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6
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}

+
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π
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{[
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][
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10
(u4 − 6u2 + 8) + ē14(u2 − 2)2 +
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28
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√
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(a)

(b)

(c)

4 4

3 3

5 5 5 5

Figure 4.1: Two-pion-exchange contributions to the NN -interaction at N5LO. (a) The subleading
one-loop πN -amplitude is folded with the chiral ππNN -vertices proportional to ci. (b) The leading
one-loop πN -amplitude is folded with itself. (c) The leading two-loop πN -amplitude is folded with
the tree-level πN -amplitude. Solid lines represent nucleons and dashed lines pions. Small dots and
large solid dots denote vertices of chiral order one and two, respectively. Shaded ovals represent
complete πN -scattering amplitudes with their order specified by the number in the oval.
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with the dimensionless variable u = µ/mπ > 2 and the logarithmic function

B(u) = ln
u+
√
u2 − 4

2
. (4.3)

Consistent with the calculation of the πN -amplitude in Ref. [31], we utilized the relations

between the fourth-order LECs, such that only ē14 to ē18 remain in the final result.

4.1.2 Spectral functions for 2π-exchange class (b)

A first set of 2π-exchange contributions at three-loop order, denoted by class (b), is displayed in

Fig. 4.1(b). For this class of diagrams, the leading one-loop πN -scattering amplitude is multiplied

with itself and integrated over the 2π-phase space. Including also the symmetry factor 1/2, one

gets for the spectral-functions:
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. (4.7)

Note the squared integrands in the last two equations. The parameters d̄j belong to the ππNN -

contact vertices of third chiral order.

4.1.3 2π class (c)

Further 2π-exchange three-loop contributions at N5LO, denoted by class (c), are shown in Fig. 4.1(c).

For these the two-loop πN -scattering amplitude (which is of order five) would have to be folded

with the tree-level πN -amplitude. To our knowledge, the two-loop elastic πN -scattering amplitude

has never been evaluated in some decent analytical form. Note that the loops involved in the class

(c) contributions include only leading order chiral πN -vertices. According to our experience such

contributions are typically small. For these reasons we omit class (c) in the present calculation.

4.1.4 Relativistic 1/M2
N -corrections

This group consists of the 1/M2
N -corrections to the chiral leading 2π-exchange diagrams. Repre-

sentative graphs are shown in Fig. 4.2. Since we count Q/MN ∼ (Q/Λχ)2, these relativistic cor-

rections are formally of sixth order (N5LO). The expressions for the corresponding NN -amplitudes

are adopted from Ref. [13]:
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Figure 4.2: Relativistic 1/M2
N corrections to 2π-exchange diagrams that are counted as order six.

Notation as in Fig. 4.1. Open circles represent 1/MN -corrections.

VC =
g4
A

32π2M2
Nf

4
π

[
L(Λ̃; q)

(
2m4

π + q4 − 8m6
πw
−2 − 2m8

πw
−4
)
− m6

π

2w2

]
, (4.8)

WC =
1

192π2M2
Nf

4
π

{
L(Λ̃; q)

[
g2
A

(
2k2(8m2

π + 5q2) + 12m6
πw
−2 − 3q4 − 6m2

πq
2 − 6m4

π

)
+g4

A

(
k2(16m4

πw
−2 − 20m2

π − 7q2)− 16m8
πw
−4 − 12m6

πw
−2 + 4m4

πq
2w−2 + 5q4

+6m2
πq

2 + 6m4
π

)
+ k2w2

]
−

4g4
Am

6
π

w2

}
, (4.9)

VT = − 1

q2
VS =

g4
A L(Λ̃; q)

32π2M2
Nf

4
π

(
k2 +

5

8
q2 +m4

πw
−2

)
, (4.10)

WT = − 1

q2
WS =

L(Λ̃; q)

1536π2M2
Nf

4
π

[
g4
A

(
28m2

π + 17q2 + 16m4
πw
−2
)
− 2g2

A(16m2
π + 7q2) + w2

]
,

(4.11)

VLS =
g4
A L(Λ̃; q)

128π2M2
Nf

4
π

(
11q2 + 32m4

πw
−2
)
, (4.12)

WLS =
L(Λ̃; q)

256π2M2
Nf

4
π

[
2g2
A(8m2

π + 3q2) +
g4
A

3

(
16m4

πw
−2 − 11q2 − 36m2

π

)
− w2

]
, (4.13)

VσL =
g4
A L(Λ̃; q)

32π2M2
Nf

4
π

, (4.14)
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(a)

(b)

Class XIa Class XIIa

Class Xb Class XIb

Class XIIb Class XIIIb Class XIVb

3
3 3

3
3

3 3
3

3

Figure 4.3: Three-pion exchange contributions at N5LO. (a) Diagrams proportional to c2
i . (b)

Diagrams involving the one-loop πN -amplitude. Roman numerals refer to sub-classes following the
scheme introduced in Refs. [11, 37]. Notation as in Fig. 4.1.

where the (regularized) logarithmic loop function is given by

L(Λ̃; q) =
w

2q
ln

Λ̃2(2m2
π + q2)− 2m2

πq
2 + Λ̃

√
Λ̃2 − 4m2

π q w

2m2
π(Λ̃2 + q2)

, (4.15)

with the abbreviation w =
√

4m2
π + q2.

4.2 Three-pion exchange contributions at N5LO

The 3π-exchange contributions of order N5LO are shown in Fig. 4.3. We can distinguish between

diagrams which are proportional to c2
i [Fig. 4.3(a)] and contributions that involve (parts of) the

leading one-loop πN amplitude [Fig. 4.3(b)]. Below, we present the spectral functions for each

class.

4.2.1 Spectral functions for 3π-exchange class (a)

This class consists of the diagrams displayed in Fig. 4.3(a). They are characterized by the presence

of one subleading ππNN -vertex in each nucleon line. Using a notation introduced in Refs. [11, 37],

we distinguish between the various sub-classes of diagrams by roman numerals.
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Class XIa:

ImWC =
g2
Ac

2
4m

6
π

6(4πf2
π)3

u−1∫
2

dw (w2 − 4)3/2
√
λ(w) , (4.16)

ImVS =
g2
Ac

2
4m

6
π

6(8πf2
π)3

u−1∫
2

dw
(w2 − 4)3/2

u4
√
λ(w)

[
w8 − 4(1 + u2)w6 + 2w4(3 + 5u2)

+4w2(2u6 − 5u4 − 2u2 − 1)− (u2 − 1)3(5u2 + 1)
]
, (4.17)

Im(µ2VT − VS) =
g2
Ac

2
4m

6
π

6(8πf2
π)3

u−1∫
2

dw (w2 − 4)3/2
√
λ(w)

[
(w2 − 1)2

u4
+ 1− 2

u2
(7w2 + 1)

]
, (4.18)

with the kinematical function λ(w) = w4+u4+1−2(w2u2+w2+u2). The dimensionless integration

variable w is the invariant mass of a pion-pair divided by mπ.

Class XIIa:

ImVC =
g2
Ac

2
4m

6
π

8960πf6
π

(u− 3)3

[
u3 + 9u2 + 12u− 3− 3

u

]
, (4.19)

ImWC =
2g2
Ac

2
4m

6
πu

2

(4πf2
π)3

∫∫
z2<1

dω1dω2 k1k2

√
1− z2 arcsin(z) , (4.20)

ImVS =
g2
Ac

2
4m

6
π

(4πf2
π)3

∫∫
z2<1

dω1dω2

{
2ω2

1(ω2
2 − 9ω2u+ 9u2 + 1) + 3ω1

[
ω2(1 + 8u2)− 6u− 6u3

]
+

1

4
(9u4 + 18u2 + 5) +

2zk2
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[
ω3

1(4u− ω2) + ω2
1(7ω2u− 2− 2u2)− 2ω1(2u+ ω2)

+2 + 2u2 − 4ω2u
]

+
3 arcsin(z)

k1k2

√
1− z2

[
2ω3

1u(u2 + 1− 2ω2u) + ω2
1

(
ω2u(7 + 11u2)− 5ω2

2u
2

−1− 4u2 − 3u4
)

+
ω1

4

(
6u5 + 12u3 − 2u− ω2(5 + 16u2 + 15u4)

)
+

(1− u4)(u2 + 3)

8

]}
,

(4.21)



33

Im(µ2VT − VS) =
g2
Ac

2
4m

6
π

(4πf2
π)3

∫∫
z2<1

dω1dω2

{
4ω2

1(ω2
2 + 6u2 + 2− 10ω2u) + 6u2(1 + u2)
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3ω2(1 + 7u2)− 18u3 − 10u
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+

2zk2

k1

[
ω3
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2
− 2ω2

1

]}
, (4.22)

with the magnitudes of pion-momenta divided by mπ, and their scalar-product given by:

k1 =
√
ω2

1 − 1 , k2 =
√
ω2

2 − 1 , z k1k2 = ω1ω2 − u(ω1 + ω2) +
u2 + 1

2
. (4.23)

The upper/lower limits of the ω2-integration are

ω±2 =
1

2
(u− ω1 ± k1

√
u2 − 2ω1u− 3/

√
u2 − 2ω1u+ 1 )

with ω1 in the range 1 < ω1 < (u2 − 3)/2u.

The contributions to ImWS and Im(µ2WT −WS) are split into three pieces according to their

dependence on the isoscalar/isovector low-energy constants c1,3 and c4:

ImWS =
g2
Am

6
π(u− 3)2

2240πf6
π

{
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(
4
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3
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+ c2

3

(
3u2

4
+
u

8
− 5

2
− 3

u
+

19

12u2
+

19
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, (4.24)

Im(µ2WT −WS) =
g2
Am

6
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,

(4.25)
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Im(µ2WT −WS) =
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Ac
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4m
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8960πf6
π
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2u3
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3
− 11

6u

)
. (4.29)

4.2.2 Spectral functions for 3π-exchange class (b)

This class is displayed in Fig. 4.3(b). Each 3π-exchange diagram of this class includes the one-loop

πN -amplitude (completed by the low-energy constants d̄j). Only those parts of the πN -scattering

amplitude, which are either independent of the pion CMS-energy ω or depend on it linearly could be

treated with the techniques available. The contributions are, in general, small. Below, we present

only the larger portions within this class. The omitted pieces are about one order of magnitude

smaller. To facilitate a better understanding, we have subdivided this class into sub-classes labeled

by roman numerals, following Refs. [11, 37].

The auxiliary function

G(w) =

[
1 + 2g2

A −
w2

4
(1 + 5g2

A)

]√
w2 − 4

w
ln
w +
√
w2 − 4

2

+
w2

24
(5 + 13g2

A)− 1− 2g2
A + 48π2f2

π

[
(2− w2)(d̄1 + d̄2) + 4d̄5

]
, (4.30)

arises from the part linear in ω of the isovector non-spin-flip πN -amplitude g−(ω, t) with t = (wmπ)2
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(see e.g. Appendix B in Ref. [31]). The spectral functions derived from this selected set of 3π-

exchange diagrams read as follows.

Class Xb:

ImWS =
g2
Am

6
π

(4fπ)8π5

∫ u−1

2
dw

4G(w)

27w2u4

[
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]3/2
, (4.31)
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Class XIb:

ImWS =
g2
Am

6
π

(4fπ)8π5

∫ u−1

2
dw

8G(w)

27w2u4
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(4.34)

Class XIIb:
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setting w =
√

1 + u2 − 2uω1.

Class XIIIb:
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Im(µ2VT − VS) =
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Am

6
π
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2
dw 4G(w)(2− w2)(1 + u2 − w2)2 , (4.38)
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ImWS =
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setting again w =
√

1 + u2 − 2uω1.

Class XIVb:
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Am

6
π

(4fπ)8π3u3
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2
λ(w)

[
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Im(µ2VT −VS) =
g4
Am

6
π
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2
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[
w4− 2w2(3 +u2) + (u2− 1)2(1 + 4w−2)

]
.

(4.42)

4.3 Four-pion exchange at N5LO

The exchange of four pions between two nucleons occurs for the first time at N5LO. The pertinent

diagrams involve three loops and only leading order vertices, which explains the sixth power in

small momenta. Three-pion exchange with just leading order vertices turned out to be negligibly

small [9, 10], and so we expect four-pion exchange with leading order vertices to be even smaller.

Therefore, we can safely neglect this contribution.
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Perturbative NN scattering in peripheral partial waves

5.1 Perturbative K-matrix and phase shifts

5.1.1 N4LO case

Nucleon-nucleon scattering in peripheral partial waves is of special interest—for several reasons.

First, these partial waves probe the long- and intermediate-range of the nuclear force. Due to

the centrifugal barrier, there is only small sensitivity to short-range contributions and, in fact, the

contact terms up to and including order N4LO make no contributions for orbital angular momenta

L ≥ 3. Thus, for F and higher waves and energies below the pion-production threshold, we have a

window in which the NN interaction is governed by chiral symmetry alone (chiral one- and multi-

pion exchanges), and we can conduct a relatively clean test of how well the theory works. Using

values for the LECs from πN analysis, the NN predictions are even parameter free. Moreover,

the smallness of the phase shifts in peripheral partial waves suggests that the calculation can be

done perturbatively. This avoids the complications and possible model-dependence (e.g., cutoff

dependence) that the non-perturbative treatment of the Lippmann-Schwinger equation, necessary

for low partial waves, is beset with. A thorough investigation of this kind at N3LO was conducted

in Ref. [15]. Here, we will work at N4LO.

The perturbative K-matrix for np scattering is calculated as follows:

K(~p ′, ~p) = V
(np)

1π (~p ′, ~p) + V
(np)

2π,it (~p ′, ~p) + V (~p ′, ~p) (5.1)

with V
(np)

1π (~p ′, ~p) as in Eq. (A.3), and V
(np)

2π,it (~p ′, ~p) representing the once iterated one-pion exchange

(1PE) given by

V
(np)

2π,it (~p ′, ~p) = P
∫
d3p′′

M2
N

Ep′′

V
(np)

1π (~p ′, ~p ′′)V
(np)

1π (~p ′′, ~p)

p2 − p′′2
, (5.2)

where P denotes the principal value integral and Ep′′ =
√
M2
N + p′′2. A calculation at LO includes

only the first term on the right hand side of Eq. (5.1), V
(np)

1π (~p ′, ~p), while calculations at NLO

or higher order also include the second term on the right hand side, V
(np)

2π,it (~p ′, ~p). At N3LO and

beyond, the twice iterated 1PE should be included, too. However, we found that the difference

between the once iterated 1PE and the infinitely iterated 1PE is so small that it could not be

identified on the scale of our phase shift figures. For that reason, we omit iterations of 1PE beyond

what is contained in V
(np)

2π,it (~p ′, ~p).
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Finally, the third term on the r.h.s. of Eq. (5.1), V (~p ′, ~p), stands for the irreducible multi-

pion exchange contributions that occur at the order at which the calculation is conducted. In

multi-pion exchanges, we use the average pion mass mπ = 138.039 MeV and, thus, neglect the

charge-dependence due to pion-mass splitting in irreducible multi-pion diagrams. The charge-

dependence that emerges from irreducible 2π exchange was investigated in Ref. [41] and found to

be negligible for partial waves with L ≥ 3.

Throughout this paper, we use

MN =
2MpMn

Mp +Mn
= 938.9182 MeV. (5.3)

Based upon relativistic kinematics, the CMS on-shell momentum p is related to the kinetic energy

of the incident neutron in the laboratory system (“Lab. Energy”), Tlab, by

p2 =
M2
pTlab(Tlab + 2Mn)

(Mp +Mn)2 + 2TlabMp
, (5.4)

with Mp = 938.2720 MeV and Mn = 939.5653 MeV the proton and neutron masses, respectively.

The K-matrix, Eq. (5.1), is decomposed into partial waves following Ref. [50] and phase shifts

are then calculated via

tan δL(Tlab) = −
M2
Np

16π2Ep
pKL(p, p) . (5.5)

For more details concerning the evaluation of phase shifts, including the case of coupled partial

waves, see Ref. [51] or the appendix of [49]. All phase shifts shown in this paper are in terms of

Stapp conventions [54].

5.1.2 N5LO case

Situation with scattering in peripheral partial waves at order N5LO is rather similar to N4LO case.

However a few important differences should be pointed out.

First of all, at N5LO new NN contact terms appear, which affect partial waves with orbital

momentum L = 3. Therefore, predictions in F-waves are no longer parameter free. However, these

new contact terms still don’t affect G- and higher order partial waves. Thus, predictions in partial

waves with L ≥ 4 are still free of parameters.
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Table 5.1: Low-energy constants as determined in Ref. [31]. The sets ‘GW’ and ‘KH’ are based
upon the πN partial wave analyses of Refs. [55] and [56], respectively. The ci, d̄i, and ēi are in
units of GeV−1, GeV−2, and GeV−3.

GW KH

c1 –1.13 –0.75
c2 3.69 3.49
c3 –5.51 –4.77
c4 3.71 3.34

d̄1 + d̄2 5.57 6.21
d̄3 –5.35 –6.83
d̄5 0.02 0.78

d̄14 − d̄15 –10.26 –12.02
ē14 1.75 1.52
ē15 –5.80 –10.41
ē16 1.76 6.08
ē17 –0.58 –0.37
ē18 0.96 3.26

Having more pion-exchange contributions at order 6, the K-matrix becomes:

K(~p ′, ~p) = V
(np)

1π (~p ′, ~p ) + V
(np)

2π,it (~p ′, ~p ) + V
(np)

3π,it (~p ′, ~p ) + V (~p ′, ~p ) (5.6)

where 1st, 2nd and 4th terms are as in section 5.1.1. The 3rd term, V
(np)

3π,it (~p ′, ~p ) stands for terms

where irreducible 2PE is iterated with 1PE. At third order and higher, we include the iteration of

the NLO 2PE with 1PE and, at fourth order and up, we include the iteration of the NNLO 2PE

with 1PE. We find 2PE of higher orders combined with iterative 1PE to be negligible.

5.2 Constants used for peripheral partial waves predictions

Chiral symmetry establishes a link between the dynamics in the πN -system and the NN -system

(through common low-energy constants). In order to check the consistency, we use the LECs

for subleading πN -couplings as determined in analyses of low-energy elastic πN -scattering. Thus

predictions in peripheral partial waves, which are affected by pion-exchange only, should be free of

parameters.

It should be noted, that at the time when the work on N4LO and N5LO pion-exchange contri-

butions was done, the set of Roy-Steiner LECs (Table 2.1) did not exist yet. An older set of LECs

was used at the time. Analyses from which those LECs were derived are contained in Refs. [31, 57],

where πN -scattering has been calculated at 4th order using the same power-counting of relativistic
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1/MN -corrections as in the present work. Ref. [31] performed two fits, one to the GW [55] and one

to the KH [56] partial wave analysis resulting in the two sets of LECs listed in Table 5.1. N4LO

predictions in this work were carried out with KH set of LECs, while GW set was used for N5LO.

Both 5th and 6th order predictions were later recalculated with Roy-Steiner LECs, when the latter

became available, and the difference was found negligible. Therefore, in subsequent sections 5.3

and 5.3, the older version of results is presented as published in Refs. [37, 39].

Also, we absorb the Goldberger-Treiman discrepancy into an effective value of the nucleon axial-

vector coupling constant gA = gπNNfπ/MN = 1.29. Finally, the physical value of the pion-decay

constant is fπ = 92.4 MeV (see Table 2.2).

5.3 Summary of N4LO results

As shown in Figs. 3.1 and 3.2 and derived in Ch. 3, the fifth order consists of several contributions.

We will now demonstrate how the individual fifth-order contributions impact NN phase shifts in

peripheral waves. For this purpose, we display in Fig. 5.1 phase shifts for six important peripheral

partial waves, namely, 1F3, 3F2, 3F3, 3F4, 1G4, and 3G5. In each frame, the following curves are

shown:

(1) N3LO.

(2) The previous curve plus the ci/MN corrections (denoted by ‘c/M’), Fig. 3.1(c) and Sec. 3.1.3.

(3) The previous curve plus the N4LO 2π-exchange (2PE) two-loop contributions of class (a),

Fig. 3.1(a) and Sec. 3.1.1.

(4) The previous curve plus the N4LO 2PE two-loop contributions of class (b), Fig. 3.1(b) and

Sec. 3.1.2.

(5) The previous curve plus the N4LO 3π-exchange (3PE) contributions, Fig. 3.2 and Sec. 3.2.

In summary, the various curves add up successively the individual N4LO contributions in the order

indicated in the curve labels. The last curve in this series, curve (5), is the full N4LO result. In

these calculations, a SFR cutoff Λ̃ = 1.5 GeV is applied [cf. Eq. (2.18)].

From Fig. 5.1, we make the following observations. In triplet F -waves, the ci/MN corrections

as well as the 2PE two-loops, class (a) and (b), are all repulsive and of about the same strength.

As a consequence, the problem of the excessive attraction, that N3LO is beset with, is overcome.
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Figure 5.1: Effect of individual fifth-order contributions on the neutron-proton phase shifts of some
selected peripheral partial waves. The individual contributions are added up successively in the
order given in parenthesis next to each curve. Curve (1) is N3LO and curve (5) is the complete
N4LO. The filled and open circles represent the results from the Nijmegan multi-energy np phase-
shift analysis [58] and the VPI/GWU single-energy np analysis SM99 [59], respectively.
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A similar trend is seen in 1G4. An exception is 1F3, where the class (b) contribution is attractive

leading to phase shifts above the data for energies higher than 150 MeV.

Now turning to the N4LO 3PE contributions [curve (5) in Fig. 5.1]: they are substantially

smaller than the 2PE two-loop ones, in all peripheral partial waves. This can be interpreted as

an indication of convergence with regard to the number of pions being exchanged between two

nucleons—a trend that is very welcome. Further, note that the total 3PE contribution is a very

comprehensive one, cf. Fig. 3.2. It is the sum of ten terms (cf. Sec. 3.2) which, individually, can be

fairly large. However, destructive interference between them leads to the small net result.

For all F and G waves (except 1F3), the final N4LO result is in excellent agreement with the

empirical phase shifts. Notice that this includes also 3G5, which posed persistent problems at

N3LO [15].

On a historical note, we mention that in the construction of the Stony Brook [60, 61] and

Paris [62, 63] NN potentials, which both include a 2PE contribution based upon dispersion theory,

the dispersion integral, Eq. (2.18), is cutoff at µ2 = 50m2
π, which is equivalent to a SFR cutoff

Λ̃ =
√

50mπ ∼ 1 GeV. Not accidentally, this agrees well with the common assumption of Λχ ∼ 1

GeV and, thus, sets the scale for an appropriate choice of Λ̃. Consistent with this, Λ̃ = 1.5 GeV was

used for the results presented in Fig. 5.1. It is, however, also of interest to know how predictions

change with variations of Λ̃ within a reasonable range. We have, therefore, varied Λ̃ between 0.7

and 1.5 GeV and show the predictions for all F and G waves in Figs. 5.2 and 5.3, respectively, in

terms of shaded (colored) bands. It is seen that, at N3LO, the variations of the predictions are very

large and always too attractive while, at N4LO, the variations are small and the predictions are

close to the data or right on the data. Figs. 5.2 and 5.3 also include the lower orders (as defined

in the Appendices) such that a comparison of the relative size of the order-by-order contributions

is possible. We observe that there is not much of a convergence, since obviously the magnitudes

of the NNLO, N3LO, and N4LO contributions are about the same. Therefore, to test convergence,

one needs to calculate the effect of N5LO explicitly, which is done in the subsequent section.

5.4 Summary of N5LO results

6th order corrections also consists of several contributions, as shown in Figs. 4.1 to 4.3 and derived

in Ch. 4. We will now demonstrate how the individual sixth-order contributions impact NN -phase-

shifts in peripheral waves. Note, that we have to start with G-waves, since F -waves are no longer

parameter-free (see explanation of Eq. 2.28). We display in Fig. 5.4 phase-shifts for two peripheral
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Figure 5.2: (Color online) Phase-shifts of neutron-proton scattering at various orders as denoted.
The shaded (colored) bands show the variation of the predictions when the SFR cutoff Λ̃ is changed
over the range 0.7 to 1.5 GeV. The filled and open circles represent the results from the Nijmegan
multi-energy np phase-shift analysis [58] and the VPI/GWU single-energy np analysis SM99 [59],
respectively.
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Figure 5.3: (Color online) Same as Fig. 5.2, but for G-waves.
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Figure 5.4: Effect of individual sixth-order contributions on the neutron-proton phase shifts of two
G-waves. The individual contributions are added up successively in the order given in parentheses
next to each curve. Curve (1) is N4LO and curve (6) contains all N5LO contributions calculated in
this work. A SFR cutoff Λ̃ = 800 MeV is applied. The filled and open circles represent the results
from the Nijmegen multi-energy np phase-shift analysis [58] and the GWU np-analysis SP07 [64],
respectively.
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Figure 5.5: (Color online) Phase-shifts of neutron-proton scattering in G and H waves at various
orders as denoted. The shaded (colored) bands show the variations of the predictions when the
SFR cutoff Λ̃ is changed over the range 700 to 900 MeV. Empirical phase shifts are as in Fig. 5.4.
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partial waves, namely, 1G4, and 3G5. In each frame, the following curves are shown:

(1) N4LO (as defined in Ref. [37]).

(2) The previous curve plus the N5LO 2π-exchange contributions of class (a), Fig. 4.1(a) and

Sec. 4.1.1.

(3) The previous curve plus the N5LO 2π-exchange contributions of class (b), Fig. 4.1(b) and

Sec. 4.1.2.

(4) The previous curve plus the N5LO 3π-exchange contributions of class (a), Fig. 4.3(a) and

Sec. 4.2.1.

(5) The previous curve plus the N5LO 3π-exchange contributions of class (b), Fig. 4.3(b) and

Sec. 4.2.2.

(6) The previous curve plus the 1/M2
N -corrections (denoted by ‘1/M2’), Fig. 4.2 and Sec. 4.1.4.

In summary, the various curves add up successively the individual N5LO contributions in the order

indicated by the curve labels. The last curve in this series, curve (6), includes all N5LO contributions

calculated in this paper. For all curves of this figure a SFR cutoff Λ̃ = 800 MeV [cf. Eq. (2.19)] is

employed.

From Fig. 5.4, we make the following observations. The two-loop 2π-exchange class (a),

Fig. 4.1(a), generates a strong repulsive central force through the spectral function Eq. (4.1),

while the spin-spin and tensor forces provided by this class, Eq. (4.2), are negligible. The fact

that this class produces a relatively large contribution is not unexpected, since it is proportional

to c2
i . The 2π-exchange contribution class (b), Fig. 4.1(b), creates a moderately repulsive central

force as seen by its effect on 1G4 and a noticeable tensor force as the impact on 3G5 demonstrates.

The 3π-exchange class (a), Fig. 4.3(a), is negligible in 1G4, but noticeable in 3G5 and, therefore, it

should not be neglected. This contribution is proportional to c2
i , which suggests a non-negligible

size but it is typically smaller than the corresponding 2π-exchange contribution class (a). The 3π-

exchange class (b) contribution, Fig. 4.3(b), turns out to be negligible [see the difference between

curve (4) and (5) in Fig. 5.4]. This may not be unexpected since it is a three-loop contribution with

only leading-order vertices. Finally the relativistic 1/M2
N -corrections to the leading 2π-exchange,

Fig. 4.2, have a small but non-negligible impact, particularly in 3G5.

The predictions for all G and H waves, are displayed in Fig. 5.5 in terms of shaded (colored)

bands that are generated by varying the SFR cutoff Λ̃ [cf. Eq. (2.19)] between 700 and 900



48

0

0.5

1

1.5

2

2.5

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 

N2LO

N3LO

N4LO
N5LO

 1G4

-5

-4

-3

-2

-1

0

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 
N2LO
N3LO
N4LO
N5LO

 3G3

0

2

4

6

8

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 
N2LO

N3LO
N4LO
N5LO 3G4

-1.25

-1

-0.75

-0.5

-0.25

0

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 

N2LO
N3LO

N4LO
N5LO

 3G5

-1.5

-1

-0.5

0

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 
N2LO
N3LO
N4LO
N5LO

 1H5

0

0.2

0.4

0.6

0.8

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 

N2LO
N3LO
N4LO
N5LO

 3H4

-1.25

-1

-0.75

-0.5

-0.25

0

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 

N2LO
N3LO
N4LO
N5LO

 3H5

0

0.1

0.2

0.3

0.4

0.5

0.6

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 

N2LO

N3LO

N4LO
N5LO

 3H6

Figure 5.6: (Color online) Phase-shifts of neutron-proton scattering in G and H waves at all orders
from LO to N5LO. A SFR cutoff Λ̃ = 800 MeV is used. Empirical phase shifts are as in Fig. 5.4.

MeV. The figure clearly reveals that, at N3LO, the predictions are, in general, too attractive. As

demonstrated in Ref. [37], the N4LO contribution, essentially, compensates this attractive surplus.

Now, let us turn to the new result at N5LO: it shows a moderate repulsive contribution bringing the

final prediction right onto the data (i.e. empirical phase-shifts). Moreover, the N5LO contribution

is, in general, substantially smaller than the one at N4LO, thus, showing a signature of convergence

of the chiral expansion.

Concerning the 3G5 phase shifts, a comment is in place. From Fig. 5.5 , it may appear that in

this case the order-by-order convergence pattern is poor and the spread as a function of Λ̃ rather

large and not skrinking with increasing order. Notice, however, that we are talking here about very

small numbers: the whole phase shift scale of the 3G5 frame is 0.8 deg and the spread as a function

of Λ̃ is about 0.1 deg in each order. Moreover, the 3G5 is known to be exceptionally sensitive to

dynamics at medium-to-short range. This has been noticed and discussed before, see, e.g., Ref. [15].

We also like to comment on the empirical phase shifts with which we compare our predictions

in Figs. 5.4 to 5.7. We use the 1993 Nijmegen analysis [58] (represented by filled circles in the

figures) and the GWU analysis from summer 2007 [64] (open circles). We have also considered
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Figure 5.7: (Color online) Mixing angles for neutron-proton scattering for J = 4, 5 at all orders
from LO to N5LO. A SFR cutoff Λ̃ = 800 MeV is used. Filled and open circles are as in Fig. 5.4.

the recent Granada NN -analysis [65]. However, it turned out that, in general, the Granada and

Nijmegen analyses are so close to each other that it does not make sense to show them separately.

Concerning a second analysis, we decided for GWU [64] for two reasons. The GWU analysis is

truly alternative to Nijmegen (and Granada), because it is not performed with a cleaned-up data

base; it uses the full NN -data base. Moreover, the GWU analysis provides empirical phase shifts

also for partial waves with J = 5, 6, which we need. (The Nijmegen and Granada analyses stop at

J = 4.)

Figure 5.5 includes only the three highest orders. However, a comparison between all orders

is also of interest. Therefore, we show in Figs. 5.6 the contributions to phase shifts through all

six chiral orders from LO to N5LO (as defined in Ref. [37] and the present paper). Note that

the difference between the LO prediction (one-pion-exchange, dotted line) and the data (filled and

open circles) is to be provided by two- and three-pion exchanges, i.e. the intermediate-range part

of the nuclear force. How well that is accomplished is a crucial test for any theory of nuclear

forces. NLO produces only a small contribution, but N2LO creates substantial intermediate-range

attraction (most clearly seen in 1G4, 3G5, and 3H6). In fact, N2LO is the largest contribution

among all orders. This is due to the one-loop 2π-exchange (2PE) triangle diagram which involves

one ππNN -contact vertex proportional to ci. This vertex represents correlated 2PE as well as

intermediate ∆(1232)-isobar excitation. It is well-known from the traditional meson theory of

nuclear forces [66, 62, 63] that these two features are crucial for a realistic and quantitative 2PE

model. Consequently, the one-loop 2π-exchange at N2LO is attractive and assumes a realistic
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size describing the intermediate-range attraction of the nuclear force about right. At N3LO, more

one-loop 2PE is added by the bubble diagram with two ci-vertices, a contribution that seemingly

is overestimating the attraction. This attractive surplus is then compensated by the prevailingly

repulsive two-loop 2π- and 3π-exchanges that occur at N4LO and N5LO.

In this context, it is worth to note that also in conventional meson theory [66] the one-loop

models for the 2PE contribution always show some excess of attraction (cf. Figs. 7-9 of Ref. [15]).

The same is true for the dispersion theoretic approach pursued by the Paris group [62, 63]. In

conventional meson theory, the surplus attraction is reduced by heavy-meson exchange (ρ- and

ω-exchange) which, however, has no place in chiral effective field theory (as a finite-range contri-

bution). Instead, in the latter approach, two-loop 2π- and 3π-exchanges provide the corrective

action.

We now turn to Figs. 5.7, where we show how the six chiral orders impact the mixing angles

with J = 4, 5. Note that the mixing angles depend only on the tensor force (the quadratic spin-

orbit term VσL in Eq.(4.14) is very small). It is clearly seen that the 1π-exchange (LO) alone

describes these mixing angles correctly and that the various higher orders make only negligible

contributions, particularly, for J = 5. At any order in the chiral expansion, tensor forces are

created, but obviously the tensor force contributions beyond LO are of shorter range such that

they do not matter in peripheral waves with L ≥ 4.

Finally, to summarize this section, it should be pointed out that according to presented calcu-

lations the contribution at N5LO is substantially smaller than the one at N4LO, thus, indicating

a signature of convergence. Based on this and the fact that calculations at N4LO already produce

good agreement with experiment, one may argue that for practical purpose of constructing full NN

potential calculations up to N4LO should be enough. I proceed to summarize the results of this

construction in the next chapter.
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Full nucleon-nucleon potential at N4LO

Based upon the formalism presented in chapter 2, we have constructed NN potentials through five

orders of the chiral expansion, ranging from LO (Q0) to N4LO (Q5). In each order, we consider

three cutoffs, namely, Λ = 450, 500, and 550 MeV. Since we take charge-dependence into account,

each NN potential comes in three versions: pp, np, and nn. The results from these potentials for

NN scattering and the deuteron will be presented in this chapter (also see Ref [38]).

6.1 NN database

Since an important part of NN potential construction involves optimizing the reproduction of the

NN data by the potential, we need to state, first, what NN database we are using.

Our database consists of all NN data below 350 MeV laboratory energy published in refereed

physics journals between January 1955 and December 2016 that are not discarded when applying

the Nijmegen rejection criteria [46]. We will refer to this as the “2016 database”. This database

was started by the Nijmegen group who critically checked and assembled the data published up

to December 1992. This 1992 database consists of 1787 pp data (listed in Ref. [67]) and 2514 np

data (tabulated in Ref. [58]), cf. Table 6.1. In Ref. [49], the database was then extended to include

the data published up to December 1999 that survived the Nijmegen rejection criteria. This added

1145 pp and 544 np data (given in Tables XV and XVI of Ref. [49], respectively). Thus, the 1999

database includes 2932 pp and 3058 np data.

To get to the 2016 database, we have added to the 1999 database the data published between

January 2000 and December 2016 that are not rejected by the Nijmegen criteria. We are aware of

the fact that modified rejection criteria have been proposed [81] and applied in recent NN data

analysis work [65]. But we continue to apply the classic Nijmegen criteria [46] to be consistent with

Table 6.1: Publication history of the NN data below 350 MeV laboratory energy and references
for their listings. Only data that pass the Nijmegen acceptance criteria [46] are counted. ‘Total’
defines the 2016 database.

Publication date No. of pp data No. of np data References

Jan. 1955 – Dec. 1992 1787 2514 [67, 58]
Jan. 1993 – Dec. 1999 1145 544 Tables XV and XVI of

Ref. [49]
Jan. 2000 – Dec. 2016 140 511 Ref. [68] and Table 6.2

of present paper

Total 3072 3569



52

Table 6.2: After-1999 np data below 350 MeV included in the 2016 np database. “Error” refers to
the normalization error. This table contains 473 observables plus 38 normalizations resulting in a
total of 511 data. For the observables, we use in general the notation of Hoshizaki [69], except for
types which are undefined in the Hoshizaki formalism, where we use the Saclay notation [70].

Tlab (MeV) No. type Error (%) Institution Ref.

9.2–349.0 92 σtot None Los Alamos [71]
10.0 6 σ 0.8 Ohio [72]
95.0 10 σ 5.0 Uppsala [73]
95.0 9 σ 4.0 Uppsala [74]
96.0 11 σ 5.0 Uppsala [75]
96.0 9 σ 3.0 Uppsala [76]
96.0 12 σ None Uppsala [77]
260.0 8 P 1.8 PSI [78]
260.0 16 P 1.8 PSI [78]
260.0 8 Ayy 3.9 PSI [78]
260.0 16 Ayy 3.9 PSI [78]
260.0 9 Azz 7.2 PSI [78]
260.0 5 D 2.4 PSI [79]
260.0 8 D Float PSI [79]
260.0 8 D0s′′0k Float PSI [79]
260.0 5 Dt 2.4 PSI [79]
260.0 4 At 2.4 PSI [79]
260.0 8 At 2.4 PSI [79]
260.0 4 Rt 2.4 PSI [79]
260.0 8 Rt 2.4 PSI [79]
260.0 8 N0nkk 2.4 PSI [79]
260.0 4 N0s′′kn 2.4 PSI [79]
260.0 8 N0s′′kn 2.4 PSI [79]
260.0 4 N0s′′sn 2.4 PSI [79]
260.0 8 N0s′′sn 2.4 PSI [79]
284.0 14 P 3.0 PSI [80]
314.0 14 P 3.0 PSI [80]
315.0 16 P 1.2 PSI [78]
315.0 11 Ayy 3.7 PSI [78]
315.0 16 Ayy 3.7 PSI [78]
315.0 11 Azz 7.1 PSI [78]
315.0 6 D Float PSI [79]
315.0 6 D0s′′0k Float PSI [79]
315.0 8 D0s′′0k Float PSI [79]
315.0 6 Dt 1.9 PSI [79]
315.0 6 At 1.9 PSI [79]
315.0 8 At 1.9 PSI [79]
315.0 6 Rt 1.9 PSI [79]
315.0 8 Rt 1.9 PSI [79]
315.0 5 N0s′′kn 1.9 PSI [79]
315.0 8 N0s′′kn 1.9 PSI [79]
315.0 6 N0s′′sn 1.9 PSI [79]
315.0 8 N0s′′sn 1.9 PSI [79]
315.0 8 N0nkk 1.9 PSI [79]
344.0 14 P 3.0 PSI [80]
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Table 6.3: χ2/datum for the fit of the 2016 NN data base by NN potentials at various orders of
chiral EFT (Λ = 500 MeV in all cases).

Tlab bin (MeV) No. of data LO NLO NNLO N3LO N4LO

proton-proton
0–100 795 520 18.9 2.28 1.18 1.09
0–190 1206 430 43.6 4.64 1.69 1.12
0–290 2132 360 70.8 7.60 2.09 1.21

neutron-proton
0–100 1180 114 7.2 1.38 0.93 0.94
0–190 1697 96 23.1 2.29 1.10 1.06
0–290 2721 94 36.7 5.28 1.27 1.10

pp plus np
0–100 1975 283 11.9 1.74 1.03 1.00
0–190 2903 235 31.6 3.27 1.35 1.08
0–290 4853 206 51.5 6.30 1.63 1.15

the pre-2000 part of the database.

Concerning after-1999 pp data, there exists only one set of 139 differential cross sections between

239.9 and 336.2 MeV measured by the EDDA group at COSY (Jűlich, Germany) with an over-all

uncertainty of 2.5% [68]. Thus, the total number of pp data contained in the 2016 database is 3072

(Table 6.1).

In contrast to pp, there have been many new np measurements after 1999. We list the datasets

that survived the Nijmegen rejection criteria in Table 6.2. According to that list, the number of

valid after-1999 np data is 511, bringing the total number of np data contained in the 2016 database

to 3569 (Table 6.1).

For comparison, we mention that the 2013 Granada NN database [65] consists of 2996 pp and

3717 np data. The larger number of pp data in our base is mainly due to the inclusion of 140 pp

data from Ref. [68] which are left out in the Granada base. On the other hand, the Granada base

contains 148 more np data which is a consequence of the modified rejection criteria applied by the

Granada group which allows for the survival of more np data. We believe that the small differences

between our 2016 database and the Granada 2013 base will affect χ2 calculations only to negligible

degree.

Finally, we note that in the potential construction reported in this study, we make use of the

2016 database only up to 290 MeV laboratory energy (pion-production threshold). Between 0 and

290 MeV, the 2016 database contains 2132 pp data and 2721 np data (cf. Table 6.3).
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Table 6.4: Scattering lengths (a) and effective ranges (r) in units of fm as predicted by NN
potentials at various orders of chiral EFT (Λ = 500 MeV in all cases). (aCpp and rCpp refer to the pp

parameters in the presence of the Coulomb force. aN and rN denote parameters determined from
the nuclear force only and with all electromagnetic effects omitted.) aNnn, and anp are fitted, all
other quantities are predictions.

LO NLO NNLO N3LO N4LO Empirical
1S0

aCpp –7.8153 –7.8128 –7.8140 –7.8155 –7.8160 –7.8196(26) [46]

–7.8149(29) [82]
rCpp 1.886 2.678 2.758 2.772 2.774 2.790(14) [46]

2.769(14) [82]
aNpp — –17.476 –17.762 –17.052 –17.123 —

rNpp — 2.752 2.821 2.851 2.853 —

aNnn –18.950 –18.950 –18.950 –18.950 –18.950 –18.95(40) [83, 84]
rNnn 1.857 2.726 2.800 2.812 2.816 2.75(11) [85]
anp –23.738 –23.738 –23.738 –23.738 –23.738 –23.740(20) [49]
rnp 1.764 2.620 2.687 2.700 2.704 [2.77(5)] [49]

3S1

at 5.255 5.415 5.418 5.420 5.420 5.419(7) [49]
rt 1.521 1.755 1.752 1.754 1.753 1.753(8) [49]

Table 6.5: Two- and three-nucleon bound-state properties as predicted by NN potentials at various
orders of chiral EFT (Λ = 500 MeV in all cases). (Deuteron: Binding energy Bd, asymptotic S
state AS , asymptotic D/S state η, structure radius rstr, quadrupole moment Q, D-state probability
PD; the predicted rstr and Q are without meson-exchange current contributions and relativistic
corrections. Triton: Binding energy Bt.) Bd is fitted, all other quantities are predictions.

LO NLO NNLO N3LO N4LO Empiricala

Deuteron
Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575(9)
AS (fm−1/2) 0.8526 0.8828 0.8844 0.8853 0.8852 0.8846(9)
η 0.0302 0.0262 0.0257 0.0257 0.0258 0.0256(4)
rstr (fm) 1.911 1.971 1.968 1.970 1.973 1.97507(78)
Q (fm2) 0.310 0.273 0.273 0.271 0.273 0.2859(3)
PD (%) 7.29 3.40 4.49 4.15 4.10 —

Triton
Bt (MeV) 11.02 8.31 8.21 8.09 8.08 8.48

aSee Table XVIII of Ref. [49] for references; the empirical value for rstr is from Ref. [86].
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Figure 6.1: (Color online). Chiral expansion of neutron-proton scattering as represented by the
phase shifts in S, P , and D waves and mixing parameters ε1 and ε2. Five orders ranging from LO
to N4LO are shown as denoted. A cutoff Λ = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multi-energy np phase-shift analysis [58] and the
GWU single-energy np analysis SP07 [64], respectively.

6.2 Data fitting procedure

When we are talking about data fitting, we are referring to the adjustment of the NN contact

parameters available at the respective order. Note that in our NN potential construction, the

πN LECs are not fit-parameters. The πN LECs are held fixed at their values determined in the

πN analysis of Ref. [44] displayed in Table 2.1 (we use the central values shown in that Table).

Thus, the NN contacts (Sec. 2.2.4) are the only fit parameters used to optimize the reproduction

of the NN data below 290 MeV laboratory energy. As discussed, those contact terms describe the

short-range part of the NN potentials and adjust the lower partial waves.

In the construction of any NN potential, we always start with the pp version since the pp data

are the most accurate ones. The fitting is done in three steps. In the first step, the pp potential
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is adjusted to reproduce as closely as possible the pp phase shifts of the Nijmegen multienergy pp

phase shift analysis [58] up to 300 MeV laboratory energy. This is to ensure that phase shifts are

in the right ballpark. In the second step, we make use of the Nijmegen pp error matrix [87] to

minimize the χ2 that results from it. The advantage of this step is that it is computationally very

fast and easy. Finally, in the third and final step, the pp potential contact parameters are fine-

tuned by minimizing the χ2 that results from a direct comparison with the experimental pp data

contained in the 2016 database below 290 MeV. For this we use a copy of the SAID software package

which includes all electromagnetic contributions necessary for the calculation of NN observables

at low energy. Since it turned out that the Nijmegen error matrix produces very accurate χ2 for

pp energies below 75 MeV, we use the values from this error matrix for the energies up to 75 MeV

and the values from a direct confrontation with the data above that energy.

The I = 1 np potential is constructed by starting from the pp version, applying the charge-

dependence discussed in Sec. 2.2.5, and adjusting the non-derivative 1S0 contact such as to repro-

duce the 1S0 np scattering length. This then yields the preliminary fit of the I = 1 np potential.

The preliminary fit of the I = 0 np potential is obtained by a fit to the I = 0 np phase shifts of the

Nijmegen multienergy np phase shift analysis [58] below 300 MeV. Starting from this preliminary

np fit, the contact parameters are fine-tuned in a confrontation with the np data below 290 MeV,

for which the χ2 is minimized. We note that during this last step we have also allowed for minor

changes of the I = 1 parameters (which also modifies the pp potential) to obtain an even lower χ2

over-all.

Finally the nn potential is obtained by starting from the pp version, replacing the proton

masses by neutron masses, leaving out Coulomb, and adjusting the non-derivative 1S0 contact such

as to reproduce the 1S0 nn scattering length for which we assume the empirical value of −18.95

MeV[83, 84].

6.3 Numerical algorithms

A few words should be said about numerical optimization algorithms used for fitting NN contact

parameters.

For the 1st and 2nd step in section 6.2, Levenberg-Marquardt (LM) algorithm was used [88, 89].

Due to some limitations of SAID code (use of single precision variables), Nelder-Mead (otherwise

known as ”downhill simplex” [90]) algorithm was chosen for step 3. While it may converge slower

than LM algorithm, it does not require calculation of Jacobian of optimization target function.
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This avoids problems with rounding errors, when using very small steps for numerical evaluation of

the Jacobian with single precision. In practice, the rate of convergence of Nelder-Mead algorithm

turned out to be acceptable.

It should be also mentioned, that while theoretically step one of pre-fitting parameters to

phase shifts seems optional, in practice it’s a rather crucial one. Most numerical optimization

algorithms (including LM and Nelder-Mead) search for the local minimum of the target function.

As may be expected, the 26-dimentional landscape of the target function of 25 variables (NN

contact parameters) is quite complex. Therefore successfully picking initial guess point for all 25

parameters is virtually impossible. On the other hand, when doing pre-fitting of parameters to

phase shifts, one only needs to fit a few parameters at a time (no more than 8, usually 4 or less).

As a result one gets a good estimate for the starting point for 3rd step , when all 25 parameters

are varied simultaneously. This is because the optimal data fit roughly corresponds to optimal fit

of phase shifts.

6.4 Results for NN scattering

The χ2/datum for the reproduction of the NN data at various orders of chiral EFT are shown

in Table 6.3 for different energy intervals below 290 MeV laboratory energy (Tlab). The bottom

line of Table 6.3 summarizes the essential results. For the close to 5000 pp plus np data below 290

MeV (pion-production threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO. Note that the

number of NN contacts terms is the same for both orders. The improvement is entirely due to

an improved description of the 2PE contribution, which is responsible for the crucial intermediate-

range attraction of the nuclear force. At NLO, only the uncorrelated 2PE is taken into account

which is insufficient. From the classic meson-theory of nuclear forces [66], it is wellknown that π-π

correlations and nucleon resonances need to be taken into account for a realistic model of 2PE that

provides a sufficient amount of intermediate attraction to properly bind nucleons in nuclei. In the

chiral theory, these contributions are encoded in the subleading πN vertexes with LECs denoted

by ci. These enter at NNLO and are the reason for the substantial improvements we encounter at

that order. This is the best proof that, starting at NNLO, the chiral approach to nuclear forces is

getting the physics right.

To continue on the bottom line of Table 6.3, after NNLO, the χ2/datum then further improves to

1.63 at N3LO and, finally, reaches the almost perfect value of 1.15 at N4LO—a fantastic convergence.

Corresponding np phase shifts are displayed in Fig. 6.1, which reflect what the χ2 have already
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proven, namely, an excellent convergence when going from NNLO to N3LO and, finally, to N4LO.

The phase shift plots also make it clear that the nuclear force at LO is very wrong and at NLO

very poor, to say the least. This fact renders applications of the LO and NLO nuclear force useless

for any realistic calculation (but they could be used to demonstrate truncation errors).

For order N4LO (with Λ = 500 MeV), we also provide the numerical values for the phase shifts

in Appendix B. Our pp phase shifts are the phase shifts of the nuclear plus relativistic Coulomb

interaction with respect to Coulomb wave functions. Note, however, that for the calculation of

observables (e.g., to obtain the χ2 in regard to experimental data), we use electromagnetic phase

shifts, as necessary, which we obtain by adding to the Coulomb phase shifts the effects from two-

photon exchange, vacuum polarization, and magnetic moment interactions as calculated by the

Nijmegen group [46, 91]. This is important for 1S0 below 30 MeV and negligible otherwise. For nn

and np scattering, our phase shifts are the ones from the nuclear interaction with respect to Riccati-

Bessel functions. The technical details of our phase shift calculations can be found in appendix A3

of Ref. [49].

The low-energy scattering parameters, order by order, are shown in Table 6.4. For nn and

np, the effective range expansion without any electromagnetic interaction is used. In the case

of pp scattering, the quantities aCpp and rCpp are obtained by using the effective range expansion

appropriate in the presence of the Coulomb force (cf. appendix A4 of Ref. [49]). Note that the

empirical values for aCpp and rCpp in Table 6.4 were obtained by subtracting from the corresponding

electromagnetic values the effects due to two-photon exchange and vacuum polarization. Thus, the

comparison between theory and experiment for these two quantities is conducted correctly. aNnn,

and anp are fitted, all other quantities are predictions. Note that the 3S1 effective range parameters

at and rt are not fitted. But the deuteron binding energy is fitted (cf. next subsection) and that

essentially fixes at and rt.

6.5 Deuteron and triton

Deuteron properties for all orders of chiral EFT are shown in Table 6.5. In all cases, we fit the

deuteron binding energy to its empirical value of 2.224575 MeV using the non-derivative 3S1 contact.

All other deuteron properties are predictions. Already at NNLO, the deuteron has converged to its

empirical properties and stays there through the higher orders.

At the bottom of Table 6.5, we also show the predictions for the triton binding as obtained in

34-channel charge-dependent Faddeev calculations using only 2NFs. The results show smooth and
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Table 6.6: χ2/datum for for the fit of the pp plus np data up to 190 MeV and two- and three-nucleon
bound-state properties as produced by NN potentials at NNLO and N4LO applying different values
for the cutoff parameter Λ of the regulator function Eq. (2.40). For some of the notation, see
Table 6.5, where also empirical information on the deuteron and triton can be found.

NNLO N4LO
Λ(MeV) 450 500 550 450 500 550

χ2/datum pp & np
0–190 MeV (2903 data) 4.12 3.27 3.32 1.17 1.08 1.25

Deuteron
Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575
AS (fm−1/2) 0.8847 0.8844 0.8843 0.8852 0.8852 0.8851
η 0.0255 0.0257 0.0258 0.0254 0.0258 0.0257
rstr (fm) 1.967 1.968 1.968 1.966 1.973 1.971
Q (fm2) 0.269 0.273 0.275 0.269 0.273 0.271
PD (%) 3.95 4.49 4.87 4.38 4.10 4.13

Triton
Bt (MeV) 8.35 8.21 8.10 8.04 8.08 8.12

steady convergence, order by order, towards a value around 8.1 MeV that is reached at the highest

orders shown. This contribution from the 2NF will require only a moderate 3NF. The relatively

low deuteron D-state probabilities (≈ 4.1% at N3LO and N4LO) and the concomitant generous

triton binding energy predictions are a reflection of the fact that our NN potentials are soft (which

is, at least in part, due to their non-local character).

6.6 Cutoff variations

As noted before, besides the case Λ = 500 MeV, we have also constructed potentials with Λ = 450

and 550 MeV at each order, to allow for systematic studies of the cutoff dependence. In Fig. 6.2, we

display the variations of the np phase shifts for different cutoffs at NNLO (left half of figure, green

curves) and at N4LO (right half of figure, purple curves). We do not show the cutoff variations of

phase shifts at N3LO, because they are about the same as at N4LO. Similarly, the variations at

NLO are of about the same size as at NNLO. Fig. 6.2 demonstrates nicely how cutoff dependence

diminishes with increasing order—a reasonable trend. Another point that is evident from this figure

is that Λ = 450 MeV should be considered as a lower limit for cutoffs, because obviously cutoff

artifacts start showing up—above 200 MeV, particularly, in 1D2 and 3D2. Concerning the upper

limit for the cutoff: It has been discussed and demonstrated in length in the literature (see, e.g.,

Ref. [22]) that for the NN interaction the breakdown scale occurs around Λb ≈ 600 MeV. The

motivation for our upper value of 550 MeV is to stay below Λb.
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In Table 6.6, we show the cutoff dependence for three selected aspects that are of great interest:

the χ2 for the fit of the NN data below 190 MeV, the deuteron properties, and the triton binding

energy. The χ2 does not change substantially as a function of cutoff, and crucial deuteron properties,

like AS and η, stay within the empirical range, for both NNLO and N4LO. Thus, we can make

the interesting observation that the reproduction of NN observables is not much affected by the

cutoff variations. However, the D-state probability of the deuteron, PD, which is not an observable,

changes substantially as a function of cutoff at NNLO (namely, by ≈ 1%) while it changes only

by 0.25% at N4LO. Note that PD is intimately related to the off-shell behavior of a potential and

so are the binding energies of few-body systems. Therefore, in tune with the PD variations, the

binding energy of the triton varies by 0.25 MeV at NNLO, while it changes only by 0.08 MeV at

N4LO.

Even though cutoff variations are, in general, not the most reliable way to estimate truncation

errors, in the above case they seem to reflect closely what we expect to be the truncation error.
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Figure 6.2: (Color online). Cutoff variations of the np phase shifts at NNLO (left side, green lines)
and N4LO (right side, purple lines). Dotted, dashed, and solid lines represent the results obtained
with cutoff parameter Λ = 450, 500, and 550 MeV, respectively, as also indicated by the curve
labels. Note that, at N4LO, the cases 500 and 550 MeV cannot be distinguished on the scale of the
figures for most partial waves. Filled and open circles as in Fig. 6.1.
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Conclusions

In the following sections, I once again summarize the important results derived in this study.

7.1 Pion exchange contributions at N4LO

We have calculated the one- and two-loop 2π-exchange (2PE) and two-loop 3π-exchange (3PE)

contributions to the NN interaction which occur at N4LO (fifth order) of the chiral low-momentum

expansion. The calculations are based upon heavy-baryon chiral perturbation theory using the most

general fourth order Lagrangian for pions and nucleons. We apply πN LECs, which were determined

in an analysis of elastic pion-nucleon scattering to fourth order using the same power counting

scheme as in the present work. The spectral functions, which determine the NN amplitudes

via dispersion integrals, are regularized by a cutoff Λ̃ in the range 0.7 to 1.5 GeV (also known

as spectral-function regularization). Besides the cutoff Λ̃, our calculations do not involve any

adjustable parameters.

From past work on NN scattering in chiral perturbation theory (see, e.g., Ref. [15]), it is well-

known that, at NNLO and N3LO, chiral 2PE produces far too much attraction. The important

result of this study is that the N4LO 2PE contributions are prevailingly repulsive and, thus, com-

pensate the excessive attraction of the lower orders. As a consequence, the phase-shift predictions

in F and G waves are in very good agreement with the data, with the only exception of the 1F3

wave. The net 3PE contribution turns out to be moderate pointing towards convergence in terms

of the number of pions exchanged between two nucleons. On the other hand, the NNLO, N3LO,

and N4LO contributions are all about of the same magnitude. This raises some questions about

the convergence of the chiral expansion of the NN amplitude. Which is the reason why the N5LO

pion-exchange contributions were calculated as well.

7.2 Pion exchange contributions at N5LO

Dominant N5LO 2π- and 3π-exchange contributions to the NN -interaction were calculated within

the same framework as mentioned in previous section.

The spectral functions, which determine the NN -amplitudes via subtracted dispersion integrals,

are regularized by a cutoff Λ̃ in the range 0.7 to 0.9 GeV. Again, besides the cutoff Λ̃, our calculations

do not involve any adjustable parameters.
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Our calculations show that the contribution at N5LO is substantially smaller than the one at

N4LO, thus, indicating a signature of convergence. The two-loop 2π-exchange contribution is the

largest, while the corresponding three-loop contribution is small, but not negligible. Three-pion

exchange is generally small at this order. The phase-shift predictions in G and H waves, where

only the non-polynomial terms governed by chiral symmetry contribute, are in excellent agreement

with the data.

The smallness of N5LO corrections compared to N4LO as well as good agreement of N4LO with

experiment indicates that practical full NN potential needs to be calculated only up to 5th order

(N4LO)

7.3 Full NN potential at N4LO

We have constructed chiral NN potentials through five orders of chiral EFT ranging from LO to

N4LO. The construction may be perceived as consistent, because the same power counting scheme

as well as the same cutoff procedures are applied in all orders. Moreover, the long-range part of

these potentials are fixed by the very accurate πN LECs as determined in the Roy-Steiner equations

analysis of Ref. [44]. In fact, the uncertainties of these LECs are so small that a variation within

the errors leads to effects that are completely negligible at the current level of precision. Another

aspect that has to do with precision is that, at least at the highest order (N4LO), the NN data

below pion-production threshold are reproduced with the outstanding χ2/datum of 1.15. This is

the highest precision ever accomplished with any chiral NN potential to date.

The NN potentials presented in this study may serve as a solid basis for systematic ab initio

calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In

particular, the consistent order by order development of the potentials will make possible a reliable

determination of the truncation error at each order.

Our family of potentials is non-local and, generally, of soft character. This feature is reflected

in the fact that the predictions for the triton binding energy (from two-body forces only) converges

to about 8.1 MeV at the highest orders. This leaves room for moderate three-nucleon forces.

These features of our potentials are in contrast to other families of chiral NN potentials of local

or semi-local character that have recently enter the market [19, 20, 21, 22, 23]. Such potentials are

less soft and, consequently, require stronger three-body force contributions.

The availability of families of chiral NN potentials of different character offers the opportu-

nity for interesting systematic studies that may ultimately shed light on issues, like, the “radius
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problem” [35], the overbinding of intermediate-mass nuclei [36], and others.

Note that the differences between the above-mentioned families of potentials are in the off-shell

character, which is not an observable. Thus, any off-shell behavior of a NN potential is legitimate.

There is no wrong off-shell character. However, some off-shell behaviors may lead in a more efficient

way to realistic results than others. That is of interest to the many-body practitioner. We are now

in a position to systematically investigate this issue for chiral forces.
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71APPENDIX A

Pion exchange contributions up to N3LO

A.1 Leading order (LO)

At leading order, there is only the 1π-exchange contribution, cf. Fig. A.1. The charge-independent

1π-exchange is given by

V
(CI)

1π (~p ′, ~p) = −
g2
A

4f2
π

τ1 · τ2
~σ1 · ~q ~σ2 · ~q
q2 +m2

π

. (A.1)

Higher order corrections to the 1π-exchange are taken care of by mass and coupling constant

renormalizations gA/fπ → gπN/MN . Note also that, on shell, there are no relativistic corrections.

Thus, we apply 1π-exchange in the form Eq. (A.1) through all orders.

In this paper, we are specifically calculating neutron-proton (np) scattering and take the charge-

dependence of the 1π-exchange into account. Thus, in proton-proton (pp) and neutron-neutron (nn)

scattering, we use

V
(pp)

1π (~p ′, ~p) = V
(nn)

1π (~p ′, ~p) = V1π(mπ0) , (A.2)

and in neutron-proton (np) scattering, we apply

V
(np)

1π (~p ′, ~p) = −V1π(mπ0) + (−1)I+1 2V1π(mπ±) , (A.3)

where I = 0, 1 denotes the total isospin of the two-nucleon system and

V1π(mπ) ≡ −
g2
A

4f2
π

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

. (A.4)

We use mπ0 = 134.9766 MeV and mπ± = 139.5702 MeV. Formally speaking, the charge-dependence

of the 1PE exchange is of order NLO [1], but we include it already at leading order to make the

comparison with the np phase shifts more meaningful.

A.2 Next-to-leading order (NLO)

The NN diagrams that occur at NLO (cf. Fig. A.1) contribute in the following way [7]:

WC =
L(Λ̃; q)

384π2f4
π

[
4m2

π(1 + 4g2
A − 5g4

A) + q2(1 + 10g2
A − 23g4

A)−
48g4

Am
4
π

w2

]
, (A.5)

VT = − 1

q2
VS = −

3g4
A

64π2f4
π

L(Λ̃; q) . (A.6)
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LO
(Q/Λχ)0

NLO
(Q/Λχ)2

NNLO
(Q/Λχ)3

Figure A.1: LO, NLO, and NNLO contributions to the NN interaction. Notation as in Fig. 3.1.

A.3 Next-to-next-to-leading order (NNLO)

The NNLO contribution (lower row of Fig. A.1) is given by [7]:

VC =
3g2
A

16πf4
π

[
2m2

π(c3 − 2c1) + c3q
2
]

(2m2
π + q2)A(Λ̃; q) , (A.7)

WT = − 1

q2
WS = −

g2
A

32πf4
π

c4w
2A(Λ̃; q) . (A.8)

The loop function that appears in the above expressions, regularized by spectral-function cut-off

Λ̃, is

A(Λ̃; q) =
1

2q
arctan

q(Λ̃− 2mπ)

q2 + 2Λ̃mπ

. (A.9)

Note that

lim
Λ̃→∞

A(Λ̃; q) =
1

2q
arctan

q

2mπ
(A.10)

yields the loop function used in dimensional regularization.
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(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

Figure A.2: Two-pion exchange contributions at N3LO with (a) the N3LO football diagram, (b) the
leading 2PE two-loop contributions, and (c) the relativistic corrections of NLO diagrams. Notation
as in Fig. 3.1.
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A.4 Next-to-next-to-next-to-leading order (N3LO)

A.4.1 Football diagram at N3LO

The football diagram at N3LO, Fig. A.2(a), generates [12]:

VC =
3

16π2f4
π

[(c2

6
w2 + c3(2m2

π + q2)− 4c1m
2
π

)2
+
c2

2

45
w4

]
L(Λ̃; q) , (A.11)

WT = − 1

q2
WS =

c2
4

96π2f4
π

w2L(Λ̃; q) . (A.12)

A.4.2 Leading two-loop contributions

The leading order 2π-exchange two-loop diagrams are shown in Fig. A.2(b). In terms of spectral

functions, the results are [12]:

ImVC =
3g4
A(2m2

π − µ2)

πµ(4fπ)6

[
(m2

π − 2µ2)

(
2mπ +

2m2
π − µ2

2µ
ln
µ+ 2mπ

µ− 2mπ

)
+4g2

Amπ(2m2
π − µ2)

]
, (A.13)

ImWC =
2κ

3µ(8πf2
π)3

∫ 1

0
dx
[
g2
A(µ2 − 2m2

π) + 2(1− g2
A)κ2x2

]
×

{
96π2f2

π

[
(2m2

π − µ2)(d̄1 + d̄2)− 2κ2x2d̄3 + 4m2
πd̄5

]
+
[
4m2

π(1 + 2g2
A)− µ2(1 + 5g2

A)
] κ
µ

ln
µ+ 2κ

2mπ
+
µ2

12
(5 + 13g2

A)− 2m2
π(1 + 2g2

A)

− 3κ2x2 + 6κx
√
m2
π + κ2x2 ln

κx+
√
m2
π + κ2x2

mπ

+g4
A

(
µ2 − 2κ2x2 − 2m2

π

)
×

[
5

6
+

m2
π

κ2x2
−
(

1 +
m2
π

κ2x2

)3/2

ln
κx+

√
m2
π + κ2x2

mπ

]}
, (A.14)

ImVS = µ2 ImVT =
g2
Aµκ

3

8πf4
π

(
d̄15 − d̄14

)
+

2g6
Aµκ

3

(8πf2
π)3

×
∫ 1

0
dx(1− x2)

[
1

6
− m2

π

κ2x2
+

(
1 +

m2
π

κ2x2

)3/2

ln
κx+

√
m2
π + κ2x2

mπ

]
, (A.15)

ImWS = µ2 ImWT (iµ) =
g4
A(4m2

π − µ2)

π(4fπ)6

[(
m2
π −

µ2

4

)
ln
µ+ 2mπ

µ− 2mπ
+ (1 + 2g2

A)µmπ

]
(A.16)

where κ =
√
µ2/4−m2

π.

The momentum space amplitudes Vα(q) and Wα(q) are obtained from the above expressions by
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means of the dispersion integrals shown in Eq. (2.18).

A.4.3 Leading relativistic corrections

The relativistic corrections of the NLO diagrams, which are shown in Fig. A.2(c), count as N3LO

and are given by [1]:

sVC =
3g4
A

128πf4
πMN

[
m5
π

2w2
+ (2m2

π + q2)(q2 −m2
π)A(Λ̃; q)

]
, (A.17)

WC =
g2
A

64πf4
πMN

{
3g2
Am

5
π

2ω2
+
[
g2
A(3m2

π + 2q2)− 2m2
π − q2

]
(2m2

π + q2)A(Λ̃; q)

}
, (A.18)

VT = − 1

q2
VS =

3g4
A

256πf4
πMN

(5m2
π + 2q2)A(Λ̃; q) , (A.19)

WT = − 1

q2
WS =

g2
A

128πf4
πMN

[
g2
A(3m2

π + q2)− w2
]
A(Λ̃; q) , (A.20)

VLS =
3g4
A

32πf4
πMN

(2m2
π + q2)A(Λ̃; q) , (A.21)

WLS =
g2
A(1− g2

A)

32πf4
πMN

w2A(Λ̃; q) . (A.22)

A.4.4 Leading three-pion exchange contributions

The leading 3π-exchange contributions that occur at N3LO have been calculated in Refs. [9, 10]

and are found to be negligible. We, therefore, omit them.
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Phaseshift tables for full NN potential at N4LO

In this appendix, we show the phase shifts as predicted by the N4LO potential with Λ = 500 MeV.

Note that our pp phase shifts are the phase shifts of the nuclear plus relativistic Coulomb interaction

with respect to Coulomb wave functions. For nn and np scattering, our phase shifts are the ones

from the nuclear interaction with respect to Riccati-Bessel functions. For more technical details of

our phase shift calculations, we refer the interested reader to the appendix A3 of Ref. [49].

Table B.1: pp phase shifts (in degrees) up to F -waves at N4LO (Λ = 500 MeV).

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
3F4

1 32.79 0.14 -0.08 0.00 0.01 0.00 0.00 0.00 0.00
5 54.84 1.61 -0.89 0.04 0.23 0.00 -0.05 0.00 0.00
10 55.20 3.79 -2.02 0.17 0.69 0.01 -0.20 -0.03 0.00
25 48.62 8.66 -4.84 0.69 2.57 0.11 -0.81 -0.23 0.02
50 38.84 11.42 -8.26 1.67 5.87 0.35 -1.69 -0.68 0.12
100 24.97 9.15 -13.48 3.61 10.70 0.83 -2.62 -1.46 0.51
150 15.04 4.55 -17.72 5.45 13.57 1.16 -2.83 -1.98 1.07
200 7.10 -0.47 -21.39 7.22 15.54 1.20 -2.71 -2.31 1.67
250 0.11 -5.89 -25.12 8.85 17.01 0.92 -2.42 -2.48 2.20
300 -6.43 -11.40 -29.35 9.91 17.84 0.35 -1.99 -2.46 2.59
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Table B.2: nn phase shifts (in degrees) up to F -waves at N4LO (Λ = 500 MeV).

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
3F4

1 57.62 0.21 -0.12 0.00 0.02 0.00 0.00 0.00 0.00
5 61.01 1.88 -1.03 0.05 0.28 0.00 -0.06 -0.01 0.00
10 57.82 4.16 -2.21 0.18 0.78 0.01 -0.22 -0.04 0.00
25 49.11 9.01 -5.08 0.73 2.77 0.11 -0.84 -0.24 0.02
50 38.71 11.55 -8.52 1.72 6.15 0.36 -1.72 -0.70 0.13
100 24.65 9.06 -13.76 3.68 11.02 0.84 -2.62 -1.48 0.53
150 14.70 4.40 -17.98 5.52 13.92 1.16 -2.82 -2.00 1.09
200 6.74 -0.63 -21.62 7.28 15.94 1.20 -2.68 -2.32 1.70
250 -0.28 -6.02 -25.32 8.88 17.42 0.91 -2.36 -2.49 2.23
300 -6.87 -11.40 -29.48 9.87 18.24 0.32 -1.93 -2.46 2.61

Table B.3: I = 1 np phase shifts (in degrees) up to F -waves at N4LO (Λ = 500 MeV).

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
3F4

1 62.00 0.18 -0.11 0.00 0.02 0.00 0.00 0.00 0.00
5 63.47 1.66 -0.92 0.04 0.27 0.00 -0.05 0.00 0.00
10 59.72 3.72 -2.03 0.16 0.75 0.01 -0.19 -0.03 0.00
25 50.48 8.25 -4.79 0.68 2.66 0.09 -0.76 -0.20 0.02
50 39.83 10.69 -8.20 1.68 5.96 0.31 -1.62 -0.61 0.11
100 25.68 8.25 -13.44 3.68 10.76 0.78 -2.53 -1.35 0.49
150 15.78 3.63 -17.67 5.56 13.63 1.08 -2.76 -1.86 1.04
200 7.90 -1.37 -21.33 7.34 15.63 1.12 -2.64 -2.18 1.64
250 0.96 -6.75 -25.05 8.96 17.12 0.83 -2.35 -2.35 2.17
300 -5.57 -12.14 -29.23 9.96 17.95 0.25 -1.93 -2.34 2.55

Table B.4: I = 0 np phase shifts (in degrees) at N4LO (Λ = 500 MeV).

Tlab (MeV) 1P1
3S1

3D1 ε1
3D2

1F3
3D3

3G3 ε3
1 -0.19 147.75 -0.01 0.11 0.01 0.00 0.00 0.00 0.00
5 -1.50 118.17 -0.19 0.68 0.22 -0.01 0.00 0.00 0.01
10 -3.06 102.61 -0.69 1.17 0.85 -0.07 0.00 0.00 0.08
25 -6.32 80.66 -2.83 1.79 3.71 -0.42 0.02 -0.05 0.56
50 -9.66 62.91 -6.48 2.03 8.82 -1.13 0.20 -0.26 1.62
100 -14.78 43.72 -12.20 2.09 16.51 -2.19 1.10 -0.94 3.54
150 -19.52 31.42 -16.34 2.33 21.08 -2.92 2.29 -1.76 4.95
200 -23.46 21.60 -19.55 2.99 23.89 -3.54 3.40 -2.57 5.90
250 -25.72 12.68 -22.01 4.09 25.21 -4.14 4.23 -3.24 6.40
300 -25.27 4.02 -23.38 5.34 24.41 -4.69 4.78 -3.65 6.39


