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Abstract

My thesis focuses on the evolution of the solid-liquid interface during melting and

solidification in a material with constant internal heat generation and prescribed heat flux

at the boundary in a cylinder. A phase change process in which a material transitions

between two phases, solid and liquid, is known as a Stefan moving boundary problem.

We assume that the internal heat generation is constant and the same in both phases.

The material properties in both phases are also taken to be constant and equal. We assume

that the heat is transferred only by conduction and we neglect convection in the liquid phase.

In addition, we assume that there is a sharp interface between two phases where the phase

changes at a single melting temperature and there is no mushy zone at the interface. The

presence of the internal heat generation makes the problem nonhomogeneous. Starting from

the heat conduction equation, the approach finds steady-state and transient temperature

solutions in each phase and employs the separation of variables technique to find transient

solutions. A nonlinear first-order differential equation with Fourier-Bessel series terms is

derived for the time-dependent motion of the interface. Analytic solutions for temperature

profiles in each phase are derived. We do not introduce the Stefan number since there is only

one fixed temperature: melting temperature. Instead we introduce dimensionless heat flux

at the boundary. The initial value problem is solved numerically, and solutions compared to

the previously derived quasi-steady ones. It is shown that when the internal heat generation

and the heat flux at the boundary have a close range of values, it takes longer for the front

to reach steady state than when the values are farther apart. As the difference between

the internal heat generation and the flux increases, the transient solution becomes more

dominant and the numerical solution of the phase change front does not reach steady-state

before the outer boundary or centerline is reached. This shows that the prescribed heat

flux can be used as a parameter that controls the motion of the interface. The problem has

applications for a nuclear fuel rod during meltdown.



iv

Acknowledgements

I would like to thank the Almighty God for the strength, wisdom and for the ability to

understand, learn and complete this thesis.

I also will like to admire the help and guidance of my major professor Prof. Lyudmyla

Barannyk. Your patience, motherly love and overall support were amazing. I pray for God

to continually protect you and grant all your heart desires.

I am also grateful to my committee member Prof. John Crepeau who was always ready

and available for every form of questions and guidance I needed. God bless you. I would

also like to express my gratitude to my committee member Prof. Gao Fuchang who put in

his time and efforts into this thesis. Your comments are suggestions were very helpful and

made my thesis better.

Additionally, I would like to appreciate the mathematics department for granting me the

opportunity and financial support to go through this thesis and my MS degree. Also, to the

mathematics office staff: Jana Joyce, Melissa Gottschalk, Jaclyn Gotch and Jessica DeWitt.

You all are the absolute best.

To my mum, Mrs I. M. Ogidan: thank you for all your words of encouragement, prayers

and undying love. To my sister Bunmi: you are the best. To my cousin Gbenga Ige: thank

you for your mentorship and support. God bless you. To my dad, Mr. A. Ogidan and my

brothers Abiodun and Yinka, I love you all.

To my Moscow friends who became family, you all have been superb. Thank you.



v

Table of Contents

Authorization to Submit Thesis ................................................................................ ii

Abstract.......................................................................................................................... iii

Acknowledgements ....................................................................................................... iv

Table of Contents ......................................................................................................... v

Nomenclature ................................................................................................................ vii

List of Figures ............................................................................................................... ix

1 Introduction ............................................................................................................. 1

1.1 History of Stefan Problem ................................................................................. 1

1.2 Phase Change...................................................................................................... 2

2 Derivation of Governing Equations ..................................................................... 8

2.1 Problem Description ........................................................................................... 8

2.2 Problem Formulation .......................................................................................... 9

2.3 Non-Dimensionalization and Derivation of Equations ........................................ 10

2.4 Problem in Dimensionless Form.......................................................................... 14

2.5 Solution in the Liquid Phase............................................................................... 15

2.6 Solution in the Solid Phase ................................................................................. 20

2.7 Asymptotic Properties of Bessel Functions......................................................... 25

2.8 Interface Equation............................................................................................... 28

2.9 Quasi-Static Solutions......................................................................................... 29

3 Numerical Solutions ............................................................................................... 32

3.1 Solidification ....................................................................................................... 37



vi

3.2 Melting................................................................................................................ 40

4 Summary and Conclusions .................................................................................... 46

References ...................................................................................................................... 48



vii

Nomenclature

Throughout the thesis, we use the following notations.

An, Bn Fourier Coefficients

cp specific heat

∆hf latent heat of fusion

k thermal conductivity

ro distance from the center to the edge of the cylinder

q̇ volumetric internal heat generation

J0, Y0 Bessel functions of 1st and 2nd kinds of order 0

J1, Y1 Bessel functions of 1st and 2nd kinds of order 1

Q̇ dimensionless internal heat generation

Q′′ nondimensional heat flux

s(t) distance to the phase change front

t time

T temperature

q′′o constant surface heat flux

Tm melt temperature

x,r distance

Greek Symbols

α thermal diffusivity

η nondimensional distance

φ initial temperature profile

Φ nondimensional initial temperature profile

λn, λ̂n characteristic eigenvalues
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θ nondimensional temperature

ρ density

τ nondimensional time

ζ(τ) nondimensional distance to phase change front

z0n zeros of Bessel function J0(z)

[.] dimension of a quantity

Subscripts

liq liquid

sol solid

ss steady state

tr transient
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CHAPTER 1

Introduction

1.1 History of Stefan Problem

Solid-liquid phase changes are encountered severally in nature and hence this solid-liquid

phase change problem has been studied in various literature over the years. These studies

were firstly carried out by Lamé and Clapeyron [1], then also by J. Stefan [2], whom these

types of problems are associated with. Stefan solved the problem of the location and speed

of the interface in a solid/liquid during melting or solidification. This kind of problems has

now been extended over the years to include different cases like solidification of alloy sys-

tems, melting due to joule heating, laser irradiation [3] and so on. Rubenstein [4] proposes

a different mathematical model for the solid/liquid phase change problems (Stefan prob-

lem). Burmeister [5] develops an accessible similarity solution to the phase change problem

which shows the solid or liquid interface changes as the square root of time. Furzerland [6],

Viswanath and Juluria [7] studied the difference between these two methods. Stefan problem

is actively researched till date [8], [9].

In the Stefan problem two boundary conditions are imposed. The first one involves

the temperature while the other is the energy balance. An important assumption in the

formulation of Stefan problem is that there is a smooth surface which is the phase change

boundary where one of the surfaces is the solid/liquid region and the other is the liquid/solid

region [10]. The solid is recognized by its temperature which should be less than or equal

to the equilibrium or melting temperature Tm, while the liquid area is recognized by its

temperature which should be greater than or equal to Tm. The existence of this solid-liquid

interface is a classic case which only occurs on special occasions such as solidification of pure

metals or alloys with an appropriate amount of high temperature gradient.

In one directional solidification, it is known mathematically that in the presence of some

conditions like absence of volumetric heat or unavailability of a mushy zone initially, that the
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mushy region does not form until the solidification is complete. In two or more directional

solidification, the presence of a sharp interface has been established to exist only for some

period of time with suitable assumptions [11].

Regularly, a sharp interface separating a stable solid region from a stable liquid region

decayed after a short time into a mushy region. The mushy region contains both solid and

liquid phases and separates the stable solid region from the stable liquid region. The solid in

the mushy region is present initially in the form of dendrites as shown in Fig. 1.1. The mushy

area might also be formed during solidification if the liquid is supercooled or amid melting

if the solid is superheated. This decay of sharp interface into a mushy area is ascribed to

the morphological flimsiness of the solid-liquid interface.

Figure 1.1: (a) Dendrites. (b) Formation of Dendrites [11]

(a) (b)

1.2 Phase Change

Several mechanisms are at work when a liquid solidifies or a solid melts. This type of

phenomena involves a change of phase which occurs with heat transfer. This heat transfer

can be in any of these three modes: conduction, convection and radiation. Conduction is

the transfer of heat energy by direct contact between objects, convection is the movement

of heat by actual motion of matter which occurs in fluids while radiation is the transfer of

energy with the help of electromagnetic waves. In many cases, materials go through these
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phase changes by either taking in heat or emitting heat (latent heat). These changes occur

due to changes in temperature either within or inside the material, determining the location

and speed of solid/liquid interface during these changes (melting and solidification), which

is the Stefan problem. In this types of problems, heat transfer is done by conduction and

convection only, and the phase change temperature is carried out at a fixed temperature.

Several applications of this kind of solid-liquid phase changes over a specified temperature

ranges like water melting or freezing, molten lava solidifying, melting and solidification in

metals casting procedures, like welding, brazing and soldering processes.

The effects of phase changes without internal heat generation are understood better

than with internal heat generation. Viskanta [12] presents an overview and predictions for

solidification and melting with reference to metals and metals processing. He shows that

the phase front changes as the temperature changes and that there is a specific temperature

region above which the whole material is entirely liquid or solid for alloy metals. He also did

some research in the one directional phase change. His work gives a good introduction to

the phase change problem. Viskanta also recognized the importance of convection, but saw

it as trivial for metal processing problems especially the ones with slow changing phase front

conditions. Yao and Prusa [13] gave reviews on conduction and convection dominant phase

changes, enthalpy and other methods. They also discussed the complications in modeling

of both melting/freezing processes and presented experimental results for melting in heated

cylinders. In their work they assumed that none of the material generated internal heat.

Determining when and where the phase front is in either solidification or melting has

been studied in various form over the years and different closed form solutions exist. Apart

from this problem of phase front location, fluid movements can occur and cause convection

currents which then increases heat transfer. A major problem is that in many materials

there is not a specific location for the phase change front, but instead there is a “mushy

zone” where the solid and liquid synchronize.

The classical Stefan problem involves heat transfer from external sources, phase changes
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could also happen with internal heat generation. Some examples include geological heat

transfer, nano-enhanced phase change and melting of nuclear fuel rod.

A nuclear meltdown occurs due to inadequate cooling of the nuclear fuel rods (see Fig.

1.2). This happens when the heat generated internally is greater than the heat removed by

the nuclear cooling system to the extent that at least one of the fuel elements will develop

temperature that exceeds its melting point. In these pressurized water reactors the melting

of fuel rods can release radioactive elements and cause the zirconium cladding to react with

water to generate explosive hydrogen [14].

Figure 1.2: Nuclear fuel ceramic pellets [15]
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Figure 1.3: Nuclear fuel pellets installation into boxes [15]

A lot of exact solutions to the Stefan problem have been derived. Examples include problems

with power-type latent heat [16], with prescribed heat flux at the boundary [17], with forced

and natural convection [18]. Existence of solutions was investigated in [19]. In these and

many other previous papers, the internal heat was not included.

Cheung et al. [20] worked on the processes of solidification and melting in heat-generating

slabs bounded by two semi-infinite cold walls. Crepeau et al. [21] derived approximate solu-

tions for the temperature and interface for materials with internal heat generation in plane

wall, cylindrical, spherical and semi-infinite geometries by using a quasi-static approach.

Furthermore, Crepeau et al. [22] investigated the solid-liquid phase change driven by vol-

umetric energy generation in a vertical cylinder and showed excellent agreement between

their quasi-static, approximate analytic and CFD (computational fluid dynamics) solutions

for Stefan numbers less than one. Shrivastava et al. [23] used computational fluid dynamics

to experiment with melting in materials with internal heat generation for a vertical cylinder.

Numerical results showed good correlation with the experimental data. Barannyk et al. [24]

studied the changes in the interface between the solid and liquid phases during melting and

solidification of a material with constant internal heat generation and constant prescribed
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temperature at the boundary in cylindrical coordinates. Analytical solutions which involved

exponentially decaying Fourier-Bessel series were derived. The results were in an excellent

correlation with quasi-static solutions for Stefan numbers less than one.

The research presented in this thesis addresses the Stefan problem in materials with

internal heat generation and the prescribed heat flux at the boundary instead of constant

temperature in cylindrical coordinates. The governing equation is derived for the interface

between the two phases without making a quasi-static assumption and the resulting initial

value problem is solved analytically and numerically. The results of the full problem are

compared with quasi-static counterparts.

The rest of the thesis is organized as follows. In Chapter 2, we formulate the initial

value boundary problem, change it to dimensionless variables, split solutions in each phase

to transient and steady-state and solve it by the method of separation of variables and

direct integration. This results in deriving a first order ordinary differential equation for the

interface between liquid and solid phases, that involves Fourier-Bessel series. The eigenvalues

in the liquid phase are related to the roots of the Bessel function J0(z) of the first kind of order

zero. The associated eigenfunctions also involve J0(z). In the solid phase both eigenvalues

and associated eigenfunctions are expressed in terms of both Bessel functions of first J0(z)

and second Y0(z) kind. The eigenvalues are roots of a nonlinear equation. Temperature in

both phases is also written in terms of infinite series. In Chapter 3, the interface equation

is solved numerically as the initial value problem. The right hand side of this equation

requires knowledge of temperature in both phases, in particular its derivative with respect

of the spatial variable and evaluated at the interface. The eigenvalues in the solid phase

are computed using asymptotic approximations of eigenvalues for large arguments using

asymptotic results for Bessel functions for large arguments. Since Fourier-Bessel series are

decaying in time and with the eigenvalue index, it is enough to use a few first terms in

infinite series to approximate the solution. The obtained solutions are compared to quasi-

static counterparts published earlier. We show that given the internal heat generation, the
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value of the prescribed heat flux at the outer boundary of the cylinder can be used to control

the motion of the interface. In Chapter 4, we provide conclusions.
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CHAPTER 2

Derivation of Governing Equations

2.1 Problem Description

In this chapter, we set-up initial boundary value problem for temperature in both phases

and derive a governing equation for the interface between phases.

The material is inside the cylinder of radius r0. At time t = 0, we assume that there

are two phases: liquid around the centerline and solid outside the liquid phase. Concentric

symmetry is assumed. The schematic of the problem is shown in Fig. 2.1. In the solid and

liquid phases, the changes in the temperature are driven by internal heat generation q̇, while

the heat flux q′′o at the outer boundary of the cylinder is kept constant. Temperature Tm is

the melting temperature at the interface and the temperature gradient at the center line is

zero by symmetry.

Figure 2.1: Schematic in cylindrical coordinates

We make the following assumptions:

1. The internal heat generation is constant and the same in both phases.
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2. The temperature Tm of the phase change is fixed and known, since it is a property of

the material.

3. The material properties in both phases are constant, uniform, and equal.

4. The heat transfer is by conduction and there is no convection in the liquid phase, all

other effects are assumed negligible. The effect of convection is discussed in [25].

5. The phase change occurs at a single, constant temperature, Tm, so there is no “mushy

zone” at the interface in between phases.

6. Density changes are also kept constant to avoid movement of the material.

2.2 Problem Formulation

Inside each phase, the evolution of temperature is governed by the heat equation [26]:

1

r

∂

∂r

(
r
∂T (r, t)

∂r

)
+
q̇

k
=

1

α

∂T

∂t

0 ≤ s ≤ r0, 0 ≤ t ≤ ∞
(2.1)

The liquid phase boundary and initial conditions are;

∂Tliq(r, t)

∂r
= 0

Tliq(s(t), t) = Tm

Tliq(r, 0) = φliq(r)

(2.2)

The first condition is the symmetry condition at r = 0, that follows from the assumption that

the temperature profile in the liquid phase is parabolic with the centerline coinciding with its

axis of symmetry. The second boundary condition is the continuity of temperature condition,

where we assume that the material melts at temperature Tm. In the initial condition, φliq(r)

is the initial temperature on the liquid phase.
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Boundary and initial conditions in the solid phase are

Tsol(s(t), t) = Tm

−k∂Tsol(r, t)
∂r

∣∣∣
r=r0

= q′′0

Tsol(r, 0) = φsol(r)

(2.3)

Here the second condition specifies the heat flux at the outer boundary at r = r0. In the

initial condition, φsol(r) is the initial temperature in the solid phase.

While the interface equation is given by ([27], pg. 223) is derived due to the assump-

tion that the the phase change occurs at a particular temperature and the two phases are

seperated by a mixed-phase regions, this region consists of complex combined liquids and

dendrites which is called the mushy region. An energy balance in the control volume which

surrounds the fronts in both phases gives rise to the equation.

−kliq
∂Tliq(r, t)

∂r

∣∣∣
r=s(t)

+ ρsol∆hf
ds(t)

dt
= −ksol

∂Tsol(r, t)

∂r

∣∣∣
r=s(t)

(2.4)

Where

kliq
∂Tliq(r, t)

∂r

∣∣∣
r=s(t)

: is the energy transferred into the control volume by conduction

ksol
∂Tsol(r, t)

∂r

∣∣∣
r=s(t)

: is the energy transferred out of the control volume by conduction

ds(t)

dt
; is the interface velocity

2.3 Non-Dimensionalization and Derivation of Equations

It is convenient to study the problem under consideration in the dimensionless form. We

rescale length variables by r0, time scale is obtained from the heat equation (2.1) by balancing

its first and last terms. Denote by [.] the dimension of a quantity (see, e.g. [28]). For example,
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[T ] has dimension of temperature. Then the heat equation gives

1

[r]

[k][r][T ]

[r]2
= ρcp

[T ]

[t]

This gives us the time scale

t∗ =
r0

2ρcp
k

=
r0

2

α
, where α =

k

ρcp

The temperature is rescaled using a typical temperature T ∗. It is derived from the interface

equation (2.4) by balancing the second and last terms in the following manner.

ρsol∆hf
[s]

[t]
= ksol

[T ]

[r]

Solving for [T ], we find

ρsol∆hf
ksol

[s][r]

[t]
= [T ] = T ∗

Using the time scale t∗ and r0 for length variables, we obtain the temperature scale

T ∗ =
ρsol∆hfα

t ksol
=

∆hf
cp

We introduce the following dimensionless variables

η =
r

r0
, ζ(τ) =

s(t)

r0
, τ =

αt

r20

θ(η, τ) =
T (r, t)− Tm

T ∗
, Q̇ =

q̇ro
2

αρsol∆hf

, Q′′ =
q′′r0
ksolT ∗

(2.5)

The last two are dimensionless internal heat generation and the heat flux at the boundary,

whose derivation is shown below. Indeed,

In order to non-dimensionalize equations, we use the chain rule to find derivatives in
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terms of new variables.

∂

∂r
=

∂

∂η
· dη
dr

=
1

r0

∂

∂η
,

∂

∂t
=

∂

∂τ
· dτ
dt

=
α

r02
∂

∂τ

Heat equation becomes

1

r0η

T ∗

r02
∂

∂η

(
kr0η

∂θ

∂η

)
+ q̇ = ρcp

αT ∗

r02
∂θ

∂τ

We multiply the above equation by r02

T ∗K
and set Q̇ =

r20 q̇

T ∗k
to arrive at final form of the heat

equation in dimensionless form:

1

η

∂

∂η

(
η
∂θ(η, τ)

∂η

)
+ Q̇ =

∂θ(η, τ)

∂τ
(2.6)

Next we bring the boundary conditions to the dimensionless form.

∂Tliq(r, t)

∂r

∣∣∣
r=0

= 0 ⇒ T ∗

ro

∂θliq(η, τ)

∂η

∣∣∣
η=0

= 0 ⇒ ∂θliq(η, τ)

∂η

∣∣∣
η=0

= 0

Tliq(s(t), t) = Tm ⇒ θliq(η, τ)
∣∣∣
η=ζ(τ)

= 0

Then we consider the initial condition.

Tliq(r, 0) = φliq(r) ⇒ Tliq(r, 0)− Tm
T ∗

=
φliq(r)− Tm

T ∗
def
= Φliq(η)

where Φliq(η) is the initial condition in the liquid phase in dimensionless variables.

Boundary and initial conditions in the solid phase are treated similarly.

Tsol(s(t), t) = Tm ⇒ θsol(ζ(τ), τ) = 0

∂Tsol(r, t)

∂r

∣∣∣
r=r0

= − q′′0
ksol

⇒ T ∗

ro

∂θsol(η, τ)

∂η

∣∣∣
η=1

= − q′′0
ksol
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Let

Q′′ =
q′′r0
ksolT ∗

Then

∂θsol(η, τ)

∂η

∣∣∣
η=1

= − q′′0r0
ksolT ∗

⇒ ∂θsol(η, τ)

∂η

∣∣∣
η=1

= −Q′′

The initial condition

Tsol(r, 0) = φsol(r)

gives

Tsol(r, 0)− Tm
T ∗

=
φsol(r)− Tm

T ∗
def
= Φsol(η)

The dimensionless interface equation is

kliqT
∗

r0

dθ

dη
+
αρsol∆hf

r20

dζ(τ)

dτ
=
ksolT

∗

r0

dθ

dη

Multiply both sides of this equation by r0
kT ∗ . This would make the coefficient of dζ(τ)

dτ
to be 1,

so we do not need to introduce the Stefan number. This makes sense since we only have one

temperature fixed: the melting temperature Tm. In order to introduce the Stefan number,

we would need another fixed temperature so that we can consider their difference. We do

not have it since instead we have a fixed derivative of the temperature at the outer boundary

in terms of the heat flux.

To summarize, we write down problems in the liquid and solid phases in dimensionless

form.
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2.4 Problem in Dimensionless Form

Dimensionless liquid phase problem:

1

η

∂

∂η

(
η
∂θliq(η, τ)

∂η

)
+ Q̇ =

∂θliq(η, τ)

∂τ

∂θliq(η, τ)

∂η

∣∣∣
η=0

= 0

θliq(η, τ)
∣∣∣
η=ζ(τ)

= 0

Φliq(η, 0) =
φliq(r)− Tm

T ∗

(2.7)

Dimensionless solid phase problem is

1

η

∂

∂η

(
η
∂θsol(η, τ)

∂η

)
+ Q̇ =

∂θsol(η, τ)

∂τ

θsol(η, τ)
∣∣∣
η=ζ(τ)

= 0

∂θsol(η, τ)

∂η

∣∣∣
η=1

= 0

Φsol(η, 0) =
φsol(r)− Tm

T ∗

(2.8)

Dimensionless interface equation is

dθliq(η, τ)

dη

∣∣∣
η=ζ(τ)

+
dζ(τ)

dτ
=
dθsol(η, τ)

dη

∣∣∣
η=ζ(τ)

(2.9)

Equation (2.9) is a first order nonhomogeneous ordinary differential equation for the interface

ζ(τ). In order to determine the evolution of the interface, we need to know temperature in

both solid and liquid phases. We find temperature separately in each phase. Solutions

are computed by splitting them into transient and steady parts. The transient problem is

homogeneous and we solve it using the method of separation of variables [29, 26]. The steady

state problem is nonhomogeneous and we solve it by direct integration.
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2.5 Solution in the Liquid Phase

The problem (2.7) is a nonhomogeneous initial boundary value problem. In order to solve

it, we split it into a homogeneous problem with a transient solution θliq,tr(η, τ) that satisfies

the homogeneous equation and homogeneous boundary conditions, and a nonhomogeneous

steady state problem with a solution θliq,ss(η). Therefore, we can write a solution to the full

problem in the liquid phase as a sum of the transient solution θliq,tr(η, τ) and steady state

solution θliq,ss(η, τ):

θliq(η, τ) = θliq,tr(η, τ) + θliq,ss(η)

Transient solution θliq(η, τ) satisfies the homogeneous heat equation

1

η

∂

∂η

(
η
∂θliq,tr(η, τ)

∂η

)
=
∂θliq,tr(η, τ)

∂τ
(2.10)

with homogeneous boundary and corresponding initial conditions:

θliq,tr(ζ(τ), τ) = 0,
∂θliq,tr(η, τ)

∂η

∣∣∣
η=0

= 0

θliq(η, 0) = φliq(η)− θliq,ss(η)

To find the transient solution, we use the method of separation of variables [29, 26]. We

assume that the solution can be written as a product of two functions: function of η alone

and a function of τ alone, i.e. we let

θliq,tr(η, τ) = f(η)g(τ)

Substituting this into the heat equation (2.10)

1

η

d

dη

(
η
df

dη

)
g(τ) = f(η)

dg

dτ

∣∣∣ 1

fg
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and separating variables, we find

1

ηf

d

dη

(
η
df

dη

)
=

dg
dτ

g
= −λ2

where −λ2 is a separation constant. We can show that this constant has to be negative to

get a physically consistent solution.

The τ -dependent problem

dg

dτ
= −λ2g

has a solution

g(τ) = c e−λ
2τ

where c is an arbitrary constant of integration.

Next consider the spatial η-dependent problem

1

ηf

d

dη

(
η
df

dη

)
+ λ2 = 0

∣∣∣ η2f

η
d

dη

(
η
df

dη

)
+ λ2η2f = 0

η

(
df

dη
+ η

d2f

dη2

)
+ λ2η2f = 0

Introduce change of variables z = λη. Then

d

dη
=

d

dz

dz

dη
= λ

d

dz

and we arrive at

z2
d2f

dη2
+ z

df

dz
+ z2f = 0 (2.11)

which is the Bessel equation of order 0. Its general solution is

F (η) = c1J0(λη) + c2Y0(λη) (2.12)
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where J0(z) and Y0(z) are Bessel functions of first and second kind, respectively, of order 0;

c1, c2 are arbitrary constants. The graphs of the Bessel functions J0(z) and Y0(z) are shown

in Fig. 2.2. We can see that function J0(z) is bounded at z = 0 whereas Y0 is not bounded

and it goes to minus infinity as z approaches 0. The derivative of Y0 is also unbounded at

z = 0.

Figure 2.2: Bessel functions J0(z) and Y0(z) of order 0

Boundary condition df
dz

∣∣∣
z=0

= 0 implies that c2 = 0. We can also argue here that the

temperature at z = 0 has to be bounded, which would eliminate function Y0(z) as well. The

condition θliq,tr(ζ(τ), τ) = 0 implies f(λζ) = 0, hence c1J0(λη) = 0. For a nontrivial solution,

c1 6= 0, hence, J0(λη) = 0 or λζ = z0n, n = 1, 2, . . .. Here z0n is the nth zero of J0(z). This

gives us eigenvalues

λn =
z0n
ζ(τ)

, n = 1, 2, . . .

with associated eigenfunctions

Fn(η) = J0(λnη) = J0

(
z0n
ζ(τ)

η

)
, n = 1, 2, . . .

Using the principle of linear superposition, we can write the transient solution in the form
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of an infinite series

θliq,tr(η, τ) =
∞∑
n=1

AnJ0(λnη) e−λ
2
nτ

where An are coefficients that we find using the initial condition and orthogonality of eigen-

functions J0(λnη).

At time τ = 0,

θliq,tr(η, 0) = Φliq(η)− θliq,ss(η) =
∞∑
n=1

AnJ0(λnη) (2.13)

Equation (2.13) shows that θliq,tr(η, 0) is a Fourier-Bessel series with coefficients An. Multiply

both sides by J0(λnη) η and integrate over 0 ≤ η ≤ ζ. Bessel functions J0(λnη) are orthogonal

on [0, ζ(τ)] with weight function η, that is

∫ ζ(τ)

0

J0(λnη)J0(λmη)η dη = 0, n 6= m

therefore, we can find Fourier-Bessel coefficients

An =

∫ ζ(τ)
0

[Φliq(η)− θliq,ss(η)]J0(λnη)η dη∫ ζ(τ)
0

J2
0 (λnη)η dη

Fourier type series solutions of this kind of problems have been derived in the case of

cartesian coordinates [30, 24]. Power series solutions were used to solve one dimensional

Stefan problem with variable latent heat and single phase Stefan problem [31, 32]. In our case,

because of the cylindrical geometry of our problem, it is convenient to express the solution in

terms of Fourier-Bessel series and use orthogonality of Bessel functions to efficiently compute

Fourier-Bessel coefficients.

The liquid steady-state problem consists of

1

η

d

dη

(
η
dθliq,ss(η)

dη

)
+ Q̇ = 0 (2.14)
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with the boundary conditions given as

θliq,ss(s(τ)) = 0,
dθliq,ss(η)

dη

∣∣∣
η=0

= 0

Multiplying both sides of equation (2.14) by η, we get

d

dη

(
η
dθliq,ss(η)

dη

)
= −ηQ̇

Integrate it once

η
dθliq,ss(η)

dη
= −η

2

2
Q̇+ c1

where c1 is an arbitrary constant of integration. Since dθ
dη

= 0 at η = 0, we get c1 = 0. Divide

both sides of the resulting equation by η:

η
dθliq,ss(η)

dη
= −η

2

2
Q

∣∣∣1
η

Then

dθliq,ss(η)

dη
= −η

2
Q̇

Integrate again to obtain

θliq,ss(η) = −η
2

4
Q̇+ c2

where c2 is another constant of integration. At the interface η = ζ,

θliq,ss(ζ) = −ζ
2

4
Q̇+ c2 = 0⇒ c2 =

ζ2

4
Q̇

Therefore,

θliq,ss(η) =
η2

4
+
ζ2

4
Q̇ =

ζ2 − η2

4
Q̇ =

Q̇

4
(ζ2(τ)− η2)
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Adding transient and steady state solutions, we obtain temperature in the liquid phase:

θliq(η, τ) =
∞∑
n=1

An e−λ
2
nτ fn(λnη) + θliq,ss(η) (2.15)

where

θliq,ss(η) =
Q̇

4
(ζ2(τ)− η2)

An =

∫ ζ(τ)
0

[Φliq(η)− θliq,ss(η)]J0(λnτ)η dη∫ ζ(τ)
0

J2
0 (λnη)η dη

λn =
z0n
ζ(τ)

, fn(η) = J0(λnη), n = 1, 2, . . .

2.6 Solution in the Solid Phase

We use the same approach here as for the liquid phase. We separate solution into transient

and steady state parts by writing

θsol(η, τ) = θsol,tr(η, τ) + θsol,ss(η)

The transient solution θsol,tr(η, τ) satisfies

1

η

∂

∂η

(
η
∂θsol,tr(η, τ)

∂η

)
=
∂θsol,tr(η, τ)

∂τ

with the boundary and initial conditions given as

θsol,tr(ζ(τ), τ) = 0,
∂θsol,tr(η, τ)

∂η

∣∣∣
η=1

= 0

θsol,tr(η, 0) = φsol(η)− θsol,ss(η)
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We use the method of separation of variables to solve transient problem and assume the

solution θsol,tr(η, τ) as a product of two functions:

θsol,tr(η, τ) = f(η)g(τ)

Separating variables with a separation constant −λ2, we obtain the τ -dependent problem

dg

dτ
= −λ2g

whose solution is

g(τ) = c e−λ
2τ

Here c is an arbitrary constant.

The η-dependent problem consists of the same equation as in the liquid phase

η
df

dη
+ η2

d2f

dη2
+ λ2η2f = 0, ζ ≤ η ≤ 1

that with the help of substitution z = λη transforms into the same Bessel equation of order

0:

z2
d2f

dη2
+ z

df

dz
+ z2f = 0

with the general solution

f(z) = c1J0(z) + c2Y0(z)

where J0(z) and Y0(z) are Bessel functions of first and second kind, respectively. Since the

domain now is away from the origin, both functions J0(z) and Y0(z) are part of the solution.

Going back to variable η, we can write

f(λη) = c1J0(λη) + c2Y0(λη) (2.16)
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The boundary condition f(η)
∣∣∣
η=ζ

= 0 implies

c1J0(ζ(τ)λ) + c2Y0(ζ(τ)λ) = 0 (2.17)

To use the other boundary condition

df

dη

∣∣∣
η=1

= 0

we need to differentiate Bessel functions. It is known [26] that

J ′0(z) = −J1(z), Y ′0(z) = −Y1(z)

Then

df

dη
= −c1λJ1(λη)− c2λY1(λη)

evaluating this equation at η = 1, we get

df

dη

∣∣∣
η=1

= −λ(c1J1(λ)− c2Y1(λ)) = 0
∣∣∣1
λ

Dividing this equation by λ and using the result from the first boundary condition (2.17),

we arrive at the system

c1J1(λ) + c2Y1(λ) = 0

c1J0(ζ(τ)λ) + c2Y0(ζ(τ)λ) = 0

for c1 and c2. To find a condition for a nontrivial solution to exist, we write this system in

a matrix form J0(ζλ) Y0(ζλ)

J0(λ) Y1(λ)


c1
c2

 =

0

0

 (2.18)

For a homogeneous linear system to have a nontrivial solution, the determinant of the coef-
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ficient matrix has to be 0, i.e.

Y1(λ)J0(ζλ)− Y0(ζλ)J1(λ) = 0 (2.19)

This is a nonlinear equation. Its roots are eigenvalues λ̃n that form an infinite sequence as

n increases. Once we know eigenvalues λ̃n, we can find corresponding eigenfunctions. Since

c1J1(λ) + c2Y1(λ) = 0

we solve for c2 in terms of c1:

c1J1(λ) = −c2Y1(λ) ⇒ c2 = −c1
J1(λ)

Y1(λ)

Substituting this into (2.16), we find

f(λη) = c1

[
J0(λη)− J1(λ)

Y1(λ)
Y0(λη)

]

Hence,

f̃n(λ̃nη) = J0(λ̃nη)− J1(λ̃n)

Y1(λ̃n)
Y0(λ̃nη)

are the eigenfunctions with the corresponding eigenvalues λ̃n.

Using the principle of linear superposition, we write the transient solution as an infinite

series

θsol,tr(η, τ) =
∞∑
n=1

Bn e−λ̃
2
nτ f̃n(λ̃nη) (2.20)

where coefficients Bn are computed using the initial condition at τ = 0:

θsol,tr(η, 0) = Φsol(η)− θsol,ss(η) =
∞∑
n=1

Bnf̃n(λ̃nη)

Using orthogonality of eigenfunctions f̃n(λ̃nη) on the interval [ζ, 1] with the weight function
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η, we find

Bn =

∫ 1

ζ(τ)
[Φsol(η)− θsol,ss(η)]f̃n(λ̃nη)η dη∫ 1

ζ(τ)
f̃n

2
(λ̃nη))η dη

, n = 1, 2, . . .

The steady state part θsol,ss(η) satisfies the equation

1

η

d

dη

(
η
dθsol,ss(η)

dη

)
+ Q̇ = 0 (2.21)

with the boundary conditions

θsol,ss(ζ(τ)) = 0,
∂θsol,ss(η)

∂η

∣∣∣
η=1

= −Q′′

Multiplying both sides of equation (2.21) by η

d

dη

(
η
dθsol,ss(η)

dη

)
= −ηQ̇

and integrating the result once, we get

η
dθsol,ss(η)

dη
= −η

2

2
Q̇+ c1

Since dθ
dη

= −Q′′ at η = 1, we find

c1 =
Q̇

2
−Q′′

Hence,

dθsol,ss(η, τ)

dη
= −η

2
Q̇+

c1
η

Integrate again

θsol,ss(η) = −η
2

4
Q̇+ c1 ln η + c2

Since

0 = θ(η)|η=ζ =
ζ2

4
Q̇+ c1 ln ζ + c2
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we have

c2 =
ζ2

4
Q̇− c1 ln ζ =

ζ2

4
Q̇−

(
Q̇

2
−Q′′

)
ln ζ

Finally,

θsol,ss(η) = −η
2

4
Q̇+

(
Q̇

2
−Q′′

)
ln η +

ζ2

4
Q̇−

(
Q̇

2
−Q′′

)
ln ζ

or

θsol,ss(η) =
Q̇

4

(
ζ2(τ)− η2

)
+

(
Q̇

2
−Q′′

)
ln
η

ζ
(2.22)

Therefore, temperature in the solid phase is:

θsol(η, τ) =
∞∑
n=1

Bnf̃n(λ̃nη) e−λ̃
2τ +θsol,ss(η) (2.23)

where

Bn =

∫ 1

ζ(τ)
(Φsol(η)− θsol,ss(η))f̃n(λ̃nη)η dη∫ 1

ζ(τ)
[f̃n(λ̃nη)]2η dη

f̃n(λ̃nη) = J0(λ̃nη)− J1(λ̃n)

Y1(λ̃n)
Y0(λ̃nη)

θsol,ss(η) is given in (2.22).

Since eigenvalues λ̃n, n = 1, 2, . . . are roots of the nonlinear equation (2.19), it is useful

to recall asymptotic properties of Bessel functions. We will use them to find approximate

locations of the roots. This information is employed in Chapter 3 to compute eigenvalues

numerically.

2.7 Asymptotic Properties of Bessel Functions

Bessel functions have been studied extensively [26, 33, 34]. Asymptotic formulae for small

and large arguments are helpful in understanding the behavior of the special functions in

these two regimes. The asymptotic results for small arguments demonstrate that Bessel func-

tions of the first kind are bounded whereas the functions of the second kind are unbounded
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as the argument approaches zero.

Asymptotic formulae of Bessel functions of the first and second kinds, respectively, for

small z are

Jn(z) '


1, n = 0

1
2nn!

zn, n > 0

Yn(z) '


2
π

ln z, n = 0

−2n(n−1)!
π

z−n, n > 0

In particular, these results show that J0 ' 1 and Y0 ' ln z as z → 0, which explains our

choice of constants c1 and c2 in finding transient solutions.

Asymptotic properties for large z are given by formulae

Jn(z) '
√

2

πz
cos
(
z − πn

2
− π

4

)
, z →∞ (2.24)

Yn(z) '
√

2

πz
sin
(
z − πn

2
− π

4

)
, z →∞ (2.25)

We can see that Bessel functions behave like periodic cosine and sine functions but with

the amplitude decaying inversely proportionally to
√
z. These results can be used to study

approximate location of the roots of Bessel functions. They can be employed either as initial

guesses in root finding methods or to determine an interval on which each root is. Indeed,

when eigenvalues λ̃n are large, the arguments of Bessel functions in equation (2.19) or in

equation

Y1(λ̃n)J0(ζλ̃n)− Y0(ζλ̃n)J1(λ̃n) = 0 (2.26)

are large. Using results (2.24) and (2.25), we can write

J0(z) '
√

2

πz
cos
(
z − π

4

)
, Y0(z) '

√
2

πz
sin
(
z − π

4

)
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J1(z) '
√

2

πz
cos
(
z − π

2
− π

4

)
=

√
2

πz
sin
(
z − π

4

)
Y1(z) '

√
2

πz
sin
(
z − π

2
− π

4

)
= −

√
2

πz
cos
(
z − π

4

)
So, at z = λ̃ζ or z = λ̃ we have

J0(λ̃ζ) '

√
2

πλ̃ζ
cos
(
λ̃ζ − π

4

)
, Y0(λ̃ζ) '

√
2

πλ̃ζ
sin
(
λ̃ζ − π

4

)

J1(λ̃) '
√

2

πλ̃
sin
(
λ̃− π

4

)
, Y1(λ̃) ' −

√
2

πλ̃
cos
(
λ̃− π

4

)
Substituting these asymptotic results in equation (2.26), we obtain

−

√
2

πλ̃ζ
cos
(
λ̃ζ − π

4

)√ 2

πλ̃
cos
(
λ̃− π

4

)
−
√

2

πλ̃
sin
(
λ̃− π

4

)√ 2

πλ̃ζ
sin
(
λ̃ζ − π

4

)
= 0

or

− 2

πλ̃
√
ζ

[
cos
(

(λ̃ζ − π

4

)
cos
(
λ̃− π

4

)
+ sin

(
λ̃− π

4

)
sin
(
λ̃ζ − π

4

)]
= 0

But − 2
πλ̃
√
ζ
6= 0, then using trigonometric formula cos(a − b) = cos a cos b + sin a sin b with

a = λ̃ζ − π
4

and b = λ̃− π
4
, we can write

cos
(
λ̃ζ − π

4
−
(
λ̃− π

4

))
= 0

or

cos(λ̃(1− ζ)) = 0

whose roots are

λ̃asn (1− ζ) =
π

2
+ π(n− 1), n = 1, 2, . . .

or

λ̃asn =
−π

2
+ πn

1− ζ
, n = 1, 2, . . . (2.27)
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Here λ̃asn are roots of an asymptotic approximation the left hand side of (2.26) for large

arguments. Result (2.27) shows that the eigenvalues λ̃n in the solid phase are approximately

λ̃n ≈ λ̃asn =
−π

2
+ πn

1− ζ
, n = 1, 2, . . . (2.28)

In particular, the distance between successive roots is

λ̃n+1 − λ̃n ≈
−π

2
+ π(n+ 1)

1− ζ
−
−π

2
+ πn

1− ζ
=

π

1− ζ
(2.29)

This information can be used to specify the intervals on which roots are located when the

roots are computed numerically.

2.8 Interface Equation

The interface equation between the two phases is given by

∂θliq(η, τ)

∂η

∣∣∣
η=ζ(τ)

+
dζ(τ)

dτ
=
∂θsol(η, τ)

∂η

∣∣∣
η=ζ(τ)

We need to differentiate solutions for the temperature in both phases with respect to η and

evaluate the derivatives at the interface η = ζ(τ). Note that

d

dz
J0(z) = −J1(z) and

d

dz
Y0(z) = −Y1(z)λ̃

Then

∂θliq(η, τ)

∂η
=
∞∑
n=1

An e−λ
2
nτ (−λn)J1(λnη)− Q̇

2
η

∂θsol(η, τ)

∂η
=
∞∑
n=1

Bnλ̃nf̄n(λ̃nη) e−λ̃
2
nτ −Q̇

2
η +

(
Q̇

2
−Q′′

)
1

η
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where we introduce notation f̄n

df̃n(λ̃nη)

dη
= λ̃nf̄n(λ̃nη)

and

f̄n(λ̃nη) = −J1(λ̃nη) +
J1(λ̃n)

Y1(λ̃n)
Y1(λ̃nη) (2.30)

Then evaluating derivatives at the interface we get

dζ(τ)

dτ
=
∞∑
n=1

AnλnJ1(λnζ) e−λ
2
nτ +

∞∑
n=1

Bnλ̃nf̄n(λ̃nζ) e−λ̃
2
nτ +

(
Q̇

2
−Q′′

)
1

ζ
(2.31)

where

An =

∫ ζ(τ)
0

[Φliq(η)− θliq,ss(η)]J0(λnτ)η dη∫ ζ(τ)
0

J2
0 (λnη)η dη

Bn =

∫ 1

ζ(τ)
(Φsol(η)− θsol,ss(η))f̄n(λ̃nη)η dη∫ 1

ζ(τ)
[f̃n(λ̃nη)]2η dη

λn =
z0n
ζ(τ)

, f̄n(λ̃nη) = −J1(λ̃nη) +
J1(λ̃n)

Y1(λ̃n)
Y1(λ̃nη)

f̃n(λ̃nη) = J0(λ̃nη)− J1(λ̃n)

Y1(λ̃n)
Y0(λ̃nη), n = 1, 2, . . .

and λ̃n are the roots of

Y1(λ̃)J0(ζλ̃)− Y0(ζλ̃)J1(λ̃) = 0 (2.32)

2.9 Quasi-Static Solutions

These are solutions that are time independent inside each phase. Dependence on time comes

from the interface equation. Expressions for temperature in each phase can be obtained by

letting τ →∞ in (2.15) and (2.23). This eliminate infinite series terms and we obtain that
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temperature coincides with steady state solutions we found earlier, namely,

θliq(η) = θliq,ss(η) =
Q̇

4
(ζ2(τ)− η2)

θsol(η) = θsol,ss(η) =
Q̇

4

(
ζ2(τ)− η2

)
+

(
Q̇

2
−Q′′

)
ln
η

ζ

The quasi-static equivalent of the interface equation (2.31) is

dζ(τ)

dτ
=

(
Q̇

2
−Q′′

)
1

ζ
(2.33)

We can see from equation (2.33) that
dζ(τ)

dτ
> 0 when

Q̇

2
> Q′′. In this case, ζ will increase

with time and the interface will move to the right and we will have melting process. Similarly,

when
Q̇

2
< Q′′, we have

dζ(τ)

dτ
< 0 and ζ will decrease resulting in front moving to the left.

In this case, we would have solidification process.

Integrating equation (2.33) and using the initial condition ζ(0) = ζ0, we find

dζ(τ)

dτ
=

(
Q̇

2
−Q′′

)
1

ζ

ζdζ =

(
Q̇

2
−Q′′

)
dτ

ζ2

2
=

(
Q̇

2
−Q′′

)
τ + c̃

ζ2 = (Q̇− 2Q′′)τ + c

ζ(τ) = ζ(0) ⇒ c = ζ20

ζ2(τ) = (Q̇− 2Q′′)τ + ζ20
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or

ζ(τ) =

√(
Q̇− 2Q′′

)
τ + ζ20 (2.34)

This result shows that the interface in the quasi-static regime behaves like
√
τ . It is also

in agreement with results in [21] where quasi-static problem was studied by Crepeau and

Siahpush.
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CHAPTER 3

Numerical Solutions

In this chapter we solve the initial value problem for the interface equation (2.31) derived

in the previous chapter. We consider two regimes: melting and solidification. To analyze

them, we need initial conditions for both regimes. Let us suppose that the material is all in

a single phase, solid or liquid, and the surfaces are at some constant temperature. Then, we

turn on the internal heat generation and the temperature in the material begins to increase,

until it just begins to melt. Under those conditions, the temperature profile within the

material would be parabolic. Similar argument is used for the liquid phase. The internal

heat generation causes a parabolic profile to occur within the material. As the material

continues to heat up, it would begin to melt along the centerline, the location of the highest

temperature. Therefore, we use the following initial conditions.

Initial conditions for melting are:

at τ = 0 ζ(τ) = 0, Φliq(η) = 0, Φsol(η) = −η2 (3.1)

At τ = 0 the whole system is fully solid – see Fig. 3.1. The dashed line Φ(η) = 0 repre-

sents dimensionless melting temperature. As τ increases, the solid starts melting and the

temperature increases and exceeds the melting threshold Φ(η) = 0.



33

Figure 3.1: Initial condition for melting Φsol(η)

Initial conditions for solidification:

at τ = 0 ζ(τ) = 1, Φliq(η) =
Q̇

4
(1− η2), Φsol(η) = 0 (3.2)

Figure 3.2: Initial condition for solidification Φliq(η)

Here at τ = 0 the whole system is fully liquid as shown in Fig. 3.2. As τ increases, the

liquid starts solidifying and temperature moves below the melting threshold Φ(η) = 0.

The initial value problem for the interface equation (2.31) subject to the initial conditions
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(3.1) or (3.2) is solved with MATLAB software numerically using the solver ode23s. In order

to evaluate the right hand side of equation (2.31) we need to compute first the eigenvalues

in both liquid and solid phases. The eigenvalues λn in the liquid phase are related to the

roots z0n of the Bessel function J0(z) as was shown in the previous chapter. The roots z0n

are computed numerically. Eigenvalues λ̃n in the solid phase are found by solving equation

(2.32) using a root finding method. In order to identify intervals where roots λ̃n are located,

we use asymptotic roots (2.28) computed in the previous chapter. As was shown in (2.28)

and (2.29), approximate roots and distance between them are

λ̃n ≈ λ̃asn =
−π

2
+ πn

1− ζ

and

λ̃n+1 − λ̃n ≈
π

1− ζ

respectively. For each eigenvalue, its interval is taken to be

[
λ̃asn −

1

4

π

1− ζ
, λ̃asn +

1

4

π

1− ζ

]

i.e. it is centered around the asymptotic value of the root and has 1/4 distance between

roots to each side of the center. Then the Fourier-Bessel coefficients An and Bn, n = 1, 2, . . .

are computed by numerical integration, the right hand side of the interface equation (2.31) is

evaluated and used to advance the interface position ζ(τ). Once eigenvalues λn and λ̃n, the

Fourier-Bessel coefficients An and Bn, interface position ζ are known, temperature profiles

in both phases can be evaluated and analyzed. Since infinite series involve exponentially

decaying τ terms and eigenvalues form increasing sequences, these series can be truncated,

especially at later times and for higher indices n of eigenvalues. We typically use 10-20 terms

in our simulations.

In Figs 3.3 and Fig. 3.4 we show plots of Bessel functions J0, Y0 and J1, Y1, respectively,
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to demonstrate that they all oscillate, slowly decay and have infinitely many zeros.

Figure 3.3: Graphs of Bessel functions J0(z) and Y0(z)

Figure 3.4: Graphs of Bessel functions J1(z) and Y1(z)

In Fig. 3.5 we demonstrate our rootfinding approach by plotting the left hand side of

equation (2.32), i.e. function F (λ) = Y1(λ)J0(ζλ)− Y0(ζλ)J1(λ) as a function of λ for fixed

ζ = 0.5 together with asymptotic roots λ̃asn (green circles) of this function and actual roots λ̃n

(red stars). We can see that the asymptotic approximation of the eigenvalues λ̃n is very good

even for low indices n. When the interface ζ is very close to the centerline, the difference

between λ̃asn and λ̃n should be taken care of more carefully. To compute the first root, the
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location of the interval on which root is needs to be slightly adjusted to include the root and

have the interval on the positive λ-axis completely.

Figure 3.5: Graph of the left hand side F (z) in (2.32) together with asymptotic approximations
λ̃asn of eigenvalues λ̃n and actual eigenvalues λ̃n with ζ = 0.5

It follows from the expression of the slope (2.33) of the interface in the quasi-static case,

i.e.

dζ(τ)

dτ
=

(
Q̇

2
−Q′′

)
1

ζ

for melting to occur we would need

Q′′ <
Q̇

2

so that the slope is positive and the interface would be moving to the right. Similarly, during

the solidification we would require

Q′′ >
Q̇

2

and the slope of the interface would be negative and the interface itself would be moving to

the left.

In our simulations, we fix the internal heat generation at Q̇ = 5 and vary Q′′. For each

process, melting or solidification, we consider cases when Q′′ and
Q̇

2
are close to each other

or further apart. In the former case we expect that the interface would move slowly, whereas
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in the latter case, the interface would reach either the outer boundary or the centerline

relatively quickly.

3.1 Solidification

As the results for the quasi-static case suggest, in order to have solidification process, we

need Q′′ >
Q̇

2
. This implies that the heat flux is strong enough to take heat generated

internally out of the system at the boundary.

We consider solidification with Q̇ = 5 and Q′′ = 2.6, 3 and 4. Fig. 3.6 shows the evolution

of the interface (red curves) for these cases. For comparison, we plot the evolution of the

interface in quasi-static case (black dashed curves). As expected from (2.34), the interface

in the quasi-static case has a parabolic shape as a function of τ . As we can see, for early

times the full and the quasi-static solutions follow the same shape and are very close to each

other, since the heat flux Q′′ is close to
Q̇

2
. For Q′′ = 2.6, the difference between full interface

solution and quasi-static version is very small but as Q′′ increases, the difference between

them becomes evident as time τ increases. Fig. 3.7 considers bigger values of the heat flux:

Q′′ = 4 and 7.5. It is clear that full and quasi-static interfaces agree only for very early times

and deviate quite a bit for later times. Further the value of Q′′ from
Q̇

2
is, sooner curves

start deviating from each other. We also see that the interface in the full problem moves a

bit faster than the quasi-static equivalent, especially for higher values of Q′′.
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Figure 3.6: Evolution of the interface during solidification with Q̇ = 5 and Q′′ = 2.6, 3 and 4

Figure 3.7: Evolution of the interface during solidification with Q̇ = 5 and Q′′ = 4, and 7.5

In Fig. 3.8 we plot the evolution of the temperature during solidification withQ′′ = 2.6. As we

can see, the temperature profile in both phases remains concave down almost until the time

the interface reaches the centerline. At later times, the temperature in the solid phase changes

concavity and is concave up in the region adjacent to the interface. In Figs 3.9-3.11, the values

of the heat flux are bigger: Q′′ = 3, 4 and 7.5, respectively. As Q′′ increases, concavity in the

temperature in the solid phase changes at earlier times and when the interface is further from

the centerline. The curvature in the concave up region also increases with Q′′. Variation of
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the temperature in the liquid phase does not depend on the value of the heat flux Q′′ since

we start our simulations from the same initial condition. At the same time, variation of the

temperature in the solid region increases approximately by 3 times as Q′′ increases from 2.6

to 7.5. Indeed, with Q′′ = 2.6, temperature varies from 0 at τ = 0 to -1.5 and with Q′′ = 7.5

temperature goes down to about -4.2.

Figure 3.8: Evolution of temperature during solidification with Q′′=2.6 and Q̇ = 5

Figure 3.9: Evolution of temperature during solidification with Q′′=3 and Q̇ = 5
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Figure 3.10: Evolution of temperature during solidification with Q′′=4 and Q̇ = 5

Figure 3.11: Evolution of temperature during solidification with Q′′=7.5 and Q̇ = 5

3.2 Melting

For the melting process, we need Q′′ <
Q̇

2
. In this case, the heat flux at the outer boundary

is not strong enough to compensate for the heat generated inside the cylinder, so the heat

would continue to accumulate and enhance melting.

We set Q̇ = 5 as before and then study cases with the value of the heat flux Q′′ close
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to
Q̇

2
and then also farther away. The evolution of the interface ζ as a function of τ for

cases when Q′′ = 1.5, 2 and 2.4 is shown in Fig. 3.12. As can be seen from this figure,

when Q′′ is close to
Q̇

2
, like in the case with Q′′ = 2.4, the full and quasi-static solutions

follow almost the same parabolic shape and are close to each other. As Q′′ gets farther away

from
Q̇

2
and decreases, the difference between the full and quasi-static curves increases but

the overall shape remains about the same. Moreover, since in this case the heat flux at the

boundary is weaker than the internal heat generation, the material’s temperature increases

quickly causing the melting to go faster. As a result, the interface between liquid and solid

phases reaches the outer boundary of the cylinder quickly. Compared with Q′′ = 2.4, when

the interface is reached in about 5 times units, the same happens with Q′′ = 2.0 or 1.5 in

about one unit of time or about 5 times faster. In all three cases, the full melting process is

a bit faster than the quasi-static one.

In Fig. 3.13, we show the evolution of the interface for Q′′ = 0.5 and 1.5. These values

are farther away from the equilibrium value
Q̇

2
. The melting process is very fast and it takes

about 0.4 and 0.7 units of time, respectively, to have the entire cylinder completely liquid.

The full melting process is significantly faster than the quasi-static one. It is about twice

faster for Q′′ = 0.5.

Figure 3.12: Evolution of the interface during melting with Q̇ = 5 and Q′′ = 1.5, 2 and 2.4
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Figure 3.13: Evolution of the interface during melting with Q̇ = 5 and Q′′ = 0.5 and 1.5

Next we show the evolution of temperature for the same values of the heat flux at the

boundary. In Fig. 3.14, Q′′ = 2.4 and it is close to
Q̇

2
. We can see that as time τ increases, the

overall temperature profile including both liquid and solid phases remains close to parabolic

with a small change in the slope at the interface.

Figure 3.14: Evolution of temperature during melting with Q′′ = 2.4 and Q̇ = 5

Next we decrease the heat flux to Q′′ = 2. In this case, the internal heat generation allows

melting to go faster. As we can see from Fig. 3.15, the temperature slopes at the interface
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become more distinct. Moreover, we notice that the temperature in the solid phase at early

times exceeds the melting threshold, which violates our modeling assumptions of having a

phase change front at one point. This effect is called superheating in the solid phase. It was

observed and studied in [35, 36]. This morphological change of the front suggests a formation

of a “mushy” zone between phases and more general model should be employed. Welland

[37] suggests using, for example, the phase field approach to capture the physics better. It

should be noted that this unphysical superheating effect disappears at later times and the

interface again exists only at one point later on. We can note that the superheated zone is

relatively narrow and shrinks to a point by the time the interface reachers the middle of the

path from the centerline to the outer boundary of the cylinder.

Figure 3.15: Evolution of temperature during melting with Q′′ = 2 and Q̇ = 5

We decrease the heat flux further to Q′′ = 1.5. As can be seen from Fig. 3.16, the

“mushy” appears as well. It is wider in this case and shrinks to a point when the interface

is further from the centerline than with Q′′ = 2.
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Figure 3.16: Evolution of temperature during melting with Q′′ = 1.5 and Q̇ = 5

Figure 3.17: Evolution of temperature during melting with Q′′=1.5 and Q̇ = 5

Finally we consider the case with Q′′ = 0.5. As results in Fig. 3.18 suggest, the “mushy”

is very wide here and converges to a point interface when the liquid phase front is very close

to the outer boundary. This suggests that our model can be successfully used to predict the

evolution of the interface and temperature during melting when the internal heat generation

divided by 2 and the imposed heat flux on the boundary are not very far apart. For higher

contrast between Q′′ and
Q̇

2
, more general models that include a possibility of a “mushy”

zone should be employed.
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Figure 3.18: Evolution of temperature during melting with Q′′=0.5 and Q̇ = 5
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CHAPTER 4

Summary and Conclusions

In this thesis, the problem of solid liquid phase change in a cylinder with internal heat gener-

ation and prescribed heat flux at the outer boundary is solved analytically and numerically.

Since we do not have a constant temperature at the outer boundary but prescribe the con-

stant heat flux instead, the Stefan number is not introduced into the problem. Instead we

introduce dimensionless heat flux coefficient at the boundary.

A first-order ordinary differential equation modeling the evolution of the interface be-

tween solid and liquid is derived. Because of the internal heat generation, the problem is

nonhomogeneous and so the approach used involves the method of superposition to split the

nonhomogenous problem into transient (homogenous) and steady-state (nonhomogenous).

The transient problems in both phases are solved by the standard method of separation of

variables and solving eigenvalue problems, while the steady state problems are solved by

direct integration. The temperature in both phases is then found in terms of infinite series

with Fourier-Bessel coefficients and exponentially decaying in time terms. The resulting

initial value problem for the interface is solved numerically. Since the eigenvalues in both

phases increases with index and temperature decay exponentially in time, just a few terms

can be used to compute the solution. The obtained solutions are compared to quasi-static

counterparts, which are steady-state solutions in each phase.

We consider two processes: solidification and melting. From the quasi-static case, we find

that solidification or melting will occur if the heat flux at the boundary is less or greater than

the half of the internal heat generation, respectively. This gives either strong enough heat

flux at the boundary to overcome the internal heat generation and support solidification or

weak heat flux to allow temperature inside the cylinder to increase due to the internal heat

generation and promote melting.

We find that when the heat flux at the boundary is approximately the same as a half of the

internal heat generation, we are close to the quasi-static regime and the interfaces for the full
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and quasi-static problems are close to each other and both have parabolic shape. The overall

temperature in both liquid and solid phases has almost the same slopes at the interface. As

the difference between the heat flux and the half of the internal heat generation increases,

the front between liquid and solid phases moves faster and the interface of the full problem

significantly differ from the quasi-static counterpart. The interface of the full problem also

moves faster than one of the quasi-static equivalent. Temperatures in liquid and solid phases

have significantly different slopes at the interface. In case of melting with large difference

between the heat flux and the half of the internal heat generation, the solutions for the

temperature indicate a morphological change at the interface as it stops being at a single

point. Instead we observe overheating in the solid phase with the temperature going above

the melting point. This suggests formation of a “mushy” zone and perhaps more general

model that takes into account a “mushy” zone should be employed.

Using these observations, we can conclude that given the internal generating heat, the

heat flux at the boundary can be used to control the motion and speed of the interface

between phases.
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