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Abstract

Frames have become an important tool in signal processing and other applications.

Equiangular tight frames (ETFs) are particularly important kinds of frames due to their

many desirable properties for signal reconstruction. ETFs are also important for their

deep connections to combinatorics and graph theory, and they have found applications

in fields such as communications, coding theory and quantum information theory.

Unfortunately, ETFs are hard to construct and it is not possible to construct ETFs of

certain sizes in a given finite dimensional vector space.

This dissertation presents new characterizations of equiangular tight frames to aid

in their construction. A characterization of equiangular tight frames of d + 1 vectors

in a d-dimensional space is presented that gives a faster method of constructing these

ETFs. A separate characterization of ETFs of d + 1 vectors in a d-dimensional Hilbert

space is given in terms of a maximization problem on a set of (d + 1) × (d + 1) matrices,

and a related result is also proven for ETFs of 2d vectors in a d-dimensional space.

Different methods for approximating equiangular tight frames are also explored.

This is done with the goal of constructing objects that mimic the properties of ETFs

when ETFs cannot exist or are known not to exist. The first method looks at frames

whose Gram matrices are similar to those of an ETF and this leads to the definition of

a k-angle tight frame. Several constructions of k-angle tight frames are given for real

and complex Euclidean spaces and connections are uncovered between k-angle tight

frames and combinatorial objects such as regular graphs and association schemes. The

second method uses random matrices to take a given equiangular frame and improve

its tightness. Probabilistic estimates are proved to measure how well the random

frame obtained by this method approximates the given equiangular frame. Finally,

we investigate a strategy involving combinatorial designs for adding vectors to an

equiangular tight frame of d + 1 vectors in Rd to obtain a larger tight frame whose

worst-case coherence is nearly optimal.
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chapter 1

Introduction

Frames were introduced by Duffin and Schaeffer [14] as an example of “nonharmonic

of Fourier series” in L2(−γ, γ) for 0 < γ < π. Although introduced in the early 1950s,

frames did not appear to become a popular research topic until the groundbreaking

paper of Daubechies et al. [12] in 1986. Since then, frames have attracted substantial

interest in both theoretical and applied mathematics.

Whereas the typical Fourier series involves unique decomposition of vectors using

orthonormal bases in a Hilbert space, frames relax this condition. The decomposition

of a vector using a frame can therefore bemade redundant, which is desirable in certain

applications such as signal processing where data losses pose a serious problem [18,

27]. Frames have also proven effective in reducing effects such as signal noise and

quantization [17].

A particularly important kind of frame is the equiangular tight frame (ETF). ETFs are

unit-normed sets of vectors {fi}N
i�1 in real or complex Euclidean space that minimize

the worst-case coherence

max
1≤i< j≤N

���
〈
fi , f j

〉���.

It was shown by Welch [32] that the worst-case coherence of N unit-vectors in d-

dimensional Euclidean space is always bounded below by
√

N−d
d(N−1) . Equiangular tight

frames are precisely the sets of unit-normed vectors whose worst-case coherence meets

this bound and this gives such frames many desirable properties. ETFs have found

applications in fields such as communications, quantum information processing and

coding theory [19, 24, 25, 27]. ETFs have also been shown to be robust against erasures

in certain signal transmission schemes [18]. Unfortunately, ETFs are currently quite

difficult to construct. Although certain necessary conditions on the parameters d and

N are known for the existence of equiangular tight frames [28], necessary and sufficient

conditions on these parameters remain unknown.

Many current methods of constructing ETFs rely on combinatorial objects with high

symmetry [16, 27, 31, 33]. Algorithmic approaches have also been considered [30].
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Since the construction and characterization of equiangular tight frames has proven to

be difficult, the goal of this dissertation is to present new characterizations of certain

ETFs and to develop frames that profitably approximate ETFs.

1.1 preliminaries and notation

This section and the next will state fundamental notions and results in frame theory.

An excellent resource for many of these results is given by [8].

N, Z, R and C will denote the sets of natural numbers, integers, real numbers and

complex numbers. Similarly, for d ∈ N we will let Rd and Cd denote d-dimensional

real Euclidean space and d-dimensional complex Euclidean space. H will denote a

general Hilbert space.

Bold-faced letters such as f will denote vectors in a Hilbert space, and 〈·, ·〉 will

denote the inner product associated with a Hilbert space. Vectors in Rd or Cd will

usually be denoted by f � [ fi ]1≤i≤d or as a column vector by

f �



f1

f2
...

fd



.

fT will denote the transpose of a vector and f∗ will denote the conjugate transpose. The

inner product of two vectors f and g in Rd (respectively, Cd) will be given by
〈
f, g

〉
� gTf

(respectively,
〈
f, g

〉
� g∗f). Unless otherwise stated, ‖f‖ will denote the usual Euclidean

norm
√
〈f, f〉.

If M is a matrix, then we will often denote the (i, j)th entry of M by either mi j or

[M]i j . If M is a square matrix, the determinant of M will be denoted by det M and

the trace of M will be denoted by tr M. The minimum eigenvalue of a matrix M will

be denoted by λmin(M), and similarly the maximum eigenvalue will be denoted by

λmax(M). The set of eigenvalues of M will be denoted by λ(M). Unless otherwise

specified, I will denote the identity matrix. Whenever the size of the identity matrix

needs to be specified, In will denote the n × n identity matrix. Similarly, J will denote
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a square matrix of 1s, and if the size needs to be specified then Jn will denote the n × n

matrix of 1s.

Definition 1.1.1. Let H denote a Hilbert space and let I be a countable index set. A

collection of vectors {fi}i∈I ⊂ H is called a frame forH if there exist positive constants

A and B satisfying

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|
2
≤ B‖f‖2 for all f ∈ H . (1.1.1)

The constants A and B are called the frame bounds.

Remark 1.1.2. Note that the frame bounds are not unique in general. For example, if

A and B are frame bounds for a given frame {fi}i∈I , then so are A
2 and 2B. However, if

one takes A as large as possible and B as small as possible so that Inequality (1.1.1) still

holds, then they are called the optimal frame bounds.

The “frame condition” given by Inequality (1.1.1) can be thought of as a relaxation

of the usual Parseval identity that typical Fourier series satisfy. Frames for which A � B

in Inequality (1.1.1) are particularly important and are discussed further in Section 1.2.

Two important operators associated with frames are the analysis and synthesis

operators.

Definition 1.1.3. Let I be an index set, H be a Hilbert space and let {fi}i∈I ⊂ H be a

frame forH .

i. The analysis operator of {fi}i∈I is the operator T : H → `2(N) defined by

Tf � {〈f, fi〉}i∈I .

ii. The synthesis operator of {fi}i∈I is the adjoint T∗ : `2(N) → H of the analysis

operator and is explicitly given by

T∗{ci}i∈I �
∑
i∈I

cifi .

iii. The frame operator of {fi}i∈I is the operator S : H →H given by S � T∗T.
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The frame condition given in Definition 1.1.1 ensures that these operators are well-

defined when the underlying set of vectors {fi}i∈I is a frame. They also imply that

the frame operator S is invertible, which allows for reconstruction of vectors from the

frame coefficients.

Theorem 1.1.4 (Theorem 1.1.5, [8]). Let {fi}i∈I be a frame for a Hilbert space H with

associated frame operator S. Then

f �
∑
i∈I

〈f, fi〉S−1fi

for all f ∈ H .

1.2 finite frames

Definition 1.1.1 serves to define frames in any arbitrary Hilbert space. However, such

generality is rarely needed when dealing with finite frames in Rd or Cd , where d ∈ N.

Such frames may instead be classified entirely as finite spanning sets for these spaces,

and problems in finite frame theory can be dealt with using the tools of linear algebra.

We will often call a frame of N vectors in either Rd or Cd an (N , d)-frame.

Let d, N ∈ N with d ≤ N and let {fi}N
i�1 denote a frame in Rd (respectively, Cd).

Then the synthesis operator of Definition 1.1.3 is the d ×N matrix F given by

F �

[
f1 f2 . . . fN

]
,

the analysis operator is the N × d matrix FT (respectively, F∗), and the frame operator

is the d × d matrix S � FFT (respectively, FF∗).

Another important matrix related to a finite frame is the frame’s Gram matrix:
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Definition 1.2.1. Let {fi}N
i�1 be a frame for Rd or Cd . Then the Gram matrix of {fi}N

i�1

is the N ×N matrix G given by

G �



〈f1, f1〉 〈f1, f2〉 . . . 〈f1, fN〉

〈f2, f1〉 〈f2, f2〉 . . . 〈f2, fN〉
... ... . . . ...

〈fN , f1〉 〈fN , f2〉 . . . 〈fN , fN〉



.

If F is the synthesis operator of the frame, then G � FT F in the real case and G � F∗F in

the complex case.

The Grammatrix is both Hermitian and positive semidefinite and so its eigenvalues

are nonnegative. The Gram matrix of a frame is important because it encodes relevant

properties of the frame as the following theorem shows. Although Theorem 1.2.2 only

mentions the real case, it also holds for the complex case as well (replacing “symmetric”

with “Hermitian” and every instance of transpose with conjugate transpose).

Theorem 1.2.2 (Theorem 1.2.1, [8]). Let d, N ∈ N and let {fi}N
i�1 be a frame in Rd . Suppose

that {fi}N
i�1 has optimal frame bounds A and B and let G denote the Grammatrix corresponding

to {fi}N
i�1. Then A is the smallest nonzero eigenvalue of G and B is the largest eigenvalue of G.

Conversely, suppose that G is a symmetric N × N , positive semidefinite matrix of rank d

and consisting of real-valued entries. Then G is the Gram matrix for a frame {fi}N
i�1 in Rd with

optimal frame bounds given by the smallest and largest nonzero eigenvalues of G.

Proof. Let F denote the synthesis operator of {fi}N
i�1 and note that G � F∗F. Then the

nonzero eigenvalues of G must be equal to the eigenvalues of FF∗ � S.

Let f ∈ Rd with ‖f‖ � 1. Then the frame condition given by Inequality (1.1.1) may

be restated as

A � A‖f‖2 ≤ fTSf ≤ B‖f‖2 � B

or simply A ≤ fTSf ≤ B. Therefore

A � min
‖ f ‖�1

fTSf

� λmin(S).
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Similarly, λmax(S) � B, which proves the first claim.

Now suppose that G is a real symmetric N ×N matrix that is positive semidefinite

and has rank d. Then G may be diagonalized to obtain G � UDUT , where U is an

orthogonal matrix and D is a diagonal matrix of eigenvalues of G. Without loss of

generality, suppose that the diagonal entries of D are arranged from least to greatest.

Define
√

D by taking the square roots of the entries of D, and note that
√

D as

defined here is a real diagonal matrix since G is assumed to be positive semidefinite.

Then G � (U
√

D)(U
√

D)T , which implies that G is the Gram matrix for the rows of

U
√

D. Remove the first N − d columns of U
√

D, which contain only 0 entries because

the first N − d diagonal entries of
√

D are 0, and let Û denote this truncated version of

U
√

D.

Let S � ÛTÛ. Then for any f ∈ Rd , it follows that

A‖f‖2 ≤ fTSf ≤ B‖f‖2

where A is the smallest eigenvalue of S (and hence the smallest nonzero eigenvalue of

G) and B is the largest eigenvalue of S (and hence the largest eigenvalue of G). This

shows that the rows of Û satisfy the frame condition given by Inequality (1.1.1), and

therefore they form a frame for Rd with Gram matrix G. �

Of particular importance are the unit-norm tight frames (UNTFs).

Definition 1.2.3. Let d, N ∈ N. A collection of vectors {fi}N
i�1 in Rd or Cd is said to be

a unit-normed tight frame if it satisfies the following properties:

i. ‖fi ‖ � 1 for 1 ≤ i ≤ N .

ii. we may take A � B in Inequality (1.1.1).

The concept of a UNTF may be viewed as a generalization of that of the orthonormal

basis, since UNTFs satisfy a “Parseval-like” equality.
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Theorem 1.2.4 (Proposition 1.1.4, [8]). Let d, N ∈ N and let {fi}N
i�1 denote a unit-normed

tight frame in Rd or Cd . Let f be an arbitrary vector. Then

N∑
i�1
〈f, fi〉fi �

N
d

f. (1.2.1)

Proof. Since {fi}N
i�1 is a UNTF, Inequality (1.1.1) applied to f implies that

A‖f‖2 �

N∑
i�1
|〈f, fi〉|

2

for some A > 0 independent of f.

Let S denote the frame operator corresponding to {fi}N
i�1. Then by the proof of

Theorem 1.2.2

λmin(S) � A � λmax(S)

and so S � AI, where I is the d × d identity matrix. Therefore

N∑
i�1
〈f, fi〉fi � Sf

� Af.

It remains to prove that A �
N
d . To do this, let {ei}d

i�1 be an orthonormal basis of Rd

or Cd and note that

A‖ei ‖
2
�

N∑
j�1

���
〈
ei , f j

〉���
2

for 1 ≤ i ≤ d by Inequality (1.1.1). Then

Ad � A
d∑

i�1
‖ei ‖

2

�

d∑
i�1

A‖ei ‖
2

�

d∑
i�1

N∑
j�1

���
〈
ei , f j

〉���
2
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�

N∑
j�1

d∑
i�1

���
〈
ei , f j

〉���
2

�

N∑
j�1
‖f j ‖

2

� N

where the second to last equality is just Parseval’s identity. Hence A �
N
d . �

Remark 1.2.5. Let {fi}N
i�1 be a unit-normed frame for Rd or Cd with Gram matrix G.

Then Theorems 1.2.2 and 1.2.4 together imply that the frame is a UNTF if and only if G

has distinct eigenvalues 0 and N
d . In particular, we must have

λ(G) �
{

0, . . . , 0,︸   ︷︷   ︸
N−d times

N
d

, . . . , N
d︸      ︷︷      ︸

d times

}
.

The number N
d is itself a useful characteristic of a frame {fi}N

i�1 in Rd or Cd .

Definition 1.2.6 ([17]). Let {fi}N
i�1 be a frame in Rd or Cd . The redundancy of the frame

is defined to be N
d .

High redundancy is useful in several applications [17]. The determination of a useful

measure of redundancy for infinite frames is also an ongoing area of research [2].

Benedetto and Fickus proved an elegant and useful characterization of unit-normed

tight frames using the frame potential [4].

Definition 1.2.7. Let d, N ∈ N with d ≤ N and let {fi}N
i�1 be a unit-normed frame in

Rd or Cd . The frame potential of {fi}N
i�1 is the quantity FP({fi}N

i�1) given by

FP({fi}N
i�1) �

N∑
i�1

N∑
j�1

���
〈
fi , f j

〉���
2
.

The frame potential can be thought of as a measure of the “orthogonality” of a

collection of vectors, since it gets smaller as the inner products of distinct vectors get

closer to 0. Benedetto and Fickus showed that orthonormal bases and unit-normed

tight frames both arise as minimizers of the frame potential.
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Theorem1.2.8 (Theorem6.2, [4]). Let d, N ∈ Nwith d ≤ N and let {fi}N
i�1 be a unit-normed

frame in Rd or Cd . Then FP({fi}N
i�1) is bounded below by N2

d with equality if and only if the

frame is a unit-normed tight frame (an orthonormal basis in the case N � d).

1.3 equiangular tight frames

Unit-normed tight frames are important in applications due to the painless recon-

struction formulas that they provide and their resilience to erasures in certain signal

transmission schemes [17, 18]. It is also important to minimize the worst-case coherence

of a set of vectors.

Definition 1.3.1. Let {fi}i∈I denote a collection of unit vectors in a Hilbert space. The

worst-case coherence of {fi}i∈I is defined to be

max
i, j∈I
i, j

���
〈
fi , f j

〉���.

UNTFs with smaller worst-case coherence can have better performance in certain

reconstruction schemes [27]. It is therefore important to determinewhich sets of vectors

have best possible worst-case coherence. The following bound due to Welch [32] is the

smallest worst-case coherence possible for N unit vectors in a d-dimensional Hilbert

space. The proof is due to Sustik et al. [28]

Theorem 1.3.2 (Welch bound). Let d, N ∈ N with d ≤ N , and let {fi}N
i�1 be a collection of

unit vectors in Rd or Cd . Then

max
1≤i, j≤N

i, j

���
〈
fi , f j

〉��� ≥
√

N − d
d(N − 1)

.

Proof. First, note that

max
1≤i, j≤N

i, j

���
〈
fi , f j

〉��� �
√√

max
1≤i, j≤N

i, j

���
〈
fi , f j

〉���
2
.
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Since the maximum value of a finite set of numbers is always greater than the average

of the elements in that set, it follows that

max
1≤i, j≤N

i, j

���
〈
fi , f j

〉���
2
≥

1
N (N − 1)

N∑
i�1

∑
j,i

���
〈
fi , f j

〉���
2

�
1

N (N − 1)
*.
,

N∑
i�1

N∑
j�1

���
〈
fi , f j

〉���
2
−

N∑
i�1
‖fi ‖

2+/
-

�
1

N (N − 1)
*.
,

N∑
i�1

N∑
j�1

���
〈
fi , f j

〉���
2
−N+/

-

≥
1

N (N − 1)

(
N2

d
−N

)
by Theorem 1.2.8

�
N (N − d)

N (N − 1)d

�
N − d

d(N − 1)
,

and taking square roots proves the result. �

TheWelch bound leads us to the definition of an equiangular tight frame (ETF) [18, 27].

Definition 1.3.3. Let {fi}N
i�1 be a collection of unit vectors in Rd or Cd . We say that

{fi}N
i�1 is an equiangular tight frame if

max
1≤i, j≤N

i, j

���
〈
fi , f j

〉��� �
√

N − d
d(N − 1)

.

As their name suggests, equiangular tight frames are examples of UNTFs. One

way to prove this is to note that if equality holds in the proof of Theorem 1.3.2 then

FP({fi}N
i�1) � N2

d , which by Theorem 1.2.8 implies that the frame is a UNTF.

Example 1.3.4. The typical example of a unit-normed tight frame (as well as an equian-

gular tight frame) is theMercedes-Benz frame {fi}3
i�1 ⊂ R2 given below.
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x

y

−1 1

f1

f2 f3

120◦

Figure 1.1: The Mercedes-Benz frame.

The frame vectors are given by

f1 �



0

1


, f2 �



−

√
3

2

−
1
2


and f3 �



√
3

2

−
1
2


.

This frame is a tight frame since the frame potential is 32

2 , which is the smallest value

the frame potential can take for a unit-normed frame of three vectors in R2. It is also

easy to see why this frame is equiangular due to the spacing between the vectors, and

one can compute the worst-case coherence to obtain

max
1≤i, j≤3

i, j

���
〈
fi , f j

〉��� �
√

3− 2
2(3− 1)

�
1
2

.

Since theMercedes-Benz framemeets theWelch bound, it is an equiangular tight frame.

In addition to the synthesis operator, analysis operator, frame operator and Gram

matrix, ETFs have an additional matrix associated with them known as the signature

matrix [18, 28].
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Definition 1.3.5. Let {fi}N
i�1 be an equiangular tight frame in Rd or Cd with Gram

matrix G and corresponding Welch bound

α �

√
N − d

d(N − 1)
.

The matrix Q given by

Q �
1
α

(G − I)

is called the signature matrix of the ETF.

The signature matrix is a Hermitian matrix with zero diagonal and unimodular

entries elsewhere. Since the Gram matrix of a UNTF has precisely two distinct

eigenvalues, the same is true of the signature matrix [18]. In particular, if Q is the

signature matrix of an ETF of N vectors in Rd or Cd , then it has eigenvalues

λ1 � −
1
α

and λ2 �
N − d

dα
(1.3.1)

with respective multiplicities N − d and d, where α �

√
N−d

d(N−1) is the corresponding

Welch bound.

Remark 1.3.6. Just as the Gram matrix encodes important information about unit-

normed tight frames, signature matrices do the same for equiangular tight frames.

The signature matrix also ties ETFs to the theory of strongly regular graphs [27].

Furthermore, any N × N Hermitian matrix with zero diagonal, unimodular entries

off the diagonal, and eigenvalues given by Equation (1.3.1) must be the signature

matrix of an (N , d) ETF. Therefore the construction of matrices with these properties is

equivalent to the construction of equiangular tight frames.

1.4 outline

The main contributions of this dissertation are organized as follows. Chapter 2 gives

several characterization results for equiangular tight frames aswell as examples on how

these may be used to construct ETFs. First, a complete characterization is provided
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for the signature matrices of all real and complex (d + 1, d) ETFs which we use to

develop a fast algorithm for the construction of such equiangular tight frames. Next, a

characterization is proved for the signature matrices of (d + 1, d) ETFs as well as (2d, d)

ETFs in a manner reminiscent of the frame potential [4].

Chapter 3 is concerned with a generalization of equiangular tight frames that we

call k-angle tight frames. A k-angle tight frame is a unit-normed tight framewhose Gram

matrix has k distinct values (up to modulus) off the main diagonal. In this context an

ETF is a 1-angle tight frame. Several constructions of k-angle tight frames are given

and their connection with certain combinatorial objects (such as regular graphs) is

discussed, echoing similar results by Barg et al. [3] on certain 2-angle tight frames.

Chapter 4 examines another approach to approximating an equiangular tight frame

that involves constructing tight frames that have worst-case coherence near the Welch

bound. Two such constructions are presented.

The first construction proceeds as follows. Given an N ×N Grammatrix G for some

unit-normed (but not necessarily tight) real frame with good coherence properties, we

add a randomperturbation E to the original Grammatrix G. This gives us a newmatrix

G̃ that is the Gram matrix of a new frame, and probabilistic estimates are given for the

tightness and worst-case coherence of the resulting frame.

For the second construction, we begin with a real (d + 1, d) ETF in Rd . We then

discuss a method to add vectors to the frame to obtain a larger unit-normed tight frame

that contains the original ETF but whose worst-case coherence is nearly optimal in a

specific sense.
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chapter 2

Characterizations of ETFs 1

2.1 construction of (d + 1, d) equiangular tight frames

Goyal and Kovačević [17] have previously given an elegant characterization of (d + 1, d)

complex ETFs in terms of harmonic tight frames. Although this allows finding frame

expansions by using Fast Fourier Transform algorithms, computing the frame vectors

themselves requires a series of d trigonometric evaluations and d non-trivial scalar

multiplications. If a trigonometric evaluation is considered as a single operation, then

using harmonic tight frames to get a (d + 1, d) ETF requires O(d2) operations for each

vector. Theorem 2.1.1 below takes a different approach by characterizing the signature

matrices of real as well as complex (d + 1, d) ETFs, whereas results in [17] only give

complex ETFs. A benefit of this result is that it gives a method to compute the vectors

of a (d + 1, d) ETF such that each frame vector may be computed using only O(d)

operations (see Remark 2.1.6).

Theorem 2.1.1 below is a complete, constructive characterization of signature ma-

trices of (d + 1, d) ETFs. It follows from a result in [18] that being a (d + 1, d) ETF is

equivalent to the signature matrix Q satisfying

Q2
� (λ1 + λ2)Q − λ1λ2Id+1 (2.1.1)

where λ1 � −d and λ2 � 1 are the eigenvalues of Q in this case. This fact will be used

in the proof of Theorem 2.1.1. Even though the construction in Theorem 2.1.1 below is

done for complex ETFs, the exact same construction gives real (d + 1, d) ETFs as well.

Theorem 2.1.1. Let Q be a (d + 1) × (d + 1) matrix with complex entries. Then Q is a

signature matrix for a (d + 1, d) complex ETF if and only if Q � Id+1 − xx∗ for some x ∈ Cd+1

with unimodular entries.
1Section 2.1 is an edited version of material presented in [11].
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Proof. Let x ∈ Cd+1 have unimodular entries and let Q � Id+1 − xx∗. By computation,

and using the fact that ‖x‖2 � d + 1, it follows that

Q2
� Id+1 − 2xx∗ + (d + 1)xx∗

� Q + dxx∗

� Q + dxx∗ + dId+1 − dId+1

� Q − dQ + dId+1

� (1− d)Q − (−d)Id+1

� (λ1 + λ2)Q − λ1λ2Id+1.

This shows that every matrix of the form Q � Id+1 − xx∗, for x ∈ Cd+1 with unimodular

entries, satisfies (2.1.1) and is therefore the signature matrix for a (d + 1, d) ETF.

Now let Q be a signature matrix for a complex (d + 1, d) ETF. By Equation (1.3.1), Q

is a Hermitian matrix with eigenvalues λ1 � −d and λ2 � 1. Note that the multiplicities

of λ1 � −d and λ2 � 1 are 1 and d, respectively. Let x be an eigenvector associated

with λ1 � −d and satisfying ‖x‖2 � d + 1 (rescaling x if necessary to achieve this).

Since Q is Hermitian there exists an orthogonal basis for Cd+1 of eigenvectors of Q, say

{x, y1, . . . , yd}, where y j , 1 ≤ j ≤ d, are eigenvectors for the eigenvalue λ2 � 1. Let

z ∈ Cd+1. Then z can be written as

z �

d∑
j�1

c jy j + cd+1x

for {ci}d+1
i�1 ⊂ C and so

Qz �

d∑
j�1

c jQy j + cd+1Qx

�

d∑
j�1

c jλ1y j + cd+1λ2x

�

d∑
j�1

c jy j − cd+1dx
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� z− (d + 1)cd+1x.

On the other hand, a similar calculation using the orthogonality of the set {x, y1, . . . , yd}
and the fact that ‖x‖2 � d + 1, yields

(Id+1 − xx∗)z � z− (d + 1)cd+1x.

Since z was arbitrary, it follows that Q � Id+1 − xx∗. To see that x � (x j)1≤ j≤d+1

has unimodular entries, note that since Q has zeros along the diagonal, the equality

Q � Id+1 − xx∗ forces x jx j � 1 for 1 ≤ j ≤ d + 1. �

Remark 2.1.2. Any vector x ∈ Cd+1 with unimodular entries is an eigenvector of Q �

Id+1 − xx∗ corresponding to the eigenvalue −d. Further, the signature matrix Q and the

corresponding Grammatrix G have the same eigenvectors. From the proof of Theorem

2.1.1, the set {x, y1, . . . , yd} is also a set of orthogonal eigenvectors of G. The eigenvalue

of G for the eigenvector x is zero.

Algorithm 2.1.3 below outlines how Theorem 2.1.1 may be used to construct a

(d + 1, d) ETF. Recall that for a (d + 1, d) ETF, the Welch bound α is 1
d .

Algorithm 2.1.3.

Step 1: Choose a vector x in Rd+1 or Cd+1 with unimodular entries, and construct the

signature matrix Q from x as described in Theorem 2.1.1.

Step 2: Construct the corresponding Gram matrix G � I + 1
d Q.

Step 3: Diagonalize G into G � UDU∗, where U is a unitary matrix of eigenvectors

of G and D is the diagonal matrix of corresponding eigenvalues arranged in

descending order. For a (d + 1, d) ETF:

D � diag
*...
,




d + 1
d

, d + 1
d

, . . . , d + 1
d︸                       ︷︷                       ︸

d times

, 0




+///
-

.
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Step 4: Obtain the frame vectors from the rows of the matrix U
√

D, where
√

D denotes

thediagonalmatrixwhose entries are thepositive square roots of corresponding

entries of D.

Example 2.1.4 (A real (6, 5) ETF). Let the vector x ∈ R6 be [1, 1,−1, 1,−1, 1]T . Since

α �
1
5 , Theorem 2.1.1 shows that G � I + αQ is the Gram matrix of a (6, 5) ETF, where

Q � I − xxT . We now compute G to obtain

G � I6 +
1
5

Q �



1 −1
5

1
5 −

1
5

1
5 −

1
5

−
1
5 1 1

5 −
1
5

1
5 −

1
5

1
5

1
5 1 1

5 −
1
5

1
5

−
1
5 −

1
5

1
5 1 1

5 −
1
5

1
5

1
5 −

1
5

1
5 1 1

5

−
1
5 −

1
5

1
5 −

1
5

1
5 1



.

Let G be diagonalized as G � UDUT , and write U �

[
u1 . . . u6

]
. Since the last

column of U
√

D is 0, a real (6, 5) ETF is then given by the rows of the matrix

√
6
5

[
u1 u2 u3 u4 u5

]
�



√
3
5

1
2

√
4
5

1
3

√
9
10

1
4

√
24
25

1
5

−

√
3
5

1
2

√
4
5

1
3

√
9
10

1
4

√
24
25

1
5

0
√

4
5 −

1
3

√
9
10 −

1
4

√
24
25 −

1
5

0 0 −

√
9
10 −

1
4

√
24
25 −

1
5

0 0 0
√

24
25 −

1
5

0 0 0 0 −1



.

Example 2.1.5 (A complex (4, 3) ETF). Let x ∈ C4 be given by x � [1, i,−1,−i]T . Then

G �



1 i
3

1
3 −

i
3

−
i
3 1 i

3
1
3

1
3 −

i
3 1 i

3
i
3

1
3 −

i
3 1
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is the Gram matrix of a complex (4, 3) ETF. Let G be diagonalized as G � UDUT , and

write U �

[
u1 . . . u4

]
. Then the row vectors of

√
4
3

[
u1 u2 u3

]
�



−i
√

2
3 −

√
2

3
i
3

−

√
2
3 −i

√
2

3 −
1
3

0 −2
√

2
3 −

i
3

0 0 −1



form a complex (4, 3) ETF.

Remark 2.1.6. It can be checked that the vectors

y j �



x1
j
...

x j
j

−x j+1

0
...

0



.

form an orthogonal basis of eigenvectors for the Gram matrix of the real (d + 1, d) ETF

with signature matrix Q � I − xxT , where x � [x j ]1≤ j≤d+1. Each x j � ±1 so each entry

(except for the very last one) differs from the others by only a sign. So in essence only

one multiplication is necessary to obtain each vector y j .

To get the frame vectors each vector y j has to be scaled. The appropriate scaling

factors for each vector are the constants

c j �

√
d + 1

d
1
‖y j ‖

�

√
d + 1

d

√
j

j + 1
.

The matrix that gives the associated frame is the matrix V �

[
v1 . . . vd

]
where each

vector v j is given by

v j � c jy j .
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Since every entry of y j (except for the ( j + 1)th entry) differs from the others by only a

sign, only two multiplications (one for the first j entries and one for the ( j + 1)th entry)

are essentially necessary to obtain v j from y j . So with these assumptions it appears

that to get the frame vectors from the given vector x requires 2(d + 1) multiplications.

2.2 etfs as solutions to optimization problems

2.2.1 Real ETFs and the Eigenvalues of Seidel Matrices

Asmentioned inRemark1.3.6, the constructionof equiangular tight frames is equivalent

to the construction of signature matrices. However, signature matrices are themselves

a subset of a much larger class of matrices we call the Seidel matrices.

Definition 2.2.1. Let N ∈ N and let Q be an N × N Hermitian matrix. We say that

Q is a Seidel matrix if the diagonal entries of Q are 0 and the remaining entries are

unimodular. We will denote the set of N ×N Seidel matrices by QN .

Hence determining which elements of QN are also signature matrices of ETFs will

lead to characterizations of ETFs. Wewill do so in part bydefining a “potential function”

on QN in analogy with the frame potential [4] stated in Definition 1.2.7.

Definition 2.2.2. Let Q ∈ QN with

Q �

[
q1 q2 . . . qN

]
.

We define the Seidel potential of Q to be the function F : QN → R given by

F(Q) �
N∑

i�1

N∑
j�1

���
〈
qi , q j

〉���
2
.

Lemma 2.2.3 gives a useful relationship between the Seidel potential and the

eigenvalues of an input matrix.
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Lemma 2.2.3. Let QN denote the set of Seidel matrices and let F : QN → R denote the Seidel

potential on QN . Let λ1, λ2, . . . , λN denote the eigenvalues (possibly repeated) of Q. Then

F(Q) �
N∑

i�1
λ4

i .

Proof. Let Q ∈ QN and write

Q �

[
q1 q2 . . . qN

]
.

The Gram matrix of the columns of Q is given by QQ∗, which is just Q2 since Q is

Hermitian. Therefore



〈
q1, q1

〉 〈
q1, q2

〉
. . .

〈
q1, qN

〉〈
q2, q1

〉 〈
q2, q2

〉
. . .

〈
q2, qN

〉
... ... . . . ...〈

qN , q1
〉 〈

qN , q2
〉
. . .

〈
qN , qN

〉



� Q2.

From this it follows that

F(Q) �
N∑

i�1

N∑
j�1

���
〈
qi , q j

〉���
2

� tr(Q4).

Hence we obtain

F(Q) � tr(Q4)

�

N∑
i�1

λ4
i .

�

Theorem 2.2.4. Let Q ∈ QN and let F denote the Seidel potential. Then F(Q) ≤ (N − 1)[1+

(N − 1)3]. Furthermore, F attains this upper bound at any signature matrix for an (N , N − 1)

ETF.
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Proof. Let Q ∈ QN and write

Q �

[
q1 q2 . . . qN

]
.

Then since the entries of qi are either 0 or unimodular, it follows that

���
〈
qi , q j

〉��� ≤



N − 2 if i , j

N − 1 if i � j.

Therefore

F(Q) �
N∑

i�1

N∑
j�1

���
〈
qi , q j

〉���
2

�

N∑
i�1

∑
j,i

���
〈
qi , q j

〉���
2
+

N∑
i�1

���
〈
qi , q j

〉���
2

≤

N∑
i�1

∑
j,i

(N − 2)2
+

N∑
i�1

(N − 1)2

� N (N − 1)(N − 2)2
+ N (N − 1)2

� (N − 1)[1+ (N − 1)3]

which proves the upper bound.

Now suppose that Q is also the signature matrix of some (N , N − 1) ETF. Then by

Equation (1.3.1) it follows that the distinct eigenvalues of Q are

λ1 � 1−N and λ2 � 1

with respective multiplicities 1 and N − 1. Hence by Lemma 2.2.3 we obtain

F(Q) �
N∑

i�1
λ4

i

� (1−N)4
+

N−1∑
i�1

14
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� (N − 1)[1+ (N − 1)3],

which finishes the proof. �

If N ∈ N is even, a similar result is true for the signature matrices of (N , N
2 ) ETFs

as shown in Theorem 2.2.6. First, we prove a lower bound for the Seidel potential.

Lemma 2.2.5. Let Q ∈ QN for N ∈ N. Then F(Q) ≥ N (N − 1)2 where F denotes the Seidel

potential of Q.

Proof. Denote the eigenvalues of Q by λ1, λ2, . . . , λN . Then as shown in Lemma 2.2.3

we have

F(Q) �
N∑

i�1
λ4

i .

Write Q �

[
q1 . . . qN

]
. Since Q ∈ QN we have

N∑
i�1

λ2
i � tr(Q2)

�

N∑
i�1

���
〈
qi , q j

〉���
2

� N (N − 1).

Hence we can minimize F(Q) by solving the Lagrange problem

minimize f (x1, . . . , xN ) �
N∑

i�1
x4

i

subject to g(x1, . . . , xN ) �
N∑

i�1
x2

i � N (N − 1).

If we then set ∇ f � λ∇g we obtain the system of equations

2xi � λ for 1 ≤ i ≤ N .

Therefore x1 � · · · � xN , and the constraint g(x1, . . . , xN ) � N (N − 1) forces xi � N − 1

for 1 ≤ i ≤ N .
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It remains to prove that the point (N − 1, . . . , N − 1) is actually a minimum for the

Lagrange problem. To see this, note that

f (N − 1, . . . , N − 1) � N (N − 1)2

≤ (N − 1)[1+ (N − 1)3].

Since every signature matrix in QN for an (N , N − 1) ETF satisfies the constraints of

the Lagrange problem and has Seidel potential (N − 1)[1 + (N − 1)3], it follows that

(N − 1, . . . , N − 1) is a minimum for f subject to g � N (N − 1). Therefore

F(Q) ≥ N (N − 1)2

for all Q ∈ QN . �

Lemma 2.2.5 will be used to prove the following characterization for (N , N
2 ) ETFs

when N is even.

Theorem 2.2.6. Let N ∈ N and let Q ∈ QN . Then F(Q) � N (N − 1)2 if and only if Q is the

signature matrix for an (N , N
2 ) ETF.

Proof. Denote the eigenvalues of Q by λ1, . . . , λN and note that F(Q) � N (N − 1)2 if

and only if λ2
i � N − 1, or equivalently

λi � ±
√

N − 1 for 1 ≤ i ≤ N , (2.2.1)

by Lemma 2.2.5. Since Q ∈ QN as well, we also have tr Q � 0 since matrices in QN

have zero diagonal by definition. Hence
∑N

i�1 λi � 0 and this in conjunction with (2.2.1)

implies that N must be even and precisely half of the λi are −
√

N − 1. Therefore Q

must be the signature matrix for an (N , N
2 ) ETF by Remark 1.3.6. �
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chapter 3

k -angle Tight Frames 2

3.1 k -angle tight frames

The Gram matrix of an equiangular tight frame has a relatively simple structure. If

{fi}N
i�1 is an ETF for Rd or Cd , then we may write its Gram matrix G in the form

G � IN + αQ (3.1.1)

α �

√
N−d

d(N−1) is the corresponding Welch bound and Q is the signature matrix given in

Definition 1.3.5. Since Q has unimodular entries off of its main diagonal, we may view

G as having only one distinct entry (up to modulus) off of its main diagonal. Therefore

one approach to generalizing the notion of equiangular tight frames is to consider unit-

normed tight frames whose Gram matrices have k distinct entries (up to modulus) off

of their main diagonals. Equivalently, we will consider UNTFs whose Gram matrices

G may be written

G � I +
k∑

j�1
c jQ j (3.1.2)

where {c j}k
j�1 are nonnegative scalars and {Q j}k

j�1 areHermitianmatriceswith 0s along

their main diagonals and unimodular entries elsewhere.

Definition 3.1.1. Let {fi}N
i�1 denote a unit-normed tight frame in either Rd or Cd . We

say that {fi}N
i�1 is a k-angle tight frame if the set

{���
〈
fi , f j

〉���
}

1≤i< j≤N
contains k elements.

Remark 3.1.2. Equiangular tight frames are a specific example of a k-angle tight frame.

In particular, ETFs are precisely the 1-angle tight frames.
2This chapter is an edited version of material appearing in [11].
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3.2 k -angle tight frames, regular graphs, and association
schemes

As already mentioned in Chapter 1 above, k-angle tight frames can be connected to

mathematical objects arising in graph theory and coding theory such as regular graphs

and association schemes. The connection of ETFs to graphs is as follows [27]. Suppose

that the Gram matrix G associated with an ETF has ones along the diagonal and ±α

elsewhere. Then

Q �
1
α

(G − I)

is the Seidel adjacency matrix of a regular two-graph [7, 26]. Barg et al. [3] have shown

a correspondence between non-equiangular 2-angle tight frames (in their terminology,

two-distance tight frames) and strongly regular graphs. In the case of 3-angle tight frames

an analogous connectionmay be drawn to regular graphs, which is the primary content

of Subsection 3.2.1.

Certain k-angle tight frames also provide examples of association schemes [7]. If

G � I + c1Q1 + · · · + ckQk is the Gram matrix of a k-angle tight frame, where Qi is a

zero diagonal symmetric binary matrix for 1 ≤ i ≤ k, then {I, Q1, . . . , Qk} forms an

association scheme if QiQ j � Q jQi for 1 ≤ i, j ≤ k.

Further, k-angle tight frames are specific examples of what Delsarte et al. [13] refer

to as A-sets. For a given finite dimensional Hilbert space, upper bounds on the size

of an A-set, and therefore on the number of vectors in a k-angle tight frame, are given

in [7, 13].

3.2.1 3-angle Tight Frames and Regular Graphs

This subsection exhibits a correspondence between certain 3-angle tight frames and

adjacency matrices of regular graphs. First, we give the definitions of degrees of a

vertex, regular graphs and adjacency matrices.

Definition 3.2.1. Let G denote a graph and let v be a vertex in G. The degree of v is

the number of vertices adjacent to v. If every vertex in G has the same degree k, then
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we say that G is regular and of degree k. Finally, the square matrix Q � [qi j ] given by

qi j �




1 if and only if the ith and jth vertices are adjacent

0 otherwise

is called the adjacency matrix of G.

For this subsection, the following notation is used:

• N , d ∈ N and d ≤ N .

• G � I + c1Q1 + c2Q2 + c3Q3 is the Gram matrix of a 3-angle real (N , d) UNTF,

where G has off-diagonal entries c1, c2, c3 and Q1, Q2 and Q3 are symmetric binary

matrices. Note that this decomposition of G implies that Q1 + Q2 + Q3 � J − I,

where J denotes the square matrix of 1s.

• ci , ±c j for i , j (so we may assume that each matrix Qi is a symmetric binary

matrix) and ci , 0 for 1 ≤ i ≤ 3.

• Gi is a graph with adjacency matrix Qi .

• d (i)
n denotes the degree of the nth vertex in the graph Gi .

Lemma 3.2.2. If i , j, then diag QiQ j � 0.

Proof. If we write Qi � [Qi ]kl , Q j � [Q j ]kl , then the diagonal entries of QiQ j are given

by

[QiQ j ]kk �

N∑
l�1

[Qi ]kl [Q j ]lk �

N∑
l�1

[Qi ]kl [Q j ]kl

where the last equality follows since Q j is symmetric. If i , j, then [Qi ]kl , [Q j ]kl ,

which means that each term in the above sum must be 0. �

Proposition 3.2.3. If one of the graphs Gi is regular, then the other graphs are regular as well.

Proof. Without loss of generality, suppose that G1 is regular. Then there exists k ∈ N

such that d (1)
n � k for 1 ≤ n ≤ N . Now, since G is the Gram matrix of an (N , d) UNTF,
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it follows that G2 �
N
d G. If we define c0 � 1 and Q0 � I, then

N
d

G � G2

� *
,

3∑
i�0

ciQi+
-

2

�

3∑
i�0

3∑
j�0

cic jQiQ j .

If we write G � [gkl ] and use Lemma 3.2.2, then

N
d

�
N
d

gnn

�

3∑
i�0

c2
i [Q

2
i ]nn

� 1+ c2
1d (1)

n + c2
2d (2)

n + c2
3d (3)

n .

The last equality follows since the nth diagonal element of the square of an adjacency

matrix is the degree of the nth vertex in the associated graph. Thus

N
d

� 1+ c2
1d (1)

n + c2
2d (2)

n + c2
3d (3)

n . (3.2.1)

We will show that the regularity of G1 implies the regularity of G2. A similar proof

shows that G3 is regular as well. If we solve for d (2)
n in Equation (3.2.1), we obtain

d (2)
n � c−2

2

[ N
d
− 1− c2

1d (1)
n − c2

3d (3)
n

]

� c−2
2

[
N − d

d
− kc2

1 − c2
3d (3)

n

]

since d (1)
n � k by assumption. To proceed, recall that Q1 + Q2 + Q3 � J − I, where J is

the N ×N matrix of 1s. Therefore {G1,G2,G3} is a partition of the complete graph on

N vertices. Since d (1)
n + d (2)

n + d (3)
n given the degree of the nth vertex in the complete

graph, it follows that

d (1)
n + d (2)

n + d (3)
n � N − 1
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for 1 ≤ n ≤ N since the complete graph is regular of degree N − 1. Thus

d (2)
n � c−2

2

[
N − d

d
− kc2

1 − c2
3d (3)

n

]

� c−2
2

[
N − d

d
− kc2

1 − c2
3

{
N − 1− d (1)

n − d (2)
n

}]

� c−2
2

[
N − d

d
− kc2

1 − c2
3

{
N − 1− k − d (2)

n

}]
.

The assumptions placed on the ci guarantee that we can solve for d (2)
n . In particular, we

obtain

d (2)
n �

c−2
2

[
N−d

d − kc2
1 − c2

3 {N − 1− k}]

1− c−2
2 c2

3

�

N−d
d − kc2

1 − c2
3 {N − 1− k}

c2
2 − c2

3
.

Thus we see that the degree of the nth vertex of the graph G2 is independent of n, which

implies that G2 is regular. Similarly, G3 is also regular. �

The previous results now give Theorem 3.2.4.

Theorem3.2.4. The graphs {G1,G2,G3} are regular if and only ifu � [1 1 . . . 1]T ∈ RN

is an eigenvector of G.

Proof. Suppose that Gi is regular and of degree ki for 1 ≤ i ≤ 3. Then Qiu � kiu and so

u is an eigenvector for each Qi with corresponding eigenvalue given by the degree of

Gi . Thus u must also be an eigenvector of G.

Conversely, let u be an eigenvector of G with eigenvalue λ. Then for 1 ≤ n ≤ N we

have

λu � Gu

� u+

3∑
i�1

ciQiu
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or equivalently

λ � 1+ d (1)
n c1 + d (2)

n c2 + d (3)
n c3 (3.2.2)

for 1 ≤ n ≤ N . Thus

d (1)
n c1 + d (2)

n c2 + d (3)
n c3 � c

where c � λ − 1 is constant. From the proof of Proposition 3.2.3, we can write d (2)
n and

d (3)
n in terms of d (1)

n as follows:

d (2)
n �

N−d
d − d (1)

n c2
1 − c2

3

{
N − 1− d (1)

n

}
c2

2 − c2
3

and

d (3)
n �

N−d
d − d (1)

n c2
1 − c2

2

{
N − 1− d (1)

n

}
c2

3 − c2
2

which we rearrange to obtain

d (2)
n �

N−d
d + d (1)

n

(
c2

3 − c2
1

)
− c2

3(N − 1)

c2
2 − c2

3

and

d (3)
n �

N−d
d + d (1)

n

(
c2

2 − c2
1

)
− c2

2(N − 1)

c2
3 − c2

2
.

If we now plug these values for d (2)
n and d (3)

n into Equation (3.2.2), we obtain

c � d (1)
n c1 + d (2)

n c2 + d (3)
n c3

� d (1)
n c1 + (c2

2 − c2
3)−1

[
N − d

d
+ d (1)

n (c2
3 − c2

1) − c2
3(N − 1)

]
c2

+ (c2
3 − c2

2)−1
[

N − d
d

+ d (1)
n (c2

2 − c2
1) − c2

2(N − 1)
]

c3

which reduces to

d (1)
n

[
(c2

2 − c2
3)c1 + (c2

3 − c2
1)c2 + (c2

1 − c2
2)c3

]
� C
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for a constant C. We must show that d (1)
n is independent of n in order to use

Proposition 3.2.3 to complete the proof, and this will be done if we can show that

(c2
2 − c2

3)c1 + (c2
3 − c2

1)c2 + (c2
1 − c2

2)c3 , 0. However, thus must be the case since

(c2
2 − c2

3)c1 + (c2
3 − c2

1)c2 + (c2
1 − c2

2)c3 � (c2 − c1)(c3 − c1)(c3 − c2),

which is nonzero by our assumptions on the ci . Thus G1 is regular, and by extension

G2 and G3 are also regular by Proposition 3.2.3. �

3.3 construction of k -angle tight frames

3.3.1 2-angle Tight Frames

As a first step towards generalizing ETFs, one considers constructing 2-angle tight

frames. In Example 3.3.4 below, several examples of 2-angle tight frames are presented.

The following lemma is needed.

Lemma 3.3.1. Let d ∈ N and let J denote the d × d matrix whose entries are all one. Then the

matrix U given by U �
2
d J − Id is orthogonal, where Id is the d × d identity matrix.

Proof. Since J2 � dJ, and 2
d J − Id is symmetric, it follows that

( 2
d

J − Id

) ( 2
d

J − Id

)T
�

( 2
d

J − Id

) ( 2
d

J − Id

)
�

4
d2 J2

−
4
d

J + Id � Id .

�

Definition 3.3.2. A d × d matrix H is said to be a real Hadamard matrix if HHT � dId

and the entries of H are either −1 or 1. Similarly, H is said to be a complex Hadamard

matrix if HH∗ � dId and the entries of H are unimodular.

If H is a d × d real (respectively, complex) Hadamardmatrix, then 1
√

d
H is orthogonal

(respectively, unitary).

Remark 3.3.3. The existence and classification of real and complex Hadamardmatrices

is an important open problem, although the complex case provides more options. In
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particular, a d × d complex Hadamard matrix for any d ∈ N is given by the DFT matrix

with unimodular entries. Real Hadamard matrices are rarer, but a construction due to

Sylvester provides a 2n
× 2n Hadamard matrix for every n ∈ N [29].

Example 3.3.4. Let F1 be the standard basis of Rd or Cd . In each example below, the

tightness of the resulting frame follows from the fact that the union of two finite unit-

normed tight frames of a vector space is again a finite unit-normed tight frame for the

same vector space.

i. Let F2 be the orthonormal basis of Rd obtained from the columns of the matrix U

in Lemma 3.3.1. If d � 4 then F1 ∪ F2 is a real (8, 4) 2-angle tight frame, otherwise,

F1 ∪ F2 is a real (2d, d) 3-angle tight frame.

Let F1 �

[
Id U

]
denote the synthesis operator of F1 ∪ F2. Then the Gram matrix

of F1 ∪ F2 is

G1 � FT
1 F1 �



Id U

UT Id


�



Id
2
d J − Id

2
d J − Id Id


.

The only possible moduli of the off-diagonal entries in G1 are 0, 2
d , and 1− 2

d . When

d � 4, the only possible moduli are 0 and 1
2 .

ii. Suppose that a real d × d Hadamard matrix H exists and let F3 be the orthonormal

basis of Rd obtained from the columns of 1
√

d
H. Then F1 ∪ F3 is a real (2d, d)

2-angle tight frame. The only possible moduli of the off-diagonal entries in the

Gram matrix are 0 and 1
√

d
.

iii. Let F4 be the orthonormal basis of Cd obtained from the columns of the normalized

DFT matrix. Then F1 ∪ F4 is a complex (2d, d) 2-angle tight frame. Again, the

moduli of the off-diagonal entries in the Gram matrix are either 0 or 1
√

d
.

The construction in Example 3.3.4 iii. will also provide (2d, d) 2-angle tight frames if

the normalized DFTmatrix is replaced by an arbitrary normalized complex Hadamard

matrix as shown in Theorem 3.3.6. Going further, mutually unbiased Hadamards can be

used to construct 2-angle tight frames with higher redundancy.
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Definition 3.3.5. Consider a collection {H1, H2, . . . , Hn} of d × d Hadamard matrices.

These matrices are said to be mutually unbiased Hadamards if 1
√

d
H∗j Hk is again a

Hadamard matrix for all 1 ≤ j < k ≤ n.

As mentioned in [15], the construction of n mutually unbiased Hadamards of size

d × d is equivalent to the construction of n + 1 mutually unbiased bases (MUBs); that is, a

collection {E1, . . . ,En+1} of orthonormal bases E j � {e ( j)
l }d

l�1 such that |〈e ( j)
l , e (k)

m 〉| �
1
√

d

for 1 ≤ l, m ≤ d and 1 ≤ j < k ≤ n + 1. It is known from [20] that the maximal set of

MUBs in any given d-dimensional Hilbert space is of size at most d + 1. Constructions

presented in [20] provideMUBs ofmaximal size (that is, d + 1MUBs in a d-dimensional

space) in any space whose dimension is pq for prime p. The question of the existence

of maximal MUBs in other dimensions remains an open problem.

Theorem 3.3.6. Let d, n ∈ N.

i. Let H be a d × d Hadamard matrix. Then the columns of

[
Id

1
√

d
H

]

form a 2-angle (2d, d) tight frame.

ii. Let {H1, H2, . . . , Hn} be a collection of d × d mutually unbiased Hadamards where n ≤ d.

Then the columns of [
Id

1
√

d
H1

1
√

d
H2 . . . 1

√
d

Hn

]

form a 2-angle ((n + 1)d, d) tight frame.

Proof.

i. The justification of this statement is the same as the one given in Example 3.3.4 part

iii. Just replace the DFT matrix with 1
√

d
H.

ii. The frame is a union of n + 1 orthonormal bases and so must be a tight frame. It

remains to show that the frame is a 2-angle frame. Let

F2 �

[
Id

1
√

d
H1 . . . 1

√
d

Hn

]
.
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The Gram matrix G2 of this frame is

G2 � F∗2F2 �



Id
1
√

d
H1

1
√

d
H2 . . . 1

√
d

Hn

1
√

d
H∗1 Id

1
d H∗1H2 . . . 1

d H∗1Hn
... ... ... . . . ...

1
√

d
H∗n

1
d H∗nH1

1
d H∗nH2 . . . Id



.

Since {H1, . . . , Hn} is a collection of mutually unbiased Hadamards, each entry in
1
d H∗j Hk for 1 ≤ j < k ≤ n has modulus 1

√
d
, as does each entry in 1

√
d

H j for 1 ≤ j ≤ n.

Therefore each off-diagonal entry of G2 has modulus either 0 or 1
√

d
, which implies

that the frame is a 2-angle frame.

�

3.3.2 Real and Complex k-angle Tight Frames for k ≥ 2

Since frames may be obtained from their corresponding Gram matrices through di-

agonalization, it follows that the problem of constructing a k-distance tight frame is

equivalent to the problem of constructing a corresponding Gram matrix. These Gram

matrices will be constructed using what we call a generalized Seidel matrix.

Definition 3.3.7. Let N ∈ N and let Q be an N × N matrix. We say that Q is a

generalized Seidel matrix if it is Hermitian and has zero diagonal.

Since any Gram matrix G may be written in the form G � I + αQ where Q

is a generalized Seidel matrix and α �
1

|λmin(Q) | , the problem of constructing a k-

distance tight frame is equivalent to constructing certain generalized Seidel matrices.

In particular, it is desired to construct a generalized Seidel matrix Q satisfying the

following constraints:

i. Q has precisely twodistinct eigenvalues. This requirement guarantees the tightness

of the resulting frame, as this forces the corresponding Gram matrix to have two

distinct eigenvalues.

ii. The moduli of the off-diagonal entries of Q have k distinct values, where some

restrictions may be placed on k.
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Theorem 3.3.8 accomplishes this in the real case by using orthogonal sets of vectors.

Theorem 3.3.8. Suppose that {xm}M
m�1 ⊂ RN forms an orthogonal set, where xm ∈ {−1, 1}N

for 1 ≤ m ≤ M. Define the N ×M matrix X by

X �

[
x1 x2 . . . xM

]
.

Then Q � IN −
1
M XXT is the generalized Seidel matrix for a k-distance tight frame in RN−M ,

where k ≤ M + 1.

Proof. First, note that the term 1
M in front of XXT is chosen so that the diagonal entries

of Q are zero. Now, to prove that Q is the generalized Seidel matrix for a tight frame

we must show that Q has two distinct eigenvalues. To do so, recall that the nonzero

eigenvalues of XT X and XXT are the same. Since XT X is the Gram matrix for the

orthogonal collection {xm}M
m�1, it must be that XT X � NIM . Thus

λ(XXT ) � {0, . . . , 0︸  ︷︷  ︸
N−M terms

, N , . . . , N︸    ︷︷    ︸
M terms

}

and so

λ(Q) � λ
(
IN −

1
M

XXT
)

�

{
1, . . . , 1︸  ︷︷  ︸

N−M terms

, 1− N
M

, . . . , 1− N
M︸                 ︷︷                 ︸

M terms

}
.

The corresponding Gram matrix for Q is given by

G � IN +
1

N
M − 1

Q � IN +
M

N −M
Q

which has eigenvalues 0 of multiplicity M and N
M of multiplicity N −M. Therefore Q

is the generalized Seidel matrix for a tight frame in RN−M .

To see that Q is the generalized Seidel matrix for a k-distance tight frame with

k ≤ M + 1, consider the matrix XXT that determines Q and write xm � (xn,m)1≤n≤N .
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Then [X]n,m � xn,m and so

[XXT ]n,m �

M∑
l�1

xn,l xm,l .

Thus each entry of XXT is a sum of M 1s or −1s. The possible choices for [XXT ]n,m are

then

−M,−M + 2,−M + 4, . . . , M − 4, M − 2, M.

Hence there are M + 1 possible choices for each entry of XXT . This shows that the

above construction provides a k-distance tight frame for some k ≤ M + 1. �

The proof of Theorem 3.3.8 relied heavily on the orthogonality of the columns of

the matrix X. The method applied in the proof of Theorem 3.3.8 may then be quickly

generalized to other scenarios. Specifically, if the vectors {xm}M
m�1 are taken from the

N ×N discrete Fourier transform (DFT) matrix then the next result will hold.

Theorem 3.3.9. Let {xm}M
m�1 ⊂ CN be a collection of vectors with xm � (ωm·l)0≤l≤N−1, where

ω � e
2πi
N is a primitive N th root of unity. Define the matrices X and Q by

X �

[
x1 . . . xM

]
and Q � IN −

1
M

XX∗

where X∗ denotes the conjugate transpose of X. Then Q is the generalized Seidel matrix for a

tight frame in CN−M .

Proof. The proof of this claim follows the same steps as the first part of the proof of

Theorem 3.3.8, with XT merely replaced by X∗. �

Although Theorem 3.3.9 gives a method to construct tight frames, it says nothing

about the possible number of moduli of off-diagonal entries of the generalized Seidel

matrix Q. The following results will take a closer look at the structure of the matrix

XX∗ in order to determine bounds on the number of possible moduli.

Lemma 3.3.10. Let X be an N ×M matrix given by the construction in Theorem 3.3.9. Then

XX∗ is a circulant matrix.
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Proof. By the method used to construct X, it is seen that

[X] j j′ � ω
( j−1)( j′−1) and [X∗] j j′ � ω

( j−1)( j′−1).

Therefore

[XX∗] j j′ �

M∑
l�1

ω( j−1)(l−1)ω(l−1)( j′−1)

�

M∑
l�1

ω( j− j′)(l−1)

�

M−1∑
l�0

ωl( j− j′).

Hence

XX∗ �



x0 x−1 x−2 x−3 . . . x−(N−1)

x1 x0 x−1 x−2 . . . x−(N−2)

x2 x1 x0 x−1 . . . x−(N−3)

x3 x2 x1 x0 . . . x−(N−4)
... ... ... ... . . . ...

xN−1 xN−2 xN−3 xN−4 . . . x0



where xn �

M−1∑
l�0

ωl·n .

To show that XX∗ is a circulant matrix, it suffices to note that xn � xN+n (where the

indices are to be understood modulo N) which follows immediately from the fact that

ωN � 1 and the formula xn �
∑M−1

l�0 ωl·n . Thus XX∗ can be written as

XX∗ �



x0 xN−1 xN−2 xN−3 . . . x1

x1 x0 xN−1 xN−2 . . . x2

x2 x1 x0 xN−1 . . . x3

x3 x2 x1 x0 . . . x4
... ... ... ... . . . ...

xN−1 xN−2 xN−3 xN−4 . . . x0



.

�
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The following theorem is immediate from Lemma 3.3.10 and Theorem 3.3.9.

Corollary 3.3.11. Let X be constructed as in Theorem 3.3.9. Then Q � IN −
1
M XX∗ is the

generalized Seidel matrix for a k-distance tight frame in CN−M where k ≤ N − 1.

The bound in Corollary 3.3.11 can be improved, especially in certain situations. To

see how, the following lemma is needed.

Lemma 3.3.12. Define X as in Theorem 3.3.9 and let {xn}N−1
n�0 denote the entries of the circulant

matrix XX∗, arranged as in the proof of Lemma 3.3.10. Then

|xn | �

������

sin Mθ
2

sin θ
2

������
for 1 ≤ n ≤ N − 1

where θ �
2πn

N . In particular, the following statements hold for |xn |:

i. xn � 0 if and only if Mn ≡ 0 mod N .

ii. |xn | � |xN−n | for 1 ≤ n ≤ N − 1.

Proof. Let θ �
2πn

N and recall that ω � e
2πi
N . Then

xn �

M−1∑
l�0

ωl·n

�

M−1∑
l�0

e ilθ

�
e iMθ

− 1
e iθ − 1

� e iθ( M−1
2 ) sin Mθ

2

sin θ
2

.

Therefore

|xn | �

������
e iθ( M−1

2 ) sin Mθ
2

sin θ
2

������
�

������

sin Mθ
2

sin θ
2

������
.

The remaining two statements of the lemma follow quickly from this expression for

|xn |. �
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Lemma 3.3.12 immediately improves the bound on k in Corollary 3.3.11 for general

N and M.

Lemma 3.3.13. Let X be constructed as in Theorem 3.3.9. Then Q � IN −
1
M XX∗ is the

generalized Seidel matrix for a k-distance tight frame in CN−M where k ≤ dN−1
2 e � b

N
2 c.

Proof. By Lemma 3.3.12, themoduli of the off-diagonal entries of X satisfy |xn | � |xN−n |

for 1 ≤ n ≤ N − 1. Thus to capture all possible values of themodulus |xn |, it is sufficient

to consider n less than or equal to dN−1
2 e or, equivalently, n less than or equal to N

2 . �

The bound can be further improved for particular values of M, as the next two

results show.

Theorem 3.3.14. Let X be as constructed in Theorem 3.3.9 and suppose that M divides N .

Then Q � IN −
1
M XX∗ is the generalized Seidel matrix for a k-distance tight frame in CN−M

where k ≤ bN
2 c − b

M
2 c + 1. Note that this does not improve on the bound in Lemma 3.3.13

unless M ≥ 4.

Proof. Let {xn}N−1
n�0 denote the entries of XX∗ as before. As shown in the proof of

Lemma 3.3.13, all possible values of |xn | will occur for 1 ≤ n ≤ N
2 . It has to be

determined how many times xn � 0 as n varies from 1 to N
2 .

To start, note that xn � 0 if and only if n � l N
M by Lemma 3.3.12, where l ∈ Z. Thus

for 1 ≤ n ≤ N
2 , the number of n for which xn will be 0 is the same as the number of

integers l satisfying 1 ≤ l N
M ≤

N
2 . This can be rearranged to obtain

1 ≤ l ≤
M
N

N
2

�
M
2

.

Thus 1 ≤ l ≤ M
2 , so this implies that xn � 0 at least bM

2 c times as n varies from 1 up to
N
2 . Hence the number of distinct values for |xn | for 1 ≤ n ≤ dN−1

2 e � b
N
2 c is bounded

above by bN
2 c − (bM

2 c − 1). �

Theorem 3.3.14 shows that the bound for k can be improved considerably for certain

values of M. In particular, to minimize the bound in Theorem 3.3.14 M should be

chosen as the largest nontrivial divisor of N , with the best possible choice being M �
N
2

when N is even. It’s not too difficult to extend the result to integers M that are not

relatively prime to N .
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Corollary 3.3.15. Let X be as constructed in Theorem 3.3.9 and suppose that M is not relatively

prime to N . Then Q � IN −
1
M XX∗ is the generalized Seidel matrix for a k-distance tight frame

in CN−M where k ≤ bN
2 c − b

M′
2 c + 1, where M′ is a common divisor of M and N .

Proof. Suppose that M′ divides both M and N and once more let xn denote the entries

of the circulant matrix XX∗. If M′n ≡ 0 mod N , then Mn ≡ 0 mod N as well, which

implies that xn will equal 0. The argument used in Theorem3.3.14 applied to M′ instead

of M shows that xn � 0 at least bM′
2 c times for 1 ≤ n ≤ N−1

2 , and therefore 0 is repeated

(as a value of xn) at least bM′
2 c − 1 times for 1 ≤ n ≤ N−1

2 . �

To illustrate the previous results, consider constructing a matrix X using Theo-

rem 3.3.9. Let N � 9, M � 5 and ω � e
2πi
9 . Then

X �



1 1 1 1 1

1 ω1 ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 1 ω3

1 ω4 ω8 ω3 ω7

1 ω5 ω1 ω6 ω2

1 ω6 ω3 1 ω6

1 ω7 ω5 ω3 ω1

1 ω8 ω7 ω6 ω5



.

Since 5 is relatively prime to 9, the only bound that applies is given by Lemma 3.3.13,

which says that Q � I − 1
5 XX∗will be the generalized Seidelmatrix for a k-distance tight

frame where k ≤ b 9
2c � 4. Using MATLAB to compute the moduli of the off diagonal

elements of XX∗, it is seen that the distinct moduli are given by

{.5321, .6527, 1, 2.8794}.

Thus XX∗ gives a 4-distance tight frame in C4.
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A similar computation was done for the N � 9, M � 6 construction. The moduli of

the off-diagonal entries of XX∗ are then

{0, .8794, 1.3473, 2.5321}.

So k � 4 in this case as well. This may seem to contradict Theorem 3.3.14 since M ≥ 4,

but recall that bound given in that theorem applies only when M | N . Here, 6 does

not divide 9 and so Corollary 3.3.15 applies instead. Since the greatest common divisor

of 9 and 6 is 3, it follows that k should not be expected to perform better than the

bound given in Lemma 3.3.13. However, this may still be somewhat better than the

N � 9, M � 5 case since some of the entries of XX∗ are now 0.

As a final test, consider the N � 20, M � 10 case. Since M |N here and M ≥ 4, apply

Theorem 3.3.14 to obtain the estimate k ≤ 6. Once again using MATLAB to list the

moduli of the off-diagonal elements of XX∗, it follows that the moduli are

{0, 1.0125, 1.1223, 1.4142, 2.2027, 6.3925}.

So k � 6, which agrees with the bound given by Theorem 3.3.14.

3.3.3 k̂-angle Tight Frames for k̂ ≤ k and k fixed

Theorem 3.3.16. Let d, k ∈ N with k < d + 1, and set d′ �
(d+1

k
)
. Denote the collection

of all subsets of {1, . . . , d + 1} of size k by {Λi}d′
i�1. Let {fi}d+1

i�1 ⊆ Rd denote the ETF with〈
fi , f j

〉
� −

1
d for i , j. Define a new collection {gi}d′

i�1 as follows:

gi :�

∑
j∈Λi f j


∑

j∈Λi f j

.

Then {gi}d′
i�1 forms a k̂-angle tight frame of d′ vectors in Rd , where k̂ ≤ k.

To prove this theorem, the following results are needed.

Lemma 3.3.17. Under the setting and assumptions of Theorem 3.3.16, 
∑

j∈Λi f j
 is indepen-

dent of i.
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Proof. By a direct calculation,



∑
j∈Λi

f j



2

�

〈∑
j∈Λi

f j ,
∑
j′∈Λi

f j′

〉
�

∑
j∈Λi

∑
j′∈Λi

〈
f j , f j′

〉
�

∑
j∈Λi

‖f j ‖
2
+

∑
j, j′

〈
f j , f j′

〉
.

The right hand side simplifies to k + k(k − 1)(− 1
d ), and so for all i



∑
j∈Λi

f j


�

√
k(d + 1− k)

d
.

�

Lemma 3.3.18 is a special case of Lemma 4.2.13, which is an important tool in the

study of block designs (see Section 4.2).

Lemma 3.3.18. Let K denote the matrix whose columns are the binary vectors in Rd+1 with

exactly k ones and note that there are d′ �
(d+1

k
)
such vectors. In particular, set

K �

[
k1 . . . kd′

]

where supp k j � Λ j . Then

KKT
�

(
d − 1
k − 1

)
Id+1 +

(
d − 1
k − 2

)
Jd+1.

Proof. Set K � [ki j ] for 1 ≤ i ≤ d + 1 and 1 ≤ j ≤ d′ and note that ki j � 1 if and only if

i ∈ Λ j . Let

k̃i j �

d′∑
m�1

kimk jm

denote the (i, j)th entry of KKT . Then k̃ii �
∑d′

m�1 k2
im is precisely the number of subsets

Λm ⊆ {1, . . . , d + 1} of size k that contain i, so k̃ii �
( d

k−1
)
�

(d−1
k−1

)
+

(d−1
k−2

)
. Similarly, if
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i , j then k̃i j �
∑d′

m�1 kimk jm counts the number of subsets Λm that contain both i and

j, so k̃i j �
(d−1

k−2
)
if i , j. Thus KKT has the desired form. �

For ease of reference, we now recall the frame potential (Definition 1.2.7) as well

Theorem 1.2.8.

Definition 3.3.19 (Definition 1.2.7). Let d, N ∈ N with d ≤ N and let {fi}N
i�1 be a unit-

normed frame in Rd or Cd . The frame potential of {fi}N
i�1 is the quantity FP({fi}N

i�1)

given by

FP({fi}N
i�1) �

N∑
i�1

N∑
j�1

���
〈
fi , f j

〉���
2
.

Theorem 3.3.20 (Theorem 1.2.8). Let d, N ∈ N with d ≤ N and let {fi}N
i�1 be a unit-normed

frame in Rd or Cd . Then FP({fi}N
i�1) is bounded below by N2

d with equality if and only if the

the frame is a unit-normed tight frame (or just an orthonormal basis if N � d).

Theorem 1.2.8 and the frame potential will be invaluable tools for proving the next

result.

Theorem 3.3.21. The set {gi}d′
i�1 in the statement of Theorem 3.3.16 is a tight frame in Rd .

Proof. Let K denote the matrix given in Lemma 3.3.18. If F is the matrix with columns

{fi}d+1
i�1 , then it follows that Fki �

∑
j∈Λi f j . The matrix with columns {gi}d′

i�1 can then

be written as √
d

k(d + 1− k)
FK,

where the scalar term comes from Lemma 3.3.17. This implies that the Grammatrix G1

of {gi}d′
i�1 is the matrix

d
k(d + 1− k)

(FK)T (FK) �
d

k(d + 1− k)
KT GK

where G denotes the Gram matrix of {fi}d+1
i�1 . It will be shown that {gi}d′

i�1 is tight by

computing its frame potential and using Theorem 1.2.8. Let c1 �
(d−1

k−1
)
and c2 �

(d−1
k−2

)
.

Then

FP{gi}d′
i�1 � tr G2

1
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�

(
d

k(d + 1− k)

)2

tr(KT GKKT GK)

�

(
d

k(d + 1− k)

)2

tr(KT G(c1I + c2 J)GK) by Lemma 3.3.18.

According to the hypothesis of Theorem 3.3.16,
〈
fi , f j

〉
� −

1
d for all i , j. This makes

the product GJ equal to the (d + 1) × (d + 1) zero matrix. Therefore,

FP{gi}d′
i�1 � c1

(
d

k(d + 1− k)

)2

tr(KT G2K)

� c1

(
d

k(d + 1− k)

)2

tr(G2KKT )

� c1

(
d

k(d + 1− k)

)2

tr(G2(c1I + c2 J))

� c2
1

(
d

k(d + 1− k)

)2

tr(G2)

�

(
d

k(d + 1− k)
c1

)2 (d + 1)2

d

where the last equality follows from the fact that {fi}d+1
i�1 is a unit-normed tight frame

and the result in Theorem 1.2.8. Further simplification gives

FP{gi}d′
i�1 �

(
d

k(d + 1− k)
c1

)2 (d + 1)2

d

�

[
(d + 1)d

k(d + 1− k)

(
d − 1
k − 1

)]2 1
d

�

(
d + 1

k

)2 1
d

�
(d′)2

d
.

Hence {gi}d′
i�1 is a unit-normed tight frame for Rd by Theorem 1.2.8. �

The proof of Theorem 3.3.16 is now completed below.

Proof of Theorem 3.3.16. The previous results show that {gi}d′
i�1 is a unit-normed tight

frame, so it remains to show that it is also a k̂-angle frame where k̂ ≤ k. Let i, j ≤ d′
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with i , j. By the proof of Lemma 3.3.17

〈
gi , g j

〉
�

d
k(d + 1− k)

∑
i′∈Λi

∑
j′∈Λ j

〈
fi′, f j′

〉
.

Now set l � |Λi ∩Λ j |. Then the double summation can be rewritten as

∑
i′∈Λi

∑
j′∈Λ j

〈
fi′, f j′

〉
�

∑
i′∈Λi∩Λ j

∑
j′∈Λ j∩Λi

〈
fi′, f j′

〉
+

∑
i′∈Λi\Λ j

∑
j′∈Λ j∩Λi

〈
fi′, f j′

〉
+

∑
i′∈Λi∩Λ j

∑
j′∈Λ j\Λi

〈
fi′, f j′

〉
+

∑
i′∈Λi\Λ j

∑
j′∈Λ j\Λi

〈
fi′, f j′

〉
�

[
l(1) − l(l − 1)

1
d

]
+

[
−

1
d

(k − l)l
]
+

[
−

1
d

(k − l)l
]
+

[
−

1
d

(k − l)2
]

� l −
1
d

(k2
− l).

Therefore 〈
gi , g j

〉
�

d
k(d + 1− k)

[
l −

1
d

(k2
− l)

]
�

l(d + 1) − k2

k(d + 1− k)
.

Since 0 ≤ l ≤ k − 1 if i , j, there are k different choices for l in the above formula. Hence〈
gi , g j

〉
can take on at most k different values when i , j, which finishes the proof. �

Example 3.3.22 (A (28, 7) ETF). This example illustrates the k-angle construction given

in Theorem 3.3.16 with k � 2 and d � 7. Let {fi}8
i�1 ⊂ R7 denote an ETF satisfying〈

fi , f j
〉
� −

1
7 . Denote the collection of subsets of {1, . . . , 8} of size 2 by {Λi}28

i�1. Then

the collection {gi}28
i�1 with

gi �

∑
j∈Λi f j


∑

j∈Λi f j


is a k-angle tight frame with k ≤ 2 by Theorem 3.3.16.

In fact, {gi}28
i�1 is actually an ETF of 28 vectors in R7. To see this, note that for i , j

Theorem 3.3.16 gives

〈
gi , g j

〉
�

2l − 1
3

for l � 0, 1

�




−
1
3 if l � 0

1
3 if l � 1.
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Thus ���
〈
gi , g j

〉��� � αwhere α �

√
28−7

7∗(28−1) �
1
3 is theWelch bound for N � 28, d � 7. Hence

{gi}28
i�1 is actually a (28, 7) ETF for R7.
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chapter 4

Approximations to ETFs with Low Cross-Correlation 3

4.1 random approximations to etfs

4.1.1 Improving Tightness of an Equiangular Frame Using Random Perturbations

Let {fi}N
i�1 ⊂ Rd be an equiangular frame that is not tight with Gram matrix G, and let

G � UDUT where U is orthogonal and D is diagonal. The goal is to approximate the

frame {fi}N
i�1 with another frame {̃fi}N

i�1 ⊂ Rd which is very nearly tight, as determined

by the eigenvalues of the corresponding Grammatrix. This approximation should also

be nearly unit-normed and nearly equiangular meaning that the process should not

deviate the starting frame too much from equiangularity and being unit-normed. One

possible approach to obtaining such an approximation is to simply replace the diagonal

matrix D with the diagonal matrix

D̂ � diag
{

0, . . . , 0,︸   ︷︷   ︸
N−d times

N
d

, . . . , N
d︸      ︷︷      ︸

d times

}
.

The resulting matrix Ĝ � UD̂UT is then the Gram matrix of a tight frame. However,

such a replacement will usually bring a significant change to the entries of G and thus

on the frame vectors f̃i . Hence the tight frame obtained by this method may not be

close to being equiangular or unit-normed.

To address these drawbacks, the above approach will be modified to use a random

matrix instead of D̂. In particular, the following algorithm will be utilized.

Algorithm 4.1.1. Let G denote the Gram matrix of an equiangular frame {fi}N
i�1 in Rd .

Step 1: Diagonalize G to get G � UDUT , where U is orthogonal and D is diagonal.

3This chapter is an edited version of [10].
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Step 2: Replace the diagonal matrix D with a symmetric random matrix D̃ � [d̃i j ],

where4



d̃ii � 0+ Xii if 1 ≤ i ≤ N − d

d̃ii �
N
d + Xii if N − d + 1 ≤ i ≤ N

and d̃i j for 1 ≤ i < j ≤ N and Xii for 1 ≤ i ≤ N are i.i.d. random variables.

Step 3: Approximate the original Gram matrix G with the random perturbation G̃ �

UD̃UT . The new frame is obtained by diagonalizing G̃.

4.1.2 Perturbations and Deviation from Equiangularity

In order to assess the feasibility of Algorithm 4.1.1 estimates of the deviation from

equiangularity and from tightness are required. The deviation from equiangularity

will be determined first. To begin, we will obtain bounds on ���E[ g̃i j ]
���.

Theorem 4.1.2. Let G be the Gram matrix of some equiangular frame {fi}N
i�1 ⊂ Rd . Let

G � [gi j ] have diagonalization G � UDUT and suppose that G is perturbed to obtain a random

matrix G̃ � UD̃UT where D̃ � [d̃i j ] is given by

d̃i j �




0+ Xii for 1 ≤ i ≤ N − d

N
d + Xii for N − d + 1 ≤ i ≤ N

and furthermore d̃i j (for i , j) and Xii will be i.i.d. random variables with mean 0. Write

G̃ � [ g̃i j ]. Then

α −

√
FP{fi}N

i�1 −
N2

d
≤ |E[ g̃i j ]| ≤ α +

√
FP{fi}N

i�1 −
N2

d
,

where α � |gi j | and FP denotes the frame potential of {fi}.
4We write d̃ii � 0 + Xii here for 1 ≤ i ≤ N − d to emphasize the notion that D̃ should be a “slightly

perturbed” version of D̂ above. Later instances of d̃ii for 1 ≤ i ≤ N − d will just use the notation d̃ii � Xii .
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Proof. Let λi denote the eigenvalues of G arranged in increasing order. Then

E[ g̃i j ] �
N∑

m�1

N∑
n�1

uim u jnE[d̃mn ]

�

N∑
m�N−d+1

uimu jm
N
d

�

N∑
m�N−d+1

uimu jm

[ N
d
− λm + λm

]

� gi j +

N∑
m�N−d+1

uim u jm

[ N
d
− λm

]
.

We will compute the upper bound first.

Now, by the triangle inequality

|E[ g̃i j ]| ≤ |gi j | +

������

N∑
m�N−d+1

uimu jm

[ N
d
− λm

] ������
.

By Cauchy-Schwarz, this becomes

|E[ g̃i j ]| ≤ |gi j | +

������

N∑
m�N−d+1

uim u jm

[ N
d
− λm (G)

] ������

≤ α +

√√√ N∑
m�N−d+1

u2
im u2

jm

√√√ N∑
m�N−d+1

(
N
d
− λm)2

≤ α +

√√√ N∑
m�N−d+1

N2

d2 − 2N
d

N∑
m�N−d+1

λm +

N∑
m�N−d+1

λ2
m

� α +

√
N2

d
− 2N

d
tr G + FP{fi}N

i�1

� α +

√
FP{fi}N

i�1 −
N2

d

where the last equality makes use of the fact that tr G � N .
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For the lower bound, we use the reverse triangle inequality to obtain

|E[ g̃i j ]| �
������
gi j +

N∑
m�N−d+1

uim u jm (
N
d
− λm)

������

≥

������
α −

������

∑
m

uim u jm (
N
d
− λm)

������

������

≥ α −
������

∑
m

uim u jm (
N
d
− λm)

������
.

Now, since

������

N∑
m�N−d+1

uim u jm

[ N
d
− λm (G)

] ������
≤

√√√ N∑
m�N−d+1

u2
im u2

jm

√√√ N∑
m�N−d+1

(
N
d
− λm)2

≤

√
FP{fi}N

i�1 −
N2

d

as shown above, we have

|E[ g̃i j ]| ≥ α −
������

∑
m

uim u jm (
N
d
− λm)

������

≥ α −

√
FP{fi}N

i�1 −
N2

d

which proves the result. �

We must now estimate the deviation of g̃i j from its expectation.

Theorem4.1.3. Let G � [gi j ] denote the Grammatrix of some real (N , d) frame, not necessarily

tight. Suppose that G has the diagonalization G � UDUT and write U � [ui j ]. Define the

random matrix D̃ � [d̃i j ], 1 ≤ i, j ≤ N where the entries of D̃ are distributed as follows:

d̃ii � Xii if 1 ≤ i ≤ N − d

d̃ii �
N
d
+ Xii if N − d + 1 ≤ i ≤ N .
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and d̃i j , Xii are i.i.d. with mean 0 and variance σ2. Let ε > 0. Then

P(��| g̃i j | − |E[ g̃i j ]|�� ≥ ε) ≤
2σ2

ε2 ,

where g̃i j is the (i, j)th entry of the matrix G̃ � UD̃UT .

Proof. By the reverse triangle inequality, ��| g̃i j | − |E[ g̃i j ]|�� ≤ | g̃i j − E[ g̃i j ]|. Therefore

{��| g̃i j | − |E[ g̃i j ]|�� ≥ ε} ⊆ {| g̃i j − E[ g̃i j ]| ≥ ε}
and so P(��| g̃i j | − |E[ g̃i j ]|�� ≥ ε) ≤ P(| g̃i j − E[ g̃i j ]| ≥ ε).

Now, by Chebyshev’s inequality it follows that

P(| g̃i j − E[ g̃i j ]| ≥ ε) ≤
Var[ g̃i j ]

ε2 .

Note that

g̃i j �
∑

m

∑
n

uim u jn d̃mn

where 1 ≤ m, n ≤ N . Then

Var[ g̃i j ] � Var


∑
m

∑
n

uimu jn d̃mn



� Var


∑
m

∑
n>m

{uim u jn + uin u jm}d̃mn +

∑
m

uimu jm d̃mm


�

∑
m

∑
n>m

{uim u jn + uinu jm}2 Var[d̃mn ] +
∑

m

u2
imu2

jm Var[d̃mm ].

Recall that σ2 � Var[d̃mn ] for 1 ≤ m, n ≤ N . Let ui and u j denote the ith and jth rows of

U. Then the above becomes

Var[ g̃i j ] �
∑

m

∑
n>m

{uimu jn + uinu jm}2σ2
+

∑
m

u2
im u2

jmσ
2

�

∑
m

∑
n>m

(u2
im u2

jn + 2uimuinu jmu jn + u2
inu2

jm)σ2
+

∑
m

u2
im u2

jmσ
2
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� σ2
∑

m

∑
n>m

(u2
im u2

jn + u2
inu2

jm) + 2σ2
∑

m

∑
n>m

uim uinu jm u jn + σ2
∑

m

u2
im u2

jm

� σ2
∑

m

∑
n,m

u2
im u2

jn + 2σ2
∑

m

∑
n>m

uimuinu jmu jn + σ2
∑

m

u2
imu2

jm

� σ2 *
,

∑
m

∑
n

u2
imu2

jn −
∑

m

u2
im u2

jm
+
-
+ 2σ2

∑
m

uimu jm

∑
n>m

uinu jn + σ2
∑

m

u2
imu2

jm

� σ2 *
,

∑
m

u2
im

∑
n

u2
jn −

∑
m

u2
imu2

jm
+
-
+ σ2

∑
m

uimu jm *
,
2
∑
n>m

uinu jn+
-
+ σ2

∑
m

u2
im u2

jm

� σ2 *
,
‖ui ‖

2
‖u j ‖

2
−

∑
m

u2
im u2

jm
+
-
+ σ2

∑
m

uim u jm

∑
n,m

uinu jn + σ2
∑

m

u2
im u2

jm

� σ2 *
,
1−

∑
m

u2
imu2

jm
+
-
+ σ2

∑
m

uimu jm *
,

∑
n

uin u jn − uim u jm+
-
+ σ2

∑
m

u2
im u2

jm

� σ2

1−

∑
m

u2
imu2

jm +

∑
m

uim u jm

∑
n

uinu jn −
∑

m

u2
im u2

jm


+ σ2

∑
m

u2
im u2

jm

� σ2

1+

〈
ui , u j

〉2
− 2

∑
m

u2
im u2

jm


+ σ2

∑
m

u2
imu2

jm

� σ2

1+

〈
ui , u j

〉2
−

∑
m

u2
imu2

jm


.

Since
〈
ui , u j

〉2
is either 0 or 1 it follows that Var[ g̃i j ] ≤ 2σ2, and so

P(| g̃i j − E[ g̃i j ]| ≥ ε) ≤
Var[ g̃i j ]

ε2

≤
2σ2

ε2 .

�

4.1.3 Perturbations with Laplace Random Variables

Let G � [gi j ] denote the Gram matrix of some (N , d) frame, not necessarily tight.

Suppose that G has the diagonalization G � UDUT . Define the random matrix D̃ �

[d̃i j ], 1 ≤ i, j ≤ N where

d̃ii � 0 if 1 ≤ i ≤ N − d
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d̃ii �
N
d

if N − d + 1 ≤ i ≤ N

where d̃i j for 1 ≤ i < j ≤ N are i.i.d. Laplace random variables with zero mean and

variance 2b2. Finally, define G̃ � [ g̃i j ] to be UD̃UT .

Recall that a random variable X is aGamma random variablewith parameters k, b

if it has PDF and CDF given by

fX (x) �
xk−1e−

x
b

bkΓ(k)

FX (x) �
γ(k, x

b )
Γ(k)

,

for x ≥ 0, where

γ(k, x) B
∫ x

0
tk−1e−t dt

is the lower incomplete Gamma function.

Lemma 4.1.4. Let Yi �
∑

j,i |d̃i j |. Then Yi ∼ Γ(N − 1, b).

Proof. This result follows from the fact that the absolute value of a Laplace random

variable with mean 0 is an exponential random variable. �

Lemma 4.1.5. Let X, Y be independent real random variables with respective PDFs fX , fY and

respective CDFs FX , FY . Then the CDF of Y −X is given by

FY−X (z) � ( fX ? FY)(z)

where? denotes the cross-correlation of two functions:

( f ? g)(z) B
∫
∞

−∞

f (t)∗g(t + z) dt.

Define the Gershgorin discs Gi for 1 ≤ i ≤ N by

Gi �
{

x ∈ R : ���x − d̃ii
��� ≤ Yi

}
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where Yi is the gamma random variable defined in Lemma 4.1.4. By the Gershgorin

Circle Theorem, all of the eigenvalues of G̃ must lie in the union ∪N
i�1Gi . Since each disc

is centered at either 0 or N
d and the radius of each disc is Yi , it follows that the frame

obtained from G̃ will be very nearly tight if Yi ≤ ε, where ε > 0 is some small positive

number. In other words, the frame is likely to be nearly tight if

FYi (ε) �
γ(N − 1, εb )

(N − 2)!
≈ 1

for some small ε.

Even if the frame is nearly tight, it may not be a frame for Rd . To obtain a frame

for Rd from G̃, the rank of G̃ must be equal to d. This can be guaranteed if ∪N−d
i�1 Gi

is disjoint from ∪N
i�N−d+1Gi , since the Gershgorin Circle Theorem will then imply that

precisely N − d eigenvalues of G̃ are (nearly) 0 and the remaining d eigenvalues will be

positive.

Note that {∪N−d
i�1 Gi}∩ {∪N

i�N−d+1Gi} � ∅ if

max
1≤i≤N−d

(d̃ii + Yi) < min
N−d+1≤i≤N

(d̃ii − Yi)

or equivalently

M1 B max
1≤i≤N−d

Yi < min
N−d+1≤i≤N

(N
d
− Yi

)
B M2

This is because M1 is the supremum of the first collection of Gershgorin circles and

M2 is the infimum of the other collection. Therefore the two collections of Gershgorin

circles are disjoint if M B M2 −M1 > 0. In particular, this proves Proposition 4.1.6.

Proposition 4.1.6. The probability that∪N−d
i�1 Gi is disjoint from∪N

i�N−d+1Gi is bounded below

by 1− FM (0).

Lemma 4.1.5 and the following result will be required to estimate FM .

Lemma 4.1.7. The density function of M1 and distribution function of M2 are given by

fM1 (y) � (N − d)


γ(N − 1, y
b )

(N − 2)!



N−d−1
yN−2e−

y
b

bN−1(N − 2)!
(4.1.1)
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FM2 (y) � 1−


γ(N − 1,
N
d −y

b )
(N − 2)!



d

. (4.1.2)

Since M � M2 −M1 it follows that FM (y) � ( fM1 ?FM2 )(y) by Lemma 4.1.5. FM will

be used to estimate the probability that the Gershgorin circles are disjoint.

The following results will be required.

Lemma 4.1.8 (Bernoulli’s Inequality). Let x > −1 and n ≥ 2 where n ∈ N. Then

(1+ x)n
≥ 1+ nx.

Lemma 4.1.9. Suppose p > 0. Then

∫ x

0
e−tp

dt �
1
p
γ

(
1
p

, xp
)

.

Proof. This follows from the change of variable tp
7→ u. �

Theorem 4.1.10. [Theorem 1, [1]] Let p ∈ (0, 1), x > 0 and set β � [Γ(1+ 1
p )]−p . Then

[1− e−βxp
]

1
p <

1
Γ(1+ 1

p )

∫ x

0
e−tp

dt < [1− e−xp
]

1
p .

Lemma 4.1.9 and Theorem 4.1.10 together give the following bounds for γ.

Corollary 4.1.11. Let x > 0 and N > 1. Then

[1− e−βx ]N−1 <
γ(N − 1, x)

(N − 2)!
< [1− e−x ]N−1 where β �

1
N−1√(N − 1)!

.

Theorem 4.1.12. The probability that ∪N−d
i�1 Gi is disjoint from ∪N

i�N−d+1Gi is bounded below

by

1− (N − d)
Ñ∑

k�0

(−1)k
(
Ñ
k

) 


1
(k + 1)N+1


1−

γ(N − 1, (k + 1) N
bd )

(N − 2)!



+
d(N − 1)e−β

N
bd

(k + 1− β)N+1

γ(N − 1, (k + 1− β) N
bd )

(N − 2)!






55

where Ñ B (N − 1)(N − d − 1) and β B 1
N−1√(N−1)!

. In particular, the probability goes to 1 as

the variance 2b2 of d̃i j goes to 0.

Proof. Since FM (y) � fM1 ? FM2 (y) it follows that

FM (0) �
∫

R

fM1 (t)FM2 (t) dt

�

∫
∞

0
fM1 (t)FM2 (t) dt

�
N − d

bN−1[(N − 2)!]N−d

∫
∞

0
γ(N − 1, t

b )N−d−1tN−2e−
t
b

*..
,
1−



γ(N − 1,
N
d −t
b )

(N − 2)!



d
+//
-

dt

�
N − d

bN−1(N − 2)!

∫
∞

0



γ(N − 1, t
b )

(N − 2)!



N−d−1

tN−2e−
t
b

*..
,
1−



γ(N − 1,
N
d −t
b )

(N − 2)!



d
+//
-

dt

�
N − d

bN−1(N − 2)!

∫
∞

0



γ(N − 1, t
b )

(N − 2)!



N−d−1

tN−2e−
t
b dt

−
N − d

bN−1(N − 2)!

∫ N
d

0



γ(N − 1, t
b )

(N − 2)!



N−d−1 

γ(N − 1,
N
d −t
b )

(N − 2)!



d

tN−2e−
t
b dt

where the limits on the second integral are a consequence of the fact that the CDF of a

Gamma distribution is zero for negative arguments. Nowmake the substitution t
b 7→ u

to obtain

FM (0) �
N − d

bN−1(N − 2)!
bN−1

∫
∞

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1

uN−2e−u du

−
N − d

bN−1(N − 2)!
bN−1

∫ N
bd

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1 

γ(N − 1, N
bd − u)

(N − 2)!



d

uN−2e−u du

�
N − d

(N − 2)!

∫
∞

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1

uN−2e−u du

−
N − d

(N − 2)!

∫ N
bd

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1 

γ(N − 1, N
bd − u)

(N − 2)!



d

uN−2e−u du.
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Define the integrals I1 and I2 by

I1 �

∫
∞

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1

uN−2e−u du

and

I2 �

∫ N
bd

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1 

γ(N − 1, N
bd − u)

(N − 2)!



d

uN−2e−u du.

Corollary 4.1.11 will be used to obtain bounds for I1 and I2. Note that FM (0) �

N−d
(N−2)! (I1 − I2). Beginning with I2, the lower bound in Corollary 4.1.11 gives

I2 ≥

∫ N
bd

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1 [
1− e−β( N

bd−u)
] d(N−1)

uN−2e−u du.

Since u ∈ [0, N
bd ], e−β( N

bd−u) < 1 except at u � 0. Therefore Lemma 4.1.8 may be applied

to [1− e−β( N
bd−u)]d(N−1) to get

I2 ≥

∫ N
bd

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1

[1− d(N − 1)e−β( N
bd−u)]uN−2e−u du.

Thus

I1 − I2 ≤

∫
∞

N
bd

[
γ(N − 1, u)

(N − 2)!

] N−d−1

uN−2e−u du

+ d(N − 1)e−β
N
bd

∫ N
bd

0

[
γ(N − 1, u)

(N − 2)!

] N−d−1

uN−2e−u(1−β) du

≤

∫
∞

N
bd

[1− e−u ](N−1)(N−d−1) uN−2e−u du

+ d(N − 1)e−β
N
bd

∫ N
bd

0
[1− e−u ](N−1)(N−d−1) uN−2e−u(1−β) du

where the second inequality follows from the upper bound in Corollary 4.1.11.
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Set Ñ � (N − 1)(N − d − 1). Then

(1− e−u)Ñ uN−2e−u
�

Ñ∑
k�0

(−1)k
(
Ñ
k

)
e−kuuN−2e−u

�

Ñ∑
k�0

(−1)k
(
Ñ
k

)
e−u(k+1)uN−2

and so

∫
∞

N
bd

[1− e−u ]Ñ uN−2e−u du �

∫
∞

N
bd

Ñ∑
k�0

(−1)k
(
Ñ
k

)
e−u(k+1)uN−2 du

�

Ñ∑
k�0

(−1)k
(
Ñ
k

) ∫
∞

N
bd

e−u(k+1)uN−2 du

�

Ñ∑
k�0

(−1)k
(
Ñ
k

) [ N−2∑
j�0

(−1)N−2− j (N − 2)!
j![−(k + 1)]N−1− j e−u(k+1)u j ����

∞

u� N
bd

�

Ñ∑
k�0

(−1)k
(
Ñ
k

) N−2∑
j�0

(−1)N− j−1(N − 2)!
(−1)N− j−1 j!(k + 1)N− j−1 e−

N
bd (k+1)

( N
bd

) j

�

Ñ∑
k�0

(−1)k
(
Ñ
k

)
(N − 2)!

(k + 1)N−1 e−
N
bd (k+1)

N−2∑
j�0

(k + 1) j

j!

( N
bd

) j
.

This can be simplified further using

γ(N − 1, y) �
∫ y

0
tN−2e−t dt

� (N − 2)! *.
,
1− e−y

N−2∑
j�0

y j

j!
+/
-

which implies that

(N − 2)!e−y
N−2∑
j�0

y j

j!
� (N − 2)! − γ(N − 1, y).
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Hence

∫
∞

N
bd

[1− e−u ]Ñ uN−2e−u du �

Ñ∑
k�0

(−1)k
(
Ñ
k

)
1

(k + 1)N−1 (N − 2)!e−
N
bd (k+1)

N−2∑
j�0

(k + 1) j

j!

( N
bd

) j

�

Ñ∑
k�0

(−1)k
(
Ñ
k

)
(N − 2)! − γ(N − 1, N

bd (k + 1))
(k + 1)N−1 .

Similarly,

∫ N
bd

0
[1− e−u ]Ñ uN−2e−u(1−β) du �

Ñ∑
k�0

(−1)k
(
Ñ
k

) ∫ N
bd

0
e−u(1−β+k)uN−2 du

�

Ñ∑
k�0

(−1)k
(
Ñ
k

)
γ(N − 1, (1− β + k) N

bd )
(1− β + k)N−1 ,

which follows from the equality

∫ N
bd

0
e−u(1−β+k)uN−2 du �



N−2∑
j�0

e−u(1−β+k) (−1)N−2− j (N − 2)!
j!(−1)N− j−1(1− β + k)

u j
�������

N
bd

u�0

�
(N − 2)!

(1− β + k)N−1


1− e−(1−β+k) N

bd

N−2∑
j�0

(1− β + k) j

j!

( N
bd

) j


�
γ(N − 1, (1− β + k) N

bd )
(1− β + k)N−1 .

Therefore

FM (0) �
N − d

(N − 2)!
(I1 − I2)

≤
N − d

(N − 2)!

∫
∞

N
bd

[1− e−u ](N−1)(N−d−1) uN−2e−u du

+ d(N − 1)e−β
N
bd

N − d
(N − 2)!

∫ N
bd

0
[1− e−u ](N−1)(N−d−1) uN−2e−u(1−β) du

�
N − d

(N − 2)!

Ñ∑
k�0

(−1)k
(
Ñ
k

)
(N − 2)! − γ(N − 1, N

bd (k + 1))
(k + 1)N−1
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+ d(N − 1)e−β
N
bd

N − d
(N − 2)!

Ñ∑
k�0

(−1)k
(
Ñ
k

)
γ(N − 1, (1− β + k) N

bd )
(1− β + k)N−1

which finishes the proof. �

Theorem4.1.12 estimates theprobability that theperturbation G̃will have the correct

rank to be the Gram matrix of a frame for Rd . In conjunction with Proposition 4.1.6,

Theorem 4.1.12 gives the following corollary.

Corollary 4.1.13. Let G̃ be as above. Then the probability that the eigenvalues of G̃ lie within

ε of 0 and N
d and that G̃ is approximately rank d in the sense that ∪N−d

i�1 Gi ∩∪
N
i�N−d+1Gi � ∅

is bounded below by

FY1 (ε)N
− FM (0).

Proof. Let λi denote the ith eigenvalue of G̃, with λ1 ≤ λ2 ≤ . . . ≤ λN and define

A �

{
|λi | < ε for 1 ≤ i ≤ N − d,

����λi −
N
d

���� < ε for N − d + 1 ≤ i ≤ N
}

B � {∪N−d
i�1 Gi ∩∪

N
i�N−d+1Gi � ∅}.

Then it must be shown that P(A ∩ B) ≥ FYi (ε)N
− FM (0). To do this, note that for any

events A and B we have

P(A ∩ B) � P(A) + P(B) − P(A ∪ B) ≥ P(A) + P(B) − 1.

Since

P(A) � P(Y1 < ε ∩ . . . ∩ YN < ε) � FY1 (ε)N

and P(B) ≥ 1− FM (0) by Proposition 4.1.6, it follows that

P(A ∩ B) ≥ P(A) + P(B) − 1

≥ FY1 (ε)N
+ (1− FM (0)) − 1

which finishes the proof. �
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4.1.4 Deviation from Tightness with Bounded Random Variables

Let G � [gi j ] denote the Gram matrix of some (N , d) frame, not necessarily tight.

Suppose that G has the diagonalization G � UDUT . Define the random matrix D̃ �

[d̃i j ], 1 ≤ i, j ≤ N as in Algorithm 4.1.1, where d̃i j for 1 ≤ i < j ≤ N and Xii for

1 ≤ i ≤ N are i.i.d. bounded random variables with zero mean and variance σ2. Finally,

define G̃ � [ g̃i j ] to be UD̃UT . The deviation from equiangularity can be estimated

using Theorem 4.1.3. The goal of this subsection is to prove Theorem 4.1.17, which

gives a probabilistic estimate for the tightness and rank of the frame obtained using

bounded i.i.d. random variables with mean zero and finite second moment.

The following results detail the probabilistic estimates for the eigenvalues of the

new matrix G̃. The estimate given in Theorem 4.1.17 is based on the following result

from [21].

Theorem 4.1.14 (Corollary 4.2, [21]). Let (Yk)k≥1 denote a finite set of random matrices and

let (Ak)k≥1 denote a finite set of deterministic matrices, all Hermitian and of size d × d. Assume

that

EYk � 0 and Y2
k 4 A2

k a.s.,

where the notation A 4 B for Hermitian matrices A and B means that B − A is positive

semidefinite, or equivalently that B −A has nonnegative eigenvalues. Then for all t ≥ 0,

P

λmax *

,

∑
k

Yk+
-
≥ t


≤ de−

t2
2σ2

where

σ2 B
1
2



∑
k

(A2
k + EY2

k )


and the given norm is the spectral norm.

Theorem 4.1.14 is required to obtain probabilistic estimates on the minimum and

maximum eigenvalues of a random Hermitian matrix.

Theorem 4.1.15. Let Y � [yi j ]1≤i, j≤N be a symmetric matrix whose entries are real-valued

random variables. Assume further that the entries on and above the main diagonal have zero
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mean, satisfy |yi j | ≤ m a.s. and E[y2
i j ] � α and are i.i.d. Let ε > 0 be given. Then

P[−ε ≤ λmin(Y) ≤ λmax(Y) ≤ ε] ≥ 1− 2Ne−
ε2

N (m2+α) .

Proof. Let {ei}N
i�1 denote the standard basis for RN . Then

Y �

N (N+1)
2∑

i�1
Yi

where

Yi �




yiieieT
i if 1 ≤ i ≤ N

y jk (e jeT
k + ekeT

j ) if N + 1 ≤ i ≤ N (N+1)
2

and y jk runs through the entries of Y that lie above the main diagonal as i goes from

N + 1 to N (N+1)
2 (so j , k). Then

EYi � 0 for 1 ≤ i ≤
N (N + 1)

2
(4.1.3)

Y2
i � y2

iieieT
i 4 m2eieT

i for 1 ≤ i , N (4.1.4)

Y2
i � y2

jk (e jeT
j + ekeT

k ) 4 m2(e jeT
j + ekeT

k ) for N + 1 ≤ i ≤
N (N + 1)

2
. (4.1.5)

Theorem 4.1.14 then implies that

P[λmax(Y) ≥ ε] � P


λmax

*..
,

N (N+1)
2∑

i�1
Yi

+//
-
≥ ε


≤ Ne−

ε2
2σ2 ,

where σ2 is as given in the statement of Theorem 4.1.14.

Now, it remains to compute σ2. We have

σ2
�

1
2



N∑
n�1

(
m2eieT

i + EY2
n

)
+

N (N+1)
2∑

n�N+1

(
m2(e jeT

j + ekeT
k ) + EY2

n

)
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�
1
2



N∑
n�1

m2eieT
i +

N∑
n�1

αeneT
n +

N (N+1)
2∑

n�N+1
m2(e jeT

j + ekeT
k ) +

N (N+1)
2∑

n�N+1
α(e jeT

j + ekeT
k )



�
1
2


(m2

+ α)IN + (m2
+ α)

N∑
j�1

∑
j<k≤N

(e jeT
j + ekeT

k )


�
m2 + α

2


IN +

N∑
j�1

∑
j<k≤N

(e jeT
j + ekeT

k )


�
m2 + α

2


IN +

N∑
j�1

∑
j<k≤N

e jeT
j +

N∑
j�1

∑
j<k≤N

ekeT
k



�
m2 + α

2


IN +

N∑
j�1

∑
j<k≤N

e jeT
j +

N∑
k�2

k−1∑
j�1

ekeT
k



�
m2 + α

2


IN +

N∑
j�1

(N − j)e jeT
j +

N∑
k�2

(k − 1)ekeT
k



�
m2 + α

2


IN + N

N∑
j�1

e jeT
j −

N∑
j�1

je jeT
j +

N∑
k�2

kekeT
k −

N∑
k�2

ekeT
k



�
m2 + α

2


IN + NIN − e1eT

1 −

N∑
k�2

ekeT
k



�
m2 + α

2
‖NIN ‖

�
m2 + α

2
N .

To finish the proof, note that

P[λmin(Y) ≤ −ε] � P[λmax(−Y) ≥ ε] ≤ Ne−
ε2

2σ2

since nothing about the previous calculations or Equations (4.1.3) to (4.1.5) is changed

if we replace Y with −Y. Therefore

P[−ε ≤ λmin(Y) ≤ λmax(Y) ≤ ε] ≥
(
1− P[λmin(Y) ≤ −ε]

)
+

(
1− P[λmax(Y) ≥ ε]

)
− 1

≥ 1− 2Ne−
ε2

2σ2



63

� 1− 2Ne−
ε2

N (m2+α)

where the first line follows from

P(A ∩ B) � P(A) + P(B) − P(A ∪ B) ≥ P(A) + P(B) − 1.

�

The above will be used to obtain the probability that the perturbed Gram matrix is

nearly tight. The last tool required is Weyl’s inequality.

Theorem 4.1.16 (Weyl’s Inequality). Let A, B, C be N × N Hermitian matrices with eigen-

values arranged in ascending order (so λ1(B) ≤ λ2(B) ≤ . . .). Suppose that C � A + B. Then

for 1 ≤ i ≤ N we have

λi (A) + λ1(B) ≤ λi (C) ≤ λi (A) + λN (B).

Theorem 4.1.15 and Theorem 4.1.16 together give Theorem 4.1.17.

Theorem 4.1.17. Let G � UDUT denote an N ×N Gram matrix where U is orthogonal and

D is diagonal. Let G̃ � UD̃UT where

D̃ � D + E

and E is a symmetric random matrix satisfying the conditions in Theorem 4.1.15. Then

|λi (G̃) − λi (G) | ≤ ε

with probability greater than or equal to 1− 2Ne−
ε2

N (m2+α) .

Proof. First, note that the eigenvalues of G̃ are precisely equal to the eigenvalues of D̃,

since

det(λI −G) � det(λI −UD̃UT )

� det(U) det(λI − D̃) det(UT )
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� det(λI − D̃).

Now, by Weyl’s Inequality it follows that

λi (D) + λmin(E) ≤ λi (D̃) ≤ λi (D) + λmax(E)

for 1 ≤ i ≤ N . Fix ε > 0. Then by Theorem 4.1.15, it follows that

P[−ε ≤ λmin(E) ≤ λmax(E) ≤ ε] ≥ 1− 2Ne−
ε2

N (m2+α) .

Therefore

λi (D) − ε ≤ λi (D̃) ≤ λi (D) + ε

for 1 ≤ i ≤ N with probability at least

1− 2Ne−
ε2

N (m2+α) ,

which can be restated as

|λi (D̃) − λi (D) | ≤ ε

for 1 ≤ i ≤ N with probability at least 1 − 2Ne−
ε2

N (m2+α) . Since λ(D̃) � λ(G̃) and

λ(D) � λ(G), the proof is complete. �

Example 4.1.18 (Ranges for eigenvalues of random perturbations). This example is a

numerical illustration of Theorem 4.1.17. Let

G �



1.0000 0.2920 0.2920 −0.2920 0.2920 −0.2920 0.2920

0.2920 1.0000 0.2920 −0.2920 0.2920 0.2920 −0.2920

0.2920 0.2920 1.0000 −0.2920 0.2920 0.2920 −0.2920

−0.2920 −0.2920 −0.2920 1.0000 0.2920 0.2920 −0.2920

0.2920 0.2920 0.2920 0.2920 1.0000 0.2920 0.2920

−0.2920 0.2920 0.2920 0.2920 0.2920 1.0000 −0.2920

0.2920 −0.2920 −0.2920 −0.2920 0.2920 −0.2920 1.0000



.
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The eigenvalues of G are given by

λ(G) � {0, .3238, .7080, .7080, 1.3550, 1.8759, 2.0292},

and so G is the Gram matrix of an equiangular (but not tight) unit-normed frame of

seven vectors in R6. Suppose we wish to add a random perturbation to G � UDUT

in order to approximate a UNTF of seven vectors in R5, obtaining a new Gram matrix

G̃ � U (D̃ + E)UT where

D̃ � diag
{
0, 0, 7

5
, 7
5

, 7
5

, 7
5

, 7
5

}

and E � [ei j ] is a symmetric random matrix whose diagonal and upper triangular

entries are i.i.d. truncated normal random variables with mean 0, variance 1 and

maximum value m.

Example 4.1.18 gives box plots depicting the largest singular value of E (or equiv-

alently, the spectral norm ‖E‖ of E) over 1,000 trials for m � 1, .1 and .01. By

Theorem 4.1.17, the smaller ‖E‖ is, the less deviation there is between the eigenvalues

of D̃ and D̃ + E.

0 0.5 1 1.5 2 2.5 3

m � 1

m � .1

m � .01

‖E‖

|e
ij
|
≤

m

0.020 0.025 0.030 0.035

m � .01

‖E‖

|e
ij
|
≤

m

Figure 4.1: These boxplots show the distribution of the largest singular values for a
random perturbation E over 1,000 trials. The entries of E are chosen using a truncated
normal distribution and contained within [−m, m]. The first boxplot shows the results
for all three choices of m and the second boxplot focuses specifically on the results for
m � .01.
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4.2 approximate etfs when equiangular frames do not
exist

4.2.1 Optimal Frames to Add to ETFs

ETFs are useful due to their minimal worst-case coherence, and so a natural way to

develop an approximate ETF is to construct aUNTFwith very lowworst-case coherence.

Since ETFs already have the best possible worst-case coherence, it is reasonable to use

a given ETF to construct a UNTF that has low worst-case coherence.

In particular, let d ∈ N and consider an ETF {fi}d+1
i�1 ⊂ Rd satisfying the condition〈

fi , f j
〉
� −

1
d for 1 ≤ i < j ≤ d + 1. This ETF is simple to construct for all choices of

d and no linearly dependent spanning set of unit vectors in Rd has better worst-case

coherence. Wewould also like to construct ETFs of different sizes but this is problematic

since ETFs do not exist for all choices of N and d. To address this we will use the easy

to construct trivial ETF to build a UNTF with low worst-case coherence, in the hopes

of constructing UNTFs that resemble ETFs.

Definition 4.2.1. Let d ∈ N and let {fi}d+1
i�1 ⊂ Rd be an ETF satisfying the condition〈

fi , f j
〉
� −

1
d for 1 ≤ i < j ≤ d + 1. Let G0 ⊂ Rd be a UNTF. We say that G0 is optimal

with respect to {fi}
d+1
i�1

if it minimizes the worst-case coherence of {fi}d+1
i�1 ∪ G among

all possible UNTFs G ⊂ Rd .

To determine which UNTFs are optimal to add to the original ETF, we have Theo-

rem 4.2.5, which itself requires Lemmas 4.2.2 to 4.2.4.

Lemma 4.2.2. Let {fi}d+1
i�1 ⊂ Rd be an ETF satisfying

〈
fi , f j

〉
� −

1
d . Then the following

properties are true:

i.
∑d+1

i�1 fi � 0, or equivalently

fi � −
∑
j,i

f j

for 1 ≤ i ≤ d + 1.

ii. Any subset of {fi}d+1
i�1 of size d forms a basis for Rd .
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Proof. To prove the first property, first recall that {fi}d+1
i�1 is a spanning set for Rd since

it is a frame. Let 1 ≤ j ≤ d + 1. Then

〈d+1∑
i�1

fi , f j

〉
�

〈
f j , f j

〉
+

∑
i, j

〈
fi , f j

〉
� 1+ d

(
−

1
d

)
� 0.

Hence
∑d+1

i�1 fi is orthogonal to every element of a spanning set of Rd , and so we must

have
∑d+1

i�1 fi � 0.

To prove the second property, let f ∈ Rd and fix j ∈ {1, . . . , d + 1}. Since {fi}d+1
i�1 is

a spanning set, we can find coefficients {ci}d+1
i�1 such that f �

∑d+1
i�1 cifi. Using the fact

that f j � −
∑

i, j fi , we now write

f �
d+1∑
i�1

cifi

�

∑
i, j

cifi + c jf j

�

∑
i, j

cif j − c j

∑
i, j

fi .

This shows that f is in the span of {fi}i, j . Since f was arbitrary, {fi}i, j must therefore

be a spanning set for Rd and hence a basis (since it has d vectors). �

Lemma 4.2.3. Let {ci}d
i�1 ⊂ R with 0 ≤ cd ≤ · · · ≤ c1 ≤ 1 and satisfying

∑d
i�1 ci � 1. Then

d∑
i�1

c2
i ≤ c1.

Proof. Define the sets C1 and C2 by

C1 �




(y1, . . . , yd) ∈ Rd : 0 ≤ yd ≤ yd−1 ≤ . . . ≤ y1 ≤ 1,
d∑

j�1
y j � 1
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C2 �




(y1, . . . , yd) ∈ R1 :
d∑

j�1
y2

j ≤ y1




.

We will show that these sets are convex. To start, let y, z ∈ C1 with y � (yi)1≤i≤d and

z � (zi)1≤i≤d . Suppose λ ∈ [0, 1]. Then

0 ≤ λyd + (1− λ)zd ≤ . . . ≤ λy1 + (1− λ)z1 ≤ 1

and
d∑

j�1
[λy j + (1− λ)z j ] � 1,

so λy+ (1− λ)z ∈ C1 and C1 is convex.

Now suppose that y and z are in C2 as well, and once again let λ ∈ [0, 1]. Then the

above shows that λy + (1 − λ)z ∈ C1, and since f (t) � t2 is a convex function on R it

follows that f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y) for all x, y ∈ R. Therefore

d∑
j�1

[λy j + (1− λ)z j ]
2
≤

d∑
j�1

[λy2
j + (1− λ)z2

j ]

� λ
d∑

j�1
y2

j + (1− λ)
d∑

j�1
z2

j

≤ λy1 + (1− λ)z1,

which shows that λy+ (1− λ)z ∈ R2 as well. Thus C1 and C2 are both convex sets.

The proof will be finished if we can show that C1 � C2. To do so, note that C2

contains the vectors

y1 �



1

0

0
...

0



, y2 �



1
2
1
2

0
...

0



, . . . , yd �



1
d
1
d
1
d
...
1
d



.
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Since C2 is convex it follows that conv{yi}d
i�1 ⊆ C2, where conv{·} denotes the convex

hull of a collection of vectors. On the other hand, let y � (yi)1≤i≤d ∈ C1. Then it follows

that

y � (y1 − y2)y1 + 2(y2 − y3)y2 + · · · + (d − 1)[yd−1 − yd ]yd−1 + dydyd

∈ conv{yi}d
i�1

since yi − yi+1 ≥ 0 for 1 ≤ i ≤ d − 1 and

(y1 − y2) + · · · + (d − 1)(yd−1 − yd) + dyd � y1 + y2 + · · · + yd

� 1.

Since y ∈ C1 was arbitrary, we have C1 ⊆ conv{yi}d
i�1. By definition, C2 ⊆ C1.

Therefore,

conv{yi}d
i�1 ⊆ C2 ⊆ C1 ⊆ conv{yi}d

i�1,

which shows that C1 � C2 and finishes the proof. �

Lemma 4.2.4. Let {fi}d+1
i�1 ⊂ Rd denote an ETF satisfying 〈fi , f j〉 � −

1
d for 1 ≤ i < j ≤ d + 1.

For 1 ≤ i ≤ d + 1, define Ri by

Ri � conv{f j} j,i �




∑
j,i

c jf j : c j ≥ 0 and
∑
j,i

c j � 1



.

Then for any nonzero f ∈ Rd , there exists i ∈ {1, . . . , d + 1} and α > 0 so that αf ∈ Ri .

Proof. First, note thatwe canwrite f �
∑d

i�1 cifi for some scalars {ci}d
i�1 ⊂ R since {fi}d

i�1

forms a basis for Rd by Lemma 4.2.2. Define P � {i : ci ≥ 0} and N � {i : ci < 0}. Then
f �

∑
i∈P

cifi +
∑
i∈N

cifi

�

∑
i∈P

cifi −
∑
i∈N

|ci |fi

�

∑
i∈P

cifi +
∑
i∈N

|ci |
∑
j,i

f j ,
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where the last equality follows from the fact that
∑d+1

j�1 f j � 0, again from Lemma 4.2.2.

This shows that there exists {βi}d+1
i�1 with βi ≥ 0 such that f �

∑d+1
i�1 βifi .

So let f �
∑d+1

i�1 βifi with βi ≥ 0, and choose j so that β j � min{βi}d+1
i�1 . Then

f �
d+1∑
i�1

βifi

�

∑
i, j

βifi + β jf j

�

∑
i, j

βifi −
∑
i, j

β jfi

�

∑
i, j

(βi − β j)fi ,

where the third equality is obtained using Lemma 4.2.2. Define α �
1∑

m, j (βm−β j ) . Then

we see that α is well-defined since f , 0. α is also positive since βm ≥ β j for m , j.

Furthermore, if we define β̃i � α(βi − β j) for i , j, then it follows that β̃i ≥ 0 for i , j

and

∑
i, j

β̃i �

∑
i, j (βi − β j)∑

m, j (βm − β j)

� 1.

Therefore αf �
∑

i, j β̃ifi ∈ R j . �

We now use the previous results to derive a lower bound on the maximum cross-

correlation for a set of vectors containing an ETF {fi}d+1
i�1 in Rd . The bound is similar to

the orthoplex bound [6].

Theorem4.2.5. Let {fi}d+1
i�1 ⊂ Rd denote anETF satisfying 〈fi , f j〉 � −

1
d for 1 ≤ i < j ≤ d +1.

Let f ∈ Sd−1. Then

max
i
|〈f, fi〉| ≥

1
√

d
.

Proof. By Lemma 4.2.4, there exists i ∈ {1, . . . , d + 1} and α > 0 so that αf ∈ Ri , where

Ri � conv{f j} j,i
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Without loss of generality, suppose

αf ∈ Rd+1 �




d∑
i�1

cifi : ci ≥ 0 for 1 ≤ i ≤ d and
d∑

i�1
ci � 1




.

Then αf �
∑d

i�1 cifi where {ci}d
i�1 is a sequence of scalars satisfying ci ≥ 0 for 1 ≤ i ≤ d

and
∑d

i�1 ci � 1. Since ‖f‖ � 1 we have

α2
� α2

〈f, f〉

� 〈αf, αf〉

�

d∑
i�1

d∑
j�1

cic j
〈
fi , f j

〉
�

d∑
i�1

c2
i ‖fi ‖

2
+

d∑
i�1

∑
j,i

ci c j
〈
fi , f j

〉
�

d∑
i�1

c2
i −

1
d

d∑
i�1

∑
j,i

cic j

�

d∑
i�1

c2
i −

1
d

d∑
i�1

ci

∑
j,i

c j

�

d∑
i�1

c2
i −

1
d

d∑
i�1

ci



*.
,

ci +
∑
j,i

c j
+/
-
− ci



�

d∑
i�1

c2
i −

1
d

d∑
i�1

ci

d∑
j�1

c j +
1
d

d∑
i�1

c2
i

�
d + 1

d

d∑
i�1

c2
i −

1
d

*
,

d∑
i�1

ci+
-

2

�
d + 1

d

d∑
i�1

c2
i −

1
d

where the last equality follows from the fact that
∑d

i�1 ci � 1. Hence

α �

√√√
d + 1

d

d∑
i�1

c2
i −

1
d

.
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Now, for 1 ≤ m ≤ d, we have

|〈f, fm〉| �

������

〈
1
α

d∑
i�1

cifi , fm

〉������

�

������

∑d
i�1 ci 〈fi , fm〉

α

������

�

��������

cm −
1
d
∑

i,m ci√
d+1

d
∑d

i�1 c2
i −

1
d

��������

�

��������

cm −
1
d

(∑d
i�1 ci − cm

)
√

d+1
d

∑d
i�1 c2

i −
1
d

��������

�

��������

d+1
d cm −

1
d√

d+1
d

∑d
i�1 c2

i −
1
d

��������
.

Without loss of generality, suppose that max1≤i≤d{ci} � c1. Then

max
1≤m≤d+1

|〈f, fm〉| ≤ max



1
d√

d+1
d

∑d
i�1 c2

i −
1
d

,
d+1

d c1 −
1
d√

d+1
d

∑d
i�1 c2

i −
1
d




since 0 ≤ cm ≤ c1 for 1 ≤ m ≤ d. On the other hand,

|〈f, fd+1〉| �
1
d√

d+1
d

∑d
i�1 c2

i −
1
d

.

Therefore

max
1≤m≤d+1

|〈f, fm〉| ≤ max



1
d√

d+1
d

∑d
i�1 c2

i −
1
d

,
d+1

d c1 −
1
d√

d+1
d

∑d
i�1 c2

i −
1
d




.
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Now note that 1
d ≤

d+1
d c1 −

1
d if and only if c1 ∈

[
2

d+1 , 1
]
. Similarly, 1

d ≥
d+1

d c1 −
1
d if and

only if c1 ∈
[

1
d , 2

d+1

]
(note that c1 ≥

1
d since

∑d
i�1 ci � 1). Hence

max
1≤m≤d+1

|〈f, fm〉| �




d+1
d c1−

1
d√

d+1
d

∑d
i�1 c2

i −
1
d

if c1 ∈ [
2

d+1 , 1]

1
d√

d+1
d

∑d
i�1 c2

i −
1
d

if c1 ∈ [
1
d , 2

d+1 ]
.

If 2
d+1 ≤ c1 ≤ 1, then by Lemma 4.2.3 we have

max
1≤m≤d+1

|〈f, fm〉| �

d+1
d c1 −

1
d√

d+1
d

∑d
i�1 c2

i −
1
d

≥

√
d + 1

d
c1 −

1
d

≥

√
2
d
−

1
d

�
1
√

d
.

If instead 1
d ≤ c1 ≤

2
d+1 , then once again by Lemma 4.2.3 we have

max
1≤m≤d+1

|〈f, fm〉| �

1
d√

d+1
d

∑d
i�1 c2

i −
1
d

≥

1
d√

d+1
d c1 −

1
d

≥

1
d√

2
d −

1
d

�
1
√

d
.

Therefore |〈f, fm〉| ≥
1
√

d
. �

Theorem 4.2.5 shows us the best possible worst-case coherence that we can hope for

when adding UNTFs to the given ETF. To actually find such a UNTF, we will apply the

k-angle construction given by Theorem 3.3.16.
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Theorem 4.2.6. Let d ∈ N and set k �

⌈
d+1

2

⌉
. Let {gi}d′

i�1 with d′ �
(d+1

k
)
denote the UNTF

obtained from the ETF {fi}d+1
i�1 via Theorem 3.3.16 where as usual we have 〈fi , f j〉 � −

1
d . Then

max
1≤i≤d′

1≤ j≤d+1

|〈gi , f j〉| �




1
√

d
if d is odd√

d+2
d2 if d is even.

Proof. By definition of {gi}d′
i�1 and using Lemma 3.3.17, we have

〈
gi , f j

〉
�

√
d

k(d + 1− k)

〈∑
l∈Λi

fl , f j

〉

�




√
d+1−k

dk if j � l for some l ∈ Λi

−

√
k

d(d+1−k) otherwise.

Suppose we choose k �

⌈
d+1

2

⌉
. If d is odd then we have k �

d+1
2 and

√
d + 1− k

dk
�

1
√

d
and −

√
k

d(d + 1− k)
� −

1
√

d
.

Hence maxi, j
���
〈
gi , f j

〉��� �
1
√

d
if d is odd.

If d is even, i.e., if d + 1 is odd, then k �
d+2

2 . This gives

√
d + 1− k

dk
�

√
2d + 2− (d + 2)

d(d + 2)
�

1
√

d + 2

and

−

√
k

d(d + 1− k)
� −

√
d + 2

d(2d + 2− (d + 2))
� −

√
d + 2

d2 .

Since 1
d+2

d2

d+2 ≤ 1, it follows that 1
√

d+2
≤

√
d+2
d2 . Therefore maxi, j

���
〈
gi , f j

〉��� �
√

d+2
d2 if d is

even. �

The only problem with the k-angle construction for this purpose is that in general

the vectors created by the construction can have very bad coherences amongst each

other, despite the fact that they have very good coherences with respect to the original
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ETF. However, it can be possible to choose a subset of the set {gi} constructed in

Theorem 3.3.16 to mitigate this problem.

In particular, since

|〈gi , g j〉| �
d

k(d + 1− k)
����l −

1
d

(k2
− l)

���� (4.2.1)

by Theorem 3.3.16 where l � |Λi ∩ Λ j |, we can minimize the cross-correlation by

choosing the subsets {Λi} properly. To see how, note that

���
〈
gi , g j

〉��� �
d

k(d + 1− k)
����l −

1
d

(k2
− l)

����
�

1
k(d + 1− k)

���(d + 1)l − k2���

or just
���
〈
gi , g j

〉��� �
d + 1

k(d + 1− k)

�����
l −

k2

d + 1

�����
. (4.2.2)

Thus if l is the closest integer to k2

d+1 , then the above inner product is minimized. The

next example shows this approach in action.

Example 4.2.7 (An optimal UNTF to add to a (4, 3) ETF). Let {fi}4
i�1 ⊂ R3 be an ETF

satisfying 〈fi , f j〉 � −
1
3 for 1 ≤ i < j ≤ 4. Set k �

⌈
d+1

2

⌉
� 2. Then we want to find

a collection of subsets of {1, 2, 3, 4} of size k � 2 such that the intersection of any two

members has l � 22

4 � 1 element. One such collection is given by {{1, 2}, {1, 3}, {1, 4}}.
Now define {gi}3

i�1 by

g1 �
f1 + f2
‖f1 + f2‖

g2 �
f1 + f3
‖f1 + f3‖

g3 �
f1 + f4
‖f1 + f4‖

.

Then it canbe checked that {gi}3
i�1 formsanorthonormal basis inR3, and in fact {fi}4

i�1∪

{gi}3
i�1 is a (7, 3) UNTF with worst-case coherence given by 1

√
3
. The corresponding
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Welch bound for a collection of 7 unit vectors in R3 is given by√
7− 3
3 ∗ 6

�

√
2

3
≈ .4714,

whereas 1
√

3
≈ .5774. However, there does not exist a (7, 3) ETF (in fact, the largest

ETF in R3 is a (6, 3) ETF), and so no collection of 7 unit vectors in R3 has worst-case

coherence
√

2
3 .

In addition to minimizing the coherence, we also need to choose the subsets {Λi}
from the k-angle constructionTheorem3.3.16 in such away as tomake sure the resulting

vectors {gi} are tight. Even though the vectors obtained in Example 4.2.7were tight, this

will not always be true in general. One way to do this is by utilizing block designs [23].

Definition 4.2.8. Let X denote a set containing v points and suppose there is a collection

B of subsets (“blocks”) of X where each block has size k. If for any x ∈ X there are

precisely r blocks in B containing x, and for any distinct x, y ∈ X there are precisely

λ blocks containing {x, y}, we say that B is a (v, k, λ) block design, or more simply a

block design.

Remark 4.2.9. Particular block designs known as Steiner systems have been used to

construct equiangular tight frames [16].

Example 4.2.10. Let X � {1, . . . , d + 1} and let B denote the collection of subsets of X

of size k, where k ≤ d + 1. If x ∈ X, then there are
( d

k−1
)
blocks in B that contain {x}.

Similarly, if x, y ∈ X are distinct, then there are
(d−1

k−2
)
blocks in B that contain {x, y}.

Thus B is an example of a
(
d + 1, k,

(d−1
k−2

))
block design with r �

( d
k−1

)
.

The matrix K constructed in the proof of Theorem 3.3.16 is also an example of a

more general concept for block designs.

Definition 4.2.11. Let X � {xi}v
i�1 denote a finite set and let B � {Bi}b

i�1 denote a block

design on X. The matrix K given by K � [ki j ] for 1 ≤ i ≤ v and 1 ≤ j ≤ b where ki j � 1

if and only if xi ∈ B j is called the incidence matrix of B.

Our calculations will depend on the following fundamental relations for block

designs. A good reference for both of these results can be found in [23].
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Lemma 4.2.12. Let B denote a (v, k, λ) block design on a set X. Let b denote the number of

blocks in B and let r denote the number of blocks in B containing a given element of X. Then

b �
λ
(v

2
)(k

2
) and r(k − 1) � λ(v − 1).

Lemma 4.2.13. Let X � {xi}v
i�1 denote a finite set and letB � {Bi}b

i�1 denote a (v, k, λ) block

design on X. Suppose that each element of X is contained in r blocks of B and let K � [ki j ]

denote the incidence matrix of B. Then

KKT
� (r − λ)I + λ J

where J denotes the v × v matrix whose entries are all 1.

Proof. To begin, note that the (i, j)th entry of KKT is given by
∑b

m�1 kim k jm . If i , j, then

kim k jm � 1 if and only if {i, j} ∈ Bm by definition of K. Thus if i , j then
∑b

m�1 kim k jm

counts the number of blocks Bm that contain {i, j}, which means that

b∑
m�1

kimk jm � λ

when i , j.

Similarly, if i � j then
b∑

m�1
kim k jm �

b∑
m�1

k2
im � r,

since
∑b

m�1 k2
im counts the number of blocks Bm that contain {i}. Hence the diagonal

entries of KKT are r and the off-diagonal entries are λ, which proves the lemma. �

The following result may be viewed as a partial generalization of Theorem 3.3.16,

since the collection of subsets {Λi} of {1, . . . , d + 1} of size k is itself a block design

as seen in Example 4.2.10. The block design used in the proof of Theorem 3.3.16 and

shown in Example 4.2.10 contains the largest number of blocks for any 2-(d + 1, k, λ)

design, since for such a design B we must have |B| ≤
(d+1

k
)
.
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Theorem 4.2.14. Let {fi}d+1
i�1 ⊂ Rd denote an ETF satisfying 〈fi , f j〉 � −

1
d for 1 ≤ i < j ≤

d + 1, and suppose that B � {Bi}b
i�1 is a (d + 1, k, λ) block design on {1, . . . , d + 1} for some

k, λ ∈ N. Define gi for 1 ≤ i ≤ d by

gi �

∑
j∈Bi f j


∑

j∈Bi f j

.

Then {gi}b
i�1 is a UNTF.

Proof. Let F denote the synthesis operator of {fi}d+1
i�1 , let G denote the corresponding

Gram matrix and let the (d + 1) × b matrix K � [ki j ] be given by ki j � 1 if and only if

i ∈ B j . Let F1 denote the synthesis operator of {gi}b
i�1 and G1 the corresponding Gram

matrix. Then as in the proof of the k-angle construction, we may write

F1 �

√
d

k(d + 1− k)
FK and G1 � FT

1 F1 �
d

k(d + 1− k)
KT GK.

To show that {gi}b
i�1 is UNTF, we will compute its frame potential, which amounts to

computing tr G2
1:

FP({gi}b
i�1) � tr G2

1

�

(
d

k(d + 1− k)

)2

tr(KT GKKT GK).

Now, by Lemma 4.2.13 we have

KKT
� (r − λ)I + λ J.

Since GJ is the zero matrix, we then have

tr G2
1 �

(
d

k(d + 1− k)

)2

tr(KT GKKT GK)

�

(
d

k(d + 1− k)

)2

tr(KT (r − λ)G2K)

�

(
d

k(d + 1− k)

)2

tr((r − λ)G2KKT )
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�

(
d

k(d + 1− k)

)2

(r − λ)2 tr(G2)

�

(
d

k(d + 1− k)

)2

(r − λ)2 (d + 1)2

d

where the last equality follows from the fact that the frame potential of the original ETF

is (d+1)2

d . Now, using Lemma 4.2.12 we can write

λ �
bk(k − 1)
(d + 1)d

and r �
dλ

k − 1
.

Thus

r − λ �
bk(d + 1− k)

(d + 1)d

and so

tr G2
1 �

(
d

k(d + 1− k)

)2

(r − λ)2 (d + 1)2

d

�

(
d

k(d + 1− k)

)2 (
bk(d + 1− k)

(d + 1)d

)2 (d + 1)2

d

�
b2

d
.

Therefore {gi}b
i�1 is a UNTF for Rd by Theorem 1.2.8. �

Theorem 4.2.14 tells us howwe can select tight subframes from the k-angle construc-

tion in Theorem 3.3.16. We still need to minimize the maximum cross-correlation of

the resulting subframe. As Equation (4.2.2) shows, the cross-correlation of two vectors

gi and g j obtained from this construction is related to the size of the intersection of the

blocks Bi and B j that determine gi and g j .

Definition 4.2.15. Let B � {Bi}b
i�1 denote a block design on a set X. An integer n ≥ 0

is said to be an intersection number of B if there are blocks Bi and B j such that

n � |Bi ∩ B j |.

We therefore require bounds on the possible intersection numbers of a block design

if we hope to use block designs to obtain UNTFs that are optimal in the sense of
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Definition 4.2.1. The bound below was originally given in [22] but the form we use is

from [5].

Theorem 4.2.16 (Result 1, [5]). Let B � {Bi}b
i�1 denote a (v, k, λ) block design on a set X,

and let r denote the number of blocks containing a given element of X. Define σ, τ and Σ as

follows:

σ � k − r + λ

τ �
k
v

(2k − v)

Σ �
2kλ

r
− (k − r + λ).

Let Bi and B j denote distinct blocks of B. Then

max{σ, τ} ≤ |Bi ∩ B j | ≤ Σ.

Remark 4.2.17. Beutelspacher [5] actually gives a slight refinement to the bound given

in Theorem 4.2.16 by showing that if τ as defined in Theorem 4.2.16 is an intersection

number of a block design, then τ must equal 0.

Theorem 4.2.18. Let {fi}d+1
i�1 ⊂ Rd denote an ETF satisfying

〈
fi , f j

〉
� −

1
d for 1 ≤ i < j ≤

d + 1, let B � {Bi}b
i�1 denote a (d + 1, k, λ) block design on {1, . . . , d + 1}. Let {gi}b

i�1 denote

the UNTF given by

gi �

∑
j∈Bi f j


∑

j∈Bi f j

.

Suppose that 0 is not an intersection number of the block design B. Then

���
〈
gi , g j

〉��� ≤
d + 1

k(k − 1)
λ − 1.

Furthermore, suppose we fix k �

⌈
d+1

2

⌉
and B is a (d + 1, k, λ) block design with λ �

⌈
k(k−1)

d+1

⌉
.

If d is odd then the worst-case coherence of {fi}d+1
i�1 ∪ {gi}b

i�1 is bounded above by

max
{

1
√

d
, 3

d − 1

}
,
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and if d is even then the worst-case coherence is bounded above by

max



√
d + 2

d2 , 4
d + 2

+
3

d(d + 2)




.

Proof. Let σ and Σ be as given in Theorem 4.2.16. If 0 is not an intersection number of

B then the bound in Theorem 4.2.16 becomes

σ ≤ |Bi ∩ B j | ≤ Σ

by Remark 4.2.17. Due to Equation (4.2.2), our first goal is to show that ���
〈
gi , g j

〉��� ≤
d+1

k(d+1−k)
���σ −

k2

d+1
���. To begin, note that

���
〈
gi , g j

〉��� �
d + 1

k(d + 1− k)

�����
l −

k2

d + 1

�����

by Equation (4.2.2). Hence the intersection number of B that is farthest from k2

d+1 will

give us maxi, j
���
〈
gi , g j

〉���. Let σ̄ �
σ+Σ

2 . We will show that σ̄ ≤ k2

d+1 , which will imply

that Σ is closer to k2

d+1 than σ. Using the definitions of σ and Σ, as well as the relation
λ
r �

k−1
d which is obtained from Lemma 4.2.12, we have

σ̄ �
σ +Σ

2
�

kλ
r

�
k(k − 1)

d
.

Therefore

σ̄ −
k2

d + 1
� k

[
k − 1

d
−

k
d + 1

]

� −k
[

d + 1− k
d(d + 1)

]

≤ 0.

Thus l � σ gives the largest possible value in Equation (4.2.1) and so

���
〈
gi , g j

〉��� ≤
d + 1

k(d + 1− k)

�����
σ −

k2

d + 1

�����
.
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Since σ ≤ k2

d+1 , we have

d + 1
k(d + 1− k)

�����
σ −

k2

d + 1

�����
�

d + 1
k(d + 1− k)

[
k2

d + 1
− σ

]

�
k

d + 1− k
−

d + 1
k(d + 1− k)

σ

�
k

d + 1− k
−

d + 1
k(d + 1− k)

[k − (r − λ)].

As shown in the proof of Theorem 4.2.14, r − λ �
bk(d+1−k)

d(d+1) which gives

k
d + 1− k

−
d + 1

k(d + 1− k)
[k − (r − λ)] �

k
d + 1− k

−
d + 1

k(d + 1− k)

[
k −

bk(d + 1− k)
d(d + 1)

]

�
k

d + 1− k
−

d + 1
d + 1− k

+
b
d

�
b
d
− 1

�
d + 1

k(k − 1)
λ − 1

where the last identity is obtained by substituting the expression for b in Lemma 4.2.12.

Therefore
���
〈
gi , g j

〉��� ≤
d + 1

k(k − 1)
λ − 1. (4.2.3)

Note that Inequality (4.2.3) shows that the closer that λ is to
⌈

k(k−1)
d+1

⌉
, the better bound

we will obtain on the cross-correlation of gi and g j

Now let k �

⌈
d+1

2

⌉
and suppose that λ �

⌈
k(k−1)

d+1

⌉
. If d is odd, then k �

d+1
2 and we

get λ �

⌈
d−1

4

⌉
. Then λ �

d−1
4 + ε where 0 ≤ ε ≤ 3

4 , and it follows that

���
〈
gi , g j

〉��� ≤
d + 1

k(d + 1− k)

�����
σ −

k2

d + 1

�����
�

d + 1
k(k − 1)

λ − 1

�
4

d − 1

[
d − 1

4
+ ε

]
− 1

�
4ε

d − 1

≤
3

d − 1
.



83

Similarly, if d is even then k �
d+2

2 and λ �

⌈
d(d+2)
4(d+1)

⌉
. Then λ �

d(d+2)
4(d+1) + ε where

0 ≤ ε ≤ 4(d+1)−1
4(d+1) and so

���
〈
gi , g j

〉��� ≤
d + 1

k(k − 1)
λ − 1

�
4(d + 1)ε
d(d + 2)

≤
4(d + 1) − 1

d(d + 2)

�
4

d + 2
+

3
d(d + 2)

.

Combining these boundswith the bounds given in Theorem 4.2.6 finishes the proof. �

Example 4.2.19. Let {fi}11
i�1 ⊂ R10 denote an ETF where

〈
fi , f j

〉
� −

1
10 for 1 ≤ i < j ≤ 11.

We will use Theorem 4.2.18 to obtain a UNTF {gi}b
i�1 that has good coherence with the

given ETF in the sense of Definition 4.2.1. So let k �

⌈
11
2

⌉
� 6. Then we wish to find a

(11, 6, λ) block design where

λ �

⌈
d(d + 2)
4(d + 1)

⌉
�

⌈30
11

⌉
� 3.

One such design can be found in [9] and is given by B � {Bi}11
i�1 with

B1 � {4, 6, 7, 9, 10, 11} B7 � {1, 2, 4, 5, 6, 10}
B2 � {1, 5, 7, 8, 10, 11} B8 � {2, 3, 5, 6, 7, 11}
B3 � {1, 2, 6, 8, 9, 11} B9 � {1, 3, 4, 6, 7, 8}
B4 � {1, 2, 3, 7, 9, 10} B10 � {2, 4, 5, 7, 8, 9}
B5 � {2, 3, 4, 8, 10, 11} B11 � {3, 5, 6, 8, 9, 10}.

B6 � {1, 3, 4, 5, 9, 11}
Now we define {gi}11

i�1 by

g1 �
f4 + f6 + f7 + f9 + f10 + f11
‖f4 + f6 + f7 + f9 + f10 + f11‖

...
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g11 �
f3 + f5 + f6 + f8 + f9 + f10
‖f3 + f5 + f6 + f8 + f9 + f10‖

.

Then by Theorems 4.2.14 and 4.2.18 {fi}11
i�1 ∪ {gi}11

i�1 is a UNTF with worst-case coher-

ence bounded above by

max



√
d + 2

d2 , 4
d + 2

+
3

d(d + 2)



� max

{√
3

5
, 43
120

}

or just 43
120 ≈ .3583. We verify through computation that {fi}11

i�1 ∪ {gi}11
i�1 is indeed a

UNTF for R10 and has maximum cross-correlation given by .3464 ≤ 43
120 . Note that this

UNTF comes very close to meeting the optimal bound given in Theorem 4.2.5, which

for this example is 1
√

10
≈ .3162.

Even if we do not have a block design whose parameters meet the criteria given

in Theorem 4.2.18, in some cases we can still obtain a UNTF that has good worst-case

coherence in the sense of Theorem 4.2.5.

Example 4.2.20. Let {fi}10
i�1 denote an ETF in R9 with

〈
fi , f j

〉
� −

1
9 . We will use the

following (10, 6, 5) block design {Bi}15
i�1 from [9] to construct a UNTF {gi}15

i�1 from the

given ETF:

B1 � {1, 2, 4, 5, 8, 9} B6 � {2, 3, 4, 6, 8, 10} B11 � {1, 4, 5, 7, 8, 10}
B2 � {5, 6, 7, 8, 9, 10} B7 � {1, 2, 6, 7, 9, 10} B12 � {1, 2, 3, 5, 7, 10}
B3 � {2, 4, 5, 6, 9, 10} B8 � {1, 3, 5, 6, 8, 9} B13 � {2, 3, 5, 6, 7, 8}
B4 � {1, 2, 4, 6, 7, 8} B9 � {1, 2, 3, 8, 9, 10} B14 � {1, 3, 4, 5, 6, 10}
B5 � {3, 4, 7, 8, 9, 10} B10 � {2, 3, 4, 5, 7, 9} B15 � {1, 3, 4, 6, 7, 9}.

It can be verified through computation that the (25, 9) UNTF {fi}10
i�1 ∪ {gi}15

i�1 obtained

using this block design has worst-case coherence given by .4082. This is relatively close

to the optimal bound (in the sense of Definition 4.2.1) of 1
√

9
�

1
3 . The corresponding

Welch bound is
√

25−9
9∗(25−1) ≈ .2722.
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chapter 5

Conclusion

5.1 summary of results

We have proven several results on characterizations and generalizations of equiangular

tight frames, which we summarize below:

1. It has been shown that Q is the signature matrix of a (d + 1, d) ETF if and only if

Q � I − xx∗ for some x ∈ Cd+1 with unimodular entries.

2. It has been shown that the signature matrices of (d + 1, d) ETFs and (2d, d) ETFs

(when the latter exist) are extreme points of the function f : QN → R, where

N � d + 1 or N � 2d, given by f (Q) � tr Q4.

3. k-angle tight frames were defined as a generalization of the concept of an ETF.

Several methods of constructing k-angle tight frames were given and connections

between k-angle tight frames and other areas of mathematics were explored.

4. A method involving random perturbations was investigated to improve the tight-

ness of a given equiangular frame. Probabilistic estimates for deviation from

equiangularity and were then obtained for the resulting frame.

5. An approach to constructing UNTFs with low cross-correlation was developed

using (d + 1, d) ETFs, k-angle tight frames and block designs. Bounds on the

maximum cross-correlation of the resulting UNTF were also obtained in terms of

parameters of the block design used.

5.2 future work

The results presented in this dissertation lead naturally to several avenues of research.

The construction presented for the signature matrices of (d + 1, d) ETFs is useful, and

proving similar results for other ETFs would undoubtedly be an important advance.
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One question along these lines I will continue to study is the following: for what

matrices X and Y is the matrix I −XY∗ a signature matrix for an ETF?

The connections between certain k-angle tight frames and combinatorial objects,

in particular between 3-angle tight frames and regular graphs, nicely parallel similar

results for ETFs and certain 2-angle tight frames and strongly regular graphs [3]. It

appears that k-angle tight frames where k are related to combinatorial objects with

high degrees of symmetry. Determining which objects that k-angle tight frames

are connected to and a relationship between the size of k and the symmetry of the

corresponding object is then an intriguing research question.

Improving the random perturbation result is also desirable, since it currently relies

on starting with an equiangular frame of size N in Rd for some d ≤ N . However,

such frames may not exist for certain choices of N and d. Therefore it is important

to determine other types of frames that will serve as effective starting points when

approximating ETFs.

Finally, block designs have been used to construct unit-normed tight frames with

low cross-correlation from (d + 1, d) ETFs. Extending this construction to other ETFs,

or even UNTFs, would be beneficial.
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