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Abstract 

 

Throughout the western United States, water managers are facing pressure to account for 

limited water resources among competing uses. Groundwater is one example of a limited 

resource that is continually being depleted, especially for areas that use groundwater for 

irrigated agriculture. In certain hydrologic systems, irrigated agriculture can contribute 

substantially to aquifer recharge through surface water infiltration, and thus is a significant 

water balance term for regional groundwater models. This thesis developed a bucket model to 

estimate deep infiltration by modeling soil water content and root water extraction. The model 

was calibrated with in-situ soil data from an irrigated alfalfa field and tested for model 

performance over two subsequent years of field data. The model was applied to a regional 

scale using test scenarios that account for differences in climate, management, and 

environmental factors. We show that for sprinkler irrigation methods with improved 

application efficiency, applied irrigation can contribute between 10-40 percent of deep 

infiltration losses under dry climate scenarios. While losses may occur at the field scale, these 

model results describe gains in aquifer recharge at the regional scale. Thus, the model 

provides an applied tool for more explicit estimates of near-surface boundary conditions for 

use in regional water management.   
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Chapter 1: Literature Review 
Introduction 

The reliance on irrigated agriculture has created both thriving communities and 

uncertainties due to increased water demand and water shortages. For semi-arid regions in 

the western United States, irrigation is the difference between barren landscapes and 

productive farmland. Predominantly agricultural areas have experienced urban growth, 

which puts stress on total water availability as uses are divided between irrigation, 

municipal, domestic, and industrial. Climate change has also altered the availability of 

water. Mediterranean climates are forecasted to show earlier snowmelts with lower summer 

flows from increasing global temperatures (Vano et al., 2010). Agriculture in these regions 

require the right amount of water at the right time. The sustainability of irrigated agriculture 

relies on adaptive strategies to these current pressures.  

 Water resource accounting provides critical information on water supply and demand 

trends. A physically based approach to water accounting uses a water balance, which 

estimates inflows, outflows, and changes in storage within a hydrologic system. For some 

regional water balances, agricultural water use is a significant component. Approximately 72 

percent of total global water extractions are used for irrigation (Cai and Rosegrant, 2009). A 

large portion of water extracted for irrigation is not returned to the system. Water that is not 

returned to the system is known as a “consumptive use”. In the agricultural field, 

consumptive use of water refers to water that is directly used in the process of crop growth, 

or evapotranspiration (ET).  

A body of research within the water resource field focuses on measuring ET from 

irrigated agriculture. Evaluating ET is useful for both farm managers, regional water 

managers, and researchers in efforts to promote agricultural sustainability. ET measurements 

help evaluate the productivity and efficiency of irrigation. In terms of regional water 

management, monitoring and forecasting water supply requires an understanding of the crop 

water use (ET). Evapotranspiration is increasingly relevant in the context of climate change 

scenarios, where ET has been shown to increase for southeastern Idaho by as much as 10% 

in the next 30 years (Huntington et al., 2015). Water policy is also concerned with crop 

water use, as groundwater aquifers are being “mined” at a rate that exceeds natural recharge. 

Recent litigation for the State of Idaho has sought to reduce aquifer withdrawals by 240,000 
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acre-ft-year (Miller et al., 2019). With agriculture being the largest consumer of freshwater 

supplies, providing science-supported ET estimates supports effective management and 

policy decisions. 

 

ET Methods and Uncertainty 

Evapotranspiration (ET) describes the combined processes of evaporation from the 

soil and transpiration from plant growth. These processes are combined as there is no easy 

way to distinguish them from each other. It should be noted that the evaporative component 

of ET only applies to water that leaves through soil evaporation.  Evaporation is driven by 

weather related variables, including solar radiation temperature, humidity, and wind. 

Transpiration within agricultural systems is influenced by crop type and phenology, 

stressors like water shortage and disease, soil type, and farm management. Related terms 

used to describe ET include the crop water use, crop water requirement or demand, and 

consumptive use. Methods used to quantify ET must account for both weather and plant 

variables, and range in accuracy and complexity.   

Methodology for estimating ET has grown significantly over the past century to 

include both ground-based and remote sensing approaches. In brief, ground-based 

approaches include simplified methods that estimate ET as the residual term of a water 

balance. These are common in large-scale hydrologic modeling. A popular on-farm 

approach is the pan evaporation method. This focuses on the evaporative “potential” of the 

surface from weather-driven variables and provides upper limit of ET a crop surface actually 

loses. Estimation of “actual ET” (hereafter ETa) is the focus of this literature review, which 

usually involves more complex and costly methods like lysimeters, energy balance and mass 

transfer methods. More specifically, this review looks at modeling approaches that have 

developed over the past couple decades. These methods use remote sensing (RS) data to 

estimate actual ET from a surface energy balance. The following section first describes the 

theoretical background of estimating ET using surface energy balances. Second, an 

overview of a predominantly used RS model within Idaho water agencies, METRIC, is 

reviewed. Last, remote sensing ET models will be reviewed for their current use as both on-

farm and basin-scale water management tools.  
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Mass and Energy Transfer Theory 

Fundamental principles behind estimating ET are the law of mass and energy 

conservation. Evaporation, or latent heat flux, was described by Ira Bowen in his equation 

known as the Bowen Ratio (Bowen, 1926). This ratio describes the amount of heat 

transferred as sensible or latent heat and relies on surface gradient measurements of vapor 

pressure and air temperature. These methods were first developed over a surface of open 

water. Bowen’s approach is still used today as the Bowen Ratio Energy Balance method 

(BREB). Uncertainties from this method are usually due to very low soil moisture (e.g., 

deserts) or where the area of study is non-uniform in fetch (Allen et al., 2011).  

In 1948, Penman combined Bowen’s energy balance with a mass balance method to 

account for water vapor removal above an evaporating surface. In effect, he was able to 

divide evaporation into two terms: first, the ability of the air to absorb water, and second, the 

amount of available energy to evaporate water from the surface. In the 1960s, John Monteith 

appended the work from Penman to account for influences of aerodynamic and surface 

resistances from a crop canopy (Farahani et al., 2007). Together, the Penman-Monteith (PM) 

method has become widely used since its standardization in 1990 by the Food and 

Agriculture Organization (FAO).   

 

Reference ET and Limitations 

FAO used the PM method to develop a standardized equation for calculating 

reference ET (hereafter ETr). ETr is defined for this equation as “a hypothetical grass 

reference crop with an assumed crop height of 0.12m, a fixed surface resistance of 70 s m-1 

and an albedo of 0.23” (Allen et al., 1998). Subsequently, the American Society of Civil 

Engineers (ASCE) developed two reference crop ET equations (short grass and tall grass, or 

alfalfa) that were useable for daily or shorter time periods (ASCE-EWRI, 2005). The FAO 

and ASCE standardized methods were solutions to many documentation issues with ET 

research that existed up to that point and are still observed (Allen et al., 2011). Additionally, 

these institutions provided guidelines for analyzing the integrity of weather data before use 

in the reference ET equations.  

 Reference ET methods have been widely employed over the past half century. The 

development of the two-step method of estimating reference crop ET (ETc) has aided the 
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applicability of ET estimation in the agricultural field (Allen et al., 1998). This method uses 

ETr with a crop coefficient (Kc), which is the ratio of actual ET to the reference ET (as 

shown below).  

 

Two-step method: 𝐸𝑇# = 𝐸𝑇% 	× 	𝐾𝑐  

Crop coefficient: 𝐾𝑐 = 	
𝐸𝑇*
𝐸𝑇%

  

  

The Kc allows for adjusting the reference ET based on the crop’s development stage. A 

more sophisticated approach separates Kc into soil and transpiration components to improve 

the accuracy of the Kc-ETr method (Allen et al., 2005).  

 There remain inherent limitations to using the standardized reference ET equations. 

ETr is based on ET rates from two generic crop types (short and tall) that are grown with 

uniform crop height under well-watered conditions. Applying crop coefficients does help 

account for certain variability in ET with crop type and growth stage, but actual ET could 

vary from the reference ET due to a variety of stress factors. Water stress is a factor that can 

cause reference ET to deviate from reference conditions. FAO accounts for this by using a 

water stress coefficient (Ks), which is based on a first-order function of soil water content. 

Other environmental stress factors, such as soil salinity, pests and disease, or soil fertility are 

accounted for a few crops by shortening the length of the mid-season crop coefficient (Allen 

et al., 1998). ETr methods likely do not account for the variability of environmental factors 

that can affect rate of ET in both time and space. For instance, Allen describes influences of 

nearby surface types on reference ET estimates (2006). ETr relies on representative weather 

data. It was found that dry or wet conditions upwind of the weather station can influence 

measured temperature and humidity that is used to compute ETr for the measured reference 

surface (Allen, 2006).  

 

Remote Sensing ET Models  

Limitations of reference ET methods can be overcome in remote sensing models. In 

general, ET models require inputs of short and long-wave thermal imagery, provided by 

satellites with high spatial resolution. ET is calculated as the residual of a surface energy 



 

 

5 

balance. An energy balance approach captures the variability of surface conditions, 

including variability from crop type, stress factors like salinity, frost, and water shortages 

(Allen et al., 2011). Estimating ET through RS methods helps define an upper limit of ET 

based on the law of conservation of energy. ET rates that exceed the amount of net radiation 

at the surface can be flagged for data integrity. Ultimately, ET is calculated by estimating 

the transfer of sensible heat flux as follows:  

 

 𝐸𝑇 = 	𝑅, − 𝐺 − 𝐻 

 

 

Where Rn is net radiation, G is sensible heat to the ground, and H is heat convected to the air 

above the surface. The difference in these terms represents the amount of latent energy used 

for ET.  

 

METRIC  

METRIC, or Mapping EvapoTranspiration at high Resolution with Internalized 

Calibration, is one example of a model that calculates ET as the residual of surface energy 

balance. This model has been used extensively in Idaho for water resource management 

(Allen et al., 2005), with applications in other regions of the world for irrigation scheduling 

(Santos et al., 2012). The model is used by Idaho Department of Water Resources (IDWR) 

in water rights accounting, groundwater pumping and recharge rate estimates, irrigation 

consumption, as well as computing water balances for basin scale hydrology (Bastiaanssen 

et al., 2005). METRIC uses thermal imagery from Landsat and a calibration procedure to set 

high and low ET rates for certain pixels. The high and low ET pixels are used to scale all 

pixels for the Landsat image to calculate ETa in space. This calibration procedure uses 

ground-based reference ET at locations near the pixels of interest, which helps account for 

previous biases in remote sensing energy balances (Allen et al., 2007). Since the Landsat 

image only captures one instance of ETa in time, the ETa images or “maps” are interpolated 

over time for the entire year.  

METRIC is an extension of the Surface Energy Balance for Land, SEBAL, which 

fundamentally shares similar methodology with METRIC. A unique approach by SEBAL 

and METRIC in calculating the near surface energy balance is their estimate of surface 
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temperature. The models use an air temperature gradient, dT, to describe a “blending zone” 

and eliminate the need for absolute surface temperature calibrations (Allen et al., 2007; 

2011). A nuance in methods between METRIC and SEBAL relates to the evaporative 

fraction (EF), which is the ratio of ET to net radiation. In SEBAL, the EF is thought to 

remain constant throughout the day, especially in landscapes experiencing little change in 

soil moisture and wind (Bastiaanssen et al., 2005). Even though ET has a theoretical 

“ceiling” based on incoming net radiation, it has been shown that advective forces from 

upwind dry landscapes can cause ET to exceed the daily Rn (Allen et al., 2011).  To account 

for this, METRIC uses hourly, gridded weather data to calculate the alfalfa (or tall crop) 

reference ET (Allen et al., 2005). ETr is used to calibrate the model by finding the ratio of 

instantaneous ET (Landsat image of actual ET) to reference ET, like the use of a crop 

coefficient. Within the model this is known as the ETrF. The advantage of using ETrF is that 

the reference ET can capture regional advection affects that happen on shorter time steps 

than a day (Allen et al., 2007). Disadvantages of the METRIC model’s approach in using 

ETrF is for rainfed systems where advection is low (Allen et al., 2011). 

 

Limitations 

One limitation of using the METRIC model is the need for manual calibration by a 

trained user familiar with physics of the energy balance (Allen et al., 2011). This calibration 

involves selecting “hot” and “cold” pixels within every thematic mapper (TM) image. The 

hot pixel represents a location in the image experiencing 0-10% ETr (Morton et al., 2013). 

The cold pixel is the second calibration “anchor point” that represents maximum ET for all 

net radiation. Some of the drawbacks of the METRIC model requiring trained users has been 

solved in the automated calibration method (Allen et al., 2013). Since these “hot” and “cold” 

anchor points are the pixels at which the entire image is calibrated and have the potential to 

change for each user and each data change, automating the process has potential to increase 

accuracy between model runs. Morton et al. (2013) evaluated this automated method and 

found high ET pixels showed less uncertainty due latent energy being the remainder of net 

radiation and the ground heat flux. Low ET conditions showed more uncertainty since ET is 

calculated from large net radiation and sensible heat values.  

Some fundamental limitations with using RS ET models deal with the resolution of 



 

 

7 

spatial and temporal data used to calculate the energy balance. Satellites will collect coarser 

spatial resolution with more frequent satellite overpass (e.g., higher temporal resolution) 

(Gowda et al., 2015). For Landsat images used in the METRIC model, the spatial resolution 

is 30 m with a fly over occurrence of 16 days. 30 m resolution is classified as high spatial 

resolution for satellite data, which is required for analyses at the field-scale. Larger pixel 

size can result in neighboring, non-field conditions adding uncertainty to water demand at 

the location of the field. In arid or semi-arid regions, farm-desert landscapes are 

predominant and is where this issue can arise (Gowda et al., 2015). Temporal resolution of 

RS ET models is too coarse for irrigation scheduling or soil water budgets that need to be 

made generally within the week, but other applications for these models for irrigation exist. 

For example, METRIC and SEBAL have been used within an irrigation scheduling tool to 

measure water requirements for cotton (Morari et al., 2020).  

 

Applications in Water Management 

For irrigation scheduling and water resource management at the field scale, both high 

spatial and temporal resolution of ET estimates are needed. Often with satellite data, there is 

a trade-off between spectral and spatial resolution. A few techniques have been used to 

enhance satellite imagery for agricultural water management, including downscaling and 

image fusion. In the downscaling methods, statistical tools are used to sharpen the thermal 

information on longwave bands. For instance, Tasumi et al. (2006) showed a linear 

relationship between surface temperature and the normalized difference vegetation index 

(NDVI), which serves as a useful method for semi-arid areas showing a stark contrast 

between vegetation and dry ground. In the image fusion method, multiple images from 

either the same or different sensors are combined to achieve higher spatial resolution. In 

many cases, image fusion will use multispectral and panchromatic images together to 

preserve the spectral and spatial resolution contributed by each, respectively (Ha et al., 

2013). 

 The tradeoff in spectral and spatial resolution means water decisions must wait at 

least biweekly for high spatial resolution, which does not include the time need to process 

and publish this data. MODIS thermal data is a satellite product with 1 km resolution taken 

daily. The utility in using MODIS thermal data as an input to a surface energy balance ET 
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model is the temporal resolution increases from biweekly to daily. Larger errors in ET are 

found for upscaling methods, such as in Ershadi et al. (2013) which notes 15% reduction in 

ET due to decreased aerodynamic resistance at coarse resolution.  

Though continued research is needed to evaluate possible effects of downscaling 

methods on ET uncertainty, there are several notable ways these techniques can be used. 

One example would be to use coarser ET data to match ground-based weather data. One 

extensive network of weather data is the California Irrigation Management Information 

System (CIMIS), which utilizes 145 automated weather stations to inform irrigators in 

efficient water management. The network provides continuous, hourly data used to calculate 

either grass or alfalfa reference ET, which can be multiplied by the crop coefficient for 

estimates of actual crop ET. Integrating ground-based measurements with satellite data can 

provide a clearer perspective on global weather patterns (Trenberth et al., 2014).  

Another application provides general public with ET data in a web-based platform 

called OpenET. This app will largely provide monthly data at a 30 m resolution, estimated at 

a field-by-field scale for data going back to 2018. The data used within OpenET includes 

several existing ET models, including METRIC, SEBAL, ALEXI, SIMS, and others 

(https://openetdata.org/intro/, Accessed October 2021). This application takes an average of 

all ET models to yield one ensemble average, which reduces confusion with model accuracy 

and provide greater accessibility to all users. The development team is also conducting a 

wide-scale assessment of satellite data accuracy used in the platform by comparing data with 

eddy flux towers, groundwater pumping records, and basin-scale water balances.  

In quantifying agricultural water use in the ESPA, the OpenET platform shows two 

major advantages. First, the platform has provided at least two years of recent data from 

several ET models, which allows the proposed research to use an ensemble average for all 

ET analyses. Second, the platform has incorporated spatially explicit information at the field 

scale, including the capability to integrate a water rights database and view cropping types 

for any given field. This has several merits in agricultural research, such as accounting for 

interannual variability between crop rotations and changes in irrigated acreage. The potential 

to look up Place of Use (POU) and the associated water rights will provide information 

about the water source and validate ET estimates through any existing pumping records.  

The review of literature has shown ET estimations can vary in accuracy and 
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complexity, though RS ET models show the greatest potential to quantifying ET for basin-

scale water management. RS models also account for spatial and temporal variability of ET 

missed in using standardized reference ET methods. The uncertainties of using RS models 

largely depend on the physical assumptions underlying the model’s algorithms, as well as 

the spatial resolution of the satellite data used in the model. Continuing to validate satellite-

based ET with ground-based measurements is likely needed to support ET research.  

 

Non-Consumptive Water Use: Deep Infiltration 

 The previous sections of the literature review overview methods of estimating 

evapotranspiration, which can play a significant role in regional water balances. This is 

especially true for areas with irrigated agriculture, where irrigation accounts for about 90 

percent of consumptive water uses globally (Siebert et al., 2010). Consumptive use in 

context of irrigation describes water lost to the atmosphere and cannot be recovered 

elsewhere in the hydrologic system. The remaining 10% of water not consumptively used 

from irrigation can contribute to surface runoff, wind loss, or deep infiltration. This latter 

term, deep infiltration (DI), will be used throughout this thesis to describe water that moves 

vertically past the effective rooting zone of a crop, and is thus unavailable for root water 

extraction that contributes to ET. Similar terms to DI presented in the literature include 

seepage or deep percolation.  

Deep infiltration has relevance today as water managers face pressure to account for 

limited water resources among competing uses. Groundwater is one example of a limited 

resource continually being depleted, especially for areas using groundwater for irrigated 

agriculture. Irrigated agriculture has potential to contribute substantially to groundwater 

recharge, especially with irrigation methods such as flood or furrow irrigation. Within the 

past decade, more efficient irrigation methods such as overhead sprinkler systems reduce the 

amount of irrigation applied to the surface. Chapter 4 of this thesis provides an example for 

southern Idaho, where improved irrigation efficiencies have reduced recharge to the aquifer. 

Since irrigated agriculture accounts for the largest freshwater withdrawals globally, it is 

often the targeted water user in which water conservation can be improved. Governments 

have provided subsidies to promote water savings by adoption of irrigation efficiency 

technologies, but these have often failed to meet the end objectives (Grafton et al., 2018). 
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 In order to evaluate the impact irrigated agriculture has on water resources, robust 

water accounting efforts are needed. Often, water managers rely on the conservation of mass 

and water balance methods to keep track of inflows and outflows to a hydrologic system. 

Deep infiltration is one part of field and regional water balances that is difficult to measure. 

Established methods often estimate DI as the residual of surface water diversions less 

evapotranspiration. While spatially explicit measurements of ET improve DI estimations, 

the infiltration process is largely driven by soil mechanics. It is regarding these physically 

based processes that regional water accounting could use improved tools, even if they 

simply offer a first order approximation of DI. The following will review general methods of 

estimating infiltration rates using physically and empirically based equations, and then 

describe a few modeling approaches to estimating deep infiltration.  

 

Infiltration Methods 

 The process of infiltration is difficult to quantify, largely due to the heterogeneity of 

soil systems and the complexity of soil and water interactions in time and space. Current 

methods of quantifying infiltration can use physically-based equations, empirical equations, 

and in situ measurements. The Darcy equation is a well-known physically based method that 

describes water flow in a one-dimensional, homogenous soil profile. It can be written as 

follows:  

 

𝑞 = 	−𝐾
𝜕Ø
𝜕𝑧  

 

Where q is the velocity of a volume of water moving through the soil in the z direction per 

unit of area per unit time, K is the hydraulic conductivity, and 4Ø
45

 is the hydraulic gradient 

(Ward et al., 2016). The hydraulic conductivity K is a function of soil water content and 

pressure head, where the negative sign describes that flow will occur from high pressure to 

low pressure. Subsequently, Darcy’s equation was adapted to describe unsaturated flow with 

the Richard’s equation. The Richard’s equation uses Darcy’s equation with an included term 

for soil water diffusivity. Challenges to using the Richard’s equation are due to the non-

linear relationship between soil water content, hydraulic conductivity, and pressure head 
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(Ward et al., 2016).  

 Empirical methods of estimating infiltration include the Horton equation and Green 

and Ampt equation. Horton’s method relies on only three parameters but must be calibrated 

with field data. Additionally, the parameters have no physical basis. Green and Ampt 

coupled the physics of soil water movement by Darcy with empirical parameters that are 

physically significant. In brief, Green and Ampt estimate infiltration by accounting for the 

wetting front, which captures process that wick moisture upwards from drier to wetter soils. 

While the equation is developed for homogenous soil conditions with uniform initial soil 

water content, calibrating the equation with in situ data could yield accurate estimates for 

heterogenous soils. Ward et al. (2016) provided their own literature review on infiltration 

methods, and coupled with the author’s research experience, conclude “there is no single 

equation that works well for all situations”. Kale and Sahoo (2011) also emphasized 

infiltration models need to account for layered soils with varying initial soil water contents. 

Additionally, it is likely “piston” type of flow described by Richard’s and Green and Ampt 

equations are not the main mechanism driving infiltration in agricultural soils, since these 

soils are ubiquitous for macropore flow (Ward et al., 2016).  

 

Modeling Deep Infiltration  

 The research objective for this thesis is to develop a model that can be used to 

quantify infiltration occuring below the root zone of a crop (i.e., deep infiltration).  This will 

be done by coupling a water balance with process-based components to model water 

movement and root water extraction from irrigated crops. Components of soil water 

balances are difficult to measure directly and rely on estimations. Regional water 

management currently use water balance methods, which are simplified calculations used to 

estimate DI as the residual of surface water diversions and ET. Mechanistic or empirical 

equations described in the previous section can be used to capture the dominant processes 

that describe soil water movement. These equations are used within complex models, such 

as the Deep Percolation Model by United States Geology Survey (USGS), MODFLOW, and 

HYDRUS-1D (Šimůnek, 2015) require a certain amount of input data, user knowledge, and 

processing power to run. These groundwater flow models, in addition to crop growth 

models, like CropSyst (Stockle and Nelson, 1996) and soil erosion models, such as SWAT 
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(Arnold et al., 2012), estimate DI as a concomitant to main output variables. The Deep 

Infiltration Model presented in this thesis fills a gap between simplified water balance 

methods and modelling tools that may not be easily applied for regional water management.  

 The development of the Deep Infiltration Model for this thesis was guided by 

research done by Liu et al. (2006), where water balance models were coupled with empirical 

methods to estimate deep infiltration from the root zone. The solution proposed by Ogata 

and Richards (1957) was used to estimate drainage that occurs within a day, and is shown as 

follows:  

 

𝑊 = 𝑎𝑡9 

 

Where W is the soil water storage in the root zone, and a and b  are empirically derived soil 

parameters describing soil drainage over one day. This equation was modified to compute 

soil drainage from day i+1, which is shown in Table 2.1 of Chapter 2. Deep infiltration is 

computed as the difference of soil water storage on day i and day i+1 (Table 2.1).  

 Soil parameters a and b were determined for silt-loam soils in North China. Liu et al. 

(2006) notes that these parameters can be estimated for other soils based on the following 

guidelines:  

 

𝑎: soil	water	storage	value	between	𝑊IJ	𝑎𝑛𝑑	𝑊MNO 

𝑏 < 	−0.0173	for	fast	draining	soils	and 

	𝑏 > 	−0.0173	for	slow	draining	soils 

 

Where WFC and WSAT are soil water storage at field capacity and soil water storage at 

saturation, respectively. “Field capacity” is soil water storage after 1-2 days drainage, and is 

often described as the soil suction pressure of -33 kPa. These guidelines were used as a 

baseline estimate for soil parameters used to calibrate the Deep Infiltration Model and test 

model performance. The method presented by Liu et al. (2006) was used because of its 

incorporation of a water balance as well as its simple parametric approach to calculating soil 

drainage over a daily timestep.  
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Chapter 2: Deep Infiltration Model  
Introduction 

Water resources in the Western United States are facing increased shortages, hastening 

policy and planning decisions to ensure future demand meets supply. Some adaptive decisions 

to water shortage focus on the supply side of the issue, such as desalination of ocean water in 

coastal communities. This is a costly solution compared to traditional sources of water, and 

only meets a small fraction of total water demand. When augmentation of supply is not 

practical, which is often the case, the demand side of water resources is evaluated. In 

California, frequent droughts have been attributed to climate change and have led to “blanket 

curtailments”, which are state mandates preventing many water right holders from 

withdrawing their allocation. This imposes hardships on farmers in regions who rely on 

irrigation to support crop production. Some suggest such drastic measures would be 

unnecessary if water resource agencies better accounted for actual water usage (Grantham and 

Viers, 2014). Others suggest implementing water markets improves the efficiency of water 

resource management in the face of climate change (Adler, 2009). Owen (2014) warns both 

approaches are “practically and legally intertwined,” and require an understanding of the 

“ripple effects” of management decisions within hydrologic systems.   

 The irrigation sector plays a substantial part in hydrologic systems in the west and 

worldwide. Global statistics show irrigated agriculture constitutes about 72 percent of total 

water extracted from freshwater and groundwater supply (Cai and Rosegrant, 2009). Water 

used by irrigation is unique from other sectors, since a large portion of applied water is used 

consumptively and not returned to the water system. Consumptive use in agriculture describes 

evaporation and crop transpiration, which is collectively called evapotranspiration (ET). 

Grafton et al. estimates consumptive use from agriculture between 40-85 percent of total 

application for varying irrigation methods (2018). The remaining non-consumptive fraction 

of total applied water returns to the water system, either through surface runoff or deep 

infiltration.  

Consumptive and non-consumptive use are terms that support water policy goals by 

explicitly defining how water is used and its availability for other water uses in a larger system. 

These metrics aid in water accounting at various scales and provide tools to promote the 

sustainability of irrigated agriculture. Water accounting at the farm-scale is useful to 
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producers. With increased pressure on water supply, many producers are shifting towards 

maximizing the productivity of water. One way to accomplish this is by scheduling irrigation 

based on the crop water demand (ET). Irrigation is meant to supplement the amount of soil 

water depleted through root extraction. Irrigators who understand the root zone depth and soil 

holding capacity of their field are able to use water efficiency in terms of applying only the 

amount lost to crop ET. Excess irrigation overfills the soil reservoir and causes deep 

infiltration (DI) below the zone accessible to roots. Excess irrigation can also lead to 

unfavorable outcomes like nutrient and chemical leaching, waterlogging, or salination 

(Howell, 2001). Additionally, overall energy use and pumping costs from irrigation can 

decrease significantly with careful management (Ross and Hardy, 1997).  

Water accounting of irrigated agriculture is useful in basin-scale water management. 

The non-consumptive portions of irrigation, namely runoff and deep infiltration, return to the 

hydrologic system for other uses. Many systems exhibit a certain degree of hydrologic 

connectivity, a term used here to describe the linkage of surface and groundwater sources. A 

notable example from southern Idaho found inefficient irrigation methods create substantial 

amounts of deep infiltration, thereby recharging the underlying aquifer and creating greater 

spring flows down gradient. The on-farm inefficiencies from DI cause water to be made more 

accessible for other uses. These uses include heighted aquifer levels for groundwater pumpers, 

constant water temperatures for fisheries, and hydropower production from spring flows 

(Willardson et al., 1994). Runoff also increases in-stream flows, though this tends to have 

negative impacts to surface water quality. 

 There is clear utility in water resource accounting for irrigated agriculture, but meth-

ods to do so are often complex. Accounting for deep infiltration is specifically challenging, 

as it is a subsurface process that can occur over widespread areas at varying time scales. Di-

rect measurements are limited to lysimeter experiments (Bethune et al., 2007; Hatiye et al., 

2016). Lysimeter equipment is not feasible for basin-scale water accounting, smaller budg-

ets, or those unfamiliar with the equipment. Modeling approaches for estimating DI exist, 

though require certain input data and user knowledge. The United States Geological Survey 

(USGS) has published the Deep Percolation Model, which estimates groundwater recharge 

for large areas over varying landscape and land use conditions (Vaccaro, 2007). This model 

is part of the modular system USGS employs to simulate groundwater flow in aquifers with 
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MODFLOW. A solute transport model, HYDRUS-1D, has been used to model groundwater 

recharge for near-surface water balances (Šimůnek, 2015). A regionally based model, ES-

PAM, focuses on recharge and spring flow discharge for Idaho’s principal aquifer (Sukow, 

2021). Other models estimate DI as a concomitant to main objective outputs. These include 

the crop growth simulation model, CropSyst (Stockle and Nelson, 1996), soil erosion and 

groundwater pollution model, SWAT (Arnold et al., 2012), and climate models, EPIC and 

APEX (Gassman et al., 2004). These are numerical models, and their use are restricted to 

trained personnel and are not suitable for most farmers attempting to manage their water use.  

 

Study Objectives 

 With varying approaches to deep infiltration estimates, the main objective for this 

study was to provide an applied tool that estimates DI by simulating soil moisture for irri-

gated crops. This was accomplished using a soil water balance model with accompanying 

equations used to estimate soil water drainage. A daily soil water balance accounts for major 

fluxes of water within the root zone of an irrigated crop. The model was calibrated with ac-

tual ET and soil moisture data observed for an irrigated crop and tested with field data col-

lected for other years. Model testing using subsequent years of soil data help build confi-

dence in the model’s ability to simulate soil moisture data, considering interannual variation 

in weather and soil moisture. 

 This model shares similarities with an irrigation scheduling tool built by Washington 

State University (Peters et al., 2019). The “Irrigation Scheduler” is a weather-based tool 

with a soil water balance approach of modeling total available water (TAW). The TAW is a 

term used in data-based irrigation scheduling describing the percentage of volumetric water 

content available for root water extraction. The model accounts for crop and soil type, the 

crop water requirement (ET), as well as water stress and deep infiltration losses. Water 

stress and DI are also a function of the root zone water content. The current study extended 

on the Irrigation Scheduler approach by modeling stress as a function of soil water potential 

(i.e., capillary suction) rather than water availability. In this way, water stress is estimated as 

an intensive variable based on the energy state of soil water.  

 The main motivation for this model was to evaluate the impact of irrigation technol-
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ogy on basin-scale water balances. With increased water shortages and competition for irri-

gation, understanding the impact of new adoptive strategies like irrigation technology will 

be important for future policy and management decisions. This tool can be applied at scales 

in which these decisions are made and provide an approximate range of values for DI. Deep 

infiltration estimates are important to both producers and water managers. For a producer, 

they represent water and energy losses. For water management, DI is one source of aquifer 

recharge for groundwater dependent regions. Lastly, hydrologic assessment of irrigated agri-

culture provides another facet of science-based factfinding to inform climate change initia-

tives of today.  

 

Model Design  

The following describes basic design components and assumptions for the Deep Infiltration 

Model. Background information pertinent to estimating soil water content parameters are also 

described.  

 

Model Overview 

 The DI model is a one-dimensional, soil water balance model that simulates daily 

soil water content (SWC) for irrigated crops for the length of the irrigated season. The 

model focuses on an applied approach with input parameters accessible to general farm 

managers, such as irrigation schedules, soil texture and depth, and weather data used to de-

scribe crop water use. Two soil drainage parameters (Table 2.1, Equation 2.1) are the ad-

justed variables used to calibrate the model. The dependent variable, deep infiltration, is de-

rived using a daily soil water balance. DI is defined in this study as soil water that percolates 

below the lowest vertical boundary of the root zone, the latter of which describes the model 

boundary. The model was calibrated using the first soil layer within the root zone. The first 

layer is set to the representative depth of soil sensor data used to force the model to observed 

conditions. Sublayer soil water contents were simulated without the use of calibration data.  

 Functions within the model are categorized either as process-based or time-series 

based (Table 2.1). Process-based calculations are focused on simulating natural phenomena 

of crop growth and root water extraction (RWE). The time-series calculations are time ex-

plicit and capture the major inputs and outputs of the system occurring at a daily time step. 
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Evapotranspiration represents a major output from irrigated agriculture and is represented in 

two ways within the model design. First, actual evapotranspiration (ETa) was used as a forc-

ing variable in modeling soil water content for the surface layer. Second, crop evapotranspi-

ration (ETc) was derived using methods found in Allen et al. (1998) for model simulations in 

Chapter 3.  

This model does not account for the following processes that could factor into soil 

water movement within the root zone: surface runoff, surface run-on, capillary rise from 

shallow aquifer tables, temporary surface storage (ponding), preferential flow, or other flow 

influences like water and soil chemistry and air entrapment (Wang et al., 1998). Precipita-

tion is also not considered as the model focused on semi-arid regions with few rainfall 

events. Lastly, this model was based on rooting depth and root mass distribution for alfalfa. 

Future development of this model could consider variation in RWE and DI for different crop 

types. 
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Figure 2.1 Schematic for the Deep Infiltration Model. Primary input parameters are shown on the far left as oblong shapes. Black arrows show the order of 
operations, where the white arrows indicate how the model operates iteratively. Computations are indicated as white tape, where yellow arrows mark the output 

from each function. Variables are shown as diamonds. Greyed boxes indicate what functions are performed collectively for all modeled layers, where “clear” 
boxes are functions calculate for each separate layer. Color coding of schematic parameters/variables are represented as follows: soil water (blue), soils data 

(brown), crop water requirement (green), and stress factors (red). 
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Table 2.1 Functions Used in the Deep Infiltration Model. The “DI” variable is denoted here to represent infiltration processes from all soil layers. 

Function Type Description Input/Description Primary Equation(s) Equation 

Soil 
Drainage 

Time 
Series 

Decay function for soil water 
content on i+1 (Liu et al., 
2006; Wilcox, 1959). DI is 
calculated using SWB from 
equation 2.11. 

SWC 

a, b 
Soil water content 
Drainage constants !"#(%&'),			+,-(%) = 	/ 0		1 + 3

!"4%,			+,-'(%)
/

5

'
6
	7

	6

 2.1 

SWB Soil water balance 89(%&'),			+,-(%) = !"4(%),			+,-(%) − !"#(%&'),			+,-(%)  2.2 

Soil 
Water 
Potential 

Process 

Calculates total soil water 
potential, Ψ< (Eq. 3). Matric 
potential (Eq. 5) is calculated 
using pedotransfer function 
by Saxton and Rawls (2006).  

	Ψ= 

	Ψ> 

Gravitational 
     potential 
Matric potential 

Ψ< =	Ψ= +	Ψ>  2.3 

G 

H 

Gravity constant 
     (9.8 m s-2) 
Vertical height [m] 

 from soil surface 

Ψ= = ?@  2.4 

A B Soil-moisture 
 coefficients Ψ> = A(!"#(%))BC  2.5 

Water 
Stress Process 

Piecewise stress functions 
relating soil water potential 
(Ψ) to a water stress factor, 
“Ks” (values 0-1). Not shown 
is when 	DEF ≤ Ψ< 	< DIJK, 
Ks = 1 or no water stress 
conditions, and when 	DLM ≤
Ψ<	,	Ks = 0. 

Ψ FC 

Ψ MAD 

Ψ WP 

(satm,b, 
unsatm,b, 

unsatb1,b2) 
d1 

Ψ at field capacity 
Ψ at management 

 allowable 
     depletion 
Ψ at wilting point 
Soil constants for 

linear and decay 
equations 

0.40(qMAD - qWP) 

NO	0	 ≤ 	Ψ< < DEF	QℎST 
UV = (V/Q>)	Ψ< + V/Q6  2.6 

NO	DIJK 	≤ Ψ< < W1	QℎST  
		UV = (XTV/Q>)	Ψ< + XTV/Q6  2.7 

NO	W1 ≤ Ψ< < DLM	QℎST 
	UV = XTV/Q6Y	(Ψ<)Z[\]^_`  2.8 

Crop ET  Process 

Determines the amount of 
root water extraction (RWE) 
based on the reference ET 
and crop coefficient (Allen et 
al., 1998). 

ETr 
Kc 

pct_x 

Ks 

Reference ET 
Crop coefficient 
Weighted factor  
     for root mass 
Stress coefficient 

a"b =	bcd	Ue	(feQg)	UV  2.9 

Soil 
Water 
Balance 

Time 
Series 

Layer 1 receives irrigation 
(Eq. 2.10), where lower 
layers receive upper layer 
infiltration (Eq. 2.11). 

IRR 
AE 

RWE 

DI 

Irrigation  
Application 
efficiency 
Root water 
extraction 
Deep infiltration 

!"4(%&'),			+,-(') = 	 !"#(%),			+,-(')
− a"b(%)	+,-(') + 9aa%

 2.10 

!"4(%&'),			+,-(%) = 	 !"#(%),			+,-(%) −	a"b(%)	+,-(%)
+ 89(%),			+,-(%B')

 2.11 
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Table 2.2 Parameters for the Deep Infiltration Model. 

Parameter Unit Description 

IRR mm Daily irrigation schedule 

ETr mm Reference evapotranspiration (Allen et al., 1998) 

Kc - Crop coefficient (Allen et al., 1998)

ETa mm Actual evapotranspiration 

sens_depth mm Representative sensor soil depth layer for model layer 1 

num_lyrs 
tot_depth 
vert_h 

mm 

number of model layers (3) 
total root zone depth (120 cm) 
Vertical height of soil layer from surface (20, 70, 120 cm, for layers 
1-3, respectively)

pct_max_min fraction Describes the slope used to define the pct_x factor (Eq. 2.9) (fixed 
value at [0.60, 0.50])  

b, all layers negative 
fraction Constant for use in Eq. 2.1, describes the drainage rate 

a, all layers fraction Constant for use in Eq. 2.1, approximated as SWC between SAT and 
FC (Liu et al., 2006) 

SWC(i), all layers mm Initial soil water content 

A, all layers 
B, all layers - Soil moisture coefficients (Eq. 2.5), estimated via pedotransfer

functions (Saxton and Rawls, 2006)

!"#$,	all layers 
!'', all layers 
!()**, all layers 

volumetric 
water content 
(VWC) [%] 

VWC at saturation 
VWC at 33 kPa  
VWC at 1500 kPa 
(Saxton and Rawls, 2006) 

IRReff fraction Irrigation efficiency factor, otherwise known as the application 
efficiency (AE) 
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 Model Functions  

 The following sections cover two model functions in further detail, namely “Water 

Stress” and “Crop ET” (see Table 2.1). These are processed based functions used to simulate 

crop growth and root water extraction (RWE). The “Crop ET” function was not used in the 

calibration or validation process of the model, as actual ET (ETa) and observed SWC were 

used as forcing parameters to simulate layer 1 with observed soil conditions.  

Water Stress 

 Water stress is accounted for in the Deep Infiltration Model using a piecewise 

continuous function relating total soil water potential to a dimensionless water stress 

coefficient (Ks). The model attributes a Ks value between 0-1 for each soil layer defined in 

the model. The main input to the Water Stress function is total soil water potential (Ψ$) and 

soil water potentials at field capacity (FC), management allowable depletion (MAD) and 

wilting point (WP) for a given soil type. These latter terms are typically used for irrigation 

management to describe the water holding capacity of the crop’s root zone. FC is defined as 

the soil water content when the soil suction or potential is between 10-33 kPa (Ward et al., 

2016). The wilting point is the soil water potential at which the crop cannot extract water and 

is irreversibly wilted (~1500 kPa). Management allowable depletion is between FC and WP 

and is an estimation of soil water potential at which the plant experiences water stress. 

Irrigation is ideally kept between FC and MAD, since above FC the plant can experience 

saturated water stress.    

 For the Water Stress function, three linear equations and a decay curve are used to 

attribute Ks based on total soil water potential. A linear equation is used to describe saturated 

soil conditions, where the domain values are between 0 and soil water potential at FC (Ψ FC). 

Between Ψ FC and Ψ MAD the stress coefficient is equal to 1. Below Ψ-#.  the Water Stress 

function estimates unsaturated soil moisture potential with a linear equation and decay curve. 

The point at which the linear equation ends is at the coordinates (d1, d2) as shown on Figure 

2.2. Domain value for d1 was arbitrarily assigned as equal to 0.40(Ψ/0 −	Ψ-#.),	where d2 

was set at Ks = 0.15. The decay curve constants are assigned so that Ks is approximately 

equal to 0 when the curve approaches Ψ/0 .  
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Figure 2.2 Water Stress Piecewise Function. Terms used for water management (i.e., FC, MAD, WP) are 
indicated as dashed lines. The coordinates (d1, d2) are shown to indicate the end of the unsaturated linear 

equation and the beginning of the decay curve. The input parameters used in this figure were based on soil types 
given for model calibration and validation data.   

 

Crop ET  

 The Deep Infiltration Model uses the two-step method to calculate crop ET (ETc) as a 

function of reference ET (ETr) and a crop coefficient (Kc). This method is covered in the 

FAO-56 paper and is also known as the “crop coefficient approach” (Allen et al., 1998). ETr 

is calculated using the FAO Penman-Monteith equation. More information on this method is 

covered in Chapter 1. The process of estimating Kc for alfalfa is described in Chapter 3. The 

DI model uses the daily ETr, Kc, and Ks to calculate the amount of root water extraction 

(RWE) for each model layer (Table 2.1, Eq. 2.9). An additional parameter, “pct_x”, is a non-

dimensional weighted factor that scales the amount of RWE based on the soil layer depth and 

root mass. Since the model was calibrated and simulated for alfalfa crops only, the pct_x 

factor is based on alfalfa for three separate soil layers, totaling a maximum rooting depth of 

120 cm.  
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Figure 2.3 Irrigated Alfalfa Root Water Extraction Distribution. Figure credit: (Bauder, 1978).  

 

 The illustration in Figure 2.3 is one commonly cited distribution for the relative RWE 

for irrigated alfalfa. This distribution is both a function of root depth and root mass. 

Generally, greater root mass and root water extraction comes from the upper soil layers. This 

supports the theory plants conserve energy by shortening the distance required to move water 

up through the plant structure.   

Since the model allows for the user to define the number of soil layers and layer width, 

a “pct_max_min” parameter is used scale RWE based on these inputs. The pct_max_min 

requires a maximum and minimum fractional value describing the percent RWE from the top 

and bottom of the root zone. For model calibration and simulation in Chapter 3, these were fix 

values of (0.60, 0.50). For a deeper rooting zone for alfalfa or related crops, the pct_max_min 

may be adjusted more closely to Figure 2.3 (i.e., 0.40 and 0.10). These fractional values are 

used to calculate a slope for a simplified linear function that calculates pct_x (i.e., RWE) as a 

function of soil layer depth.  

 

Calibration and Performance  

The following describes methods and materials used to calibrate the surface layer of the model 

with in-situ soil data collected at an alfalfa field in Harney Basin, Oregon. 
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Background on field data 

 Data used for model calibration and validation were collected at an irrigated alfalfa 

field about 30 miles (48 km) southeast of Burns, Oregon. The alfalfa field is located within 

the Harney Basin Watershed, which receives about 6 inches (15 cm) of annual rainfall (Figure 

2.5). The basin is currently undergoing research by USGS and partners to characterize 

groundwater flow in the area and address gaps in understanding. The watershed is used 

extensively for agriculture with reliance on groundwater resources for irrigation. USGS 

research focuses on addressing uncertainties surrounding surface and groundwater interaction, 

and how this might impact water right holders in the area (https://www.usgs.gov/centers/or-

water/science/harney-basin-groundwater-study, Accessed Oct 2021). The current study has 

implications for water management in this region though they are not specifically addressed.  

 

 
Figure 2.4 Harney Basin Alfalfa Field Site. 
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Historically, large rainfed lakes dominated the watershed. Soils found in the basin 

relate to old lake terraces and lake beds as well as alluvial deposits. The dominant soil type 

for the alfalfa site was determined using the Web Soil Survey by the Natural Resources 

Conservation Service (NRCS) (https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm, 

Accessed June 2020). Soils for the alfalfa field are under the “Poujade series”, which are well-

drained fine sandy loams. Soil texture properties for this series were used to define model 

parameters.  

 

Input Data 

 The following describes input data used in model calibration and validation. Forcing 

parameters, which include observed SWC and ETa collected at the field site, were used to 

constrain simulated behavior of soil water content in the root zone. These parameters aid in 

quality assurance by creating boundaries for model output that are realistic for observed 

conditions.  

Soils Data 

 Soil water content (SWC) data measured at the alfalfa field were used to calibrate the 

first layer of the DI model. Data were collected from two CS616 Water Content 

Reflectometers (Campbell Scientific Inc., Logan, UT, USA) installed about 2.5 cm below the 

soil surface. Probe rods oriented vertically indicate SWC for the upper 30 cm of soil 

(Campbell Scientific Inc., 2020).  

 
Figure 2.5 Soil Water Content Sensor Installation at Harney Basin Alfalfa Field. 

 Photo credit: (R. Jasoni, Retrieved June 2020).  
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Raw SWC data were corrected for apparent sensor drift and values unrealistic for the 

given soil type. For example, VWC measured from both sensors found 30 to 70 percent of 

records exceeding 0.45 [fraction], which is above saturation for well-drained soils in the study 

area. VWC readings were first calibrated using linear coefficients provided for sandy loam soils 

with saturated electrical conductivity of 0.75 dS/m (Campbell Scientific Inc., 2020). VWC at 

FC, WP, and saturation (SAT) for the dominant soil type at the field site were estimated using 

pedotransfer functions (Saxton and Rawls, 2006). These VWC indicators were used as a 

guideline for manually calibrating CS616 readings. The final correction decreased the offset by 

a factor of 2. The offset correction was applied to all soil water content data from 2018-2020. 

The a and b constants listed in Table 2.2 were estimated based on empirical values given 

by Liu et al. for silt loam soils (2006). The a constant value lies between soil water contents at 

FC and SAT for the first day when irrigation was applied. The possible range of b constant 

values were more difficult to determine, as this constant relates to soil drainage rate. Liu et al. 

gives a general guideline for estimating b for silt loam soils, where b < -0.0173 for quick 

draining soils and b > -0.0173 for slow draining soils (2006). The range of uncertainty in b for 

both calibration and validation processes were based on b » -0.0173.  

Lastly, the model assumed homogenous soil properties for the entire root zone. Soil 

water content at FC, WP, and SAT as estimated from layer 1 soil texture properties were applied 

to all three soil layers. This also includes soil-tension coefficients A and B estimated for layer 

1 (see Table 2.2). The following table lists the soil parameters used as input for model 

calibration and validation.  

 
Table 2.3 Soil Parameters used for Model Calibration and Validation. 

Soil Parameter Value Unit 

!"#$,	all layers 
!'', all layers 

!()**, all layers 

0.39 
0.238 
0.119 

Volumetric water 
content [fraction] 

A, all layers 
B, all layers 

0.0114 
5.556 Unitless 

SWC(i), layer 1 
SWC(i), layer 2 
SWC(i), layer 3 

Observed SWC(i) 
SWC at !'' 
SWC at !'' 

[mm] 
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Actual ET Data 

 Actual evapotranspiration (ETa) was calculated for the Harney Basin alfalfa site using 

turbulent flux data collected from an eddy-covariance tower located at the center of the 

irrigation pivot. The eddy-covariance tower includes CSAT3 Sonic Anemometer (Campbell 

Scientific Inc., Logan, UT, USA), and LI-7500DS Analyzer (LI-COR Biosciences, Lincoln, 

NE, USA), which were installed two meters above ground surface. The sensors were oriented 

in the predominant wind direction to measure a representative footprint for the 120-acre 

alfalfa field. EdiRe software package (Campbell Scientific Inc., 2008) was used to calculate 

latent energy flux (LE) from the turbulence data. Post-processing of latent energy (LE) data 

included outlier filtering to remove points greater than 600 W/m2 and less than -100 W/m2, 

which represented 5% of total records. A linear interpolation method was used for gap filling 

removed data points. 30-minute LE was converted to ET (mm) and summed for a daily time 

step.   

Irrigation Schedules 

Irrigation records and alfalfa cutting dates provided by the farm manager were used to 

approximate an irrigation schedule for years 2018-2019. For 2020 irrigation schedule, only 

monthly pumping records were available through Oregon Water Resource Department.  

(https://apps.wrd.state.or.us/apps/wr/wateruse_query/, Accessed June 2020). A 3-day 

irrigation schedule was assumed for the alfalfa field based on observed soil water content 

(SWC) data. This schedule assumes the center pivot makes a full rotation about every 3 days. 

The cumulative total depth of irrigation a center pivot might apply on a 3-day schedule was 

estimated. This estimated cumulative total depth was applied in full every third day within the 

model for 2018-2020 irrigation schedules.  

Two different application systems were employed at the alfalfa site; low-elevation 

spray application (LESA) and mid-elevation spray application (MESA) were used on six and 

two center pivot spans, respectively. These systems describe nozzle height placement for 

sprinkler irrigation. MESA systems are widely used on pivot systems in Idaho, and are 

typically designed with nozzle heights 5-7 ft (1.5 – 2 m) above soil surface. LESA systems 

are an alterative design that lowers the nozzle height to about 1-2 ft (0.3 – 0.6 m) about soil 

surface. The LESA design allows water to spend less time in the air and reduce water losses 

due to wind and evaporation.  LESA systems were installed with nozzle spacing 60 in (1.5 m) 
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apart with nozzles 12 in (0.3 m) from the soil surface. MESA systems were installed with 120 

in (3 m) nozzle spacing with nozzles 48 in (1.2 m) from soil surface (M. Owens, personal 

communication, 2018).  

The DI model accounts for “application efficiency” of irrigation systems when 

calculating the daily water balance (see Table 2.1, Eq. 2.10). Application efficiency (AE) is a 

measure of the amount of effective irrigation being applied by a system. AE is defined as the 

amount of water stored in the root zone over the volume of irrigation delivered to the field 

(Irmak et al., 2011). Water stored in the root zone relates to water that can be used to meet the 

crop water demand (ET). LESA and MESA systems are cited with application efficiencies 

between 85-95 percent and 70-85 percent, respectively (Liang et al., 2019). For simplifying 

model calibration and validation, the efficiency was set at 75 percent since the alfalfa field 

largely employed the MESA system.   

 

Model Metrics  

 A two-sample Kolmogorov-Smirnov (KS) test was the primary metric used to evaluate 

model calibration and validation performance. The two-sample KS test is a nonparametric 

statistic that compares the two empirical cumulative distribution functions (CDF) by 

quantifying the distance between them. The DI model simulates SWC for the first and 

subsequent soil layers. The calibration procedure uses observed SWC as the “reference 

distribution” to compare to the simulated SWC distribution in layer 1. The null hypothesis 

(Ho) states the simulated and reference data are drawn from the same probability distribution. 

Ho cannot be rejected if the KS test p-value is greater than the significance level. The two-

sample KS test, “kstest2” function within Matlab (The Mathworks Inc., 2020) was used to test 

distributions at a 5% significant level.  

The model is primarily focused on simulating soil moisture flux from irrigation events, 

thereby evaluating the contribution of DI from irrigated agriculture. These irrigated periods 

are visually different from non-irrigated or “dry” periods, which correlate to when irrigation is 

shut off to allow alfalfa to dry before harvest. The KS test was isolated to testing observed and 

simulated SWC distributions during irrigated periods. To isolate irrigated and dry periods for 

the KS test, an index was calculated by taking the absolute square-difference of a 3-day 

moving average of observed SWC. Dry periods were indexed when these adjusted values 
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were ≤ 1 × 106*). Values outside of the dry index were used for the irrigated index (Figure 

2.6). 
 

Figure 2.6 Dry and Irrigated SWC Index for KS Test. The index shown is for 2018 observed SWC data that 
was used for model calibration metrics (KS test). 

 

Results and Discussion 

 The following sections present results for model calibration using 2018 field data, and 

model validation for 2019-2020 data collected at the same alfalfa field in the Harney Basin, 

Oregon. SWC was simulated for three soil layers, each layer testing an uncertainty range for a 

and b drainage parameters (see Table 2.2). “Successful” model runs were determined when 

simulated SWC in layer 1 was found to be from a statistically similar distribution as observed 

SWC using the KS test. Soil layers 2 and 3 were not calibrated due to limited soils data.   
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Model calibration with 2018 data  

 The first soil layer of the DI model was calibrated using forcing parameters of observed 

SWC and ETa. An irrigation schedule based on farm records was used to estimate a three-day 

irrigation schedule. Drainage parameters a and b were tested over a range of uncertainty until 

the simulated SWC for layer 1 was statistically similar to observed SWC. Successful model 

runs resulted from an input range of (0.33, 0.35) for parameter a and a range of (-0.20, -0.25) 

for parameter b. Each input range tested 10 parameter values, which resulted in a total of 100 

model runs. From these 100 model runs, 32 runs failed to reject the null hypothesis for the KS 

test; in other words, simulated SWC for layer 1 was drawn from the same probability 

distribution as the observed SWC.  

Figure 2.7 shows simulated SWC for layers 1-3 for a successful calibration run. 

Cumulative seasonal DI from this model run was 126 mm. This DI represents about 20% of 

applied irrigation, which was estimated from a fixed application efficiency (AE) of 75%. Thus, 

the total inefficiencies resulting from DI and losses attributed to irrigation system AE are 45% 

of total on-farm irrigation delivery. Other successful runs showed cumulative seasonal DI from 

115 – 135 mm. Since model calibration was simplified by assuming an AE of 75%, it is likely 

DI and overall farm efficiency would change if an uncertainty range for AE was included.  

 Challenges that arose during model calibration were mainly due to narrowing the range 

of tested values for the a and b parameter used for Eq. 2.1 (see Table 2.1). Initially tested b 

parameter values were based on empirical values provided for silt loam soils (Liu et al., 2006). 

Values found to successfully calibrate the model were more than one order of magnitude greater 

than those provided. This means the soils observed at the alfalfa field are classified as fast 

draining soils (Liu et al., 2006). One explanation for the large difference in b parameters are 

simply due to soil texture or structure at the surface layer. It is also possible preferential flow 

increased the rate of drainage at the upper 30 cm of soil. Narrowing the range of realistic a 

parameter values also presented challenges. Ultimately, the a parameter represents SWC on the 

day of irrigation application. Irrigated soils show water contents between saturation and field 

capacity roughly 1-2 days after application. For soils found at the Harney Basin alfalfa site, 

VWC at FC and SAT were estimated as 0.39 and 0.23 [fraction], respectively. These were 

determined using pedotransfer functions (Saxton and Rawls, 2006). The a parameter values 

found to successfully calibrate layer 1 of the model were between 0.33 and 0.35, demonstrating 
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that the a parameter was closer to estimated SWC at saturation.  
 
 

 
 

Figure 2.7 Successful Calibration Run Using 2018 Observed SWC. Graph a) shows layer 1 which was 
calibrated with in-situ soil data. Graph b) and c) show simulated SWC for layer 2 and 3, respectively. 
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 Figure 2.8 shows the accompanying soil water balance for the calibrated model run in 

Figure 2.7. Cumulative seasonal DI represents all infiltration from layer 3 of the model, which 

is the bottom boundary layer of the root zone. The temporal distribution of DI show greater 

amounts at the start of the irrigation season which decrease over the warmer months (Figure 

2.8, graph c). For semi-arid climates receiving precipitation mainly in the off-season, this 

suggests irrigation efficiency could improve at the beginning of the season by relying on 

antecedent SWC. Layer 2 and layer 3 were modeled using initial SWC at field capacity, which 

might be typical of a “wet winter” that results in enough precipitation to fill deeper soil water 

storage.  

Figure 2.8 Soil Water Balance for Calibrated Model Run in Figure 2.7. Graph a), b), and c) represent soil 
water balances at layer 1, 2, and 3, respectively. Light blue bars represent applied irrigation for layer 1. Darker 

blue bars represent infiltrated soil moisture from the overlying soil layer. 
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Model performance for 2019-2020 data 

 Once the calibration process established a successful input range for drainage 

parameters a and b, simulated SWC for layer 1 was tested using observed SWC for 2019-

2020 at the same field site. The established input ranges from calibration were used to test 

model performance, while also including year-specific forcing parameters to guide model 

output (observed SWC, ETa, and irrigation schedules).  

The model was successful at simulating layer 1 SWC for 2019-2020. The success rate 

for 2019 model runs was about 40 out of 100 model runs. Successful runs for 2020 data were 

comparatively few, with only 3 out of 100 runs. The observed SWC time series for 2019-2020 

were notably different from that of 2018 (Figure 2.9 and Figure 2.10). 2018 observed SWC 

shows sharp “peaks” which are clear indications of large water flux typical of a well-irrigated 

field (see Figure 2.7). The observed SWC for 2019 and 2020 show dampened peaks, 

especially evident for 2019 in late May. These dampened peaks correspond to the farmer’s 

records, where irrigation was turned off about May 4 due to rain and not turned on until June 

20. For 2020 observed SWC, an irrigation record was not provided, so it is unclear whether 

scheduling included rainfall events. It is possible that as the years progressed, soil moisture 

sensor measurements were compromised due to a variety of factors that can occur over the 

span of three years. These factors include soil compaction from farm management, sensor 

drift, or changes to electrical conductivity due to salination.  

Tests of model performance with subsequent year soils data highlight one principal 

characteristic of the DI model; the model focuses on simulating soil water content for 

irrigated crops. Irrigated soil systems reflect consistent soil moisture patterns typical of 

irrigation scheduling. The model can effectively capture these patterns by relying on 

analytical solutions to estimate soil drainage. When observed SWC exhibits natural variation 

due to rainfall events or other dominant factors that affect soil drainage, such as vegetation 

and soil properties, an analytical solution may not be as affective in simulating SWC. 

Additionally, in these regions with sparse rainfall, some farmers might forego irrigation if a 

significant rainfall event occurs. The DI model did not account for rainfall events, though this 

could be done by adjusting the irrigation schedule.  
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Figure 2.9 Model Performance with 2019 Observed SWC. Graph a) shows simulated SWC for layer 1 which 
was tested against observed SWC for 2019. Graph b) and c) show simulated SWC for layer 2 and 3, respectively. 
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Figure 2.10 Model Performance with 2020 Observed SWC. Graph a) shows simulated SWC for layer 1 which 
was tested against observed SWC for 2020. Graph b) and c) show simulated SWC for layer 2 and 3, respectively. 

 

Figure 2.9 shows simulated SWC based on input parameters for 2019 data. These data 

include actual ET, which is partitioned into a root water extraction (RWE) value for each soil 

layer. RWE is a function of soil water stress, soil layer depth, and a relative distribution of 

root mass within the root zone. The effect of this function becomes apparent towards the end 

of the growing season in 2019 when SWC for all layers approaches wilting point. A 

conditional statement for model validation runs states that when SWC	 ≤ WP , no RWE 

should be taken from the layer. This conditional statement supports the definition of wilting 

point, which is the point at which water cannot be extracted by the plant due to low soil water 
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potential. In terms of the conservation of energy, ETa must be accounted for in modeling the 

irrigated system as it is an actual measured value. In this case, ETa can be attributed to soil 

evaporation only. Whether this is a valid statement relies on whether the soil moisture data 

represents real conditions. 2019 observed SWC showed greater “drawdown” periods when 

irrigation was turned off and the soil was allowed to dry. Before irrigation was turned on, 

SWC for 2019 had dried down to about 0.08 VWC. This is a difference of about 0.02-0.07 

VWC as compared to 2018 and 2020 data. As will be shown in Chapter 3, 2019 demonstrated 

drier climatic conditions in southern Idaho that resulted in higher actual ET. It is likely 

Harney Basin also experienced drier climatic conditions for 2019, which would explain why 

drawdown periods were greater for this time series.  

 Challenges arising from model performance tests were largely due to unrepresentative 

observed soil moisture data. The time series of observed SWC for 2020 was shortened to 

between July and October to isolate periods of observed SWC realistic for irrigated soils. 

When irrigated and non-irrigated periods could not be distinguished from observed soil 

moisture data, it was difficult to assign an irrigation schedule. 2020 presented greater 

difficulty since farm records were not given and monthly pumping records were used to 

approximate applied water. The irrigation schedule and subsequent model results for 2020 

performance runs should be viewed with caution, since they do not agree with earlier model 

findings. For instance, cumulative seasonal DI estimates for 2020 runs were about two times 

greater than values found for 2018-2019, with values around 260 mm. Another challenge of 

testing model performance is evaluating representative SWC simulated for lower layers. A 

promising feature of the model is it shows attenuation of SWC with greater depths, as typical 

for in-situ soil moisture data. Future development of this model will seek opportunities to use 

multi-depth soil moisture data to test model performance for deeper layers.  



 37 

Chapter 3: Magic Valley Deep Infiltration Study 
Water resource accounting continues to be a critical part in managing water 

shortages of today and in the future. Similar to a person’s checkbook, water accounting 

keeps a record of inflows and outflows to a hydrologic system, from the spatial scale of an 

agricultural field to that of a drainage basin. Water is almost always moving in both time and 

space, which creates a challenging task for water resource managers. Additionally, the 

methods to measure certain changes in water, like groundwater recharge and 

evapotranspiration, are not always accessible, easy to interpret, or simple to explain to the 

community at large. Finding solutions to these difficult tasks of water management are 

crucial with current and forecasted droughts worldwide. 

With a high demand on freshwater resources and irrigation being the largest global 

consumer of these resource, policy makers are focusing on ways to encourage water 

conservation in the agricultural field. Conservation efforts in the agricultural field are 

intended to make water more available to other users, such as industrial or domestic. In the 

past decade, water policy has sided in favor of improved irrigation technology. These 

policies provide subsidies to farmers to update older irrigation methods in favor of systems 

with improved irrigation efficiency (IE). Contrary to the goals of these policies, in many 

cases the adoption of improved IE systems has increased water consumption per acre (Perry 

and Steduto, 2017).  It was also found these pre-existing “inefficiencies” were indirectly 

supporting other water users through aquifer recharge (Stewart-Maddox et al., 2018) or 

downstream flows (Ward and Pulido-Velazquez, 2008). In order to make water available for 

other uses in a watershed or a basin, it is suggested a closer evaluation of irrigation’s 

“nonbeneficial uses” be performed (Grafton et al., 2018). “Beneficial use” is a legal 

description associated with water rights. In the case of irrigation water rights, water is 

considered beneficially used if it goes towards growing something planted.  

Nonbeneficial uses describe water that is not directly used in plant growth as measured 

through plant evapotranspiration (ET). In this study, deep infiltration (DI) describes one 

nonbeneficial use of water in irrigated systems, where applied water exceeds the holding 

capacity of the root zone and is lost to deeper groundwater. It should be noted that DI can 

have certain “benefits” for farmers and other water users, such as aquifer recharge and soil 

desalination, though here DI is nonbeneficial use in context of in-farm water efficiency.  
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 When it comes to developing and adopting irrigation technology with higher IE, the 

main motivation is to reduce water losses that occur between a pressurized irrigation system 

and the soil surface. For instance, conventional center pivot systems with high-impact 

sprinklers demonstrate a large, wetted radius, though have high losses due to wind drift, 

canopy interception, and evaporation (Peters et al., 2019). Modified systems, such as Low 

Energy Precision Application (LEPA) were recommended as early as 1978 to reduce water 

and energy consumption (Lamm and Porter, 2017). Variations of the LEPA system, such as 

Low Elevation Spray Application (LESA), are widely practiced in the Southern Ogallala 

Aquifer Region to reduce groundwater withdrawals (Colaizzi et al., 2009). These systems 

modify the required pressure and the distance of the sprinkler head from the surface to 

reduce water losses to wind drift and evaporation. Another added benefit from operating an 

irrigations system at lower pressure is increased energy savings.   

 With modified sprinkler systems continuing to be tested across the Pacific Northwest 

and promoted for basin-wide water savings, this study calls for a closer evaluation of the 

application efficiency (AE) of such systems. AE is defined here as the ratio of water 

delivered directly to the root zone of the crop, over the water that is delivered to the 

application system (Irmak et al., 2011). Not only does AE evaluate losses that are more 

apparent above the soil surface, such as wind loss or evaporation from canopy interception, 

but losses that could occur below the surface due to deep infiltration. The reality is that deep 

infiltration does occur from irrigated lands at a scale and frequency large enough to be 

detected through aquifer recharge (Stewart-Maddox et al., 2018). Aquifers are an important 

freshwater reservoir for agriculture and are continuing to be depleted at a rate that exceeds 

natural recharge. The implications of irrigation-induced recharge and water “savings” from 

improved irrigation efficiency makes this study relevant today.  

 

Background on Study Area 

 This study focuses on the south-central region of Idaho known as the Magic Valley. 

This region is one of the most agriculturally productive regions in the state and in the 

Northwest United States. The area was “magically” transformed during the early 20th 

century from desert to cropland, with the construction of canal systems and the Milner and 

Minidoka Dams. Today, the agricultural industry continues to be the primary economic 
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resource for local communities and the state. Forage crops like alfalfa are grown in the 

Magic Valley and support Idaho’s dairy industry, which accounted for $2.4 billion in farm 

cash receipts in 2019 (Ellis, 2019). Additionally, the valley overlies a portion of the Eastern 

Snake River Aquifer, which has been a chief source of water and key factor in Idaho’s 

economy and agricultural production.   

Within the past few decades, concern has been placed on the Eastern Snake River 

Aquifer due to declining groundwater levels. Groundwater levels have been declining since 

the 1970’s, which can be attributed to the conversion of flood irrigation to pressurized 

systems, increase in the number of groundwater withdrawals and overall growth in the area 

(Stewart-Maddox et al., 2018). The effect of irrigated agriculture on groundwater resources 

has highlighted the connectivity of surface water and groundwater in southern Idaho. As 

such, water resource management and administration of water rights in the state has evolved 

to collectively manage surface water and groundwater.   

 With the agricultural sector supplying about 42 percent of jobs and 59 percent of 

total sales in the Magic Valley (Ellis, 2021), efforts in agricultural water accounting will 

help evaluate long-term water security and economic prosperity for the region. This study 

will apply the DI Model described in Chapter 2 over the Magic Valley area to estimate near-

surface DI from irrigated farmland. The primary goal is to evaluate DI losses from pressured 

irrigation systems with improved efficiency. The area has been transitioning to pressured 

irrigation systems since the 1950’s, with more recent adoption of modified systems like 

LEPA and LESA. This study has relevance in regional water balance estimates and the 

collective management of surface water and groundwater in southern Idaho.  

 

Methods 

 The following describes methods used in creating test scenarios for the Magic Valley 

Deep Infiltration study. Test scenarios were based on irrigated alfalfa for two different 

climatic conditions and three different soil types applicable to the region. The “climatic 

conditions” include input variables that account for the atmospheric demand for water as 

well as antecedent soil moisture from winter precipitation. Three irrigation schedules were 

tested over these soil types to evaluate differences in management for pressurized irrigation 

systems.  
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Study Area and Irrigated Alfalfa 

Evaluation of deep infiltration for the Magic Valley was limited to irrigated alfalfa 

found in six counties, namely Gooding, Lincoln, Jerome, Minidoka, Twin Falls, and Cassia. 

Alfalfa was selected for two reasons; firstly, the model was calibrated against in-situ soil 

moisture data from an alfalfa field, and secondly, alfalfa is a primary forage crop that 

supports the dairy industry in the Magic Valley. Alfalfa has also been shown to be resilient 

to deficit irrigation practices, which has relevance in adaptive strategies for regions facing 

water shortages. Most alfalfa production occurs in proximity to the Snake River, which runs 

along the northern border of Twin Falls and Cassia counties. Growing conditions around the 

Snake River are likely to be affected by waterbody-induced microclimates, which have a 

cooling effect on the local air temperature as well as an increase in relative humidity.  This 

phenomenon is also true for irrigated croplands, which increase the amount of moisture in 

the air and create a cooling effect for the surrounding area. Thus, weather data used for the 

crop ET function (Eq. 2.9) was focused on local weather stations near the Snake River, or 

generally surrounded by irrigated farmland.  

Magic Valley counties were masked for irrigated alfalfa using a spatial layer for 

alfalfa crops for 2019, which was provided by the United States Department of Agriculture-

National Agricultural Statistics Service (USDA-NASS) 

(https://nassgeodata.gmu.edu/CropScape/, Accessed June 2021). This raster layer was 

overlain with a vector layer describing irrigated lands for 2015 (Idaho Department of Water 

Resources, https://data-idwr.opendata.arcgis.com /pages/gis-data/, Accessed June 2021). 

This step was performed to ensure alfalfa was irrigated only, and to provide a polygon layer 

for other spatial analyses done in ArcGIS 10.5 (Esri Inc., 2021).  
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Figure 3.1 Magic Valley, ID Irrigated Alfalfa. Shown in green is irrigated alfalfa for 2019 (USDA-NASS crop 
data layer). Figure a) shows the Magic Valley as located in the State of Idaho, as well as the primary aquifer, the 

Eastern Snake Plain Aquifer (ESPA, in blue).  

 

Test Scenarios     

The model requires two main input variables that account for major soil water fluxes 

in the root zone, namely, crop ET (ETc) and an irrigation schedule. Other user-defined 

parameters, including soil texture and drainage constants (Equation 2.1) were based on three 

dominant soil types identified for Magic Valley soils in which alfalfa was grown. Three 

irrigation schedules were created to evaluate the effect of farm management on deep 

infiltration. Variations in climatic conditions were accounted for by altering the atmospheric 

demand (i.e., ETc) and the initial soil water content. The atmospheric demand for water has 

relevance to climate change, since crop evapotranspiration is partly influenced by increased 

air temperatures. Climate change can also alter the availability of water. This has implications 

for semi-arid climates that receive precipitation predominantly in the off-season. Altering the 

initial SWC partially accounts for changes in water availability attributed to climate change.  



 42 

Table 3.1 Magic Valley DI Study Test Scenarios. 36 scenarios were created to represent a range of growing 
conditions for Magic Valley irrigated alfalfa. 18 scenario descriptions are listed below for simplicity, where each 
scenario was tested under two ETc time series (ET1, “dry” and ET2, “wet”).  

Scenario No. 
Initial SWC 

(Layers 1-3) Irrigation Schedule 
Soil Type 

(Layers 1-3) 

1 Wet One-day 

Well-drained 

2 Dry 
3 Wet Two-day 
4 Dry 
5 Wet Three-day 
6 Dry 
7 Wet One-day 

Poor-drained 

8 Dry 
9 Wet Two-day 

10 Dry 
11 Wet Three-day 
12 Dry 
13 Wet One-day 

Excessive-drained 

14 Dry 
15 Wet Two-day 
16 Dry 
17 Wet Three-day 
18 Dry 

 

Scenario Data for DI Model 

Reference ET and Crop Coefficient 

 In order to estimate crop evapotranspiration within the DI model, reference ET (ETr) 

and a crop coefficient (Kc) time series are required inputs. ETc is a function of weather 

conditions, crop type, as well as management and environmental conditions, and can be 

estimated through the crop coefficient method (Allen et al., 1998). This method first requires 

calculating ETr, which accounts for climatic conditions that govern the rate of evaporation. It 

is based on a crop reference surface that is uniform in height and well-watered so only 

climatic factors are considered (Allen et al., 1998). The second component of estimating ETc 

is the crop coefficient, which describes the difference in evapotranspiration between the 

reference crop and another crop type. In other words, Kc is the ratio of crop ET over that of 

the reference ET, as shown below:  
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 Eq. 3.1 

Kc fluctuates throughout the year largely as a function of growth stages. For alfalfa crops, this 

includes periodic harvest. The model incorporated three harvests into the Kc time series as 

typical for southern Idaho farm management.  

The following describes methods used to determine two ETr and Kc time series, which 

are broadly described as “dry” and “wet” growing seasons. These terms describe general 

climatic factors that can influence crop ET for any given year. For “dry” growing seasons, the 

calculated ETr is higher due to increase solar radiation, wind, and high air temperature. These 

weather conditions increase the amount evapotranspiration. “Wet” growing seasons show 

comparatively lower ETr due to increased humidity. Representative “wet” and “dry” year ET 

were determined for irrigated alfalfa in the Magic Valley by using gridded maps of actual ET 

(ETa) provided by Idaho Department of Water Resources (IDWR) (https:/data-idwr.opendata 

.arcgis.com/pages/gis-data, Accessed June 2021). These ETa maps are generated using the 

METRIC model, which estimates ETa as a residual term from a surface energy balance 

calculated from 30-meter Landsat images (Allen et al., 2011). Each instantaneous Landsat 

image used in METRIC is assigned a pixel value (units depth) which is interpolated over time 

to develop a cumulative ETa map for the length of the growing season (3/1 – 10/31).  

ETa for years 2009-2019 was tabulated for areas growing alfalfa within the Magic 

Valley. IDWR ETa maps for 2012 and 2014 were unavailable.  Maps were masked for alfalfa 

using the USDA-NASS spatial layer, which were then averaged for each county in the Magic 

Valley. The county average (n =6) was used towards an overall Magic Valley ETa average for 

2009-2019. This process allowed for a comparison of actual ET from alfalfa for a ten-year 

span (see Figure 3.2). IDWR maps use remote sensing methods that allow detection of water 

shortages and plant stress that are missed by using the crop coefficient method (Allen et al., 

2011). Tabulating actual ET helps identify interannual variation due to climatic conditions as 

well as overall management practices for alfalfa in the region.  

To account for two distinct time series related to the atmospheric demand for water, 

years 2015 and 2019 were chosen to represent the “dry” and “wet” growing seasons, 

respectively. Corresponding reference ET time series for years 2015 and 2019 were chosen 

from Agrimet weather stations in the Magic Valley. Agrimet is a climate data network 
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provided by the Bureau of Reclamation (USBR), which includes a few stations located within 

the Magic Valley. Daily reference ET was downloaded for 2015 and 2019 from Twin Falls 

(Kimberly) Agrimet station, for dates between April 1 and October 9. The Kimberly Agrimet 

station was selected due to its location within the Magic Valley and its proximity to irrigated 

cropland in all directions. 

 

     
Figure 3.2: Total Seasonal ETa for Magic Valley Alfalfa. Total seasonal ETa (Mar 1– Oct 31) for alfalfa was 

averaged for 6 counties within the Magic Valley. The Magic Valley county average is shown in here, with 
standard error in blue. Years 2012 and 2014 are excluded. 

 

Finally, two crop coefficient (Kc) time series corresponding to “wet” and “dry” 

growing seasons were developed. As mentioned in Equation 3.1, the crop coefficient (Kc) can 

be described as the ratio of ETc over that of the ETr. The reference ET represents a theoretical 

ceiling of evapotranspiration rate by a crop, with the assumption the crop is well-watered and 

disease free. The calculated crop ET will not always reach this ET rate due to growth stages, 

health, and environmental factors affecting the plant. Limiting factors preventing full potential 

ET also include atmospheric conditions, for example, when less solar radiation is received at 

the surface or when relative humidity is high. 
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The approach used in this model to create Kc time series was to take the ratio of 

Magic Valley average ETa (Figure 3.2) over the ratio of cumulative total daily ETr retrieved 

from the Kimberly Agrimet station. This ratio is similar to a crop coefficient, though it is used 

here to broadly estimate an average ETa / ETr relationship for the entire Magic Valley for 

years 2015 and 2019. This ratio was used to adjust each year’s Kc time series until the area 

above the ETa / ETr ratio line is equal to the area below. Three alfalfa harvests were 

incorporated into the Kc time series (Figure 3.3).  

 
Figure 3.3 Crop Coefficients for “Dry” and “Wet” Growing Seasons. 2015 is shown in graph a) which 

represents Kc during the “dry” season. Kc for 2019 is shown in graph b) and represents the “wet” season. The 
“dry” season shows full potential ET where Kc = 1. The “wet” Kc time series illustrates low atmospheric water 

demand where Kc reaches a maximum at 0.80. 
 
 

Irrigation Schedule   

 Three center pivot irrigation schedules with different application rates were created for 

the Magic Valley test scenarios. Application rates for sprinkler systems are functions of both 

system design, including flow rate and nozzle type, as well as the operating speed of the 

system. Typical center pivot systems for southern Idaho are designed to apply water at flow 

rates from 6.5-7.5 gallon/minute/acre (Hines and Neibling, 2013). The application rate for 

center pivots can be controlled with a percent timer, which adjusts the motor speed of the last 

tower. Faster speeds are used to apply less water to the ground, where slower speeds increase 

the depth of water per revolution.  
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A few factors may be considered by an irrigator when setting the pivot speed. First, 

speed may be decreased to apply more water than the crop water requirement (ET). This is 

typically done to supplement water lost through application inefficiencies. A second 

consideration in choosing a pivot speed is the infiltration rate (IR) of the soil. If a soil has a 

low IR, then applied water could either become runoff or cause pooling at the surface. The 

latter condition contributes to the non-consumptive water loss (evaporation), or also causing 

wheel track rutting and preventing the pivot from moving freely. Ideally, the irrigator will be 

able to schedule the pivot to apply sufficient water to meet the ET requirement, limit plant 

stress, and avoid excess runoff or standing water. The irrigator considers the time it takes for 

the pivot to make one revolution, and at what depth water is applied over that time. 

Irrigation schedules were based on one-, two-, and three-day pivot revolutions. An average 

application rate of 0.0133 in/hr for a 6 gallon/minute/acre flow design was used to create 

these schedules (Leib and Grant, 2019). Though center pivot systems apply water daily as 

they rotate around the field, these schedules apply the cumulative total depth on the scheduled 

day. In retrospect, this approach does not consider evaporative losses that happen on a diurnal 

cycle. For instance, a one-day irrigation schedule wets the surface more often compared to a 

three-day schedule. Still, evaporative losses from soil are likely minimal when estimating DI 

for a regional water balance. Table 2.3 summarizes the irrigation schedules and their 

application rates. Application depth was 120 cm for all schedules, which is the amount of 

water delivered to the application system. These schedules were tested against all soil types 

(i.e., poorly-drained, well-drained, excessively-drained).  

Table 3.2 Irrigation Schedules used in Magic Valley Test Scenarios 

Irrigation schedule Speed description Application rate 

Every day Fast speed 0.32 in/24-hrs 

Every two days Medium speed 0.64 in/48-hrs 

Every three days Slow speed  0.95 in/72-hrs 

 

Irrigation efficiencies were tested from a range of 72-90%, with increasing efficiencies of 2%. 

Efficiencies are based on application efficiencies (AE), or the ratio of water reaching the soil 
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profile over the amount delivered to the application system. This range of AE are based on 

estimated efficiencies given for sprinkler systems, such as high-pressure impact sprinklers, 

MESA, LESA, and LEPA systems (Peters et al., 2019). 

Magic Valley Soils 

 Dominant soil drainage classes were identified for agricultural soils in the Magic 

Valley in which alfalfa is grown. Soil information was retrieved from SoilWeb, an online 

interactive map providing USDA-NRCS soil survey data. Spatial layers of soils were masked 

with the irrigated alfalfa spatial layer to identify soils of interest. These “alfalfa soils” were 

then categorized into three drainage classes (well-, poorly-, excessive-drained), which 

information is found in the Official Series Description 

(https://casoilresource.lawr.ucdavis.edu/, Accessed June 2021). Well-drained soils 

represented about 84% of alfalfa soils for the Magic Valley, where poor- and excessive-

drained soils were about 7-9% (Figure 2.3).  
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Figure 3.4 Dominant Soil Drainage Classes for Magic Valley Alfalfa. Irrigated alfalfa (in green) was 
used to mask soils and identify drainage class. Well-drained soils (in blue) were the highest represented 

drainage class, representing 84% of land in which alfalfa is grown.  
 

 

Once drainage classes were identified, their corresponding shapefile was exported and 

used to define the area of interest within Web Soil Survey (https://websoilsurvey 

.sc.egov.usda.gov/App/WebSoilSurvey.aspx, Accessed June 2021). For each soil series 

categorized under each drainage class, the percent clay, silt, and organic matter was found for 

a soil depth of 120cm. A weighted average was taken to account for soil series that 

contributed a higher percent of total acreage. Volumetric water contents (VWC) at SAT, FC, 

and WP, and A and B parameters for soil-tension were then calculated for each drainage type 

using pedotransfer functions by Saxton and Rawls (2006). The resulting soil parameters are 

shown in Table 3.3. 

 Drainage constants used in Equation 2.1 were estimated for each drainage class based 

on values found through model calibration. Layer 1 of the model was successfully calibrated 
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when the a parameter lie between 0.33 and 0.35 and the b parameter between -0.20 and -0.25. 

These drainage parameter values describe well-drained soils for data used for model 

calibration. Since well-drained soils make up the majority for the Magic Valley, a wider range 

was estimated based on guidelines given by USDA. Assuming well-drained soils reach field 

capacity around 1-2 days (USDA, 2008), a decay function by Richards et al. (1957) (Eq. 3.2) 

and SWC at FC were used to approximate parameter a and b. 

 

 𝑊 = 𝑎𝑇*+ (Eq. 3.2) 

 

Where W represents water content, T as time, and a and b are positive constants describing 

drainage rates for a certain soil type. Poorly- and excessive-drained soils followed the same 

procedure by using Eq 3.2 and SWC at FC classified for each soil texture. Poorly-drained 

soils were estimated to reach FC around 2-3 days, where excessive-drained soils reach FC ≤ 1 

day.  

 
Table 3.3 Soil Parameters for Magic Valley Test Scenarios. 

Soil drainage 
class 

VWC at 
saturation 

VWC at 
field 

capacity 

VWC at 
wilting 
point 

Soil-tension 
parameters 

[A; B] 

Equation 2.1  
b parameter 

(range) 

Equation 2.1 
 a parameter 

Well-drained 0.38 0.26 0.10 [0.22; 3.7] (-0.14, -0.30) 0.30 

Poor-drained 0.38 0.18 0.07 [0.034; 4.3] (-0.12, -0.18) 0.22 

Excessive-
drained 0.40 0.10 0.05 [0.001; 4.7] (-0.27, -0.30) 0.14 

 

Results and Discussion 

Presented in this section are regionwide estimates of deep infiltration for dominant 

growing conditions and management for Magic Valley alfalfa. Thirty-six test scenarios (see 

Table 3.1) were created to show a range of possible values under different types of irrigation 

schedules, irrigation efficiencies, soil textures, and atmospheric conditions. 
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Consumptive Use Efficiency  

  Two metrics used to illustrate the results from test scenarios are the application 

efficiency (AE) and consumptive use efficiency (CUE). As defined here, AE is the ratio of 

water applied to the soil and integrated into the rooting zone to the quantity of water delivered 

to the irrigation system. CUE describes the efficiency of applied irrigation used directly for 

the consumptive use of irrigation, or ET:  

 

𝐶𝑈𝐸 = 1 −1
𝐷𝐼4567(9)
𝐼𝑅𝑅9 ∗ 𝐴𝐸

>?@

9A>

 

 

(Eq. 3.3) 

 

Where DILYR3 describes all deep infiltration from the deepest root zone boundary (layer 3 in 

this case) and IRR*AE is the scheduled irrigation multiplied by the application efficiency, 

respectively. Test scenarios were tested over a course of 192 days from April 1 to October 9. 

The AE metric is typically used to describe modified pressurized irrigation systems, which 

focus on losses above the crop surface due to wind and evaporation. CUE is included to 

describe losses that occur below the root zone to DI.  

Figure 3.5 shows the effect of increased application efficiencies on CUE. The figure 

separates climatic conditions based on color, where red markers indicate growing seasons 

where atmospheric water demand was high (hereafter denoted ET1), and where atmospheric 

water demand was low, as shown in blue (ET2). Each marker shape represents a drainage 

class. The figure is separated into four graphs describing “wet” and “dry” initial SWC. 

Drainage rates showed a linear relationship on CUE. For simplicity, model runs testing the 

upper and lower values for parameter b (see Table 3.3) are shown in the figure. Well-drained 

soils had a larger range for drainage rate, which is reflected in a larger range of CUE values. 

A one-day irrigation schedule is shown; changes in CUE due to irrigation schedules were 

within 1 percent for all soil types.   
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Figure 3.5 Consumptive Use Efficiency for Test Scenarios. For graphs a) and b), initial SWC was set at FC or 
“wet” conditions. Graphs c) and d) describe “dry” conditions where initial SWC was set at MAD. Test scenarios 
using a one-day irrigation schedule are shown. Only model runs testing the upper and lower drainage rate values 

are shown.  
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The most prevalent relationship for these test scenarios was a decreasing trend of CUE 

with increasing application efficiency. In other words, as more effective irrigation is applied 

to the crop, deep infiltration increases. Adjusting the b parameter, which essentially represents 

the rate of soil drainage, had a noticeable effect on CUE. Faster drainage rates are shown in 

Figure 3.5 with lower CUE, where slower rates are shown with comparatively higher CUE.  

As the b parameter approaches zero and the rate of drainage slows, CUE decreases with 

increasing AE. As the b parameter becomes more negative and drainage rates increase, CUE 

(and deep infiltration) show less variation.  

These relationships suggest both the rate of soil drainage and the application 

efficiency of the irrigation system have influence on deep infiltration. AE has a stronger 

negative relationship on CUE when the rate of drainage is slower (i.e., b parameter 

approaches zero). Slower drainage rates allow the roots to extract more water used towards 

ET. Increased depths of effective irrigation must match the rate of root water extraction 

(RWE) while also not exceeding the water holding capacity of the root zone. These 

relationships also suggest how irrigation scheduling can improve the consumptive use 

efficiency of applied water. When irrigation schedules consider climatic factors, such as the 

atmospheric demand for water (ET), deep infiltration losses can decrease by about 10% 

(Figure 3.5).  

 Ideally, irrigation systems with increased AE should improve the CUE of applied 

irrigation. This relationship is slightly evident in Figure 3.5, graph c). This test scenario 

demonstrates a “dry” winter followed by a “dry” summer; in other words, winter precipitation 

was low and growing season atmospheric conditions were warm. In such situations, the 

irrigator will likely need to apply greater depths of irrigation to replenish soil water storage 

and keep up with the crop water requirement. It happens that the irrigation prescription for 

this test scenario was able to apply water more efficiency with increasing AE. Since this 

relationship only improves CUE by less than one percent and it is only evident for a few test 

scenarios, further research will be required to understand the underlying effects. Still, it is 

hypothesized that irrigation management that use “best management practices” (BMPs) when 

prescribing irrigation can improve CUE with improved irrigation systems. BMPs could 

include keeping a record of soil moisture content or utilizing weather-based ET estimates. 

This has been echoed by the Congressional Research Service in addressing government 
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subsidies provided to agricultural producers for adoption of irrigation technologies (Stubbs, 

2016).  

Estimated Total Seasonal Yield Reduction 

 Irrigators water crops for the main purpose of maximizing crop yield through 

supplementing water lost to ET. When it comes to water conservation at the farm scale, one 

incentive for irrigators to adopt irrigation technologies with higher AE is to reduce power 

costs. Water pumped to the field and driven by center pivot systems uses a substantial amount 

of power in the irrigation process. From an economic perspective of the irrigator, investment 

in irrigation technologies will have to be met by financial savings in power consumption, as 

well as continued or improved crop yields. The question lies from these modeled scenarios  

is whether crop yields can be maintained with decreased deep infiltration losses. To do so, a 

seasonal yield reduction (YRseas) metric was used to estimate yield loss experienced by a plant 

due to water stress. Within the DI model, each layer of the soil profile assigns a water stress 

factor (Ks) based on total soil water potential (Eq. 2.3). When Ks < 1 water stress occurs, and 

plant transpiration and growth are hindered. Yield loss has been described for many crops 

using first-order approximations, a relationship that appears to be consistent against cultivars 

of alfalfa (Steduto et al., 2012). YRseas is estimated in this study using a similar approach as 

the Irrigation Scheduler tool by Peters et al. (2019), where yield reduction is a function of the 

water stress factor:  

 

 𝑌𝑅CDEC = 1 − F
∑ (𝐾𝑠456>(9) +>?@
9A> 𝐾𝑠456@(9) + 𝐾𝑠4567(9))

192 L ∙ 100 (Eq. 3.4) 

 

Where YRseas is the total seasonal yield reduction [%], Ks is the stress coefficient [fraction] 

for each given layer, and 192 is the number of modeled days for each test scenario. This 

equation assumes that water stress had a negative linear correlation with crop yield, and YRseas 

can be estimated using the season-long average Ks. 
 Figure 3.6 shows application efficiency versus estimated total seasonal yield reduction 

for test scenarios. As before, a one-day irrigation schedule and the upper and lower ranges for 

b parameter values are shown in the graphs. The most evident relationship is that as AE 

increases, the average seasonal yield reduction decreases. As more water is applied to the soil 
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Figure 3.6 Seasonal Yield Reduction for Test Scenarios. For graphs a) and b), initial SWC was set at FC or 

“wet” conditions. Graphs c) and d) describe “dry” conditions where initial SWC was set at MAD. Test scenarios 
using a one-day irrigation schedule are shown. Only model runs testing the upper and lower drainage rate values 

are shown. 
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surface due to increased application efficiency, there is decreased likelihood the crop will 

experience water stress. This relationship is largely intuitive, though it does not hold true for 

some test scenarios for excessive-drained soils. The pattern breaks for excessive-drained soils 

that were tested with the upper range of b parameter values (-0.27). As the b parameter 

approaches zero the soil drainage rate can be described as “slow”. Figure 3.7 shows one 

model run that resulted in increased YRseas with higher application efficiency. For layer 1 

(Figure 3.7, graph a), saturated water stress was consistent throughout the season, as 

designated by red triangle markers. Whether this is a realistic situation for “excessive-

drained” soils requires further analysis of the soils data and b parameter ranges. This situation 

highlights one aspect of the model that could use further research.   

 
Figure 3.7 Excessive-Drained Soils with High AE. This figure is used to show saturated water stress in layer 1 
(graph a) that resulted due to increased AE and slow drainage rates given by parameter b. Green markers denote 

soil water conditions that are stress-free, or Ks = 1. AE was set at 90% for this model run. 
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From a management perspective, irrigators would likely avoid conditions that lead to over-

saturation of the surface soil layer. This leads to challenges for center pivot systems, as motor 

wheels can become stuck with too much applied irrigation. From a modelling perspective, 

surface ponding can contribute to surface runoff, which is water balance term not accounted 

for. Additionally, the model does not account for surface runoff or evaporation from pooling, 

which could occur when layer 1 exceeds field capacity. The model run from Figure 3.7 also 

highlights a challenge of the Magic Valley DI study, which required estimating drainage 

parameters for three dominant soil drainage classes. Further development of the model could 

utilize in-situ soil data for excessive-drained soils to validate simulated SWC for layer 1. 

 The deep infiltration results for the Magic Valley study were presented in this section 

in terms of consumptive use efficiency. CUE was used primarily to compare model results 

with a related metric of application efficiency. The results of this study could be used to guide 

decisions for regional water balance estimates. Since growing conditions were generalized for 

the entire Magic Valley region, there is uncertainty for all model parameters and absolute 

values for DI are not shown explicitly. As a baseline comparison of absolute DI found from 

the Magic Valley study, Table 3.4 shows cumulative seasonal DI resulting from calibration 

and validation model runs presented in Chapter 2. These model runs used observed SWC and 

actual ET data from Harney Basin to simulate deep infiltration for alfalfa.  

 
Table 3.4 Comparison of Absolute DI Estimates for Magic Valley.  

Model Run Soil Drainage Type Deep Infiltration Range [mm] 

Magic Valley DI Study Well-drained 45 – 554 

Magic Valley DI Study Poor-drained 41 – 264 

Magic Valley DI Study Excessive-drained 164 – 355 

DI Model Calibration (2018) Well-drained 115 – 136 

DI Model Validation (2019) Well-drained 97 – 120 

DI Model Validation (2020) Well-drained 259 – 261 
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Chapter 4: Considerations of Agricultural Water Balance Estimates for 

Regional Water Management  
Irrigation is the largest user of freshwater resources, and likely the most important in 

meeting the world’s food supply. Irrigated agriculture represents 70 percent of global water 

withdrawals, the largest water footprint compared to other sectors (Siebert et al., 2010). 

Demand for agricultural products is high and projected to continue supporting a growing 

population and biofuel industry. This puts pressure on irrigated agriculture which already 

faces large uncertainties due to climate change, such as “extreme” weather conditions and 

interannual variability in water supply. Water security is needed to ensure food security, 

which has been said to be the greatest challenge of our century (Easterling, 2007). 

The sustainability of irrigated agriculture requires accounting for irrigation’s part in 

regional water balances. Irrigation is unique from other water users since a large portion of 

water is removed from supply without return to the hydrologic system; in other words, 

irrigation has a high “consumptive use” or ET requirement. Crop consumptive use was 

estimated as 62 percent of withdrawals for the US in 2015 (Dieter et al., 2018). Additionally, 

irrigation consumes both surface and groundwater sources. In the past 50 years, groundwater 

withdrawals have tripled (World Water Assessment Programme, 2012). While this has 

expanded the acreage of arable lands, it has also led to declining aquifer levels worldwide as 

withdrawals exceed the rate of natural recharge.  

Due to irrigation’s significant impact on water supply, policy and management 

decisions of the past couple decades have focused on water “savings” within the 

agricultural sector. Federal policies have subsidized irrigation technology with the goal of 

increasing water use efficiency. The paradox of improved irrigation efficiency is that in 

many cases, it has led to increased water consumption per acre (Grafton et al., 2018; Perry 

and Steduto, 2017; Ward and Pulido-Velazquez, 2008). In addition, adoption of irrigation 

technologies has decreased the amount of incidental aquifer recharge. This was true for the 

Eastern Snake Plain Aquifer in southeast Idaho, which saw an increase in improved 

irrigation in the 1950s. Coupled with canal lining and a decline in farmers using traditional 

flood irrigation, the aquifer saw a steady decline in aquifer storage of about 200,000 acre-

feet-year (Stewart-Maddox et al., 2018).  
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Considering the paradoxes related to improved irrigation efficiency, the DI model 

was developed to provide another tool by which agricultural water resources can be 

quantified. The DI model was applied to irrigated alfalfa in the Magic Valley region, in 

which deep infiltration was evaluated in context of improved “application efficiency” (AE). 

AE describes the amount of water applied to the root zone over the amount of water 

delivered to the farm via a conveyance system (Irmak et al., 2011). This metric largely 

describes inefficiencies related to wind drift or evaporation from the canopy. The model 

estimated “soil water storage efficiency” that resulted from increased AE cited for modified 

irrigation systems. Soil water storage efficiency describes the volume of water stored in 

the root zone of a crop over the volume that exceeds the root zone water holding capacity 

and is lost to deep infiltration (Irmak et al., 2011). As opposed to the application efficiency, 

which describes losses from applied irrigation to surface processes like wind and 

evaporation, soil water storage efficiency emphasizes subsurface losses from irrigation. It 

was found from the regional DI study in Chapter 3 that increasing the AE for irrigation 

systems will decrease the soil water storage efficiency by as much as 60 percent. Modified 

irrigation systems that have higher AE include Low Elevation Spray Application (LESA) 

and Low Energy Precision Application (LEPA). These irrigation designs apply water at 

lower pressure in closer proximity to the soil surface. It was found that as AE increased, so 

did the amount of irrigation add to the root zone.  

The test results from the DI model not only illustrate the model’s applicability for 

farm-scale management and irrigation scheduling, but also provides an engineering-based 

tool to account for soil water infiltration from near-surface processes. Estimating losses from 

deep infiltration from irrigated agriculture could be used in larger modeling applications 

related to aquifer recharge. This chapter discusses the wider relevance of the DI model in 

context of conjunctive management and administration of water rights in southeast Idaho. A 

regional hydrologic model is used to estimate recharge and spring discharge from the 

Eastern Snake Plain Aquifer (ESPA). This model is used as an “administrative factfinding” 

tool to support the conjunctive administration of surface water and groundwater rights in the 

region (Tuthill et al., 2013).  
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History of Aquifer  

The Eastern Snake Plain Aquifer is located in the southeast corner of Idaho and is 

one of the world’s most productive aquifers. This aquifer is key in supporting the state’s 

agricultural industry, which provides about half of the water for 2.1 million irrigated acres of 

farmland on the ESPA (Stewart-Maddox et al., 2018). Initially, irrigation in southern Idaho 

was isolated to surface water diversions and canal systems. Around the 1950’s, groundwater 

withdrawals increased significantly, as did the number of arable lands across the Eastern 

Snake Plain (ESP). This period also saw adoption of sprinkler irrigation technology, which 

increased the application efficiency of irrigation compared to flood methods. Improved 

irrigation efficiencies decreased the amount of “incidental recharge”, a term that describes 

infiltration from human activities to groundwater. Due to these factors, aquifer levels began 

to steadily decline and create water shortages for surface water right holders. It became 

evident the Eastern Snake Plain is a highly connected hydrologic system; surface water and 

groundwater are intricately linked. Southern Idaho geology is primarily fractured basalt. The 

collective thickness of basalt flows in the ESP exceed thousands of feet (Cosgrove et al., 

1999). Extensive, well-fractured geology transmits water easily and creates highly 

responsive aquifers.  

 

Regional Groundwater Modeling using ESPAM  

To support water resource management and conjunctive administration in Idaho, a 

groundwater model for the ESPA was first initiated by Idaho Department of Water 

Resources (IDWR). The model serves as the “factfinding” or scientific tool by which 

justification of state policy decisions can be made. Water management decisions such as 

curtailment of junior water rights are supported with data from the model (Tuthill et al., 

2013). The currently used model is the Enhanced Snake Plain Aquifer Model (ESPAM) 

(Hoekema and Sridhar, 2013). The model is supported by an inter-agency collaboration of 

hydrologists, modelers, private industry members, and the University of Idaho 

(idwr.idaho.gov/water-data/projects/ESPAM/, Accessed October 2021). Model 

developments are focused on interactions between the aquifer and the Snake River, as well 

spring discharges in proximity to the aquifer (IDWR, 2013).  

Given the applicability of irrigated-induced recharge to aquifer modeling, the 
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DI model is considered in context of ESPAM. ESPAM is a temporally and spatially explicit 

model. Recharge, a net increase in aquifer storage, is the major model output and is 

calculated for one-month periods for separate surface water entities within the ESPA 

boundaries. Net recharge from “surface-water irrigated lands” is estimated using a water 

balance approach (IDWR, 2013). Surface-water irrigation describes the source type (i.e., not 

groundwater), as estimates for on-farm water delivery are taken from diversion records. 

Deep infiltration (ft/month) from surface-irrigated lands is calculated with an algorithm that 

considers on-farm water balance components. This algorithm is a simple algebraic equation 

that includes effective precipitation, “maximum on-farm efficiency”, headgate delivery to 

farm, an ET adjustment factor, change in soil moisture, and an “initial loss” and “excess 

delivery” factor for deep infiltration (IDWR, 2013). The maximum on-farm efficiency is set 

to 0.85 for sprinkler and 0.80 for flood irrigation. This efficiency term in not the same as 

application efficiency, but a corrective factor that adjusts the amount of water delivered to 

farm during water shortages. The “initial loss” and “excess delivery” factors for DI are more 

similar to AE in which they describe the amount of water not consumed directly through ET. 

The “initial loss” is the fraction of surface runoff that goes towards DI, where “excess 

delivery” is the fraction of DI due to excess application in meeting the crop water 

requirement.  

From ESPAM simulations between 1980 and 2008, it was found there was about 1.9 

million acre-feet variation in net recharge from surface-water irrigation, which is attributed 

to changes in water supply and the role of irrigation in aquifer recharge (IDWR, 2013). Total 

cumulative change in aquifer storage for 1980-2008 showed a decrease in 6.2 million acre-

feet (Patton, 2011). Based on these cited values, irrigation-induced recharge accounted for 

about 30 percent of total aquifer storage change. For ESPAM simulations ran for recent 

water years, the irrigation efficiencies are largely an estimated value based on irrigation 

“entities”. In this context, the DI model can be applied over an irrigation entity as way to 

estimate DI for variable irrigation management strategies. With more fields in the ESP 

converting to sprinkler application, incidental recharge to the aquifer will likely decrease 

with fewer flood irrigated fields. If the ESP shows increased adoption of pressurized 

irrigation, it might be useful to account for different types of sprinkler systems. For example, 

a high impact sprinkler system has shown application efficiencies (AE) between 50-60 
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percent, where center-pivot system AE are estimated at 70-85 percent (Sterling and 

Neibling, 1994). The DI model has shown higher AE systems can lead to increased DI. 

Inefficiencies related to DI can increase by as much as 10 percent given the atmospheric 

conditions governing ET.  

Another advantage of the DI model is it simulates soil water content on a daily time 

step. Changes in soil water content are calculated monthly in ESPAM. Variations in the crop 

water requirement (ET) are accounted for on a shorter time scale in the DI model, which can 

improve estimates in water balance components used in the ESPAM. Temporal changes in 

deep infiltration could be significant if irrigators practice deficit irrigation in water short 

years. This is relevant to alfalfa production in the Magic Valley, where this forage type is 

known for its resiliency to water stress. Modeling efforts specific to crop type and irrigation 

management decisions could play a significant role in future years within the ESPA. 

Overall, the DI model is an applied tool by which near-surface boundary conditions 

estimates of DI can be used to support regional water balances.  

 

Conjunctive Administration in the Eastern Snake Plain  

  Groundwater resources from the ESPA are used for irrigation, hydropower, trout 

production, domestic, municipal, and industrial water uses. With decreasing trends in aquifer 

storage, resource conflict between water rights holders have escalated. Surface water users 

were impaired by groundwater users due to decreased spring discharges from the aquifer. To 

mitigate these issues, “delivery calls” could be made to the state regulatory agency (IDWR). 

Delivery calls were made by senior water right holders who hold “first in priority” status to 

water use. “Priority” refers to the Western water law of “Prior Appropriation”, which allows 

earlier established water rights to use water first in times of shortage. For senior holder’s 

water right to be satisfied, these delivery calls sometimes curtailed or amended a junior 

water right’s allocation, who follow second in priority to senior users. These procedures 

evolved from the passing of the 1951 Idaho Ground Water Act, which provided a foundation 

for the “conjunctive administration” of surface and groundwater rights. In 2005, the 

handling of delivery calls was refined, where the court emphasized the need for IDWR to 

provide “administrative factfinding” to show the impact of groundwater use on surface 

water (or vice versa), as well as evaluating the storage of the surface water right user before 
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curtailing or amending the junior groundwater right (Tuthill et al., 2013). The ESPAM was 

used to meet the needs for improved water accounting of surface and groundwater rights.  

Where the ESPAM model has a main goal of optimizing surface water and 

groundwater resources within southeast Idaho, the term “conjunctive administration” refers 

to the State’s regulatory power to administer groundwater and surface water rights in the 

Eastern Snake Plain based on priority. With factual support from the state agency (IDWR), 

an order can be made to curtail water from a junior holder. IDWR and its director hold the 

legal authorization to control water within distribution entities, such as state water districts. 

The director works with watermasters in allocations, especially in times of shortage. Around 

2003, the director authorized watermasters to also administer groundwater rights in addition 

to surface water sources (Tuthill et al, 2013). This new provision allows water districts to 

develop mitigation plans in times of drought and help maintain aquifer storage for future 

use.  

Conjunctive administration has regularly dealt with conflict between surface water 

and groundwater irrigators, largely due to reduced spring river flows from aquifer storage 

decline. Recently, irrigators in the ESP took part in a historic mitigation plan to reduce 

conflict and work towards restoring aquifer levels to previous conditions in the 1990’s. The 

mitigation plan is outlined in the 2015 Settlement Agreement, in which seven canal 

companies, called collectively the Surface Water Coalition (SWC), and ten groundwater 

districts, represented by Idaho Ground Water Appropriators, Inc. (IGWA) took part in. 

Leading up to the agreement in 2015, several water calls were made that could potentially 

curtail junior users throughout the ESP. These junior users not only include groundwater 

irrigators, but also industrial and municipal entities that use groundwater.  

It was decided an agreement between willing parties would be a more proactive 

solution than fighting over rights in court. The agreement outlines a plan to work towards 

stable aquifer levels, with IGWA recharging 110,000 acre-feet with total groundwater 

diversion reduced by 240,000 acre-feet annually (Olson et al., 2016). Additionally, the 

settlement objectives were to mitigate further injury to the senior right holders and minimize 

economic impact due to water shortages (Olson et al., 2016). In 2016, with the settlement 

already in effect, a curtailment order was released by the Director of IDWR to account for a 

predicted shortfall in the groundwater supply. Junior water rights holders not affiliated with 
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the 2015 Settlement faced curtailment, while others under the settlement were required to 

cut down groundwater withdrawals from between 4-20 percent (Running et al., 2019). Thus, 

irrigators were required to adapt to changes in water availability in order to reduce economic 

loss.  

Running et al. identified adaption practices taken by Idaho farmers in response to 

2015 Settlement restrictions on groundwater pumping (2019). Based on 265 respondents, the 

two most commonly adopted practices to reduce groundwater pumping were improvements 

to irrigation system efficiency (77%) and reduction in spending (67%) (Running et al., 

2019). Other adaptive strategies include irrigating less frequently or changing crop rotation. 

Findings from this survey show irrigation efficiency is a widely adopted practice to reduce 

groundwater pumping. A question that arises from these findings is, did groundwater 

pumping truly decrease with adoption of more efficient irrigation systems? 

One way to address this question is by analyzing consumptive use estimates for the 

areas that faced groundwater reductions. With less pumping, it is assumed less water is 

being applied to support crop evapotranspiration. Actual ET (ETa) maps provided by IDWR 

were used to quantify consumptive use for years proceeding and following the 2015 

Settlement Agreement. These maps are made using Landsat satellite images, which are later 

used in the METRIC model (Mapping EvapoTranspiration at high Resolution with 

Internalized Calibration). This model calculates actual ET as the residual of a surface energy 

balance. Total seasonal ETa was tabulated for years 2009-2018 for groundwater districts 

within the Eastern Snake Plain. A seven-year average period (2009-2015, excluding 2012 

and 2014) was used to compare with ETa in years following the 2015 agreement. An annual 

difference of years 2016, 2017 and 2018 were taken from the seven-year averaging period. 

The results show consumptive use was statistically reduced for all groundwater districts 

following the agreement. Another question lies that if groundwater pumping was reduced to 

show a decrease in ET, were farmers able to support the same crop yields as before the 

settlement? If so, this implies adaptive strategies, like adopting efficient irrigation systems, 

are able to use “more crop per drop.” Future studies related to water productivity in the 

ESPA could compliment these findings and answer questions about the efficacy of irrigation 

technologies. 
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Figure 4.1 Consumptive Use Study for ESPA Groundwater Districts. Total seasonal ETa for years 2009- 
2015 were used to provide an average of preceding growing conditions before the 2015 Settlement Agreement. 
Groundwater districts shown are those that overly the ESPA.  
 

 

The 2015 Settlement Agreement imposed challenges for many junior rights holders 

who were asked to curtail their groundwater pumping. With droughts following the 

settlement, junior holders were faced with both physical shortages and allocation cutbacks. 

Adoptive strategies were necessary for irrigators to support crop production and will likely 

continue to play a role for future projections of water scarcity. In a semi-arid environment, 

like southeast Idaho, water management and policy focus on maintaining aquifer storage. 

The aquifer acts as an underground reservoir that can be relied on regardless of interannual 

surface water supply. Water accounting tools that help monitor aquifer recharge will be 

needed for supporting the economic sustainability of irrigated agriculture in Idaho.  

 

Conclusion  

Water shortages of today, and uncertainties about water supply in the future, 

highlight the need for water resource accounting. Scientifically grounded methods in water 

accounting help inform water policy decisions and the administration of water rights in areas 
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with limited resources. For areas that rely on irrigation to support agricultural productivity, 

water shortages can impact regional economy and create conflict between water users. 

Adaptive solutions to water shortages focus on the irrigation sector, which account for 70 

percent of freshwater withdrawals worldwide. Water savings from irrigated agriculture are 

expected to alleviate total water abstractions from hydrologic systems.  

One method for conserving water resources in agriculture is through adoption of 

irrigation technologies. These technologies primarily focus on reducing water losses that 

occur between water delivery to the field and application to the crop surface. The paradox of 

irrigation efficiency is it does not always lead to water savings. Irrigation efficiency has 

been shown to increase the amount of irrigated land, as well as indirectly reduce water 

availability to downstream users. It is suggested that a better description and accounting of 

the physical principles underlying “irrigation efficiency” be undertaken to truly promote 

water savings (Willardson et al., 1994; Grafton et al., 2018). This study evaluated irrigation 

efficiency by developing a model by which deep infiltration from irrigated agriculture can 

be quantified. The DI model simulates water content for a defined root zone, which is used 

to estimate near-surface DI resulting from irrigation events. Soil water storage efficiency 

was calculated as the ratio of water used directly for crop growth over the amount of 

effective irrigation applied to the crop surface. After testing the DI model over a range of 

climatic conditions and management types for the Magic Valley region, it was found soil 

water storage efficiency decreases with increased application efficiency (AE). This 

knowledge becomes useful when promoting irrigation technology for on-farm and regional 

water savings. These technologies do have potential for water savings, as Figure 4.1 

suggests through reduction of consumptive use. These technologies are likely to succeed in 

overall irrigation efficiency when coupled with best management practices (BMPs). The 

Magic Valley DI study emphasized that a one-fits-all irrigation prescription for pressurized 

irrigation systems will lead to deep infiltration losses. Accounting for the crop water 

requirement, soil texture and drainage rate, as well as precedent soil moisture conditions can 

increase water use efficiency by 10 percent (Chapter 3, Figure 3.5).  

Irrigation efficiency is a variable within regional groundwater models, like ESPAM. 

Applied tools such as the Deep Infiltration Model can help support regional water balance 

models by providing a baseline estimate of DI, and more specifically evaluate losses to deep 
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infiltration due to irrigation technology. DI estimates have relevance for watersheds that 

conjunctively manage surface water and groundwater rights. It is predicted that semi-arid 

regions will need to rely on aquifer storage to offset interannual variability in water supply 

due to climate change. Estimates of near-surface DI from irrigated agriculture can support a 

holistic approach in water resource accounting.  
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