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Abstract

Fluid-Structure Interactions (FSI) is a widely studied area of research in the field of fluid dynamics

since a detailed understanding of FSI flow behavior can impact a wide range of engineering applications

like new generation parachutes used in space exploration, helicopter aerodynamics, bio-propulsion, and

flexible wing aerodynamics. However, developing a detailed understanding of the underlying physics

in an FSI flow can be challenging due to the non-linear nature of the coupling between fluid flow and

structures. Therefore, this investigation aims to quantify the FSI behavior of a flag in uniform jet flow,

specifically the flutter movement, aerodynamic performance, and fluid flow velocity field around the

flag. For this purpose, three flag samples of varying lengths were used, and experiments were performed

for a range of three critical non-dimensional parameters, i.e., Mass Ratio (R1), Dimensionless Rigidity

(R2), and Reynolds number (Re). The R1 and R2 values were varied from 1.48 to 2.77, and 1.3×10−3 to

14.4×10−3, respectively, and Reynolds Number was varied from 44×103 to 123×103. All experiments

were conducted in the subsonic open jet facility at the University of Idaho’s Experimental Fluids and

Aerodynamics Laboratory. The aerodynamic load experienced by the flag was measured using a high-

precision load cell. The flag movement was captured using a triggered image acquisition system, and

Particle Image Velocimetry (PIV) was used to measure the velocity fields around the fluttering flag.

The results showed that the longest flag model has a unique aerodynamic load characteristic, i.e., a

drag crisis region for R2 from 3.1× 10−3 to 5.3× 10−3 followed by a drag recovery region for R2 from

1.9 × 10−3 to 3.1 × 10−3. All the studied flag models start oscillating with increasing Re at a critical

velocity and initially exhibit mode-2 oscillation behavior. With the further increase in Re, the longest

flag model transitions from mode-2 to a mode-3 oscillation. Furthermore, these results suggest that the

flag movement and oscillation modes contribute to observed drag by these models. Finally, the stability

plots identify a new region highlighting the transition from mode-2 to mode-3 oscillation behavior.
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Chapter 1: Introduction

Fluid-Structure Interactions (FSI) is the coupling between a flowing fluid with a structure that

results in either a static or dynamic deformation of the structure, and the deformation could be either

small or large. This fluid-structure interactions (FSI) behavior is observed in daily experiences such as a

leaf falling off a tree, a sail on a boat, an airplane wing subjected to flutter by fluid loading, an animal’s

flexible body used for propulsion, and a flag fluttering in the wind. However, due to the non-linear

nature of the problem, there is yet to be any closed-form analytical solution. For this reason, idealized

models are often used to understand the underlying physics of the FSI behavior for both computational

and experimental investigations.

One such idealized model that captures the complex FSI behavior is the fluttering of a flag, which

has been extensively studied both experimentally [Taneda, 1968, Virot et al., 2013, Watanabe et al.,

2002] and numerically [Argentina and Mahadevan, 2005, Eloy et al., 2007]. The idealized flag reduces

the FSI behavior to desirable and controllable parameters while retaining non-linearities of the system

and the multi-physics complexities. In attempts to understand the flag problem, experiments have been

conducted in either a wind tunnel [Eloy et al., 2008, Gibbs et al., 2014, Taneda, 1968], free jet [Lemaitre

et al., 2005], or water tunnel [Jia et al., 2018, Shelley et al., 2005]. These studies have highlighted the

key parameters that influence the FSI behavior which is the flow velocity, the pressure acting normal

to the flag, viscosity, density, flag geometry, Young’s Modulus, and bending stiffness. These parameters

will be the variables used to quantify the non-dimensional terms. In these studies, the researchers

have observed two states of flag oscillations 1) the straight state and 2) flutter state [Taneda, 1968].

The straight state will have small-scale vibration, while the flutter will have large-scale deformations.

In recent studies, Alben and Shelley have developed a stability boundary for the flag with a range of

critical non-dimensional parameters [Alben and Shelley, 2008]. Moreover, conducting experiments is

challenging due to the non-linear nature of the interaction; the flag response is sensitive to the initial

boundary conditions and any instabilities in the fluid.

The FSI flag problem can be further classified into three categories based on their arrangements.

The first being the standard flag [Alben and Shelley, 2008, Taneda, 1968, Watanabe et al., 2002], the

second is the inverted flag [Kim et al., 2013, Tang et al., 2015, Yu et al., 2017], and the third is the flag

in the wake of a bluff body [Pan et al., 2014, Shi et al., 2013, Yu and Liu, 2015]. Figure 1.1, shows the

configuration of all three flag types. While all three flag types share the same governing equations and

parameters, each will have different boundary conditions and a different flutter behavior. Due to the

configuration used in this thesis emphasis is placed on the standard flag.
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Taneda[Taneda, 1968] was the first to study the standard flag and quantified the flutter behavior

using various materials. His study showed a linearly increasing flutter frequency of the flag with an

increasing inlet velocity, U∞. Following Taneda’s work, several researchers studied the FSI standard flag

problem. Some of the crucial observations from these studies is the existence of two critical velocities

bounded with a hysteresis loop [Watanabe et al., 2002], change in flutter behavior with changing in the

inflow condition [Shelley et al., 2005], and growth in the amplitude of oscillation will also lead to higher

drag values experienced at higher Re [Virot et al., 2013]. While several aerodynamic measurements

have been done for the various flutter behavior and earlier studies have provided a better insight into

the FSI physics, there are still several unknowns. Therefore, a better understanding of FSI can impact

industries such as aerospace, bio-propulsion, and energy harvesting. Understanding the complex flag

motion can translate to applications such as the wings of aircraft which are susceptible to flutter [Bottai

et al., 2019], or vibrations of panels in aircrafts [Dowell, 1970]. Considering both scenarios having a

higher structural stiffness, understanding the more complex flag problem can aid in their design and

modeling. Another area where the FSI physics will have an impact is in the fields of bio-propulsion

and flight, such as fishes using their flexible bodies to generate a thrust [Sfakiotakis et al., 1999]. While

birds and insects use their flapping wings to propel through the air [Dhawan, 1991, Sane, 2003]. Finally,

the FSI flag problem can be applied to energy harvesting [Giacomello and Porfiri, 2011, Li and Lipson,

2009] and passive heat transfer [Gallegos and Sharma, 2017, Herrault et al., 2012].

Figure 1.1: The three types of flag configurations: a) standard flag with a fixed leading edge and free
trailing edge, b) inverted flag with a free leading edge and fixed trailing edge, and c) standard or inverted
flag in the wake of a bluff body.
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1.1 Objective

To understand the standard flag’s oscillation modes, its dynamics, and impact of fluid flow on

the aerodynamics response, selected non-dimensional parameters were chosen based on the boundary

stability of the flag. The R1 was selected such that the region of mode-2 could be spanned. Furthermore,

the non-dimensional parameters R2 and R2 were dictated based on the selected R1 as well as the

complete range of inlet velocities possible by the jet facility. Moreover, the three main objectives chosen

for this study are as follows:

1. Quantify aerodynamic behavior for the fluttering of the flag for critical non-dimensional param-

eters mass ratio (R1), dimensionless rigidity (R2), Reynolds number (Re) with the values of

44, 000− 123, 000, 1.48− 2.77, and 1.3× 10−3 − 14.5× 10−3, respectively.

2. Quantify the dynamic load characteristic for the studied flag models for the range of non-dimensional

parameters.

3. Quantify flutter shapes and velocity for mode-2 and mode-3 oscillation observed for the studied

flags.

Different flag samples were used to achieve these objectives, and an in-house free jet was operated to

control the inflow conditions. Aerodynamics loads, flag positions, and velocity flow fields were measured.

The aerodynamics load data was analyzed to identify the dominant frequency. Flag images were used

to identify flutter characteristics. A particle image velocimetry (PIV) system was used to capture the

flag flutter along with the velocity field of the surrounding fluid. The results showed a flag flutter is

dependent on the three critical non-dimensional parameters R1, R2, and Re, aerodynamics loads vary

with the oscillation modes, and there is a correlation between the oscillation modes and the observed

dominant frequencies.

The following section provides an extensive background study, in chapter 2, on the topic of the flag

problem that will cover experimental and computational studies—followed by the detailed experimental

setup and procedure, chapter 3. Including a discussion on the samples selected, detail on the load cell

used to measure aerodynamic loads, and detail on the PIV used to quantify the flow field. Uncertainties

related to the study are also presented, chapter 4. The final section includes a discussion in chapter 6

on the results, followed by a summary and conclusion of the results, chapter 7.
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Chapter 2: Background Study

2.1 Governing Equations

Governing equations for the FSI flag problem configurations are defined by the same equations but

with varying boundary and initial conditions. The fluid is governed by the incompressible viscous form

of the Navier-Stokes equations with the continuity equation 2.1 and momentum equation 2.2 shown as

follows,

∇ · u = 0, and (2.1)

∂u

∂x
+ (u · ∇)u = − 1

ρf
(∇p) + ν∇2u, respectively, (2.2)

where, u =
∂X

∂t
, (2.3)

u is the fluid velocity, ρf is the fluid density, p is the pressure of the fluid, and µ is the dynamic

viscosity. The fluid forces that are acting on the standard flag and the response are shown in figure

2.1. Furthermore, newton’s second law can be used to derivative the governing equation based on the

initial assumptions for the equation of motion for the deforming flag. The following equation 2.4 can

be derived [Päıdoussis, 1998],

D
∂4X

∂s4
+ ρsh

∂2X

∂t2
− ∂

∂s

(
T
∂X

∂s

)
+ β

∂X

∂t
+ ζ

∂

∂t

(
∂4X

∂s4

)
= δpn̂. (2.4)

The term s is the curvilinear coordinate and is related to the vector as X = (X (s, t) , Y (s, t)) which

is the displacement of the flag from it’s mean position. D is the flags bending rigidity, ρs is the density

of the flag, and h is the thickness of the flag. T is the tension force along the tangential direction

of the flag. The terms β and ζ are associated with the flags, fluid damping coefficient due to the

fluid’s viscosity, and internal damping coefficient due to the structural damping, respectively. There is

a pressure differential normal unit vector (n̂) to the faces of the flag shown as ∇p. There are variations

of this equation such that some terms will neglect based on the initial assumption of the problem.

2.2 Flag Problem

Since the governing equations do not have a direct solution, this motivates researchers to conduct

controlled experimental comprehend the observed phenomenons. Some of the unique phenomena that
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Figure 2.1: View of the fluid forces acting on a standard flag while in fluttering motion.

have been reported through researched theories are the boundary stability based on the non-dimensional

variables that contain the small bifurcation region at the point where stability is lost [Alben and Shelley,

2008, Eloy et al., 2012, Tang et al., 2007, Watanabe et al., 2002, Zhang et al., 2000]. Sudden increases

in drag have been documented when flutter is induced [Carruthers and Filippone, 2005, Fairthorne,

1930, Lemaitre et al., 2005, Morris-Thomas and Steen, 2009, Virot et al., 2013]. With the term flutter

referring to the act of a flags motioning which exhibits large displacements. Flutter occurs due to the

instability in the fluid loading causing an oscillatory behavior [Argentina and Mahadevan, 2005]. During

oscillatory motion, various flutter modes at varying non-dimensional parameters have been documented

[Eloy et al., 2008, Taneda, 1968, Virot et al., 2013]. Furthermore, oscillations cause a change in the

vortex generation downstream of the flag for the various states and modes [Taneda, 1968, Zhang et al.,

2000, Virot et al., 2013].

The mentioned phenomenon are influenced by the flag’s and fluid’s properties. Leading several

researchers to employ wind tunnel studies to mimic inflow conditions [Carruthers and Filippone, 2005,

Chun-Yu et al., 2010, Eloy et al., 2012, Fairthorne, 1930, Gibbs et al., 2014, Kim et al., 2013, Lemaitre

et al., 2005, Huang, 1995, Morris-Thomas and Steen, 2009, Pang et al., 2010, Tang et al., 2003, Taneda,

1968, Virot et al., 2013, Watanabe et al., 2002], in which ambient air is the fluid source. It is desirable

to have controllable conditions such as the inlet fluid source with ranging velocities and a test section

with optical access. Though it is vital to understand that there exist inherent effects of wind tunnel

testing, such as the placement of the specimen. The fluttering flag experiences large displacement that
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can cause dynamic blockage effects [Tang et al., 2007]. As reported in the review paper on “Fluid-

Induced Flag Vibrations,” the maximum amplitude displacement could be 80% of the flag length from

the center-line of a flag at rest [Yu et al., 2019]. Though the amount of displacement depends on the

type of flag configuration selected to be studied, but for all configurations’ it is significant enough where

blockage effects should be considered.

The three flag configurations are a standard flag, an inverted flag, and a flag behind the bluff body,

as shown in Figure 1.1. The standard flag, which is the configuration being tested in this study, is

fixed at the upstream position. This fixed edge allows the flag to be parallel with the flow at lower

or stabilizing velocities. Upon reaching the critical velocity, Ud, which varies based on flag and fluid

properties [Watanabe et al., 2002], an onset flutter is experienced that impacts the aerodynamics.

When the fluid velocity is lowered, the flag remains in a fluttering state until a lower speed is reached,

which is called the lower critical velocity, Uc. At this second critical velocity, the flag will go back to a

straight state. Within the range of critical velocities, the flag could be in a straight state or a flutter

state and has been referred to as bifurcation, or hysteresis loop [Alben and Shelley, 2008, Eloy et al.,

2012, Tang et al., 2007, Watanabe et al., 2002, Zhang et al., 2000]. Due to the low stiffness rigidity

at critical velocities, the free end, which is at the downstream position, begins experiencing large

displacement. The maximum distance displaced will be referred to as the amplitude of oscillation,A1,

which is measurable by quantifying the tip to tip displacement experienced in the flutter cycle.

For an inverted flag, the configuration is reversed as the fixed edge is downstream. The free edge

is located upstream and can remain in a straight state at lower velocities. Similar to the standard

flag, the bifurcation region exists with the two critical velocities, critical velocity, Ud, and lower critical

velocity, Uc, with the ability to be in either a straight state or flutter state [Kim et al., 2013]. At the

critical velocity, Ud, the flutter behavior will be that as shown in Figure 3.4(b). The flutter deflection

can also be quantified by measuring the maximum displacement, also denoted by A1. A second change

in behavior and bifurcation region at a higher velocity also exists such that the inverted flag can exist

in a flutter state or a deflected state. The deflected state is also visually distinct as it does not exhibit

fluttering motion but instead is held at one extreme due to fluid loading.

The final configuration is the flag behind the bluff body which could be either a standard flag or

an inverted flag. The bluff body could be of various geometries such as a square bluff body [Pan

et al., 2014, Shi et al., 2013], a circular bluff body [Yu and Liu, 2015], or another shape. Extensive

understanding and reviews of bluff bodies are available that show vortex shedding of various geometry

in axial flow [Sarpkaya, 1979]. The final configuration flag is located in the wake of the bluff body. The

bluff body will change the fluid loading on the flag and will induce flutter before the known critical
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velocities [Kim et al., 2013].

Since the current thesis paper is on the standard flag, the focus is placed on the current known

knowledge of this configuration. Background is given on the following phenomenons have been studied

with the use of experimental means to use non-dimensional values to characterize flutter behavior [Alben

and Shelley, 2008, Argentina and Mahadevan, 2005, Eloy et al., 2007], quantifying the flag motion

employing imaging techniques [Taneda, 1968, Virot et al., 2013, Pang et al., 2010], measurements of the

aerodynamics loads generated due to the flag motion [Carruthers and Filippone, 2005, Fairthorne, 1930],

or quantifying the near-wall velocity fluid field with PIV [Gibbs et al., 2014, Jia et al., 2007]. Though

various controllable parameters play a key role in the resulting outcome of the standard flag. These

key parameters can be non-dimensionalized into key equations that are best used to analyze the flag

problem. The non-dimensional terms selected to be used in this paper to understand the flag problem

are the mass ratio (R1), dimensionless rigidity (R2), Reynolds number (Re), drag coefficient (CD), and

aspect ratio (AR). With there respective equations are as follows:

R1 =
ρmh

ρfL
, (2.5)

R2 =
Et3

12 (1− ν2) ρfU2
∞L

3
, (2.6)

Re =
ρfU∞L

µ
, (2.7)

CD =
FD

1
2ρfU

2
∞Ar

, and (2.8)

AR =
w

L
. (2.9)

The terms in the equations are the inlet velocity (m/s) (U∞), density of the fluid (kg/m3) (ρf ),

density of the structure (kg/m3) (ρs), dynamic viscosity (kg/ms) (µ), young’s modulus (GPa) (E), flag

length (mm) (L), flag thickness (mm) (h), and reference area (m2) (Ar). R2 as a function of R1 is used

to define the stability boundary which shows where the flag will either be in a straight state or have

onset flutter. Recent work on stability of the flag has been summarized on the review of the flag problem

[Yu et al., 2019], presented in Figure 2.2. Included text in the figure are IIE, EIE, and MIE which are

annotations for the inverted flag, bluff body with the flag in the wake, and standard flag, respectively.

Numerical studies have aimed to generate a function that will define the boundary stability that will

predict flutter behavior but has yet to be properly captured. Furthermore, current attempts have only

qualitatively captured the trend seen in experimental data [Alben and Shelley, 2008, Eloy et al., 2008].
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For this reason, based on experimental results a grey-shaded area in the figure is defined to show the

general region where the standard flag has been unstable and will be fluttering. The white region will

be the stable area where the flag will not flutter. If the material properties of the flag and fluid were

to remain constant, with the only varying condition be the ,U∞, the only varying term in the stability

boundary will be R2. Furthermore, all flag scenarios with small U∞ that result in a R2 ≥ 1 will not

experience flutter motion. As U∞ is increasing R2 is decreasing, until the defined lower critical velocity

(m/s) (Uc) and higher critical velocity (m/s) (Ud) is reach which causes instability about the transition

line that will lead into the unstable grey region. The point of onset flutter is dictated by the matching

R2 value at the corresponding R1.

Figure 2.2: The summarized boundary stability for various prior studies [Yu et al., 2019]; KB is the
dimensionless rigidity (R2) and Ms is the mass ratio (R1). IIE being the inverted flag, EIE being the
flag in the wake of a bluff body, and MIE is the standard flags. Regions are generally indicated for each
type.

Additionally, the stability boundary can distinguish what flutter mode will initially be experienced

by the flag upon onset flutter. The various flutter modes have been defined by the dominant vibration

modes of the cantilevered beam in a vacuum. Modes are associated with the eigenvalues of the system,
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which are used to analyze the stability of the flag [Eloy et al., 2007]. Due to the nature of eigenvalue

problems n number of vibration modes are possible, where n = 1, 2, 3, ...∞. For this reason, only the

initial vibration modes are mentioned. Furthermore, researchers named flutter mode depending on the

current dominant vibration mode, n. An example is ”mode-1 vibration,” which will have a simple

swaying motion that does not have a large displacement and is an attribute of the flag in a straight

state. For this reason, large displacements begin at a mode-2 or higher flutter type. The shape of

the flutter is defined by the superimposition of a complete limit cycle, complete harmonic motion of

the flutter flag, which has definable characteristics based on the mode. Included at the amplitude of

oscillation A1, defined as the maximum displacement experienced by the flag. Moreover, for mode-2

flutter the A1 is known to increase with the increase of the flow velocity [Chun-Yu et al., 2010, Eloy

et al., 2008]. A neck amplitude of neck (mm) (Ne) is also defined as regions where flutter amplitude is

locally smaller [Virot et al., 2013].

The shape for flutter modes are is shown in Figure 2.2 to the right of each text, e.g. next to ”(e)

Mode 2” the mode-2 flutter with the fixed edge at the top portion of the shape is shown. In Figure

2.2, a mass ratio range can be defined on the grey region on the stability boundary that will exhibit

specific flutter modes for the standard flag. For flags scenarios with a R1≥ 0.7, mode-2 flutter will be

initially experienced [Eloy et al., 2007]. Followings mode-2 will be the mode-3 flutter with the mass

ratio bounded by 0.3 ≤ R1 ≤ 0.7, shown in the Figure 2.2 to the right of the text ”(f) Mode 3”. Higher

flutter modes will be at values for R1 ≤ 0.3 and will experience unique flutter behavior. On the other

hand, few studies have documented mode shape changes as R2 is decreased [Chen et al., 2014, Virot

et al., 2013]. These cases begin with a flutter mode-2 that will transition into a mode-3 with a decreasing

R2. Though this will not be experienced for all scenarios since some flags will go from a mode-2 to a

chaotic flutter [Connell and Yue, 2007, Shelley et al., 2005], with chaotic flutter classified as random

displacement without a coherent shape. The regions of R1 to which modal changes apply are yet to be

defined. While chaotic is always experienced after the maximum amplitude is reached [Shelley et al.,

2005] and is yet to be understood properly.

Different conditions will apply to the infinite flag problem (infinitely thin flags); an infinite long

flag will always be unstable, and a flag with infinite span will need a substantial velocity to destabilize

[Eloy et al., 2007]. For a finite flag, it has been shown that the short flag will have a higher Uc as

opposed to longer flags, and as the length is increased, the Uc will rapidly decrease. For longer flags,

the dependency on varying lengths is seen to be weak since, after a certain critical length, the Uc remains

constant [Lemaitre et al., 2005]. If the inlet velocity is kept constant and a single geometric property

is varied, in this case, the length, the flag can experience a variation of the previously mentioned
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bifurcation. It is different such that there will be two critical lengths in which flutter can be stable

or unstable [Zhang et al., 2000] with shorter flags remaining stable and large always being unstable.

The mass ratio was also varied by changing the material property that will affect the density of the

structure. Changing structural density is seen to comply with the stability boundary, which will require

a higher critical velocity for a denser material [Watanabe et al., 2002].

The suddenly induced flutter of the flag has a change in aerodynamics that is experienced. In a

straight state, the flag will experience a decrease in CD with the increasing wind velocity and Reynolds

number [Carruthers and Filippone, 2005]. Changing material will also change the y-intercept of the CD.

The variation of geometry and flow conditions will impact the drag experienced for a flag in straights

state [Fairthorne, 1930]. Once the flag begins to flutter, a sudden spike in drag is experienced [Taneda,

1968]. The aerodynamics is further studied for scenarios that will experience modal changes, with the

introduction of the drag crisis region where the CD will begin to decrease at the velocity increases

[Carruthers and Filippone, 2005].

From the oscillatory behavior of the fluttering flag, a dominant frequency can be defined. With

the increase of the velocity, a linear relationship with the flutter frequency is observed [Taneda, 1968].

In figure 2.3, Taneda further demonstrates that when the material property is varied, the slope of the

linear relationship will change. These values can be non-dimensionalized to acquire the Strouhal number

based on amplitude of oscillation (StA1
) and Strouhal number based on length (StL). The results of

various studies have been summarized to result in a linear relationship between the StA1 as a function

of the normalized A1 [Yu et al., 2019]. The slope will be the Strouhal number based on length (StL)

which is a constant value of about 0.23 for flags of flutter mode-2.

The limit cycle for the fluttering flag is also well documented in which clearly shows the instantaneous

locations for a complete cycle [Eloy et al., 2008, Gibbs et al., 2014, Martin, 2006]. The flag will follow

a continuous harmonic path with the free end having a path similar to the shape of the number ”8”,

in which the flutter can be considered two-dimensional. Moreover, the shape of the flutter is shown

through the use of imaging techniques. The surrounding fluid has been shown quantitatively for a

straight state and a flutter state [Watanabe et al., 2002, Zhang et al., 2000]. For a straight state, the

wake conditions will show the formation of Von-Karman vortex street. Upon flutter being induced, the

Von-Karman vortex street will become large-scale vortices with small-scale Kelvin-Helm Instabilities.

Due to the complex nature of the fluid flowing around a flag, advanced techniques, such as PIV, are

needed to quantify the surrounding fluid field. The near-wall fluid has been analyzed for a mode-2

flutter that shows that flow does not separate [Gibbs et al., 2014]. Moreover, very little experimental

work that analyzes the fluid wake and vortex shedding has been conducted.
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Figure 2.3: Fluid velocity as a function of dominant flutter frequency for various types of materials
[Taneda, 1968].

As of the past few decades, interest in modeling interactions between flags and fluid has increased

due to the improvement of computational power. Several methods have been created that model the

flag and the fluid separately then couple them through a variety of techniques. The flag will be a

variation of Equation 2.4 in either 1-D, 2-D, or 3-D. The fluid will either be considered potential flow

[Argentina and Mahadevan, 2005, Alben and Shelley, 2008, Chen et al., 2014, Howell et al., 2009,

Eloy et al., 2007, Michelin and Llewellyn Smith, 2009] or as the incompressible viscous N-S equation

[Cisonni et al., 2017, Connell and Yue, 2007, Favier et al., 2014, Huang and Sung, 2010, Goza and

Colonius, 2018]. Potential flow models tend to be easier to solve and give a good qualitative result

but are limited by the non-local interactions and the three-dimensional effects that are limiting the

accuracy of models [Argentina and Mahadevan, 2005]. In contrast, due to the high computational cost

to model incompressible viscous N-S equations, it is still bottlenecked and only capable of modeling lower

Re for values less than 1000. At this Re several phenomena previously mentioned are yet to occur.

The fluid mode is then coupled to the structural model with either of the four possible techniques:

theoretical linear stability [Argentina and Mahadevan, 2005, Goza and Colonius, 2018, Eloy et al.,

2007], linear/nonlinear vortex lattice model [Alben and Shelley, 2008, Chen et al., 2014, Howell et al.,

2009, Michelin and Llewellyn Smith, 2009], coupled fluid-structure direct simulation [Cisonni et al.,
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2017, Connell and Yue, 2007], or immersed boundary method [Favier et al., 2014, Huang and Sung,

2010]. Each coupling technique differs based on model needed to comply with method of solving.

As previously stated, the flag problem captures the dynamics of flow over a cantilevered beam,

which has several applications in engineering. Wings, tails, and panels in aircraft and spacecraft are

also cantilevered structures submerged in a moving fluid. Though wing and tail orientation differ from

the flag problem, understanding the flag problem, which is more complex due to the large displacement

experienced, can aid in the understanding the aerodynamics of wings, tails, and panels. The flutter, due

to FSI, of wings and tails has been known to cause catastrophic disintegration of the airplane while in

flight [Goland, 1945, Loring, 1941]. In more recent times, a need more for efficient aircraft is driven by

NASA’s Green Aviation initiative [NASA, 2021], which aims to design an Ultra-Efficient Commercial

Vehicle through various innovative means [Cavolowsky, 2017]. As a result, analysis has been conducted

to study the flutter stability of high-aspect-ratio wings [Bottai et al., 2019]. This type of flutter is a

self-sustained Limit Cycle Oscillation, in which a wing will remain in oscillatory motion, that will cause

structural fatigue and failure. An extensive review on the topic has been covered on the numerical and

experimental works in panel flutter [Dowell, 1970, Mei et al., 1999]. The FSI of panels is known to have

a variety of modes at different velocities. Failure of panels has been seen due to the continuous stress

from constant oscillation. In contrast, para-gliders, micro air vehicles [Haghighat et al., 2012, Ifju et al.,

2002, Molki and Breuer, 2010, Rojratsirikul et al., 2010], parachutes [Peterson et al., 1996, Stein et al.,

2000], and yacht sails [Augier et al., 2012, Trimarchi et al., 1970] take advantage of FSI to generate

lift. The flexible structure, ”flag wing,” deformed by a fluid, will generate a reactive force [Molki and

Breuer, 2010]. The flag wing will have the ends fixed with enough flexibility to deform to allow a concave

deformation. This deformation will fill with ambient air to generate the force required to propel or lift

the complete system, taking full advantage of FSI. These concepts stem from the idea of bio-mimicry,

which takes advantage of nature’s abilities to create and innovate current industrial applications.

In nature, several animals use the means of FSI to generate a propulsive force as a form of trans-

portation. For example, fish are swimmers who use their entire body in an oscillatory motion to interact

with the surrounding fluid to generate thrust and maneuver through bodies of water. The swimming

fish has been reviewed, covering the analytic methods that have been done to measure and understand

their propulsive mechanism [Sfakiotakis et al., 1999]. At the same time, birds and insects in other

regards use the FSI phenomena to fly and navigate through the air. Biological flight has distinct differ-

ences from aircraft flight, which generally have fixed wings in large-scale applications. Biological fliers

can glide by extending their wings or produce locomotion through the means of flapping their wings

[Dhawan, 1991, Sane, 2003, Tobalske, 2007]. The flapping is a more complex motion in which a vortex
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is generated in the wake to propel the biological flier. Bio-mimicry has inspired many to create micro

air vehicles that fly utilizing flapping mechanism [Jiakun et al., 2020].

Two other industrial applications are energy harvesting and passive heat transfer. Application of

energy harvesting extract energy from the fluid motion, which depends on the ability to keep a structure

in constant oscillatory motion. Implementation is done with the use of the flag problem to extract the

abundant energy from wind or water power through mechanical stresses [Giacomello and Porfiri, 2011, Li

and Lipson, 2009, Orrego et al., 2017, Yu and Liu, 2016]. The use of piezoelectric material is common

to substitute for the flag [Li and Lipson, 2009, Orrego et al., 2017, Yu and Liu, 2016], as well as the

use of ionic polymer metal composites [Giacomello and Porfiri, 2011]. These smart materials convert

mechanical vibration into electrical power. While in the case of heat transfer, the fluttering flag can be

used to induce the transfer of heat [Gallegos and Sharma, 2017, Herrault et al., 2012, Lee et al., 2018].

Heat is transferred through the fluid mixing since the flutter of the flag is known to have a turbulent

shedding in the wake region—turbulence in the fluid allowing for the passive transfer of heat in the

fluid.
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Chapter 3: Experimental setup

3.1 Jet facility

All the experiments for this study were conducted at the University of Idaho’s Experimental Fluids

and Aerodynamics Lab. An in-house free jet facility was used to provide uniform inflow for the standard

flag problem. The jet system is shown in Figure 3.1. The fan inlet is located at the bottom right of the

figure with a centrifugal fan, controlled with a DC motor, used to produce the flow. An Electro-Craft

Corporation motor controller was used to control the RPM of the DC motor. The motor controller has

a telescoping resistor dial, seen in Figure 3.2, which allows the jet to be varied from 0 to 1000 (RPM)

with increments of 1 (RPM). The jet facility can produced flow from 0 m/s to 24 m/s with precise

control at increments of 0.02 m/s. In the settling chamber, there are three sets of mesh and honeycomb

layers for flow conditioning. A converging nozzle design was used for outlet flow with a diameter of

D2 = 63.5mm. Figure 3.3 shows the base plate that was used to hold the mounting mechanism apart

from the jet system. Using a base plate would isolate the vibrations produced by the motor that could

transfer during the load measurement experiments.
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Figure 3.1: Free jet used to provide the fluid source.

Figure 3.2: Electro-Craft Corporation motor controller with telescoping resistor for setting RPM.
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Figure 3.3: Free jet system with the surrounding base plate that will isolate the samples.
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3.2 Mounting mechanism

The mounting mechanism and a sample of interest are as shown in Figure 3.4 along with the

coordinate system at the flags fixed leading edge. Based on position of the jet, y(+) is in the direction

of the flow. A clamping mechanism was used to fix the flag at the leading edge, with a close-up shown

in Figure 3.5. Tension is applied in the direction shown to ensure that the flag’s leading-edge remains

properly fixed and taut. This stand allows to properly position the flag at the center of the jet outlet

and setting a proper angle of attack using the rotating mechanism shown in Figure 3.4. To ensure

the mounting stand was not affected by the fluid flow, a diameter D1 was designed to be two times

larger than the outlet jet diameter D2. The mounting stand is only attached to the marked loadcell

location, which is also shown in Figure 3.4. A direct attachment ensures the loadcell measures all

forces experienced by the flag and allows for the loadcell to measure lift and drag in the x-direction

and y-direction, respectively. Alignment is checked before every experiment is conducted by ensuring

an average of zero lift was generated.

Figure 3.4: The experimental set-up used for the presented studies. The flow direction is indicated
along the y-axis with the flag placed at the outlet of the jet. The flag stand is directly attached to the
loadcell.
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Figure 3.5: Clamping mechanism to secure the flag samples and fix the leading edge.
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3.3 Jet velocity calibration

A free jet fluid source allowed us to avoid the issue of blockage during flag fluttering [Tang et al.,

2007]. Before the experiments, the jet was calibrated using the jet exit velocity U∞ as a function of

motor controlled RPM. The U∞ was measured using PIV measurements as a reference. Moreover, 1000

PIV images were used for each selected U∞ at an RPM value. Figure 3.6 shows the 5 calibration points

and curve fit, resulting in a calibrated U∞ as a function of RPM as,

U∞ = 0.024(RPM)− 0.430. (3.1)

Figure 3.6: Calibration of the jet facility outlet velocity based on RPM controller. Shown with curve
fit and a 95% certainty.

3.4 Flag samples

For this study, three different flag samples were used as shown in Figure 3.7. The flag samples

were created to be easily attached to the mounting mechanism and were clamped in the “Clamped

region”. The samples selected were cut from a cellulose acetate material seen in Figure 3.4. Sheets of

cellulose acetate material were used, so minimum possible planiety defects were seen, which can lead

to a change in dynamics of the flutter [Eloy et al., 2012]. Dimensions could be seen in Figure 3.8 with

the thickness h being around 0.1 m, width w being around 0.02 (mm), and of varying lengths L. The

leading edge is the edge where inlet velocity is provided, and the trailing edge is the free end with its
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path indicated in Figure 3.8. Three samples were created of lengths: 0.041 m, 0.053 m, and 0.07938 m,

with the names that will be used for the, remained for the paper, Sample #1, Sample #2, and Sample

#3, respectively. The complete list of geometry properties for the associated sample can be seen in

Table 3.1. The Young’s modulus for the material was 3.89 ± 0.37 GPa measured with a Model 5944

Materials Testing System, with complete details on measurements discussed in chapter 4. Measured

values are within range of provided value by the manufacture. The h and flag width (mm) (w) for the

samples were kept constant only to vary the mass ratio based on the sample L.

Figure 3.7: Schematic of the three samples used with the distinguishable lengths of: sample 1) L1 =
41.67 mm, sample 2) L2 = 53.96 mm, and sample 3) L3 = 79.38 mm.

Table 3.1: Geometry of the three samples that are being investigated in the study.

Sample Thickness(mm) Width(mm) Length(mm)

#1 0.098 ± 0.0047 20.0 ± 0.31 41.67 ± 0.22
#2 0.097 ± 0.0047 20.1 ± 0.19 53.96 ± 0.32
#3 0.099 ± 0.0083 20.1 ± 0.42 79.38 ± 0.13

3.5 Force and Torque Transducer

An ATI Mini 40 SI-20-1 force and torque transducer was used to measure the aerodynamic loads

experienced by the flag. The transducer that is attached to the stand is shown in Figure 3.9. The

aerodynamic loads of the flag flutter are lift and drag with the relationship with the x-direction and

y-direction, respectively. Aerodynamic values are measurable up to 20N with a resolution of 0.005N

and transverse load measuring up to 60N, and a resolution of 0.01N. An NI data acquisition was

used to sample at a rate of 500 Hz for 60 seconds. This procedure was done for each incremental

change in velocity until reaching the maximum velocity that resulted in time-series data. This was
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Figure 3.8: Isometric View of a flag deflected for a mode-2 flutter type. The flow direction is indicated
along the y-axis as to be parallel with the flag and in the direction of drag. Lift will be measured along
the x-axis and fluttering direction.

done to achieve a single time-averaged lift and drag data result at the varying velocities. Studies

were repeated three independent times to ensure the accuracy of the results. Before each run, the local

atmospheric pressure and temperature was measured with a digital barometer and digital thermometer,

respectively. In addition, initial iterative measurements were conducted to verify that zero lift on average

was experienced during the flags straight state and flutter state.

Figure 3.9: ATI-Mini 40 force and torque transducer with the indicated axis relative to the flag in
Figure 3.8.
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3.6 Particle Image Velocimetry

It was desired to observe and quantify the fluid field surrounding the flag flutter and spatially define

the flag to a corresponding velocity field. For this purpose, a particle image velocimetry (PIV) system

was used to conduct these experiments [Raffel et al., 2018]. A PIV is an optic based method to visualize

flow fields. The PIV used is a LaVision Evergreen Nd:YAG 200 mJ dual pulsed laser capable of pulsing

at 15 Hz. Triggered along with the PIV was a 6 MP Imager SX dual-frame CCD camera with a lens

attachment of 50 mm to be triggered at 13 Hz. Moreover, a programmable timing units by LaVision is

employed to synchronize the triggering of the laser and camera. The two-dimensional plane produced

by the laser sheet is shown, Figure 3.10, as a green light sheet. This laser sheet is triggered by the

“Q-Switch Tigger 1” for “Laser Emission 1” and “Q-Switch Tigger 2” for “Laser Emission 2” in Figure

3.11. The laser is produced initially as a thin laser point that is then fanned out through optical lenses

to make the laser sheet. Due to the nature of this, the laser must be appropriately configured to have

the thinnest part of the sheet converge at the location of interest, which is the location of the flag in

Figure 3.10. Consideration to make sure the field of view is correct must also be done. Proper placement

ensures the fanned-out laser sheet covers the field of view shown in 3.10. This field of view needs to be

perpendicular to the camera being used for imaging.

Once proper positioning is achieved, proper triggering times must be selected. With the current

setup of the two-dimensional flow, the fluid particles illuminated are the seeding particle (Di-Ethyl-

Hexyl-Sebcat; DEHS) that a LaVision Aerosol Generator anodized. This seeding particle was feed at

the fan inlet to come out laminar from the jet outlet. The particle displacement based on the inlet

velocity will aid in the proper selection of the triggering times. As seen in figure 3.11 the “Emission”

times will fall with two times of the “Camera Double Exposure” that are related to Image #1 and

Image #2. The camera triggering was set to be before the “Emission” to ensure the proper imaging of

the illuminated particles. Proper exposure time should be set to make the particles as clear as possible.

If particle streaking occurs, proper processing will not be achievable. Once proper exposure time is

selected, a time difference between “Laser Emissions 1” and “Laser Emissions 2” must be selected.

This time difference is dt in Figure 3.11. The dt will depend on the intended interrogation window of

interest based on a pixel×pixel window size. From this, a particle should travel 1/8 of the interrogation

window to extract a vector from this window. An interactive process is done at the beginning of each

PIV study to select proper values and ensure the best quality of data is collected.

The results of this process would be two images of the known time difference, dt. These two images

are then divided into N×N interrogation windows of pixel×pixel size as shown in Figure 3.12. Separate
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Figure 3.10: The configuration for the Particle Image Velocimetry. The light sheet is created by the
pulsed laser. The field of view is observing the flag and a wake region which is captured by the camera.
The pulsed laser and camera are triggered based on the timing diagram by the programmable timing
unit.

interrogation windows can then be investigated with similar positions in the images. Processing is done

in the proprietary software by LaVision, DaVis, through a cross-correlation in which the individual

particles can be traced to find an averaged displacement per interrogation windows. This displacement

is divided by the known time difference, dt, to give a local velocity. Cross-correlation is done to the

complete image that results in a vector velocity field for fluid displacement at a given time. For the

current study 1000 images are taken for each PIV study resulting in 1000 vector velocity fields per

Reynolds number as seen in Tables A.1 - A.3.
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Figure 3.11: The timing diagram for the pulsing of laser #1 and #2 along with the triggering of the
camera.

Figure 3.12: The two produced PIV images broken into interrogation windows for cross correlation.
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Chapter 4: Uncertainty Analysis

For this study, the uncertainty of the drag coefficient, CD, and Young’s modulus, E, are estimated.

For the CD uncertainty propagation of error is utilized as shown in equation 4. With equation 4 being

for the CD.

uR =

√√√√ M∑
i=1

(ωiux̄i)
2

; ωi =
∂R

∂xix=x̄

; i = 1, 2, ....,M (4.1)

CD =
Fd

1
2ρfU

2
∞A

(4.2)

Propagation of error was then applied the drag coefficient for the provided equation 4. In this

equation, the uncertainty of the drag force, inlet velocity, and the characteristic area are considered.

Furthermore, multiple measurements of each term were performed to ensure accuracy, and a sample

of size, N , was collected for the length, width, thickness, and forces. The sample mean and related

uncertainty is based on equations 4.4-4.6 are substituted into equation 4.3:

uCD
=

√(
∂CD
∂FD

uFD

)2

+

(
∂CD
∂ρf

uρf

)2

+

(
∂CD
∂U∞

uU∞

)2

+

(
∂CD
∂A

uA

)2

, (4.3)

uFD
=

tνD,P
sF√
N

, (4.4)

uU∞ =
tνD,P

sxy√
N

, and (4.5)

uA =
tνD,P

sA√
N

. (4.6)

(4.7)

The measurements used for the characteristic area were length and width of the flag was measured

using a dial caliper with a resolution of 2.54×10−5(m). The thickness was measured with a micrometer

with a resolution of 2.54 × 10−6(m). Sampling was taken at several random locations. Based on a

95% certainty, the results in uncertainties values are 0.9% for length measurements, 0.6% for width

measurements, and 0.01% for thickness. As for force measurements, sampling was done for 60 seconds

at a rate 0f 500 Hz to acquired the time-averaged drag force. Due to the nature of the flag problem, two
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possible states, non-oscillatory and oscillatory state, with two different uncertainty behavior. Moreover,

non-oscillatory measurements are small and close to the load-cell’s resolution and will not be considered.

For oscillatory measurements the maximum uncertainties at higher Re for sample #1, #2, and #3 will

be 0.89%, 3.08%, and 2.018%, respectively.

These measured values and uncertainty can then be applied to equation 4 to find the 95 % uncertainty

in Drag Coefficient. For the Drag Coefficient, the most significant contributor to the uncertainty was the

force measurement which depends on the state of the membrane. Resulting in a maximum uncertainty

for drag coefficient in an oscillatory state is a maximum value of 3.29 %. This translates to considerably

low uncertainty values for the fluttering state, which agrees with the repeated studies.

The young’s modulus was acquired from the provided spec sheet for the material and verified through

tensile testing of five samples. In addition, the ASTM D882 standard was followed with measurements

read from a Static 2kN range load cell. These five samples were measured from zero loading until a

yield point was reached. The resulting stress-strain plot is shown in Figure 4.1, along with the linear

region to acquire Young’s modulus. The slope of the linear region is 0.3739GPa/(mm/mm) with a

y-intercept of 0.063 GPa and uncertainty of ±0.13GPa. Thus, compared to manufacturers spec, the

results are within 2.7% of the provided Young’s modulus.
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Figure 4.1: Stress versus strain plot for the cellulose acetate material to measure the Young’s modulus.
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Chapter 5: Test Matrix

Three sample were used for this study and that will be referenced with the following notation sample

#1, #2, and #3. The key non-dimensional parameters selected for this study are the mass ratio R1,

dimensionless rigidity R2, and Reynolds number Re. The analysis of the samples included aerodynamic

loads, membrane location of coherent flutter mode, and PIV analysis for averaged velocity field during

flutter. Table 5.1, shows the range of values for the mentioned key terms and experiments conducted.

The complete set of data for Re increments of each are listed in Appendix A tables A.1-A.3.

Table 5.1: Table of associated non-dimensional values and studies for the three samples of the investi-
gation with symbols •, �, and ? for load measurements, imaging, and PIV, respectively.

Sample Re(103) R1 R2(10−3) AR Measurement

#1 56 - 75 2.77 8.0 - 14.5 0.48 •, �, ?
#2 53 - 84 2.14 4.1 - 10.3 0.37 •, �, ?
#3 44 - 123 1.48 1.3 - 10.1 0.25 •, �, ?
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Chapter 6: Results

The following section includes the discussion of the obtained experimental measurements that were

acquired through the conducted study. Discussion will begin with the introduction of the aerodynamic

performance of the flag. Followed by the defined characteristics of the fluttering flag for the averaged

coherent flutter behavior. Lastly, the averaged velocity field will be discussed for selected cases.

6.1 Aerodynamics

Drag and lift forces were measured using the ATI-Mini force and torque transducer for a range of

Re. These values were was used to calculate the CL and drag coefficient (CD). The time series sample

data for the CL and the CD at the Re of 90× 103 is presented in Figure 6.1(i) and 6.1(ii), respectively,

showing the initial 0.5 seconds. This figure shows the fluctuations experienced during the flutter cycle

for both lift and drag. Lift coefficient is centered about the a value for a mean CL = 0, as shown in

Figure 6.1(i). While for this case, the drag coefficient is centered around the value of 0.17, as shown in

Figure 6.1(ii).
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Figure 6.1: Respective data set for half a second sample time for the drag coefficient (i) and lift coefficient
(ii) at a Re of 90× 103.

The time-averaged CD value is extracted from the time-series and plotted as a function of Re

for sample #1, #2, and #3 in Figures 6.2(i), 6.2(ii), and 6.2(iii), respectively. On these figures, the

theoretical CD scenario for drag experienced on two sides of a plate is plotted as a black dotted line
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Figure 6.2: The drag coefficient (CD) as a function of Reynolds number (Re) for samples #1 - 3.
Bifurcation region (BR) is shown as the red shaded region.

that is calculated using Blasius solution for flat-plate flow [White, 2006]. The non-oscillatory region Re

values are from 22×103 to 60×103, 27×103 to 57×103, and 32×103 to 45×103 for sample #1, sample

#2, and sample #3, respectively. This region indicates that when the flag is in a straight state, the

flag will experience a decrease in the CD with the increasing Re closely matching the solution for the

CD of two side of a flat-plate. Uncertainty bars have been added to their corresponding time-averaged



30

CD value with uncertainty bars that are within the marker size. The Ud for sample #1, #2, and #3 is

17.25m/s (Re = 54×103), 13.07m/s (Re = 50×103), and 8.17m/s (Re = 44×103), respectively, which

is in agreement with Huang [Huang, 1995]. It was shown experimentally that with an increasing length,

the critical velocity would decrease. The higher critical velocity value is the Ud, with higher velocities

always being oscillatory. The corresponding values for sample #1, #2, and #3 being 19.04m/s (Re

= 60 × 103), 14.86m/s (Re = 57 × 103), and 8.29m/s (Re = 45k), respectively. Figure 6.2 shows the

hysteresis loop which is the range of velocities bounded by Ud and Uc values, known as the bifurcation

region (BR). These are shown in the figures as the red-shaded region. Within these bounds the flag can

be in either an oscillatory or non-oscillatory state. For the samples presented, sample #1 will have the

largest hysteresis loop, and sample #3 will have the smallest.
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Figure 6.3: The lift coefficient (CL) as a function of Reynolds number (Re) for samples #1 - 3.

Post Uc, three distinct regions are defined. The first region is the normal flag drag behavior which

is observed in all three samples. Occurring once the flag initially becomes unstable, a sudden increase

in drag is experienced by the flag with the increasing Re [Virot et al., 2013]. The ranges of the Re will

be 54k to 75k for sample #1, 50k to 84k for sample #2, and 44k to 123k for sample #3. Followed by

two regions that will only apply to sample #3. The primary region is known as the drag crisis (DC),

which is similar to observations made by Carruther and Fillipone [Carruthers and Filippone, 2005]. The

drag crisis begins at the local maximum CD of 0.13, the CD will begin to decrease with the increasing

Re. This is highlighted by the blue rectangular zone, for the Re of 61k to 81k that will reach a local

minimum CD of 0.089. The final region will follow the drag crisis, which is called the drag recovery
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region. The drag will be increasing as the Re increases and with Re of 81k to 123k. The flag behavior

will be further explored in the following sections.

Time-averaged values were also done for the CL. The values for sample #1, #2, and #3 for all the

Re are shown in Figure 6.3. Further investigation shows that all time-averaged CL values are around

zero. A value of zero is indicative of symmetric flutter behavior based on lift generation regardless of

flutter behavior presented.

The CD as a function of R2 is shown on Figure 6.4 (i), 6.4 (ii), and 6.4 (iii) for sample #1, for

sample #2, and for sample #3, respectively. These figures show distinct differences between the three

samples and that higher values of R2, which are at lower velocities, will have lower CD. As the velocities

increase R2 will decrease, or becoming less rigid, and CD will increase. With sample #1 the flag rapidly

becomes less stiff with the increasing CD. The sample #2 has two distinct regions which are the drag

increases at a higher rate from R2 7.2 to 10.3(×10−3) and for R2 4.1 to 7.2(×10−3) the CD will begin to

0.19. As for sample #3, it will contain the three prior regions. The initial normal flag drag behavior is

linear for the region of R2 5.3 to 10.1(×10−3). Following is the drag crisis region will have a R2 region

from 3.3 to 5.3(×10−3) and the final drag recover region for R2 will be from 2.0 to 3.3(×10−3).
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Figure 6.4: The drag coefficient CD as a function of Reynolds number Re for samples #1 - 3: indicating
the bifurcation region (BR) drag crisis region (DC).



33

6.2 Flag Shape

The averaged coherent flag shape is acquired from the overlaid images of the complete flutter cycle.

All coherent shapes for the samples are shown in Figure 6.5, 6.6, and 6.7 for sample #1, #2, and #3,

respectively. From these figures, distinct shapes can be identified. Figure 6.5 shows the development of

all the sample #1 flutter cases in a mode-2. In figure 6.6, the straight state of the flag for sample #2

is shown in image (A). Following with the mode-2 coherent flutter shape, which is images (B)-(O) in

figure 6.6. As for sample #3 images (A)-(K) in figure 6.7 will be experiencing mode-3 flutter behavior.

Mode shapes change and with a A2 is observed for sample #3 seen in Image (L) and images (M)-(S)

in 6.7, respectively.

Figure 6.5: Flutter mode development for sample #1 flag flutter with increasing Re.
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Figure 6.6: Flutter mode development for sample #2 flag flutter with increasing Re.
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Figure 6.7: Flutter mode development for sample #3 flag flutter with increasing Re.
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Figure 6.8 and 6.9 will be used to define the characteristics of the flutter behavior for mode-2 and

mode-3. Various polynomial functions can be used to define the envelopes of flutter. These are shown

as the red line in figure 6.8 and 6.9. From this defined functions the amplitude of oscillation A1, second

amplitude of oscillation A2 and amplitude of neck Ne can be defined mathematically and will be defined

based on x-axes displacements. Shown on the figure 6.8 and 6.9, A1, Ne, and A2 will be the minimums

& maximums, inflection points, and local minimums & maximums of the lens shaped region near y =

0, respectively. These are indicated by the green arrows in the figures. The left and right most position

will define the A1. The Ne is the the region where the amplitude is locally small that is quantified by

taking the second derivative of the polynomial function. Furthermore, the A2 is calculated by taking

the first derivative of the polynomial function, respectively. All result values have been tabulated in

the appendix on table A.1, table A.2, and table A.3 for sample #1, #2, and #3, respectively.

Figure 6.8: The averaged flag flutter for sample #3 at a Re of 48k. This is case (A) with the amplitude
of oscillation denoted as A1 and the neck as Ne.
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Figure 6.9: The averaged flag flutter for sample #3 at a Re of 103k. This is case (B) with the amplitude
of oscillation denoted as A1, the neck as Ne, and the second amplitude of oscillation A2.
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6.2.1 Flag Characteristics

The ratio of the amplitude of oscillation normalized by flag length (AL) is,

AL =
A1

L
(6.1)

and is plotted as a function of Re are plotted in Figure 6.10 (i)-(iii) for samples #1, #2, and #3,

respectively. For sample #1 amplitude growth is large with the increasing Re and grows to a maximum

AL of 1. As for sample #2 the amplitude growth is large for Re from 57k to 73k this is followed by

a decrease in amplitude growth rate from 73k to 84k. Sample #2 will also have a maximum AL ratio

of 1. Sample #3 on the other hand experiences three changes in amplitude of oscillation development.

For the Re range from 44k to 61k the amplitude will be increasing. This will reach a maximum AL

ratio of 0.8. Following is the decrease in amplitude of oscillation for the Re from 61k to 81k. This will

reach a minimum A1 to L ratio of 0.57. A mode change from mode-2 to mode-3 is also experienced at

the Re of 81k for sample #3, which leads to the final change in the amplitude of oscillation that will

be increasing from 81k to 103k. This will reach a maximum AL ratio of 0.83.
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Figure 6.10: The normalized Amplitude of Oscillation by respective length as a function of Reynolds
number for samples #1 - 3.
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Neck of the flutter shape for the samples with the increasing Re is shown in Figure 6.11, respectively.

The growth in neck is similar to that of the growth in the amplitude of oscillation. Furthermore, a

linear relationship can be seen when plotted as a function of amplitude of oscillation, as shown in figure

6.12.

Figure 6.11: The normalized amplitude of neck by respective length as a function of Reynolds number
for samples #1 - 3.
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Figure 6.12: The normalized amplitude of neck by respective length as a function of normalized ampli-
tude of oscillation by respective length for samples #1 - 3.
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As for the neck, it is only seen for sample #3. This is shown in Figure 6.13 as the neck develops

for the increasing Re. Which is also seen to have a linear relationship between the neck growth and

the amplitude of oscillation growth shown in Figure 6.14. The comparison of the second amplitude of

oscillation and neck to the amplitude of oscillation shows that the flutter mode shape fans out evenly

with the increasing velocity source.
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Figure 6.13: The normalized amplitude of neck by respective length as a function of Reynolds number
for samples #1 - 3.
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Figure 6.14: The normalized amplitude of neck by respective length as a function of of normalized
second amplitude of oscillation by respective length for samples #1 - 3.
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The last characteristic that is being compared is the height of the neck location along the y-axis

(Ney ) that is normalized by the respective length as a function of Re. This data is plotted in the Figure

6.15. From this, it is apparent that the neck location remains at a constant height for all samples. Flags

that flutter at a mode-2 will have a height ratio between 0.4 to 0.6. At the same time, the mode change

to mode-3 will have a height ratio of about 0.73.
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Figure 6.15: The normalized height position of amplitude of neck by respective length as a function of
Drag Coefficient for samples #1 - 3.
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6.3 Frequency Response

The auto-spectral density of the time series for the lift is performed to identify dominant frequencies

for all the data sets presented. Welch’s method in Matlab was used to calculate the auto-spectral density

function with a 6000 sample window size with no overlap. A sample of the auto-spectral density for a

single set is shown in Figure 6.16, for sample #3 at the Re of 61k. The dominant frequency is at 25.75

Hz, and its harmonics are also present in this figure. Dominant frequencies are extracted from all the

auto-spectral density data sets and are shown in Figure 6.17 as a function of U∞. A linear relationship

is observed for all the samples and a new observation for sample #3, including a new change linear

relationships. The curve fit is applied resulting in sample #1 having a slope of 2.34, sample #2 will

have a slope of 2.09, and sample #3 will have the slopes of 2.21 for U∞ values between 8.15(m/s)

to 14.86(m/s) as well as the slope of 4.35 for the U∞ values between 14.86(m/s) to 22.63(m/s). As

observed before [Taneda, 1968], the slope of the dominant frequency as a function of time is dependent

on the material properties. In this case, due to the variation of length, each sample will have a different

y-intercept.
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Figure 6.16: The Fast Fourier Transform for sample #3 for the Re of 61k.

The Strouhal number is solved with two separate methods, StA1 with equation 6.2 and StL with

equation 6.3. The StA1
as a function of A1 normalized by it’s respective length is shown in Figure

6.18. Two linear relationships can be observed in this plot. The first will correspond to the flutter

behavior for mode-2 indicated with the blue dashed line in the figure with a slope of 0.23. Matching
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Figure 6.17: The dominant frequency of the flag as a function of inlet velocity for samples #1 - 3.

with several other studies reviewed by Yu [Yu et al., 2019]. The y-intercept will have a zero value since

a fluttering frequency of zero will result in no amplitude oscillation value. All three samples will follow

this trend except the higher frequencies for sample #2, which begins to trail for the higher amplitudes.

The secondary slope arises from the new flutter behavior of the modal changing for sample #3. The

new flutter behavior mode-3 flutter has yet to be documented but is shown to have a slope and StL

value of 0.3. Furthermore, the StL can be shown as a function of Re. The constant StL of 0.23 is

plotted for the red shaded region of mode-2. As for mode-3, it is shown in the blue region.

StA1
=

fA1

U∞
(6.2)

StL =
fL

U∞
(6.3)

Further knowledge can be gained when StL is plotted as a function of dimensionless rigidity R2

which is shown in Figure 6.19. On this figure, several interesting behaviors could be conveyed. Initial

mode-2 (M2) flutter regions could divided two zones shown with a magenta arrow pointing right of the

R2 value of 3.5 × 10−3. To the left will be the zone for the flutter of mode-3 (M3). The zone of M2

could be further sub-divided into the general flag flutter behavior, which is for dimensionless rigidity

less than 4.5 × 10−3, also shown with a red shaded region. The second sub-division is the drag crisis

(DC) region which is for dimensionless rigidity from 3.5 to 4.5 × 10−3, also shown between the two
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(i) (ii)

Figure 6.18: The Strouhal number based on the: (i) normalized A1 by respective length as a function
of A1 and (ii) flag length as a function of Re.

dot-dashed lines in the figure.

These regions are further analyzed, beginning with the general flag flutter region. This region is the

most documented but has yet to be compared as such. A positive slope is seen for the three samples

presented. The slope for sample #1, shown for the square symbols and a magenta dashed line, is 4.64.

For sample #2, the circle symbol and a red dashed line are shown with the slope of 4.50. Finally, sample

#3 shows the diamond symbol and blue dashed line, with the slope of 4.40. The slopes of the samples

are within the respect of each other with the impact of mass ratio affecting the y-intercept for a single

sample. Two different trends are also shown. Comparing sample #1 and sample #2, the slope and

y-intercept remains constant but the lower R2 values of the presented data for sample #1 is the initial

for sample #2. As for comparing sample #2 to sample #3, a shift in the y-intercept is experienced.

This impact could be better understood in future experiments by spanning the mass ratios to find a

proper trend. Furthermore, sample #3 exhibits further changes at the lower R2. In the drag crisis,

sample #3 will experience a change in its initial higher R2 values trend where the slope turns from

positive to negative. Further decreasing the R2, the DG is overcome by the mode-3 behavior, which

causes a sudden spike in the Strouhal number with a larger negative slope. More investigations are

needed to understand the new behavior experienced adequately.
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Figure 6.19: The Strouhal number as a function of Dimensionless Rigidity showing: 1) mode-2 (M2)
behavior and 2) mode-3 behavior (M3).
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6.3.1 Drag Coefficient as a function of Amplitude of Oscillation

The CD could be further analyzed when plotted as a function of the normalized A1. The new

behavior can be highlighted, in which a linear relationship is observed in Figure 6.20. Two distinct

regions can be classified as two linear lines, shown in the figure as a magenta dashed line and blue

dashed line. Sample #2 and only the mode-2 flutter for sample #3 will follow the magenta curve fit

line. The blue dashed line will be followed by sample #1 and the mode-3 flutter for sample #3(shown

as blue diamonds). The magenta line will have a slope of 0.2697, while the blue line will have a slope

of 0.4254. Thus, two distinct modes of oscillation are observed that depend on the flow regime and

flutter behavior. Furthermore, the developing Re value should be considered for sample #3. Initial

growth will for the normal flag region have increasing CD and A1, but when the flag is in the drag

crisis region, the same linear relationship will be followed except with a decrease in CD and A1. Upon

changing flutter, behavior is experienced from a mode-2 to a mode-3, and the linear relationship will

be experienced. This observation is significant as it provides an empirical relationship that can be used

to identify the drag experienced by the flexible flag from oscillation amplitude and mode.
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Figure 6.20: The normalized amplitude of oscillation by respective length as a function of Drag Coeffi-
cient for samples #1 - 3.

Additional analysis could observed in the drag coefficient (CD) as a function of the normalized Ne.

This relationship is plotted on Figure 6.21. A unique linear relationship is observed and plotted as a

blue dashed line. Sample #1, sample #2, and the mode-3 cases for sample #3(shown as blue diamonds)

will follow this linear curve fitted line while the mode-2 cases for sample #2 will initially follow this
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trend then begin to trail off for the higher Re of the normal flag region and lower Re for the drag crisis

region. This blue dashed line will have a slope of 0.7587. The observation will extend the empirical

relationship that can be used to identify the drag using the characteristic of the mode shape.
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Figure 6.21: The normalized Amplitude of second amplitude of oscillation by respective length as a
function of Drag Coefficient for samples #1 - 3.
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6.3.2 Stability

With the use of the non-dimensional values of R1 as a function of R2 a boundary stability was created

which is plotted in Figure 6.22. The presented figure is a reduced form of various other instability

boundaries [Alben and Shelley, 2008, Shelley and Zhang, 2011, Yu et al., 2019]. The boundary is shown

with the black line and a general region, with the upper bound being a stable region for a standard flag

and the lower bound being an unstable region. The indicated dash line on Figure 6.22 is in reference to

Eloy and Yu, which indicated that initially, flutter would be of mode-2 for R1 greater than 0.7 [Eloy

et al., 2008, Yu et al., 2019]. The mentioned three sample in this paper fall in this region and do in

fact initially flutter with a mode-2 as seen in Figure 6.5, 6.6, and 6.7. A dotted line has been added to

indicate the region where sample #3 transitions from a mode-2 flutter into a mode-3. Modal changes

have been shown in prior studies [Virot et al., 2013] but has yet to be documented and bounded.
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Figure 6.22: The instability boundary layer based on reviewed work [Yu et al., 2019], with unstable
region below the black line and stable above. Right of the red dash line is the mode-2 (M2) region and
below the dotted red line is the mode-3 (M3) region.
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6.4 Selected Cases

Six cases are shown in the the figure of CD as a function of Re. These case are selected to compare

the along the key non-dimensional values, flutter mode shapes, and velocity fields. Cases (A) and

(B) are individual cases at a Re of 48k and 103k that were used in Section 6.2 to define the flutter

characteristics. Case (C) is comparing the maximum Re possible for sample #2 with the corresponding

Re for sample #3. As for cases (D) and (E) they are based on the interesting observation for sample

#3 at a Re of 61k where a new change in CD and A1 is experienced. Results will be presented along

with corresponding results for sample #1 and #2. Finally case (F) is based on sample #3 at a Re

of 90k with corresponding CD for sample #1 and #2. These cases are overlaid in the Figure 6.23, in

which all results for CD as a function of Re are plotted for ease of comparison.
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Figure 6.23: Selected case studies based on the CD as a function of Re.

Based on the cases (C), (D), (E), and (F) mentioned in the prior section the superposition of each

set as well as key characteristic values and non-dimensional will be compared. Images are created from

the superposition average of the imaging study of the flag location for 1000 images over a 77 second

period. Each superposition figure is scaled based on the maximum y-axis value experienced in sample

#3 and an x-axis value larger than the maximum amplitude of oscillation experienced. The values for

all the cases will be summarized in corresponding tables 6.1-6.4.

The first case being analyzed is the case (C) which compares the maximum Re achievable for sample

#2 with a value of 82k with the closest matching Re for sample #3. It is apparent from Figure 6.24 that
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sample #2, the left image is fluttering at a mode-2 while sample #3 is fluttering at a mode-3. Though

they are the same Re, sample #2 has a larger coefficient of drag, normalized A1, flutter frequency, and

normalized Ne. The list of values are tabulated in table 6.1.

Table 6.1: Non-dimensional values associated to Figure 6.24.

Sample Number Re(×103) CD A1/L f Hz StA StL Ne/L

#2 82 0.19 0.98 62.5 0.15 0.19 0.35
#3 84 0.11 0.57 49.13 0.14 0.21 0.30

Figure 6.24: The averaged flag flutter for sample #2 (left figure) and sample #3 (right figure). Showing
two distinct flutter mode of mode-2 (nodeless) for sample #2 and of mode-3 (single node) for sample
#3. This is case (C).

Following is case (D) which compares the three samples at a CD of 0.13. For this case, all three

samples will be fluttering at a mode-2 as seen in Figure 6.25. In this case, the noticeable similarities

are with samples #2 and #3. These two samples experience the same Re, CD, and normalized A1.

The frequency of sample #2 is also twice that of sample #3. Sample #1 will have a much larger flutter

frequency but a smaller normalized A1 at a lower Re.

Table 6.2: Non-dimensional values associated to Figure 6.25.

Sample Number Re(×103) CD A1/L f Hz StA StL Ne/L

#1 58 0.13 0.66 83.33 0.14 0.23 0.19
#2 61 0.13 0.81 51.25 0.14 0.2 0.23
#3 61 0.13 0.81 25.75 0.14 0.2 0.31
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Figure 6.25: The averaged flag flutter sample #1 (left figure), sample #2 (middle figure), and sample
#3 (right figure). This is case (D) which shows the relation of a local maximum for sample #3 with
CD and A1/L by comparing the CD with the other two samples.

Case (E) will be a variation of case (D), in which sample #3 will have the same Re value as samples

#2 and #3. This will in an increase in Re for sample #3 that will have a larger impact of the drag but

will have slight changes in the normalized A1 and flutter frequency.

Table 6.3: Non-dimensional values associated to Figure 6.26.

Sample Number Re(×103) CD A1/L f Hz StA StL Ne/L

#1 61 0.19 0.77 85.33 0.15 0.22 0.26
#2 61 0.13 0.81 51.25 0.14 0.2 0.23
#3 61 0.13 0.81 25.75 0.14 0.2 0.31

The last case (F) shown in Figure 6.27 compares the three samples at a higher drag value of 0.17

for all three. Notably, sample #3 is at a mode-3 flutter while the other two samples are at a mode-2.

Three samples have a variation of Re are experienced to have matching CD with sample #1 at a value

of 60k, sample #2 at a value of 68k, and sample #3 at a value of 90k. This order is reserved about the

flutter frequency with sample #1 fluttering at a much higher rate than sample #2 and #3.
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Figure 6.26: The averaged flag flutter sample #1 (left figure), sample #2 (middle figure), and sample
#3 (right figure). This is case (E) which shows the relation of a local maximum for sample #3 with
CD and A1/L by comparing the Re with the other two samples.

Table 6.4: Non-dimensional values associated to Figure 6.27.

Sample Number Re(×103) CD A1/L f Hz Ne/L

#1 60 0.17 0.76 84.50 0.23
#2 68 0.17 0.89 54.38 0.34
#3 90 0.17 0.65 51.24 0.29

Figure 6.27: The averaged flag flutter sample #1 (left figure), sample #2 (middle figure), and sample
#3 (right figure). This is case (F) which shows the relation of a local maximum for sample #3 with
CD and A1/L by comparing the Re with the other two samples.
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6.5 Averaged Velocity Field

This section shows the average of the resulting PIV image per experimental run for the cases in

the section Flag Location. One thousand images were used to acquire for a single velocity field but

are best shown based on their velocity components. This is done by showing Ux and Uy velocity field

components separately for each case. The axis has been adjusted to show as much of the wake region

as possible. The wake region will correspond to the larger y values. In this wake region, for the region

of positions great than x = 20 and lower than x = -20, a change in velocity is seen. This region is the

shear layer zone. For reference, upstream is considered y = 0 and downstream is considered y = 100.

An area at the inlet was also blocked off due to high-level uncertainties from the imaging of the flag

stand that is located at (0, 0). The non-dimensional values refereed in the table 6.1-6.4 in the section

of Flag Location will be the same for the respective cases.

The first presented case is the case (B) which compares a sample #2 at mode-2 flutter with a sample

#3 at mode-3 flutter with both at a Re around 82k. Similar conditions are observed when the area in

the A2 region for a mode-3 flutter is ignored. From Figure 6.5(i), we can notice similar wake Ux on

average for a model 2 and a mode-3 flutter. This could be divided into two sections about the y-axis at

x = 0, for the region where x < 0, a negative Ux that begins at y = 35, which is well under the location

of the trailing edge. Just upstream of this region, the outline of the shape of averaged flag location is

observed. This will have a negative Ux value. The contrast is seen in the region where x > 0, which has

a positive Ux value, and the area near the averaged flag location will experience a negative Ux. While

the flag flutters, one can decipher that the inlet flow will cause fluid to displace outward in the wake,

which is dominated by the flag motion. The final notable region in Figure 6.28i is the A2 region for

sample #3, which would be around the coordinate (0,10) in the image (b). At this region, there is no

Ux which suggests, on average, this region does not experience much fluid motion in the x-direction.

Further observation could be made from Figure 6.28ii and the Uy components could be analyzed.

Similar to the prior figure, division into two sections about the y-axis where x = 0 could be done, but

the regions will be symmetrical about the axis rather than opposites. In the wake region, the area that

flows near the middle will be similar to inlet conditions as the x-positions shift away from zero, the Uy

will decrease. The area closer to the inlet, near the coordinates (17, 65), shows a decrease in velocity at

the flag location. This decrease in velocity will be due to the blockage of the inlet flow when the flag

is at the extremes. Then the area at the center of the flag location, at the center region (0, 55), the

velocity experiences an increase compared to the inlet velocity. This is due to the motion of the flag

in this region, causing the flow to accelerate. Lastly in the A2 region, located at about the coordinate
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(0, 15), will experience a velocity decrease. This is due to the A2 having a small amount of motion,

obstructing the flow.

(i) Ux component velocity field.

(ii) Uy component velocity field.

Figure 6.28: The averaged velocity field of case (C), Figure 6.24, of 1000 PIV images for the velocity
components: Images (i) Ux of and Images (ii) Uy.

The following figure 6.29i and 6.29ii are the averaged velocity field for case (D). Which compares the

three samples at a constant CD value of 0.13. For all these, they are in mode-2 but do not experience

anything different on average compared to the sample #2 in the last case (C). The same behavior is

observed except with variations of velocities. This suggests that the mode flutter influences the flow
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field rather than the flag geometry.

(i) Ux component velocity field.

(ii) Uy component velocity field.

Figure 6.29: The averaged velocity field of case (D), Figure 6.25, of 1000 PIV images for the velocity
components: Image (a) Ux of and Image (b) Uy. Corresponding to figure 6.24.

When a single Re is changed for a single sample, which is the difference between case (D) and (E)

since the only Re changed in sample #3 going from a Re of 58k to 61k. The only difference seen in that

case (E) will change would be the shape of the flag location region. This is observed when comparing

Figure 6.30i and 6.30ii. The blockage region will expand outward since the amplitude is increasing. All

other highlighted regions will be similar.
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(i) Ux component velocity field.

(ii) Uy component velocity field.

Figure 6.30: The averaged velocity field of case (E), Figure 6.26, of 1000 PIV images for the velocity
components: Image (a) Ux of and Image (b) Uy. Corresponding to figure 6.26.

In figure 6.27, the final case (F) then compares the similar CD of 0.17 for all three samples. The

flag location region mentioned for samples #1 and #2, which are images (a) and (b), respectively, only

show a shift of the blockage region due to the amplitude growth. While sample #3, which is in a mode-3

flutter, has similar A2, flutter, and wake regions to those in case (C). The difference is case (F) has a

higher Re. The regions are more pronounced in this case due to this fact.
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(ii) Uy component velocity field.

Figure 6.31: The averaged velocity field of case (F), Figure 6.27, of 1000 PIV images for the velocity
components: Image (a) Ux of and Image (b) Uy. Corresponding to Figure 6.27.
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Chapter 7: Summary and Conclusions

Experiments were performed to study the aerodynamics and FSI behavior of three different flags.

All the experiments were conducted at the University of Idaho’s Experimental Fluids and Aerodynamic

Laboratory. A load cell was used to quantify the aerodynamic measurements experienced by the flag

during fluttering, flag images were used to characterize its fluttering, and a PIV was used to quantify

the velocity around the flag. The key non-dimensional for the flag FSI behavior are the mass ratio (R1),

dimensionless rigidity (R2), and Reynolds number (Re). Samples #1, #2, and #3 have the R1 values

of: 2.77, 2.14 and 1.48, respectively. For this study R2 varied from 1.3 × 10−3to14.5 × 10−3, and Re

varied from 44× 103 to 123× 103.

The aerodynamic measurements show unique drag characteristics for the membrane and is dependent

on R1, R2, and Re. The aerodynamic results show an increase in the drag coefficient with the increase

in Re for samples #1 and 2. For the flag sample#3, we observe an initial increase in drag with an

increase in Re, followed by a decrease in drag with an increase in Re, referred to as a drag crisis region.

A further increase in the Re value, a sharp increase in the drag referred to as the drag recovery region

is observed for the sample#3. A similar trend is also observed for varying R2. The aerodynamic results

demonstrated the bifurcation with lower and upper bounds of the critical velocities for all three flag

samples.

Images of the superimposed flag were used to characterize the flag flutter behavior. These results

showed that the presented flag problem has two distinct modes of oscillations modes 2 and 3. The

mode-2 behavior is observed for all three flag samples and while the mode-3 behavior is only observed

for flag sample#3 at higher Re values. A distinct feature for mode 3 is the presence of A2 in the

flag oscillations. For the mode-2 oscillations, an increase in oscillation amplitudes is observed with an

increase in Re for samples #1 and #2. For sample# 3, similar behavior is initially experienced, followed

by a decrease in the oscillation amplitude with the increase in Re except for the drag crisis region. The

drag recovery region for sample# 3 shifts to mode-3 oscillation with a further increase in the Re. The

flag images show that the neck region observed in mode-2 and mode-3 does not move but grows in

amplitude. The amplitude of oscillation and neck oscillation will also grow linearly with the increasing

Re. These results suggest that the membrane amplitude is fan out evenly. Further emphasizing that

the drag is dependent on the coherent shape and the frequency at which the membrane flutters.

Auto-spectral density function is used to acquire the dominant frequency of the aerodynamic load.

The Strouhal number based on the dominant frequency, u∞, and membrane length vary depending on

the current oscillating mode. For example, for mode-2 flutter, the Strouhal number has a value of 0.2,
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while for mode-3, the Strouhal number has a value of 0.3. This suggests that the mode change is

associated with a shift in dominant frequency.

The averaged velocity field results clearly show the difference between the averaged mode-2 and

mode-3 flutter. Both the oscillation modes will cause the inlet flow to spread outward from the center-

line of the jet outlet in the wake region caused by membrane motion. The average velocity results show

the highest velocity point at the center of the coherent flutter shape, the most energized region. The

A2, a key feature of mode-3 oscillations, can also be observed in the average velocity results. The A2

region will have very little motion compared to the region above the A2, as evident from low values of

Ux and Uy components of velocity.

Conducting these experiments and analyzing the data of the FSI flag problem has provided empirical

data that aids in further understanding the physical development of the flag and the aerodynamic

performance. Insight is provided in linear relationship of the amplitude grow to drag generated due

to flutter. Advanced data techniques were employed to gain insight on the fluid field surrounding the

flutter flag for several modal cases and unique phenomenon such as in stages of modal change. However,

due to the complexity of the problem, other advanced measurement techniques and analysis must be

employed on unique phenomena such as bifurcation, modal change, and chaotic flutter. Furthermore,

several future works can arise from the presented data.
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Chapter 8: Future Work

8.1 Changing Geometry

Due to the lack of reported experimental work in membranes that will experience mode changes,

there is an interest in selecting geometries that will experience the phenomenon. For this reason the

thickness will be varied for Sample #3 to see the affects. Varying the thickness will change the mass

ratio and the dimensionless rigidity. This will be varying locations on the boundary stability plot while

still retaining the same phenomenons experienced in Sample #3. All analysis shown in the study can be

replicated for these cases, as well as future indepth and advanced intended experimental and analysis

techniques.

8.2 Near Wall Analysis

The near wall dynamics of the flag has yet to be properly addressed for various flutter modes or for

the complete limit cycle. particle image velocimetry (PIV) studies have been conducted for a mode 2

flutter showing the flow near the wall for the flutter membranes in upstroke and downstroke conditions

[Gibbs et al., 2014]. It shows that the flow did not separate for these conditions. The bifurcation

region has yet to be analyzed by means of PIV or other experimental techniques that allow for near

wall studies. As well as cases for transition for mode changes and higher order mode values.

8.3 Wake Analysis

As the membrane flutters a Von-Karman vortex street and Kelvin-Helmholtz instability has been

identified to shed from at the free end [Zhang et al., 2000]. Though it has yet to be qualified experi-

mentally at what frequency shedding is seen to occur. The shedding can be measured through precisely

controlled experimental studies employing a Hot-Wire Anemometry and a method to track the location

of the membrane with time-series. This could be done by spanning the wake area to generate a com-

plete wake profile. Interesting cases could be selected based on bifurcation, mode flutter, and transition

phases.

8.4 Advance Analysis: POD and DMD

Large data sets for PIV studies have been collected for all the samples mentioned at all the varying

Re. With these data sets, the advanced data analysis such as Proper Orthogonal Decomposition (POD)

and Dynamic Mode Decomposition (DMD), can be applied to determine the spatial and temporal
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behavior of the surrounding fluid for the fluttering membrane. These are data driven decomposition

techniques that can be applied to the data collected from PIV results. These techniques can be used

to identify the optimal ”modes” or basis function which are the eigenmodes of the equation. With this

the velocity field can be reconstructed that in turn can estimate the pressure field that can help better

understand the fluid loading and membrane motion.

8.5 Modeling Membrane and Fluid Interaction

Data driven modeling can be done that will comply with all the phenomenon captured with the ex-

perimental data. This could be done with the methods explained in the background section including:

theoretical linear stability, linear/nonlinear vortex lattice model, coupled fluid-structure direct simula-

tion, or immersed boundary method. Several other approaches can also be implemented such as ”Deep

Galerkin Method (DGM)” [Sirignano and Spiliopoulos, 2018]. This approach uses neutral networks to

implement Deep Learning to solve high-dimensional partial differential equations(PDE). This has yet

to be applied to solve two PDE’s.
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[Päıdoussis, 1998] Päıdoussis, M. P. (1998). Slender structures and axial flow, volume 1. Elsevier.

[Pan et al., 2014] Pan, D., Shao, X., Deng, J., and Yu, Z. (2014). Simulations of passive oscillation

of a flexible plate in the wake of a cylinder by immersed boundary method. European Journal of

Mechanics-B/Fluids, 46:17–27.

[Pang et al., 2010] Pang, Z., Jia, L.-b., and Yin, X.-z. (2010). Flutter instability of rectangle and

trapezoid flags in uniform flow. Physics of Fluids, 22(12):121701.

[Peterson et al., 1996] Peterson, C., Strickland, J., and Higuchi, H. (1996). The fluid dynamics of

parachute inflation. Annual Review of Fluid Mechanics, 28(1):361–387.

[Raffel et al., 2018] Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., and Kompen-

hans, J. (2018). Particle image velocimetry: a practical guide. Springer.

[Rojratsirikul et al., 2010] Rojratsirikul, P., Wang, Z., and Gursul, I. (2010). Unsteady fluid-structure

interactions of membrane airfoils at low reynolds numbers. In Animal Locomotion, pages 297–310.

Springer.

[Sane, 2003] Sane, S. P. (2003). The aerodynamics of insect flight. Journal of experimental biology,

206(23):4191–4208.

[Sarpkaya, 1979] Sarpkaya, T. (1979). Vortex-induced oscillations: a selective review.

[Sfakiotakis et al., 1999] Sfakiotakis, M., Lane, D. M., and Davies, J. B. C. (1999). Review of fish

swimming modes for aquatic locomotion. IEEE Journal of oceanic engineering, 24(2):237–252.



67

[Shelley et al., 2005] Shelley, M., Vandenberghe, N., and Zhang, J. (2005). Heavy flags undergo spon-

taneous oscillations in flowing water. Physical review letters, 94(9):094302.

[Shelley and Zhang, 2011] Shelley, M. J. and Zhang, J. (2011). Flapping and bending bodies interacting

with fluid flows. Annual Review of Fluid Mechanics, 43:449–465.

[Shi et al., 2013] Shi, S., New, T., and Liu, Y. (2013). Flapping dynamics of a low aspect-ratio energy-

harvesting membrane immersed in a square cylinder wake. Experimental Thermal and Fluid Science,

46:151–161.

[Sirignano and Spiliopoulos, 2018] Sirignano, J. and Spiliopoulos, K. (2018). Dgm: A deep learning

algorithm for solving partial differential equations. Journal of computational physics, 375:1339–1364.

[Stein et al., 2000] Stein, K., Benney, R., Kalro, V., Tezduyar, T. E., Leonard, J., and Accorsi, M.

(2000). Parachute fluid–structure interactions: 3-d computation. Computer Methods in Applied

Mechanics and Engineering, 190(3-4):373–386.

[Taneda, 1968] Taneda, S. (1968). Waving motions of flags. Journal of the Physical Society of Japan,

24(2):392–401.

[Tang et al., 2015] Tang, C., Liu, N.-S., and Lu, X.-Y. (2015). Dynamics of an inverted flexible plate

in a uniform flow. Physics of Fluids, 27(7):073601.

[Tang et al., 2003] Tang, D., Yamamoto, H., and Dowell, E. (2003). Flutter and limit cycle oscilla-

tions of two-dimensional panels in three-dimensional axial flow. Journal of Fluids and Structures,

17(2):225–242.

[Tang et al., 2007] Tang, L., Paı, M. P., et al. (2007). On the instability and the post-critical behaviour

of two-dimensional cantilevered flexible plates in axial flow. Journal of Sound and Vibration, 305(1-

2):97–115.

[Tobalske, 2007] Tobalske, B. W. (2007). Biomechanics of bird flight. Journal of Experimental Biology,

210(18):3135–3146.

[Trimarchi et al., 1970] Trimarchi, D., Turnock, S., Chapelle, D., and Taunton, D. (1970). Fluid-

structure interactions of anisotropic thin composite materials for application to sail aerodynamics of

a yacht in waves.

[Virot et al., 2013] Virot, E., Amandolese, X., and Hémon, P. (2013). Fluttering flags: An experimental

study of fluid forces. Journal of fluids and structures, 43:385–401.



68

[Watanabe et al., 2002] Watanabe, Y., Suzuki, S., Sugihara, M., and Sueoka, Y. (2002). An experi-

mental study of paper flutter. Journal of fluids and Structures, 16(4):529–542.

[White, 2006] White, F. M. (2006). Viscous fluid flow, volume 3. McGraw-Hill New York.

[Yu and Liu, 2015] Yu, Y. and Liu, Y. (2015). Flapping dynamics of a piezoelectric membrane behind

a circular cylinder. Journal of Fluids and Structures, 55:347–363.

[Yu and Liu, 2016] Yu, Y. and Liu, Y. (2016). Energy harvesting with two parallel pinned piezoelectric

membranes in fluid flow. Journal of Fluids and Structures, 65:381–397.

[Yu et al., 2019] Yu, Y., Liu, Y., and Amandolese, X. (2019). A review on fluid-induced flag vibrations.

Applied Mechanics Reviews, 71(1).

[Yu et al., 2017] Yu, Y., Liu, Y., and Chen, Y. (2017). Vortex dynamics behind a self-oscillating inverted

flag placed in a channel flow: Time-resolved particle image velocimetry measurements. Physics of

Fluids, 29(12):125104.

[Zhang et al., 2000] Zhang, J., Childress, S., Libchaber, A., and Shelley, M. (2000). Flexible filaments

in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature,

408(6814):835–839.



69

Appendix A: Tables of Data

The Tables A.1-A.3 contain all the values for Sample #1, Sample #2, and Sample #3. These values

are for the fluttering cases of all the Re and measured non-dimensional values as well as key membrane

characteristics. The cases that have been selected for in-depth study are also indicated. In the Table

A.3, ”Trans” indicates the Re at the membrane is going from a mode 2 flutter to a mode 3. On the

same table, ”CH” indicated that the membrane is in chaotic flutter in which several measurements

aren’t possible.

Table A.1: Table of non-dimensional values for Sample #1.

Index Re CD R1 R2 A1 (mm) f(Hz) Ne (mm) A2 (mm) Group

1 56k 0.070 2.77 14.4× 10−3 22.58 82.00 5.94 N/A -
2 57k 0.115 2.77 13.9× 10−3 25.67 82.50 6.93 N/A -
3 58k 0.131 2.77 13.4× 10−3 27.40 83.33 8.07 N/A D
4 59k 0.150 2.77 12.9× 10−3 29.85 83.83 8.98 N/A -
5 60k 0.169 2.77 12.4× 10−3 31.69 84.50 9.96 N/A F

6 61k 0.187 2.77 11.9× 10−3 31.88 85.33 9.67 N/A E
7 62k 0.204 2.77 11.5× 10−3 34.86 86.17 11.01 N/A -
8 64k 0.216 2.77 11.1× 10−3 36.26 86.83 12.36 N/A -
9 65k 0.228 2.77 10.7× 10−3 37.54 87.83 12.80 N/A -
10 66k 0.239 2.77 10.3× 10−3 38.37 88.67 12.73 N/A -

11 67k 0.252 2.77 10.0× 10−3 39.61 89.83 13.21 N/A -
12 68k 0.260 2.77 9.7× 10−3 40.36 90.50 13.35 N/A -
13 69k 0.267 2.77 9.3× 10−3 41.04 91.33 14.00 N/A -
14 70k N/A 2.77 9.1× 10−3 N/A 92.33 N/A N/A -
15 71k N/A 2.77 8.8× 10−3 N/A 93.17 N/A N/A -

16 73k N/A 2.77 8.5× 10−3 N/A 94.33 N/A N/A -
17 74k N/A 2.77 8.2× 10−3 N/A 95.17 N/A N/A -
18 75k N/A 2.77 8.0× 10−3 N/A 95.67 N/A N/A -
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Table A.2: Table of non-dimensional values for Sample #2.

Index Re CD R1 R2 A1 (mm) f(Hz) Ne (mm) A2 (mm) Group

1 57k 0.016 2.14 9.0× 10−3 SS SS SS N/A -
2 53k 0.040 2.14 10.3× 10−3 22.00 45.63 5.89 N/A -
3 54k 0.063 2.14 9.8× 10−3 28.24 46.25 7.25 N/A -
4 57k 0.100 2.14 9.0× 10−3 36.71 48.13 10.02 N/A -
5 59k 0.122 2.14 8.4× 10−3 40.92 49.38 11.52 N/A -

6 61k 0.138 2.14 7.7× 10−3 43.80 51.25 12.52 N/A D & E
7 64k 0.152 2.14 7.2× 10−3 46.03 52.50 13.92 N/A -
8 66k 0.162 2.14 6.7× 10−3 47.54 53.75 13.75 N/A -
9 68k 0.168 2.14 6.3× 10−3 48.54 54.63 15.40 N/A F
10 70k 0.174 2.14 5.9× 10−3 49.72 55.63 16.36 N/A -

11 73k 0.180 2.14 5.5× 10−3 50.86 57.50 16.18 N/A -
12 75k 0.182 2.14 5.2× 10−3 51.47 58.75 17.30 N/A -
13 77k 0.184 2.14 4.9× 10−3 52.00 59.38 16.80 N/A -
14 80k 0.185 2.14 4.6× 10−3 52.70 60.63 18.55 N/A -
15 82k 0.187 2.14 4.3× 10−3 53.13 62.50 18.89 N/A C

16 84k 0.188 2.14 4.1× 10−3 N/A N/A N/A -

Table A.3: Table of non-dimensional values for Sample #3.

Index Re CD R1 R2 A1 (mm) f(Hz) Ne (mm) A2 (mm) Group

1 44k 0.034 1.48 10.1× 10−3 32.6 20.25 8.5 N/A -
2 48k 0.078 1.48 8.5× 10−3 47.44 22.13 13.78 N/A A
3 51k 0.098 1.48 7.5× 10−3 54.18 22.63 17.12 N/A -
4 55k 0.110 1.48 6.6× 10−3 57.95 23.75 21.09 N/A -
5 58k 0.121 1.48 5.9× 10−3 61.63 24.75 22.60 N/A -

6 61k 0.131 1.48 5.3× 10−3 64.04 25.75 24.95 N/A D & E
7 64k 0.117 1.48 4.8× 10−3 60.66 27.38 21.14 N/A -
8 68k 0.116 1.48 4.3× 10−3 60.88 28.63 21.08 N/A -
9 71k 0.113 1.48 4.0× 10−3 58.74 30.25 18.76 N/A -
10 74k 0.106 1.48 3.6× 10−3 56.46 31.63 18.38 N/A -

11 77k 0.099 1.48 3.3× 10−3 53.46 34.00 16.03 N/A -
12 81k 0.089 1.48 3.1× 10−3 59.22 35.25 18.63 Trans -
13 84k 0.108 1.48 2.8× 10−3 45.33 49.13 16.16 3.03 C
14 87k 0.149 1.48 2.6× 10−3 49.93 53.13 18.14 4.03 -
15 90k 0.173 1.48 2.4× 10−3 51.25 55.88 18.90 3.83 F

16 93k 0.194 1.48 2.3× 10−3 54.71 58.75 19.25 4.24 -
17 97k 0.206 1.48 2.1× 10−3 59.70 60.63 22.53 4.35 -
18 100k 0.215 1.48 2.0× 10−3 60.18 62.25 22.45 4.66 -
19 103k 0.225 1.48 1.9× 10−3 65.96 N/A 23.60 5.05 B
20 106k N/A 1.48 1.8× 10−3 CH CH CH CH -

21 110k 0.251 1.48 1.7× 10−3 CH CH CH CH -
22 113k 0.265 1.48 1.6× 10−3 CH CH CH CH -
23 116k 0.278 1.48 1.5× 10−3 CH CH CH CH -
24 119k 0.283 1.48 1.4× 10−3 CH CH CH CH -
25 123k 0.290 1.48 1.3× 10−3 CH CH CH CH -
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