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Abstract

This dissertation presents fundamental results on the structure of paramodular Hecke algebras for

Siegel paramodular forms of prime level. We exhibit four double coset generators for the Hecke ring

as well as explicit formulas for computing the coefficients and good coset representatives that appear

in the multiplication of two elements of this ring. In addition, we show that there is a correspondence

between the value of the coefficients appearing in a product of these Hecke operators and the number

of sub-lattices of a paramodular lattice over a non-archimedean local field.
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1 Introduction

“There are five fundamental operations in mathematics: addition, subtraction, multiplication, divi-

sion, and modular forms.”

-Quote attributed to Martin Eichler

1.1 Background and Motivation

In 1995 Andrew Wiles proved Fermat’s last theorem by proving a special case of the modularity

theorem (then known as the Taniyama-Shimura-Weil conjecture ([17],[18])) which claims that there

is a correspondence between elliptic curves and modular forms. This correspondence has a finer

structure by further specifying that the conductor of the elliptic curve should be the level of the

corresponding modular form. The full modularity theorem was proven in 1999 ([4],[2]), and many

other results, similar to Fermat’s last theorem, follow from it; one such result is that no cube can

be written as the sum of two coprime nth powers where n ≥ 3. In an effort to generalize the cor-

respondence stated in the modularity theorem, Brumer and Kramer [3] proposed the paramodular

conjecture, which claims that there is a correspondence between abelian surfaces with conductor N

and paramodular forms of level N .

Let m and N be positive integers and define the Siegel upper half-space, H, to be the

set of m × m positive definite symmetric matrices with complex entries. Additionally, define the

symplectic group of level N , Sp(2m,Q), to be the subgroup of GL(2m,Q) such that for all

g ∈ Sp(2m,Q) we have

tgJg = J,

where J =
[

0 I
−I 0

]
and I is the m×m identity matrix. Then this symplectic group acts on Z ∈ H

by

g · Z = (AZ +B)(CZ +D)−1, g = [A B
C D ].

Then we define the slash-k action on the set of f : H → C by

(f |kg)(Z) = det(CZ +D)−kf(g · Z).

Letting Γ ⊆ Sp(2m,Z) such that Γ ∩ Sp(2m,Z) has finite index in both Sp(2m,Z) and Γ, we now

have that a Siegel modular form is a complex-valued holomorphic function f : H → C such

that f |kg = f for all g ∈ Γ. Using this, we now say that a Siegel paramodular form (or just a
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paramodular form) is a Siegel modular form for the paramodular group, that is with Γ = K(N)

and m = 2 (where we discuss the paramodular group in more detail in Chapter 3). In this case, we

say that f is a paramodular form of weight k with respect to Γ of level N .

The key machinery used in the proof of the modularity theorem is a set of operators acting on

spaces of modular forms called Hecke operators. First investigated by Erich Hecke in 1937 in [6]

and [7], these Hecke operators are linear operators over the complex vector space of modular forms

of weight k that preserve important properties of the forms. For instance, Hecke operators are used

in the computation of modular forms, and understanding what the structure of the Hecke algebra

allows for more information to be gained about the spaces of modular forms. A valuable result

in this regard is that Hecke operators determine a basis of the space of modular form of weight

k. More specifically, if Mk is the complex vector space of modular forms of weight k, then there

exists a basis fi ∈ Mk such that each fi is an eigenform for every Hecke operator acting on Mk.

So, to find a basis for the space of modular forms of a specific weight, all one has to do is find

the simultaneous eigenforms. In a similar way to how Hecke operators give us information about

the structure of modular forms used in proving the modularity theorem, an understanding of the

structure of paramodular Hecke algebras could lead to a proof of the paramodular conjecture.

The current work focuses on the structure of paramodular Hecke algebras. The Hecke algebra

under consideration in this document is related to the Hecke algebra investigated by Gallenkamper

and Krieg in [5]. The authors looked at the Hecke algebra over the orthogonal group SO(2, 3),

which is isomorphic to the paramodular group, and transformed their Hecke algebra accordingly.

We on the other hand constructed the Hecke algebra over the paramodular group directly and

came up with notable differences between the two algebras. For instance, Gallenkamper and Krieg

claim that two of the generators for their paramodular Hecke algebra commute, while the analogous

generators we found do not.

As an application of the explicit formulas we construct for the paramodular Hecke algebra, this

work also extends the results of Shimura [13] and Shulze-Pillot [16] on lattices to the Hecke ring

being considered. In his work, Shimura showed that for a lattice M in a non-degenerate symplectic

space W (over a principal ideal domain with quotient field F ), there is a basis y1, . . . yn, z1, . . . zn

of W and a1, . . . , an ∈ F such that ⟨yi, yj⟩ = ⟨zi, zj⟩ = 0,⟨yi, zj⟩ = δij for i, j ∈ {1, . . . n}, where

⟨·, ·⟩ is the symplectic form on W ,

M = Ry1 ⊕ · · · ⊕Ryn ⊕Ra1z1 ⊕ · · · ⊕Ranzn,
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and

a1|a2, . . . an−1|an,

and lastly the ideals Ra1, . . . , Ran are uniquely determined. Shulze-Pillot has extended that result

to paramodular lattices and we use these ideas to extend another result of Shimura’s ([14]) in

the classical case to the paramodular case; specifically that there is a correspondence between

sub-lattices of a paramodular lattice and the number of times a coset appears in the disjoint

decomposition of a Hecke operator into left cosets. This means that the number of times one of

these left cosets appears in the decomposition of a Hecke operator is exactly the number of sub-

lattices there are in the corresponding paramodular lattice, making counting these lattices more

explicit.

1.2 Organization of the Current Work and Summary of Results

This document is divided into seven chapters. The first and second chapters are considered intro-

ductory and background material, with Chapter 1 offering a summary of the historical development

of the work on classical Siegel modular forms that lead naturally to the work in this dissertation.

Chapter 2 further develops the theory of abstract Hecke rings, which are rings of double coset oper-

ators that act on the space of modular forms in a way that preserves properties of interest. In this

chapter, we also see that any Hecke ring is a convolution algebra, and vice versa. The multiplication

in the Hecke ring H is defined to be

ΓgΓ · Γg′Γ =
∑

[γ]∈Γ\∆/Γ

aγΓγΓ,

where aγ is the number of ways to get the coset Γγ from the decompositions of the two double

cosets being multiplied. This definition arises from the action of the Hecke operators on spaces of

modular forms and is implicitly defined in terms of the decomposition of the double coset operators

involved. However, as we noted, given a specific ring of Hecke operators we can pass to a convolution

algebra with a multiplication defined in terms of convolution of functions, and is useful to do in

order to prove results that allow us to more easily compute these coefficients (much of Chapter 5 is

devoted to explicitly computing these coefficients aγ for the paramodular Hecke algebra, as these

are necessary to understand its structure). To close out the chapter we look at the Hecke operators

that arise from the general linear group of 2 × 2 matrices over Q, both at full level and at prime

level. We examine the Hecke operators on this group because much in known about the structure
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of the Hecke rings and considering these examples provides more explanation for the structures and

results we are trying to generalize.

Chapter 3 gives the necessary background information of the paramodular group for a positive

integer N , and the analogous definition for a prime ideal p in a non-archimedean local field F . The

paramodular group of a prime ideal, called the local paramodular group K(p), defined in section

3.2, will be of chief interest in the next chapters since this is the group we will use to construct our

Hecke ring, where Γ = K(p). In Chapter 4 we will examine some key decomposition of matrices in

the general linear group of n×n matrices over a non-archimedean local field. In particular we show

Theorem. For g in GSp(4, F ), there is a diagonal matrix d in GSp(4, F ) such that K(pn)gK(pn) =

K(pn)dK(pn) or K(pn)gK(pn) = K(pn)wdK(pn), where

w =

[
1

ϖ
ϖ

1

]
,

where the diagonal entries of d are specific powers of ϖ, the generator of the maximal ideal p in

the ring of integers o of F . Additionally, for any two diagonal matrices d1 and d2 in GSp(4, F ) we

have that K(pn)d1K(pn) ̸= K(pn)wd2K(pn).

Hence, for any double coset in the paramodular Hecke ring we can rewrite it using a diagonal

matrix or as the product of w with a diagonal matrix.

In Chapter 5 we prove that the paramodular Hecke ring of interest, H (K(p),∆), where ∆ is a

specially chosen subgroup that contains the paramodular group, is generated by four double coset

Hecke operators. In particular, we show

Theorem. H (K(p),∆) is generated as a ring by

K(p)

[
1
1
ϖ

ϖ

]
K(p), K(p)

[
1
ϖ

ϖ2

ϖ

]
K(p), K(p)

[ϖ
1
ϖ

ϖ2

]
K(p), and K(p)wK(p).

A lot of preliminary work is done to get to this point since the proof requires the ability to

compute the coefficients resulting from the multiplication in the Hecke ring, and so much of the work

in this chapter is dedicated to obtaining those calculations. Chapter 6 contains further calculations

concerning the multiplication of two Hecke operators. In particular this chapter gives standard coset

representatives for every giK(p) appearing in the decomposition of the double coset K(p)gK(p).

In particular we show the following.

Theorem. Let a, b, δ ∈ Z, y ∈ o and suppose K(p)gK(p) = ∪igiK(p) with

gi =

A B

0 D

 .
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where A,B, and D satisfy

tAD = tDA = ϖδ =

ϖδ

ϖδ

 , tBD = tDB, B ∈

p−1 o

o o

 .

Then the following are complete sets of representatives based on where A is.

1. If A ∈ Γ0(p)
[
ϖa

ϖb

]
Γ0(p) for δ ≥ a ≥ b ≥ 0, then

gi =

[ 1 y
1

1
−y 1

][ϖa

ϖb

ϖδ−a

ϖδ−b

][
1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1
1

]
,

where y ∈ o/pa−b, y1 ∈ o/pa and y2, y3 ∈ o/pb.

2. If A ∈ Γ0(p)
[
ϖa

ϖb

]
Γ0(p) for δ ≥ b > a ≥ 0, then

gi =

[ 1
y 1

1 −y
1

][ϖa

ϖb

ϖδ−a

ϖδ−b

][
1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1
1

]

where y ∈ p/pb−a+1, y1, y2 ∈ o/pa and y3 ∈ o/pb.

3. If A ∈ Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) for δ ≥ a+ 1 ≥ b+ 1 ≥ 1, then

gi = w−1

[−ϖ −ϖy
ϖ

−1
−y 1

][ϖa

ϖb

ϖδ−a

ϖδ−b

][
1 −ϖ−ay1 ϖ−by2

1 ϖ−by2 ϖ−by3

1
1

]

where y ∈ o/pa−b, y1 ∈ o/pa and y2, y3 ∈ o/pb.

4. If A ∈ Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) for δ ≥ b+ 1 > a+ 1 ≥ 1, then

gi = w−1

[−ϖ
ϖy ϖ

−1 y
1

][ϖa

ϖb

ϖδ−a

ϖδ−b

][
1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1
1

]

where y ∈ p/pb−a+1,y1, y2 ∈ o/pa+1, and y3 ∈ o/pb.

Where Γ0(p) = {
[
a b
c d

]
∈ GL(2, o) : c ≡ 0 mod p}. Furthermore, each of these decompositions

is disjoint.

The results in this chapter, coupled with the results from Chapter 5, allow us to compute the

product of double coset operators in our Hecke ring.

Chapter 7 explores another collection of results concerning the paramodular Hecke ring and its

correspondence with a set of lattices. In particular we prove the following.

Theorem. Every every coset

gK(p) ⊂ K(p)

[
ϖa

ϖb

ϖc−a

ϖc−b

]
K(p),
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where g ∈ GSp(4, F ) and a, b, c are integers under certain conditions, corresponds bijectively to a

sub-lattice of a paramodular lattice.

This shows that another way to compute the coefficients resulting from the multiplication of

two Hecke operators is to count the number of sub-lattices of a particular form of the paramodular

lattice; which we do to compute the orders of the two non-trivial generating Hecke operators

K(p)

[
1
1
ϖ

ϖ

]
K(p) and K(p)

[
1
ϖ

ϖ2

ϖ

]
K(p).

The work in this document leads naturally to other questions about paramodular Hecke algebras.

One such question concerns a rationality result. In the classical SL(2,Z) case (which is examined

in Chapter 1), we know that the Hecke algebra is generated by the Hecke operators T (1, p) and

T (p, p), for each prime p. By considering the formal Dirichlet series

∞∑
i=1

T (m)

ms

of Hecke operators T (m), it is possible to write

∞∑
i=1

T (m)

ms
=
∏
p

∞∑
k=0

T (pk)

pks
.

Moreover, one is able to attain the rationality result

∞∑
k=0

T (pk)

pks
=

1

1− T (1, p)p−s + T (p, p)p1−2s
.

With the structure of the paramodular Hecke algebra presented here, it may be possible to obtain

a similar result for paramodular Hecke operators.
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2 Abstract Hecke Rings and the Case of GL(2,Q)

In this chapter we take a look at the structure and useful properties of Hecke algebras as abstract

objects by noting some of their basic algebraic properties. The goal in this chapter is to dissect the

multiplication in an abstract Hecke ring, and we introduce their correspondence with convolution

algebras in order facilitate this. We consider two main advantages of identifying Hecke algebras

with convolution algebras. The first is that it allows us to refine and clarify the multiplication rule

in this setting, which we work with in detail later. The second is that it allows us to consider an

important automorphism on our Hecke ring. In the final two sections of this chapter we explore

some of the classical theory of Hecke algebras with the example of GL(2,Q).

2.1 Classical Hecke Algebras

For the material in this chapter, we follow the work of [9] in order to introduce Hecke operators

classically. We will develop the basics of the general theory while exploring the abstract Hecke

algebra.

Let G be a group and Γ,Γ′ be two subgroups of G. We say that Γ and Γ′ are commensurable if

[Γ : Γ ∩ Γ′] < ∞ and [Γ′ : Γ ∩ Γ′] < ∞.

If this is the case for Γ and Γ′, we write Γ ≈ Γ′. Additionally, the set

ComG(Γ) := {g ∈ G : gΓg−1 = Γ}

is called the commensurator of Γ in G. We first show that a double coset ΓgΓ has a disjoint

decomposition into left cosets, then we use that result to show that being commensurable preserves

this decomposition.

Lemma 2.1.1. Let G be an arbitrary group and Γ be a subgroup of G. For g ∈ G, let

Γ =
⊔

γi∈(Γ∩g−1Γg)\Γ

(Γ ∩ g−1Γg)γi

be the partition of Γ into a disjoint union of left cosets of the subgroup Γ ∩ g−1Γg. Then we have

that

ΓgΓ =
⊔

γi∈(Γ∩g−1Γg)\Γ

Γgγi,

and the left cosets in this union are pairwise disjoint.
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Proof. It is clear that ⊔
γi∈(Γ∩g−1Γg)\Γ

Γgγi ⊆ ΓgΓ,

and so we show the other containment. Let γgδ ∈ ΓgΓ, then δ ∈ (Γ ∩ g−1Γg)γi for some i, and

hence δ = αγi where α ∈ Γ and gαg−1 ∈ Γ. Thus we have that

γgδ = γgαγi = γgαg−1gγi ∈ Γgγi.

Thus the equality is proven. To show that these left cosets are distinct, suppose that Γgγi and Γgγj

intersect, and so there are δ, γ ∈ Γ such that

γgγi = δgγj .

This implies that g−1δ−1γgγi = γj , which means that

(Γ ∩ g−1Γg)γi = (Γ ∩ g−1Γg)γj .

This equality follows from that fact that these cosets formed a partition of Γ, and so if they intersect

(as was shown), they must be equal. This is a contradiction as the partition of Γ is made up of

disjoint left cosets.

Lemma 2.1.2. Let Γ and Γ′ be subgroups of a group G and ≈ the commensurability relation, then

the following hold.

1. The relation ≈ is an equivalence relation.

2. ComG(Γ) is a subgroup of G.

3. If Γ ≈ Γ′, then ComG(Γ) = ComG(Γ
′).

4. If Γ ≈ Γ′, then for g ∈ ComG(Γ) we have that

ΓgΓ′ =
⊔

γi∈(Γ′∩g−1Γg)\Γ′

Γgγi =
⊔

δj∈Γ/(Γ∩gΓg−1)

δjgΓ
′,

where these disjoint unions do not necessarily have the same number of cosets.

Proof. We will begin by proving the first claim. Note that reflexivity and symmetry of the relation

≈ is obvious, and to see that it is transitive, let Γ,Γ′, and Γ′′ be subgroups of G with Γ ≈ Γ′ and

Γ′ ≈ Γ′′. We have that

[Γ : Γ ∩ Γ′ ∩ Γ′′] = [Γ : Γ ∩ Γ′][Γ ∩ Γ′ : Γ ∩ Γ′ ∩ Γ′′]
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≤ [Γ : Γ ∩ Γ′][Γ′ : Γ′ ∩ Γ′′]

< ∞.

By a similar argument, we also see that [Γ′′ : Γ∩Γ′ ∩Γ′′] < ∞. As Γ∩Γ′ ∩Γ′′ is a subset of Γ∩Γ′′,

then [Γ : Γ∩Γ′′] ≤ [Γ : Γ∩Γ′ ∩Γ′′] < ∞ and [Γ′′ : Γ∩Γ′′] ≤ [Γ′′ : Γ∩Γ′ ∩Γ′′] < ∞. Hence, Γ ≈ Γ′′,

proving that ≈ is an equivalence relation.

We now prove the second claim. Let g, g′ ∈ ComG(Γ). We have that g−1Γg ≈ Γ and g′−1Γg′,

and so by transitivity we also have that g−1Γg ≈ g′−1Γg′. Now, let τg′ : G → G be the in-

ner automorphism τg′(h) = g′−1hg′, noting that as an automorphism, τg′ preserves the index

of subgroups of G, and hence [τg′(Γ) : τg′(Γ ∩ g−1Γg], [τg′(g−1Γg) : τg′(Γ ∩ g−1Γg)] < ∞. As

τg′(Γ) = g′−1Γg′, τg′(g−1Γg) = g′−1g−1Γgg′, and τg′(Γ ∩ g−1Γg) = g′Γg′−1 ∩ g′−1g−1Γgg′, we

have that g′−1g−1Γgg′ ≈ g′−1Γg′, and by transitivity, we must have g′−1g−1Γgg′ ≈ g−1Γg. Thus

gg′ ∈ ComG(Γ).

Now let h ∈ ComG(Γ) and we show that h−1 ∈ ComG(Γ) by showing that hΓh−1 ≈ Γ. Let

τh : G → G be the inner automorphism τh(g) = hgh−1. As [τh(Γ) : [τh(Γ ∩ h−1Γh)] < ∞ and

[τh(h
−1Γh) : [τh(Γ ∩ h−1Γh)] < ∞, we have that hΓh−1 ≈ Γ since τh(Γ) = hΓh−1, τh(h

−1Γh) = Γ,

and τh(Γ ∩ h−1Γh) = hΓh−1 ∩ Γ.Thus, the second claim is proven.

Moving on to prove the third claim, assume that Γ ≈ Γ′. Since our assumptions imply that

g−1Γg ≈ Γ ≈ Γ′ ≈ g−1Γ′g, we see that transitivity of ≈ implies that

ComG(Γ) = {g ∈ G : g−1Γg ≈ Γ}

= {g ∈ G : g−1Γ′g ≈ Γ′}

= ComG(Γ
′).

Hence the third claim is proven, and we now prove the fourth and final claim.

Assume that Γ ≈ Γ′. We show only one decomposition as the other follows by a similar argument.

As each right coset of ΓgΓ′ can be written in the form Γgγ for some γ ∈ Γ′, if Γgγ = Γgγ′, γ, γ′ ∈ Γ′,

then γγ′−1 ∈ Γ′ ∩ g−1Γg. Since g−1Γg ≈ Γ ≈ Γ′, we have the desired decomposition.

Let G be a group and Γ a subgroup of G. If ∆ is a is a subgroup of G with Γ ⊆ ∆ ⊆ ComG(Γ),

then we call the pair (Γ,∆) a Hecke pair. To each Hecke pair we associate the Hecke algebra,

H (Γ,∆), which is the free Z-module generated by the set {ΓgΓ : g ∈ ∆};

H = H (Γ,∆) =

∑
g∈∆

mgΓgΓ : mg ∈ Z,mg = 0 for all but finitely many g

 .
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In order to motivate the multiplication defined on a Hecke algebra H , let K be a commutative

ring with unity and suppose there is a right action of ∆ on a K−module M , which we write as

(h, γ) 7→ hγ , h ∈ M,γ ∈ ∆, that satisfies the property hγδ = (hγ)δ for γ, δ ∈ ∆. We think of

this right action as the slash action on the space of complex holomorphic functions described in the

introduction. What will be of interest to us now is submoduleMΓ = {h ∈ M : hγ = h for all γ ∈ Γ}

of Γ-invariant elements of M under this right action, which is often identified with the space of

modular forms. The next proposition shows that a fixed ΓgΓ ∈ H defines a map, from MΓ to

itself, and thus by extending linearly, this means that every element of M defines a map from MΓ

to itself.

Proposition 2.1.3. Let h ∈ MΓ and ΓgΓ ∈ H with two disjoint decomposition’s

ΓgΓ =

n⊔
i=1

Γgi =

n⊔
i=1

Γg′i.

Then
n∑

i=1

hgi =

n∑
i=1

hg′
i .

Furthermore we have that
n∑

i=1

hgi ∈ MΓ.

Proof. To prove the first part of the statement, note that if Γgi = Γg′i, then there is some γ ∈ Γ

such that g′i = γgi. We thus have, for h ∈ MΓ, the equality

hg′
i = hγgi = hgi ,

which proves the first assertion.

To prove the second part let γ ∈ Γ and note that

ΓgΓ =

n⊔
i=1

Γgi =

n⊔
i=1

Γgiγ,

by the previous proposition since Γ ≈ Γ and g ∈ ∆ ⊆ ComG(Γ) (since ΓgΓ ∈ H ). We have that

n∑
i=1

hgiγ =

n∑
i=1

hgi ,

establishing that
∑n

i=1 h
gi ∈ MΓ.

As we can see from the above proposition, the map from MΓ to itself is given by

h[ΓgΓ] =

n∑
i=1

hgi ,
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where ΓgΓ =
⊔n

i=1 Γgi. Since we now have this map, the multiplication of two double cosets in the

Hecke ring results from the computation of the composition of the corresponding endomorphism

induced by the double cosets. Let us look at a multiplication we can define on H . With this

multiplication, the module H will be a ring, and its elements are called Hecke Operators.

Proposition 2.1.4. Let ΓgΓ,Γg′Γ ∈ H with disjoint decompositions

ΓgΓ =

n⊔
i=1

Γgi and Γg′Γ =

m⊔
j=1

Γg′i.

Define multiplication in H to be

ΓgΓ · Γg′Γ =
∑

[γ]∈Γ\∆/Γ

aγΓγΓ,

where aγ = #{(i, j) : Γgig
′
j = Γγ}. Then with this well-defined multiplication and the addition

coming from the structure of H as a Z−module, H is a ring.

Proof. In order to prove this claim, it suffices only to show that the multiplication is well-defined,

as all the other ring properties will follow from this and by the fact that H is a Z−module.

Consider the free Z-module Z[Γ\∆] which is generated by the right cosets Γg for g ∈ ∆. We

have a map from H to Z[Γ\∆] given by

ΓgΓ =
⊔
i

Γgi 7→
∑
i

Γgi.

It follows from the definitions that that this map is an isomorphism between H and Z[Γ\∆]Γ.

Now, let

ΓgΓ =
⊔
i

Γgi

and

ΓhΓ =
⊔
j

Γhj .

It is clear that ∆ acts on Z[Γ\∆] by(∑
k

Γγk

)g

=
∑
k

(Γγk)
g =

∑
k

Γγkg.

Corollary 2.1.5. Let h ∈ MΓ, then H acts on MΓ by

h[ΓgΓ][Γg′Γ] = h[ΓgΓ · Γg′Γ].
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Note that if (Γ,∆) is a Hecke pair, then by 2.1.1, ΓgΓ, g ∈ ∆ is a disjoint union of finitely many

left cosets of Γ,

ΓgΓ =

n⊔
i=1

Γgi,

and if γ ∈ Γ then {gi}ni=1 is a complete set of representatives of the distinct left cosets Γ\ΓgΓ.

Thus, the elements

(g) = (g)Γ =

n∑
i=1

ΓgiΓ

of H satisfy (g)γ = (g), and hence belong to MΓ, as shown in 2.1.3.

We next highlight a very useful result that is repeatedly used in later chapters.

Lemma 2.1.6. Let h, h′, g ∈ ∆. Then ΓgΓ occurs in ΓhΓ · Γh′Γ (i.e. ag is non-zero) if and only

if g ∈ ΓhΓh′Γ.

Proof. Suppose that

ΓhΓ =

d⊔
i

Γhi and Γh′Γ =

f⊔
j

Γh′
j .

Assume also that ΓgΓ occurs in ΓhΓ · Γh′Γ. Then for some i ∈ {1, . . . , d} and j ∈ {1, . . . , f} we

have that Γhih
′
j = Γg. Since

ΓhΓh′Γ =

f⋃
j=1

d⋃
i=1

Γhih
′
j ,

we see that g ∈ ΓhΓh′Γ. Conversely, assume that g ∈ ΓhΓh′Γ. Since the last equality holds we

must have g ∈ Γhih
′
j for some i ∈ {1, . . . , d} and j ∈ {1, . . . , f}. Then Γg = Γhih

′
j , and ΓgΓ occurs

in ΓhΓ · Γh′Γ.

One can also show that if α, β ∈ ∆ and Γα = αΓ or Γβ = βΓ, then

ΓαΓ · ΓβΓ = ΓαβΓ.

Proposition 2.1.7. (Shimura [13]) If G has an anti-automorphism α 7→ α∗ such that Γ∗ = Γ and

(ΓαΓ)∗ = ΓαΓ for every α ∈ ∆, then H (Γ,∆) is commutative.

Proof. Recall that an anti-automorphism of G is an isomorphism from G to itself such that (αβ)∗ =

β∗α∗. Write

ΓαΓ =
⊔
i

Γαi and ΓβΓ =
⊔
j

Γβj .

Then we have that

ΓαΓ = Γα∗Γ =
⊔
i

Γα∗
i
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and

ΓβΓ = Γβ∗Γ =
⊔
j

Γβ∗
j .

If

ΓαΓβΓ =
⋃
γ

ΓγΓ,

then

ΓβΓαΓ = Γβ∗Γα∗Γ = (ΓαΓβΓ)∗ =
⋃
γ

ΓγΓ.

Therefore we have that

ΓαΓ · ΓβΓ =
∑

[γ]∈Γ\∆/Γ

aγΓγΓ

and

ΓβΓ · ΓαΓ =
∑

[γ]∈Γ\∆/Γ

a′γΓγΓ,

with the same components ΓγΓ. Let deg(ΓγΓ) be the number of cosets Γϵ contained in ΓγΓ. We

have that

aγ(deg(ΓγΓ)) =#{(i, j) : ΓαiβjΓ = ΓγΓ}

=#{(i, j) : ΓαiβjΓ = ΓγΓ} by applying ∗

=a′γ(deg(ΓγΓ)).

Hence aγ = a′γ completing the proof.

2.2 Convolution and Hecke Algebras

Let G be a unimodular group of td-type (an example is GSp(4,Qp)) and let K be a compact, open

subgroup of G. The commensurator ComG(K) of K inside G is G. Let ∆ be a subset of G such that

K ⊆ ∆ and ∆ is closed under multiplication. Since ComG(K) = G, we have that ∆ ⊆ ComG(K).

Therefore, we may consider the Hecke algebra H (K,∆). We note that if g ∈ ∆, then KgK ⊆ ∆,

and it follows that ∆ is a union of a collection of double cosets of the form KgK. In particular, ∆

is an open subset of G.

In this section, we will consider H (K,∆) as a convolution algebra, which will allows us to make

some additional claims about the Hecke algebra. Let f : G → C be a function, and we define the

support of f to be

supp(f) = {g ∈ G : f(g) ̸= 0},



14

the the line indicates that we are taking the smallest closed set containing {g ∈ G : f(g) ̸= 0}. We

say that f is locally constant if for every g ∈ G there is some open subset U ⊆ G such that g ∈ U

and f(g′) = f(g) for all g′ ∈ U . Note that if f is locally constant, then f is continuous. Also, if

f is locally constant the complementary sets {g ∈ G : f(g) = 0} and {g ∈ G : f(g) ̸= 0} are both

open, and hence both are closed, and in particular supp(f) = {g ∈ G : f(g) ̸= 0}. We now define

R(K,∆) to be the set of functions f : G → C such that:

1. For k1, k2 ∈ K and g ∈ G we have

f(k1gk2) = f(g).

In particular, f is locally constant.

2. The support of f is compact and contained in ∆.

If f1, f2 ∈ R(K,∆), then we define f1 + f2 : G → C by

(f1 + f2)(g) = f1(g) + f2(g)

far all g ∈ G. With this definition R(K,∆) is a vector space over C. Since the support of f is by

definition compact, then it is equal to a finite disjoint union

supp(f) =

n⊔
i=1

KgiK

where gi ∈ ∆ for all i. Moreover, we have that f(g) = f(gi) for all g ∈ KgiK and all i, so that

f =

n∑
i=1

f(gi)charKgiK .

Hence, the characteristic functions of the double cosets KgK for g ∈ ∆ form a basis over C

for R(K,∆). To define a product, let µ be the Haar measure on G such that µ(K) = 1. if

f1, f2 ∈ R(K,∆), then we define f1 ∗ f2 : G → Z by

(f1 ∗ f2)(g) =
∫
G

f1(gh
−1)f2(h) dh

for g ∈ G.

Proposition 2.2.1. Let the notation be as above. The product ∗ is well-defined, and equipped with

∗, the C vector space R(K,∆) is an algebra over C.

Proof. Let f1, f2, f3 ∈ R(K,∆) and g ∈ G. We first prove that f1 ∗ f2 ∈ R(K,∆). To do this, we

need to show that the product is well-defined, that it is invariant under left and right translation by
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K, and that supp(f1 ∗ f2) is compacts and contained in ∆. Since f2 has compact support, then the

integral in the definition of the product is finite, and hence the product is a well-defined function.

A calculation shows that f1 ∗ f2 is invariant under left and right translation by K. Assume that

g ∈ G is such that (f1 ∗ f2)(g) ̸= 0, then there exists h ∈ G such that f1(gh
−1)f2(h) ̸= 0. Hence we

have that gh−1 ∈ supp(f1) and h ∈ supp(f2), and thus

g ∈ supp(f1)h ⊆ supp(f1)supp(f2) ⊆ ∆.

Since supp(f1) and supp(f2) are compact, then so is supp(f1)supp(f2) as the image of a compact set.

Since supp(f1 ∗ f2) is closed and contained in the compact set supp(f1)supp(f2), then supp(f1 ∗ f2)

is also compact. It now follows that f1 ∗ f2 ∈ R(K,∆).

To prove that R(K,∆) is an algebra over C it will suffice to prove that the product ∗ is asso-

ciative. Now,

((f1 ∗ f2) ∗ f3)(g) =
∫
G

(f1 ∗ f2)(gh−1)f3(h) dh

=

∫
G

∫
G

f1(gh
−1a−1)f2(a)f3(h) da dh

=

∫
G

∫
G

f1(g(ah)
−1)f2(a)f3(h) dh da

=

∫
G

∫
G

f1(ga
−1)f2(ah

−1)f3(h) dh da

=

∫
G

f1(ga
−1)(f2 ∗ f3)(a) da

= (f1 ∗ (f2 ∗ f3)(g).

Hence, the product ∗ is associative, proving the claim.

The convolution algebra R(K,∆) and the Hecke algebra H (K,∆) are naturally isomorphic,

and to prove this, we first require a few lemmas.

Lemma 2.2.2. Let the notation be as above. Let a, a′ ∈ G be such that KaK = Ka′K. Then there

exists c ∈ G such that aK = cK and Ka′ = Kc.

Proof. Since KaK = Ka′K, there are k1, k2 ∈ K such that a = k1a
′k2. We have that ak−1

2 = k1a
′.

Setting c = ak−1
2 we have the result.

Lemma 2.2.3. Let the notation be as above. Let g ∈ G. Then there exist c1, . . . , cm ∈ G such that

KgK =

m⊔
i=1

ciK =

m⊔
i=1

Kci.
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Proof. Let KgK = ⊔m
i=1aiK and KgK = ⊔n

i=1Ka′i be disjoint decompositions. The first decompo-

sition implies that µ(KgK) = m and the second implies that µ(KgK) = n, and so it follows that

m = n. Let i ∈ {1, . . . ,m}. By 2.2.2 there is some ci ∈ G such that aiK = ciK and Ka′i = Kci.

The statement of the lemma follows.

Proposition 2.2.4. Let the notation be as above. Define

i : C⊗Z H (K,∆) → R(K,∆)

by requiring that i(a⊗KgK) = acharKgK for a ∈ C and g ∈ G; here, charKgK is the characteristic

function of the double coset KgK. Then i is a well-defined isomorphism of C-algebras.

Proof. Let T1, T2 ∈ C ⊗Z H (K,∆). We will show that i(T1 · T2) = i(T1) ∗ i(T2). We may assume

that T1 = Kg1K and T2 = Kg2K for some g1, g2 ∈ ∆. We thus have that i(T1) = charKg1K and

i(T2) = charKg2K . Let

i(T1) ∗ i(T2) =
∑
X

m(X)charX

where X runs over the set K\G/K of all double cosets and m(X) ∈ C where all but finitely many

m(X) are equal to zero. We also have

T1 · T2 =
∑
X

n(X)X,

where again X runs over the set K\G/K . Let

Kg1K =

m⊔
i=1

Kai, Kg2K =

n⊔
i=1

Kbi

be disjoint decompositions. Note that by 2.2.3 we may assume that

m⊔
i=1

Kai =

m⊔
i=1

aiK and

n⊔
i=1

Kbi =

n⊔
i=1

biK.

Let g ∈ ∆. By definition of the product on H (K,∆) we have that

n(KgK) = #{(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : Kaibj = Kg},

where again, all but finitely many n(X) are equal to zero. Applying the map i, we have

i(T1 · T2) =
∑
X

n(X)charX .

To prove that i(T1 · T2) = i(T1) ∗ i(T2) it will suffice to prove that n(KgK) = m(KgK) for g ∈ G.

Let g ∈ G, and so

n(KgK) ̸= 0 ⇐⇒ for some (i, fj) we have Kaibj = Kg
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⇐⇒ g ∈ ∪m
i=1 ∪n

j=1 Kaibj

⇐⇒ g ∈ Kg1Kg2K.

Here, the last step follows from

Kg1Kg2K = Kg1K(∪n
j=1Kbj) = ∪m

i=1 ∪n
j=1 Kaibj .

Also, since

(f1 ∗ f2)(g) =

(∑
X

m(X)charX

)
(g) = m(KgK),

we have that

m(KgK) ̸= 0 ⇐⇒ (f1 ∗ f2)(g) ̸= 0

⇐⇒ there exists h ∈ G such that gh−1 ∈ Kg1K and h ∈ Kg2K

⇐⇒ there exists h ∈ G such that g ∈ Kg1Kh and h ∈ Kg2K

⇐⇒ g ∈ Kg1K ·Kg2K

⇐⇒ g ∈ Kg1Kg2K.

It follows that if g ̸∈ Kg1Kg2K, then n(KgK) = m(KgK) = 0. Assume that g ∈ Kg1Kg2K.

From the above we have

m(KgK) = (f1 ∗ f2)(g)

=

∫
G

charKg1K(gh−1)charKg2K(h) dh

=

∫
G

charg−1Kg1K(h−1)charKg2K(h) dh

=

∫
G

charKg−1
1 Kg(h)charKg2K(h) dh

=

∫
G

charKg−1
1 Kg∩Kg2K

(h) dh

= µ(Kg−1
1 Kg ∩Kg2K).

The set Kg−1
1 Kg ∩Kg2K is evidently the disjoint union of sets of the form Kc for some c ∈ G:

Kg−1
1 Kg ∩Kg2K =

p⊔
l=1

Kcl.

Therefore,

m(KgK) = µ(Kg−1
1 Kg ∩Kg2K) = pµ(K) = p.
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We now define a map t between the set of right cosets Kc in Kg−1
1 Kg ∩ Kg2K and the set

{(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : Kaibj = Kg}. So, let Kc be a right coset in Kg−1
1 Kg ∩Kg2K,

then Kc ⊆ Kg2K. hence, there exists unique j ∈ {1, . . . , n} such that Kc = Kbj . Also, since

⊔m
i=1aiK we have that Kg−1

1 K =
⊔m

i=1 Ka−1
i . Therefore,

Kg−1
1 Kg =

m⊔
q=1

Ka−1
q g.

Since Kc ⊆ Kg−1
1 Kg there exists a unique q ∈ {1, . . . ,m} such that Kc = Ka−1

q g. We have

Kbj = Kc = Ka−1
q g. It follows that there exists k ∈ K such that kbj = a−1

q g, or equivalently

aqkbj = g. Now aqk ∈ Kg1K = ∪m
i=1Kai. hence, there exists an unique i ∈ {1, . . . ,m} and k′ ∈ K

such that aqk = k′ai. We now have that k′aibj = g, so the Kaibj = Kg. We define t(Kc) = (i, j).

It is clear that the map t is well-defined. To complete the proof it will suffice to prove that t

is a bijection. To see that t is injective, let Kc1 and Kc2 be in the first set and assume that

t(Kc1) = t(Kc2) = (i, j). From the definition of t we have that Kc1 = Kbj = Kc2, and hence t is

injective. To see that t is surjective, let (i, j) ∈ {1, . . . ,m} × {1, . . . , n} : Kaibj = Kg}. We claim

that Kbj ⊆ Kg−1
1 Kg ∩Kg2K and t(Kbj) = (i, j). it is clear that Kbj ⊆ Kg2K. We also have that

Kg−1
1 Kg = Kg−1

1 Kaibj =

m⊔
l=1

Ka−1
l aibj .

This set clearly contains Kbj . Hence Kbj ⊆ Kg−1
1 Kg ∩ Kg2K. Let k ∈ {1, . . . ,m} be such that

t(Kbj) = (k, j). From the definition of t we have Kakbj = Kg. We also have Kaibj = Kg. It

follows that Kakbj = Kaibj , implying that Kak = Kai, and hence k = i. That is, t(Kbj) = (i, j)

and so t is surjective.

For g1, g2 ∈ ∆ we will write

Kg1K ·Kg2K =
∑

KgK∈K\∆/K

n(Kg1K,Kg2K,KgK) ·KgK;

here, n(Kg1K,Kg2K,KgK) ∈ Z.

Lemma 2.2.5. Let the notation be as above. If g1, g2, g ∈ G, then

n(Kg1K,Kg2K,KgK) = #{right K cosets in Kg−1
1 Kg ∩Kg2K}

= #{left K cosets in gKg−1
2 K ∩Kg1K}.

Proof. From the proof of Proposition 2.2.4 we have

n(Kg1K,Kg2K,KgK) = (charKg1K ∗ charKg2K)(g).
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In the proof of Proposition 2.2.4 we also showed that

n(Kg1K,Kg2K,KgK) = #{right K cosets in Kg−1
1 Kg ∩Kg2K}.

To prove the remaining claim we calculate as follows:

(charKg1K ∗ charKg2K)(g) =

∫
G

charKg1K(gh−1)charKg2K(h) dh

=

∫
G

charKg1K(gh)charKg2K(h−1) dh

=

∫
G

charKg1K(h)charKg2K((g−1h)−1) dh

=

∫
G

charKg1K(h)charKg2K(h−1g) dh

=

∫
G

charKg1K(h)chargKg−1
2 K(h) dh

= µ(gKg−1
2 K ∩Kg1K).

Since µ(K) = 1 and since gKg−1
2 K ∩Kg1K is the union of K left cosets, we have

µ(gKg−1
2 K ∩Kg1K) = #{left K cosets in gKg−1

2 K ∩Kg1K}.

This completes the proof.

Proposition 2.2.6. Let the notation be as above. let g1, g2 ∈ ∆. Let

Kg1K ·Kg2K =
∑

X∈K\∆/K

n(X)X.

Let

Kg1K =
⊔
i∈I

hiK

be a disjoint decomposition. Let g ∈ ∆. Then

n(KgK) = #{i ∈ I : h−1
i g ∈ Kg2K}.

Proof. Since the map i in 2.2.4 is an isomorphism, it follows that

n(KgK) = #{right cosets Kc in Kg−1
1 Kg ∩Kg2K}.

Define a map r between the set {i ∈ I : h−1
i g ∈ Kg2K} and the set of right cosets Kc in Kg−1

1 Kg∩

Kg2K by i 7→ Kh−1
i g. To prove the proposition it will suffice to prove that r is a well-defined
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bijection. Let j ∈ I be such that h−1
j g ∈ Kg2K. Then Kh−1

j g ⊆ Kg2K. Also,

Kg−1
1 K =

⊔
i∈I

Kh−1
i ,

and so

Kg−1
1 Kg =

⊔
i∈I

Kh−1
i g.

It follows that Kh−1
j g ⊆ Kg−1

1 Kg¿ We have just shown that r is well defined.

To see that r is injective, assume that j, j′ ∈ I are such that h−1
j g, h′−1

j g ∈ Kg2K and r(j) =

r(j′). Then

Kh−1
j g = Kh′−1

j g

Kh−1
j = Kh′−1

j

hjK = h′
jK.

This implies that j = j′, so r is injective. Finally, assume that c ∈ ∆ and Kc is contained in

Kg−1
1 Kg ∩ Kg2K, Let h ∈ G be such that h−1g = c. Then Kh−1g = Kc ⊆ Kg−1

1 Kg so that

Kh−1 ⊆ Kg−1
1 K. This implies that hK ⊆ Kg1K. Thus, there exists j ∈ I such that hK = hjK.

let k ∈ K be such that hj = hk, Then

h−1
j g = k−1h−1g = k−1c ∈ Kc ⊆ Kg2K.

it follows that j ∈ {i ∈ I : h−1
i g ∈ Kg2K}. now, r(j) = Kh−1

j g = Kk−1h−1g = Kh−1g = Kc. It

follows that r is surjective, proving the claim.

Proposition 2.2.7. Let the notation be as above. Let α : G → G be an isomorphism such that

α(K) = K and α(∆) = ∆. Let α : H (K,∆) → H (K,∆) be the Z-linear map determined by

setting α(KgK) = Kα(g)K for g ∈ ∆. Then α : H (K,∆) → H (K,∆) is a ring isomorphism.

Proof. It is clear that α is additive and that α sends the identity K = K · 1 · K to itself. To see

that α is multiplicative, let g1, g2 ∈ ∆. Using Lemma 2.2.5, we have:

α(Kg1K ·Kg2K) =
∑

KgK∈K\∆/K

n(Kg1K,Kg2K,KgK) ·Kα(g)K

=
∑

KgK∈K\∆/K

#{right K cosets in Kg−1
1 Kg ∩Kg2K} ·Kα(g)K

=
∑

KgK∈K\∆/K

#{right K cosets in Kα(g1)
−1Kα(g) ∩Kα(g2)K} ·Kα(g)K
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=
∑

KgK∈K\∆/K

n(Kα(g1)K,Kα(g2)K,Kα(g)K) ·Kα(g)K

=
∑

KgK∈K\∆/K

n(Kα(g1)K,Kα(g2)K,KgK) ·KgK

= α(Kg1K) · α(Kg2K).

It is clear that α : H (K,∆) → H (K,∆) is injective and surjective.

Proposition 2.2.8. Let the notation be as above. Let β : G → G be an anti-isomorphism such that

β(K) = K and β(∆) = ∆. Let β : H (K,∆) → H (K,∆) be the Z-linear map determined by setting

β(KgK) = Kβ(g)K for g ∈ ∆. Then β : H (K,∆) → H (K,∆) is a ring anti-isomorphism.

Proof. It is clear that β is additive and that β sends the identity K = K · 1 · K to itself. To see

that β is anti-multiplicative, let g1, g2 ∈ ∆. Using Lemma 2.2.5, we have:

β(Kg1K ·Kg2K) =
∑

KgK∈K\∆/K

n(Kg1K,Kg2K,KgK) ·Kβ(g)K

=
∑

KgK∈K\∆/K

#{right K cosets in Kg−1
1 Kg ∩Kg2K} ·Kβ(g)K

=
∑

KgK∈K\∆/K

#{left K cosets in β(g)Kβ(g1)
−1K ∩Kβ(g2)K} ·Kβ(g)K

=
∑

KgK∈K\∆/K

n(Kβ(g2)K,Kβ(g1)K,Kβ(g)K) ·Kβ(g)K

=
∑

KgK∈K\∆/K

n(Kβ(g2)K,Kβ(g1)K,KgK) ·KgK

= β(Kg2K) · β(Kg1K).

It is clear that α : H (K,∆) → H (K,∆) is injective and surjective.

2.3 GL(2,Q) Without Level

In this section we follow the work in section 3.2 of [15], and the in the following work we take

G = GL(2,Q) and Γ = SL(2,Z). Then we have that

ComGL(2,Q)(SL(2,Z)) = GL(2,Q).

We will take

∆ = {α ∈ M(2,Z) : det(α) > 0}.
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If α =
[
a b
c d

]
∈ M(2,Z) and α ̸= 0, then we define

d1(α) = gcd(a, b, c, d).

Lemma 2.3.1. Let α =
[
a b
c d

]
∈ M(2,Z) with α ̸= 0. Let β ∈ SL(2,Z). Then

d1(αβ) = d1(βα) = d1(α).

Proof. For γ ∈ M(2,Z), γ ̸= 0, let I(γ) be the ideal generated by the entries of γ. Since β ∈ SL(2,Z,

we have that I(α) = I(αβ) = I(βα). Since, by definition, the ideal generated by d1(α) is equal to

I(α), the ideal generated by d1(βα) is equal to I(βα), and the ideal generated by d1(αβ) is equal

to I(αβ), then the lemma follows.

Lemma 2.3.2. Let N > 0 be an integer and α ∈ M(2,Z) with det(α) > 0, Then there exist unique

integers a1 and a2 such that a1, a2 > 0, a1|a2, and

SL(2,Z)αSL(2,Z) = SL(2,Z)[ a1
a2
]SL(2,Z).

Proof. Let

e1 = [ 10 ], e2 = [ 01 ],

and so e1, e2 form an ordered basis for M(2 × 1,Q). Let L = Ze1 + Ze2. The set L is a free

abelian group of rank 2. Let T be the linear operator on M(2 × 1,Q) defined by Tx = αx for

x ∈ M(2 × 1,Q). Consider TL; this is a subgroup of L, and is hence also always a free abelian

group. Since T is invertible, then TL is isomorphic to L as an abelian group, and so TL also have

rank 2. By a standard theorem about free abelian groups, there exists an ordered Z−basis w1, w2

for L and integers a1, a2 such that a1, a2 > 0, a1|a2, and a1w1, a2w2 is an ordered basis for TL, so

that TL = Za1w1 ⊕ Za2w2. Define the following ordered bases for M(2× 1,Q)

B :e1, e2

B1 :w1, w2

B2 :a1w1, a2w2

B3 :Te1, T e2.

Then B and B1 are also ordered bases for the free abelian group L, and B2 and B3 are ordered

bases for the free abelian group αL. Let [T ]BA be the matrix of T from basis B to basis A. The

matrix of T in the basis B is α, and so we may write

[T ]BB = α.
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Trivially, we have that

T = I ◦ I ◦ T

where I is the identity map on M(2× 1,Q). It follows that we have the following matrix identity

[T ]BB = [I]BB1
[I]B1

B2
[T ]B2

B ,

so that

α = [I]BB1
[I]B1

B2
[T ]B2

B .

Evidently

[I]B1

B2
=

a1
a2

 ,

and since I = I ◦ I, we have that 1
1

 = [I]BB = [I]BB1
[I]B1

B .

Since B and B1 are bases for the same Z subgroup L of M(2× 1,Q), the entries of [I]BB1
and [I]B1

B

are integers. It follows that [I]B1

B is in GL(2,Z). Also, it is evident from the definitions that

[T ]B2

B = [I]B2

B3
.

Again, since I = I ◦ I, we have that1
1

 = [I]B2

B2
= [I]B2

B3
[I]B3

B2
.

Since B2 and B3 are bases for the same Z subgroup αL of M(2 × 1,Q), the entries of [I]B3

B2
and

[I]B2

B3
are integers. It follows that [I]B2

B3
is in GL(2,Z). We have now proven that there exist

β, γ ∈ GL(2,Z) such that

α = β

a1
a2

 γ.

Since det(α) > 0 and a1, a2 > 0, then det(β) and det(γ) have the same parity. By replacing β with

β
[
1
−1

]
and γ with

[
1
−1

]
γ in the case det(β),det(γ) < 0, we may assume that det(β) = det(γ) = 1,

i.e., β, γ ∈ SL(2,Z). This proves the existence part of the lemma. To prove uniqueness, assume

that b1, b2 ∈ Z such that b1, b2 > 0, b1|b2, and

SL(2,Z)αSL(2,Z) = SL(2,Z)
[
b1

b2

]
SL(2,Z).

Taking determinants, we get that a1a2 = b1b2. Applying that d1 function, we obtain that a1 = b1

and a2 = b2.
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Lemma 2.3.3. Define

L =

Z
Z

 ,

so that L is a rank 2 free abelian subgroup of M(2× 1,Q). Let α ∈ M(2,Z) with det(α) > 0. Then

det(α) = [L : αL].

Proof. By 2.3.2 we have that det(α) = a1a2, and by the proof of the same lemma we have that

[L : αL] = a1a2, and the result follows.

Lemma 2.3.4. The ring H (SL(2,Z),∆) is commutative.

Proof. Let ∗ be the canonical involution of 2× 2 matrices, so thata b

c d

∗

=

 d −b

−c a


for
[
a b
c d

]
∈ GL(2,Q). The function ∗ satisfies (g1g2)

∗ = g∗2g
∗
1 for g1, g2 ∈ GL(2,Q). Also,define

u1 =

 1

−1

 ,

and so u1 ∈ SL(2,Z). Define the map t : GL(2,Q) → GL(2,Q) by t(g) = (u1gu
−1
1 )∗ for g ∈

GL(2,Q). Then t is an anti-automorphism and is explicitly given by

t

a b

c d

 =

a b

c d

 .

Evidently, we have that t(SL(2,Z)) = SL(2,Z). Also, it follows from 2.3.2 that t(SL(2,Z)αSL(2,Z)) =

SL(2,Z)αSL(2,Z) for α ∈ ∆. Thus, by 2.1.7, the ring H (SL(2,Z),∆) is commutative.

We write

T (a1, a2) = SL(2,Z)gSL(2,Z) = SL(2,Z)

a1
a2

SL(2,Z)

for a1, a2 ∈ Z with a1a2 > 0. By 2.3.2, the elements of T (a1, a2), a1, a2 ∈ Z such that a1, a2 >

0, a1|a2 are a Z−basis for the free abelian group H (SL(2,Z),∆). One has

T (a1, a2) · T (b1, b2) = T (a1b1, a2b2)

for a1, a2, b1, b2 ∈ Z such that a1, a1, b1, b2 > 0, a1|a2, and b1|b2 if a2 and b2 are relatively prime.

Consequently, the ring H (SL(2,Z),∆) is generated by the elements

T (pe1 , pe2)
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for all primes p and e1, e2 ∈ Z such that e2 ≥ e1 > 0. For a fixed prime p, we let H (SL(2,Z),∆)p

be the subring of H (SL(2,Z),∆) generated by the above elements for that prime. One can show

that H (SL(2,Z),∆)p is a polynomial ring in the variables T (1, p) and T (p, p), which are also

algebraically independent. It follows that H (SL(2,Z),∆) is a polynomial ring over Z in the

infinitely many indeterminates T (1, p) and T (p, p) for each prime p, and thus H (SL(2,Z),∆) is an

integral domain. Next, for m ∈ Z such that m > 0, we define

T (m) =
∑

SL(2,Z)αSL(2,Z)
det(α)=m

SL(2,Z)αSL(2,Z).

If n,m ∈ Z are such that n,m > 0 and are relatively prime, then it is known that

T (m)T (n) = T (mn).

One can further consider the formal Dirichlet series

∞∑
i=1

T (m)

ms
=

∑
SL(2,Z)αSL(2,Z)

SL(2,Z)αSL(2,Z)

det(α)s
.

Clearly, formally one has
∞∑
i=1

T (m)

ms
=
∏
p

∞∑
k=0

T (pk)

pks
.

Moreover, one is able to attain the rationality result

∞∑
k=0

T (pk)

pks
=

1

1− T (1, p)p−s + T (p, p)p1−2s
.

2.4 GL(2,Q) With Level

In this section we follow that work in section 3.3 of [15] and section 4.5 of [9]. For what follows we

use the notation Za = Z/aZ. Fix a positive integer N and consider the subgroup

Γ = Γ0(N) =


a b

c d

 ∈ SL(2,Z) : c ≡ 0 mod N

 .

Since Γ0(N) is of finite index in SL(2,Z), it follows that ComG(Γ0(N)) = ComG(SL(2,Z)) =

GL(2,Q) by the last section. Recall that here, ∆ = {α ∈ M(2,Z) : det(α) > 0}. We define

∆0(N) =


a b

c d

 ∈ ∆ : gcd(a,N) = 1, c ≡ 0 mod N
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=


a b

c d

 ∈ M(2,Z) : ad− bc > 0, gcd(a,N) = 1, c ≡ 0 mod N

 .

Of course, it is evident that if N = 1, we have that ∆0(N) = ∆. Clearly Γ0(N) ⊆ ∆0(N),

∆0(N) is a semi-group, and ∆0(N) ⊆ ComG(Γ0(N)) = GL(2,Q), and so we may consider the

Hecke ring H (Γ0(N),∆0(N)).

Lemma 2.4.1. Let a, b, and N be positive integers and assume that gcd(a,N) = 1 and b|N . Let

n = abN−1. The group Za × Zb has a unique subgroup of order N , and a unique subgroup of order

n.

Proof. Let H be a subgroup of Za × Zb of order N and define p : Za × Zb → Za by p(x, y) = x for

(x, y) ∈ Za × Zb. Consider p(H). The order of p(H) must divide both #H = N and #Za = a;

since gcd(a,N) = 1 by assumption, we obtain that p(H) = I, the identity, so that H ⊆ I × Zb.

Now Zb has a unique subgroup S of order N and it follows that H = I × S, proving that Za × Zb

has a unique subgroup of order N . Next, assume that H is a subgroup of Za×Zb of order n. Write

b = Nb1b2 where every prime factor of b1 divides N and gcd(b2, N) = 1. We have

Za × Zb = Za × ZNb1b2
∼= Za × ZNb1 × Zb2 .

Define p : Za × ZNb1 × Zb2 → ZNb1 by p(x, y, z) = y for (x, y, z) ∈ Za × ZNb1 × Zb2 . There is an

exact sequence

I → ker(p|H) → H → im(p|H) → I,

so letting d1 = #ker(p|H) and d2 = #im(p|H), we have that

d1d2 = #H = n = abN−1 = ab1b2.

Now d2 divides #H = ab1b2 and ZNb1 = Nb1. Therefore, d2 divides gcd(ab1b2, Nb1) = b1 gcd(ab2, N) =

b1. Also note that ker(p|H) is contained in Z1 × I × Zb2 , so that d1 ≤ ab2. We now have

ab1b2 = #H = d1d2 ≤ ab2b1.

It follows that we must have d1 = ab2 and d2 = b1. Since d1 = ab2, we obtain ker(p|H) = Z1×I×Zb2 ,

and in particular Z1 × I × Zb2 ⊆ H. We now see that there is a direct product decomposition

H = (Z1 × I × Zb2)(H ∩ (I × ZNb1 × I)).
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By orders, #((H ∩ (I × ZNb1 × I)) = b1. Let R be the unique subgroup of Zb2 of order b1. Then

H ∩ (I × ZNb1 × I) = I ×R× I, so that

H = (Za × I × Zb2)(I ×R× I),

which proves the uniqueness of H.

Lemma 2.4.2. Let N be a positive integer and let α ∈ ∆0(N). Then there exist unique integers

a1 and a2 such that a1|a2, gcd(a1, N) = 1, and

Γ0(N)αΓ0(N) = Γ0(N)

a1
a2

Γ0(N).

Proof. We follows the idea of the proof presented in [9]. Let

α =

a b

c d


where a, b, c, d ∈ Z, gcd(a,N) = 1, c ≡ 0 mod N, and ad− bc > 0. Define

e1 = [ 10 ], e2 = [ 01 ],

and so e1, e2 form an ordered basis for M(2 × 1,Q). Call this basis B. Define a linear operator

T : M(2× 1,Q) → M(2× 1,Q) by Tx = αx for x ∈ M(2× 1,Q), and the matrix of T is basis B is

α:

[T ]BB = α.

Let n = det(T ) = det(α) and define

L = Ze1 ⊕ Ze2, L0 = Ze1 ⊕ ZNe2.

Then L and L0 are free abelian groups of rank 2 contained in M(2 × 1,Q). Clearly L0 ⊆ L, and

also

TL0 ⊆ TL ⊆ L.

Therefore

[L : TL0] =[L : TL][TL : TL0]

=nN
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since [L : TL] = n by 2.3.3 and [TL : TL0] = [L : L0] = N . Also, since c ≡ 0 mod N we have that

Te1 = ae1 + ce2 ∈ L0

and

T (Ne2) = NTe2 = Nbe1 +Nde2 ∈ L0.

Therefore, TL0 ⊆ L0, so that

TL0 ⊆ L0 ⊆ L.

Hence,

[L : TL0] = [L : L0][L0 : TL0],

and thus nN = N [L0 : TL0]. It follows that n = [L0 : TL0]. Next, by a standard theorem about

free abelian groups, there exists an ordered basis

B1 : w1, w2

for the free abelian group L and positive integers a′ and b′ such that a′|b′ and

L = Zw1 ⊕ Zw2, TL0 = Za′w1 ⊕ Zb′w2.

It follows that [L : TL0] = a′b′. From the above, we also have that [L : TL0] = nN . Hence

a′b′ = nN .

We claim that gcd(a′, N) = 1. Suppose that gcd(a′, N) > 1 and we will obtain a contradiction.

Let p be a prime dividing both a’ and N , then p|b′ since a′|b′. Therefore, TL0 ⊆ pL. This implies

that Te1 = ae1 + ce2 ∈ pL, so that p|a, but this is a contradiction to the fact that gcd(a,N) = 1.

Hence gcd(a′, N) = 1. Since nN = a′b′ and gcd(a′N) = 1, we have that N |b′. Consider Zw1⊕ZNw2

and Za′w1 ⊕ Zb′N−1w2. Since TL0 = Za′w1 ⊕ Zb′w2, we have that

TL0 ⊆ Zw1 ⊕ ZNw2, TL0 ⊆ Za′w1 ⊕ Zb′N−1w2.

The quotients
Zw1 ⊕ ZNw2

TL0
,

Za′w1 ⊕ Zb′N−1w2

TL0

are subgroups of L/TL0
∼= Za′ × Zb′ such that

#
Zw1 ⊕ ZNw2

TL0
= a′b′N−1 = n, #

Za′w1 ⊕ Zb′N−1w2

TL0
= N.

On the other hand we have

#
TL

TL0
= N, #

L0

TL0
= n.
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By 2.4.1 we now have

TL = Za′w1 ⊕ Zb′N−1w2, L0 = Zw1 ⊕ ZNw2.

Define additional ordered bases for M(2× 1,Q) by

B2 :a′w1, b
′N−1w2

B3 :Te1, T e2.

Let I be the identity operator on M(2× 1,Q). Trivially T = I ◦ I ◦ T . Therefore

α = [T ]BB = [I]BB1
[I]B1

B2
[T ]B2

B .

Consider [I]BB1
. Since I = I ◦ I, we have that1

1

 = [I]BB = [I]BB1
[I]B1

B .

Since B and B1 are both bases for the free abelian groups L, the matrices [I]BB1
and [I]B1

B have

integer entries. it follows that these matrices are in GL(2,Z). Moreover, from above we have that

L0 = Zw1 ⊕ ZNw2 = Ze1 ⊕ ZNe2. It follows that we can write w1 = re1 + tNe2 for some r, t ∈ Z.

Therefore, [I]BB1
has the form

[I]BB1
=

 r ∗

tN ∗

 .

This implies that [I]BB1
∈ Γ0(N)±. It is clear that

[I]B1

B2
=

a′
b′N−1

 .

it is also evident from the definitions that

[T ]B2

B = [I]B2

B3
.

The bases B2 and B3 are both bases for the free abelian group TL. A similar argument to the

case of [I]BB1
shows that [I]B2

B3
∈ GL(2,Z) and hence [T ]B2

B ∈ GL(2,Z). In particular, there exist

a′′, c′′ ∈ Z such that

Te1 = a′′a′w1 + c′′b′B−1w2.

Since Te1 ∈ TL0 = Za′w1 ⊕ Zb′w2 we must have that b′|c′′cN−1, i.e. there is some integer x such

that b′x = c′′b′N−1. This implies that c′′ = Nx, so that [T ]B2

B ∈ Γ0(N)±.
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So far, we have shown that there exist β1, β2 ∈ Γ0(N)± such that

α = β1

a′
b′N−1

β2.

Taking determinants, we see that β1 and β2 have the same sign. By multiplying, if necessary, β1 on

the right by
[
1
−1

]
and β2 of the left by the same matrix, we may assume that det(β1) = det(β2) = 1,

so that β1, β2 ∈ Γ0(N). Evidently, a′, b′N−1 > 0 and a′|b′N−1. Therefore, the existence part of

the lemma is proven. To prove uniqueness, assume that a1, b1, a2, b2 are positive integers such that

a1|a2, b1|b2, and

Γ0(N)

a1
a2

Γ0(N) = Γ0(N)

b1
b2

Γ0(N).

Applying that determinant and the d1 function to both sides, we obtain that a1a2 = b1b2 and

a1 = b1, and thus a2 = b2, which proves uniqueness.

Lemma 2.4.3. The ring H (Γ0(N),∆0(N)) is commutative.

Proof. Let ∗ be the canonical involution of 2× 2 matrices, so thata b

c d

∗

=

 d −b

−c a


for
[
a b
c d

]
∈ GL(2,Q). The function ∗ satisfies (g1g2)

∗ = g∗2g
∗
1 for g1, g2 ∈ GL(2,Q). Also,define

uN =

 1

−N

 .

Define t : GL(2,Q) → GL(2,Q) by

t(g) = (uNgu−1
N )∗

for g ∈ GL(2,Q). Then t is an anti-automorphism and is explicitly given by

t

a b

c d

 =

 a c

bN d


for
[
a b
c d

]
∈ GL(2,Q). Evidently, we have that t(Γ0(N)) = Γ0(N). Also, it follows from 2.3.2 that

t(Γ0(N)αγ0(N)) = Γ0(N)αγ0(N) for α ∈ ∆0(N). Thus, by 2.1.7, the ring H (Γ0(N),∆0(N)) is

commutative.



31

3 The Paramodular Group

In this chapter we will introduce the paramodular group which will be a fundamental object in the

chapters that follow. The global paramodular group is a subgroup of the symplectic group Sp(4,Q)

and the local paramodular group is a subgroup of GSp(4, F ), where F is a non-archimedean local

field. While we start by exploring the global paramodular group, much of our work will be done with

the local paramodular group as this is the group over which we are defining our paramodular Hecke

algebra. As part of this exploration, we prove that the local paramodular group has a particular

decomposition in proposition 3.2.3, appearing at the end of the chapter.

3.1 The Global Paramodular Group

For N and positive integer we define, just for now, the paramodular group K(N) as

K(N) = Sp(4,Q) ∩


Z NZ Z Z

Z Z Z N−1Z

Z NZ Z Z

NZ NZ NZ Z

 .

Further, let

JN =


1

N

−1

−N


and

Sp(JN ,Z) = {g ∈ M(4,Z) : tgJNg = JN}.

It is known that this is a subgroup of GL(4,Z) (see the following lemma), and we will show that

Sp(JN ,Z) is conjugate to K(N). First, we prove some useful lemmas.

Lemma 3.1.1. Let N be a positive integer and let

g =

A B

C D

 ∈ M(4,Z).

Then g ∈ Sp(JN ,Z) if and only if

tAKC = tCKA, tBKD = tDKB, tAKD − tCKB = K
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where

K =

1
N

 .

The set Sp(JN ,Z) is a subgroup of GL(4,Z), and if g ∈ Sp(JN ,Z), then

g−1 =

 K−1 tDK −K−1 tBK

−K−1 tCK K−1 tAK

 .

Proof. A straightforward calculation shows that g ∈ Sp(JN ,Z) if and only if A,B,C, and D satisfy

the above conditions. That is, tgJNg = JN exactly when g satisfies the stated conditions. The set

Sp(JN ,Z) is clearly closed under multiplication. Let g ∈ Sp(JN ,Z). Then tgJNg = JN . Taking

determinants we obtain that det(g)2 = 1, and so det(g) = ±1. It follows that g ∈ GL(4,Z) and g−1

has integral entries. Since tgJNg = JN , we have that
t
g−1JNg−1 = JN , and so g−1 ∈ Sp(JN ,Z),

and so Sp(JN ,Z) is a group. Next, letting g = [A B
C D ] ∈ Sp(JN ,Z), a calculation shows that K−1 tDK −K−1 tBK

−K−1 tCK K−1 tAK

A B

C D

 =

1
1

 .

If follows that g−1 has the stated form.

Lemma 3.1.2. Let N be a positive integer and let

g =


a1 a2 b1 b2

a3 a4 b3 b4

c1 c2 d1 d2

c3 c4 d3 d4

 ∈ Sp(JN ,Z).

Then a2, b2, c2, d2 ∈ NZ.

Proof. Since g ∈ Sp(JN ,Z), and since Sp(JN ,Z) is a group by 3.1.1, then g−1 ∈ Sp(JN ,Z). In

particular, the entries of g−1 are integers. The lemma now follows from 3.1.1

Define

hN =


1

1

1

N

 .

The following proposition shows that Sp(JN ,Z) is conjugate to K(N).
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Proposition 3.1.3. Let N be a positive integer. Then

hN · Sp(JN ,Z) · h−1
N = K(N).

Proof. We have that JN = hNJ1hN = thNJ1hN . Let g ∈ Sp(JN ,Z). Then

tgJNg =JN

tg thNJ1hNg = thNJ1hN

t
h−1
N

tg thNJ1hNgh−1
N = J1

t
(hNgh−1

N )J1hNgh−1
N = J1.

it follows that hNgh−1
N ∈ Sp(4,Q). Let

g =


a1 a2 b1 b2

a3 a4 b3 b4

c1 c2 d1 d2

c3 c4 d3 d4

 .

Then

hNgh−1
N =


a1 a2 b1 N−1b2

a3 a4 b3 N−1b4

c1 c2 d1 N−1d2

Nc3 Nc4 d3 d4

 .

By 3.1.2, we have that a2, b2, c2, d2 ∈ NZ, and so hNgh−1
N satisfies the conditions to be in K(N),

i.e. hNgh−1
N ∈ K(N). Conversely, assume that g ∈ K(N). Since tgJ1g = J1 and JN = hNJ1hN =

thNJ1hN , we have that

t
(h−1

N ghN )J1h
−1
N ghN = JN

, and so h−1
N ghN ∈ M(4,Z). It follows that h−1

N ghN ∈ Sp(JN ,Z).

3.2 The Local Paramodular Group

Let F be a non-archimedean local field of characteristic zero, with ring of integers o and p a prime

ideal of o with generator ϖ. Consider the paramodular group

K(p) = {g ∈ GSp(4, F ) : λ(g) ∈ o×} ∩


o o p−1 o

p o o o

p p o p

p o o o

 .



34

Define

Jϖ,0 =


0 0 ϖ 0

0 0 0 1

−ϖ 0 0 0

0 −1 0 0

 ,

and let

GSp(Jϖ,0, F ) = {g ∈ M(4, F ) : tgJϖ,0g = λJϖ,0 for some λ ∈ F×}

Sp(Jϖ,0, F ) = {g ∈ M(4, F ) : tgJϖ,0g = Jϖ,0}

GSp(Jϖ,0, o) = GSp(Jϖ,0, F ) ∩GL(4, o)

Sp(Jϖ,0, o) = Sp(Jϖ,0, F ) ∩GL(4, o).

Lemma 3.2.1. Let

g =

A B

C D

 ∈ M(4, F ).

Then g ∈ GSp(Jϖ,0, F ) if and only if there is some λ ∈ F× such that

tAKC = tCKA, tBKD = tDKB, tAKD − tCKB = λK,

where

K =

ϖ 0

0 1

 .

Furthermore, the sets

GSp(Jϖ,0, F ), Sp(Jϖ,0, F ), GSp(Jϖ,0, o), Sp(Jϖ,0, o)

are subgroups of GL(4, F ), and if g ∈ GSp(Jϖ,0, F ), then

g−1 = λ−1

 K−1 tDK −K−1 tBK

−K−1 tCK K−1 tAK


Proof. Note that g ∈ GSp(Jϖ,0, F ) if and only if tgJϖ,0g = λJϖ,0 for some λ ∈ F×, and this

happens exactly whentAKC − tCKA tAKD − tCKB

tBKC − tDKA tBKD − tDKB

 =

 0 λK

−λK 0

 .
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As

tBKC − tDKA = − t
(tAKD − tCKB),

the first claim is proven.

To see that GSp(Jϖ,0, F ) is a group, note first that for any g, h ∈ GSp(Jϖ,0, F ) we have that

t
(gh)Jϖ,0(gh) =

thλJϖ,0h = λλ′Jϖ,0

for some λ, λ′ ∈ F×. Hence, GSp(Jϖ,0, F ) is closed under multiplication. For the inverse of

g ∈ GSp(Jϖ,0, F ) we need the assumption that g ∈ GL(4, F ). So, let g ∈ GSp(Jϖ,0, F ) ⊂ GL(4, F )

and so g−1 ∈ GL(4, f) exists. As tgJϖ,0g = λJϖ,0 for λ ∈ F×, then we have that

t
(g−1)Jϖ,0g

−1 = λ−1Jϖ,0.

Hence g−1 ∈ GSp(Jϖ,0, F ). Thus, GSp(Jϖ,0, F ) is a subgroup of GL(4, F ). By a similar argument,

we see that Sp(Jϖ,0, F ) is also a subgroup of GL(4, F ). Additionally, since GSp(Jϖ,0, o) and

Sp(Jϖ,0, o) are intersections of subgroups, they too are subgroups of GL(4, F ). Lastly, let g ∈

GSp(Jϖ,0, F ), then we know that g−1 ∈ GSp(Jϖ,0, F ). Hence, using the condition of the group,

we see that

g−1 = J−1
ϖ,0

tgλJϖ,0 =

 K−1 tDK −K−1 tBK

−K−1 tCK K−1 tAK

 .

Lemma 3.2.2. If

g =


a1 a2 b1 b2

a3 a4 b3 b4

c1 c2 d1 d2

c3 c4 d3 d4

 ∈ GSp(Jϖ,0, o),

then a3, b3, c3, d3 ∈ p.

Proof. As GSp(Jϖ,0, o) is a group, then g−1 ∈ GSp(Jϖ,0, o), and hence the entries of g−1 are all in

o. By 3.2.1 we have that

g−1 =


d1 d3ϖ

−1 −b1 −b3ϖ
−1

d2ϖ d4 −b2ϖ −b4

−c1 −c3ϖ
−1 a1 a3ϖ

−1

−c2ϖ −c4 a2ϖ a4

 .
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As this matrix is in M(4, o), we must have that a3, b3, c3, d3 are divisible by ϖ in o and hence must

belong to p as ϖ generates p.

We finish this section by proving the main result in this chapter.

Proposition 3.2.3. Let hϖ = diag(1, 1, ϖ, 1), then

hϖGSp(Jϖ,0, F )h−1
ϖ = GSp(4, F ) and hϖGSp(Jϖ,0, o)h

−1
ϖ = K(p).

Proof. First, note that

Jϖ,0 = hϖJhϖ = thϖJhϖ,

where J is the standard symplectic form

J =


1

1

−1

−1

 .

Then for g ∈ GSp(Jϖ,0, F ) and λ = λ(g) we have that

tgJϖ,0g = λJϖ,0 ⇐⇒ tg(thϖJhϖ)g = λ thϖJhϖ

⇐⇒ (
t
h−1
ϖ

tg thϖ)J(hϖgh−1
ϖ ) = λJ

⇐⇒ t
(hϖgh−1

ϖ )J(hϖgh−1
ϖ ) = λJ.

Hence, hϖgh−1
ϖ ∈ GSp(4, F ). If g ∈ GSp(4, F ), we have that

tgJg = λJ ⇐⇒ tg(
t
h−1
ϖ Jϖ,0h

−1
ϖ )g = λ

t
h−1
ϖ Jϖ,0h

−1
ϖ

⇐⇒ (thϖ
tg

t
h−1
ϖ )Jϖ,0(h

−1
ϖ ghϖ) = λJϖ,0

⇐⇒ t
(h−1

ϖ ghϖ)Jϖ,0(h
−1
ϖ ghϖ) = λJϖ,0.

Hence, h−1
ϖ ghϖ ∈ GSp(Jϖ,0, F ). Thus hϖGSp(Jϖ,0, F )h−1

ϖ = GSp(4, F ) as claimed.

For the second claim, let g ∈ GSp(Jϖ,0, o) and write

g =


a1 a2 b1 b2

a3 a4 b3 b4

c1 c2 d1 d2

c3 c4 d3 d4

 .



37

As g ∈ GL(4, o) we must have det(g) ∈ o×. Specifically, as tgJϖ,0g = λ(g)Jϖ,0 we have that

det(g)2 = λ(g)4, implying that λ(g) ∈ o×. By computation, we have that

hϖgh−1
ϖ =


a1 a2 b1ϖ

−1 b2

a3 a4 b3ϖ
−1 b4

c1ϖ c2ϖ d1 d2ϖ

c3 c4 d3ϖ
−1 d4

 ,

and so by 3.2.2, hϖgh−1
ϖ ∈ K(p). Now suppose that g ∈ K(p), then we know that h−1

ϖ ghϖ ∈

GSp(Jϖ,0, F ). Write

g =


a1 a2 b1 b2

a3 a4 b3 b4

c1 c2 d1 d2

c3 c4 d3 d4

 .

Then

h−1
ϖ ghϖ =


a1 a2 b1ϖ b2

a3 a4 b3ϖ b4

c1ϖ
−1 c2ϖ

−1 d1 d2ϖ
−1

c3 c4 d3ϖ d4

 ,

and hence h−1
ϖ ghϖ has entries in o, meaning that h−1

ϖ ghϖ ∈ GSp(Jϖ,0, o), which proves the second

claim.



38

4 Matrix Decompositions

In this chapter we will review some useful matrix decompositions that we will use extensively to get

disjoint decompositions in the work on paramodular Hecke algebras. Most notably, in this chapter

we prove that for any double coset K(pn)gK(pn) with g ∈ GSp(4, F ), there is a diagonal element

d ∈ GSp(4, F ) such that

K(pn)gK(pn) = K(pn)dK(pn) or K(pn)gK(pn) = K(pn)wdK(pn),

and both cannot occur for the same g. Further, if d1 and d2 are diagonal elements of GSp(4, F ).

Then

K(pn)d1K(pn) ̸= K(pn)wd2K(pn).

This result follows from the main theorem of this chapter on a cartan-like decomposition (theorem

4.2.5). Using these, we have a well-defined, disjoint decomposition for a double coset into left cosets

in the next chapter.

4.1 Bruhat Decomposition

Let R be a commutative ring with identity 1. We define the symplectic group, Sp(4, R), with

respect to

J =


1

1

−1

−1


as

Sp(4, R) = {g ∈ M(4, R) : tgJg = J}

We define theBorel subgroup, Siegel parabolic subgroup, andKlingen parabolic subgroup

of Sp(4, R) to be, respectively,

B(R) =


R R R R

R R R

R

R R

 ∩ Sp(4, R),
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P (R) =


R R R R

R R R R

R R

R R

 ∩ Sp(4, R),

Q(R) =


R R R R

R R R

R

R R R

 ∩ Sp(4, R).

Define

s1 =


1

1

1

1

 , s2 =


1

1

1

−1

 .

Note that s1 ∈ P (R) and s2 ∈ Q(R). Let T (R) be the diagonal subgroup of Sp(4, R), and let

N(T (R)) be the normalizer of T is Sp(4, R). The group W = N(T (R))/T (R), called the Weyl

group, has eight elements, and representatives fro those elements are

s1, s2, s2s1s2, s1s2s1,

and

1, s1s2, s2s1, s1s2s1s2 = s2s1s2s1.

Let

N(R) =




1 x y

1 y z

1

1

 : x, y, z ∈ R


, U(R) =




1 a

1

1

−a 1

 : a ∈ R


.

Then N(R) and U(R) are subgroups of the Borel subgroup B(R). The group U(R) normalizes

N(R), and T (R) normalizes N(R) and U(R). We have that B(R) = T (R)U(R)N(R).

Proposition 4.1.1. Let F be a field. Then

Sp(4, F ) = Q(F )P (F ) ∪Q(F )s2s1s2P (F ).
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Proof. in this proof we write B = B(F ), P = P (F ), N = N(F ), U = U(F ), T = T (F ) and Q =

Q(F ). The Bruhat decomposition asserts that there is a disjoint decomposition

Sp(4, F ) =Bs1B ⊔Bs2B ⊔Bs2s1s2B ⊔Bs1s2s1B

⊔B ⊔Bs1s2B ⊔Bs2s1B ⊔Bs1s2s1s2B.

Note that B ⊆ P and s1 ∈ P , and so multiplying the above equation on the right by P we obtain:

Sp(4, F ) =Bs1P ∪Bs2P ∪Bs2s1s2P ∪Bs1s2s1P

∪ P ∪Bs1s2P ∪Bs2s1P ∪Bs1s2s1s2P

=P ∪Bs2P ∪Bs2s1s2P ∪Bs1s2P

∪ P ∪Bs1s2P ∪Bs2P ∪Bs1s2s1s2P

=P ∪Bs2P ∪Bs2s1s2P ∪Bs1s2P

=P ∪NUTs2P ∪NUTs2s1s2P ∪NUTs1s2P

=P ∪NUs2P ∪NUs2s1s2P ∪NUs1s2P

=P ∪Ns2s
−1
2 Us2P ∪N(s2s1s2)

−1Us2s1s2P ∪NUs1s2P

=P ∪Ns2P ∪Ns2s1s2P ∪ UNs1s2P

=P ∪
[
1 ∗ ∗
1 ∗ ∗
1
1

]
s2P ∪

[
1 ∗ ∗
1 ∗ ∗
1
1

]
s2s1s2P ∪

[
1 ∗
1
1
∗ 1

][
1 ∗ ∗
1 ∗ ∗
1
1

]
s1s2P

=P ∪ s2

[
1
1
1

∗ 1

]
P ∪ s2s1s2

[
1
1
∗ 1
∗ 1

]
P ∪

[
1 ∗
1
1
∗ 1

]
s1s2

[
1
1
1

∗ 1

]
P

=P ∪ s2

[
1
1
1

∗ 1

]
P ∪ s2s1s2

[
1
1
∗ 1
∗ 1

]
P ∪ s1s2

[
1
1
∗ 1
∗ 1

]
P.

Hence

Sp(4, F ) = P ∪ s2

[
1
1
1

∗ 1

]
P ∪ s2s1s2

[
1
1
∗ 1
∗ 1

]
P ∪ s1s2

[
1
1
∗ 1
∗ 1

]
P.

Multiplying the last equation on the left by Q, and using the fact that s2 ∈ Q, we obtain:

Sp(4, F ) =QP ∪Q

[
1
1
1

∗ 1

]
P ∪Qs1s2

[
1
1
∗ 1
∗ 1

]
P ∪Qs1s2

[
1
1
∗ 1
∗ 1

]
P

=QP ∪Q

[
1
1
1

∗ 1

]
P ∪Qs1s2

[
1
1
∗ 1
∗ 1

]
P

=QP ∪Qs2s1s2

[
1
1
∗ 1
∗ 1

]
P

=QP ∪Q

[
1 ∗ ∗
1 ∗ ∗
1
1

]
s2s1s2P

=QP ∪Qs2s1s2P.

This completes the proof.
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Corollary 4.1.2. Let p be a prime. Then

Sp(4,Z) = Kl(p)Γ0(p) ∪Kl(p)s2s1s2Γ0(p),

where Kl(p) is the Klingen parabolic subgroup of Sp(4,Z).

Proof. The natural map t : Sp(4,Z) → Sp(4,Z/pZ) is a surjective homomorphism with kernel Γ(p),

the principal congruence subgroup. Moreover, t(Kl(p)) = Q(Z/pZ) and t(Γ0(p)) = P (Z/pZ). Let

k ∈ Sp(4,Z). By 4.1.1 we have that

t(k) ∈ Q(Z/pZ)P (Z/pZ) or t(k) ∈ Q(Z/pZ)s2s1s2P (Z/pZ).

Since t(Kl(p)) = Q(Z/pZ) and t(Γ0(p)) = P (Z/pZ), there exists k1 ∈ Kl(p) and k2 ∈ Γ0(p) such

that

t(k) = t(k1)t(k2) or t(k) = t(k1)t(s2s1s2)t(k2).

That is,

t(k) = t(k1k2) or t(k) = t(k1s2s1s2k2).

Hence, there is some k3 ∈ ker(t) = Γ(p) such that

K = k3k1k2 or k = k3k1s2s1s2k2.

Since Γ(p) ⊆ Kl(p), the lemma follows.

Lemma 4.1.3. Let M be a positive integer. We work in the group Sp(4,Z/MZ). Let

A B

D

 ∈

P (Z/MZ). There there exists

1 X

1

 ∈ Sp(4,Z/MZ) such that

A B

D

1 X

1

 =

A
D

 .

Proof. Define X ∈ M(2,Z/MZ) by X = −A−1B. Then

tX = − tB
t
A−1 = −A−1A tB

t
A−1 = −A−1B tA

t
A−1 = −A−1B = X

since A tB = B tA. Note that

tA B

D

 is also contained in Sp(4,Z/MZ). Hence

A B

D

1 X

1

 =

A
D


as desired.
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Lemma 4.1.4. Let M be a positive integer. Then

Γ0(M) =


k ∈ Sp(4,Z) : k ∈


Z Z MZ MZ

MZ Z MZ MZ

MZ MZ Z MZ

MZ MZ Z Z




· (P (Q) ∩ Γ0(M)).

Proof. Let t : Sp(4,Z) → Sp(4,Z/pZ) be the natural map and let k ∈ Γ0(M) and write t(k) =

[A B
D ]. By 4.1.3 there exists [ 1 X

1 ] ∈ Sp(4,Z/MZ) such thatA B

D

1 X

1

 =

A
D

 .

Let k1, k2 ∈ Sp(4,Z/MZ) be such that t(k1) = [ 1 X
1 ] and t(k1) = [A D ]. We may assume that

k1 = [ 1 Y
1 ] where Y ∈ M(2,Z) with tY = Y . We have that

t(k)t

1 Y

1

 = t(k2).

It follows that there is some k3 ∈ Γ(M) such that

k3k

1 Y

1

 = k2.

Hence,

k = k−1
3 k2

1 −Y

1

 .

Write k2 =
[
A1 B1

C1 D1

]
. We have that B1 ≡ C1 ≡ 0 mod M . There exists A2 ∈ SL(2,Z) so that

A1A2 has the form

A1A2 =

∗ ∗

∗

 .

We thus have

k =k−1
3 k2

1 −Y

1


=k−1

3

A1 B1

C1 D1

1 −Y

1


=k−1

3

A1 B1

C1 D1

A2

t
A−1

2

A−1
2

tA

1 −Y

1
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=k−1
3

A1A2 B1
t
A−1

2

C1A2 D1
t
A−1

2

A−1
2 −A−1

2 Y

tA2

 .

Let A3 B3

C3 D3

 =

A1A2 B1
t
A−1

2

C1A2 D1
t
A−1

2

 .

Then [
A3 B3

C3 D3

]
∈ Sp(4,Z)

and

A3 ≡

∗ ∗

∗

 mod M, B3 ≡ C3 ≡ 0 mod M.

Since tA3D3− tC3B3 = 1, we obtain tA3D3 ≡ 1 mod M . Write A3 = [ a1 a2
a3 a4

] and D3 =
[
d1 d2

d3 d4

]
.

We have

tA3D3 =

a1d1 + a3d3 a1d2 + a3d4

a2d1 + a4d3 a2d2 + a4d4

 ≡

1
1

 mod M.

Since a3 ≡ 0 mod M , we have that 0 ≡ a1d2 + a3d4 ≡ a1d2 mod M . Now det(A3) det(D3) ≡ 1

mod M , and since a3 ≡ 0 mod M , we obtain a1 ∈ (Z/MZ)×. Additionally we have that d2 ≡ 0

mod M . Hence,

A3 B3

C3 D3

 ∈


Z Z MZ MZ

MZ Z MZ MZ

MZ MZ Z MZ

MZ MZ Z Z

 .

Since k3 ∈ Γ(M), we also have that

k−1
3

A3 B3

C3 D3

 ∈


Z Z MZ MZ

MZ Z MZ MZ

MZ MZ Z MZ

MZ MZ Z Z

 .

As A−1
2 −A−1

2 Y

tA2

 ∈ P (Q) ∩ Γ0(M),

the proof is complete.

Proposition 4.1.5. Let p be a prime. If k ∈ Sp(4,Z), then either

k ∈ Kl(p)
{[

A
t
A−1

]
: A ∈ SL(2,Z)

}
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or

k ∈ K(p)

[
p−1

1
p

1

]{[
1 x2
1 x2 x3

1
1

]
: x2, x3 ∈ Z

}{[
A

t
A−1

]
: A ∈ SL(2,Z)

}
,

where K(p) is the local paramodular group.

Proof. Let k ∈ Sp(4,Z). By 4.1.2, we know that k ∈ Kl(p)Γ0(p) or k ∈ Kl(p)s2s1s2Γ0(p). Assume

first that k ∈ Kl(p)Γ0(p) and write k = k1k2 where k1 ∈ Kl(p) and k2 ∈ Γ0(p). By 4.1.4 there exist

k3 ∈


k ∈ Sp(4,Z) : k ∈


Z Z MZ MZ

MZ Z MZ MZ

MZ MZ Z MZ

MZ MZ Z Z




and k4 ∈ P (Q) ∩ Γ0(p) such that k2 = k3k4. We may further write

k4 =

1 X

1

A
t
A−1


for some X ∈ M(2,Z) with tX = X and A ∈ GL(2,Z). We now have that

k = k1k3k4 = k1k3

1 X

1

A
t
A−1

 .

As k1k3[ 1 X
1 ] ∈ Kl(p), we see that

k ∈ Kl(p)
{[

A
t
A−1

]
: A ∈ GL(2,Z)

}
= Kl(p)

{[
A

t
A−1

]
: A ∈ SL(2,Z)

}
.

now assume that k ∈ Kl(p)s2s1s2Γ0(p) and write k = k5s2s1s2k6 where k5 ∈ Kl(p) and

k6 ∈ Γ0(p). We have

s2s1s2 =


1

1

−1

−1

 = k7p1

where

k7 =


p−1

1

−p

1

 , and p1 =


p−1

1

p

1

 .
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Clearly we have that k7 ∈ K(p). We have that

k = k5k7p1k6.

By 4.1.4 there exist

k8 ∈


k ∈ Sp(4,Z) : k ∈


Z Z pZ pZ

pZ Z pZ pZ

pZ pZ Z pZ

pZ pZ Z Z




and k9 ∈ P (Q) ∩ Γ0(M) such that k6 = k8k9. We may further write

k9 =

1 X

1

A
t
A−1


for some X ∈ M(2,Z) with tX = X and A ∈ GL(2,Z). We now have

k = k5k7p1k8

1 X

1

A
t
A−1

 .

Write

k8 =


a1 a2 pb1 pb2

pa3 a4 pb3 pb4

pc1 pc2 d1 pd2

pc3 pc4 d3 d4


for ai, bi, ci, di ∈ Z for all i ∈ {1, 2, 3, 4}. Calculation shows that

p1k8p
−1
1 =


a4 a3 b4p

−1 b3

a3p a1 b2 b1p

c4p
3 c3p

2 d4 d3p

c2p
2 c1p d2 d1

 ∈ K(p).

Therefore,

k = k5k7p1k8p
−1
1 p1

1 X

1

A
t
A−1

 ∈ K(p)p1

1 X

1

A
t
A−1

 .

Next, let

X =

x1 x2

x2 x4

 .
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Then

1 X

1

 =


1 x1

1

1

1




1 x2

1 x2

1 x3

1

 .

Moreover,

p1


1 x1

1

1

1

 p−1
1 =


1 x1

1

1

1

 .

It now follows that

k ∈ K(p)p1


1 x2

1 x2

1 x3

1


A

t
A−1

 .

Corollary 4.1.6. Let p be a prime. Then Sp(4,Q) = K(p)P (Q).

Proof. Let g ∈ Sp(4,Q). It is known that Sp(4,Q) = Sp(4,Z)P (Q) (see Lemma 3.2 on p. 137 of

[8]). Therefore, it suffices to prove that Sp(4,Q) ⊆ K(p)P (Q), but this follows from 4.1.5.

4.2 Cartan Decomposition

Let F be a non-archimedean local field of characteristic zero, with ring of integers o and p a prime

ideal of o with generator ϖ. Let ν be the usual valuation of F . In this section, we show that in the

coset decomposition of a Hecke operator, we may choose upper block representatives, which appear

in the next section. We start by examining the case of GL(n, F ), then present our arguments in

the case of GSp(4, F ) to obtain the desired results.

Lemma 4.2.1. Let G be a group and H1, H2 be subgroups of G and let G act on G/H1 ×G/H2 by

g · (g1H1, g2H2) = (gg1H1, gg2H2) g, g1, g2 ∈ G.

Let G\(G/H1 × G/H2) be the set of G−orbits under this action. Then there is a well-defined

bijection

H1\G/H2
∼→ G\(G/H1 ×G/H2) H1gH2 7→ G · (H1, gH2).
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Proof. To see that this map is well defined, let h1 ∈ H1, h2 ∈ H2, and g ∈ G. We have that

G · (H1, h1gh2H2) = G · (h1H1, h1gH2) = G · h1 · (H1, gH2) = G · (H1, gH2).

To see that the map is injective, let g1, g2inG and suppose that G · (H1, g1H2) = G · (H1, g2H2).

Since this equality implies that (H1, g1H2) ∈ G · (H1, g2H2), there is some g3 ∈ G such that

(H1, g1H2) = g3 · (H1, g2H2) = (g3H1, g3g2H2).

Hence, we have that g3 ∈ H1 and g1 = g3g2h2 for some h2 ∈ H2. Thus H1g1H2 = H1g2H2. Finally,

let x ∈ G/(G/H1 × G/H2), and so there are elements g1, g2 ∈ G such that x = G · (g1H1, g2H2).

With this, we have that

x = G · (g1H1, g2H2) = G · g1 · (H1, g
−1
1 g2H2) = G · (H1, g

−1
1 g2H2).

Hence H1g1
1g2H2 maps to x, proving that the map is surjective.

4.2.1 The Case of GL(n, F ) and GL(n, o)

For this section, let n > 0 be an integer and we will consider that group GL(n, F ) and its subgroup

GL(n, o). We will determine representatives for GL(no)\GL(n, F )/GL(n, o) by using the previous

lemma as well as our results about lattices.

Let V = M(n, F ). Then the group GL(n, F ) acts on V via the action g ·v = gv for g ∈ GL(m,F )

and v ∈ V . Additionally, let L be an o−submodule of V . We say that L is a lattice if L is a

compact, open subset of V . Note that L is a lattice exactly when there exist elements of V , say

x1, . . . , xn that form a basis of L as an o−module, so that

L = ox1 ⊕ · · · ⊕ oxn.

For the res of this section, let L0 be the lattice in V with basis e1, . . . , en, where these are the

standard basis vectors for V . Further, let X be the set of all lattices in V and define an action of

GL(n, F ) on X by g · L = gL, where g ∈ GL(n, F ) and L ∈ X.

Lemma 4.2.2. The action of GL(n, F ) on X is transitive, and the stabilizer of L0 is GL(n, o).

Proof. Let L be a lattice in X, and as noted above there exist vectors x1, . . . , xn ∈ V such that

L = ox1 ⊕ · · · ⊕ oxn.

The vectors x1, . . . , xn are linearly independent over F as these vectors are a basis for L as an

o−module. Let t : V → V be the linear transformation defined by t(ei) = xi, 1 ≤ i ≤ n and let g
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be the matrix of t in the standard basis e1, . . . , en of V . We have that gL = L0, and since this g

exists for any L, we have that the action is transitive. Note also that since gL0 = L0 exactly when

g ∈ GL(n, o), then GL(n, o) is the stabilizer of L0 as claimed.

By the previous lemma, there is a well-defined bijection

GL(n, F )/GL(n, o) → X

defined by gGL(n, o) 7→ gL0. Now, define a function

inv : X ×X → {(λ1, . . . , λn) ∈ Zn : λ1 ≥ · · · ≥ λn}.

Let (L,M) ∈ X × X and suppose first that L ⊂ M . Since L and M are free modules over o, a

principal ideal domain, we hav that there exists an o−basis x1, . . . , xn for L and unique integers

λ1 ≥ · · · ≥ λn ≥ 0 such that ϖλ1x1, . . . , ϖ
λnxn form a basis for M . We define

inv(L,M) = (λ1, . . . , λn)

and note that if k is a non-negative integer, then ϖkM ⊂ L, and the vectors ϖλ1+kx1, . . . , ϖ
λn+kxn

are a basis for ϖkM . Consequently,

inv(L,ϖkM) = (λ1 + k, . . . , λn + k) = inv(L,M) + (k, . . . , k).

Now suppose that (L,M) is any element of X × X. There exists a positive integer m such that

ϖmM ⊂ L, and we now define

inv(L,M) = inv(L,ϖmM)− (m, . . . ,m).

To see that this definition does not depend on m, let m′ be another positive integer such that

ϖm′
M ⊂ L. Without loss of generality, we assume that m′ ≥ m. Let k = m′ −m, then

inv(L,ϖm′
M)− (m′, . . . ,m′) =inv(L,ϖk(ϖmM))− (m′, . . . ,m′)

= inv(L,ϖmM) + (k, . . . , k)− (m′, . . . ,m′)

= inv(L,ϖmM)− (m, . . . ,m).

Hence, this shows that the map inv is well-defined.

Lemma 4.2.3. Let (L,M) ∈ X × X and let (λ1, . . . , λn) ∈ Zn such that λ1 ≥ · · · ≥ λn. Then

inv(L,M) = (λ1, . . . , λn) if and only if there is a basis x1, . . . , xn for V such that

L = ox1 ⊕ · · · ⊕ oxn, M = oϖλ1x1 ⊕ · · · ⊕ oϖλnxn.
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Proof. First assume that inv(L,M) = (λ1, . . . , λn) and letm be a positive integer such thatϖmM ⊂

L. By the above argument, we have that

(λ1, . . . , λn) = inv(L,M) = inv(L,ϖmM)− (m, . . . ,m),

and hence

inv(L,ϖmM) = (λ1 +m, . . . , λn +m).

By the definition of inv(L,ϖmM), the integers λ1 +m, . . . , λn +m must all be non-negative, and

there must exist a basis x1, . . . , xn for V such that

L = ox1 ⊕ · · · ⊕ oxn, ϖmM = oϖλ1+mx1 ⊕ · · · ⊕ oϖλn+mxn.

Thus, dividing out the ϖm we have the desired result.

Now suppose that there is a basis x1, . . . , xn for V such that

L = ox1 ⊕ · · · ⊕ oxn, M = oϖλ1x1 ⊕ · · · ⊕ oϖλnxn.

let m be a positive integer such that ϖmM ⊂ L. We have that

ϖmM = oϖλ1+mx1 ⊕ · · · ⊕ oϖλn+mxn,

and so

(λ1 +m, dots, λn +m) = inv(L,ϖmM) = inv(L,M) + (m, . . . ,m).

By subtracting we obtain that

inv(L,M) = (λ1, . . . , λn),

as desired.

Lemma 4.2.4. The map

inv : X ×X → {(λ1, . . . , λn) ∈ Zn : λ1 ≥ · · · ≥ λn}

is surjective. Additionally, let (L,M), (L′,M ′) ∈ X×X. Then inv(L,M) = inv(L′,M ′) if and only

if there exists g ∈ GL(n, F ) such that g(L,M) = (gL, gM) = (L′,M ′).

Proof. Let (λ1, . . . , λn) ∈ Zn with λ1 ≥ · · · ≥ λn and suppose that

L = L0 = oe1 ⊕ · · · ⊕ oen, M = oϖλ1e1 ⊕ · · · ⊕ oϖλnen.
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By 4.2.3 we have that inv(L,M) = (λ1, . . . , λn), and so the map is surjective. Next, suppose

that (L,M), (L′,M ′) ∈ X × X with inv(L,M) = inv(L′,M ′), and let inv(L,M) = inv(L′,M ′) =

(λ1, . . . , λn). By 4.2.3 there is a basis x1, . . . , xn for V such that

L = ox1 ⊕ · · · ⊕ oxn, M = oϖλ1x1 ⊕ · · · ⊕ oϖλnxn,

and there there is a basis x′
1, . . . , x

′
n for V such that

L = ox′
1 ⊕ · · · ⊕ ox′

n, M = oϖλ1x′
1 ⊕ · · · ⊕ oϖλnx′

n.

Define t : V → V by t(xi) = x′
i for i ∈ 1, . . . , n and let g be the matrix of t in the standard basis for

V . We thus have that gxi = x′
i for all i, and so it follows that gL = L′ and gM = M ′ as desired.

The converse has a similar proof.

Theorem 4.2.5. (Cartan Decomposition) Let A+ be the subgroup of GL(n, F ) consisting of the

elements fo the form

a =


ϖλ1

. . .

ϖλn


where λ1, . . . , λn ∈ Z and λ1 ≥ . . . λn. Then

GL(n, F ) = GL(n, o)A+GL(n, o).

Additionally, for a, a′ ∈ A+, GL(n, o)aGL(n, o) = GL(n, o)a′GL(n, o) if and only if a = a′.

Proof. We have the composition of bijections

GL(n, o)\GL(n, F )/GL(n, o)

GL(n, o)\(GL(n, F )/GL(n, o)×GL(n, F )/GL(n, o))

GL(n, F )\(X ×X)

{(λ1, . . . , λn) ∈ Zn : λ1 ≥ · · · ≥ λn}.

It suffices to show that under the above composition of bijections the set of double cosetsGL(n, o)aGL(n, o)

maps onto {(λ1, . . . , λn) ∈ Zn : λ1 ≥ · · · ≥ λn}. Let a ∈ A+ with a as in the statement of the

theorem. Then GL(n, o)aGL(n, o) maps to

GL(n, F )(GL(n, o), aGL(n, o))
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under the first map in the composition. This in turn maps to

GL(n, F )(L0, aL0)

under the second map. Finally, under the third map, this maps to (λ1, . . . , λn).

Lemma 4.2.6. Let F× be considered as a subgroup of GL(2, F ) by the embedding a 7→ aI2 and

consider the quotient PGL(2, F ) = GL(2, F )/F×. Let Γ be the subgroup of PGL(2, F ) generated

by Γ0(p) and
[

1
−ϖ

]
. If g ∈ PGL(2, F ), then there is a diagonal element d ∈ PGL(2, F ) such that

ΓgΓ = ΓdΓ.

Proof. Let g ∈ GL(2, F ). As GL(2, F ) = GL(2, o)B, where B = {[ ∗ ∗
∗ ]}, there are matrices

k ∈ GL(2, o) and p ∈ B such that g = kp. Moreover, by the Bruhat decomposition

GL(2, o) = Γ0(p) ∪ Γ0(p)

 1

−1

Γ0(p).

Assume that k ∈ Γ0(p), then ΓgΓ = ΓpΓ. Assume now that k ∈ Γ0(p)
[

1
−1

]
Γ0(p). Write k =

k1
[

1
−1

]
k2. Then

ΓgΓ = Γk1

 1

−1

 k2pΓ = Γ

 1

−1

 k2pΓ.

By the Iwahori decomposition for Γ0(p) we may write

k2 =

 1

yϖ 1

u
v

1 x

1

 ,

where x, y ∈ o and u, v ∈ o×. Then

ΓgΓ =Γ

 1

−1

 k2pΓ

= Γ

 1

−1

 1

yϖ 1

u
v

1 x

1

 pΓ

= Γ

1 −yϖ

1

 1

−1

u
v

1 x

1

 pΓ

= Γ

 1

−1

u
v

1 x

1

 pΓ

= Γ

v
u

 1

−1

1 x

1

 pΓ
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= Γ

 1

−1

1 x

1

 pΓ

= Γ

 1

−1

 p1Γ

where p1 = [ 1 x
1 ]p. Moreover,

ΓgΓ =Γ

 1

−1

 p1Γ

= Γ

 1

ϖ

 1

−1

 p1Γ

= Γ

−1

−ϖ

 p1Γ

= Γp2Γ

where p2 =
[−1

−ϖ

]
p1. Since we are working in PGL(2, F ) we may write

p2 =

1 bϖk1

uϖk2


where b ∈ o, u ∈ o×, and k1, k2 ∈ Z. If b = 0, p2 is out desired diagonal element and the proof is

complete, so assume b ̸= 0. We may further assume that b ∈ o×, since if b ̸∈ o×, then b = xϖt with

x ∈ o×, and so we can proceed with the argument. We now have

ΓgΓ =Γ

1 bϖk1

uϖk2

Γ

= Γ

1 bu−1ϖk1

ϖk2

1
u

Γ

= Γ

1 bu−1ϖk1

ϖk2

Γ.

Assume first that k1 ≥ k2. Then

ΓgΓ =Γ

1 bu−1ϖk1−k2

1

1
ϖk2

Γ

=Γ

1
ϖk2

Γ.
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This proves the lemma in this case.

Assume, to complete the other case, that k1 < k2, we then have

ΓgΓ =Γ

1 bu−1ϖk1

ϖk2

Γ

=Γ

1
k2

1 bu−1ϖk1

1

Γ.

If k1 ≥ 0, then

ΓgΓ = Γ

1
ϖk2

Γ,

proving the theorem. If k1 < 0, then

ΓgΓ =Γ

1 bu−1ϖk1

ϖk2

Γ

=Γ

1
ϖk2

1 bu−1ϖk1

1

Γ

=Γ

1
ϖk2

 1

b−1uϖ−k1 1

bu−1ϖk1

b−1uϖ−k1

 1

−1

 1

b−1uϖ−k1 1

Γ

=Γ

1
ϖk2

 1

b−1uϖ−k1 1

bu−1ϖk1

b−1uϖ−k1

 1

−1

Γ

=Γ

1
ϖk2

 1

b−1uϖ−k1 1

bu−1ϖk1

b−1uϖ−k1

 1

−1

1
ϖ−1

 1

−ϖ

Γ

=Γ

 1

b−1uϖk2−k1 1

1
ϖk2

bu−1ϖk1

b−1uϖ−k1−1

 1

−1

 1

−ϖ

Γ

=Γ

1
ϖk2

bu−1ϖk
1

b−1uϖ−k1−1


=Γ

bu−1ϖk
1

b−1uϖk2−k1−1

 ,

which completes the proof.
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Let D be the diagonal subgroup of GSp(4, F ) and for x, y, z ∈ F define

u(x, y, z) =


1 x y

1 z x

1

1

 .

Let K be the subgroup of PGSp(4, F ) generated by the local paramodular group K(p) and

u1 =


1

−1

ϖ

−ϖ

 .

The element u1 normalizes K(p) and u2
1 = 1 inside PGSp(4, F ). Also note that

u1


ϖ−1

1

1

ϖ




1

1

−1

1

 = (−1)


1

ϖ

1

ϖ

 .

Lemma 4.2.7. If g ∈ PGSp(4, F ), then there exists some d ∈ D and x, y, z ∈ F such that

KgK = Kdu(x, y, z)K.

Proof. let g ∈ GSp(4, F ). By Proposition 5.1.2 of [12] we have that GSp(4, F ) = K(p)P , where P

is the Siegel parabolic subgroup of GSp(4, F ). Hence, there is some k ∈ K(p) and p ∈ P such that

g = kp, and thus

KgK = KkpK = KpK.

We may write

p =

A
λA′

u(x, y, z)

for some A ∈ GL(2, F ), λ ∈ F×, and x, y, z ∈ F . By 4.2.6 there exist k1, k2 ∈ K such that

k1Ak2 = r, where r is diagonal. NowA
λA′

 =

k1
k′1

r
λr′

k2
k′2

 .

The elements k1
k′1

 and

k2
k′2
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are contained in K(p), and so

KpK =K

k1
k′1

r
λr′

k2
k′2

u(x, y, z)K

=K

r
λr′

k2
k′2

u(x, y, z)

k2
k′2

−1 k2
k′2

K

=K

r
λr′

k2
k′2

u(x, y, z)

k2
k′2

−1

K.

Since k2
k′2

u(x, y, z)

k2
k′2

−1

is also of the form u(x′, y′, z′) for some x′, y′, z′ ∈ F , the proof is complete.

Lemma 4.2.8. Let x, y, z ∈ F and i, j, k ∈ Z. Assume that ν(z) < 0 and ν(z)+ j < 0. Further, let

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

 .

Then

KgK = K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1 x y − x2z−1

1 x

1

1




1 −xz−1

1

1 xz−1

1

K.

Proof. We have that

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

z−1 1

1




1

z

z−1

1
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×


1

1

−1

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


1

1

z−1ϖ−j 1

1




ϖ2i+j

ϖi+jz

ϖiz−1

1



×


1

1

−1

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


ϖ2i+j

ϖi+jz

ϖiz−1

1




1

1

−1

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


1

1

−1

1




ϖ2i+j

ϖiz−1

ϖi+jz

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1

1

z−1 1

1




1 x y

1 x

1

1




1

1

z−1 1

1

K
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=K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1 x y

1 x

1

1




1 x y

1 x

1

1



−1 
1

1

z−1 1

1



×


1 x y

1 x

1

1




1

1

z−1 1

1

K

=K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1 x y

1 x

1

1




1 −xz−1 −x2z−1

1

1 xz−1

1

K

=K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1 x y − x2z−1

1 x

1

1




1 −xz−1

1

1 xz−1

1

K.

Therefore, the proof is complete.

Lemma 4.2.9. Let x, y, z ∈ F and i, j, k ∈ Z. Assume that ν(y) < 0 and 2i+j+ν(y) < 0. Further,

let

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

 .

Then

KgK = K


yϖ−1

ϖi+j

ϖi

ϖ2i+j+1y−1




1 x

1 z − x2y−1 x

1

1




1

−xy−1 1

1

xy−1 1

K.
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Proof. We have that

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

1

y−1 1




1

1

1

−1




y

1

1

y−1



×


1

1

1

y−1 1




1 x

1 z x

1

1

K

=K


1

1

1

−1




y

ϖi+j

ϖi

ϖ2i+jy−1




1

1

1

y−1 1




1 x

1 z x

1

1

K

=K


ϖ−1

1

1

−ϖ




yϖ−1

ϖi+j

ϖi

ϖ2i+j+1y−1




1

1

1

y−1 1




1 x

1 z x

1

1

K

=K


yϖ−1

ϖi+j

ϖi

ϖ2i+j+1y−1




1 x

1 z x

1

1




1 x

1 z x

1

1



−1

×


1

1

1

y−1 1




1 x

1 z x

1

1




1

1

1

y−1 1

K
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=K


yϖ−1

ϖi+j

ϖi

ϖ2i+j+1y−1




1 x

1 z x

1

1




1

−xy−1 1 −x2y−1

1

xy−1 1

K

=K


yϖ−1

ϖi+j

ϖi

ϖ2i+j+1y−1




1 x

1 z − x2y−1 x

1

1




1

−xy−1 1

1

xy−1 1

K.

This completes the proof.

Lemma 4.2.10. Let x, y, z ∈ F and i, j, k ∈ Z. Assume that ν(x) < 0 and i + j + ν(x) < 0.

Further, let

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

 .

Then

KgK =K


ϖi−1

xϖ−1

x−1ϖ2i+j

x−1ϖi+j




1 y

1 z

1

1



×


1 + yzx−2 −yx−1 −yzx−1

−zx−1 1 + yzx−2 −yzx−1

−yx−2 1 yx−1

−zx−2 zx−1 1

K.

Proof. We have that

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

K
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=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

x−1 1

x−1 1




1

1

−1

−1



×


x

x

x−1

x−1




1

1

x−1 1

x−1 1




1 y

1 z

1

1

K

=K


1

1

−1

−1




ϖi

1

ϖ2i+j

ϖi+j



×


x

x

x−1

x−1




1

1

x−1 1

x−1 1




1 y

1 z

1

1

K

=K


1

1

−ϖ

−ϖ




ϖi−1

ϖ−1

ϖ2i+j

ϖi+j



×


x

x

x−1

x−1




1

1

x−1 1

x−1 1




1 y

1 z

1

1

K

=K


1

1

−ϖ

−ϖ




xϖi−1

xϖ−1

x−1ϖ2i+j

x−1ϖi+j
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×


1

1

x−1 1

x−1 1




1 y

1 z

1

1

K

=K


xϖi−1

xϖ−1

x−1ϖ2i+j

x−1ϖi+j



×


1

1

x−1 1

x−1 1




1 y

1 z

1

1

K

=K


xϖi−1

xϖ−1

x−1ϖ2i+j

x−1ϖi+j




1 y

1 z

1

1




1 y

1 z

1

1



−1

×


1

1

x−1 1

x−1 1




1 y

1 z

1

1




1

1

x−1 1

x−1 1

K

=K


ϖi−1

xϖ−1

x−1ϖ2i+j

x−1ϖi+j




1 y

1 z

1

1



×


1 + yzx−2 −yx−1 −yzx−1

−zx−1 1 + yzx−2 −yzx−1

−yx−2 1 yx−1

−zx−2 zx−1 1

K.

This completes the proof.
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Lemma 4.2.11. Let x, y, z ∈ F× and i, j, k ∈ Z. Assume that

i+ j + ν(x) < 0

2i+ j + ν(y) < 0

j + ν(z) < 0

ν(x), ν(y), ν(z) < 0.

Let

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

 .

Then KgK = Kg′K where

g′ =


y−1zϖ−i−1

1

x2y−2ϖ−2i−j−1

x2y−1z−1ϖ−i−j




1 x x2z−1

1 x2y−1 x

1

1

 .

Proof. By direct computation, we have that

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 z x

1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

z−1 1

1




1

z

z−1

1



×


1

1

−1

1




1

1

z−1 1

1




1 x y

1 x

1

1

K
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=K


1

1

z−1ϖ−j 1

1




ϖ2i+j

ϖi+jz

ϖiz−1

1



×


1

1

−1

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


ϖ2i+j

ϖi+jz

ϖiz−1

1




1

1

−1

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


1

1

−1

1




ϖ2i+j

ϖiz−1

ϖi+jz

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1

1

z−1 1

1




1 x y

1 x

1

1

K

=K


ϖ2i+j

ϖiz−1

ϖi+jz

1




1

1

z−1 1

1




1

1

1

y−1 1




y

1

1

y−1



×


1

1

1

−1




1

1

1

y−1 1




1 x

1 x

1

1

K
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=K


yϖ2i+j

ϖiz−1

ϖi+jz

y−1




1

1

z−1 1

1



×


1

1

1

−1




1

1

1

y−1 1




1 x

1 x

1

1

K

=K


yϖ2i+j+1

ϖiz−1

ϖi+jz

y−1ϖ−1




1

1

z−1 1

1



×


ϖ−1

1

1

−ϖ




1

1

1

y−1 1




1 x

1 x

1

1

K

=K


y−1ϖ−1

ϖiz−1

ϖi+jz

yϖ2i+j+1




1

1

z−1 1

1



×


1

1

1

y−1 1




1 x

1 x

1

1

K

=K


y−1ϖ−1

ϖiz−1

ϖi+jz

yϖ2i+j+1




1

1

z−1 1

1




1

1

1

y−1 1
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×


1

1

x−1 1

x−1 1




x

x

x−1

x−1




1

1

−1

−1




1

1

x−1 1

x−1 1

K

=K


y−1ϖ−1

ϖiz−1

ϖi+jz

yϖ2i+j+1




1

1

x−1 z−1 1

y−1 x−1 1



×


x

x

x−1

x−1




1

1

−1

−1

K

=K


xy−1ϖ−1

xϖiz−1

x−1ϖi+jz

x−1yϖ2i+j+1




1

1

x x2z−1 1

x2y−1 x 1



×


1

1

−1

−1

K

=K


xy−1ϖ−1

xϖiz−1

x−1ϖi+jz

x−1yϖ2i+j+1




1

1

x x2z−1 1

x2y−1 x 1



×


1

1

ϖ−1

ϖ−1




1

1

−ϖ

−ϖ

K
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=K


xy−1ϖ−1

xz−1ϖi

x−1zϖi+j−1

x−1yϖ2i+j




1

1

xϖ x2z−1ϖ 1

x2y−1ϖ xϖ 1

K

=K


x2y−2ϖ−2i−j−1

x2y−1z−1ϖ−i−j

y−1zϖ−i−1

1



×


1

1

xϖ x2z−1ϖ 1

x2y−1ϖ xϖ 1

K

=K


1

−1

ϖ

−ϖ




x2y−2ϖ−2i−j−1

x2y−1z−1ϖ−i−j

y−1zϖ−i−1

1



×


1

1

xϖ x2z−1ϖ 1

x2y−1ϖ xϖ 1




1

−1

ϖ

−ϖ



−1

K

=K


y−1zϖ−i−1

1

x2y−2ϖ−2i−j−1

x2y−1z−1ϖ−i−j



×


1 x x2z−1

1 x2y−1 x

1

1

K.

This completes the proof.
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Lemma 4.2.12. Let x, y ∈ F and i, j, k ∈ Z. Assume that

i+ j + ν(x) < 0

2i+ j + ν(y) < 0

ν(x), ν(y) < 0.

Let

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 x

1

1

 .

Then KgK = Kg′K where

g′ =


x−1ϖ−i−1

x−1yϖ2i+j

xy−1ϖ−1

xϖi+j




1 x

1 x2y−1 x

1

1

 .

Proof. We have

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 x

1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

1

y−1 1




y

1

1

y−1



×


1

1

1

−1




1

1

1

y−1 1




1 x

1 x

1

1

K

=K


yϖ2i+j

ϖi+j

ϖi

y−1




1

1

1

−1





68

×


1

1

1

y−1 1




1 x

1 x

1

1

K

=K


ϖ−1

1

1

−ϖ




y−1ϖ−1

ϖi+j

ϖi

yϖ2i+j+1



×


1

1

1

y−1 1




1 x

1 x

1

1

K

=K


y−1ϖ−1

ϖi+j

ϖi

yϖ2i+j+1




1

1

1

y−1 1




1 x

1 x

1

1

K

=K


y−1ϖ−1

ϖi+j

ϖi

yϖ2i+j+1




1

1

x−1 1

x−1 1



×


x

x

x−1

x−1




1

1

−1

−1




1

1

x−1 1

x−1 1

K

=K


xy−1ϖ−1

xϖi+j

x−1ϖi

x−1yϖ2i+j+1




1

1

x 1

x2y−1 x 1
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×


1

1

−1

−1

K

=K


xy−1ϖ−1

xϖi+j

x−1ϖi

x−1yϖ2i+j+1




1

1

−1

−1



×


1 −x

1 −x2y−1 −x

1

1

K

=K


1

1

−1

−1




x−1ϖi

x−1yϖ2i+j+1

xy−1ϖ−1

xϖi+j



×


1 −x

1 −x2y−1 −x

1

1

K

=K


1

1

−ϖ

−ϖ




x−1ϖi−1

x−1yϖ2i+j

xy−1ϖ−1

xϖi+j



×


1 −x

1 −x2y−1 −x

1

1

K



70

=K


x−1ϖ−i−1

x−1yϖ2i+j

xy−1ϖ−1

xϖi+j




1 x

1 x2y−1 x

1

1

K.

With this the proof is complete.

Lemma 4.2.13. Let

X1 = {g ∈ PGSp(4, F ) : there exists d ∈ D and y, z ∈ F such that g ∈ Kdu(0, y, z)K} ,

X2 = {g ∈ PGSp(4, F ) : there exists d ∈ D and x, z ∈ F such that g ∈ Kdu(x, 0, z)K} ,

X3 = {g ∈ PGSp(4, F ) : there exists d ∈ D and x, y ∈ F such that g ∈ Kdu(x, y, 0)K} .

Then

PGSp(4, F ) = X1 ∪X2 ∪X3.

Proof. Let g ∈ PGSp(4, F ) and assume that g ̸∈ X1 ∪X2 ∪X3 and we will obtain a contradiction.

By 4.2.7 we may write

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 x

1

1


for some i, j, k ∈ Z and x, y, z ∈ F . Since g ̸∈ X1 ∪X2 ∪X3, it follows that

i+ j + ν(x) < 0

2i+ j + ν(y) < 0

j + ν(z) < 0

ν(x), ν(y), ν(z) < 0,

and by 4.2.8 we must have that ν(x) ≤ ν(z)− 1, and by 4.2.9 we have that ν(x) ≤ ν(y). Hence

ν(x) ≤ min{ν(y), ν(z)− 1}.

Let g′ be as in 4.2.11, and since g ̸∈ X1 ∪X2 ∪X3 we also have that g′ ̸∈ X1 ∪X2 ∪X3. By the

inequality above applied to g′ we have that

ν(x) ≤min{ν(x2z−1), ν(x2y−1)− 1}
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ν(x) ≤min{2ν(x)− ν(z), 2ν(x)− ν(y)− 1}

ν(x) ≤2ν(x) + min{−ν(z),−ν(y)− 1}

−ν(x) ≤min{−ν(z),−ν(y)− 1}

ν(x) ≥−min{−ν(z),−ν(y)− 1}

ν(x) ≥max{ν(z), ν(y) + 1}

ν(x) ≥max{ν(z)− 1, ν(y)}+ 1.

Hence

max{ν(z)− 1, ν(y)}+ 1 ≤ ν(x) ≤ min{ν(y), ν(z)− 1},

a contradiction.

Let

X4 = {g ∈ PGSp(4, F ) : there exists d ∈ D and x ∈ F such that g ∈ Kdu(x, 0, 0)K} ,

X5 = {g ∈ PGSp(4, F ) : there exists d ∈ D and y ∈ F such that g ∈ Kdu(0, y, 0)K} ,

X6 = {g ∈ PGSp(4, F ) : there exists d ∈ D and z ∈ F such that g ∈ Kdu(0, 0, z)K} .

Lemma 4.2.14. Let G ∈ GSp(4, F ) be such that

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 x

1

1


for some i, j, k ∈ Z and x, y ∈ F . If g ̸∈ X4 ∪X5 ∪X6, then

2ν(x) ≤ ν(y)− 1 and ν(y) ≤ ν(x)− 1.

Proof. Since g ̸∈ X4 ∪X5 ∪X6, we may assume that

i+ j + ν(x) < 0,

2i+ j + ν(y) < 0,

ν(x), ν(y) < 0.

By 4.2.9 either ν(xy−1) ≤ 0 or ν(x2y−1) ≤ −1, which is of course equivalent to ν(x) ≤ ν(y) or

2ν(x) ≤ ν(y) − 1. By 4.2.10 we also have that ν(yx−1) ≤ −1 or ν(yx−1) ≤ −1, equivalently
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ν(y) ≤ ν(x) − 1 or ν(y) ≤ 2ν(x) − 1. If ν(x) ≤ ν(y) and ν(y) ≤ ν(x) − 1, then ν(x) ≤ ν(x) − 1,

a contradiction. If ν(x) ≤ ν(y) and ν(2) ≤ 2ν(x) − 1, then 2ν(x) < ν(x) ≤ ν(y) ≤ 2ν(x) − 1, a

contradiction. Assume that 2ν(x) ≤ ν(y) − 1 and ν(y) ≤ 2ν(x) − 1. Then 2ν(x) + 1 ≤ ν(y) ≤

2ν(x)− 1, a contradiction. Therefore, the only option is that 2ν(x) ≤ ν(y)− 1 and ν(y) ≤ ν(x)− 1,

completing the proof.

Lemma 4.2.15. Let G ∈ GSp(4, F ) be such that

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x

1 z x

1

1


for some i, j, k ∈ Z and x, y ∈ F . If g ̸∈ X4 ∪X5 ∪X6, then

2ν(x) ≤ ν(z)− 2 and ν(z) ≤ ν(x).

Proof. Since g ̸∈ X4 ∪X5 ∪X6, we may assume that

i+ j + ν(x) < 0,

j + ν(z) < 0,

ν(x), ν(z) < 0.

By 4.2.8 we have that either ν(xz−1) ≤ 1 or ν(x2z−1) ≤ −2, which is equivalent to ν(x) ≤ ν(z)− 1

or 2ν(x) ≤ ν(z)− 2. Also, by 4.2.10 we have that ν(zx−1) ≤ 0 or ν(zx−2) ≤ 0, which is equivalent

to ν(z) ≤ ν(x) or ν(z) ≤ 2ν(x). If ν(x) ≤ ν(z)− 1 and ν(z) ≤ 2ν(x), then

ν(z) ≤ 2ν(x) < ν(x) ≤ ν(z)− 1,

a contradiction. If ν(x) ≤ ν(z)− 1 and ν(z) ≤ ν(x). We would have that

ν(x) ≤ ν(z)− ≤ ν(x)− 1,

a contradiction. Lastly, if 2ν(x) ≤ ν(z)− 2 and ν(z) ≤ 2ν(x), then

ν(z) ≤ 2ν(x) ≤ ν(z)− 2,

a contradiction. Hence, it follows that 2ν(x) ≤ ν(z)− 2 and ν(z) ≤ ν(x).
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Lemma 4.2.16. We have that

PGSp(4, F ) = X4 ∪X5 ∪X6.

Proof. let g ∈ GSp(4, F ) and assume that g ̸∈ X4 ∪ X5 ∪ X6; we will obtain a contradiction. By

4.2.13 we know that g ∈ X1 ∪X2 ∪X3. Suppose first that g ∈ X1, then there are integers i, j, and

k and y, z ∈ F such that

g =


ϖ2i+j

ϖi+j

ϖi

1




1 y

1 z

1

1

 .

As g ̸∈ X4 ∪X5 ∪X6, it follows that

2i+ j + ν(y) < 0,

j + ν(z) < 0,

ν(y), ν(z) < 0.

By 4.2.9 we have that g ∈ X6, a contradiction.

Now suppose that g ∈ X3, and so we may write

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x y

1 x

1

1


for some i, j, k ∈ Z and x, y ∈ F . Since g ̸∈ X4 ∪X5 ∪X6, it follows that

i+ j + ν(x) < 0,

2i+ j + ν(y) < 0,

ν(x), ν(y) < 0.

By 4.2.14, we have that

2ν(x) ≤ ν(y)− 1 and ν(y) ≤ ν(x)− 1.
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Additionally, by 4.2.12 and 4.2.15 we have that

2ν(x) ≤ ν(x2y−1)− 2 and ν(x2y−1) ≤ ν(x).

This last statement is equivalent to ν(y) ≤ −1 and ν(x) ≤ ν(u). Hence, ν(x) ≤ ν(y) ≤ ν(x)− 1, a

contradiction.

Lastly, suppose that g ∈ X2, and so we may write

g =


ϖ2i+j

ϖi+j

ϖi

1




1 x

1 z x

1

1


for some i, j, k ∈ Z and x, z ∈ F . Now,

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 x

1 z x

1

1

K

=K


1

ϖ

1

ϖ




ϖ2i+j

ϖi+j

ϖi

1




1 x

1 z x

1

1




1

ϖ

1

ϖ



−1

K

=K


ϖi

1

ϖ2i+j

ϖi+j




1 x zϖ−1

1 x

1

1

K

=Kg′K,

where

g′ =


ϖi

1

ϖ2i+j

ϖi+j




1 x zϖ−1

1 x

1

1

 .

As g ̸∈ X4∪X5∪X6, then g′ ̸∈ X4∪X5∪X6, and this contradiction the result of the last paragraph,

as g′ ∈ X3.
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Theorem 4.2.17. Let g ∈ GSp(4, F ) be such that g does not satisfy the statement of the theorem.

As g ∈ GSp(4, F ), then 4.2.16 implies that g ∈ X4 ∪ X5 ∪ X6. Suppose that g ∈ X4, then there

exist integers i and j such that

KgK = K


ϖ2i+j

ϖi+j

ϖi

1

K.

Proof. Let g ∈ GSp(4, F ), and so by 4.2.16 we have that g ∈ X4 ∪ X5 ∪ X6. Assume first that

g ∈ X4, and so there are integers i and j as well as x ∈ F such that

KgK = K


ϖ2i+j

ϖi+j

ϖi

1




1 x

1 x

1

1

K.

By assumption we also have that ν(x) + ij < 0 and ν(x) < 0. Now

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 x

1 x

1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

x−1 1

x−1 1




x

x

x−1

x−1



×


1

1

−1

−1




1

1

x−1 1

x−1 1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




x

x

x−1

x−1




1

1

−1

−1

K
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=K


ϖ2i+j

ϖi+j

ϖi

1




x

x

x−1ϖ−1

x−1ϖ−1




1

1

−ϖ

−ϖ

K

=K


ϖ2i+j

ϖi+j

ϖi

1




x

x

x−1ϖ−1

x−1ϖ−1

K.

This contradicts the assumption on g. Now suppose that g ∈ X5, then there are integers i and j as

well as y ∈ F such that

KgK = K


ϖ2i+j

ϖi+j

ϖi

1




1 y

1

1

1

K.

By assumption we also have that 2i+ j + ν(y) ≤ −2 and ν(y) < −2. Now

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1 y

1

1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

1

y−1 1




y

1

1

y−1



×


1

1

1

−1




1

1

1

y−1 1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




y

1

1

y−1




1

1

1

−1

K
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=K


ϖ2i+j

ϖi+j

ϖi

1




yϖ

1

1

y−1ϖ−1




ϖ−1

1

1

−ϖ

K

=K


ϖ2i+j

ϖi+j

ϖi

1




yϖ

1

1

y−1ϖ−1

K.

This contradicts the assumption on g. Finally, assume that g ∈ X6. There exist integers i and j,

as well as z ∈ F such that

KgK = K


ϖ2i+j

ϖi+j

ϖi

1




1

1 z

1

1

K.

By the assumption on g, we also have that j + ν(z) < 0 and ν(z) < 0. We have

KgK =K


ϖ2i+j

ϖi+j

ϖi

1




1

1 z

1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

1

z−1 1

1




1

z

z−1

1



×


1

1

−1

1




1

1

z−1 1

1

K

=K


ϖ2i+j

ϖi+j

ϖi

1




1

z

z−1

1

K.
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This contradicts the assumption on g, and completes the proof.

Lemma 4.2.18. Let k, j ∈ Z and
[
a b
c d

]
∈ GL(2, o). Assume that

[
aϖk bϖj

cϖ−1 dϖ−k

]
∈ GL(2, o). Then

k = 0 or j = 0.

Proof. Assume first that a, d ∈ o×. Since ν(aϖk) ≥ 0 and ν(dϖ−k) ≥ 0, we have that k ≥ 0 and

−k ≥ 0, and thus k = 0. Now assume that a ∈ o or d ∈ p, then b, c ∈ o×, and since ν(bϖj) ≥ 0 and

ν(cϖ−j) ≥ 0, we have that j ≥ 0 and −j ≥ 0, and thus j = 0.

Lemma 4.2.19. Let n be a positive integer and a1, b1, c1, a2, b2, c2 ∈ Z with a1 ≥ 0, bi ≥ 0, ai ≥

ci − ai ≥ 0 and bi ≥ c1 − bi ≥ 0 for i = 1, 2. If

K(pn)


ϖa1

ϖb1

ϖc1−a1

ϖc1−b1

K(pn) = K(pn)


ϖa2

ϖb2

ϖc2−a2

ϖc2−b2

K(pn),

then a1 = a2, b1 = b2,and c1 = c2.

Proof. Let

d1 =


ϖa1

ϖb1

ϖc1−a1

ϖc1−b1

 , d2 =


ϖa2

ϖb2

ϖc2−a2

ϖc2−b2

 .

Since K(pn)d1K(pn) = K(pn)d2K(pn), there exist k, k′ ∈ K(pn) such that

d1kd
−1
2 = k′.

Thus we have that λ(d1)λ(k)λ(d2)
−1 = λ(k′), and hence ϖc1−c2λ(k) = λ(k′). Applying ν to this

equality yields ν(ϖc1−c2) + ν(λ(k)) = ν(λ(k′)), and hence c1 − c2 = 0. Write c = c1 = c2 and let

k =


k11 k12 k13 k14ϖ

−n

k21ϖ
n k22 k23 k24

k31ϖ
n k32 k33 k34

k41ϖ
n k42ϖ

n k43ϖ
n k44

 ,

where kij ∈ o for i, j ∈ {1, 2, 3, 4}. Then

det(k) = (k23k32 − k22k33)(k14k41 − k11k44) + xϖ
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for some x ∈ o. Since λ(k) ∈ o×, it follows that k23k32 − k22k33, k14k41 − k11k44 ∈ o×, so thatk22 k23

k32 k33

 ,

k11 k14

k41 k44

 ∈ GL(2, o).

Now

d1kd
−1
2 =


k11ϖ

a1−a2 k12ϖ
b1−a2 k13ϖ

−b1+c−a2 k14ϖ
−a1+c−a2−n

k21ϖ
a1−b2+n k22ϖ

b1−b2 k23ϖ
−b1+c−b2 k24ϖ

−a1+c−b2

k31ϖ
a1−c+b2+n k32ϖ

b1−c+b2 k33ϖ
b2−b1 k34ϖ

b2−a1

k41ϖ
a1−c+a2+n k42ϖ

b1−c+a2+n k43ϖ
−b1+a1+n k44ϖ

a2−a1

 .

Since d1kd
−1
2 ∈ K(pn), we obtain k22ϖ

b1−b2 k23ϖ
−b1+c−b2

k32ϖ
b1−c+b2 k33ϖ

b2−b1

 ∈ GL(2, o)

and  k11ϖ
a1−a2 k14ϖ

−a1+c−a2−n

k41ϖ
a1−c+a2+n k44ϖ

a2−a1

 ∈ GL(2, o).

By 4.2.18 we must have that

b1 − b2 = 0 or − b1 + c− b2 = 0

and

a1 − a2 = 0 or − b1 + c− a2 = 0.

If b1 − b2 = 0 and a1 − a2 = 0, then d1 = d2. Assume that b1 − b2 = 0 and −a1 + c− a2 = 0. Then

b1 = b2 and c = a1 + a2. Since a1 ≥ c − a1, we obtain a1 ≥ a1 + a2 − a1 = a2. Similarly, since

a2 ≥ c−a2, we obtain a2 ≥ a1+a2−a2 = a1. Thus, a1 = a2 and d1 = d2. Also, if −b1+ c− b2 = 0

and a1 − a2 = 0, then arguing as before, we see that d1 = d2. Finally, assume that −b1 + c− b2 = 0

and −a1 + c − a2 = 0. Then c = a1 + a2 = b1 + b2. Hence, a1 ≥ c − a1 = a1 + a2 − a1 = a2 and

a2 ≥ c− a2 = a1 + a2 − a2 = a1, so that a1 = a2. Similarly, b1 = b2, and so d1 = d2.

As before, define

w =


1

ϖ

ϖ

1

 .
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Lemma 4.2.20. Let n be a positive integer and let d1 and d2 be diagonal elements of GSp(4, F ).

Then

K(pn)d1K(pn) ̸= K(pn)wd2K(pn).

Proof. Assume for the sake of contradiction that

K(pn)d1K(pn) = qK(pn)wd2K(pn).

We may assume that

d1 =


ϖa1

ϖb1

ϖc1−a1

ϖc1−b1

 , d2 =


ϖa2

ϖb2

ϖc2−a2

ϖc2−b2


for some a1, b1, c1, a2, b2, c2 ∈ Z. By hypothesis, there are k, k′ ∈ K(pn) such that

d1kd
−1
2 w−1 = k′.

Thus we have that λ(d1)λ(k)λ(d2)
−1λ(w)−1 = λ(k′), and hence ϖc1−c2λ(k)ϖ−1 = λ(k′). Applying

ν to this equality yields ν(ϖc1−c2) + ν(λ(k)) − 1 = ν(λ(k′)), and hence c1 − c2 − 1 = 0. Thus

c2 = c1 − 1 and let

k =


k11 k12 k13 k14ϖ

−n

k21ϖ
n k22 k23 k24

k31ϖ
n k32 k33 k34

k41ϖ
n k42ϖ

n k43ϖ
n k44

 ,

where kij ∈ o for i, j ∈ {1, 2, 3, 4}. Then

k′ =d1kd
−1
2 w−1

=


k12ϖ

a1−b2 k11ϖ
11−a2−1 k14ϖ

a1+a2−c1−n+1 k13ϖ
a1+b2−c1

k22ϖ
b1−b2 k21ϖ

−a2+b1+n−1 k24ϖ
a2+b1−c1+1 k23ϖ

b1+b2−c1

k32ϖ
−b1−b2+c1 k31ϖ

−a2−b1+c1+n−1 k34ϖ
a2−b1+1 k33ϖ

b2−b1

k42ϖ
−a1−b2+c1+n k41ϖ

−a1−a2+c1+n−1 k44ϖ
−a1+a2+1 k43ϖ

−a1+b2+n

 .

Since k′ ∈ K(pn), as in the previous lemma, we have that k21ϖ
−a2+b1+n−1 k24ϖ

a2+b1−c1+1

k31ϖ
−a2−b1+c1+n−1 k34ϖ

a2−b1+1

 ∈ GL(2, o).
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We also have that

det

 k21ϖ
−a2+b1+n−1 k24ϖ

a2+b1−c1+1

k31ϖ
−a2−b1+c1+n−1 k34ϖ

a2−b1+1

 = (k21k34 − k24k31)ϖ
n.

Since k21k34 − k24k31 ∈ o and n is positive, this is not in o×, a contradiction.

We may now specialize the results of section 4.1 to the case where N = p is a prime and state a

result we use in the next section. . Let K(p) be the paramodular group with respect to the prime

p and define

∆p =


g ∈ GSp(4,Q) : g ∈


Z Z p−1Z Z

pZ Z Z Z

pZ pZ Z pZ

pZ Z Z Z

 , λ(p) = pkfor some k ∈ Z≥0


.

Then ∆p is a semi-group. We also have the p−adic paramodular group

KZp
= {g ∈ GSp(4,Qp) : λg ∈ Z×

p } ∩


Zp Zp p−1Zp Zp

pZp Zp Zp Zp

pZp pZp Zp pZp

pZp Zp Zp Zp

 ,

and the semi-group

∆Zp
=


g ∈ GSp(4,Qp) : g ∈


Zp Zp p−1Zp Zp

pZp Zp Zp Zp

pZp pZp Zp pZp

pZp Zp Zp Zp

 , λ(p) = pkfor some k ∈ Z≥0


.

Note that ∆p ⊆ ∆Zp
. The semi-group ∆p also contains

w =


1

p

p

1

 =



 1

p


p

t 1

p

−1


.

The element w normalizes K(p) and KZp(p). We define the set of standard representations to be
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the following elements of ∆p:
pa

pb

pc−a

pc−b

 , w


pa

pb

pc−a

pc−b

 ,

where a, b, c or non-negative integers with 0 ≤ a ≤ c− a and 0 ≤ b ≤ c− b.

Lemma 4.2.21. Let g ∈ ∆p, then there exists a unique standard representative r such that

KZp
(p)gKZp

(p) = KZp
(p)rKZp

(p).

Proof. This follows from 4.2.17,4.2.19, and 4.2.20 after noting that w normalizes KZp
(p).
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5 Generators for the Paramodular Hecke Algebra

Recall that the multipliction in the Hecke ring H is defined as

ΓgΓ · Γg′Γ =
∑

[γ]∈Γ\∆/Γ

aγΓγΓ,

where aγ = #{(i, j) : Γgig′j = Γγ}. Additionally, F is a non-archimedean local field of characteristic

zero, with ring of integers o and p a prime ideal of o with generator ϖ, and ν is the usual valuation of

F . In this chapter we present explicit formulas for use in the paramodular Hecke ring H (K(p),∆),

where

∆ =


g ∈ GSp(4, F ) : g ∈


o o p−1 o

p o o o

p p o p

p o o o

 and ν(λ(g)) ≥ 0


,

in order to compute the coefficients aγ using the results from the previous chapters. The ring of

Hecke operators H (K(p),∆) is the Hecke algebra we will consider from now on unless otherwise

indicated.

In this chapter we show that the paramodular Hecke algebra is generated by

T (1, 1, ϖ,ϖ), T (1, ϖ,ϖ2, ϖ), T (ϖ, 1, ϖ,ϖ2), and K(p)wK(p),

where this result appears in section 5.5. We only compute formulas for the coefficients aγ corre-

sponding to multiplication by two Hecke operators T (1, 1, ϖ,ϖ) and T (1, ϖ,ϖ2, ϖ), since these

are the two non-trivial generating operators (K(p)wK(p) only depends on one matrix w and

T (ϖ, 1, ϖ,ϖ2) is the conjugate of T (1, ϖ,ϖ2, ϖ)). Sections 5.1 and 5.3 present the technical

preliminary lemmas used to compute the coefficients aγ for T (1, 1, ϖ,ϖ) and T (1, ϖ,ϖ2, ϖ) re-

spectively. The actual values of the coefficients are computed for each operator in sections 5.2 and

5.4, with the results for the T (1, 1, ϖ,ϖ) operator summarized in theorem 5.2.6 in section 5.2 and

the results for the T (1, ϖ,ϖ2, ϖ) operator summarized in theorem 5.4.2 in section 5.4.

Below is a result from Roberts and Schmidt [12] that we will use, in conjunction with the

preliminary results for each operator, in order to compute the desired coefficients
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Proposition 5.0.1. We have

K(p)


1

1

ϖ

ϖ

K(p) =
⊔

x,y,z∈o/p


1 zϖ−1 y

1 y x

1

1




ϖ

ϖ

1

1

K(p)

⊔
⊔

x,z∈o/p


1 x zϖ−1

1

1

−x 1




ϖ

1

1

ϖ

K(p)

⊔
⊔

x,y∈o/p

t1


1 y

1 y x

1

1




ϖ

ϖ

1

1

K(p)

⊔
⊔

x∈o/p

t1


1 x

1

1

−x 1




ϖ

1

1

ϖ

K(p)

and

K(p)


1

ϖ

ϖ2

ϖ

K(p)

=
⊔

x,y∈o/p

⊔
z∈o/p2


1 x

1

1

−x 1




1 zϖ−1 y

1 y

1

1




ϖ2

ϖ

1

ϖ

K(p)

⊔
⊔

x,y,z∈o/p


1 x

1

1

−x 1




1 z y

1 y

1

1




ϖ2

ϖ

1

ϖ

K(p)

Proof. See Lemma 6.1.2 of [12].



85

5.1 Preliminaries for the T (1, 1, ϖ,ϖ) Operator

Let M ∈ GL(2, F ) ∩M(2, o). Then there exists g1, g2 ∈ GL(2, o) and e1, e2 ∈ Z such that e1 ≤ e2

and

g1Mg2 =

ϖe1

ϖe2

 .

Moreover, if g′1, g
′
2 ∈ GL(2, o) and e′1, e

′
2 ∈ Z such that e′1 ≤ e′2 and

g′1Mg′2 =

ϖe′1

ϖe′2

 ,

then (ϖe1 , ϖe2) = (ϖe′1 , ϖe′2). We refer to ϖe1 and ϖe2 as the invariant factors of M and write

s1(M) = ϖe1 , s2(M) = ϖe2 .

Let M =
[
a b
c d

]
and k ∈ Z be such that ϖk is a generator of the ideal (a, b, c, d) in o; we write

d1(M) = ϖk. Let j ∈ Z such that ϖj is a generator of the ideal generated by det(M), and we write

d2(M) = ϖj . It is known that

s1(M) = d1(M), s2(M) = d2(M)/d1(M).

See [10].

Lemma 5.1.1. Let a, b ∈ Z and g ∈ GL(2, o). Set

M =

1
ϖ

 g

ϖa

ϖb

 .

Then

{s1(M), s2(M)} = {ϖa, ϖb+1} or {s1(M), s2(M)} = {ϖa+1, ϖb}.

Proof. If a = b the proof is straightforward, and so assume that a ̸= b. First, suppose that a < b.

Let g = [A B
C D ]. By assumption we have that

M =

1
ϖ

 g

ϖa

ϖb

 =

 Aϖa Bϖb

Cϖa+1 Dϖb+1

 .

By letting ν(0) = ∞ we have that

min(ν(Aϖa), ν(Bϖb), ν(Cϖa+1), ν(Dϖb+1))

=min(ν(A) + a, ν(B) + b, ν(C) + a+ 1, ν(D) + b+ 1)
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=


a if ν(A) = 0

a+ 1 if ν(A) > 0.

For this, we note that if ν(A > 0), then ν(C) = 0. It follows that

s1(M) = d1(M) =


ϖa if ν(A) = 0

ϖa+1 if ν(A) > 0.

We also have that

s2(M) =d2(M)/d1(M)

=ϖa+b+1 cot


ϖ−a if ν(A) = 0

ϖ−a−1 if ν(A) > 0

=


ϖb+1 if ν(A) = 0

ϖb if ν(A) > 0.

This proves the lemma in the case where a > b. Now assume that a < b. We have that

M =

1
ϖ

 g

ϖa

ϖb

 =

1
ϖ

 g

 1

−1

ϖa

ϖb

 −1

1

 .

This identity implies that M has the same invariant factors as

M ′ =

1
ϖ

 g

 1

−1

ϖb

ϖa

 .

By applying the previous case to M ′, the lemma is proven.

Lemma 5.1.2. Let a, b, c, d ∈ Z. Then the following are equivalent:

1. There exist g1, g2, g3 ∈ GL(2, o) such that

g1

1
ϖ

 g2

ϖa

ϖb

 g3 =

ϖc

ϖd

 .

2. We have

{ϖc, ϖd} = {ϖa, ϖb+1} or {ϖc, ϖd} = {ϖa+1, ϖb}.
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Proof. Assume that (1) holds. Let

M =

1
ϖ

 g2

ϖa

ϖb

 = g−1
1

ϖc

ϖd

 g−1
3 .

Then {s1(M), s2(M)} = {ϖc, ϖd}. By 5.1.1 we also have {s1(M), s2(M)} = {ϖa, ϖb+1} or

{s1(M), s2(M)} = {ϖa+1, ϖb}. Equating these, we obtain (2). It is clear that (2) implies (1).

Now, define for g = [A B
C D ] ∈ GL(2, F ) the following matrix,

k(g) =


1

A B

det(g)

C D


and

k′(g) =


A Bϖ−1

1

Cϖ D

det(g)

 .

Note that if g ∈ GL(2, F ), then k(g), k′(g) ∈ GSp(4, F ); moreover if g ∈ GL(2, p), then k(g), k′(g) ∈

K(p).

Lemma 5.1.3. Let d1, d2, d3, d4, c1, c3 ∈ Z≥0 with d1+d3 = d2+d4 and c1+c3 = 2. Let g ∈ GL(2o)

and assume that d2 ≤ d4. Then

K(p)


ϖc1

1

ϖc3

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

K(p)

= K(p)


ϖmin(c1+d1,c3+d3)

ϖq1

ϖmax(c1+d1,c3+d3)

ϖq2

K(p)

where

(q1, q2) =


{(d2, d4 + 1), (d2 + 1, d4)} if d2 ≤ d4 − 1

{(d2, d2 + 1)} if d2 = d4

{(d4, d2 + 1), (d4 + 1, d2)} if d2 ≥ d4 + 1

.
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Thus,

sf(K(p)


1

1

ϖ

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

K(p))

= (0,min(c1 + d1, c3 + d3), q1, q1 + q2 = d1 + d3 + 1 = d2 + d4 + 1)

with (q1, q2) as stated above. If d2 < d4, then

sf(K(p)


1

1

ϖ

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

K(p))

=


(0,min(c1 + d1, c3 + d3), d2, d1 + d3 + 1 = d2 + d4 + 1) if ν(A) = 0

(0,min(c1 + d1, c3 + d3), d2 + 1, d1 + d3 + 1 = d2 + d4 + 1) if ν(A) > 0.

If d2 > d4, then

sf(K(p)


1

1

ϖ

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

K(p))

=


(0,min(c1 + d1, c3 + d3), d4, d1 + d3 + 1 = d2 + d4 + 1) if ν(B) = 0

(0,min(c1 + d1, c3 + d3), d4 + 1, d1 + d3 + 1 = d2 + d4 + 1) if ν(B) > 0.

Proof. Let

M =

1
ϖ

 g

d2
d4

 .

Let S1(M) = ϖq1 and s2(M) = ϖq2 . By 5.1.1 there exist h, h′ ∈ GL(2o) such that

hMh′ =

ϖq1

ϖq2


and

{q1, q2} = {d2, d4 + 1} or {q1, q2} = {d2 + 1, d4}.
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It follows that

k(h)


ϖc1

1

ϖc3

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

 k(h′)

=


ϖc1+d1

ϖq1

det(ghh′)ϖc3+d3

ϖq2

 .

Since this is in GSp(4, F ) we have that det(ghh′)ϖd1+d3+1 = ϖq1+q2 ; since det(ghh′) ∈ o×, we

obtain that d1 + d3 + 1 = q1 + q2 and det(ghh′) = 1. We know have

k(h)


ϖc1

1

ϖc3

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

 k(h′)

=


ϖc1+d1

ϖq1

ϖc3+d3

ϖq2

 .

The statement about (q1, q2) follows from the fact that

{q1, q2} = {d2, d4 + 1} or {q1, q2} = {d2 + 1, d4}.

Lemma 5.1.4. Let a, b, c, e, , f, g ∈ Z≥0 with 0 ≤ a ≤ c − a, 0 ≤ b ≤ c − b, 0 ≤ e ≤ g − e, and

0 ≤ f ≤ g − f . Assume that a < b. Then the following are equivalent:

1. There exist k1, k2, k3 ∈ K(p) such that

k1


1

1

ϖ

ϖ

 k2


ϖa

ϖb

ϖc−a

ϖc−b

 k3 =


ϖe

ϖf

ϖg−e

ϖg−f

 .
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2. We have

(e, f, g) ∈ {(a, b, c+ 1), (a, b+ 1, c+ 1), (a+ 1, b, c+ 1), (a+ 1, b+ 1, c+ 1)}.

Proof. We begin with some inequalities. We have by assumption that c−b ≥ b > a, and so c > a+b.

Also, since c− b > a, then c− a > b > a. Hence c > 2a. Now, suppose that (1) holds. We have

K(p)


1

1

ϖ

ϖ

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

=K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

As seen in Lemma 3.3.1 in [12], there is a disjoint decomposition

K(p) = Kl(p)t1 ⊔
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1


where

t1 =


−ϖ−1

1

ϖ

1

 .

Assume first that

k2 ∈
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1

 .
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We may write

k2 =


1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1 X Zϖ−1 Y

1 Y

1

−X 1


for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2

g3 g4 ] ∈ GL(2, o), and t ∈ o×. The matrices
1

1

ϖ

ϖ




1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




1

1

ϖ

ϖ



−1

=


1

xϖ 1

zϖ2 yϖ2 1 −xϖ

yϖ2 1


and 

ϖa

ϖb

ϖc−a

ϖc−b



−1 
1 X Zϖ−1 Y

1 Y

1

−X 1




ϖa

ϖb

ϖc−a

ϖc−b



=


1 Xϖb−a Zϖ−1+c−2a Y ϖc−2a

1 Y ϖc−2a

1

−Xϖb−a 1


are contained in K(p); note that 2a ≤ c, 2b ≤ c, and so a + b ≤ c. Also a ≤ b by assumption. It

follows that

K(p)


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖa

ϖb

ϖc−a

ϖc−b

K(p)

=K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).
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Let

M =

1
ϖ

g1 g2

g3 g4

ϖb

ϖc−b


and let s1(M) = ϖq1 and s2(M) = ϖq2 for q1, q2 ∈ Z. By 5.1.2 we have that

{q1, q2} = {b, c− b+ 1} or {q1, q2} = {b+ 1, c− b}.

Let h =
[
h1 h2

h3 h4

]
, h′ =

[
h′
1 h′

2

h′
3 h′

4

]
∈ GL(2, o) be such that

hMh′ =

ϖq1

ϖq2

 .

Since the matrices
1

h1 h2

h1h4 − h2h3

h3 h4

 and


1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4


are contained in K(p) we have that

K(p)


1

1

ϖ

ϖ




1

g1 g2

g1g4 − g2g3

g3 g4




ϖa

ϖb

ϖc−a

ϖc−b

K(p)

=K(p)


1

h1 h2

h1h4 − h2h3

h3 h4




1

1

ϖ

ϖ




1

g1 g2

g1g4 − g2g3

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b




1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4

K(p)

=K(p)


ϖa

ϖq1

det(hgh′)ϖ1+c−a

ϖq2

K(p).
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Since 
ϖa

ϖq1

det(hgh′)ϖ1+c−a

ϖq2

 ∈ GSp(4, F )

we must have that det(hgh′) = 1 (recall that h, g, h′ ∈ GL(2, o)) and c+ 1 = q1 + q2. Thus

K(p)


ϖa

ϖq1

ϖ1+c−a

ϖq2

K(p) = K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

Assume that {q1, q2} = {b, c − b + 1}. Since b < c − b + 1 and q1 ≤ q2, we must have that q1 = b

and q2 = c− b+1. By 4.2.19 and the equality above we obtain e = a, f = b, and g = c+1. Assume

that {q1, q2} = {b+ 1, c− b}. Assume further that b+ 1 ≤ c− b. Then q1 = b+ 1, q2 = c− b, and

by 4.2.19 and the above coset equality we obtain e = a, f = b+1, and g = c+1. Assume now that

b+ 1 > c− b. Since c− b ≥ b, we have that c− b = b, and q1 = c− b and q2 = b+ 1. by 4.2.19 and

the above coset equality we obtain e = a, f = c− b = b, and g = c+ 1.

We now show that case (2) holds if k2 ∈ Kl(p)t1, so assume this condition and write k2 = k′2t1

for some k′2 ∈ Kl(p). Since t1 ∈ K(p), we have

K(p)


1

1

ϖ

ϖ

 k′2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

=K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

We may write

k′2 =


1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4


for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2

g3 g4 ] ∈ GL(2, o), and t ∈ o×. We find that

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

=K(p)


1

1

ϖ

ϖ




1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

=K(p)


1 Zϖ−1 Y ϖ−1

1 Y ϖ−1

1

1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

=K(p)


1 Y ϖ−1

1 Y ϖ−1

1

1




1

1

ϖ

ϖ
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

We claim that Y ∈ p. To see this, assume that Y ∈ o×. Then

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

=K(p)


1 Y ϖ−1

1 Y ϖ−1

1

1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

=K(p)


1

1

Y −1ϖ 1

Y −1ϖ 1




Y ϖ−1

Y ϖ−1

Y −1ϖ

Y −1ϖ



×


1

1

−1

−1




1

1

Y −1ϖ 1

Y −1ϖ 1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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=K(p)


ϖ−1

ϖ−1

ϖ

ϖ



×


1

1

−1

−1




1

1

Y −1ϖ 1

Y −1ϖ 1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

=K(p)


1

1

−ϖ

−ϖ




1

1

ϖ−1

ϖ−1



×


1

1

Y −1ϖ 1

Y −1ϖ 1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

=u1K(p)


1

1

Y −1 1

Y −1 1




1

1

ϖ

ϖ
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

=wK(p)


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1

X ′ 1

Z ′ Y ′ 1 −X ′

Y ′ 1



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

for some X ′, Y ′, Z ′ ∈ o and where

u1 =


1

−1

ϖ

−ϖ

 , w =


1

ϖ

ϖ

1

 .

Continuing, we have that

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

=wK(p)


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1

X ′ 1

Z ′ Y ′ 1 −X ′

Y ′ 1
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×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

=wK(p)


ϖc−a

ϖb

ϖa

ϖc−b




1

X ′ϖc−a−b 1

Z ′ϖc−2a Y ′ϖb−a 1 −X ′ϖc−a−b

Y ′ϖb−a 1

K(p)

=wK(p)


ϖc−a

ϖb

ϖa

ϖc−b

K(p),

where the last equality follows because c > a + b, c > 2a, and b > a. This contradicts 4.2.20, and

so Y ∈ p. We thus have

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

=K(p)


1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

As before, let

M =

1
ϖ

g1 g2

g3 g4

ϖb

ϖc−b


and let s1(M) = ϖq1 and s2(M) = ϖq2 for q1, q2 ∈ Z. By 5.1.2 we have that

{q1, q2} = {b, c− b+ 1} or {q1, q2} = {b+ 1, c− b}.
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Let h =
[
h1 h2

h3 h4

]
, h′ =

[
h′
1 h′

2

h′
3 h′

4

]
∈ GL(2, o) be such that

hMh′ =

ϖq1

ϖq2

 .

Since the matrices
1

h1 h2

h1h4 − h2h3

h3 h4

 and


1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4


are contained in K(p) we have that

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

=K(p)


1

h1 h2

h1h4 − h2h3

h3 h4



×


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b




1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4

K(p).

Simplifying as before, we have

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p) = K(p)


ϖc−a

ϖq1

ϖa+1

ϖq2

K(p)
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=K(p)


ϖa+1

ϖq1

ϖc−a

ϖq2

K(p).

Assume first that {q1, q2} = {b, c− b+1}. Since c− b+1 > b we have q1 = b and q2 − c− b+1. By

4.2.19 and the above coset equality we obtain that e = a + 1, f = b, and g = c + 1. Assume that

{q1, q2} = {b+ 1, c− b} and assume further that b+ 1 ≤ c− b. Then q1 = b+ 1 and q2 = c− b. We

obtain e = a+ 1, f = b+ 1, and g = c+ 1. Finally, assume that b+ 1 > c− b. Since c− b ≥ b, we

get c− b = b and so q1 = c− b = b and q2 = b+ 1. It follows that e = a+ 1, f = b, and g = c+ 1.

This completes that proof that (1) implies (2).

Now, assume that (2) holds. Then the identities
ϖa

ϖb

ϖc+1−a

ϖc+1−b



=


1

1

ϖ

ϖ




ϖa

ϖb

ϖc−a

ϖc−b

 ,


ϖa

ϖb+1

ϖc+1−a

ϖc+1−(b+1)



= s2


1

1

ϖ

ϖ

 s−1
2


ϖa

ϖb

ϖc−a

ϖc−b

 ,


ϖa+1

ϖb

ϖc+1−(a+1)

ϖc+1−b
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= t1


1

1

ϖ

ϖ

 t−1
1


ϖa

ϖb

ϖc−a

ϖc−b

 ,


ϖa+1

ϖb+1

ϖc+1−(a+1)

ϖc+1−(b+1)



= t1s2


1

1

ϖ

ϖ

 (t1s2)
−1


ϖa

ϖb

ϖc−a

ϖc−b

 ,

where

t1 =


−ϖ−1

1

ϖ

1

 s2 =


1

1

1

−1

 ,

proving that (1) holds, completing the proof.

Lemma 5.1.5. Let a, b, c, e, f, g be non-negative integers with 0 ≤ a ≤ c − a, 0 ≤ e ≤ g − e, and

0 ≤ f ≤ g − f . Then the following are equivalent:

1. There exist k1, k2, k3 ∈ K(p) such that

k1


1

1

ϖ

ϖ

 k2


ϖa

ϖa

ϖc−a

ϖc−a

 k3

=


ϖe

ϖf

ϖg−e

ϖg−f

 .
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2. We have

(e, f, g) ∈ {(a, a, c+ 1), (a, a+ 1, c+ 1), (a+ 1, a, c+ 1), (a+ 1, a+ 1, c+ 1)}.

Proof. First suppose that (1) holds. We then have

K(p)


1

1

ϖ

ϖ

 k2


ϖa

ϖa

ϖc−a

ϖc−a

K(p)

= K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

There is a disjoint decomposition

K(p) = Kl(p)t1 ⊔
⊔

u∈p/p

Kl(p)


1 uϖ−1

1

1

1

 ,

where

t1 =


−ϖ−1

1

ϖ

1

 .

For this, see Lemma 3.3.1 of [12]. Assume first that

k2 ∈
⊔

u∈p/p

Kl(p)


1 uϖ−1

1

1

1

 ,

then we may write

k2 =


1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1 X Zϖ−1 Y

1 Y

1

−X 1
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for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2
g3 g4 ] ∈ GL(2, o), and t ∈ o×. The matrices

1

1

ϖ

ϖ




1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




1

1

ϖ

ϖ



−1

=


1

xϖ 1

zϖ2 yϖ2 1 −xϖ

yϖ2 1


and 

ϖa

ϖa

ϖc−a

ϖc−a



−1 
1 X Zϖ−1 Y

1 Y

1

−X 1




ϖa

ϖa

ϖc−a

ϖc−a



=


1 X Zϖ−1+c−2a Y ϖc−2a

1 Y ϖc−2a

1

−X 1


are contained in K(p), noting that 2a ≤ c by assumption. It follows that

K(p)


1

1

ϖ

ϖ




1

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖa

ϖa

ϖc−a

ϖc−a

K(p)

= K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

Let

M =

1
ϖ

g1 g2

g3 g4

ϖa

ϖc−a


and let s1(M) = ϖq1 and s2(M) = ϖq2 . Let h =

[
h1 h2

h3 h4

]
, h′ =

[
h′
1 h′

2

h′
3 h′

4

]
∈ GL(2, o) be such that

hMh′ =

ϖq1

ϖq2 .
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By 5.1.2 we have that

{q1, q2} = {a, c− a+ 1} or {q1, q2} = {a+ 1, c− a}.

Since the matrices 
1

h1 h2

h1h4 − h2h3

h3 h4

 ,


1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4


are contained in K(p), we have

K(p)


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖa

ϖa

ϖc−a

ϖc−a

K(p)

=K(p)


1

h1 h2

h1h4 − h2h3

h3 h4




1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖa

ϖc−a

ϖc−a




1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4

K(p)

=K(p)


ϖa

ϖq1

det(hgh′)ϖ1+c−a

ϖq2

K(p).

Since 
ϖa

ϖq1

det(hgh′)ϖ1+c−a

ϖq2

 ∈ GSp(4, F )
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we must have that det(hgh′) = 1 (recalling that h, g, h′ ∈ GL(2, o) and c+ 1 = q1 + q2). Thus

K(p)


ϖa

ϖq1

ϖ1+c−a

ϖq2

K(p) = K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

Assume that {q1, q2} = {a, c − a + 1}. Since a < c − a + 1 and q1 ≤ q2 we must have q1 = a

and q2 = c − a + 1. By 4.2.19 and the coset equality above we have that e = a, f = a, and

g = c+ 1. Assume that {q1, q2} = {a+ 1, c− a}. Since 2a < c we have that a+ 1 ≤ c− a. Hence

q1 = a+ 1, q2 = c− a, and by 4.2.19 and the coset equality above, we obtain e = a, f = a+ 1, and

g = c+ 1.

Now assume that k2 ∈ Kl(p)t1, and so we may write k2 = k′2t1 for some k′2 ∈ Kl(p). Since

t1 ∈ K(p) we have that

K(p)


1

1

ϖ

ϖ

 k′2


ϖc−a

ϖa

ϖa

ϖc−a

K(p)

= K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

We may write

k′2 =


1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4
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for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2
g3 g4 ] ∈ GL(2, o), and t ∈ o×. We find that

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

= K(p)


1

1

ϖ

ϖ




1 X

1

1

−X 1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p)

= K(p)


1 Zϖ−1 Y ϖ−1

1 Y ϖ−1

1

1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p)

= K(p)


1 Y ϖ−1

1 Y ϖ−1

1

1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p).
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Assume that Y ∈ o×. Then

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

= K(p)


1 Y ϖ−1

1 Y ϖ−1

1

1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p)

= K(p)


1

1

Y ϖ−1 1

Y ϖ−1 1




Y ϖ−1

Y ϖ−1

Y −1ϖ

Y −1ϖ



×


1

1

−1

−1




1

1

Y ϖ−1 1

Y ϖ−1 1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p)

K(p)


ϖ−1

ϖ−1

ϖ

ϖ
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×


1

1

−1

−1




1

1

Y ϖ−1 1

Y ϖ−1 1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p)

K(p)


1

1

−ϖ

−ϖ




1

1

ϖ−1

−ϖ−1



×


1

1

Y ϖ−1 1

Y ϖ−1 1




1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p)

= u1K(p)


1

1

Y −1 1

Y −1 1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p)
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= wK(p)


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1

X ′ 1

Z ′ Y ′ 1 −X ′

Y ′ 1



×


ϖc−a

ϖa

ϖa

ϖc−a

K(p)

for some X ′.Y ′, Z ′ ∈ o. Continuing, we have

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

= wK(p)


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1

X ′ 1

Z ′ Y ′ 1 −X ′

Y ′ 1



×


ϖc−a

ϖa

ϖa

ϖc−a

K(p)

= wK(p)


ϖc−a

ϖa

ϖa

ϖc−a




1

X ′ϖc−2a 1

Z ′ϖc−2a Y ′ 1 −X ′ϖc−2a

Y ′ 1

K(p)

= wK(p)


ϖc−a

ϖa

ϖa

ϖc−a




1

1

Y ′ 1

Y ′ 1
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×


1

X ′ϖc−2a 1

(Z ′ −X ′Y ′)ϖc−2a 1 −X ′ϖc−2a

1

K(p)

= wK(p)


ϖc−a

ϖa

ϖa

ϖc−a




1

1

Y ′ 1

Y ′ 1

K(p),

where the last equality follows from the fact that c > 2a. Continuing, we have

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

= wK(p)


ϖc−a

ϖa

ϖa

ϖc−a




1

1

Y ′ 1

Y ′ 1

K(p)

= wK(p)


ϖc−a

ϖa

ϖa

ϖc−a




1 Y ′−1

1 Y ′−1

1

1



×


−Y ′−1

−Y ′−1

−Y ′

−Y ′




1

1

−1

−1




1 Y ′−1

1 Y ′−1

1

1

K(p)

= wK(p)


ϖc−a

ϖa

ϖa

ϖc−a




1

1

−1

−1

K(p)
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= wK(p)


1

1

−1

−1




ϖc−a

ϖa

ϖa

ϖc−a

K(p)

= wK(p)


1

1

−ϖ

−ϖ




ϖc−a−1

ϖa−1

ϖa

ϖc−a

K(p)

= wu1K(p)


ϖc−a−1

ϖa−1

ϖa

ϖc−a

K(p)

= t1s2u1u1K(p)


ϖc−a−1

ϖa−1

ϖa

ϖc−a

K(p)

= ϖK(p)


ϖc−a−1

ϖa−1

ϖa

ϖc−a

K(p)

= K(p)


ϖc−a

ϖa

ϖa+1

ϖc−a+1

K(p)

= K(p)


ϖa+1

ϖa

ϖc−a

ϖc−a+1

K(p)
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= K(p)


ϖa+1

ϖa

ϖ(c+1)−(a+1)

ϖ(c+1)−a

K(p).

By 4.2.19 we have that e = a+ 1, f = a, and g = c+ 1.

Now assume that Y ∈ p. We have

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

= K(p)


1

1

ϖ

ϖ



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖa

ϖa

ϖc−a

K(p).

As before, let

M =

1
ϖ

g1 g2

g3 g4

ϖa

ϖc−a


and let s1(M) = ϖq1 and s2(M) = ϖq2 . Let h =

[
h1 h2

h3 h4

]
, h′ =

[
h′
1 h′

2

h′
3 h′

4

]
∈ GL(2, o) be such that

hMh′ =

ϖq1

ϖq2 .


By 5.1.2 we have that

{q1, q2} = {a, c− a+ 1} or {q1, q2} = {a+ 1, c− a}.
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Since the matrices 
1

h1 h2

h1h4 − h2h3

h3 h4

 ,


1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4


are contained in K(p), we have

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p)

= K(p)


1

h1 h2

h1h4 − h2h3

h3 h4



×


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a

ϖa

ϖa

ϖc−a




1

h′
1 h′

2

h′
1h

′
4 − h′

2h
′
3

h′
3 h′

4

K(p).

Simplifying as before, we obtain that

K(p)


ϖe

ϖf

ϖg−e

ϖg−f

K(p) = K(p)


ϖc−a

ϖq1

ϖa+1

ϖq2

K(p)

= K(p)


ϖa+1

ϖq1

ϖc−a

ϖq2

K(p).
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Assume first that {q1, q2} = {a, c−a+1}. Since a < c−a+1 and q1 ≤ q2 we must have q1 = a and

q2 = c− a+1. By 4.2.19 and the coset equality above we have that e = a+1, f = a, and g = c+1.

Assume that {q1, q2} = {a + 1, c − a}. Since a + 1 ≤ c − a we have that q1 = a + 1, q2 = c − a,

and by 4.2.19 and the coset equality above, we obtain e = a + 1, f = a + 1, and g = c + 1. This

completes the proof the (2) holds.

The proof that (2) implies (1) is similar to the analogous implication in the proof of 5.1.4.

Lemma 5.1.6. Let a, b, c, e, f, g be non-negative integers with 0 ≤ a ≤ c − a, 0 ≤ e ≤ g − e, and

0 ≤ f ≤ g − f Assume that a < b. Then the following are equivalent:

1. There exist k1, k2, k3 ∈ K(p) such that

k1


1

1

ϖ

ϖ

 k2


ϖa

ϖb

ϖc−a

ϖc−a

 k3

= w


ϖe

ϖf

ϖg−e

ϖg−f

 .

2. We have

(e, f, g) = (a, b, c).

Proof. We will follow the proof of 5.1.4. Assume the (1) holds, then we have that

K(p)


1

1

ϖ

ϖ

 k2


ϖa

ϖb

ϖc−a

ϖc−a

K(p)

= K(p)w


ϖe

ϖf

ϖg−e

ϖg−f

K(p).
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As in the proof of 5.1.4, we know that there is a decomposition

K(p) = Kl(p)t1 ⊔
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1

 .

If

k2 ∈
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1

 ,

then an examination of the proof of 5.1.4 shows that there are q1, q2 ∈ Z such that

K(p)


ϖa

ϖq1

ϖc+1−a

ϖq2

K(p) = K(p)w


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

However, this contradicts 4.2.20, meaning that we must have k2 ∈ Kl(p)t1. In this case, the proof

of 5.1.4 shows that

K(p)w


ϖc−a

ϖb

ϖa

ϖc−b

K(p) =K(p)w


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)w


ϖe

ϖf

ϖg−e

ϖg−f

K(p).

Thus 4.2.19 implies that a = e, b = f, and g = c, proving that (2) holds.

Now assume that (2) holds and define

k1 =


1 −ϖ−1

−1

ϖ

ϖ −1

 ,
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k2 =


1 1

1 1

1

1

 t1,

k3 =


−1 ϖb−a−1

1

−1

−ϖb−a−1 1

 .

Then k1, k2, k3 ∈ K(p) and

k1


1

1

ϖ

ϖ

 k2


ϖa

ϖb

ϖc−a

ϖc−a

 k3

= w


ϖe

ϖf

ϖg−e

ϖg−f

 .

This proves that (1) holds, completing the proof.

Lemma 5.1.7. Let a, c, e, f, g be non-negative integers with 0 ≤ a ≤ c − a. Then there does not

exist k1, k2, k3 ∈ K(p) such that

k1


1

1

ϖ

ϖ

 k2


ϖa

ϖa

ϖc−a

ϖc−a

 k3

= w


ϖe

ϖf

ϖg−e

ϖg−f

 .

Proof. This result follows from the proof of 5.1.5 and 4.2.20.
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Definition 5.1.8. Let a, b, c be non-negative integers with 0 ≤ a ≤ c − a and 0 ≤ b ≤ c − b. We

define

T (ϖa, ϖb, ϖc−a, ϖc−b) = K(p)


ϖa

ϖb

ϖc−a

ϖc−b

K(p).

Proposition 5.1.9. Let a, b, c be non-negative integers with 0 ≤ a ≤ c− a and 0 ≤ b ≤ c− b.

1. If a < b with b+ 1 ≤ c− b, then

T (1, 1, ϖ,ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b)

=n1T (ϖ
a, ϖb, ϖc+1−a, ϖc+1−b)

+ n2T (ϖ
a+1, ϖb, ϖc+1−(a+1), ϖc+1−b)

+ n3T (ϖ
a, ϖb+1, ϖc+1−a, ϖc+1−(b+1))

+ n4T (ϖ
a+1, ϖb+1, ϖc+1−(a+1), ϖc+1−(b+1))

+ n5wT (ϖ
a, ϖb, ϖc−a, ϖc−b)

for some n1, n2, n3, n4, n5 ∈ Z with n1, n2, n3, n4, n5 > 0.

2. If a < b with b = c− b, then

T (1, 1, ϖ,ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b)

=r1T (ϖ
a, ϖb, ϖc+1−a, ϖc+1−b)

+ r2T (ϖ
a+1, ϖb, ϖc+1−(a+1), ϖc+1−b)

+ r3T (ϖ
a, ϖb+1, ϖc+1−a, ϖc+1−(b+1))

+ r5wT (ϖ
a, ϖb, ϖc−a, ϖc−b)

for some r1, r2, r3, r5 ∈ Z with r1, r2, r3, r5 > 0.

3. If a = b < c− a, then

T (1, 1, ϖ,ϖ)T (ϖa, ϖa, ϖc−a, ϖc−a)

=m1T (ϖ
a, ϖa, ϖc+1−a, ϖc+1−a)

+m2T (ϖ
a+1, ϖa, ϖc+1−(a+1), ϖc+1−a)

+m3T (ϖ
a, ϖa+1, ϖc+1−a, ϖc+1−(a+1))
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+m4T (ϖ
a+1, ϖa+1, ϖc+1−(a+1), ϖc+1−(a+1))

for some m1,m2,m3,m4 ∈ Z with m1,m2,m3,m4 > 0.

4. If a = b = c− a, then

T (1, 1, ϖ,ϖ)T (ϖa, ϖa, ϖa, ϖa) = T (ϖa, ϖa, ϖa+1, ϖa+1).

Proof. For what follows, let

S = {(e, f, g) ∈ Z3 : 0 ≤ e ≤ g − e and 0 ≤ f ≤ g − f}.

1. By 4.2.21 we may write

T (1, 1, ϖ,ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b) =
∑

(e,f,g)∈S

n(e, f, g)T (ϖe, ϖf , ϖg−e, ϖg−f )

+
∑

(e,f,g)∈S

n′(e, f, g)wT (ϖe, ϖf , ϖg−e, ϖg−f ).

Here, for (e, f, g ∈ S), n(e, f, g) and n′(e, f, g) are non-negative integers that are almost always

zero. Let (e, f, g) ∈ S. By 2.1.6 and 5.1.4 we have

n(e, f, g) ̸= 0

⇐⇒ (e, f, g) ∈ {(a, b, c+ 1), (a, b+ 1, c+ 1), (a+ 1, b, c+ 1), (a+ 1, b+ 1, c+ 1)},

and by 2.1.6 and 5.1.6 we have

n′(e, f, g) ̸= 0 ⇐⇒ (e, f, g) = (a, b, c).

The assumption that b + 1 ≤ c − b implies that (a, b, c + 1), (a, b + 1, c + 1), (a + 1, b, c + 1),

(a+ 1, b+ 1, c+ 1) and (a, b, c) are all contained in S. This proves (1).

2. We proceed as in the proof of (1). Again, we have that

n(e, f, g) ̸= 0

⇐⇒ (e, f, g) ∈ {(a, b, c+ 1), (a, b+ 1, c+ 1), (a+ 1, b, c+ 1), (a+ 1, b+ 1, c+ 1)},

and by 2.1.6 and 5.1.6 we have

n′(e, f, g) ̸= 0 ⇐⇒ (e, f, g) = (a, b, c).

The assumption that b = c − b implies that (a + 1, b + 1, c + 1) is not included in S, and so

(2) follows.
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3. This follows as in the proof of (1) using 2.1.6, 5.1.5, and 5.1.7.

4. This follows from the remark appearing after 2.1.6.

5.2 Computing Coefficients for T (1, 1, ϖ,ϖ)

Lemma 5.2.1. Let a, b, and c be non-negative integers with 0 ≤ a ≤ c − a and 0 ≤ b ≤ c − b.

Assume that a ≤ b. If a < b, then n1 = 1 with n1 as in (1) of 5.1.9; if a = b, then m1 = 1 with m1

as in (2) of 5.1.9

Proof. We will use 2.2.5 and 5.0.1. Let

g1 =


1

1

ϖ

ϖ

 and g2 =


ϖa

ϖb

ϖc−a

ϖc−b

 .

Let

g =


ϖa

ϖb

ϖc+1−a

ϖc+1−b

 .

From 2.2.5 we have the following disjoint decomposition

K(p)g1K(p) =
⊔
i∈I

hiK(p).

First, let

h =


1 zϖ−1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y, z ∈ o. We claim that h−1g ̸∈ K(p)g2K(p). Suppose that h−1g ∈ K(p)g2K(p) and we

will obtain a contradiction. Let k1, k2 ∈ K(p) be such that h−1g = k1g2k2. Now

h−1g =


ϖ

ϖ

1

1



−1 
1 zϖ−1 y

1 y x

1

1



−1 
ϖa

ϖb

ϖc+1−a

ϖc+1−b
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=


ϖ−1

ϖ−1

1

1




1 −zϖ−1 −y

1 −y −x

1

1




ϖa

ϖb

ϖc+1−a

ϖc+1−b



=


ϖa−1

ϖb−1

ϖc+1−a

ϖc+1−b




1 −zϖc−2a −yϖc+1−a−b

1 −yϖc+1−a−b −xϖc+1−2b

1

1

 .

Since c− 2a, c+ 1− a− b, and c+ 1− 2b are all non-negative, the element

k3 =


ϖa−1

ϖb−1

ϖc+1−a

ϖc+1−b


is in K(p). We now have

h−1g = k1g2k2
ϖa−1

ϖb−1

ϖc+1−a

ϖc+1−b

 k3 = k1g2k2


ϖa−1

ϖb−1

ϖc+1−a

ϖc+1−b

 k3k
−1
2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .

Write

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 , k1 =


A′

1 A′
2 B′

1ϖ
−1 B′

2

A′
3ϖ A′

4 B′
3 B′

4

C ′
1ϖ C ′

2ϖ D′
1 D′

2ϖ

C ′
3ϖ C ′

4 D′
3 D′

4


where Ai, Bi, Ci, Di, A

′
i, B

′
i, C

′
i, D

′
i ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ,

A′
1 B′

1

C ′
1 D′

1

 ,

A′
4 B′

4

C ′
4 D′

4

 ∈ GL(2, o)
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and ϖa−1

ϖc+1−a

A1 B1

C1 D1

 =

A′
1 B′

1

C ′
1 D′

1

ϖa

ϖc−a

 ,

ϖb−1

ϖc+1−b

A4 B4

C4 D4

 =

A′
4 B′

4

C ′
4 D′

4

ϖb

ϖc−b

 .

Form the first of these equations, we see that A1 = A′
1ϖ and b1 = B′

1ϖ
c+1−2a. Since c+1−2a > 0,

we see that A1, B1 ∈ p, and this contradicts the fact that
[
A1 B1

C1 D1

]
∈ GL(2, o).

Assume now that

h =


1 x zϖ−1

1

1

−x 1




ϖ

1

1

ϖ


for some x, z ∈ o.We claim that h−1g ̸∈ K(p)g2K(p). Suppose that h−1g ∈ K(p)g2K(p) and we

will obtain a contradiction. Let k1, k2 ∈ K(p) be such that h−1g = k1g2k2. Now

h−1g =


ϖ−1

1

1

ϖ−1




1 −x −zϖ−1

1

1

x 1




ϖa

ϖb

ϖc+1−a

ϖc+1−b



=


ϖa−1

ϖb

ϖc+1−a

ϖc−b




1 −xϖb−a −zϖc−2a

1

1

xϖb−a 1

 .

Since b− a and c− 2a are all non-negative, the element

k3 =


1 −xϖb−a −zϖc−2a

1

1

xϖb−a 1


is in K(p). We now have

h−1g = k1g2k2
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ϖa−1

ϖb

ϖc+1−a

ϖc−b

 k3 = k1g2k2


ϖa−1

ϖb

ϖc+1−a

ϖc−b

 k3k
−1
2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .

Write

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 , k1 =


A′

1 A′
2 B′

1ϖ
−1 B′

2

A′
3ϖ A′

4 B′
3 B′

4

C ′
1ϖ C ′

2ϖ D′
1 D′

2ϖ

C ′
3ϖ C ′

4 D′
3 D′

4


where Ai, Bi, Ci, Di, A

′
i, B

′
i, C

′
i, D

′
i ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ,

A′
1 B′

1

C ′
1 D′

1

 ,

A′
4 B′

4

C ′
4 D′

4

 ∈ GL(2, o)

and ϖa−1

ϖc+1−a

A1 B1

C1 D1

 =

A′
1 B′

1

C ′
1 D′

1

ϖa

ϖc−a

 ,

ϖb

ϖc−b

A4 B4

C4 D4

 =

A′
4 B′

4

C ′
4 D′

4

ϖb

ϖc−b

 .

The first of these equations leads to a contradiction.

Next, assume that

h = t1


1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y ∈ o. We claim that h−1g ̸∈ K(p)g2K(p). Suppose that h−1g ∈ K(p)g2K(p) and we



123

will obtain a contradiction. Let k1, k2 ∈ K(p) be such that h−1g = k1g2k2. Now

h−1g =


ϖ−1

ϖ−1

1

1




1 −y

1 −y −x

1

1

 t−1
1


ϖa

ϖb

ϖc+1−a

ϖc+1−b



=


ϖ−1

ϖ−1

1

1




1 −y

1 −y −x

1

1




ϖc+1−a

ϖb

ϖa

ϖc+1−b

 t−1
1

=


ϖc−a −yϖa−b−1

ϖb−1 −yϖa−b−1

ϖa

ϖc+1−b




1

1 −xϖc+1−2b

1

1

 t−1
1 .

Since c+ 1− 2b is non-negative, the element

k3 =


1

1 −xϖc+1−2b

1

1

 t−1
1

is in K(p). We now have

h−1g = k1g2k2
ϖc−a −yϖa−b−1

ϖb−1 −yϖa−b−1

ϖa

ϖc+1−b

 k3 = k1g2k2


ϖc−a −yϖa−b−1

ϖb−1 −yϖa−b−1

ϖa

ϖc+1−b

 k3k
−1
2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .
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Write

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 , k1 =


A′

1 A′
2 B′

1ϖ
−1 B′

2

A′
3ϖ A′

4 B′
3 B′

4

C ′
1ϖ C ′

2ϖ D′
1 D′

2ϖ

C ′
3ϖ C ′

4 D′
3 D′

4


where Ai, Bi, Ci, Di, A

′
i, B

′
i, C

′
i, D

′
i ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ,

A′
1 B′

1

C ′
1 D′

1

 ,

A′
4 B′

4

C ′
4 D′

4

 ∈ GL(2, o).

It follows that

C − 4ϖc+1−b = C ′
4ϖ

b, D4ϖ
c+1−b = D′

4ϖ
c−b,

which is equivalent to

C ′
4 = C4ϖ

c+1−2b, D′
4 = D4ϖ.

Since c+ 1− 2b > 0, this implies that C ′
4 and D′

4 are in p, a contradiction.

Next, assume that

h = t1


1 x

1

1

−x 1




ϖ

1

1

ϖ


for some x ∈ o. We claim that h−1g ̸∈ K(p)g2K(p). Suppose that h−1g ∈ K(p)g2K(p) and we will

obtain a contradiction. Let k1, k2 ∈ K(p) be such that h−1g = k1g2k2. Now

h−1g =


ϖ−1

1

1

ϖ−1




1 −x

1

1

x 1

 t−1
1


ϖa

ϖb

ϖc+1−a

ϖc+1−b



=


ϖ−1

1

1

ϖ−1




1 −x

1

1

x 1




ϖc+1−a

ϖb

ϖa

ϖc+1−b

 t−1
1
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=


ϖc−a

ϖb

ϖa

ϖc−b




1 −xϖ−(c+1−a−b)

1

1

xϖ−(c+1−a−b) 1

 t−1
1

=


ϖc−a −xϖb−1

ϖb

ϖa

xϖa−1 ϖc−b

 t−1
1 .

We now have

h−1g = k1g2k2
ϖc−a −xϖb−1

ϖb

ϖa

xϖa−1 ϖc−b

 t−1
1 = k1g2k2


ϖc−a −xϖb−1

ϖb

ϖa

xϖa−1 ϖc−b

 t−1
1 k−1

2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .

The element t−1
1 k−1

2 is an element of K(p). Write

t−1
1 k−1

2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ∈ GL(2, o).

Now

k1 =


ϖc−a −xϖb−1

ϖb

ϖa

xϖa−1 ϖc−b




A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4
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×


ϖa

ϖb

ϖc−a

ϖc−b



−1

=

[
∗ A2ϖ

c−a−b−A4xϖ
−1 ∗ B2ϖ

b−a−B4xϖ
2b−c−1

A4 ∗ B4ϖ
2b−c

∗ ∗ ∗
∗ ∗ ∗

]
.

Since k1 ∈ K(p), the (1,4) entry of k1 is contained in o. Since b ≥ a and x ∈ o×, this implies that

B4 has the form B4 = B′
4ϖ

c−2b+1 for some B′
4 ∈ o. It follows that the (2,4) entry of k1 is contained

in p. This implies that the (2,2) entry of k1, which is A4, is contained in o×. Consider now the

(1,2) entry of k1. This is contained in o. Since c− a− b ≥ 0, we see that A4xϖ
−1 is contained in

o. However, this is a contradiction to the fact that A4, x ∈ o×.

Lastly, Note that 
ϖ

1

1

ϖ



−1

t−1
1 g = t−1

1 g2,

where

t1 =


−ϖ−1

1

ϖ

1

 .

This identity, along with the previous cases, implies that #{h−1g ∈ K(p)g2K(p)} = 1. By 2.2.5,

we have that n = 1.

The proof that m1 = 1 when a = b < c− a follows from the above calculations in each case.

Lemma 5.2.2. Let a, b, and c be non-negative integers with 0 ≤ a ≤ c − a and 0 ≤ b ≤ c − b.

Assume that a ≤ b and let |o/p| = q. Then we have that following:

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

for g = diag(ϖa+1, ϖb, ϖc+1−(a+1), ϖc+1−b)

Condition type 1 type 2 type 3 type 4 total

a < b 0 q2 0 0 q2

a = b, c− a > a+ 1 0 q 0 0 q

a = b, c− a = a+ 1 0 q 0 1 q + 1
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Proof. We will use 2.2.5 and 5.0.1 and we also assume a < c− a. Let

g1 =


1

1

ϖ

ϖ

 and g2 =


ϖa

ϖb

ϖc−a

ϖc−b

 .

Let

g =


ϖa+1

ϖb

ϖc+1−(a+1)

ϖc+1−b

 .

From 2.2.5 we have the following disjoint decomposition

K(p)g1K(p) =
⊔
i∈I

hiK(p).

First, let

h =


1 zϖ−1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y, z ∈ o. We show that if a ≤ b, then h−1g ̸∈ K(p)g2K(p). To this end, assume

that h−1g ∈ K(p)g2K(p) and we will arrive at a contradiction. Let k1, k2 ∈ K(p) be such that

h−1g = k1g2k2. Now

h−1g =


ϖ

ϖ

1

1



−1 
1 zϖ−1 y

1 y x

1

1



−1 
ϖa+1

ϖb

ϖc+1−(a+1)

ϖc+1−b



=


ϖa

ϖb−1

ϖc−a

ϖc+1−b




1 −zϖc−2(a+1) −yϖc−a−b

1 −yϖc−a−b −xϖc+1−2b

1

1

 .
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As a < c− a, then 0 ≤ c− 2a− 1, and so the matrix

k3 =


1 −zϖc−2(a+1) −yϖc−a−b

1 −yϖc−a−b −xϖc+1−2b

1

1


is an element of K(p). We now have

h−1g = k1g2k2
ϖa

ϖb−1

ϖc−a

ϖc+1−b

 k3 = k1g2k2


ϖa

ϖb−1

ϖc−a

ϖc+1−b

 k3k
−1
2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .

The element k3k
−1
2 is an element of K(p). Write

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 , k1 =


A′

1 A′
2 B′

1ϖ
−1 B′

2

A′
3ϖ A′

4 B′
3 B′

4

C ′
1ϖ C ′

2ϖ D′
1 D′

2ϖ

C ′
3ϖ C ′

4 D′
3 D′

4


where Ai, Bi, Ci, Di, A

′
i, B

′
i, C

′
i, D

′
i ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ,

A′
1 B′

1

C ′
1 D′

1

 ,

A′
4 B′

4

C ′
4 D′

4

 ∈ GL(2, o)

and ϖa

ϖc−a

A1 B1

C1 D1

 =

A′
1 B′

1

C ′
1 D′

1

ϖa

ϖc−a

 ,

ϖb−1

ϖc+1−b

A4 B4

C4 D4

 =

A′
4 B′

4

C ′
4 D′

4

ϖb

ϖc−b

 .

The second of these equations leads to a contradiction.
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Next, let

h =


1 x zϖ−1

1

1

−x 1




ϖ

1

1

ϖ


for some x, z ∈ o. We have

h−1g =


ϖ−1

1

1

ϖ−1




1 −x −zϖ−1

1

1

x 1




ϖa+1

ϖb

ϖc+1−(a+1)

ϖc+1−b



=


ϖa−1

ϖb

ϖc−a

ϖc−1−b




ϖ −xϖb−a −zϖc−2a−1

1

1

xϖb−a ϖ



=


ϖa−1

ϖb

ϖc−a

ϖc−1−b




ϖ

1

1

ϖ



×


1 −xϖb−a−1 −zϖc−2a−2

1

1

xϖb−a−1 1



=


ϖa

ϖb

ϖc−a

ϖc−b




1 −xϖb−a−1 −zϖc−2a−2

1

1

xϖb−a−1 1



=


ϖa

ϖb

ϖc−a

ϖc−b




1 −xϖb−a−1

1

1

xϖb−a−1 1
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×


1 −zϖc−2a−2

1

1

1


Since a < c− a, then 0 ≤ c− 2a− 1, so

1 −zϖc−2a−2

1

1

1

 ∈ K(p).

Assume that a < b, then 
1 −xϖb−a−1

1

1

xϖb−a−1 1

 ∈ K(p),

and so h−1g ∈ K(p)g2K(p), and so there are q2 distinct cosets. Now assume that a = b. If x ∈ p,

then this matrix is still in K(p), and so there are q distinct cosets since

[
1 −zϖc−2a−2

1
1

1

]
∈ K(p).

Now, assume that x ∈ o× and we will obtain a contradiction. To this end, suppose that h−1g ∈

K(p)g2K(p) and let k1, k2 ∈ K(p) such that h−1g = k1g2k2.

Now 
ϖa

ϖb

ϖc−a

ϖc−b




1 −xϖb−a−1

1

1

xϖb−a−1 1



×


1 −zϖc−2a−2

1

1

1

 = k1g2k2


ϖa −xϖb−1

ϖb

ϖc−a

xϖc−a−1 ϖc−b

 k3k
−1
2 = k1g2
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where

k3 =


1 −zϖc−2a−2

1

1

1

 .

Note that k3k
−1
2 ∈ K(p). Set

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ∈ GL(2, o).

Now

k1 =


ϖa −xϖb−1

ϖb

ϖc−a

xϖa−c−1 ϖc−b




A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4



×


ϖa

ϖb

ϖc−a

ϖc−b



−1

=

[
∗ ϖ−b(A2ϖ

a−A4xϖ
b−1) ∗ ϖb−c(B2ϖ

a−B4xϖ
b−1)

∗ A4 ∗ B4ϖ
2b−c

∗ ∗ ∗ ∗
∗ ∗ ∗

]
.

Since k1 ∈ K(p), the (1,4) entry of k1 is contained in o. Since b = a and x ∈ o×, this implies that

B4 has the form B4 = B′
4ϖ

c−2b+1 for some B′
4 ∈ o. It follows that the (2,4) entry of k1 is contained

in p. This implies that the (2,2) entry of k1, which is A4, is contained in o×. Consider now the

(1,2) entry of k1. This is contained in o. Since a − b = 0, we see that A4xϖ
−1 is contained in o.

However, this is a contradiction to the fact that A4, x ∈ o×.
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Next, let

h = t1


1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y ∈ o. We show that if a ≤ b, then h−1g ̸∈ K(p)g2K(p). To this end, assume

that h−1g ∈ K(p)g2K(p) and we will arrive at a contradiction. Let k1, k2 ∈ K(p) be such that

h−1g = k1g2k2. Now

h−1g =


ϖ−1

ϖ−1

1

1




1 −y

1 −y −x

1

1




ϖc+1−(a+1)

ϖb

ϖa+1

ϖc+1−b

 t−1
1

=


ϖc+1−(a+1)

ϖb

ϖa+1

ϖc+1−b




ϖ−1 −yϖa−b

ϖ−1 −yϖa−b −xϖc−2b

1

1

 t−1
1

=


ϖc+1−(a+1)

ϖb

ϖa+1

ϖc+1−b




ϖ−1 −yϖa−b

ϖ−1 −yϖa−b

1

1



×


1

1 −xϖc−2b+1

1

1

 t−1
1

=


ϖc−a−1

ϖb−1

ϖa+1

ϖc+1−b




1 −yϖa−b+1

1 −yϖa−b+1

1

1
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×


1

1 −xϖc−2b+1

1

1

 t−1
1

=


ϖc−a−2 −yϖc−b−1

ϖb−2 −yϖa−1

ϖa+1

ϖc+1−b




1

1 −xϖc−2b+1

1

1

 t−1
1 .

Since 0 ≤ c+ 1− 2b we have that

k3 =


1

1 −xϖc−2b+1

1

1

 t−1
1

is in K(p). We thus have

h−1g = k1g2k2
ϖc−a−2 −yϖc−b−1

ϖb−2 −yϖa−1

ϖa+1

ϖc+1−b

 k3 = k1g2k2


ϖc−a−2 −yϖc−b−1

ϖb−2 −yϖa−1

ϖa+1

ϖc+1−b

 k3k
−1
2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .

The element k3k
−1
2 is an element of K(p). Write

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 , k1 =


A′

1 A′
2 B′

1ϖ
−1 B′

2

A′
3ϖ A′

4 B′
3 B′

4

C ′
1ϖ C ′

2ϖ D′
1 D′

2ϖ

C ′
3ϖ C ′

4 D′
3 D′

4
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where Ai, Bi, Ci, Di, A
′
i, B

′
i, C

′
i, D

′
i ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ,

A′
1 B′

1

C ′
1 D′

1

 ,

A′
4 B′

4

C ′
4 D′

4

 ∈ GL(2, o).

It follows that

C4ϖ
c+1−b = C ′

4ϖ
b , D4ϖ

c+1−b = D′
4ϖ

c−b,

which is equivalent to

C4ϖ
c+1−2b = C ′

4 , D4ϖ = D′
4.

Since 0 < c+ 1− 2b, then C ′
4 and D′

4 are in p, a contradiction.

Finally, let

h = t1


1 x

1

1

−x 1




ϖ

1

1

ϖ


for some x ∈ o. We show that if a ≤ b and c − a > a + 1, then h−1g ̸∈ K(p)g2K(p). To this end,

assume that h−1g ∈ K(p)g2K(p) and we will arrive at a contradiction. Let k1, k2 ∈ K(p) be such

that h−1g = k1g2k2. Now

h−1g =


ϖ−1

1

1

ϖ−1




1 −x

1

1

x 1




ϖc+1−(a+1)

ϖb

ϖa+1

ϖc+1−b

 t−1
1

=


ϖc+1−(a+1)

ϖb

ϖa+1

ϖc+1−b




ϖ−1 −xϖa+b−c−1

1

1

xϖa+b−c−1 ϖ−1

 t−1
1

=


ϖc−a−1 −xϖb−1

ϖb

ϖa+1

xϖa ϖc−b

 t−1
1 .

We have

h−1g = k1g2k2
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ϖc−a−1 −xϖb−1

ϖb

ϖa+1

xϖa ϖc−b

 t−1
1 = k1g2k2


ϖc−a−1 −xϖb−1

ϖb

ϖa+1

xϖa ϖc−b

 t−1
1 k−1

2 = k1g2


ϖc−a−1 −xϖb−1

ϖb

ϖa+1

xϖa ϖc−b

 t−1
1 k−1

2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .

Write

t−1
1 k−1

2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ∈ GL(2, o).

Now,

k1 =


ϖc−a−1 −xϖb−1

ϖb

ϖa+1

xϖa ϖc−b




A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4



×


ϖa

ϖb

ϖc−a

ϖc−b



−1

=

[
ϖ−a(A1ϖ

−a+c−1−A3xϖ
b) ϖ−b(A2ϖ

−a+c−1−A4xϖ
b−1) ∗ ∗

∗ ∗ ∗ B4ϖ
2b−c

C1ϖ
2 ∗ ∗ ∗

∗ ∗ ∗ ∗

]
.
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Assume that a < b and note that the (1,1) entry of k1 is in o since k1 ∈ K(p). Since a < c − a

and a < b, then c − 2a − 1 > 0 and b − a > 0. Hence A1 is in p. The (3,1) entry of k1 is C1ϖ
2.

As k1 ∈ K(p), then this entry must be of the form C ′
1ϖ for some C ′

1 ∈ o, and so C ′
1 = C1ϖ ∈ p.

This is a contradiction since the 2× 2 matrix formed by the (1,1), (1,3), (3,1) and (3,3) entries of

k1 has to be in GL(2, o). Next, assume that a = b and x ∈ o×. We know that the (1,2) entry of

k1 must be in o, which implies that A4 ∈ p as x ∈ o×. Similarly, the (2,4) entry of k1 must be in

o, implying that B4 = B4ϖ
c−2a+1 ∈ p. This shows that both A4, B4 ∈ p, this is a contradiction.

Finally, assume that a = b, x ∈ p, and c − a > a + 1. As x ∈ p, then the (1,1) entry of k1 is in p,

and this leads to the same contradiction as in the first case.

Now we show that if a = b, x ∈ p, and c− a = a+ 1, then h−1g ∈ K(p)g2K(p).

h−1g =


ϖc−a−1 −xϖb−1

ϖb

ϖa+1

xϖa ϖc−b

 t−1
1

=


ϖa −xϖa−1

ϖa

ϖc−a

xϖa ϖc−a

 t−1
1 .

Since x ∈ p, then h−1g ∈ K(p)g2K(p) as claimed.

Lemma 5.2.3. Let a, b, and c be non-negative integers with 0 ≤ a ≤ c − a and 0 ≤ b ≤ c − b.

Assume that a ≤ b and let |o/p| = q. Then we have the following:

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

for g = diag(ϖa, ϖb+1, ϖc+1−a, ϖc+1−(b+1))

Condition type 1 type 2 type 3 type 4 total

c− b > b+ 1 0 0 q 0 q

c− b = b+ 1 0 0 q 1 q + 1

c− b = b 0 0 0 0 0

.
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Proof. We will use 2.2.5 and 5.0.1 and we also assume a < c− a. Let

g1 =


1

1

ϖ

ϖ

 and g2 =


ϖa

ϖb

ϖc−a

ϖc−b

 .

Let

g =


ϖa

ϖb+1

ϖc+1−a

ϖc+1−(b+1)

 .

From 2.2.5 we have the following disjoint decomposition

K(p)g1K(p) =
⊔
i∈I

hiK(p).

First, let

h =


1 zϖ−1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y, z ∈ o. Now

h−1g =


ϖ

ϖ

1

1



−1 
1 zϖ−1 y

1 y x

1

1



−1 
ϖa

ϖb+1

ϖc+1−a

ϖc+1−(b+1)



=


ϖa−1

ϖb

ϖc+1−a

ϖc−b




1 −zϖc−2a −yϖc−b−a

1 −yϖc−b−a −xϖc−2b−1

1

1



=


ϖa−1

ϖb

ϖc+1−a

ϖc−b




1 −zϖc−2a −yϖc−b−a

1 −yϖc−b−a

1

1
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×


1

1 −xϖc−2b−1

1

1


Assume that x ∈ p and let k1, k2 ∈ K(p) be such that h−1g = k1g2k2. The element

k3 =


1 −zϖc−2a −yϖc−b−a

1 −yϖc−b−a

1

1




1

1 −xϖc−2b−1

1

1

 ∈ K(p).

Hence

h−1g = k1g2k2
ϖa−1

ϖb

ϖc+1−a

ϖc−b

 k3 = k1g2k2


ϖa−1

ϖb

ϖc+1−a

ϖc−b

 k3k
−1
2 = k1g2


ϖa−1

ϖb

ϖc+1−a

ϖc−b

 k3k
−1
2 = k1


ϖa

ϖb

ϖc−a

ϖc−b

 .

The element k3k
−1
2 is an element of K(p). Write

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 , k1 =


A′

1 A′
2 B′

1ϖ
−1 B′

2

A′
3ϖ A′

4 B′
3 B′

4

C ′
1ϖ C ′

2ϖ D′
1 D′

2ϖ

C ′
3ϖ C ′

4 D′
3 D′

4
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where Ai, Bi, Ci, Di, A
′
i, B

′
i, C

′
i, D

′
i ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ,

A′
1 B′

1

C ′
1 D′

1

 ,

A′
4 B′

4

C ′
4 D′

4

 ∈ GL(2, o).

The above equalities imply that A1ϖ
a−1 = A′

1ϖ
a and B1ϖ

a−2 = B′
1ϖ

c−a−1. Equivalently, we

have that A1 = A′
1ϖ and B1 = B′

1ϖ
c−2a+1. Since c− 2a is non-negative, we have a contradiction.

Now assume that x ∈ o×. If a = b, then b = a < c− a = c− b and so 0 < c− 2b, and by arguing

as we did before, we would have that h−1g ̸∈ K(p)g2K(p). We now assume that a < b and suppose

that k1, k2 ∈ K(p) are such that h−1g = k1g2k2. Note that

h−1g =


ϖa−1

ϖb

ϖc+1−a

ϖc−b




1 −zϖc−2a −yϖc−b−a

1 −yϖc−b−a

1

1



×


1

1 −xϖc−2b−1

1

1



=


1

1 −xϖ−1

1

1




ϖa−1

ϖb

ϖc+1−a

ϖc−b



×


1 −zϖc−2a −yϖc−b−a

1 −yϖc−b−a

1

1

 .

We have

k1 =


1

1 −xϖ−1

1

1




ϖa−1

ϖb

ϖc+1−a

ϖc−b

 k4k
−1
2 g−1
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where

k4 =


1 −zϖc−2a −yϖc−b−a

1 −yϖc−b−a

1

1

 .

Thus, writing

k4k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 ,

since k4k
−1
2 ∈ K(p), we have that

k1 =


1

1 −xϖ−1

1

1




ϖa−1

ϖb

ϖc+1−a

ϖc−b

 k4k
−1
2 g−1

2

=

 A1ϖ
−1 A2ϖ

a−b−1 B1ϖ
2a−c−2 B2ϖ

a+b−c−1

ϖ−a(A3ϖ
b+1−C3xϖ

c−b) ϖ−b(A4ϖ
b−C4xϖ

−b+c−1) ϖa−c(B3ϖ
b−D3xϖ

−b+c−1) ϖb−c(B4ϖ
b−D4xϖ

−b+c−1)
C1ϖ

−2a+c+2 C2ϖ
−a−b+c+2 D1ϖ D2ϖ

−a+b+2

C3ϖ
−a−b+c+1 C4ϖ

c−2b D3ϖ
a−b D4

.
The (1,1) entry of k1 implies thatA1 ∈ p. Additionally, the (1,3) entry implies thatB1 = B′

1ϖ
c−2a+1

(since B1ϖ
2a−c−1 ∈ o), meaning that B1 ∈ p. This is a contradiction.

Next, let

h =


1 x zϖ−1

1

1

−x 1




ϖ

1

1

ϖ


for some x, z ∈ o. We will show that h−1g ̸∈ K(p)g2K(p). We have that

h−1g =


ϖ−1

1

1

ϖ−1




1 −x −zϖ−1

1

1

x 1




ϖa

ϖb+1

ϖc+1−a

ϖc+1−(b+1)
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=


ϖa−1

ϖb

ϖc+1−a

ϖc−b




1 −xϖb−a+1 −zϖc−2a

ϖ

1

−xϖb−a ϖ−1



=


ϖa−1

ϖb

ϖc+1−a

ϖc−b




1

ϖ

1

ϖ−1



×


1 −xϖb−a+1 −zϖc−2a

ϖ

1

−xϖb−a+1 ϖ−1



=


ϖa−1

ϖb+1

ϖc+1−a

ϖc−b−1




1 −xϖb−a+1 −zϖc−2a

1

1

−xϖb−a+1 1

 .

Assume for the sake of contradiction that h−1g ∈ K(p)g2K(p) and k1, k2 ∈ K(p) such that h−1g =

k1g2k2. Note that since a ≤ b and a < c− a, the matrix

k3 =


1 −xϖb−a+1 −zϖc−2a

1

1

−xϖb−a+1 1


is an element of K(p). Hence,

h−1g = k1g2k2
ϖa−1

ϖb+1

ϖc+1−a

ϖc−b−1

 k3k
−1
2 = k1


ϖa

ϖb

ϖc−a

ϖc−b





142

The element k3k
−1
2 is an element of K(p). Write

k3k
−1
2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 , k1 =


A′

1 A′
2 B′

1ϖ
−1 B′

2

A′
3ϖ A′

4 B′
3 B′

4

C ′
1ϖ C ′

2ϖ D′
1 D′

2ϖ

C ′
3ϖ C ′

4 D′
3 D′

4


where Ai, Bi, Ci, Di, A

′
i, B

′
i, C

′
i, D

′
i ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ,

A′
1 B′

1

C ′
1 D′

1

 ,

A′
4 B′

4

C ′
4 D′

4

 ∈ GL(2, o).

The above equality implies that

A1ϖ
a−1 = A′

1ϖ
a, B1ϖ

a−2 = B′
1ϖ

c−a−1.

stated another way, we have that

A1 = A′
1ϖ, B1 = B′

1ϖ
c−2a+1,

a contradiction.

Next, let

h = t1


1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y ∈ o. Now

h−1g =


ϖ−1

ϖ−1

1

1




1 −y

1 −y −x

1

1




ϖc+1−a

ϖb+1

ϖa

ϖc+1−(b+1)

 t−1
1

=


ϖc−a

ϖb

ϖa

ϖc−b




1 −yϖa−b−1

1 −yϖa−b−1 −xϖc−2b−1

1

1

 t−1
1
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=


ϖc−a

ϖb

ϖa

ϖc−b




1 −yϖa−b−1

1 −yϖa−b−1

1

1




1

1 −xϖc−2b−1

1

1

 t−1
1 .

Note that h−1g ∈ K(p)g2K(p) if and only if there is some k ∈ K(p) such that h−1gkg−1
2 ∈ K(p).

If y ∈ p and c > 2b, let

k = t1


−ϖ−1

1 xϖc−2b−1

ϖ

1

 ,

and so k ∈ K(p) since c > 2b. Thus

h−1gkg−1
2 =


ϖc−a

ϖb

ϖa

ϖc−b




1 −yϖa−b−1

1 −yϖa−b−1

1

1



×


1

1 −xϖc−2b−1

1

1

 t−1
1 t1


−ϖ−1

1 xϖc−2b−1

ϖ

1



×


ϖa

ϖb

ϖc−a

ϖc−b



−1

=


ϖ−1 −yϖ−1

−y 1

ϖ

1

 .

Hence, we have that h−1gkg−1
2 ∈ K(p) since y ∈ p. Now, by a similar argument, taking k = I4 we

have that if y ∈ p, c = 2b, and x ∈ p, we have that h−1gkg−1
2 ∈ K(p).

Now, suppose that y ∈ o× or x ∈ o×, and suppose that there are k1, k2 ∈ K(p) such that
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h−1g = k1g2k2. We have that

k1 = h−1gk−1
2 g−1

2 .

Write

t−1
1 k−1

2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 ∈ K(p),

where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4. We haveA1 B1

C1 D1

 ,

A4 B4

C4 D4

 ∈ GL(2, o).

Hence

k1 = h−1gk−1
2 g−1

2

If y ∈ o×, then the (2,1) entry of k1, which is −C1y + A3ϖ
b−a+1 − C3xϖ

c−b−a implies that

C1 ∈ p. Additionally, we also have that the (2,3) entry of k1, which is −yD1ϖ
2a−c−1+ b3ϖ

b+a−c−

D3xϖ
a−b−1, implies that D1 ∈ p, a contradiction.

Finally, let

h = t1


1 x

1

1

−x 1




ϖ

1

1

ϖ


for some x ∈ o.

h−1g =


ϖ−1

1

1

ϖ−1




1 −x

1

1

x 1




ϖc+1−a

ϖb+1

ϖa

ϖc+1−(b+1)

 t−1
1

=


ϖa

ϖb+1

ϖc−a

ϖc−b−1




ϖc−2a −xϖb−a

1

ϖ2a−c

xϖa+b−c 1

 t−1
1
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=


ϖa

ϖb+1

ϖc−a

ϖc−b−1




ϖc−2a

1

ϖ2a−c

1



×


1 −xϖa+b−c

1

1

xϖa+b−c 1

 t−1
1

=


ϖc−a

ϖb+1

ϖa

ϖc−b−1




1 −xϖa+b−c

1

1

xϖa+b−c 1

 t−1
1

If it were the case that h−1g = k1g2k2 for some k1, k2 ∈ K(p), then we would have that

k1 =


ϖc−a

ϖb+1

ϖa

ϖc−b−1




1 −xϖa+b−c

1

1

xϖa+b−c 1

 t−1
1 k−1

2 g−1
2 .

Since t−1
1 k−1

2 ∈ K(p) write

t−1
1 k−1

2 =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4. Hence

k1 =


ϖc−a

ϖb+1

ϖa

ϖc−b−1




1 −xϖa+b−c

1

1

xϖa+b−c 1

 t−1
1 k−1

2 g−1
2

=


ϖc−a

ϖb+1

ϖa

ϖc−b−1




1 −xϖa+b−c

1

1

xϖa+b−c 1
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×


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 g−1
2

=

ϖ−a(A1ϖ
c−a−A3xϖ

b+1) ϖ−b(A2ϖ
c−a−A4xϖ

b) ϖa−c(B1ϖ
−a+c−1−B3xϖ

b) ϖb−c(B2ϖ
c−a−B4xϖ

b)
A3ϖ

−a+b+2 A4ϖ B3ϖ
a+b−c+1 B4ϖ

2b−c+1

C1ϖ C2ϖ
a−b+1 D1ϖ

2a−c D2ϖ
a+b−c+1

ϖ−a(C1xϖ
a+C3ϖ

c−b) ϖ−b(C2xϖ
a+C4ϖ

−b+c−1) ϖa−c(D1xϖ
a−1+D3ϖ

−b+c−1) ϖb−c(D2xϖ
a+D4ϖ

−b+c−1)

.
Note that the (3,3) entry of k1 implies that D1 ∈ p. If x ∈ o×, then the (4,1) entry of k1 implies

that C1 ∈ p, a contradiction. If x ∈ p and c ̸= 2b+1, then the (2,4) entry of k1 implies that B4 ∈ p.

Additionally, the (4,4) entry implies that D4 ∈ p, a contradiction.

Now, if x ∈ p and c = 2b+ 1, we show that h−1g ∈ K(p)g2K(p). Let

k = s2 =


1

1

1

−1


and so k ∈ K(p). Hence

h−1gkg−1
2 =


−ϖ−1 xϖ2b−c

−ϖ2b−c+1

ϖ

x ϖ−2b+c−1

 .

Since c = 2b+ 1 and x ∈ p, this matrix is in K(p), and hence h−1g ∈ K(p)g2K(p) as desired.

Lemma 5.2.4. Let a, b, and c be non-negative integers with 0 ≤ a ≤ c − a and 0 ≤ b ≤ c − b.

Assume a ≤ b and let |o/p| = q. Then we have the following:

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

for g = diag(ϖa+1, ϖb+1, ϖc+1−(a+1), ϖc+1−(b+1))

Condition type 1 type 2 type 3 type 4 total

a = b, c = 2b+ 1 q3 q2 q2 q q3 + 2q2 + q

a = b, c > 2b+ 1 q3 0 0 0 q3

a < b, c = 2b q2 0 0 0 q2

a < b, c = 2b+ 1 q3 q2 0 0 q3 + q2

a < b, c > 2b+ 1 q3 0 0 0 q3
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Proof. We will use 2.2.5 and 5.0.1 and we also assume a < c− a. Let

g1 =


1

1

ϖ

ϖ

 and g2 =


ϖa

ϖb

ϖc−a

ϖc−b

 .

Let

g =


ϖa+1

ϖb+1

ϖc+1−(a+1)

ϖc+1−(b+1)

 .

From 2.2.5 we have the following disjoint decomposition

K(p)g1K(p) =
⊔
i∈I

hiK(p).

First, let

h =


1 zϖ−1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y, z ∈ o. Now

h−1g =


ϖ

ϖ

1

1



−1 
1 zϖ−1 y

1 y x

1

1



−1 
ϖa+1

ϖb+1

ϖc+1−(a+1)

ϖc+1−(b+1)



=


ϖa+1

ϖb+1

ϖc+1−(a+1)

ϖc+1−(b+1)




ϖ−1 −zϖc−2a−3 −yϖc−b−a−2

ϖ−1 −yϖc−b−a−2 −xϖc−2b−2

1

1



=


ϖa+1

ϖb+1

ϖc+1−(a+1)

ϖc+1−(b+1)




ϖ−1

ϖ−1

1

1
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×


1 −zϖc−2a−2 −yϖc−b−a−1

1 −yϖc−b−a−1 −xϖc−2b−1

1

1



=


ϖa

ϖb

ϖc+1−(a+1)

ϖc+1−(b+1)




1 −zϖc−2a−2 −yϖc−b−a−1

1 −yϖc−b−a−1 −xϖc−2b−1

1

1



=


ϖa

ϖb

ϖc−a

ϖc−b




1 −yϖc−b−a−1

1 −yϖc−b−a−1 −xϖc−2b−1

1

1



×


1 −zϖc−2a−2

1

1

1

 .

As a < c− a, then 0 ≤ c− 2a− 1, and hence the matrix
1 −zϖc−2a−2

1

1

1


is an element of K(p). Note that we also have c − a − b − 1 ≥ 0 (suppose otherwise, so that

c − a − b < 1; since c − a − b ≥ 0 we must have c = a + b. Since c − a > a, we have a < b. Now

b ≤ c− b < c− a, contradicting b = c− a). It follows that h−1g ∈ K(p)g2K(p) if and only if
ϖa

ϖb

ϖc+1−(a+1)

ϖc+1−(b+1)




1

1 −xϖc−2b−1

1

1

 ∈ K(p)g2K(p).
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This happens if and only if there is some k ∈ K(p) such that

k′ =


ϖa

ϖb

ϖc+1−(a+1)

ϖc+1−(b+1)




1

1 −xϖc−2b−1

1

1

 kg−1
2 ∈ K(p).

It is evident that the above condition holds if c > 2b of x ∈ p (in both cases taking k = I). Assume

that c = 2b and x ∈ o×; we claim that the above expression does not hold. Suppose otherwise, and

we obtain a contradiction. Let k ∈ K(p) such that

k′ =


ϖa

ϖb

ϖc+1−(a+1)

ϖc+1−(b+1)




1

1 −xϖc−2b−1

1

1

 kg−1
2 ∈ K(p).

Then, writing

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =


∗ ∗ ∗ ∗

∗ A4 − C4xϖ
c−2b−1 ∗ B4ϖ

c−2b −D4xϖ
−1

∗ ∗ ∗ ∗

∗ C4ϖ
c−2b ∗ D4

 =


∗ ∗ ∗ ∗

∗ A4 − C4xϖ
−1 ∗ B4 −D4xϖ

−1

∗ ∗ ∗ ∗

∗ C4 ∗ D4

 .

Since x ∈ o×, the (2,2) entry of k′ implies that C4 ∈ p. Similarly, the (2,4) entry implies D4 ∈ p, a

contradiction.

Now let

h =


1 x zϖ−1

1

1

−x 1




ϖ

1

1

ϖ
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for some x, z ∈ o. Then

h−1g =


ϖa

ϖb+1

ϖc−a

ϖc−b−1




1 −xϖb−a zϖc−2a−1

1

1

xϖb−a 1

 .

Since c− 2a− 1 ≥ 0 and a ≤ b it follows that h−1g ∈ K(p)g2K(p) if and only if
ϖa

ϖb+1

ϖc−a

ϖc−b−1

 ∈ K(p)g2K(p).

This happens if and only if there is some k ∈ K(p) such that

k′ =


ϖa

ϖb+1

ϖc−a

ϖc−b−1

 kg−1
2 ∈ K(p).

Now, assume that c ̸= 2b+1, and we claim that the above expression does not hold by assuming it

does and deriving a contradiction. By assumption we have that there is some k ∈ K(p) such that

k′ =


ϖa

ϖb+1

ϖc−a

ϖc−b−1

 kg−1
2 ∈ K(p).

Then, writing

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =


∗ ∗ ∗ ∗

∗ A4ϖ ∗ B4ϖ
2b+1−c

∗ ∗ ∗ ∗

∗ C4ϖ
c−2b−1 ∗ ∗

 .
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As A4ϖ ∈ p, we must have that B4ϖ
2b+1−c and C4ϖ

c−2b−1 be elements of o×, or equivalently, that

B4 ∈ o×ϖc−2b−1 and C4 ∈ o×ϖ2b+1−c. As B4, C4 ∈ o, then we must have that c−2b−1, 2b+1−c ≥

0. Hence c = 2b + 1, which contradicts our assumption. Now assume that c = 2b + 1, then a

calculation shows that, with k = s2, then

k′ =


ϖa

ϖb+1

ϖc−a

ϖc−b−1

 kg−1
2 ∈ K(p).

Next, let

h = t1


1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y ∈ o. Now

h−1g =


ϖc−a−1

ϖb

ϖa+1

ϖc−b




1 −yϖa−b

1 −yϖa−b −xϖc−2b−1

1

1

 t−1
1 .

It follows that h−1g ∈ K(p)g2K(p) if and only if
ϖc−a−1

ϖb

ϖa+1

ϖc−b




1 −yϖa−b

1 −yϖa−b −xϖc−2b−1

1

1

 t−1
1 ∈ K(p)g2K(p).

This happens if and only if there is some k ∈ K(p) such that

k′ =


ϖc−a−1

ϖb

ϖa+1

ϖc−b




1 −yϖa−b

1 −yϖa−b −xϖc−2b−1

1

1

 kg−1
2 ∈ K(p).

Assume that a < b, and so a < b ≤ c − b < c − a implies that c > 2a + 1. We also have that
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0 ≤ c− 2b < c− a− b. Suppose that there is some k ∈ K(p) such that

k′ =


ϖa

ϖb+1

ϖc−a

ϖc−b−1

 kg−1
2 ∈ K(p).

Then, writing

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =


A1ϖ

c−2a−1 − C3yϖ
c−a−b ∗ ∗ ∗

∗ ∗ ∗ ∗

C1ϖ
2 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

As c > 2a+1, the (1,1) entry of k′ is in p, and since the (3,1) entry is in p2, this is a contradiction.

Assume now that a = b. Assume also that c ≥ 2a+ 2 and that the condition holds, and we obtain

a contradiction. We have , with k written as before,

k′ =


A1ϖ

c−2a−1 − C3yϖ
c−2a ∗ ∗ ∗

∗ ∗ ∗

C1ϖ
2 ∗ ∗ ∗

∗ ∗ ∗

 .

As before, we see that the (1,1) entry is in p and the (3,1) entry is in p2, a contradiction. Assume

now that c = 2a+ 1, then with

k =


1

1 xϖc−2b−1

1

1

 ,

then k′ ∈ K(p).
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Finally, let

h = t1


1 x

1

1

−x 1




ϖ

1

1

ϖ


for some x ∈ o. We thus have that

h−1g =


ϖc−a−1

ϖb+1

ϖa+1

ϖc−b−1




1 −xϖa+b+1−c

1

1

xϖa+b+1−c 1

 t−1
1 .

It follows that h−1g ∈ K(p)g2K(p) if and only if
ϖc−a−1

ϖb+1

ϖa+1

ϖc−b−1




1 −xϖa+b+1−c

1

1

xϖa+b+1−c 1

 t−1
1 ∈ K(p)g2K(p).

This happens if and only if there is some k ∈ K(p) such that

k′ =


ϖc−a−1

ϖb+1

ϖa+1

ϖc−b−1




1 −xϖa+b+1−c

1

1

xϖa+b+1−c 1

 kg−1
2 ∈ K(p).

Assume that c > 2a+ 1 and suppose that the above expression holds; we will obtain a contra-

diction. By assumption there is some k ∈ K(p) such that

k′ =


ϖa

ϖb+1

ϖc−a

ϖc−b−1

 kg−1
2 ∈ K(p).

Then, writing

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4
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where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =


A1ϖ

c−2a−1 −A3xϖ
b−a+1 ∗ ∗ ∗

∗ ∗ ∗ ∗

C1ϖ
2 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

Since the (1,1) entry is in p and the (3,1) entry in in p2 we have a contradiction. Assume now

that c = 2a + 1. As a ≤ b ≤ c − b ≤ c − a and c − a = a + 1 we must have that a = b. Hence

a+ b+ 1− c = 0. Note that in this case the expression
ϖc−a−1

ϖb+1

ϖa+1

ϖc−b−1




1 −xϖa+b+1−c

1

1

xϖa+b+1−c 1

 kg−1
2 ∈ K(p)

is equivalent to 
ϖa

ϖa+1

ϖa+1

ϖa

 k


ϖa

ϖa

ϖa+1

ϖa+1



−1

∈ K(p).

This holds if k = s2.

Lemma 5.2.5. Let a, b, and c be non-negative integers with 0 ≤ a ≤ c − a. Assume a ≤ b and

0 ≤ b ≤ c− b and let |o/p| = q. Then we have the following:

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

for g = wdiag(ϖa, ϖb, ϖc−a, ϖc−b)

Condition type 1 type 2 type 3 type 4 total

a < b 0 (q − 1)q 0 q − 1 q2 − 1

a = b 0 0 0 q − 1 q − 1

Proof. We will use 2.2.5 and 5.0.1 and we also assume a < c− a. Let

g1 =


1

1

ϖ

ϖ

 and g2 =


ϖa

ϖb

ϖc−a

ϖc−b

 .
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Let

g = w


ϖa

ϖb

ϖc−a

ϖc−b

 .

From 2.2.5 we have the following disjoint decomposition

K(p)g1K(p) =
⊔
i∈I

hiK(p).

First, let

h =


1 zϖ−1 y

1 y x

1

1




ϖ

ϖ

1

1


for some x, y, z ∈ o. Now

h−1g =


ϖb+1

ϖa+1

ϖc−b+1

ϖc−a+1




1 −zϖc−2b−2 −yϖc−a−b−1

1 −yϖc−a−b−1 −xϖc−2a−1

1

1



× w−1


ϖ

ϖ

1

1



−1

.

It follows that h−1g ∈ K(p)g2K(p) if and only if there is some k ∈ K(p) such that

k′ =


ϖb+1

ϖa+1

ϖc−b+1

ϖc−a+1




1 −zϖc−2b−2 −yϖc−a−b−1

1 −yϖc−a−b−1 −xϖc−2a−1

1

1



× w−1


ϖ

ϖ

1

1



−1

kg−1
2 ∈ K(p).
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Assume that this is the case and write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =[ ∗ ∗ ∗ ∗
A1−C1xϖ

c−2a−C3yϖ
1+c−a−b ∗ B1ϖ

2a−c−1−D1xϖ
−1−D3yϖ

a−b ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
.

As the (2,1) entry of this matrix is in p, since c − 2a > 0 and c − a − b + 1 > 0, we have that

A1 ∈ p. Since the (2,3) entry is in o and since c− 2a+ 1 > 0, this entry multiplied by ϖc−2a+1 is

contained in p. This is B1−D1xϖ
c−2a−D3yϖ

c−a−b+1, and since c− 2a > 0 and c− a− b+1 > 0,

we obtain B1 ∈ p, a contradiction.

Now let

h =


1 x zϖ−1

1

1

−x 1




ϖ

1

1

ϖ


for some x, z ∈ o. We have that

h−1g =


ϖb

ϖa+2

ϖc−b+2

ϖc−a




1 −xϖa−b+1 −zϖc−2b

1

1

xϖa−b+1 1



× w−1


ϖ

1

1

ϖ



−1

.

It follows that h−1g ∈ K(p)g2K(p) if and only if there is some k ∈ K(p) such that

k′ =


ϖb

ϖa+2

ϖc−b+2

ϖc−a




1 −xϖa−b+1 −zϖc−2b

1

1

xϖa−b+1 1





157

× w−1


ϖ

1

1

ϖ



−1

kg−1
2 ∈ K(p).

. Assume first that a < b and suppose that h−1gkg−1
2 ∈ K(p) and x ∈ p. We obtain a contradiction.

Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =


−A1x+A3xϖ

b−a − C3zϖ
c−a−b ∗ ∗ ∗

∗ B1ϖ
2a−c

C3ϖ
2−a−b+c ∗ ∗ ∗

∗ ∗ D1ϖ
−1 +D3xϖ

a−b ∗

 .

Since the (3,1) entry is in p2, then the (1,1) entry is in o×. However, as a < b, x ∈ p, and a+ b < c,

then the (1,1) entry is in p, a contradiction. Now assume that x ∈ o×. Let

k =


1 −x−1ϖb−a−1

−1 zx−1ϖc−a−b−1 zϖc−2b

−1

x−1ϖb−a−1 1

 .

Then k ∈ GSp(4, F ), λ(k) = −1, and k ∈ K(p) since a < b. With this k, then h−1gkg−1
2 ∈ K(p).

Now assume that a = b, then if there is some k ∈ K(p) such that h−1gkg−1
2 ∈ K(p), then by

the above calculation, the (2,3) entry of k′ implies B1 ∈ p and the (4,3) entry implies that D1 ∈ p,

a contradiction.

Next, let

h = t1


1 y

1 y x

1

1




ϖ

ϖ

1

1
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for some x, y ∈ o. We have

h−1g =


ϖc−b

ϖa

ϖb

ϖc−a




1 −yϖb−a−1

1 −yϖb−a−1 −xϖc−2a−1

1

1

 t−1
1 s−1

1

It follows that h−1g ∈ K(p)g2K(p) if and only if there is some k ∈ K(p) such that

k′ =


ϖc−b

ϖa

ϖb

ϖc−a




1 −yϖb−a−1

1 −yϖb−a−1 −xϖc−2a−1

1

1

 kg−1
2 ∈ K(p).

Assume that this is the case and write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =


∗ ∗ ∗ ∗

A1 − C1xϖ
c−2a +A3yϖ

b−a+1 ∗ B1ϖ
2a−c−1 −Dxϖ

−1 +B3yϖ
a+b−c ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

As the (2,1) entry of this matrix is in p, since c − 2a > 0 and c − a − b + 1 > 0, we have that

A1 ∈ p. Since the (2,3) entry is in o and since c− 2a+ 1 > 0, this entry multiplied by ϖc−2a+1 is

contained in p. This is B1−D1xϖ
c−2a−D3yϖ

c−a−b−+1, and since c−2a > 0 and c−a−b−+1 > 0,

we obtain B1 ∈ p, a contradiction.

Finally, let

h = t1


1 x

1

1

−x 1




ϖ

1

1

ϖ
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for some x ∈ o. We have

h−1g =


ϖc−b

ϖa+1

ϖb

ϖc−a−1




1 −xϖa+b−c

1

1

xϖa+b−c 1

 t−1
1 s−1

1 .

It follows that h−1g ∈ K(p)g2K(p) if and only if there is some k ∈ K(p) such that

k′ =


ϖc−b

ϖa+1

ϖb

ϖc−a−1




1 −xϖa+b−c

1

1

xϖa+b−c 1

 kg−1
2 ∈ K(p).

Assume that this is the case and that x ∈ p, and we obtain a contradiction. Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4


where Ai, Bi, Ci, Di ∈ o for 1 ≤ i ≤ 4, we have that

k′ =


C3ϖ

c−a−b −A1x ∗ ∗ ∗

∗ ∗ ∗ ∗

−A3ϖ
2+b−a ∗ ∗ ∗

∗ ∗ ∗

 .

As x ∈ p, then the (1,1) entry of k′ is in p; also, since a < b, the (3,1) entry is in p2, contradicting

the fact that k′ ∈ K(p). Now assume that x ∈ o×. Since a+ b < c, the matrix

k =


1 x−1ϖc−a−b−1

1 x−1ϖc−a−b−1

1

1


is contained in K(p), and with this k, we have that h−1gkg−1

2 ∈ K(p).

The following theorem summarizes the information contained in the above lemmas:
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Theorem 5.2.6. There exist functions ni : S → Z≥0 for i ∈ {1, . . . , 5} such that

T (1, 1, ϖ,ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b) = n1(a, b, c)T (ϖ
a, ϖb, ϖc−a+1, ϖc−b+1)

+ n2(a, b, c)T (ϖ
a, ϖb+1, ϖc−a+1, ϖc−b)

+ n3(a, b, c)T (ϖ
a+1, ϖb, ϖc−a, ϖc−b+1)

+ n4(a, b, c)T (ϖ
a+1, ϖb+1, ϖc−a, ϖc−b)

+ n5(a, b, c)wT (ϖa, ϖb, ϖc−a, ϖc−b)

for (a, b, c) ∈ S, where ni = ni(a, b, c) is as in the following table:

a

b

c− a+ 1

c− b+ 1

a

b+ 1

c− a+ 1

c− b

a+ 1

b

c− a

c− b+ 1

a+ 1

b+ 1

c− a

c− b

w

a

b

c− a

c− b

Condition n1 n2 n3 n4 n5

b < a a = c− a 1 q2 0 0 q2 − 1

a+ 1 = c− a 1 q2 q + 1 q3 + q2 q2 − 1

a+ 2 ≤ c− a 1 q2 q q3 q2 − 1

b = a b = c− b 1 0 0 0 0

b+ 1 = c− b 1 q + 1 q + 1 q3 + 2q2 + q q − 1

b+ 2 ≤ c− b 1 q q q3 q − 1

a < b b = c− b 1 0 q2 0 q2 − 1

b+ 1 = c− b 1 q + 1 q2 q3 + q2 q2 − 1

b+ 2 ≤ c− b 1 q q2 q3 q2 − 1

Below is a table that shows the same information, but organized based on the double coset.
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Coefficient of K(p)gK(p) in T (1, 1, ϖ,ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b)

g a > b a = b a < b

c− a = a c− a = a+ 1 c− a ≥ a+ 2 c− b = b+ 1 c− b ≥ b+ 2 c− b = b c− b = b+ 1 c− b ≥ b+ 2

diag(ϖa, ϖb, ϖc+1−a, ϖc+1−b) 1 1 1 1 1 1 1 1

diag(ϖa, ϖb+1, ϖc+1−a, ϖc+1−(b+1)) q2 q2 q2 q + 1 q − q + 1 q

diag(ϖa+1, ϖb, ϖc+1−(a+1), ϖc+1−b) − q + 1 q q + 1 q q2 q2 q2

diag(ϖa+1, ϖb+1, ϖc+1−(a+1), ϖc+1−(b+1)) − q3 + q2 q3 q3 + 2q2 + q q3 − q3 + q2 q3

w diag(ϖa, ϖb, ϖc−a, ϖc−b) q2 − 1 q2 − 1 q2 − 1 q − 1 q − 1 q2 − 1 q2 − 1 q2 − 1

Table 1: The table lists the coefficients of K(p)gK(p) for those g, written in standard form, that occur in the product

T (1, 1, ϖ,ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b). It is assumed that 0 ≤ a ≤ c − a, 0 ≤ b ≤ c − b, and a, b, c − a, c − b are not all equal. A − indicates

that g is not in standard form under the indicated conditions and does not occur in the product.
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5.3 Preliminaries for the T (1, ϖ,ϖ2, ϖ) Operator

Lemma 5.3.1. Let a, b ∈ Z with 0 ≤ a ≤ b. Let g ∈ GL(2, o). Set

M =

ϖ2

1

 g

ϖa

ϖb

 .

Then

{s1(M), s2(M)} =


{ϖa, ϖa+2} if a = b

{ϖa+1, ϖa+2} or {ϖb, ϖb+2} if b = a+ 1

{ϖa, ϖb+2} or {ϖa+1, ϖb+1} or {ϖa+2, ϖb} if b ≥ a+ 2

.

Proof. Let g = [A B
C D ]. Then

M =

m1 m2

m3 m4

 =

Aϖa+2 Bϖb+2

Cϖa Dϖb

 .

Assume first the a = b. Then

GL(2, o)MGL(2, o) = GL(2, o)

ϖ2

1

 g

ϖa

ϖa

GL(2, o)

=GL(2, o)

ϖ2

1

ϖa

ϖa

 gGL(2, o)

=GL(2, o)

ϖa+2

ϖa

GL(2, o).

It follows that s1(M) = ϖa and s2(M) = ϖa+2.

Assume next that b = a+ 1. Then

min(ν(m1), ν(m2),ν(m3), ν(m4))

=min(ν(A) + a+ 2, , ν(B) + a+ 3, ν(C) + a, ν(D) + a+ 1)

=


a if ν(C) = 0

a+ 1 if ν(C) ≥ 1

.

Hence

s1(M) =


ϖa if ν(C) = 0

ϖa+1 if ν(C) ≥ 1

.
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Consequently, we have that

s2(M) = d2(M)/s1(M)

= ϖa+b+2


ϖ−a if ν(C) = 0

ϖ−(a+1) if ν(C) ≥ 1

=


ϖa+3 if ν(C) = 0

ϖa+2 if ν(C) ≥ 1

.

Finally, assume that b ≥ a+ 2. We then have

min(ν(m1), ν(m2),ν(m3), ν(m4))

=min(ν(A) + a+ 2, , ν(B) + a+ 3, ν(C) + a, ν(D) + a+ 1)

=


a if ν(C) = 0

a+ 1 if ν(C) = 1

a+ 2 if ν(C) ≥ 2

.

Hence

s1(M) =


ϖa if ν(C) = 0

ϖa+1 if ν(C) = 1

ϖa+2 if ν(C) ≥ 2

.

Consequently, we have that

s2(M) = d2(M)/s1(M)

= ϖa+b+2


ϖ−a if ν(C) = 0

ϖ−(a+1) if ν(C) = 1

ϖa+2 if ν(C) ≥ 2

=


ϖb+2 if ν(C) = 0

ϖb+1 if ν(C) = 1

ϖb if ν(C) ≥ 2

.

This completes the proof.

Lemma 5.3.2. Let a, b, c, d ∈ Z. Then the following are equivalent:
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1. There exist g1, g2, g3 ∈ GL(2, o) such that

g1

ϖ2

1

 g2

ϖa

ϖb

 g3 =

ϖc

ϖd

 .

2. We have

{ϖc, ϖd} =


{ϖa, ϖa+2} if a = b

{ϖa, ϖa+3} or {ϖa+1, ϖa+2} if b = a+ 1

{ϖa, ϖb+2} or {ϖa+1, ϖb+1} or {ϖa+2, ϖb} if b ≥ a+ 2

.

Proof. Assume first that (1) holds and let

M = 1

ϖ2

1

 g2

ϖa

ϖb

 = g−1
1

ϖc

ϖd

 g−1
3 .

Then {s1(M), s2(M)} = {ϖc, ϖd}, and the assertion follows from5.3.1.

Assume that (2) holds. If a = b, then the conclusion is obvious. Assume that b = a + 1. If

{ϖc, ϖd} = {ϖa+1, ϖa+2}, then 1

1

ϖ2

1

1
1

ϖa

ϖa+1

 1

1

 =

ϖa+1

ϖa+2


and 1

1

ϖ2

1

1
1

ϖa

ϖa+1

1
1

 =

ϖa+2

ϖa+1

 .

If {ϖc, ϖd} = {ϖa, ϖa+3}, then since the invariant factors ofϖ2

1

1
1 1

ϖa

ϖa+1

 =

ϖa+2

ϖa ϖa+1


are ϖa and ϖa+3, the claim is proven in this case.

Finally, assume that b ≥ a + 2. If {ϖc, ϖd} = {ϖa, ϖb+2} or {ϖc, ϖd} = {ϖa+2, ϖb}, then it

is easy to verify (1). If {ϖc, ϖd} = {ϖa+1, ϖb+1}, then since the invariant factors ofϖ2

1

 1

ϖ 1

ϖa

ϖa+1

 =

ϖa+2

ϖa+1 ϖb


are ϖa+1 and ϖb+1, the claim is proven.
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Lemma 5.3.3. Let d1, d2, d3, d4, c1, c3 ∈ Z≥0 with d1+d3 = d2+d4 and c1+c3 = 2. Let g ∈ GL(2o)

and assume that d2 ≤ d4. Then

K(p)


ϖc1

ϖ2

ϖc3

1

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

K(p)

= K(p)


ϖmin(c1+d1,c3+d3)

ϖq1

ϖmax(c1+d1,c3+d3)

ϖq2

K(p)

where

(q1, q2) ∈


{(d2, d4 + 1), (d2 + 1, d4)} if d2 ≤ d4 − 1

{(d2, d2 + 1)} if d2 = d4

{(d4, d2 + 1), (d4 + 1, d2)} if d2 ≥ d4 + 1

.

Thus,

sf(K(p)


1

1

ϖ

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

K(p))

= (0,min(c1 + d1, c3 + d3), q1, q1 + q2 = d1 + d3 + 1 = d2 + d4 + 1)

with (q1, q2) as stated above. Thus

sf(K(p)


1

1

ϖ

ϖ

 k(g)


ϖd1

ϖd2

ϖd3

ϖd4

K(p))

=


(0,min(c1 + d1, c3 + d3), d2, d1 + d3 + 1 = d2 + d4 + 1) if ν(A) = 0

(0,min(c1 + d1, c3 + d3), d2 + 1, d1 + d3 + 1 = d2 + d4 + 1) if ν(A) > 0.

Proof. The proof uses 5.3.1 and a similar argument to that of 5.3.3.
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Lemma 5.3.4. Let a, b, c, e, f, g ∈ Z≥0 with 0 ≤ a ≤ c − a, 0 ≤ b ≤ c − b, 0 ≤ e ≤ g − e, and

0 ≤ f ≤ g − f . Assume that a ≤ b and a < c− a. Let k ∈ K(p)

1. Assume that a < b. Then

sf(K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p))

∈



{(0, a+ 1, b, c+ 2), (1, a, b, c+ 1)} if c− b = b

{(0, a+ 1, b, c+ 2), (0, a+ 1, b+ 1, c+ 2),

(1, a, b, c+ 1), (1, a, b+ 1, c+ 1)}
if c− b = b+ 1

{(0, a+ 1, b, c+ 2), (0, a+ 1, b+ 1, c+ 2), (0, a+ 1, b+ 2, c+ 2),

(1, a, b, c+ 1), (1, a, b+ 1, c+ 1)}
if c− b > b+ 1

2. Assume that a = b. Then

sf(K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p))

∈



{(0, a+ 1, a, c+ 2), (1, a+ 1, a+ 1, c+ 2),

(1, a, a+ 1, c+ 1)}
if c− a = a+ 1

{(0, a+ 1, a, c+ 2), (0, a+ 1, a+ 1, c+ 2),

(0, a+ 1, a+ 2, c+ 2), (1, a, a+ 1, c+ 1)}
if c− a > a+ 1

Proof. To begin we note that the inequality assumptions imply that a+ b < c, 2b ≤ c, and 2a < c.

There is a disjoint decomposition

K(p) = Kl(p)t1
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1
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where

t1 =


−ϖ−1

1

ϖ

1

 .

For this, see Lemma 3.3.1 of [12]. Assume first that

k2 ∈
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1

 .

We may write

k2 =


1

xϖ 1

zϖ 1 −xϖ

1




1

1

yϖ 1

yϖ 1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


1 X Zϖ−1 Y

1 Y

1

−X 1


for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2

g3 g4 ] ∈ GL(2, o) and t ∈ o×. The matrices
ϖ

ϖ2

ϖ

1




1

xϖ 1

zϖ 1 −xϖ

1




ϖ

ϖ2

ϖ

1



−1

=


1

xϖ2 1

zϖ 1 −xϖ2

1


and 

ϖa

ϖb

ϖc−a

ϖc−b




1 X Zϖ−1 Y

1 Y

1

−X 1




ϖa

ϖb

ϖc−a

ϖc−b



−1
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=


1 Xϖa−b Zϖ−1+c−2a Y ϖc−a−b

1 Y ϖc−a−b

1

−Xϖb−a 1


are contained in K(p). It follows that

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

1

yϖ 1

yϖ 1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


1

1

y 1

y 1




ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p).

Assume that y ∈ o×. Then

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)



169

= K(p)


1

1

y 1

y 1




ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


1 y−1

1 y−1

1

1




−y−1

−y−1

−y

−y




1

1

−1

−1



×


ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


1

1

−1

−1




1 y−1

1 y−1

1

1



×


ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4
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×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


1

1

−1

−1




ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


1 g3t

−1y−1ϖ−1 g4t
−1y−1ϖ−1

1 g4t
−1y−1ϖ−1

1

−g3t
−1y−1ϖ−1 1



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


1

1

−1

−1




ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b



×


1 g3t

−1y−1ϖ−b−a1 g4t
−1y−1ϖc−a−b−1

1 g4t
−1yc−a−b−1ϖ−1

1

−g3t
−1y−1ϖb−a−1 1

K(p)
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= K(p)


1

1

−1

−1




ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b



×


1 g3t

−1y−1ϖb−a−1

1

1

−g3t
−1y−1ϖb−a−1 1



×


1 g3g4t

−2y−2ϖc−2a−2 g4t
−1y−1ϖc−a−b−1

1 g4t
−1yc−a−b−1ϖ−1

1

1

K(p)

= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b




1 w

1

1

−w 1

K(p)

where we set w = g3t
−1y−1ϖb−a−1. First, assume that w ̸∈ o. Since a ≤ b we must have a = b,

and since ϖw ∈ o we may write w = uϖ−1 for some u ∈ o×. We also see that g3 ∈ o×. We have

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)
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= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b




1 w

1

1

−w 1

K(p)

= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b




1

u−1ϖ 1

1 −u−1ϖ

1



×


uϖ−1

u−1ϖ

−u−1ϖ

−uϖ−1




1

−1

1

−1



×


1

u−1ϖ 1

1 −u−1ϖ

1

K(p)

= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4
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×


ϖa

ϖb

ϖc−a

ϖc−b




1

u−1ϖ 1

1 −u−1ϖ

1



×


ϖ−1

ϖ

ϖ

ϖ−1




1

−1

1

−1

K(p)

= u1K(p)


1

g1ϖ
b−a+2

tu 1

g3ϖ
b−a+1

tu 1 − g1ϖ
b−a+2

tu

g3ϖ
b−a+1

tu 1




1

ϖ

ϖ

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖa

ϖb

ϖc−a

ϖc−b



×


ϖ−1

ϖ

ϖ

ϖ−1




1

−1

1

−1

K(p)

= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa−1

ϖb

ϖc−a

ϖc−b−1




1

ϖ

ϖ

1

K(p)
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= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa−1

ϖb

ϖc−a

ϖc−b−1

K(p)w

= ϖ−1u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb+1

ϖc−a+1

ϖc−b

K(p)w

= ϖ−1u1K(p)s2


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb+1

ϖc−a+1

ϖc−b

 s−1
2 K(p)w

= ϖ−1u1K(p)


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4
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×


ϖa

ϖc−b

ϖc−a+1

ϖb+1

K(p)w

= ϖ−1w2w−1K(p)


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖc−b

ϖc−a+1

ϖb+1

K(p)w

= ϖ−1K(p)


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖc−a

ϖc−a+1

ϖb+1

K(p)w.

In the last step we used a = b. Let

(δ, e, f, g) = sf(K(p)


1

1

ϖ

ϖ




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖc−a

ϖc−a+1

ϖb+1

K(p)w).

Since
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w−1K(p)wδ


ϖe

ϖf

ϖg−e

ϖg−f

K(p)w = K(p)wδ


ϖe

ϖf

ϖg−f

ϖg−e

K(p),

we obtain

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (δ, f, e, g).

By 5.3.3, using that g3 ∈ o× and a = b, we have

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (0, a+ 1, b, c+ 2).

Assume now that w ∈ o. We note that if a = b, then necessarily g3 ∈ p. Now

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)
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= wK(p)


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= wK(p)s2


1

ϖ

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

 s−1
2 K(p)

= wK(p)


1

1

ϖ

ϖ




t

g4 −g3

(g1g4 − g2g3)t
−1

−g2 g1



×


ϖa

ϖc−b

ϖc−a

ϖb

K(p).

By 5.3.3, since g3 ∈ p when a = b, we now have.

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p))
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∈


{(1, a, b, c+ 1)} if b = c− b and a < b

{(1, a, b, c+ 1), (1, a, b+ 1, c+ 1)} if b+ 1 ≤ c− b and a < b

and

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (1, a, b+ 1, c+ 1)

if a = b.

Now assume that y ∈ p. Then

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


1

1

y 1

y 1




ϖ

ϖ2

ϖ

1



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p).
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By 5.3.3 we have

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p))

∈


{(0, a+ 1, b, c+ 2)} if b = c− b

{(0, a+ 1, b, c+ 2), (0, a+ 1, b+ 1, c+ 2)} if b+ 1 = c− b

{(0, a+ 1, b, c+ 2), (0, a+ 1, b+ 1, c+ 2), (0, a+ 1, b+ 2, c+ 2)} if c− b > b+ 1.

Now assume that k2 ∈ Kl(p)t1. Write k2 = k′2t1 for some k′2 ∈ Kl(p). Since t1 ∈ K(p) we have

that

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1

 k′2


ϖc−a

ϖb

ϖa

ϖc−b

K(p).

Since k′2 ∈ Kl(p) we may write

k2 =


1 Z Y

1 Y

1

1




1 X

1

1

−X 1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1
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for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2
g3 g4 ] ∈ GL(2, o) and t ∈ o×. Substituting, we obtain

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1

 k′2


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 Z Y

1 Y

1

1




1 X

1

1

−X 1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1 Z Y ϖ

1 Y ϖ

1

1




ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b
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×


1

xϖc−a−b+1 1

zϖc−2a+1 yϖb−a+1 1 −xϖc−a−b+1

yϖb−a+1 1

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

Assume that X ∈ o×. Then

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

X−1 1

1 −X−1

1




X

X−1

X−1

X
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×


1

−1

1

−1




1

X−1 1

1 −X−1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1

X−1ϖ 1

1 −X−1ϖ

1




ϖ

ϖ2

ϖ

1




X

X−1

X−1

X



×


1

−1

1

−1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


1

g4tdet(g)
−1X−1 1

−g3tdet(g)
−1X−1 1 −g4tdet(g)

−1X−1

−g3tdet(g)
−1X−1 1




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


1

g4t
det(g)Xϖc−a−b 1

− g3t
det(g)Xϖb−a 1 − g4t

det(g)Xϖc−a−b

− g3t
det(g)Xϖb−a 1

K(p)
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= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


1

1

− g3t
det(g)Xϖb−a 1

− g3t
det(g)Xϖb−a 1




1

1

g4g3t
2

det(g)Xϖc−2a 1

1



×


1

g4t
det(g)Xϖc−a−b 1

1 − g4t
det(g)Xϖc−a−b

1

K(p)

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


1

1

r 1

r 1

K(p)

where r = − g3t
det(g)Xϖb−a. Assume that r ̸∈ p. Since a ≤ b we have that a = b and r ∈ o×, and so

g3 ∈ o×. We have

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b
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×


1

1

r 1

r 1

K(p)

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


1 r−1

1 r−1

1

1




−r−1

−r−1

−r

1− r




1

1

−1

−1



×


1 r−1

1 r−1

1

1

K(p)

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


1 r−1

1 r−1

1

1




1

1

ϖ−1

ϖ−1

u1K(p)

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b
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×


1 r−1

1 r−1

1

1




ϖ

ϖ

1

1

K(p)(ϖ−1w)

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


1 r−1

1 r−1

1

1




ϖ

ϖ

1

1

K(p)w−1

= wK(p)


1 − g3t

(g1g4−g2g3)r
ϖb−a g1t

(g1g4−g2g3)r
ϖb−a+1

1 g1t
(g1g4−g2g3)r

ϖb−a+1

1

g3t
(g1g4−g2g3)r

ϖb−a 1



×


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


ϖ

ϖ

1

1

K(p)w−1

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4
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×


ϖc−a+1

ϖb+1

ϖa

ϖc−b

K(p)w−1

= wK(p)s2


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a+1

ϖb+1

ϖa

ϖc−b

 s−1
2 K(p)w−1

= wK(p)


ϖ

1

1

ϖ




t

g4 −g3

(g1g4 − g2g3)t
−1

−g2 g1



×


ϖc−a+1

ϖc−b

ϖa

ϖb+1

K(p)w−1.

Now, let

sf(K(p)


ϖ

1

1

ϖ




t

g4 −g3

(g1g4 − g2g3)t
−1

−g2 g1



×


ϖc−a+1

ϖc−b

ϖa

ϖb+1

K(p))

= (δ, e, f, g),
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then

sf(wK(p)


ϖ

1

1

ϖ




t

g4 −g3

(g1g4 − g2g3)t
−1

−g2 g1



×


ϖc−a+1

ϖc−b

ϖa

ϖb+1

K(p)w−1)

= (δ, e, f, g),

and hence

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (δ, e, f, g).

By 5.3.3, using that g3 ∈ o× we now have that

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (0, a+ 1, b, c+ 2),

where for this we used that a = b (so that we had b < c− b).

Now assume that r ∈ p. We note that if a = b, then necessarily we have that g3 ∈ p. We have

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= wK(p)


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4
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×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)s2


ϖ

ϖ

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

 s−1
2 K(p)

= wK(p)s


ϖ

1

1

ϖ




t

g4 −g3

(g1g4 − g2g3)t
−1

−g2 g1



×


ϖc−a

ϖc−b

ϖa

ϖb

K(p).

By 5.3.3 we obtain

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p))

∈


{(1, a, b, c+ 1)} if c− b = b and a < b

{(1, a, b, c+ 1), (1, a, b+ 1, c+ 1)} if c− b > b and a < b
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and

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (1, a, b+ 1, c+ 1)

if a = b.

Lastly, assume that X ∈ p. We have that

K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1 Xϖ−1

1

1

−Xϖ−1 1




ϖ

ϖ2

ϖ

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

By 5.3.3 we obtain

sf(K(p)


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

K(p))

∈



{(0, a+ 1, b, c+ 2)} if c− b = b

{(0, a+ 1, b, c+ 2), (0, a+ 1, b+ 1, c+ 2)} if c− b = b+ 1

{(0, a+ 1, b, c+ 2), (0, a+ 1, b+ 1, c+ 2),

(0, a+ 1, b+ 2, c+ 2)} If c− b > b+ 1.

Lemma 5.3.5. Let a, b, c ∈ Z≥0 be such that 0 ≤ a ≤ c− a and 0 ≤ b ≤ c− b. Assume that a ≤ b

and a < c− a. Let δ ∈ {0, 1} and e, f, g ∈ Z≥0. There exist k1, k2, k3 ∈ K(p) such that

k1


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

 k3

= wδ


ϖe

ϖf

ϖg−e

ϖg−f
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if and only if

(δ, e, f, g) ∈



{(0, a+ 1, b, c+ 2),

(1, a, b, c+ 1)}
if a < b and c− b = b

{(0, a+ 1, b, c+ 2),

(0, a+ 1, b+ 1, c+ 2),

(1, a, b, c+ 1),

(1, a, b+ 1, c+ 1)}

if a < b and c− b = b+ 1

{(0, a+ 1, b, c+ 2),

(0, a+ 1, b+ 1, c+ 2),

(0, a+ 1, b+ 2, c+ 2),

(1, a, b, c+ 1),

(1, a, b+ 1, c+ 1)}

if a < b and c− b > b+ 1b

{(0, a+ 1, a, c+ 2),

(0, a+ 1, a+ 1, c+ 2),

(1, a, a+ 1, c+ 1)}

if a = b and c− a = a+ 1

{(0, a+ 1, a, c+ 2),

(0, a+ 1, a+ 1, c+ 2),

(0, a+ 1, a+ 2, c+ 2),

(1, a, a+ 1, c+ 1)}

if a = b and c− a < a+ 1.

Proof. The implication =⇒ follows from 5.3.4, and so we prove the other implication. Assume

that the relationship between (δ, e, f, g) and each of the sets above holds.

First suppose that a < b, c − b = b, and (δ, e, f, g) = (0, a + 1, b, c + 2). By 5.3.2 there exist

g1, g2, g3 ∈ GL(2, o) such that

g1

ϖ2

1

 g2

ϖb

ϖc−b

 g3 =

ϖb

ϖc+2−b

 .

Letting k1 = k(g1), k2 = k(g2), and k3 = k(g3) in the statement of the lemma we have that the
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result holds. Assume next that (δ, e, f, g) = (1, a, b, c+ 1). Then the matrices

k1 =


−1 1

1

−ϖ2 −1 ϖ2

−1 1

 ,

k2 =


1

1

ϖ 1

ϖ 1 1

 ,

k3 =


1 −ϖb−a−1

1 −ϖc−a−b−1 −ϖc−2b

1

ϖb−a−1 1


are contained in K(p) and with these the statement of the lemma holds.

Now assume that a < b, c − b = b + 1, and (δ, e, f, g) = (0, a + 1, b, c + 2) or (δ, e, f, g) =

(0, a+ 1, b+ 1, c+ 2). By 5.3.2 there exist g1, g2, g3 ∈ GL(2, o) such that

g1

ϖ2

1

 g2

ϖb

ϖc−b

 g3 =

ϖb

ϖc+2−b

 .

Letting k1 = k(g1), k2 = k(g2), and k3 = k(g3) in the statement of the lemma we have that the

result holds. If (δ, e, f, g) = (1, a, b, c+ 1), then the matrices

k1 =


−1 1

1

−ϖ2 −1 ϖ2

−1 1

 ,

k2 =


1

1

ϖ 1

ϖ 1 1

 ,
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k3 =


1 −ϖb−a−1

1 −ϖc−a−b−1 −ϖc−2b

1

ϖb−a−1 1


are contained in K(p) and with these the statement of the lemma holds. Assume that (δ, e, f, g) =

(1, a, b+ 1, c+ 1). Then the matrices

k1 =


ϖ−1

1

−ϖ ϖ

−1 1

 ,

k2 =


1

1

ϖ 1

ϖ 1

 ,

k3 =


1 −ϖc−a−b−1

1 −ϖc−a−b−1

1

1


are contained in K(p) and with these the statement of the lemma holds.

The remaining cases are similarly proven.

Lemma 5.3.6. Let a, b, c ∈ Z≥0 be such that 0 ≤ a ≤ c− a and 0 ≤ b ≤ c− b. Assume that b ≤ a

and b < c− b. Let δ ∈ {0, 1} and e, f, g ∈ Z≥0. There exist k1, k2, k3 ∈ K(p) such that

k1


ϖ

ϖ2

ϖ

1

 k2


ϖa

ϖb

ϖc−a

ϖc−b

 k3

= wδ


ϖe

ϖf

ϖg−e

ϖg−f
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if and only if

(δ, e, f, g) ∈



{(0, a, b+ 1, c+ 2),

(1, a, b, c+ 1)}
if b < a and c− a = a

{(0, a, b+ 1, c+ 2),

(0, a+ 1, b+ 1, c+ 2),

(1, a, b, c+ 1),

(1, a+ 1, b, c+ 1)}

if b < a and c− a = a+ 1

{(0, a, b+ 1, c+ 2),

(0, a+ 1, b+ 1, c+ 2),

(0, a+ 2, b+ 1, c+ 2),

(1, a, b, c+ 1),

(1, a+ 1, b, c+ 1)}

if b < a and c− a > a+ 1b

{(0, a, a+ 1, c+ 2),

(0, a+ 1, a+ 1, c+ 2),

(1, a+ 1, a, c+ 1)}

if a = b and c− a = a+ 1

{(0, a, a+ 1, c+ 2),

(0, a+ 1, a+ 1, c+ 2),

(0, a+ 2, a+ 1, c+ 2),

(1, a+ 1, a, c+ 1)}

if a = b and c− a < a+ 1.

Proof. This result follows from conjugating the matrix equality in 5.3.5 by w, then applying

ref15.16.5.

Lemma 5.3.7. Let a, b, c ∈ Z≥0 with 0 ≤ a ≤ c− a and 0 ≤ b ≤ c− b. Assume that a < b so that

also a+ b < and a < c− a. Let k ∈ K(p). Then

sf(K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p))

∈ {(0, a, b+ 1, c+ 2), (0, a+ 1, b+ 1, c+ 2), (0, a+ 2, b+ 1, c+ 2),



195

(1, a+ 1, b, c+ 1), (1, a+ 1, b+ 1, c+ 1)}.

Proof. There is a disjoint decomposition

K(p) = Kl(p)t1
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1


where

t1 =


−ϖ−1

1

ϖ

1

 .

For this, see Lemma 3.3.1 of [12]. Assume first that

k2 ∈
⊔

u∈o/p

Kl(p)


1 uϖ−1

1

1

1

 .

We may write

k =


1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




1 X Zϖ−1 Y

1 Y

1

−X 1


for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2

g3 g4 ] ∈ GL(2, o) and t ∈ o×. The matrices
ϖ

ϖ2

ϖ

1




1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




ϖ

ϖ2

ϖ

1



−1

=


1

xϖ2 1

zϖ3 yϖ2 1 −xϖ2

yϖ2 1


and 

ϖa

ϖb

ϖc−a

ϖc−b



−1 
1 X Zϖ−1 Y

1 Y

1

−X 1




ϖa

ϖb

ϖc−a

ϖc−b
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=


1 Xϖb−a Zϖ−1+c−2a Y ϖc−2a

1 Y ϖc−2a

1

−Xϖb−a 1


are contained in K(p). It follows that

K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖa

ϖb

ϖc−a

ϖc−b

K(p)

= K(p)


ϖa

ϖb+1

ϖc+2−a

ϖc+1−(b+1)

K(p).

Hence

sf(K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (0, a, b+ 1, c+ 2).

Now assume that k ∈ Kl(p)t1 and write k = k′t1 for some k′ ∈ Kl(p). We may write

k′ =


1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4


for some x, y, z,X, Y, Z ∈ o, g = [ g1 g2

g3 g4 ] ∈ GL(2, o) and t ∈ o×.

We have that

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

xϖ 1

zϖ yϖ 1 −xϖ

yϖ 1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1

xϖ2 1

zϖ3 yϖ2 1 −xϖ2

yϖ2 1




ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

Assume that X ∈ o×. Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

X−1 1

1 −X−1

1




X

X−1

X−1

X



×


1

−1

1

−1




1

X−1 1

1 −X−1

1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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= K(p)


1

X−1ϖ 1

1 −X−1ϖ

1




ϖ

ϖ2

ϖ

1




X

X−1

X−1

X



×


1

−1

1

−1




1 Z Y + ZX−1

1 Y + ZX−1 2Y X−1 + ZX−2

1

1




1

X−1 1

1 −X−1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

1

1

1




1 Z Y + ZX−1

1 Y + ZX−1 2Y X−1 + ZX−2

1

1



×


1

X−1 1

1 −X−1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1

1

1

1




ϖ

1

ϖ

ϖ2




1 Z Y + ZX−1

1 Y + ZX−1 2Y X−1 + ZX−2

1

1
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


1

g4tdet(g)
−1X−1 1

−g3tdet(g)
−1X−1 1 −g4tdet(g)

−1X−1

−g3tdet(g)
−1X−1 1



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1

ϖ

ϖ

1




1

1

ϖ

ϖ




1 Z Y + ZX−1

1 Y + ZX−1 2Y X−1 + ZX−2

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b



×


1

g4t
det(g)Xϖc−a−b 1

− g3t
det(g)ϖ

b−a 1 − g4t
det(g)Xϖc−a−b

− g3t
det(g)Xϖc−a−b 1

K(p)

= K(p)


1

ϖ

ϖ

1




1

1

ϖ

ϖ




1 Z Y + ZX−1

1 Y + ZX−1 2Y X−1 + ZX−2

1

1





201

×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)


1

1

ϖ

ϖ




1 Z

1

1

1




1 Y + ZX−1

1 Y + ZX−1

1

1



×


1

1 2Y X−1 + ZX−2

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)


1 Zϖ−1

1

1

1




1

1

ϖ

ϖ




1 Y + ZX−1

1 Y + ZX−1

1

1



×


t

g′1 g′2

det(g′)t−1

g′3 g′4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)


1

1

ϖ

ϖ




1 Y + ZX−1

1 Y + ZX−1

1

1





202

×


t

g′1 g′2

det(g′)t−1

g′3 g′4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

Assume further that Y + ZX−1 ∈ p. Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)


1

1

ϖ

ϖ




1 Y + ZX−1

1 Y + ZX−1

1

1



×


t

g′1 g′2

det(g′)t−1

g′3 g′4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)


1

1

ϖ

ϖ




t

g′1 g′2

det(g′)t−1

g′3 g′4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

Met

M =

1
ϖ

g′1 g′2

g′3 g′4

ϖb

ϖc−b

 ,

and let s1(M) = ϖq1 and s2(M) = ϖq2 . By 5.1.1, noting that b ≤ c − b, we have that q1 = b or

q1 = b+ 1. We now have

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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= K(p)


ϖc−a

ϖq1

ϖa+1

ϖq2

K(p)

= K(p)


ϖa+1

ϖq1

ϖc−a

ϖq2

K(p).

It follows that

sf(K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) ∈
{(1, a+ 1, b, c+ 2),

(1, a+ 1, b+ 1, c+ 1)}

in this case, i.e., when X ∈ o× and Y + ZX−1 ∈ p. Still assuming that X ∈ o×, suppose that

Y + ZX−1 ∈ o×. Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)


1

1

ϖ

ϖ




1 Y ′

1 Y ′

1

1



×


t

g′1 g′2

det(g′)t−1

g′3 g′4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)


1

1

ϖ

ϖ




1

1

Y ′−1 1

Y ′−1 1




Y ′

Y ′

Y ′−1

Y ′−1





204

×


1

1

−1

−1




1

1

Y ′−1 1

Y ′−1 1




t

g′1 g′2

det(g′)t−1

g′3 g′4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= wK(p)u1


1

1

Y ′−1 1

Y ′−1 1




t

g′1 g′2

det(g′)t−1

g′3 g′4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)w2


t

g′1 g′2

det(g′)t−1

g′3 g′4




1

X1 1

Z1 Y1 1 −X1

Y1 1



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

for some X1, Y1, Z1 ∈ o. Continuing, we have that

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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= K(p)


ϖ

ϖ

ϖ

ϖ




t

g′1 g′2

det(g′)t−1

g′3 g′4




ϖc−a

ϖb

ϖa

ϖc−b



×


1

X1ϖ
c−a−b 1

Z1ϖ
c−2a Y1ϖ

b−a 1 −X1ϖ
c−a−b

Y1ϖ
b−a 1

K(p)

= K(p)


ϖc−a+1

ϖb+1

ϖa+1

ϖc−b+1

K(p)

= K(p)


ϖa+1

ϖb+1

ϖc+2−(a+1)

ϖc+2−(b+1)

K(p)

where we have used 0 < c− a− b, 0 < c− 2a and 0 < b− a. It follows that

sf(K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (0, a+ 1, b+ 1, c+ 2)

in this case, i.e., when X ∈ o× and Y + ZX−1 ∈ o×.

Now, assume that X ∈ p. Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 X

1

1

−X 1




1 Z Y

1 Y

1

1
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1 Xϖ−1

1

1

−Xϖ−1 1




ϖ

ϖ2

ϖ

1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 Z Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

Assume further that Z ∈ o×.Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 Z Y

1 Y

1

1
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×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

1

Z−1 1

1




Z

Z−1

Z−1

Z




1

1

−1

1



×


1

1

Z−1 1

1




1 Y

1 Y

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1

1

Z−1ϖ2 1

1




ϖ

ϖ2

ϖ

1




Z

Z−1

Z−1

Z




1

1

−1

1



×


1

1

Z−1 1

1




1 Y

1 Y

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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= K(p)


ϖ

ϖ2

ϖ

1




1

1

−1

1




1

1

Z−1 1

1




1 Y

1 Y

1

1



×


t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


−ϖ−1

1

ϖ

1




ϖ

ϖ

ϖ

ϖ




1 Y

1 Y

1

1



×


1

−Y Z−1 1

Z−1 1 Y Z−1

1




1

1 −Y 2Z−1

1

1




t

g1 g2

(g1g4 − g2g3)t
−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)t1


ϖ

ϖ

ϖ

ϖ




1 Y

1 Y

1

1




1

−Y Z−1 1

Z−1 1 Y Z−1

1



×


t

g′1 g′2

det(g′)t−1

g′3 g′4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ

ϖ

ϖ




1 Y

1 Y

1

1




t

g′1 g′2

det(g′)t−1

g′3 g′4
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×


1

−g′
4tY

det(g′)Z 1

t2

det(g′)Z
g′
3tY

det(g′)Z 1
−g′

4tY
det(g′)Z

g′
3tY

det(g′)Z 1




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ

ϖ

ϖ




1 Y

1 Y

1

1




t

g′1 g′2

det(g′)t−1

g′3 g′4



×


ϖc−a

ϖb

ϖa

ϖc−b



×


1

−g′
4tY

det(g′)Zϖc−a−b 1

t2

det(g′)Zϖc−2a g′
3tY

det(g′)Zϖb−a 1
−g′

4tY
det(g′)Zϖc−a−b

g′
3tY

det(g′)Zϖb−a 1

K(p)

= K(p)


ϖ

ϖ

ϖ

ϖ




1 Y

1 Y

1

1




t

g′1 g′2

det(g′)t−1

g′3 g′4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1 Y

1 Y

1

1




ϖ

ϖ

ϖ

ϖ




t

g′1 g′2

det(g′)t−1

g′3 g′4
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×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ

ϖ

ϖ




t

g′1 g′2

det(g′)t−1

g′3 g′4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖc−a+1

ϖb+1

ϖa+1

ϖc−b+1

K(p)

= K(p)


ϖa+1

ϖb+1

ϖc+2−(a+1)

ϖc+2−(b+1)

K(p).

It follows that

sf(K(p)


ϖ

ϖ2

ϖ

1

 k


ϖa

ϖb

ϖc−a

ϖc−b

K(p)) = (0, a+ 1, b+ 1, c+ 2)

in this case, i.e., when X ∈ p and Z ∈ o×. Assume now that Z ∈ p. Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)



211

= K(p)


ϖ

ϖ2

ϖ

1




1 Z Y

1 Y

1

1



×


t

g1 g2

det(g)t−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1 Zϖ−1

1

1

1




ϖ

ϖ2

ϖ

1




1 Y

1 Y

1

1



×


t

g1 g2

det(g)t−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 Y

1 Y

1

1



×


t

g1 g2

det(g)t−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p).

Assume that Y ∈ o×. Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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= K(p)


ϖ

ϖ2

ϖ

1




1 Y

1 Y

1

1



×


t

g1 g2

det(g)t−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

1

Y −1 1

Y −1 1




Y

Y

Y −1

Y −1



×


1

1

−1

−1




1

1

Y −1 1

Y −1 1




t

g1 g2

det(g)t−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1

1

−1

−1




1

1

Y −1 1

Y −1 1



×


t

g1 g2

det(g)t−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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= K(p)


ϖ

ϖ2

ϖ

1




1

1

−1

−1




t

g1 g2

det(g)t−1

g3 g4



×


1

−g2t
det(g)Y 1

g1t
det(g)Y 1 g2t

det(g)Y

g1t
det(g)Y 1




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1

1

−ϖ

−ϖ




1

ϖ

ϖ

1




t

g1 g2

det(g)t−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b



×


1

−g2t
det(g)Y ϖc−a−b 1

g1t
det(g)Y ϖb−a 1 g2t

det(g)Y ϖc−a−b

g1t
det(g)Y ϖb−a 1

K(p)

= K(p)u1


1

ϖ

ϖ

1




t

g1 g2

det(g)t−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= u1K(p)


1

ϖ

ϖ

1




t

g1 g2

det(g)t−1

g3 g4




ϖc−a

ϖb

ϖa

ϖc−b

K(p)



214

= u1K(p)s2


1

ϖ

ϖ

1




t

g1 g2

det(g)t−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

 s−1
2 K(p)

= u1K(p)


1

1

ϖ

ϖ




t

g1 g2

det(g)t−1

g3 g4



×


ϖc−a

ϖc−b

ϖa

ϖb

K(p).

Let

M =

1
ϖ

 g4 −g3

−g2 g1

ϖc−b

ϖb

 ,

and let s1(M) = ϖq1 and s2(M)−ϖq2 . By 5.1.1, taking into account that b ≤ c− b, we have that

q1 = b or q1 = b+ 1. We have

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= u1K(p)


ϖc−a

ϖq1

ϖa+1

ϖq2

K(p)
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= K(p)w


ϖa+1

ϖq1

ϖc−a

ϖq2

K(p).

It follows that

sf(K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)) ∈ {
(1, a+ 1, b, c+ 1),

(1, a+ 1, b+ 1, c+ 1)
}

in this case, i.e. when X ∈ p, Y ∈ o×, and Z ∈ p. Finally, assume that Y ∈ p. Then

K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖ

ϖ2

ϖ

1




1 Y

1 Y

1

1




t

g1 g2

det(g)t−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


1 Y ϖ−1

1 Y ϖ−1

1

1




ϖ

ϖ2

ϖ

1




t

g1 g2

det(g)t−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)
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= K(p)


ϖ

ϖ2

ϖ

1




t

g1 g2

det(g)t−1

g3 g4



×


ϖc−a

ϖb

ϖa

ϖc−b

K(p)

= K(p)


ϖc−a

ϖb+1

ϖa+1

ϖc−b+1

K(p)

= K(p)


ϖa+1

ϖb+1

ϖc−a

ϖc−b+1

K(p).

sf(K(p)


ϖ

ϖ2

ϖ

1

 k′


ϖc−a

ϖb

ϖa

ϖc−b

K(p)) = {(0, a+ 2, b+ 1, c+ 2)}

in this case, i.e. when X,Y, Z ∈ p. For this last assertion we note that a + 2 ≤ c − a since

a < b ≤ c− b < c− a.

Lemma 5.3.8. Let a, b ∈ Z with 0 ≤ a ≤ b and let g ∈ GL(2, o). Set

M =

1
ϖ

 g

ϖa

ϖb

 g.

Then

{s1(M), s2(M)} =


{ϖa, ϖa+2} if a = b

{ϖa, ϖa+3} or {ϖa+1, ϖa+2} if b = a+ 1

{ϖa, ϖb+2} or {ϖa+1, ϖb+1} or {ϖa+2, ϖb} if b ≥ a+ 2

.
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Proof. Let g = [A B
C D ]. Then

M =

m1 m2

m3 m4

 =

 Aϖa Bϖb

Cϖa+2 Dϖb+2

 .

Assume first the a = b. Then

GL(2, o)MGL(2, o) = GL(2, o)

1
ϖ2

 g

ϖa

ϖa

GL(2, o)

=GL(2, o)

1
ϖ2

ϖa

ϖa

 gGL(2, o)

=GL(2, o)

ϖa

ϖa+2

GL(2, o).

It follows that s1(M) = ϖa and s2(M) = ϖa+2.

Assume next that b = a+ 1. Then

min(ν(m1), ν(m2),ν(m3), ν(m4))

=min(ν(A) + a, ν(B) + a+ 1, ν(C) + a+ 2, ν(D) + a+ 3)

=


a if ν(A) = 0

a+ 1 if ν(A) ≥ 1

.

Hence

s1(M) =


ϖa if ν(A) = 0

ϖa+1 if ν(A) ≥ 1

.

Consequently, we have that

s2(M) = d2(M)/s1(M)

= ϖa+b+2


ϖ−a if ν(A) = 0

ϖ−(a+1) if ν(A) ≥ 1

=


ϖa+3 if ν(A) = 0

ϖa+2 if ν(A) ≥ 1

.

Finally, assume that b ≥ a+ 2. We then have

min(ν(m1), ν(m2),ν(m3), ν(m4))



218

=min(ν(A) + a, ν(B) + a, ν(C) + a+ 2, ν(D) + a+ 3)

=


a if ν(A) = 0

a+ 1 if ν(A) = 1

a+ 2 if ν(A) ≥ 2

.

Hence

s1(M) =


ϖa if ν(A) = 0

ϖa+1 if ν(A) = 1

ϖa+2 if ν(A) ≥ 2

.

Consequently, we have that

s2(M) = d2(M)/s1(M)

= ϖa+b+2


ϖ−a if ν(A) = 0

ϖ−(a+1) if ν(A) = 1

ϖa+2 if ν(A) ≥ 2

=


ϖb+2 if ν(A) = 0

ϖb+1 if ν(A) = 1

ϖb if ν(A) ≥ 2

.

This completes the proof.

Lemma 5.3.9. Let a, b, c, d ∈ Z. Then the following are equivalent:

1. There exist g1, g2, g3 ∈ GL(2, o) such that

g1

1
ϖ2

 g2

ϖa

ϖb

 g3 =

ϖc

ϖd

 .

2. We have

{ϖc, ϖd} =


{ϖa, ϖa+2} if a = b

{ϖa, ϖa+3} or {ϖa+1, ϖa+2} if b = a+ 1

{ϖa, ϖb+2} or {ϖa+1, ϖb+1} or {ϖa+2, ϖb} if b ≥ a+ 2

.
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Proof. The assertion that (1) implies (2) follows from 5.3.8.

Assume that (2) holds, and without loss of generality we may assume c ≤ d. If a = b, then the

assertion (1) is true by taking g1 = g2 = g3 = I. Assume that b = a+1. If {ϖc, ϖd} = {ϖa, ϖa+3},

then we may take g1 = g2 = g3 = I. If {ϖc, ϖd} = {ϖa+1, ϖa+2}, thenϖc = ϖa+1 andϖd = ϖa+2.

If x, y ∈ M(2, o), write x ∼ y if and only if there exists G1, G2 ∈ GL(2, o) such that G1xG2 = y,

We have that 1
ϖ2

ϖ 1

1

ϖa

ϖb

 =

ϖa+1 ϖa+1

ϖa+2


∼

 ϖa+1

ϖa+1


∼

ϖa+1

ϖa+2

 .

It follows that the desired relationship holds. Now assume that b ≥ a+2. If {ϖc, ϖd} = {ϖa, ϖb+2},

then we may take g1 = g2 = g3 = I. If {ϖc, ϖd} = {ϖa+1, ϖb+1}, we have that1
ϖ2

ϖ 1

1

ϖa

ϖb

 =

ϖa+1 ϖb

ϖa+2


∼

ϖa+1

ϖa+2 ϖb+1


∼

ϖa+1

ϖb+1

 .

For the case {ϖc, ϖd} = {ϖa+2, ϖb}, we have that1
ϖ2

ϖ2 1

1

ϖa

ϖb

 =

ϖa+2 ϖb

ϖa+2


∼

ϖa+2

ϖa+2 ϖb


∼

ϖa+2

ϖb

 .

This completes the proof.

Lemma 5.3.10. Let a, b, c, e, f, g ∈ Z≥0 with 0 ≤ a ≤ c − a, 0 ≤ b ≤ c − b, 0 ≤ e ≤ g − e and

0 ≤ f ≤ g − f . Let δ ∈ {0, 1} and assume a < b. Then the following are equivalent.
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1. There exist k1, k2, k3 ∈ K(p) such that

k1


1

ϖ

ϖ2

ϖ

 k2


ϖa

ϖb

ϖc−a

ϖc−b

 k3 = ϖδ


ϖe

ϖf

ϖg−e

ϖg−f

 .

2. We have

(δ, e, f, g) ∈ {(0, a, b+ 1, c+ 2), (0, a+ 1, b+ 1, c+ 2), (0, a+ 2, b+ 1, c+ 2),

(1, a+ 1, b, c+ 1), (1, a+ 1, b+ 1, c+ 1)}.

Proof. The forward implication follows from 5.3.7, so we show the other implication. Assume

that (2) holds and note that a < b ≤ c − b < c − a, so that a + 2 ≤ c − a. Assume first that

(δ, e, f, g) = (0, a, b+ 1, c+ 2). By 5.3.9 there exists g1, g2, g3 ∈ GL(2, o) such that

g1

1
ϖ2

 g2

ϖa

ϖc−a

 g3 =

ϖa

ϖc−a+2

 .

Taking determinants, we see that det(g1g2g3) = 1. We will also use the map defined in the paragraph

before5.1.3. Hence we have that

k′(g1)


1

ϖ

ϖ2

ϖ

 k′(g2)


ϖa

ϖb

ϖc−a

ϖc−b

 k′(g3)

=


ϖa

ϖb+1

ϖc−a+2

ϖc+1−b

 = ϖδ


ϖe

ϖf

ϖg−e

ϖg−f


so that (1) holds. A similar argument shows that (1) holds if (δ, e, f, g) ∈ {(0, a + 1, b + 1, c +

2), (0, a+ 2, b+ 1, c+ 2)}. If (δ, e, f, g) = (1, a+ 1, b, c+ 1) then the identity

w


ϖa+1

ϖb

ϖc+1−(a+)

ϖc+1−b
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=


1

1

1 ϖ

ϖ −1




1

ϖ

ϖ2

ϖ




1 −ϖ−1

1

ϖ

−ϖ 1



×


ϖa

ϖb

ϖc−a

ϖc−b




−1 ϖc−a−b−1

1 −ϖc−a−b−1

−1

1


proves that (1) holds. If (δ, e, f, g) = (1, a+ 1, b+ 1, c+ 1), then the identity

w


ϖa+1

ϖb+1

ϖc+1−(a+1)

ϖc+1−(b+1)



=


1 −ϖ−1

−1

ϖ

ϖ −1




1

ϖ

ϖ2

ϖ




−ϖ−1 1

ϖ 1

ϖ

1



×


ϖa

ϖb

ϖc−a

ϖc−b




−1 −ϖb−a−1

1

−1

−ϖb−a−1 1


proves that (1) holds.

5.4 Computing Coefficients for T (1, ϖ,ϖ2, ϖ)

Note that, by the results in the third section of this chapter, we have the following table of which

double cosets have positive coefficients in the product of

T (1, ϖ,ϖ2, ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b),

indicated by a �, where 0 ≤ a ≤ c− a and 0 ≤ b ≤ c− b.
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b < a b = a a < b

g
c− a = a c− a = a+ 1 c− a ≥ a+ 2 c− a = a+ 1 c− a ≥ a+ 2 c− b = b c− b = b+ 1 c− b ≥ b+ 2

diag(ϖa, ϖb+1, ϖc−a+2, ϖc−b+1) � � � � � � � �

diag(ϖa+1, ϖb+1, ϖc−a+1, ϖc−b+1) − � � � � � � �

diag(ϖa+2, ϖb+1, ϖc−a, ϖc−b+1) − − � − � � � �

w diag(ϖa, ϖb, ϖc−a+1, ϖc−b+1) � � � − − − − −

w diag(ϖa+1, ϖb, ϖc−a, ϖc−b+1) − � � � � � � �

w diag(ϖa+1, ϖb+1, ϖc−a, ϖc−b) − − − − − − − �
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Note that when a < b, then a < b ≤ c− b < c− a, and so c− a > a+ 1. Additionally, since we

assume not all a, b, c− a, c− b are equal, when a = b, then c− a = a cannot occur. This is reflected

in the table above. In what follows, let

g1 =


1

ϖ

ϖ2

ϖ

 and g2 =


ϖa

ϖb

ϖc−a

ϖc−b

 .

Lemma 5.4.1. Let a, b, c ∈ Z with 0 ≤ a ≤ c− a and 0 ≤ b ≤ c− b. Assume that a, b, c− a, c− b

are not all equal. Then c > a+ b.

Proof. Assume first that a ≤ b then

a ≤ b ≤ c− b ≤ c− a.

By assumption, one of these inequalities is strict, and hence c > a + b. A similar argument when

a ≥ b proves the claim as well.

Call the set of (a, b, c) in the above lemma S.

Theorem 5.4.2. There exist functions mi : S → Z≥0 for i = 1, . . . , 6 such that

T (1, ϖ,ϖ2, ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b)

=m1(a, b, c)T (ϖ
a, ϖb+1, ϖc−a+2, ϖc−b+1)

+m2(a, b, c)T (ϖ
a+1, ϖb+1, ϖc−a+1, ϖc−b+1)

+m3(a, b, c)T (ϖ
a+2, ϖb+1, ϖc−a, ϖc−b+1)

+m4(a, b, c)wT (ϖ
a, ϖb, ϖc−a+1, ϖc−b+1)

+m5(a, b, c)wT (ϖ
a+1, ϖb, ϖc−a, ϖc−b+1)

+m6(a, b, c)wT (ϖ
a+1, ϖb+1, ϖc−a, ϖc−b)

for (a, b, c) ∈ S, where mi = mi(a, b, c) is as in the following table:



224

a

b+ 1

c− a+ 2

c− b+ 1

a+ 1

b+ 1

c− a+ 1

c− b+ 1

a+ 2

b+ 1

c− a

c− b+ 1

w

a

b

c− a+ 1

c− b+ 1

w

a+ 1

b

c− a

c− b+ 1

w

a+ 1

b+ 1

c− a

c− b

Condition m1 m2 m3 m4 m5 m6

b < a a = c− a q 0 0 q − 1 0 0

a+ 1 = c− a q q2 0 q − 1 q2 − 1 0

a+ 2 = c− a q q2 − q q3 + q2 q − 1 q2 − q 0

a+ 3 ≤ c− a q q2 − q q3 q − 1 q2 − q 0

b = a a = c− a 1 0 0 0 0 0

a+ 1 = c− a 1 q2 0 0 q2 − 1 0

a+ 2 = c− a 1 q2 − q q3 + q2 0 q2 − q 0

a+ 3 ≤ c− a 1 q2 − q q3 0 q2 − q 0

a < b b = c− b 1 q3 − q2 q4 + q3 0 q3 − q2 0

and b+ 1 = c− b 1 q3 − q2 q4 + q3 0 q3 − q2 q4 − q2

a+ 2 = c− a b+ 2 ≤ c− b 1 q3 − q2 q4 + q3 0 q3 − q2 q4 − q3

a < b b = c− b 1 q3 − q2 q4 0 q3 − q2 0

and b+ 1 = c− b 1 q3 − q2 q4 0 q3 − q2 q4 − q2

a+ 2 < c− a b+ 2 ≤ c− b 1 q3 − q2 q4 0 q3 − q2 q4 − q3

Proof. Let (a, b, c) ∈ S. If a = b = c− a = c− b, then we have

T (1, ϖ,ϖ2, ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b) = T (ϖa, ϖa+1, ϖa+2, ϖa+1).

This proves the fifth line of the table. For the remainder of the proof we assume that a, b, c− a and
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c− b are not all the same. Define

X0(a, b, c) =



{(a, b+ 1, c+ 2)} if b < a and c− a = a,

{(a, b+ 1, c+ 2)

(a+ 1, b+ 1, c+ 2)} if b < a and c− a = a+ 1,

{(a, b+ 1, c+ 2),

(a+ 1, b+ 1, c+ 2),

(a+ 2, b+ 1, c+ 2)} if b < a and c− a ≥ a+ 2,

{(a, a+ 1, c+ 2),

(a+ 1, a+ 1, c+ 2)} if a = b and c− a = a+ 1,

{(a, a+ 1, c+ 2),

(a+ 1, a+ 1, c+ 2),

(a+ 2, a+ 1, c+ 2)} if a = b and c− a ≥ a+ 2,

{(a+ 1, b, c+ 1)} if b > a and c− b = b,

{(a, b+ 1, c+ 2),

(a+ 1, b+ 1, c+ 2)}

(a+ 2, b+ 1, c+ 2)} if b > a
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and

X1(a, b, c) =



{(a, b, c+ 1)} if b < a and c− a = a,

{(a, b, c+ 1)

(a+ 1, b, c+ 1)} if b < a and c− a = a+ 1,

{(a, b, c+ 1),

(a+ 1, b, c+ 1)} if b < a and c− a ≥ a+ 2,

{(a+ 1, a, c+ 1)} if a = b and c− a = a+ 1,

{(a+ 1, a, c+ 1)} if a = b and c− a ≥ a+ 2,

{(a+ 1, b, c+ 1)} if b > a and c− b = b,

{(a+ 1, b, c+ 1),

(a+ 1, b+ 1, c+ 1)} if b > a and c− b ≥ b+ 1.

For (a, b, c) ∈ S the sets X0(a, b, c) and X1(a, b, c) are contained in S. Moreover, we have for

(a, b, c) ∈ S,

T (1, ϖ,ϖ2, ϖ)T (ϖa, ϖb, ϖc−a, ϖc−b) =
∑

x∈X0(a,b,c)

n0(x)T (x) +
∑

x∈X1(a,b,c)

n1(x)wT (x)

where n0(x) and n1(x) are positive integers for x ∈ X0(a, b, c) and x ∈ X1(a, b, c), respectively.

An examination of the sets X0(a, b, c) and X1(a, b, c) for (a, b, c) ∈ S now shows that there exist

functions mi : S → Z≥0, i ∈ {1, . . . , 6}, such that the equality in the claim holds; also, the functions

mi, i ∈ {1, . . . , 6}, take on the value 0 as indicated in the table. We now calculate the non-zero

values of the mi, i ∈ {1, . . . , 6}. In the following we let

g1 = diag(1, ϖ,ϖ2, ϖ). g2 = diag(ϖa, ϖb, ϖc−a, ϖc−b).

We fix coset representatives for the decomposition of K(p)g1K(p) into disjoint left cosets as in

Proposition 5.0.1. These coset representatives depend on parameters that run over the groups o/p

and o/p2; if a parameter is the zero of o/p and o/p2, then we take the representative in o to be 0.

The disjoint decomposition from Proposition 5.0.1 has two parts, and we refer to representatives

from these two parts of being of type 1 and type 2, respectively.

Calculation of m1. Let g = diag(ϖa, ϖb+1, ϖc−a+2, ϖc−b+1). We have that m1(a, b, c) is

equal to the number of coset representatives h such that h−1g ∈ K(p)g2K(p); we will use

that h−1g ∈ K(p)g2K(p) if and only if there exists k ∈ K(p) such that h−1gkg−1
2 ∈ K(p).
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Type 1. Assume h is of type 1, so that

h =


1 x

1

1

−x 1




1 zϖ−1 y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. Assume there exists k ∈ K(p) such that h−1gkg−1

2 ∈ K(p); we will

obtain a contradiction. Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 .

Then a calculation shows that

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

C1ϖ
c−2a+2 ·ϖ ∗ D1ϖ

2 ∗

∗ ∗ ∗ ∗

 .

Since this element is in K(p) and since D1ϖ
2 ∈ p, it follows that C1ϖ

c−2a+2 ∈ o×.

However, since c− 2a+ 3 ≥ 3, C1ϖ
c−2a+3 is contained in p, a contradiction.

Type 2. Assume next that h is of type 2, so that

h = t1


1 x

1

1

−x 1




1 z y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o.

We first prove that the following implications hold:

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) =⇒ x, z ∈ p (5.1)

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and c > 2a and b ≥ a =⇒ x, y, z ∈ p. (5.2)
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Proof of (5.1): Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p). We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

C3ϖ
c+1−a−b −A1x ∗ D3ϖ

a−b −B1xϖ
2a−c−1 ∗

 .

Since the (4, 1) entry is in p, and c + 1 − a − b > 0, we obtain A1x ∈ p. Also since the

(4, 3) entry is in o, we have

D3ϖ
a−b −B1xϖ

2a−c−1 ∈ o

D3ϖ
a−b−2a+c+1 −B1x ∈ pc−2a+1 (multiply by ϖc−2a+1)

D3ϖ
c−a−b+1 −B1x ∈ pc−2a+1

D3ϖ
c−a−b+1 −B1x ∈ p (since c− 2a+ 1 > 0)

B1x ∈ p (since c− a− b+ 1 > 0).

Since both A1x,B1x ∈ p and since at least one of A1 and B1 is in o× (as k ∈ K(p)), we

must have x ∈ p. We may thus assume x = 0. Now

h−1gkg−1
2

=


C1ϖ

c−2a − C3yϖ
c−a−b +A1zϖ

−1 ∗ D1ϖ
−1 −D3yϖ

a−b−1 +B1zϖ
2a−c−2 ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

Since the (1, 1) entry is in o, and since c− 2a ≥ 0 and c− a− b ≥ 0, we obtain A1z ∈ p.

The (1, 3) entry is in p−1. Therefore:

D1ϖ
−1 −D3yϖ

a−b−1 +B1zϖ
2a−c−2 ∈ p−1

−D3yϖ
a−b−1 +B1zϖ

2a−c−2 ∈ p−1

−D3yϖ
c−2a+2+a−b−1 +B1z ∈ pc−2a+2−1 (multiply by ϖc−2a+2)

−D3yϖ
c−a−b+1 +B1z ∈ pc−2a+1

−D3yϖ
c−a−b+1 +B1z ∈ p (since c− 2a+ 1 > 0)

B1z ∈ p (since c− a− b+ 1 > 0).
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We now have A1z,B1z ∈ p; as above, this implies that z ∈ p. This completes the proof

of (5.1).

Proof of (5.2): Assume that there exists k ∈ K(p) such that h−1gkg−1
2 ∈ K(p) and that

c > 2a and b ≥ a. By (5.1) we may assume that x = z = 0. We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

A3ϖ
b−a+1 +A1y ∗ ∗ ∗

∗ −B1ϖ
2a−c ∗

∗ ∗ ∗ ∗

 .

Since the (3, 3) entry is in o, −B1ϖ
2a−c ∈ o; since 2a−c < 0 we must have B1 ∈ p. Since

k ∈ K(p) this implies that A1 ∈ o×. Since the (2, 1) entry of h−1gkg−1
2 is contained in

p, and since b − a + 1 ≥ 1, we must have A1y ∈ p; since A1 ∈ o×, we get y ∈ p. This

completes the proof of (5.2).

We now claim that the following holds:

Type 2

Condition h−1g ∈ K(p)g2K(p)?

x /∈ p or z /∈ p no

x ∈ p and z ∈ p and a > b yes

x ∈ p and z ∈ p and a ≤ b and y /∈ p no

x ∈ p and z ∈ p and a ≤ b and y ∈ p yes

The first line of the table follows from (5.1). The second line of the table follows from

the identity

h−1gkg−1
2 =


ϖ−1

1

−ϖ

1

 ∈ K(p)

with h as above with x = z = 0 and

k =


1

−yϖa−b 1

1 yϖa−b

1

 ∈ K(p).
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For the third line, assume that x, z ∈ p, a ≤ b, and y /∈ p. Since we are assuming that

integers a, b, c − a, c − b are not all the same, and since a ≤ b ≤ c − b ≤ c − a we must

have c > 2a. The third line follows now from (5.2). The fourth line follows from the

identity

h−1gkg−1
2 =


ϖ−1

1

−ϖ

1


with h as above with x = y = z = 0 and k = I.

The following table summaries the results for this value of g:

g = diag(ϖa, ϖb+1, ϖc−a+2, ϖc−b+1)

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

Condition Type 1 Type 2 Total

a > b 0 q q

b ≥ a 0 1 1

Calculation of m2. Let g = diag(ϖa+1, ϖb+1, ϖc−a+1, ϖc−b+1). We may assume that c− a ≥

a+ 1 because otherwise m2(a, b, c) = 0.

Type 1. Assume h is of type 1, so that

h =


1 x

1

1

−x 1




1 zϖ−1 y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o, then h−1g /∈ K(p)g2K(p). To see this, assume that h−1g ∈

K(p)g2K(p), i.e., there exists k ∈ K(p) such that h−1gkg−1
2 ∈ K(p); we will obtain

a contradiction. Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 .
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Now

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

C1ϖ
c+1−2a ·ϖ ∗ D1ϖ ∗

∗ ∗ ∗ ∗

 .

Since h−1gkg−1
2 ∈ K(p), we must have C1ϖ

c+1−2a ∈ o× orD1ϖ ∈ o×. But C1ϖ
c+1−2a ∈

p and D1ϖ ∈ p, a contradiction.

Type 2. Assume next that h is of type 2, so that

h = t1


1 x

1

1

−x 1




1 z y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. We first prove that the following implications hold:

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b =⇒ x ∈ p, (5.3)

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b and c > 2a+ 1 =⇒ z ∈ o×, (5.4)

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and b > a =⇒ xy + z ∈ o×. (5.5)

Proof of (5.3). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b. We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−A1ϖ
2 ∗ −B1ϖ

1+2a−c ∗

∗ ∗ D3ϖ
a−b −B1xϖ

2a−c ∗

 .

Since the (3, 1) entry of h−1gkg−1
2 is in p2 the (3, 3) entry must be in o×; hence, there

exists a unit u ∈ o× such that −B1ϖ
1+2a−c = u, so that B1 = −uϖc−2a−1. The (4, 3)

entry of h−1gkg−1
2 is in o; therefore D3ϖ

a−b + uxϖ−1 ∈ o. Since a ≥ b, we must have

uxϖ−1 ∈ o; as u ∈ o×, this yields x ∈ p, completing the argument for (5.3).

Proof of (5.4). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b and

c > 2a+ 1. Then by (5.3) we may assume that x = 0. We have

h−1gkg−1
2 =


C1ϖ

c−2a−1 − C3yϖ
c−a−b +A1z ∗ ∗ ∗

∗ ∗ ∗ ∗

−A1ϖ
2 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .
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Since the (3, 1) entry of h−1gkg−1
2 is contained in p2, the (1, 1) entry must be in o×.

Since c− 2a− 1 > 0 and c− a− b > 0, this implies that A1z ∈ o× so that z ∈ o×.

Proof of (5.5). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and b > a. Since

a < b ≤ c− b < c− a we have c− 2a− 1 > 0. We have

h−1gkg−1
2 =


C1ϖ

c−2a−1 − C3yϖ
c−a−b +A1(xy + z) ∗ ∗ ∗

∗ ∗ ∗ ∗

−A1ϖ
2 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

Since the (3, 1) entry of h−1gkg−1
2 is contained in p2, the (1, 1) entry must be in o×.

Since c − 2a − 1 > 0 and c − a − b > 0, this implies that A1(xy + z) ∈ o× so that

xy + z ∈ o×.

We now claim that the following holds:

Type 2

no.
Condition h−1g ∈ K(p)g2K(p)?

1 b > a and xy + z ∈ p no

2 b > a and xy + z ∈ o× yes

3 a ≥ b and x ∈ o× no

4 a ≥ b and x ∈ p and z ∈ o× yes

5 a ≥ b and x ∈ p and z ∈ p and c = 2a+ 1 yes

6 a ≥ b and x ∈ p and z ∈ p and c > 2a+ 1 no

Line 1 of the table follows from (5.5). For Line 2, assume that b > a and xy + z ∈ o×.

Then c− 2a− 2 ≥ 0, and

x ∈ o× =⇒ h−1gkg−1
2 ∈ K(p)

with

k =


1 x−1ϖb−a−1 −(xy + z)−1ϖc−2a−2

x−2(xy + z) y(xy + z)−1ϖc−a−b−1 −yx(xy + z)−1ϖc−2b

1

−x(xy + z)−1ϖb−a−1 x2(xy + z)−1

 ∈ K(p),

and

x ∈ p (so that x = 0 and z ∈ o×) =⇒ h−1gkg−1
2 ∈ K(p)
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with

k =


1 −z−1ϖc−2a−2 yz−1ϖc−a−b−1

1 yz−1ϖc−a−b−1 −y2z−1ϖc−2b

1

1

 .

Line 3 follows from (5.3). For Line 4 assume that a ≥ b, x ∈ p, i.e., x = 0, and z ∈ o×.

Then h−1gkg−1
2 ∈ K(p) with k as above (recall that c− a ≥ a+ 1 by assumption). For

Line 5 assume that a ≥ b, x ∈ p, i.e., x = 0, z ∈ p, i.e., z = 0, and c = 2a + 1. Then

h−1gkg−1
2 ∈ K(p) with

k =


ϖ−1

1 −yϖa−b

−ϖ yϖa−b+1

1

 ∈ K(p).

Finally, Line 6 follows from (5.4).

The following table summaries the results for this value of g:

g = diag(ϖa+1, ϖb+1, ϖc−a+1, ϖc−b+1)

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

Condition Type 1 Type 2 Total

b < a and c− a = a+ 1 0 q2 q2

c− a ≥ a+ 2 0 q2 − q q2 − q

c− a = a+ 1 0 q2 q2

a = b and
c− a ≥ a+ 2 0 q2 − q q2 − q

a < b and c− a ≥ a+ 2 0 q3 − q2 q3 − q2

Calculation of m3. Let g = diag(ϖa+2, ϖb+1, ϖc−a, ϖc−b+1). We may assume that c − a ≥

a+ 2 because otherwise m3(a, b, c) = 0.
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Type 1. Assume h is of type 1, so that

h =


1 x

1

1

−x 1




1 zϖ−1 y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. We claim that

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b =⇒ x ∈ p. (5.6)

Proof of (5.6). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b. Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 .

We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

C1ϖ
c−2a+1 ∗ D1 ∗

∗ ∗ D3ϖ
a−b +D1xϖ

−1 ∗


Recalling that c − a ≥ a + 2, we have c − 2a + 1 ≥ 3. This implies that (3, 1) entry of

h−1gkg−1
2 is contained in p3. Therefore, the (3, 3) entry D1 is in o×. The (4, 3) entry is

o as a ≥ b. It follows that D1xϖ
−1 ∈ o, so that x ∈ p.

We claim that the following holds:

Type 1

no.
Condition h−1g ∈ K(p)g2K(p)?

1 a ≥ b and x ∈ o× no

2 a ≥ b and x ∈ p yes

3 a < b yes

Line 1 follows from (5.6). For Line 2, assume that a ≥ b and x ∈ p, i.e., x = 0. Then
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h−1gkg−1
2 ∈ K(p) with

k =


1 zϖc−2a−3 yϖc−a−b−1

1 yϖc−a−b−1

1

1

 ∈ K(p).

For Line 3, assume that a < b. Then h−1gkg−1
2 ∈ K(p) with

k =


1 xϖb−a−1 xyϖc−2a−2 + zϖc−2a−3 yϖc−a−b−1

1 yϖc−a−b−1

1

−xϖb−a−1 1

 .

Type 2. Assume next that h is of type 2, so that

h = t1


1 x

1

1

−x 1




1 z y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. We claim that

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b =⇒ x ∈ p and c = 2a+ 2 (5.7)

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a < b =⇒ c = 2a+ 2 and b = a+ 1. (5.8)

Proof of (5.7). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b. Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 .

We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−A1ϖ
3 ∗ −B1ϖ

2+2a−c ∗

∗ ∗ D3ϖ
a−b −B1xϖ

1+2a−c ∗

 .
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Since the (3, 1) entry of h−1gkg−1
2 is in p3, the (3, 3) entry must be in o×. Let u ∈ o× be

such that u = −B1ϖ
2+2a−c. Then B1 = −uϖc−2a−2. The (4, 3) entry is contained in o.

Since a ≥ b, this implies that −B1xϖ
1+2a−c ∈ o. Therefore, uxϖ−1 ∈ o. This implies

that x ∈ p, so that we may assume that x = 0. We now have

h−1gkg−1
2 =


C1ϖ

c−2a−2 − C3yϖ
c−a−b +A1zϖ ∗ ∗ ∗

∗ ∗ ∗ ∗

−A1ϖ
3 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

Since the (3, 1) entry is p3, the (1, 1) entry must be in o×. Since c−a−b > 0, this implies

that C1ϖ
c−2a−2 ∈ o×; since c− 2a− 2 ≥ 0 by assumption, we must have c = 2a+ 2.

Proof of (5.8). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) as above and a < b.

We have

h−1gkg−1
2 =


C1ϖ

c−2a−2 −A3xϖ
b−a − C3yϖ

c−a−b +A1xyϖ +A1zϖ ∗ ∗ ∗

∗ ∗ ∗ ∗

−A1ϖ
3 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

Again, the (1, 1) entry must be in o×. Since b − a > 0 and c − a − b > 0, we obtain

C1ϖ
c−2a−2 ∈ o×; since c − 2a − 2 ≥ 0 by assumption, we must have c = 2a + 2. Next,

we note that a < b ≤ c− b < c− a = a+ 2. This implies that b = c− b and b = a+ 1.

We now claim that the following holds:

Type 2

no.
Condition h−1g ∈ K(p)g2K(p)?

1 a ≥ b and c ̸= 2a+ 2 no

2 a ≥ b and c = 2a+ 2 and x /∈ p no

3 a ≥ b and c = 2a+ 2 and x ∈ p yes

4 b > a and c ̸= 2a+ 2 no

5 b > a and c = 2a+ 2 yes

Lines 1 and 2 follows from (5.7). For Line 3, assume that a ≥ b and c = 2a + 2 and
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x ∈ p. We may assume that x = 0. We have h−1gkg−1
2 ∈ K(p) for

k =


−ϖ−1

1 yϖa−b+1

ϖ zϖ yϖa−b+2

1

 ∈ K(p).

Line 4 follows from (5.8). For Line 5 assume that b > a and c = 2a + 2; then also

b = a+ 1. We have h−1gkg−1
2 ∈ K(p) for

k =


−ϖ−1

1 y

ϖ yϖ (xy + z)ϖ xϖ

−x 1

 ∈ K(p).

The following table summaries the results for this value of g:

g = diag(ϖa+2, ϖb+1, ϖc−a, ϖc−b+1)

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

Condition Type 1 Type 2 Total

a ≥ b and c ̸= 2a+ 2 q3 0 q3

a ≥ b and c = 2a+ 2 q3 q2 q3 + q2

b > a and c ̸= 2a+ 2 q4 0 q4

b > a and c = 2a+ 2 q4 q3 q4 + q3

Calculation of m4. Let g = w diag(ϖa, ϖb, ϖc−a+1, ϖc−b+1). We may assume that a > b

because otherwise m4(a, b, c) = 0.

Type 1. Assume h is of type 1, so that

h =


1 x

1

1

−x 1




1 zϖ−1 y

1 y

1

1




ϖ2

ϖ

1

ϖ
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for some x, y, z ∈ o. Assume that there exists k ∈ K(p) such that h−1
1 gkg−1

2 ∈ K(p); we

will obtain a contradiction. Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 .

We have

h−1
1 gkg−1

2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

C4ϖ
c−a−b+3 ∗ D3ϖ

2+a−b ∗

∗ ∗ ∗ ∗

 .

Since the (3, 1) and (3, 3) entries of h−1
1 gkg−1

2 are in p2 and p, respectively, we have a

contradiction.

Type 2. Assume next that h is of type 2, so that

h = t1


1 x

1

1

−x 1




1 z y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. We claim that

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) =⇒ x ∈ p and y ∈ o× and z ∈ p. (5.9)

Proof of (5.9). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) as we have previously.

We have

h−1gkg−1
2 =


∗ C4ϖ

c−2b−1 −A2xϖ
a−b−1 − C2yϖ

c−a−b +A4(xy + z)ϖ−1 ∗ ∗

∗ A2ϖ
a−b +A4y ∗ ∗

∗ −A4ϖ ∗ ∗

∗ C2ϖ
c−a−b+1 −A4x ∗ ∗

 .

Since b < a ≤ c−a < c− b we have c− b− 1 ≥ 1 > 0 and a− b− 1 ≥ 0 and c−a− b > 0.

Since the (1, 2) entry is in o, it follows that A4(xy+ z) ∈ p. Assume that A4 ∈ p; we will

obtain a contradiction. Since A4 ∈ p, the (2, 2) entry and the (4, 2) entry are in p; this
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is a contradiction, so that A4 ∈ o×. We now have that xy+ z ∈ p. Assume that x ∈ o×;

we will obtain a contradiction. We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−A3ϖ
2−a+b ∗ −B3ϖ

1+a+b−c ∗

C1ϖ
1−2a+c −A3xϖ

1−a+b ∗ D1 −B3xϖ
a+b−c ∗

 .

Since the (3, 1) entry is in p there exists C ∈ o such that −A3ϖ
2−a+b = Cϖ, and since

the (3, 3) entry is in o, there exists D ∈ o such that −B3ϖ
1+a+b−c = D. Rewriting, we

have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Cϖ ∗ D ∗

C1ϖ
1−2a+c + Cx ∗ D1 +Dxϖ−1 ∗

 .

Since the (4, 1) entry is in p and since 1 − 2a + c > 0, we have Cx ∈ p. Also, since

the (4, 3) entry is in o, we get Dx ∈ p. Since x ∈ o×, we have now C,D ∈ p; this is a

contradiction. Since x ∈ p and since xy+z ∈ p we have z ∈ p. Finally, taking x = z = 0,

we have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ A2ϖ
a−b +A4y ∗ ∗

∗ ∗ ∗ ∗

∗ C2ϖ
c−a−b+1 ∗ ∗

 .

Since 1 − a − b + c > 0, the (4, 2) entry is in p. This implies that the (2, 2) entry is in

o×. Since a− b > 0 we obtain y ∈ o×. This completes the proof of (5.9).

We now claim that the following holds:

Type 2

no.
condition h−1g ∈ K(p)g2K(p)?

1 x ∈ o× or y ∈ p or z ∈ o× no

2 x ∈ p and y ∈ o× and z ∈ p yes

Line 1 follows from (5.9). For Line 2, assume that x ∈ p and y ∈ o× and z ∈ p; we may
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assume that x = z = 0. We have h−1gkg−1
2 ∈ K(p) with

k =


1

−y−1ϖa−b y−1

1 y−1ϖa−b

1

 ∈ K(p).

This proves Line 2.

The following table summaries the results for this value of g:

g = w diag(ϖa, ϖb, ϖc−a+1, ϖc−b+1)

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

Condition Type 1 Type 2 Total

a > b 0 q − 1 q − 1

Calculation of m5. Let g = w diag(ϖa+1, ϖb, ϖc−a, ϖc−b+1). We assume that c − a ≥ a + 1

because otherwise m5(a, b, c) = 0.

Type 1. Assume h is of type 1, so that

h =


1 x

1

1

−x 1




1 zϖ−1 y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. Assume that there exists k ∈ K(p) such that h−1gkg−1

2 ; we will

obtain a contradiction. Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 .

We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ A2ϖ
a−b+1 − C4yϖ

c−2b+1 ∗ ∗

C3ϖ
c−a−b+3 ∗ D3ϖ

b−a+2 ∗

∗ C2ϖ
c−a−b + C4xϖ

c−2b+1 ∗ D2ϖ
b−a +D4xϖ

 .
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Evidently, the (4, 2) entry is in p; therefore, the (2, 2) and (4, 2) entries must be in o×.

If a > b, then the (2, 2) entry is in p, a contradiction. If a < b, the (4, 4) entry is in p,

a contradiction. If a = b then the (3, 1) entry is in p, and so the (1, 1) and the (3, 3)

entries must be in o×, but the (3, 3) entry is in p, a contradiction.

Type 2. Assume next that h is of type 2, so that

h = t1


1 x

1

1

−x 1




1 z y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. We claim that

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) =⇒ x ∈ o× or y ∈ o× or z ∈ o×, (5.10)

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and x, z ∈ p =⇒ c = 2a+ 1, (5.11)

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and a ≥ b =⇒

xy + z ∈ p and at least

one of x and y is in o×,
(5.12)

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) and b > a =⇒ x ∈ o×. (5.13)

Proof of (5.10). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) with k as we have

written previously, and that x, y, z ∈ p, i.e., x = y = z = 0; we will obtain a contradiction.

Now

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ A2ϖ
a−b+1 ∗ ∗

∗ ∗ ∗ ∗

∗ C2ϖ
c−a−b ∗ D2ϖ

b−a

 .

If a ≥ b, then the (2, 2) and (4, 2) entries of h−1gkg−1
2 are both in p, a contradiction. If

b > a, then the (4, 2) and (4, 4) entries are both in p, a contradiction. This proves (5.10).

Proof of (5.11). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) with k as in (??) and

x, z ∈ p, i.e., x = z = 0. By (5.10) we have y ∈ o×. Now

h−1gkg−1
2 =


C3ϖ

c−a−b − C1yϖ
c−2a−1 ∗ ∗ ∗

A1ϖ +A3yϖ
b−a+1 ∗ ∗ ∗

−A3ϖ
b−a+2 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .
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Assume first that b ≥ a. Then the (3, 1) entry is in p2. This implies that the (1, 1) entry

is in o×. Since c − a − b > 0 we must have −C1yϖ
c−2a−1 ∈ o×; since c − 2a − 1 ≥ 0,

we obtain c = 2a + 1. Now assume that a > b. The (2, 1) entry is in p. This implies

that A3yϖ
b−a+1 ∈ p. Since y ∈ o×, it follows that A3ϖ

b−a+1 ∈ p, so that we may write

A3 = rϖa−b for some r ∈ o. Substituting, we have

h−1gkg−1
2 =


C3ϖ

c−a−b − C1yϖ
c−2a−1 ∗ ∗ ∗

A1ϖ + ryϖ ∗ ∗ ∗

−rϖ2 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

We now argue as in the case b ≥ a to obtain c = 2a + 1. This completes the proof of

(5.11).

Proof of (5.12). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) with k as in (??) and

a ≥ b. We have

h−1gkg−1
2 =


∗ C4ϖ

c−2b+1 −A2xϖ
a−b − C2yϖ

c−a−b−1 +A4(xy + z)ϖ−1 ∗ ∗

∗ A2ϖ
a−b+1 +A4y ∗ ∗

∗ ∗ ∗ ∗

∗ C2ϖ
c−a−b −A4x ∗ ∗

 .

Since a ≥ b, and since at least one of the (2, 2) and (4, 2) entries of h−1gkg−1
2 must

be in o×, we have A4 ∈ o×. Since the (1, 2) entry is in o and a ≥ b we see that

A4(xy + z)ϖ−1 ∈ o, i.e., A4(xy + z) ∈ p. This implies that xy + z ∈ p. Next, assume

that x ∈ p and y ∈ p, i.e., x = y = 0; we will obtain a contradiction. Now

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ A2ϖ
a−b+1 ∗ ∗

∗ ∗ ∗ ∗

∗ C2ϖ
c−a−b ∗ ∗

 .

We see that both the (2, 2) and (4, 2) entries are in p, a contradiction. This proves (5.12).

Proof of (5.13). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) that we have written
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previously and b > a. We have

h−1gkg−1
2 =


C3ϖ

c−a−b −A1x− C1yϖ
c−2a−1 +A3xyϖ

b−a +A3zϖ
b−a ∗ ∗ ∗

∗ ∗ ∗ ∗

−A3ϖ
b−a+2 ∗ ∗ ∗

∗ ∗ ∗ ∗

 .

Since the (3, 1) entry is in p2, the (1, 1) entry must be in o×. This implies that A1x ∈ o×

(note that a < b ≤ c− b < c− a so that c− 2a− 1 > 0). This proves (5.13).

We now claim that the following holds:

Type 2

no.
Condition h−1g ∈ K(p)g2K(p)?

1 a ≥ b and xy + z ∈ o× no

2 a ≥ b, xy + z ∈ p, x ∈ p, and y ∈ p no

3 a ≥ b, xy + z ∈ p, x ∈ p, y ∈ o×, and c ̸= 2a+ 1 no

4 a ≥ b, xy + z ∈ p, x ∈ p, y ∈ o×, and c = 2a+ 1 yes

5 a ≥ b, xy + z ∈ p and x ∈ o× yes

6 b > a and x ∈ o× yes

7 b > a and x ∈ p no

Line 1 follows from (5.12). Line 2 follows from (5.10). Line 3 follows from (5.11). For

Line 4, assume that a ≥ b, xy+z ∈ p, x ∈ p, y ∈ o×, and c = 2a+1. We have x = z = 0.

Then h−1gkg−1
2 ∈ K(p) with

k =


−ϖ−1

1 y−1ϖa−b

ϖ y−1ϖa−b+1

1

 .

For Line 5, assume that a ≥ b, xy + z ∈ p, and x ∈ o×. Then h−1gkg−1
2 ∈ K(p) with

k =


1 −yx−1ϖc−2a−2 x−1ϖc−a−b−1

1 x−1ϖc−a−b−1

1

1

 .
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For Line 6, assume that b > a and x ∈ o×. Then h−1gkg−1
2 ∈ K(p) with

k =


1 (xy + z)x−1ϖb−a−1 −yx−1ϖc−2a−2 x−1ϖc−a−b−1

1 x−1ϖc−a−b−1

1

(xy + z)ϖb−a−1 1

 .

Finally, Line 7 follows from (5.13).

The following table summaries the results for this value of g:

g = w diag(ϖa+1, ϖb, ϖc−a, ϖc−b+1)

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

Condition Type 1 Type 2 Total

b < a and c− a = a+ 1 0 q2 − 1 q2 − 1

c− a ≥ a+ 2 0 q2 − q q2 − q

c− a = a+ 1 0 q2 − 1 q2 − 1

a = b and
c− a ≥ a+ 2 0 q2 − q q2 − q

a < b and c− a ≥ a+ 2 0 q3 − q2 q3 − q2

Calculation of m6. Let g = w diag(ϖa+1, ϖb+1, ϖc−a, ϖc−b). We assume that b > a and

c − b ≥ b + 1 because otherwise m6(a, b, c) = 0. This implies that c − a ≥ a + 2 and

c ≥ a+ b+ 2.

Type 1. Assume h is of type 1, so that

h =


1 x

1

1

−x 1




1 zϖ−1 y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. We claim that

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) =⇒ x ∈ o×. (5.14)
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Proof of (5.14). Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p).Write

k =


A1 A2 B1ϖ

−1 B2

A3ϖ A4 B3 B4

C1ϖ C2ϖ D1 D2ϖ

C3ϖ C4 D3 D4

 .

We have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ C2ϖ
c−a−b + C4xϖ

c−2b ∗ D2ϖ
b−a +D4x

 .

Since the (4, 2) entry of h−1gkg−1
2 is in p, the (4, 4) entry must be in o×; this implies

that x ∈ o×.

We now claim that the following holds:

Type 1

no.
Condition h−1g ∈ K(p)g2K(p)?

1 x ∈ p no

2 x ∈ o× yes

Line 1 follows from (5.14). For Line 2 assume that x ∈ o×. Then

h−1gkg−1
2 =


−x

ϖ 1

−x−1 x−1ϖ

1

 ∈ K(p)

for

k =


1 ϖb−a−1 −yx−1ϖc−2a−2 yx−1ϖc−a−b−1

x x−1(xyϖ + z)ϖc−a−b−2 x−1(2xyϖ + z)ϖc−2b−1

1

x−1ϖb−a−1 x−1

 .
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Type 2. Assume next that h is of type 2, so that

h = t1


1 x

1

1

−x 1




1 z y

1 y

1

1




ϖ2

ϖ

1

ϖ


for some x, y, z ∈ o. We claim that

h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) =⇒ c = 2b+ 1 and x ∈ o×. (5.15)

Assume that h−1gkg−1
2 ∈ K(p) for some k ∈ K(p) with k as we have written previously.

Assume that c > 2b+ 1 and we will obtain a contradiction. Now

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ B2ϖ
1+a+b−c +B4yϖ

1+2b−c

∗ ∗ ∗ −B4ϖ
2+2b−c

C2ϖ
c−a−b −A4xϖ ∗ D2ϖ

b−a −B4xϖ
1+2b−c

 .

Since the (3, 4) entry of h−1gkg−1
2 is in p, there exists A ∈ o such that −B4ϖ

2+2b−c =

Aϖ; solving for B4, we obtain B4 = −Aϖc−2b−1. It follows that B4 ∈ p. Substituting,

we now have

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ B2ϖ
1+a+b−c −Ay

∗ ∗ ∗ Aϖ

C2ϖ
c−a−b −A4xϖ ∗ D2ϖ

b−a +Ax

 .

Since the (4, 2) entry is in p, the (4, 4) entry is in o×; this implies that x ∈ o× and A ∈ o×.

Since the (2, 4) entry is in o, there exists B ∈ o such that B2ϖ
1+a+b−c−Ay = B; solving

for B2, we obtain B2 = (Ay +B)ϖc−a−b−1. The (1, 4) entry of h−1gkg−1
2 is now

D4ϖ
−2 −B2xϖ

a+b−c −D2yϖ
b−a−1 +B4xyϖ

2b−c +B4zϖ
2b−c

= D4ϖ
−2 − (Ay +B)xϖ−1 −D2yϖ

b−a−1 −Axyϖ−1 −Azϖ−1.

Since this element is contained in o we obtain D4 ∈ p. We now have B4, D4 ∈ p, a
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contradiction. It follows that c = 2b+ 1. Now

h−1gkg−1
2 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ C2ϖ
b−a+1 −A4xϖ ∗ D2ϖ

b−a −B4x

 .

Since the (4, 2) entry is in p, the (4, 4) entry must be in o×. This implies that x ∈ o×.

We now claim that the following holds:

Type 2

no.
Condition h−1g ∈ K(p)g2K(p)?

1 b > a and c− b > b+ 1 no

2 b > a and c− b = b+ 1 and x ∈ p no

3 b > a and c− b = b+ 1 and x ∈ o× yes

Lines 1 and 2 follows from (5.15). For Line 3, assume that b > a and c− b = b+ 1 and

x ∈ o×. Then

h−1gkg−1
2 =


−x

ϖ −1

−x−1 −x−1ϖ

−1

 ∈ K(p)

with

k =


1 −ϖb−a−1 −x−1yϖ2b−2a−1 −yx−1ϖb−a

x−1ϖb−a−1 x−1

1

−x −yϖb−a − x−1zϖb−a −2yϖ − x−1zϖ

 ∈ K(p).

The following table summaries the results for this value of g:

g = w diag(ϖa+1, ϖb+1, ϖc−a, ϖc−b)

Number of cosets hK(p) such that h−1g ∈ K(p)g2K(p)

Condition Type 1 Type 2 Total

b > a and c− b > b+ 1 q4 − q3 0 q4 − q3

b > a and c− b = b+ 1 q4 − q3 q3 − q2 q4 − q2

This completes the proof.
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5.5 Generator Result

Using the work in the previous sections, we can now prove the claim that the paramodular Hecke

ring is generated by the four double cosets

T (1, 1, ϖ,ϖ), T (1, ϖ,ϖ2, ϖ), T (ϖ, 1, ϖ,ϖ2), K(p)wK(p).

Recall that

∆ =


g ∈ GSp(4, F ) : g ∈


o o p−1 o

p o o o

p p o p

p o o o

 and ν(λ(g)) ≥ 0


and ϖ is a generator of the prime ideal p in the local, non-archimedean field F with ring of integers

o.

Theorem 5.5.1. The Hecke ring H = H (K(p),∆) is generated as a ring by

T (1, 1, ϖ,ϖ), T (1, ϖ,ϖ2, ϖ), T (ϖ, 1, ϖ,ϖ2), K(p)wK(p).

Proof. Let H ′ be the subring of H generated by the four double cosets in the statement of the

theorem. We show that H ′ = H . Let c ≥ 0 be an integer and define Hc to be the Z-module

spanned by the double cosets K(p)gK(p) with λ(g) ∈ ϖco×. We will prove that Hc ⊆ H ′ for all

c ≥ 0 by induction on c. This will imply that H ′ = H . We have

H0 = ZK(p)IK(p)

H1 = ZK(p)wK(p) + ZT (1, 1, ϖ,ϖ)

H2 = Z(K(p)wK(p))2 + ZK(p)wK(p) · T (1, 1, ϖ,ϖ) + ZT (1, ϖ,ϖ2, ϖ)

+ ZT (ϖ, 1, ϖ,ϖ2) + ZT (1, 1, ϖ2, ϖ2)

H3 = Z(K(p)wK(p))3 + ZK(p)wK(p) · T (1, ϖ,ϖ2, ϖ) + ZK(p)wK(p) · T (ϖ, 1, ϖ,ϖ2)

+ ZK(p)wK(p) · T (1, 1, ϖ2, ϖ2) + ZT (ϖ,ϖ,ϖ2, ϖ2) + ZT (ϖ, 1, ϖ2, ϖ3)

+ ZT (1, ϖ,ϖ3, ϖ2) + ZT (1, 1, ϖ3, ϖ3).

Clearly we have that H0 ⊆ H ′ and H1 ⊆ H ′. To see that H2 ⊆ H ′, we only need to check that

T (1, 1, ϖ2, ϖ2) ∈ H ′. Since by 5.2.6, with a = b = 0 and c = 1, we have

T (1, 1, ϖ,ϖ) · T (1, 1, ϖ,ϖ) =T (1, 1, ϖ2, ϖ2)
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+ (q + 1)T (ϖ, 1, ϖ,ϖ2)

+ (q + 1)T (1, ϖ,ϖ2, ϖ)

+ (q3 + 2q2 + q)T (ϖ,ϖ,ϖ,ϖ)

+ (q − 1)wT (1, 1, ϖ,ϖ),

then by solving for T (1, 1, ϖ2ϖ2) while noting that T (ϖ,ϖ,ϖ,ϖ) = (K(p)wK(p))2, we see that

T (1, 1, ϖ2, ϖ2) ∈ H ′. Thus, H2 ⊆ H ′.

In order to show that H3 ⊆ H ′, we need only to show that T (ϖ, 1, ϖ2, ϖ3), T (1, ϖ,ϖ3, ϖ2), T (1, 1, ϖ3, ϖ3) ∈

H ′ since the other terms in the expression for H3 are in H ′ (noting that T (ϖ,ϖ,ϖ2, ϖ2) =

(K(p)wK(p))2 · T (1, 1, ϖ,ϖ) ∈ H ′ and T (1, 1, ϖ2, ϖ2) ∈ H ′ by the argument for H2).

T (ϖ, 1, ϖ2, ϖ3). To see that T (ϖ, 1, ϖ2, ϖ3) ∈ H ′, consider

T (1, 1, ϖ,ϖ) · T (ϖ, 1, ϖ,ϖ2) =T (ϖ, 1, ϖ2, ϖ3)

+ q2T (ϖ,ϖ,ϖ2ϖ2)

+ (q2 − 1)wT (ϖ, 1, ϖ,ϖ2),

where this expression follows from 5.2.6, with a = 1, b = 0 and c = 2. By solving for

T (ϖ, 1, ϖ2, ϖ3), we see that it is in H ′.

T (1, ϖ,ϖ3, ϖ2). To see that T (ϖ, 1, ϖ3, ϖ2) ∈ H ′, consider

T (1, 1, ϖ,ϖ) · T (1, ϖ,ϖ2, ϖ) =T (ϖ, 1, ϖ3, ϖ2)

+ q2T (ϖ,ϖ,ϖ2, ϖ2)

+ (q2 − 1)wT (1, ϖ,ϖ2, ϖ),

where this expression follows from 5.2.6, with a = 0, b = 1 and c = 2. By solving for

T (ϖ, 1, ϖ3, ϖ2), we see that it is in H ′.

T (1, 1, ϖ3, ϖ3). To see that T (1, 1, ϖ3, ϖ3) ∈ H ′, consider

T (1, 1, ϖ,ϖ) · T (1, 1, ϖ2, ϖ2) =T (1, 1, ϖ3, ϖ3)

+ q2T (1, ϖ,ϖ3, ϖ2)

+ qT (ϖ, 1, ϖ2, ϖ3)

+ q3T (ϖ,ϖ,ϖ2, ϖ2)
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+ (q − 1)wT (1, 1, ϖ2, ϖ2),

where this expression follows from 5.2.6, with a = b = 0 and c = 2. By solving for

T (1, 1, ϖ3, ϖ3) and using the results from the previous cases, we see that it is in H ′.

Hence, we have that Hi ⊆ H ′ for i = 0, 1, 2, 3, and so we now proceed with the induction.

Suppose that c ≥ 4 and Hk ⊆ H ′ for all 0 ≤ k < c. We prove that Hc ⊆ H ′ by showing that

T (ϖa, ϖb, ϖc−a, ϖc−b) with 0 ≤ a ≤ c− a, 0 ≤ b ≤ c− b is in H ′. Before we do this, observe that

if a > 0 and b > 0, then

T (ϖa, ϖb, ϖc−a, ϖc−b) = T (ϖ,ϖ,ϖ,ϖ) · T (ϖa−1, ϖb−1, ϖc−a−1, ϖc−b−1) ∈ Hc−1 ⊆ H ′

by the induction hypothesis. Thus, we may assume that a = 0 or b = 0.

Case 1: a = 0. We show that T (1, ϖb, ϖc, ϖc−b) is in H ′. To do this, we first claim that

T (1, 1, ϖc, ϖc) is in H ′. To see this, we use 5.2.6 with a = b = 0 and b+ 2 ≤ c− b to obtain

the following.

T (1, 1, ϖ,ϖ) · T (1, 1, ϖc−1, ϖc−1) =T (1, 1, ϖc, ϖc)

+ q2T (1, ϖ,ϖc, ϖc−1)

+ qT (ϖ, 1, ϖc−1, ϖc)

+ q3T (ϖ,ϖ,ϖc−1, ϖc−1)

+ (q − 1)wT (1, 1, ϖc−1, ϖc−1),

By the induction hypothesis we have that T (1, 1, ϖc−1, ϖc−1), T (ϖ,ϖ,ϖc−1, ϖc−1), wT (1, 1, ϖc−1, ϖc−1) ∈

H ′, so we need to show that T (1, ϖ,ϖc, ϖc−1) and T (1, ϖ,ϖc−1, ϖc) are in H ′.

T (1, ϖ,ϖc, ϖc−1). To see that T (1, ϖ,ϖc, ϖc−1) is in H ′, we use 5.4.2 with a = b = 0

and a+ 3 ≤ c− a to obtain

T (1, ϖ,ϖ2, ϖ) · T (1, 1, ϖc−2, ϖc−2) =T (1, ϖ,ϖc, ϖc−1)

+ (q2 − q)T (ϖ,ϖ,ϖc−1, ϖc−1)

+ q3T (ϖ2, ϖ,ϖc−2, ϖc−1)

+ (q2 − q)T (ϖ, 1, ϖc−2, ϖc−1).

By the induction hypothesis we see that T (1, ϖ,ϖc, ϖc−1) is in H ′ as desired.
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T (1, ϖ,ϖc−1, ϖc). To see that T (1, ϖ,ϖc−1, ϖc) is in H ′, we use 5.4.2 while noting that

wT (1, ϖ,ϖ2, ϖ)w−1 = T (ϖ, 1, ϖ,ϖ2) and that conjugating by w is an automorphism

(by 2.2.7 with α conjugation by w), with a = b = 0 and a+ 3 ≤ c− a to obtain

T (ϖ, 1, ϖ,ϖ2) · T (1, 1, ϖc−2, ϖc−2) =T (1, ϖ,ϖc−1, ϖc)

+ (q2 − q)T (ϖ,ϖ,ϖc−1, ϖc−1)

+ q3T (ϖ,ϖ2, ϖc−1, ϖc−2)

+ (q2 − q)T (1, ϖ,ϖc−1, ϖc−2).

By the induction hypothesis we see that T (1, ϖ,ϖc−1, ϖc) is in H ′ as desired.

Now that we have T (1, 1, ϖc, ϖc) ∈ H ′, we now show that T (1, ϖb, ϖc, ϖc−b) is in H ′. To

do this, we use induction. We know that T (1, 1, ϖc, ϖc) ∈ H ′, and assume that

T (1, ϖj , ϖc, ϖc−j) ∈ Hj ⊆ H ′

for 0 ≤ j < b. We show that this claim holds for j = b. Using 5.4.2 with a = 0, a < b− 1 and

a+ 2 < c− a we have

T (1, ϖ,ϖ2, ϖ) · T (1, ϖb−1, ϖc−2, ϖc−b−1) =T (1, ϖb, ϖc, ϖc−b)

+ (q3 − q2)T (ϖ,ϖb, ϖc−1, ϖc−b)

+ q4T (ϖ2, ϖb, ϖc, ϖc−b)

+ (q3 − q2)wT (ϖ,ϖb−1, ϖc−1, ϖc−b)

+m6wT (ϖ,ϖb, ϖc−1, ϖc−b−1),

where

m6 =


0 b = c− b

q4 − q2 b+ 1 = c− b

q4 − q3 b+ 2 ≤ c− b

.

By the induction hypothesis, we have T (ϖ,ϖb, ϖc−1, ϖc−b), T (ϖ2, ϖb, ϖc, ϖc−b) ∈ H ′.

Also, since Hc−1 ⊆ H ′ by assumption, we have that T (ϖ,ϖb−1, ϖc−1, ϖc−b), T (ϖ,ϖb, ϖc−1, ϖc−b−1) ∈

H ′. Hence we have proven the claim in this case.

Case 2: b = 0. Let α be the the map in 2.2.7 define to be conjugation by w. In order

show that T (ϖa, 1, ϖc−a, ϖc) is in H ′, we apply α to T (ϖa, 1, ϖc−a, ϖc). Since this is an
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automorphism, that maps T (ϖa, 1, ϖc−a, ϖc) to T (1, ϖa, ϖc, ϖc−a) we may use the argument

in the previous case.
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6 Coset Representatives

In this section we will compute coset representatives for the double coset operators T (1, 1, ϖ,ϖ)

and T (1, ϖ,ϖ2, ϖ). We will first establish some general results and then specialize them to these

operators by following the ideas of [1]. However, our representatives will be more explicit. For the

work that follows, recall that F is a local, non-archimedean field with ring of integers o, prime ideal

p ⊆ o, and ϖ a generator of p. The paramodular group will be written K(p), and let

∆ =


g ∈ GSp(4, F ) : g ∈


o o p−1 o

p o o o

p p o p

p o o o

 and ν(λ(g)) ≥ 0


.

Let δ be a non-negative integer. Here we will find left coset representatives for the operators

T (ϖδ), that is, we will find an explicit disjoint decomposition of the set

V (ϖδ) =
⋃

K(p)gK(p)
ν(λ(g)) = δ

K(p)gK(p) = {g ∈ ∆ : ν(λ(g)) = δ} = ⊔igiK(p).

We first make an observation. Suppose that

V (ϖδ) = ⊔igiK(p)

is a disjoint decomposition. Since GSp(4, F ) = PK(p), where P is the Siegel parabolic subgroup,

we may assume that each gi has the form

gi =

A B

0 D

 ,

where A,B, and D satisfy

tAD = tDA = ϖδ =

ϖδ

ϖδ

 , tBD = tDB.

As D = ϖδ tA−1, we see that D is completely determined by A. Before we continue with the

observation, we prove a lemma.

Using 4.2.6 as well as the condition that A ∈ [ o o
p o ] and D ∈ [ o p

o o ] with D = ϖδ tA−1 means that

there are four possibilities for A. These are

1. A ∈ Γ0(p)
[
ϖa

ϖb

]
Γ0(p) for some a, b ∈ Z with δ ≥ a ≥ b ≥ 0.
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2. A ∈ Γ0(p)
[
ϖa

ϖb

]
Γ0(p) for some a, b ∈ Z with δ ≥ b > a ≥ 0.

3. A ∈ Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) for some a, b ∈ Z with δ ≥ a+ 1 ≥ b+ 1 ≥ 1.

4. A ∈ Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) for some a, b ∈ Z with δ ≥ b+ 1 > a+ 1 ≥ 1.

Here, Γ0(p) = {
[
a b
c d

]
∈ GL(2, o) : c ≡ 0 mod p}. If the first possibility is the case, then let

Γ0(p)
[
ϖa

ϖb

]
Γ0(p) = ⊔ihiΓ0(p)

be a disjoint decomposition. As A is in this double coset, then A must be in one of the left cosets

hiΓ0(p), so write A = hik where k ∈ Γ0(p). SinceA B

0 D

k−1

tk

 =

hi B tk

0 D tk


and

[
k−1

tk

]
∈ K(p), we may assume that A is actually one of the hi. Similar arguments hold for

the other three cases. Hence, to compute A, it suffices to compute the hi. To accomplish this, we

prove a lemma.

Lemma 6.0.1. Let n ∈ Z, n ≥ 0. There are disjoint decompositions

Γ0(p)

ϖn

1

Γ0(p) =
⊔

y∈o/pn

ϖn y

1

Γ0(p)

and

Γ0(p)

1
ϖn

Γ0(p) =
⊔

y∈p/pn+1

1
y ϖn

Γ0(p)

Proof. We prove the first decomposition, as the second follows from a similar argument. Let y ∈ o

and write ϖn y

1

 =

1 y

1

ϖn

1

 .

Hence, the right side is contained in the left side. To show the other inclusion, let

x =

e f

g h

 ∈ Γ0(p)

ϖn

1

Γ0(p),

and let

k1 =

a1 b1

c1 d1

 ∈ Γ0(p), k2 =

a2 b2

c2 d2

 ∈ Γ0(p)
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be such that

x = k1

ϖn

1

 k2.

We thus have that

x =

e f

g h

 =

a1a2ϖn + b1c2 a1b2ϖ
n + b1d2

c1a2ϖ
n + d1c2 c1b2ϖ

n + d1d2

 .

As c1, c2 ∈ p and a1, a2, d1, d2 ∈ o× (because a1d1 − b1c1, a2d2 − b2c2 ∈ o×) we see that g ∈ p an

h ∈ o×. Now, we have that

xΓ0(p) =

e f

g h

Γ0(p)

=

e f

g h

 1

−gh−1 1

Γ0(p) as
[

1
−gh−1 1

]
∈ Γ0(p),

=

e− fgh−1 f

h

Γ0(p)

=

e− fgh−1 fh−1

1

Γ0(p).

Since ν(det(x)) = n, then it must be the case that ν(e− fgh−1) = n, and thus we see that

xΓ0(p) =

ϖn fh−1

1

Γ0(p) ∈
⊔

y∈o/pn

ϖn y

1

Γ0(p).

This proves the equality. We now show that the union is in fact disjoint. Let y1, y2, a, b, c, d ∈ o

and k =
[

a b
cϖ d

]
∈ Γ0(p) be such thatϖn y1

1

 =

ϖn y2

1

 k.

We thus have thatϖn y1

1

 =

ϖn y2

1

 a b

cϖ d

 =

aϖn + cϖy2 bϖn + dy2

cϖ d

 .

Thus, we obtain that d = 1 and y1 = y2 + bϖn, meaning that y1 ≡ y2 (mod pn) as desired.

Proposition 6.0.2. Let a, b, δ ∈ Z, y ∈ o and suppose that V (ϖδ) = ∪igiK(p) with

gi =

A B

0 D

 ,
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where A,B, and D satisfy

tAD = tDA = ϖδ =

ϖδ

ϖδ

 , tBD = tDB, B ∈

p−1 o

o o

 .

Let

w =


1

ϖ

ϖ

1

 =



1

ϖ

ϖ

t 1

ϖ

−1


,

then the following are complete sets of representatives for each case introduced after 4.2.6.

1. If A ∈ Γ0(p)
[
ϖa

ϖb

]
Γ0(p) for δ ≥ a ≥ b ≥ 0, then

gi =


1 y

1

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

 ,

where y ∈ o/pa−b, y1 ∈ o/pa and y2, y3 ∈ o/pb.

2. If A ∈ Γ0(p)
[
ϖa

ϖb

]
Γ0(p) for δ ≥ b > a ≥ 0, then

gi =


1

y 1

1 −y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1


where y ∈ p/pb−a+1, y1, y2 ∈ o/pa and y3 ∈ o/pb.

3. If A ∈ Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) for δ ≥ a+ 1 ≥ b+ 1 ≥ 1, then

gi = w−1


−ϖ −ϖy

ϖ

−1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−ay1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1


where y ∈ o/pa−b, y1 ∈ o/pa and y2, y3 ∈ o/pb.



257

4. If A ∈ Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) for δ ≥ b+ 1 > a+ 1 ≥ 1, then

gi = w−1


−ϖ

ϖy ϖ

−1 y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1


where y ∈ p/pb−a+1,y1, y2 ∈ o/pa+1, and y3 ∈ o/pb.

Proof. 1. Suppose that the conditions of the first case hold. As

Γ0(p)
[
ϖa

ϖb

]
Γ0(p) = ϖbΓ0(p)

[
ϖa−b

1

]
Γ0(p)

for δ ≥ a ≥ b ≥ 0, then by 6.0.1 we have that

Γ0(p)
[
ϖa

ϖb

]
Γ0(p) =

⊔
y∈o/pa−b

ϖa yϖb

ϖb

Γ0(p).

Hence, by the comments before 6.0.1 we may assume that A =
[
ϖa yϖb

ϖb

]
. Now, as

tAD =

ϖδ

ϖδ

 ,

then

D = ϖδ t
A−1 =

 ϖδ−a

−yϖδ−a ϖδ−b

 .

Let B = [ y1 y2
y3 y4 ], where y1 ∈ p−1 and y2, y3, y4 ∈ o. By assumption we have that tBD = tDB,

so this implies thatϖδ−ay1 −ϖδ−ayy3 ϖδ−by3

ϖδ−ay2 −ϖδ−ayy4 ϖδ−by4

 = tBD = tDB =

ϖδ−ay1 −ϖδ−ayy3 ϖδ−ay2 −ϖδ−ayy4

ϖδ−by3 ϖδ−by4

 .

Hence

ϖδ−ay2 −ϖδ−ayy4 = ϖδ−by3,

meaning that

y2 = yy4 +ϖa−by3.

Thus,

B =

y1 yy4 +ϖa−by3

y3 y4

 .
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Hence,

gi =


ϖa yϖb y1 yy4 +ϖa−by3

ϖb y3 y4

ϖδ−a

−yϖδ−a ϖδ−b

 .

As A B

D

 =

A
D

1 A−1B

1

 ,

then we have

gi =

A B

D



=


ϖa yϖb y1 yy4 +ϖa−by3

ϖb y3 y4

ϖδ−a

−yϖδ−a ϖδ−b



=


ϖa yϖb

ϖb

ϖδ−a

−yϖδ−a ϖδ−b




1 ϖ−ay1 −ϖ−ayy3 −ϖ−ayy4 +ϖ−a(ϖa−by3 + yy4)

1 ϖ−by3 ϖ−by4

1

1



=


ϖa yϖb

ϖb

ϖδ−a

−yϖδ−a ϖδ−b




1 ϖ−a(y1 − yy3) ϖ−by3

1 ϖ−by3 ϖ−by4

1

1



=


1 y

1

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a(y1 − yy3) ϖ−by3

1 ϖ−by3 ϖ−by4

1

1

 .

Finally, we have that y1 ∈ p−1, and hence y1 − yy3 ∈ p−1. Therefore, we may rewrite gi as

gi =


1 y

1

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1
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for y ∈ o/pa−b, y1 ∈ o/pa and y2, y3 ∈ o/pb.

2. Suppose that the conditions of the second case hold. As

Γ0(p)
[
ϖa

ϖb

]
Γ0(p) = ϖaΓ0(p)

[
1
ϖb−a

]
Γ0(p)

for δ ≥ b > a ≥ 0, then by 6.0.1 we have that

Γ0(p)
[
ϖa

ϖb

]
Γ0(p) =

⊔
y∈p/pb−a+1

 ϖa

yϖa ϖb

Γ0(p).

Hence, by the comments before 6.0.1 we may assume that A =
[

ϖa

yϖa ϖb

]
. Now, as

tAD =

ϖδ

ϖδ

 ,

then

D = ϖδ t
A−1 =

ϖδ−a −yϖδ−b

ϖδ−b

 .

Let B = [ y1 y2
y3 y4 ], where y1 ∈ p−1 and y2, y3, y4 ∈ o. By assumption we have that tBD = tDB,

so this implies thatϖδ−ay1 ϖδ−by3 −ϖδ−byy1

ϖδ−ay2 ϖδ−by4 −ϖδ−byy2

 = tBD = tDB =

 ϖδ−ay1 ϖδ−a

ϖδ−by3 −ϖδ−byy1 ϖδ−by4 −ϖδ−byy2

 .

Hence

ϖδ−by3 −ϖδ−byy1 = ϖδ−ay2,

meaning that

y3 = yy1 +ϖb−ay2.

Thus,

B =

 y1 y2

yy1 +ϖb−ay2 y4

 .

We now have that,

gi =


ϖa y1 y2

ϖay ϖb yy1 +ϖb−ay2 y4

ϖδ−a −ϖδ−by

ϖδ−b

 .
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Now, as in case 1, we may write

gi =


ϖa y1 y2

ϖay ϖb yy1 +ϖb−ay2 y4

ϖδ−a −ϖδ−by

ϖδ−b



=


ϖa

ϖay ϖb

ϖδ−a −ϖδ−by

ϖδ−b




1 ϖ−ay1 ϖ−ay2

ϖ−b−ay2 ϖ−b(yy2 + y4)

1

1



=


1

y 1

1 −y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−ay1 ϖ−ay2

1 ϖ−ay2 ϖ−b(−yy2 + y4)

1

1

 .

Thus, we may rewrite gi as

gi =


1

y 1

1 −y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1


for y ∈ p/pb−a+1, y1, y2 ∈ o/pa and y3 ∈ o/pb.

3. Suppose that the conditions of the third case hold. As
[

1
−ϖ

]
normalizes the group Γ0(p),

we have that

Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) = ϖb

[
1

−ϖ

]
Γ0(p)

[
ϖa−b

1

]
Γ0(p)

for δ ≥ a+ 1 ≥ b+ 1 ≥ 1. As in the first case, 6.0.1 implies that

Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) =

⊔
y∈o/pa−b

 1

−ϖ

ϖa ϖby

ϖb

Γ0(p).

Hence, we have that

A =

 1

−ϖ

ϖa ϖby

ϖb

 =

 ϖb

−ϖa+1 −ϖb+1y

 ,
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and so

D = ϖδ t
A−1 =

 −ϖδ−ay ϖδ−b

−ϖδ−a−1

 .

Let B = [ y1 y2
y3 y4 ], where y1 ∈ p−1 and y2, y3, y4 ∈ o, and since tBD = tDB, we have that

−ϖδ−a−1y4 = ϖδ−by1 +ϖδ−ayy2

This implies that

y4 = −ϖa−b+1y1 −ϖyy2

and so

B =

y1 y2

y3 −ϖa−b+1y1 −ϖyy2

 .

We now have that

gi =


ϖb y1 y2

−ϖa+1 −ϖb+1y y3 −ϖa−b+1y1 −ϖyy2

−ϖδ−ay ϖδ−b

−ϖδ−a−1

 .

Hence

gi =


ϖb

−ϖa+1 −ϖb+1y

−ϖδ−ay ϖδ−b

−ϖδ−a−1




1 −ϖ−a(yy1 +ϖ−1y3) ϖ−by1

1 ϖ−by1 ϖ−by2

1

1



=


1

−ϖ −ϖy

−y 1

−ϖ−1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a(yy1 +ϖ−1y3) ϖ−by1

1 ϖ−by1 ϖ−by2

1

1


Letting

w =


1

ϖ

ϖ

1

 =



1

ϖ

ϖ

t 1

ϖ

−1


,
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we have that

gi = w−1


−ϖ −ϖy

ϖ

−1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a(yy1 +ϖ−1y3) ϖ−by1

1 ϖ−by1 ϖ−by2

1

1

 .

We may thus rewrite this as

gi = w−1


−ϖ −ϖy

ϖ

−1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1


for y ∈ o/pa−b, y1 ∈ o/pa and y2, y3 ∈ o/pb.

4. Finally, suppose that the conditions of the fourth case hold. As in case 3, since
[

1
−ϖ

]
normalizes the group Γ0(p), we have that

Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) = ϖa

[
1

−ϖ

]
Γ0(p)

[
1
ϖb−a

]
Γ0(p)

for δ ≥ b+ 1 > a+ 1 ≥ 1. As in the second case, 6.0.1 implies that

Γ0(p)
[

1
−ϖ

][
ϖa

ϖb

]
Γ0(p) =

⊔
y∈p/pb−a+1

 1

−ϖ

 ϖa

yϖa ϖb

Γ0(p).

Hence, by the comments before 6.0.1 we may assume that

A =

 1

−ϖ

 ϖa

yϖa ϖb

 =

 ϖay ϖb

−ϖa+1

 ,

and thus

D =

 ϖδ−b

−ϖδ−a−1 yϖδ−b−1

 .

Letting B = [ y1 y2
y3 y4 ], where y1 ∈ p−1 and y2, y3, y4 ∈ o, we know tBD = D

B , as so this implies

that

−ϖδ−by1 = ϖδ−b−1yy3 +ϖδ−a−1y4,

and hence

y1 = −ϖ−1yy3 −ϖb−a−1y4.
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This means that

B =

−ϖ−1yy3 −ϖb−a−1y4 y2

y3 y4

 .

We now have that

gi =


ϖay ϖb −ϖ−1yy3 −ϖb−a−1y4 y2

−ϖa+1 y3 y4

ϖδ−b

−ϖδ−a−1 yϖδ−b−1



=


ϖay ϖb

−ϖa+1

ϖδ−b

−ϖδ−a−1 yϖδ−b−1




1 −ϖ−a−1y3 −ϖ−a−1y4

1 −ϖ−a−1y4 ϖ−b(y2 +ϖ−1yy4)

1

1



=


y 1

−ϖ

1

−ϖ−1 yϖ−1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y3 −ϖ−a−1y4

1 −ϖ−a−1y4 ϖ−b(y2 +ϖ−1yy4)

1

1

 .

Letting w be as in case 3, we have that

gi = w−1


−ϖ

ϖy ϖ

−1 y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y3 −ϖ−a−1y4

1 −ϖ−a−1y4 ϖ−b(y2 +ϖ−1yy4)

1

1

 .

Recalling that y ∈ p, we may rewrite gi as

gi = w−1


−ϖ

ϖy ϖ

−1 y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1


where y ∈ p/pb−a+1,y1, y2 ∈ o/pa+1, and y3 ∈ o/pb.

Proposition 6.0.3. The cosets within each case of 6.0.2 are mutually disjoint.
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Proof. 1. Assume the conditions of the first case of 6.0.2 hold, and so the cosets have the form
1 y

1

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p),

where y ∈ o/pa−b, y1 ∈ o/pa, y2, y3 ∈ o/pb, and δ ≥ a ≥ b ≥ 0. Let X(a, b, y) be the set of all

such cosets. It is clear that the cosets in X(a, b, y) are mutually disjoint for a given a, b, and

y. We now show that for a, a′, b, b′ ∈ Z with a ≥ b ≥ 0, a′ ≥ b′ ≥ 0 and y, y′ ∈ o we have that

X(a, b, y) ∩X(a′, b′, y′) = ∅ if a ̸= a′ or b ̸= b′. Further, that

X(a, b, y) ∩X(a, b, y′) =


X(a, b, y) = X(a, b, y′), y ≡ y′ mod pa−b

∅, y ̸≡ y′ mod pa−b.

To prove the first claim, assume for the sake of contradiction that a ̸= a′ or b ̸= b′ and

X(a, b, y) ∩X(a′, b′, y′) ̸= ∅. Let y1, y′1, y2, y′2, y3, y′3 ∈ o and k ∈ K(p) be such that
1 y

1

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1



=


1 y′

1

1

−y′ 1




ϖa′

ϖb′

ϖδ−a′

ϖδ−b′




1 ϖ−a′−1y′1 ϖ−b′y′2

1 ϖ−b′y′2 ϖ−b′y′3

1

1

 k.

Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Since k3 = 0 and k ∈ K(p), we must have that

k1 ∈ GL(2, o). Now, let k1 =
[
j1 j2
j3 j4

]
. Since A = A′k1, and using the definitions of A

and A′, we have that j3 = 0, and hence j1, j4 ∈ o×. This implies that a = a′ and b = b′, a

contradiction.
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We now prove the second part of the claim. Let y, y′ ∈ o and assume that y ≡ y′ mod pa−b,

and so there is an x ∈ o such that y = y′ +ϖa−bx. Let y1, y2, y3 ∈ o. We have that
1 y

1

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

=


1 y′ +ϖa−bx

1

1

−y′ −ϖa−bx 1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

=


1 y′

1

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 x

1

1

−x 1




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

=


1 y′

1

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 (y1 + 2xy2ϖ

a−b+1 + x2y3ϖ
a−b+1)ϖ−a−1 (y2 + xy3)ϖ

−b

1 (y2 + xy3)ϖ
−b y3ϖ

−b

1

1

K(p)



266

∈ X(a, b, y′).

Hence, we have that X(a, b, y) ⊆ X(a, b, y′), and by a similar argument the other containment

can be shown, and thus X(a, b, y) = X(a, b, y′) if y ≡ y′ mod pa−b.

Finally, assume that y ̸≡ y′ mod pa−b and suppose thatX(a, b, y) ∩ X(a, b, y′) ̸= ∅ and we

will obtain a contradiction. As the intersection is not empty, there are y1, y
′
1, y2, y

′
2, y3, y

′
3 ∈ o

and k ∈ K(p) such that
1 y

1

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1



=


1 y′

1

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y′1 ϖ−by′2

1 ϖ−by′2 ϖ−by′3

1

1

 k.

Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Write k1 =

[
j1 j2
j3 j4

]
. Then we have that

A =A′k1ϖa yϖb

ϖb

 =

ϖa y′ϖb

ϖb

j1 j2

j3 j4


ϖa yϖb

ϖb

 =

j1ϖa + j3y
′ϖb j2ϖ

a + j4y
′ϖb

j3ϖ
b j4ϖ

b

 .

It follows that j3 = 0, j1 = j4 = 1, and y = y′ + j2ϖ
a−b, which is a contradiction to the fact

that y ̸≡ y′ mod pa−b. This completes the proof of case 1.
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2. Assume the conditions of the second case of 6.0.2 hold, and so the cosets have the form
1

y 1

1 −y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1

K(p)

where y ∈ p/pb−a+1, y1, y2 ∈ o/pa, y3 ∈ o/pb, and δ ≥ b > a ≥ 0. Let X(a, b, y) be the set

of all such cosets, and as in the first case it is clear that the cosets in X(a, b, y) are mutually

disjoint for a given a, b, and y. We now show that for a, a′, b, b′ ∈ Z with b > a ≥ 0, b′ > a′ ≥ 0

and y, y′ ∈ p we have that X(a, b, y) ∩X(a′, b′, y′) = ∅ if a ̸= a′ or b ̸= b′. Further, that

X(a, b, y) ∩X(a, b, y′) =


X(a, b, y) = X(a, b, y′), y ≡ y′ mod pb−a

∅, y ̸≡ y′ mod pb−a.

To prove the first claim in this case, assume for the sake of contradiction that a ̸= a′ or b ̸= b′

and X(a, b, y) ∩X(a′, b′, y′) ̸= ∅. Let y1, y′1, y2, y′2, y3, y′3 ∈ o and k ∈ K(p) be such that
1

y 1

1 −y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1



=


1

y′ 1

1 −y′

1




ϖa′

ϖb′

ϖδ−a′

ϖδ−b′




1 ϖ−a′−1y′1 ϖ−a′

y′2

1 ϖ−a′
y′2 ϖ−b′y′3

1

1

 k.

Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Since k3 = 0 and k ∈ K(p), then k ∈ GL(2, o). Write

k1 =
[
j1 j1
j3 j4

]
, and so  ϖa

yϖa ϖb

 =

 ϖa′

y′ϖa′
ϖb′

j1 j2

j3 j4

 .

Thus, we have that j3 = 0, and so j1, j4 ∈ o×. Hence, it must be the case that a = a′ and

b = b′, a contradiction. We now move on to prove the second part of the claim in this case.
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Let y, y′ ∈ p and assume that y ≡ y′ mod pb−a. Let x ∈ p such that y = y′ +ϖb−ax and let

y1, y2, y3 ∈ o. Then
1

y 1

1 −y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1

K(p)

=


1

y′ +ϖb−ax 1

1 −y′ −ϖb−ax

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1

K(p)

=


1

y′ 1

1 −y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1

x 1

1 −x

1




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1

K(p)

=


1

y′ 1

1 −y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1

x 1

1 −x

1




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1




1

x 1

1 −x

1



−1

K(p)
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=


1

y′ 1

1 −y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 0 y1ϖ

−a−1 (xy1ϖ
−1 + y2)ϖ

−a

0 1 (xy1ϖ
−1 + y2)ϖ

−a (xy2ϖ
b−a + x2y1wϖ

b−a−1 + xy2ϖ
b−a + y3)ϖ

−b

0 0 1 0

0 0 0 1

K(p)

∈ X(a, b, y′).

Thus,X(a, b, y) ⊆ X(a, b, y′). Similarly we have thatX(a, b, y′) ⊆ X(a, b, y), and soX(a, b, y) =

X(a, b, y′).

Finally, assume that y ̸≡ y′ mod pb−a and X(a, b, y) ∩X(a, b, y′) ̸= ∅, and we will obtain a

contradiction. As the intersection is not empty, there are y1, y
′
1, y2, y

′
2, y3, y

′
3 ∈ o and k ∈ K(p)

such that
1

y 1

1 −y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−ay2

1 ϖ−ay2 ϖ−by3

1

1



=


1

y′ 1

1 −y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y′1 ϖ−ay′2

1 ϖ−ay′2 ϖ−by′3

1

1

 k

Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Write k1 =

[
j1 j2
j3 j4

]
. Then we have that

A =A′k1 ϖa

yϖa ϖb

 =

 ϖa

y′ϖa ϖb

j1 j2

j3 j4
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 ϖa

yϖa ϖb

 =

 j1ϖ
a j2ϖ

a

j3ϖ
b + y′j1ϖ

a j4ϖ
b + y′j2ϖ

a

 .

It follows that j2 = 0, j1 = j4 = 1, and y = y′ + j3ϖ
b−a, and this is a contradiction to the

fact that y ̸≡ y′ mod pb−a. This completes the proof of case 2.

3. Assume the conditions of the third case of 6.0.2 hold, and so the cosets have the form

w−1


−ϖ −ϖy

ϖ

−1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−ay1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

where δ ≥ a+ 1 ≥ b+ 1 ≥ 1, y ∈ o/pa−b, y1 ∈ o/pa, y2, y3 ∈ o/pb, and

w =


1

ϖ

ϖ

1

 .

Let X(a, b, y) be the set of all such cosets. It is clear that the cosets in X(a, b, y) are mutually

disjoint for a given a, b, and y. We now show that for a, a′, b, b′ ∈ Z with a + 1 ≥ b + 1 ≥

1, a′+1 ≥ b′+1 ≥ 1 and y, y′ ∈ o we have that X(a, b, y)∩X(a′, b′, y′) = ∅ if a ̸= a′ or b ̸= b′.

Further, that

X(a, b, y) ∩X(a, b, y′) =


X(a, b, y) = X(a, b, y′), y ≡ y′ mod pa−b

∅, y ̸≡ y′ mod pa−b.

To prove the first claim, assume for the sake of contradiction that a ̸= a′ or b ̸= b′ and

X(a, b, y) ∩X(a′, b′, y′) ̸= ∅. Let y1, y′1, y2, y′2, y3, y′3 ∈ o and k ∈ K(p) be such that

w−1


−ϖ −ϖy

ϖ

−1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−ay1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1



=w−1


−ϖ −ϖy′

ϖ

−1

−y′ 1




ϖa′

ϖb′

ϖδ−a′

ϖδ−b′




1 −ϖ−a′

y′1 ϖ−b′y′2

1 ϖ−b′y′2 ϖ−b′y′3

1

1

 k.
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Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Since k3 = 0 and k ∈ K(p), we must have that k1 ∈

GL(2, o). Now, let k1 =
[
j1 j2
j3 j4

]
. Since A = A′k1 we have that ϖb

−ϖa+1 −ϖb+1y

 =

 ϖb′

−ϖa′+1 −ϖb′+1y′

j1 j2

j3 j4


=

 ϖb′j3 ϖb′j4

−ϖa′+1j1 −ϖb′+1y′j3 −ϖa′+1j2 −ϖb′+1y′j4

 .

Hence j3 = 0 and j1, j4 ∈ o×. This implies that a = a′ and b = b′, a contradiction.

We now prove the second part of the claim. Let y, y′ ∈ o and assume that y ≡ y′ mod pa−b,

and so there is an x ∈ o such that y = y′ +ϖa−bx. Let y1, y2, y3 as in the conditions of the

case. We have that

w−1


−ϖ −ϖy

ϖ

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

=w−1


−ϖ −ϖy′ −ϖa−b+1x

ϖ

1

−y′ −ϖa−bx 1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

=w−1


−ϖ −ϖy

ϖ

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b
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×


ϖb−a

1

1

ϖb−a




ϖb−a x

1

1

−x ϖb−a




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

=w−1


−ϖ −ϖy

ϖ

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


ϖb−a x

1

1

−x ϖb−a




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1

K(p)

=w−1


−ϖ −ϖy

ϖ

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


ϖb−a x

1

1

−x ϖb−a




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1




ϖb−a x

1

1

−x ϖb−a



−1

K(p)

=w−1


−ϖ −ϖy

ϖ

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 ϖ−a−1(2xy2ϖ

a−b+1 + x2y3ϖ
2a−2b+1 + y1ϖ

b−a) ϖ−b(xy3ϖ
a−b + y2)

1 ϖ−b(xy3ϖ
a−b + y2) ϖ−b(y3ϖ

a−b)

1

1

K(p)

∈ X(a, b, y′).

Recall that y1 ∈ o/pa, so the last line is true. Hence, we have that X(a, b, y) ⊆ X(a, b, y′), and
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by a similar argument the other containment can be shown, and thus X(a, b, y) = X(a, b, y′)

if y ≡ y′ mod pa−b.

Finally, assume that y ̸≡ y′ mod pa−b and suppose thatX(a, b, y) ∩ X(a, b, y′) ̸= ∅ and we

will obtain a contradiction. As the intersection is not empty, there are y1, y
′
1, y2, y

′
2, y3, y

′
3 ∈ o

and k ∈ K(p) such that

w−1


−ϖ −ϖy

ϖ

1

−y 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y1 ϖ−by2

1 ϖ−by2 ϖ−by3

1

1



= w−1


−ϖ −ϖy′

ϖ

1

−y′ 1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 ϖ−a−1y′1 ϖ−by′2

1 ϖ−by′2 ϖ−by′3

1

1

 k.

Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Write k1 =

[
j1 j2
j3 j4

]
. Then we have that

 ϖb

−ϖa+1 −ϖb+1y

 =

 ϖb

−ϖa+1 −ϖb+1y′

j1 j2

j3 j4


 ϖb

−ϖa+1 −ϖb+1y

 =

 ϖbj3 ϖbj4

−ϖa+1j1 −ϖb+1y′j3 −ϖa+1j2 −ϖb+1y′j4

 .

It follows that j3 = 0, j1 = j4 = 1, and y = y′ + j2ϖ
a−b, which is a contradiction to the fact

that y ̸≡ y′ mod pa−b. This completes the proof of case 3.

4. Assume the conditions of the forth case of 6.0.2 hold, and so the cosets have the form

w−1


−ϖ

ϖy ϖ

−1 y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1

K(p)
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where y ∈ p/pb−a+1,y1, y2 ∈ o/pa+1, and y3 ∈ o/pb. Note that in this case δ ≥ b+1 > a+1 ≥ 1.

Let X(a, b, y) be the set of all such cosets, and as in the first case it is clear that the cosets in

X(a, b, y) are mutually disjoint for a given a, b, and y. We now show that for a, a′, b, b′ ∈ Z

with b > a ≥ 0, b′ > a′ ≥ 0 and y, y′ ∈ p we have that X(a, b, y) ∩X(a′, b′, y′) = ∅ if a ̸= a′ or

b ̸= b′. Further, that

X(a, b, y) ∩X(a, b, y′) =


X(a, b, y) = X(a, b, y′), y ≡ y′ mod pb−a

∅, y ̸≡ y′ mod pb−a.

To prove the first claim in this case, assume for the sake of contradiction that a ̸= a′ or b ̸= b′

and X(a, b, y) ∩X(a′, b′, y′) ̸= ∅. Let y1, y′1, y2, y′2, y3, y′3 ∈ o and k ∈ K(p) be such that

w−1


−ϖ

ϖy ϖ

−1 y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1



=w−1


−ϖ

ϖy′ ϖ

−1 y′

1




ϖa′

ϖb′

ϖδ−a′

ϖδ−b′




1 −ϖ−a′−1y′1 −ϖ−a′−1y′2

1 −ϖ−a′−1y′2 ϖ−b′y′3

1

1

 k.

Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Since k3 = 0 and k ∈ K(p), then k ∈ GL(2, o). Write

k1 =
[
j1 j1
j3 j4

]
, and so

 ϖay ϖb

−ϖa+1

 =

 ϖa′
y′ ϖb′

−ϖa′+1

j1 j2

j3 j4

 .

Thus, we have that j3 = 0, and so j1, j4 ∈ o×. Hence, it must be the case that a = a′ and

b = b′, a contradiction. We now move on to prove the second part of the claim in this case.

Let y, y′ ∈ p and assume that y ≡ y′ mod pb−a. Let x ∈ p such that y = y′ +ϖb−ax and let
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y1, y2, y3 be as in the conditions of this case. Then

w−1


−ϖ

ϖy ϖ

−1 y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1

K(p)

=w−1


−ϖ

ϖy′ +ϖb−a+1x ϖ

−1 y′ +ϖb−ax

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1

K(p)

=w−1


−ϖ

ϖy′ ϖ

−1 y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1

ϖb−a

ϖb−a

1




1

x ϖa−b

ϖa−b −x

1




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1

K(p)

=w−1


−ϖ

ϖy′ ϖ

−1 y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1

x ϖa−b

ϖa−b −x

1




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1

K(p)
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=w−1


−ϖ

ϖy′ ϖ

−1 y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1

x ϖa−b

ϖa−b −x

1




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1




1

x ϖa−b

ϖa−b −x

1



−1

K(p)

=w−1


−ϖ

ϖy′ ϖ

−1 y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b



×


1 −ϖ−a−1(y1ϖ

b−a) −ϖ−a−1(xy1ϖ
b−a + y2)

1 −ϖ−a−1(xy1ϖ
b−a + y2) ϖ−b(−x2y1ϖ

2b−2a−1 − 2xy2ϖ
b−a−1 + y3ϖ

a−b)

1

1

K(p)

∈ X(a, b, y′).

Recall that y3 ∈ o/pb, so the last line is true. Thus, X(a, b, y) ⊆ X(a, b, y′). Similarly we have

that X(a, b, y′) ⊆ X(a, b, y), and so X(a, b, y) = X(a, b, y′).

Finally, assume that y ̸≡ y′ mod pb−a and X(a, b, y) ∩X(a, b, y′) ̸= ∅, and we will obtain a

contradiction. As the intersection is not empty, there are y1, y
′
1, y2, y

′
2, y3, y

′
3 ∈ o and k ∈ K(p)

such that

w−1


−ϖ

ϖy ϖ

−1 y

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y1 −ϖ−a−1y2

1 −ϖ−a−1y2 ϖ−by3

1

1



=w−1


−ϖ

ϖy′ ϖ

−1 y′

1




ϖa

ϖb

ϖδ−a

ϖδ−b




1 −ϖ−a−1y′1 −ϖ−a−1y′2

1 −ϖ−a−1y′2 ϖ−by′3

1

1

 k
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Write the first product as [A B
D ], the second as

[
A′ B′

D′

]
, and k =

[
k1 k2

k3 k4

]
, thenA B

D

 =

A′ B′

D′

k1 k2

k3 k4


implies that k3 = 0 and A = A′k1. Write k1 =

[
j1 j2
j3 j4

]
. Then we have that

A =A′k1 ϖay ϖb

−ϖa+1

 =

 ϖay′ ϖb

−ϖa+1

j1 j2

j3 j4


 ϖay ϖb

−ϖa+1

 =

j1yϖa + j3ϖ
b j2yϖ

a + j4ϖ
b

−j1ϖ
a+1 −j2ϖ

a+1

 .

It follows that j2 = 0, j1 = j4 = 1, and y = y′+ j3ϖ
b−a, and this is a contradiction to the fact

that y ̸≡ y′ mod pb−a. This completes the proof of case 4, and ends the proof of the lemma.

Lemma 6.0.4. The cosets within each case of 6.0.2 are disjoint from the cosets in the other cases.

Proof. Before we proceed with the proof, we make an observation. Suppose thatA B

D

 and

A′ B′

D′


are from two different cases of 6.0.2 and that the define the same left K(p) coset. Then there must

exist k ∈ K(p) such that A B

D

 k =

A′ B′

D′

 .

Writing k =
[
k1 k2

k3 k4

]
we have thatAk1 +Bk3 Ak2 +Bk4

Dk3 Dk4

 =

A′ B′

D′

 .

This equality implies that Dk3 = 0, and since D is invertible, we have that k3 = 0, and hence

Ak1 = A′.

Since k =
[
k1 k2

k4

]
and tkJk = λ(k)J , we have that tk1k4 = λ(k)I2. Since k ∈ K(p) we have that

λ(k) ∈ o×. It follows that k1, k2 ∈ GL(2, o). From the definition of K(p), we know that the lower

left entry of k1 is in p, and therefore we have k1 ∈ Γ0(p). In particular, we have

Γ0(p)AΓ0(p) = Γ0(p)A
′Γ0(p).
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This observation shows that in order to prove our claim that the four cases of 6.0.2 are mutually

disjoint, it suffices to prove that each of the sets

Γ0(p)
[
ϖa1

ϖb1

]
Γ0(p), Γ0(p)

[
ϖa2

ϖb2

]
Γ0(p)

Γ0(p)
[

1
−ϖ

][
ϖa3

ϖb3

]
Γ0(p), Γ0(p)

[
1

−ϖ

][
ϖa4

ϖb4

]
Γ0(p)

are mutually disjoint, where a1, b1, a2, b2, a3, b3, a4, b4 ∈ Z with δ ≥ a1 ≥ b1 ≥ 0, δ ≥ b2 > a2 ≥

0, δ ≥ a3 + 1 ≥ b3 + 1 ≥ 1, and δ ≥ b4 + 1 > a4 + 1 ≥ 1.

Now, on with the proof of the claim. Suppose that

Γ0(p)
[
ϖa1

ϖb1

]
Γ0(p) ∩ Γ0(p)

[
ϖa2

ϖb2

]
Γ0(p) ̸= ∅.

Then there must be some k, k′ ∈ Γ0(p) such that

k

ϖa1

ϖb1

 =

ϖa2

ϖb2

 k′.

Writing k =
[
k1 k2

k3 k4

]
and k′ =

[
k′
1 k′

2

k′
3 k′

4

]
we have thatk1ϖa1 k2ϖ

b1

k3ϖ
a1 k4ϖ

b1

 =k

ϖa1

ϖb1


=

ϖa2

ϖb2

 k′

=

k′1ϖa2 k′2ϖ
a2

k′3ϖ
b2 k′4ϖ

b2


Since k, k′ ∈ Γ0(p), then each of k1, k

′
1, k4, k

′
4 ∈ o×. The above equality shows that k1ϖ

a1 = k′1ϖ
a2 ,

meaning that a1 = a2; k4ϖ
b1 = k′4ϖ

b2 , meaning that b1 = b2; Since a1 ≥ b1 and b2 > a2, we have

that

a1 ≥ b1 = b2 > a2 = a1,

a contradiction. Thus, Γ0(p)
[
ϖa1

ϖb1

]
Γ0(p) and Γ0(p)

[
ϖa2

ϖb2

]
Γ0(p) are mutually disjoint.

Now suppose that

Γ0(p)
[
ϖa1

ϖb1

]
Γ0(p) ∩ Γ0(p)

[
1

−ϖ

][
ϖa3

ϖb3

]
Γ0(p) ̸= ∅.

Then there must be some k, k′ ∈ Γ0(p) such that

k

ϖa1

ϖb1

 =

 1

−ϖ

ϖa3

ϖb3

 k′.
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Writing k =
[
k1 k2

k3 k4

]
and k′ =

[
k′
1 k′

2

k′
3 k′

4

]
we have that

k1ϖa1 k2ϖ
b1

k3ϖ
a1 k4ϖ

b1

 =k

ϖa1

ϖb1


=

 1

−ϖ

ϖa3

ϖb3

 k′

=

 k′3ϖ
b3 k′4ϖ

b3

−k′1ϖ
a3+1 −k′2ϖ

a3+1


Since k, k′ ∈ Γ0(p), then each of k1, k

′
1, k4, k

′
4 ∈ o× and k3, k

′
3 ∈ p. The above equality shows that

k1ϖ
a1 = k′3ϖ

b3 , meaning that a1 = b3 + 1 since k′3 ∈ p. We also have that k3ϖ
a1 = −k′1ϖ

a3+1,

which implies that a1 = a3 since k3 ∈ p.

We now have four cases. If k2, k
′
2 ∈ o×, then the equality k2ϖ

b1 = k′4ϖ
b3 implies that b1 = b3

and k4ϖ
b1 = −k′2ϖ

a3+1 implies b1 = a3+1. Hence b1 = a3+1 ≤ b3+1 = b1+1, a contradiction. If

k2 ∈ o× and k′2 ∈ p, then k4ϖ
b1 = −k′2ϖ

a3+1 implies b1 = a3+2. Hence b1 = a3+2 ≥ b3+2 = b1+2,

a contradiction. If k′2 ∈ o× and k2 ∈ p, then k2ϖ
b1 = k′4ϖ

b3 implies that b3 = b1 + 1 and

k4ϖ
b1 = −k′2ϖ

a3+1 implies b1 = a3 + 1, and so b1 + 2 = b3 + 1 ≤ a3 + 1 = b1, a contradiction.

Finally, if k2, k
′
2 ∈ p, then k2ϖ

b1 = k′4ϖ
b3 implies that b1 + 1 = b3 and k4ϖ

b1 = −k′2ϖ
a3+1

implies b1 = a3 + 2. Hence b1 + 2 = b3 + 1 ≤ a3 + 1 < a3 + 2 = b1, a contradiction. Therefore

Γ0(p)
[
ϖa1

ϖb1

]
Γ0(p) and Γ0(p)

[
1

−ϖ

][
ϖa3

ϖb3

]
Γ0(p) are disjoint.

Suppose now that

Γ0(p)
[
ϖa1

ϖb1

]
Γ0(p) ∩ Γ0(p)

[
1

−ϖ

][
ϖa4

ϖb4

]
Γ0(p) ̸= ∅.

Then there must be some k, k′ ∈ Γ0(p) such that

k

ϖa1

ϖb1

 =

 1

−ϖ

ϖa4

ϖb4

 k′.

Writing k =
[
k1 k2

k3 k4

]
and k′ =

[
k′
1 k′

2

k′
3 k′

4

]
we have that

k1ϖa1 k2ϖ
b1

k3ϖ
a1 k4ϖ

b1

 =k

ϖa1

ϖb1


=

 1

−ϖ

ϖa4

ϖb4

 k′
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=

 k′3ϖ
b4 k′4ϖ

b4

−k′1ϖ
a4+1 −k′2ϖ

a4+1

 .

As in the previous case k, k′ ∈ Γ0(p), and so each of k1, k
′
1, k4, k

′
4 ∈ o× and k3, k

′
3 ∈ p. The

above equality shows that k1ϖ
a1 = k′3ϖ

b3 , meaning that a1 = b4 + 1 since k′3 ∈ p. We also

have that k3ϖ
a1 = −k′1ϖ

a4+1, which implies that a1 = a4 since k3 ∈ p. Since b4 + 1 > a4 + 1,

we have that a1 + 1 = a4 + 1 < b4 + 1 = a1, a contradiction. Thus Γ0(p)
[
ϖa1

ϖb1

]
Γ0(p) and

Γ0(p)
[

1
−ϖ

][
ϖa4

ϖb4

]
Γ0(p) are disjoint.

Suppose now that

Γ0(p)
[
ϖa2

ϖb2

]
Γ0(p) ∩ Γ0(p)

[
1

−ϖ

][
ϖa3

ϖb3

]
Γ0(p) ̸= ∅.

Then there must be some k, k′ ∈ Γ0(p) such that

k

ϖa2

ϖb2

 =

 1

−ϖ

ϖa3

ϖb3

 k′.

Writing k =
[
k1 k2

k3 k4

]
and k′ =

[
k′
1 k′

2

k′
3 k′

4

]
we have thatk1ϖa2 k2ϖ

b2

k3ϖ
a2 k4ϖ

b2

 =k

ϖa2

ϖb2


=

 1

−ϖ

ϖa3

ϖb3

 k

=

 k′3ϖ
b3 k′4ϖ

b3

−k′1ϖ
a3+1 −k′2ϖ

a3+1

 .

Since k, k′ ∈ Γ0(p), then each of k1, k
′
1, k4, k

′
4 ∈ o× and k3, k

′
3 ∈ p. The above equality shows that

k1ϖ
a2 = k′3ϖ

b3 , meaning that a2 = b3 + 1 since k′3 ∈ p. We also have that k3ϖ
a2 = −k′1ϖ

a3+1,

which implies that a2 = a3 since k3 ∈ p.

We now have four cases. If k2, k
′
2 ∈ o×, then the equality k2ϖ

b2 = k′4ϖ
b3 implies that b2 = b3

and k4ϖ
b2 = −k′2ϖ

a3+1 implies b2 = a3+1. Hence b2 = a3+1 ≤ b3+1 = b2+1, a contradiction. If

k2 ∈ o× and k′2 ∈ p, then k4ϖ
b2 = −k′2ϖ

a3+1 implies b2 = a3+2. Hence b2 = a3+2 ≥ b3+2 = b2+2,

a contradiction. If k′2 ∈ o× and k2 ∈ p, then k2ϖ
b2 = k′4ϖ

b3 implies that b3 = b2 + 1 and

k4ϖ
b2 = −k′2ϖ

a3+1 implies b2 = a3 + 1, and so b2 + 2 = b3 + 1 ≤ a3 + 1 = b2, a contradiction.

Finally, if k2, k
′
2 ∈ p, then k2ϖ

b2 = k′4ϖ
b3 implies that b2 + 1 = b3 and k4ϖ

b2 = −k′2ϖ
a3+1

implies b2 = a3 + 2. Hence b2 + 2 = b3 + 1 ≤ a3 + 1 < a3 + 2 = b2, a contradiction. Therefore,

Γ0(p)
[
ϖa2

ϖb2

]
Γ0(p) and Γ0(p)

[
1

−ϖ

][
ϖa3

ϖb3

]
Γ0(p) are mutually disjoint.
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Suppose now that

Γ0(p)
[
ϖa2

ϖb2

]
Γ0(p) ∩ Γ0(p)

[
1

−ϖ

][
ϖa4

ϖb4

]
Γ0(p) ̸= ∅.

Then there must be some k, k′ ∈ Γ0(p) such that

k

ϖa2

ϖb2

 =

 1

−ϖ

ϖa4

ϖb4

 k′.

Writing k =
[
k1 k2

k3 k4

]
and k′ =

[
k′
1 k′

2

k′
3 k′

4

]
we have thatk1ϖa2 k2ϖ

b2

k3ϖ
a2 k4ϖ

b2

 =k

ϖa2

ϖb2


=

 1

−ϖ

ϖa3

ϖb3

 k

=

 k′3ϖ
b4 k′4ϖ

b4

−k′1ϖ
a4+1 −k′2ϖ

a4+1

 .

Since k, k′ ∈ Γ0(p), then each of k1, k
′
1, k4, k

′
4 ∈ o× and k3, k

′
3 ∈ p. The above equality shows that

k1ϖ
a2 = k′3ϖ

b3 , meaning that a2 = b3 + 1 since k′3 ∈ p. We also have that k3ϖ
a2 = −k′1ϖ

a3+1,

which implies that a2 = a3 since k3 ∈ p.

We know that k, k′ ∈ Γ0(p), and so each of k1, k
′
1, k4, k

′
4 ∈ o× and k3, k

′
3 ∈ p. The above

equality shows that k1ϖ
a2 = k′3ϖ

b4 , meaning that a2 = b4 + 1 since k′3 ∈ p. We also have

that k3ϖ
a2 = −k′1ϖ

a4+1, which implies that a2 = a4 since k3 ∈ p. Since b4 + 1 > a4 + 1,

we have that a2 + 1 = a4 + 1 < b4 + 1 = a2, a contradiction. Thus Γ0(p)
[
ϖa2

ϖb2

]
Γ0(p) and

Γ0(p)
[

1
−ϖ

][
ϖa4

ϖb4

]
Γ0(p) are mutually disjoint.

For the final comparison, suppose that

Γ0(p)
[

1
−ϖ

][
ϖa3

ϖb3

]
Γ0(p) ∩ Γ0(p)

[
1

−ϖ

][
ϖa4

ϖb4

]
Γ0(p) ̸= ∅.

Then there must be some k, k′ ∈ Γ0(p) such that

k
[

1
−ϖ

][
ϖa3

ϖb3

]
=

 1

−ϖ

ϖa4

ϖb4

 k′.

Writing k =
[
k1 k2

k3 k4

]
and k′ =

[
k′
1 k′

2

k′
3 k′

4

]
we have that−k2ϖ

a3+1 k1ϖ
b3

−k4ϖ
a3+1 k3ϖ

b3

 =k
[

1
−ϖ

][
ϖa3

ϖb3

]
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=

 1

−ϖ

ϖa4

ϖb4

 k′

=

 k′3ϖ
b4 k′4ϖ

b4

−k′1ϖ
a4+1 −k′2ϖ

a4+1

 .

We have that k, k′ ∈ Γ0(p), and so each of k1, k
′
1, k4, k

′
4 ∈ o× and k3, k

′
3 ∈ p. The above equality

shows that k1ϖ
b3 = k′4ϖ

b4 , meaning that b3 = b4. We also have that −k4ϖ
a3+1 = −k′1ϖ

a4+1, which

implies that a3 = a4. Since we also have that a3 + 1 ≥ b3 + 1 and b4 + 1 > a4 + 1, we have that

a3 + 1 ≥ b3 + 1 = b4 + 1 > a4 + 1 = a3 + 1, a contradiction. Therefore Γ0(p)
[

1
−ϖ

][
ϖa3

ϖb3

]
Γ0(p)

and Γ0(p)
[

1
−ϖ

][
ϖa4

ϖb4

]
Γ0(p) are mutually disjoint, and this completes the proof.
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7 Paramodular Lattices

In this chapter we explore an interesting application of the work in the previous sections. We

start by examining some results in [13], [14], and [15], which demonstrate an interesting connection

between lattices and how we perform the multiplication in the Hecke ring H (K(p),∆p), the main

idea of which is to assign a lattice to each coset K(p)g, and to count the number of sub-lattices

instead of counting the number of cosets in each term of the multiplication. We then move on

to extending these results so they have some relation to our paramodular Hecke algebra by first

showing that there is a correspondence between the values of the coefficients appearing in a product

of Hecke operators and sub-lattices of the paramodular lattice over a non-archimedean local field,

as was the case for the classical Hecke algebras studied by Shimura ([13], [14], [15]). We then use

this correspondence to generate explicit formulas for the orders of the two non-trivial generating

Hecke operators T (1, 1, ϖ,ϖ) and T (1, ϖ,ϖ2, ϖ).

7.1 Lemmas About Symplectic Forms over PIDs

Let R be a PID and F be the quotient field of R. Further, if a, b ∈ F , we write a|b if there is come

element c ∈ R such that ac = b.

Lemma 7.1.1. (Shimura [13]). Let R be a PID with quotient field F . Let (W, ⟨·, ·⟩) be a 2n-

dimensional non-degenerate symplectic space over F . Let M ⊂ W be a lattice for W (so M is a

finitely generated R−module containing a basis of W ). Then there exists a basis y1, . . . yn, z1, . . . zn

of W and a1, . . . , an ∈ F such that

⟨yi, yj⟩ = ⟨zi, zj⟩ = 0, ⟨yi, zj⟩ = δij , i, j ∈ {1., . . . n},

M = Ry1 ⊕ · · · ⊕Ryn ⊕Ra1z1 ⊕ · · · ⊕Ranzn,

and

a1|a2, . . . an−1|an.

Lastly, the ideals Ra1, . . . , Ran are uniquely determined.

Proof. Assume first that n = 1. Since M is a finitely-generated torsion-free R−module (as F is the

quotient field over R), and since W is two-dimensional over F , we have that

M = Ry ⊕Rw
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for some y, w ∈ F with y and w independent over R. Since W is non-degenerate, we also have that

⟨y, w⟩ ≠ 0, Let a = ⟨y, w⟩ and z = a−1w, then 1 = ⟨, ⟩ and M = Ry⊕Raz. Now assume that n ≥ 2

and that the lemma holds for n − 1 and we will show that the lemma hold for n. Again, since M

is a finitely-generated torsion-free R−module and since W is 2n-dimensional over F , we have that

W = Fx1 ⊕ · · · ⊕ Fx2n

for some x1, ,̇x2n ∈ M with x1, . . . , x2n independent over R. For x ∈ M , define ax = ⟨x,M⟩, and

so the set ax is an R−module contained in F . We have that

ax =⟨x,M⟩

=⟨x,Rx1 + · · ·+Rx2n⟩

=R⟨x, x1⟩+ · · ·+R⟨x, x2n⟩.

Since F is the quotient field of R, there exists c ∈ R, c ̸= 0 such that

c⟨x, x1⟩, . . . , c⟨x, x2n⟩ ∈ R.

It follows that ax is a fractional ideal of R. We now order the fractional ideals ax, x ∈ M by

inclusion and we claim that the set A = {ax : x ∈ M} contains a maximal element. Let X ⊆ M ,

and assume that {ax : x ∈ X} is a totally ordered subset of A. Let a = ∪x∈Xax. Since {ax : x ∈ X}

is totally ordered, the set a is an R−module of F . We have that

⟨M,M⟩ ⊆
2n∑

i,j=1

R⟨xi, xj⟩.

This implies that there exists c ∈ R with c ̸= 0 such that c⟨M,M⟩ ⊆ R. Hence ca ⊆ R, and so

a is a fractional ideal of R. Since R is a PID, there exists a ∈ R such that a = Ra. Let x ∈ X

such that a ∈ ax, then a ⊆ ax, and since ax ⊆ a, then ax = a. Hence {ax : x ∈ X} has an upper

bound in the set A, and so by Zorn’s Lemma A = {ax : x ∈ M} has a maximal element, say ay1 .

We set the abbreviation a1 = ay1
. Let α be a generator of a1, so that a1 = Rα. We have that

a1 = ⟨y1,M⟩, and so R = ⟨y1, a−1
1 M⟩. Hence, there is some z1 ∈ fra−1

1 M such that 1 = ⟨y1, z1⟩

Note that αz1 ∈ M . Define b = ⟨M, z1⟩, and arguing as previously done with a, we see that b is a

fractional ideal of R. We have that 1 = ⟨y1, z1⟩ ∈ b, and so R ⊆ b, and we claim that b ⊆ R. To

see this, we argue by contradiction. Assume that R ⊊ b as we will contradict the maximality of a1.

To begin, we note that since R ⊂ b, we have that a1 ⊂ a1b, and since R ⊊ b we also have that

a1 ⊊ a1b. hence, there exists b ∈ b such that αb ̸∈ a1. The vector y1 + αz1 is contained in M , and
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so we show that

a1 ⊊ ay1+αz1 = ⟨y1 + αz1,M⟩

, which will contradict the maximality of a1. Since b = ⟨M, z1⟩ then by definition there exists

u ∈ M such that b = ⟨u, z1⟩, and consequently

αb = α⟨u, z1⟩ = ⟨u, αz1⟩ ̸∈ a1.

Define β = −⟨u, αz1⟩ and γ = ⟨y1, u⟩. Then β = −αb ̸∈ a1. Since a1 = ay1
= ⟨y1,M⟩, and u ∈ M ,

we must have that γ ∈ a1. Since z1 ∈ a−1
1 M , we also have that γz1 ∈ a1a

−1
1 M = M , so that

u− γz1 ∈ M . Hence

β =γ − γ · 1 + β

=⟨y1, u⟩ − γ⟨y1, z1⟩+ α⟨z1, u⟩ − αγ⟨z1, z1⟩

=⟨y1 + αz1, u− γz1⟩ ∈ ⟨y1 + αz1,M⟩.

Also,

⟨y1 + αz1, a1z1⟩ =a1⟨y1, z1⟩+ αa1⟨z1, z1⟩

=a1 · 1 + α · 0

=a1.

Therefore, we have that

ay1+αz1 =⟨y1 + αz1,M⟩

=⟨y1 + αz1,M + a1z1⟩

=⟨y1 + αz1,M⟩+ ⟨y1 + αz1, a1z1⟩

⊃Rβ + a1

⊋a1.

This contradicts the maximality of a1, and hence ⟨M, z1⟩ = b = R.

Now, let

W ′ = {w ∈ W : ⟨y1, w⟩ = ⟨z1, w⟩ = 1}

and

M ′ = {w ∈ M : ⟨y1, w⟩ = ⟨z1, w⟩ = 1}.
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Suppose that w′ = w − ⟨w, z1⟩y1 − ⟨y1, w⟩ for w ∈ W , then

w = w′ + ⟨w, z1⟩y1 + ⟨y1, w⟩,

and w′ ∈ W ′. Hence W = W ′ + Fy1 + Fz1. Moreover, it is clear that W ′ ∩ (Fy1 + Fz1) = 0 and

it follows that

W = W ′ ⊕ Fy1 ⊕ Fz1.

Similarly, since ⟨M, z1⟩ = b = R and ⟨y1,M⟩ = a1, we obtain

M = M ′ ⊕Ry1 ⊕ a1z1.

Applying the induction hypothesis to M ′ ⊆ W ′, there exists a basis y2, . . . , yn, z2, . . . , zn of W ′ and

a1, . . . , an ∈ F such that

⟨yi, yf ⟩ = ⟨zi, zj⟩ = 0, ⟨yi, zj⟩ = δij

for i, j ∈ {2, . . . , n},

M ′ = Ry2 ⊕ · · · ⊕Ryn ⊕Ra2z2 ⊕ · · · ⊕Ranzn,

and a2|a3|, . . . , an−1|an. To complete the proof it will suffice to prove the α|a2, or equivalently,

a2 = Ra2 ⊆ Rα = a1. Let u.v ∈ M . Then we have that

a1 ⊆ a1 +R⟨u, v⟩ = a1⟨y1, z1⟩+R⟨u, v⟩ = ⟨y1 + u, a1z1 +Rv⟩ ⊆ ⟨y1 + u,M⟩.

Since yi +u ∈ M , by the maximality of a1 we have that a1 = ⟨y1 +u,M⟩. it follows that all the

sets in the last display are equal. In particular, we have a1 +R⟨u, v⟩ = a1, so that ⟨M ′,M ′⟩ ⊆ a1.

Now

a2 = Ra2 = R⟨y2, a2z2⟩ ⊆ ⟨M ′,M ′⟩ ⊆ a1.

it remains to prove the uniqueness ofRa1, . . . , Ran. Assume that there exists a basis y′1, . . . , y
′
n, z

′
1, . . . , z

′
n

of W ′ and a′1, . . . , a
′
n ∈ F such that

⟨y′i, y′f ⟩ = ⟨z′i, z′j⟩ = 0, ⟨y′i, z′j⟩ = δij

for i, j ∈ {1, . . . , n},

M = Ry′1 ⊕ · · · ⊕Ry′n ⊕Ra′1z
′
1 ⊕ · · · ⊕Ra′nz

′
n,

and a′1|a′2|, . . . , a′n−1|a′n. Let B be the matrix of ⟨·, ·⟩ in the basis y1, . . . , yn, a1z1, . . . , anzn for W ,

and let B′ be the matrix of ⟨·, ·⟩ in the basis y′1, . . . , y
′
n, a

′
1z

′
1, . . . , a

′
nz

′
n for W . Let S be the change

of basis matrix from the first tot he second basis, and let T be the change of basis matrix from the
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second to the first basis. Then S and T have entries from R, ST = TS = I, and B′ = tSBS. It

follows that S ∈ GL(2n,R). Hence, B and B′ are equivalent elements of M(2n,R). Let c ∈ R be

such that ca1, . . . , can, ca
′
1, . . . , ca

′
n ∈ R. it can be shown that the Smith normal form for cB as an

element of M(2n,R) is 

ca1

ca2
. . .

can−1

can


and the Smith normal form for cB′ as an element of M(2n,R) is

ca′1

ca′2
. . .

ca′n−1

ca′n


.

By the uniqueness of the Smith normal form we have that Rcai = Rca′i for all i = 1, . . . , n, and

hence Rai = Ra′i for all i = 1, . . . , n, which completes the proof.

Definition 7.1.2. In the notation of 7.1.1, we define the norm of the lattice M to be the ideal

N(M) which is generated by the set ⟨M,M⟩, and we say that M is a maximal lattice if M is a

maximal element of the set of all lattices Q in W such that N(Q) = N(M).

It turns out that that for a lattice M we have that N(M) = Ra1.

Lemma 7.1.3. Let the notation be as in 7.1.1. Then M is a maximal lattice if and only if

Ra1 = · · · = Ran.

Proof. First, assume that M is maximal. We have that

M ⊆ L = Ry1 ⊕ · · · ⊕Ryn ⊕Ra1z1 ⊕ · · · ⊕Ranzn.

Moreover, N(L) = Ra1. Since M is maximal, then M = L, implying that Ra1 = · · · = Ran. Now

assume that L is a lattice in W such that N(L) = Ra1 and M ⊆ L, and we show that M = L. By

7.1.1 there exists a basis y′1, . . . y
′
n, z

′
1, . . . z

′
n of W and a′1, . . . , a

′
n ∈ F such that

⟨y′i, y′j⟩ = ⟨z′i, z′j⟩ = 0, ⟨y′i, z′j⟩ = δij , i, j ∈ {1, . . . n},
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L = Ry′1 ⊕ · · · ⊕Ry′n ⊕Ra′1z
′
1 ⊕ · · · ⊕Ra′nz

′
n,

and

a′1|a′2, . . . a′n−1|a′n.

Since N(L) = Ra1, we may assume that a′1 = a1. Define

Q = Ry′1 ⊕ · · · ⊕Ry′n ⊕Ra1z
′
1 ⊕ · · · ⊕Ra1z

′
n.

Since a1 = a′1| . . . |a′n, we have L ⊆ Q. Thus, it will suffice to prove that Q = M . Let B be the

basis y1, . . . , yn, a1z1, . . . , a1zn for W and let B′ be the basis y′1, . . . , y
′
n, a

′
1z

′
1, . . . , a

′
1z

′
n for W . Let

S be the change of basis matrix from B to B′. Then S = [1]BB′ has entries in R and we have that

tSBS = B′, where B and B′ are the matrices of ⟨·, ·⟩ in the bases B and B′, respectfully. We

have that B = B′ by the argument at the end of 7.1.1, and it follows that det(S) ∈ R×, so that

S ∈ GL(2n,R). Since S−1 = [1]B
′

B , then B′ can be written in terms of B using elements of R, and

so this implies that Q = M .

Lemma 7.1.4. Let the notation be as in 7.1.1. Let g ∈ GSp(W ). Then N(gM) = λ(g)N(M).

Furthermore, if M is a maximal lattice, then so too is gM .

Proof. We have that

gM = Rgy1 ⊕ · · · ⊕Rgyn ⊕Ra1λ(g)λ(g)
−1gz1 ⊕ · · · ⊕Ranλ(g)λ(g)

−1gzn

and ⟨gyi, λ(g)−1gzi⟩ = δij for i, j ∈ {1, . . . , n}. It follows that N(gM) = Ra1λ(g) = λ(g)N(M).

Additionally, if M is maximal, then gM is also maximal by 7.1.3.

Proposition 7.1.5. (Shimura [13]) Let R be a PID with quotient field F . Let (W, ⟨·, ·⟩) be a

2n-dimensional non-degenerate symplectic space over F . Let M and L be maximal lattices in W .

Assume that there is some element α ∈ F such that N(M) = αN(L). Let N(L) = a. Then, there

is a basis y1, . . . yn, z1, . . . zn of W and a1, . . . , an, b1, . . . , bn ∈ F such that

L =Ry1 ⊕ · · · ⊕Ryn ⊕ az1 ⊕ · · · ⊕ azn,

M =Ra1y1 ⊕ · · · ⊕Ranyn ⊕ ab1z1 ⊕ · · · ⊕ abnzn,

α =a1b1 = · · · = anbn,

a1|a2 . . . |an|bn| . . . |b1.
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Proof. Assume first that n = 1, so that dimW = 2. By a standard theorem in linear algebra, there

exists x1, x2 ∈ L and c1, c2 ∈ F such that c1|c2, L = Rx1⊕Rx2, andM = Rc1x1⊕Rc2x2. SinceW is

assumed to be non-degenerate, and since x1, x2 forms a basis of W , we have that ⟨x1, x2⟩ ≠ 0. Also,

it is evident from the definitions that N(L) = R⟨x1, x2⟩ and N(M) = Rc1c2⟨x1, x2⟩ = c1c2N(L).

Thus a = N(L) = R⟨x1, x2⟩, and α = c1c2. Define y1 = x1, w1 −⟨x1, x2⟩−1x2, a1 = c1, and b1 = c2.

Then

L =Ry1 ⊕ aw1,

M =Ra1y1 ⊕ ab1w1,

α =a1b1

a1|b1.

This proves the proposition in the case where n = 1.

Assume now that the claim holds for n− 1 and we show it is true for n. By the same standard

theorem as above, there exist x1, . . . , x2n ∈ L and c1, . . . , c2n ∈ F× such that c1| . . . |c2n and

L = Rx1 ⊕ · · · ⊕Rx2n

M = Rc1x1 ⊕ · · · ⊕Rc2nx2n.

Let c = {c ∈ F : cM ⊆ L} and let c ∈ c. Then cxi ∈ Rc1xi for i ∈ {1, . . . , 2n}, so that c ∈ Rci for all

i. This implies that there must be a d ∈ R, d ̸= 0, such that dc ⊆ R. It follows that c is a fractional

ideal of R. Let c0 ∈ F be such that c = Rc0 and define M ′ = c0M . Then M ′ is also a maximal

lattice by 7.1.4. We also claim that {c ∈ F : cM ′ ⊆ L} = R. Clearly R ⊆ {c ∈ F : cM ′ ⊆ L}. To

see the other inclusion, let c ∈ F be such that cM ′ ⊆ L, then cc0M ⊆ L, and hence cc0 ∈ c. Since

c = Rc0, we have that c ∈ R, as desired. Hence, R = {c ∈ F : cM ′ ⊆ L}. it is straightforward to

show that if the proposition holds for the pair L an M ′ = c0M , then it holds for L and M , and so

we may assume that M ′ = M , and in particular we have that R = {c ∈ F : cM ⊆ L}. It follows

that M ⊆ L and c1, . . . , c2n ∈ R. Since c1| . . . |c2n,we also have that c−1
1 M ⊆ L. Hence c−1

1 ∈ R,

and so c1 ∈ R×. We may therefore assume that c1 = 1. Define

y1 = c1x1 + · · ·+ c2nx2n.

Then y1 is a nonzero element of M . We claim that L/Ry1 is torsion-free. To prove this, assume

that x ∈ L, and r ∈ R, r ̸= 0 are such that rx ∈ Ry1. Write

x = a1x1 + · · ·+ a2nx2n



290

for some a1, . . . , a2n ∈ R. Let r′ ∈ R be such that rx = r′y1., then rai = r′ci for i ∈ {1, . . . , 2n}.

In particular ra1 = r′, as c1 = 1. Therefore, for i ∈ {1, . . . , 2n} we have that rai = ra1ci, and so

ai = a1ci. This implies that x ∈ Ry1, so that L/Ry1 is torsion-free. We also note that since M ⊆ L,

then N(M) ⊆ N(L), and thus αN(L) ⊆ N(L) i.e., αa ⊆ a. Let a be a generator of a. Then αa = ra

for some r ∈ R, so that α = r, and thus α ∈ R. Let M1 = M + αL, then we have that M1 is a

lattice in W . Since M ⊆ M1 we have αN(L) = N(M) ⊆ N(M1). Also from the definition of M1

and the definition of the norm, N(M1) ⊆ N(M)+αN(L) = αN(L)+αN(L) = αN(L). Therefore,

N(M1) = αN(L) = N(M). Since M is maximal, since N(M1) = N(M), and since M ⊆ M1, we

obtain that M = M1, implying that αL ⊆ M .

We now claim that ⟨y1, L⟩ = a. Evidently, ⟨y1, L⟩ ⊆ N(L) = a. Let x1, . . . xn, w1, . . . , wn ∈ W

be such that ⟨xi, xj⟩ = ⟨wi, wj⟩ and ⟨xi, wj⟩ = δij for i, j ∈ {1, . . . n} and

L = Rx1 ⊕ · · · ⊕Rxn ⊕ aw1 ⊕ · · · ⊕ awn.

Note that such a basis exists by 7.1.1. Let b1, . . . , b2n ∈ R be such that

y1 = b1x1 + · · ·+ bnxn + bn+1aw1 + · · ·+ b2nawn.

We claim that the ideal generated by b1, . . . , b2n is R, i.e., that the gcd of b1, . . . , b2n is 1. Let

g be a generator of the ideal generated by b1, . . . , b2n and assume that g ̸∈ R×, and we obtain a

contradiction. Let b′i ∈ R be such that bi = gb′i for i ∈ {1, . . . , 2n}. Then

y1 = g(b′1x1 + · · ·+ b′nxn + b′n+1aw1 + · · ·+ b′2nawn).

Since L/Ry1 is torsion free, the vector

b′1x1 + · · ·+ b′nxn + b′n+1aw1 + · · ·+ b′2nawn

is contained in Ry1. Let r
′ ∈ R be such that

b′1x1 + · · ·+ b′nxn + b′n+1aw1 + · · ·+ b′2nawn

=r′y1

=r′g(b′1x1 + · · ·+ b′nxn + b′n+1aw1 + · · ·+ b′2nawn),

and it follows that r′g = 1, which contradicts our assumption that g ̸∈ R×. Since g ∈ R×, and g is

a generator of the ideal generated by the bi, there exist e1, . . . , e2n ∈ R such that

1 = e1b1 + · · ·+ e2nb2n.
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Now ⟨y1, xi⟩ = −abi+n and ⟨y1, awi⟩ = abi for i ∈ {1, . . . , n}. Set

z = −en+1x1 − · · · − e2nxn + e1aw1 + · · ·+ enawn.

Then z ∈ L and

⟨y1, z⟩ = (e1b1 + · · ·+ e2nb2n)a) = 1 · a = a.

Since a = Ra, it follows that a ⊆ ⟨y1, L⟩. We thus conclude that a = ⟨y1, L⟩. Hence R =

⟨y1, a−1L⟩ = ⟨y1, a−1L⟩. it follows that there exists some z1 ∈ a−1L such that 1 = ⟨y1, z1⟩. Now

define

U = {x ∈ W : ⟨y1, x⟩ = ⟨z1, x⟩ = 0}

and

L0 = L ∩ U = {x ∈ L : ⟨y1, x⟩ = ⟨z1, x⟩ = 0}.

if x ∈ W , then

x = ⟨x, z1⟩y1 − ⟨x, y1⟩z1 + (x− ⟨x, z1⟩y1 + ⟨x, z1⟩z1),

and it follows that

W = Fy1 ⊕ Fz1 ⊕ U.

let x ∈ L. Since z1 ∈ a−1L, there exists r ∈ R such that z1 = ra−1w for some w ∈ L. Then

⟨x, z1⟩ = ⟨x, ra−1w⟩ = a−1r⟨x,w⟩ ∈ a−1ra = R. Also, we have that ⟨x, y1⟩ ∈ a by the definition of

N(L) = a. It follows that

L = Ry1 ⊕ az1 ⊕ L0.

The set L0 is a lattice in U , and evidently, since L0 ⊆ L, then N(L0) ⊆ N(L) = a. By 7.1.1,

there exists a basis u2, . . . , un, v2, . . . , vn for U and a2, . . . , an ∈ F such that ⟨ui, uj⟩ = ⟨vi, vj⟩ =

0, ⟨ui, vj , x⟩ = δij for i, j ∈ {2, . . . , n}, a2| . . . |an, and

L0 = Ru2 ⊕ · · · ⊕Run ⊕Ra2v2 ⊕ · · · ⊕Ranvn.

We have that N(L0) = Ra2. Now

L = Ry1 ⊕Ru2 ⊕ · · · ⊕Run ⊕Raz1 ⊕Ra2v2 ⊕ · · · ⊕Ranvn.

Since N(L0) ⊆ N(L), we have that a|a2, and it follows that the last display is a canonical decompo-

sition of L. By 7.1.3, since L is maximal, we must have that Ra = Ra2 = · · · = Ran. In particular,
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N(L0) = Ra = a, and L0 is maximal. By construction y1 ∈ M . Since αL ⊆ M and z1 ∈ a−1L we

also have that αaz1 ⊆ M . We claim that

M = Ry1 ⊕ aαz1 ⊕M0,

where M0 = U ∩M . Let x ∈ M . From above we have that

x =⟨x, z1⟩y1 − ⟨x, y1⟩z1 + (x− ⟨x, z1⟩y1 + ⟨x, z1⟩z1)

=⟨x, z1⟩y1 − α−1⟨x, y1⟩αz1 + (x− ⟨x, z1⟩y1 + α−1⟨x, z1⟩αz1).

As before, ⟨x, z1⟩ ∈ R. Since y1, x ∈ M, ⟨x, y1⟩ ∈ N(M) = αN(L) = αa, so that α−1⟨x, y1⟩ ∈ a.

The desired decomposition follows, and arguing as in the case of L and L0, we find that M0 is a

maximal lattice in U and N(M0) = N(M) = αa. We now apply the induction hypothesis to L0 and

M0. It follows that there exists a basis y2, . . . , yn, z2, . . . , zn for U and a1, . . . , an, b1, . . . , bn ∈ F

such that ⟨yi, yj⟩ = ⟨zi, zj⟩ = 0, ⟨yi, zj⟩ = δij for i, j ∈ {2, . . . , n}, and

L0 =Ry2 ⊕ · · · ⊕Ryn ⊕ az2 ⊕ · · · ⊕ azn,

M0 =Ra2y2 ⊕ · · · ⊕Ranyn ⊕ ab2z2 ⊕ · · · ⊕ abnzn,

α =a2b2 = · · · = anbn,

a2|a3 . . . |an|bn| . . . |b2.

Let a1 = 1 and b1 = α. Then

L0 =Ry1 ⊕ · · · ⊕Ryn ⊕ az1 ⊕ · · · ⊕ azn,

M0 =Ra21y1 ⊕ · · · ⊕Ranyn ⊕ ab1z1 ⊕ · · · ⊕ abnzn,

α =a1b1 = · · · = anbn.

Since M0 ⊆ L0, we have that Ra2 ⊆ R. Therefore, Ra1b2 ⊆ Rb2. Now a2b2 = α, and hence,

Rα ⊆ Rb2. Since b1 = α, we get that Rb1 ⊆ Rb2, and so b2|b1. Since we also have that a1|a2, this

completes the proof.

7.2 Paramodular Lattices

In the previous section we saw that the idea of a maximal lattice leads to some desirable properties

like those of the last proposition. In this section we will formulate and prove a result in the
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symplectic case similar to the following result by Shimura in [15]. Following that, we work to

extend the following results of Shimura in [14] which shows a one-to-one correspondence between

the number of times a coset appears in the multiplication of two double cosets in a Hecke algebra

and the number of sub-lattices of a particular lattice.

Lemma 7.2.1. (Shimura [14]) Let Γ = SL(n, o) and ΓαΓ = T (a1, . . . , an). Then Γζ 7→ Lζ gives

a one-to-one correspondence between the cosets Γζ in ΓαΓ and the lattices M such that M is a

sub-lattice of L with elementary divisors a1, . . . , an.

Because of this one-to-one correspondence, Shimura then states the the following.

Proposition 7.2.2. (Shimura [14]) The degree of T (a1, . . . , an) coincides with the number of sub-

lattices M of L with elementary divisors a1, . . . , an.

To obtain a similar result for K(p), we now look at the set of lattices in the symplectic space

W that are stabilized by the paramodular group. We will use the ideas of Shulze-Pillot in [16].

As usual, let F be non-archimedean local field of characteristic zero, with ring of integers o

and prime ideal p ⊂ o. Let ϖ be a generator for p and let (W, ⟨·, ·⟩) be a finite-dimensional,

nondegenerate symplectic space over F ; let dimW = 2n for n ∈ Z, n ≥ 1. Let M be a lattice in W.

Then, as a consequence of 7.1.1 there exists a basis y1, . . . yn, z1, . . . zn of W and integers a1, . . . , an

such that

⟨yi, yj⟩ = ⟨zi, zj⟩ = 0, ⟨yi, zj⟩ = δij , i, j ∈ {1., . . . n},

and

M = oy1 ⊕ · · · ⊕ oyn ⊕ oϖa1z1 ⊕ · · · ⊕ oϖanzn (7.1)

= oy1 ⊕ · · · ⊕ oyn ⊕ pa1z1 ⊕ · · · ⊕ panzn,

where a1 ≤ · · · ≤ an.

Lemma 7.2.3. The integers a1, . . . , an in the above decomposition are uniquely determined by M .

Proof. Let the notation be as in the above exposition and suppose that the lattice M in W has

decompositions

M = oy1 ⊕ · · · ⊕ oyn ⊕ oϖa1z1 ⊕ · · · ⊕ oϖanzn

and

M = oy′1 ⊕ · · · ⊕ oy′n ⊕ oϖa′
1z′1 ⊕ · · · ⊕ oϖa′

nz′n

satisfying 7.1.1 as above.
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Since the decomposition in (7.1) is determined by M , by the lemma above, we will call such a

decomposition of M a canonical decomposition, and write

Inv(M) = (a1, . . . , an)

for the invariants of M . Note also that N(M) = pa1 .

Definition 7.2.4. Define the dual of M to be

M# = {w ∈ W : ⟨w,M⟩ ⊂ o}.

It follows that M# is also a lattice in W and has canonical decomposition related to that of M ,

M# = o(−z1)⊕ · · · ⊕ o(−zn)⊕ p−any1 ⊕ · · · ⊕ p−a1yn,

and so Inv(M#) = (−an, . . . ,−a1). Additionally, define the level of M to be Lvl(M) = p−N(M#) =

pan .

Lemma 7.2.5. Let M be as in (7.1). Then

M# = o(−zn)⊕ · · · ⊕ o(−z1)⊕ p−anyn ⊕ · · · ⊕ p−a1y1

is a canonical decomposition of M#, and

Inv(M#) = (−an, . . . ,−a1), N(M#) = p−an .

Additionally, (M#)# = M.

Proof. Let w ∈ W and write

w =

n∑
i=1

biyi +

n∑
i=1

cizi

for bi, ci ∈ F for all i ∈ {1, . . . , n}. Then we have that

⟨w, yi⟩ = −ci

and

⟨w,ϖaizi⟩ = biϖ
ai

for all i. We see that w ∈ M# if and only if ci ∈ o and biϖ
ai ∈ o for all i, and hence we obtain the

following canonical decomposition for M#,

M# = o(−zn)⊕ · · · ⊕ o(−z1)⊕ p−anyn ⊕ · · · ⊕ p−a1y1.

Applying what we have just shown to M# we must have that (M#)# = oy1 ⊕ · · · ⊕ oyn ⊕ pa1zi ⊕

· · · ⊕ panzn, which is equal to M , and completes the proof.
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We now define what it means for a lattice of the form presented in (7.1) to be a paramodular

lattice.

Definition 7.2.6. A paramodular lattice M in W is a lattice of the form (7.1) such that

an = a1 + 1. In this case, we call the basis of a paramodular lattice a paramodular basis of the

lattice.

Our next goal is to prove something akin to Shimura’s results in [14] for paramodular lattices,

but to end this section we look briefly at some useful algebraic relations among paramodular lattices.

Lemma 7.2.7. Let L,L1, and L2 be lattices of the form (7.1) in the symplectic space W and let

α ∈ F×. Then

1. (αL)# = α−1L#

2. (L1 + L2)
# = L#

1 ∩ L#
2

3. ν(N(L1 ∩ L2)) ≥ max(ν(N(L1)), ν(N(L2))).

Proof. 1. Let x ∈ (aL)#. Then ⟨x, aL⟩ ⊂ o. Hence ⟨ax, L⟩ ⊂ o. This implies that ax ∈ L#,

i.e., x ∈ a−1L#. Assume that x ∈ a−1L#. Then ax ∈ L#. Hence, ⟨ax, L⟩ ⊂ o, so that

⟨x, aL⟩ ⊂ o. Therefore, x ∈ (aL)#. It follows that (aL)# = a−1L#.

2. Let x ∈ (L1 + L2)
#. Then ⟨x, L1 + L2⟩ ⊂ o. This implies that ⟨x, L1⟩ ⊂ o and ⟨x, L2⟩ ⊂ o.

Hence, x ∈ L#
1 ∩ L#

2 . Let x ∈ L#
1 ∩ L#

2 . Then ⟨x, L1⟩ ⊂ o and ⟨x, L2⟩ ⊂ o. This implies that

⟨x, L1 + L2⟩ ⊂ o, so that x ∈ (L1 + L2)
#. It follows that (L1 + L2)

# = L#
1 ∩ L#

2 .

3. We first prove that N(L1 ∩ L2) ⊂ N(L1) ∩ N(L2). Let x, y ∈ L1 ∩ L2. Then ⟨x, y⟩ ∈

⟨L1, L1⟩ ∩ ⟨L2, L2⟩ ⊂ N(L1) ∩ N(L2). It follows that N(L1 ∩ L2) ⊂ N(L1) ∩ N(L2). Let

N(L1) = pa, N(L2) = pb, and N(L1 ∩ L2)) = pc. Then N(L1) ∩ N(L2) = pmax(a,b). Since

N(L1 ∩ L2) ⊂ N(L1) ∩N(L2), we obtain pc ⊂ pmax(a,b). This implies that c ≥ max(a, b), as

desired.

Lemma 7.2.8. Let (W, ⟨·, ·⟩) be a finite-dimensional nondegenerate symplectic space over F and

let M and L be lattice of the form (7.1) in W such that Inv(M) = Inv(L). If M ⊂ L, then M = L.

Proof. Let inv(L) = inv(M) = (a1, . . . , an). There exists a basis y1, . . . , yn, z1, . . . , zn such that

⟨yi, yj⟩ = ⟨zi, zj⟩, ⟨yi, zj⟩ = δij
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for i, j ∈ {1, . . . , n}, and

M = oy1 ⊕ · · · ⊕ oyn ⊕ oϖa1z1 ⊕ · · · ⊕ oϖanzn.

Similarly, there exists a basis y′1, . . . , y
′
n, z

′
1, . . . , z

′
n for W such that

⟨y′i, y′j⟩ = ⟨z′i, z′j⟩, ⟨y′i, z′j⟩ = δij

for i, j ∈ {1, . . . , n}, and

L = oy′1 ⊕ · · · ⊕ oy′n ⊕ oϖa1z′1 ⊕ · · · ⊕ oϖanz′n.

Let B be the ordered basis

y1, . . . , yn, a1z1, . . . , anzn

for W , and let B′ be the ordered basis

y′1, . . . , y
′
n, a1z

′
1, . . . , anz

′
n

for W . Let B and B′ be the matrices of ⟨·, ·⟩ in the bases B and B′, respectively, so that

B =



⟨y1, y1⟩ · · · ⟨y1, yn⟩ ⟨y1, a1z1⟩ · · · ⟨y1, anzn⟩
...

...
...

...

⟨yn, y1⟩ · · · ⟨yn, yn⟩ ⟨yn, a1z1⟩ · · · ⟨yn, anzn⟩

⟨a1z1, y1⟩ · · · ⟨a1z1, yn⟩ ⟨a1z1, a1z1⟩ · · · ⟨a1z1, anzn⟩
...

...
...

...

⟨anzn, y1⟩ · · · ⟨anzn, yn⟩ ⟨anzn, a1z1⟩ · · · ⟨anzn, anzn⟩


and

B′ =



⟨y′1, y′1⟩ · · · ⟨y′1, y′n⟩ ⟨y′1, a1z′1⟩ · · · ⟨y′1, anz′n⟩
...

...
...

...

⟨y′n, y′1⟩ · · · ⟨y′n, y′n⟩ ⟨y′n, a1z′1⟩ · · · ⟨y′n, anz′n⟩

⟨a1z′1, y′1⟩ · · · ⟨a1z′1, y′n⟩ ⟨a1z′1, a1z′1⟩ · · · ⟨a1z′1, anz′n⟩
...

...
...

...

⟨anz′n, y′1⟩ · · · ⟨anz′n, y′n⟩ ⟨anz′n, a1z′1⟩ · · · ⟨anz′n, anz′n⟩


.



297

We have

B = B′ =



a1
. . .

an

−a1
. . .

−an


.

Let S = (si,j)1≤i,j≤2n be the change of basis matrix from the basis B to the basis B′. We have

yi =

n∑
j=1

si,jy
′
j +

n∑
j=1

si,j+najz
′
j ,

aizi =

n∑
j=1

si+n,jy
′
j +

n∑
j=1

si+n,j+najz
′
j

for i ∈ {1, . . . , n}. Since M ⊂ L, it follows that S ∈ M(2n, o). A calculation shows that

B = SB′ tS.

Taking determinants, and recalling that B = B′, we obtain det(S)2 = 1. It follows that det(S) ∈ o×.

Hence, S ∈ GL(2n, o). Since 
s1,1 · · · s1,2n
...

...

s2n,1 · · · s2n,2n



y′1
...

z′n

 =


y1
...

zn


we have 

s′1,1 · · · s′1,2n
...

...

s′2n,1 · · · s′2n,2n



y1
...

zn

 =


y′1
...

z′n


where S−1 = (s′ij). Since S−1 has entries in o, it follows that L ⊂ M , as desired.

7.3 Lattices and Totally Isotropic Submodules

Let F be a non-archimedean local field of characteristic zero, with ring of integers o and prime ideal

p ⊆ o. Let ϖ be a generator of p and ν : F → Z ∪ {∞} be the usual valuation function. Thus,

if x ∈ F× and x = uϖk with u ∈ o×, k ∈ Z then ν(x) = k. We set ν(0) = ∞. Let (W, ⟨·, ·⟩) be

a nondegenerate 2n−dimensional symplectic space over F , where n ∈ Z, n ≥ 1. Let A and B be
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subsets of W such that there exists a compact subset C of W so that A and B are contained in C.

We defince

(⟨A,B⟩) = o submodule generated by ⟨a, b⟩ for a ∈ A, b ∈ B.

If (⟨A,B⟩) is non-zero, then this is a fractional ideal of o, and so there exists some k ∈ Z such that

(⟨A,B⟩) = pk.

Lemma 7.3.1. Let A and B be subsets of W such that there exists a compact subset C of W where

A and B are contained in C. Assume that the o−submodule generated by ⟨a, b⟩ for a ∈ A, b ∈ B,

denoted (⟨A,B⟩), is non-zero, and that oA ⊂ A or oB ⊂ B. let k ∈ Z be such that (⟨A,B⟩) = pk.

Then

k = min({ν(⟨a, b⟩) : a ∈ A, b ∈ B}).

Proof. If a ∈ A and b ∈ B, then ⟨a, b⟩ ∈ (⟨, A,B⟩) = pk implies that ν(⟨a, b⟩) ≥ k. it then follows

that

min({ν(⟨a, b⟩) : a ∈ A, b ∈ B}) ≥ k.

Now, as (⟨A,B⟩) = pk and oA ⊆ A or oB ⊆ B, there exists a1, . . . , al ∈ A and b1, . . . , bl ∈ B such

that

ϖk = ⟨a1, b1⟩+ · · ·+ ⟨al, bl⟩.

Since ν(⟨ai, bi⟩) ≥ k for all i = 1, . . . , l, then the above equation implies that ν(⟨ai, bi⟩) = k for

some i. Hence, the lemma follows.

Definition 7.3.2. Let M be a lattice in W and let X be an o−submodule of M . We say that X

is totally isotropic if ⟨x, y⟩ = 0 for all x, y ∈ X. If X is totally isotropic, then we say that X is

maximal if X is not properly contained in a totally isotropic o−submodule of M .

Lemma 7.3.3. Let M be a lattice in W and let X for a totally isotropic o−submodule of M .

Then X is contained in a maximal totally isotrophic o−submodule of M . If X is a maximal totally

isotropic o−submodule of M , then rank(X) = n.

Proof. To see that X is contained in a maximal totally isotropic o−submodule of M , let S be the

collection of all totally isotropic o−submodules of M that contain X. Then S is non-empty and

partially ordered by inclusion. Let S′ be a simply ordered subset of S and let Z be the union of

all elements of S′. Then Z is an o−submodule of M and Z is totally isotropic, so that Z ∈ S.

Moreover, we have that U ⊂ Z for all U ∈ S′ so that Z is an upper bound for S′. By Zorn’s Lemma,
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S then contains a maximal element, say Y . Clearly Y is a maximal totally isotropic o−submodule

of M that contains X.

Next, assume that X is a maximal totally isotropic o−submodule of M . Let t = rank(X) and

let x1, . . . xt ∈ X be a basis for X as an o−module, so that

X = ox1 + · · ·+ oxt.

Assume that t < n and we will obtain a contradiction. The vectors x1, . . . , xt are linearly indepen-

dent over F , and so let V = Fz1 + · · · + FXy, then V is a totally isotropic subspace of W . The

subspace V is contained in a maximal totally isotropic subspace V ′ of W . Since dim(W ) = 2n, then

by 1.1.15 of [11], we have that dim(V ′) = 2n/2 = n. Extend {x1, . . . , xt} to a basis {x1, . . . , xn}

for V ′. After possibly multiplying xt+1, . . . , xn by positive powers of ϖ we may assume that

xt+1, . . . , xn ∈ M . Consider now

X ′ = ox1 + · · ·+ oxn.

This o−submodule X ′ of M is totally isotropic and properly contains X (as we are assuming that

t < n). This however, is a contradiction as X is already a maximal totally isotropic o−submodule

of M . Thus, we must have t = n.

Lemma 7.3.4. Let M be a lattice in W and let p : M → M/ϖM be the natural projection map.

Note that M/ϖM is an o/p vector space. Let X be an o−submodule of M . Then dim(p(X)) ≤

rank(X).

Proof. Let t = dim p(X) and let x1, . . . , xt ∈ X such that p(x1), . . . , p(xt) is a babsis for p(X). We

show that x1, . . . , xt are linearly independent over o. Assume that there are a1, . . . , at ∈ o such that

a1x1 + · · ·+ atxt = 0.

Note that we may assume that at least one of the ai is in o×. Applying p we thus obtain

a1p(x1) + · · ·+ atp(xt) = 0.

As the p(xi) form a basis for p(X), then we have contradicted the assumption of linear independence

of the p(xi) is ai ∈ o×. Hence, it must be the case that dim(p(X)) ≤ rank(X).

Lemma 7.3.5. Let M be a lattice in W and let p : M → M/ϖM be the natural projection map.

Let X be a totally isotropic o−submodule of M . Then the following are equivalent

1. X is a maximal totally isotropic o−submodule of M ;
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2. X ∩ϖM = ϖX;

3. dimo/p(p(X)) = n.

Proof. We first show that i) implies ii). Assume that X is maximal and let x ∈ X ∩ ϖM . Let

y ∈ M such that x = ϖy. let X ′ be the o−submodule of M spanned by y and X. Since y = ϖ−1x

and x ∈ X, then X ′ is totally isotropic As X is maximal, we thus have X = X ′, meaning that

y ∈ X. Hence x = ϖy ∈ ϖX, and so X ∩ϖM ⊆ ϖX. The other inclusion is clear.

To see that ii) implies iii), assume that X ∩ϖM = ϖX. By 7.3.3 we have that rank(X) = n.

Let x1, . . . , xn be an o−basis for X. We thus have that p(x1), . . . , p(xn) spans p(X), and so we also

show that these are linearly independent. Assume that a1, . . . , an ∈ o are such that

a1p(x1) + · · ·+ anp(xn) = 0.

Then we must have that

p(a1x1 + · · ·+ anxn) = 0,

and hence that a1x1 + · · · + anxn ∈ X ∩ ϖM = ϖX. This implies that a1, dots, an ∈ p, which

proves that p(x1), . . . , p(xn) are linearly independent. Thus dimo/p p(X) = n.

lastly, to show that iii) implies i), assume that dimo/p(p(X)) = n, then by 7.3.4 we have that

rank(X) = n. Suppose, for a contradiction, that X is not maximal, and so there is a maximal

totally isotropic o−submodule Y that properly contains X (the existence of such a Y is guaranteed

by 7.3.3). Also by 7.3.3, we must have that rank(Y ) = n as Y is maximal. Now, as both X and Y

have the same rank, there exists a basis y1, . . . , yn for Y and c1, . . . , cn ∈ o such that c1y1, . . . , cnyn

is a basis for X. The vectors p(ciyi) = cip(yi) for all i span p(X), and since dim p(X) = n, these

vectors must be linearly independent over o/o. However, since X is properly contained in Y , then

we have that ν(ci) > 0 for some i, and hence p(ciyi) = cip(yi) = 0, a contradiction. Hence, X must

be maximal.

Lemma 7.3.6. Let M be a lattice in W and let X be a totally isotropic o−submodule of M , then

X is not contained in ϖM .

Proof. For a contradiction, suppose that X is contained in ϖM . Then by 7.2.7 we have that

X ∩ϖM = ϖX, and so X = ϖX, a contradiction.

Lemma 7.3.7. Assume that dimW = 2 and let M be a lattice in W with N(M) = pk. Let X be a

totally isotropic subspace of M . Then there is some x ∈ X such that X = ox and y ∈ M such that

M = ox+ oy
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with ⟨x, y⟩ = ϖk.

Proof. Let x ∈ X such that X = ox, that is, x is an o−basis for X. The set {⟨x, z⟩ : z ∈ M}

is a fractional ideal of o, and hence is equal to pk for some integer k. Let y ∈ M be such that

⟨x, y⟩ = ϖk and we thus have that

o⟨x, y⟩ = pk = {⟨x, z⟩ : z ∈ M}.

We show that x, y is and o−basis for M . Define L = ox+ oy and for a contradiction assume that

L is a proper o−submodule of M . As M is a lattice in W , there is an o−basis z1, z2 for M and

integers n1, n2 with 0 ≤ n1 ≤ n2 such that ϖn1z1, ϖ
n2z2 is a basis for L. Since L is a proper

o−submodule of M we must have that n2 > 0. Let a, b, c, d ∈ o such that

x = aϖn1z1 + bϖn2z2

and

y = cϖn1z1 + dϖn2z2.

We thus have that

ϖk = ⟨x, y⟩

= ⟨aϖn1z1 + bϖn2z2, cϖ
n1z1 + dϖn2z2⟩

= (ad− bc)ϖn1+n2⟨z1, z2⟩.

Note that

x = ϖn1(az1 + bϖn2−n1z2).

Since X = ox is a maximal totally isotropic o−submodule of M then we must have that n1 = 0,

and thus

x = az1 + bϖn2−n1z2.

By a similar argument, we also have that ν(a) = 0, and so a ∈ o×, meaning that

⟨x, z2⟩ = ⟨az1 + bϖn2−n1z2, z2⟩ = a⟨z1, z2⟩.

As

{⟨x, z⟩ : z ∈ M} = pk,

then we know that

⟨z1, z2⟩ = eϖj
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for some integer j ≥ k and e ∈ o. Now, by substitution, we obtain

ϖk = ⟨x, y⟩

= (ad− bc)ϖn1+n2⟨z1, z2⟩

= e(ad− bc)ϖn1+n2+j .

Thus, it follows that

k = ν(e) + ν(ad− bc) + n1 + n2 + j.

Since ν(e) ≥ 0, ν(ad − bc) ≥ 0, n2 ≥ n1 ≥ 0, and j ≥ k, we must have that ν(e) = ν(ad − bc) =

n1 = n2 = 0 and j = k. These contradict the result that n2 > 0, and so we have that

M = L = ox+ oy.

Finally, as M = ox+ oy, then N(M) = o⟨x, y⟩ = pk, completing the proof.

Lemma 7.3.8. Assume that dimW = 4 and let M be a lattice in W with N(M) = pk. Let X be a

totally isotropic subspace of M . Then there exists a paramodular basis {w1, w2, w3, w4} for M such

that

X = ow1 + ow2.

Moreover, (⟨X,M⟩) = pk.

Proof. To start,since M is a paramodular lattice, let z1, z2, z
′
1, z

′
2 be a symplectic basis for W such

that

M = oz1 ⊕ oz2 ⊕ oϖk+1z′1 ⊕ oϖkz′2.

As a fractional ideal of o, and since N(M) = pk, then we have that (⟨X,M⟩) = pj for some j ≥ k.

Suppose first that (⟨X,M⟩) = pk. By 7.3.1 there are x ∈ X and y ∈ M such that ⟨x, y⟩ = ϖk.

Define

W1 = {w ∈ W : ⟨x,w⟩ = ⟨y, w⟩ = 0}

and

W2 = Fx⊕ Fy.

Note that

W1 = {w ∈ W : ⟨w,W2⟩ = 0}.



303

Since W2 is a non-degenerate subspace of W , then W1 is also a non-degenerate subspace of W , and

thus we have an orthogonal decomposition

W = W1 ⊥ W2.

As seen in [11] 1.1.9 and 1.1.11, if w ∈ W , then we may write w = w1 + w2 where

w1 = w − ⟨w, y⟩
⟨x, y⟩

x+
⟨w, x⟩
⟨x, y⟩

and

w2 =
⟨w, y⟩
⟨x, y⟩

x− ⟨w, x⟩
⟨x, y⟩

y

with w1 ∈ W1 and w2 ∈ W2. Define

M1 = M ∩W1

and

M2 = ox⊕ oy,

then M1 is a lattice in W1 and M2 is a lattice in W2. Since N(M) = pk and ⟨x, y⟩ = ϖk, the above

formulas for w1 and w2 show that there is an orthogonal direct sum decomposition

M = M1 ⊥ M2.

Now define

X1 = X ∩M1

and

X2 = ox.

We have that X1 ∩X2 = 0 since X1 ∩X2 ⊆ M1 ∩M2 = 0. Also X1 ⊕X2 ⊆ X. Let x′ ∈ X, and

so we may x′ = w1 + w2 for some w1 ∈ M1 and w2 ∈ M2. Let a, b ∈ o be such that w2 = ax+ by,

then since x, x′ ∈ X, X is totally isotropic, and ⟨x,W1⟩ = 0 we have that

0 = ⟨x, x′⟩ = ⟨x,w1⟩+ a⟨x, x⟩+ b⟨x, y⟩ = b⟨x, y⟩ = bϖk,

and hence b = 0. We thus have

x′ = w1 + ax,

meaning that w1 ∈ X. We now see that X ⊆ X1 ⊕ X2. The other inclusion is clear. Thus

X = X1 ⊕X2. As X is maximal, 7.3.5 says we have that X ∩ϖM = ϖX, and hence

ϖX1 ⊕ϖX2 = ϖX
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= X ∩ϖM

= (X1 ⊕X2) ∩ (ϖM1 ⊕ϖM2)

= (X1 ∩ϖM1)⊕ (X2 ∩ϖM2).

This implies that ϖX1 = X1 ∩ϖM1 and ϖX2 = X2 ∩ϖM2, and so by 7.3.5 we have that X1 is

a maximal totally isotropic subspace of M1 and X2 is a maximal totally isotropic subspace of M2

Let N(M1) = pj ; since N(M) = pk and M1 ⊆ M , then we must have that j ≥ k. By 7.3.7 there

exists x1 ∈ X1 and y1 ∈ M1 such that X1 = ox1,

M1 = ox1 ⊕ oy1,

and ⟨x1, y1⟩ = ϖj . As M2 = ox⊕ oy, with ⟨x, y⟩ = ϖk, it follows that

M = ox⊕ ox1 ⊕ oy ⊕ oy1.

This means that

Inv(M) = (k, j),

but since M is paramodular, Inv(M) = (k, k + 1), and so j = k + 1. Since X = ox ⊕ ox1, the

assertion of the lemma follows.

Assume now that (⟨X,M⟩) = pj for some j ≥ k + 1, and we will obtain a contradiction, which

will show that this case does not occur. Since we have that (⟨X,M⟩) = pj for some j ≥ k+1, there

does not exist any x ∈ X and y ∈ M such that ⟨x, y, ⟩ = ϖk. Let x ∈ X and write

x = az1 + bz2 + cϖk+1z′1 + dϖkz′2

for a, b, c, d ∈ o. Then we have

⟨x, z1⟩ = −cϖk+1,

⟨x, z2⟩ = dϖk,

⟨x,ϖk+1z′1⟩ = aϖk+1,

⟨x,ϖkz′2⟩ = bϖk.

As M is paramodular, we must have b, d ∈ p for all x ∈ M . As X is maximal, 7.3.6 applies, and so

X is not contained in ϖM , and so there must exist x ∈ X such that a ∈ o× and c ∈ o×. Hence,
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there is an x ∈ X and y ∈ M such that ⟨x, y⟩ = ϖk+1; in fact, we can assume that y = ϖk+1z′1 or

y = z1. This fact, along with our assumption, now imply that

(⟨X,M⟩) = pk+1.

Next, by 7.2.5,

M# = p(−z′2)⊕ o(−z′1)⊕ oϖ−kz1 ⊕ oϖ−k−1z1

with

N(M#) = p−k−1.

Define

X ′ = ϖ−k−1X,

and let x ∈ X ′ and z ∈ M . Write x′ = ϖ−k−1x0 for some x0 ∈ X. With this, and the fact that

(⟨X,M⟩) = pk+1, we have

⟨x′, z⟩ = ϖ−k−1⟨x0, z⟩ ∈ o.

By definition, we must have that x′ ∈ M#, meaning that X ′ ⊆ M#. Of course, since X is totally

isotropic, then X ′ is also totally isotropic. We show now that X ′ is maximal.

To see that X ′ is maximal, let

p′ : M# → M#/ϖM#, and p : M → M/ϖM

be the natural projection maps, and define

T : M#/ϖM# → M/ϖM

by T (x+ϖM#) = ϖk+1x+ϖM for x ∈ M#. Then T is a well-define o/p linear map. Let x′ ∈ X ′

and write x′ = ϖ−k−1x for some x ∈ X. We have that

T (p′(x′) = T (p′(ϖ−k−1x))

= T (ϖ−k−1x+ϖM#)

= x+ϖM

= p(x),

and thus

T (p′(X ′)) = p(X).
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By 7.3.5 we have that dimo/p p(X) = 2, and as dim p′(X ′) ≤ 2 by 7.3.4, then we must have that

dim p′(X ′) = 2. Again by 7.3.5 we see that X ′ is a maximal totally isotropic subspace of M# as

claimed.

We now show that

(⟨X ′,M#⟩) = p−k−1.

Recall that there is an x ∈ X such that either

⟨x,ϖk+1z′1⟩ = ϖk+1 or ⟨x, z1⟩ = ϖk+1.

Hence we have that either

⟨ϖ−k−1x, z′1⟩ = ϖ−k−1 or ⟨ϖ−k−1x,ϖ−k−1z1⟩ = ϖ−k−1.

This implies that there exists some x′ ∈ X ′ and y′ ∈ M# such that ⟨x′, y′⟩ = ϖ−k−1. Since

N(M#) = p−k−1, then it must be the case that

(⟨X ′,M#⟩) = p−k−1

as claimed.

To summarize so far, we have thatM# is a paramodular lattice, X ′ is a maximal totally isotropic

o−submodule of M#, and

N(M#) = (⟨X ′,M#⟩) = p−k−1.

This information implies that there exists x′
1, x

′
2 ∈ X ′ and y′1, y2,∈ M# such that

X ′ =ox′
1 ⊕ ox′

2,

⟨x′
i, x

′
j⟩ = ⟨y′i, y′j⟩ = 0 i, j ∈ {1, 2},

⟨x′
i, y

′
j⟩ = 0 i, j ∈ {1, 2}, i ̸= j,

⟨x′
1, y

′
1⟩ = ϖ−k,

⟨x′
2, y

′
2⟩ = ϖ−k−1,

M# = ox′
1 ⊕ ox′

2 ⊕ oy′1 ⊕ oy′2.

Writing

M# = ox′
1 ⊕ ox′

2 ⊕ oϖ−k(ϖky′1)⊕ oϖ−k−1(ϖk+1y′2),

then by 7.2.5 we obtain

M = (M#)# = oϖk+1y′2 ⊕ oϖky′1 ⊕ oϖk+1x′
2 ⊕ oϖkx′

1.
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In particular, we see that M contains the totally isotropic subspace

X ′′ = oϖkx′
1 ⊕ oϖk+1x′

2.

On the other hand,

X = ϖk+1X ′ = oϖk+1x′
1 ⊕ oϖk+1x′

2

is properly contained in X ′′, which contradicts the maximality of X.

7.4 Paramodular Lattices in a Fourth Dimensional Symplectic Space

In this section we will assume, unless otherwise stated, that (W, ⟨·, ·⟩) is a four-dimensional non-

degenerate symplectic space over F , a non-archimedean local field of characteristic zero, with ring

of integers o and prime ideal p ⊂ o with generator ϖ. it is worth noting that by 7.1.5 and the

definition of a paramodular lattice, if dimW = 4, then every paramodular lattice in W admits a

paramodular basis.

Lemma 7.4.1. Let M and L be paramodular lattices in W with M ⊂ L and α ∈ F× such that

αN(L) = N(M). Then either

αL ⊂ M

or

M + αL is a maximal lattice with Inv(M + αL) = v(N(M)).

Proof. Let N(L) = pb and N(M) = pa. We may assume that α = ϖa−b. Since M ⊂ L we have

N(M) = pa ⊂ N(L) = pb. It follows that

a ≥ b.

Hence, α ∈ o. Let M ′ = M + αL. We claim that N(M ′) = N(M). Clearly, N(M) ⊂ N(M ′).

Conversely, let x, x′ ∈ M ′. Write x = y + αz and x′ = y′ + αz′ for y, y′ ∈ M and z, z′ ∈ L. Then

⟨x, x′⟩ = ⟨y + αz, y′ + αz′⟩

= ⟨y, y′⟩+ α⟨y, z′⟩+ α⟨z, y′⟩+ α2⟨z, z′⟩

∈ ⟨M,M⟩+ α⟨M,L⟩+ α⟨L,M⟩+ α2⟨L,L⟩

∈ N(M) + αN(L) + αN(L) + α2N(L)

∈ N(M).
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It follows that N(M ′) ⊂ N(M). Hence, N(M ′) = N(M). We therefore have

inv(M ′) = (a, a2)

where a2 ≥ a. Next,

−a2 = v(N(M ′#))

= ν(N
(
(M + αL)#

)
)

= ν(N
(
M# ∩ (αL)#

)
) (Lemma 7.2.7)

= ν(N
(
M# ∩ α−1L#

)
) (Lemma 7.2.7)

≥ max
(
ν(N(M#)), ν(α−2N(L#))

)
(Lemma 7.2.7)

= max(−a− 1,−2ν(α) + ν(N(L#)))

= max(−a− 1,−2(a− b)− b− 1)

= max(−a− 1,−2a+ b− 1)

= −a− 1 + max(0, b− a)

= −a− 1 + 0

= −a− 1.

Thus, a + 1 ≥ a2 ≥ a. Assume first that a2 = a + 1. Then inv(M) = inv(M ′) = (a, a + 1). By

Lemma 7.2.8 we have M ′ = M , so that αL ⊂ M . Assume that a2 = a. Then M ′ = M + αL is

maximal and v(N(M ′)) = a.

Lemma 7.4.2. Let

L = ox1 ⊕ ox2 ⊕ ox3 ⊕ ox4

be a lattice in W . Then {x1, x2, x3, x4} is a paramodular basis for L (and hence L is a paramodular

lattice) if and only if the Gram matrix for the basis of L, denoted (⟨xi, xj⟩), satisfies

(⟨xi, xj⟩) = u


0 0 ϖk+1 0

0 0 0 ϖk

−ϖk+1 0 0 0

0 −ϖk 0 0


for some u ∈ o×.
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Proof. Note that

L = ow1 ⊕ ow2 ⊕ oϖkw3 ⊕ oϖk+1w4 = ow1 ⊕ ow2 ⊕ oϖk+1w4 ⊕ oϖkw3.

Hence we obtain the desired result upon computing the Gram matrix.

Denote the matrix in the statement of the previous lemma by Jϖ,k, and so

Jϖ,k =


0 0 ϖk+1 0

0 0 0 ϖk

−ϖk+1 0 0 0

0 −ϖk 0 0

 .

Lemma 7.4.3. Let W be a vector space over F and let ⟨·, ·⟩ be a bilinear form on W . Let

w1, . . . , wn ∈ W and g ∈ M(n, F ). Define
w′

1

...

w′
n

 = g


w1

...

wn

 .

Also, define

B = (⟨wi, wj⟩), B′ = (⟨w′
i, w

′
j⟩).

Then,

B′ = gB tg.

Proof. For i, j ∈ {1, . . . , n} we have that

B′
ij = ⟨w′

i, w
′
j⟩

= ⟨
n∑

k=1

gikwk,

n∑
m=1

gjmwm⟩

=

n∑
k=1

n∑
m=1

gikgjm⟨wi, wj⟩

=
∑
k=1

gik

n∑
m=1

⟨wi, wj⟩(tg)mj

=

n∑
k=1

gik(B
tg)kj

= (gB tg)ij .
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Lemma 7.4.4. Let M be a paramodular lattice in W and suppose that N(M) = pk. Let B =

(w1, w2, w3, w4) be a paramodular basis for M and g ∈ GL(4, o). Define B′ = (w′
1, w

′
2, w

′
3, w

′
4) by

w′
1

w′
2

w′
3

w′
4

 = g


w1

w2

w3

w4

 .

Then the following are equivalent:

1. B′ is a paramodular basis for M .

2. There is u ∈ o× such that

g


ϖ

1

−ϖ

−1


tg = u


ϖ

1

−ϖ

−1

 .

That is,

gJϖ,0
tg = uJϖ,0.

3. We have that hϖ
tgh−1

ϖ ∈ K(p), where

hϖ =


1

1

ϖ

1

 .

Proof. Assume that B′ is a paramodular basis for M , and so (⟨w′
i, w

′
j⟩) = g(⟨wi, wj⟩) tg. Note that

(⟨w′
i, w

′
j⟩) = uϖkJϖ,0 and (⟨wi, wj⟩) = vϖkJϖ,0 for u, v ∈ o×. Hence we have that

uϖkJϖ,0 = gvϖkJϖ,0
tg,

implying that

gJϖ,0
tg = uv−1Jϖ,0,

proving that (i) implies (ii). Note that working this computation the other way shows that (ii)

implies (i).
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Now, assume that gJϖ,0
tg = uJϖ,0. This implies that

t
(tg)Jϖ,0

tg = uJϖ,0, and hence that

tg ∈ GSp(Jϖ,0, o). Thus, by 3.2.3, we have that hϖ
tgh−1

ϖ ∈ K(p) as desired, so (ii) implies

(iii). Also by 3.2.3, if hϖ
tgh−1

ϖ ∈ K(p) = hϖGSp(Jϖ,0, o)h
−1
ϖ , then tg ∈ GSp(Jϖ,0, o). Hence

t
(tg)Jϖ,0

tg = uJϖ,0 for some u ∈ o×, so gJϖ,0
tg = uJϖ,0. Hence (iii) implies (ii), proving the

claim.

Lemma 7.4.5. Let L and M be paramodular lattices in W with paramodular bases BL = (x1, x2, x3, x4)

and BM = (y1, y2, y3, y4), respectively. Assume that M ⊂ L with N(M) = pl and N(L) = pk. Let

g ∈ M(4, o) such that 
y1

y2

y3

y4

 = g


x1

x2

x3

x4

 .

Then hϖ
tgh−1

ϖ ∈ GSp(4, F ) and ν(λ(hϖ
tgh−1

ϖ )) = l − k.

Proof. Let B′
M = (⟨yi, yj⟩) and B′

L = (⟨xi, xj⟩). As BL and BM are paramodular bases for L and

M respectfully, we have that

B′
L = uϖkJϖ,0, and B′

M = vϖlJϖ,0

for u, v,∈ o×. Hence, by 7.4.3, we have that

B′
M = gB′

L
tg =⇒ vϖlJϖ,0 = g(uϖkJϖ,0)

tg

=⇒ vu−1ϖl−kJϖ,0 = gJϖ,0
tg

=⇒ vu−1ϖl−k(thϖJhϖ) = g(thϖJhϖ) tg

=⇒ vu−1ϖl−kJ =
t
(hϖ

tgh−1
ϖ )J(hϖ

tgh−1
ϖ ).

Note that the above computation shows that ν(λ(hϖ
tgh−1

ϖ )) = l−k, as this is the power of ϖ.

Let W0 denote the vector space F 4, written as columns vectors. Define a symplectic bilinear

form, ⟨·, ·⟩ on W0 by

⟨x, y⟩ = txJy,
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where J is the standard symplectic form

J =


1

1

−1

−1

 .

Note that if (e1, e2, e3, e4) is the standard basis of W0, then

(⟨ei, ej⟩) = J.

Denote by L0 a paramodular lattice in W0 with N(L0) = o, so

L0 = oe1 ⊕ oe2 ⊕ oϖe3 ⊕ oe4 =


o

o

p

o

 .

Lemma 7.4.6. The set {g ∈ GSp(4, F ) : gL0 = L0} is K(p).

Proof. First, suppose that g ∈ K(p), and so

g =


g11 g12 g13ϖ

−1 g14

g21ϖ g22 g23 g24

g31ϖ g32ϖ g33 g34ϖ

g41ϖ g42 g43 g44


where gij ∈ o for all i, j. As e1, e2, ϖe3, e4 is an o basis of L0, and

ge1 =


g11

g21ϖ

g31ϖ

g41ϖ

 ∈ L0, ge2 =


g21

g22

g32ϖ

g42

 ∈ L0, gϖe3 =


g13

g23ϖ

g33ϖ

g43ϖ

 ∈ L0, ge4 =


g14

g24

g34ϖ

g44

 ∈ L0,

then we have that gL0 ⊆ L0. Note that as g ∈ K(p) andK(p) is a group, then the same relationships

hold for g−1 ∈ K(p), thus we have that g−1L0 ⊆ L0, implying that L0 ⊆ gL0. Hence we have that

gL0 = L0 and so we have shown K(p) ⊆ {g ∈ GSp(4, F ) : gL0 = L0}.

Now, to show the other inclusion, let g ∈ {g ∈ GSp(4, F ) : gL0 = L0} and write

g =


g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

 .
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Note that

g−1 = λ−1


g33 g43 −g13 −g23

g34 g44 −g14 −g24

−g31 −g41 g11 g21

−g32 −g42 g12 g22


since g ∈ GSp(4, F ). As gL0 ⊆ L0 we must have that

ge1 =


g11

g21

g31

g41

 ∈ L0, ge2 =


g12

g22

g32

g42

 ∈ L0, gϖe3 =


g13ϖ

g23ϖ

g33ϖ

g43ϖ

 ∈ L0, ge4 =


g14

g24

g34

g44

 ∈ L0.

Additionally, since g−1L0 ⊆ L0 (as gL0 = L0 implies that g−1L0 = L0), we also have that

g−1e1 =λ−1


g33

g34

−g31

−g32

 ∈ L0,

g−1e2 =λ−1


g43

g44

−g41

−g42

 ∈ L0,

g−1ϖe3 =λ−1


−g13ϖ

−g14ϖ

g11ϖ

g12ϖ

 ∈ L0,

g−1e4 = λ−1


−g23

−g24

g21

g22

 ∈ L0.

As the element λ(g) ∈ F× is the element such that ⟨gx, gy⟩ = λ(g)⟨x, y⟩ for all x, y,∈ W0 where

⟨·, ·⟩ is the standard symplectic form on W0, then this relation has to hold for e2 and e4. We have

that

λ(g) = ⟨ge2, ge4⟩
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and

λ(g−1) = ⟨g−1e2, g
−1e4⟩.

As ge2, ge4, g
−1e2, g

−1e4 ∈ L0, we must have that

λ(g) = ⟨ge2, ge4⟩ ∈ o× and λ(g−1) = ⟨g−1e2, g
−1e4⟩ ∈ o×

with λ(g−1) = λ(g)−1. We now show that g has that form
o o p−1 o

p o o o

p p o p

p o o o

 .

Using the previous computations, we know that

g =


g11 g12 g13ϖ

−1 g14

g21 g22 g23ϖ
−1 g24

g′31ϖ g′32ϖ g′33 g′34ϖ

g41 g42 g43ϖ
−1 g44

 .

Additionally, using the computations for g−1, we know that g41, g21 ∈ p, and so we actually have

g =


g11 g12 g13ϖ

−1 g14

g′21ϖ g22 g23ϖ
−1 g24

g′31ϖ g′32ϖ g′33 g′34ϖ

g′41ϖ g42 g43ϖ
−1 g44

 .

Lastly, as g23ϖ
−1, g43ϖ

−1 ∈ o by these same computations, then g23, g43 ∈ p, and thus

g =


g11 g12 g13ϖ

−1 g14

g′21ϖ g22 g′23 g24

g′31ϖ g′32ϖ g′33 g′34ϖ

g′41ϖ g42 g′43 g44

 .

Hence, g has the desired form, and so g ∈ K(p), proving the claim.

Lemma 7.4.7. Let h ∈ M(4, F ). Then

h


e1

e2

ϖe3

e4

 =


hϖ

thh−1
ϖ e1

hϖ
thh−1

ϖ e2

hϖ
thh−1

ϖ (ϖe3)

hϖ
thh−1

ϖ e4
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and

hϖ
thh−1

ϖ


e1

e2

ϖe3

e4

 =


he1

he2

h(ϖe3)

he4

 .

Proof. First we have that

h


e1

e2

ϖe3

e4

 =


h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44




e1

e2

ϖe3

e4

 =


h11 h12 h13ϖ h14

h21 h22 h23ϖ h24

h31 h32 h33ϖ h34

h41 h42 h43ϖ h44

 .

As

hϖ
thh−1

ϖ =


h11 h12 h13ϖ

−1 h14

h21 h22 h23ϖ
−1 h24

h31ϖ h32ϖ h33 h34ϖ

h41 h42 h43ϖ
−1 h44


then we have

hϖ
thh−1

ϖ e1 =


h11

h21

h31ϖ

h41

 , hϖ
thh−1

ϖ e2 =


h12

h22

h32ϖ

h42

 , hϖ
thh−1

ϖ ϖe3 =


h13

h23

h33ϖ

h43

 , hϖ
thh−1

ϖ e4 =


h14

h24

h34ϖ

h44

 .

Hence

h


e1

e2

ϖe3

e4

 =


hϖ

thh−1
ϖ e1

hϖ
thh−1

ϖ e2

hϖ
thh−1

ϖ ϖe3

hϖ
thh−1

ϖ e4

 .

A similar computation proves the other identity.

Theorem 7.4.8. Let a, b and c be non-negative integers such that a ≤ c−a and b ≤ c−b. Denote by

M(pa, pb, pc) the set of all lattices M in W0 such that M ⊂ L0 with paramodular basis w1, w2, w3, w4

for L0 such that

M = oϖaw1 ⊕ oϖbw2 ⊕ oϖc−aw3 ⊕ oϖc−bw4.
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Let C(pa, pb, pc) denote the set of cosets gK(p) for g ∈ GSp(4, F ) such that

gK(p) ⊂ K(p)


ϖa

ϖb

ϖc−a

ϖc−b

K(p).

Then the map

m : C(pa, pb, pc) → M(pa, pb, pc), m(gK(p)) = gL0

is a well-defined bijection.

Proof. If gK(p), hK(p) ∈ C(pa, pb, pc) with gK(p) = hK(p), then K(p) = h−1gK(p), and so

m(hK(p)) = m(hh−1gK(p)) = m(gK(p)).

We now check that m(gK(p)) ∈ M(pa, pb, pc). Since gK(p) ∈ C(pa, pb, pc) we have that

gk2 = k1


ϖa

ϖb

ϖc−a

ϖc−b


for some k1, k2 ∈ K(p). Hence we have that

hϖ
tk2h

−1
ϖ ·hϖ

tgh−1
ϖ = hϖ


ϖa

ϖb

ϖc−a

ϖc−b


tk1h

−1
ϖ =


ϖa

ϖb

ϖc−a

ϖc−b

hϖ
tk1h

−1
ϖ ,

implying that

hϖ
tk2h

−1
ϖ · hϖ

tgh−1
ϖ


e1

e2

ϖe3

e4

 =


ϖa

ϖb

ϖc−a

ϖc−b

hϖ
tk1h

−1
ϖ


e1

e2

ϖe3

e4

 .

Set

hϖ
tk1h

−1
ϖ


e1

e2

ϖe3

e4

 =


w1

w2

w3

w4

 .
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As k1 ∈ K(p), we have that h−1
ϖ k1hϖ ∈ GSp(Jϖ,0, o) by 3.2.3, and hence for u ∈ o×,

t
(h−1

ϖ k1hϖ)Jϖ,0(h
−1
ϖ k1hϖ) = uJϖ,0 =⇒ (hϖ

tk1h
−1
ϖ )Jϖ,0(h

−1
ϖ k1hϖ) = uJϖ,0

=⇒ (hϖ
tk1h

−1
ϖ )Jϖ,0

t
(hϖ

tk1h
−1
ϖ ) = uJϖ,0.

Hence, by 7.4.4, since

hϖ
tk1h

−1
ϖ


e1

e2

ϖe3

e4

 =


w1

w2

w3

w4

 ,

we have that 
w1

w2

w3

w4


is a paramodular basis of L0. Substituting this into what we had before, we obtain

hϖ
tk2h

−1
ϖ · hϖ

tgh−1
ϖ


e1

e2

ϖe3

e4

 =


ϖa

ϖb

ϖc−a

ϖc−b




w1

w2

w3

w4

 .

By 7.4.7, we have that

hϖ
tgh−1

ϖ


e1

e2

ϖe3

e4

 =


ge1

ge2

gϖe3

ge4

 ,

and so by substitution we have

hϖ
tk2h

−1
ϖ


ge1

ge2

gϖe3

ge4

 =


ϖa

ϖb

ϖc−a

ϖc−b




w1

w2

w3

w4

 .
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Setting

hϖ
tk2h

−1
ϖ


ge1

ge2

gϖe3

ge4

 =


w′

1

w′
2

w′
3

w′
4


and using an argument similar to the one we used above for k1, we have that

w′
1

w′
2

w′
3

w′
4


is a paramodular basis of gL0.

Hence, 
w′

1

w′
2

w′
3

w′
4

 =


ϖa

ϖb

ϖc−a

ϖc−b




w1

w2

w3

w4

 ,

and so gL0 ∈ M(pa, pb, pc). This shows that the map

m : C(pa, pb, pc) → M(pa, pb, pc), m(gK(p)) = gL0

is well-defined.

To see that the map is injective, suppose that m(gK(p)) = m(hK(p)). As gL0 = hL0, then

h−1gL0 = L0, and so by 7.4.6, h−1g ∈ K(p), and so h−1gK(p) = K(p). Thus, gK(p) = hK(p).

To prove that the map is surjective, let M ∈ M(pa, pb, pc), and so M ⊂ L0 with paramodular

basis w1, w2, w3, w4 for L0 such that

M = oϖaw1 ⊕ oϖbw2 ⊕ oϖc−aw3 ⊕ oϖc−bw4.

As M ⊂ L0 there is some k ∈ GL(4, o) such that
w1

w2

w3

w4

 = k


e1

e2

ϖe3

e4

 .
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Note that by 7.4.4 we have that hϖ
tkh−1

ϖ ∈ K(p). As
ϖaw1

ϖbw2

ϖc−aw3

ϖc−bw4

 =


ϖa

ϖb

ϖc−a

ϖc−b




w1

w2

w3

w4

 and g


e1

e2

ϖe3

e4

 =


ϖaw1

ϖbw2

ϖc−aw3

ϖc−bw4


for some g ∈ M(4, o), then we have that

g


e1

e2

ϖe3

e4

 =


ϖa

ϖb

ϖc−a

ϖc−b

 k


e1

e2

ϖe3

e4

 .

As {e1, e2, ϖe3, e4} is a basis of L0, then we must have that

g =


ϖa

ϖb

ϖc−a

ϖc−b

 k,

and hence

hϖ
tgh−1

ϖ = hϖ
tkh−1

ϖ


ϖa

ϖb

ϖc−a

ϖc−b

 .

As 
ϖa

ϖb

ϖc−a

ϖc−b

 ∈ GSp(4, F ) and hϖ
tkh−1

ϖ ∈ K(p),

then hϖ
tgh−1

ϖ ∈ GSp(4, F ) with the property that

K(p)hϖ
tgh−1

ϖ K(p) ∈ K(p)


ϖa

ϖb

ϖc−a

ϖc−b

K(p).
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Thus, we have that hϖ
tgh−1

ϖ K(p) ∈ C(pa, pb, pc), meaning that for g′ = hϖ
tgh−1

ϖ we have

g′L0 = og′e1 ⊕ og′e2 ⊕ og′ϖe3 ⊕ og′e4.

As

g


e1

e2

ϖe3

e4

 =


g′e1

g′e2

g′ϖe3

g′e4

 ,

and since 
g′e1

g′e2

g′ϖe3

g′e4

 = g


e1

e2

ϖe3

e4

 =


ϖaw1

ϖbw2

ϖc−aw3

ϖc−bw4

 ,

then we have that g′L0 = M , proving surjectivity.

7.5 Orders of T (1, 1, ϖ,ϖ) and T (1, ϖ,ϖ2, ϖ)

We continue with the notation that was used in the previous section.

Lemma 7.5.1. Let M be a lattice in W with ⟨M,M⟩ ⊆ o. Define

⟨·, ·⟩q : M/ϖM ×M/ϖM → o/p

by

⟨x+ϖM, y +ϖM⟩q = ⟨x, y⟩+ p,

where ⟨·, ·⟩ is the symplectic form on W . Then ⟨·, ·⟩q is a well-defined symplectic form on the o/p

vector space M/ϖM .

Proof. Let x, y, x′, y′, w, z ∈ M such that x = x′ +ϖw and y = y′ +ϖz, then we have that

⟨x, y⟩ = ⟨x′ +ϖw, y′ +ϖz⟩

= ⟨x′, y′⟩+ϖ⟨x′, z⟩+ϖ⟨w, y′⟩+ϖ2⟨w, z⟩

= ⟨x′, y′⟩+ p.

Hence, ⟨x, y⟩+ p = ⟨x′, y′⟩+ p, showing that ⟨·, ·⟩q is well-defined. Also, as ⟨·, ·⟩ is a non-degenerate

symplectic from, then ⟨·, ·⟩q is o/p linear in both components as well as satisfying ⟨x, y⟩q = −⟨y, x⟩q

for x, y ∈ M/ϖM.
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Definition 7.5.2. Let (W, ⟨·, ·⟩) be a non-degenerate symplectic space over F . Let M be a lattice

for W and let K be an o-submodule of M . We define the radical of K, denoted by R, as the set

R = {x ∈ K : ⟨x,K⟩ = 0}.

Lemma 7.5.3. Let ⟨·, ·⟩q be the symplectic form from 7.5.1 on the o/p vector space L0/ϖL0, and

let R be the radical of this symplectic form in this vector space. Then

R = o/p · (e1 +ϖL0)⊕ o/p · (ϖe3 +ϖL0)

Proof. Let p : L0 → L0/ϖL0 be the natural projection map, then as e1, e2, ϖe3 and e4 is a basis for

L0 we have that p(e1), p(e2), p(ϖe3), and p(e4) is a basis for the o/p vector space L0/ϖL0. hence,

for any x ∈ L0/ϖL0, there are some elements a, b, c, d ∈ o/p such that

x = ap(e1) + bp(e2) + cp(ϖe3) + dp(e4).

Thus we have that

⟨x, p(e1)⟩q = 0

⟨x, p(e2)⟩q = −d

⟨x, p(ϖe3)⟩q = 0

⟨x, p(e4)⟩q = b.

These computations show that x ∈ R if and only if x ∈ o/p · p(e1) ⊕ o/p · p(ϖe3), proving the

claim.

Lemma 7.5.4. Let S be the set of all o/p subspaces, U, of L0/ϖL0 such that dimU = 2, U is

totally isotropic with respect to ⟨·, ·⟩q, and dim(U ∩R) = 1. Define a map

T : M(o, o, p) → S as T (M) = p(M),

where p : L0 → L0/ϖL0 is the natural projection. Then T is a well-defined bijection.

Proof. Let M ∈ M(o, o, p). We first show that T is well-defined, and to show that we need to show

that T (M) ∈ S. As M ∈ M(o, o, p), then by definition of the set there is a paramodular basis for

L0, say {w1, w2, w3, w4} such that

M = ow1 ⊕ ow2 ⊕ oϖw3 ⊕ oϖw4,
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and so we have that {w1, w2, ϖw3, ϖw4} is a paramodular basis for M . As p is the projection from

L0 to L0/ϖL0, we have that

p(M) = (o/p)p(w1)⊕ (o/p)p(w2).

Thus, dim p(M) = 2. Additionally, we see that as ⟨w1, w2⟩ = 0, then ⟨p(w1), p(w2)⟩q = 0 in o/p,

and hence the space p(M) is totally isotropic with respect to this symplectic form.

Now, let a, b, c, d ∈ o/p. Then we have that

⟨p(w1), ap(w1) + bp(w2) + cp(w3) + dp(w4)⟩q = 0

as {w1, w2, w3, w4} is a paramodular basis of L0. We also have that

⟨p(w2), ap(w1) + bp(w2) + cp(w3) + dp(w4)⟩q = d,

and hence p(M) ∩ R = (o/p)p(w1), and so dim(p(M) ∩ R) = 1. Thus, p(M) ∈ S. We now check

that T is injective. To do this, let M1,M2 ∈ M(o, o, p) with T (M1) = T (M2), and so there are

paramodular bases for L0 such that

M1 = ow1 ⊕ ow2 ⊕ oϖw3 ⊕ oϖw4

and

M2 = oz1 ⊕ oz2 ⊕ oϖz3 ⊕ oϖz4.

Of course, as M1 +ϖL0 = p(M1) = p(M2) = M1 +ϖL0 we have that

M1 + oϖw1 ⊕ oϖw2 ⊕ oϖw3 ⊕ oϖw4 = M2 + oϖz1 ⊕ oϖz2 ⊕ oϖz3 ⊕ oϖz4.

As {w1, w2, w3, w4} and {z1, z2, z3, z4} are both paramodular basis of L0, then

oϖw1 ⊕ oϖw2 ⊕ oϖw3 ⊕ oϖw4 = oϖz1 ⊕ oϖz2 ⊕ oϖz3 ⊕ oϖz4,

and so M1 = M2, proving that T is injective.

Lastly, suppose that U ∈ S and let p(w1), p(w2) be a basis for U where w1, w2 ∈ L0. As

dim(U ∩R) = 1 and R has basis p(e1), p(ϖe3) by 7.5.3, then we can assume the w1 = ae1 + cϖw3

for a, c ∈ o. We first show that ⟨w1, w2⟩ = 0. Let

w2 = a′e1 + b′e2 + c′ϖe3 + d′e4

for some a′, b′, c′, d′ ∈ o. Since dim(U ∩ R) = 1 then p(w2) /∈ R (since we have that p(w1) ∈ R

by assumption), which implies that either b′ ∈ o× or d′ ∈ o× (this follows since for some x ∈

L0/ϖL0, ⟨p(w2), x⟩q ̸= 0).
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Assume first that b′ ∈ o×, then there is some d ∈ o such that ac′ − ca′ = b′d, and hence

(ac′ − ca′)ϖ − b′dϖ = 0.

Note that this calculation shows that

⟨w1 + dϖe4, w2⟩ = (ac′ − ca′)ϖ − b′dϖ = 0,

and replacing w1+ bϖe2 with w1, we have that ⟨w1, w2⟩ = 0. If instead d′ ∈ o×, a similar argument

shows that ⟨w1, w2⟩ = 0. Hence, we may assume that ⟨w1, w2⟩ = 0.

Now, define X = ow1 + ow2, and as ⟨w1, w2⟩ = 0, X is a totally isotropic o−submodule of L0

with X ∩ϖL0 = ϖX. Hence, by 7.3.5, we have that X is a maximal totally isotropic o−submodule

of L0. Therefore, by 7.3.8 there exists a paramodular basis {z1, z2, z3, z4} for L0 such that

X = oz1 + oz2.

Define

M = oz1 ⊕ oz2 ⊕ oϖz3 ⊕ oϖz4.

Then M ∈ M(o, o, p) with

p(M) = p(X) = U.

Thus, T is surjective, proving the claim.

Lemma 7.5.5. The order of S is q3 + 2q2 + q, where q is the order of o/p.

Proof. Let p : L0 → L0/ϖL0 be the natural projection and let Z be the L0/ϖL0 subspace spanned

by p(e2) and p(e4). As R is spanned by p(e1) and p(ϖe3), then we have that L0/ϖL0 = R ⊕ Z.

Define the set X as

X = (R− {0})×R× (Z − {0}),

as well as a function

s : X → S

where s(v1, v2, z) is the span (in L0/ϖL0) of the vectors v1 and v2 + z for (v1, v2, z) ∈ X.

To see that the map s is well defined, let (v1, v2, z) ∈ X and let U be the span in L0/ϖL0 of the

vectors v1 and v2 + z. Then we have that dim(U) = 2, U is totally isotropic, and dim(U ∩R) = 1.

Thus, U ∈ S and so s is well-defined.
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We also claim that s is a surjection. To see this, let U ∈ S, and thus dim(U ∩R) = 1 meaning

that there is some v1 ∈ U∩R such that U∩R = (o/p)v1. As dim(U) = 2, there is some y ∈ L0/ϖL0

such that {v1, y} is a basis for U .

Let v2 ∈ R and z ∈ W such that y = v2 + z and note that as dim(U ∩ R) = 1 we have that

z ̸= 0. hence, we have that (v1, v2, z) ∈ X such that s(v1, v2, z) ∈ U , showing that s is surjective.

Now that we have established that s is a well-defined surjection, we may continue with the main

argument. let G be the group

G =



a

c d

d

 : a, d ∈ (o/p)×, c ∈ o/p

 .

Then G acts on X by 
a

c d

d



v1

v2

z

 =


av1

cv1 + dv2

dz

 .

Let x = (v1, v2, z) and y = (v′1, v
′
2, z

′) be elements of X. We have that

s(x) = s(y) ⇐⇒ span(v1, v2 + z) = span(v′1, v
′
2 + z′)

⇐⇒ span(v1, v2 + z) = span(av′1, cv
′
1 + dv′2 + dz′) a, d ∈ (o/p)×, c ∈ o/p

⇐⇒ y = (av1, cv1 + dv2, dz)

⇐⇒ gx = y g =


a

c d

d

 ∈ G.

This calculation shows that there is a well-defined bijection G\X → S defined by Gx 7→ s(x). Thus

we know that #S = #(G\X). Set t = #(G\X). We may form a disjoint union of the orbits of

elements of X under this action by G (note that gx = x if and only if g is the identity matrix in

G.), and so there exists some x1, . . . , xt ∈ X such that we can write

X = Gx1 ⊔ · · · ⊔Gxt.

Therefore,

#X = #Gx1 + · · ·+#Gxt = t ·#G,

meaning that t = #X/#G.
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Hence

#S = t =
#X

#G
=

(q2 − 1)q2(q2 − 1)

(q − 1)2q
=

(q − 1)2q2(q + 1)2

(q − 1)2q
= q3 + 2q2 + q.

Definition 7.5.6. Let (W, ⟨·, ·⟩) be a non-degenerate symplectic space over F . Let M be a lattice

for W and let K be an o-submodule of M . Let Rad(K) = {x ∈ K : ⟨x,K⟩ = 0}. We say that K is

a regular o-submodule of M if Rad(K) = {0}.

Lemma 7.5.7. Let M be a lattice in W with ⟨M,M⟩ ⊆ o. Define

⟨·, ·⟩q′ : M/ϖ2M ×M/ϖ2M → o/p2

by

⟨x+ϖ2M,y +ϖ2M⟩q′ = ⟨x, y⟩+ p2,

where ⟨·, ·⟩ is the symplectic form on W . Then ⟨·, ·⟩q is a well-defined symplectic form on the o/p2

module M/ϖ2M .

Proof. Let x, y, x′, y′, w, z ∈ M such that x = x′ +ϖ2w and y = y′ +ϖ2z, then we have that

⟨x, y⟩ = ⟨x′ +ϖ2w, y′ +ϖ2z⟩

= ⟨x′, y′⟩+ϖ2⟨x′, z⟩+ϖ2⟨w, y′⟩+ϖ4⟨w, z⟩

= ⟨x′, y′⟩+ p2.

Hence, ⟨x, y⟩ + p2 = ⟨x′, y′⟩ + p2, showing that ⟨·, ·⟩q′ is well-defined. Also, as ⟨·, ·⟩ is a non-

degenerate symplectic from, then ⟨·, ·⟩q′ is o/p2 linear in both components as well as satisfying

⟨x, y⟩q′ = −⟨y, x⟩q′ for x, y ∈ M/ϖ2M.

Lemma 7.5.8. Let ⟨·, ·⟩q′ be the symplectic form from 7.5.7 above. Then we have that

Rad(L0/ϖ
2L0) = {x ∈ L0/ϖ

2L0 : ⟨x, L0/ϖ
2L0⟩q′ = 0} = (o/p2)(ϖe1+ϖ2L0)⊕(o/p2)(ϖe3+ϖ2L0).

Proof. Let p : L0 → L0/ϖ
2L0 be the natural projection map, then as e1, e2, ϖe3 and e4 is a basis

for L0 we have that p(e1), p(e2), p(ϖe3), and p(e4) generates the o/p
2 module L0/ϖ

2L0. Hence, for

any x ∈ L0/ϖ
2L0, there are some elements a, b, c, d ∈ o/p2 such that

x = ap(e1) + bp(e2) + cp(ϖe3) + dp(e4).
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Thus we have that

⟨x, p(ϖe1)⟩q′ = −cϖ2 = 0

⟨x, p(e2)⟩q′ = −d

⟨x, p(ϖe3)⟩q′ = aϖ2 = 0

⟨x, p(e4)⟩q′ = b.

These computations show that x ∈ R if and only if x ∈ (o/p2)p(ϖe1) ⊕ (o/p2)p(ϖe3), proving

the claim.

Lemma 7.5.9. Let S′ be the set of all o− submodules, U, of L0/ϖ
2L0 such that

1. there exists z1, z2, z4 ∈ L0/ϖ
2L0 with U = oz1 ⊕ oϖz2 ⊕ oϖz4;

2. z1 ̸∈ ϖL0, ϖz2 ̸= 0, ϖz4 ̸= 0 and ⟨z2, z4⟩q′ is a unit in o/p2;

3. ⟨z1, z2⟩q′ = ⟨z1, z4⟩q′ = 0;

4. ϖz1 ∈ Rad(L0/ϖ
2L0).

Define a map

T ′ : M(o, p, p2) → S′ as T ′(M) = p(M),

where p : L0 → L0/ϖ
2L0 is the natural projection. Then T ′ is a well-defined bijection.

Proof. Let M ∈ M(o, p, p2). We first show that T ′ is well-defined, and to show that we need to

show that T (M) ∈ S′. As M ∈ M(o, p, p2), then by definition of the set there is a paramodular

basis for L0, say {w1, w2, w3, w4} such that

M = ow1 ⊕ oϖw2 ⊕ oϖ2w3 ⊕ oϖw4,

and so we have that {w1, ϖw2, ϖ
2w3, ϖw4} is a paramodular basis for M . As p is the projection

from L0 to L0/ϖ
2L0, we have that

p(M) = (o/p2)p(w1)⊕ (o/p2)p(ϖw2)⊕ (o/p2)p(ϖw4).

We thus have that p(M) satisfies the first condition to be in S′. We also have that p(w1) ̸∈

ϖL0, ϖp(w2) ̸= 0, ϖp(w4) ̸= 0, and ⟨p(w2), p(w4)⟩q′ is a unit of o/p2. Additionally,

⟨p(w1), p(w2)⟩q′ = ⟨p(w1), p(w4)⟩q′ = 0.
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Hence the map T ′ is well-defined.

We now show that T ′ is injective. Assume that M1,M2 ∈ M(o, p, p2) such that T ′(M1) =

T ′(M2), and so there are paramodular bases for L0 such that

M1 = ow1 ⊕ oϖw2 ⊕ oϖ2w3 ⊕ oϖw4

and

M2 = oz1 ⊕ oϖz2 ⊕ oϖ2z3 ⊕ oϖz4.

Of course, as M1 +ϖ2L0 = p(M1) = p(M2) = M1 +ϖ2L0 we have that

M1 + oϖ2w1 ⊕ oϖ2w2 ⊕ oϖ2w3 ⊕ oϖ2w4 = M2 + oϖ2z1 ⊕ oϖ2z2 ⊕ oϖ2z3 ⊕ oϖ2z4.

As {w1, w2, w3, w4} and {z1, z2, z3, z4} are both paramodular basis of L0, then

oϖ2w1 ⊕ oϖ2w2 ⊕ oϖ2w3 ⊕ oϖ2w4 = oϖ2z1 ⊕ oϖ2z2 ⊕ oϖ2z3 ⊕ oϖ2z4,

and so M1 = M2, proving that T ′ is injective.

Lastly we show that T ′ is surjective. Let U ∈ S′, and so there exists z1, z2, z4 ∈ L0/ϖ
2L0 such

that

U = oz1 ⊕ oϖz2 ⊕ oϖz4.

Write

z2 = x2 +ϖ2L0 and z4 = x4 +ϖ2L0

for x2, x4 ∈ L0. Note that as ⟨z2, z4⟩q′ is a unit in o/p2 by assumption, then ⟨x2, x4⟩ is a unit of o.

Define K = ox2 ⊕ ox4, then K is a regular o−submodule of L0. Let x ∈ L0 and write

x = x−
(

⟨x, x2⟩
⟨x2, x4⟩

x4 −
⟨x, x4⟩
⟨x2, x4⟩

x2

)
+

(
⟨x, x2⟩
⟨x2, x4⟩

x4 −
⟨x, x4⟩
⟨x2, x4⟩

x2

)
.

Clearly
⟨x, x2⟩
⟨x2, x4⟩

x4 −
⟨x, x4⟩
⟨x2, x4⟩

x2 ∈ K,

and as 〈
⟨x, x2⟩
⟨x2, x4⟩

x4 −
⟨x, x4⟩
⟨x2, x4⟩

x2, x−
(

⟨x, x2⟩
⟨x2, x4⟩

x4 −
⟨x, x4⟩
⟨x2, x4⟩

x2

)〉
= 0,

we have that

x−
(

⟨x, x2⟩
⟨x2, x4⟩

x4 −
⟨x, x4⟩
⟨x2, x4⟩

x2

)
∈ K⊥.

Hence, we may write

L0 = K⊥ ⊕K.
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Since z1, z2 ∈ L0/ϖ
2L0, write z1 = x1 +ϖ2L0 and z2 = x2 +ϖ2L0 for x1, x2 ∈ L0 and write

K⊥ = oy1 ⊕ oy2. As x1 ∈ L0 there exist a, b, c, d ∈ o such that

x1 = ay1 + by2 + cx2 + dx4.

We have that

⟨x1, x2⟩ = d⟨x4, x2⟩.

Note that since ⟨z1, z2⟩q′ = 0, then ⟨x1, x2⟩ ∈ p2. This, along with the fact that ⟨x4, x2⟩ is a unit of

o, implies that d is divisible by ϖ2. Similarly, since

⟨x1, x4⟩ = c⟨x2, x4⟩,

then ϖ2 divides c. Thus we know that x1 ∈ K⊥ as z1 = p(x1) ∈ p(K⊥).

Let X = ox1 and consider the natural projection map π : K⊥ → K⊥/ϖK⊥. We have that

dimo/p π(X) = 1 since π(x1) ̸= 0 due to the fact that z1 ̸∈ ϖL0 by assumption. Thus, 7.3.5 implies

that X is a maximal totally isotropic o−submodule of K⊥. Now, 7.3.7 implies that there exists

x3 ∈ K⊥ such that

K⊥ = ox1 ⊕ ox3.

Now, note that we have

⟨x1, x2⟩ = ⟨x1, x4⟩ = ⟨x3, x2⟩ = ⟨x3, x4⟩ = 0

since x1, x3 ∈ K⊥ and x2, x2 ∈ K. We also have that u = ⟨x2, x4⟩ ∈ o×. Since x1 ̸= 0, then we

have that

⟨x1, x3⟩ = vϖk

for some v ∈ o× and integer k ≥ 0.

Set

M = ov−1x1 ⊕ oϖu−1x2 ⊕ oϖ2x3 ⊕ oϖx4

and note that p(M) = U . All we need to show is that M ∈ M(o, p, p2). For M to be a paramodular

lattice, all we need to do is show that k = 1 in ⟨v−1x1, x3⟩ = ϖk. However this is the case as

v−1x1, u
−1x2, x3, x4 form a paramodular basis for L0 (since L0 is uniquely written this way). Thus

M ∈ M(o, p, p2), meaning that T ′ is a surjection, proving the claim.

Lemma 7.5.10. Let R = o/p2, Q = L0/ϖ
2L0, and

Ω = Q×Q/ϖQ×Q/ϖQ.
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Let X be the set of all tuples (z1, [z2], [z4]) ∈ Ω, where [x] := x+ϖQ, such that

1. ϖz1 ̸= 0, ϖz2 ̸= 0, and ϖz4 ̸= 0;

2. ⟨z2, z4⟩q′ is a unit in o/p2;

3. ⟨z1, z2⟩q′ = ⟨z1, z4⟩q′ = 0; and

4. ϖz1 ∈ Rad(Q).

Let G be the subgroup of GL(3,R) consisting of matrices of the following form
R×

ϖR R R

ϖR R R

 , G1,1 =

R R

R R

 ∈ GL(2, R).

Then G acts on X by 
g11 0 0

g21 g22 g23

g31 g32 g33



z1

[z2]

[z4]

 =


g11z1

[g21z1 + g22z2 + g23z4]

[g31z1 + g32z2 + g33z4]


with stabilizer

H =


1 0 0

ϖR 1 +ϖR ϖR

ϖR ϖR 1 +ϖR


Proof. First note that G is a subgroup of GL(3, R). We now show that the action on X is well-

defined. Let x = (z1, [z2], [z4]) and y = (z′1, [z
′
2], [z

′
4]) be elements of X such that x = y. This implies

that z′1 = z1, z
′
2 = z2 +ϖQ, and z′4 = z4 +ϖQ. We have for

g =


g11 0 0

g21 g22 g23

g31 g32 g33

 ∈ G,


g11 0 0

g21 g22 g23

g31 g32 g33



z′1

[z′2]

[z′4]

 =


g11z

′
1

[g21z
′
1 + g22z

′
2 + g23z

′
4]

[g31z
′
1 + g32z

′
2 + g33z

′
4]



=


g11z

′
1

g21z
′
1 + g22z

′
2 + g23z

′
4 +ϖQ

g31z
′
1 + g32z

′
2 + g33z

′
4 +ϖQ
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=


g11z1

g21z1 + g22(z2 +ϖQ) + g23(z4 +ϖQ) +ϖQ

g31z1 + g32(z2 +ϖQ) + g33(z4 +ϖQ) +ϖQ



=


g11z1

g21z1 + g22z2 + g23z4 +ϖQ

g31z1 + g32z2 + g33z4 +ϖQ



=


g11z1

[g21z1 + g22z2 + g23z4]

[g31z1 + g32z2 + g33z4]



=


g11 0 0

g21 g22 g23

g31 g32 g33



z1

[z2]

[z4]

 .

Hence this action is well-defined

Finally we show that H is the stabilizer of G under this action on X. That is, gx = x for all

x ∈ X if and only if g ∈ H. So, let

g =


g11 0 0

g21 g22 g23

g31 g32 g33

 ∈ G

be such that gx = x for x = (z1, [z2], [z4]) ∈ X, and so we have that
g11 0 0

g21 g22 g23

g31 g32 g33



z1

[z2]

[z4]

 =


z1

[z2]

[z4]

 .

This equality implies that z1 = g11z1, and so (1− g11)z1 = 0, meaning that 1 = g11.

Now, we also have that

z2 = q21z1 + q22z2 + g23z4 +ϖQ.

This implies that

⟨z2, z4⟩q′ = g22⟨z2, z4⟩q′ +ϖR.

Since ⟨z2, z4⟩q′ is a unit by assumption, we must have that g22 ≡ 1 mod ϖR. Also,

0 = ⟨z2, z2⟩q′ = q23⟨z2, z4⟩q′ +ϖR,



331

and so g23 ≡ 0 mod ϖR. By a similar argument with the third equation

z4 = q31z1 + q32z2 + g33z4 +ϖQ,

we also see that g32 ≡ 0 mod ϖR and g33 ≡ 1 mod ϖR.

Since

z2 = q21z1 + q22z2 + g23z4 +ϖQ,

g22 ≡ 1 mod ϖR, and g23 ≡ 0 mod ϖR, we have that

z2 ≡ q21z1 + z2 mod ϖQ

which implies that q21z1 ≡ 0 mod ϖQ, and thus we have q21 ≡ 0 mod ϖR since ϖz1 ̸= 0.

Similarly, since

z4 = q31z1 + q32z2 + g33z4 +ϖQ,

g32 ≡ 0 mod ϖR, and g33 ≡ 1 mod ϖR, we have that q31 ≡ 0 mod ϖR. Thus, we have that

gx = x if and only if

g ∈ H =


1 0 0

ϖR 1 +ϖR ϖR

ϖR ϖR 1 +ϖR

 .

Lemma 7.5.11. Let R,Q,Ω, and X be as in 7.5.10 and define a map s′ : X → S′ by setting

s′(z1, [z2], [z4]) = oz1 ⊕ oϖz2 ⊕ oϖz4. Then s′ is a well-defined surjection. Additionally, Let G be

the group in 7.5.10. Then for x, y ∈ X, s′(x) = s′(y) if and only if there is a g ∈ G such that

gx = y.

Proof. Let R,Q,Ω, and X be as in 7.5.10 and define a map s′ : X → S′ by setting s′(z1, [z2], [z4]) =

oz1 ⊕ oϖz2 ⊕ oϖz4. We now prove that s′ is a well-defined surjection.

To see that s′ is well-defined, let x = (z1, [z2], [z4]) and y = (z′1, [z
′
2], [z

′
4]) be elements of X such

that x = y. This implies that z′1 = z1, z
′
2 = z2 +ϖQ, and z′4 = z4 +ϖQ. We thus have that

s′(y) = oz′1 ⊕ oϖz′2 ⊕ oϖz′4

= oz1 ⊕ oϖ(z2 +ϖQ)⊕ oϖ(z4 +ϖQ)

= oz1 ⊕ oϖz2 ⊕ oϖz4

= s′(x).
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It is clear that s′(x) ∈ S′ for any x ∈ X. We now show that s′ is surjective. Let U = oz1 ⊕ oϖz2 ⊕

oϖz4 ∈ S′. This means that U is an o−submodule of Q with the following properties,

1. ϖz1 ̸= 0, ϖz2 ̸= 0, and ϖz4 ̸= 0;

2. ⟨z2, z4⟩q′ is a unit in R;

3. ⟨z1, z2⟩q′ = ⟨z1, z4⟩q′ = 0; and

4. ϖz1 ∈ Rad(Q).

Then the triple (z1, [z2], [z4]) is in X and maps to U under s′, hence proving that s′ is surjective.

Let G be the group in 7.5.10. We now show that for x, y ∈ X, s′(x) = s′(y) if and only if there

is a g ∈ G such that gx = y. To see this, first suppose that s′(x) = s′(y) for x = (z1, [z2], [z4]), y =

(z′1, [z
′
2], [z

′
4]) ∈ X, then

oz1 ⊕ oϖz2 ⊕ oϖz4 = oz′1 ⊕ oϖz′2 ⊕ oϖz4.
′

Since these are finitely generated o−modules, there is some g ∈ GL(3, R) such that

g


z1

ϖz2

ϖz4

 =


z′1

ϖz′2

ϖz′4

 .

Write

g =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 .

Hence, we have that

z′1 =g11z1 + g12ϖz2 + g13ϖz4

ϖz′2 =g21z1 + g22ϖz2 + g23ϖz4

ϖz′4 =g31z1 + g32ϖz2 + g33ϖz4.

(7.2)

As ϖz′1 = ϖg11z1, then ϖ(z′1 − g11z1) = 0, and hence z′1 − g11z1 ∈ ϖQ, meaning that for some

α ∈ Q,z′1−g11z1 = ϖα, and thus z′1 = g11z1+ϖα. This implies that g11 is a unit of R (as ϖz′1 ̸= 0).

The second equation in (2) implies that

−g21z1 = ϖ(−z′2 + g22z2 + g23z4),
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meaning that g21z1 ∈ ϖQ and hence ϖg21z1 = 0. As ϖz1 ̸= 0 it must e the case that ϖg21 = 0,

and hence that g21∈ϖR. Similarly, by the third equation in (2), we have that g31 ∈ ϖR. As

g21, g31 ∈ ϖR we may write g21 = ϖg′21 and g31 = ϖg′31 for some g′21, g
′
31 ∈ R. Substitution these

expressions into the equations in (2), we have that

ϖz′2 =ϖg′21z1 + g22ϖz2 + g23ϖz4

ϖz′4 =ϖg′31z1 + g32ϖz2 + g33ϖz4.

This implies that

z′2−g′21z1 − g22z2 − g23z4 ∈ ϖQ

z′4−g′31z1 − g32z2 − g33z4 ∈ ϖQ,

and hence we may write

z′2 = g′21z1 + g22z2 + g23z4 +ϖα′

and

z′4 = g′31z1 + g32z2 + g33z4 +ϖα′′

for some α′, α′′ ∈ Q. We now compute

⟨z′2, z′4⟩q′ = ⟨g′21z1 + g22z2 + g23z4 +ϖα′, g′31z1 + g32z2 + g33z4 +ϖα′′⟩q′

= (g22q33 − g23g32)⟨z2, z4⟩q′ +ϖR.

Since ⟨z′2, z′4⟩q′ and ⟨z2, z4⟩q′ are both units of R by assumption, we must also have that g22q33 −

g23g32 is a unit of R, and thus g22 g23

g32 g33

 ∈ GL(2, R).

All that is left now is to show that q12 = g13 = 0 in R. Using the symplectic form again we have

that

⟨z′1, z′2⟩q′ = ⟨g11z1 + g12ϖz2 + g13ϖz4, g
′
21z1 + g22z2 + g23z4 +ϖα′⟩q′

= ϖ(g12g23 − g13g22)⟨z2, z4⟩q′ .

Note that there is noϖR term in this last expression. This is because of the fact thatϖz1 ∈ Rad(Q).

As ⟨z′1, z′2⟩q′ = 0, we have that g12g23 − g13g22 ∈ ϖR. By a similar argument we also can obtain
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that g12g33 − g13g32 ∈ ϖR. Using this, we know haveg22 g23

g32 g33

g13
g12

 ∈

ϖR

ϖR

 ,

and as g22 g23

g32 g33


is invertible, we see that g12, g13 ∈ ϖR, and so ϖg12 = ϖg13 = 0. The first equation in (2) now

implies that z′1 = g11z1, and so we may assume g12 = g13 = 0. This means that g ∈ G, completing

this implication.

We now prove that if there is some g ∈ G such that for x = (z1, [z2], [z4]), y = (z′1, [z
′
2], [z

′
4]) ∈ X

such that gx = y, then s′(x) = s′(y). Since gx = y, we have

z′1 =g11z1

z′2 =g21z1 + g22z2 + g23z4 +ϖQ

z′4 =g31z1 + g32z2 + g33z4 +ϖQ,

where

g =


g11 0 0

g21 g22 g23

g31 g32 g33

 .

Thus,

s′(y) = oz′1 ⊕ oϖz′2 ⊕ oϖz′4

= og11z1 ⊕ oϖ(g21z1 + g22z2 + g23z4 +ϖQ)⊕ oϖ(g31z1 + g32z2 + g33z4 +ϖQ)

= og11z1 ⊕ oϖ(g21z1 + g22z2 + g23z4)⊕ oϖ(g31z1 + g32z2 + g33z4)

= og11z1 ⊕ oϖ(g22z2 + g23z4)⊕ oϖ(g32z2 + g33z4)

= og11z1 ⊕ oϖ(g22 + g32)z2 ⊕ oϖ(g33 + g23)z4

= oz1 ⊕ oϖz2 ⊕ oϖz4

= s′(x).

This proves the claim that s′(x) = s′(y) if and only if there is a g ∈ G such that gx = y for

x, y ∈ X.

Lemma 7.5.12. The order of S′ is q4 + q3, where q is the order of o/p.
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Proof. Let R,Q,Ω, X,G, and H be as in 7.5.10 and let s′ : X → S′ be the surjection in 7.5.11.

Since we have that s′(x) = s′(y) if and only if there is a g ∈ G such that gx = y for x, y,∈ X, there

is a bijection

G\X → S′

defined by Gx 7→ s′(x) for x ∈ X. This implies that there are x1, . . . , xt ∈ X such that

X = Gx1 ⊔ · · · ⊔Gxt

is a disjoint decomposition. As S′ and G\X are in bijection with one another and finite, we have

that #S′ = #(G\X). Let t = #(G\X). By 7.5.10, we know that for x ∈ X and g ∈ G, gx = x if

and only if g ∈ H. Hence, we have that

#X = t ·#Gxi = t ·
(
#G

#H

)
for all i = 1, . . . , t by the Orbit-Stabilizer Theorem. Hence

t =
#X ·#H

#G
.

Since #GL(2, R) = q4·2(1− q−1)(1− q−2) (as in [15]) and R× = R−ϖR, we have that

#G = (q2 − q) · q2 · q2 · [q4·2(1− q−1)(1− q−2)] = q10(q − 1)3(q + 1).

Additionally, we see that #H = q6. We now determine the order of X.

Recall that X is the set of tuples (z1, [z2], [z4]) ∈ Ω = Q×Q/ϖQ×Q/ϖQ such that

⟨z1, z2⟩q′ = ⟨z1, z4⟩q′ = 0,

⟨z2, z4⟩q′ ∈ R×,

ϖz1 ∈ Rad(Q),

and

z1, z2, z4 ̸∈ ϖQ.

Note that

Q/ϖQ ∼= L0/ϖL0.

We determine the number of choices for [z2] first. As ⟨z2, z4⟩q′ ∈ R×, the only restriction on z2

is that z2 ̸∈ Rad(Q), and there are q2 of these. Hence, there are q4 − q2 choices for [z2]. For the

number of choices for [z4], consider the non-zero linear form

⟨[z2], ·⟩q : Q/ϖQ → o/p,
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which is just the symplectic form used earlier. Since Q/ϖQ is an o/p vector space, dim(Q/ϖQ) = 4,

and dim(o/p) = 1, then the Rank-Nullity theorem implies that dim(ker(⟨[z2], ·⟩q)) = 3. Hence, the

total number of viable choices for [z4] is q
4−q3 as ⟨z2, z4⟩q′ ∈ R×. Finally, to determine the number

of choices for z1, let K be the submodule of Q generated by z2 and z4, and so we may write

Q = K +K⊥.

Note that z1 ∈ K⊥ since ⟨z1, z2⟩q′ = ⟨z1, z4⟩q′ = 0. Also, since z1 ̸∈ ϖQ, then the number of choices

for z1 is q4 −#(K⊥ ∩ϖQ). Since Q = K +K⊥, we have that

Q

ϖQ
∼=

K +ϖQ

ϖQ
+

K⊥ +ϖQ

ϖQ
.

We show that this expression for Q/ϖQ is actually a direct sum. If this were not the case, there is

an element, w ̸= 0 in both (K +ϖQ)/ϖQ and (K⊥ +ϖQ)/ϖQ, and so we can write

x+ϖQ = w = y +ϖQ, x ∈ K +ϖQ, y ∈ K⊥ +ϖQ.

This implies that x− y = ϖz for some z ∈ Q. Now, as x ∈ K there are a, b ∈ o such that

x = az2 + bz4.

Thus

⟨z2, x− y⟩q′ = ϖ⟨z2, z⟩q′ .

However, we also have that

⟨z2, x− y⟩q′ = ⟨z2, x⟩q′ = b⟨z2, z4⟩q′ ,

and so

b⟨z2, z4⟩q′ = ϖ⟨z2, z⟩q′ .

As ϖ⟨z2, z4⟩q′ is a unit of R, we have that ϖ|b. A similar argument shows that ϖ|a. Hence,

x = az2 + bz4 ∈ ϖQ, and thus w = 0, a contradiction.

We now have that
Q

ϖQ
∼=

K +ϖQ

ϖQ
⊕ K⊥ +ϖQ

ϖQ
.

Observe that #(Q/ϖQ) = q4 and #K = q4. Since

K +ϖQ

ϖQ
∼=

K

K ∩ϖQ



337

and #(K ∩ϖQ) = q2, we have that

#

(
K +ϖQ

ϖQ

)
=

q4

q2
= q2.

This implies that

#

(
K⊥ +ϖQ

ϖQ

)
= q2.

Now, as
K⊥ +ϖQ

ϖQ
∼=

K⊥

K⊥ ∩ϖQ
,

and #K⊥ = q4, we must have that

#(K⊥ ∩ϖQ) = q2.

Thus, the number of choices for z1 is q4 − q2. Hence, we have that

#X = (q4 − q2)2(q4 − q3) = q7(q − 1)3(q + 1)2.

Therefore, we have that

t =
#X ·#H

#G
=

q7(q − 1)3(q + 1)2 · q6

q10(q − 1)3(q + 1)
= q3(q + 1) = q4 + q3,

proving that claim.
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