Prime Level Paramodular Hecke Algebras

A Dissertation
Presented in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
with a
Major in Mathematics
in the
College of Graduate Studies
University of Idaho
by
Joshua D. R. Parker

Approved by:
Major Professor: Jennifer Johnson-Leung, Ph.D.
Committee Members: Brooks Roberts, Ph.D., Hirotachi Abo, Ph.D., and Andreas

Vasdekis, Ph.D
Department Chair: Hirotachi Abo, Ph.D.

August 2022



ii

Abstract

This dissertation presents fundamental results on the structure of paramodular Hecke algebras for
Siegel paramodular forms of prime level. We exhibit four double coset generators for the Hecke ring
as well as explicit formulas for computing the coefficients and good coset representatives that appear
in the multiplication of two elements of this ring. In addition, we show that there is a correspondence
between the value of the coefficients appearing in a product of these Hecke operators and the number

of sub-lattices of a paramodular lattice over a non-archimedean local field.
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1 Introduction

“There are five fundamental operations in mathematics: addition, subtraction, multiplication, divi-
sion, and modular forms.”

-Quote attributed to Martin Fichler

1.1 Background and Motivation

In 1995 Andrew Wiles proved Fermat’s last theorem by proving a special case of the modularity
theorem (then known as the Taniyama-Shimura-Weil conjecture ([17],[18])) which claims that there
is a correspondence between elliptic curves and modular forms. This correspondence has a finer
structure by further specifying that the conductor of the elliptic curve should be the level of the
corresponding modular form. The full modularity theorem was proven in 1999 ([4],[2]), and many
other results, similar to Fermat’s last theorem, follow from it; one such result is that no cube can
be written as the sum of two coprime n'” powers where n > 3. In an effort to generalize the cor-
respondence stated in the modularity theorem, Brumer and Kramer [3] proposed the paramodular
conjecture, which claims that there is a correspondence between abelian surfaces with conductor NV
and paramodular forms of level N.

Let m and N be positive integers and define the Siegel upper half-space, §), to be the
set of m X m positive definite symmetric matrices with complex entries. Additionally, define the
symplectic group of level N, Sp(2m,Q), to be the subgroup of GL(2m,Q) such that for all
g € Sp(2m, Q) we have

‘gJg =,
where J = [ % {] and I is the m x m identity matrix. Then this symplectic group acts on Z €
by
g-7Z=(AZ+B)(CZ+ D)™}, g:[ég]

Then we define the slash-k action on the set of f: H — C by
(flkg)(Z) = det(CZ + D) " f(g- Z).

Letting I' C Sp(2m, Z) such that I' N Sp(2m, Z) has finite index in both Sp(2m,Z) and T, we now
have that a Siegel modular form is a complex-valued holomorphic function f : § — C such

that f|xg = f for all g € T'. Using this, we now say that a Siegel paramodular form (or just a



paramodular form) is a Siegel modular form for the paramodular group, that is with I' = K (V)
and m = 2 (where we discuss the paramodular group in more detail in Chapter 3). In this case, we
say that f is a paramodular form of weight k with respect to I' of level N.

The key machinery used in the proof of the modularity theorem is a set of operators acting on
spaces of modular forms called Hecke operators. First investigated by Erich Hecke in 1937 in [6]
and [7], these Hecke operators are linear operators over the complex vector space of modular forms
of weight k that preserve important properties of the forms. For instance, Hecke operators are used
in the computation of modular forms, and understanding what the structure of the Hecke algebra
allows for more information to be gained about the spaces of modular forms. A valuable result
in this regard is that Hecke operators determine a basis of the space of modular form of weight
k. More specifically, if 97 is the complex vector space of modular forms of weight k, then there
exists a basis f; € 9 such that each f; is an eigenform for every Hecke operator acting on 9.
So, to find a basis for the space of modular forms of a specific weight, all one has to do is find
the simultaneous eigenforms. In a similar way to how Hecke operators give us information about
the structure of modular forms used in proving the modularity theorem, an understanding of the
structure of paramodular Hecke algebras could lead to a proof of the paramodular conjecture.

The current work focuses on the structure of paramodular Hecke algebras. The Hecke algebra
under consideration in this document is related to the Hecke algebra investigated by Gallenkamper
and Krieg in [5]. The authors looked at the Hecke algebra over the orthogonal group SO(2,3),
which is isomorphic to the paramodular group, and transformed their Hecke algebra accordingly.
We on the other hand constructed the Hecke algebra over the paramodular group directly and
came up with notable differences between the two algebras. For instance, Gallenkamper and Krieg
claim that two of the generators for their paramodular Hecke algebra commute, while the analogous
generators we found do not.

As an application of the explicit formulas we construct for the paramodular Hecke algebra, this
work also extends the results of Shimura [13] and Shulze-Pillot [16] on lattices to the Hecke ring
being considered. In his work, Shimura showed that for a lattice M in a non-degenerate symplectic
space W (over a principal ideal domain with quotient field F'), there is a basis y1,...Yn, 21, - 2n
of W and a1, ...,a, € F such that (y;,y;) = (zi,2;) = 0,{y;, 2j) = &;; for i,j € {1,...n}, where

(-,-) is the symplectic form on W,

M=Ry1 @@ Ry, ® Ra1z1 ©--- ® Ranzp,



and

a1|a27 N an—llana

and lastly the ideals Rag, ..., Ra, are uniquely determined. Shulze-Pillot has extended that result
to paramodular lattices and we use these ideas to extend another result of Shimura’s ([14]) in
the classical case to the paramodular case; specifically that there is a correspondence between
sub-lattices of a paramodular lattice and the number of times a coset appears in the disjoint
decomposition of a Hecke operator into left cosets. This means that the number of times one of
these left cosets appears in the decomposition of a Hecke operator is exactly the number of sub-
lattices there are in the corresponding paramodular lattice, making counting these lattices more

explicit.

1.2 Organization of the Current Work and Summary of Results

This document is divided into seven chapters. The first and second chapters are considered intro-
ductory and background material, with Chapter 1 offering a summary of the historical development
of the work on classical Siegel modular forms that lead naturally to the work in this dissertation.
Chapter 2 further develops the theory of abstract Hecke rings, which are rings of double coset oper-
ators that act on the space of modular forms in a way that preserves properties of interest. In this
chapter, we also see that any Hecke ring is a convolution algebra, and vice versa. The multiplication

in the Hecke ring 7 is defined to be

[gl-TgT= Y a7,
[ver\a/r

where a, is the number of ways to get the coset I'y from the decompositions of the two double
cosets being multiplied. This definition arises from the action of the Hecke operators on spaces of
modular forms and is implicitly defined in terms of the decomposition of the double coset operators
involved. However, as we noted, given a specific ring of Hecke operators we can pass to a convolution
algebra with a multiplication defined in terms of convolution of functions, and is useful to do in
order to prove results that allow us to more easily compute these coefficients (much of Chapter 5 is
devoted to explicitly computing these coefficients a, for the paramodular Hecke algebra, as these
are necessary to understand its structure). To close out the chapter we look at the Hecke operators
that arise from the general linear group of 2 x 2 matrices over , both at full level and at prime

level. We examine the Hecke operators on this group because much in known about the structure



of the Hecke rings and considering these examples provides more explanation for the structures and
results we are trying to generalize.

Chapter 3 gives the necessary background information of the paramodular group for a positive
integer N, and the analogous definition for a prime ideal p in a non-archimedean local field F'. The
paramodular group of a prime ideal, called the local paramodular group K (p), defined in section
3.2, will be of chief interest in the next chapters since this is the group we will use to construct our
Hecke ring, where I' = K(p). In Chapter 4 we will examine some key decomposition of matrices in

the general linear group of n X n matrices over a non-archimedean local field. In particular we show

Theorem. For g in GSp(4, F), there is a diagonal matriz d in GSp(4, F') such that K(p™)gK (p™) =
K(p")dK (p") or K(p")gK (p") = K(p")wdK (p"), where

1
w=|% J N
1

where the diagonal entries of d are specific powers of w, the generator of the maximal ideal p in
the ring of integers o of F. Additionally, for any two diagonal matrices di and dy in GSp(4, F) we
have that K(p™)d1 K (p™) # K(p™)wda K (p™).

Hence, for any double coset in the paramodular Hecke ring we can rewrite it using a diagonal
matrix or as the product of w with a diagonal matrix.

In Chapter 5 we prove that the paramodular Hecke ring of interest, (K (p), A), where A is a
specially chosen subgroup that contains the paramodular group, is generated by four double coset

Hecke operators. In particular, we show

Theorem. J#(K(p),A) is generated as a ring by

R O ] e | R PR )

2

w w

w

A lot of preliminary work is done to get to this point since the proof requires the ability to
compute the coefficients resulting from the multiplication in the Hecke ring, and so much of the work
in this chapter is dedicated to obtaining those calculations. Chapter 6 contains further calculations
concerning the multiplication of two Hecke operators. In particular this chapter gives standard coset
representatives for every g;K(p) appearing in the decomposition of the double coset K (p)gK (p).
In particular we show the following.

Theorem. Let a,b,d € Z,y € 0 and suppose K(p)gK (p) = U;9; K (p) with
A B

gi =
0 D



where A, B, and D satisfy

w5 -1 9
‘AD ='DA =w°® = , ‘BD ='DB, Be F
w? o o

Then the following are complete sets of representatives based on where A is.

1. If Ae I‘O(p)[wa wb]I‘O(p) ford >a>0b>0, then

1 11} @’ b 1 mfallyl w*:y2
gi = 1 @ oo 1 W} y2 @ ys |,
—y 1 od—b

1

where y € 0/p®",y1 € 0/p® and ya, y3 € o/p".

2. IfAEFO(p)[wa wb]FO(p) for 6 >b>a>0, then

1 L w® b 1 w ly, w %,
g; = 4 1—y w R 1 wflay2 w Pys
1 b

1

where y € p/p"~ " y1,y2 € 0/p® and y3 € o/p’.

3. IfAEFO(p)[_wl][wa wb]I‘O(p) ford>a+1>b+12>1, then

X —w —wy w? ) 1 —w % w lye
gi =w" “ ' —a 1w bys @ty
-y 1 o0t 1

1

where y € o/p®~",y1 € 0/p and ya, y3 € o/p".

4. IFAETo(P)| o ][® i ]To(p) for 6 >b+1>a+1>1, then

) —w w? , L e e e
g = w- wy w 1y w wé—a 1 _,W—a—ly2 wibyg

1 L 1

wéfb

where y € p/p*~ T y1, Y € 0/pT!, and ys € o/p".

Where To(p) = {[24] € GL(2,0) : ¢ =0 mod p}. Furthermore, each of these decompositions

18 disjoint.

The results in this chapter, coupled with the results from Chapter 5, allow us to compute the

product of double coset operators in our Hecke ring.

Chapter 7 explores another collection of results concerning the paramodular Hecke ring and its

correspondence with a set of lattices. In particular we prove the following.

Theorem. FEvery every coset



where g € GSp(4, F) and a,b, c are integers under certain conditions, corresponds bijectively to a

sub-lattice of a paramodular lattice.

This shows that another way to compute the coefficients resulting from the multiplication of
two Hecke operators is to count the number of sub-lattices of a particular form of the paramodular

lattice; which we do to compute the orders of the two non-trivial generating Hecke operators

O VT R B | R )

w w

The work in this document leads naturally to other questions about paramodular Hecke algebras.
One such question concerns a rationality result. In the classical SL(2,Z) case (which is examined
in Chapter 1), we know that the Hecke algebra is generated by the Hecke operators T'(1,p) and
T(p,p), for each prime p. By considering the formal Dirichlet series
o~ L(m)
>
i=1

of Hecke operators T'(m), it is possible to write

1 s

i=1

Moreover, one is able to attain the rationality result

k 1

fiﬂp): .
= p  1-Tpp = +T(p,pp' >

With the structure of the paramodular Hecke algebra presented here, it may be possible to obtain

a similar result for paramodular Hecke operators.



2 Abstract Hecke Rings and the Case of GL(2,Q)

In this chapter we take a look at the structure and useful properties of Hecke algebras as abstract
objects by noting some of their basic algebraic properties. The goal in this chapter is to dissect the
multiplication in an abstract Hecke ring, and we introduce their correspondence with convolution
algebras in order facilitate this. We consider two main advantages of identifying Hecke algebras
with convolution algebras. The first is that it allows us to refine and clarify the multiplication rule
in this setting, which we work with in detail later. The second is that it allows us to consider an
important automorphism on our Hecke ring. In the final two sections of this chapter we explore

some of the classical theory of Hecke algebras with the example of GL(2,Q).

2.1 Classical Hecke Algebras

For the material in this chapter, we follow the work of [9] in order to introduce Hecke operators
classically. We will develop the basics of the general theory while exploring the abstract Hecke
algebra.

Let G be a group and I', T be two subgroups of G. We say that I" and I are commensurable if
T:TNI'<oco and [[':TNI'|<oo.
If this is the case for I' and I/, we write I" ~ I''. Additionally, the set
Comg(l):={g€G:gl'g' =T}

is called the commensurator of I' in G. We first show that a double coset I'gI' has a disjoint
decomposition into left cosets, then we use that result to show that being commensurable preserves

this decomposition.

Lemma 2.1.1. Let G be an arbitrary group and I be a subgroup of G. For g € G, let

r= ] (Tng Ty
7i€(TNg=1Tg)\I'

be the partition of I into a disjoint union of left cosets of the subgroup I' N g~ 'T'g. Then we have

that
Iyl = L] Tomw,
vi€(TNg~1Tg)\T

and the left cosets in this union are pairwise disjoint.



Proof. 1t is clear that

| ] Tgwcrgl,
1 €(CNg~1Cg)\T

and so we show the other containment. Let vg§ € T'gT’, then § € (I' N g~ 'T'g)y; for some i, and

hence § = ay; where a € I and gag~! € T'. Thus we have that

798 = vga7; = vg9ag” ' gvi € Ty

Thus the equality is proven. To show that these left cosets are distinct, suppose that I'gy; and I'gy;

intersect, and so there are 8,y € I' such that

Y97 = 097;-

This implies that g='6~'vg7y; = 7;, which means that

T'Ng 'Tg)y = (CNg 'Tg)y;.

This equality follows from that fact that these cosets formed a partition of I', and so if they intersect
(as was shown), they must be equal. This is a contradiction as the partition of I is made up of

disjoint left cosets. O

Lemma 2.1.2. LetT' and IV be subgroups of a group G and = the commensurability relation, then

the following hold.
1. The relation = is an equivalence relation.
2. Comqg(T") is a subgroup of G.
3. If T =T, then Comg(T') = Comeg(IV).

4. If T =TV, then for g € Comg(T') we have that

Dol = | ] Tgyi = | ] 5igl",
Yi€(L'Ng=1Tg)\I’ §;€r/(I'Ngl'g=1)

where these disjoint unions do not necessarily have the same number of cosets.

Proof. We will begin by proving the first claim. Note that reflexivity and symmetry of the relation
~ is obvious, and to see that it is transitive, let I', I, and I'” be subgroups of G with I" ~ I"" and

I'" =~ T”. We have that

C:TNI'NT]=[C:TNnCNTI:TNI'NT"



<[C:TNII:T'Nr”

< 00.

By a similar argument, we also see that [I'"' : TNIT"NT"] < co. AsTNI'NT" is a subset of NI,
then I :TNIV]<T:TNIVNT] <occand IV : TNT"] < [I'": TNI"NT"] < co. Hence, I' = T,
proving that = is an equivalence relation.

We now prove the second claim. Let g, € Comg(T). We have that g7 'T'g ~ T" and ¢'~'T'¢,
and so by transitivity we also have that ¢7'I'g ~ ¢'~'T'¢’. Now, let 7, : G — G be the in-
ner automorphism 7, (h) = ¢'"'hg', noting that as an automorphism, T4 preserves the index
of subgroups of G, and hence [r,/(T) : 7(I' N g 'Tg], (74 (97 Tg) : 74(F' N g 'Tg)] < oo. As
79 (T) = ¢ 'T¢,79(97'Tg) = ¢’ 'g7'Tgg’, and 74(T N g~'Tg) = ¢Tg" Ng g 'Tgy, we
have that ¢'~'¢ 'T'gg’ ~ ¢’ 'T'¢’, and by transitivity, we must have ¢'~1¢~'I'g¢’ ~ ¢~ 'T'g. Thus
g9’ € Comg(T).

Now let h € Comg(T') and we show that h=! € Comg(T) by showing that hTh~™! ~ I'. Let
7, : G — G be the inner automorphism 7,(g) = hgh™!. As [1,(T) : [tn(I' N A7'Th)] < oo and
[7h(h~1Th) : [th(D N h™1TRh)] < oo, we have that hTh~1 ~ T since 7,(T') = hTh~ !, 7,(h~1Th) =T,
and 7,(T N h~'Th) = hTh~t NT.Thus, the second claim is proven.

Moving on to prove the third claim, assume that I' =~ I'. Since our assumptions imply that

g ' Tg~T ~T' =~ g 'T"g, we see that transitivity of ~ implies that
Comg(l)={g€G:g 'Tg~T}
={gcG:g ' Tg~T"}
= Comg(T").
Hence the third claim is proven, and we now prove the fourth and final claim.
Assume that T' &~ I, We show only one decomposition as the other follows by a similar argument.

As each right coset of I'gI' can be written in the form I'gry for some v € IV, if T'gy = I'g,v,+" € T,
then yy'~1 € I N g~ 'T'g. Since g~ 'I'g ~ T' ~ I/, we have the desired decomposition. O

Let G be a group and I a subgroup of G. If A is a is a subgroup of G with I' C A C Com¢(T),
then we call the pair (', A) a Hecke pair. To each Hecke pair we associate the Hecke algebra,
(T, A), which is the free Z-module generated by the set {T'gI" : g € A},

H = (T,A) = Z mgl'gl’ : myg € Z, my = 0 for all but finitely many g
geEA



10

In order to motivate the multiplication defined on a Hecke algebra ¢, let K be a commutative
ring with unity and suppose there is a right action of A on a K—module M, which we write as
(h,7) = RhY,h € M,y € A, that satisfies the property h7® = (h7)° for 7,6 € A. We think of
this right action as the slash action on the space of complex holomorphic functions described in the
introduction. What will be of interest to us now is submodule MT = {h € M : hY = h for all v € T'}
of I'-invariant elements of M under this right action, which is often identified with the space of
modular forms. The next proposition shows that a fixed T'gI' € % defines a map, from M to
itself, and thus by extending linearly, this means that every element of M defines a map from MT

to itself.

Proposition 2.1.3. Let h € M" and T'gT’ € ¢ with two disjoint decomposition’s
n n
Iyl = | |Tgi = | |Tg}.
i=1 i=1

Then

n n

> he =" ho

=1 i=1

Furthermore we have that .

> hvie M.

i=1
Proof. To prove the first part of the statement, note that if I'g; = I'g}, then there is some v € T
such that g/ = vg;. We thus have, for h € MT, the equality

’ . .
h9i = R = B9,

which proves the first assertion.
To prove the second part let v € I' and note that
n n
Tgl' = | |Tg; = | |Tgi,
i=1 i=1

by the previous proposition since I' ~ T" and g € A C Comg(T") (since I'gI" € 5°). We have that

n n

Z h9:7 — Z hgi’

=1 i=1

establishing that > h9 € M". O

As we can see from the above proposition, the map from M7 to itself is given by

h[LgT] = ho,
i=1



11

where g’ = | |, I'g;. Since we now have this map, the multiplication of two double cosets in the
Hecke ring results from the computation of the composition of the corresponding endomorphism
induced by the double cosets. Let us look at a multiplication we can define on . With this

multiplication, the module # will be a ring, and its elements are called Hecke Operators.

Proposition 2.1.4. Let Tgl',T'g'T’ € 5 with disjoint decompositions
gl =| |Tg;  and T¢T=| Ty
i=1 j=1
Define multiplication in S to be
Tgl'-TgT= > a,T,
[v]eM\A/T
where a, = #{(i,j) : Tgig; = U'y}. Then with this well-defined multiplication and the addition

coming from the structure of € as a Z—module, € is a ring.

Proof. In order to prove this claim, it suffices only to show that the multiplication is well-defined,
as all the other ring properties will follow from this and by the fact that J# is a Z—module.
Consider the free Z-module Z[T'\A] which is generated by the right cosets I'g for g € A. We

have a map from .7 to Z[I'\A] given by

Iyl =| |Tgi— > Tgi.

It follows from the definitions that that this map is an isomorphism between # and Z[['\A].

Now, let

Tyl =| |Tg:

7

and

ThI' =| |Th;.
J
It is clear that A acts on Z[I'\A] by

(Z P%) = (Tw)?! =D Tig.
K k

k

Corollary 2.1.5. Let h € MY, then 5 acts on M by

h[TgT][['¢g'T] = h[Cgl - T¢'TY.
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Note that if (I', A) is a Hecke pair, then by 2.1.1, I'gI", g € A is a disjoint union of finitely many

left cosets of T,

i=1

and if v € T then {g;}7, is a complete set of representatives of the distinct left cosets I'\I'gT'.

Thus, the elements

(9) = (g9)r = ZngF

of S satisty (g)” = (g), and hence belong to MT, as shown in 2.1.3.

We next highlight a very useful result that is repeatedly used in later chapters.

Lemma 2.1.6. Let h,h',g € A. Then T'gI" occurs in ThI' - Th'T (i.e. a4 is non-zero) if and only
if g€ ThT'A'T.

Proof. Suppose that

d f
ThT =| |Th;  and  TH'T =| |Thj.
¢ J

Assume also that I'gI" occurs in ThI' - TR'T. Then for some ¢ € {1,...,d} and j € {1,...,f} we
have that T'h;h; = I'g. Since

f d
ThUR'T = | J | Thit,

j=1i=1
we see that ¢ € ThI'W'T. Conversely, assume that ¢ € ThI'A'T. Since the last equality holds we
must have g € T'h;h/; for some i € {1,...,d} and j € {1,..., f}. Then I'g = T'h;h;, and T'gI" occurs
in ThI' - TA'T. O

One can also show that if o, 5 € A and ' = oI or I'§ = BT, then
Fal’ - TSI =TapT.

Proposition 2.1.7. (Shimura [13]) If G has an anti-automorphism a — o such that T* =T and
(Tal)* =Tal for every a € A, then (T, A) is commutative.

Proof. Recall that an anti-automorphism of G is an isomorphism from G to itself such that (a5)* =
B*ax. Write
Fal'=| |[Te; and  TT=| |TB;.
i J

Then we have that
Fol' =Ta'T =| |Ta;
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and
IAr =TBT =| |T5;.
J
If
TalAT = | JT9T,
Y
then

IBlal' = T'8*Ta’T = (Fal' BT)* = | JT9T.
Yy

Therefore we have that

Tal - TAT = Y a,[9T
[vler\a/r

and

TBr-Tal'= Y d,IT,
[Hera/r

with the same components I'vI". Let deg(I'7I") be the number of cosets I'e contained in I'yI'. We

have that

a~(deg(TT')) =#{(i,j) : Te; 3;I" =TT’}
=#{(i,7) : Ty 5;,' =TT} by applying *

=al,(deg(TT)).

/

-, completing the proof. O

Hence a, = a

2.2 Convolution and Hecke Algebras

Let G be a unimodular group of td-type (an example is GSp(4, Q,)) and let K be a compact, open
subgroup of G. The commensurator Comg(K) of K inside G is G. Let A be a subset of G such that
K C A and A is closed under multiplication. Since Comg(K) = G, we have that A C Comg(K).
Therefore, we may consider the Hecke algebra (K, A). We note that if g € A, then KgK C A,
and it follows that A is a union of a collection of double cosets of the form KgK. In particular, A
is an open subset of G.

In this section, we will consider .7 (K, A) as a convolution algebra, which will allows us to make
some additional claims about the Hecke algebra. Let f : G — C be a function, and we define the

support of f to be

supp(f) = {9 € G : f(g) # 0},
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the the line indicates that we are taking the smallest closed set containing {g € G : f(g) # 0}. We
say that f is locally constant if for every g € G there is some open subset U C G such that g € U
and f(¢') = f(g) for all ¢’ € U. Note that if f is locally constant, then f is continuous. Also, if
f is locally constant the complementary sets {g € G : f(g) =0} and {g € G : f(g) # 0} are both
open, and hence both are closed, and in particular supp(f) = {g € G : f(g) # 0}. We now define
R(K,A) to be the set of functions f : G — C such that:

1. For ky1,ks € K and g € G we have

f(kigks) = f(g).
In particular, f is locally constant.

2. The support of f is compact and contained in A.

If f1, f2 € R(K,A), then we define f1 + fo: G — C by

(fr + f2)(9) = fi(g) + f2(9)

far all g € G. With this definition R(K,A) is a vector space over C. Since the support of f is by

definition compact, then it is equal to a finite disjoint union
n

supp(f) = | | KgiK
i=1

where g; € A for all i. Moreover, we have that f(g) = f(g;) for all g € Kg¢;K and all 4, so that

n

f=Y_ flgi)charkg, k.

i=1
Hence, the characteristic functions of the double cosets KgK for ¢ € A form a basis over C
for R(K,A). To define a product, let u be the Haar measure on G such that p(K) = 1. if
f1, f2 € R(K,A), then we define f; * fo : G — Z by

(fo* f2)(g) = /G f(gh™Y) fo(h) dh
for g € G.

Proposition 2.2.1. Let the notation be as above. The product x is well-defined, and equipped with
x, the C vector space R(K,A) is an algebra over C.

Proof. Let fi, fa, f3 € R(K,A) and g € G. We first prove that f1 * fo € R(K,A). To do this, we

need to show that the product is well-defined, that it is invariant under left and right translation by
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K, and that supp(fi * f2) is compacts and contained in A. Since f has compact support, then the
integral in the definition of the product is finite, and hence the product is a well-defined function.
A calculation shows that f; * fo is invariant under left and right translation by K. Assume that

g € G is such that (f1 * f2)(g) # 0, then there exists h € G such that fi(gh~!)f2(h) # 0. Hence we
have that gh=! € supp(f1) and h € supp(f2), and thus

g € supp(f1)h C supp(f1)supp(f2) C A.

Since supp(f1) and supp(f2) are compact, then so is supp(f1)supp(f2) as the image of a compact set.
Since supp(f1 * f2) is closed and contained in the compact set supp(f1)supp(fa), then supp(fi * f2)
is also compact. It now follows that fi % fo € R(K, A).

To prove that R(K,A) is an algebra over C it will suffice to prove that the product * is asso-

ciative. Now,

(e ) (@) = [ (e ) (ah™") 1)

= / / fi(gh™a™ ") f2(a) f3(h) da dh
GJG

= / / fi(g(ah)™1) f2(a) f3(h) dh da
GJG

— [ [ fitoa ) satah ™ falh) b da
GJG

— [ fioa )2 x fi)(@ da
G

= (f1*(f2* f3)(9)-

Hence, the product * is associative, proving the claim. O

The convolution algebra R(K,A) and the Hecke algebra (K, A) are naturally isomorphic,

and to prove this, we first require a few lemmas.

Lemma 2.2.2. Let the notation be as above. Let a,a’ € G be such that KaK = Ka'K. Then there
ezists ¢c € G such that aK = cK and Ka' = Kc.

Proof. Since KaK = Kd'K, there are ki, ks € K such that a = k1a’ks. We have that ak2_1 = kia'.

Setting ¢ = ak; ' we have the result. O

Lemma 2.2.3. Let the notation be as above. Let g € G. Then there exist c1,...,cn € G such that

KgK = IilCiK: DKQ’.
i=1 i=1
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Proof. Let KgK = U™ a;K and KgK = U, Ka be disjoint decompositions. The first decompo-
sition implies that u(KgK) = m and the second implies that u(KgK) = n, and so it follows that
m =n. Let i € {1,...,m}. By 2.2.2 there is some ¢; € G such that ;K = ¢;K and Ka, = Kg¢;.

The statement of the lemma follows. O
Proposition 2.2.4. Let the notation be as above. Define
i:C®z H(K,A)— R(K,A)

by requiring that i(a ® KgK) = acharg i for a € C and g € G; here, charkgyxi is the characteristic

function of the double coset KgK. Then i is a well-defined isomorphism of C-algebras.

Proof. Let Ty, Ty € C ®z S (K,A). We will show that i(T} - T) = i(T1) * i(T2). We may assume
that 77 = Kg1 K and T, = Kgo K for some g1, g2 € A. We thus have that ¢(Th) = chargg, x and
i(Ty) = chargg, k. Let

i(Th) = i(Ty) = Z m(X)char x
X
where X runs over the set K\G/K of all double cosets and m(X) € C where all but finitely many
m(X) are equal to zero. We also have

T1 'T2 = Zn(X)X,
X

where again X runs over the set K\G/K . Let

KmK:UKm7 K@K:UK@
=1 i=1
be disjoint decompositions. Note that by 2.2.3 we may assume that

m

m n n
| |Kai=]]aK and | |Kbi=| |bK.
i=1 i=1 i=1 i=1
Let g € A. By definition of the product on (K, A) we have that
n(KgK)=#{(,7) € {1,...,m} x{1,...,n} : Ka;b; = Kg},
where again, all but finitely many n(X) are equal to zero. Applying the map 4, we have

iW(Ty - To) = Zn(X)charX.
X

To prove that (T - To) = ¢(T1) * i(T3) it will suffice to prove that n(KgK) = m(KgK) for g € G.

Let g € G, and so

n(KgK) # 0 <= for some (i, fj) we have Ka;b; = Kg
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<~ g € U?;I U;lzl Kal-bj

— g€ K1 K¢ K.
Here, the last step follows from
KgKgoK = Kg1 K(Uj_ Kbj) = Uiy Uj_; Ka;b;.
Also, since
(f1*f2)(9) = (Z m(X)charx> (9) = m(KgK),
X

we have that

m(KgK) #0 <= (fi=f2)(g9) #0
<= there exists h € G such that gh™! € Kg; K and h € Kg, K
<= there exists h € G such that g € Kg1 Kh and h € Kg. K
= ge KK -KgpK
<— ge K1 KgpK.

It follows that if ¢ & Kg1KgoK, then n(KgK) = m(KgK) = 0. Assume that g € Kg1 Kg. K.

From the above we have

m(KgK) = (f1 = f2)(9)
:/ charge,, x (gh ™ )char g, i (h) dh

chary—15,, x (h~")charg g,k (h) dh

= charKgflKngQQK(h) dh

Q

= u(Kgy 'KgN KgoK).
The set Kg; ' KgN Kgo K is evidently the disjoint union of sets of the form K¢ for some ¢ € G-

p
Kgr'KgnKgK =| | Ka.
=1

Therefore,

m(KgK) = w(Kg; ' KgN Kg2K) = pu(K) = p.
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We now define a map ¢t between the set of right cosets Kc in KgflKg N Kgo K and the set
{(,5) € {1,...,m} x {1,...,n} : Ka;b; = Kg}. So, let K¢ be a right coset in Kg; ' Kgn KgoK,
then K¢ C KgoK. hence, there exists unique j € {1,...,n} such that K¢ = Kb;. Also, since
U™ a;K we have that Kg; 'K = LI, Ka;l. Therefore,
KgflKg = El Kaq_lg.
q=1
Since Kc¢ C Kgl_lKg there exists a unique ¢ € {1,...,m} such that K¢ = Ka;lg. We have
Kb; = Ke = Kaq_lg. It follows that there exists kK € K such that kb; = a;lg, or equivalently
agkb; = g. Now azk € Kg1 K = U" Ka,;. hence, there exists an unique i € {1,...,m} and k' € K
such that a,k = k'a;. We now have that k'a;b; = g, so the Ka;b; = Kg. We define ¢(Kc¢) = (i, 7).
It is clear that the map t is well-defined. To complete the proof it will suffice to prove that ¢
is a bijection. To see that ¢ is injective, let Kc¢; and Kco be in the first set and assume that
t(Kc1) = t(Kco) = (i,7). From the definition of ¢ we have that K¢; = Kb; = Kco, and hence ¢ is
injective. To see that t is surjective, let (¢,7) € {1,...,m} x {1,...,n} : Ka;b; = Kg}. We claim
that Kb; C KgflKgﬂKggK and t(Kb;) = (4,7). it is clear that Kb; C K¢, K. We also have that
Kg'Kg= Kg;'Ka;b; = |i| Ka; a;b;.
1=1

This set clearly contains Kb;. Hence Kb; C Kgi'KgNKg, K. Let k € {1,...,m} be such that
t(Kbj) = (k,j). From the definition of ¢t we have Kaib; = Kg. We also have Ka;b; = Kg. It
follows that Kayb; = Ka;b

;, implying that Kay, = Ka;, and hence k = i. That is, t(Kb;) = (4,7)

and so ¢ is surjective. O
For g1, g2 € A we will write

KK -KgpK= Y n(KgK KoK, KgK)- KgK;
KgKeK\A/K

here, n(K1 K, Kg2 K, KgK) € Z.
Lemma 2.2.5. Let the notation be as above. If g1,92,9 € G, then

n(KgK,KgpK,KgK) = #{right K cosets in Kg; 'KgN KgK}

= #{left K cosets in gKg; 'K N Kg1 K}.
Proof. From the proof of Proposition 2.2.4 we have

n(Kg K, Kg K, KgK) = (charkg, k * chargg,x)(g).
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In the proof of Proposition 2.2.4 we also showed that
n(Kg K,KgK,KgK) = #{right K cosets in Kg; ' KgN Kg,K}.
To prove the remaining claim we calculate as follows:

chargeg, x (gh™')chargeg, i (h) dh

(charg g, k * charg g, x)(9)

chark g, i (gh)chargg, i (h™1) dh

charge,, x (h)chareg, k(g7 *h) ™) dh

charge,, x (h)charg,, x (h™'g) dh

Il
O Q% Q% Q% O~

charKglK(h)chargKgr;lK (h) dh

= u(gKgy 'K N K¢ K).
Since p(K) =1 and since gKg, 'K N K¢ K is the union of K left cosets, we have
wgKgy 'K N Kg1 K) = #{left K cosets in gKg, 'K N Kg,K}.
This completes the proof. O
Proposition 2.2.6. Let the notation be as above. let g1,g2 € A. Let

KpK-KgpK= Y nX)X.
XeK\A/K

Let
KpK = |_| hK
il
be a disjoint decomposition. Let g € A. Then
n(KgK)=#{icI:h;'gec KgK}.
Proof. Since the map ¢ in 2.2.4 is an isomorphism, it follows that

n(KgK) = #{right cosets Kcin Kg; '"KgnN Kg,K}.

Define a map r between the set {i € I : hi_lg € Kg2 K} and the set of right cosets K¢ in Kgl_lKgﬁ

KgK by i — Kh; 1g. To prove the proposition it will suffice to prove that r is a well-defined
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bijection. Let 7 € I be such that h;lg € KgoK. Then Kh;lg C Kgo K. Also,
Ko 'K =| | Kn; ",
iel
and so

Kgy'Kg=| |Kh;'g.
el

It follows that K h;l g C Kgy 1K g; We have just shown that r is well defined.
To see that r is injective, assume that j,j’ € I are such that hj_lg, h;_lg € KgoK and r(j) =
r(j"). Then

Khj_lg = Kh;_lg
-1 _ grpr—1
Kh;" = Kh;

hiK = K.

This implies that 5 = j’, so r is injective. Finally, assume that ¢ € A and K¢ is contained in
Kgi'Kgn KgK, Let h € G be such that h~'g = ¢. Then Kh™'g = K¢ C Kg; 'Kg so that
Kh™1 C Kgl_lK. This implies that hK C K¢, K. Thus, there exists j € I such that hK = h; K.
let k¥ € K be such that h; = hk, Then

hilg=k'hlg=k"'ce KcC KgK.

it follows that j € {i € T : hy'g € KgoK}. now, r(j) = Khj_lg =Kk 'hlg=Khlg=Kec It

follows that r is surjective, proving the claim. O

Proposition 2.2.7. Let the notation be as above. Let o : G — G be an isomorphism such that
a(K) = K and a(A) = A, Let a : F(K,A) = H#(K,A) be the Z-linear map determined by
setting a(KgK) = Ka(g)K for g€ A. Then a: (K, A) — H(K,A) is a ring isomorphism.

Proof. Tt is clear that « is additive and that « sends the identity K = K -1 K to itself. To see

that « is multiplicative, let g1, g2 € A. Using Lemma 2.2.5, we have:

AKqK-KgpK)= Y n(KaK KgK KgK) Ka(g)K
KgKeK\A/K

Z #{right K cosets in Kg; 'KgN Kg.K} - Ka(g9)K
KgKeK\A/K

Z #{right K cosets in Ka(g1) ' Ka(g) N Ka(g)K} - Ka(g)K
KgKeK\A/K
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= ) n(Ka(g)K, Ka(g)K, Ka(g)K) - Ka(g)K
KgKeK\A/K

= Y n(Ea(g)K, Ka(g)K, KgK) - KgK
KgKEK\A/K

= a(Kg1K) - a(Kg: K).
It is clear that o : H(K,A) — (K, A) is injective and surjective. O

Proposition 2.2.8. Let the notation be as above. Let 5 : G — G be an anti-isomorphism such that
B(K) =K and B(A) = A. Let f: #(K,A) = H(K,A) be the Z-linear map determined by setting
B(KgK) = KB(g)K for g€ A. Then B: 3 (K,A) — J(K,A) is a ring anti-isomorphism.

Proof. Tt is clear that 8 is additive and that § sends the identity K = K - 1- K to itself. To see

that £ is anti-multiplicative, let g1, g2 € A. Using Lemma 2.2.5, we have:

BKGK-KgpK)= Y n(KaK KgK KgK)-KB(9)K
KgKeK\A/K

Z #{right K cosets in Kg; 'KgN Kg,K} - KB(g)K
KgKeK\A/K

> #{left K cosets in B(g)KB(g1) 'K NKB(g2)K} - KB(g)K
KgKeK\A/K

= Y n(KB(g)K, KB(g1)K,KB(g)K) - KB(g)K
KgKeK\A/K

= Y n(EB(g)K,KB(g)K, KgK) - KgK
KgKeK\A/K

= B(Kg:K) - B(K g1 K).

It is clear that o : (K, A) — (K, A) is injective and surjective. O

2.3 GL(2,Q) Without Level

In this section we follow the work in section 3.2 of [15], and the in the following work we take

G =GL(2,Q) and T' = SL(2,Z). Then we have that
ComGL(Z,Q)(SL(2a Z)) = GL(Z Q)-

We will take
A={a€M(22Z):det(a) > 0}.
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Ifa=[2Y%] € M(2,Z) and o # 0, then we define
dy(a) = ged(a, b, ¢, d).
Lemma 2.3.1. Let o = [24] € M(2,Z) with o # 0. Let 8 € SL(2,Z). Then

di(af) = di(Ba) = di(a).
Proof. Fory € M(2,Z),~ # 0, let I() be the ideal generated by the entries of . Since § € SL(2,Z,
we have that I(a) = I(af) = I(Ba). Since, by definition, the ideal generated by dj(«) is equal to
I(«), the ideal generated by d;(Ba) is equal to I(fBa), and the ideal generated by di(af) is equal
to I(af), then the lemma follows. O

Lemma 2.3.2. Let N > 0 be an integer and o € M(2,Z) with det(a)) > 0, Then there exist unique

integers a; and ag such that a1, as > 0,a1]az, and
SL(2,Z)aSL(2,Z) = SL(2,Z)[** 4,]SL(2,Z).

Proof. Let

e1 =[5, e=[1],
and so ej, ey form an ordered basis for M (2 x 1,Q). Let L = Zey; + Zey. The set L is a free
abelian group of rank 2. Let T be the linear operator on M (2 x 1,Q) defined by Ta = ax for
x € M(2 x 1,Q). Consider T'L; this is a subgroup of L, and is hence also always a free abelian
group. Since T is invertible, then T'L is isomorphic to L as an abelian group, and so T'L also have
rank 2. By a standard theorem about free abelian groups, there exists an ordered Z—basis w, ws

for L and integers a1, as such that a1,as > 0,a1]as, and ajwq, asws is an ordered basis for T'L, so

that TL = Zaywy ® Zaswsy. Define the following ordered bases for M (2 x 1,Q)
B e, e
B qwi, we
Bs :aqw1, asws
B3 :Tey, Tes.
Then B and Bj; are also ordered bases for the free abelian group L, and Bs; and Bs are ordered

bases for the free abelian group aL. Let [T]§ be the matrix of T’ from basis B to basis A. The

matrix of T in the basis B is «, and so we may write
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Trivially, we have that
T=1oloT

where I is the identity map on M (2 x 1,Q). It follows that we have the following matrix identity

[T15 = WE, 1515,

so that
=[5, 15 T3
Evidently
aj
15, = :
az
and since I = I o I, we have that
1 B B 71B1
) =[]z = [I]Bl [I]B :

Since B and By are bases for the same Z subgroup L of M (2 x 1,Q), the entries of [I]5 and (&

are integers. Tt follows that [I]5" is in GL(2,Z). Also, it is evident from the definitions that
71 = 5.

Again, since I = I o I, we have that

1
= (15 = 5215

Since By and Bs are bases for the same Z subgroup aL of M(2 x 1,Q), the entries of [I]gz and

[I]gg are integers. It follows that [I]gg is in GL(2,Z). We have now proven that there exist
B,7 € GL(2,Z) such that
a=p 5.
as
Since det(«) > 0 and a1, ag > 0, then det(8) and det(vy) have the same parity. By replacing 8 with
6[1 71] and ~ with [1 1 ]’y in the case det(3), det(y) < 0, we may assume that det(3) = det(y) = 1,
ie, B,y € SL(2,Z). This proves the existence part of the lemma. To prove uniqueness, assume

that by, by € Z such that by, by > 0, b1]be, and
SL(2,7)aSL(2,7) = SL(2,2)[" | SL(2, ).

Taking determinants, we get that ajas = b1bs. Applying that d; function, we obtain that a; = by
and g = b2. O
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Lemma 2.3.3. Define

L= )
/A

so that L is a rank 2 free abelian subgroup of M (2 x 1,Q). Let o € M(2,Z) with det(«) > 0. Then
det(a) = [L : «L].

Proof. By 2.3.2 we have that det(a) = ajaz, and by the proof of the same lemma we have that

[L: L] = ajas, and the result follows. O

Lemma 2.3.4. The ring £(SL(2,Z),A) is commutative.

Proof. Let * be the canonical involution of 2 X 2 matrices, so that

*

for [‘g g] € GL(2,Q). The function * satisfies (g1g2)* = g597 for g1,92 € GL(2,Q). Also,define

1
Uy = )
-1
and so u; € SL(2,Z). Define the map t : GL(2,Q) — GL(2,Q) by t(g9) = (urgu;*)* for g €
GL(2,Q). Then t is an anti-automorphism and is explicitly given by
a b a b
c d c d

Evidently, we have that ¢t(SL(2,Z)) = SL(2,Z). Also, it follows from 2.3.2 that t(SL(2,Z)aSL(2,7Z)) =
SL(2,Z)aSL(2,Z) for o € A. Thus, by 2.1.7, the ring #(SL(2,Z),A) is commutative. O
We write

T(a1,a5) = SL(2,2)9SL(2,7) = SL2,27) | | SL(2,2)
a2

for aj,as € Z with ajaz > 0. By 2.3.2, the elements of T'(a1,az2),a1,a2 € Z such that aq,as >

0, ay|ag are a Z—basis for the free abelian group .#°(SL(2,Z),A). One has
T(al, ag) . T(bl, bg) = T(albl, a2b2)

for a1,as,b1,ba € Z such that ai,a1,b1,bo > 0,a;1|ae, and by by if ay and by are relatively prime.

Consequently, the ring 2 (SL(2,Z),A) is generated by the elements

T(p*,p*)
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for all primes p and eq, e2 € Z such that ea > e; > 0. For a fixed prime p, we let 7 (SL(2,Z),A),
be the subring of .7 (SL(2,Z),A) generated by the above elements for that prime. One can show
that S (SL(2,Z),A), is a polynomial ring in the variables T'(1,p) and T'(p,p), which are also
algebraically independent. It follows that S#(SL(2,Z),A) is a polynomial ring over Z in the
infinitely many indeterminates T'(1,p) and T'(p, p) for each prime p, and thus .72 (SL(2,Z),A) is an
integral domain. Next, for m € Z such that m > 0, we define
T(m) = > SL(2,7)aSL(2,7).
SL(2,2)aSL(2,2)
det(a)=m

If n,m € Z are such that n,m > 0 and are relatively prime, then it is known that
T(m)T(n) =T (mn).

One can further consider the formal Dirichlet series

—T(m) SL(2,Z)aSL(2,Z)
Z B Z det(a)® '

S
i=1 SL(2,Z)aSL(2,Z)

Clearly, formally one has

= T(m =T (pk
Z; ’I’(I”LS)ZHZ (fs)

p k=0 p

Moreover, one is able to attain the rationality result

k 1

i T(") _ _
= v 1-Tpp =+ T(ppp' >

2.4 GL(2,Q) With Level

In this section we follow that work in section 3.3 of [15] and section 4.5 of [9]. For what follows we

use the notation Z, = Z/aZ. Fix a positive integer N and consider the subgroup

a b
'=Ty(N) = € SL(2,Z) :¢c=0 mod N
c d

Since I'o(N) is of finite index in SL(2,7Z), it follows that Comg(I'o(N)) = Coma(SL(2,2)) =
GL(2,Q) by the last section. Recall that here, A = {a € M(2,Z) : det(a) > 0}. We define

b
Ag(N) = € A:ged(a,N)=1,c=0 mod N
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b
= € M(2,Z):ad — bc > 0,gcd(a,N) =1,¢=0 mod N
c d

Of course, it is evident that if N = 1, we have that Ag(N) = A. Clearly T'o(N) C Ag(N),

Ag(N) is a semi-group, and Ag(N) C Comg(To(N)) = GL(2,Q), and so we may consider the
Hecke ring 72 (Fo(N), Ag(NV)).

Lemma 2.4.1. Let a,b, and N be positive integers and assume that gcd(a, N) = 1 and b|N. Let
n=abN~'. The group Z, x Zy, has a unique subgroup of order N, and a unique subgroup of order

n.

Proof. Let H be a subgroup of Z, x Z;, of order N and define p : Z, x Z,, — Z, by p(x,y) = z for
(x,y) € Z, X Zp. Consider p(H). The order of p(H) must divide both #H = N and #Z, = q;
since ged(a, N) = 1 by assumption, we obtain that p(H) = I, the identity, so that H C I X Z.
Now Z; has a unique subgroup S of order N and it follows that H = I x S, proving that Z, x Z,
has a unique subgroup of order N. Next, assume that H is a subgroup of Z, x Z; of order n. Write

b = Nbybs where every prime factor of by divides N and ged(by, N) = 1. We have
Za X Zb = Za X ZNb1b2 = Za X ZNbl X Zb2.

Define p : Z, X Znp, X Ly, — Znp, by p(z,y,2) =y for (z,y,2) € Z, X Znp, X Zp,. There is an
exact sequence

I — ker(p|lg) = H — im(p|lg) — 1,

so letting di = # ker(p|y) and do = #im(p|y ), we have that
dldQ = #H =n = CLbN71 = ab1b2.

Now ds divides #H = abyby and Zp, = Nby. Therefore, do divides ged(abibe, Nby) = by ged(aba, N) =

b1. Also note that ker(p|g) is contained in Z;y x I x Zy,, so that d; < abs. We now have
U,blbg = #H = d1d2 S abgbl.

It follows that we must have d; = aby and dy = by. Since di = aby, we obtain ker(p| ) = Z1 XI X Zy,,

and in particular Z; x I x Z;, C H. We now see that there is a direct product decomposition

H=(Zy x I xZy,)(HN(I x Znp, x I)).
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By orders, #((H N (I X Zyp, x I)) = by. Let R be the unique subgroup of Z;, of order b;. Then
HnN(IxZnp, xI)=1x Rx]I,sothat

H=(Z,xIx1Z,)(IxRxI),

which proves the uniqueness of H. O

Lemma 2.4.2. Let N be a positive integer and let o € Aog(N). Then there exist unique integers

ay and ay such that aq|az, ged(a1, N) =1, and

To(N)aTo(N) = To(N) | To(N).

Proof. We follows the idea of the proof presented in [9]. Let

a b

o=

c d
where a,b,¢,d € Z,gcd(a, N) =1,¢ =0 mod N, and ad — bc > 0. Define
e1 =[5, e=[1],

and so eq, ey form an ordered basis for M (2 x 1,Q). Call this basis B. Define a linear operator
T:M2x1,Q - M2x1,Q) by Te = az for x € M(2 x 1,Q), and the matrix of T is basis B is

a

Let n = det(T") = det(a) and define
L:Zel@ZeQ, LO:ZeléBZNeg.

Then L and Ly are free abelian groups of rank 2 contained in M(2 x 1,Q). Clearly Ly C L, and
also

TLo C TLC L.

Therefore

[L: TLo) =[L: TL|[TL : TL)

=nN
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since [L: TL] =n by 2.3.3 and [TL : TLg] = [L : Ly] = N. Also, since c =0 mod N we have that
Ter = aeq + ces € Ly

and

T(NGQ) = NTey = Nbey + Ndey € L.

Therefore, T Lo C Lg, so that
TLoC Ly C L.

Hence,
[L : TLo] = [L : L()] [LO : T‘Lo]7
and thus nN = N[Lg : TLo]. It follows that n = [Lg : TLy]. Next, by a standard theorem about

free abelian groups, there exists an ordered basis
B1 wy,we
for the free abelian group L and positive integers a’ and o’ such that a'|b’ and
L =7Zw, ® Zw,, TLy =Zad w; ® Zb'w,.

It follows that [L : TLg] = o'b'. From the above, we also have that [L : TLg] = nN. Hence
a't =nN.

We claim that ged(a’, N) = 1. Suppose that ged(a’, N) > 1 and we will obtain a contradiction.
Let p be a prime dividing both a’ and N, then p|b’ since o’|b’. Therefore, T Ly C pL. This implies
that Tey = aey + cea € pL, so that pla, but this is a contradiction to the fact that ged(a, N) = 1.
Hence ged(a’, N) = 1. Since nN = o’V and ged(a’ N) = 1, we have that N|b'. Consider Zw, ©@ZNws
and Za'w, ® ZV' N~ tws,. Since T Ly = Za'w; ® Zb'w,, we have that

TLo C Zwi ® ZNws, TLy C Zd'wy & Zb' N~ tw,.

The quotients
Zw; ® ZNwy Za'wy © ZV N~ ws
TL, TLo

are subgroups of L/T Lo = Z, x Zy such that

#Z’LU1 @ ZNw, —JYN-! = " #Za/wl (&) Zb/N_l'U)Q

TLo TLo

On the other hand we have

TL Lo

g =N g =n
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By 2.4.1 we now have
TL =Zd'wy & ZV' N w,, Ly = Zwi ® ZNws,.
Define additional ordered bases for M (2 x 1,Q) by

BQ :a/wl, b/Nil’LUQ

Bg 111617 T62.
Let I be the identity operator on M (2 x 1,Q). Trivially T =1 oI oT. Therefore
a=[T15 = U3, 15 T3

Consider [I]5 . Since I = I oI, we have that

Since B and B are both bases for the free abelian groups L, the matrices [I]5 and [I 151 have
integer entries. it follows that these matrices are in GL(2,Z). Moreover, from above we have that
Lo =72wi ®ZNws = Zey ® ZNes. 1t follows that we can write wi = re; + tNey for some r,t € Z.

Therefore, [I]3 has the form

%
15, =
tN  x
This implies that [I]3 € To(N)+. It is clear that
a/
Nne =
me=1"

it is also evident from the definitions that
(T3 = U5

The bases By and Bj are both bases for the free abelian group T'L. A similar argument to the
case of [I]5 shows that [I]gi € GL(2,Z) and hence [T]5> € GL(2,Z). In particular, there exist
a”,c" € Z such that

Te; = a"a'wy + 'V B~ ws.

Since Tey € T Lo = Za'wy ® Zb'wy we must have that b'|c’cN~1, i.e. there is some integer  such

that b’z = ¢’b N1, This implies that ¢’ = Nz, so that [T]52 € To(N)+.
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So far, we have shown that there exist 81, 82 € I'o(IN)+ such that

a/

a=p Ba.
B¥N—1
Taking determinants, we see that 51 and (2 have the same sign. By multiplying, if necessary, 51 on
the right by [! ;] and j; of the left by the same matrix, we may assume that det(81) = det(82) = 1,
so that 1,82 € T'o(N). Evidently, @/, 6’ N=! > 0 and a’|b’ N~!. Therefore, the existence part of

the lemma is proven. To prove uniqueness, assume that a1, b1, as, by are positive integers such that

a1|a2,b1|b2, and

ai bl
Lo(NV) Lo(N) =To(N) Lo(N).
as b2
Applying that determinant and the d; function to both sides, we obtain that ajas = b1bs and

a1 = b1, and thus as = bs, which proves uniqueness. O
Lemma 2.4.3. The ring 7€ (To(N), Ao(N)) is commutative.

Proof. Let * be the canonical involution of 2 X 2 matrices, so that

*

a b d b

c d —c a

for [‘; Z] € GL(2,Q). The function * satisfies (g1g2)* = g597 for g1,92 € GL(2,Q). Also,define

unN =

Define ¢t : GL(2,Q) — GL(2,Q) by
t(g) = (unguy')”
for g € GL(2,Q). Then t is an anti-automorphism and is explicitly given by

a b a c

c d bN d

for [24] € GL(2,Q). Evidently, we have that ¢(Io(N)) = Io(NN). Also, it follows from 2.3.2 that
t(To(N)ayo(N)) = To(N)avy(N) for @ € Ag(N). Thus, by 2.1.7, the ring J(To(N), Ag(N)) is

commutative. O
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3 The Paramodular Group

In this chapter we will introduce the paramodular group which will be a fundamental object in the
chapters that follow. The global paramodular group is a subgroup of the symplectic group Sp(4, Q)
and the local paramodular group is a subgroup of GSp(4, F'), where F is a non-archimedean local
field. While we start by exploring the global paramodular group, much of our work will be done with
the local paramodular group as this is the group over which we are defining our paramodular Hecke
algebra. As part of this exploration, we prove that the local paramodular group has a particular

decomposition in proposition 3.2.3, appearing at the end of the chapter.

3.1 The Global Paramodular Group

For N and positive integer we define, just for now, the paramodular group K(N) as

Z N7 7 Z

Z 7 7 Nz
K(N) = 5p(4,Q) N L Nz 7 2

NZ NZ NZ z

Further, let

and

Sp(In,Z) ={g € M(4,Z):'gJng = In}.

It is known that this is a subgroup of GL(4,Z) (see the following lemma), and we will show that

Sp(Jn,Z) is conjugate to K(N). First, we prove some useful lemmas.

Lemma 3.1.1. Let N be a positive integer and let

A B
g= eEM4,2).
C D

Then g € Sp(Jn,Z) if and only if

"AKC ='CKA, ‘'BKD='DKB, 'AKD-'CKB=K
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where

K:
N

The set Sp(Jn,Z) is a subgroup of GL(4,Z), and if g € Sp(Jn,Z), then

K-''"DK —-K ''"BK
~K''"CK K ''AK

Proof. A straightforward calculation shows that g € Sp(Jy,Z) if and only if A, B, C, and D satisfy
the above conditions. That is, ‘gJng = Jy exactly when g satisfies the stated conditions. The set
Sp(Jn,Z) is clearly closed under multiplication. Let g € Sp(Jn,Z). Then tgJyg = Jy. Taking
determinants we obtain that det(¢g)? = 1, and so det(g) = +1. It follows that g € GL(4,Z) and g~!
has integral entries. Since ‘gJyg = Jy, we have that tg_lJNg_1 = Jn, and so g~t € Sp(Jn,Z),

and so Sp(Jy,Z) is a group. Next, letting g = [4 B] € Sp(Jn,Z), a calculation shows that

K-''"DK —-K ''BK||A B 1
K YK Kl''AK C D 1
If follows that ¢g—! has the stated form. O

Lemma 3.1.2. Let N be a positive integer and let

a; az b1 b2
az Qa4 b3 b4
C1 C2 dl d2

C3 Cq d3 d4
Then az,bg,CQ,dQ e NZ.

Proof. Since g € Sp(Jy,Z), and since Sp(Jy,Z) is a group by 3.1.1, then g=! € Sp(Jy,Z). In

particular, the entries of g~! are integers. The lemma now follows from 3.1.1 O

Define

hn =

N

The following proposition shows that Sp(Jx,Z) is conjugate to K(N).
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Proposition 3.1.3. Let N be a positive integer. Then
hy - Sp(Jn,Z) - hy' = K(N).
Proof. We have that Jy = hyJihy = "hyJihy. Let g € Sp(Jy,Z). Then
tgIng =Jn
‘g'hnJihng = "hnJihy
"Wyt tgthy by ghyt = )
"(hyghy) ihwghy' = Ji.
it follows that hyghy' € Sp(4,Q). Let

ap az b by

az Qa4 b3 b4

g =
C1 C2 dl dg
C3 C4 dg d4
Then
ai az by N7lb
—1
hNghXII _ as Qy bg N b4

¢ co di N7ldy
Necs Ney ds dy
By 3.1.2, we have that as, by, co,de € NZ, and so hNghj\,1 satisfies the conditions to be in K(N),
ie. hNghR,l € K(N). Conversely, assume that g € K(N). Since tgJig = J; and Jy = hyJ1hy =
thNthN, we have that
"(hy'ghn)Jihy ghy = I

, and so hy'ghy € M(4,Z). Tt follows that hy'ghy € Sp(Jn, Z). O

3.2 The Local Paramodular Group

Let F' be a non-archimedean local field of characteristic zero, with ring of integers o and p a prime

ideal of o with generator w. Consider the paramodular group

o o p ' oo

K(p) ={9€GSp4, F): \(g) €™} N

=3 =3 =3
=3
o
=3
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Define
0 0 w O
0 0 0 1
Jw,O - )
—w 0 0 0
0O -1 0 0
and let

GSp(Jw 0, F) ={9 € M(4,F) :"gJw.09 = AN for some \ € F*}
Sp(Jz0, F) = {9 € M(4,F) : "gJ 09 = Jw 0}

GSp(Jw0,0) = GSp(Jw o, F') NGL(4,0)
Sp(Jw0,0) = Sp(Jm 0, F) NGL(4,0).

Lemma 3.2.1. Let

A B
g= € M4, F).
C D

Then g € GSp(Jw,0, F') if and only if there is some X\ € F* such that
"AKC ='CKA, ‘BKD ="'DKB, 'YAKD —'CKB = )\K,

where

Furthermore, the sets
GSp(Jw,O,F)v Sp(Jw,OvF)v GSp(Jw,Ovo)a Sp(Jw,Ovo)
are subgroups of GL(4, F), and if g € GSp(Jw 0, F'), then

) K-''"DK —-K''BK
g t=x""
~K''"CK K ''AK

Proof. Note that g € GSp(Jw0, F) if and only if *gJm 09 = AJwo for some X € F*, and this

happens exactly when

"AKC —'CKA 'AKD-'CKB
‘BKC —-'DKA 'BKD-'DKB

0 AK

—-AK 0
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'BKC —'DKA=—"("AKD — 'CKB),

the first claim is proven.

To see that GSp(Jw 0, F) is a group, note first that for any g, h € GSp(J» 0, F) we have that
“(gh)Jw0(gh) = "hAJm oh = AN T o

for some A\, \' € F*. Hence, GSp(Jz,0,F) is closed under multiplication. For the inverse of
g € GSp(Jz.0, F') we need the assumption that g € GL(4, F'). So, let g € GSp(Jw 0, F') C GL(4, F)
and so g~ € GL(4, f) exists. As 'gJs 09 = AJm o for A € FX, then we have that

t(g_l)Jw,Og_l = >\_1Jw,0'

Hence g~ € GSp(Jw 0, F). Thus, GSp(Jw 0, F) is a subgroup of GL(4, F'). By a similar argument,
we see that Sp(Jz,0,F) is also a subgroup of GL(4, F). Additionally, since GSp(Jz0,0) and
Sp(Jw,0,0) are intersections of subgroups, they too are subgroups of GL(4,F). Lastly, let g €
GSp(Jw 0, F), then we know that g=' € GSp(Jz0, F). Hence, using the condition of the group,

we see that
oy K''DK —K ''BK
g = Jw’O g)\Jw,O =
K ''CK K l'AK

O

Lemma 3.2.2. If

a1 as bl b2

az ag4 by b

g=|" " 7 | €GSp(Jag,o),

c1 e di da

C3 Cy4 d3 d4
then as, bg7 c3, d3 € p.
Proof. As GSp(Jw,0,0) is a group, then g=! € GSp(Jw,0,0), and hence the entries of g~* are all in

0. By 3.2.1 we have that

dq dgw_l —by —b3w_1
1 dgw d4 71)2’@ 71)4
g =
—C1 —c;;w‘l a1 agw_l

—Co W0 —Cq a9 Q4
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As this matrix is in M (4, 0), we must have that as, bs, c3, d3 are divisible by @ in 0 and hence must

belong to p as w generates p. O
We finish this section by proving the main result in this chapter.
Proposition 3.2.3. Let hy = diag(1,1,w,1), then
heGSP(Jw.0, F)h ! = GSp(4, F) and  huGSP(Jwo,0)ht = K(p).
Proof. First, note that
w0 = howJhey = "hoy T hey,

where J is the standard symplectic form

Then for g € GSp(Jw,0, F) and A = A(g) we have that

f’ngog = Az = tg(tthhw)g =Ahodhy
— (hZ'ig'he)J(hewghZ!) = AJ

— "(hwghZ")J(hoghs) = AJ.
Hence, hogh_! € GSp(4, F). If g € GSp(4, F), we have that

tgJg =\ < 'g(‘hz'Joohst)g = A hZ T ohZ!
= (*he'g'hZ)Jmo(ho ghe) = Ao

= (W2 ghe)Jmo(hZ ghe) = M.

Hence, h'ghy € GSp(Jw.0, F). Thus heGSp(Jw o, F)hz! = GSp(4, F) as claimed.

For the second claim, let g € GSp(Jz 0,0) and write

a; az b1 b2

az ay by by
g =

C1 C2 d1 dg

C3 C4 dg d4
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As g € GL(4,0) we must have det(g) € 0*. Specifically, as ‘gJ5 09 = A(g)Jw,0 we have that

det(g)? = A(g)?, implying that A\(g) € 0*. By computation, we have that

and so by 3.2.2, hpgh! € K(p). Now suppose that ¢ € K(p), then we know that h_lgh, €
GSp(Jw 0, F). Write
ay Qg b1 b2

az as by by

g =
c1 ¢ di do
C3 C4 dg d4
Then
aq as biw by
as ay bsw by
h;lghw = )
cawl cw ! dy dew !
C3 Cq dgw d4

and hence h_'gh,, has entries in 0, meaning that h_'gh,, € GSp(Jw.0,0), which proves the second

claim. 0
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4 Matrix Decompositions

In this chapter we will review some useful matrix decompositions that we will use extensively to get
disjoint decompositions in the work on paramodular Hecke algebras. Most notably, in this chapter
we prove that for any double coset K (p™)gK (p™) with g € GSp(4, F), there is a diagonal element
d € GSp(4, F) such that

K(p")gK(p") = K(p")dK(p")  or  K(p")gK(p") = K(p")wdK(p"),

and both cannot occur for the same g. Further, if d; and dy are diagonal elements of GSp(4, F).
Then

K(p™)diK(p") # K(p")wda K(p").

This result follows from the main theorem of this chapter on a cartan-like decomposition (theorem
4.2.5). Using these, we have a well-defined, disjoint decomposition for a double coset into left cosets

in the next chapter.

4.1 Bruhat Decomposition

Let R be a commutative ring with identity 1. We define the symplectic group, Sp(4, R), with

respect to

as

Sp(4,R)={g € M(4,R) :'gJg=J}

We define the Borel subgroup, Siegel parabolic subgroup, and Klingen parabolic subgroup

of Sp(4, R) to be, respectively,

N Sp(4, R),

=
==V IR s



39

'R R R R]
R R R R
P(R) = N Sp(4, R),
R R
. R R_
'R R R R]
R R R
Q(R) = NSp(4,R).
R
. R R R
Define
1 1
1 1
S1 = 9 So =
1 1
1 1

Note that sy € P(R) and sz € Q(R). Let T'(R) be the diagonal subgroup of Sp(4, R), and let
N(T(R)) be the normalizer of T is Sp(4, R). The group W = N(T(R))/T(R), called the Weyl

group, has eight elements, and representatives fro those elements are

81, 82, 828182, 818281,
and
1, 5152, 5281, 51525182 = 8281525].
Let
1 Ty 1 a
1 vy =z 1
N(R) = cx,y,2 € R p U(R) = ta€R
1 1
1 —a 1

Then N(R) and U(R) are subgroups of the Borel subgroup B(R). The group U(R) normalizes
N(R), and T(R) normalizes N(R) and U(R). We have that B(R) = T(R)U(R)N(R).

Proposition 4.1.1. Let F be a field. Then

Sp(4,F) = Q(F)P(F)UQ(F)sas182P(F).
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Proof. in this proof we write B = B(F),P = P(F),N = N(F),U = U(F),T = T(F) and Q =
Q(F). The Bruhat decomposition asserts that there is a disjoint decomposition
Sp(4,F) =Bs1 B U BsyB Ll Bsgsysa B LU Bsys351 B

LI Bl Bs1ssB L Bsys1 B LI Bsysas152B.
Note that B C P and s; € P, and so multiplying the above equation on the right by P we obtain:

Sp(4,F) =Bs1 P U Bsa P U Bsgs159P U Bsysas1 P
UPUBSs1s9P U Bsysi PU Bsysys189P
=P UBsyP U Bsys159P U Bs1s9 P
UPUBs1s9PUBsyP U Bsisys159 P
=P U BsyP U Bsys15oP U Bsyso P
=PUNUTsoPUNUTSs35818oP UNUTSs185P
=PUNUsyPUNUS98159P U NUSs15,P
=PU N5252_1U52P U N (s28182) 'Usgs150P U NUs159P
=P UNs9PUNs35159P UUNSs159P

1 * * 1
PU|: 1>{*:|52PU|: 1>1k*:|525132PU|: |: 1**:|5182P
1

|
cronl 1 Joommel 1 o[, Tl 1

1
1
ZPU82|: 11 :|PU828182|: il :|PU5182|: il :|
* *

*

Hence
1 1
Sp(4,F)=PUsy| 1, PU323132{ b ]PUslsg[ I }P.
* 1 * 1

Multiplying the last equation on the left by @, and using the fact that so € @, we obtain:

11
* 1 P
* 1

1 1
Sp(4,F) =QPuUQ| ', PUQ8182|: i11:|PUQ5152|:

1 1
=QPUQ| ', PUQ8182|: b }P
1

*

1
1
_QPUQ$28182|: il :|P
1

=QPuq@ B

:QP @] Q525152P.

% %
— **
0
[\~
VA
[y
»
[\~

This completes the proof. O
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Corollary 4.1.2. Let p be a prime. Then
Sp(4,Z) = Kl(p)To(p) U Kl(p)sas152T0(p),
where Kl(p) is the Klingen parabolic subgroup of Sp(4,Z).

Proof. The natural map ¢ : Sp(4,Z) — Sp(4,Z/pZ) is a surjective homomorphism with kernel I'(p),
the principal congruence subgroup. Moreover, t(Kl(p)) = Q(Z/pZ) and t(T'g(p)) = P(Z/pZ). Let
k € Sp(4,Z). By 4.1.1 we have that

t(k) € QZ/p2)P(Z/pZ)  or  t(k) € Q(Z/pZ)s2s152P(Z/pZ).

Since t(Kl(p)) = Q(Z/pZ) and t(Ty(p)) = P(Z/pZ), there exists k1 € Kl(p) and ko € To(p) such
that
t(k) = t(k1)t(k2) or t(k) = t(k1)t(sas182)t(ka).

That is,
t(k) = t(k1k2) or t(k) = t(k1sas1s2k2).

Hence, there is some k3 € ker(t) = I'(p) such that
K= k‘3k1]€2 or k= k3k1828182]€2.

Since T'(p) C Kl(p), the lemma follows. O

A B
Lemma 4.1.3. Let M be a positive integer. We work in the group Sp(4,Z/MZ). Let €

1 X
P(Z/MZ). There there exists € Sp(4,Z/MZ) such that
1

A B| |l X A
D 1 D

Proof. Define X € M(2,Z/MZ) by X = —A~'B. Then

‘X=-'B'A' = -AT'A'B' AT = A 'B'A'AT = —AT'B=X

t

A B
since A'B = B'A. Note that is also contained in Sp(4,Z/MZ). Hence

as desired. O
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Lemma 4.1.4. Let M be a positive integer. Then

YA 7 M7 MZ
M7 7 M7 MZ

To(M) = ke Sp(4,Z) : k - (P(®) N To(M)).
M7Z M7 V4 M7

M7z M7 Z z

Proof. Let t : Sp(4,Z) — Sp(4,Z/pZ) be the natural map and let k € T'o(M) and write t(k) =
[4 B]. By 4.1.3 there exists [* ¥] € Sp(4,Z/MZ) such that

A Bl |1 X A
D 1 D

Let ki,ko € Sp(4,Z/MZ) be such that t(k1) = [' ¥] and (k1) = [4 ,]. We may assume that
ki =['Y] where Y € M(2,Z) with 'Y =Y. We have that

1Y
t(k)t = t(k»).
1

It follows that there is some k3 € I'(M) such that
1Y
ksk = ks.

Hence,
. 1 -Y
k=k; ko
1

Write ky = [éi gi]. We have that By = C; = 0 mod M. There exists Ay € SL(2,Z) so that
A Ay has the form

* *
A1Ag =
*
We thus have
1 =Y
k =k3 ko
1
e Ay Bi| |1 -Y
=FR3
_C’1 Dl_ i 1
gt Ay Bl Ay At 1 -Y
Cy Dy e ‘A 1
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A1As By'A7'| [A7Y —AFYY

:k3—1 ,
C1Ay Dy AF? Ay
Let
As B AAs By 'A7!
C; D C1As Dy A7
Then
(&2 B2 ) € Sp(4,2)
and
* *
Az = mod M, B3=C3=0 mod M.

*

Since ‘A3 D3 —tC3Bs = 1, we obtain *A3D5 =1 mod M. Write A = [as 2] and D3 = [g; gj].

We have
‘AuDy — aidy + azds  aids + azdy _ 1 mod M.
aody 4+ agds  asds + agdy 1
Since az = 0 mod M, we have that 0 = a1ds + azds = a;da mod M. Now det(As)det(Ds) = 1
mod M, and since a3 = 0 mod M, we obtain a; € (Z/MZ)*. Additionally we have that ds = 0
mod M. Hence,
z Z M7 MZ
As By MZ 7 M7 MZ
Cs Dy - MZ MZ 7 MZ
Mz M7 Z z
Since k3 € T' (M), we also have that
YA Z Mz7Z MZ
- A5 By| _|MZ 7 MZ MZ
Cs Ds Mz Mz 7 MZ
Mz M7 Z z
As
Ayt —ASYY
| e P@nmaan)
2
the proof is complete. O

Proposition 4.1.5. Let p be a prime. If k € Sp(4,Z), then either

ke Kl(p){[A A] A€ SL(z,Z)}
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or

1

keK(p)[lpl 11,] {[i s ii} ;xg,xgez}{[“%l} AesLez)},

where K(p) is the local paramodular group.

Proof. Let k € Sp(4,Z). By 4.1.2, we know that k € Ki(p)T'o(p) or k € Kl(p)sas152Tg(p). Assume
first that k& € K1(p)T'o(p) and write k = k1k2 where k; € Kl(p) and k2 € T'g(p). By 4.1.4 there exist
z Z M7 MZ
Mz 7 MZ MZ

ks e keSp4,2): ke
Mz M7Z Z MZ

MZ M7Z Z z

and kg4 € P(Q) NTo(p) such that ko = ksks. We may further write

1 X| |A
ky= .
1 At

for some X € M(2,Z) with "X = X and A € GL(2,Z). We now have that

1 X| (A

k= kiksks = kiks ,
1 A1

As kiks[! ¥ ] € Kl(p), we see that
k€ Kl(p) { [A A} A€ GL(M)} = Ki(p) { [A A} A€ SL(Q,Z)} .

now assume that k € Kl(p)sasis2lo(p) and write k = kssasisoke where ks € Kl(p) and
ke € I'o(p). We have
$98189 = = k'?pl

where

kr = ) and p1 =



Clearly we have that k7 € K(p). We have that
k= k5k7p1 k6.

By 4.1.4 there exist
7 7 pZ pZ
pl Z pl pZ
ks e ke Sp(4,2): ke
pZ pl 7 pZ
pld pl 7 Z

and kg € P(Q) NTy(M) such that kg = kgkg. We may further write

1 X| [A

ko = .

1 At
for some X € M(2,7Z) with *X = X and A € GL(2,Z). We now have

1 X A
k = kskyp1ks .
1 AL

Write
ai az pby  pby
pas as pbz  pby
kg =
pc1 pex  di pd
pcz pey  dz o dy

for a;,b;,¢;,d; € Z for all i € {1,2,3,4}. Calculation shows that

as  az  bypT' by

agp a1 bo bip

pikspy ! = , € K(p).
ap® cp®  dy dsp

02p2 ca1p da dy

Therefore,

Lhox][a 1 x| [a
k = ksk7p1ksp] p1

Next, let

T2 T4

45
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Then
1 T 1 Z2
1 X 1 1 x5
1 1 1 3
1 1
Moreover,
1 1 1 1
1 1
D1 Py =
1 1
1 1
It now follows that
1 X9
1 X2 A
k € K(p)p1 .
1 a3 At
1

Corollary 4.1.6. Let p be a prime. Then Sp(4,Q) = K(p)P(Q).

Proof. Let g € Sp(4,Q). Tt is known that Sp(4,Q) = Sp(4,Z)P(Q) (see Lemma 3.2 on p. 137 of
[8]). Therefore, it suffices to prove that Sp(4,Q) C K(p)P(Q), but this follows from 4.1.5. O

4.2 Cartan Decomposition

Let I be a non-archimedean local field of characteristic zero, with ring of integers o and p a prime
ideal of o0 with generator w. Let v be the usual valuation of F. In this section, we show that in the
coset decomposition of a Hecke operator, we may choose upper block representatives, which appear
in the next section. We start by examining the case of GL(n, F'), then present our arguments in

the case of GSp(4, F') to obtain the desired results.

Lemma 4.2.1. Let G be a group and Hy, Hy be subgroups of G and let G act on G/Hy x G/Hy by

9-(g1H1,92Hs) = (991H1,992H2)  g,61,92 €G.
Let G\(G/Hy x G/Hs3) be the set of G—orbits under this action. Then there is a well-defined
bijection

H\G/Hy = G\(G/Hy x G/H>) HygHy — G - (Hy,9H>).
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Proof. To see that this map is well defined, let hy € Hy, hy € Hy, and g € G. We have that
G- (Hi,highaHy) = G - (hiHy,h1gHy) = G - hy - (Hy,9H2) = G - (Hy, gH>).

To see that the map is injective, let g1, g2inG and suppose that G - (Hy,91H2) = G - (H1,g2Ha2).
Since this equality implies that (Hy, g1 H2) € G - (Hy, g2 H>), there is some g3 € G such that

(Hi,91H2) = g3 - (Hy1,92H3) = (93H1, g392H>).

Hence, we have that g3 € H; and g1 = g3g2hs for some hy € Hy. Thus H1g1 Hy = H1g2H. Finally,
let z € G/(G/H; x G/H3), and so there are elements g1, g2 € G such that x = G - (91 Hy, g2 H>).
With this, we have that

r=G (g1Hy,92H2) = G- g1 - (Hy, g7 g2 Hz) = G - (Hy, g7 ' g2 Ho).

Hence Hgig2H> maps to z, proving that the map is surjective. O

4.2.1 The Case of GL(n,F) and GL(n,o0)

For this section, let n > 0 be an integer and we will consider that group GL(n, F') and its subgroup
GL(n,0). We will determine representatives for GL(no)\GL(n, F')/GL(n,0) by using the previous
lemma as well as our results about lattices.

Let V = M(n, F). Then the group GL(n, F') acts on V via the action g-v = gv for g € GL(m, F)
and v € V. Additionally, let L be an o—submodule of V. We say that L is a lattice if L is a
compact, open subset of V. Note that L is a lattice exactly when there exist elements of V', say

T1,...,T, that form a basis of L as an o—module, so that
L=ox1®---Pox,.

For the res of this section, let Ly be the lattice in V' with basis eq,...,e,, where these are the
standard basis vectors for V. Further, let X be the set of all lattices in V' and define an action of

GL(n,F)on X by g- L = gL, where g € GL(n,F) and L € X.

Lemma 4.2.2. The action of GL(n,F) on X is transitive, and the stabilizer of Ly is GL(n,0).

Proof. Let L be a lattice in X, and as noted above there exist vectors z1,...,z, € V such that
L=ox1® P ox,.

The vectors z1,...,x, are linearly independent over F as these vectors are a basis for L as an

o—module. Let t : V — V be the linear transformation defined by t(e;) = x;,1 < i < n and let g
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be the matrix of ¢ in the standard basis eq,...,e, of V. We have that gL = Ly, and since this g
exists for any L, we have that the action is transitive. Note also that since gLy = Ly exactly when

g € GL(n,0), then GL(n,0) is the stabilizer of Ly as claimed. O
By the previous lemma, there is a well-defined bijection
GL(n,F)/GL(n,0) — X
defined by gGL(n,0) — gLg. Now, define a function
mv: X x X = {(A,..., ) €Z" : My > - > A\ )

Let (L,M) € X x X and suppose first that L. C M. Since L and M are free modules over o, a
principal ideal domain, we hav that there exists an o—basis z1,...,x, for L and unique integers

A > -+ > A, > 0 such that w™zq,...,w ez, form a basis for M. We define

inv(L, M) = (A1, ..., An)

and note that if k is a non-negative integer, then @w®M C L, and the vectors @™ tFgzy, ... @itk

are a basis for @w®M. Consequently,
inv(L,@"M) = (M 4+ k,...,  \p + k) = inv(L, M) + (k,..., k).

Now suppose that (L, M) is any element of X x X. There exists a positive integer m such that

w™M C L, and we now define
inv(L, M) =inv(L, @™ M) — (m,...,m).

To see that this definition does not depend on m, let m’ be another positive integer such that

@™ M C L. Without loss of generality, we assume that m’ > m. Let k = m/ —m, then
inv(L, @™ M) — (m/,...,m') =inv(L,@" (@™ M)) — (m,...,m')
=inv(L, @™ M)+ (k,..., k) — (m/,...,m)
=inv(L,@™M) — (m,...,m).
Hence, this shows that the map inv is well-defined.

Lemma 4.2.3. Let (L,M) € X x X and let (\,..., \n) € Z™ such that Ay > --- > A,. Then
inv(L, M) = (A1,...,A\n) if and only if there is a basis x1,...,x, for V such that

L=ox1® - Pox,, M:owhscl@ufBow)‘"xn.
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Proof. First assume that inv(L, M) = (A, ..., A,) and let m be a positive integer such that w™M C

L. By the above argument, we have that

M,y ) =inv(L, M) = inv(L, @™ M) — (m,...,m),

and hence

inv(L,@™M) = (A1 +m, ..., \p +m).

By the definition of inv(L,w™M), the integers A; + m, ..., A\, + m must all be non-negative, and

there must exist a basis x1,...,x, for V such that
L=o0x,& - ®ox,, o™ M = oMtz & - - B ow T,

Thus, dividing out the @™ we have the desired result.

Now suppose that there is a basis z1,...,z, for V such that

L=o0ox18 - Doz, M:ow’\lxl@---eaow’\"xn.
b)

let m be a positive integer such that @™ M C L. We have that
o™ M = oMMy @ - B ow T Mg,

and so

(M + m,dots, \, + m) = inv(L,w™M) = inv(L, M) + (m, ..., m).

By subtracting we obtain that
inv(L, M) = (A1,...,\n),

as desired. O
Lemma 4.2.4. The map
mv: X XX = {(\,...,\)€Z": X\ > >N}

is surjective. Additionally, let (L, M), (L', M') € X x X. Then inv(L, M) = inv(L', M") if and only
if there exists g € GL(n, F) such that g(L, M) = (gL,gM) = (L', M’).

Proof. Let (A1,...,A,) € Z™ with A\; > --- > A, and suppose that

L=Ly=o0e; &P oey,, M:ow)‘leléB-nEBow)‘"en.
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By 4.2.3 we have that inv(L,M) = (A1,...,\,), and so the map is surjective. Next, suppose
that (L, M), (L', M') € X x X with inv(L, M) = inv(L', M’), and let inv(L, M) = inv(L', M') =
(M,...,A\n). By 4.2.3 there is a basis x1,...,x, for V such that

L=ox1®- - Pox,, Mzowklx1@~-@ow>‘"mn,

and there there is a basis 24, ..., 2/, for V such that

A

L=oz{®  @ox, M=owM2) & & ow

/
n
n’ xn'

Definet: V — V by t(z;) = 2 fori € 1,...,n and let g be the matrix of ¢ in the standard basis for
V. We thus have that gx; = «} for all ¢, and so it follows that gL = L’ and gM = M’ as desired.

The converse has a similar proof. O

Theorem 4.2.5. (Cartan Decomposition) Let A* be the subgroup of GL(n, F) consisting of the

elements fo the form

where A\1,...,Ap €Z and A\y > ... \,. Then
GL(n,F) = GL(n,0)ATGL(n, o).
Additionally, for a,a’ € AT, GL(n,0)aGL(n,0) = GL(n,0)a’GL(n,0) if and only if a = a’.

Proof. We have the composition of bijections

GL(n,0)\GL(n, F)/GL(n, o)

|

GL(n,0)\(GL(n,F)/GL(n,0) x GL(n,F)/GL(n,o0))

|

GL(n, F)\(X x X)

|

{()\1,...,)\7L)€Zni>\1Z'--Z/\n}.

It suffices to show that under the above composition of bijections the set of double cosets GL(n, 0)aGL(n,0)
maps onto {(A1,...,\p) € Z" : Ay > -+ > \,}. Let a € A" with a as in the statement of the

theorem. Then GL(n,0)aGL(n,0) maps to

GL(n, F)(GL(n,0),aGL(n,0))
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under the first map in the composition. This in turn maps to
GL(n, F) (LO7 aLO)
under the second map. Finally, under the third map, this maps to (A1,...,\,). O

Lemma 4.2.6. Let F* be considered as a subgroup of GL(2,F) by the embedding a — aly and
consider the quotient PGL(2,F) = GL(2,F)/F*. Let T be the subgroup of PGL(2, F) generated
by To(p) and [ _ . If g € PGL(2,F), then there is a diagonal element d € PGL(2, F) such that
Iyl = Tdr.

Proof. Let ¢ € GL(2,F). As GL(2,F) = GL(2,0)B, where B = {[*}]}, there are matrices
k € GL(2,0) and p € B such that g = kp. Moreover, by the Bruhat decomposition

GL(2,6) =Tufp) UTolp) | H o).

Assume that k € T'g(p), then I'gI' = T'pI. Assume now that k € To(p)[ _; '|To(p). Write k =

kl[,l 1}]4,‘2. Then

1 1
FgF = Fkl k:gpF =T kgpF
-1 —1

By the Iwahori decomposition for I'g(p) we may write

1 u 1 =z
kQ = )
yw 1 v 1
where x,y € 0 and u,v € 0*. Then
1
gl =T kopl’
-1
1 1 u 1 =z
=T pl’
—1 yw 1 v 1
1 —yw 1] |uw 1 =z
=T pI’
1 -1 v 1
1| [u 1 =z
=T pl’
-1 v 1
v 1 1 =z
=T pl’
Uu -1 1
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111 =
=r pl’
-1 1
1
=T p1F
-1
where p; = [ #]p. Moreover,
T'gl' =T pil
-1
1 1
=T plF
w —1
-1
=T plF
—w
= Fng

where py = [_1 _w]pl. Since we are working in PGL(2, F') we may write

1 bwh
P2 =
ucoh?

where b € 0,u € 0%, and ky,ky € Z. If b = 0, py is out desired diagonal element and the proof is
complete, so assume b # 0. We may further assume that b € 0%, since if b € 0%, then b = xww® with

x € 0*, and so we can proceed with the argument. We now have

1 bwh
gl =T

ucoh?

Assume first that k1 > ky. Then

1 by legh—ke 1
gl =I' T
1 ke
1
=I T
wke
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This proves the lemma in this case.

Assume, to complete the other case, that k1 < ko, we then have

1 bulwh
T'gl' =T
whe
1 1 butwh
=I
ko 1
If k1 > 0, then
1
Lgl'="_ T,
whe
proving the theorem. If k1 < 0, then
1 bulwh
gl =T
whe
1 1 bulwh
=I
wh2 1
1 1 bu Lkt 1 1
wh2 b luw k1 bty -1 b luw k1
1 1 bu Lkt 1
whe b luw k1 bty -1
1 1 bu Lkt 1 1 1
whe b luw k1 bty -1 w! —w
1 1 bu Lk 1 1
b luwh2—k1 1 whe b1y k-1 1 —w
r 1 bu’lwlf
- wh2 bty k11
bu~tooh
=I
b*luwkgfklfl

which completes the proof. O
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Let D be the diagonal subgroup of GSp(4, F) and for z,y, z € F define

Let K be the subgroup of PGSp(4, F) generated by the local paramodular group K(p) and

1
Uy =

—w

The element u; normalizes K (p) and u? = 1 inside PGSp(4, F). Also note that

(5% = (—1)

w 1 w

Lemma 4.2.7. If ¢ € PGSp(4,F), then there exists some d € D and z,y,z € F such that
KgK = Kdu(z,y,2)K.

Proof. let g € GSp(4, F). By Proposition 5.1.2 of [12] we have that GSp(4, F)) = K(p)P, where P
is the Siegel parabolic subgroup of GSp(4, F'). Hence, there is some k € K(p) and p € P such that
g = kp, and thus

KgK = KkpK = KpK.

We may write

A
p= U($, Y, Z)
AA'
for some A € GL(2,F),\ € F*, and z,y,z € F. By 4.2.6 there exist ki,ky € K such that

k1Ako = r, where r is diagonal. Now

The elements

and
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are contained in K (p), and so

k?l r k‘g
KpK =K u(z,y, z2) K
K, n K
_ 4 - - - -1
r k k k
=K ? u(z,y, z) ? ? K
i )\7“/_ i ké_ i ké_ k)
_ o - - - -1
T kg /{12
=K u(z,y, z) K.
A K, K,
Since
-1
k k
C ey |
Ky ky
is also of the form wu(z’, 3/, 2’) for some 2’ y’, 2’ € F, the proof is complete. O

Lemma 4.2.8. Let x,y,z € F and i,j,k € Z. Assume that v(z) < 0 and v(z)+j < 0. Further, let

w?itI 1 z oy
witi 1 2z =z
g= )
w' 1
1 1
Then
w2t 1 z y—xz2z7t |1 —zz!
wiz™! 1 T 1
KgK = K N K.
wtiz 1 1 zz71
1 1 1
Proof. We have that
[ o2iti 1 Ty
w'td 1 z =z
Kgk =K } K
w" 1
i 1_ i 1
[ 2iti 1 1
% witi 1 z
w' 271 271
i 1_ i 1 1




1 1 1 T
1 1 1
X
-1 2711 1
1 1
1 o2t
1 witiz
2 lw=d 1 wiz™!
1
1 1 1 T
1 1 1
X
-1 | 1
1 1
_w%ﬂ' . -
witiz 1
wiz™! -1
. 1 1_
-1 w2t |
1 wiz~ !
-1 w'tiz
- 1 1_.
_w%ﬂ' - _1 _
wiz™1 1
witiz |
. 1_ . 1_
_w2i+j - _1 _
wiz~1 1
wtiz !
- 1_ - 1_
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1 Ty
1 x
K
1
1| 1]
_ _1 N y-
1 T
K
1
1| 1]
K
1
1
K
2711
] 1




w2t 1
wiz~1
=K
witiz
1
1 z yl| |1
1 x 1
X
1 2711
1 1
_w2i+j ] —1
wiz ™1
=K
witiz
- 1_ .
[ o2iti 111
wiz™1
=K
witiz
- 1_. -

Therefore, the proof is complete.

o7

z y| |1 Ty 1
T 1 T 1
1 1 27t 1
1 1 1
z y| [1 —zz! —x2z1
x
K
1 1 zzt
1 1
x y—ax’z 1 —zz !
T 1
K.
1 1 zzt
1 1

Lemma 4.2.9. Letx,y,z € F andi,j,k € Z. Assume that v(y) < 0 and 2i+j+v(y) < 0. Further,

let
o2t

wH—J

Then

yw
it

KgK = K

ity

Y
T
1
1
z| |—zyt 1



Proof. We have that

_w2i+j
w'ti
KgK =K
[ o2i+i
wtd
=K
1
1
X
1
y!
[ 1
1
=K
1
_—1
1
=K
1
| —w
_yw_l
woiti
=K
1
1
X
1

- .y
1 2z «
K
1
1] 1
111 1] [y
1 1 1
1 1
1] y! 1( |—1
1 T
K
1
1 1
w' T 1
w' 1
w2itiy=1| |y~1 1
Yy~ 1
w'tI 1
w’ 1
wititly 1| |1
-1
1 x 1 T
1 z =z 1 z =z
1 1
w2i+j+1y71 1 1
1
1 T 1
K
1
1| |yt 1

58
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_yw*1 ] _1 T 1
witi 1 z x| |—2y™' 1 —z2y!
=K 4 K
w" 1 1
i w2i+j+1y71_ i 1 I’yil 1
_yw_l 1 z 1
K witi 1 z—22y~! z| |—2y™! 1 K
o 1 1 '
I w2i+j+1y—1_ I 1 eyl 1
O

This completes the proof.

Lemma 4.2.10. Let z,y,z € F and i,j,k € Z. Assume that v(z) < 0 and i + j + v(z) < 0.

Further, let

w?itI 1 z
witd 1 2z =z
9= .
w* 1
1 1
Then
wzfl 1 Yy
xww ! 1 =z
KgK =K
x L2ty 1
vl 1
14+ yzz—? —yzx ! —yzax~!
—zz7b 14 yza? —yzz !
X
—yx_2 1 y;v_l
—zx? zx~! 1
Proof. We have that
w2t 1 Ty
w'ti 1 2z =z
KgK =K 4 K
w' 1
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wH—J 1 1
=K
w' x~ 1 1 -1
1 x ! 1 -1
T 1 1 Y
T 1 1 =z
X K
x! z! 1 1
x~ 1 z ! 1 1
1 w’
1 1
=K
-1 o2t
-1 wi+g
x 1 1 y
T 1 1 =z
X K
z~1 x~ 1 1 1
x 1 z ! 1 1
i—1

1 w
1 w !
=K
—w w2t
—w

witi

1 il
1 rw !
=K
—w x g2t
—w r it



1
1
X
21
21
o
hitov)
=K
1
1
X
21
21
roi—1

Trw

1
X
o
1
wt™
xrw
=K
X l a

14+ yza2

1
1
2

1
x

1
A
zx~

This completes the proof.

1 Y
z
K
1 1
1 1
-1
r—lo2i+i
it
1 Y
z
K
1 1
1 1
1
r—lo2iti
o Lgiti
1 Y 1
z 1
1 1 !
1 1 z~!
1
1 1
2= lo2iti
v litd
—yr~1 —yzx~!
1+ yza—? —yzz~!
—yx~? 1 yr~!
zx~! 1
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Lemma 4.2.11. Let x,y,z € F* and i,j,k € Z. Assume that

i+j+v(z)<0
2i+j+v(y) <0
jt+v(z)<0
v(z),v(y),v(z) < 0.

Let
w2i+j 1

w'ti 1

Then KgK = Kg'K where

Proof. By direct computation, we have that

[ 2iti 1 Ty
witi 1 2z =z
KgK =K } K
w' 1
I 1_ I 1
[ o2t 111 1
K wti 1 z
w' 271 1
I 1 | 1
1 1 1 Ty
1 1 1 T
X K
-1 2711 1



w2t

o2i+i

wH_]Z

wiz™!

w'z

o2t

witiz
1
1 1
1 1
2711
1
1
1
wiz™1 -1
1
2iti
wiz ™1
witiz
111
1
witiz 2711
1_ -
1h
1
witiz 2711
1_ .
1 1
1 1
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Y2t 1
K wiz™! 1
witiz 2711
y~! 1
1 1 1 x
y 1 1 1 x
1 1 1 "
1 y ! 1 1
yro2ititl 1
_K wiz™! 1
wottiy ,~1 1
gl 1
w! 1 1 x
y 1 1 1 x
1 1 1 "
e y! 1 1
y 1! 1
. i1 1
wtiy P |
yw2i+j+1 1
1 1 T
" 1 1 x
1 1 o
y~ 1 1
y ! 1 1
_x wiz™1 1 1
ity 1 1 1
Yo 2ititl 1 |y? 1



T
x
1 x! -1
1 1 1.71
1
wiz™t
wtiz x~ 1
yo2ititl| |yl
1
1
K
_1 1
x! -1
rwtz !
v lwitiy
o~ lym?iti+t
1
1
K
rwtz !
1wtz
g ly2ititt
1
1
K
—1 o
w ! —w
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:Eyilw’l
zz 1wt
=K
x i ti—l
I o Lyt
22y~ 22i—i-1
g2y~ i
=K
y—lzw—z—l
1
1
X K
Tw 22z lw 1
22y lw Tw 1
1 22y~ 2p—2i—i—1
] a2y~ lg—iv
=K
w
—w
1 1
1 -1
X
T 22z lw 1 w
2y~ lw fitov) 1 —w
y—lzw—z—l
1
=K
$2y72w7217371
a2yl i
1 T x2z71
1 2%yt T
X K.
1
1

This completes the proof.



Lemma 4.2.12. Let x,y € F and i,j,k € Z. Assume that

Let

i+j+v(z)<0
2i+j+v(y) <0

v(z),v(y) <O0.

Proof. We have

o2iti 1
witi 1
9= i
1
Then KgK = Kg'K where
s lg—i—1
1, _2i+j
J = vy
-1,_-1
zy lw
it
[ 2iti 1h x oy
witd 1 z
KgK =K _ K
w" 1
L 11 1
[ o2i+i 1711
K witd 1
w' 1
i 1 _yfl 1
1 1 1
1 1 1
X
1 1
-1 y ! 1
.
K witi 1
o' 1
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1 1 x
1 1 T
X K
1 1
y! 1 1
o1 [yt !
i 1 witi
1 w’
—w
1 1 x
1 1 T
X K
1 1
y~! 1 1
_yflwfl 1711
i witI 1
= s
I yw21'+j+l_ _y—l
_y gl 171 1
w'tI
=K
w' z !
I yw2i+j+1_ I T
x 1 1
T 1
X
x~ ! -1 x~ !
x ! -1
a:y_lw_l
rwiti
gt

yw2i+j+1

68
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a:y_lw_l 1
rwiti 1
1wt -1
x—lyw2i+j+1 _1
1 —x
1 —2%y~ ! —=z
X Y K
1
1
1 ot
1 xflyw2i+j+1
=K
-1 xy ol
-1 v
1 —T
1 —2%y~ ! —z
X Y K
1
1
1 xflwzfl
1 x—lyw%-i-j
=K
—w xy_lw_l
—w xot i
1 —T
1 faszy*l -z
X K
1
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z it 1 x
—1, _2i+j 2, —1
z lyw 1 zy T
oyttt 1
rooti 1
With this the proof is complete. O

Lemma 4.2.13. Let

X1 ={g € PGSp(4,F) : there exists d € D and y,z € F such that g € Kdu(0,y,2)K},
Xy ={g € PGSp(4,F) : there exists d € D and z,z € F such that g € Kdu(z,0,2)K},

X3 ={g € PGSp(4,F) : there exists d € D and z,y € F such that g € Kdu(z,y,0)K}.

Then
PGSp(4,F) =X, UXyUXs3.

Proof. Let g € PGSp(4, F) and assume that g ¢ X; U X2 U X3 and we will obtain a contradiction.

By 4.2.7 we may write
w2t 1 Ty

witi 1 T

for some i, j,k € Z and z,y,z € F. Since g ¢ X1 U X5 U X3, it follows that

i+j+v(z)<0
2i+j+v(y) <0
j+v(z)<0

v(z),v(y),v(z) <0,
and by 4.2.8 we must have that v(z) < v(z) — 1, and by 4.2.9 we have that v(z) < v(y). Hence
v(z) < min{u(y), (=) — 1.

Let ¢’ be as in 4.2.11, and since g ¢ X; U X2 U X3 we also have that ¢’ ¢ X; U X5 U X3. By the

inequality above applied to ¢’ we have that

v(z) <min{v(z?z71), v(z?y~!) - 1}
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v(z) <min{2v(z) —v(2),2v(x) —v(y) — 1}
v(z) <2v(z) + min{—v(z), —v(y) — 1}
—v(z) <min{-v(z), —v(y) — 1}
v(r) = —min{-v(z), —v(y) — 1}
v(z) >max{r(z),v(y) + 1}
v(z) >max{v(z) — 1,v(y)} + 1.
Hence
max{v(z) — L,v(y)} + 1 < v(z) < min{v(y),v(z) — 1},

a contradiction. O
Let

X, ={g € PGSp(4, F) : there exists d € D and x € F such that g € Kdu(z,0,0)K},
X5 ={g € PGSp(4,F) : there exists d € D and y € F such that g € Kdu(0,y,0)K},

Xs ={g € PGSp(4, F) : there exists d € D and z € F such that g € Kdu(0,0,2)K} .
Lemma 4.2.14. Let G € GSp(4, F) be such that

w2t 1 x oy

witi 1 x

for somei,j,k € Z and x,y € F. If g & X4 U X5U Xg, then
2w(z) <v(y) —1 and viy) <wv(z)—1.
Proof. Since g € X4 U X5 U Xg, we may assume that

i+j+v(z) <0,
2i+j+rv(y) <0,

v(z),v(y) <O0.

By 4.2.9 either v(zy=1) < 0 or v(z?y~!) < —1, which is of course equivalent to v(z) < v(y) or

2v(z) < v(y) — 1. By 4.2.10 we also have that v(yz=1) < —1 or v(yax~!) < —1, equivalently
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viy) <v(z)—1orv(y) <2uv(z)—1. Ifv(z) <wv(y) and v(y) < v(z) — 1, then v(z) < v(z) —1,
a contradiction. If v(z) < v(y) and v(2) < 2v(x) — 1, then 2v(x) < v(z) < v(y) < 2v(z) -1, a
contradiction. Assume that 2v(z) < v(y) — 1 and v(y) < 2v(z) — 1. Then 2v(z) +1 < v(y) <
2v(z) — 1, a contradiction. Therefore, the only option is that 2v(z) < v(y) — 1 and v(y) < v(z) —1,

completing the proof. O

Lemma 4.2.15. Let G € GSp(4, F) be such that

w2t 1 x
witI 1 2z =z
g= .
w' 1
1 1

for somei,j,k € Z and x,y € F. If g & X4 U X5U Xg, then
w(z) <v(z)—2 and  v(z) <v(z).

Proof. Since g € X4 U X5 U Xg, we may assume that

i+j+v(r) <0,
Jj+v(z) <0,

v(z),v(z) <O0.

By 4.2.8 we have that either v(xz71) <1 or v(2%27!) < —2, which is equivalent to v(z) < v(z) —1
or 2v(z) < v(z) — 2. Also, by 4.2.10 we have that v(zx~!) < 0 or v(z2~2) < 0, which is equivalent

to v(z) <v(zx)or v(z) <2w(z). If v(z) <wv(z) —1 and v(z) < 2v(x), then
v(z) <2u(z) <v(z) <v(z)—1,
a contradiction. If v(z) < v(z) — 1 and v(z) < v(zx). We would have that
v(z) <v(z)— <wv(z)-1,
a contradiction. Lastly, if 2v(z) < v(z) — 2 and v(z) < 2v(x), then

v(z) <2u(z) <wv(z)— 2,

a contradiction. Hence, it follows that 2v(z) < v(z) — 2 and v(z) < v(x). O
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Lemma 4.2.16. We have that
PGSp(4,F) == X4 UX5 @] X6.

Proof. let g € GSp(4, F) and assume that g ¢ X, U X5 U Xg; we will obtain a contradiction. By
4.2.13 we know that g € X7 U X5 U X3. Suppose first that g € X1, then there are integers ¢, 7, and
k and y, z € F such that

o2iti 1 y

As g € X4 U X5 U Xg, it follows that

By 4.2.9 we have that g € Xg, a contradiction.

Now suppose that g € X3, and so we may write

w2t 1 z

for some i, 5,k € Z and x,y € F. Since g ¢ X4 U X5 U Xg, it follows that

i+j+v(z) <0,
2i+j7+v(y) <0,

v(z),v(y) <O0.

By 4.2.14, we have that

2v(z) <v(y)—1 and v(y) <wv(z)—1.
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Additionally, by 4.2.12 and 4.2.15 we have that
w(r) <v(x?y™t) -2 and v(x?y™t) < v(x).

This last statement is equivalent to v(y) < —1 and v(z) < v(u). Hence, v(z) < v(y) <v(z) —1, a
contradiction.

Lastly, suppose that g € X5, and so we may write

w2iti 1 €T
witi 1 2z =z
g= .
w’ 1
1 1

for some ¢, j,k € Z and z,z € F. Now,

_w2i+j 1 T

witI 1 2z =z

KgK =K . K
w’ 1
i 1 1
_ -1
1 w2t 1 T 1
w w'its 1 2z 2| |w
=K ' K
1 w" 1 1
i w 1 1 w
—wz 1 x zw !
1 1 T
o2i+i 1
witi 1
=K¢'K,
where
w' 1 x zw !
, 1 1 T
g = o
w21+] 1
witi 1

As g € X4UX5UXg, then ¢’ € X4,UX5UXg, and this contradiction the result of the last paragraph,
as g’ € Xs. O
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Theorem 4.2.17. Let g € GSp(4, F) be such that g does not satisfy the statement of the theorem.
As g € GSp(4, F), then 4.2.16 implies that g € X4 U X5 U Xg. Suppose that g € X4, then there
exist integers i and j such that
2iti
w'ti

KgK = K K.

1

Proof. Let g € GSp(4,F), and so by 4.2.16 we have that g € X4 U X5 U Xg. Assume first that
g € X4, and so there are integers ¢ and j as well as x € F' such that
wZi—i—j 1

w'tI 1 x
KoK = K K.

By assumption we also have that v(z) 4+ i; < 0 and v(z) < 0. Now

_w2i+j 1 T
witi 1 x
KgK =K | K
w’ 1
L 1_ L 1
[ 2iti 171 T
witI 1 x
=K
w' x~ ! 1 x !
i 1 L z ! 1 x !
1 1
1 1
X K
-1 x ! 1
-1 z1 1
witi x 1
witI x 1
=K K
w’ z ! -1



w

w

2i+j

ot

2i4j

w”j

1
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This contradicts the assumption on g. Now suppose that g € X5, then there are integers ¢ and j as

well as y € F such that

By assumption we also have that 2i + j + v(y) < —2 and

KgK =K

KgK = K

o 2iti

wti
o2+

witi

1
1

-1
2it

woiti

o2iti

w'ti

1

e k
1
1
1 | 1]
111
1
1
1] _y’l 1
1
! K
1
_1 ]
Yy
1
1



o2t

ot

w21+]

w”j

1

yw

yw

1

y w

1

7

This contradicts the assumption on g. Finally, assume that g € Xg. There exist integers ¢ and 7,

as well as z € F' such that

o2iti

Fovian

KgK = K

By the assumption on g, we also have that j + v(z) < 0 and v(z) < 0. We have

_w2i+j
witi
KgK =K
o
[ o2i+i
wti
=K
o
1 1
1
X
-1
1
o2iti
witi
=K
-

111
1 =z
1
1] L 1
111
1
2711
1_ L
! K
271
1
1
z
51
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This contradicts the assumption on g, and completes the proof. O

Lemma 4.2.18. Let k,j € Z and [ 4] € GL(2,0). Assume that [ aw" b“’jl € GL(2,0). Then

cw™ ! dw™F
k=0orj=0.
Proof. Assume first that a,d € 0*. Since v(aw”) > 0 and v(dw™*) > 0, we have that k¥ > 0 and
—k >0, and thus k = 0. Now assume that a € 0 or d € p, then b,c € 0%, and since v(bw’) > 0 and

v(cw™7) > 0, we have that j > 0 and —j > 0, and thus j = 0. O

Lemma 4.2.19. Let n be a positive integer and ai,b1,c1,a2,b2,c0 € Z with a1 > 0,b; > 0,a; >

c;i—a; >0andb; >cy —b; >0 fori=1,2. If

w w
n Wbl n n sz n
K(p") K(p") = K(p") K(p"),
wcl—al w02—a2
wclfbl w(,‘beg
then a1 = as,b1 = by, and ¢1 = cs.
Proof. Let
w w2
wh w2
dy = ; dy =
wclfal w027a2
wcl—bl wcz—bQ

Since K(p")d1 K (p™) = K(p™)d2 K (p™), there exist k, k' € K(p™) such that
dikdy' =K.

Thus we have that A\(di)A(k)A(d2)™! = A(K’), and hence w =2 \(k) = A(K). Applying v to this
equality yields v(w ™) 4+ v(A(k)) = v(A(K')), and hence ¢; — ca = 0. Write ¢ = ¢1 = ¢2 and let

k11 k12 kiz  kpuw™™
_ kzglw" k'22 k23 k24
k31w" k32 k'33 k34

k41w" k42w” k43w"
where k;; € o for 4,5 € {1,2,3,4}. Then

det(k) = (kagkso — kookss)(kiakar — k11kaa) + zw



for some x € 0. Since A(k) € 0%, it follows that kogkss — kookss, k1aka1 — k11kaa € 0%, so that

k22 k23 kll k14
; € GL(2,0).
k32 k33 ka1 kaq
Now
kuwal_“? k12wb1—a2 k‘13w_b1+c_a2 k14w—a1+c—a2—n
d k;d_l kzlwalfbgﬁdn kQwa17b2 k23w7b1+67b2 k24w7a1+C7b2
1hly =
k31wa1_c+b2+n k32wb1—0+b2 kggwbz_bl k34wb2—a1
]€41wa1_c+“2+" k42wb1—c+a2+n k43w—b1+a1+n kyqoo®2 o
Since dikdy ' € K(p™), we obtain
k22wb1—b2 k23w—b1+c—b2
€ GL(2,0)
ngwblcher k33wb2*b1
and
knw‘“_“2 k,14w—a1+c—a2—n
€ GL(2,0).
k41walfc+a2+n k44wa27a1
By 4.2.18 we must have that
bl—bg:O or 7b1+07b2:0
and
ar —as =0 or —bi+c—ay=0.
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If by —by = 0 and a; — as = 0, then dy = dy. Assume that by — by = 0 and —ay +c¢—as = 0. Then

by = by and ¢ = a1 + as. Since a; > ¢ — a1, we obtain a; > a; + as — a1 = as. Similarly, since

as > ¢— ag, we obtain as > ay +as —as = aq. Thus, a1 = as and dy = dy. Also, if —by +c—by =0

and a; —as = 0, then arguing as before, we see that d; = do. Finally, assume that —b; +c¢—by; =0

and —a; +c—ay =0. Then ¢ = a1 + a2 = by + by. Hence, a1 > c— a1 = a1 + a2 — a1 = as and

as > c—as = aj + as — as = ay, so that a; = as. Similarly, by = by, and so d; = ds.

As before, define

O



80

Lemma 4.2.20. Let n be a positive integer and let di and dy be diagonal elements of GSp(4, F).
Then

K(p")di K(p") # K(p" )wdo K (p").
Proof. Assume for the sake of contradiction that
K(p")di K(p") = ¢K (p" Jwdo K (p").

We may assume that

wér—bh o2 b2

for some ay,by,c1,a2,bs,co € Z. By hypothesis, there are k, k' € K(p™) such that
dikdy'w™t =K.

Thus we have that A(di)A(k)A(d2) "t A(w)~! = A(K’), and hence w =2 \(k)w ! = A(k’). Applying
v to this equality yields v(w® ™) + v(A(k)) — 1 = v(A(K)), and hence ¢; — ca —1 = 0. Thus

co = c1 — 1 and let

k11 k12 kis  kuaw™"
o korw™ koo ka3 ka4 7
k31w™ ks k33 k34
kpnw"  kapw"  kyzw" ka4

where k;; € o for ¢,j € {1,2,3,4}. Then

K =dykdy 'w™!

kmwal—bg kllwll—ag—l k14wa1+a2—cl—n+1 klgwa1+b2—c1
k22wb1—b2 k21w—a2+b1+n—1 k24wa2+b1—61+1 k23wb1+b2—cl

B k32w*b1*52+61 kglw*a2*b1+61+n*1 k34wa2*b1+1 kggwa*bl
k42w—a1—bz+01+n k41w—a1—a2+01+n—1 k44w—a1+a2+1 k43w_a1+b2+"

Since k' € K(p™), as in the previous lemma, we have that

k21w—a2+b1+n—1 k24wa2+b1—01+1

€ GL(2,0).
kglw*a2*b1+cl+n*1 k34wa2*bl+1
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We also have that

k21w*¢12+b1+n*1 k24waz+b1*61+1

det = (ko1ksa — koaksy)w".
kglw*aszﬂrcr%n*l k34wa2*b1+1

Since kotkss — kagks1 € 0 and n is positive, this is not in 0>, a contradiction. O

We may now specialize the results of section 4.1 to the case where N = p is a prime and state a
result we use in the next section. . Let K(p) be the paramodular group with respect to the prime

p and define

Z 7 p'z Z

Z 7 7 2 .
A,=129€GSp4,Q): g€ ,A(p) = p"for some k € Z>g

pZ pL VA pZ

Z 7 7 Z

Then A, is a semi-group. We also have the p—adic paramodular group

pZ, 7 zZ Z
Kz,={9€GSp(4,Q,) : \geZ}n | " 7 b P
pL, pL, Z, pLy

pLy, Ly Ly Zy

and the semi-group

Az, =19€GSp(4,Q,) :g € , M(p) = pFfor some k € Z>g
L, pL, Z, Ly

pLy Ly Z, Zy

Note that A, € Az,. The semi-group A, also contains

The element w normalizes K (p) and Kz, (p). We define the set of standard representations to be



82

the following elements of A:

where a, b, ¢ or non-negative integers with 0 <a <c—aand 0 <b<c—b.

Lemma 4.2.21. Let g € A, then there exists a unique standard representative r such that

Kz,(p)9Kz,(p) = Kz,(p)rKz,(p).

Proof. This follows from 4.2.17,4.2.19, and 4.2.20 after noting that w normalizes Kz, (p). O
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5 Generators for the Paramodular Hecke Algebra

Recall that the multipliction in the Hecke ring ¢ is defined as
Tgl'-TgT= Y a7,
[]emaA/r
where a,, = #{(i, j) : I'gigj; = I'v}. Additionally, F' is a non-archimedean local field of characteristic
zero, with ring of integers o and p a prime ideal of 0 with generator w, and v is the usual valuation of
F'. In this chapter we present explicit formulas for use in the paramodular Hecke ring 7 (K (p), A),

where

=1
f=]
f=]
o

A=(geGSp(4,F): g€ and v(\(g)) >0 >,

=3
=3

A=)
=3

p o o o
in order to compute the coefficients a., using the results from the previous chapters. The ring of
Hecke operators (K (p), A) is the Hecke algebra we will consider from now on unless otherwise
indicated.

In this chapter we show that the paramodular Hecke algebra is generated by
T(17 17 w) w)? T(1’ w’ w27 w)? T(w7 1) w) w2)7 and K(p>wK(p)7

where this result appears in section 5.5. We only compute formulas for the coefficients a. corre-
sponding to multiplication by two Hecke operators T(1,1,w,w) and T(1,w,w?, @), since these
are the two non-trivial generating operators (K (p)wK (p) only depends on one matrix w and
T(w,1,w,w?) is the conjugate of T(1,w,w?, w@)). Sections 5.1 and 5.3 present the technical

preliminary lemmas used to compute the coefficients a, for T'(1,1,w,w) and T(1,w,w?

, ) Te-
spectively. The actual values of the coefficients are computed for each operator in sections 5.2 and
5.4, with the results for the T'(1,1, w, w) operator summarized in theorem 5.2.6 in section 5.2 and
the results for the T'(1, @, w?, @) operator summarized in theorem 5.4.2 in section 5.4.

Below is a result from Roberts and Schmidt [12] that we will use, in conjunction with the

preliminary results for each operator, in order to compute the desired coefficients



Proposition 5.0.1. We have

2w yl| @
1 1 Y T w
K(p) Kp = || K(p)
w z,y,2€0/p 1 1
w 1_ 1
1 z zow ! | _w
1 1
U K(p)
z,z€0/p 1 1
—x I w
1 Y _w
1 y =« w
u || #a K(p)
z,y€o/p 1 1
1| 1
1 =z w
1 1
U] n K(p)
z€o/p 1 1
—x 1 w
and
1
w
K(p) K(p)
o2
w
1 =z 1 2ol oyl | @?
1 1 Y w
= U K(p)
z,y€o/p z€0/p? 1 1 1
—x 1 1 w
1 =z 1 z yl| |=?
1 1 y w
oo K(p)
z,y,2€0/p 1 1 1
—x 1 1

Proof. See Lemma 6.1.2 of [12].
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5.1 Preliminaries for the 7'(1,1,w, w) Operator

Let M € GL(2,F) N M(2,0). Then there exists g1,92 € GL(2,0) and ey, es € Z such that e; < es

and

w

g1Mgs =
we?

Moreover, if g, g5 € GL(2,0) and €/, e}, € Z such that ¢} < e}, and

!
€1

g1 Mgy = ,

Let M = [‘; Z] and k € Z be such that @” is a generator of the ideal (a,b,c,d) in o; we write
di(M) = w”. Let j € Z such that @7 is a generator of the ideal generated by det(M), and we write
do(M) = w?. Tt is known that

si(M) =di(M),  s2(M) = do(M)/dy(M).
See [10].
Lemma 5.1.1. Let a,b € Z and g € GL(2,0). Set

1 w
M = g

Then
{s1(M),52(M)} = {@", @"*'}  or {s1(M),s2(M)} = {="*!, ="}

Proof. If a = b the proof is straightforward, and so assume that a # b. First, suppose that a < b.

Let g = [& B]. By assumption we have that
M = g =

By letting v(0) = oo we have that

min(v(Aw?), v(Bw®), v(Cw® ), v(Dwbt))

=min(v(A) + a,v(B) + b,v(C) +a+ 1L, v(D)+b+1)
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a if v(A)=0
a+1 it v(A) > 0.

For this, we note that if (A > 0), then v(C) = 0. It follows that

w® ifv(4)=0
Sl(M) = dl(M) =
o+l it v(A) > 0.

We also have that

@l ify(A) =0
w? if v(A4) > 0.
This proves the lemma in the case where a > b. Now assume that a < b. We have that

1 w? 1 1| |=® -1
M= g = g
w w w -1 w 1

This identity implies that M has the same invariant factors as

ot 1| |=”
= g
w -1 w

By applying the previous case to M’, the lemma is proven. O

Lemma 5.1.2. Let a,b,c,d € Z. Then the following are equivalent:

1. There exist g1,92,93 € GL(2,0) such that

2. We have
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Proof. Assume that (1) holds. Let

a (6]

1 w w

M= 9 =g;" g5 .
W wb W

Then {sy(M),s2(M)} = {@, @?}. By 5.1.1 we also have {s;(M),s2(M)} = {=® @'} or
{51(M),s2(M)} = {w**!, w’}. Equating these, we obtain (2). It is clear that (2) implies (1). O

Now, define for g = [4 B] € GL(2, F) the following matrix,

1
A B
k(g) =
det(g)
C D
and
A Bw™!
, 1
K'(g) =
Cw D
det(g)

Note that if g € GL(2, F), then k(g), k'(9) € GSp(4, F); moreover if g € GL(2,p), then k(g), k' (g) €
K(p)-

Lemma 5.1.3. Let di,da,ds,da, c1,c3 € Z>o with di+ds = da+ds and c1+c3 = 2. Let g € GL(20)
and assume that do < d4. Then

et

K(p) L K(p)

wmin(cl +dy,c3+d3)

ot

= K(p) K(p)

wmax(cl +d1,c3+d3)

w2

where

{(d27d4+1)7(d2+1;d4)} 'Lfd2 §d4*1
(91,42) = { {(da, d> + 1)} if dy = dy

{(dg,da +1),(ds + 1,d2)} ifdy>ds+1
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Thus,

= (0,min(c1 +di,c3 +d3), q1,q1 +q2=di +ds+1=dy+dsy + 1)

with (q1,q2) as stated above. If do < dy4, then

1 w

sf(K(p) k(g) K(p))

(O,min(cl +dy,c3+ d3),d2,d1 +d3+1=ds+dy+ 1) Zf Z/(A) =0
(07min(cl + dl, c3 + dg), d2 + 1, d1 + dg +1= d2 + d4 + ].) ’Lf I/(A) > 0.

If do > d4, then

(O,min(q + dl,Cg + d3)7d47d1 + d3 + 1 = dg + d4 + 1) Zf I/(B) = 0

(O,min(cl +dq,c3+ dg),d4 + 1,d1 +d3s+1=dy+ds+ 1) Zf I/(B) > 0.

L

Let S1(M) = w? and so(M) = w?. By 5.1.1 there exist h,h’ € GL(20) such that

i — |
w(lz

{a1,92} = {do,ds + 1} or {q1, 02} = {d2+1,d4}.

Proof. Let

and
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It follows that

o3 w

wC +dy

ot
det(ghh')ws+ds

w2

Since this is in GSp(4, F) we have that det(ghh’)o@+dstl = paitaz; gince det(ghh’) € 0*, we

obtain that d; + d3 +1 = ¢1 + ¢2 and det(ghh’) = 1. We know have

wel w

wértd

ot

oCatds
w2
The statement about (g1, ¢2) follows from the fact that
{q1,02} ={do,ds +1}  or  {q1, g2} = {da +1,du}.
O

Lemma 5.1.4. Let a,b,c,e,,f,g € Z>p with0 <a <c—a,0<b<c—-b0<e<g—e, and

0< f<g—f. Assume that a < b. Then the following are equivalent:
1. There exist k1, ko, ks € K(p) such that

1 w

ky ko ks =
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2. We have

(e,f,g) € {(a,b,c+1),(a,b+1,c+1),(a—|—1,b,c+1),(a—|—1,b—|—1,c—|—1)}.

Proof. We begin with some inequalities. We have by assumption that c—b > b > a, and so ¢ > a+Db.

Also, since ¢ — b > a, then ¢ — a > b > a. Hence ¢ > 2a. Now, suppose that (1) holds. We have

1 w?
1 w?
K(p) k2 K(p)
w we e
w we?
we
of
=K(p) K(p)
wI e
w9 f
As seen in Lemma 3.3.1 in [12], there is a disjoint decomposition
1 uw ™t
1
K(p)=Ki(p)t: U | | Ki(p)
u€o/p 1
1
where
—ww !
1
t, =
w
1
Assume first that
1 uww ™!
1
ko€ | | Ki(p)
u€o/p 1



91

We may write

1 t 1 X Zw ' Y
rzw 1 91 92 1 Y
ko =
zw yw 1 —axw (9194 — 9293)75_1 1
yw 1 g3 94 X 1

for some z,y,2,X,Y,Z € 0,g=[93 52] € GL(2,0), and t € 0*. The matrices

1 1 1 1
1 zw 1 1 | rw 1
w zw yw 1 —axw w B 2w? yw? 1 —zw
w| |yw 1 w Y2 1
and
1
w® 1 X Zw!' Y| |w®
w? 1 Y w®
w? 1 w4
we b -X 1 @b

1 Y @e2e
1
—Xwhb—a 1

are contained in K(p); note that 2a < ¢,2b < ¢, and so a + b < ¢. Also a < b by assumption. It

follows that

w (9194 — g2g3)t™* w



Let

1 g1 92
M P—

w g3 g4

b

w

c—b

and let s1(M) = w? and so(M) = w? for q1,q2 € Z. By 5.1.2 we have that

{q1,02} = {b,c=b+1} or

Let h = [Z; Zi],h' = [hll hé} € GL(2,0) be such that

Since the matrices

1

are contained in K (p) we have that

hy hjy
ot
hMAK =
sz
1
hy ha n, b,
and
hihg — hahs B, by — ByR,
hs hy Y, I
1 w?
g1 g2 w®
K(p)
w 9194 — 9293 w
w g3 94 we?
1 1
h1 ha 1 g g2
hihgy — hohs w 9194 — 9293
h3 hy w gs g4
1
w? I R
K(p)
wé e R4} — hhhl
we b Y, I
le

det(hgh)w!te—a

K(p).

{a1, @2} = {b+1,c—0b}.

92
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Since

ot
€ GSp(4,F)
det(hgh')w!te—a

w2

we must have that det(hgh') = 1 (recall that h,g,h’ € GL(2,0)) and ¢+ 1 = ¢1 + g2. Thus

w2 wI— T

Assume that {q1,¢2} = {b,c — b+ 1}. Since b < ¢ —b+ 1 and ¢; < g2, we must have that ¢ = b
and g = ¢ —b+1. By 4.2.19 and the equality above we obtain e = a, f = b, and g = ¢+ 1. Assume
that {q1,¢2} = {b+ 1,¢ — b}. Assume further that b+ 1 < ¢ —0b. Then ¢y =b+1,¢2 = c— b, and
by 4.2.19 and the above coset equality we obtain e = a, f = b+ 1, and g = ¢+ 1. Assume now that
b+1>c¢—b. Since ¢ —b > b, we have that c—b=1b, and ¢y = c—b and go = b+ 1. by 4.2.19 and
the above coset equality we obtaine=a,f =c—b=05,and g =c+ 1.

We now show that case (2) holds if k3 € Kl(p)t1, so assume this condition and write kg = kjtq

for some kb € Ki(p). Since t; € K(p), we have

1 w?
1 , wb
K(p) ks K(p)
w wc—a
w wc—b
we
wof
=K(p) K(p)
wI ¢
w9 f
We may write
1 1 X 1 Z'Y
, zw 1 1 1Y
ky =
zw yw 1 —zxw 1 1

Yw 1 -X 1 1



(9194 — g2g3)t~!

93 94

for some z,y,2, X, Y, Z € 0,9 = [92 92] € GL(2,0), and t € 0*. We find that

w
wf
K(p) K(p)
wI™¢
wod—f
1 1 1 X 1
1 rzw 1 1
=K(p)
w zw o yw 1 —axw 1
w| |yw 1 -X 1
t wC*G.
g1 g2 w®
X ) K(p)
(9194 — g2g3)t™ w?
g3 g4 wcfb
1 Zw™l Yw! 1
1 Yw! 1
=K(p)
1 w
1 w
t wC*G
g1 92 w®
x . K(p)
(9194 — 9293)t~ @
93 94 we b
1 Yo ! 1
1 Yw! 1
=K(p)
1 w

94



g1 92 w
(9194 — g2g3)t ™" @

g3 94

We claim that Y € p. To see this, assume that Y € 0*. Then

w
wof
K(p) K(p)
wd™*¢
wd—f
1 Y ! 1
1 Yw! 1
=K (p)
1 w
1 w
t wC*(l
g1 92 w®
X
(9194 — g2g3)t ™"
gs 94
1 Yw!
1 Y1
=K(p)
Y-lw 1
Y lw 1
[ 1 1
1 1
X
-1 Y-lw 1
-1 Y lw 1
_t wC—H.
g1 92 w®
X
(9194 — g2g3)t ™"
L 33 94

95
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w
|
=K (p)
w
W
[ 1 1 1
1 1 1
X
-1 Y- lw 1 w
-1 Y lw 1 w
_t wc—a
g1 g2 w®
x 1 K(»)
(9194 — g293)t~ w?
L 93 g4 we?
1 1
1 1
=K (p)
— w!
—w w!
[ 1 1
1 1
X
Y- lw 1 w
_Y_lw 1 w
_t wC*(l
g1 92 w®
X ) K(p)
(9194 — g293)t~ w®
| 93 g4 wob
1 1
1 1
=u, K (p)
Y1 1 w
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t w07(l
g1 g2 w®
x ) K(p)
(9194 — g293)t~ w?
g3 g4 web
t 1
g1 gl [ X' 1
_UJK(]J) 1 / ! /
(9194 — 9293)t~ Z'Y 1 -X
g3 ga] 1Y’ 1
wc—a
b
X K(p)
wa
wcfb

for some X', Y’, Z’ € 0 and where

1 1
-1 w
Uy = s w =
w w
—w 1
Continuing, we have that
we
wof
K(p) K(p)
wI ¢
w9 f
t 1
g1 g | X' 1
=wK(p) .
(9194 — 9293)t~ Z Yy 1 =X

g3 ga] Y’ 1



=wK (p)

=wK(p)

. K(p)
wcfb
] 1
X/wcfafb

v lec—Qa

wc—b Y/wb—a
K(p),

wo®

wcfb_
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where the last equality follows because ¢ > a + b, ¢ > 2a, and b > a. This contradicts 4.2.20, and

so Y € p. We thus have

€

w
o
K(p)
1
=K(p)
t
g1
X
93

As before, let

(9194 — g293)t~

1
M =

w

g2
1

g4

g1 g2 w

93 94

and let s1(M) = w? and so(M) = w? for q1,q2 € Z. By 5.1.2 we have that

{q1,q2} = {b,c—b+1} or

{q1,q2} ={b+1,¢—b}.



Let h= [} h2],0 = [} 1] € GL(2,0) be such that

q1

hMHK =
w2
Since the matrices
1 1
h h ¥ ht
1 2 and 1 2
hihg — haohs hihly — h4HhY
hs hy Y, I
are contained in K (p) we have that
we
wof
K(p) K(p)
wI—€
wod—f
1
hl h2
=K(p)
hihg — hohs
h3 h4
1 '
1 9 g2
X
w (9194 — g2g3)t ™!
L w gs g4
[e—e 1
w? h} hf,
X K(p).
w?® hihly — hhhY
i web hY I
Simplifying as before, we have
we wC*ll
wf ot
K(p) K(p) = K(p) K(p)
wg—e wa+1
w9t o2

99
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woit

w2

Assume first that {q1,¢92} = {b,c—b+1}. Since c—b+1 > b we have ¢ = b and go —c—b+ 1. By
4.2.19 and the above coset equality we obtain that e =a+ 1, f = b, and g = ¢ + 1. Assume that
{q1,92} = {b+1,c— b} and assume further that b+1 < ¢—b. Then ¢t =b+1 and ¢o =c—b. We
obtaine=a+1,f =b+ 1, and g = ¢+ 1. Finally, assume that b+ 1 > ¢ —b. Since ¢ — b > b, we
getc—b=bandsoq  =c—b=band go =b+ 1. It follows that e=a+ 1, f =b, and g = c+ 1.
This completes that proof that (1) implies (2).

Now, assume that (2) holds. Then the identities

a

w

wb

wc-‘rl—a
wc+1—b
1 w?®
1 w?
- w w? ’
o wcfb

wa

wb+1

wc+1—a
wc+17 (b+1)
1 w?
1 1 w®
= S9 So ;
w w?
o wc—b
wa+1
wb
wc+1— (a+1)

wc+17b
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1 w?
1 w®
=t t! :
w we e
o wcfb
wa+1

bt

wc+1—(a+1)
1= (0+1)
1 w?
1 . wb
= tlsg (tlsg) 5
w wC*(I
o wcfb
where
—w ! 1
1 1
tl — S2 = )
w 1
1 -1
proving that (1) holds, completing the proof. O

Lemma 5.1.5. Let a,b,c,e, f, g be non-negative integers with 0 < a < c—a,0 <e < g—e, and

0< f<g— f. Then the following are equivalent:

1. There exist k1, ko, ks € K(p) such that



2. We have

(e,f,9) € {(a,a,c+1),(a,a+ Let 1), (a+ L a,c+1),(a+1,a+ 1Le+ 1}

Proof. First suppose that (1) holds. We then have

1 w?
1 w?
K(p) ka K(p)
w wc—a
w wc—a
we
wof
= K(p) K(p)
wI ™€
w9 f
There is a disjoint decomposition
1 uw !
1
K(p)=Ki(p)ta U | | Ki(p) :
u€p/p 1
1
where
e
1
t] =
w
1
For this, see Lemma 3.3.1 of [12]. Assume first that
1 uw ™!
1
kre | | Kip) :
u€p/p 1
1
then we may write
1 t 1 X Zw!
rw 1 g1 92 1 Y
ko =
2w yw 1 —zw (9194 — g293)t ™" 1

yw 1 93 94 -X

102



for some z,y,2, X, Y, Z € 0,9 =33 22] € GL(2,0), and t € 0*. The matrices
-1
1 1 1 1
1 zw 1 1 ey 1
w zw yw 1 —zxw w 2w yw? 1 —zw
w| |yw 1 w yw? 1
and
—1
w?® 1 X Zw!' Y| |w®
w?® 1 Y w?
w(}—(l 1 wc—a
we -X 1 we e
1 X Zw—1+c—2a ch—?a
1 ch—2a
1
-X 1
are contained in K (p), noting that 2a < ¢ by assumption. It follows that
1 1 w?
1 g1 g2 w?
K(p) X , K(p)
w (9192 — g293)t~ we
w g3 g4 wC—(l
we
wof
= K(p) K(p).
wI™¢
w9 f
Let
1 w?
M= gi g2
w g3 g4 wc—a

and let s1(M) = w? and s9(M) = w®. Let h = [Z; Zﬂ,h’ = [:i Zﬂ € GL(2,0) be such that

q1
hMb =

w2,

103
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By 5.1.2 we have that

{q1,¢2} ={a,c—a+1} or {q,q92} ={a+1,¢c—a}.

Since the matrices

1 1

hy ha h' Y
hiha — hahs ’ RO R, — Ryh,
hs ha B, B,
are contained in K (p), we have
1 t w?®
1 g1 g2 w®
K(p) . , K(p)
@ (9194 — 9293)t~ @
w 93 94 we
1 1 t
hl h2 1 g1 g2
=K(p)
hihg — hahs w (9194 — g2g3)t ™"
hs ha w gs g4
w? 1
w® h} hb
X K(p)
we e R R} — hhhY
we e hY h}
wa
wit
det(hgh')w!te—a
w2
Since
wa
ot
€ GSp(4,F)

det(hgh')wtte—a

w2
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we must have that det(hgh') = 1 (recalling that h,g,h’ € GL(2,0) and ¢+ 1 = ¢1 + g2). Thus

ot wf

,lercfa wI—e
o2 wo9—f

Assume that {q1,¢2} = {a,c —a+1}. Since a < ¢c—a+1 and ¢1 < g2 we must have ¢ = a
and ¢o = ¢ —a + 1. By 4.2.19 and the coset equality above we have that e = a,f = a, and
g = c+ 1. Assume that {¢1,¢2} = {a + 1,¢ — a}. Since 2a < ¢ we have that a + 1 < ¢ — a. Hence
g1 =a+ 1,90 =c—a, and by 4.2.19 and the coset equality above, we obtain e =a, f =a+ 1, and
g=c+ 1.

Now assume that ko € Kl(p)t1, and so we may write ko = kjt; for some k} € Kl(p). Since

t1 € K(p) we have that

1 w?
1 , w®
K(p) ks K(p)
w w?
w wc—a
w@
of
= K(p) K(p)
wI ¢
w9 f
We may write
1 1 X 1 ZY
zw 1 1 1Y
ky =
zw yw 1 —zrw 1 1
yw 1 -X 1 1
t
g9 92

(9194 — g2g3)t™!
g3 94
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for some z,y,2, X, Y, Z € 0,9 =[5 92] € GL(2,0), and t € 0*. We find that

e

w
wof
K(p) . K(p)
w9 ¢
wod—f
1 1 X 1 Z Y
1 1 1 Y
= K(p)
w 1 1
w -X 1 1
t wC*G.
g1 g2 w?
X X K(p)
(9194 — g2g3)t™ w?
g3 g4 wC*H.
1 Zw ! Ye ! 1
1 Yo ! 1
= K(p)
1 w
1 w
t wC*G
g1 g2 w®
X ) K(p)
(9194 — g2g3)t~ w
g3 94 w
1 Yo | |1
1 Yw! 1
= K(p)
1 w
1 w
t wc—a
(1 g2 w
X . K(p)
(9194 — g2g3)t™ w*

gs 94 w



Assume that Y € 0*. Then
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w
wof
K(p) K(p)
wI e
w9 f
1 Y1 1
1 Yw! 1
= K(p)
1 w
1 w
t wC—(l/
g1 g2 w?
X . K(p)
(9194 — 9293)t~ w?
g3 g4 w e
1 Yo !
1 Yot
= K(p)
Yot 1 Y lw
Yoo ! 1 Y lw
[ 1 1 1
1 1 1
X
-1 Yol 1 w
-1 Y ! 1 w
_t wC*Q
9 92 w?
x 1 K(»)
(9194 — 9293)t~ w?
. N w
ol
o1
K(p)



[ 1 1
1
X
-1
_—1 Y1
[+
g1
X
(9191 — g293)t*
L
1 1
1
K(p)
—To
— T
1
1
X
Yoo ! 1
_Yw_l 1
[+
g1
X
(9194 — g2g3)t™ "
L 93
1
1
= u K (p)
Y-t 1
Y*l
t
g1
X

(9194 — g2g3)t™*

g3

108

1
1 1
Yo ! 1 w
1 w
wc—(l
g2 w?
K(p)
wa
g4 we e
1
w*l
—ww !
1
w
w
wC—(I/
92 w?
K(p)
wa
g4 wc_a
wc—a
92 w?
K(p)
wa
g4 wc—a



t 1
9 g2| | X' 1
= wK(p) )
(9194 — g293)t~ z Yy’
93 ga| Y’
wc—(l
wa
X K(p)
wa
wC—CL

w
wof
K(p) . K(p)
w e
wd—f
t 1
g1 g2 | X' 1
= wK(p)
(9194 — g293)t " Z' Y 1
g3 ga| |Y’
wC—LL
wa
X K(p)
wa
wc—a
_w67a T i 1
" o X/wc—2a 1
- (P) Fovis Z/wc—Qa Y/
i wC7(l_ I Y/
_wc—a T —1
w® 1
= wK(p) o
wa
i wc—a_ _Y/ 1

1 =X’

X'’

109



110

1
X/wc—Qa 1
X K(p)
(Z/ _ X/y/)wc—2a 1 _X/w('—2a
1
w? 1
w® 1

= wK(p) K(p),

w? Y 1

wc—a Y/ 1

where the last equality follows from the fact that ¢ > 2a. Continuing, we have

€

w
!
K(p) K(p)
wI ¢
w9 f
_w07a T i 1
w? 1
=wK(p) K(p)
w® Y 1
i WY _Y’ 1
_wcfa T _1 Ylfl
w? 1 vyt
= wK(p)
w® 1
i wC—(l_ i 1
-y’ 1 (1 Yyt
-yt 1 1yt
X K(p)
-Y’ -1 1
-Y'| | -1 1
we® 1
w? 1
=wK(p) K(p)
w? -1



=wK(p)
-1
-1
= wK(p)
|—@™
CUC_a_l
= wu K (p)
::tlszulull((p)
wc—a—l
= wkK(p)
_w67(l
w
= K(p)
—wa—i—l
w
= K(p)

wa—i—l

wcfaJrl

w

c—a+1

111
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= K(p) K(p).
oletD)—(a+1)

w(chl)fa
By 4.2.19 we have that e=a+1,f =a,and g =c+ 1.
Now assume that Y € p. We have

e

w
wof
K(p) K(p)
wI ¢
wod—f
1
1
= K(p)
w
w
t _wc—a
g1 g2 w?
X ) K(p)
(9194 — g2g3)t™ w?
g3 g4l | w?
As before, let
M= 1 g1 92| |=®
w| (93 94 we e

and let s1(M) = @ and sy(M) = @®. Let h = [} 2], 1 = [Zil Z%} € GL(2,0) be such that
b 3 '"a

hMh' =

wiz,

By 5.1.2 we have that

{q1,¢2} ={a,c—a+1} or {q,q} ={a+1,¢c—a}.



Since the matrices
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1 1
hy ho h hf
hihy — hohs hihl — h5hY
hs hy hY h}
are contained in K (p), we have
we
!
K(p) K(p)
wI~*®
wo9—f
1
hy ho
= K(p)
hihg — hohs
hs hy
1 t
1 g1 g2
X
@ (9194 — g2g3)t ™"
L w 93 94
[ e—a 1
w? h} hf
% IaN N K(p)'
w? hihy — hohs
i we e h I
Simplifying as before, we obtain that
we wC—(l
wof wo?t
K(p) K(p) = K(p) K(p)
wd—e wa+1
wI—T o2
waJrl
ol
= K(p) K(p)
wc—a
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Assume first that {q1,¢2} = {a,c—a+1}. Since a < c—a+1 and g1 < g2 we must have ¢; = a and
g2 =c—a+1. By 4.2.19 and the coset equality above we have that e =a+ 1, f = a, and g = c+ 1.
Assume that {q1,¢2} = {a+ 1,¢—a}. Since a+1 < ¢ —a we have that ¢y = a+ 1,¢2 = ¢ — a,
and by 4.2.19 and the coset equality above, we obtain e = a+1,f =a+ 1, and g = ¢+ 1. This
completes the proof the (2) holds.

The proof that (2) implies (1) is similar to the analogous implication in the proof of 5.1.4. O

Lemma 5.1.6. Let a,b,c,e, f,g be non-negative integers with 0 < a < c—a,0 < e < g—e, and

0< f<g—f Assume that a < b. Then the following are equivalent:

1. There exist ki, ka, ks € K(p) such that

2. We have
(e, f,9) = (a,b,¢).

Proof. We will follow the proof of 5.1.4. Assume the (1) holds, then we have that
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As in the proof of 5.1.4, we know that there is a decomposition

1 uw !
1
K(p)=Ki(p)t, U | | Ki(p)
u€o/p 1
1
If
1 uww ™!
1
ko€ || Ki(p) ,
u€o/p 1
1

then an examination of the proof of 5.1.4 shows that there are ¢, qs € Z such that

w2 wod—f
However, this contradicts 4.2.20, meaning that we must have ko € Ki(p)t;. In this case, the proof

of 5.1.4 shows that

Thus 4.2.19 implies that a = e,b = f, and g = ¢, proving that (2) holds.
Now assume that (2) holds and define

kl )
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1 1
1 1
k2 = tla
1
1
-1 ,waafl
1
ks =
-1
_waafl 1
Then kq, ko, ks € K(p) and
1 w?
1 w®
kl kQ k3
w wc—a
w w57(1
w@
wof
=w
w9 €
w9 f
This proves that (1) holds, completing the proof. O

Lemma 5.1.7. Let a,c,e, f,g be non-negative integers with 0 < a < ¢ — a. Then there does not

exist ki, ko, ks € K(p) such that

Proof. This result follows from the proof of 5.1.5 and 4.2.20. O
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Definition 5.1.8. Let a,b,c be non-negative integers with 0 < a <c—a and 0 <b<c—b. We

define

Proposition 5.1.9. Let a,b, c be non-negative integers with 0 < a<c—a and 0 <b<c—b.

1. Ifa<bwithb+1<c—0, then

71,1, w,w)T(w?, w?, e, wcfb)
= T(w?, w®, w12, weti?)
+ npT(wt, @b, weti—(atl) etl=b)
+ nST(wa7wb+1,wc+l—a, wc+1—(b+1))

+ n4T<wa+17 wb'H, wc—i—l—(a-&-l), wc+1—(b+1))

+ nswT (w?, @, w e, wc_b)

for some ny,n9,nz,ng,ns € Z with ny,na, ng, ng,ns > 0.
2. If a < b withb=c—0, then

71,1, w,w)T(w?, w?, e, wc—b)
:TlT(wa, wb, wc+1—a’ wc+17b)
+ 7T (w1, @b, otl=(at1) woH1=0)
+ 7,?)7"1(73117wb#»l,wc%&fa’ wcﬂ’(bﬂ))

b a c—b)

+ rswT(w®, w’, w %, w

for some r1,r2,73, 15 € Z with r1,79,73,75 > 0.
3. Ifa=b<c—a, then

T, w,o)T(w* @, w % w™?)
:mlT(wa, wa, wc-‘rl—a’ wc-‘rl—a)

+ mQT(wa+1’ wa’ wc+17(a+1)’ wc«klfa)

+ mgT(w“, wa+1’ wc«klfa’ wc+17(a+1))
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+ m4T(wa+1’ wa+1’ wc+17(a+1)’ wc+17(a+1))
for some my, mo, mz, my € Z with my, mo, msg, my > 0.
4. If a=b=c—a, then

T(1,1,w,o)T (@ %, =%, =) = T(w*, w*,w* !, o).

Proof. For what follows, let
S={(e,f,g)€Z?:0<e<g—eand 0< f<g— f}.
1. By 4.2.21 we may write

T(1,1,w, )T (o, o, "%, w ) = Z n(e, f,9)T(w®, w!, @I =¢, w9~ 7)
(e,f.9)€S

+ Z n'(e, f, 9)wT(w®, w!, wI=¢ w9~ 7).
(e.f.9)€S

Here, for (e, f,g € S), n(e, f, g) and n’(e, f, g) are non-negative integers that are almost always

zero. Let (e, f,g) € S. By 2.1.6 and 5.1.4 we have

n(e, f,g) #0

= (e, f,9) €{(a,b,c+1),(a,b+1,c+1),(a+1,bc+1),(a+ 1,0+ 1,c+ 1)},
and by 2.1.6 and 5.1.6 we have
(e, f.9) #0 <= (e f.9) = (a,b,0).

The assumption that b+ 1 < ¢ — b implies that (a,b,c¢+ 1), (a, 0+ 1,¢+ 1), (a + 1,b,c + 1),
(a+1,b+1,¢+ 1) and (a,b,c) are all contained in S. This proves (1).

2. We proceed as in the proof of (1). Again, we have that

n(e, f,g) #0

and by 2.1.6 and 5.1.6 we have
n'(e. f.9) #0 <= (e f.9) = (a,b,0).

The assumption that b = ¢ — b implies that (a + 1,0+ 1,¢+ 1) is not included in S, and so
(2) follows.
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3. This follows as in the proof of (1) using 2.1.6, 5.1.5, and 5.1.7.

4. This follows from the remark appearing after 2.1.6.

5.2 Computing Coefficients for 7'(1, 1, w, @)

Lemma 5.2.1. Let a,b, and ¢ be non-negative integers with 0 < a < c—a and 0 < b < ¢ —b.
Assume that a < b. If a < b, thenny =1 withny as in (1) of 5.1.9; if a = b, then m; = 1 with my

as in (2) of 5.1.9

Proof. We will use 2.2.5 and 5.0.1. Let

1 w

g1 and go

Let

wc+1—a

chrlfb

From 2.2.5 we have the following disjoint decomposition

K(paK(p) = | |hE(p).

i€l
First, let
1 ot oyl |w
1 x w
h = v
1 1
1 1

for some z,y, z € 0. We claim that h=1g ¢ K(p)g2K (p). Suppose that h=tg € K(p)g2 K (p) and we
will obtain a contradiction. Let ky, ks € K(p) be such that h=1g = kygoko. Now

w 1 2wl oy w?
ol — w 1 Y T w®
1 1 wc+1—a

1 1 ,chrlfb



w! —zw b —y| |w®
w! 1 —y —T w®
1 1 wetl-e
i 1 1 wc+17b
_wa—l 1 _ch—Qa _ywc+1—a—b
wal 1 7ywc+17a7b 7l,wc+172b
o wc-‘rl—a 1
i wc+1—b 1
Since ¢ — 2a,c+ 1 —a — b, and ¢+ 1 — 2b are all non-negative, the element
wafl
wb—l
a wc+17a
,chrlfb
is in K(p). We now have
hilg = kngkQ
Zva—l
b1
» k3 = k1g2ks
wC —a
wc+1—b
wafl _wa
w . w®
ksky ™ =k
wc+1—a wc—a
,chrlfb wcfb
Write
Ay Aq Blwil By A/l A/Q Biwil Bé
i kil Agw A4 B3 B4 k Aéw Ai; Bé Blll
3hg = ) 1=
Ciw Cow D, Dyw Clw Clw D] Diw
ng C4 D3 D4 _Céw Ci D/3 Dﬁl

where A;, B;,C;, D;, AL, Bl,C!, D} € o for 1 <i < 4. We have

Ay
&

By
D,

Ay By
Cy Dy

Ay Bi| |4} B

) )

G Dif [Ci Dy

120
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and o ) ) o
w1 A B All Bi w?
= Y
=] oy | | by | =
b—1 1T i [ 1T b
w A4 B4 . AZL Bé[l w
’wc+1_b_ _04 D4_ _Cfl Di_ i we?

Form the first of these equations, we see that A; = Ajw and b; = Bjw*"1~2%. Since ¢+ 1—2a > 0,
we see that Ay, By € p, and this contradicts the fact that [éi gi] € GL(2,0).

Assume now that

1 z zw ! w

—x 1 w

for some x,z € 0.We claim that h™'g & K(p)g2K (p). Suppose that h=lg € K(p)g2K(p) and we
will obtain a contradiction. Let k1, ks € K(p) be such that h=1g = kygoks. Now

w ! 1 —z —zw ! w?
-1 1 1 w®
g =
1 1 wc—i—l—a

w ! x 1 wetl-b

_wa—l 1 _wa—a _ch—2a
w® 1
chrlfa 1
wcfb wafa 1

Since b — a and ¢ — 2a are all non-negative, the element
1 —wa_a _ch—2a

k3

is in K (p). We now have

h™tg = kigoko
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wafl
wb
ks = k1g2k2
wc+1—a
wcfb
wa—l wo?
w® . w?
kaky ! =
wc—i—l—a e
zvc—b wc—b
Write
Ay Aq Blwil By A/l A/Q Biwil Bé
1 Agw A4 B3 B4 Aéw Ai; Bé Blll
kgk; - ) klz
Ciw Cow D, Dyw Clw Clw D] Diw
Cyw O, Dy Dy Ciw ¢, D, D,
where A;, B;,C;, D;, AL, B;,Cl, D} € o for 1 <i < 4. We have
A, B A, B Al B A, B,
ORI LT LT T eqLzo)
AN AN AN
and
w1 A B All Bi w?
wetl-a C, D Ci D/1 wota
wb A4 B4 AZL lel wb
we?b Cy Dy C:l Di we b

The first of these equations leads to a contradiction.

Next, assume that

1 y| |
1 T w
h=t 4
1 1
1 1

for some z,y € 0. We claim that h='g & K(p)g2K (p). Suppose that h=tg € K(p)g2K (p) and we



123

will obtain a contradiction. Let ki, ks € K(p) be such that h='lg = ki1goks. Now

w! 1 —y w?
g = w! 1 -y —x 1 w®
1 1 ' wetl—a
i 1_ i 1 | wc-{-l—b
_wfl ) _1 _y_ _chrlfa
w! 1 —y —=z w® 1
1 1 w®
i 1_ i 1 11 wc+17b
_wc—a _ywa—b—l_ 1
wal 7ywa7b71 1 7zwc+172b .
w? 1
wc+1—b 1
Since ¢+ 1 — 2b is non-negative, the element
1
1 7l.wc+172b
ks = !
1
1
is in K(p). We now have
h'g = kigaks
ot _ywa—b—l
wb—l _ywa—b—l
ks = k1gaks
w(l
chrlfb
e 7ywa7b71 wo?
b—1 a—b—1 b
w —yw w
ksky' =k
wa wc—a

wc+17b c—b
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Write
Ay Ag Blwil By All AIQ Biwil Bé
1 Agw A4 Bg B4 Aé’w AZL Bé Bfl
k3 ]{2_ = s ki =
Ciw Cyw Dy Dyw Ciw Chw D D}w
ng 04 D3 D4 C’éw C!l Dé D:l

where A;, B;,C;, D;, AL, B, C!, D} € o for 1 <i < 4. We have

A, B Ay B A, B A B
EOOUL TR LT T earzo).
Ci D Cy Dy Cy D) C, D}

It follows that

(o= 4wc+17b —_ Czllwb7 D4wc+17b — Dilwcfb

which is equivalent to
Cy = CyT1720, D), = Dyw.

Since ¢+ 1 — 2b > 0, this implies that C} and D} are in p, a contradiction.

Next, assume that

—x 1 w

for some z € 0. We claim that h~'g & K(p)g2K (p). Suppose that h=1g € K(p)g2 K (p) and we will
obtain a contradiction. Let ki, ks € K(p) be such that h=tg = k;goks. Now

_w’l | _1 -z | w®
b
oty — 1 1 41 w
1 1 ' wotl-e
w*l r 1 chrlfb
(o1 111 -z 1 [eti—a
1 1 w®
-1
1 1 w?
w—l r 1 wc+1—b
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_wcfa 1 71,w7(c+17a7b)
b
w 1
= !
w® 1
woeb xwf(cﬁdfafb) 1
_wc—a _wa—l
b
w
= !
wa
xwa—l wc—b
We now have
h™'g = kigoko
ot e 7wa71
w® .
t7 = ki1gaka
w(l
Iwafl wcfb
e _wa—l wo®
b
w w
7kt =k
wll wc—a
xwa—l wc—b zvc—b
The element ¢, 'k5 " is an element of K (p). Write
Ay As Blw_l By
t71k71 . A3w A4 B3 B4
1 R =
Ciw Cyw Dy Dyw
ng C4 D3 D4
where A;, B;,C;, D; € o for 1 <i < 4. We have
A1 B1 A4 B4
, € GL(2,0).
Cl D1 C4 D4
Now
we  —pbl A Aq Bl’wil B
P w® Asw Ay B3 By
1 =
ww? Ciw Cow D, Dyw
zw® ! wo| | Csw Oy D3 Dy



* Agw© o7

= Ay
*

*

w

c—b

*
*
*

— Az % Bow® *—Byrw
B4w2b70

*
*

2b—c—1
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Since k; € K(p), the (1,4) entry of k; is contained in 0. Since b > a and x € 0, this implies that

By has the form By = B 2*! for some B, € 0. It follows that the (2,4) entry of k; is contained

in p. This implies that the (2,2) entry of ki, which is Ay, is contained in o*.

(1,2) entry of k1. This is contained in o. Since ¢ — a — b > 0, we see that Ajxw™

0. However, this is a contradiction to the fact that A4,z € 0.

Lastly, Note that

where

ty

trlg =t go,

1

Consider now the

is contained in

This identity, along with the previous cases, implies that #{h~'g € K(p)g2K(p)} = 1. By 2.2.5,

we have that n = 1.

The proof that m; = 1 when a = b < ¢ — a follows from the above calculations in each case.

O

Lemma 5.2.2. Let a,b, and ¢ be non-negative integers with 0 < a < c—a and 0 < b < c—b.

Assume that a < b and let |o/p| = q. Then we have that following:

b

Number of cosets hK (p) such that h=tg € K(p)g2 K (p)

for g = diag(w?*!, wb, w1 (at]) etl=b)
Condition type 1 | type 2 | type 3 | type 4 | total
a<b 0 q* 0 0 q?
a=bc—a>a+1 0 q 0 0 q
a=bc—a=a+1 0 q 0 1 qg+1
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Proof. We will use 2.2.5 and 5.0.1 and we also assume a < ¢ — a. Let

g1 = and go =

Let

wc+1—(a+1)

wc—i—l—b

From 2.2.5 we have the following disjoint decomposition

K(pgK(p) = || hiE(p).

icl
First, let
1 2ol oyl |w
b 1 Y T w
1 1
1 1

for some x,y,2z € 0. We show that if a < b, then h=lg ¢ K(p)g2K(p). To this end, assume
that h=1g € K(p)g2K(p) and we will arrive at a contradiction. Let ki,k2 € K(p) be such that

hilg = klggkg. Now

_ —1 —1
w 1 zwt oy woetl
w 1 x w?
hlg= Y
1 1 wc+1—(a+1)

i 1 1 wc+17b
_wa 1 _ch—Q(a—H) _ywc—a—b

wal 1 7ywcfa7b 7ch+172b

we 1

i ZUc-l—l—b 1
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Asa < c—a, then 0 < c¢—2a—1, and so the matrix

1 _zw072(a+1) _ywcfafb
1 _ywcfafb _x,wc+172b
ks =
1
1

is an element of K (p). We now have

hilg = klggkg
wa
o1
ks = k1gak2
w57a
wc-‘rl—b
w? w?
wb—l wb
ksky' =k
w(‘—a w()—(l
chrlfb wcfb
The element kzk; ' is an element of K (p). Write
Ay Aq Blw_l By A/l A/2 Biw‘l Bé
1 A3w A4 B3 B4 Aéw AZ} Bé Blll
ksky ™ = , ki =
Ciw Cow D; Dow Ciw Clw D] Diw
where A;, B;,C;, D;, AL, Bl,C!, D} € o for 1 <i < 4. We have
A, B A, B AL B A, B,
S I el I Rl I Rl IY=Ne) TO )
Cy Dq Cy Dy cy D C, D,
and
w? A1 Bl A/l Bi w®
w e |C1 D; C{ Dj we e ’
wb_l A4 By _ AZ; Béll wb
’wc+17b C4 D4 Cfl DZL wcib

The second of these equations leads to a contradiction.



Next, let

for some x, z € 0. We have

hilg

1 =z
5 1
w ! 1 —=z
1 1
1
w*l
wa—l
wb
e
wc—l—b
wafl
wb
ot
wcflfb
1 _wa—a—l _ch—Qa—Q
1
1
Iwb—a—l
w? 1
wb
ot e
,wcfb
w® 1
wb
ot e
wc—b

zTo w
1
1 1
- 1 w
7ZW71 waJrl
wb
1 wc—i—l—(a—i—l)
T 1
o _wa—a ch—Qa—l
1
1
1L T w
w
1
1
w
1
_wa—a—l _ch—2a—2
1
1
wa,a,1 1
_wa,a,1
1
1
wa—a—l 1

wc+1fb

129
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1
Since a < ¢ — a, then 0 < ¢ —2a —1, so

1 _ch—Qa—2

€ K(p).
Assume that a < b, then
€ K(p),

and so h™1g € K(p)g2K(p), and so there are ¢* distinct cosets. Now assume that a = b. If x € p,
1 _pe—2a—2
then this matrix is still in K (p), and so there are ¢ distinct cosets since { 1 L ] € K(p).
1
Now, assume that © € 0* and we will obtain a contradiction. To this end, suppose that h~lg €

K(p)g2K (p) and let ki, ko € K(p) such that h=tg = kigaks.

Now
wo? 1 71.wb7a71
w? 1
w? 1
wcfb zwaafl 1
1 _ch—Qa—Q
1
X = k1g2k2
1
1
w® —zw’ !
wb 1
ksky ™ = kiga
wc—a
c—a—1 c—b
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where

1 ch—Qa—2

1
ks =
1
1

Note that ksky ' € K(p). Set

Aq As Blw_l By

k3k51 _ A3ZU A4 B3 B4

Ciw Chw Dy Dow
ng C4 D3 D4

where A;, B;,C;, D; € 0 for 1 <i < 4. We have

A By Ay By

, € GL(2,0).
Ci Di| |Cy Dy
Now
w® —zwb? Aq Ay Blw_l By
k wb Agw A4 B3 B4
1:
w? Ciw Cyw D, Dyw
xot—el et Csw Cy D5 Dy
~ 1
P
wb
X
R
wc—b

* * * *
L * * *

Since k1 € K(p), the (1,4) entry of ky is contained in 0. Since b = a and x € 0, this implies that
By has the form By = Bjww® 2"! for some B) € 0. It follows that the (2,4) entry of k; is contained
in p. This implies that the (2,2) entry of ki, which is Ay, is contained in 0*. Consider now the
(1,2) entry of k;. This is contained in o. Since a — b = 0, we see that Agzwo~! is contained in o.

However, this is a contradiction to the fact that A4,z € 0.
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Next, let
1 y| |w@
1 T w
h=t Y
1 1
1 1

for some x,y € 0. We show that if @ < b, then h™lg & K(p)g2K(p). To this end, assume
that h=1g € K(p)g2K(p) and we will arrive at a contradiction. Let ki,ks € K(p) be such that

hilg = kngkQ. Now

_w—l 1 —y wc+1—(a+1)
hlg= = oo i tt
1 1 waJrl
i 1 1 weti-b
_chrlf(aJrl) T _wfl _ywafb
B w® w1 _ywa—b —prot—2b -
- wotl 1 '
chrlfb 1
_wc+1—(a+1) ] _w—l _ywa—b
wb w*l 7ywa7b
- wotl 1
wc—i—l—b 1
1
1 _ch—Qb-&-l
X 1 it
1
wcfafl 1 7ywa7b+1
b1 1 —ywobt
- watl 1

wc+1fb 1



.

1
1 $w0_2b+1 .
X tq
1
1
w(—a—Q _yw('—b—l 1
wb72 7ywa71 1 7ch72b+1
wetl 1
wc+1—b

Since 0 < ¢+ 1 — 2b we have that

1
1 _wwc—2b+1
ks = !
1
1
is in K(p). We thus have
h~'g = kigoko
wc—a—Q _ywc—b—l
wh=?  _ywe-l
k3 = k1gako
wa+1
wc—i—l—b

wc—a—Q _ywc—b—l wo?
b—2 a—1 b
w —yw w

Y ksky' =Ky
7ﬂaJrl
wc+17b
The element kzk; * is an element of K (p). Write
Aq Ay Blw_l By A/l A/Q
Asw A B B Alw Al
e ’ L o m=TT
Ciw Chw D, Dow Clw Clw
ng 04 D3 D4 ng Cfl

133
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where A;, B;,C;, D;, AL, B;,Cl, D} € o for 1 <i < 4. We have

A, B Ay B A, B A, B
PN LT LT T earzo).
Ci D, Cy Dy Cy D) C, D}
It follows that

1-b /b 1-b I _c—b
Cywot =Cyw , Dyt = Djw ",

which is equivalent to

Cyw™™ 2 =0, ,Dyw=D).

Since 0 < ¢+ 1 — 2b, then C} and D) are in p, a contradiction.

Finally, let

-z 1 w
for some x € 0. We show that if a < b and ¢ —a > a+ 1, then h™lg & K(p)g2K(p). To this end,
assume that h=lg € K(p)g2K(p) and we will arrive at a contradiction. Let kq, k2 € K(p) be such
that h=1g = k1 goks. Now

’(Dil 1 —x wc+17(a+1)
1 1 w®
h*lg _ t_l
1
1 1 wtl
w*l r 1 wc+17b
[pet1—(a+1) ol _pgetb—c—1
w® 1 1
wet! 1
wc+1—b Cmva-l—b—c—l w—l
wcfafl _1.wa1
wb
= !
wa+1
To? wcfb

We have

h=tg = kigaks



wcfafl 71,wa1
wb 1
ty = kigaks
wa+1
To® wcfb
w('—a—l _wa—l
b
w
t ket = kigo
wa+1
| o wc—b_
wc—a—l _wa—l wo?
b b
w w
7kt =k
wa+1 wcfa
o wcfb
Write
A1 A2 Blw_l B2
1,1 Agw A4 Bg B4
tyky =
C’lw ng D1 DQW
ng 04 D3 D4
where A;, B;,C;, D; € 0 for 1 <i < 4. We have
Ay By Ay By
) € GL(2,0).
C: D Cy Dy
Now,
wee! xoob 1 Ay Ag Blw_l
i wb Agw A4 Bg
1 =
waJrl C’lw CQ?D D1
rxw®  we b Csw Cy D5
~ —1
o
wb
X
e
wc—b
—w’“(A1w7a+°717A3mwb) w’b(A2w7“+C’17A4wa71) * *
= * % « Byoo2b—c
C1w? * * *
*

L *

*

*

By
DQ’{D
D,

135
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Assume that @ < b and note that the (1,1) entry of &y is in o since ky € K(p). Since a < ¢ —a
and a < b, then ¢ —2a —1 > 0 and b — a > 0. Hence A; is in p. The (3,1) entry of k; is Cyw?.
As k1 € K(p), then this entry must be of the form Cjw for some C} € o, and so C] = C1w € p.
This is a contradiction since the 2 x 2 matrix formed by the (1,1), (1,3), (3,1) and (3,3) entries of
k1 has to be in GL(2,0). Next, assume that a = b and x € 0*. We know that the (1,2) entry of
k1 must be in o, which implies that A4 € p as x € 0. Similarly, the (2,4) entry of k; must be in
o, implying that By = Byw 2¢t! ¢ p. This shows that both A4, B4 € p, this is a contradiction.
Finally, assume that a = b,z € p, and ¢ —a > a+ 1. As z € p, then the (1,1) entry of ky is in p,
and this leads to the same contradiction as in the first case.

Now we show that if a = b,x € p, and c —a =a + 1, then h~lg € K(p)g2 K (p).

wcfafl _wa,1
b
w
h—lg _ tfl
wa+1
Too? wcfb
_w“ —zw® !
w(l
= ¢!
wc—a 1
i xwa wc—a
Since x € p, then h™1g € K(p)g2 K (p) as claimed. O

Lemma 5.2.3. Let a,b, and ¢ be non-negative integers with 0 < a < c—a and 0 < b < c—b.

Assume that a < b and let |o/p| = q. Then we have the following:

Number of cosets hK (p) such that h=tg € K(p)g2K (p)

fO’I‘ g= diag(w“, wb+17 wc+1fa, wc+1f(b+1))

Condition | type 1 | type 2 | type 3 | type 4 | total

c—b>b+1 0 0 q 0 q

c—b=0b+1 0 0 q 1 q+1

c—b=> 0 0 0 0 0
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Proof. We will use 2.2.5 and 5.0.1 and we also assume a < ¢ — a. Let

1 w®
1 w?
g1 = and go =
w w?
w we?
Let
wa
o+l
g =
wc-l—l—a
wc+l—(b+1)
From 2.2.5 we have the following disjoint decomposition
K(pgK(p) = || hiE(p).
iel
First, let
1 2ol oyl |w
1 Y T w
h =
1 1
1 1
for some x,y, z € 0. Now
_ -1 -1
w 1 2zl oy w?
w 1 y ox whtl
h_lg =
1 1 chrlfa
1 1 wc+1—(b+1)
_wafl T _1 72@6720’ 7ywcfb7a
wb 1 _ywc—b—a _ch—2b—1
- wc+1—a 1
i wc’b_ i 1
_wa—l T _1 _ch—Qa _ywc—b—a
wb 1 _ywcfbfa
o chrlfa 1
i wc_b_ | 1




1 _ch—Qa _ywc—b—a 1
1 7ywcfb7a 1 7chf2b71
ks = € K(p)
1 1
1 1
Hence
hlg = kigoko
wafl
wb
k3 = k1gak2
wc+17a
wcfb
_wafl -
wb 1
k3k2 = k’lgg
wc+1—a
- wc_b—
_wa—l T wo?
wb . w
kaky ! = ky
chrlfa wcfa
i wc—b_ wc—b
The element kzk; * is an element of K (p). Write
A Ay Blw_l By A/l A/Q Biw‘l Bé
1 Agw A4 B3 B4 Agw Ai; Bé Bfl
ksky ™ = ; ki =
Ciw Cow D, Dyw Clw Clw D; Diw
ng 04 D3 D4 Céw Cfl Dé Dil
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where A;, B;,C;, D;, AL, B;,Cl, D} € o for 1 <i < 4. We have

A By| |4y B |4, B |4, B
' ' b ! ! 9 ! ! P 4 4 6GL(270)
o, Di| |c D) |t Dy |¢p Dy

a=1 Equivalently, we

The above equalities imply that A;w® ! = Ajw® and Biw® ? = Bjw™
have that A; = Ajw and By = Bjw® 2**!. Since ¢ — 2a is non-negative, we have a contradiction.

Now assume that z € 0*. If a = b, then b=a < c—a =c—b and so 0 < ¢— 2b, and by arguing
as we did before, we would have that h='g & K (p)g2K (p). We now assume that a < b and suppose

that kq, ke € K(p) are such that h='g = kjgoks. Note that

wa—l 1 _ch—Qa _ywc—b—a
h_1 B wb 1 _ywc—b—a
9 wc+17a 1
web 1
1
1 _ch—2b—1
X
1
1
1 wol
1 —gw ! w?
o 1 wc+17a
1 zUc—b
_1 _ch72a _ywcfbfa
1 _ywc—b—a
X
1
I 1
We have
_1 wa—l
1 —rw! @’ N
ki = kaky g~
1 wc+1—a
i 1 wc—b
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where
1 _Z,wc—Qa _ywc—b—a
1 — wc—b—a
ky = Y
1
1
Thus, writing
Ay Ao Blw_l By
k4k51 _ Agw A4 Bg B4 7

Ciw Cyw Dy Dyw
ng 04 D3 D4

since kqky b € K(p), we have that

1 wa—l
1 —zw! w® 11
kl = k‘4/€2 9o
1 wc+17a
1 wc—b
Alw—l A2wa7b71 Blw2a—c—2 32wa+b—cfl

_ wia(Agwarl—Cga:wC*b) wib(A4wb—C4J;w7b+cfl) waic(ngb—Dgwwbercfl) wbiC(B4wb—D4zw7b+C*1)
- Croo—20+et? Como—@—bFet? Diw Do —otb+2

L Cyo—a—bFetl Cym—2? Daw?b Dy

The (1,1) entry of k; implies that A; € p. Additionally, the (1,3) entry implies that By = B]w¢~29+1
(since B1ww?? "1 € 0), meaning that By € p. This is a contradiction.

Next, let

1 z zow! w

—x 1 w

1 1 wb+1

1 1 wc—i—l—a

wc+1—(b+1)
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wafl 1 7Iwb7a+1 7chf2a
. wb w
- wc+1 —a 1
wcfb 7Iwb7(1 o 1
_w(l—l T _1
wb w
- wc—i—l—a 1
wc—b w—l
1 _x,wb—a+1 —ch_2a
w
X
1

wafl 1 _waftH»l _zw072a
,warl 1
- ZDc—i—l —a 1
wc—b—l _wa—a—o—l 1

Assume for the sake of contradiction that h='g € K(p)g2K (p) and k1, k2 € K(p) such that h=1g =

k1g2ks. Note that since a < b and a < ¢ — a, the matrix

1 _wa7a+1 _ch72a
1
ks =
1
—gpwb—etl
is an element of K (p). Hence,
hlg = kigaks
wafl wo?
b+l » ot
ksky ™ =k
wc—i—l—a ot

c—b—1 c—b



The element kzky ' is an element of K (p). Write

Aq Ay Blwil By All AIQ Biwil Bé
1 Ag’(ﬂ A4 Bg B4 Agw Aﬁl Bé Bfl
ksky ™ = , ki =
Ciw Cyw Dy Dyw Ciw Chw D D}w
ng C4 D3 D4 C’éw Cfl Dé D:l
where A;, B;,C;, D;, AL, B, C!, D} € o for 1 <i < 4. We have
A, B A, B Al Bj A, Bj
S I Rl et I Bl =Y O
C: D Cy Dy Cy Dj C, D,
The above equality implies that
Ayt = Alw?, Biw® % = Bjw L.
stated another way, we have that
A1 = A’lw, Bl = Biwci2a+1,
a contradiction.
Next, let
1 y| |
1 x w
h=t Y
1 1
1 1
for some x,y € 0. Now
_w—l 1 —y wc+1—a
w! 1 —y —=x wbt!
h—lg _ tl_l
1 1 w?
1 1 wc+1—(b+1)
_wC*“ 1 _ywafbfl
wb 1 _ywa—b—l _mwc—Qb—l .
w?® 1
i wcfb 1
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wb 1 1

Note that h='g € K(p)g2K (p) if and only if there is some k € K(p) such that h=*gkg, ' € K(p).
If y € p and ¢ > 2b, let

e
— 1 ro—2b—1 |
w
1
and so k € K(p) since ¢ > 2b. Thus
e 1 —ygpo—b1
h~tgkgy ' = i o
w? 1
web 1
1 —w!
1 et I 1 root—2b—1
X ty Tt
1 w
I 1 1
_wa -1
b
x wc—a
oe—b
w1 —yw‘l
—y 1
- w
1 .

Hence, we have that h_lgkgg1 € K(p) since y € p. Now, by a similar argument, taking k = I, we
have that if y € p, ¢ = 2b, and = € p, we have that h~'gkg, * € K(p).

Now, suppose that y € 0* or z € 0*, and suppose that there are ki,ke € K(p) such that
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h™lg = ki1gako. We have that
ky = h""gky gyt
Write
A1 A2 Blw_l BZ
Asw A B B
Hpt= | T T T e k),
Clw CQ@TJ D1 Dgw
ng C4 D3 D4
where A;, B;,C;, D; € o for 1 <i < 4. We have

4, B| 4, B
LY T earn@0).
Ci D Cy Dy

Hence

ky =h""gky gy

If y € 0%, then the (2,1) entry of ki, which is —Cyy + Az’ 2! — C3xww®*~? implies that
C, € p. Additionally, we also have that the (2,3) entry of k, which is —yD; w2~ ¢! 4 bywbta—c —

b—

D3z 1 implies that D; € p, a contradiction.

Finally, let

1 =z w
1 1
h=t
1 1
—x 1 w
for some x € o.
w—l 1 —x wc—i—l—a
b+1
ety — 1 1 w 1
g = 1
1 1 w?
w—l r 1 wc+1—(b+1)
_wa wcf2a _x,waa
wbtl 1
1
ot a wQa—c
i wcfbfl xwa+bfc 1




o wc72a
wbtl 1
- ot a wQa—c
wcfbfl 1
1 —gowttb—e
X ! t
1

= tfl
w? 1

w xwitb—c 1
If it were the case that h™'g = kigoko for some kq, ko € K(p), then we would have that

c—a 1 a+b—c

w —Trw

b+1 1

kl = tl_lk2_192_1

b1 rwottt—c 1
Since t; 'k, ' € K(p) write

A1 A2 Blwfl B2
—17.—-1 _ A3w A4 Bg B4
tl k2 -
Ciw Cow D, Dow
ng 04 D3 D4

where A;, B;,C;, D; € 0 for 1 <7 < 4. Hence

e 1 _xwa+b—c
b+1
w 1
_ —17—-1 -1
k1= ty k3 g,
w® 1
wc—b—l xwa-&-b—c 1
-wcfa T _1 _l.wa+bfc T
whtl 1
w? 1
wcfbfl zwa+bfc 1
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Al A2 Blwfl BQ
A3W A4 Bg B4 1
X 92
Clw ng D1 Dgw

Cg’(ﬂ 04 D3 D4

wia(Ale*a—AgwaJrl) wib(Agwcfa—Azla:wb) waiE(BlwfaJrcfl—Bg;Ewb) wbic(ngC*a—Bz;wa)
Asw—a+b+2 A4w Bswa+b7c+l B4w2b7c+1
= Ciow Cym@ b1 D¢ Dywatb—ett

@ (Crawm*+Csw ") @ (Crzm®+Ciw "T) @ ¢ (Diaw® 4Dy PTT) @b (Do + Dy e
Note that the (3,3) entry of ky implies that D; € p. If € 0%, then the (4,1) entry of k; implies
that Cy € p, a contradiction. If z € p and ¢ # 2b+ 1, then the (2,4) entry of k; implies that By € p.
Additionally, the (4,4) entry implies that D4 € p, a contradiction.
Now, if z € p and ¢ = 2b + 1, we show that h=1g € K(p)g2K (p). Let

1

and so k € K(p). Hence

h—lgkggl _
w

T w72b+071
Since ¢ = 2b+ 1 and z € p, this matrix is in K(p), and hence h=tg € K(p)g2K (p) as desired. O

Lemma 5.2.4. Let a,b, and ¢ be non-negative integers with 0 < a < c—a and 0 < b < ¢ —b.

Assume a < b and let |o/p| = q. Then we have the following:

Number of cosets hK (p) such that h=tg € K(p)g2K (p)

fOT g= diag(wa+1’ warl’ wc+17(a+1)7 wc+17(b+1))

Condition type 1 | type 2 | type 3 | type 4 total
a=bec=2b+1| ¢ 7> q? q @ +2¢%+¢
a=bc>20+1 7 0 0 0 q>

a<bc=2b q? 0 0 0 q>
a<bec=2b+1| ¢ ¢ 0 0 @+ q?
a<bec>20+1 7 0 0 0 q>
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Proof. We will use 2.2.5 and 5.0.1 and we also assume a < ¢ — a. Let

1 w®
1 w®
g1 = and go =
o wc—a
o wc—b
Let
wa+1
o+l
g =
wc+1—(a+1)
wc+l—(b+1)
From 2.2.5 we have the following disjoint decomposition
K(pgK(p) = | |hiE(p).
iel
First, let
1 2wl oyl |w
1 Y T w
h =
1 1
1 1
for some x,y, z € 0. Now
_ -1 -1
w 1 2zl oy wot!
w 1 y x wbtl
hlg=
1 1 wetl—(a+1)
1 1 wetl—(+1)
_waJrl 1 _wfl 7zwcf2a73 7ywcfb7a72
wb+l oL _ywc—b—a—Q _ch—2b—2
wc+1—(a+1) 1
wc+17(b+1) 1
[at1 1 [o—1
b+l o1
o wc+17(a+1) 1
wc+1—(b+1) 1
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1 7zw¢:72a72 7ywcfb7a71
1 _ywc—b—a—l _ch—2b—1
X
1
1
% 1 _ch—Za—2 _ywc—b—a—l
wb 1 7ywcfb7a71 7ch72b71
wc+1—(a+1) 1
wc+1—(b+1) 1
o 1 _ywc—b—a—l
wb 1 _ywc—b—a—l _ch—Zb—l
we 1
web 1
1 _ch72a72
1
X
1
1

As a < c—a, then 0 < c¢— 2a— 1, and hence the matrix

1 _Zw072a72

1

is an element of K (p). Note that we also have ¢ —a — b — 1 > 0 (suppose otherwise, so that
c—a—b<1;since c—a—>b >0 we must have ¢ = a + b. Since ¢ — a > a, we have a < b. Now

b<c—b<c—a, contradicting b = ¢ — a). It follows that h=1g € K(p)g2 K (p) if and only if

o 1 7ch72b71

€ K(p)g2K(p).
wc—i—l—(a—i—l) 1

wc+1—(b+1) 1
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This happens if and only if there is some k € K(p) such that

o 1 _$w072b71

K = kgyt € K(p).
eti—(at1) . Ja ()

zUc-i—l—(b-‘,—l) 1

It is evident that the above condition holds if ¢ > 2b of x € p (in both cases taking k = I). Assume
that ¢ = 2b and = € 0*; we claim that the above expression does not hold. Suppose otherwise, and

we obtain a contradiction. Let k € K (p) such that

b 1 _ch—2b—l

K = kgy ' e K(p).
wc+17(a+1) 1 92 (p)

wc+1—(b+1) 1

Then, writing
A Ay Biw™! B
L Asw Ay Bs By
Ciw Cyw Ds Dyw
Csw Cy Ds Dy

where A;, B;,C;, D; € 0 for 1 < i < 4, we have that

* * * * * * * *

o x Ay — Cyrw 21« Byw® 2 _ Dyxw! | Ay —Chzow™ ! % By— Dyxw™!
s * * * s * * *
* C4w°’_2b * Dy * Cy * Dy

Since = € 0%, the (2,2) entry of k' implies that C4 € p. Similarly, the (2,4) entry implies Dy € p, a
contradiction.

Now let
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for some x, z € 0. Then

b—a c—2a—1

wc—b—l wa—a 1

Since ¢ —2a — 1> 0 and a < b it follows that h~'g € K(p)g2K (p) if and only if

wa

wb-‘rl
€ K(p)g2K(p).

This happens if and only if there is some k € K (p) such that

w(l

b+1
K = kgy ' € K(p).

Now, assume that ¢ # 2b+ 1, and we claim that the above expression does not hold by assuming it

does and deriving a contradiction. By assumption we have that there is some k € K (p) such that

wa

wb-{-l

Then, writing
Aq Ay Biw™ 1 By

Agw A4 B3 B4
Ciw Cow D1 Dyw
ng 04 D?, D4

where A;, B;,C;, D; € o for 1 <1i <4, we have that

* * * *
y * Ay % Byw?btl-c
* * * *
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As Ayw € p, we must have that B,w?*t17¢ and Cyw® 2°~! be elements of 0, or equivalently, that
B, € 0*w® 21 and Cy € 0*w?*t1=¢. As By, C4 € o0, then we must have that c—2b—1,2b+1—c¢ >
0. Hence ¢ = 2b + 1, which contradicts our assumption. Now assume that ¢ = 2b + 1, then a

calculation shows that, with k = so, then

w
b+l
K = kg € K(p).
wc—a
wc—b—l
Next, let
1 y| |
1 T w
h=1t Y
1 1
1 1
for some x,y € 0. Now
wc—a—l 1 _ywa—b
wb 1 7ywa7b 7chf2b71
h 1g — tl—l
wetl 1
we? 1
It follows that h='g € K(p)g2K (p) if and only if
Zvc—a—l 1 _ywa—b
wb 1 _ywa—b _ch—2b—1 .
t; € K(p)g2K(p)
watl 1
web 1
This happens if and only if there is some k € K(p) such that
wcfafl 1 _ywafb
, ’(Db 1 _ywafb _xw072b71 )
k= kg, € K(p)
wotl 1
we b 1

Assume that a < b, and so a < b < ¢ — b < ¢ — a implies that ¢ > 2a + 1. We also have that
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0 <c¢—2b<c—a—b. Suppose that there is some k € K(p) such that

w
wb+1
K = kgy ' € K(p).
w67a
wc—b—l
Then, writing

A As Bl’(ﬂil B

k A3w A4 Bg B4

where A;, B;,C;, D; € 0 for 1 < i < 4, we have that

Alwc_Qa_l—C’gywc_a_b * k%

" * * %k
Cyw? * % %
* * % %

As ¢ > 2a+1, the (1,1) entry of k' is in p, and since the (3,1) entry is in p2, this is a contradiction.
Assume now that a = b. Assume also that ¢ > 2a + 2 and that the condition holds, and we obtain

a contradiction. We have , with k£ written as before,

A1w072a71 _ Cfgyw072a % k%

, * k%
k =

Crw? * k%

* k%

As before, we see that the (1,1) entry is in p and the (3,1) entry is in p2, a contradiction. Assume

now that ¢ = 2a + 1, then with

then k' € K(p).



Finally, let

1 =z ] w
1 1
h=1t
1 1
—x 1_ w
for some x € 0. We thus have that
wc—a—l —1 _mwa+b+1—c
1 whtl 1
h™g=
wa-i—l
wc—b—l T
It follows that h=tg € K(p)g2K (p) if and only if
wcfafl 1 _xwa+b+1fc
wb+1 1
wetl 1
wc—b—l xwa+b+1—c 1

This happens if and only if there is some k € K (p) such that

c—a—1

o 1 at+b+l—c

—Irw

b+1 1

wotl 1

Zvc—b—l

t7' € K(p)g2K(p).

kgy ' € K(p).

xwa—i—b—i—l—c 1

153

Assume that ¢ > 2a + 1 and suppose that the above expression holds; we will obtain a contra-

diction. By assumption there is some k € K(p) such that

a

w
| 77 kgyt € K(p).
e
b1
Then, writing

A As Biw! B,

B Aswo Ay Bs B,

- Ciw Cyw D Dow

Csw Oy Ds Dy



where A;, B;,C;, D; € 0 for 1 < i < 4, we have that

*
Cl‘(IJQ

*

Alwc72a71 _ A3wa7a+1

k0 k
* X
* X
* %
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*

Since the (1,1) entry is in p and the (3,1) entry in in p? we have a contradiction. Assume now

that c=2a+1. A sa<b<c—b<c—aandc—a=a-+1 we must have that a = b. Hence

a+b+1—c=0. Note that in this case the expression

wc—a—l

is equivalent to

This holds if k = s.

1 _xwa+b+1—c

1

kgy ' € K(p)
1
xwa+b+1—c 1
—1
€ K(p)
wa+1

O

Lemma 5.2.5. Let a,b, and ¢ be non-negative integers with 0 < a < ¢ — a. Assume a < b and

0<b<c—"bandlet|o/p| =q. Then we have the following:

Number of cosets hK (p) such that h=tg € K(p)g2 K (p)

for g = wdiag(w®, @®, w2, w?)

Condition | type 1 | type 2 | type 3 | type 4 total

a<b 0 (¢g—1)q 0 g—11| ¢ -1

a=1" 0 0 0 qg—1 qg—1

Proof. We will use 2.2.5 and 5.0.1 and we also assume a < ¢ — a. Let
1 w®
1 w®
g1 = and g2 =
w wc—a
c—b
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Let

From 2.2.5 we have the following disjoint decomposition

K(paK(p) = | |hE(p).

iel
First, let
1 2ol oyl |w
1 Y T w
"= 1 1
1 1
for some x,y, z € 0. Now
b+l 1 22 ype—a—bol
B o+l 1 —yweeb-l  _pppe—2a-1
g = me—b+1 1
oe—a+tl 1
-1
w
X w “
1

1

It follows that h=1g € K(p)g2K (p) if and only if there is some k£ € K (p) such that

b+1 1 72@@,212,2 7ywcfa7b71

a+1 1 _ywc—a—b—l _ch—2a—1

c—b+1 1
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Assume that this is the case and write
A As Biw! B,
Asw Ay B; By
Ciw Cow D Do
Csw (4 D3 Dy
where A;, B;,C;, D; € 0 for 1 < i < 4, we have that

K =

*
A1 —Craw® ™29 _Cyywlite—a=b
*

*
Biw2* ¢l _Digw ! Dyywa?
*

* ¥ X ¥
EE

* *

As the (2,1) entry of this matrix is in p, since ¢ —2a > 0 and ¢ —a — b+ 1 > 0, we have that
Aj € p. Since the (2,3) entry is in o and since ¢ — 2a + 1 > 0, this entry multiplied by w®=2¢+1 is
contained in p. This is By — Dyzw® 2% — Dgywc_“_bH, and since c—2a >0andc—a—b+1 > 0,

we obtain B; € p, a contradiction.

Now let
1 z zow ! w
1 1
h =
1 1
-z 1] | w
for some x, z € 0. We have that
wb 1 _1 _Iwaberl _ch72b
w2 1
hlg =
g wc—b+2 1
wc—a_ i mwa—b+1 1
-1
w
1
x w !
1
w

It follows that h=1g € K(p)g2K (p) if and only if there is some k& € K (p) such that

’Zﬂb 1 _xwa7b+1 _ch72b

wot? 1

ot xwa7b+1 1
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X W kgy ' € K(p).

w

. Assume first that a < b and suppose that h_lgkggl € K(p) and = € p. We obtain a contradiction.
Write
Ay Ay Biow™! B
Asw Ay B3 By
Ciw Cyw D, Dyw
Csw Cy Dy Dy
where A;, B;,C;, D; € o for 1 <1 <4, we have that

—Ajz 4 Azzwb % — Cyzww® 90 « * *

Y * B1w2a—c
Cam?—a—bte * * *
* * Diw !+ Dyxw®? «

Since the (3,1) entry is in p2, then the (1,1) entry is in 0*. However, as a < b, € p, and a+b < c,

then the (1,1) entry is in p, a contradiction. Now assume that « € 0*. Let

Then k € GSp(4, F),\(k) = —1, and k € K (p) since a < b. With this k, then h~'gkgy ' € K(p).
Now assume that a = b, then if there is some k € K(p) such that h_lgk:g;1 € K(p), then by

the above calculation, the (2,3) entry of k" implies By € p and the (4,3) entry implies that Dy € p,

a contradiction.

Next, let
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for some x,y € 0. We have

wcfb 1 _ywaafl
a _ b—a—1 c—2a—1
hely— w 1 yw T -
9= b 1 5
w 1
w 1

b 1 —yb—el
o 1 —ywb-o—l _gpge—2e-t
K = ) kgy ' € K(p).
w 1
w e 1
Assume that this is the case and write
Ay Ay Biw ! By
o Asw Ay Bs By
Ciw Cow Dy Dow
Csw Oy D3 Dy
where A;, B;,C;, D; € 0 for 1 < i < 4, we have that
* * * *
Y Ap — C1zw 2% + Azyw®™ ! x Byw? ¢! — Dyw ! 4 Byyw®tC
- * * * *
* * * *

As the (2,1) entry of this matrix is in p, since ¢ — 2a > 0 and ¢ —a — b+ 1 > 0, we have that
Ay € p. Since the (2,3) entry is in o and since ¢ — 2a + 1 > 0, this entry multiplied by w®=2¢+1 is
contained in p. This is By —Dlmwc_za—Dgywc_a_b_“‘l, and since c—2a > 0and c—a—b—+1 > 0,
we obtain By € p, a contradiction.

Finally, let
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for some x € 0. We have

wotl 1
hlg= tr st

w zwett—c 1
It follows that h=1g € K(p)g2K (p) if and only if there is some k& € K (p) such that

wcfb 1 7l,wa+bfc

/ ot 1 —1

k'= kgy - € K(p).
w 1

w zwott—c 1
Assume that this is the case and that x € p, and we obtain a contradiction. Write
A1 A2 Bﬂﬂil BQ
Agw A4 B3 B4

Clw ng D1 DQZU
ng 04 D3 D4

where A;, B;,C;, D; € o for 1 <i < 4, we have that

Caw b — Az % % x

W * % k%
— Ayt * k%

* % %

As = € p, then the (1,1) entry of k" is in p; also, since a < b, the (3,1) entry is in p?, contradicting

the fact that ¥’ € K(p). Now assume that z € 0*. Since a + b < ¢, the matrix

1 x*lwcfafbfl

1 :Efl,wcfafbfl

1
is contained in K (p), and with this k, we have that h~'gkg, * € K(p). 0

The following theorem summarizes the information contained in the above lemmas:



Theorem 5.2.6. There exist functions n; : S — Z>q fori € {1,...,5} such that

T(1,1, @, )T (@, @, @ o) = ni(a,b, )T (w?, @’ we ™ b+

+ na(a, b, o)1 (w?, ot ot wc_b)
+ ng (a7 b7 C)T(wa+1’ wb? wCia7 wcib+1)
+ n4(a7 bv C)T(wa+15 wb+17 w67a7 w67b)

+ ns(a, b, )wT(w®, @’ w2, w )

for (a,b,c) € S, where n; = n;(a,b,c) is as in the following table:

w
a a+1 a+1 a
b b+1 b b+1 b
c—a+1 c—a+1 c—a c—a c—a
c—b+1 c—b c—b+1 c—b c—b
Condition ny o n3 T4 ns
b<a a=c—a 1 q? 0 0 -1
at+l=c—a 1 7> g-+1 @+ ¢ -1
a+2<c—a 1 q° q @ ¢ -1
b=a b=c—1> 1 0 0 0 0
b+l=c—b 1 q+1 q+1 C+2¢+q| g—1
b+2<c—b 1 q q ¢ q-1
a<b b=c—b 1 0 q? 0 -1
b+l=c—b 1 qg+1 q> @+ ¢? -1
b+2<c—-b 1 q q? 3 -1
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Below is a table that shows the same information, but organized based on the double coset.



Coefficient of K (p)gK(p) in T(1,1,w,w)T(w®, o’ @, @ ?)
g a>b a=1b a<b
c—a=alc—a=a+1|c—a>a+2|c—b=b+1|c—b>b+2|c—b=b|c—b=b+1|c—b>b+2
diag(w®, w®, wT1=e, wetl=b) 1 1 1 1 1 1 1 1
diag(,{ﬂa7 wb+l7 wc+17a7 wc+17(b+l)) q2 q2 q2 q + 1 q _ q + 1 q
diag (!, @b, e tl—(at1) geti=by _ g+1 q g+1 q 7 7 e
diag(wa+17wb+l7wc+1—(a+1)’ wc+1—(b+1)) _ q3 + q2 q3 q3 + 2q2 + q q3 _ q3 + q2 q3
w diag(w?, w?, wt ™, w?b) -1 -1 -1 g—1 qg—1 -1 -1 ¢ -1
Table 1: The table lists the coefficients of K(p)gK(p) for those ¢, written in standard form, that occur in the product

T(1,1,w,@)T (=%, @b, w™*, w?).

that ¢ is not in standard form under the indicated conditions and does not occur in the product.

It is assumed that 0 < a < ¢c—a, 0 < b < c¢c—b, and a,b,c — a,c — b are not all equal.

A — indicates

191
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2

5.3 Preliminaries for the 7(1,w,w?*, w) Operator

Lemma 5.3.1. Let a,b € Z with0 < a <b. Let g € GL(2,0). Set
w? w®
M = g .
1 w?

{w?, w2} ifa="b

Then

{51(M), 52(M)} = § {@**!, w2} or {w’, w"t2} ifb=a+1-
{@?, @2} or {@®, @Y or {22, w®} ifb>a+2
Proof. Let g =[2 B]. Then

mip Mo Aw‘”z Bwb+2
ms3 My

Assume first the a = b. Then

_w2 w?
GL(2,0)MGL(2,0) = GL(2,0) g GL(2,0)
i 1 w?
_w2 w?
=GL(2,0) gGL(2,0)
i 1 w?
_wa+2

=GL(2,0)

It follows that s;(M) = @w® and so(M) = w2,

Assume next that b = a + 1. Then

min(v(my), v(mse),v(ms),v(my))
=min(v(A)+a+2,,v(B)+a+3,v(C)+a,v(D)+a+1)
a if v(C)=0
a+1 if v(C)>1

Hence
w? if v(C)=0
s1(M) =
wet! ifv(C)>1
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Consequently, we have that

SQ(M) = dg(M)/Sl(M)
w4 if v(C)=0
_ wa+b+2 ( )
w et i y(0) > 1

w3 ifv(C)=0
wat? if v(C)>1
Finally, assume that b > a + 2. We then have
min(v(my),v(ms),v(ms), v(my))
=min(v(A)+a+2,,v(B)+a+3,v(C)+a,v(D)+a+1)
a fv(C)=0
=3a+1 ifv(C)=1
a+2 if v(C) > 2

Hence
w? if v(C)=0

s1(M) = { got! ifv(C)=1
w2 ify(C) >2
Consequently, we have that
s2(M) = da(M)/s1(M)
w ifv(C)=0
=@ oot () =1
w2 ifv(C) >2
wbt? ifv(C)=0
=4 ottt ifv(C)=1
w? if v(C) > 2
This completes the proof. O

Lemma 5.3.2. Let a,b,c,d € Z. Then the following are equivalent:
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1. There exist g1, 92,93 € GL(2,0) such that

w? w? w¢
g1 g2 g3 =
1 w® w?
2. We have
{w?, w2} ifa=5b
{w, @’} = {w®, w3} or {wot!, wat?} ifb=a+1-

{@®, @2} or {wot, @1} or {w®2, @b} ifb>a+2
Proof. Assume first that (1) holds and let

M=1 9 =g 95"
1 w? w?

Then {s1(M), so(M)} = {w®, @}, and the assertion follows from5.3.1.

Assume that (2) holds. If a = b, then the conclusion is obvious. Assume that b = a + 1. If

{w¢, @} = {w**, w2}, then

1 w? 1 w? 1 wotl
1 1 1 weth] |1 - wat?
and
1 w? 1 w? 1 w2
1 1 1 waet! 1 watl
If {w® w?} = {@? w3}, then since the invariant factors of
w? 1 w® w2
1] |1 1 wet! - w®  wet!

are w® and w3, the claim is proven in this case.
Finally, assume that b > a + 2. If {@¢, @} = {@?, @**?} or {&°, @’} = {@w*¥2 &}, then it

is easy to verify (1). If {w®, w?} = {@?!, wb*1}, then since the invariant factors of

w? 1 w? w

1| | 1 wetl wotl b

are w®! and w®t!, the claim is proven.
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Lemma 5.3.3. Let dy,da,ds,da,c1,c3 € Z>o with di+ds = da+dy and c1+c3 = 2. Let g € GL(20)

and assume that doy < dy. Then

wel wh
w? wdz
K(p) K(9) .| K
wcs w3
1 w4
wmin(cl-i-dl,ca-&-dg)
ot
=K(p) K(p)
wmax(cl+d1,63+d3)
qu
where
{(d2,ds +1),(d2 +1,d4)} ifdo <dy—1
(‘hv‘h) € {(d27d2+1)} if do = dy
{(ds,da +1),(ds + 1,d2)} ifdo >ds+1
Thus,
1 wh
1 w2
sf(K(p) k(g) K(p))
w wis
w il

= (0,min(c; +di,c3 +d3),q1,q1 + e =di +d3 +1=da +ds + 1)
with (q1,q2) as stated above. Thus

1 w

sf(K(p) k(g) K(p))

(O,min(c1 +dy,c3+ d3),d2,d1 +d3+1=dy+ds+ 1) if Z/(A) =0
(O,min(cl —+ dl, c3 + dg), d2 —+ 1, dl —+ d3 +1= d2 —+ d4 —+ 1) ’Lf I/(A) > 0.

Proof. The proof uses 5.3.1 and a similar argument to that of 5.3.3. O
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Lemma 5.3.4. Let a,b,c,e, f,g € Z>p with0 < a<c—a, 0<b<c—-b 0<e<g—e, and

0< f<g-—f. Assume that a <b and a < c—a. Let k € K(p)

1. Assume that a < b. Then

w w?®
w? w?
sf(K(p) k K(p))
w wc—a
1 wc—b
{(0,a+1,b,c+2),(1,a,b,c+ 1)} ifc—b=">
{(0,a+1,b,c+2),(0,a+1,b+1,¢+2),
ifc—b=0b+1
e (1’a7b7c+1)7(17a7b+1,c+1)}
{00,a+1,b,c4+2),(0,a+ 1,0+ 1,¢+2),(0,a+1,b+2,c+2),
ifc—b>b+1
(1L,a,b,c+1),(1,a,b+1,c+ 1)}
2. Assume that a = b. Then
w w?
w? w®
sf(K(p) k K(p))
w w?
1 wcfb
{(0,a+1,a,c+2),(l,a+1,a+1,c+2),
ifc—a=a+1

(La,a+1le+1)}
S
{(0,a+1,a,c+2),(0,a+1,a+1,c+ 2), _
ifc—a>a+1
(0,a+1,a+2,c+2),(l,a,a+1,¢+ 1)}

Proof. To begin we note that the inequality assumptions imply that a + b < ¢,2b < ¢, and 2a < c.

There is a disjoint decomposition

K(p)=Ki(p)ts | | Ki(p)
uco/p 1
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where
—ww!
1
t; =
w
1
For this, see Lemma 3.3.1 of [12]. Assume first that
1 uww !
k€ || Ki(p)
ueo/p 1
1
We may write
1 1 t
by — rw 1 1 91 92
2w 1 —zw yw 1 (9194 — g293)t ™"
1 yw 1 93 94
1 X Zw!' Y
1 Y
X
1
-X 1

for some z,y,2, X, Y, Z €0, g=[5:92] € GL(2,0) and t € 0*. The matrices

w 1 w 1
w? zw 1 w? zw? 1
w Zw 1l —zw w - 2w 1 —2zw?
1 1 1 1
and
—1
w® 1 X Zw ! Y| |w®
w® 1 Y wb
e 1 me—a
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w w
w2 wb
K(p) ko K(p)
w wC*d
1 wc—b
w 1 t
w? 1 g1 92
= K(p) .
w yw 1 (9194 — gog3)t™
1] lyw 1 g3 g4
w[L
b
X K(p)
wC*d
wc—b
1 w t
1 w? g1 92
= K(p) .
y 1 @ (9194 — g293)t~
Yy 1 1 93 g4
wa
b
X K(p)
wc—a
wc—b
Assume that y € 0. Then
w w?
w2 wb
K(p) ko K(p)
w wC‘*a



1
K(p)
Y
wa
’(Db
1
K(p)
_w
w2
.
wb
K(p)
-1
w
w2

w t
w? 91
1 w
1 1 93
K(p)
o
b
y ] =yt
y_l _y—1
1 -y
1 —yl| [—1
t
91 g2
w (9194 — gag3)t ™!
1 93 94
K(p)
o
b
1 (1 y !
1 1 y!
-1 1
1
t
9 g2
w (9194 — g2g3)t ™!

(9194 — g2g3)t™"

g2

ga
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X

w
ot
K(p)
w()—(l
Zvcfb
1 w
1 w?
K(p)
-1
-1
[ gat~ Lyl
1 g4t_1y_1w_
1
i —gat 'yt
_wa
b
K(p)
wc—a
CUC_b
1 w
1 w?
K(p)
-1
-1
_wa
ot
wc—a
cUcfb
'1 gat~ Ly~ Lol
1 g4t’1y
L —gst™ty~

c—a—b—1

(9194 — g2g3)t ™"

g3 g4
11
g1 g2

(9194 — g2g3)t ™"

g3 g4

g4t_1y_1wc_a_b_1
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1 w t
! = 91 g2
= K(p) 1
-1 w (9194 — g2g3)t™
-1 1 g3 g4
_wﬂ
b
X
wc—a
wc—b
_]_ gst_ly_lwb_a_l
1
X
1
i —gst 'yttt ]
1 g3gat 2y P22 gat~y~lema—b1
1 g4t71ycfa7b71w—1
: K(p)
1
- 1
1 [+
“ 9 g2
= u1 K(p)
w (9194 — g2g3)t™ !
UL e 9a
w* | 1 w
w® 1
* K(p)
wc—a 1
wcfb_ —w 1
where we set w = ggtflyflwaafl, First, assume that w ¢ 0. Since a < b we must have a = b,

and since ww € 0 we may write w = uw ! for some u € 0*. We also see that g3 € 0. We have



= u1 K(p)

= u1 K(p)

= u1 K(p)
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t
w g1 g2
@ (9194 — g2ga)t™"
][ 93 [
1[1
K(p)
we 1
wc_b_ —w 1
¢
w g1 92
w (9194 — g2g3)t ™"
][ 93 g4
17 1
v lw 1
we 1 —ulw
we? 1
1
o -1
—ulw 1
—uw ! —1
K(p)
—ulw
1
t
w g1 g2
w (9194 — g2g3)t™"
1 g3 g4
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w? 1
w? v o 1
X
we e 1 —ulw
web 1
_w_l 1
w -1
X K(p)
w 1
L w ! -1
1 1
PN e @
= U1 (p) gng7a+1 1 _glwb—a+2 =
u tu
ggw:;(L+1 1 1
_t w?
y g1 g2 w®
(9194 — g293)t ™! we e
B 94 web
-w_l 1
w -1
X K(p)
w 1
L w ! -1
1 t
w g g2
= wK(p) '
w (9194 — g2g3)t ™!
1 g3 94
we ! 1
w? w
X K(p)
we w
c—b—1
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1 t
(v
ulK(p) g1 g2
w (9194 — g2g3)t™"
1 93 94
wa—l
b
K(p)w
wc—a
wc—b—l
1 t
w
o w_1u1K(p) g1 92
w (9194 — g2g3)t ™"
1 g3 g4
wa
b+l
K(p)w
wc—a-{-l
wc—b
1 t
w
@ tu  K(p)sy 9 92
w (9194 — g2g3)t™*
1 g3 g4
wa
b1
ot sy K (p)w
.
wcfb
1 t
1
wu K(p) o 92
w (9194 — g2g3)t ™"



w
wc—b
X K(p)w
wc—a+1
bt
1 t
1
= w wiw K (p) - 92
w (9194 — g2g3)t™!
w gs 94
wa
wc—b
X K(p)w
wcfa+1
bt
1 t
1
_ wilK(p) g1 92
w (9194 — g293)t ™!
w gs 94
w(L
wC—(l
X K(p)w
wcfa+1
bt
In the last step we used a = b. Let
1 t
1 g1 g2
(6.e.1.9) = sF(K(p) 1
w (9194 — g2g3)t™
w g3 94
wa
wc—a
X K(p)w)
wc—a+1
bt

Since
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wf wf

w K (p)w’ K(p)w = K (p)uw’ ) K(p),

we obtain

Sf(K(p) k2 K(p)):(67f767g)

sf(K(p) ko K(p)) =(0,a+1,b,c+2).

1 wc—b

w w
2 b
K(p) ko K(p)
w wc—a
1 wc—b
1 [+
w g1 92
=u1 K(p) .
w (9194 — g2g3)t~
11 L 93 94
w® |
b
X K(p)
wC—(l/
wc—b_
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1 t
w g1 g2
=wK(p) .
w (9194 — g293)t~
1 g3 g4
w(l.
b
X K(p)
wc—a
wc—b
1 t
w g1 g2
= wK(p)sa )
w (9194 — g293)t~
1 g3 g4
wa
wb 1
X sy K(p)
wC—(l
wc—b
1 t
1 94 —93
= wK(p) .
w (9194 — g2g3)t™
w —92 g1
wa
wc—b
X K(p)
wC—(L
b
By 5.3.3, since g3 € p when a = b, we now have.
w w?
w? w®
sf(K(p) k2 K(p))
w c—a
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{(1,a,b,c+ 1)} ifb=c—banda<d
S
{(1,a,b,c+1),(1,a,b+1,c+1)} ifb+1<c—banda<bd
and
w w?
w? w?
sf(K(p) ks K(p)) = (L,a,b+1,c+1)
w wC*Q
1 we?b
ifa=0a.
Now assume that y € p. Then
w _wa
w? w?
K(p) k2 K(p)
w wc—a
1 i wcfb
1 | w
1 w?
= K(p)
y 1 w
Y 1] 1
wa
b
X K(p)
wC—(l
wcfb
w
o2
= K(p)
w
1
wll
o=t
X K(p)
wC*ll
c—b
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By 5.3.3 we have

w w
w2 wb
sf(K(p) ko ‘ K(p))
w wc—a
1 wc—b
{(0,a+1,b,c+2)} ifb=c—b
€9{(0,a+1,b,c+2),(0,a+1,b+1,c+2)} ifb+1=c—-0

{(0,a+1,b,c+2),(0,a+1,b+1,c+2), (0,a+1,b+2,c+2)} ifc—b>b+1

Now assume that ko € Kl(p)t;. Write ko = kbty for some kb, € Ki(p). Since t; € K(p) we have

that
w w
w? w?
K(p) ks K(p)
w wC7a
1 wc_b
w wC7(l
w? w®
= K(p) ks K(p)
w w?
1 wcfb
Since k% € Kl(p) we may write
1 Z Y| |1l X t
k2 _ 1 Y 1 91 92
1 1 (9194 — g2g3)t ™"
1 -X 1 g3 g4
1
zw 1

zw yw 1 —axw

yw 1



for some z,y, z, X,

Y, Z€o,g=1[5552] € GL(2,0) and t € 0*. Substituting, we obtain
w w?®
w2 wb
ko K(p)
w wc—a
1 wc—b
_w ] wc—a
w2 , wb
= K(p) b K(p)
w w?
L ]__ wcfb
E 1h 2z vy]l[h x
w? 1Y 1
= K(p)
w 1 1
L 1] 1 -X 1
’ 1
an go| [z 1
X
(9194 — g2g3)t™* w oyw 1 —zw
L 93 94| |Yw 1
_wC7a
ot
X K(p)
wll
i wcfb
1 7 Yw| |w 1 X
1 Yw w? 1
= K(p)
1 w 1
1 1 —-X
t wc—a
g1 g2 w®
X
(9194 — g2g3)t ™" w®
93 g4 wC*b
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1
ch—a—b-{-l 1
X K(p)
ch—2a+1 ywb—a+1 1 _Jjwc—a—b-&-l
ywb7a+1 1
w 1 X
w? 1
= K(p)
w 1
1 -X 1
t we™
g1 g2 w®
x 1 K (r).
(9194 — g293)t~ w?
g3 94 we?
Assume that X € 0*. Then
w w?
w? w®
K(p) k2 K(p)
w we
1 web
w 1 X
w? 1
= K(p)
w 1
1 -X 1
t we e
g1 g2 w?
X ) K(p)
(9194 — g293)t~ w?
93 94 we?
w 1 X
w? X1 1 X1
= K(p)
w 1 —-x1 X1
1 1 X
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1 1 t
-1 Xt g1 92
1 I (9194 — g2g3)t™"
L -1 1 g3 94
_wc—(l
b
X K(p)
wa
wc—b
1 w X
X 1w 1 w? X1
= K(p)
1 —Xw w X1
1 1 X
[ '
-1 g1 g2
X
1 (9194 — g293)t ™"
L -1 gs 94
[ 1 o—a
gatdet(g)~tX 1 1 w®
x
—gstdet(g)"' X1 1 —gytdet(g)"t X! w°
| —gstdet(g) P X1 1 web
w t we e
b
w g1 g2 w
= K(p) X
1 (9194 — g2g3)t™ w®
1 g3 g4 wcfb
1
g t£74t chfafb 1
% et(g) » . » o K(p)
“Tx @ L Tamgx®
3t b
~Tgx @ " 1



183

w t we®
b
w g1 g2 w
= wK(p) )
1 (9194 — g2g3)t~ w®
1 g3 94 we b
[ 1 1
1 1
x t t?
b— —2
_de‘f(:;)Xw 1 d%té(];)ch ‘1
t b
L™ de‘f(ag)X @ 1 1
[ 1
gat wc—a—b 1
« det(g)X » , K(p)
94 c—a—
1 “Tet(gx X
i 1
w t wé e
b
w g1 g2 w
= wK(p) )
1 (9194 — g293)t~ w®
1 g3 g4 wc—b
1
1
X K(p)
r 1
T 1
where r = —%wb’“. Assume that r ¢ p. Since a < b we have that a = b and r € 0%, and so
gs € 0. We have
w w?
w? w®
K(p) ko2 K(p)
w waa
1 we b
w t we
b
w g1 g2 w
= wK(p) )
1 (9194 — g2g3)t~ w?®
1 g3 94 we?



K(p)
t
g1
1 g3
-1 1
—r
1
-1
K(p)
1
t
g1
1 g3
1
|
1
t
g1

(9194 — g2g3)t ™"

(9194 — g2g3)t ™"

(9194 — g2g3)t ™"

92

94

g2

94

g2

94
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wot—a
wb
o
ZUc—b
1
1
ot
wb
%
wc—b
ot
wb
%
ZUc—b
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1 r1 w
1 ! w 1
X K(p)(w™ w)
1 1
1 1
w t we e
b
w w
_ wK(p) g1 g2
1 (9194 — g2g3)t ™" w®
1 g3 94 we?
1 r1 w
1 7t w 1
x K(p)w~
1 1
1 1
. gst _ __b— _ g1t b—a+tl
1 (91y4—39293)7“w ¢ (9194—lg293)rw ‘
g1t b—a+1
— wK 1 (91g4—19293)7“7D ‘
= wK(p)
1
gst b—a 1
(9194—g293)T
-w | t we
« w g1 g2 wb
1 (9194 — g2g3)t " w®
| 1] g3 94 we b
_w .
w 1
X K(p)w™
1
. 1_
w t
w 1 2
— wK(p) ! !
1 (9194 — g293)t~
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,wcfaJrl
b+l )
X K(p)w™
w(l
wcfb
w t
w
_ wK(p)32 g1 g2
1 (9194 — g2g3)t ™"
1 g3 o
wc—a-i—l
@t 1 -1
X sy K(p)w
wa
wcfb
w t
]_ _
— wK(p) g4 gs
1 (9194 — g293)t ™"
w —g2 g1
wc—a-{-l
wc—b
X K(p)w™*
wa
bt
Now, let
w t
1 g4 —93
sf(K(p)
1 (9194 — g293)t "
w —92 g1
wcfajtl
wc—b
X K(p))
wa
b+l

= (0,e, [, 9),
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then
w t
1 94 —93
sf(wK(p) )
1 (9194 — 9293)t~
w —92 g1
wcfaJrl
wcfb )
X K(p)w™)
wa
ot
= (67 e’ f’ 9)7
and hence
w w(l
w? w®
sf(K(p) ko K(p)) = (d.e, [, 9).
w wC*G
1 wc—b
By 5.3.3, using that g3 € 0* we now have that
w w?
w? w®
sf(K(p) ks K(p)) = (0,a+1,b,c+2),
w we e
1 we?

where for this we used that a = b (so that we had b < ¢ —b).

Now assume that r € p. We note that if a = b, then necessarily we have that g3 € p. We have

1 (9194 — g2g3)t ™!
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waa
b
X K(p)
w(l
wcfb
w t
w 91 92
= wK(p)s2
1 (9194 — g2g3)t ™"
1 g3 o
wC—ll
w? .
X sy K(p)
wa
wcfb
w t
1 94 —93
=wK(p)s .
1 (9194 — g293)t~
w —92 g1
wC—IL
wc—b
X K(p)
wa
b
By 5.3.3 we obtain
w w®
w? w®
sf(K(p) k2 K(p))
w w(',‘*a
1 wc—b

{(1,a,b,c+ 1)}
€

{(1,a,b,c+1),(1,a,b+1,¢+1)}

ifec—b=band a<bd

ife—b>banda<bd
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and
w w®
w? w?
sf(K(p) ks K(p))=(l,a,b+1,c+1)
w we
1 wc—b
if a =0.
Lastly, assume that X € p. We have that
w w?
w? w?
K(p) ks K(p)
w wé?
1 wcfb
w 1 X
w? 1
= K(p)
w 1
1 -X 1
t wc—a
g1 g2 wb
X ) K(p)
(9194 — g2g3)t~ w
g3 94 web
1 Xw! w
1 w?
= K(p)
1 w
—Xw™ ! 1 1
t wc—a
9 g2 w?
X . K(p)
(9194 — g2g3)t~ w
g3 94 web
w
o2
= K(p)
w
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t wC*Q
9 g2 w®
X . K(p).
(9194 — g293)t~ w°
g3 94 w b
By 5.3.3 we obtain
w w?
w? w®
sf(K(p) ko2 K(p))
w w e
1 wcfb
{(0,a+1,b,c+2)} ifc—b="b
c {(0,a+1,b,c+2),(0,a+1,b+1,c+2)} ife—b=b+1
{(0,a+1,b,c+2),(0,a+1,b+1,c+2),
(0,a+1,0+2,c+2)} Ife—b>b+1.

O

Lemma 5.3.5. Let a,b,c € Z>¢ be such that 0 <a<c—a and 0 <b<c—b. Assume thata <b

and a < c—a. Let 6 € {0,1} and e, f,g € Z>o. There exist k1, ko, ks € K(p) such that

ks

w9~
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if and only if

{(0,a+1,b,c+2),
(L,a,b,c+ 1)}

ifa<bandc—b=b

{(0,a+1,b,c+ 2),
(0,a+1,b+1,c+2),
fa<bandc—b=b+1
(1,a,b,c+ 1),
(

lya,b+1,c+ 1)}

{(0,a+1,b,c+ 2),
0,a+1,b+1,c+2),

(e, f,9) €

(
(
(0,a4+1,b+2,c+2), ifa<bandc—b>b+1b
(1,a,b,c+ 1),

(

Lab+1,c+1)}

{(0,a+1,a,c+2),
(0,a+1,a+1,c+2), ifa=bandc—a=a+1
(L,a,a+1,c+1)}

{(0,a+1,a,c+2),

(
(0,a+1,a+1,¢+2),

ifa=bandc—a<a-+1.
(0,a+1,a+2,c+2),
(

lya,a+1,c+1)}

Proof. The implication = follows from 5.3.4, and so we prove the other implication. Assume
that the relationship between (4, e, f, g) and each of the sets above holds.

First suppose that a < b, ¢ —b = b, and (d,¢, f,g) = (0,a + 1,b,¢ + 2). By 5.3.2 there exist
g1, 92,93 € GL(2,0) such that

g1 g2 gs =
1 c—b wc+2—b

Letting k1 = k(g1), k2 = k(g2), and k3 = k(gs3) in the statement of the lemma we have that the
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result holds. Assume next that (J,e, f,g) = (1,a,b,¢+ 1). Then the matrices

-1 1
1
k]_ = )
—w? -1 w?
-1 1
1
1
k? = )
w 1
w 1 1
1 _waafl
1 _wc—a—b—l _wc—Qb
ks =
1
,waafl 1

are contained in K (p) and with these the statement of the lemma holds.
Now assume that a < b,c — b = b+ 1, and (d,e, f,g) = (0,a + 1,b,c + 2) or (d,e, f,g) =
(0,a+1,b+1,c+2). By 5.3.2 there exist g1, g2, g5 € GL(2,0) such that

w? w® w?

g1 g2 g3 =
1 c—b wc+27b

Letting k1 = k(g1), k2 = k(g2), and ks = k(gs) in the statement of the lemma we have that the

result holds. If (d,e, f,g9) = (1,a,b,¢+ 1), then the matrices

-1 1
1
kl - )

—w? -1 w?

-1 1

1
1

kQ = )

w 1
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are contained in K (p) and with these the statement of the lemma holds. Assume that (d,¢, f,g) =
(1,a,b+1,¢+ 1). Then the matrices

w
1
]{71 = )
— T w
—1 1
1
1
k2 = )
w 1
w 1
1 _wcfafbfl
1 _wc—a—b—l
ks =
1
1

are contained in K (p) and with these the statement of the lemma holds.

The remaining cases are similarly proven. O

Lemma 5.3.6. Let a,b,c € Z>( be such that 0 <a<c—a and 0 <b<c—0b. Assume thatb<a

andb <c—b. Let 6 € {0,1} and e, f,g € Z>o. There exist k1, ko, ks € K(p) such that
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if and only if

{(0,a,b+1,c+2),
(1,a,b,c+1)}

ifb<aandc—a=a

{(0,a,b+1,c¢+2),

0,a+1,0+1,c+2),
ifb<aandc—a=a+1

(1,a,b,c+ 1),

(1,

l,a+1,b,c+1)}

{(0,a,b+1,c+2),
0,a+1,b+1,c+2),

(d,e, f,9) €

(
(
(0,a+2,b+1,c+2), ifb<aandc—a>a+1b
(1,a,b,c+1),

(

l,a+1,b,c+1)}

{(0,a,a+1,c+2),
(0,a+1,a+1,c+2), ifa=bandc—a=a+1
(l,a+1,a,c+1)}

{(0,a,a+1,c+2),

(0,a+1,a+1,c+2),
ifa=bandc—a<a+ 1.
(0,a+2,a+1,c+2),
(

l,a+1,a,c+1)}

Proof. This result follows from conjugating the matrix equality in 5.3.5 by w, then applying
ref15.16.5. -

Lemma 5.3.7. Let a,b,c € Z>o with0 <a<c—a and 0 <b<c—0b. Assume that a < b so that

alsoa+b< anda < c—a. Let k € K(p). Then

€ {(0,a,b+1,¢+2),(0,a+1,b+1,¢+2),(0,a+2,b+1,c+2),



Proof. There is a disjoint decomposition

where

(La+1,b,c+1),(1,a+ 1,0+ 1,c+ 1)}.

For this, see Lemma 3.3.1 of [12]. Assume first that

We may write

yw

ko € |_| Ki(p)

u€o/p

1

uw
1
1
uww ™!
1
1
g2

(9194 — g2g3)t ™"

ga

1 X Zwt Y

1

for some z,y,2,X,Y,Z €0, g =[5 92] € GL(2,0) and t € 0*. The matrices

and

1
Tw
zw
1] |yw
ot
wc—a

1

yw 1

-1

1

195
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1 wafa Zw71+c72a Yw572a

1 ch—Za
1
—Xwb e 1

are contained in K (p). It follows that

w w
w? w®
K(p) k K(p)
w w67(l
1 wc—b
w t
w? g1 g2
= K(p) )
w (9194 — g2g3)t™
1 93 94
w(l.

b

X K(p)
wc—a
wc—b
wa
obtl
= K(p) K(p)
wc+27a
wc+17(b+1)
Hence
w w?
w2 wb
sf(K(p) k K(p)) = (0,a,b+ 1,c+2).
w w(}—(l
1 wc—b

1 1 X 1 ZY
1 rzw 1 1 1Y
zw yw 1 —zxw 1 1

e 1 -X 1 1
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g1 g2
(9194 — g2g3)t~!
93 g4

for some z,y,2, X, Y, Z €0, g= (52 92] € GL(2,0) and t € 0*.

We have that

w w07a
o2 / ob
K(p) k K(p)
w w?
1 wcfb
w 1 1 X 1 Z'Y
w? zw 1 1 1Y
= K(p)
w zw o yw 1 —axw 1 1
1| |yw 1 -X 1 1
t T _wC—CL
91 g2 w®
X X K(p)
(9194 — g293)t~ w?
93 94| | web
1 1 [= 1 X 1 7Y
xw? 1 w? 1 1Y
= K(p)
2w’ yw? 1 —zw? w 1 1
yw? 1 ] 1 1 -X 1 1
t | _wc_a
9 g2 w?
X ) K(p)
(9194 — g293)t~ w?
g3 94| | web
w 1 X 1 Z'Y
w? 1 1Y
= K(p)
w 1 1



g1

g3
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Assume that X € 0*. Then

g1

g3

g1

gs

wC*(l
b
g2 w
K(p).
(9194 — g2g3)t™! w
94 web
wc—a
b
k' K(p)
w w?
1 wcfb
1 X 1 7Y
w? 1 1Y
w 1 1
1 -X 1 1
wc—a
b
g2 w
K(p)
(9194 — g293)t ™" w®
ga wc—b
1 X
w? X1 1 X1
w 1 —Xx-1 x-1
1 1 X
1 1 7Y
X1 1 1Y
1 1 —x-1 1
-1 1 1
waa
b
g2 w
K(p)
(9194 — gog3)t™* w?®
o web



g1

g1

(9194 — g2g3)t ™"

g2

ga

1 w
X 'w 1
1 —X"'w
1 1 Z
1 Y+zx1
1 1
-1
92
(9194 — g2ga)t ™!
94
w 1
o2
w 1
1 1
1
1 —X!

1

X
2 X—l
w Xt
1 X
Y+272X1! 1
2YX—'4zZX72| | Xt 1
1 —x!
1 | 1
wb
. K(p)
w
wcfb
1 Z Y+2Xx71
1 Y+ZX' 2¥X—142Xx72
1
1
wb
a K(p)
wcfb
1 Z Y+2x71
1 Y4+2ZX1 2y X' 4 ZX2
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g1

g3

(9194 — g2g3)t~ "

1

gatdet(g)~tX 1

g2

[z

1

—gstdet(g)"1 X1

| —gstdet(g)t X!

wc—a
o
K(p)
wa
i wcfb
1 1
1
K(p)
w w
1
[+
g1 g2
(9194 — g2g3)t ™"
L 93 g4
[ 1
t c—a—b
Tt ()X @ 1
t b—
- dégtS(g)w ¢
t c—a—>b
L~ detg(?;])Xw
1 1
1
K(p)
w w
1

1

1 —gstdet(g)~tX~1

1
Z
1 Y+2ZX71!
1
wb
wa
wc—b
t ~—a—>b
Tigx @
1
7Z
1 Y+2zx~1
1

Y+ 272Xt
Y X1+ Z2X2

Y+ 2ZX7!
Y X1+ ZX2
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g1

g3

1

wkK (p)

(9194 — g2g3)t~ "

1
b
"
b
1 Zw!
1
1
1
9
det(g')t1
94
1 1
1
w

w(;*a
b
92 w
K(p)
w(l
Ga wcfb
A 1 Y +2X1
1 Y+2X1
1 1
1 1
t
g1 g2
(9194 — g2g3)t ™"
g3 94
K(p)
1 1 Y+2ZX71
1 1 Y4+2zXx1
w 1
w 1
wcfa
o
K(p)
wa
wcfb
Y+ 2ZX1
1 Y4+2zXx!
1
1

201
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t w(,'*a
b
91 95 w
X K(p)
det(g')t1 w?
95 94 we b
Assume further that Y + ZX ! € p. Then
w we
o2 / b
K(p) k K(p)
w w®
1 wcfb
1 1 Y4+ Z2X1
1 1 Y+zx71
= wK(p)
w 1
w 1
t wc—a
9 95 @’
X K(p)
det(g")t™t w?
95 94 we
1 t wé?
1 91 95 @
= wK(p) K(p)
w det(g")t~! w?®
@ g 94 @
Met
1 / w®
M= 91 92 7
w| |95 94 we

and let s1(M) = w? and s9(M) = w?. By 5.1.1, noting that b < ¢ — b, we have that ¢ = b or

q1 = b+ 1. We now have



_wall
wa
= K(p)
—wa+1
ol
= K(p)
It follows that
w w?
w? wb
sf(K(p) k
w w
1

wa+1

w2

w2

c—b

w

{(LLa+1,b,c+2),
K(p)) €
(L,a+ 1,0+ 1,¢+ 1)}

203

in this case, i.e., when X € 0% and Y + ZX~! € p. Still assuming that X € 0%, suppose that

Y +ZX~! €0*. Then

o wc—a
w? , w®
K(p) k
w w?
1
1 1
1 1 Y
= wK(p)
w 1
w
t wC—CL
« g1 g5 w®
det(g')t1
g3 g4
1 1
1 1
= wK(p)
o Y/—l
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1 1 t
1 1 9 95
X
-1 Yy’ =t 1 det(g’)t~!
-1 v 1 g 94
_wC—(L
wb
X K(p)
wa
wc—b
1 t
1 ! /
= wK (p)us & 2
y'=t 1 det(g/)t™1
vyt 1 g5 g4
wC*(I
wb
x K(p)
w(l
wc—b
t 1
_ K(p)w? 9% gl | X1 1
det(g’)til Z1 T 1 =Xy
g5 A Yi 1
w67a
wb
x K(p)
wa
wcfb
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w t we
b
w 91 g5 w
= K(p)
w det(g")t~t w®
w| | g g @t
) -
Xlwcfafb 1
X K(p)
lec—2a Ylwb—a 1 _Xlwc—a—b
Ylwb_a 1 i
_wc—a+l )
wb'H
=K(p) K(p)
wa+1
i wcberl_
_wa+1
bt
= K(p) K(p)
wc+2—(a+1)
wc+2—(b+1)

where we have used 0 < c—a —b,0 < ¢c—2a and 0 < b — a. It follows that

w w
w? w®
sf(K(p) k K(p)=(0,a+1,b+1,c+2)
w wC—(I
1 wcfb
in this case, i.e., when X € 0X and Y + ZX ! € 0*.
Now, assume that X € p. Then
w w?
w? , wb
K(p) k K(p)
w w®
1 wc—b
w 1 X 1 ZY
w? 1 1Y
= K(p)
w 1 1
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t w e
g1 g2 w®
X . K(p)
(9194 — g293)t~ ot
g3 94 web
1 Xw! w 1 Z Y
1 w2 1Y
= K(p)
1 w 1
—Xw ' 1 1 1
t w e
g1 g2 w®
x 1 K(p)
(9194 — g293)t~ w
g3 94 we?
w 1 Z Y
w? 1Y
= K(p)
w 1
1 1
t w e
g1 g2 w’
X ) K(p)
(9194 — 9293)t~ w®
g3 94 web

Assume further that Z € 0%.Then

w wC—(l
w? , w?
K(p) k K(p)
w w?
1 wc—b
w 1 ZY
w? 1Y
= K(p) ,
w



t w67a
g1 g2
(9194 — g2g3)t™"
93 94
w 1
w2 1
K(p)
w 71 1
1 1
[ 1 1 v [t
1 1 Y 91
zZ-1 1 1
L 1 1 gs
_wcﬂl _
ob
K(p)
w(l
. wc_b_
1 1 w
1 w?
K(p)
712 1 w
1_
[ 1 1 v [t
1 1Y g1
Z 1 1 1
L 1 1 gs
_wc—a
b
K(p)
wa
wc—b

Zfl

(9194 — g2g3)t™

(9194 — 9293)t~

1

1

g2

94

g2

94

207



)
=2
K(p)
w
1
t
g1
(9194 — 9293)t~
g3
—ww !
1
K(p)
w
1
1
-Yz-1 1
z-1 1 Yz!
1
w
w
K(p)t
()
(v
t
9 95
det(g')t1
g5 94
w
)
K(p)
w
w

1 1
1 1
-1 z-t 1
1 1
e
b
o o K(p)
94 web
| _w 1 Y
w 1Y
w 1
1L w 1
11 t
1 —-Y?2z-1 a1
1 (9194 — g2g3)t~
1L 1 g3
1 Y 1
1Y -YZ7 ' 1
1 zZ1 1 Yz—!
1 1
e—a
b
a K(p)
oeb
1 Y| [t
I 91 92
1 det(g')t?
1 95 94

92

g4

208



1 wC*(l
_y Y b
det@')z 1 w
2 gty —gitY
det(g’)Z det(g’)Z det(g’)Z
_ g5ty 1
det(g’)Z
w 1 Y| |t
w 1Y 91
K(p)
w 1
w 1 /A
_wc—a
o=t
wa
CUcib
[ 1
—gatY —a—b
EET;TZCUC a 1
t? .—2 g5ty __p— —g4tY
det(g')zwL “ Tet(ghZ @ “1 Tet(ghz @
gétY b—a 1
L det(g’)Z
w 1 Y| |t
w 1Y ‘4
K(p)
w 1
@ 1 95
w67a
ot
K(p)
wa
CUcib
1 Y| |w t
1Y w g1
K(p)
1 w
1 w A

det(g')t~?

K(p)

c—a—b

det(g)t~!

det(g')t1

209
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,wC*a
=
X K(p)
w(l
wcfb
w t
i ! /
_ K(p) g1 g2
w det(g')t1
w g3 94
wC—ll
=
X K(p)
wa
wcfb
_wcfaJrl
whtl
= K(p) K(p)
wa—i—l
i wc—b+1
-wa+1
b+l
= K(p) K(p)
wc+27(a+1)
I o2 (b+1)
It follows that
w w?
w? w®
sf(K(p) k K(p)) = (0,a+1,b+1,c+2)
w w67(1
1 wc—b
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w 1 Z Y
w? 1Y
= K(p)
w 1
1 1
t wc—a
g1 g2 w?
X K(p)
det(g)t~! w?®
g3 94 we?
1 Zw™! w 1 Y
1 w? 1Y
= K(p)
1 w 1
1 1 1
t wé e
g1 g2 wb
X K(p)
det(g)t~! w®
g3 g4 wc—b
w 1 Y
w? 1Y
= K(p)
w 1
1 1
t we
g1 g2 wb
X K(p)
det(g)t—! w®
93 g4 we?
Assume that Y € 0*. Then
w w07a
w? w®
K(p) k' K(p)
w w?
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w 1 Y
w? 1Y
= K(p)
w 1
1 1
t wc—a
g1 g2 w®
X K(p)
det(g)t~! w®
g3 g4 we?
w 1 Y
w? 1 Y
= K(p)
w y-1 1 y-1!
1| |Yy—! 1 y-1
[ 1] [ 1 '
1 1 [ g2
X
-1 Y-t 1 det(g)t~!
-1 y-! 1 g3 g4
-wc—a
b
X K(p)
wa
wc—b
w 1 1
w? 1 1
= K(p)
w -1 y-1 1
1] |—-1 y-! 1
t we?
g1 92 w?
X K(p)
det(g)t~! w?
c—b

gs 94 w



w 1
w? 1
K(p)
w -1
1 -1
1 we
——gat 1 w
det(g9)Y
git gat
det(g)Y det(g)Y
t
deg(lg)Y 1
1 1
1 w
K(p)
—w w
—w 1
_w67(1
wb
w(l
i wc—b
[ 1
—gat c—a—b
det(g;)Yw 1
1t b—a t
def(g)Yw 1 de‘§(2g)Y
t b—a
L deg(lg)Yw
_1 | _t
w g1
K(p)ur
w det(g)t—!
L 11 L 93
1 1 [
() 91
up K(p)
w det(g)t~!
L I [ 93

w

g1

g3

g2

g4

g2

94 |

213

g2
det(g)t~1
94
K(p)
wc—b
g2
det(g)t~!
g4
K(p)
,w(',‘*a T
b
K(p)
wa
wcfb_
wc—a T
b
K(p)
wa
wc_b_




1
w
= u1 K(p)s2
w
1
wc—a
w?
X
wa
zvc—b
1
1
= u1 K(p)
w
w
w(,‘*a
wcfb
X
w(l
=
Let
1
M =

t
g1 g2
det(g)t~*
g3 94
-1
sy K(p)
t
g1 g2
det(g)t~!
gs g4
K(p).
g1 —g3| |wP
w| 792 g1

214

and let 51 (M) = w? and s2(M) — w®. By 5.1.1, taking into account that b < ¢ — b, we have that

g1 =bor gg =b+1. We have

ot

w2



o

w2

It follows that

sf(K(p) K

1 c—b

(1aa+17bvc+1)7
K(p)) €{
(La+1,b+1,c+1)

in this case, i.e. when X € p, Y € 0%, and Z € p. Finally, assume that Y € p. Then

w wC*H.

K(p)
g1 g2
det(g)t~!
g3 94
t
g1 92
det(g)t™!
1 g3 94

215



a+1

sf(K(p)

1

g1 92
w det(g)t—1!

K K@) ={0,a+2,b+1,c+2)}

c—b

216

in this case, i.e. when X,Y,Z € p. For this last assertion we note that a + 2 < ¢ — a since

a<b<c—-b<c—a.

Lemma 5.3.8. Let a,be€ Z with0<a <b and let g € GL(2,0). Set

Then

{81(M),s2(M)} =

M = g g.

{,Zva7 wa+2}

{wa)wa—i-?)} or {wa-&-l’ wa+2}

{@?, @2} or {wt, w1} or {w*t2 &}

ifa=10
ifb=a+1-
ifb>a+2

O



217
Proof. Let g =[4 B]. Then

M =

m3 My

[ml m2] Aw® Bw?

Assume first the a = b. Then

GL(2,0)MGL(2,0) = GL(2,0) ! 2] g [wa

w
_1 w?
=GL(2,0) ] [
2 o

=GL(2,0)

It follows that s;(M) = w® and so(M) = w2,

Assume next that b = a + 1. Then

min(v(ma), v(mz),v(ms), v(ms))
— min((A) + a,v(B) + a+ 1,v(C) + a+2,v(D) +a+3)
o ifu(4)=0
at+1  ifu(d)>1
Hence

w® ifv(4)=0
Sl(M) =

wot! if v(A)>1
Consequently, we have that
s2(M) = da(M)/s1(M)
_ atbt2 w ifv(4)=0
o=@t if y(A) > 1
wats if v(A)=0
w2 ify(A) > 1

Finally, assume that b > a + 2. We then have

min(v(my), v(mse),v(ms),v(my))



=min(v(A) + a,v(B) + a,v(C) +a+2,v(D) + a + 3)
a ifv(A)=0

=qa+1 ifv(Ad)=1
a+2 if v(A) > 2

Hence

w® if v(A)=0
si(M) = ot ifp(A) =1
wt? if v(A)>2
Consequently, we have that
s2(M) = da(M)/s1(M)
w @ if v(4)=0
= w2 (et ifv(4)=1
w2 if v(A) > 2
w2 if v(4)=0
=@ttt ifu(A) =1
w’  ifu(A) >2
This completes the proof.

Lemma 5.3.9. Let a,b,c,d € Z. Then the following are equivalent:

1. There exist g1,92,93 € GL(2,0) such that

1 w? w€
g1 g2 gs =
w? w® w?
2. We have
{w?, w2} ifa=1b
{wc’wd} = {wa7wa+3} or {wa+17wa+2} Zfb =a-+1-

{@?, @2} or {@*t!, @1} or {22, @’} ifb>a+2
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Assume that (2) holds, and without loss of generality we may assume ¢ < d. If @ = b, then the

assertion (1) is true by taking g; = g» = g3 = I. Assume that b = a+1. If {w®, @'} = {w?, w3},

then we may take g1 = go = g3 = I. If {w®, w?} = {@w*"!, w2}, then w® = w! and w? = w**+2.

If ©,y € M(2,0), write  ~ y if and only if there exists G1,G2 € GL(2,0) such that G1zG3 = y,

We have that

1 w 1 w? watl
w? 1 w? w2
~Y
wa-i—l
waJrl
~Y

a+2

w

It follows that the desired relationship holds. Now assume that b > a+2. If {w®, w?} = {@®, w*?},

then we may take g1 = go = g3 = I. If {@®, @} = {@**!, @t}

waJrl

1 w 1 w?

w2 |1 w® w2

waJrl
wa+2

waJrl

For the case {w®, w?} = {w**2, w’}, we have that

This completes the proof.

we have that

wo?

O

Lemma 5.3.10. Let a,b,c,e, f,g € Z>o with0 <a <c—a,0<b<c—-b0<e<g—eand

0<f<g-—f. Let 6 € {0,1} and assume a < b. Then the following are equivalent.
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1. There exist ki, ka, ks € K(p) such that

wf

2. We have
(0,e,f,9) € {(0,a,b4+1,¢4+2),(0,a+ 1,0+ 1,c+2),(0,a+2,b+1,c+2),
(La+1,b,c+1),(l,a+1,b+1,c+1)}.
Proof. The forward implication follows from 5.3.7, so we show the other implication. Assume

that (2) holds and note that a < b < ¢—b < ¢ — a, so that a + 2 < ¢ — a. Assume first that

(d,e,f,9) =(0,a,b+ 1,c¢+ 2). By 5.3.9 there exists g1, 92,93 € GL(2,0) such that

wc—a+2

Taking determinants, we see that det(g1 g2g3) = 1. We will also use the map defined in the paragraph

before5.1.3. Hence we have that

wc—i—l—b wg—f

so that (1) holds. A similar argument shows that (1) holds if (d,e, f,g9) € {(0,a + 1,b+ 1,c+
2),(0,a+2,b+1,c+2)}. If (d,e, f,9) = (1,a+ 1,b,¢+ 1) then the identity

wc+1— (a+)

wc+17b
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1 1 1 —w!
B 1 w 1
N 1 w w? w
w -1 w| |—w 1
) ] me—a—b—1
ot 1 e—a—b—1
g w? -1
web 1

proves that (1) holds. If (d,e, f,g) = (1,a+ 1,0+ 1,¢+ 1), then the identity

waJrl
o+l
w
wetl—(a+1)
wc+1f(b+1)
1 —o! 1 |
-1 w w 1
w w? w
w =1 | w 1
o T -1 _waafl
w? 1
X
we e -1
wcfb_ _waafl 1
proves that (1) holds. O

5.4 Computing Coefficients for T(1, w, w? w)

Note that, by the results in the third section of this chapter, we have the following table of which

double cosets have positive coefficients in the product of

T(17 w? wz? w)T(wa7 wb? wCia? wc*b)?

indicated by a e, where 0 < a<c—aand 0 <b<c—b.



b<a b=a a<b
g
c—a=al|lc—a=a+1|c—a>a+2|c—a=a+1|c—a>a+2|c—b=b|c—b=b+1|c—b>b+2
diag(w?, w1, wo—a+2, et+l) N o N o o o o o
diag(wt!, bl oot membtl) — . . o . . o o
diag(w?t?, @ttt we=e, we bt — — ° — ° . . .
w diag(w?, @, we et bt o . o - — _ _ _
wdiag(w®™!, @b ot bt - . . . . . . .
wdiag(w(wl’wb+17wc—a7wc—b) _ _ _ _ _ _ _ .

Cae



223

Note that when a < b, then a < b<c¢—b<c—a, and so ¢ —a > a + 1. Additionally, since we
assume not all a,b,c — a,c— b are equal, when a = b, then ¢ — a = a cannot occur. This is reflected

in the table above. In what follows, let

g1 = and  go =

w w

Lemma 5.4.1. Let a,b,c € Z with 0 <a<c—a and 0 < b < c—b. Assume that a,b,c —a,c—b

are not all equal. Then ¢ > a + b.
Proof. Assume first that a < b then
a<b<c—-b<c—a.

By assumption, one of these inequalities is strict, and hence ¢ > a 4+ b. A similar argument when

a > b proves the claim as well. O

Call the set of (a,b,c) in the above lemma S.

Theorem 5.4.2. There exist functions m; : S — Z>o fori=1,...,6 such that
T, w,o?, o) (w0, wb, w2, w?)
=ma (aa ba C)T(wa7 wb+1a w67a+23 w67b+1)

+ma(a,b,e)T(w, it ot wcfbﬂ)
+ m3(a’7 b7 C)T(wa+2’ wb-‘rla wC—a7 wc_b+1)

b c—a—%—lﬂz

+ m4(a7 b7 C)wT(wa’ w 7w C C—b+1)

+ ms(a,b, )wT (@, wb, @, w0t

+ mg(a, b, )wT (@, Wbt @, w?)

for (a,b,c) € S, where m; = my(a,b,c) is as in the following table:
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w w w
a a+1 a+2 a a+1 a+1
b+1 b+1 b+1 b b b+1
c—a+?2 c—a+1 c—a c—a+1 c—a c—a
c—b+1 c—b+1 c—b+1 c—b+1 c—b+1 c—b

Condition mq mo ms my ms me

b<a a=c—a q 0 0 q—1 0 0

at+l=c—a q q? 0 q—1 ¢ -1 0

a+2=c—a q *—q ¢+ q—1 *—q 0

a+3<c—a q 7 —q ¢’ q—1 @ —q 0

b=a a=c—a 1 0 0 0 0 0

a+l=c—a 1 ¢ 0 0 ¢ -1 0

a+2=c—a 1 @ —q @+ ¢ 0 @ —q 0

a+3<c—a 1 @ —q @ 0 @ —q 0

a<b b=c—1b 1 @ —q? ¢+ 0 ¢ —q* 0
and b+1=c—0» 1 q?’fq2 q4+q3 0 q3fq2 q4fq2
a+2=c—a|b+2<c—-0 1 ¢ — ¢? ¢+ 0 @ —q? -

a<b b=c—b 1 ¢ —¢ q* 0 ¢ - ¢ 0
and b+l=c—b 1 @ —q? qt 0 e —-¢ |-
a+2<c—a|b+2<c—b 1 @ —q? q* 0 @ —q? -

Proof. Let (a,b,¢c) € S. f a=b=c—a=c— b, then we have

T, w,o?, @) T (@, o’ @ % w

c—b)

This proves the fifth line of the table. For the remainder of the proof we assume that a,b,c— a and



¢ — b are not all the same. Define

Xo(a,b,c) =

{(a,b+1,c+2)}
{(a,b+1,c+2)
(a+1,0+1,c+2)}
{(a,b+1,c+2),
(a+1,0+1,¢+2),
(a+2,b+1,c+2)}
{(a,a+1,c¢+2),
(a+1,a+1,c+2)}
{(a,a+1,c+2),
(a+1,a+1,c+2),
(a+2,a+1,¢+2)}
{(a+1,b,c+1)}
{(a,b+1,c+2),
(a+1,0+1,c+2)}

(a+2,b+1,c+2)}

ifb<aand c—a=a,

ifb<aandc—a=a+1,

ifb<aandc—a>a+2,

ifa=bandc—a=a+1,

ifa=band c—a>a+ 2,

ifb>aand c—b=0,

ifb>a

225
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and
{(a,b,c+1)} ifb<aand c—a=a,
{(a,b,c+1)
(a+1,b,c+1)} ifb<aandc—a=a+1,
{(a,b,c+1),
(a+1,b,c+1)} ifb<aandc—a>a+2,

Xi(a,b,c) =

{la+1,a,c+1)} ifa=bandc—a=a+1,
{(a+1,a,c+1)} ifa=bandc—a>a+2,
{la+1,b,e+1)} ifb>aand c—b=09,
{(a+1,b,c+1),
(a+1,b+1,¢+1)} ifb>aandec—b>b+1.

For (a,b,c) € S the sets Xo(a,b,c) and X;(a,b,c) are contained in S. Moreover, we have for
(a,b,c) € S,
T(,w,o?, @) T (w®, o, @, o) = Z no(x)T(x) + Z ny(x)wl (z)
z€Xo(a,b,c) z€X1(a,b,c)
where ng(z) and nq(z) are positive integers for z € Xy(a,b,c) and © € Xi(a,b,c), respectively.

An examination of the sets Xy(a,b,c¢) and X;(a,b,c) for (a,b,c) € S now shows that there exist

functions m; : S — Z>g, 7 € {1,...,6}, such that the equality in the claim holds; also, the functions
m;, © € {1,...,6}, take on the value 0 as indicated in the table. We now calculate the non-zero
values of the m;, ¢ € {1,...,6}. In the following we let

g1 = diag(1, @, @?, ). g2 = diag(w®, @w®, @™, w?).

We fix coset representatives for the decomposition of K(p)gi1 K (p) into disjoint left cosets as in
Proposition 5.0.1. These coset representatives depend on parameters that run over the groups o/p
and o/p?; if a parameter is the zero of o/p and o/p?, then we take the representative in o to be 0.
The disjoint decomposition from Proposition 5.0.1 has two parts, and we refer to representatives

from these two parts of being of type 1 and type 2, respectively.

Calculation of m;. Let g = diag(w?, @, w2 we=b*1). We have that mi(a,b,c) is

equal to the number of coset representatives h such that h='g € K(p)g2K (p); we will use
that h='g € K(p)g2K (p) if and only if there exists k € K (p) such that h~'gkgy * € K(p).
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Type 1. Assume h is of type 1, so that

1 =z 1 2ol oyl |w?
1 1 w
h= Y
1 1 1
—x 1 1 w

for some z,y, z € 0. Assume there exists k € K(p) such that h_lgkg;1 € K(p); we will

obtain a contradiction. Write

A1 Ay Biw! B
Asww Ay Bs B,
Ciw Chw D, Dyw
Csw  Cy Ds Dy

Then a calculation shows that

* * * *
* * * *
h™lgkgy ! =

Cirwt 202 . « Diw? «

* * * *

Since this element is in K(p) and since Diw? € p, it follows that Ciww24+2 € o*.

However, since ¢ — 2a + 3 > 3, C1w® 223 is contained in p, a contradiction.

Type 2. Assume next that A is of type 2, so that

1 =z 1 z y| |w?
1 1 w
h =t Y
1 1 1
-z 1 1 w

for some x,y, z € 0.

We first prove that the following implications hold:

h~tgkgy ' € K(p) for some k € K(p) = z,Zz€p (5.1)

h~lgkgyt € K(p) for some k € K(p) and ¢ >2a and b>a = x,y,z€p. (5.2)
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Proof of (5.1): Assume that h~'gkg, ' € K(p) for some k € K(p). We have

* * * *
* * * *
-1 -1 _
h™"gkgy = =
* * * *

Ciwtl=e=b _ Aix % Dyw® b — Biaw?e—c1 «
Since the (4,1) entry is in p, and ¢+ 1 —a — b > 0, we obtain A;z € p. Also since the
(4,3) entry is in o, we have
Dgwaib — lew2a7c71 €0
DSwa7b72a+c+1 o Bll‘ c pcf2a,+l (multlply by wcf2a+1)
D3wcfafb+1 _ le c pcf2a+l
Dyt " _Bixe P (since ¢ —2a + 1> 0)
Bz €p (sincec—a—b+1>0).
Since both A;x, Byx € p and since at least one of A; and By is in 0* (as k € K(p)), we
must have x € p. We may thus assume x = 0. Now
h~gkgy !

Ciw® 2% — Coyw® * P+ Ajzw™ ! * Dyw ! — Dyyw® 7! + Byzw?e—c2

* * *
* * *
* * *

Since the (1,1) entry is in 0, and since ¢ — 2a > 0 and ¢ —a — b > 0, we obtain A,z € p.

The (1,3) entry is in p~*. Therefore:

Dlw_l _ Dgywa—b—l +B12w2a_c_2 c p—l

a—b—1 + Blzw2“_c_2 c p—l

—Dsyw
—Daymt20+2ta—b—l | g ¢ pe-2a+2-1 (multiply by e 2a+2)
—Dayw® o=t L B 5 e pe2at]
—Dayw® ¢ " L Bizep (since ¢ —2a +1 > 0)

Biz€p (sincec—a—b+1>0).

*
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We now have A;z, B1z € p; as above, this implies that z € p. This completes the proof
of (5.1).
Proof of (5.2): Assume that there exists k € K (p) such that h~'gkg, * € K(p) and that

¢>2a and b > a. By (5.1) we may assume that © = z = 0. We have

* * * *

plghget — |0 T A e
? * —Biw?*¢ «

* * * *

Since the (3,3) entry is in 0, —B1w?*~¢ € o; since 2a — ¢ < 0 we must have By € p. Since
k € K(p) this implies that A; € 0*. Since the (2,1) entry of h~'gkg, * is contained in
p, and since b —a + 1 > 1, we must have A1y € p; since A; € 0%, we get y € p. This
completes the proof of (5.2).

We now claim that the following holds:

Type 2
Condition h=lg e K(p)g2K(p)?
x¢porzégp no
re€pand z€panda>b yes
xe€pand z€panda<bandy¢p no
rz€pand z€panda<bandy€p yes

The first line of the table follows from (5.1). The second line of the table follows from

the identity

w
—1 —1 1
h™ gkgy " = € K(p)
—w
1
with h as above with £ = z = 0 and
1
_ywa—b 1
k= € K(p)
1 ywa—b
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For the third line, assume that z,z € p, a < b, and y ¢ p. Since we are assuming that
integers a,b,c — a,c — b are not all the same, and since a < b < ¢—b < ¢ — a we must
have ¢ > 2a. The third line follows now from (5.2). The fourth line follows from the

identity

hlgkgy ' =

with h as above with x =y=2=0and k= 1.

The following table summaries the results for this value of g:

g= diag(wa, wb+17 wc7a+27 wcfb+1)

Number of cosets hK (p) such that h=tg € K(p)g2 K (p)

Condition | Type 1 | Type 2 Total
a>b 0 q q
b>a 0 1 1

Calculation of my. Let g = diag(w®t!, w1, we= o+l we=b+1), We may assume that ¢ —a >

a + 1 because otherwise ma(a, b, c) = 0.

Type 1. Assume h is of type 1, so that

—x 1 1 w

for some x,y,2 € o, then h=lg ¢ K(p)g2K(p). To see this, assume that h=lg €
K(p)g2K (p), i.e., there exists k € K(p) such that h='gkg, ' € K(p); we will obtain

a contradiction. Write

A Aq Blwil By
" Asw Ay Bs By
C’lw ng Dl Dgw

ng 04 D3 D4
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Now

* * * *
% * * *
14 1
h™"gkgy " =
Cywtl=20 . « Diw x
* * * *
Since h~'gkg, ' € K(p), we must have Cyw®t1=2¢ € 0% or Dyw € 0*. But Cywt!=2¢ ¢

p and Diw € p, a contradiction.

Type 2. Assume next that h is of type 2, so that

1 =z 1 z oyl |=?
1 1 w
h =t Y
1 1 1
—x 1 1 w

for some x,y, z € 0. We first prove that the following implications hold:
hlgkgyt € K(p) for some k € K(p) and a >b = x € p, (5.3)
hlgkgy* € K(p) for some k € K(p) and a >band ¢ >2a+1 = z€o0X, (5.4)

h=lgkgy* € K(p) for some k € K(p) and b>a = ay + 2z € 0%, (5.5)

Proof of (5.3). Assume that h~'gkg, ' € K(p) for some k € K(p) and a > b. We have

* * * *
k k * *

h~tgkgy ' =
—Ayw? o« —Bywlt2e—c *
* % D3w®? — Bizw?* ¢ «

Since the (3,1) entry of h='gkg; ' is in p? the (3,3) entry must be in 0*; hence, there
exists a unit u € 0* such that —Bww!™297¢ = 4, so that B; = —uw® 2%"!. The (4,3)
entry of h='gkgy* is in o; therefore D3w®® + uzw =" € 0. Since a > b, we must have
urw ! € 0; as u € 0%, this yields 2 € p, completing the argument for (5.3).

Proof of (5.4). Assume that h='gkg,' € K(p) for some k € K(p) and @ > b and
¢ > 2a+ 1. Then by (5.3) we may assume that x = 0. We have

Clwcf2a71 _ ngwcfafb +A12’ % % %
* x k%

h™'gkgy ' =
—Ajw? * % %

* * * *
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Since the (3,1) entry of h_lgkg;1 is contained in p2, the (1,1) entry must be in 0*.
Since ¢ —2a —1 > 0 and ¢ — a — b > 0, this implies that A1z € 0™ so that z € 0*.
Proof of (5.5). Assume that h='gkg,' € K(p) for some k € K(p) and b > a. Since

a<b<c—b<c—awehavec—2a—1>0. We have

Ciw 207 — Cayw® P 4 Aj(wy +2) * * *
* ¥ % ok
h~'gkgy 't =
—Aw? x %k
* * k%

Since the (3,1) entry of h='gkgy ' is contained in p2, the (1,1) entry must be in 0*.
Since ¢ —2a —1 > 0 and ¢ — a — b > 0, this implies that A;(zy + z) € 0* so that
Ty + 2z € 0%,

We now claim that the following holds:

Type 2
10| Condition h=lg € K(p)g2 K (p)?
1 b>aandzy+z€p no
2 b>aand xy+ z € 0% yes
3 a>band x € 0% no
4 |a>bandz€pandze€o” yes
5 a>bandzepand ze€pand c=2a+1 yes
6 a>bandzepand zepandc>2a+1 no

Line 1 of the table follows from (5.5). For Line 2, assume that b > a and zy + 2z € 0*.

Then ¢ —2a — 2 >0, and

r€o0® = h7lgkgy' € K(p)

with
1 x*lwaafl —(l'y+ Z)71w072a72
e (ay+2) yley+2) w0 —ya(ey + 2) T
k= € K(p),
1
—z(zy + 2) " twbmat 2% (zy +2)7t
and

z €p (sothat z =0and z € 0*) = h™'gkg,* € K(p)



233

with
1 _Z—lwc—Qa—2 yz—lwc—a—b—l
y 1 yz—lwc—a—b—l _yQZ—lwc—Zb
1
1

Line 3 follows from (5.3). For Line 4 assume that a > b, z € p, i.e., x =0, and z € 0*.
Then h~'gkgy ' € K(p) with k as above (recall that ¢ — a > a + 1 by assumption). For
Line 5 assume that a > b, x € p,ie., x =0, z € p,ie., 2 =0, and ¢ = 2a + 1. Then

h~lgkgyt € K(p) with

—o ywa—b-ﬁ-l

Finally, Line 6 follows from (5.4).

The following table summaries the results for this value of g:

g = diag(waJrl’ warl’ wcfaJrl’ wcberl)

Number of cosets hK (p) such that h=tg € K(p)g2 K (p)

Condition Type 1 | Type 2 Total
b<aand |c—a=a+1 0 q? q?
c—a>a+2| 0 —q| @—q
c—a=a+1 0 q? q?
a=1>band
c—a>a+2 0 *—q| ¢*—q
a<band |[c—a>a+2 0 e -3¢

Calculation of ms3. Let g = diag(@®2,@w?!, @ @ t+1). We may assume that ¢ —a >

a + 2 because otherwise mg(a,b,c) = 0.
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Type 1. Assume h is of type 1, so that

1 =z 1 2ol oyl |w?
1 1 w
h= Y
1 1 1
—x 1 1 w

for some z,y,z € 0. We claim that
h~lgkgyt € K(p) for some k € K(p) and a >b = x € p. (5.6)

Proof of (5.6). Assume that h~'gkg, ' € K(p) for some k € K(p) and a > b. Write

A1 AQ Blw_l B2
Asw  As B3 By

k =
Ciw Cow Dy Dow
ng 04 D3 D4
We have
* * * *
* * * *
h/_lgkggl _
Clw072a+1 * Dl *
* * D3w® P+ Dizw™ ! %

Recalling that ¢ — a > a + 2, we have ¢ — 2a + 1 > 3. This implies that (3,1) entry of
h~'gkgy ' is contained in p3. Therefore, the (3,3) entry Dy is in 0*. The (4,3) entry is
0 as a > b. It follows that Dyzw ™! € o, so that x € p.

We claim that the following holds:

Type 1
191 Condition h™'g € K(p)g2K(p)?
1 a>band x € o no
2 a>band xz €p yes
3 a<b yes

Line 1 follows from (5.6). For Line 2, assume that a > b and = € p, i.e., x = 0. Then
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h~lgkgs ' € K(p) with

k= € K(p).

1

For Line 3, assume that a < b. Then h~'gkg, * € K(p) with

1 wa,a,1 xywcf2a72 + ch72a73 ywcfafbfl
1 wc—a—b—l
k= Y
1
7wa7a71 1
Type 2. Assume next that h is of type 2, so that
1 =z 1 z oyl |=?
1 1 w
h=t Y
1 1 1
—z 1 1 w
for some z,y,z € 0. We claim that
h~lgkgy* € K(p) for some k € K(p) and a > b = z € p and ¢ = 2a + 2 (5.7)

hlgkgy* € K(p) for some k € K(p) anda <b = c=2a+2andb=a+1. (5.8)

Proof of (5.7). Assume that h='gkg, ' € K(p) for some k € K(p) and a > b. Write

A1 Ay Biw! B
Asw Ay B3 By
Ciw Cow Dy Dyw
Csw Cy Ds D,

‘We have
* * * *
* * * *
-1 -1 _
I gkgy” = 242
—Ayw® x — B w?t2a—c *

* % D3w? % — Bizw!t2e—c «
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Since the (3, 1) entry of h~'gkg; " is in p?, the (3,3) entry must be in 0*. Let u € 0* be
such that u = —Byw?t2%7¢, Then B; = —uw 242, The (4, 3) entry is contained in o.
Since a > b, this implies that —Byzw!T227¢ € o. Therefore, uzcw—! € 0. This implies

that x € p, so that we may assume that © = 0. We now have

Ciw2072 — Cayw P 4 Az x % *

* x ok %k
— 1
hlgkgy ' =

2
— Ao
1o * % %
% % %k %

Since the (3,1) entry is p3, the (1,1) entry must be in 0. Since c—a—b > 0, this implies
that Cyww® 2%72 € 0*; since ¢ — 2a — 2 > 0 by assumption, we must have ¢ = 2a + 2.

Proof of (5.8). Assume that h='gkg, ' € K(p) for some k € K(p) as above and a < b.

We have
Crow* 2072 — Az’ — Cayw® *" + Ajayw + Arzw x x x
highget = " ¥k %
2 - .
—Ayw? x k%
" ¥ % %

Again, the (1,1) entry must be in 0*. Since b—a > 0 and ¢ — a — b > 0, we obtain
C1ww™2072 ¢ 0% since ¢ — 2a — 2 > 0 by assumption, we must have ¢ = 2a + 2. Next,
we note that a <b < c—b<c—a=a+ 2. This implies that b=c—band b=a + 1.

We now claim that the following holds:

Type 2
101 Condition h™'g € K(p)g2K(p)?
1 a>band c# 2a+2 no
2 |a>bandc=2a+2and z ¢ p no
3 a>bandc=2a+2and z €p yes
4 b>a and ¢ # 2a + 2 no
5 b>aand c=2a+ 2 yes

Lines 1 and 2 follows from (5.7). For Line 3, assume that ¢ > b and ¢ = 2a + 2 and
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Line 4 follows from (5.8). For Line 5 assume that b > @ and ¢ = 2a + 2; then also

b=a+ 1. We have h_lgkgg1 € K(p) for

k= € K(p).
w yw (2y+2)w zw

—x 1

The following table summaries the results for this value of g:

g = diag(w??, @t we—e, meb+1)
Number of cosets hK (p) such that h=tg € K(p)g2 K (p)
Condition Type 1 | Type 2 Total
a>band c# 2a+2 @ 0 @
a>bandc=2a+2 7 ¢ ¢ +q°
b>aand c# 2a+2 q* 0 7
b>aand c=2a+2 q* 7 ¢+
Calculation of my. Let ¢ = wdiag(w?®, @, @ !, o0+,
because otherwise my(a,b,c) = 0.
Type 1. Assume h is of type 1, so that
1 =z 1 2ol oyl |@?
b 1 1 Y w
1 1 1

We may assume that a > b
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for some x,y, z € 0. Assume that there exists k € K (p) such that hflgkggl € K(p); we

will obtain a contradiction. Write

A1 A2 Blwfl B2
Agw A4 BB B4

k =
Clw ng D1 Dgw
ng C4 D3 D4
We have
* * * *
k * k *
hitgkgy ' =

C4wc—a—b+3 % D3w2+a—b %

* * * *

Since the (3,1) and (3,3) entries of hy 'gkgy * are in p? and p, respectively, we have a

contradiction.

Type 2. Assume next that h is of type 2, so that

1 =z 1 z oyl |w?
1 1 w
h =t Y
1 1 1
—x 1 1 w

for some x,y, z € 0. We claim that

h~lgkgy* € K(p) for some k € K(p) = z€pandy € o and z € p. (5.9)

Proof of (5.9). Assume that h~'gkg, * € K(p) for some k € K (p) as we have previously.

We have
¥ Cp 27 - At b7l — Oy + Ay(zy + 2)m™ ! x %
Aol + Ayy * %
h™'gkgy ' =
* —Ayw * ok
* Cowt o0+l — Az * %

Sinceb<a<c—a<c—bwehavec—b—1>1>0anda—b—1>0andc—a—0b>0.
Since the (1,2) entry is in o, it follows that A4(zy+ z) € p. Assume that A4 € p; we will

obtain a contradiction. Since A4 € p, the (2,2) entry and the (4,2) entry are in p; this
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is a contradiction, so that A4 € 0. We now have that zy + z € p. Assume that x € 0™;

we will obtain a contradiction. We have

* * * *
* * * *

h™lgkgy ' =
_A3w2—a+b % _B3w1+a+b—c *

Cywl=20%c _ Aspwl=otd &« Dy — Byawotb—c «

Since the (3,1) entry is in p there exists C' € o such that — A3+ = C'w, and since

the (3,3) entry is in o, there exists D € o such that —Bzw!te+?=¢ = D. Rewriting, we

have
* * * *
* * * *
h*lgkggl _
Cw * D *

Ciw!l=20tc L Cx % Dy+ Dzxw™ ! «
Since the (4,1) entry is in p and since 1 — 2a + ¢ > 0, we have Cz € p. Also, since
the (4,3) entry is in o, we get Dz € p. Since & € 0%, we have now C,D € p; this is a
contradiction. Since x € p and since zy+ z € p we have z € p. Finally, taking x = z = 0,

we have

* * * ok
h_lgkggl _ * Aow® P4+ Agy x %
* * * %
x  Cow® a0l
Since 1 —a — b+ ¢ > 0, the (4,2) entry is in p. This implies that the (2,2) entry is in
0*. Since a — b > 0 we obtain y € 0*. This completes the proof of (5.9).

We now claim that the following holds:

Type 2
10| condition h=tg € K(p)g2K(p)?
1 rE€oXoryEporzE€o” no
2 rxepandy €o0” and z € P yes

Line 1 follows from (5.9). For Line 2, assume that « € p and y € 0* and z € p; we may
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assume that z = z = 0. We have h_lgkgg1 € K(p) with

k= € K(p).

1 yflwafb

This proves Line 2.

The following table summaries the results for this value of g:

g = wdiag(w?, w’, wt™otl et

Number of cosets hK (p) such that h='g € K(p)g2 K (p)

Condition | Type 1 | Type 2 Total

a>b 0 qg—1 q—1

Calculation of ms. Let ¢ = w diag(@w®*!, @’ @ %, w ?*1). We assume that ¢ —a > a + 1

because otherwise ms(a, b, c) = 0.

Type 1. Assume h is of type 1, so that

1 =z 1 2ol oyl | @?
1 1 w
h = Y
1 1 1
—z 1 1 w

for some z,y,z € 0. Assume that there exists k € K(p) such that h_lgkggl; we will
obtain a contradiction. Write

Ay Ay Biw' B

Asw Ay Bs By

*“low cw D D
Csw  Cy D3 Dy
We have
* * * *
b ks — * Agw® 0t _ Oy 2b+1 * *
Clyrpe—a—b+3 N Dyb—a+? N

* Cow® b 4 Cyrpe2b+1 * Dyw®® + Dyaxw
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Evidently, the (4,2) entry is in p; therefore, the (2,2) and (4,2) entries must be in 0*.
If @ > b, then the (2,2) entry is in p, a contradiction. If @ < b, the (4,4) entry is in p,
a contradiction. If @ = b then the (3,1) entry is in p, and so the (1,1) and the (3,3)

entries must be in 0%, but the (3, 3) entry is in p, a contradiction.

Type 2. Assume next that A is of type 2, so that

1 =z 1 z oyl |w?
1 1 w
h =t Y
1 1 1
—x 1 1 w

for some x,y, z € 0. We claim that

h~tgkgy' € K(p) for some k € K(p) = z €0 ory € o* or z € 0%, (5.10)
h~lgkgyt € K(p) for some k € K(p) and z,2 € p = ¢ =2a + 1, (5.11)

1, 1 zy + z € p and at least
h™"gkgs " € K(p) for some k € K(p) and a > b = (5.12)

one of z and y is in 0%,

hlgkgyt € K(p) for some k € K(p) and b>a = x € 0*. (5.13)

Proof of (5.10). Assume that h='gkg, ' € K(p) for some k € K(p) with k as we have

written previously, and that z,y, z € p, i.e., x = y = z = 0; we will obtain a contradiction.

Now
* * * *
a—b+1
R x  Aow * *
grRgy =
* * * *

x Cow® %0 « Dywb-e
If a > b, then the (2,2) and (4,2) entries of h~'gkg, ' are both in p, a contradiction. If
b > a, then the (4,2) and (4,4) entries are both in p, a contradiction. This proves (5.10).
Proof of (5.11). Assume that h~'gkg;* € K(p) for some k € K(p) with k as in (??) and

x,z €p,ie, x=2z=0. By (5.10) we have y € 0*. Now

ngcfafb _ Clywcf%zfl % % %

. 1 Ajw + Asywb—aet! * % %
h™ gkgy ™ =

—Agb—at? x k%

* * * *
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Assume first that b > a. Then the (3,1) entry is in p2. This implies that the (1,1) entry

¢=2a=1 ¢ 0% since ¢ — 2a — 1 > 0,

is in 0*. Since ¢ —a — b > 0 we must have —Cyyw
we obtain ¢ = 2a + 1. Now assume that a > b. The (2,1) entry is in p. This implies
that Asyw? 2! € p. Since y € 0%, it follows that Azww®~ 9+ € p, so that we may write

As = rw?® for some r € 0. Substituting, we have

ngcfafbiclywcf&zfl % % %

Ayw + ryw * ok %

h~'gkgy ' =
—rw? * % %
* * k%

We now argue as in the case b > a to obtain ¢ = 2a + 1. This completes the proof of
(5.11).
Proof of (5.12). Assume that h~'gkg;* € K(p) for some k € K(p) with k as in (??) and

a >b. We have

x Cp2F - Aprw® b — Coyw® ¢ 0 Ay(ay + 2)m™ !+ %

Apw® b+ 4 Ay * ok

hgkgy " =
* * *x %
* Cow o0 — Ayx x %

Since a > b, and since at least one of the (2,2) and (4,2) entries of h~'gkg, ' must
be in 0%, we have A4 € 0*. Since the (1,2) entry is in 0o and a > b we see that
Ag(zy + 2)w™! € o, i.e., Ay(zy + 2) € p. This implies that zy + 2 € p. Next, assume

that x € p and y € p, i.e., x = y = 0; we will obtain a contradiction. Now

* * * %

- Ao 0wk
grgsy =

* * * ok

x Cow b % «

We see that both the (2,2) and (4, 2) entries are in p, a contradiction. This proves (5.12).

Proof of (5.13). Assume that h='gkg, * € K(p) for some k € K(p) that we have written
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previously and b > a. We have

Caw™ %0 — Ajx — CLyw® 207 4 Azayw® % + Azzw®™® x %«

-1 -1 * * * *
h="gkgy " =

— Agrob—at? * % %

* * k%

Since the (3,1) entry is in p?, the (1,1) entry must be in 0*. This implies that A;z € 0*
(note that a < b < ¢—b < ¢—asothat ¢ —2a —1 > 0). This proves (5.13).

We now claim that the following holds:

Type 2
19| Condition h=lg € K(p)g2K(p)?
1 a>band zy + z € 0 no
2 a>bxy+zep,zep,andy €p no
3 a>bry+zep,xep,yco*, and c#2a+1 no
4 a>bay+zep,xep,yco,andc=2a+1 yes
5 a>b,xy+z€pandx € o0* yes
6 b>aand x € 0* yes
7 b>aandz €p no

Line 1 follows from (5.12). Line 2 follows from (5.10). Line 3 follows from (5.11). For
Line 4, assume that a > b, zy+z € p,x € p, y € 0™, and ¢ = 2a+1. We have x = z = 0.

Then h~'gkg; ' € K(p) with

For Line 5, assume that a > b, zy + z € p, and « € 0*. Then h~'gkg, * € K(p) with
2

1 _yx—lwc—Qa—2 x—lwc—a—b—l

1 x—lwc—a—b—l

1
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For Line 6, assume that b > a and = € 0*. Then h_lgkggl € K(p) with

1 (zy+ 2)z twb—a=l  —yp-lge-2a-2  p-lge—a=b-l
1 - lgge—a—b-1
- 1
(zy + 2)mb—a—1 1

Finally, Line 7 follows from (5.13).

The following table summaries the results for this value of g:

g = wdiag(@®!, w?, w1

Number of cosets hK (p) such that h=tg € K(p)g2 K (p)

Condition Type 1 | Type 2 Total
b<aand |c—a=a+1 0 ¢ -1 ¢ -1
c—a>a+2 0 *—q| ¢*—q

c—a=a+1 0 -1 -1

a = b and
c—a>a+2 0 *—q| ¢¢—q

a<band |c—a>a+2 0 C-¢| -4

Calculation of mg. Let ¢ = wdiag(w®!, @t o2 w* ). We assume that b > a and

¢ —b > b+ 1 because otherwise mg(a,b,¢) = 0. This implies that ¢ — a > a + 2 and
c>a+b+2.

Type 1. Assume h is of type 1, so that

1 =z 1 2ol oyl | w?
1 1 w
h = Y
1 1 1
—x 1 1 w

for some x,y, z € 0. We claim that

h~lgkgs' € K(p) for some k € K(p) = = € 0. (5.14)



Proof of (5.14). Assume that h='gkg,* € K(p) for some k € K (p).Write

Al A2 Blw’l
i Ag’w A4 B3
Clw ng D1
ng C4 D3
We have
* *
*
h™tgkgy ' =
* *

% Cow® b 4 Cuawe=2

By
By
Dow
Dy
* *
* *
* *

% Dow® ®+ Dyx
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Since the (4,2) entry of h='gkg, ' is in p, the (4,4) entry must be in 0*; this implies

that = € o*.

We now claim that the following holds:

Type 1
10| Condition | h~1g € K(p)g K(p)?
1 TEP no
2 x €0” yes

Line 1 follows from (5.14). For Line 2 assume that « € 0*. Then

—X
w 1
h—lgkggl _
_x1
for
1 waafl _yxflwc72a72
N T Y (ryw + 2)weeb2
1
T 1wb—a—1

71 2uyw + 2)w

yxflwcfafbfl

c—2b—1
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Type 2. Assume next that h is of type 2, so that

1 =z 1 z oyl |w?
1 1 w
h=t Y
1 1 1
—x 1 1 w

for some z,y,z € 0. We claim that
hlgkgyt € K(p) for some k € K(p) => c=2b+ 1 and z € 0*. (5.15)

Assume that h_lgk;g2_1 € K(p) for some k € K(p) with k as we have written previously.

Assume that ¢ > 2b + 1 and we will obtain a contradiction. Now

* * * *
. . * % * ng1+a+b_c +B4yw1+2b—c
h™ gkgy ™ =
* * * — Byro?t2b—c
Cow® b — Ayzw Do — Byalt2b—c

Since the (3,4) entry of h='gkgy ' is in p, there exists A € o such that —Byw?t20—¢ =
Aww; solving for By, we obtain By = —Aw® 2~ It follows that By € p. Substituting,

we now have

*k * k k
* * % Bowltatb—c _ Ay
h*lgkgz—l —_
* * * Aw
Cow® o — Ayzw Dyw® % 4+ Az

Since the (4, 2) entry is in p, the (4,4) entry is in 0*; this implies that € 0 and A € 0*.
Since the (2,4) entry is in o, there exists B € o such that By to+0=¢ — Ay = B; solving

for By, we obtain By = (Ay + B)w® **~1. The (1,4) entry of h~'gkg, " is now

Dyw™? — Boxw®7¢ — Doyw® 7! 4+ Byayw® ¢ + Byzw?t©

= Dyw 2 — (Ay + B)azw ' — Doyw® 7! — Azyw ™! — Azw L.

Since this element is contained in o we obtain Dy € p. We now have By, D4 € p, a



247

contradiction. It follows that ¢ = 2b+ 1. Now

* * * *
* * *
-1 -1 _
h="gkgy " =
* * * *

x Cow® Tl — Ayzw % Dow’ * — Byx
Since the (4,2) entry is in p, the (4,4) entry must be in 0*. This implies that x € 0*.

We now claim that the following holds:

Type 2
191 Condition h=lg € K(p)g2 K (p)?
1 b>aandc—b>b+1 no
2 b>aandc—b=b+1and z€p no
3 b>aandc—b=0>b+1and z € 0~ yes

Lines 1 and 2 follows from (5.15). For Line 3, assume that b > a and ¢ —b=b+1 and

x € 0*. Then

—x
e K
gkgs = = € K(p)
—z71 7 lw
-1
with
1 _wb—a—l —J}_lyWQb_Qa_l _yx—lwb—a
o= lggb—a—1 21
k= € K(p)
1
—x —ywb ¢ — g7z 2yw — 22w

The following table summaries the results for this value of g:

g = wdiag(w@®!, @l o web)

Number of cosets hK (p) such that h='g € K(p)g2K (p)

Condition Type 1 | Type 2 Total

b>aandec—b>b+1|q* -3 0 -

b>aandc—b=b+1|q¢*—¢* | ¢*—¢° gt —¢*

This completes the proof. O
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5.5 Generator Result

Using the work in the previous sections, we can now prove the claim that the paramodular Hecke

ring is generated by the four double cosets
rllww), Tlow, o), T(@loz?), Kpwkp).

Recall that

o o p oo

p o o o
A=(geGSp(4,F): g€ and v(A\(g)) >0

pp o p

p o o o

and w is a generator of the prime ideal p in the local, non-archimedean field ' with ring of integers

0.

Theorem 5.5.1. The Hecke ring 5 = (K (p),A) is generated as a ring by
T(]" 1’ w’ w)? T(]‘?w?wz’w)’ T(w’]"w7w2)’ K(p)wK(p)'

Proof. Let ' be the subring of 7 generated by the four double cosets in the statement of the
theorem. We show that #’ = 5. Let ¢ > 0 be an integer and define ., to be the Z-module
spanned by the double cosets K (p)gK (p) with A(g) € w*. We will prove that 7. C J#’ for all
¢ > 0 by induction on ¢. This will imply that 57’ = 5. We have

My = ZK(p)IK(p)

M =LK (p)wK(p) + 2T (1,1,w, @)

Ay = L(K(p)wK (p))* + ZK (p)wK (p) - T(1,1, @, @) + ZT (1, w, =", w)
+ 2T (w,1,w,w?) + ZT(1,1, %, @?)

A = L(K (p)wK (p))’ + ZK (p)wK (p) - T(1,w, @*, @) + ZK (p)wK (p) - T(w, 1, @, w")
+ZK(p)wK (p) - T(1,1, % w?) + 2T (w, w, w?, @?) + ZT(w, 1, w?, w?)

+72T(1,w, @, @?) + ZT(1,1, >, o).

Clearly we have that s#) C 5#” and 54 C s#'. To see that 5% C ', we only need to check that
T(1,1,% w?) € 2. Since by 5.2.6, with a = b= 0 and ¢ = 1, we have

T(1,1,w,w)-T(1,1,w,w) =T(1,1,w?, @?)
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+ (¢ + )T (w0, 1, w, wz)
+(q+ )T (L, @, @, @)
+ (¢ +2¢° + )T (w, @, @, @)

+ (q - 1)’[,UT(17 17w7w)a

then by solving for T'(1,1, w?w?) while noting that T(w, w,w,w) = (K(p)wK (p))?, we see that
T(1,1,w? w?) € . Thus, 55 C .

In order to show that % C #”, we need only to show that T'(w, 1, @w?,@?), T(1, @, w?, w?), T(1,1,=3, @>) €
' since the other terms in the expression for 4 are in ' (noting that T(w,w, w?, @w?) =
(K(p)wK(p))? - T(1,1,w,w) € 5" and T(1,1,w?,@?) € 5" by the argument for J4).

T(w,1,w? @3). To see that T(w, 1,w?, w3) € #”, consider

T(,1,w,w) -T(w,1,w, @) =T (w, 1,w?, %)
+ ¢*T(w, w, w’w?)

+ (q2 - ].)’U}T(’(D, 1,@, ’ZE2),

where this expression follows from 5.2.6, with a 1,b = 0 and ¢ = 2. By solving for

T(w,1,w? @3), we see that it is in J#".
T(1,w, @ @?). To see that T(w, 1,w?, w?) € #”, consider

T(,1,w,w) - T(l,w, o, o) =T (w, 1, ©?)

+ (q2 - l)wT(17wa w2aw)a

where this expression follows from 5.2.6, with ¢ = 0,0 = 1 and ¢ = 2. By solving for

T(w,1,w?,@?), we see that it is in .
T(1,1,w@3,w?). To see that T(1,1, >, w?®) € H#", consider
T(1,1,w,w)-T(1,1,w?, =% =T(1,1,=>, @®)
+qT(w, 1, w2, @)

+ q?’T(w7 w,w?, wQ)
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+ (q - 1)U)T(]_, 13 ’[E2,’W2),

where this expression follows from 5.2.6, with @ = b = 0 and ¢ = 2. By solving for

T(1,1,w>,w?) and using the results from the previous cases, we see that it is in J#”.

Hence, we have that 2% C 5 for ¢ = 0,1,2,3, and so we now proceed with the induction.
Suppose that ¢ > 4 and 54, C ' for all 0 < k < ¢. We prove that % C ' by showing that
T(w® @b, @ o) with0<a<c—a,0<b<c—bisin . #". Before we do this, observe that

if a > 0 and b > 0, then
T(wa7wb,wcfa, wcfb) _ T(w,w,w,w) . T(wafl’ wal, 7ﬂcfaflﬂﬂcfbfl) c jiﬂc—l C '
by the induction hypothesis. Thus, we may assume that a =0 or b = 0.

Case 1: a =0. We show that T(1, =’ @ w?) is in #’. To do this, we first claim that
T(1,1,w", w") is in J’. To see this, we use 5.2.6 with a = b =0 and b+ 2 < ¢ — b to obtain

the following.

T(1,1,w,@)-T(1,1,o o) =T(1,1, ¢, @°)

2 c c—1
+q T(]‘?w?w 7w )
+¢T(w, 1, @ w°)

+ q3T(w, w, wcfl’ wcfl)

+ (¢ — DwT(1,1, w1 w1,

By the induction hypothesis we have that T(1,1, @ !, @™ 1), T(w, w, @, w 1), wT(1,1,w* 1, w 1) €

A, so we need to show that T'(1,w, @, @) and T(1,w, w !, @) are in .

T(1,w, ¢ w1). To see that T(1,w,w’ w 1) is in #’, we use 5.4.2 with a = b =0

and a + 3 < ¢ — a to obtain

T(l,w, @ w) - T(1,1,0 % o ?) =T(1,w, w’, @)
+ (q2 - Q)T(w7w7w6_lawc_l)
4 qBT(wz, w, wc—27 wc_l)

+(¢* — )T (w, 1, w2, @ 1).

By the induction hypothesis we see that T(1, w, @, w™!) is in S as desired.
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T(1,w,w !, w). To see that T(1,w, w1, w®) is in H#”, we use 5.4.2 while noting that

2

wT (1, w, w?, @)w™! = T(w,1,w,w?) and that conjugating by w is an automorphism

(by 2.2.7 with a conjugation by w), with a =b =0 and a + 3 < ¢ — a to obtain

T(w,1,w,@?) - T(1,1, w2, w2 =T(1,w, o}, w°)
+ (q2 - q)T(w7w7w67law671)

2 1 072)

+ 3T (w, %, o w

+ (¢ - q)T(l,w,wc_l, w2).

1

By the induction hypothesis we see that T'(1,w,w *, w®) is in S’ as desired.

Now that we have T'(1,1, @, w®) € #”, we now show that T(1, @, @ w?) is in #". To

do this, we use induction. We know that T'(1, 1, @’ @) € #”’, and assume that
T, o, @ @) e #; C H'

for 0 < j < b. We show that this claim holds for j = b. Using 5.4.2 with a = 0,a < b— 1 and

a+ 2 < ¢— a we have

T(,w, o, w) -T(l,wb_l,wc_27wc_b_1) :T(wa,wc,wc_b)
+ (¢ — )T (w, @, !, o)
F ¢ T(@?, @b, @, )

+(¢* - P)uT(w, @ o w

+ mewT (w, w’, @, we b1

where
0 b=c—b>
me=19qg*—¢> b+1l=c—b-
¢ —q¢® b+2<c—b

By the induction hypothesis, we have T(w,w’ w® ! @), T(w? @°, @, @) € #".
Also, since #,._1 C 7' by assumption, we have that T'(ww, w’ !, w1, @), T'(w, @’ w1, w1 ¢

#'. Hence we have proven the claim in this case.

Case 2: b=0. Let a be the the map in 2.2.7 define to be conjugation by w. In order

show that T'(w?, 1,w %, w) is in ', we apply « to T(w?®,1,w %, w®). Since this is an
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automorphism, that maps T(w?®, 1, @ %, @) to T(1, w®, @, w"™*) we may use the argument

in the previous case.
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6 Coset Representatives

In this section we will compute coset representatives for the double coset operators T(1,1, w, @)
and T(1,w,w?, w). We will first establish some general results and then specialize them to these
operators by following the ideas of [1]. However, our representatives will be more explicit. For the
work that follows, recall that F' is a local, non-archimedean field with ring of integers o, prime ideal

p C o, and w a generator of p. The paramodular group will be written K(p), and let

A=(geGSp(4,F): g€ and v(\(g)) >0

Let d be a non-negative integer. Here we will find left coset representatives for the operators
T(w?), that is, we will find an explicit disjoint decomposition of the set
V@)= | K®gKp) ={geA:v(\g) =06} =ULigK(p).
K(p)gK(p)
v(Xg)) =6

We first make an observation. Suppose that
V(@®) = UigiK (p)

is a disjoint decomposition. Since GSp(4, F) = PK(p), where P is the Siegel parabolic subgroup,

we may assume that each g; has the form

A B
9i = 3
0 D
where A, B, and D satisfy
-
PAD ='DA =w’ = , ‘BD ="'DB.
"

As D = w®'A~! we see that D is completely determined by A. Before we continue with the
observation, we prove a lemma.
Using 4.2.6 as well as the condition that A € [ 5] and D € [3 %] with D = @’ *A~! means that

there are four possibilities for A. These are

1. AeTo(p)[*" _,]To(p) for some a,b € Z with § > a > b > 0.
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2. Ae Fo(p)[wa wb]Fo(P) for some a,b € Z with § > b > a > 0.

a

3. AGFO(p)[_wlﬂw wb]FO(P) for some a,b € Z withé >a+1>0+1>1.

a

4. AeTop) | _o'][" wb]I‘O(p) for some a,b € Z withd >b+1>a+12>1.

Here, To(p) = {[2 Y] € GL(2,0) : ¢ =0 mod p}. If the first possibility is the case, then let

a

Lo(p)[® s ]To(p) = Uihilo(p)

be a disjoint decomposition. As A is in this double coset, then A must be in one of the left cosets

hiTo(p), so write A = h;k where k € T'g(p). Since

A B| |k! h; Btk

0 D 'k 0 Dt

and [k -, k} € K(p), we may assume that A is actually one of the h;. Similar arguments hold for
the other three cases. Hence, to compute A, it suffices to compute the h;. To accomplish this, we

prove a lemma.

Lemma 6.0.1. Letn € Z,n > 0. There are disjoint decompositions

To(p) To(p) = | | To(p)
]. yeo/pn ].
and
1 1
T'o(p) To(p) = || To(p)
(2 yep/prtt (Y @"

Proof. We prove the first decomposition, as the second follows from a similar argument. Let y € o

and write

—_
—_
[t

and let
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be such that

w
Tr = kl kQ
1
We thus have that
e f arasw@™ + bica  arbaw™ + bids
T =
g h craow@w™ +dica  c1bow™ + dids

As ¢1,¢0 € p and aq,a9,dy,dy € 0% (because aijdy — bycy, asds — bacy € 0*) we see that g € p an

h € 0*. Now, we have that

e f
alo(p) = Lo(p)
_g h_
_ -e f_ 1 1
o A To(p)  as | _yhot 1] €Top),

S
~|° J9 / Lo(p)
h

i _ h—l h—l
— | 1o fl Lo(p).

Since v(det(x)) = n, then it must be the case that v(e — fgh™!) = n, and thus we see that

w”  fhT! w” oy
Lo (p) = ) To(p) e || Lo (p).
yco/pm

This proves the equality. We now show that the union is in fact disjoint. Let y1,y2,a,b,c,d € 0
and k= [ 2 Y] € 'y(p) be such that

cw d

= k.
1 1
We thus have that
@ B w” Yo a b B aw" 4+ cowys  bw™ + dys
1 1| |cw d B cw d
Thus, we obtain that d =1 and y; = y2 + bw™, meaning that y; = yo (mod p™) as desired. O

Proposition 6.0.2. Let a,b,6 € Z,y € o and suppose that V(w®) = U;g; K (p) with

A B
9i = 3
0 D
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where A, B, and D satisfy

w’® p’l 0

tAD ='DA =@ = , ‘BD ='DB, Be

Let

1 w

then the following are complete sets of representatives for each case introduced after 4.2.6.

1. IfAEl"O(p)[wa wb]I‘o(p) ford >a>0b>0, then

1 y P 1 wfafly1 o by2
1 w® 1 wlbyy, wbys
9i = )
1 wie 1
-y 1 w®b 1
where y € 0/p*~° y1 € 0/p® and yo,y3 € 0/p°.
2. If AcTo(p)[ =" _u]To(p) for 6 >b>a >0, then
1 w® 1 o lyr @y
y 1 w’ 1wy @ lys
9i =
1 —y wd—e 1
1 wd=b 1

where y € p/p°~ L Y1, 40 € 0/p® and y3 € o/p°.

a

8. IfAeTo(p)] _»'][" wb]ro(p) ford>a+1>b+12>1, then

-w —wy w? 1 —w Yy @y
gi= w1 w w® 1 wbyy wbys
-1 wo e 1
—y 1 wd~b 1

where y € o/p®",y1 € 0/p® and ya, y3 € o/p".
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4. IfAeTop) | _ot][™ wb]Fo(p) ford>b+1>a+1>1, then

—o w? 1 77ﬂ7¢171y1 7w7a71y2
gi=w! wy w w® 1 —w vy w bys
;=

-1 vy wbe 1
1 wo b 1

where y € p/p"~ L y1,y2 € 0/p*TL, and ys € o/p".

Proof. 1. Suppose that the conditions of the first case hold. As

a

To(p)[ = wb]Fo(P) = w'To(p)[=*" ] To(p)

for 6 > a > b >0, then by 6.0.1 we have that
To(p) [ o ]To(p) = || To(p).
y€o/pa=b w

Hence, by the comments before 6.0.1 we may assume that A = [wa ywbb } Now, as

w&

AD =

then

D=w’'A"1=

Let B = [} ¥2], where y; € p~! and y2, y3,y4 € 0. By assumption we have that ‘BD = ‘DB,

so this implies that

d—a d—a d—b d—a d—a d—a d—a
w" Y1 - W YYys w Y3 WS Y1 W Yy w Y2 — W YY4
='BD="'DB =
wé—ayQ _ wé—ayy4 w&—by4 w&—by3 wé—by4
Hence
@y — @’ yys = @y,

meaning that
Y2 = yya + @ ys.

Thus,

B | vt

Ys Y4



Hence,

As

then we have

A B
gi =
D

yw

yow

yw

-y

gi =

U1
Y3
wﬁfa

—yw

1
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@ yw® Uy yys + @ ys
w® Y3 Ya
w5fa
i _yd-a o0—b
A B A 1 A°'B
= 3
D D 1
yys + @ ys
Y4
b
1 @y — @ yys  —w Cyya + @ (@ Pys + yya)
1 @ by; @y,
1
w‘s’b_ i 1
1 @ (1 —yy3) @ Cys
1 @ ly; @ bys
1
w‘s_b_ i 1
1 @ —yys) @ 'y
w? 1 w_by3 w_by4
wd—e 1
wd—b 1

Finally, we have that y; € p~!, and hence y; — yys € p~!. Therefore, we may rewrite g; as

w? 1

w7y wlys

1wy, @ lys
1

1
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for y € o/p®~,y1 € o/p® and ya,ys € 0/p".

. Suppose that the conditions of the second case hold. As

a

To(p)[®" _s]To(p) = @ To(p)[ ! _o-a ] To(p)
for 6 > b > a > 0, then by 6.0.1 we have that

P Lt = L] |T |rew

vep/pr-wt1 |y@? @

w=°

Hence, by the comments before 6.0.1 we may assume that A = [ a _b } Now, as
yw® w

o
AD =

then

D=w’ fA- = “ e

Let B = [} ¥2], where y; € p~! and ya, y3,y4 € 0. By assumption we have that ‘BD ='DB,

so this implies that

d—a 5—b 5—b o—a o—a
) ) — ) W
Y1 Y3 Y1 _iBD DB — Y1
@0y @ lys — @ byys @0 bys — @0 lyy @0y — w0 by
Hence
@’ ys — @’ Pyy = @y,

meaning that

Thus,
B— Y1 Y2
Yy + @2 ya
We now have that,
w (7 Y2
o @'y @ oy @
;=
oo—a by
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Now, as in case 1, we may write

w N Y2
@'y @ yp @ Y
9= oo—a by
%P
[ w? 1 w Yy w Yy
oy @’ @w " @ (yy2 + ya)
- W miby 1
wdb 1
-1 w? 1 w %y w Yo
|y 1 @ 1 @y @ *(~yy +y4)
- 1 —y wi—e 1
i 1 w®? 1
Thus, we may rewrite g; as
1 we 1 w ¢ lyl w Yo
y 1 @’ 1 @ % @ by
9i =
1 —y wde 1
1 wo b 1

for y € p/p®= 2 y1,y2 € 0/p and ys € o/p°.

. Suppose that the conditions of the third case hold. As [_w 1] normalizes the group T'o(p),

we have that

To(p)| '] [wa wb]Fo(P) = wb[—w UTo(p)[="" L To(p)

ford >a+1>b+12>1. Asin the first case, 6.0.1 implies that

“ 1| |@* @by
ro®) [ )7 T = | Y| Tot).
yEo/pa—b —w w
Hence, we have that
1| |w® wb w®
A = Y = ’
o ’(Db _wa+1 _wb+1y



and so
bt ey o
_wé—a—l
Let B = [} ¥2], where y; € p~! and y2, y3,y4 € 0, and since *BD = "DB, we have that
Ty, = @y + @y
This implies that
ys = - "y — wyys
and so
B— Y1 Y2
ys —w@* "y — wyys
We now have that
w® n Y2
ettt =y s ety -
9 —iay o0b
7w57a71
Hence
@’ 1 —w (yyr + @ lys) @
7wa+1 7wb+1y 1 1ﬂ7by1 7ﬂfby2
gi =
_wéfay ,w(sfb 1
i _w(S—a—l 1
1 w 1 —w *(yy1 + @ ys3)
—w —wy w? 1 w‘byl
-y 1 wbe 1
I o1 o%—b
Letting
1 1
o w
w = = t -1
w 1
w
1 w
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it

b
w Y2



we have that

—w  —wy w® 1 —w *(yy1 + @ ys3)

w wb 1 w by,
—1 w‘s_a 1

-y 1 w

We may thus rewrite this as

—w —wy w? 1 —w gy
1 w w? 1 @y
a -1 wd—a 1
—y 1 0b

for y € 0/p®?, 91 € 0/p® and yo,y3 € 0/p°.
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—b
() yl

w

. Finally, suppose that the conditions of the fourth case hold. As in case 3, since [_w 1]

normalizes the group T'g(p), we have that

a

To(p) —w '] [ o ]To(p) = @[ o HTo(p)[* o-a ] To(p)

for 6 >b+1>a+12>1. Asin the second case, 6.0.1 implies that

a 1 w?
To(d)[ o '][®" o ]Tom) = || Lo (p)-
yep/pb—atl — yw“ wb

Hence, by the comments before 6.0.1 we may assume that

1 w® oy @’
A = = s
- ywa ’(Db 7wa+1
and thus
o0—b
D =
7@670‘71 ywﬁfbfl

Letting B = [ ¥2], where y; € p~! and y2,y3,y4 € 0, we know ‘BD = B as so this implies

that

a

“lyys + @y,

and hence

—b

Y2
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P i 7 R TR 2
Y3 Ya
We now have that
o'y @ —wlyys @y
_wa+1 Y3 Ya
gi =
-
i _d—a-1 yed—b—1
[ way ’[Eb 1 7w7a71y3 7w7a71y4
_ et 1 -y @ (2 + @ ywa)
N wdb 1
i 7w67a71 ywéfbfl 1
y 1 w® 1 —ww Ty —w Ty,
—w @’ 1 —o 7y @ (2 + @ yys)
1 wd—e 1
L —w ! yw! wdb 1
Letting w be as in case 3, we have that
—w w® 1 _w—a—l _——a—1
Y3 w Ya
L |my @ @’ 1 —w *yy oy + @ tyya)
gi =w
-1 vy wd—e 1
1 wd=b 1
Recalling that y € p, we may rewrite g; as
—w w?® 1 _w—a—lyl _w—a—1y2
L |my @ wb 1 —w oy wbys
gi =w
-1 y wd—e 1
1 wd=b 1

where y € p/p"= "t y1, 52 € 0/pTt, and y3 € o/p’.

Proposition 6.0.3. The cosets within each case of 6.0.2 are mutually disjoint.
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Proof. 1. Assume the conditions of the first case of 6.0.2 hold, and so the cosets have the form
1 y w? 1 w ey
1 w® 1 w by,
1 wd—e 1
-y 1 wdb

where y € 0/p® %, y1 € 0/p?, y2,y3 € 0/p®, and § > a > b > 0. Let X(a,b,y) be the set of all

such cosets. It is clear that the cosets in X (a,b,y) are mutually disjoint for a given a, b, and

y. We now show that for a,a’,b,b' € Z with a >b>0,a’ >V > 0 and 5,7’ € 0 we have that

X(a,b,y) N X (a',b0,y') =0 if a # a’ or b#b. Further, that

X(a,b,y) = X(a,b,y'),
X(a,b,y) N X(a,b,y') =

y=1v mod p*?

0, y#y modp*l.

To prove the first claim, assume for the sake of contradiction that a # a’ or b # b and

X(CL,ZL y) N X(a/7b/7y/) # @ Let ylvyllvy27y/23y37yé €oand k € K(p) be such that

1y w? 1 wly w Ty
1 wb 1 wbyy @by
1 wd—a 1
-y 1 wd—b 1
1 o @ 1
=
- 1 o=’
—y 1 =Y

Write the first product as [4 B], the second as [A/ B |, and k = [Z; zi], then

D/
A B A B |k ks
D D'l ks Ky

implies that k3 = 0 and A = A’k;.

Since k3 = 0 and k& € K(p), we must have that

k1 € GL(2,0). Now, let k; = [11 ]:2] Since A = A’ky, and using the definitions of A

J3 J4

and A’, we have that j3 = 0, and hence ji,j4 € 0*.

contradiction.

This implies that a = o’ and b =¥/, a
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We now prove the second part of the claim. Let y,7’ € o and assume that y =’ mod p*~?,

and so there is an = € o such that y = ¢’ + @w® %z. Let y1, y2,y3 € 0. We have that

1 y w® 1 w*‘klyl w*byg
1 w® 1 wby, wbys K(p)
1 wi—a 1
—y 1 I wi b 1
—1 y/+wa—bx wa
1 w?
o 1 w&—a
I _y/_wa—bm 1 b0
1 w Ty w s
1 wlby, whys
X K(p)
1
1
1 y/ wa
1 w®
1 wé—a
_y/ 1 w5—b
1 =z 1 w vy w by,
1 1 wlby, whys
X K(p)
1 1
—x 1 1
1 y/ wa
1 w®
1 wi-e
7y/ 1 w&*b
1 (yl _~_2xy2wa—b+l +x2y3wa—b+l)w—a—l (yg—l—xyg)w_b
1 (y2 + zys)w? ysw P
X K(p)
1
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€ X(a,b,y").

Hence, we have that X (a,b,y) C X(a,b,y’), and by a similar argument the other containment

can be shown, and thus X (a,b,y) = X(a,b,v’) if y =% mod p*~°.

Finally, assume that y #Z ¢’ mod p®~® and suppose thatX (a,b,y) N X(a,b,y’) # 0 and we
will obtain a contradiction. As the intersection is not empty, there are y1, v}, y2, 5, Y3, y5 € 0

and k € K(p) such that

1y @ 1 w Ty @y,
1 wb I @7y @ ys
1 wl—e 1
-y 1 w® b 1
1 9 w® 1 w Y Ty
B 1 wb 1 oy, wbyh )
- 1 wi—e 1 '
—y 1 wd—b 1

Write the first product as [4 B], the second as [A' g; |, and k = [’]z; ’Izi], then

A B A B |k ks
D D'| ks Ky

implies that k3 = 0 and A = A’k;. Write k; = 9172 | Then we have that
J3 Ja

A=Ak
ot oy’ @t y'@’| |5
L wb ] L wb j3 j4
@ yw’| @t sy @’ few® + jay'w”
L @ ] L Jaw® Jjaw®

It follows that j3 = 0,j; = j4 = 1, and y = ¢/ + jow?®?, which is a contradiction to the fact

that y # ¢’ mod p®~°. This completes the proof of case 1.
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2. Assume the conditions of the second case of 6.0.2 hold, and so the cosets have the form

1 e 1 w Ty @y

where y € p/p?=F 4y ys € 0/p%, y3 € 0/p®, and § > b > a > 0. Let X(a,b,y) be the set
of all such cosets, and as in the first case it is clear that the cosets in X (a,b,y) are mutually
disjoint for a given a, b, and y. We now show that for a,a’,b,b’ € Z withb >a > 0,0/ >a’ >0
and y,y’ € p we have that X (a,b,y) N X (a’,b',y') =0 if a # a' or b # . Further, that

X(a,b,y) =X (a,b,y'), y=y modp’®
X(a,b,y) N X (a,b,y') =

0, y#y mod p’®.
To prove the first claim in this case, assume for the sake of contradiction that a # a’ or b # b

and X (a,b,y) N X (a',0,y") # 0. Let y1,y1,y2, Y5, y3,y5 € 0 and k € K(p) be such that

1 w? 1 w Ty @y
y 1 @’ 1w @ lys
1 —y w®e 1
1 wdb 1
1 o 1 —a =Ly paly
y 1 = 1 oy, wly
- 1 —y w= 1
1 @t 1

Write the first product as [4 B], the second as [A/ g; |, and k = [gi ’]:z |, then

A B A B |k ko
D D'| ks ks
implies that ks = 0 and A = A’k;. Since k3 = 0 and k € K(p), then k € GL(2,0). Write
ki = [jl jl}, and so

J3 Ja

’
a

| = J1 J2

@ y@® @ | s ja
Thus, we have that j3 = 0, and so ji1,j4 € 0. Hence, it must be the case that a = o’ and

b =1, a contradiction. We now move on to prove the second part of the claim in this case.
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Let y,4’ € p and assume that y =y’ mod p®~. Let = € p such that y = y' + @’ % and let

Y1,Y2,y3 € 0. Then

1 w? 1 w7a71y1
y 1 w? 1 @ %,
1 —y w®e 1
1 b
[ 1 w?
Y+t 1 w
1 —y —wt
i 1
1 w T ly @y
1 @ % wlys
X K(p)
1
1
1 w?
y/ 1 wb
o 1 _y/ wé—a
1 o0—b
1 1 w Tl w %y
y z 1 1 w %, wlys
1 —x 1
1 1
1 w?
y/ 1 wb
o 1 _y/ w5—a
1 o0—b
1 1 w vy w s
y z 1 1 @ %y, w_byg
1 —=x 1
1 1

w Yo
@ by;
K(p)
1
wé—a
wé—b
K(p)
1
x 1
1 —=x
1
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1 w®
y 1 w®
- 1 —y wi—e
1 wé—b
1 0 yrow ! (vyrw™t + yo)w @
0 1 (e t+ye)w @ (2w’ ¢+ 22yiww® 47! + 2ysw® ¢ + y3)w ™
X K(p)
0 0 1 0
0 0 0 1
€ X(a,b,y).

Thus, X (a,b,y) C X(a,b,y’). Similarly we have that X (a,b,y’) C X(a,b,y), and so X (a,b,y) =
X(a,b,y").

Finally, assume that y # ¢’ mod p*~® and X(a,b,y) N X (a,b,y’) # 0, and we will obtain a

contradiction. As the intersection is not empty, there are y1, ¥, y2, ¥4, y3, y5 € 0o and k € K(p)

such that
1 EX 1 w Ty w Ty
y 1 @’ 1 @ % @ty
1 —y wi—e 1
1] wib 1
1 @ L oy @y
B y 1 w? 1 o %, w by )
- 1 —y wi—e 1
1 wd b 1

Write the first product as [4 2], the second as [’ gi |, and k = [’Z; ’,:i], then

A B A B |k ke

D D'| ks ky
implies that k3 = 0 and A = A’k;. Write k; = 9192 | Then we have that
J3 Ja
A=Ak
w® . w® j1 jg
yw' @’ Y@ @ |j3 Ja
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a a a

w B J1@ Jow

ywo? @’ Js@’ + Y 1wt jawb +y o

b—a

It follows that jo = 0,51 = j4 = 1, and y = ¢y’ + j3w® %, and this is a contradiction to the

fact that y #Z 3’ mod p®~2. This completes the proof of case 2.

. Assume the conditions of the third case of 6.0.2 hold, and so the cosets have the form

—w —wy w® 1 —w . w e
b b b
w w 1 @y @ y3
w™! K(p)
-1 wd—e 1
-y 1 wd—b 1

where 6 >a+1>b+1>1,y€0/p? %y €0/p%, yo,ys € 0/p°, and

1

1

Let X (a,b,y) be the set of all such cosets. It is clear that the cosets in X (a, b, y) are mutually
disjoint for a given a,b, and y. We now show that for a,a’,b,0/ € Z witha+1>b+1 >
1,a/+1>b+1>1andy,y € o we have that X(a,b,y)NX(a/,b,y)=0ifa#a’ orb#1¥.

Further, that

X(a,b,y) = X(a,b,y/), y=y modp*°
X(a,b,y) N X (a,b,y') =

0, y#vy mod p*l.
To prove the first claim, assume for the sake of contradiction that a # a’ or b # b’ and

X(a,b,y) N X (a0, y") # 0. Let y1,95, 2,5, y3,y5 € 0 and k € K(p) be such that

-w —wy w? 1 —w Yy @y
. w w® 1 wibyg w’byg
w
-1 w®e 1
-y 1 w®? 1
—w —wy @ 1 —w "y @y
5 w w” Loy =y
=w ) k
-1 wi—e 1
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Write the first product as [4 2], the second as [A, g; |, and k = [’I:; zj |, then

A B A" B'| |k ke
D D'| ks ky

implies that k3 = 0 and A = A’k;. Since k3 = 0 and k € K(p), we must have that ky €

GL(2,0). Now, let k; = [ 2], Since A = A'k; we have that

w w Ji J2

1 b1 C
atl bt y| |Jj3 Ja

b - b -

w3 w" J4

"4+1 b'41,1/ "4+1; b'+1, 7
|~ T @ Y s —wt e — @ Ty

Hence j3 = 0 and ji,j4 € 0*. This implies that a = @’ and b = I/, a contradiction.

We now prove the second part of the claim. Let 3,7’ € o and assume that y =3’ mod p*~?,
and so there is an € o such that y = v/ + @w® bx. Let y1,92,y3 as in the conditions of the

case. We have that

—w —wy w? 1 @y @y
b —b b
w w 1 @ @y
w™ K(p)
1 wd—e 1
—y 1 wdP 1
—w —wy —w g e
b
w w
:w71
1 wd—e
—y/—wa7b$ 1 w(sfb
1 oy @ty
1 wibyg w’byg
X K(p)
1
1
—w  —wy w?
b
w w
:w71
1 wi—e
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waa waa T 1 o ¢ 1y1 7ﬂfby2
1 1 1 @by, wlbys
X K(p)
1 1 1
waa —x waa 1
—w —wy ] _w“
b
w w
:w_l
1 wts—a
_y/ 1_ i wé—b
@ 1 w7y @y
1 1 wlyy @y
X K(p)
1 1
—T wb’“_ i 1
—w —wy ] _w“
b
w w
:w71
1 w&—a
_y/ 1_ i w5—b
_ —1
waa T 1 wfaflyl ,wfby2 waa T
1 1 wbyy @by 1
X K(p)
1 1 1
—x wb’a_ i 1 —x wte
—w —wy ] —w“
b
w w
:w_l
1 ,w&fa
_y/ 1_ i w6—b
1 wfafl(nyQ,(ﬂaberl +x2y3w2a72b+1+y1wb7a) ’(Dib(lﬂyg’waibﬂ-yg)
1 w—b(xy3wa—b+y2) w—b(ygwa—b)
X K(p)
1
1
€ X(a,b,y).

Recall that y; € 0/p®, so the last line is true. Hence, we have that X (a,b,y) C X(a,b,y’), and
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by a similar argument the other containment can be shown, and thus X (a,b,y) = X (a,b,y’)
if y =y’ mod p?.

Finally, assume that y # v’ mod p®~® and suppose thatX (a,b,y) N X (a,b,y’) # ) and we
will obtain a contradiction. As the intersection is not empty, there are y1, ¥}, y2, Y5, ys, ys € 0

and k € K(p) such that

—w —wy w° 1 @l w Py,
1 w w® 1 wbyy, wbys
w
1 wd—a 1
—y 1 wdP 1
—w —wy w? 1 w Tyl Tyl
b —b,,/ —b,/
w w 1 w% w Py
—w! 2 31 4
1 wd—e 1
_y/ 1 w&—b 1

Write the first product as [4 2], the second as [A/ g; |, and k = [Z; zj |, then

A B A B |k ke

D D'| ks ky
implies that k3 = 0 and A = A’ky. Write k; = {;; ﬁ ] Then we have that
w° B @’ J1 J2
__wa+1 _wb-i-ly_ __wa—H —wb'Hy’ j?) j4
b B s b,
__wa+1 _wb+1y_ __wa+1j1 Cwttlys ety — bty

It follows that js = 0,5, = js = 1, and y = y/ + jow®?, which is a contradiction to the fact

that y # 4/ mod p®~°. This completes the proof of case 3.

. Assume the conditions of the forth case of 6.0.2 hold, and so the cosets have the form

—0 o 1 7,{371171111 7’@70’71y2
b —a—1 -b
wy w w 1l —w Y2 w Y3
w™! K(p)
-1 y wd=e 1
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where y € p/p?~ %L y1, 40 € 0/ptL, and y3 € o/p®. Note that in this case § > b+1 > a+1 > 1.
Let X (a,b,y) be the set of all such cosets, and as in the first case it is clear that the cosets in
X (a,b,y) are mutually disjoint for a given a,b, and y. We now show that for a,a’,0,0' € Z
with b >a >0,/ > a’ >0 and y,y’ € p we have that X (a,b,y) N X (a/,0',y') =0 if a # o’ or
b # V. Further, that

X(a,b,y) = X(a,b,y/), y=y mod p>~*
X(a,b,y) N X(a,b,y') =

0, y#y modp’e.

To prove the first claim in this case, assume for the sake of contradiction that a # a’ or b # b

and X (a,b,y) N X (a',b',y") # 0. Let y1,91, 92,95, ¥3,y5 € 0 and k € K(p) be such that

. s 1 —waly, ey,
L |lmy @ w® 1 —w %y w‘byg
v -1 y wbe 1
1 wo b 1
—w o 1 _w—a'—ly/ _w—a'—ly/
LY @ w? 1 —w @y wib/yg
- -1y @ 1
1 =t 1

Write the first product as [4 2], the second as [A, g; |, and k = [:; zj |, then

A B A B |k ke
D D' ks Ky

implies that ks = 0 and A = A’k;. Since k3 = 0 and k € K(p), then k € GL(2,0). Write
k1= [jl jl}, and so

J3 Ja

a b a', v . -
wryY w why w Ji o J2

—w — J3  Ja
Thus, we have that j3 = 0, and so j1,j4 € 0. Hence, it must be the case that a = o’ and
b ="b, a contradiction. We now move on to prove the second part of the claim in this case.

Let v,y € p and assume that y =y mod p®~?. Let = € p such that y = ¢ + @’ %z and let



Y1, Y2, %y3 be as in the conditions of this case. Then

—w w 1 _wfaflyl
|y w wb 1 —w oy
w

-1 vy w®e 1
1 w&—b
—w w?
|+ Ett s w w?
=w
-1 y/+wb7ax wﬁfa
1 w
1 o (J,fly1 77ﬂ7(171y2
1 —w vy @ by;
X K(p)
1
1
—w w?
L |wY w®
=w
_1 y/ wéfa
1 w5—b
1 1 1 —we1
wb—a T wa—b 1 _w—a—l
X
wb—a wa—b —r 1
1 1
—w w?
LY w?
=w
_1 y/ wé—a
1 w5—b
1 1 —w Ty —w Ty
T wa—b 1 _w—a—ly2 w by3
X K(p)
wr g 1
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—w w®
L |mY @ w?
=w
-1
1
1 1
x we b 1
X
wr b g
1
—w w?
LY @ w?
=w
-1
1
1 _w—a—l(ylwb—a)
1 —w  Hoyrw®* + o)
X
1
€ X(a,b,y).

—w

o (—2*yyw
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Recall that y3 € 0/p®, so the last line is true. Thus, X (a,b,y) C X (a,b,y’). Similarly we have
that X (a,b,y’") € X(a,b,y), and so X(a,b,y) = X(a,b,y’).

Finally, assume that y # v’ mod p®~® and X (a,b,y) N X(a,b,y’) # 0, and we will obtain a

contradiction. As the intersection is not empty, there are y1, ¥, y2, ¥4, ys, y5 € 0 and k € K(p)

such that
—w
! wy w
—w
:wil wy/

w® 1
b
-1 y w57a
1 wéfb
o
w wb
-1 y/ wé—a
1 w®b

_wfafl /

—b,/

—a—1,,/
w Y3

-1
_w7a71y2 1
—b a—b
w r w
" K(p)
wr b g
1 1
—a—l(wylwb—a +y2)
2b—2a—1 __ Qxygwb_“_l + y3wa—b)
K(p)
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Write the first product as [4 2], the second as [A, g; |, and k = [’I:; zj |, then

A B A B |k ko

D D\ |ks ks
implies that ks = 0 and A = A'ky. Waite ky = [7: %2 ]. Then we have that
A=Ak
wy | | @y =] [
__wa+1 | __wa+1 j3 j4
@'y @' |hyw i@ jeyw® + jaw’
__wa+1 | _jlwa+1 _jzwa+1

It follows that jo = 0,j; = js = 1, and y = ¢/ + jsw?~%, and this is a contradiction to the fact
that y # 3/ mod p®~¢. This completes the proof of case 4, and ends the proof of the lemma.
O

Lemma 6.0.4. The cosets within each case of 6.0.2 are disjoint from the cosets in the other cases.

Proof. Before we proceed with the proof, we make an observation. Suppose that

A B A B
and
D D’
are from two different cases of 6.0.2 and that the define the same left K(p) coset. Then there must
exist k € K(p) such that
A B A B
k
D D’

Writing k = [ﬁ; zﬂ we have that

Aky + Bks Aky + Bky A B

Dks Dky D’
This equality implies that Dks = 0, and since D is invertible, we have that k3 = 0, and hence
Ak = A,

Since k = [* }2] and "kJk = A(k).J, we have that ‘kiky = (k). Since k € K(p) we have that
A(k) € 0*. It follows that ki, ke € GL(2,0). From the definition of K (p), we know that the lower

left entry of k; is in p, and therefore we have ki € T'g(p). In particular, we have

To(p)ATo(p) = Lo (p)A'To(p).
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This observation shows that in order to prove our claim that the four cases of 6.0.2 are mutually

disjoint, it suffices to prove that each of the sets
Lo() [ o ]To(®),  To@) [T s ]To(p)

Co(p)[ o "1[®™ _os JTo(p), To(p)[ —w '][=™ o ]To(p)
are mutually disjoint, where ay, by, as, by, a3, b3, a4,by € Z with 6 > a1 > by > 0,0 > by > ag >
0,0 >a3+1>bs+1>1,andd>bs+1>a4+1>1.
Now, on with the proof of the claim. Suppose that

a a

ro(p)[‘w ' o1 ]Fo(p) ﬂFO(p)[W ’ wbz]ro(p) 7é @

Then there must be some k, k' € T'g(p) such that

ay

k = K
wh wh2
Writing k& = [,’z; Zﬂ and k' = [Zi Zi] we have that
koo™ ko™ 7 Tl
ks kg™ - wh
_ _waz k/
= L

Kiw®  khw?

kiwb? ko
Since k, k' € Ty(p), then each of ki, k], k4, k) € 0*. The above equality shows that kjw® = kjw®2,

b2 meaning that b; = by; Since a; > b; and by > ag, we have

meaning that a; = as; kyw” = kjw
that

ay > by = by > ay = ay,

a contradiction. Thus, I'y(p) [wal o |To(p) and To(p) [wa2 b |To(p) are mutually disjoint.
Now suppose that

a a

To(®) [ o [To(p) NTo(p)[ - ][ o ] To(p) # 0.
Then there must be some k, k' € T'g(p) such that

w 1| |ww®s
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Writing k = [ﬁ; zﬂ and k' = [kll ké] we have that

k3 kjy
koo™ koo™ w
k3w kywo® wh
1| |
—w wbs
ki kb
—kwestl  —ghpastl

Since k, k' € To(p), then each of kq, k], ks, k) € 0 and ks, k% € p. The above equality shows that
kiw® = ki’ meaning that a; = bz + 1 since k} € p. We also have that k3w = —kjwastl
which implies that a; = a3 since k3 € p.

We now have four cases. If ko, k, € 0%, then the equality kyw® = kj® implies that by = b3
and kyoo? = —kbww®+ implies by = az+1. Hence by = az+1 < b3 +1 = by + 1, a contradiction. If
ko € 0* and kf € p, then kyoo®™ = —kbw® ! implies by = a3 +2. Hence by = az+2 > bs+2 = by +2,
a contradiction. If k, € o* and ky € p, then kyw® = k)’ implies that b3 = b; + 1 and
kgt = —kéw“ﬁl implies by = a3+ 1, and so b1 +2 = b3 + 1 < az + 1 = by, a contradiction.
Finally, if ko, k, € p, then kyw® = kjw’ implies that by + 1 = b3 and ks = —khwost!
implies by = az3 + 2. Hence by +2 = b3+ 1 < a3+ 1 < az + 2 = by, a contradiction. Therefore
To(p)[ =" o |To(p) and To(p)[ _ 1] [7™ b3 |To(p) are disjoint.

Suppose now that

a a

Lo(p)[® _er [To() NTo(p) [ o '] [ _ua ] Tolp) # 0.

Then there must be some k, k' € T'g(p) such that

wt 1| |

k = 4
! —w wbs
.. Tk ke A
Writing k = [k3 kJ and k' = {ké K | We have that
ki koo w1
kyw®™ kg™ wh
1| |w™
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Kkl oob K} oo
_kllwa4+1 —kéw““‘l
As in the previous case k,k’ € To(p), and so each of ki, K}, ks, k) € 0* and ks, k5 € p. The
above equality shows that kjow® = kjw®, meaning that a; = by + 1 since k} € p. We also
have that ksw?® = —k’lw“4+17 which implies that a; = a4 since k3 € p. Since by +1 > a4 + 1,
we have that a1 +1 = a4 +1 < by +1 = a1, a contradiction. Thus Fo(p)[wal o }Fo(p) and
To(p)[ —w "][®™ _vi ]To(p) are disjoint.
Suppose now that

a as

Fo(p)[w ’ b2 ]Fo(p) mFO(p)[f‘w 1] [w ° wbs ]Fo(p) 7& @

Then there must be some k, k" € T'g(p) such that

w? 1| | ,
k = k'
w?? —w whs
.. K k!
Writing k = [ 2] and &' = {ki kﬂ we have that
ki kow? w2
ksw®  kywo?? wb?
1| |w*s
= k
—w wbs
k4 oobs kY wbs
_kiwa3+1 —k’éw““‘l

Since k, k" € To(p), then each of kq, ki, k4, kj € 0 and ks, k € p. The above equality shows that
k1w = kiwbs, meaning that as = bz + 1 since k4 € p. We also have that ke = —kjw Tl
which implies that as = a3 since k3 € p.

We now have four cases. If ko, k) € 0%, then the equality kow®? = kjw® implies that by = b3
and kgt = fkéw“?’ﬂ implies by = az+1. Hence by = az3+1 < bs+1 = by + 1, a contradiction. If
ko € 0% and kb, € p, then ks’ = —kbw® ! implies by = az+2. Hence by = az+2 > b3+2 = by+2,
a contradiction. If k, € 0o* and ky € p, then kow®? = k)’ implies that b3 = by + 1 and
ki’ = —khw ! implies by = a3z + 1, and s0 by + 2 = by + 1 < a3 + 1 = by, a contradiction.
Finally, if ko, k, € p, then kow® = k)b implies that by + 1 = bs and kyww®? = —kbjwst!
implies b = a3z + 2. Hence by +2 = b3 +1 < a3+ 1 < az + 2 = by, a contradiction. Therefore,
To(p)[ =™ _u, |To(p) and To(p)[ o ][ _ss |To(p) are mutually disjoint.
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Suppose now that

Fo(p) [’waz b2 ]Fo(p) N Fo(p)[,w 1] [WC% b ]Fo(p) 7é 0.

Then there must be some k, k' € T'g(p) such that

w2 1| | o™ ,
k = k.
wh2 —w b
.. k! k.
Writing k = [,}2 Zﬂ and k' = [ki kﬂ we have that
ki ko w2
ksw®  kawo® wh2
1| |w*s
= k
— wbs
kb oobs K} b
*kll’lﬂa4+1 ,kéwa4+1

Since k, k" € To(p), then each of kq, ki, ks, kj € 0* and ks, k € p. The above equality shows that
k1w = kiwbs, meaning that as = bz + 1 since k4 € p. We also have that ke = —kjw Tl
which implies that as = a3 since k3 € p.

We know that k, k" € To(p), and so each of ki, ki, kg, k) € 0* and ks, k5 € p. The above
equality shows that kyw®? = kgwb“, meaning that as = by + 1 since k5 € p. We also have
that kzw® = —k’lw‘““, which implies that ao = a4 since k3 € p. Since by + 1 > ayq + 1,
we have that ao +1 = a4 +1 < by + 1 = ao, a contradiction. Thus Fo(p)[wa2 b2 |To(p) and
Lo(p)[ — '] [wu b |To(p) are mutually disjoint.

For the final comparison, suppose that

Fo(p)[f‘w 1} [w“?’ b3 ]Fo(p) N Fo(p)[,w 1} [w“‘l b ]Fo(p) 7é 0.

Then there must be some k, k' € T'g(p) such that

ky kY

Writing k = [,}2 Zﬂ and k' = {k, I } we have that
3 4

_k-2wa3+1 klwbs .
=k [T ]

,k4wa3+1 kgwb3
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1| |ww™ ,
B —w wbs ’
[ kb K} oo
- _—k’lw‘“"'l —khoatl

We have that k, k" € To(p), and so each of ki, k], ks, k) € 0 and k3, k5 € p. The above equality
shows that kjw® = k}w®, meaning that b3 = by. We also have that —k,w®+! = kw1, which
implies that a3 = a4. Since we also have that a3 +1 > b3+ 1 and by + 1 > a4 + 1, we have that
az+1>bg+1=by+1>as+1=az+1, acontradiction. Therefore I'o(p)[ _ '] [wa3 b [To(p)

and To(p)[ o '] [wa4 b4 |To(p) are mutually disjoint, and this completes the proof. O
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7 Paramodular Lattices

In this chapter we explore an interesting application of the work in the previous sections. We
start by examining some results in [13], [14], and [15], which demonstrate an interesting connection
between lattices and how we perform the multiplication in the Hecke ring 5 (K (p), A,), the main
idea of which is to assign a lattice to each coset K(p)g, and to count the number of sub-lattices
instead of counting the number of cosets in each term of the multiplication. We then move on
to extending these results so they have some relation to our paramodular Hecke algebra by first
showing that there is a correspondence between the values of the coefficients appearing in a product
of Hecke operators and sub-lattices of the paramodular lattice over a non-archimedean local field,
as was the case for the classical Hecke algebras studied by Shimura ([13], [14], [15]). We then use
this correspondence to generate explicit formulas for the orders of the two non-trivial generating

Hecke operators T'(1,1,w,w) and T(1,w, @?, @).

7.1 Lemmas About Symplectic Forms over PIDs

Let R be a PID and F be the quotient field of R. Further, if a,b € F, we write a|b if there is come

element ¢ € R such that ac = b.

Lemma 7.1.1. (Shimura [13]). Let R be a PID with quotient field F. Let (W,(-,-)) be a 2n-
dimensional non-degenerate symplectic space over F. Let M C W be a lattice for W (so M is a
finitely generated R—module containing a basis of W ). Then there exists a basis y1,...Yn, 21, - 2n
of W and a1, ...,an € F such that
(Wi, y5) = (2i,25) =0, (yi,2j) = dij,4,§ € {1.,...n},
M:Ryl@"'®Ryn@Ralzl@"'@Ranzna

and

a1|a2, SN an_1|an.
Lastly, the ideals Ra, ..., Ra, are uniquely determined.

Proof. Assume first that n = 1. Since M is a finitely-generated torsion-free R—module (as F' is the

quotient field over R), and since W is two-dimensional over F', we have that

M = Ry ® Rw
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for some y,w € F with y and w independent over R. Since W is non-degenerate, we also have that
(y,w) # 0, Let a = {(y,w) and z = a~'w, then 1 = (,) and M = Ry ® Raz. Now assume that n > 2
and that the lemma holds for n — 1 and we will show that the lemma hold for n. Again, since M

is a finitely-generated torsion-free R—module and since W is 2n-dimensional over F', we have that
W=Fzx1® & Fxay,

for some 1,29, € M with x1,..., 22, independent over R. For z € M, define a, = (x, M), and

so the set a, is an R—module contained in F. We have that

Oy :<xaM>
:<Z,Rf£1 +- Rx2n>

=R(z,x1) + -+ R{x,x9,).
Since F' is the quotient field of R, there exists ¢ € R, ¢ # 0 such that
clz, 1), ..., c{z,x2,) € R.

It follows that a, is a fractional ideal of R. We now order the fractional ideals a,,x € M by
inclusion and we claim that the set A = {a, : € M} contains a maximal element. Let X C M,
and assume that {a, : x € X} is a totally ordered subset of A. Let a = Upexa,. Since {a, : z € X}

is totally ordered, the set a is an R—module of F'. We have that

2n

<M,M> g Z R<in,3?j>.

i,j=1
This implies that there exists ¢ € R with ¢ # 0 such that ¢(M, M) C R. Hence ca C R, and so
a is a fractional ideal of R. Since R is a PID, there exists a € R such that a = Ra. Let x € X
such that a € a,, then a C a,, and since a, C a, then a, = a. Hence {a, : x € X} has an upper
bound in the set A, and so by Zorn’s Lemma A = {a, : € M} has a maximal element, say a,,.
We set the abbreviation a; = ay,. Let o be a generator of a;, so that a; = Ra. We have that
a; = (y1, M), and so R = (y;,a; ' M). Hence, there is some z; € fra; *M such that 1 = (y1, 1)
Note that az; € M. Define b = (M, z;), and arguing as previously done with a, we see that b is a
fractional ideal of R. We have that 1 = (y1,21) € b, and so R C b, and we claim that b C R. To
see this, we argue by contradiction. Assume that R C b as we will contradict the maximality of a;.

To begin, we note that since R C b, we have that a; C a;b, and since R C b we also have that

a; C a1b. hence, there exists b € b such that ab & a;. The vector y; + a2z is contained in M, and
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so we show that

a -,C«- Ay +azy = <y1 =+ az1>M>

, which will contradict the maximality of a;. Since b = (M, z1) then by definition there exists

u € M such that b = (u, z1), and consequently
ab=alu,z) = (u,az1) &€ aj.

Define 8 = —(u,az1) and v = (y1,u). Then § = —ab & a;. Since a; = a,, = (y1, M), and v € M,
we must have that v € a;. Since z; € oqlM7 we also have that vz, € alaflM = M, so that

u —vz1 € M. Hence

B=y—7-1+p
:<y1,U> - ’Y<y1,21> + Oé<Zl,U> - Ck’)’<21,21>

:<y1 + azy,u — f}/Zl> € <y1 + OtZl,M>~
Also,

(y1 + az1,a121) =a1(y1, 21) + aay(z1, 21)
= -14+a-0

=aj.
Therefore, we have that

Oy, +az, =(Y1 +az1, M)
=(y1 +az1, M +a121)
=(y1 + az1, M) + (y1 + az1,0121)
DR+ o

Dal.

=

This contradicts the maximality of a;, and hence (M, z;) = b = R.
Now, let

W' ={weW: (y,w) = (z,w) =1}

and

M ={weM: (y1,w) = (z1,w) = 1}.
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Suppose that w' = w — (w, z1)y1 — (Y1, w) for w € W, then
w=w+ <W,Zl>y1 + <y17w>a

and w’ € W'. Hence W = W' + Fy; + Fz. Moreover, it is clear that W/ N (Fy; + Fz1) = 0 and
it follows that

W:W/®Fy1®F21.

Similarly, since (M, 21) = b = R and {y;, M) = a1, we obtain
M =M'® Ry, ® a;2.

Applying the induction hypothesis to M’ C W', there exists a basis y2, ..., Yn, 22, . - ., 2, of W/ and
ai,...,a, € F such that
(Wiyr) = (zi,2) =0, (yi, 25) = 0y
fori,je{2,...,n},
M'=Ry; & - ® Ry, ® Ragzo ® - -+ ® Ranzy,

and aslasl,...,an—1|a,. To complete the proof it will suffice to prove the «|as, or equivalently,

as = Ras € R = a;. Let w.v € M. Then we have that
a1 Cay + R{u,v) = a1 (y1, 21) + R{u,v) = (y1 + u,a121 + Rv) C (y1 + u, M).

Since y; +u € M, by the maximality of a; we have that a; = (y; +u, M). it follows that all the
sets in the last display are equal. In particular, we have a; + R{u,v) = ay, so that (M’ M') C a4.
Now

ay = Ras = R(ys,asz2) € (M',M') C a5.

it remains to prove the uniqueness of Ray, ..., Ra,. Assume that there exists a basis y{,..., ¥y, 21, -,

of W' and df,...,a,, € F such that

fori,5 € {1,...,n},
M =Ry, ®---® Ry, ® Ra\z| ®---® Ral,z,

nTn’

and ajlab),...,al,_q|al,. Let B be the matrix of (-,-) in the basis y1,...,yn,a121,...,an2, for W,

and let B’ be the matrix of (-,-) in the basis ¢/, ...,y},a}2],...,a, 2z, for W. Let S be the change

n

of basis matrix from the first tot he second basis, and let T be the change of basis matrix from the
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second to the first basis. Then S and T have entries from R, ST = TS = I, and B’ = '*SBS. It
follows that S € GL(2n, R). Hence, B and B’ are equivalent elements of M (2n, R). Let ¢ € R be
such that cay,...,can,cal, ... cal, € R. it can be shown that the Smith normal form for ¢B as an

element of M (2n, R) is

Cca

ca9

Can—1

Cap,

and the Smith normal form for ¢B’ as an element of M (2n, R) is

caly
caly
cal,_q
I ca;_
By the uniqueness of the Smith normal form we have that Rca; = Rea) for all ¢ = 1,...,n, and
hence Ra; = Ral for all i = 1,...,n, which completes the proof. O

Definition 7.1.2. In the notation of 7.1.1, we define the norm of the lattice M to be the ideal
N (M) which is generated by the set (M, M), and we say that M is a maximal lattice if M is a
mazximal element of the set of all lattices Q in W such that N(Q) = N(M).

It turns out that that for a lattice M we have that N(M) = Raj;.

Lemma 7.1.3. Let the notation be as in 7.1.1. Then M is a mazimal lattice if and only if

Ra; = -+ = Ran,.
Proof. First, assume that M is maximal. We have that
MCL=Ry1 ® - ® Ry, ® Ra1z1 ®--- P Rapzy,.

Moreover, N(L) = Ray. Since M is maximal, then M = L, implying that Ra; = --- = Ra,,. Now
assume that L is a lattice in W such that N(L) = Ra; and M C L, and we show that M = L. By

7.1.1 there exists a basis y{,...y,,2],...2, of W and ai,...,a, € F such that

<y;ay;> = <Z;aZ;> = 07 <y:,2;> = 5ij7i7j € {17 o 'n}a
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L=Ry,®--®Ry, ® Ra\z1 ® - & Ra,,z,,
and

ailay,...al,_|al,.

Since N(L) = Raj, we may assume that o} = a;. Define
Q=Ry,® - DRy, ®Rarz; & ® Rayz),.

Since a; = af|...|a,, we have L C Q. Thus, it will suffice to prove that Q@ = M. Let B be the

n’

basis Y1, ..., Yn, 121, . .,a12, for W and let B’ be the basis v, ...,y,,a}21,...,a} 2], for W. Let
S be the change of basis matrix from B to B’. Then S = [1]%, has entries in R and we have that
'SBS = B’, where B and B’ are the matrices of (-,-) in the bases B and B’, respectfully. We
have that B = B’ by the argument at the end of 7.1.1, and it follows that det(S) € R*, so that
S € GL(2n, R). Since S~' = [1]X', then B’ can be written in terms of 9B using elements of R, and

so this implies that Q@ = M. O

Lemma 7.1.4. Let the notation be as in 7.1.1. Let g € GSp(W). Then N(gM) = A(g)N(M).

Furthermore, if M is a mazimal lattice, then so too is gM.

Proof. We have that
gM = Rgyr @ - @ Rgyn ® R M(9)A\(9) "9z ® -+ & Ran\(9)A\(9) ' 92n

and (gy;, MN(g) "'gz:i) = &;; for i,j € {1,...,n}. It follows that N(gM) = RaiA(g) = A(g)N(M).

Additionally, if M is maximal, then gM is also maximal by 7.1.3. O

Proposition 7.1.5. (Shimura [13]) Let R be a PID with quotient field F. Let (W,(-,-)) be a
2n-dimensional non-degenerate symplectic space over F. Let M and L be mazimal lattices in W.
Assume that there is some element o € F such that N(M) = aN(L). Let N(L) = a. Then, there

is @ basis Y1, ... Yn, 21,---2n of W and aq,...,an,b1,...,b, € F such that

L:Ryl@~~~@Ryn@azl@m@azn,
M =Ra1y1 © - ® Rany, ® abiz1 @ - -+ O aby 2y,
a=aiby = - = apby,

a1|a2...\an\bn\...|b1.
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Proof. Assume first that n = 1, so that dim W = 2. By a standard theorem in linear algebra, there
exists x1,x2 € L and ¢1, ¢y € F such that ¢1]co, L = Rx1® Rxs, and M = Reyx1® Regxs. Since Wis
assumed to be non-degenerate, and since x1, xo forms a basis of W, we have that (x1,z2) # 0. Also,
it is evident from the definitions that N(L) = R(z1,x2) and N(M) = Reyca(x1,x2) = c1caN(L).
Thus a = N(L) = R(z1,72), and a = cjcp. Define y; = 21, w1 — (w1, 22) w2, a1 = ¢1, and by = ca.

Then

L =Ry @ aws,
M =Raqy1 @ abjwy,
« :a161

al\bl.

This proves the proposition in the case where n = 1.
Assume now that the claim holds for n — 1 and we show it is true for n. By the same standard

theorem as above, there exist x1,...,22, € L and ¢y, ..., ca, € F* such that ¢1]...|co, and
L=Rx1®D- - D Rxoy,

M = Rclxl D---D RCQnZEQn'

Letc={ce F:cM C L} and let ¢ € ¢. Then cz; € Reqz; for i € {1,...,2n}, so that ¢ € Rg; for all
1. This implies that there must be a d € R, d # 0, such that dc C R. It follows that ¢ is a fractional
ideal of R. Let c¢g € F be such that ¢ = Rey and define M’ = ¢cgM. Then M’ is also a maximal
lattice by 7.1.4. We also claim that {c € F': ¢cM’ C L} = R. Clearly R C {c € F :cM’' C L}. To
see the other inclusion, let ¢ € F be such that cM’ C L, then ccoM C L, and hence ccy € ¢. Since
¢ = Rep, we have that ¢ € R, as desired. Hence, R = {c € F : ¢cM’ C L}. it is straightforward to
show that if the proposition holds for the pair L an M’ = cyM, then it holds for L and M, and so
we may assume that M’ = M, and in particular we have that R = {¢ € F : ¢M C L}. Tt follows
that M C L and ¢1,...,co, € R. Since ¢]...|can,we also have that cl_lM C L. Hence cl_1 € R,

and so ¢; € R*. We may therefore assume that ¢; = 1. Define
Y1 = C1T1 + - + CanTan.-

Then y; is a nonzero element of M. We claim that L/Ry; is torsion-free. To prove this, assume

that x € L, and r € R,r # 0 are such that rx € Ry;. Write

T=a121 + -+ a2pnTop
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for some aq,...,as, € R. Let v’ € R be such that rz = r’y;., then ra; = r'c; for i € {1,...,2n}.
In particular ra; = 1/, as ¢ = 1. Therefore, for i € {1,...,2n} we have that ra; = rajc;, and so
a; = aic;. This implies that € Ry, so that L/Ry; is torsion-free. We also note that since M C L,
then N (M) C N(L), and thus aN(L) € N(L) i.e., aa C a. Let a be a generator of a. Then aa = ra
for some r € R, so that &« = r, and thus o € R. Let My = M + aL, then we have that M is a
lattice in W. Since M C M; we have aN(L) = N(M) C N(My). Also from the definition of M;
and the definition of the norm, N(M;) C N(M)+aN(L) = aN(L)+aN(L) = aN(L). Therefore,
N(M;) = aN(L) = N(M). Since M is maximal, since N(M;) = N(M), and since M C M;, we
obtain that M = M, implying that oL C M.

We now claim that (y;, L) = a. Evidently, (y1,L) C N(L) = a. Let z1,... 24, w1,...,w, € W

be such that (x;,z;) = (w;,w;) and (x;,w;) = d;; for 4,5 € {1,...n} and
L=Rx1®---® Rx,, ®aw; ® - D aw,,.
Note that such a basis exists by 7.1.1. Let by,...,bs, € R be such that
y1 =bixy + -+ bpxy + bpyprawy + - - - + bopaw,.

We claim that the ideal generated by by,...,bs, is R, i.e., that the gcd of by,...,bg, is 1. Let
g be a generator of the ideal generated by by, ..., b, and assume that ¢ ¢ R*, and we obtain a

contradiction. Let b, € R be such that b; = gb} for i € {1,...,2n}. Then
y1 = g(bjzr + -+ Van + ), awy + - 4 by awy,).
Since L/Ry; is torsion free, the vector
bizy + - 4 bz, + b, jawy + - - 4 by, awy,
is contained in Ry;. Let ' € R be such that

bizy + -+ bz, + b, jawy + -+ + by, awy,
=r'y;

=r'g(bizy + -+ b, xn + b, jaws + - - 4 by awy),

and it follows that r’g = 1, which contradicts our assumption that g ¢ R*. Since g € R*, and g is

a generator of the ideal generated by the b;, there exist ey, ..., es, € R such that

1 =e1by + -+ eanbon.
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Now (y1,2;) = —abitn and (y1, aw;) = ab; for i € {1,...,n}. Set
Z = —€ny1T1 — - — €Ty +e10W1 + - + €paWy.

Then z € L and
(y1,2) = (e1b1 + - - + eapbap)a) =1-a = a.

Since a = Ra, it follows that a C (y;,L). We thus conclude that a = (y;,L). Hence R =

(y1,a L) = (y1,a"tL). it follows that there exists some z; € a~!L such that 1 = (y;,2;). Now

define
U={zeW:{(n,z)=(z1,2) =0}
and
Lo=LNU={xz€L:(y,z) = (z,x) =0}
if x € W, then

= (z,21)11 — (T, y1)21 + (7 — (2, 21)01 + (T, 21)21),

and it follows that

let z € L. Since z; € a~'L, there exists r € R such that z; = ra~'w for some w € L. Then
(z,21) = (x,ra " w) = a~'r(z,w) € a~lra = R. Also, we have that (z,y;) € a by the definition of
N(L) = a. It follows that
L =Ry, ®az1 & Lg.

The set Ly is a lattice in U, and evidently, since Ly C L, then N(Lg) C N(L) = a. By 7.1.1,
there exists a basis ug, ..., un,v2,...,v, for U and as,...,a, € F such that (u;,u;) = (v;,v;) =

0, (ui,vj,x) = d;; for 1,5 € {2,...,n}, as|...|an, and
Lo=Rus®---® Ru,, ® Rasvs ® - - - ® Ra,v,.
We have that N(Lg) = Ras. Now
L=Ry; ®Rus®--- P Ruy,, ® Razy ® Rasvs @ - -+ ® Ranvy,.

Since N(Lg) € N(L), we have that alag, and it follows that the last display is a canonical decompo-

sition of L. By 7.1.3, since L is maximal, we must have that Ra = Ray = --- = Ra,,. In particular,
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N(Lo) = Ra = a, and Ly is maximal. By construction y; € M. Since «L C M and z € a 'L we

also have that aaz; C M. We claim that
M = Ry ® aczy & My,
where My =UNM. Let x € M. From above we have that

z =(z,21)y1 — (=, y1)21 + (z — (z, 21)51 + (@, 21)21)
=(z,21)y — o Ha,y)az + (@ — (2, 20)y1 + oz, 21)az).
As before, (z,21) € R. Since y1,7 € M, {(z,y1) € N(M) = aN(L) = aa, so that a=(z,y1) € a.
The desired decomposition follows, and arguing as in the case of L and Ly, we find that Mj is a
maximal lattice in U and N(My) = N(M) = aa. We now apply the induction hypothesis to Ly and

My. It follows that there exists a basis vy, ..., ¥Yn,22,...,2, for U and aq,...,a,,b1,...,0, € F

such that (y;,y;) = (i, 2;) = 0,(y;, zj) = &;5 for i,j € {2,...,n}, and
Lg :Ry2@@Ryn@a32@@aznv
Moy =Rasys @ - - ® Ranyn ® abszo & --- @ aby 2y,
a =agby =+ = anby,

a2|a3 . \an\bn\ . |b2
Let a; =1 and b; = a. Then

Lo=Ryi ®---® Ry, ®az; ®--- D azy,
My =Rasly; & -+ ® Rany, ® abiz1 @ -+ @ ab, 2y,
a=a1by = =a,b,.
Since My C Lo, we have that Ras C R. Therefore, Ra1bs C Rbs. Now asbs = «, and hence,

Ra C Rby. Since by = a, we get that Rb; C Rbs, and so ba|b;. Since we also have that aq|az, this

completes the proof.

7.2 Paramodular Lattices

In the previous section we saw that the idea of a maximal lattice leads to some desirable properties

like those of the last proposition. In this section we will formulate and prove a result in the
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symplectic case similar to the following result by Shimura in [15]. Following that, we work to
extend the following results of Shimura in [14] which shows a one-to-one correspondence between
the number of times a coset appears in the multiplication of two double cosets in a Hecke algebra

and the number of sub-lattices of a particular lattice.

Lemma 7.2.1. (Shimura [14]) Let T' = SL(n,0) and T'al’ = T(ay,...,ay). Then T'¢ — L gives
a one-to-one correspondence between the cosets I'C in T'al' and the lattices M such that M is a

sub-lattice of L with elementary divisors ay,...,ay.
Because of this one-to-one correspondence, Shimura then states the the following.

Proposition 7.2.2. (Shimura [14]) The degree of T(a,...,a,) coincides with the number of sub-

lattices M of L with elementary divisors ay,...,ay.

To obtain a similar result for K (p), we now look at the set of lattices in the symplectic space
W that are stabilized by the paramodular group. We will use the ideas of Shulze-Pillot in [16].

As usual, let F' be non-archimedean local field of characteristic zero, with ring of integers o
and prime ideal p C o. Let @ be a generator for p and let (W, (:,-)) be a finite-dimensional,
nondegenerate symplectic space over F'; let dim W = 2n for n € Z,n > 1. Let M be a lattice in W.
Then, as a consequence of 7.1.1 there exists a basis y1, ... Yn, 21, - - - 2n of W and integers aq, ..., a,

such that
<yi7yj> = <Zi7zj> = 07 <yiazj> = (sijaiaj S {]—> . 'n}a
and
M=oy ® - Doy, Dow™ 21 D--- P ow™z, (7.1)

=oy1 D D oY, P21 D D P 2p,
where a1 < -+ < a,.
Lemma 7.2.3. The integers aq, ..., a, in the above decomposition are uniquely determined by M .

Proof. Let the notation be as in the above exposition and suppose that the lattice M in W has
decompositions

M=oy ®--- Doy, Dow™ 2, D - Pow™z,

and
M=oy, @ - Soyl, ®ow™ 2, & ®ow'nz,

satisfying 7.1.1 as above. O
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Since the decomposition in (7.1) is determined by M, by the lemma above, we will call such a

decomposition of M a canonical decomposition, and write

Inv(M) = (a1,...,a,)
for the invariants of M. Note also that N(M) = p*:.
Definition 7.2.4. Define the dual of M to be

M#* ={weW: (w, M) Co}.

It follows that M*¥ is also a lattice in W and has canonical decomposition related to that of M,

M# =0(—2)@® - ®o(—2,) Bp "y B --- Dp Yyp,

and so Inv(M# ) = (—ay, ..., —ay). Additionally, define the level of M to be Lvl(M ) = p~NMF) =

per.
Lemma 7.2.5. Let M be as in (7.1). Then
M# =o0(—2,) @ @0(—21) BP "y ® - D 'y
is a canonical decomposition of M#, and
Inv(M#) = (—ap,...,—ay), N(M#) =p=n,
Additionally, (M#)# = M.
Proof. Let w € W and write ., .
w = Zbiyi + Zcizi

i=1 i=1
for b;,c; € F for all i € {1,...,n}. Then we have that

(w,y;) = —¢;

and

<w7 w‘“zl) = biwai

for all i. We see that w € M# if and only if ¢; € 0 and b;aw® € o for all i, and hence we obtain the

following canonical decomposition for M#,

M# =o(~z) @ @o(~21) Bp "y, @ Dp "y,

Applying what we have just shown to M7# we must have that (M#)# = oy; @ --- @ oy, ® p™2z; &

-+ @ p®nz,, which is equal to M, and completes the proof.

O
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We now define what it means for a lattice of the form presented in (7.1) to be a paramodular

lattice.

Definition 7.2.6. A paramodular lattice M in W is a lattice of the form (7.1) such that
an = a1 + 1. In this case, we call the basis of a paramodular lattice o paramodular basis of the

lattice.

Our next goal is to prove something akin to Shimura’s results in [14] for paramodular lattices,

but to end this section we look briefly at some useful algebraic relations among paramodular lattices.

Lemma 7.2.7. Let L, Ly, and Lo be lattices of the form (7.1) in the symplectic space W and let
a € F*. Then

1. (al)* =a 'L#
2. (L + Ly)* =L¥ niLf
3. v(N(L1 N Lg)) > max(v(N(Ly)),v(N(Lg))).
Proof. 1. Let € (aL)#. Then (v,aL) C o. Hence {az,L) C o. This implies that ax € L#,

ie, z € a”'L¥. Assume that + € a='L#. Then ax € L¥. Hence, (az,L) C o, so that

(z,aL) C o. Therefore, z € (aL)#. Tt follows that (aL)# = a~'L7#.

2. Let # € (Ly + La)#. Then (v, Ly + La) C o. This implies that (v, L;) C o and (z, Ls) C o.
Hence, z € L¥ N LY. Let 2 € L¥ N L¥. Then (z,L1) C 0 and (x, Ly) C 0. This implies that

(z, Ly + Ly) C o, so that z € (L1 4+ Ly)#. It follows that (Ly 4+ Ly)# = L¥ n LY.

3. We first prove that N(L; N Lg) C N(L1) N N(L2). Let z,y € Ly N Ly. Then (z,y) €
(L, L) N (La, L) C N(Ly) N N(Lg). It follows that N(L, N Ls) € N(L1) N N(Ls). Let
N(Ly) = p*, N(Ly) = p®, and N(L; N Ly)) = p°¢. Then N(L;) N N(Ly) = p™2x(@) Since
N(Ly N Ly) € N(Ly) N N(Ly), we obtain p¢ C p™ax(@?) This implies that ¢ > max(a,b), as
desired.

O

Lemma 7.2.8. Let (W, (-,-)) be a finite-dimensional nondegenerate symplectic space over F and

let M and L be lattice of the form (7.1) in W such that Inv(M ) = Inv(L). If M C L, then M = L.

Proof. Let inv(L) = inv(M) = (a1, ..., a,). There exists a basis y1,...,Yn, 21, - - -, 2, such that

<y1ayj> = <Ziazj>7 <y272]> = 62]
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fori,5 € {1,...,n}, and
M=oy ® - - Doy, Bow 21D - Bow'z,.
Similarly, there exists a basis yi,...,y,,2],..., 2, for W such that
(wiryy) = (20 25), (Wi z5) =0y
fori,5 € {1,...,n}, and
L=oy| @ ®oy,®ow™ 2] & - ®ow™2,.

Let B be the ordered basis

Y1+ 3 Yn, G121, - - -, Gnin

for W, and let B’ be the ordered basis

/ / !/ /
YlseeorYUny Q121 - - AnZy

for W. Let B and B’ be the matrices of (-,-) in the bases B and B’, respectively, so that

<Z/17y1> <y1ayn> (yl,a1z1> <y1aanzn>
B— <yn7y1> <ynayn> <yn,a121> <yn7anzn>
(arz1,91) -+ {a1z1,yn)  (a1z1,a121) - (@121,an2n)
L(@nzn,y1) - (@nZn,Yn) (Gnzn,a121) - (GnZn, Gn2n) |
and ) i
Wiy - (Wyn) (y1,a121) -+ (Y1, an2y,)
B Wnow1) o Wnevn)  Wpazt) o (Ynsanzy)
(a121,91) - a1z, yn) (a2, anzy) 0 (4121, anzy)
_<anZ;n vi) o {anzn,yn)  (anzp,a12t) oo (anzy, anZ;L>_




‘We have

B=0D

Let S = (si,j)1<i j<2n be the change of basis matrix from the basis B to the basis B’. We have

—aq

—an

ay

n n
_ ’ '
Yi = E 8ijY; + E Si,j4n0;Z;,
j=1 j=1

Qn

n n

/ /

a;i2; = E Sitn,jY; T E Sitn,j+nd;Z;
Jj=1 Jj=1

for i € {1,...,n}. Since M C L, it follows that S € M(2n,0). A calculation shows that

B =SB'S.
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Taking determinants, and recalling that B = B’, we obtain det(S5)? = 1. It follows that det(S) € o*.

Hence, S € GL(2n,0). Since

we have

where S~ = (s};). Since S~" has entries in o, it follows that L C M, as desired.

/
Son,1

!
82n,2n

Zn

U1

7.3 Lattices and Totally Isotropic Submodules

Let F' be a non-archimedean local field of characteristic zero, with ring of integers o and prime ideal

p C 0. Let w be a generator of p and v : FF — Z U {oo} be the usual valuation function. Thus,

if x € F* and = uw” with u € 0%,k € Z then v(x) = k. We set v(0) = oo. Let (W, (,-)) be

a nondegenerate 2n—dimensional symplectic space over F', where n € Z,n > 1. Let A and B be
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subsets of W such that there exists a compact subset C' of W so that A and B are contained in C.
We defince
((A, B)) = 0 submodule generated by (a,b) for a € A,b € B.

If ((A, B)) is non-zero, then this is a fractional ideal of o, and so there exists some k € Z such that

({4, B)) = p*.

Lemma 7.3.1. Let A and B be subsets of W such that there exists a compact subset C' of W where
A and B are contained in C. Assume that the o—submodule generated by {a,b) for a € A,b € B,
denoted ((A, B)), is non-zero, and that oA C A or oB C B. let k € Z be such that ((A, B)) = p*.
Then

k =min({r({(a,b)) : a € A,b € B}).

Proof. If a € A and b € B, then (a,b) € ((, A, B)) = p* implies that v({a,b)) > k. it then follows
that
min({r({a,b)) :a € A,b € B}) > k.

Now, as ((A, B)) = p* and 04 C A or 0B C B, there exists ay,...,a; € A and by,...,b € B such
that

ok = (a1,b1) + -+ {a, by).

Since v({a;,b;)) > k for all i = 1,...,1, then the above equation implies that v({(a;,b;)) = k for

some i. Hence, the lemma follows. O

Definition 7.3.2. Let M be a lattice in W and let X be an o—submodule of M. We say that X
is totally isotropic if (x,y) =0 for all x,y € X. If X is totally isotropic, then we say that X is

maximal if X is not properly contained in a totally isotropic o—submodule of M.

Lemma 7.3.3. Let M be a lattice in W and let X for a totally isotropic o—submodule of M.
Then X is contained in a mazimal totally isotrophic o—submodule of M. If X is a maximal totally

isotropic o—submodule of M, then rank(X) = n.

Proof. To see that X is contained in a maximal totally isotropic o—submodule of M, let S be the
collection of all totally isotropic o—submodules of M that contain X. Then S is non-empty and
partially ordered by inclusion. Let S’ be a simply ordered subset of S and let Z be the union of
all elements of S’. Then Z is an o—submodule of M and Z is totally isotropic, so that Z € S.

Moreover, we have that U C Z for all U € S’ so that Z is an upper bound for S’. By Zorn’s Lemma,
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S then contains a maximal element, say Y. Clearly Y is a maximal totally isotropic o—submodule
of M that contains X.
Next, assume that X is a maximal totally isotropic o—submodule of M. Let ¢ = rank(X) and

let x1,...2; € X be a basis for X as an o—module, so that
X =ox1+ -+ oz,

Assume that t < n and we will obtain a contradiction. The vectors x1, ..., x; are linearly indepen-
dent over F, and so let V = Fz; +---+ FX,, then V is a totally isotropic subspace of W. The
subspace V is contained in a maximal totally isotropic subspace V’ of W. Since dim(W) = 2n, then
by 1.1.15 of [11], we have that dim(V') = 2n/2 = n. Extend {x1,...,2:} to a basis {z1,...,2,}
for V'. After possibly multiplying z¢y1,...,z, by positive powers of @ we may assume that
Tig1,--.,Tn € M. Consider now

X' =ox1+ -+ ox,.

This o—submodule X’ of M is totally isotropic and properly contains X (as we are assuming that
t < n). This however, is a contradiction as X is already a maximal totally isotropic 6—submodule

of M. Thus, we must have ¢t = n. U

Lemma 7.3.4. Let M be a lattice in W and let p : M — M/wM be the natural projection map.
Note that M/wM is an o/p vector space. Let X be an o—submodule of M. Then dim(p(X)) <
rank(X).

Proof. Let t = dimp(X) and let 21,...,z; € X such that p(x1),...,p(x:) is a babsis for p(X). We

show that x1, ..., z; are linearly independent over 0. Assume that there are aq,...,a; € 0 such that
a1x1+ -+ axy = 0.
Note that we may assume that at least one of the a; is in 0. Applying p we thus obtain
a1p(r1) + -+ + ap(xs) = 0.

As the p(x;) form a basis for p(X), then we have contradicted the assumption of linear independence

of the p(z;) is a; € 0*. Hence, it must be the case that dim(p(X)) < rank(X). O

Lemma 7.3.5. Let M be a lattice in W and let p : M — M/wM be the natural projection map.

Let X be a totally isotropic o—submodule of M. Then the following are equivalent

1. X is a mazimal totally isotropic o—submodule of M;
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2. XNwM =wX;
3. dim, /p (p(X)) = n.

Proof. We first show that i) implies ii). Assume that X is maximal and let * € X N wM. Let
y € M such that x = wy. let X’ be the o—submodule of M spanned by y and X. Since y = w ™'z
and x € X, then X’ is totally isotropic As X is maximal, we thus have X = X’ meaning that
y € X. Hence x = wy € wX, and so X NwM C wX. The other inclusion is clear.

To see that ii) implies iii), assume that X NwM = wX. By 7.3.3 we have that rank(X) = n.
Let x1,...,x, be an 0—basis for X. We thus have that p(x1),...,p(z,) spans p(X), and so we also

show that these are linearly independent. Assume that aq,...,a, € o are such that
a1p(z1) + -+ + app(a,) = 0.

Then we must have that
plarzy + -+ apzy) =0,

and hence that a1x1 + -+ + anxn, € X NwM = wX. This implies that aq,dots,a, € p, which
proves that p(z1),...,p(xy) are linearly independent. Thus dim,/, p(X) = n.

lastly, to show that iii) implies i), assume that dim,,,(p(X)) = n, then by 7.3.4 we have that
rank(X) = n. Suppose, for a contradiction, that X is not maximal, and so there is a maximal
totally isotropic o—submodule Y that properly contains X (the existence of such a Y is guaranteed
by 7.3.3). Also by 7.3.3, we must have that rank(Y) = n as Y is maximal. Now, as both X and Y
have the same rank, there exists a basis y1,...,y, for Y and ci,..., ¢, € o such that c1y1,...,¢cn¥n
is a basis for X. The vectors p(c;y;) = ¢;p(y;) for all i span p(X), and since dimp(X) = n, these
vectors must be linearly independent over o/0. However, since X is properly contained in Y, then
we have that v(¢;) > 0 for some 4, and hence p(c;y;) = ¢;p(y;) = 0, a contradiction. Hence, X must

be maximal. O

Lemma 7.3.6. Let M be a lattice in W and let X be a totally isotropic o—submodule of M, then

X is not contained in whl.

Proof. For a contradiction, suppose that X is contained in wM. Then by 7.2.7 we have that

XNwM =wX, and so X = wX, a contradiction. O

Lemma 7.3.7. Assume that dimW = 2 and let M be a lattice in W with N(M) = p*. Let X be a

totally isotropic subspace of M. Then there is some x € X such that X = ox and y € M such that

M = oz + oy
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with (x,y) = w".

Proof. Let & € X such that X = ox, that is, z is an o—basis for X. The set {(x,2) : z € M}
is a fractional ideal of o, and hence is equal to p”* for some integer k. Let y € M be such that

(z,y) = @k and we thus have that
ofz,y) =p" ={(v,2) : 2 € M}.

We show that x,y is and o—basis for M. Define L = ox + oy and for a contradiction assume that
L is a proper o—submodule of M. As M is a lattice in W, there is an o—basis z1, 2o for M and
integers ni,ny with 0 < ny < no such that @w™ z;,w™2 2, is a basis for L. Since L is a proper

o—submodule of M we must have that no > 0. Let a,b,c,d € o such that
T =aw™z + bw'™ 29

and

y=cw'z +dw"?zs.

We thus have that

@ = (z,y)
= (aw™ z1 + bw? 23, cw™ 21 + dw"? 23)

= (ad — be)w™ "2 (2, 25).

Note that

naz—ni

x=w"(az; + bw 29).

Since X = oz is a maximal totally isotropic o—submodule of M then we must have that n; = 0,
and thus

T =az +bw™"™

z9.
By a similar argument, we also have that v(a) = 0, and so a € 0™, meaning that

na2—njy

(%, 22) = (az1 + bw 29, 22) = a{z1, 22).

{<x7z):z€M}:pk,

then we know that

<2’1, 22> = ewj
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for some integer 7 > k and e € 0. Now, by substitution, we obtain

w" = (z,y)
= (ad — be)w™ "2 (2, 25)

= e(ad — be)w™ T2,

Thus, it follows that
k=v(e)+v(ad —bc)+ny +ns +j.

Since v(e) > 0,v(ad — bc) > 0, ng > ny > 0, and j > k, we must have that v(e) = v(ad — bc) =

n1 =noe = 0 and j = k. These contradict the result that ny > 0, and so we have that
M =L = ox + oy.
Finally, as M = ox + oy, then N(M) = o{z,y) = p*, completing the proof. O

Lemma 7.3.8. Assume that dim W = 4 and let M be a lattice in W with N(M) = p*. Let X be a
totally isotropic subspace of M. Then there exists a paramodular basis {w1, wa, w3, ws} for M such
that

X = ow; + ows.

Moreover, ((X, M)) = p*.

Proof. To start,since M is a paramodular lattice, let z1, 22, 21, 25 be a symplectic basis for W such
that

M =0z @ 02y ® 0w 12 @ 0wk 2.

As a fractional ideal of o, and since N(M) = p*, then we have that ((X, M)) = p for some j > k.
Suppose first that ((X,M)) = p*. By 7.3.1 there are * € X and y € M such that (z,y) = w".

Define
Wiy ={weW:(z,w) = (y,w) = 0}
and
Wy =Fx & Fy.
Note that

Wy ={weW: (w,Ws) =0}.
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Since W5 is a non-degenerate subspace of W, then W7 is also a non-degenerate subspace of W, and

thus we have an orthogonal decomposition
W =W; 1L Ws,.

As seen in [11] 1.1.9 and 1.1.11, if w € W, then we may write w = wy + wy where

w = w2 (w2)
(z,y) (z,y)
and
vy (w9 (03)
(z,y) (,y)
with wy; € W7 and we € Ws. Define
M, =MnW;
and
My = ox @ oy,

then M is a lattice in Wy and M, is a lattice in Wy. Since N (M) = p* and (z,y) = w*, the above

formulas for wy and ws show that there is an orthogonal direct sum decomposition

M = M; L M.
Now define
Xi=XnNnM
and
X2 = 0x.

We have that X; N Xy = 0 since X1 N Xy C MiNMy=0. Also X1 ® X, C X. Let 2/ € X, and
so we may ' = wy + ws for some wy € My and wy € Ms. Let a,b € o be such that wy = ax + by,
then since z,z’ € X, X is totally isotropic, and (z, W7) = 0 we have that
0= (z,2') = (z,w1) + alz,z) + b(z,y) = blz,y) = bw",
and hence b = 0. We thus have
= w + ax,
meaning that w; € X. We now see that X C X; & X5. The other inclusion is clear. Thus

X = X1 & X5, As X is maximal, 7.3.5 says we have that X NwM = wX, and hence

wX] DwXe =wX
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=XNwM
= (Xl D XQ) n (le @WMQ)

= (Xl N WMl) D (X2 n wMg)

This implies that wX; = X7 NwM; and wXs = Xy NwMs, and so by 7.3.5 we have that X is
a maximal totally isotropic subspace of M; and X5 is a maximal totally isotropic subspace of My
Let N(M;) = p’; since N(M) = p* and M; C M, then we must have that j > k. By 7.3.7 there

exists 1 € X7 and y; € M; such that X7 = oz,
M, = oxy © oy,
and (x1,71) = @w’. As My = ox @ oy, with (x,y) = w", it follows that
M = o0x @ ox; B oy P oy;.

This means that

Tv(M) = (k, j),

but since M is paramodular, Inv(M) = (k,k + 1), and so j = k + 1. Since X = oz @ oxy, the
assertion of the lemma follows.

Assume now that ((X, M)) = p’ for some j > k + 1, and we will obtain a contradiction, which
will show that this case does not occur. Since we have that ((X, M)) = p/ for some j > k+ 1, there

does not exist any € X and y € M such that (z,y,) = @®. Let z € X and write
T = az + bzy + ez + dw” 2

for a,b,c,d € 0. Then we have

<‘T7 Z1> - _ka+17
(%, 22) = dw”,
k1 k+1

As M is paramodular, we must have b,d € p for all z € M. As X is maximal, 7.3.6 applies, and so

X is not contained in @M, and so there must exist x € X such that a € 0* and ¢ € 0*. Hence,
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there is an # € X and y € M such that (z,y) = w"*?!; in fact, we can assume that y = w"*12{ or

y = z1. This fact, along with our assumption, now imply that

((X, M)) = p*Ft.

Next, by 7.2.5,
M# =p(—2b) ®o(—2)) ®ow Fzy ®ow F 1z
with
N(M#) =p~F1
Define

X =w X,

and let z € X’ and z € M. Write 2/ = w ¥ 1z for some zo € X. With this, and the fact that
(X, M)) = p**+1) we have

(x',2) = w * Yz, 2) € 0.

By definition, we must have that 2’ € M#, meaning that X’ C M#. Of course, since X is totally
isotropic, then X’ is also totally isotropic. We show now that X’ is maximal.

To see that X’ is maximal, let
P M* = M* joM*, and p:M— M/oM
be the natural projection maps, and define
T: M#|/wM#* — M/wM

by T(z +wM#) = wfTlo +wM for x € M#. Then T is a well-define o/p linear map. Let 2/ € X’

and write 2’ = w %1z for some z € X. We have that

T(p' (") = T(p' (@ " ')
=T(w * o4+ wM¥)

=z+wM

and thus



306

By 7.3.5 we have that dim,/, p(X) = 2, and as dimp’(X’) < 2 by 7.3.4, then we must have that
dimp’(X’) = 2. Again by 7.3.5 we see that X’ is a maximal totally isotropic subspace of M# as
claimed.
We now show that
(X, M#)) = 1,
Recall that there is an z € X such that either

k+1

(x,m" ) =w or (x,21) =@

Hence we have that either

—k—1 —k—1

(w r,2) =w or (w z,w 2)=w

This implies that there exists some 2/ € X’ and 3y’ € M# such that (2/,y') = w *~. Since

N(M#) =p~*=1 then it must be the case that
(<X/’ M#>) = p_k_l

as claimed.
To summarize so far, we have that M# is a paramodular lattice, X’ is a maximal totally isotropic
o—submodule of M#, and
N(M#) = (X', M#)) = p~F~1,
This information implies that there exists z, 25 € X’ and y},y2, € M# such that
X' =ox)| @ oxh,
(zi,2h) = (yiy;) =0 4,5 €{1,2},
<x2,y;>:0 i,j € {1,2},i # j,

<1‘/13 yi> = wika

(@h,yp) = w "1,
M# = oz} @ oxy @ oy © oy,
Writing
M# = oz} @ oxy ® 0w *(Fy)) @ o1 (DT yh),

then by 7.2.5 we obtain

M = (M#)# = 0" Ty} @ 0w®y] © 0™ ah, ® 0w’
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In particular, we see that M contains the totally isotropic subspace
X" = owhal @ 0w ).
On the other hand,
X =" X = o™} @ 0wt

is properly contained in X", which contradicts the maximality of X. O

7.4 Paramodular Lattices in a Fourth Dimensional Symplectic Space

In this section we will assume, unless otherwise stated, that (W, (-,-)) is a four-dimensional non-
degenerate symplectic space over F', a non-archimedean local field of characteristic zero, with ring
of integers o and prime ideal p C o with generator w. it is worth noting that by 7.1.5 and the
definition of a paramodular lattice, if dim W = 4, then every paramodular lattice in W admits a

paramodular basis.

Lemma 7.4.1. Let M and L be paramodular lattices in W with M C L and o € F* such that
aN(L) = N(M). Then either
aL C M

or

M + aL is a mazimal lattice with Inv(M + aL) = v(N(M)).

Proof. Let N(L) = p® and N(M) = p® We may assume that a = @?*. Since M C L we have
N(M) =p® C N(L) = p°. It follows that

a>b.
Hence, o € 0. Let M’ = M + aL. We claim that N(M’) = N(M). Clearly, N(M) C N(M').

Conversely, let z,2’ € M’. Write x =y + az and ' =y + a2’ for y,3y’ € M and z,2’ € L. Then

(z,2') = (y + az,y + a2’
= (y,y') +aly.2) +alz,y) +a?(z,2)
€ (M, M)+ a(M, L)+ a(L, M) + a*(L, L)
€ N(M)+aN(L) +aN(L) + o*N(L)

€ N(M).
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It follows that N(M') C N(M). Hence, N(M') = N(M). We therefore have
inv(M') = (a,as)

where as > a. Next,

(
=v(N(M# N (aL)#)) (Lemma 7.2.7)
= V(N(M# N a_lL#)) (Lemma 7.2.7)
> max (V(N(M#)), u(a*2N(L#))> (Lemma 7.2.7)
= max(—a — 1, —2v(a) + v(N(L#)))
=max(—a—1,-2(a—b) —b—1)
=max(—a—1,-2a+b—-1)
=—a—1+max(0,b —a)
=—-—a—-1+0
=—a—1
Thus, a +1 > as > a. Assume first that ag = a + 1. Then inv(M) = inv(M’) = (a,a + 1). By

Lemma 7.2.8 we have M’ = M, so that oL C M. Assume that as = a. Then M’ = M + oL is
maximal and v(N(M')) = a. O

Lemma 7.4.2. Let

L =o0x1 P oxy P oxs®oxy

be a lattice in W. Then {z1,xa, 23,24} is a paramodular basis for L (and hence L is a paramodular

lattice) if and only if the Gram matriz for the basis of L, denoted ((x;,x;)), satisfies

0 0 whtl 0
0 0 0 wk
(@5, 25)) = u
—gghtl 0 0 0
0 —k 0 0

for some u € 0.
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Proof. Note that

k+ +

L = ow; ®ows @ owkwg @ o w, = ow; B ows ® 0" Lws @® owkwg.
Hence we obtain the desired result upon computing the Gram matrix. O

Denote the matrix in the statement of the previous lemma by J 1, and so

0 0 whktl 0
0 0 0 wk
Jch =
—whtt 0 0 0
0 —wk 0 0

Lemma 7.4.3. Let W be a vector space over F and let {-,-) be a bilinear form on W. Let

wi,...,w, € W and g € M(n, F). Define

wj w1
=g
wl, Wy,
Also, define
B = ((wi,w;)), B = ((wj,w})).
Then,

B' =gB'g.
Proof. For i,j € {1,...,n} we have that
/ / /
B = <wi,wj>

n n
= <Z ik Wk, Z GimWm)
k=1 m=1
n n
= Z Z GikGim (Wi, wj)

k=1m=1

= Y0 S () ()

k=1
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Lemma 7.4.4. Let M be a paramodular lattice in W and suppose that N(M) = p*. Let B =

(w1, we, ws,wy) be a paramodular basis for M and g € GL(4,0). Define B' = (w}, wh, w5, w)) by

wl w1
wh wy
=9
wh ws
w) Wy
Then the following are equivalent:
1. B’ is a paramodular basis for M.
2. There is u € 0™ such that
w w
1, 1
g g=u
—w —w
-1 -1

That is,

9Jw0"'9=1uJmp.

3. We have that hy, 'gh_' € K(p), where

Proof. Assume that B’ is a paramodular basis for M, and so ({wj,w})) = g({wi,w;))‘g. Note that

((w], w})) = uw®Jm o and ((wi,w;)) = v@w*Jg o for u,v € 0*. Hence we have that
uwaw,O = ngkjw,O tga

implying that
ng,O tg = uviljw,Oa

proving that (i) implies (ii). Note that working this computation the other way shows that (ii)

implies (i).
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Now, assume that ¢.J5 %9 = uJw . This implies that t(tg)Jw,o tg = uJm o, and hence that
tg € GSp(Jwp,0). Thus, by 3.2.3, we have that hy'ghz! € K(p) as desired, so (ii) implies
(iii). Also by 3.2.3, if hy 'gh! € K(p) = hoGSp(Jwo,0)h!, then ‘g € GSp(Jw,0,0). Hence
"t9) w0ty = udm for some u € 0%, 80 gJm oty = uJgo. Hence (iii) implies (i), proving the

claim. 0

Lemma 7.4.5. Let L and M be paramodular lattices in W with paramodular bases By, = (1, %2, T3, 24)
and Byr = (y1,Y2,Y3,va), respectively. Assume that M C L with N(M) = p' and N(L) = p*. Let
g € M(4,0) such that

Y1 x1
Y2 X2
=g
Y3 z3
Ya Ty

Then hy tgh ! € GSp(4, F) and v(A(hg tght)) =1 — k.

Proof. Let By, = ((yi,y,)) and B}, = ((z;,z;)). As By, and Bjs are paramodular bases for L and

M respectfully, we have that
B, =uw®Joo, and  Bj =vw'Jao
for u, v, € 0*. Hence, by 7.4.3, we have that

B;W = gB}, tg = lejw,o = g(uwkjw,O) tg
- vu_lwl_k.]w,o = ngotg
= v D (" hpJhey) = g(*he Jhe) g

t

— vu ! TR = (he tgh ) T (he tghh).

Note that the above computation shows that v(A(hy tghZt)) = [ — k, as this is the power of . O

Let W, denote the vector space F*, written as columns vectors. Define a symplectic bilinear
form, (-,-) on Wy by

(z,y) ="aJy,
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where J is the standard symplectic form

Note that if (eq, eq, €3, e4) is the standard basis of Wy, then

(s e5)) = J.

Denote by Lo a paramodular lattice in Wy with N(Lg) = o, so

0
Lo = 0eq P oes @ owez P oey = °
p
0
Lemma 7.4.6. The set {g € GSp(4,F) : gLo = Lo} is K(p).
Proof. First, suppose that g € K(p), and so
g11 12 13w " gua
g= 921w g22 923 924
g31w  g3w 933 934w
941w g42 943 944

where g;; € o for all 7,5. As ey, ez, wes, eq is an o basis of Lg, and

gi1 921 913 gi14
g1 w 922 g23w 924
ger = € Lo, ges = € Lo, gwes = € Lo, geq = € Lo,
g31w g32w g3sw g3a™
guw 942 ga3w@w ga4

then we have that gLg C Lo. Note that as g € K(p) and K (p) is a group, then the same relationships
hold for g=% € K(p), thus we have that g='Ly C Lg, implying that Ly C gLo. Hence we have that
gLo = Ly and so we have shown K(p) C {g € GSp(4,F) : gLo = Lo}.

Now, to show the other inclusion, let g € {g € GSp(4,F) : gLy = Lo} and write

gi1 912 913 Y14

g21 G922 g23 9G24
g =

931 g32 g33 g3a

ga1 G942 Ga3 Gaa
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Note that
933 943 —g13 —g23
934 944 —014 —924
g—l _ )\—1
—g31 —941 911 g21
—g32 —g42  G12 g22
since g € GSp(4,F). As gLy C Ly we must have that
g11 912 g13w@ g14
g21 922 923w 924
ger = € Lo, ges = € Lo, gwes = € Ly, ges = € Lo.
931 932 g33w 934
941 942 943w 944

Additionally, since g~'Lo C Lg (as gLo = Lg implies that g~'Lo = Lg), we also have that

g33
934
97161 :)\71

—931

943

944
g_1€2 :)\—1

—941

1

g tweg =71

As the element A(g) € F* is the element such that
(+,-) is the standard symplectic form on Wy, then this
that

| —932]

€ L07

€ Ly,

<g$,gy> = )\(g)<l',y> for all z,Y,€ WO where

relation has to hold for e; and es. We have

Ag) = (gez, gea)
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and
Myg™") = (97 e2, 9 "ea).
As ges, ges, g les, g ey € Lo, we must have that

X

Ag) = (gez, ges) € 0 and )\(9—1) = <9_1€2,g_1€4> €o

with A(g~!) = A(g)~!. We now show that g has that form

o o p !t oo
p o o o
pp o p
p o o o
Using the previous computations, we know that

1

g1 g12 g13@W g14

9= g21 922 gasw ' goa
9317 G5 933 934w

ga1 ga2  gasw ' gu

1

Additionally, using the computations for ¢g~*, we know that g41, g21 € p, and so we actually have

1

g11 g2 g13w 914

g = 99 g2 g3w ' gu
9317 G5 933 934w

9@ Ga2  Gas@ 1 gu

Lastly, as go3w ™!, g430~ ! € 0 by these same computations, then go3, g43 € p, and thus

1

g11 g2 g13w— 914
o 9nw g2 Gz g
93T 3w 933 934w
l9n™ g1z Gz Gua |
Hence, g has the desired form, and so g € K(p), proving the claim. O

Lemma 7.4.7. Let h € M(4,F). Then

el he 'hh ey
sle | he 'hhles
wes he ‘hh (wes)

e4 he 'hhley
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and
€1 h€1
T R B
wes h(weg)
€4 i h€4
Proof. First we have that
€1 hir hiz hiz his €1 hii hia hisw hy
L €2 . hor  haa  haz  hos €2 o ho1  haa  hazw hoy
wes h31 hza hzz hss| |wes h31 hza hzzw hs
ey har haa haz haa| | e4 har  hgs hazw  hay
As
hi1 his  hisw™t  hiy
he thh =t = ha1 has  hosw™'  ho
ha1w hsaw h3s3 h3sw
ha1 hyo h43w_1 hag
then we have
h11 h12 h13 h14
h h h h
hothhZler = | 0|, hothhZles= | 2|,  hothhllwes=| |,  hothhTles=|
h31w hggw hggw h34w
h41 h42 h43 h44
Hence
el he ‘hhZle;
Lle | he thhztes
wes he thh;lweg
e4 he "hhZley
A similar computation proves the other identity. O

Theorem 7.4.8. Let a,b and ¢ be non-negative integers such that a < c—a and b < c—0b. Denote by
M (p,p°, p°) the set of all lattices M in Wy such that M C Lo with paramodular basis w1, wa, w3, Wy

for Ly such that

b

M = 0wy & 0wy B 0w “ws D 0w’ bwy.
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Let C(p®,pb,p°) denote the set of cosets gK (p) for g € GSp(4, F) such that

Then the map
m: C(p®,p°,p¢) = M(p®,p",p),  m(gK(p)) = gLo
s a well-defined bijection.
Proof. It gK (p), hK (p) € C(p®,p®,p°) with gK (p) = hK(p), then K(p) = h~'gK (p), and so
m(hK (p)) = m(hh™"gK (p)) = m(gK (p))-

We now check that m(gK (p)) € M (p®, p®, p©). Since gK (p) € C(p%, p°, p¢) we have that

a

w
o
gka = ki
wc—a
wc—b
for some k1, ke € K(p). Hence we have that
w? w?
b b
w w
he 'kohthe tght = hey bt = he tkih Y,
wC—(l wc—a
wc—b wc—b
implying that
e1 w?® el
t; -1 t 1| €2 @’ t; -1 | €2
he “koh_" - he "gh = he "k1h
wes we ¢ wes
ey web ey
Set
€1 w1
€2 w2
he kbt =
wes ws

€4 W4
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As k1 € K(p), we have that h_'k1he € GSp(Jw 0,0) by 3.2.3, and hence for u € 0%,

t(hélklhw)Jw,O(h;klhw) = oo = (he 'k1h') o o(hs kihe) = s

= (he 'k1h") w0

Hence, by 7.4.4, since
€1
he 'kih !
wes
€4

we have that

t

(he "k1ht) = udy o.

w2

w3

is a paramodular basis of Ly. Substituting this into what we had before, we obtain

€1 w
€2
he 'kohlt - he tght =
wes
eq
By 7.4.7, we have that
€1
€2
hw tgh;l _
wes
€4
and so by substitution we have
geq w?
t; -1 | 9€2 @’
he "kah =
gwes
geq

w1
wb Wo
ot wa
wc—b Wy
gel
gez
b)
gwes
geq
w1
w2
ot w3
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Setting
gex w
/
gez w
he tkoh 2! =7
guoes wh
geq wy

and using an argument similar to the one we used above for k;, we have that

wy
wh
ws
wj
is a paramodular basis of gLyg.
Hence,
w} w? w1
wh w® wa
= )
wh we w3
w) @b |wy

and so gLg € M (p®, p®, p©). This shows that the map

m: C(p®,p",p°) — M(p®,p",p%),  m(gK(p)) = gLo

is well-defined.

To see that the map is injective, suppose that m(gK(p)) = m(hK(p)). As gLo = hLy, then
h=lgLo = Lg, and so by 7.4.6, h~tg € K(p), and so h=tgK(p) = K(p). Thus, gK(p) = hK(p).

To prove that the map is surjective, let M € M (p®,p®, p¢), and so M C Ly with paramodular

basis w1, ws, w3, wys for Ly such that
M = oww; & ow’ws B 0w’ w3 & 0w’ Pw.

As M C Ly there is some k € GL(4, 0) such that

w1 €1

w2 €2
=k

ws wes



Note that by 7.4.4 we have that he "kh_! € K(p). As

wwy w? w1 el
wbwg w® () €2
= and g =
w Ywsg w? w3 wes
wc_bw4 b Wy e4
for some g € M(4,0), then we have that
e1 we el
€9 wb €9
g = k
wes we wes
€4 web €4

wwy

W w2

w

c—a

c—b

W
wb
g= k,
w67a
wcfb
and hence
wa
b
()
he tght = he "kh !
wc—a
wc—b
As
w{l
wb
€ GSp(4,F) and  hg'kh_' € K(p),
wcfa
wc—b

w3

Wy
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Thus, we have that ho, tghZ K (p) € C(p®,p?, p¢), meaning that for ¢’ = h,, tghZ! we have

g Lo = 0g’'e;1 ®og'es ® og'wes © og'ey.

As
!
€1 ge
/
€2 g é2
g = )
wes g'wes
/
€4 gé4
and since
g'er €1 wwy
g'ea €2 wbw,
=g = )
g wes wes w3
g'eq €4 wbw,
then we have that ¢’Lg = M, proving surjectivity. O

7.5 Orders of T(1,1,w,w) and T(1,w, w?, @)
We continue with the notation that was used in the previous section.
Lemma 7.5.1. Let M be a lattice in W with (M, M) C o. Define
(+)a  M/wM x MM = ofp
by
(z+wM,y+wM) = (z,y) +p,

where (-,-) is the symplectic form on W. Then (-,-)q is a well-defined symplectic form on the o/p

vector space M /wwM .

Proof. Let x,y,2',y’,w,z € M such that x = 2’ + ww and y = 3’ + @z, then we have that
Yy Y

(@,y) = (@' + ww,y’ +w2)
= (@",y) + w(z’, 2) + w(w,y’) + @ (w, 2)
= (="y) +p.
Hence, (z,y) +p = (2/,y’) +p, showing that (-,-), is well-defined. Also, as (-,-) is a non-degenerate

symplectic from, then (-, -), is 0/p linear in both components as well as satisfying (x,y), = —(y, )4

for x,y € M/wM. O



321

Definition 7.5.2. Let (W, (-,-)) be a non-degenerate symplectic space over F. Let M be a lattice
for W and let K be an o-submodule of M. We define the radical of K, denoted by R, as the set

R={zeK:(z,K)=0)}.

Lemma 7.5.3. Let (-,-)q be the symplectic form from 7.5.1 on the o/p vector space Lo/wLg, and

let R be the radical of this symplectic form in this vector space. Then
R=o/p-(e1+wLlo) @o/p- (wes+wlo)

Proof. Let p: Lo — Lg/wLg be the natural projection map, then as e, ea, wes and ey is a basis for
Lo we have that p(e;), p(e2), p(wes), and p(eq) is a basis for the o/p vector space Lo/wLg. hence,

for any « € Lo/wLy, there are some elements a, b, c,d € o/p such that

z = apler) + bp(e) + cp(wes) + dp(es).
Thus we have that
(x,p(e1))q =0
(@, pe2))q = —d
(z,p(wes))q =0
(z,p(es))q =b.

These computations show that x € R if and only if = € o/p - p(e1) @ o/p - p(wes), proving the

claim. 0

Lemma 7.5.4. Let S be the set of all o/p subspaces, U, of Lo/wLy such that dimU = 2, U is

totally isotropic with respect to (-,-)q, and dim(U N R) = 1. Define a map
T:M(o,0,p) = S as T(M) = p(M),
where p : Lo — Lo/wLg is the natural projection. Then T is a well-defined bijection.

Proof. Let M € M(o,0,p). We first show that T is well-defined, and to show that we need to show
that T(M) € S. As M € M(o,0,p), then by definition of the set there is a paramodular basis for

Lo, say {w1,ws,ws,ws} such that

M = owy @ ows B owws P 0wy,
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and so we have that {w, ws, wws, ww,} is a paramodular basis for M. As p is the projection from

Lo to Lo/wLg, we have that

p(M) = (o/p)p(w1) & (0/p)p(ws2).

Thus, dimp(M) = 2. Additionally, we see that as (wq,ws) = 0, then (p(w1), p(w2))y = 0 in o/p,
and hence the space p(M) is totally isotropic with respect to this symplectic form.

Now, let a,b,c,d € o/p. Then we have that
(p(w1), ap(w1) + bp(w2) + cp(ws) + dp(ws))q =0
as {wy,wq, ws, ws} is a paramodular basis of Ly. We also have that
(p(w2), ap(w) + bp(wz) + ep(ws) + dp(ws))q = d,

and hence p(M) N R = (o/p)p(w1), and so dim(p(M) N R) = 1. Thus, p(M) € S. We now check
that T is injective. To do this, let My, My € M (o0,0,p) with T'(M;) = T(Mz), and so there are

paramodular bases for Ly such that
M; = owq P ows B owws P 0wy

and

My = 0z1 D 0z @ 0wzs D 0wzy.
Of course, as M1 + wlLo = p(M;) = p(Msy) = My + wLy we have that
M + oww; @ owws D owws B owwy = Mo + 0wozy D 0wze D 0wzs O 0wwzy.
As {wy,wa, w3, ws} and {21, 22, 23, 24} are both paramodular basis of Lg, then
oww D owwsr D owws D owwy = 0wz D 0wze D 0wzs D 0wzy,

and so My = My, proving that T is injective.
Lastly, suppose that U € S and let p(w;),p(ws) be a basis for U where wy,wy € Lg. As
dim(U N R) =1 and R has basis p(e1), p(wes) by 7.5.3, then we can assume the w; = ae + cwws

for a,c € 0. We first show that (wy,ws) = 0. Let
we =a'e; +bes + wes +dey

for some a',b',c,d" € o. Since dim(U N R) = 1 then p(ws2) ¢ R (since we have that p(w;) € R

by assumption), which implies that either ¥’ € o* or d’ € o* (this follows since for some z €

Lo/wLo, (p(wz), )4 # 0).
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Assume first that b’ € 0™, then there is some d € o such that ac’ — ca’ = b/'d, and hence
(ac’ — ca')w — b'dw = 0.
Note that this calculation shows that
(w1 + dwey, we) = (ad’ — ca')yw — V' dw = 0,

and replacing wy + bweg with wy, we have that (wq,ws) = 0. If instead d’ € 0*, a similar argument
shows that (w7, ws) = 0. Hence, we may assume that (wy,ws) = 0.

Now, define X = ow; + ows, and as (w1, wy) = 0, X is a totally isotropic s—submodule of L
with X Nwly = wX. Hence, by 7.3.5, we have that X is a maximal totally isotropic o—submodule

of Ly. Therefore, by 7.3.8 there exists a paramodular basis {z1, 22, 23, 24} for Lo such that
X = 0z1 + 02s.
Define
M = 0z1 ®ozg D owzs D 0wzy.

Then M € M(o,0,p) with

Thus, T is surjective, proving the claim. O
Lemma 7.5.5. The order of S is ¢® + 2¢* + q, where q is the order of o/p.

Proof. Let p: Lo — Lo/wLg be the natural projection and let Z be the Ly/wLg subspace spanned
by p(e2) and p(es). As R is spanned by p(e1) and p(wes), then we have that Lo/wLly = R® Z.
Define the set X as

X = (R—{0}) x Rx (2 —{0}),

as well as a function

s: X —= S

where s(v1,v2, 2) is the span (in Lo/wLg) of the vectors v; and ve + z for (v, v9,2) € X.

To see that the map s is well defined, let (v1,vs,2z) € X and let U be the span in Lo/wLg of the
vectors v1 and ve + z. Then we have that dim(U) = 2, U is totally isotropic, and dim(U N R) = 1.
Thus, U € S and so s is well-defined.
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We also claim that s is a surjection. To see this, let U € S, and thus dim(U N R) = 1 meaning
that there is some v; € UNR such that UNR = (o/p)vy. As dim(U) = 2, there is some y € Ly/wLg
such that {vy,y} is a basis for U.

Let v € R and z € W such that y = vy + z and note that as dim(U N R) = 1 we have that
z # 0. hence, we have that (v1,vs,2) € X such that s(vq,vs, 2) € U, showing that s is surjective.

Now that we have established that s is a well-defined surjection, we may continue with the main

argument. let G be the group

a
G=<|c d ca,d € (o/p),ce€0/p
d
Then G acts on X by
a U1 avy
c d vy | = |cvr + dvug
dl | = dz

Let © = (v, v2,2) and y = (v}, v}, z’) be elements of X. We have that

s(x) = s(y) <= span(vy, vy + 2) = span(v, v + 2’)
<= span(v1,vs + z) = span(avy, cv] + dvh + dz') a,d e (o/p)*,c€0/p
<~ y = (avy, cvy + dvy,dz)

a
= gr=y g=lc d €q@q.

d

This calculation shows that there is a well-defined bijection G\ X — S defined by Gz +— s(z). Thus
we know that #5 = #(G\X). Set t = #(G\X). We may form a disjoint union of the orbits of
elements of X under this action by G (note that gz = x if and only if g is the identity matrix in

G.), and so there exists some z1,...,2z; € X such that we can write
X =Gz U - UGuxy.

Therefore,

HX = 4G+ + #Gry =t 4G,

meaning that t = #X/#G.
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Hence

L #X (P -DEFE -1 (g—1)PP e+ ) s,
== G T G- T (ot

O

Definition 7.5.6. Let (W, (,-)) be a non-degenerate symplectic space over F. Let M be a lattice
for W and let K be an o-submodule of M. Let Rad(K) = {z € K : (z, K) = 0}. We say that K is
a regular o-submodule of M if Rad(K) = {0}.

Lemma 7.5.7. Let M be a lattice in W with (M, M) C 0. Define
(g M/@* M x M/w?M — o/p?

by
(x+ @M,y + @ M)y = (z,y) +p°,

where (-,-) is the symplectic form on W. Then (-,-), is a well-defined symplectic form on the o/p>
module M /w*M.

Proof. Let z,y,2',y',w, 2 € M such that x = 2’ + w?w and y = y' + w?%, then we have that
(x,y) = (@' + @*w, ¢ + @°2)
= (@', y) + @@, 2) + @’ (w,y) + @' (w, 2)
= (a,y') +p°.

Hence, (z,y) + p?> = (2/,y') + p?, showing that (-,-), is well-defined. Also, as (-,-) is a non-
degenerate symplectic from, then (-,-), is o/p? linear in both components as well as satisfying

(x,y)y = —(y,x)y for z,y € M/w?M. O
Lemma 7.5.8. Let (-,-)y be the symplectic form from 7.5.7 above. Then we have that
Rad(Lo/szo) = {iL’ € Lo/w2L0 : <£L’,L0/W2L0>q/ = 0} = (0/]32)(’[E61+’w2L0)@(0/p2)(TD63+’(D2L0).

Proof. Let p: Lo — Lo/w?Lg be the natural projection map, then as ey, ez, we3 and ey is a basis
for Lo we have that p(e;), p(e2), p(wes), and p(es) generates the o/p? module Lg/w?Lg. Hence, for

any x € Lo/w?Ly, there are some elements a, b, ¢,d € 0/p? such that

x = ap(er) + bp(e2) + cp(wes) + dp(eq).
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Thus we have that

(z,p(wey))y = —cw® =0

(z,ple2))q = —d

(z,p(wes))qy = aw? =0

(x,p(ea))q = b.

These computations show that z € R if and only if z € (o/p?)p(we1) @ (o/p?)p(wes), proving

the claim. O
Lemma 7.5.9. Let S’ be the set of all o— submodules, U, of Lo/w?Lo such that

1. there exists z1, 22,24 € Lo/w2L0 with U = 021 ® 0wzo @ 0024

2. 21 § wLo, w22 # 0, wzy # 0 and (29, 24) ¢ is a unit in o/p?;

3. (z1,22) ¢ = (21, 22)q = 0;

4. w2z € Rad(Lo/w?Ly).

Define a map
T : M(o,p,p?) =S as T (M)=p(M),

where p : Lo — Lo/w?Lyg is the natural projection. Then T’ is a well-defined bijection.

Proof. Let M € M(o,p,p?). We first show that 7" is well-defined, and to show that we need to
show that T(M) € S’. As M € M/(o,p,p?), then by definition of the set there is a paramodular

basis for Ly, say {w1, we, w3, wys} such that
M = owy ® owwy & 0w ws B 0ToWy,

and so we have that {w;, wws, w?ws3, ww,} is a paramodular basis for M. As p is the projection

from Lo to Lo/@?Lg, we have that

p(M) = (0/p*)p(w1) ® (0/p*)p(wws) @ (0/p*)p(wws).

We thus have that p(M) satisfies the first condition to be in S’. We also have that p(w;) ¢

w Lo, wp(wz) # 0, wp(ws) # 0, and (p(w2), p(ws))y is a unit of o/p?. Additionally,

(p(w1),p(w2))q = (p(w1), p(ws))y = 0.
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Hence the map T is well-defined.
We now show that T is injective. Assume that Mj, My € M(o,p,p?) such that T'(M;) =

T'(Ms), and so there are paramodular bases for Ly such that
M, = owy @ 0wy @ 02w B 0wwwy

and

My = 021 ® 0020 ® 00225 D 0024.

Of course, as My + w?Lo = p(M;) = p(Ms) = M + w?Ly we have that
M + 0w2w1 D 0w2w2 D ow2w3 D 0w2w4 = M, + 0w221 D 0@222 D 0w223 D 0w2z4.
As {wy, wa, w3, ws} and {21, 22, 23, 24} are both paramodular basis of Lg, then
0w2w1 D 0w2w2 () 0w2w3 D 0w2w4 = 0w221 D 0w222 D 0w223 (5) 0‘(2’224,

and so M; = My, proving that T is injective.
Lastly we show that T" is surjective. Let U € S’, and so there exists 21, 22, 24 € Lo/w?Lo such
that

U =021 ®owzy P owzy.

Write

29 = Xo + szQ and 24 = XTyq4 + WQLO

for o, 24 € Lo. Note that as (29, 24)¢ is a unit in 0/p? by assumption, then (w2, z4) is a unit of o.

Define K = oxy ® oxy4, then K is a regular o—submodule of Lg. Let © € Ly and write
R ( (z,22) Tq— (,24) 302) + ( (z,22) Tq— (,24) xQ) '
(2, 74) (z2, 1) (2, 74) (T2, 4)

(x,29) . (x,24)
<$2,$4> * <$2,$4>

< gﬁﬁ " <<”>> s (<<:fx>> e &f,ﬁ >> -0

(e, ) e

T, T4) (w2, 24

Clearly

Z‘QEK,

and as

we have that

Hence, we may write

Lo=K'oK.
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Since z1, 29 € Lo/w? Lo, write 21 = 21 + @w?Lo and 23 = x5 + w?Lg for 21,79 € Ly and write

K+ = oy, ®oys. As 1 € Lg there exist a,b, c,d € o such that
x1 = ay1 + bys + crs + dxy.

We have that
<l‘1, 31‘2> = d<$4, .’172).
Note that since (21, 22) = 0, then (z1,x2) € p?. This, along with the fact that (x4, z5) is a unit of

o, implies that d is divisible by ?. Similarly, since
(w1, 24) = (22, 74),

then w? divides c¢. Thus we know that 1 € K+ as z; = p(z;) € p(K1).

Let X = ox; and consider the natural projection map 7 : K+ — K+ /wK=*. We have that
dim, /, 7(X) = 1 since 7(x1) # 0 due to the fact that z; & wlg by assumption. Thus, 7.3.5 implies
that X is a maximal totally isotropic o—submodule of K+. Now, 7.3.7 implies that there exists
x3 € K+ such that

K+ = ox, O oxs.

Now, note that we have
(T1,72) = (T1,74) = (T3, T2) = (¥3,74) =0

since 1,75 € K+ and x9, 29 € K. We also have that u = (x9,x4) € 0. Since 21 # 0, then we
have that

(x1,23) = v®

for some v € 0 and integer k > 0.
Set
M =ov 'z @ owu e, ® 0w2x3 @ owxy

and note that p(M) = U. All we need to show is that M € M (o, p,p?). For M to be a paramodular

lattice, all we need to do is show that & = 1 in (v™'zy,23) = w’. However this is the case as

v z, u ey, 23, 4 form a paramodular basis for Lg (since Lg is uniquely written this way). Thus

M € M(o,p,p?), meaning that 17" is a surjection, proving the claim. O

Lemma 7.5.10. Let R = 0/p?, Q = Lo/w? Lo, and

Q=0 xQ/wQ x Q/wQ.



Let X be the set of all tuples (z1,[22], [24]) € Q, where [2] := z + wQ, such that
1. wz1 #0,wze # 0, and wzg # 0;
2. (22, 24)q is a unit in o/p%;
3. (z1,22)¢ = (z1,22)q = 0; and
4. wz € Rad(Q).

Let G be the subgroup of GL(3,R) consisting of matrices of the following form

RX
R R
wR R R, G = € GL(2,R).
R R
wR R R
Then G acts on X by
gin 0 O 21 91121
g21 go2 g3 |[z2)| = |lg2121 + 92222 + gosz4]
gs1 932 s3] |[#4] (93121 + g3222 + g3324]
with stabilizer )
1 0 0
H=|wR 1+wR wR
_wR wR 14+ @R
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Proof. First note that G is a subgroup of GL(3, R). We now show that the action on X is well-

defined. Let x = (21, [22], [24]) and y = (21, [24], [2}]) be elements of X such that = y. This implies

that 2] = 21,25 = 29 + @wQ, and 2, = z4 + @Q. We have for

g11 0 0
9= 1921 go2 go3| €G,

g31 g32 933

gin O 0 k41 91121
921 Gg22 G23 [25]| = |lg2121 + 92225 + gasz)]

g31 932 933| |[#4] (93121 + g3225 + g3324]

91123
= |ga12] + 92225 + goszy + wQ
93121 + 93225 + 9332y + wQ
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g1171
= |g2121 + g22(22 + @Q) + go3(24 + wQ) + wQ
93121 + g32(22 + @Q) + g33(21 + @Q) + @Q

gi1121
= | g2121 + go222 + gozza + @@

| 93121 + g3222 + g3324 + @WQ

gi1121
= |[g2121 + g2222 + g2324]

(93121 + g3222 + g3324]

g O 0 21

= 1921 922 g23 [22]

1931 932 G33 [24]

Hence this action is well-defined
Finally we show that H is the stabilizer of G under this action on X. That is, gz = « for all
x € X if and only if g € H. So, let

gin 0 0
9= |91 g2 go3| €G

931 932 g33

be such that gz = x for © = (21, [22], [24]) € X, and so we have that

gin O 0 Z1 21
g21 g22 g23| |[22]| = |[22]
g31 932 933 [24] [24]

This equality implies that z; = g1121, and so (1 — g11)21 = 0, meaning that 1 = g;;.
Now, we also have that

2z = @2121 + Q2222 + g23zs + wQ.

This implies that

(22, 24) g = g22(%2,24)q + @WR.

Since (22, z4)¢ is a unit by assumption, we must have that goo =1 mod wR. Also,

0 = (22, 22)¢ = q23(22, 24)q + WR,
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and so go3 =0 mod wR. By a similar argument with the third equation
z4 = q3121 + @3222 + 93324 + @A,

we also see that g30 =0 mod wR and g33 =1 mod wR.
Since

Z9 = @2121 + @222 + gozza + wQ),

go2 =1 mod wR, and go3 =0 mod wR, we have that
29 = @121 + 22 mod w(Q

which implies that ¢121 = 0 mod @@, and thus we have ¢g2; = 0 mod wR since wz; #* 0.
Similarly, since

Z4 = q3121 + @3222 + g3324 + WQ,

gs2 = 0 mod wR, and g33 = 1 mod wR, we have that ¢g3; = 0 mod wR. Thus, we have that
gxr = x if and only if
1 0 0
geH=|wR 14+wR wR
wR wR 1+oR
O

Lemma 7.5.11. Let R,Q,Q, and X be as in 7.5.10 and define a map s’ : X — S’ by setting
§'(z1, [22], [24]) = 021 ® 0wz ® 0wzy. Then s’ is a well-defined surjection. Additionally, Let G be
the group in 7.5.10. Then for x,y € X, s'(x) = s'(y) if and only if there is a g € G such that
gr =1y.
Proof. Let R, Q, 2, and X be as in 7.5.10 and define a map s’ : X — S’ by setting s'(21, [22], [24]) =
021 ® 02y @ 0wzy. We now prove that s’ is a well-defined surjection.

To see that s’ is well-defined, let © = (21, [22], [24]) and y = (2], [#5], [24]) be elements of X such

that = y. This implies that 2| = 21, 2z} = 20 + @Q, and 2 = z4 + @wQ. We thus have that

s'(y) = 021 ® 0wzh B 0wz
=021 B ow(20 + @Q) B 0w (24 + @Q)
=021 D 0wz D 0wWzy

= §'(z).
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It is clear that s'(z) € S’ for any € X. We now show that s is surjective. Let U = 021 @ owza ®

owzy € S'. This means that U is an o—submodule of ) with the following properties,

—_

. wz1 # 0,29 #£ 0, and wzy # 0;
2. (22, 24)¢ is a unit in R;

3. (z1,22)¢ = (z1,21)¢ = 0; and

=

wz1 € Rad(Q).

Then the triple (21, [22], [24]) is in X and maps to U under s’, hence proving that s’ is surjective.
Let G be the group in 7.5.10. We now show that for 2,y € X, s'(z) = s'(y) if and only if there
is a g € G such that gx = y. To see this, first suppose that s'(x) = §'(y) for x = (21, [22], [24]),y =

(21, [25],[74]) € X, then
021 P owzy B owzy = Uzi o) owzé @ UWZ4.'

Since these are finitely generated o—modules, there is some g € GL(3, R) such that

/

Zl Z1
9 |wze| = |w2)
wzy wz)
Write
gi1 gi2 913

9= 1921 922 G23
g3t g32 g33
Hence, we have that
2y =g1121 + G122 + G132
w2y =g2121 + Y222 + G230z (7.2)
w2y =g3121 + g32W022 + g33T024.
As w2l = wyg1121, then w(z] — g1121) = 0, and hence 2| — g1121 € wQ, meaning that for some

o € Q,21 —g1171 = wa, and thus 2] = g1121 +wa. This implies that ¢g11 is a unit of R (as wz] # 0).

The second equation in (2) implies that

—go121 = w(—25 + 2222 + g2324),
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meaning that g2121 € w@ and hence wgo121 = 0. As wzy # 0 it must e the case that wgs; = 0,
and hence that gs1empr. Similarly, by the third equation in (2), we have that g3 € wR. As
921,931 € wR we may write go; = wgh; and g3 = wgs, for some g4y, g5, € R. Substitution these

expressions into the equations in (2), we have that

A /
W2y =W(e121 + g22W22 + ga3wzy

wzfl :wgélzl + g32Wz9 + g33TW24.
This implies that

! /
Zy—Gp121 — 2222 — Go3za € wW()

! A
Z4—G31%1 — g32%2 — g3324 € wWQ),

and hence we may write

/ ! !
Zy = g9121 + 92222 + g2324 + W
and

! ! 1’
Zy = g3121 + 93222 + g3324 + wQ

for some o, o’ € Q. We now compute

(25, Zz/1>q’ = (99121 + go22a + ga3za + @', g1 21 + g3222 + 3374 + wa//>q/

= (922933 — 923932) (22, 24) g + WR.

Since (25, 2))q and (22, z4) are both units of R by assumption, we must also have that geogss —

23932 is a unit of R, and thus

922 923 € GL(2, R).
g32 033

All that is left now is to show that g2 = g13 = 0 in R. Using the symplectic form again we have
that
(21, 29) ¢ = (91121 + Gr2W22 + g13W24, g1 21 + G222 + Gasza + wa )y

= W(912923 - 913922)(22, Z4>q’-

Note that there is no @R term in this last expression. This is because of the fact that wz; € Rad(Q).

As (21, 25)y = 0, we have that gi12g23 — 913922 € wR. By a similar argument we also can obtain



334

that g12933 — 913932 € wR. Using this, we know have

922 9| |913) whi
932 gs3| |12 @R|
and as
922 g23
932 933

is invertible, we see that gi2,g13 € wR, and so wgi2 = wgi3 = 0. The first equation in (2) now
implies that 2] = g1121, and so we may assume g;2 = g13 = 0. This means that g € G, completing
this implication.

We now prove that if there is some g € G such that for x = (21, [22], [24]), ¥ = (2], [#}], [#}]) € X

such that gz = y, then s'(z) = s'(y). Since gx = y, we have

Zi =011%1
25 =g2121 + G222 + gosza + wQ

zy =g3121 + g3222 + 93324 + wQ,

where
g1 O 0
9= 1921 g22 G23
931 932 933
Thus,

s'(y) = 02] ® 0wz P owz)

091121 @ 0w(go121 + ga222 + G2324 + wQ) ® 0w (g3121 + g3222 + Y3324 + wQ)
= 0g1121 @ 0w (ga121 + 92222 + g2324) B 0w (g3121 + g3222 + g3324)

= 0g1121 B 0w (ga222 + g2324) B 0w (g3222 + g3324)

091121 ® 0w (g2 + g32)22 ® 0w(gss + g23)24
= 0z1 @ owze @ 02y

=s'(z).

This proves the claim that s'(x) = s'(y) if and only if there is a ¢ € G such that ga = y for
z,y € X. U

Lemma 7.5.12. The order of S’ is ¢* + ¢°, where q is the order of o/p.



335

Proof. Let R,Q,Q,X,G, and H be as in 7.5.10 and let s’ : X — S’ be the surjection in 7.5.11.
Since we have that s'(x) = s'(y) if and only if there is a g € G such that gz = y for z,y, € X, there
is a bijection

G\X — 5
defined by Gz — s'(x) for x € X. This implies that there are z1,...,2; € X such that

X =Gz U UGz,

is a disjoint decomposition. As S’ and G\ X are in bijection with one another and finite, we have
that #S5" = #(G\X). Let t = #(G\X). By 7.5.10, we know that for z € X and g € G, gz = z if

and only if g € H. Hence, we have that

AX =t #Gr; =t <#G>

#H
for all = 1,...,t by the Orbit-Stabilizer Theorem. Hence
_#X #H
="Zg

Since #GL(2,R) = ¢**(1 — ¢~ ')(1 — ¢72) (as in [15]) and R* = R — wR, we have that
#G=("—q) ¢ ¢ ¢ -1 -a)]=¢""(¢-1)°(g+1).
Additionally, we see that #H = ¢®. We now determine the order of X.
Recall that X is the set of tuples (21, [22],[24]) € @ = Q X Q/wQ X Q/wq such that
(21,22)¢ = (21, 24)¢ =0,
(22,24)g € R™,
w21 € Rad(Q),

and
21, 22,74 & WQ.
Note that
Q/wQ = Ly/wLy.
We determine the number of choices for [25] first. As (29, 24) € R, the only restriction on zs

is that zo ¢ Rad(Q), and there are ¢ of these. Hence, there are ¢* — ¢* choices for [23]. For the

number of choices for [z4], consider the non-zero linear form

([22]-)q : Q/wQ — 0/p,
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which is just the symplectic form used earlier. Since Q/w@ is an o/p vector space, dim(Q/wQ) = 4,
and dim(o/p) = 1, then the Rank-Nullity theorem implies that dim(ker({[z2],-)4)) = 3. Hence, the
total number of viable choices for [24] is ¢* — ¢® as (22, 24)» € R*. Finally, to determine the number

of choices for z1, let K be the submodule of ) generated by z, and z4, and so we may write
Q=K+K".
Note that z; € K+ since (21, z2)q = (#1,24)g = 0. Also, since z; ¢ w(@, then the number of choices

for 21 is ¢* — #(K+ Nw@wQ). Since Q = K + K=+, we have that

Q EKerQJrKJ‘erQ

@Q @Q @Q

We show that this expression for Q/w(@ is actually a direct sum. If this were not the case, there is

an element, w # 0 in both (K + @wQ)/wQ and (K+ + @Q)/wQ, and so we can write
r+w@Q=w=y+ wq, reK+wQ,ye Kt +wQ.
This implies that x — y = wz for some z € Q). Now, as x € K there are a,b € 0 such that
T = azg + bzy.
Thus

<Z2a T — y>q’ = w<227 Z)Q"

However, we also have that

<2'2,.T - y>q’ = <22ax>q' = b<22,Z4>q/,

and so

b(za, 24)q = w(z2, 2)q-

As w(za,24)q is a unit of R, we have that w|b. A similar argument shows that w|a. Hence,
T = azo + bzy € w@Q, and thus w = 0, a contradiction.

We now have that
&EKerQ@KLerQ
wQ  @wQ @@
Observe that #(Q/wQ) = ¢* and #K = ¢*. Since

K+wQ K
wQ — KNwQ




and #(K NwQ) = ¢*, we have that

K +wQ *
(£259) -5

This implies that

K+ 4+ @Q 5
#< =Q )‘q'

Now, as
KJ-erQE K+
w@Q — KinwQ’

and #K1 = ¢*, we must have that
#(K* NwQ) = ¢*.
Thus, the number of choices for z; is ¢* — ¢2. Hence, we have that
#X =" —¢)¢" —¢*) =d"(a—1)*(¢+1)".

Therefore, we have that

_#X #H ¢ =1)°(¢+1)% ¢

! #G  ¢O(q—1)3(g+1)

proving that claim.

=¢(q+1) =¢"+ ¢,

337
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