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Abstract

The study of liquid-solid phase change has value in a range of applications, including in nuclear power.

Nuclear fuel rods are subject to internal heat generation that, during extreme conditions, can result in

the fuel becoming partially molten. Understanding of the melting process is critical to the safe design

and operation of nuclear power plants. However, analytical work in this area is still limited.

Two scenarios of liquid-solid phase change driven by internal heat generation are presented for a

cylindrical domain: a case with Constant Surface Temperature (CST), and a case with Constant Surface

Heat Flux (CSHF). We conducted an analysis of both scenarios in the form of the Stefan problem, a

free boundary problem where the position of the interface between liquid and solid phases can change

in time. By assuming constant thermal properties, pure conduction, and a sharp interface, we were able

to use the superposition principle to derive closed-form, first-order ordinary differential equations with

infinite series describing interface motion for one-dimensional, isothermal phase change.

We compared our analytical models against numerical solutions generated through the commercial

software Ansys Fluent. This software uses the enthalpy method, which allows the formation of a mushy

zone, to solve for temperature, enthalpy, and liquid fraction in the problem domain. Using this model, we

were able to check our solutions for mathematical soundness and evaluate the implications of assuming

a sharp liquid-solid interface. We performed comparisons between the analytical and numerical models

during both melting and solidification scenarios for several values of Stefan number for the CST case and

several values of heat flux for the CSHF case.

The CST case saw strong agreement in interface position in time for the slower phase change cases.

However, during the melting scenarios for these slower speeds, we saw a divergence in temperature profiles

characterized by a nonphysical overheating phenomenon at smaller time steps due to the formation of a

mushy zone in the numerical model. This issue lessened with higher interface speeds and did not present

itself during the solidification cases. Agreement in the CSHF cases was weaker than for the CST cases,

with disagreement being most significant when the material was mostly solid. This disagreement was

attributed largely to inaccuracy of the theoretical model. At faster phase change speeds, we saw more

mushy zone development in the melting cases, with the solidification cases once again showing no mushy

zone effects.
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Chapter 1: Introduction

Solid-liquid phase change is a phenomenon common in many engineering processes, including welding,

brazing, and soldering; metal casting and additive manufacturing; geological and ice shelf modeling;

energy storage; and thermal safety design. Several forms of internal heat generation exist in real-world

applications as well, including joule heating in electronics, body heat generation in metabolism, and

heating via chemical and nuclear reactions. Knowledge of both phenomena and their interactions are

critical in manufacturing and safety design.

Unfortunately, the marriage of phase change and internal heat generation poses significant complica-

tions. As materials transition from liquid to solid or vice-versa, they create a front where the material

changes phase. This front is influenced by heat transfer, and the inclusion of internal heat generation

affects it in unpredictable ways, including increasing the size of the front. Mathematically, internal heat

generation adds nonhomogeneous terms to governing equations and adds complexity to the already ar-

duous task of modeling the free boundary that is a phase change front. The result is systems that are

often difficult if not impossible to generate closed-form solutions for without fairly restrictive assumptions

and idealization. Experimental validation is challenged by the need to measure non-uniform temperature

distributions in a partially molten medium.

The development of solutions to problems involving solid-liquid phase change and internal heat gener-

ation is paramount in safe nuclear power design. Nuclear fuel rods are subject to internal heat generation

from irradiation. In crisis conditions, this heat generation can outpace cooling efforts, leading to partial

or total melting of the fuel rod. Being able to predict the response of the fuel rod during such conditions

is valuable to mitigating risk.

This thesis explores two cases of heat transfer in the realm of solid-liquid phase change, with both

cases considering an infinitely long cylinder with a constant radius. In the first of the cases, the wall of

the cylinder is held at a constant temperature, and an internal heat generation source is applied. As heat

increases, the interior of the cylinder becomes molten, and an interface between regions of the material

that are liquid and solid forms. The position of this interface exists as a function of time and tends

towards some steady-state position.

The second case explores the same geometry, but instead of a constant temperature at the wall, a

constant amount of heat leaves. If the total heat flux out is less than the total internal heat generated,

the cylinder tends towards a fully liquid phase, but as the heat flux increases, the cylinder begins to lose

temperature and becomes solid. In both cases, the heat transfer is modeled by conduction, a realm of

heat transfer rich in analytical modeling.



2

The thesis is organized as follows: Chapter 2 analyzes historical and current literature related to

liquid-solid phase change and Stefan problems. Gaps in knowledge are identified to solidify the place of

our work in the overall framework of understanding of phase change phenomena. Chapter 3 derives the

governing equations for our two cases, discusses the solution methodology to be used, and implements the

methodology. Chapter 4 proposes several numerical models to verify the analytical solutions generated

in Chapter 3, identifies one to be implemented, and discusses the case setups. Model results for both

the analytical and numerical models are presented in Chapter 5, with causes of disagreement and key

system characteristics discussed. Finally, Chapter 6 summarizes the work and proposes areas of future

development and improvement.
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Chapter 2: Literature Review

Study of the solid-liquid phase change phenomena was first documented in 1831 by Lamé and Clapey-

ron’s research into the formation of the Earth’s crust [1]. Their work studied the solidification of a

homogeneous fluid subject to constant temperature along its boundary and found the solid phase grew

in proportion to the square root of its time scale. Research in the field lay relatively stagnant until 1889,

when the phase change phenomena was expanded into the general class of free boundary problems in

four seminal papers published by the now eponymous Stefan [2], whose work focused on melting and

expansion of the polar ice cap. Stefan’s work introduced the concept of a time-dependent, or moving,

boundary problem, where the position of said boundary is a function of time and space. This boundary

was expressed through a conservation of energy accounting for latent heat storage.

Danilyuk [3] notes that research into phase change and the Stefan problem saw another decades-

long lull in activity until the early 1930’s, when interest into practical applications of phase change

gained traction. This period saw a rise in similarity, or Neumann, solutions to one-dimensional problems,

wherein the solution is self-similar in form to the initial governing equations, absent a characteristic time

scale. This time period also saw an increase in focus on problems in cylindrical and spherical coordinate

systems. Rubinstein [4] compiled many of the solutions from this time period into the late 1950’s. While

some general characteristics of free boundary problems had become understood, few exact solutions had

been found, and most problems were tackled by numerical methods, greatly limited by the computing

power of the time. The 1960’s through mid-1980’s saw significant expansion into numerical methods,

including implementations based on an enthalpy function. These developments, as well as advancements

in analytical methods of the time period, are recorded comprehensively by Crank [5]. Continuing into

the end of the 20th century, a review of methods extending from this timeframe was conducted by Hu

and Argyropoulos [6].

Research into the Stefan problem, free boundary problems, and phase change has a broad range of

applications, both in and out of engineering. Within the realm of earth sciences, many of the mechanisms

involved in the early formation of the Earth’s core are captured by melting and solidification phenomena.

In their work, Ulvrova et. al [7] numerically modeled melting and solidification in basal magma and its

interactions with convection. Looking to the mechanics of ice formation, Dragomirescu et. al [8] derived

semi-analytical solutions for a radially symmetric freezing process through perturbation techniques ap-

plied followed by an iterative process. Their work focused on ice formation from supercooled liquids,

where small disturbances lead to rapid and unstable solidification. In the world of biology, understanding

of thermal responses of tissue undergoing freezing is critical to successful cryosurgery. Singh and Kumar
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[9] applied finite difference solidification models to study biological tissue freezing including various forms

of bio-heating. Their model employed an enthalpy model and a modification of the standard heat equation

to include phase lag. The Stefan problem can be applied outside of phase change as well; in chemistry, it

can model growing reaction boundaries. Fedorov and Shul’gin [10] used such a model to describe ignition

and combustion of magnesium. Stefan boundary conditions, extended into two dimensions, can also be

used to model the formation of sedimentary ocean deltas, as demonstrated by Lorenzo-Trueba and Voller

[11].

Due to the complex nature of phase change, even in the modern day, most solutions are limited to

approximations in one dimension, typically with infinite or semi-infinite bounds. One such example is

the solution generated by Regis et. al [12]. Their solution used a two-point Hermite approximation to

obtain heat transfer coefficients within a transient lumped parameter model under the assumption of

circumferential symmetry. To accommodate multiple dimensions and finite geometry, numerical meth-

ods are regularly employed. One of the most commonly used is the enthalpy method, which enjoyed

broad development and implementation by Voller [13]. This method utilizes fixed domains and a nat-

ural enforcement of heat fluxes and is a common framework for many numerical schemes. Voller and

Swaminathan [14] developed a source-based formulation of the enthalpy method. Its robustness led to

widespread adoption by commercial Computational Fluid Dynamics (CFD) packages. A variation of the

method was developed by Caldwell and Chan [15] for spherical systems.

While phase change alone is a difficult phenomenon to model, the subset of phase change with inter-

nal heat generation is even more complex, and is less well-studied. Understanding of this specific subset

of problems is nonetheless valuable in several applications. Furlong and Chapman [16] applied phase

change driven by internal generation to geological processes to explain structural characteristics of the

lithosphere through heat generation and melting zones. Weinstein [17] theorized catastrophic episodes

of rapid thermal convection in the Earth’s mantle due to effects of phase change and strong radiogenic

heat production. In modern industrial processes, Jiang et. al [18] applied phase change models to study

solidification of immiscible alloys subject to electric current pulses. They characterized the nucleation,

microstructural development, and electrical conductivity of precipitated phase droplets, increasing un-

derstanding of phase deposition processes.

The primary application of concern to us is in modeling of nuclear fuel rods. Nuclear fuel rods are

subject to internal, radiogenic heat generation. Under crisis conditions such as over-reactivity or loss of

coolant, this heat generation can lead to fuel rod meltdown, a major safety concern. Understanding of the

meltdown process is thus critical to the safe design and application of nuclear power plants. Kumar et.

al [19] studied the interaction of coolant and molten fuel droplets in fast reactors. They used commercial
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computational fluid dynamics software to model the effect of decay heat on the solidification process.

Tang et. al [20] studied fuel rod meltdown specific to light water reactors with three-layer fuel rods.

Using an enthalpy-based method on a half boundary, they simulated meltdown processes for both excess

reactivity and loss of coolant. The model incorporated temperature-dependent thermophysical properties

as well as convection and radiation heat transfer in one dimension. Chen et. al [21] developed explicit

finite difference models using an enthalpy formulation to model the melting of nuclear fuel rods under

accident conditions. This model was used to address shortcomings in the lumped capacitance model the

group developed in [22].

Experimental work in this field is very limited. One of the few noted works with experimental data for

internal heat generation-driven phase change was conducted by Shrivastava et. al [23]. This experiment

used Joule heating to represent the heating mechanism. A CFD numerical investigation, similar to that

used in this thesis, showed good agreement within the bounds of measurement uncertainty.

Several approximate techniques have been applied to the subset of phase change problems with heat

generation, often with similar limitations to solutions to the classical Stefan problem — geometries are

typically restricted to infinite or semi-infinite planes. Yu et. al [24] applied perturbation techniques to

a variation of the Stefan problem in one dimension involving a source term. They were able to validate

a closed-form solution for the case of a semi-infinite plane. Lumped parameter models were used by

An and Su [22] to approximate one-dimensional melting with volumetric heat generation under several

impositions of boundary condition. Their model used two-point Hermite approximations for integrals,

and was tested across a range of Stefan and Biot numbers. Their work was a direct improvement on that

done by Regis et. al. Slota [25] used a variational iteration method to solve direct and inverse one-phase

Stefan problems. This method created continuous approximation functions within the solution region, as

opposed to the discrete solutions of finite difference and finite element methods.

A common simplification to yield approximate results is a quasi-static assumption, wherein the motion

of the temperature profiles is sufficiently slow relative to the motion of the interface such that the transient

component of the profile can be neglected. Solutions under such a quasi-steady approximation were

derived by Jiji and Gaye [26]. In their model, phase change with uniform heat generation was driven by a

sudden surface temperature change. They noted a difference between melting and solidification mechanics

in that melting was characterized by a mixture of solid and liquid material at the fusion temperature.

Similarly, Crepeau and Siahpush [27] employed a quasi-static assumption to approximate melting and

solidification of a material subject to heat generation in Cartesian, cylindrical, and spherical coordinates.

They found that interface motion is dependent on the first, square, and cube of time respective to each

coordinate system.
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Fully analytical solutions are more limited. Bechiri [28] investigated melting and solidification in-

fluenced by internal heat generation in cylindrical coordinates, subject to convective heat transfer on

the surface. They derived analytical solutions to their problem through separation of variables and an

exponential integral function. McCord et. al [29] expanded on the quasi-steady work of Crepeau and

Siahpush, deriving analytical solutions to the Stefan problem with internal heat generation in Cartesian

coordinates for a constant surface temperature. Their solution adopted a first-order, ordinary differential

equation modeling the interface motion through methods of superposition and separation of variables.

Similar solutions, but in cylindrical coordinates, were developed by Barannyk et. al [30]. A solution for

the constant surface heat flux analog was presented by Barannyk et. al [31]; these last two papers are

the basis for the analytical solutions presented in this thesis.
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Chapter 3: The Stefan Problem

The following chapter adapts the work done in both [30] and [31], expanding the steps taken and

formulating a general strategy for this form of systems of partial differential equations. We look first at

formulating the mathematical problem to be solved, then solve first for the Constant Surface Temperature

(CST) case then for the Constant Surface Heat Flux (CSHF) case. Finally, a brief discussion of the

solution implementation is given.

3.1 Problem Formulation

The situation that we are considering is the process of liquid-solid phase change in cylindrical coor-

dinates during an internal heat generation event, formulated as a Stefan problem. This is similar to an

electric wire receiving ohmic heat generation during a high power event or a control rod being heated by

irradiation during nuclear power plant operation. A benefit of the Stefan problem formulation is that it

uses the heat conduction equation, which has been widely studied and has well-known analytical solutions

for many cases.

We begin with an infinitely long cylinder, visually depicted in Figure 3.1, with radius r0 and some

initial temperature profile. An internal heat generation source, q̇, is applied to the whole of the cylinder

interior, resulting in the temperature of the interior of the cylinder to rise above the melting temperature,

Tm, and become molten. The wall is held at either a prescribed temperature, T0, for the CST case, or a

prescribed heat flux, q′′0 , for the CSHF case, which allows a portion of the outer region of the cylinder to

remain solid. An interface forms at s that divides the cylinder into a liquid region and a solid region.

Figure 3.1: Visual depiction of the problem domain, with key parameters labeled.



8

A number of simplifying assumptions are required to generate a system of equations with a closed-

form analytical solution. For our given problem, the following assumptions and their consequences are

presented here:

1. All thermophysical properties of the domain material are constant with respect to temperature and

phase. This allows for all differential terms to be with respect to temperature, T , only, simplifying

the overall system. The thermophysical properties of real materials are not truly constant but rather

vary over large temperature ranges; thus, this assumption requires a relatively small temperature

range.

2. The internal heat generation is constant and uniform within the problem domain. Similar to the

previous assumption, this simplifies differential terms to include only temperature. This restricts the

solution to simplified scenarios; however, radiation, ohmic, and chemical heat generation phenomena

can all be well-estimated with this assumption.

3. The domain material is a pure material and changes phase from solid to liquid and vice-versa

at a singular temperature, Tm. Alloys and materials with a different melting and solidification

temperature exhibit complex and pseudo-random phenomena, such as dendritic growth, that cannot

be well-described analytically. This assumption avoids such complexity. However, it restricts the

domain material to either pure materials or eutectic alloys without complex or geometric phase

phenomena.

4. There is no velocity field within the liquid region. This effectively neglects heat transfer by con-

vection, meaning that we reduce the heat transfer to purely conduction. Natural convection is

driven by large temperature variations and subsequent changes in density; our previous stipulation

of small temperature changes and constant thermophysical properties is sufficient to neglect this

form of heat transfer. Furthermore, convective cells require time to form; a further assumption of

a relatively short time period allows us to neglect velocity from a temporal standpoint.

5. Temperature variation is independent of axial and circumferential position. This allows for a spa-

tially one-dimensional domain, which, while requiring idealized circumstances, is substantially sim-

pler to solve.

6. Phase change occurs along a sharp interface, such that the space between liquid and solid phases

is infinitesimal and there is no mushy zone. In reality, energy is stored in a finite region of material

during phase change. The consequence of this assumption is that at early stages of melting and

solidification, energy distribution within and nearby the phase change front will be inaccurate.
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7. The time scale of front motion is sufficiently small relative to the time scale of temperature change.

This assumption is necessary to allow us to separate the governing equation into transient and

steady-state components while satisfying the free boundary.

Implementing these assumptions yields our governing equation, the heat conduction equation with

internal heat generation for cylindrical coordinates [32]:

1

r

∂

∂r

(
r
∂T

∂r

)
+
q̇

k
=

1

α

∂T

∂t
(3.1)

This equation holds for the domain T = T (r, t), 0 ≤ s ≤ r0, 0 ≤ t < ∞. Note that the governing

equation functionally exists twice: once for the liquid phase, and once for the solid phase. To track

the interface, we conduct an energy balance consisting of energy entering from the liquid region, energy

transferred to the solid region, and energy stored during phase change. This energy balance, described

mathematically, is [33]:

kliq
∂Tliq(r, t)

∂r

∣∣∣∣
r=s(t)

+ ρsol∆hf
ds(t)

dt
= ksol

∂Tsol(r, t)

∂r

∣∣∣∣
r=s(t)

(3.2)

We now have our full governing system of equations, but to obtain the full strong form, we must

include boundary and initial conditions. As our governing system consists of two second-order, time-

dependent partial differential equations and one Ordinary Differential Equation (ODE) in time, we will

have a total of four boundary conditions and three initial conditions.

With the system initially in solid phase, melting occurs at the center and is driven outward by

the internal heat generation. Thus, the liquid region consists of material from the centerline of our

cylinder out to the interface location. At the centerline, we stipulate that our solution must be bounded,

continuous, and symmetric, leading to the prescription of a zero gradient boundary condition. At the

interface location, the material must be at melting temperature. Additionally, we prescribe an arbitrary

initial temperature profile, φ(r), as a function of position only. These two boundary conditions and one

initial condition defining the liquid region are mathematically described by:

∂Tliq(r, t)

∂r

∣∣∣∣
r=0

= 0 (3.3)

Tliq(s(t), t) = Tm (3.4)

Tliq(r, 0) = φliq(r) (3.5)

The solid region consists of the remaining material from the interface location to the wall of the
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cylinder. Similar to the liquid region, the material must be at melting temperature at the interface

location, and an arbitrary initial temperature profile is prescribed.

The boundary condition at the wall is contingent upon the analysis conducted. For the case of

constant surface temperature, a prescribed wall temperature is used, while for constant surface heat flux,

a prescribed outward heat flux must be used. The CST case yields the following conditions for the solid

region:

Tsol(s(t), t) = Tm (3.6)

Tsol(r0, t) = T0 (3.7)

Tsol(r, 0) = φsol(r) (3.8)

And for the CSHF case:

Tsol(s(t), t) = Tm (3.9)

−ksol
∂T

∂r

∣∣∣∣
r=r0

= q′′0 (3.10)

Tsol(r, 0) = φsol(r) (3.11)

Finally, we prescribe an initial interface location, s(t = 0) = s0. Combining this last condition with

the governing system of equations and other boundary and initial conditions, we have the strong form of

the Stefan problem with internal heat generation in cylindrical coordinates. For the CST case, the strong

form is:

1

r

∂

∂r

(
r
∂Tliq
∂r

)
+

q̇

kliq
=

1

αliq

∂Tliq
∂t

, for 0 ≤ r ≤ s(t);

∂Tliq(r, t)

∂r

∣∣∣∣
r=0

= 0, Tliq(s(t), t) = Tm, Tliq(r, 0) = φliq(r);

1

r

∂

∂r

(
r
∂Tsol
∂r

)
+

q̇

ksol
=

1

αsol

∂Tsol
∂t

, for s(t) ≤ r ≤ r0;

Tsol(s(t), t) = Tm, Tsol(r0, t) = T0, Tsol(r, 0) = φsol(r);

kliq
∂Tliq(r, t)

∂r

∣∣∣∣
r=s(t)

+ ρsol∆hf
ds(t)

dt
= ksol

∂Tsol(r, t)

∂r

∣∣∣∣
r=s(t)

, for 0 ≤ t <∞;

s(t = 0) = s0

(3.12)
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And for the CSHF case:

1

r

∂

∂r

(
r
∂Tliq
∂r

)
+

q̇

kliq
=

1

αliq

∂Tliq
∂t

, for 0 ≤ r ≤ s(t);

∂Tliq(r, t)

∂r

∣∣∣∣
r=0

= 0, Tliq(s(t), t) = Tm, Tliq(r, 0) = φliq(r);

1

r

∂

∂r

(
r
∂Tsol
∂r

)
+

q̇

ksol
=

1

αsol

∂Tsol
∂t

, for s(t) ≤ r ≤ r0;

Tsol(s(t), t) = Tm, −ksol
∂T

∂r

∣∣∣∣
r=r0

= q′′0 , Tsol(r, 0) = φsol(r);

kliq
∂Tliq(r, t)

∂r

∣∣∣∣
r=s(t)

+ ρsol∆hf
ds(t)

dt
= ksol

∂Tsol(r, t)

∂r

∣∣∣∣
r=s(t)

, for 0 ≤ t <∞;

s(t = 0) = s0

(3.13)

3.2 Solution: Constant Surface Temperature

This solution is based on the work derived and presented in [30]. The following general procedure is

used in developing a closed-form solution. This methodology will be used for both the CST and CSHF

cases:

1. Derive the strong form system of equations.

2. Establish the requirements for phase change to occur.

3. Perform dimensional analysis and reduce the system to a nondimensional form.

4. Using the principle of superposition, separate the governing equation of the liquid region into

transient and steady-state components.

5. Solve the steady-state components using standard integration techniques.

6. Solve the transient components using separation of variables.

7. Combine the transient and steady-state solution components to obtain overall temperature profiles.

8. Repeat steps 4 through 7 for the solid region.

9. Differentiate the temperature profiles and apply them to the interface equation.

10. Establish suitable initial conditions for physical interface curves.

Having already derived the strong form system of equations for our cases, we move to establish the

requirements for phase change. In order for the phenomena to occur in the CST case, the overall heat
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generated within the problem domain must be greater than the heat rejected through the boundary. To

quantify the level of heat generation required, we look at the steady state case:

1

r

d

dr

(
r
dTliq,ss
dr

)
+

q̇

kliq
= 0, for 0 ≤ r ≤ sss;

dTliq,ss(r)

dr

∣∣∣∣
r=0

= 0, Tliq,ss(sss) = Tm, ;

1

r

d

dr

(
r
dTsol,ss
dr

)
+

q̇

ksol
= 0, for sss ≤ r ≤ r0;

Tsol,ss(sss) = Tm, Tsol,ss(r0) = T0;

kliq
dTliq,ss(r)

dr

∣∣∣∣
r=sss

= ksol
dTsol,ss(r)

dr

∣∣∣∣
r=sss

(3.14)

Both of the steady-state conduction equations can be solved by integrating twice and applying bound-

ary conditions. For the liquid region, this yields:

Tliq,ss(r) =
q̇s2

4kliq

(
1− r2

s2

)
+ Tm (3.15)

Evaluating the gradient at the interface yields:

dTliq,ss
dr

∣∣∣∣
r=sss

= − q̇sss
2kliq

(3.16)

Solving for the solid region yields:

Tsol,ss(r) =
q̇r2

4ksol
−
(
s2 ln r0 − r2

0 ln s+
(
s2 − r2

0

)
ln r
)
q̇ + 4ksol (Tm ln r0 − T0 ln s+ (Tm − T0) ln r)

4ksol (ln s− ln r0)
(3.17)

With gradient evaluated at the interface:

dTsol,ss
dr

∣∣∣∣
r=sss

= − q̇sss
2ksol

+

(
s2
ss − r2

0

)
q̇ + 4ksol (Tm − T0)

4ksolsss (ln sss − ln r0)
(3.18)

We can now substitute the gradients into our steady-state interface equation. Acknowledging kliq =

ksol, simplifying, and solving for sss
r0

, we get:

sss
r0

=

√
1− 4k (Tm − T0)

r2
0 q̇

, 0 <
sss
r0

< 1 (3.19)

We expect our steady state position to be within the problem domain and of a non-complex value,

which requires the value inside the square root to be positive We can thus demonstrate for the required
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heat generation for melting is:

q̇ >
4k (Tm − T0)

r2
0

(3.20)

We now want to use dimensional analysis to substitute our current parameters with nondimensional

counterparts. The benefits of this nondimensionalization are twofold: our solution is easily generalized

to any material or domain that fits the previously stated assumptions of our problem, and we obtain

variable groupings that can provide valuable insight as to the general behavior of the system.

To start, we create dimensionless parameters for position and time:

η =
r

r0
(3.21)

ζ =
s

r0
(3.22)

τ = Fo =
αt

r2
0

(3.23)

These parameters map position onto a range of [0, 1], where the cylinder center is 0 and the cylinder

wall is 1. Our dimensionless time, which is equal to the Fourier number Fo, is effectively a ratio of the

rate of heat conduction to the overall heat storage. Next, we introduce a dimensionless temperature:

θ =
T − T0

Tm − T0
(3.24)

Our dimensionless temperature remaps wall temperature to 0 and melting temperature to 1. Finally,

we have two dimensionless heat transfer parameters:

Q̇ =
q̇r2

0

k(Tm − T0)
(3.25)

St =
cP (Tm − T0)

∆hf
(3.26)

These two parameters consist of the domain inputs and thermophysical properties that dictate the

general behavior of the system. The dimensionless heat generation term, Q̇, is a ratio of the internal

heat generation in the domain material to that material’s ability to conduct heat. Higher values of Q̇

correspond to higher levels of heat source relative to sink. The Stefan number St is a ratio of the sensible

heat storage within a system to its latent heat storage. For Stefan problems, it correlates with the relative



14

speed a phase change front can move.

As previously discussed, a critical level of internal heat generation is required for melting phenomena

to occur. Substituting our nondimensional parameters into Eq. (3.19) yields:

ζ =

√
1− 4

Q̇
(3.27)

Phase change will only occur if Equation (3.27) yields real values, resulting in the following require-

ment:

Q̇ > 4 (3.28)

With the dimensionless groupings we have created, we can now redefine our governing system in a

nondimensional form. Substituting values and simplifying yields the following system:

1

η

∂

∂η

(
η
∂θliq(η, τ)

∂η

)
+ Q̇ =

∂θliq(η, τ)

∂τ
for 0 ≤ η ≤ ζ(τ);

θliq(η, τ)

∂η

∣∣∣∣
η=0

= 0, θliq(ζ(τ), τ) = 1, θliq(η, 0) = Φliq(η)

1

η

∂

∂η

(
η
∂θsol(η, τ)

∂η

)
+ Q̇ =

∂θsol(η, τ)

∂τ
for ζ(τ) ≤ η ≤ 1;

θsol(ζ(τ), τ) = 1, θ(1, τ) = 0, θsol(η, 0) = Φsol(η)

∂θliq(η, τ)

∂η

∣∣∣∣
η=ζ(τ)

+
1

St

dζ(τ)

dτ
=
∂θsol(η, τ)

∂η

∣∣∣∣
η=ζ(τ)

for 0 ≤ τ <∞;

ζ(τ = 0) = ζ0

(3.29)

Liquid Region Solution

The principle of superposition allows the components of a linear system to be separated into individual

terms within a sum. In our system, it allows us to solve the conduction equations as the sums of their

transient and steady components. For the liquid region, this yields:

θliq(η, τ) = θliq,tr(η, τ) + θliq,ss(η) for 0 ≤ η ≤ ζ(τ) (3.30)

Substituting the separated temperature profiles into the liquid conduction equation yields:

1

η

∂

∂η

(
η
∂θliq,tr(η, τ)

∂η

)
+

1

η

∂

∂η

(
η
∂θliq,ss(η)

∂η

)
+ Q̇ =

∂θliq,tr(η, τ)

∂τ
(3.31)
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With associated boundary and initial conditions:

∂θliq,tr(0, τ)

∂η
+
∂θliq,ss(0)

∂η
= 0,

θliq,tr(ζ(τ), τ) + θliq,ss(ζ(τ)) = 1,

θliq,tr(η, 0) + θliq,ss(η) = Φliq(η)

(3.32)

The modified liquid system of equations can be further separated into distinct systems for the transient

and steady-state components. Starting with the steady-state system, we have:

1

η

d

dη

(
η
dθliq,ss(η)

dη

)
= −Q̇,

dθliq,ss(0)

dη
= 0,

θliq,ss(ζ(τ)) = 1

(3.33)

This system can be easily solved by integrating twice and applying boundary conditions, yielding the

resultant profile:

θliq,ss(η) =
1

4
Q̇
(
ζ2(τ)− η2

)
+ 1 (3.34)

Turning our attention to the transient system, we have:

1

η

∂

∂η

(
η
∂θliq,tr(η, τ)

∂η

)
=
∂θliq,tr(η, τ)

∂τ
,

∂θliq,tr(0, τ)

∂η
= 0,

θliq,tr(ζ(τ), τ) = 0,

θliq,tr(η, 0) = Φliq(η)− θliq,ss(η)

(3.35)

This system is now homogeneous and can be solved using the method of separation of variables. We

assume a solution exists that is the product of two arbitrary functions which are dependent only on η

and τ , respectively:

θliq,tr(η, τ) = f(η) · g(τ) (3.36)

This separation is valid so long as the interface moves sufficiently slowly in time relative to the change

in temperature profiles in time. Dropping subscripts and functional inclusions temporarily, it can be

readily seen that θ′ = f ′ · g and θ̇ = f · ġ. Substituting these total derivatives and rearranging Eq. (3.35),
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we are able to completely separate our governing equation into two equal univariate functions, which

must be equal to some constant value:

1

η

f ′

f
+
f ′′

f
=
ġ

g
= const. (3.37)

Both of these now ODEs have common general solutions associated with them:

f(η) = c1J0(λη) + c2Y0(λη),

g(τ) = e−λ
2τ

(3.38)

Here, J0 and Y0 denote Bessel functions of zero order of the first and second kind, respectively,

and λ is an eigenvalue that will allow for a nontrivial solution. To define our integration constants,

we turn to boundary conditions. We know that f(η) must have a bounded, finite value at η = 0. As

limη→0+ (Y0(λη)) =∞, this necessitates that c2 = 0. For our second boundary condition,

f(η = ζ(τ)) = c1J0(λζ(τ)) = 0 (3.39)

The condition c1 = 0 would result in a trivial solution. To prevent this, we stipulate that

J0 (λnζ(τ)) = 0 (3.40)

This transcendental equation defines our eigenvalues as

λn =
z0,n

ζ(τ)
(3.41)

where z0,n denotes zeroes of the Bessel function J0(λnζ(τ)), the eigenfunction for this system. Combining

the results of Eq. (3.36) through Eq. (3.41) and summing for all values of n yields the transient

temperature for the liquid region as an infinite series:

θliq,tr(η, τ) =

∞∑
n=1

Ane
−λ2

nτJ0(λnη) (3.42)

Solving for the coefficients An requires applying the initial condition in Eq. (3.35):

θliq,tr(η, 0) = Φliq(η)− θliq,ss(η) =

∞∑
n=1

AnJ0(λnη) (3.43)

To isolate An, we take advantage of the orthogonality of the eigenfunctions with respect to their
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weight function η. By multiplying both sides by J0(λmη)η, integrating across the liquid domain, applying

orthogonality principles, and rearranging we get:

An =

∫ ζ(τ)

0

(Φliq(η)− θliq,ss(η)) J0(λnη)ηdη∫ ζ(τ)

0

J2
0 (λnη)ηdη

(3.44)

Substituting Eq. (3.34) and Eq. (3.42) into Eq. (3.30) and referencing Eq. (3.41) and Eq. (3.44) for

the associated eigenvalues and Fourier coefficients yields the complete liquid temperature profile:

θliq(η, τ) =

∞∑
n=1

[
Ane

−λ2
nτJ0(λnη)

]
+
Q̇

4

(
ζ2(τ)− η2

)
+ 1,

λn =
z0,n

ζ(τ)
,

An =

∫ ζ(τ)

0

(Φliq(η)− θliq,ss(η)) J0(λnη)ηdη∫ ζ(τ)

0

J2
0 (λnη)ηdη

(3.45)

Solid Region Solution

We can now repeat our solution process for the solid region. We start with superposition of the

transient and steady-state profiles:

θsol(η, τ) = θsol,tr(η, τ) + θsol,ss(η) for ζ(τ) ≤ η ≤ 1 (3.46)

Substituting into the solid conduction equation gives:

1

η

∂

∂η

(
η
∂θsol,tr(η, τ)

∂η

)
+

1

η

d

dη

(
η
dθsol,ss(η)

dη

)
+ Q̇ =

∂θsol,tr(η, τ)

∂τ
(3.47)

With associated separated boundary and initial conditions:

θsol,tr(ζ(τ), τ) + θsol,ss(ζ(τ)) = 1,

θsol,tr(1, τ) + θsol,ss(1) = 0,

θsol,tr(η, 0) + θsol,ss(η) = Φliq(η)

(3.48)

We now gather the steady-state and transient components into their own systems, starting with the

steady-state:
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1

η

d

dη

(
η
dθsol,ss(η)

dη

)
= −Q̇,

θsol,ss(ζ(τ)) = 1,

θsol,ss(1) = 0

(3.49)

Integrating twice and applying boundary conditions yields:

θsol,ss(η) =
Q̇

4
(1− η2) +

(
Q̇

4

(
ζ2(τ)− 1

)
+ 1

)
ln η

ln ζ(τ)
(3.50)

Taking the remaining components we form the transient system:

1

η

∂

∂η

(
η
∂θsol,tr(η, τ)

∂η

)
=
∂θsol,tr(η, τ)

∂τ
,

θsol,tr(ζ(τ), τ) = 0,

θsol,tr(1, τ) = 0,

θsol,tr(η, 0) = Φsol(η)− θsol,ss(η)

(3.51)

Once more, we use the separation of variables, denoting the univariate functions of the solid region

as:

θsol,tr(η, τ) = f̃(η) · g̃(τ) (3.52)

These functions have the same general solutions as in the liquid region:

f̃(η) = c3J0(λζ(τ)) + c4Y0(λζ(τ))

g̃(τ) = e−λ
2τ

(3.53)

Applying boundary conditions to f̃(η), we have:

f̃(ζ(τ)) = 0 = c3J0(λζ(τ)) + c4Y0(λζ(τ))

f̃(1) = 0 = c3J0(λ) + c4Y0(λ)
(3.54)

Considerations to prevent the trivial solution arising from c3 = c4 = 0 must again be taken. For this

case, we enforce the following determinant:

∣∣∣∣∣∣J0(λζ(τ)) Y0(λζ(τ))

J0(λ) Y0(λ)

∣∣∣∣∣∣ = 0 (3.55)
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Rearranged as a transcendental equation, this determinant provides the eigenvalues, λ̃n, for the solid

region as roots of the equation:

J0(λ̃nζ(τ))Y0(λ̃n)− Y0(λ̃nζ(τ))J0(λ̃n) = 0 (3.56)

These values can be found using a suitable numerical root finding method. To obtain the eigenfunction

for the solid region, we reapply the boundary condition f̃(1) = 0 to determine that:

c3 = −c4
Y0(λ̃n)

J0(λ̃n)
(3.57)

Substituting this relation into f̃n and acknowledging that c4 can be wrapped into the solution’s Fourier

coefficient, we obtain the eigenfunctions:

f̃n(η) = Y0(λ̃nη)− Y0(λ̃n)

J0(λ̃n)
J0(λ̃nη) (3.58)

Combining the results of Eq. (3.52) through Eq. (3.58) and summing for all n yields the transient

solid region temperature profile:

θsol,tr(η, τ) =

∞∑
n=1

Bne
−λ̃2

nτ f̃n(η) (3.59)

The Fourier coefficient Bn can be solved for in the same manner as An. We first apply the initial

condition:

θsol,tr(η, 0) = Φsol(η)− θsol,ss(η) =

∞∑
n=1

Bnf̃n(η) (3.60)

We then multiply both sides by f̃m(η)η, integrate over the solid region, apply orthogonality principles,

and rearrange to obtain our coefficient:

Bn =

∫ 1

ζ(τ)

(Φsol(η)− θsol,ss(η)) f̃n(η)ηdη∫ 1

ζ(τ)

f̃2
n(η)ηdη

(3.61)

To obtain the overall solid region temperature profile, we substitute Eq. (3.50) and Eq. (3.59) into Eq.

(3.46), referencing Eq. (3.56), Eq. (3.58), and Eq. (3.61) for the associated eigenvalues, eigenfunctions,

and Fourier coefficients respectively:



20

θsol(η, τ) =

[ ∞∑
n=1

Bne
−λ̃2

nτ f̃n(λ̃nη)

]
+
Q̇

4

(
1− η2

)
+

(
Q̇

4

(
ζ2(τ)− 1

)
+ 1

)
ln η

ln ζ(τ)
,

J0(λ̃nζ(τ))Y0(λ̃n)− Y0(λ̃nζ(τ))J0(λ̃n) = 0,

f̃n(η) = Y0(λ̃nη)− Y0(λ̃n)

J0(λ̃n)
J0(λ̃nη),

Bn =

∫ 1

ζ(τ)

(Φsol(η)− θsol,ss(η)) f̃n(η)ηdη∫ 1

ζ(τ)

f̃2
n(η)ηdη

(3.62)

The Interface Solution

Eq. (3.45) and Eq. (3.62) describe the overall temperature profile for our system for any given time

step τ and associated interface position ζ(τ). We can determine this interface position by differentiating

both profiles with respect to location:

∂θliq(η, τ)

∂η
= −

∞∑
n=1

[
Ane

−λ2
nτλnJ1(λnη)

]
− Q̇

2
η

∂θsol(η, τ)

∂η
=

∞∑
n=1

[
Bne

−λ̃2
nτ f̃ ′n(λ̃nη)

]
− Q̇

2
η +

(
Q̇

4

(
ζ2(τ)− 1

)
+ 1

)
1

η ln ζ(τ)

(3.63)

where

f̃ ′n =
df̃n
dη

= −λ̃n

[
Y1(λ̃nη)− Y0(λ̃n)

J0(λ̃n)
J1(λ̃nη)

]
(3.64)

Evaluating Eq. (3.63) at the interface and substituting the resultant relations into the interface

equation of our strong form, Eq. (3.12), yields a closed-form ODE for interface location:

1

St

dζ(τ)

dτ
=

∞∑
n=1

[
Ane

−λ2
nτλnJ1(λnζ(τ))

]
+

∞∑
n=1

[
Bne

−λ̃2
nτ f̃ ′n(ζ(τ))

]
+

(
Q̇

4

(
ζ2(τ)− 1

)
+ 1

)
1

ζ(τ) ln ζ(τ)

(3.65)

Setting Initial Conditions

The crafted interface solution is valid for arbitrary initial conditions so long as the temperatures in

each phase are valid, i.e., Φliq ≥ 1 and Φsol ≤ 1. To ensure physical solutions, we want a smooth initial

profile that is at the melting temperature at the interface location. We can use a steady-state conduction
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equation to establish this profile:

1

η

d

dη

(
η
dΦ

dη

)
+ Q̇ = 0 (3.66)

For the melting scenario, we stipulate the following initial conditions:

Q̇ = 4,

dΦ

dη

∣∣∣∣
η=0

= 0,

Φ(1) = 0

(3.67)

Integrating twice, substituting Q̇, and applying boundary conditions yields:

Φ(η) = 1− η2 (3.68)

For the melting case, we wish to have an initial interface position of ζ0 = 0. As ζ must be nonzero for

two phases to exist, we instead prescribe an arbitrarily small initial interface position. Separating Eq.

(3.68) for the two phases yields our set of initial conditions for melting:

Φliq(η) = 1,

Φsol(η) = 1− η2,

ζ0 = ε,

τ = 0

(3.69)

For the solidification case, we once again use Eq. (3.66), but instead stipulate

dΦ

dη

∣∣∣∣
η=0

= 0,

Φ(1) = 1

(3.70)

Integrating Eq. (3.66) twice and applying the boundary conditions of Eq. (3.70) yields:

Φ(η) =
Q̇

4

(
1− η2

)
+ 1 (3.71)

As before, our desired initial interface position of ζ0 = 1 would result in a single phase. We thus

subtract an arbitrarily small value ε. Separating Eq. (3.71) for the two phases yields the set of initial

conditions for solidification:
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Φliq(η) =
Q̇

4

(
1− η2

)
+ 1,

Φsol(η) = 1,

ζ0 = 1− ε,

τ = 0

(3.72)

3.3 Solution: Constant Surface Heat Flux

We turn our attention now to the case of constant surface heat flux. This work is adapted from [31].

We follow the same solution methodology as before, reiterated here for convenience:

1. Derive the strong form.

2. Establish critical parameters for phase change.

3. Nondimensionalize the system.

4. Use superposition to separate the liquid system into transient and steady-state components.

5. Solve the steady-state system.

6. Solve the transient system.

7. Combine the steady-state and transient components.

8. Repeat steps 4 through 7 for the solid system.

9. Differentiate the solutions and apply to the interface equation.

10. Establish initial conditions.

The strong form has already been defined in Eq. (3.13). For the CSHF case, the critical conditions

for phase change can be determined by a simple energy balance. If the overall heat flux out through

the walls is less than the overall heat generated internally, the system will tend towards melting, and

vice-versa. Mathematically, this is described by the balance of q′′0As and q̇V , where As and V are the

surface area and volume of our problem domain, respectively. We can conclude from the balance:

r0

2
q̇


> q′′0 → Melting

= q′′0 → Equilibrium

< q′′0 → Solidification

(3.73)
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Next, we proceed to nondimensionalize our system. The same dimensionless parameters for position

and time will be used as before:

η =
r

r0
(3.74)

ζ =
s

r0
(3.75)

τ =
αt

r2
0

(3.76)

As wall temperature is no longer a constant parameter, we introduce a characteristic temperature:

T ∗ =
∆hf
cP

(3.77)

Using the characteristic temperature, we define our dimensionless temperature, heat generation, and

heat flux:

θ =
T − Tm
T ∗

(3.78)

Q̇ =
q̇r2

0

kT ∗
(3.79)

Q′′ =
q′′0 r0

kT ∗
(3.80)

It is worth noting that the ratio of latent heat to sensible heat is now present in all three of these

terms, a contrast from the CST case, where it is only present in the Stefan number. Substituting our

dimensionless parameters into Eq. (3.73), our phase change direction can now be governed by:

Q̇

2


> Q′′ → Melting

= Q′′ → Equilibrium

< Q′′ → Solidification

(3.81)

Substituting dimensionless parameters into Eq. (3.13) and simplifying yields the dimensionless strong

form for CSHF:
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1

η

∂

∂η

(
η
∂θliq(η, τ)

∂η

)
+ Q̇ =

∂θliq(η, τ)

∂τ
, for 0 ≤ η ≤ ζ(τ);

∂θliq(η, τ)

∂η

∣∣∣∣
η=0

= 0, θliq(ζ(τ), τ) = 0, θliq(η, 0) = Φliq(η);

1

η

∂

∂η

(
η
∂θsol(η, τ)

∂η

)
+ Q̇ =

∂θsol(η, τ)

∂τ
, for ζ(τ) ≤ η ≤ 1;

θsol(ζ(τ), τ) = 0,
∂θsol(η, τ)

∂η

∣∣∣∣
η=1

= −Q′′, θsol(η, 0) = Φsol(η);

∂θliq(η, τ)

η

∣∣∣∣
η=ζ(τ)

+
dζ(τ)

dτ
=
∂θsol(η, τ)

∂η

∣∣∣∣
η=ζ(τ)

, for τ ≥ 0, 0 ≤ ζ(τ) ≤ 1;

ζ(τ = 0) = ζ0

(3.82)

Liquid Region Solution

Starting with the liquid region and following our solution methodology, the next step is to use su-

perposition to separate the transient and steady-state components, yielding a system very similar to its

CST counterpart:

1

η

∂

∂η

(
η
∂θliq,tr(η, τ)

∂η

)
+

1

η

d

dη

(
η
dθliq,ss(η)

dη

)
+ Q̇ =

∂θliq,tr(η, τ)

∂τ
(3.83)

∂θliq,tr(0, τ)

∂η
+
dθliq,ss(0)

dη
= 0,

θliq,tr(ζ(τ), τ) + θliq,ss(ζ(τ)) = 0,

θliq,tr(η, 0) + θliq,ss(η) = Φliq(η)

(3.84)

Further separating into distinct subsystems, our steady-state component becomes:

1

η

d

dη

(
η
dθliq,ss(η)

dη

)
= −Q̇,

dθliq,ss(0)

dη
= 0,

θliq,ss(ζ(τ)) = 0

(3.85)

Eq. (3.85) can be solved for simply by integrating twice and applying boundary conditions, with the

following result:

θliq,ss(η) =
Q̇

4

(
ζ2(τ)− η2

)
(3.86)
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We then gather the remaining terms of Eq. (3.83) and Eq. (3.84) to create the transient subsystem:

1

η

∂

∂η

(
η
∂θliq,tr(η, τ)

∂η

)
=
∂θliq,tr(η, τ)

∂τ
,

∂θliq,tr(0, τ)

∂η
= 0,

θliq,tr(ζ(τ), τ) = 0,

θliq,tr(η, 0) = Φliq(η)− θliq,ss(η)

(3.87)

This can be solved using separation of variables. We use the same function designations as before:

θliq,tr(η, τ) = f(η) · g(τ) (3.88)

Differentiating these new functions, substituting into the governing equation, and rearranging to

isolate variables, we get:

1

η

f ′

f
+
f ′′

f
=
ġ

g
= const . (3.89)

Both sets of ODEs have common general solutions:

f(η) = c1J0(λη) + c2Y0(λnη)

g(τ) = Ce−λ
2τ

(3.90)

Turning to boundary conditions, f(η) must be bounded at η = 0. As limη→0+(Y0(λη)) =∞, c2 must

be 0. Applying our second boundary condition gives:

f(ζ(τ)) = c1J0(λζ(τ)) = 0 (3.91)

The condition of c1 = 0 yields a trivial solution. We instead use the condition to define the transcen-

dental equation:

J0(λnζ(τ)) = 0 (3.92)

which yields the following eigenvalues:

λn =
z0,n

ζ(τ)
(3.93)

where z0,n is once again zeros of the Bessel function J0(λnζ(τ)). We can now combine the results of
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Eq. (3.88) through Eq. (3.93) and summing for all n yields the liquid region’s transient temperature

profile:

θliq,tr(η, τ) =

∞∑
n=1

Ane
−λ2

nτJ0(λnη) (3.94)

To solve for the Fourier coefficient An, we apply the initial condition for the transient profile:

θliq,tr(η, 0) = Φliq(η)− θliq,ss(η) =

∞∑
n=1

AnJ0(λnη) (3.95)

Isolating An once again requires using the orthogonality of eigenfunctions. We multiply both sides by

J0(λmη)η, integrate across the liquid domain, apply orthogonality principles, and rearrange to yield the

Fourier coefficient:

An =

∫ ζ(τ)

0

(Φliq(η)− θliq,ss(η)) J0(λnη)ηdη∫ ζ(τ)

0

J2
0 (λnη)ηdη

(3.96)

Substituting the transient and steady-state profiles from Eq. (3.86) and Eq. (3.94) respectively and

referencing Eq. (3.93) and Eq. (3.96) for the associated eigenvalues and Fourier coefficient yields the

complete liquid region temperature profile:

θliq(η, τ) =

∞∑
n=1

Ane
−λ2

nτJ0(λnη) +
Q̇

4

(
ζ(τ)2 − η2

)
,

λn =
z0,n

ζ(τ)
,

An =

∫ ζ(τ)

0

(Φliq(η)− θliq,ss(η)) J0(λnη)ηdη∫ ζ(τ)

0

J2
0 (λnη)ηdη

(3.97)

Solid Region Solution

We now repeat our solution process for the solid region, starting the superposition of the transient

and steady-state profiles:

θsol(η, τ) = θsol,tr(η, τ) + θsol,ss(η) for ζ(τ) ≤ η ≤ 1 (3.98)

Substituted into the solid conduction equation gives:



27

1

η

∂

∂η

(
η
∂θsol,tr(η, τ)

∂η

)
+

1

η

d

dη

(
η
dθliq,ss(η)

dη

)
+ Q̇ =

∂θsol,tr(η, τ)

∂τ
(3.99)

with associated superposed boundary and initial conditions:

θsol,tr(ζ(τ), τ) + θsol,ss(ζ(τ)) = 0,

∂θsol,tr(η, τ)

∂η

∣∣∣∣
η=1

+
dθsol,ss(η)

dη

∣∣∣∣
η=1

= −Q′′,

θsol,tr(η, 0) + θsol,ss(η) = Φsol(η)

(3.100)

We can further separate the steady-state and transient components into their own subsystems. We

start with the steady-state:

1

η

d

dη

(
η
dθsol,ss(η)

dη

)
= −Q̇,

θsol,ss(ζ(τ)) = 0,

dθsol,ss(η)

dη

∣∣∣∣
η=1

= −Q′′

(3.101)

As before, this can be solved simply by integrating twice and applying boundary conditions, yielding

the solid steady-state temperature profile:

θsol,ss(η) =
Q̇

4

(
ζ(τ)2 − η2

)
+

(
Q̇

2
−Q′′

)
ln

η

ζ(τ)
(3.102)

We form the transient subsystem with the remaining components:

1

η

∂

∂η

(
η
∂θsol,tr(η, τ)

∂η

)
=
∂θsol,tr(η, τ)

∂τ
,

θsol,tr(ζ(τ), τ) = 0,

∂θsol,tr(η, τ)

∂η

∣∣∣∣
η=1

= 0,

θsol,tr(η, 0) = Φsol(η)− θsol,ss(η)

(3.103)

We use separation of variables, denoting the univariate functions of the solid region as:

θsol,tr = f̃(η) · g̃(τ) (3.104)

With the same general solutions as before:
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f̃(η) = c3J0(λ̃η) + c4Y0(λ̃η)

g̃(τ) = e−λ̃
2τ

(3.105)

Applying our boundary conditions to f̃(η) gives:

f̃(ζ(τ)) = c3J0(λ̃ζ(τ)) + c4Y0(λ̃ζ(τ)) = 0

∂θsol,tr(η, τ)

∂η

∣∣∣∣
η=1

= −c3λ̃J1(λ̃)− c4λ̃Y1(λ̃) = 0
(3.106)

which uses the following property of Bessel functions:

d

dη
J0(η) = −J1(η),

d

dη
Y0(η) = −Y1(η)

(3.107)

To prevent the trivial solution, we stipulate the following determinant must hold true:

∣∣∣∣∣∣J0(λ̃ζ(τ)) Y0(λ̃ζ(τ))

λ̃J1(λ̃) λ̃Y1(λ̃)

∣∣∣∣∣∣ = 0 (3.108)

This can be simplified to yield the transcendental equation:

J0(λ̃nζ(τ))Y1(λ̃n)− Y0(λ̃nζ(τ))J1(λ̃n) = 0 (3.109)

As with the CST case, a numerical root finder must be used to determine these values. Reapplying

the boundary condition f̃ ′(1) = 0, we relate the constants c3 and c4 to each other:

c3 = −c4
J1(λ̃n)

Y1(λ̃n)
(3.110)

With Eq. (3.110), we simplify f̃n(η) and move the constant c3 into the solution’s Fourier coefficient

to obtain the eigenfunctions:

f̃n = J0(λ̃nη)− J1(λ̃n)

Y1(λ̃n)
Y0(λ̃nη) (3.111)

Combining the results of Eq. (3.104) through Eq. (3.111) and summing for all n yields the solid

region transient temperature profile:
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θsol,tr(η, τ) =

∞∑
n=1

Bne
−λ̃2

nτ f̃n(η) (3.112)

Bn is solved for by applying the initial condition:

θsol,tr(η, 0) = Φsol(η)− θsol,ss(η) =

∞∑
n=1

Bnf̃n(η) (3.113)

Again taking advantages of the orthogonality of the eigenfunctions with respect to the weight function

η, we multiply both sides by f̃m(η)η, integrate over the solid region, simplify, and rearrange to yield our

Fourier coefficient:

Bn =

∫ 1

ζ(τ)

(Φsol(η)− θsol,ss(η)) f̃n(η)ηdη∫ 1

ζ(τ)

f̃2
n(η)ηdη

(3.114)

The overall solid region temperature profile can now be obtained by substituting Eq. (3.102) and

Eq. (3.112) into Eq. (3.98) and referencing Eq. (3.109), Eq. (3.111), and Eq. (3.114) for the associated

eigenvalues, eigenfunction, and Fourier coefficient, respectively:

θsol(η, τ) =

[ ∞∑
n=1

Bne
−λ̃2

nτ f̃n(λ̃nη)

]
+
Q̇

4

(
ζ(τ)2 − η2

)
+

(
Q̇

2
−Q′′

)
ln

η

ζ(τ)
,

J0(λ̃nζ(τ))Y1(λ̃n)− Y0(λ̃nζ(τ))J1(λ̃n),

f̃n(η) = J0(λ̃nη)− J1(λ̃n)

Y1(λ̃n)
Y0(λ̃nη),

Bn =

∫ 1

ζ(τ)

(Φsol(η)− θsol,ss(η)) f̃n(η)ηdη∫ 1

ζ(τ)

f̃2
n(η)ηdη

(3.115)

The Interface Solution

With Eq. (3.97) and Eq. (3.115), we can describe the overall temperature profile for our system for

any given time τ and interface position ζ(τ). To determine the interface position, we now solve for the

interface equation, starting by differentiating both temperature profiles with respect to position:
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∂θliq(η, τ)

∂η
= −

∞∑
n=1

[
Anλne

−λ2
nτJ1(λnη)

]
− Q̇

2
η

∂θsol(η, τ)

∂η
=

∞∑
n=1

[
Bnf̃

′
n(η)e−λ̃

2
nτ
]

+

(
Q̇

2
−Q′′

)
1

η
− Q̇

2

(3.116)

where

f̃ ′n(η) = −λ̃n ·

(
J1(λ̃nη)− J1(λ̃n)

Y1(λ̃n)
Y1(λ̃nη)

)
(3.117)

Evaluating Eq. (3.116) at ζ(τ) and substituting into the interface equation in our strong form, Eq.

(3.13), we obtain a closed form ODE for the interface location over time:

dζ(τ)

dτ
=

∞∑
n=1

Anλne
−λ2

nτJ1(λnζ(τ)) +

∞∑
n=1

Bne
−λ̃2

nτ f̃ ′n(ζ(τ)) +

(
Q̇

2
−Q′′

)
1

ζ(τ)
(3.118)

Setting Initial Conditions

As with the CST case, though the crafted interface solution is valid for arbitrary initial conditions with

suitable temperatures for each phase, we wish to use a smooth initial profile. For the melting case, we

simply once again use the steady-state conduction equation, setting our centerline temperature Φ(0) = 0.

Splitting Φ into liquid and solid regions, yields the following set of initial conditions for melting:

Φliq(η) = 0,

Φsol(η) = − Q̇
4
η2,

ζ0 = ε,

τ = 0

(3.119)

The same profile, shifted up so that Φ(1) = 0, can be used for the solidification case. This results in

the following set of initial conditions:

Φliq(η) =
Q̇

4

(
1− η2

)
,

Φsol(η) = 0,

ζ0 = 1− ε,

τ = 0

(3.120)
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3.4 Implementation

The analytical solutions crafted are in the form of first-order, closed-form ODEs. Between the com-

plexity of the solutions and the inclusion of series terms, numerical implementation is necessary. To

integrate the solutions in time, we use Python, a multi-paradigm programming language with extensive

library support for mathematics applications. Python is chosen because of its ease of use, readily available

documentation and community forums, and libraries with direct applicability to the problems at hand,

including:

� NumPy: An optimized linear algebra library that includes support for array operations and basic

mathematical functions. This library serves as a base for many other common Python libraries.

� SciPy: A scientific computation library containing specialized functions for ODEs, integration, root

finding, and the family of Bessel functions.

� Pandas: Designed with large-scale data science in mind, Pandas provides robust file I/O support,

allowing for seamless reading and writing of solution data.

� MatPlotLib: This library contains functions for graphics development and includes the PyPlot

environment, a package designed for easy, thesis-grade plotting with extensive customization and

an interactive GUI.

Python implementations of the analytical solutions are included in the appendices.
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Chapter 4: Numerical Verification

This chapter describes the process used in building a numerical model to verify the derived analytical

solutions. It explores several models that were considered as well as their benefits and shortcomings,

then discusses in more depth the solution method ultimately used. Finally, the general case set-up and

workflow used in generating solution curves is presented.

Verifying the soundness of a novel analytical solution is often challenging. Experimental validation,

while preferred as it compares solutions against observable reality, is not always feasible or even physically

possible. Approximate solutions can be useful for ensuring that analytical solution curves are at least

correctly shaped, and can provide insight into the contribution of terms or mechanisms that the approx-

imate solution framework neglects. Barannyk et. al used approximate solutions based on quasi-steady

state assumptions to compare the analytical solutions derived in this paper in [30] and [31]. However, by

their nature, approximate solutions are typically limited to highly idealized scenarios and do not strongly

establish the efficacy of more complex analytical solutions.

Numerical solutions and approximation do not provide nearly the same level of confidence in physical

accuracy of solutions as empirical methods do, but they offer high mathematical accuracy at a low cost

compared to an experimental setup. With the advancement of modern computing power, numerical

solutions in the form of CFD and Finite Element Analysis (FEA) have transformed the engineering

design process due to their relative speed, ease of setup, and reasonable accuracy.

4.1 Finite Differencing Methods

Two of the most common forms of numerical approximation are the Finite Difference Method (FDM)

and Finite Volume Method (FVM). Finite difference schemes approximate differential equations through

manipulation of Taylor Series expansions, which take the form [34]:

f(x+ ∆x) = f(x) + ∆x
df(x)

dx

∣∣∣∣
x

+
(∆x)2

2!

d2f(x)

dx2

∣∣∣∣
x

+ · · ·+ (∆x)n

n!

dnf(x)

dxn

∣∣∣∣
x

(4.1)

For sufficiently small values of ∆x, higher order terms become negligible. The lower order terms

can then be rearranged to form approximations of derivatives and differential terms. Using multiple

series expansions with various spacings, the approximations can be of arbitrarily high order, though in

engineering applications, second- or third-order approximations are typically considered suitable.

The core advantage of the FDM is its simplicity. Differential terms can be directly discretized without

excess manipulation. There is a visible relation between the terms in a finite difference approximation
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and the terms in the original differential equation. For one-dimensional transient and two-dimensional

steady-state problems, the system of discretized solutions is often tridiagonal and can be solved efficiently

through the Thomas algorithm [34].

These advantages do come at a cost, however. The FDM is typically limited to simple domains.

Explicitly solved discretized systems often have prohibitive stability requirements, while more stable

implicit systems introduce additional complexity and error through iteration. Finally, finite difference

schemes are not conservative for gradient or flux based boundary conditions.

Nonetheless, FDM models are a valuable tool in generating numerical solutions. Three models based

on the FDM were considered for verifying the solutions derived in Chapter 3: a fixed-grid, fixed-time

step model; a variable-grid, fixed-time step model; and a fixed-grid, variable-time step model. For the

sake of scope, system discretization will only be demonstrated for the CST case.

Fixed-Grid Technique

The first of the FDM models attempted was a fixed-grid, fixed-time step model. This model was

originally proposed by Crank [35] as an alternative to boundary immobilization techniques in Cartesian

coordinates that were prevalent in diffusion problems.

The fixed-grid technique, as its name implies, solves an approximation of the heat equation at discrete

points of a fixed, static grid. At most given points in time, the interface position will exist between two

grid points. The finite difference formula of the two encompassing points can be modified to incorporate

a reduced distance to the interface using a Lagrange-type interpolation.

A benefit of this technique is that it requires only one domain to describe both phases. Another

benefit is that equation homogeneity is not required. Using the chain rule, we expand our nondimensional

governing equation to:

∂θ

∂τ
=
∂2θ

∂η2
+

1

η

∂θ

∂η
+ Q̇ (4.2)

Replacing our continuous medium with a discretized mesh of nodes, we can denote spatial discretiza-

tion by the subscript i and spacing ∆η, and temporal by j and ∆τ . Then, using the Taylor series

expansion outlined in Equation 4.1, we replace each differential term in Equation 4.2 with a finite differ-

ence approximation, starting with the time-dependent term:

∂θ

∂τ

∣∣∣∣
ηi,τj

=
θi,j − θi,j−1

∆τ
+O((∆τ)2) (4.3)

This offers first-order accuracy in time. Higher orders of accuracy can be generated by referencing
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multiple previous time steps. However, this comes at the cost of solution complexity and often harsher

stability requirements. For spatial discretization, we aim for second-order accuracy. Using a central

differencing scheme, our first-order differential term becomes:

∂θ

∂η

∣∣∣∣
ηi,τj

=
θi+1,j − θi−1,j

2∆η
+O((∆η)3) (4.4)

And the second-order differential term becomes:

∂2θ

∂η2

∣∣∣∣
ηi,τj

=
θi+1,j − 2θi,j + θi−1,j

(∆η)2
+O((∆η)4) (4.5)

Dropping the big O notation and noting that η = i∆η, we substitute Equations 4.3, 4.4, and 4.5 into

Equation 4.2. Rearranging we get a first-order in time accuracy, second-order in space finite difference

approximation of our governing equation:

∆τ

(∆η)2

[
θi−1,j

(
1

2i
− 1

)
+ θi,j

(
1 + (∆η)2

)
+ θi+1,j

(
− 1

2i
− 1

)]
= θi,j−1 + Q̇∆τ (4.6)

External boundary conditions are given by:

θ1,j

(
1 +

2∆τ

(∆η)2

)
− 2∆τ

(∆η)2
θ2,j = θ1,j−1 + Q̇∆τ,

θI,j = 0

(4.7)

Where the capital subscript I denotes the final node in the discretized domain. For a problem

without phase change, the system of equations described by Equations 4.6 and 4.7 is complete. However,

to track the interface and its effects on our solution, we need to make a modification. This modification,

as previously alluded, is to substitute the equations near the interface with a three-point Lagrange

interpolation [5]. For a given temperature profile θ(η) with known values η = a0, a1, and a2, we state

θ(η) =

2∑
n=0

ln(η)θ(an) (4.8)

Where

ln(η) =
px(η)

(η − an)p′2(an)
,

p2(η) = (η − a0)(η − a1)(η − a2),

p′2(an) =
∂p2

∂η

∣∣∣∣
η=an

(4.9)
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Equation 4.9 can be differentiated and applied to the discretized governing equation, setting a2 to the

interface position and a0 and a1 to the two nodes preceding it. A depiction of this grid setup is shown

in Figure 4.1. The model iterates the following steps: The temperature profiles are calculated for a new

time step using the interface position of the previous time step and the modified governing equations

near the interface. From these profiles, p2 is calculated. If p2 remains between the same two nodes, the

next time step is calculated. If p2 travels past the front node, the systems of equations is updated to

move the modified equation to the next pair of nodes, and calculation resumes.

Figure 4.1: Moving boundary position under the fixed-grid method.

While interpolation of the interface position has the advantage of using a fixed grid, it is very unstable

at high Stefan numbers. The size of any given time step must be sufficiently small such that the interface

does not skip between any set of node pairs. Furthermore, brief testing of this implementation showed

poor tracking during node shifts, a possible function of the relatively low order of interpolation. These

issues could not be readily resolved, leading to abandoning of this method.

Variable-Grid Technique

The next finite difference model considered used two domains, each with a set number of grid points,

that would shrink or expand in size such that the inner boundary of each domain corresponded to the

interface location. This model is based off a variable-grid method that was proposed by Murray and

Landis [36] and later implemented in cylindrical coordinates by Tien and Churchill [37].

For a given time step, the governing equation is solved in each phase, and the resulting profiles are

used to update the position of the interface. With the new interface position, the grid points are redrawn,

temperature profiles are remapped to their new locations, and the next step is evaluated. This process

is demonstrated in Figure 4.2.

The movement of grid lines necessitates an additional term in our time derivative. For a given grid

point at i∆η, partially differentiating with respect to τ yields:
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Figure 4.2: Representative grid for the variable-grid method. Red denotes liquid region nodes, blue
denotes solid region nodes, and dashed lines denote nodal positions at the next time step.

(
∂θ

∂τ

)
i

=

(
∂θ

∂η

)
τ

(
∂η

∂τ

)
i

+

(
∂θ

∂τ

)
η

(4.10)

If we assume a given grid point’s motion can be expressed by:

dηi
dτ

=
ηi
ζ(τ)

dζ

dτ
(4.11)

Then our governing equation becomes:

(
∂θ

∂τ

)
i

=
η

ζ(τ)

dζ

dτ

∂θ

∂η
+
∂2θ

∂η2
+

1

η

∂θ

∂η
+ Q̇ (4.12)

Equation 4.12 can be discretized following the same steps as before, with the interface equation being

given a similar treatment. The solution process becomes:

1. Solve the numerical system of equations for time step j in the liquid and solid regions.

2. Using the interface equation, update the value of ζ(τ).

3. Regenerate the mesh for both domains using the new boundary position of ζ(τ).

4. Solve for time step j + 1.

While this method reduces the complexity of determining interface position over the fixed grid method,

it has several shortcomings of its own. Because the sizing of the grid is dependent on interface location,

for either low or high values of ζ(τ), the size of the mesh in the liquid and solid domains becomes uneven.

Furthermore, a mesh spacing that is sufficient for numerical convergence on a compressed grid may be

too coarse when it is expanded, while a spacing that provides convergence for the expanded mesh will be

unnecessarily fine when compressed and require very small time steps for accuracy.
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Variable-Time Step Method

The final FDM model considered took a different approach from the previous two. While the other

models adapted components of their spacial discretization to track the interface, the variable time step

method, implemented adapted from the work by Samarskii and Vabishchevich [38], instead modulates

time step size such that the interface always lands on a node.

To start, we rewrite our interface balance equation:

∆η

∆τ
≈ St

(
∂θsol
∂η

∣∣∣∣
η=ζ

− ∂θliq
∂η

∣∣∣∣
η=ζ

)
(4.13)

And reorder the heat equation as:

∂2θ

∂η2
=
∂θ

∂τ
− 1

η

∂θ

∂η
− Q̇ (4.14)

Once more denoting the interface node as I, we apply the following second-order approximations:

θI+1,j ≈ θI,j + ∆η
∂θsol
∂η

∣∣∣∣
η=ζ

+
(∆η)2

2

∂2θsol
∂η2

∣∣∣∣
η=ζ

,

θI−1,j ≈ θI,j −∆η
∂θliq
∂η

∣∣∣∣
η=ζ

+
(∆η)2

2

∂2θliq
∂η2

∣∣∣∣
η=ζ

(4.15)

Substituting Equation 4.14 into Equation 4.15 yields approximations of the gradient at the interface:

∂θsol
∂η

∣∣∣∣
η=ζ

=
1

∆η − (∆η)2

2η

[
θI+1,j − θI,j −

(∆η)2

2

∂θsol
∂τ

+
(∆η)2

2
Q̇

]
,

∂θliq
∂η

∣∣∣∣
η=ζ

=
1

∆η + (∆η)2

2η

[
θI,j − θI−1,j +

(∆η)2

2

∂θliq
∂τ
− (∆η)2

2
Q̇

] (4.16)

These can now be substituted into Equation 4.13. Consolidating terms and reordering to solve for

∆τ , we get

∆τ =
∆η
St + (∆η)2

2 (θI,j − θI,j−1) (a∗ − b∗)
b∗θI−1,j + (b∗ − a∗) θI,j + a∗θI+1,j + (∆η)2

2 Q̇ (b∗ − a∗)
,

a∗ =
1

∆η − (∆η2)
2

,

b∗ =
1

∆η + (∆η2)
2

(4.17)

Where a∗ and b∗ are coefficients meant to make the equation less cumbersome. Equation 4.17 allows

us to approximate the amount of time required for the interface to move from one grid line to the next.
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This allows us to use the heat equation discretization given by Equation 4.6 while stipulating that the

nondimensional temperature at the interface node is θI,j = θm = 1. As the time jump is approximated

by the previous time steps, an iteration is necessary to correct the time step size.

This method, of the three above, has shown the most promise and has been proven to provide results

consistent with our analytical solution [39]. The reframing to treat time as the tracked variable over po-

sition simplifies the procedures and is relatively insensitive to the inclusion of an internal heat generation

term. However, it too has limitations. While not a prevalent issue within the context of this thesis, the

variable time step method is not easily extensible into multiple dimensions. It is also unable to extend

to steady-state conditions; as the system approaches steady-state, ∆τ tends towards infinity.

4.2 Enthalpy Method Theory

The three methods presented in Section 4.1, share a common characteristic, beyond all being ex-

tensions of the FDM. They are all front-tracking methods [5]. Front tracking is the explicit tracking

or “capturing” of an interface by predicting its location and modifying the problem domain around the

position of said domain. It is a common strategy in FDM schemes as a way to handle discontinuities,

such as shock waves in gas dynamics, cracks in fracture analysis, or, in our case, phase change interfaces.

The analytical solutions derived in Chapter 3 are, themselves, front tracking solutions. Using a numerical

method based on the same principle can thus prove the mathematical soundness of the analytical solution,

though it does not prove the soundness of assumptions.

The limitation of front tracking comes from when an interface is not well-defined or smooth. In one-

dimensional problems such as ours, this requires the interface exists at single point for any given instant in

time; for higher-dimensional problems, it requires that the interface boundary is continuous and smooth.

We make the assumption in our problem setup that the phase change region is infinitesimally thin, which

satisfies this requirement. In the classical Stefan problem, such an assumption is valid.

In reality, melting occurs across a finite region. Within this region, coined the mushy zone by Tien

and Geiger [40], the liquid and solid phases exist simultaneously, and the whole of the material within

the region is at melting temperature. Atthey, in researching spot welding, noted that the size of the

mushy zone is driven by the magnitude of body heating [41]. Where phase change is driven primarily by

internal heat generation in our studied problems, the potential for existence and impact of a mushy zone

is inherent.

Since a mushy zone makes it difficult to define a phase change front to track, a method that does not

explicitly track the phase change front is desired. One such method is to introduce an enthalpy function.

Enthalpy, a thermodynamic state variable that measures overall heat content, is useful for phase change
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because while temperature across the phase change front is constant, enthalpy is not. Rather, enthalpy

increases with the liquid fraction within the mushy zone. Using the enthalpy method allows for implicit

tracking of the entire mushy zone solely through enforcement of flux within the domain.

There are a number of ways to implement the enthalpy method [13]. The version we consider is an

enthalpy-porosity method, developed by Voller and Prakash [42]. This method provides several benefits:

� Because the interface is not explicitly tracked, both phases do not need to exist concurrently. This

allows for modeling before, during, and after the phase-change process in one model.

� The model is not limited to phase change occurring at a single temperature. A phase-change

temperature range, such as what exists in binary metal alloys, can be used.

� Fluid motion is incorporated into the governing equation, allowing for convection and dendritic

formation due to pull velocities to be modeled.

� The enthalpy-porosity method is easily extensible to more complex geometries and conditions.

These benefits come at a cost: the enthalpy-porosity model is significantly more complex and is

not conducive to closed-form analytical solutions. As a numerical solution, it is prone to grid-induced

error, as any region of phase change has an artificially enforced minimum size of the cell it exists within.

Nonetheless, the model is a powerful tool for modeling phase-change phenomena.

The enthalpy-porosity model uses a variation of the energy equation:

∂

∂t
(ρH) +∇ · (ρ~vH) = ∇ · (k∇T ) + S (4.18)

where H is a sum of the sensible heat, h, and the latent heat, ∆H; ρ is the material density; ~v is the

velocity field; and S is the sum of all source terms. We can relate sensible enthalpy to temperature

through specific heat:

h = href +

∫ T

Tref

cP dT (4.19)

And we relate latent heat to the heat of fusion ∆hf and liquid fraction β:

∆H = f(T ) =


∆hf for T > Tm,

∆hfβ for T = Tm,

0 for T < Tm

(4.20)

For pure metals, liquid fraction is solved for by inverting Eq. (4.20) and multiplying by cP :
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h = cP · f−1(∆H) (4.21)

Velocity field can be solved for using an appropriate set of flow equations. When they are used, a

velocity sink term is added to material that is solid or mushy. For the purposes that we intend to use

the enthalpy-porosity method, we can instead assume a uniform zero velocity field, precluding the need

for coupled solving methods.

4.3 Implementation in Fluent

The reason for using the enthalpy-porosity model, despite its higher complexity and underutilized

features relative to tailor-made numerical models, is that code for it is commercially available and well

tested. Ansys Fluent is a CFD package wrapped within the Ansys Workstation framework, with capa-

bilities to study laminar and turbulent flows, chemically reacting flows, multi-phase and fluid-structure

based models, and, of course, melting and solidification, all in multiple dimensions. Furthermore, it allows

for quick modification to solution methods, such as spatial and temporal order, numerical solvers, and

relaxation factors.

Using a commercial software for research does have limitations. The actual code implementation of

solvers is typically proprietary, and results in something of a “black box” solution; while solver settings

can be modified, the true coding operations are hidden behind a Graphical User Interface (GUI). The

GUI simplifies setup, particularly for users who may not have direct experience with numerical methods

from the conceptual side, but it also can restrict awareness of what is truly happening. Many commercial

softwares are also limited to lower-order implementations, since they are geared towards commercial

settings, where expediency and stability are typically prioritized over absolute accuracy.

The final major issue of commercial solvers is more specific to our case than the general issues described

above. Ansys Fluent and most CFD software are optimized for two- and three-dimensional problems

involving fluid flow. These types of problems require a fair amount of computational overhead in the

form of bookkeeping and stability checks. While this often results in higher speed and accuracy over

open-source and handmade codes in complex flow problems [43], for simple domains such as ours, the

resulting computational overhead leads to longer solution times. Ultimately, while these issues were

present, the benefit and simplicity of using Ansys Fluent outweighed the costs for this work.

Cases in Ansys Workstation follow a predefined path, broken into 6 steps:

1. Analysis System: Choose the general type of numerical analysis and software package to use. Ansys

comprises over a dozen software packages ranging in specialization from force buckling models to
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internal combustion simulation. In our case, we choose fluid flow through Fluent.

2. Geometry: Create the physical domain the case exists in. Here, dimensional order is chosen, physical

boundary conditions, such as planes of symmetry, axes of axisymmetry, and walls are defined, and

unit systems are identified.

3. Mesh: Discretize the continuous domain(s) into a meshed network of nodes and elements. This

step effectively converts the case we wish to analyze from the physical world defined by continuum

mechanics and calculus into the computational world of algebra and numerics.

4. Setup: Determine application specific settings for the case, choose physics and flow models, define

material properties, and choose numerical solvers. This step determines if an analysis will be

steady-state or transient

5. Solution: Solve the numerical system. Determine convergence conditions, what values to write

to an output file or plot, how often to write out said values, and if numerical conditions (such

as continuity) must be preserved or solved. The solution step provides some limited visualization

capabilities, including plots and contours that can be updated in real-time.

6. Results: Provide advanced result visualizations and output. This step can generate animations of

transient effects, compare point-to-point changes, and create user-specified functions to compare

against. For our solutions, we exported data and generated our solution plots through external

codes, so this step is omitted.

Geometry and Mesh

Our problem domain, for both the CST and CSHF cases, is an infinitely long cylinder. A three-

dimensional domain of infinite length is not easily or efficiently represented numerically, but since we

are operating on similar assumptions to those presented in Chapter 3, we can reduce the computational

domain to one dimension. First, we assume that our field equations are uniform for any given disc of

the cylinder. This allows us to use a symmetry boundary condition on the top and bottom faces of our

model, reducing it to an effectively two-dimensional disc with an arbitrary, unused height. Next, we can

impose an axisymmetry boundary condition on the innermost edge of our mesh. The resulting domain

is an arbitrarily thin rectangle, with the left boundary representing the centerline, the right boundary

representing the wall, and the upper and lower boundaries identical to each other through symmetry.

Since the scaling of geometry can be set to any arbitrary value so long as our nondimensional parameters
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match those used in Chapter 3, we can ease postprocessing work by setting the constant parameters

logically. As Fluent by default uses SI units, we set the radius as r0 = 1 m.

This reduced geometry can be represented by a n×1 mesh of rectangles. A uniform grading was used

such that each of the rectangles have uniform size. The uniform mesh was chosen over a centerline or wall-

biased scaling since it provides consistent accuracy throughout the entire domain for both melting and

solidification cases and both prescribed surface temperature and prescribed surface heat flux boundary

conditions.

Discretization of differential equations introduces solution error due to the truncation of higher-order

terms. This error is proportional to the size of a given discretized element raised to the power of the

lowest-order term omitted. A model is considered “grid independent” when the truncation error is less

than computer round-off error [44]. As solution complexity and stability requirements increase with

discretization level, it is valuable to determine where a model becomes grid independent for its values of

interest and discretize no further, maximizing accuracy while minimizing computational difficulty.

Grid independence is dependent on a number of factors, including discretization order, dependent

variable observed, and any smoothing and iterative corrections incorporated by the numerical solver. For

the case at hand, a 200 × 1 mesh was deemed sufficiently grid independent for interface position. This

level of discretization offered a balance between solution accuracy and computational speed.

Setup

We use default launch settings for Fluent, with the exception of precision and solver processes. A

double precision variable is used for calculations to increase precision of solutions, and four CPU cores

are used to increase solution speed. Fluent is unable to perform true one-dimensional analysis, but

we are able to approximate it through a two-dimensional, axisymmetric case with symmetry boundary

conditions on the upper and lower walls to emulate an infinitely uniform dimension. The inner wall is

given an axis boundary condition, and the outer a wall boundary condition.

The Fluent framework automatically assigns units and performs dimensional consistency checks, with

a default assignment to SI units. It additionally performs basic sanity checks throughout calculations,

including a temperature check to prevent values below absolute zero. While generally helpful, these sys-

tems have unintended consequences for our model, where the goal of consistency in dependent values with

their nondimensional counterparts is desired. Fortunately, the nondimensional temperature formulations

in both the CST and CSHF cases utilize a temperature difference and are, therefore, relative. This allows

us to use the Celsius temperature scale to obtain dependent variable values equal to their nondimensional

counterpart.
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We now determine the thermophsycical properties of our domain. Materials in Fluent are divided into

two types, one representing “fluid” materials and one representing “solid” materials. These designations

are somewhat misleading; solid materials represent the material properties of domain boundaries, while

fluid materials represent the material properties within the internal field of an element. In our model,

both the liquid and solid region properties are defined by the fluid material, and only the outer wall’s

properties are defined by the solid material. We will assign the same values to both material types. Three

properties are defined for solid materials:

� Density, ρ
[

kg
m3

]
� Specific heat, Cp

[
J

kg-K

]
� Thermal conductivity, κ

[
W

m-K

]
In addition to these properties, fluid materials require the following material definitions:

� Dynamic viscosity, µ
[

kg
m-s

]
� Pure solvent melting heat, ∆h

[
J
kg

]
� Solidus temperature, Tsol [C] (CST) / [K] (CSHF)

� Liquidus temperature, Tliq [C] (CST) / [K] (CSHF)

Dynamic viscosity, while required to be defined, will not actually be used in our model as no fluid

motion is occurring. Pure solvent melting heat is equivalent to the heat of fusion, ∆hf . In the CST cases,

it will be used to modulate the Stefan number through the similarity

St ∼ 1

∆h
(4.22)

For the CSHF cases, where a global Stefan number is not applicable, we will leave the melting heat

at 1. Finally, we will address solidus and liquidus temperatures. For isothermal phase change, these

two values are equal and equivalent to the melting temperature, Tm. We will set Tm = 1 and the wall

temperature T0 = 0. This sets dimensional and nondimensional temperature as equivalent to each other:

θ ∼ T (4.23)

We next define the internal heat generation source term. Inputting our material properties into Equa-

tion 3.25 and Equation 3.79, for both sets of cases, we are able to relate dimensional and nondimensional

internal heat generation by:
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Q̇ ∼ q̇ (4.24)

The model now only requires value assignment of the wall boundary condition. As previously dis-

cussed, for the CST cases, we set the wall boundary condition to a prescribed temperature of T0 = 0.

For the CSHF case, inputting our material properties into Equation 3.80 gives us another direct relation:

Q′′ ∼ q′′ (4.25)

Solution

Having established the physical properties of our model, it is now time to explore its computational

properties, starting with discretization methods employed on the various field variables. This includes

gradient discretization, energy equation discretization, and transient formulation. Gradient settings rep-

resent the location of field variable values and the method of interpolation between such values. Gradient

can either be measured by cell center or by node, and interpolated through the least squares method or

Green-Gauss interpolation. The chosen setting, least squares cell based, provides fairly high accuracy at

low computational cost.

Energy is discretized by a second-order upwind scheme. This differs from the centered second order

discretization demonstrated in Equation 4.5 by biasing both points of interpolation in one direction.

Upwind schemes are common in flow models since centered schemes can created nonphysical checkerboard

fields. The one-dimensional nature of our model precludes the need for an upwind scheme, but is not

likely to suffer as a result of using it. At the time of writing, centered schemes are not available in the

Fluent settings.

For our transient formulation, we use a first-order implicit discretization, similar to that presented

in Equation 4.3. First-order methods tend to be more stable and faster to solve, if less accurate than

their higher-order counterparts. Comparisons between first-order and second-order schemes for transient

discretization showed negligible changes in the solution curves for our model, so the first-order scheme

was adopted to decrease solution time.

A fixed time step size of 5 · 10−5 was used to keep the Courant number low. The Courant number is

a general indicator of model stability that represents the relative speed at which data moves through a

discretized element. In heat transfer and diffusion problems, for a given diffusivity α, spatial discretization

∆x, and time step ∆t, the Courant number is given by [44]:



45

C =
α∆t

(∆x)2
(4.26)

For explicit models, a Courant number greater than 1 means that heat data is able to effectively skip

elements, leading to divergent solutions in explicit models. Our model is implicit, precluding the need

to satisfy the Courant number requirement. It is, nonetheless, good practice to maintain a low Courant

number in order to preserve accuracy. Our model maintains a Courant number of C = 2.

The in-built implicit solvers of Fluent allow for over- and under-relaxation factors to be applied

between iterations. These factors enable a trade-off between convergence speed and stability. An under-

relaxation factor of 0.9 was applied to the energy equation solver; brief manipulation of the factor did not

yield significant changes in convergence speed. We use an absolute convergence criteria of resabs = 10−10.

This provides reasonable convergence speed without compromising accuracy.

A discussion on how the interface position is computed is required here. As previously mentioned,

the enthalpy method employed by Fluent does not explicitly track interface position. Additionally, the

creation of a mushy zone inherently makes defining its position somewhat vague. Tracking the final

domain position that is fully solid will yield a different interface evolution than for tracking the initial

domain position that is fully liquid; this difference will be exacerbated if the size of the mushy zone is

large. An alternative method that mitigates this issue is found through average liquid fraction.

The Area Weighted Average (AWA) liquid fraction numerically integrates the liquid fraction, β, of

each element across its area, averaging over the entire domain area. This value is effectively equivalent to

nondimensional interface position for a non-mushy model, though it needs to be converted from an area

to a radial position through the relation:

ζ =
√
βAWA (4.27)

While Fluent does have the ability to report user-defined functions such as this, its functionality

is limited. We opted instead for a data export and postprocessing through external Python scripts,

inline with the process used for generating analytical solution data. Temperature and enthalpy data was

exported at uniform time steps to comma-separated text files containing node number, radial position,

static temperature, and enthalpy for each requested time step. This data can be accessed through a

relevant I/O script and plotted against the analytical profiles through Python.

Initialization and calculation runs required a staged approach in order to allow for naturally-enforced

temperature profiles consistent with the initial profiles used in the analytical solutions. Fluent initial-

ization is geared towards uniform initial fields. However, field variable values in models are preserved
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between simulation runs. Keeping this in mind, the following process was adopted:

1. Begin model as a steady-state analysis.

2. Define the material properties and internal heat generation value for the case.

3. Set model methods, controls, and convergence settings.

4. Set the wall boundary condition to prescribed temperature. For solidification cases, use Tm. For

melting cases, use Tm − Q̇/4.

5. Initialize the model. For melting cases, use an initial temperature value slightly less than Tm and

vice-versa for solidification cases. This ensures no mushy values in the initial solution.

6. Calculate the steady-state solution.

7. Switch the model to transient analysis. Change boundary conditions and internal heat generation

to match intended case.

8. Create the interface report definition and data export rule.

9. Solve to the required time.
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Chapter 5: Results

The analytical solutions derived in Chapter 3 are compared against the solutions generated through the

Ansys Fluent implementation described in Chapter 4. Both temporal evolutions and spatial evolutions

are presented. Possible causes of deviation between the two solution methods are discussed, and key

behaviors of the systems are characterized. This chapter is split into two main sections. The first

presents results for the CST case, and the second for the CSHF case. For each, we first present the

results of melting scenarios then the solidification scenarios.

5.1 Constant Surface Temperature Results

The CST case provides two dimensionless parameters that can be manipulated to affect the relative

speed of phase change: Q̇ and St . As Q̇ also impacts temperature profiles, we opt to keep Q̇ constant

across cases and modulate St in our comparisons. We established in Equation 3.28 that Q̇ must be

greater than 4 for solid and liquid phases to exist at steady-state. As will be discussed in a later

section, values of Q̇ significantly higher than 4 lead to nonphysical solid region temperature profiles in

the analytical model. A value of Q̇ = 5.0 was ultimately used, as it provides a middling steady-state

interface position of ζss ≈ 0.447 without significantly nonphysical effects. Four values of Stefan number

are used: St = 0.01, 0.1, 1.0, and 10.0. This range of values represents very slow interface motion at

St = 0.01, where the quasi-steady approximations made by Crepeau and Siahpush [27] are valid, through

extremely fast interface motion, where the validity of the solutions generated in Chapter 3 is challenged.

Melting Results

We begin with comparing interface evolutions in time for melting. Figure 5.1 presents these values.

The solutions generated from our work in Chapter 3 are represented by solid lines and denoted by an

“Analytical” label in the legend. Those generated through Fluent are represented by the dotted lines

and denoted by the “Numerical” label. Note that the symbols do not represent all time steps used by

the numerical model.

At low Stefan numbers, we see good agreement between the two models, with the analytical model

predicting slightly slower interface motion than the numerical. As the Stefan number increases and the

phase change front moves faster, the disparity between profiles flips, with the analytical model achieving

steady-state behavior faster. At St = 10.0, we see the analytical solution has a significantly steeper profile

prior to steady state. For both sets of cases, we see the interface approaches the predicted steady-state

position of ζss ≈ 0.447.
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Figure 5.1: CST interface position as a function of time during melting at Q̇ = 5.0 for various values of
St .

The believed reason for the numerical solution’s over-prediction at lower Stefan numbers and under-

prediction at higher is two competing mechanisms. At low Stefan numbers, the relative amount of stored

energy in the form of phase change is very large compared to the amount required to change temperature

outside the mushy zone. This allows the size of the mushy zone to grow relatively quickly, artificially

increasing the speed of the averaged interface. As the Stefan number increases, energy stored in the

mushy zone decreases, reducing the impact.

The under-prediction of the numerical model at higher Stefan numbers is believed to be an artifact

of numerical diffusion. Numerical models, particularly of lower order, tend to exhibit a “smoothing

out” of sharp profiles. Numerical diffusion can be rectified by increasing discretization order to include

higher-order terms, but this often results in less stable models and oscillatory values. An alternative

improvement would be to implement an adaptive mesh that increases resolution within and nearby the

phase change region.

Figure 5.2 shows the analytical solution temperature profiles as a function of position at various time

steps for the St = 0.01, melting case. The numerical analog, to be discussed below, is shown in Figure

5.3. The temperature profiles for analytical cases are generated by calculating the interface position,

ζ(τ), through Equation 3.65, and inputting that position into Equation 3.45 and Equation 3.62.

For the temperature plots, the dashed line, labeled θm in the legend, represents the nondimensional

melting temperature. Above this line, the material is expected to be fully liquid, and below, fully solid.

The point at which the curve first intercepts θm corresponds to the nondimensional interface position,

τ(ζ), as referenced in Figure 5.1. Thus, the domain to the left of this point is liquid, and the domain

to the right is solid. We see in Figure 5.2 an unexpected phenomenon: The solid region curves near the
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Figure 5.2: Analytically generated temperature profiles for the CST melting case at various time steps
with Q̇ = 5.0, St = 0.01.

interface extend above θm. This nonphysical “overheating” phenomenon is believed to be a consequence

of neglecting the mushy zone.

Figure 5.3: Numerically generated profiles for the CST melting case at various time steps with Q̇ = 5.0,
St = 0.01. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Figure 5.3, as well as the rest of the figures showing profiles for the numerical model, is split into two

graphs. The lefthand plot shows nondimensional temperature as a function of nondimensional position

for various time steps, similar to the analytical profiles. The horizontal dashed line again represents the

nondimensional melting temperature, θm.

On the righthand side, the same time steps are used, but temperature is replaced with a normalized

enthalpy value, given by:
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Normalized Enthalpy =
h

cP (Tm − T0)
(5.1)

Instead of a single horizontal line representing the point of phase change, the enthalpy evolution plots

contain two. The lower line, labeled hcr, represents the critical enthalpy value below which the material

is fully solid. The upper line, labeled hf , represents the fusion enthalpy value, above which the material is

fully molten. The gap between these two values is proportional to the heat of fusion, ∆hf , and represents

that amount of energy that a material stores as it undergoes phase change. Just as water on a burner

will maintain a steady temperature as it begins to boil, a solid material in this stage of the phase change

process will also maintain a steady temperature until it has become fully molten.

Figure 5.3 presents the numerically generated temperature and enthalpy profiles at St = 0.01 for the

melting case, using the same set of time steps as those used in Figure 5.2. At first brush, it appears only

two time steps, τ = 0 and τ = 10.0, are plotted. In actuality, the temperature profiles of the intermediate

time steps are nearly identical to that of τ = 10.0. This is more obvious in the context of the enthalpy

profiles. For all time steps other than τ = 0, there is a plateau at η ≈ 0.225 before which the material is

in a mushy, and therefore isothermal, state.

The cause of this plateau derives from the isothermal nature of phase change. Conducting an energy

balance at the outer end of the mushy zone, there are two sources: the internal heat generation source

and an outward flux into the fully solid region. Because the mushy zone is isothermal, there is no driven

heat flux, until a portion of the material becomes fully liquid and can change temperature again. This

leads to a temporarily static temperature profile.

The profile developments of the mushy zone may also explain the overheating phenomenon exhibited

by the analytical model. The period of greatest overheating occurs at earlier time steps, where the

enthalpy in the mushy zone varies with position; later time steps show a uniform enthalpy value in the

mushy zone followed by a step change in value at the region boundary. This suggests that the impact of

the mushy zone is greatest during its initial formation.

We look next at the case of melting at St = 0.1. The temperature profiles for the analytical solution

to this case are presented in Figure 5.4. This case, like the St = 0.01 case, does not reach steady-state in

the window of time used. However, we see with later time steps the temperature profiles tend towards a

parabolic curve with a more seamless transition between the liquid and solid regions.

We also see less of the overheating phenomenon in this model compared to Figure 5.2. This, however,

is more likely a consequence of the time steps used. As the Stefan number effectively represents interface

speed in our model, the order of magnitude change from St = 0.01 to St = 0.1 results in a commensurate
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Figure 5.4: Analytically generated temperature profiles for the CST melting case at various time steps
with Q̇ = 5.0, St = 0.1.

change in temperature profiles. To demonstrate, if we compare the curve of τ = 5.0 in Figure 5.2 to

τ = 0.5 in Figure 5.4, we see they are virtually identical. This suggests that the amplitude of overheating

has not changed; only the period of time over which it occurs has.

Figure 5.5 shows the temperature and enthalpy profiles for the St = 0.1 melting case using the

numerical model. Focusing first on the temperature profiles, we see that once more, for time steps

τ = 0.5 and τ = 1.0, where there is no fully liquid material, the profiles are identical. The remainder of

the temperature profiles match very closely with those of Figure 5.4.

Figure 5.5: Numerically generated profiles for the CST melting case at various time steps with Q̇ = 5.0,
St = 0.1. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Referring to the enthalpy plot, the reduced gap between hcr and hf allows us to see more of the

development of the mushy zone. At the lower time steps we can see there is not a sharp drop at the edge

of the zone. By the time the fully liquid region has formed, the step drop from hf to hcr typical of a
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sharp interface exists. This reinforces the idea that the overheating phenomena exhibited at early time

steps in the analytical models is related to the models’ lack of capturing the formation, expansion, and

eventual collapse of the mushy zone region. It also appears the amplitude of the overheating is related to

the shape of the enthalpy profile within the mushy zone, though the exact mechanics are not understood.

Figure 5.6 shows the analytical temperature profiles at St = 1.0. This range represents the higher

end of Stefan number values for which the quasi steady-state assumption is valid. Note that a different

series of time steps is presented for this case than for the St = 0.01 and St = 0.1 cases, as steady-state

is reached much faster. We can see that by the final plotted time step of τ = 2.0, the model has nearly

reached steady-state, as evidenced by the similarity in profiles between τ = 1.0 and τ = 2.0. We also see

that any overheating phenomena has been all but eliminated by τ = 0.25, showing that the period where

the impact of neglecting the mushy zone is transient and dependent on the Stefan number.

Figure 5.6: Analytically generated temperature profiles for the CST melting case at various time steps
with Q̇ = 5.0, St = 1.0.

The numerical model results for this case are shown in Figure 5.7. Similar to the overheating in

Figure 5.6, the isotherm from the mushy zone is present at τ = 0.1 but has been eliminated by τ = 0.25.

Overall, the temperature profiles track quite well in relation to those presented in the analytical model,

presenting a strong case for the validity of our analytical model in this range of interface speed.

An interesting observation is find in relation to the enthalpy plots for this case: We can see at

τ = 0.25 that though a plateau has begun to form, it is not yet vertical. This matters because the profile

for τ = 0.25 has a liquid region, which demonstrates the existence, and therefore impact, of the mushy

zone is not limited to the period of time prior to formation of a liquid region. A partial cause for this

comes from the continued reduction in the gap between hf and hcr relative to the previous cases; the

profiles formed in this region are now on a similar scale to those outside the region.
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Figure 5.7: Numerically generated profiles for the CST melting case at various time steps with Q̇ = 5.0,
St = 1.0. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

The case shown in Figure 5.8 represents the fastest interface motion in our analysis, with an increase

in the Stefan number by a factor of 1000 over our first set of results. At this rate, the quasi steady-

state assumption is no longer valid. We can see that by τ = 0.05, our earliest time step, any possible

overheating effects have dissipated. Looking at the enthalpy plots for the numerical version of this case

in Figure 5.9, we can see the gap between hf and hcr is much smaller than the overall range of the rest

of the enthalpy profile. The significance of any profile that develops in the mushy zone, and as a result,

any overheating phenomena, is thus much less than for lower Stefan number cases.

Figure 5.8: Analytically generated temperature profiles for the CST melting case at various time steps
with Q̇ = 5.0, St = 10.0.

Figure 5.8 shows that steady-state is achieved very quickly, as there is very little change in profile

between τ = 0.2 and τ = 0.5. This is not quite the case in the numerical model, shown in the lefthand

plots of Figure 5.9. Here, the temperature profiles now lag visibly from the analytical case. This is to
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be expected, given the difference in the interface evolutions for these two cases from Figure 5.1. Aside

from the lag in interface position, the agreement in temperature profiles is good between the numerical

and analytical model, is there is very little impact from overheating or a mushy zone. We do see in

the enthalpy plot that the plateau from hf to hcr never becomes entirely vertical. This may simply be

a consequence of using a finite volume method; the plateau will always span at least the width of one

discretized element. However, it may also be a result of the speed of the interface.

Figure 5.9: Numerically generated profiles for the CST melting case at various time steps with Q̇ = 5.0,
St = 10.0. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Solidification Results

We now turn to solidification cases for the CST problem. The same notations will be used as with

the melting cases, as will the same values of Q̇ and St ; as such, we will expect similar behavior in the

models at steady-state, and roughly equivalent interface speed. Figure 5.10 compares the analytically

and numerically generated interface positions as a function of time for the four solidification cases.

Similar to the melting case, we see strong agreement in the interface position for low Stefan numbers

and progressively weaker agreement as the Stefan number increases. In all cases, the interface asymptot-

ically approaches the expected steady-state position of ζ ≈ 0.447. However, some of the behavior differs

from the melting case. There is no initial over-prediction in interface speed for the numerical model at

lower Stefan numbers, and the disagreement between the two models is more significant for the higher

Stefan number cases than it was for the same Stefan number melting cases.

Figure 5.11 presents the temperature profiles at various time steps for St = 0.01. Unlike in the melting

case, the wall boundary condition for our initial profile is different from the rest of the time steps. This

step change in boundary condition results in an immediate change in slope at the interface for earlier
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Figure 5.10: CST interface position as a function of time during solidification at Q̇ = 5.0 for various
values of St .

time steps, followed by a smoothing in the profiles over time. Another key difference from the melting

case is that we do not see any overheating or otherwise nonphysical phenomena.

Figure 5.11: Analytically generated temperature profiles for the CST solidification case at various time
steps with Q̇ = 5.0, St = 0.01.

The results for the numerical model at St = 0.01 are presented in Figure 5.12. Just as the agreement in

interface evolution was very strong for the analytical and numerical model for this case, the temperature

profiles are virtually identical. We again see a step change in wall temperature after the initial profile

leading to a change in slope at the interface that smooths over time.

Looking to the enthalpy plots, we see part of the reason for the agreement: from the outset, the

profile between hf and hcr is a vertical drop. No mushy region exists, and the sharp interface assumption

appears entirely valid. The reason no mushy zone exists for the solidification cases is uncertain. It may
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be a consequence of the numerical model’s method for determining enthalpy values in the mushy zone.

Additionally, work done by Yao et. al [45] suggests that the solidification process is more stable and less

prone to mushy zone development.

Figure 5.12: Numerically generated profiles for the CST solidification case at various time steps with
Q̇ = 5.0, St = 0.01. Temperature profiles are on the left side, while enthalpy profiles are on the right
side.

Figure 5.13 shows the analytical model temperature profiles for solidification at St = 0.1, representing

an order of magnitude increase in interface speed. We can see even with the quicker interface motion the

slope change at the interface occurs for earlier time steps. Closer to steady-state, we observe a parabolic

profile with a seamless slope between the liquid and solid regions. The change in temperature profile

decreases significantly as the model approaches steady-state, as evidenced by the similarity in profiles

between τ = 5.0 and τ = 10.0 as compared to τ = 0.5 and τ = 1.0.

Figure 5.13: Analytically generated temperature profiles for the CST solidification case at various time
steps with Q̇ = 5.0, St = 0.1.
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Figure 5.14 tells a similar story. The agreement between the analytical and numerical model temper-

ature profiles is still very strong, and there is a visible change in slope at the phase change interface that

smooths over time. As with the St = 0.01 case, the enthalpy profiles show a step change from hf to hcr

from the earliest time steps; no mushy zone has formed.

Figure 5.14: Numerically generated profiles for the CST solidification case at various time steps with
Q̇ = 5.0, St = 0.1. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Increasing the Stefan number to St = 1.0, Figure 5.15 presents the temperature profiles generated by

the analytical model. This rate of interface motion again represents the upper limits of the quasi-steady

interface assumption. It can be seen that for this case, though the early temperature profiles exhibit the

slope change at the interface, it smooths out much more quickly than for the lower Stefan number cases.

We also see at the final time steps the model has approached steady-state, as evidenced by the similarity

in profiles between τ = 1.0 and τ = 2.0.

Figure 5.15: Analytically generated temperature profiles for the CST solidification case at various time
steps with Q̇ = 5.0, St = 1.0.
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The numerically generated temperature and enthalpy profiles for solidification at St = 1.0 are pre-

sented in Figure 5.16. Here, there is a more evident difference in profile shapes generated as compared

to those presented in Figure 5.15. The slope change at the interface is much less pronounced in the

numerical model, with only a slightly visible change for τ = 0.1. The slower interface motion is also

noticeable, as there is more change in profile between τ = 1.0 and τ = 2.0. As has been the case for the

previous solidification cases, the enthalpy profiles do not exhibit any formation of a mushy zone.

Figure 5.16: Numerically generated profiles for the CST solidification case at various time steps with
Q̇ = 5.0, St = 1.0. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Our final two sets of CST problem results are displayed in Figure 5.17, representing the analytical

model solutions, and Figure 5.18, representing the numerical. At a Stefan number of St = 10.0, these

represent extremely fast phase change motion, where quasi-steady assumptions are invalid. Focusing

first on the analytical temperature profiles, we see even by the earliest time step of τ = 0.05, the slope

change between the liquid and solid regions has already been smoothed out, and the overall profile shape

is parabolic.

Shifting our focus to the numerical temperature profiles in Figure 5.18, we see some noticeable dif-

ferences compared to the analytical profiles. This matches with the lag in interface motion, noted in the

discussion of Figure 5.10.

One difference of interest occurs with the τ = 0.05 temperature profile: The temperature change near

the centerline is almost nonexistent, significantly less than for the same time step in Figure 5.17. This is

likely a consequence of numerical diffusion, and may have been exacerbated by the upwind discretization

scheme used to solve the energy equation for the numerical model. Unsurprisingly, we see no mushy zone

formation in the enthalpy profiles. Not only are all transitions from hf to hcr sharp, the gap between the

two values is once again much smaller than the overall size of the profiles.
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Figure 5.17: Analytically generated temperature profiles for the CST solidification case at various time
steps with Q̇ = 5.0, St = 10.0.

Figure 5.18: Numerically generated profiles for the CST solidification case at various time steps with
Q̇ = 5.0, St = 10.0. Temperature profiles are on the left side, while enthalpy profiles are on the right
side.

Overall, the CST solution demonstrates good tracking of the interface relative to the numerical model

that diminishes as the Stefan number approaches and passes a value of 1. However, as a result of

neglecting the mushy zone, the melting cases display a nonphysical overheating phenomenon at lower

time steps. The period of time for which this issue is prevalent increases as Stefan number decreases due

to higher relative heat of fusion values. The overheating phenomenon does not appear in solidification

cases, leading to better temperature profile agreements, particularly at low Stefan numbers. However,

increases in the Stefan number for solidification cases lead to a larger disagreement in interface position

as a function of time.
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5.2 Constant Surface Heat Flux Results

We now turn to the CSHF case. Where the CST case could use Q̇ and St to modulate the speed of

phase change, the lack of a constant wall temperature makes the Stefan number a poor choice for control

in the CSHF case. Instead, the CSHF case can use Q̇ and Q′′. As before, we keep our internal heat

generation constant at Q̇ = 5, using Q′′ to determine if the model is melting or solidifying and at what

speed.

Referencing Equation 3.81 and applying Q̇ = 5, we get the relation:

Q′′


< 2.5→ Melting

= 2.5→ Equilibrium

> 2.5→ Solidification

(5.2)

We use three values of heat flux representing slow, middling, and fast interface change for both the

melting and solidification cases. For the melting scenarios, these correspond to flux values of Q′′ = 2.4,

Q′′ = 2.0, and Q′′ = 1.5, respectively; for the solidification scenarios, they correspond to Q′′ = 2.6,

Q′′ = 3.0, and Q′′ = 4.0.

Melting Results

As with the CST models, we start with the phase change interface evolution in time for the three

melting cases. Figure 5.19 presents compares the interface curves for the analytical model, represented

by the solid lines, and the numerical model, represented by the dotted lines with symbols. One of the

notable differences between the CST and CSHF problems is visible here: the form of steady-state. Unlike

the CST problem, the interface in the CSHF problem does not asymptotically approach a value. Instead,

the interface steady-state values are dictated by the physical boundaries of our problem domain. The

constant flux means the model will transition from fully solid to fully molten for melting cases, and

vice-versa for solidification. Additionally, the temperature profiles do not reach a true steady-state value.

Compared to the CST results, the agreement between the analytical and numerical models is much

weaker. This appears to be primarily driven by a slope difference at earlier time steps; at later time steps,

curves concurrent to a particular heat flux become parallel.

Figure 5.20 presents temperature profiles at various time steps for the Q′′ = 2.4 case. The dashed

line at θm once again represents the nondimensional melting temperature. Note that the definition of

nondimensional temperature differs between the CST and CSHF problems; where phase change occurred

in the CST problem at θ = 1, it occurs at θ = 0 for the CSHF problem.
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Figure 5.19: CSHF interface position as a function of time during melting at Q̇ = 5.0 for various values
of Q′′.

Throughout the entire range of time steps, the profile at the interface between the liquid and solid

regions remains smooth, and the shape of the temperature profiles remains constant, with only a vertical

translation reflecting the advancement of time. This is one of the key differences between the CST and

CSHF problems: The temperature profiles in the CSHF problem do not become static as the transient

portion of our solution decays. Another key difference is that the CSHF solution does not exhibit the

overheating phenomenon observed at low time steps in the CST melting temperature profiles.

Figure 5.20: Analytically generated temperature profiles for the CSHF melting case at various time steps
for Q̇ = 5.0, Q′′ = 2.4.

The temperature and enthalpy profiles for the same flux case, Q′′ = 2.4 using the numerical model are

presented in Figure 5.21. Starting with the temperature profiles, we see that, similar to Figure 5.20, the

shape of the profiles remains constant at each time step. However, the profile height changes more slowly
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and more consistently. There is no noticeable mushy zone formation or effects by the first displayed time

step, though this may have more to do with being a relatively large jump in time. It is possible the

mushy zone has formed, expanded, and reduced in the time between τ = 0 and τ = 1.0, which would

explain the difference in temperature profiles relative to the analytical solution.

Because the CSHF problem does not have a constant wall temperature, we cannot use Equation 5.1.

We instead define our normalized enthalpy for the CSHF case as:

Normalized Enthalpy =
h

∆hf
(5.3)

Where we have set hcr = 0 as a reference point. For all CSHF cases, this leads to a gap between hf

and hcr of 1. Keeping these changes in mind and looking now at the enthalpy profiles of Figure 5.21, we

see that by τ = 1.0 the mushy zone profile is a step change from hf to hcr, matching our expectations

from the temperature profiles.

Figure 5.21: Numerically generated profiles for the CSHF melting case at various time steps with Q̇ = 5.0,
Q′′ = 2.4. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

We now decrease our surface flux to Q′′ = 2.0, increasing melting speed. Figure 5.22 presents the

analytical solution temperature profiles for this case. Here we see some interesting departures from the

previous case, most notably in profile shape. Where the profiles of Figure 5.20 maintained a consistent

shape across all time steps and a seamless transition between liquid and solid regions, a visible change in

profile near the interface is observed for all but the initial and final time steps of Figure 5.22. At τ = 0.05,

the solid region profile appears almost linear, tending towards a more seamless profile by τ = 0.1, then

beginning to concave upwards for later time steps. Of note, though the temperature profiles exhibit the

fluctuations in shape, no overheating is observed. The irregularity of these profiles places some doubt on

the validity of our weakly time-dependent assumption.
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Figure 5.22: Analytically generated temperature profiles for the CSHF melting case at various time steps
for Q̇ = 5.0, Q′′ = 2.0.

Turning to the numerical model solutions for Q′′ = 2.0, Figure 5.23 presents the temperature and

enthalpy profiles for the case. A note here: The last time step used for the numerical model differs from

the last used for the analytical model. This is because τ = 0.884 represents the last point in time for

the analytical model in which both phases exist; above this point, some values in the solution become

complex, leading to the solution code exiting. This issue does not exist for the numerical model, which

is able to handle single-phase analysis. The final time step was thus extended to τ = 1.0. The numerical

solution’s slower interface motion results in the profile at this time step still containing two phases.

Aside from the slower motion, the numerical temperature profiles exhibit different behavior from the

analytical profiles, particularly at low time steps. Here, we do see mushy zone behavior and an associated

isotherm at θm for time steps up through τ = 0.25. Unlike the mushy zone formation in the CST case, the

temperature profiles do not become temporarily static here. This is understandable, as the flux boundary

condition does not create a temporary equilibrium in energy balance while the fully liquid region forms.

After the mushy zone has contracted to negligible size, we observe a slope change between the liquid and

solid regions at the interface, in contrast to the CST melting cases, where the transition from liquid to

solid becomes more smooth in time.

Shifting attention to the enthalpy plot, we see the mushy zone profiles for earlier time steps take on

a different shape compared to the mushy zone development profiles of the CST melting case. As time

progresses and the mushy zone region becomes negligible in size, we see the characteristic plateau in

enthalpy from hf to hcr form. The difference in mushy zone profile shape may help to explain the lack

of overheating and irregularity in solid region profile shape at low time steps that are found in Figure 5.22.
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Figure 5.23: Numerically generated profiles for the CSHF melting case at various time steps with Q̇ = 5.0,
Q′′ = 2.0. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Figure 5.24 presents the temperature profiles generated from the analytical model for melting at

Q′′ = 1.5, the fastest of the melting cases. At τ = 0.05, the solid region is visibly concave up, a significant

departure from the initial temperature profile. The deflection in shape levels out near τ = 0.1, where

the overall temperature appears smooth and parabolic, and reverses for late time steps, where the slope

change between liquid and solid regions at the interface once again become visible. As with the final time

step of Figure 5.22, the profile of τ = 0.456 represents the last calculated time step available before the

model has become entirely molten.

Figure 5.24: Analytically generated temperature profiles for the CSHF melting case at various time steps
for Q̇ = 5.0, Q′′ = 1.5.

The temperature profiles generated by the numerical model for this case, shown in the lefthand plot

of Figure 5.25, differ significantly from those generated by the analytical model. Most notably, the early

time steps do not exhibit deflection towards a concave up profile but instead contain traces of the mushy
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zone in the form of an extended isotherm at θm. The disconnect in melting speed between the analytical

and numerical temperature models makes it difficult to compare concurrent time steps, so it is unclear if

the development and contraction of the mushy zone in the numerical model coincide with the change in

solid region deflection in the analytical model.

The righthand side of Figure 5.25 shows the enthalpy profiles for melting at Q′′ = 1.5. As expected

from the isotherms in the temperature profiles, the mushy zone shows developments at earlier time steps

before tending towards its characteristic plateau. At the beginning of the mushy zone development, we

see a negative concave up curve similar to the mushy zone developments in Figure 5.23, but somewhere

between τ = 0.1 and τ = 0.2, this profile changes and begins to look similar to the mushy zone profiles

generated at low Stefan number CST cases.

Figure 5.25: Numerically generated profiles for the CSHF melting case at various time steps with Q̇ = 5.0,
Q′′ = 1.5. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Solidification Results

Turning now to results of the solidification cases, Figure 5.26 compares the interface evolution in time

of the analytical model against the numerical model for the three heat flux values used. As was the case

with the melting model, steady-state is not achieved by an asymptotic approach to a particular value,

but rather by entirely reaching one phase.

Similar to the melting cases, the agreement between the analytical and numerical models for the

solidification cases is weaker than it was for the CST problem. Unlike the CST problem, the disagreement

is most prevalent with slower interface motion, where the surface heat flux is closer to balanced with the

internal heat generation. The disagreement also increases as time increases and more of the domain

becomes solid.
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Figure 5.26: CSHF interface position as a function of time during solidification at Q̇ = 5.0 for various
values of Q′′.

Temperature profiles from the analytical solution at various time steps for solidification at Q′′ = 2.6,

representing the slowest of the solidification cases, are shown in Figure 5.27. Similar to the Q′′ = 2.4

melting case (Figure 5.20), we see uniformly-shaped curves throughout the entire time series, except at

τ = 5.0. At this time step, we see a significant change in profile between the liquid and solid regions, as

well as a larger change in interface position from the previous time step. Note that this region of time

also corresponds with the greater disagreement in interface position between the numerical and analytical

models. Similar to solidification CST cases, we do not see unusual behavior at early time steps that might

suggest a solidification mushy zone.

Figure 5.27: Analytically generated temperature profiles for the CSHF solidification case at various time
steps for Q̇ = 5.0, Q′′ = 2.6.
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The results of the numerical model for this case are presented in Figure 5.28. This time, we do

not see a slope change at the interface for the last time step, and all temperature profiles maintain the

same general shape. This likely has to do with how much farther from the centerline the interface is

compared to the analytical model at the same time step. Referencing the enthalpy plots, we can confirm

no solidification mushy zone effects are visible.

Figure 5.28: Numerically generated profiles for the CSHF solidification case at various time steps with
Q̇ = 5.0, Q′′ = 2.6. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Figure 5.29 presents the temperature profiles generated by the analytical solution for solidification at

Q′′ = 3.0. We see that even at earlier time steps and higher interface values the shape of the temperature

profiles has begun to change, with a small but noticeable change in slope between liquid and solid regions

at the interface. At τ = 1.0, where the interface is near the centerline, we once again see a much more

significant change in profile shape, with the solid region appearing nearly linear.

Figure 5.29: Analytically generated temperature profiles for the CSHF solidification case at various time
steps for Q̇ = 5.0, Q′′ = 3.0.
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The equivalent results to this case using the numerical model are presented in Figure 5.30. We see

good agreement in the temperature profiles at early time steps, with both shape and interface position

nearly matching through τ = 0.5. However, as with the Q′′ = 2.6 case, the late time step, low interface

value profiles differ both in shape and interface speed. While some of this change may be attributed to

numerical diffusion exacerbated by the upwind energy scheme, the difference between the two models is

too great for diffusion to be the sole contributor.

Figure 5.30: Numerically generated profiles for the CSHF solidification case at various time steps with
Q̇ = 5.0, Q′′ = 3.0. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

We now turn to the Q′′ = 4.0 case, representing the fastest solidification CSHF case. Figure 5.31

shows the temperature profiles for the analytical model. By τ = 0.05, there is already a noticeable

slope change between regions at the interface, and the solid region temperature profile as almost linear.

Interestingly, the temperature near the centerline decreases considerably more slowly than towards the

wall; this is due to the relatively high level of surface flux relative to the thermal conductivity.

Figure 5.32 presents temperature and enthalpy profiles generated by the numerical model for the

solidification at Q′′ = 4.0 case. Note that the presented series of time steps for this figure is different

from Figure 5.31. Though this prevents complete comparison of the two models in time, it allows us to

observe the behavior of the numerical model at late stages of solidification.

The early time step temperature profiles exhibit similar behavior to the analytically generated profiles,

with temperature change being dominant near the wall and delaying towards the centerline. This is

consistent with the similar interface positions at early time steps shown in Figure 5.26. There is some

slope change between regions at the interface at early time steps, though the solid region profile does not

have as linear an appearance. Beyond τ = 0.2, the interface positions and subsequent temperature profiles

between the two models begins to diverge. At τ = 0.4, the slope change has become more significant,
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Figure 5.31: Analytically generated temperature profiles for the CSHF solidification case at various time
steps for Q̇ = 5.0, Q′′ = 4.0.

and we see a flattening out of the liquid region profile; by τ = 0.5, this profile is nearly uniform near θm,

and the solid region profile is no longer parabolic. Looking at the τ = 0.5 curve in the enthalpy plot, the

mushy zone profile is still a step jump from hf to hcr, suggesting that the solid region has not become

mushy.

Figure 5.32: Numerically generated profiles for the CSHF solidification case at various time steps with
Q̇ = 5.0, Q′′ = 4.0. Temperature profiles are on the left side, while enthalpy profiles are on the right side.

Overall, we see poor agreement between the solution to the CSHF problem derived in Chapter 3 and

the enthalpy method implementation of the equivalent. The models disagree most when the interface is

near the centerline of the domain. Though omitting the mushy zone in our analytical formulation does

not result in the overheating phenomenon we saw for the CST solutions, we do see impact in the form of

deflections in the temperature profiles for higher flux melting cases. The solidification cases once more
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do not exhibit any mushy zone effects, though the models still disagree at late time steps. We conclude

these errors likely originate from an inaccurate theoretical model in that our separation of θ into θss and

θtr is not valid for the CSHF problem.
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Chapter 6: Summary and Conclusions

This thesis explores a scenario of solid-liquid phase change driven by internal heat generation in

cylindrical coordinates, based on analysis of the classical Stefan problem. The scenario is representative

of states of meltdown in nuclear fuel rods. Though the problem of phase change as a whole is well

researched, phase change driven by internal heat generation, particularly in finite geometries, is less well-

explored. Few closed-form solutions exist to this class of problems and often are limited over-idealized

cases with restrictive assumptions.

In Chapter 3, we derive solutions for transient melting and solidification with internal heat generation

for a cylindrical geometry in one dimension assuming constant thermal properties and a sharp interface.

Both cases of constant surface temperature and constant surface heat flux are considered. Nondimen-

sional parameters are created to simplify the governing equations and generalize the solution. Assuming

superposition, the governing equations are separated into transient and steady-state components. The

steady-state components are solved using standard integration techniques, and the transient through

separation of variables. The solutions are then used to generate a first-order ordinary differential equa-

tion describing the motion of the phase change front in time. The solution is implemented in Python in

order to generate interface and temperature profiles. This process is repeated for both forms of boundary

condition.

Verification through numerical means is explored in Chapter 4. Three models rooted in creating finite

difference approximations of the governing equations are proposed, discussed, and ultimately rejected.

The first of these models is a fixed grid, fixed time model that tracks interface position by interpolating

between nodes; it was rejected due to stability issues at high Stefan numbers. The second proposed

method, a variable grid, fixed time method, uses separate domains for the liquid and solid regions that

expand and contract such that their interior boundaries match the interface position. Its inconsistent

accuracy prevented the model from being used. The final finite difference model is a fixed grid, variable

time model that solves for time required to the interface to move from one spatial node to the next. While

it showed the most promise of the three models, it was not used due to poor extensibility and inability

to model steady-state.

We choose to use an alternative style of numerical model based on finite volume approximation

known as the enthalpy method. This model creates approximate solutions to the weak form of the energy

equation. Its implicit tracking of liquid fraction over an explicit interface allows for analysis before phase

change begins and after steady-state is achieved, as well as the development of a mushy zone, a region

of material in a state of phase change between fully solid and fully liquid. This model is chosen because
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it tests the validity of our assumption of a sharp interface, and because its implementation is available

through the commercial software Ansys Fluent. The model uses a second-order upwind in space, first-

order implicit in time discretization of the energy equation to solve dimensionally equivalent cases to

those derived in Chapter 3.

The veracity of our solutions is tested across several cases in Chapter 5. For the cases of constant

surface temperature, phase change direction is dictated by initial profile, and speed is controlled by

modulating the Stefan number. From slowest change to fastest, we test the models at Q̇ = 5.0 and

St = 0.01, St = 0.1, St = 1.0, and St = 10.0, for both melting and solidification. We find that

agreement between the two models, particularly of interface position as a function of time, is strong at

low Stefan numbers and gets weaker above St = 1.0. For these faster cases, the analytical model predicts

faster interface motion. The melting cases exhibit nonphysical overheating at lower Stefan numbers, a

consequence of the sharp interface assumption.

For the case of constant surface heat flux, phase change speed is controlled be the level of outward

surface heat flux relative to the rate of internal heat generation. The heat generation is kept constant

at Q̇ = 5.0. For melting, we use values of Q′′ = 2.4, Q′′ = 2.0, and Q′′ = 1.5, with phase change speed

increasing as flux decreases. For solidification, we use values of Q′′ = 2.6, Q′′ = 3.0, and Q′′ = 4.0, with

phase change speed increasing with flux. These cases show much weaker agreement than the constant

surface temperature cases, with disagreement increasing when the phase change front moves quickly or

when the interface is near the centerline. The disagreement is believed to be a result of using superposition.

No body of research is truly complete, and this body is no exception. Throughout the development

of this thesis, several areas for future improvement and discovery were observed. In both the CST and

CSHF cases, our analyses were limited to a single value of internal heat generation in order to manage the

scope of work. A factorial analysis modulating both internal heat generation and values of the external

boundary condition would provide broader insight into the behavior of the system, including what influ-

ences mushy zone formation. Another limitation of our model arises from using purely nondimensional

parameters. Scenarios involving material properties consistent with modern fuel rods would lend a better

understanding of the range where our solutions make physical sense.

The two boundary conditions we considered are fairly common in use for heat transfer. A third bound-

ary condition, known as the mixed boundary condition, exists, which essentially is a linear combination

of the two previous boundary conditions. It is representative of convective heat transfer at the surface.

Solutions involving this boundary condition would increase the range of physical applications our work

pertains to. If a close-formed solution exists, however, it is likely to suffer from the same consequences of

using superposition as the CSHF case did. This problem would also likely require its own set of nondi-
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mensional parameters, though the reformulation may help to define a set this allows consistent definition

of temperature and heat generation for the previous two problems. While we note characteristics of our

analytical solutions that are nonphysical or inaccurate, we do not formally establish regions of validity

for each analytical solution. An improvement to the verification process would be to define these regions.

Ultimately, this would require the additional case testing discussed earlier.

The validity of the superposition principle in separating our temperature profiles is questionable,

particularly in the case of surface flux boundary conditions, due to nonhomogeneity of the separated

boundary conditions. This is believed to be a major factor in the disagreement between analytical

and numerical models for the CSHF cases. It may be possible to derive solutions that do not lead to

this issue. Additionally, a reformulation of the governing equations such that the dependent variable is

enthalpy instead of temperature could feasibly allow for mushy zone development and preclude the need

for an explicit energy balance to define interface. This, however, would involve derivation from the energy

equation and is not likely to yield closed form solutions.

Regarding the numerical model, the primary improvement necessary in future models is implemen-

tation of noncommercial code. The Ansys Fluent framework was convenient and necessary within the

timeframe of the thesis work as it generated trustworthy results without excess testing or code refac-

toring. However, it is limited to low-order discretization in Cartesian coordinate systems. An in-house

code could remedy both of these limitations while generating solutions at a faster rate due to reduced

computational overhead. Such improvements would allow for more extensive case testing in a feasible

timeframe. It would also allow for incorporation of the same nondimensional paradigm used in our an-

alytical solutions, whereas the Fluent framework required identifying dimensional values that yielded

equivalent nondimenionsal values.

If Fluent were to be used again, employment of its expanded capabilities over analytical solutions

would be beneficial. This includes multidimensional domains, thermophysical properties that vary with

energy or phase, and the existence of fluid, convective, and radiative effects. Modulation of dimensional

values while keeping nondimensional values constant would also be able to determine the veracity of the

nondimensional systems we used, and implementing adaptive meshing around the region of phase change

would be increase the resolution of phenomena in the mushy zone. In either the case of continued Fluent

use or in-house code, a formal convergence study should be implemented to add confidence in the final

results.
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Appendix A: CST Analytical Solution Python

Script

Listing A.1: cstcodedef script

# ==========================================================================

# Library Imports

# ==========================================================================

import numpy as np ## p r o v i d e s matrix suppor t

from s c ipy . s p e c i a l import j0 , j1 , y0 , y1 , j n z e r o s ## B e s s e l fcn f a m i l y

from s c ipy . opt imize import b i s e c t ## b a s i c roo t s o l v e r f o r t r a n s c e n d e n t a l s

from s c ipy . i n t e g r a t e import quad , s o l v e i v p ## quad f o r i n t e g r a t i o n ,

## s o l v e i v p f o r ODE s o l u t i o n

eps = 1e−4

# General order : eta , tau , ze ta , Q, St , lmda , lmda t , nterms , melt

# ==========================================================================

# Liquid Region D e f i n i t i o n s

# ==========================================================================

def l ambdas l i qu id ( zeta , nterms ) :

## Generates the e i g e n v a l u e s f o r the l i q u i d reg ion .

z 0 n = j n z e r o s (0 , nterms )

lmda = z 0 n / zeta

return lmda

def P h i l i q u i d ( eta , Q, melt ) :

## I n i t i a l temperature p r o f i l e in the l i q u i d reg ion .

i f melt == True :

return 1

else :

return (Q/4)* (1 − eta **2) + 1
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def t h e t a l i q u i d s s ( eta , zeta , Q) :

## Steady−s t a t e l i q u i d temperature p r o f i l e .

return (Q/4)* ( ze ta **2 − eta **2) + 1

def A n ( zeta , Q, lmda , melt ) :

## Fourier c o e f f i c i e n t f o r the l i q u i d reg ion . Index i n f o i s

# communicated by lmda .

def A n num int ( eta , zeta , Q, lmda , melt ) :

# Numerator in t egr and

term1 = P h i l i q u i d ( eta , Q, melt ) − t h e t a l i q u i d s s ( eta , zeta , Q)

term2 = j0 ( lmda* eta )* eta

return term1* term2

def A n den int ( eta , lmda ) :

# Denominator i n te gran d

return j 0 ( lmda* eta )**2* eta

# I n t e g r a t e numerator and denominator s e p a r a t e l y then combine .

A n num = quad ( A n num int , eps , zeta−eps ,

args=(zeta , Q, lmda , melt ) , l i m i t =100) [0 ]

A n den = quad ( A n den int , eps , zeta−eps ,

args=(lmda ) , l i m i t =100) [0 ]

A n = A n num/A n den

return A n

def t h e t a l i q u i d ( tau , zeta , Q, nterms , melt ) :

## Liquid temperature p r o f i l e f o r a g iven tau and z e t a .

# I n i t i a l i z e output arrays .

eta = np . l i n s p a c e ( eps , zeta−eps , 51)

theta = np . z e r o s l i k e ( eta )

# I d e n t i f y e i g e n v a l u e s .
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lmda = lambdas l i qu id ( zeta , nterms )

# Sum terms

for n in range ( nterms ) :

A = A n ( zeta , Q, lmda [ n ] , melt )

theta += A*np . exp(−lmda [ n ]**2* tau )* j 0 ( lmda [ n ]* eta )

# Add steady−s t a t e impact

theta += t h e t a l i q u i d s s ( eta , zeta , Q)

return eta , theta

# ==========================================================================

# S o l i d Region D e f i n i t i o n s

# ==========================================================================

def l ambdas so l id ( zeta , nterms ) :

## Generates the e i g e n v a l u e s f o r the s o l i d reg ion .

def B n transcendenta l ( lmda ) :

# Transcendenta l form o f the e i g e n f u n c t i o n .

return j 0 ( lmda* zeta )* y0 ( lmda ) − y0 ( lmda* ze ta )* j 0 ( lmda )

def t r a n s c e n d e n t a l r o o t s ( nterms ) :

## Find n r o o t s o f the quasi−p e r i o d i c t r a n s c e n d e n t a l equa t ion .

# I n i t i a l i z e r o o t s array .

r oo t s = np . z e r o s ( nterms )

margin = 1e−8

# Manually f i n d f i r s t roo t .

l e f t , r i g h t = margin , 4/(1 − zeta )

r oo t s [ 0 ] = b i s e c t ( B n transcendenta l , l e f t , r i ght , maxiter =2000)

for n in range ( nterms ) :

l e f t = roo t s [ n−1] + margin

r i g h t = roo t s [ n−1] + 3 .4/ (1 − ze ta )

r oo t s [ n ] = b i s e c t ( B n transcendenta l , l e f t , r i ght , maxiter =2000)

return r oo t s
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lmda t = t r a n s c e n d e n t a l r o o t s ( nterms )

return lmda t

def P h i s o l i d ( eta , Q, melt ) :

## Generate i n i t i a l s o l i d temperature p r o f i l e .

i f melt == True :

return 1 − eta **2

else :

return 1

def t h e t a s o l i d s s ( eta , zeta , Q) :

## Generate steady−s t a t e s o l i d temperature p r o f i l e .

term1 = (Q/4)* (1 − eta **2)

term2 = (Q/4)* ( ze ta **2 − 1) + 1

term3 = np . l og ( eta )/np . l og ( zeta )

return term1 + term2* term3

def f n t i l ( eta , lmda t ) :

## Generates the e i g e n f u n c t i o n f o r the s o l i d reg ion .

return y0 ( lmda t* eta ) − ( y0 ( lmda t )/ j0 ( lmda t ) )* j 0 ( lmda t* eta )

def f n t i l p r i m e ( eta , lmda t ) :

## D e r i v a t i v e o f e i g e n f u n c t i o n f o r the i n t e r f a c e equat ion .

f p = −lmda t *( y1 ( lmda t* eta ) − ( y0 ( lmda t )/ j0 ( lmda t ) )* j 1 ( lmda t* eta ) )

return f p

def B n ( zeta , Q, lmda t , melt ) :

## Fourier c o e f f i c i e n t f o r the s o l i d reg ion .

def B n num int ( eta , zeta , Q, lmda t , melt ) :

# Numerator in t egr and

term1 = P h i s o l i d ( eta , Q, melt ) − t h e t a s o l i d s s ( eta , zeta , Q)
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term2 = f n t i l ( eta , lmda t )* eta

return term1* term2

def B n den int ( eta , lmda t ) :

# Denominator i n te gran d

return f n t i l ( eta , lmda t )**2* eta

# I n t e g r a t e numerator and denominator s e p a r a t e l y then combine .

B n num = quad ( B n num int , ze ta+eps , 1−eps ,

args=(zeta , Q, lmda t , melt ) , l i m i t =100) [0 ]

B n den = quad ( B n den int , ze ta+eps , 1−eps ,

args=(lmda t ) , l i m i t =100) [0 ]

B n = B n num/B n den

return B n

def t h e t a s o l i d ( tau , zeta , Q, nterms , melt ) :

## S o l i d temperature p r o f i l e f o r a g iven tau and z e t a .

# I n i t i a l i z e output arrays .

eta = np . l i n s p a c e ( ze ta+eps , 1−eps , 51)

theta = np . z e r o s l i k e ( eta )

# I d e n t i f y e i g e n v a l u e s .

lmda t = lambdas so l id ( zeta , nterms )

# Sum terms

for n in range ( nterms ) :

B = B n ( zeta , Q, lmda t [ n ] , melt )

theta += B*np . exp(− lmda t [ n ]**2* tau )* f n t i l ( eta , lmda t [ n ] )

# Add steady−s t a t e impact

theta += t h e t a s o l i d s s ( eta , zeta , Q)

return eta , theta

def i n t e r f a c e s o l u t i o n ( t a u f i n a l , Q, St , nterms , melt ) :
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## Generates tau−z e t a p a i r s f o r a g iven case .

# I n i t i a l i z e time

i f melt == True :

zeta0 = eps

else : z e ta0 = 1 − eps

mdt = 5e−3

def dzeta dtau ( tau , zeta , Q, St , nterms ) :

## I n t e r f a c e d i f f e r e n t i a l equa t ion .

# I n i t i a l i z e

dzdt = 0

# p r i n t i n g term i n c l u d e d f o r t e l e m e t r y during run

print ( ’ { : . 5 f } \ t { : . 5 f } ’ . format ( f loat ( tau ) , f loat ( ze ta ) ) )

# Generate e i g e n v a l u e s

lmda = lambdas l i qu id ( zeta , nterms )

lmda t = lambdas so l id ( zeta , nterms )

# Sum terms

for n in range ( nterms ) :

A = A n ( zeta , Q, lmda [ n ] , melt )

l i q u i d t e r m = A* lmda [ n ]* np . exp(−lmda [ n ]**2* tau )* j 1 ( lmda [ n ]* zeta )

B = B n ( zeta , Q, lmda t [ n ] , melt )

s o l i d t e r m = B*np . exp(− lmda t [ n ]**2* tau ) \

* f n t i l p r i m e ( zeta , lmda t [ n ] )

dzdt += l i q u i d t e r m

dzdt += s o l i d t e r m

# Add steady−s t a t e and Ste fan number impacts

dzdt += ( (Q/4)* ( ze ta **2 − 1) + 1)/( zeta *np . l og ( zeta ) )
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dzdt *= St

return dzdt

## Determine time range o f run .

t range = [ 0 , t a u f i n a l ]

tau = np . l i n s p a c e (0 , t a u f i n a l , 201)

## F u l l s o l u t i o n Set d e n s e o u t p u t to True and view the s o l n v a r a b l e

# f o r a d d i t i o n a l debug in format ion .

so ln = s o l v e i v p ( dzeta dtau , t range , [ zeta0 ] ,

method=’RK45 ’ , t e v a l=tau ,

args=(Q, St , nterms ) ,

dense output=False , max step=mdt)

# I s o l a t e output v a r i a b l e s

zeta = so ln . y [ 0 , : ]

tau = tau [ : len ( ze ta ) ]

return tau , ze ta

return 1

def t h e t a f u l l ( tau , zeta , Q, nterms , melt ) :

## Generate combined temperature p r o f i l e s f o r a g iven tau and z e t a .

eta = np . z e ro s (102)

theta = np . z e r o s l i k e ( eta )

eta [ : 5 1 ] , theta [ : 5 1 ] = t h e t a l i q u i d ( tau , zeta , Q, nterms , melt )

eta [ 5 1 : ] , theta [ 5 1 : ] = t h e t a s o l i d ( tau , zeta , Q, nterms , melt )

return eta , theta
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Appendix B: CSHF Analytical Solution Python

Script

Listing B.1: cshfcodedef script

# ==========================================================================

# Library Imports

# ==========================================================================

import numpy as np ## p r o v i d e s matrix suppor t

from s c ipy . s p e c i a l import j0 , j1 , y0 , y1 , j n z e r o s ## B e s s e l fcn f a m i l y

from s c ipy . opt imize import b i s e c t ## b a s i c roo t s o l v e r f o r t r a n s c e n d e n t a l s

from s c ipy . i n t e g r a t e import quad , s o l v e i v p ## quad f o r i n t e g r a t i o n ,

## s o l v e i v p f o r ODE s o l u t i o n

eps = 1e−4

# General order : eta , tau , ze ta , Q dot , Q dp , lmda , lmda t , n roots , melt

# ==========================================================================

# Liquid Region D e f i n i t i o n s

# ==========================================================================

def l ambdas l i qu id ( zeta , nterms ) :

## Generates the e i g e n v a l u e s f o r the l i q u i d reg ion .

z 0 n = j n z e r o s (0 , nterms )

lmda = z 0 n / zeta

return lmda

def P h i l i q u i d ( eta , Q dot , melt ) :

## I n i t i a l temperature p r o f i l e in l i q u i d reg ion .

i f melt == True :

return 0

else :

return ( Q dot /4)* (1 − eta **2)
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def t h e t a l i q u i d s s ( eta , zeta , Q dot ) :

## Steady−s t a t e l i q u i d temperature p r o f i l e .

return ( Q dot /4)* ( ze ta **2 − eta **2)

def A n ( zeta , Q dot , lmda , melt ) :

## Fourier c o e f f i c i e n t f o r the l i q u i d reg ion . Term informat ion i s

# communicated by lmda .

def A n num int ( eta , zeta , Q dot , lmda ) :

## Numerator in teg rand

term1 = P h i l i q u i d ( eta , Q dot , melt ) \

− t h e t a l i q u i d s s ( eta , zeta , Q dot )

term2 = j0 ( lmda* eta )* eta

return term1* term2

## Denominator in te gra nd

def A n den int ( eta , lmda ) :

return j 0 ( lmda* eta )**2* eta

# I n t e g r a t e numerator and denominator s e p a r a t e l y then combine

A n num = quad ( A n num int , eps , zeta−eps ,

args=(zeta , Q dot , lmda ) , l i m i t =100) [0 ]

A n den = quad ( A n den int , eps , zeta−eps ,

args=(lmda ) , l i m i t =100) [0 ]

A n = A n num/A n den

return A n

def t h e t a l i q u i d ( tau , zeta , Q dot , Q dp , nterms ) :

## Liquid temperature p r o f i l e f o r g iven tau and z e t a .

# I n i t i a l i z e output arrays .

eta = np . l i n s p a c e ( eps , zeta−eps , 51)

theta = np . z e r o s l i k e ( eta )
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# Determine regime .

i f ( Q dot /2) > Q dp :

melt = True

else :

melt = Fal se

# I d e n t i f y e i g e n v a l u e s .

lmda = lambdas l i qu id ( zeta , nterms )

# Sum terms

for n in range ( nterms ) :

A = A n ( zeta , Q dot , lmda [ n ] , melt )

theta += A*np . exp(−lmda [ n ]**2* tau )* j 0 ( lmda [ n ]* eta )

# Add steady−s t a t e impact

theta += t h e t a l i q u i d s s ( eta , zeta , Q dot )

return eta , theta

# ==========================================================================

# S o l i d Region D e f i n i t i o n s

# ==========================================================================

def l ambdas so l id ( zeta , nterms ) :

## Generates the e i g e n v a l u e s f o r the s o l i d reg ion .

def B n transcendenta l ( lmda ) :

return j 0 ( lmda* zeta )* y1 ( lmda ) − y0 ( lmda* ze ta )* j 1 ( lmda )

def t r a n s c e n d e n t a l r o o t s ( nterms ) :

## Find n r o o t s o f the quasi−p e r i o d i c t r a n s c e n d e n t a l equa t ion .

# I n i t i a l i z a t i o n

r oo t s = np . z e r o s ( nterms )

margin = 1e−8

# Manually perform f i r s t roo t

l e f t , r i g h t = margin , 3 . 9/ (1 − ze ta )

r oo t s [ 0 ] = b i s e c t ( B n transcendenta l , l e f t , r i ght , maxiter =2000)
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# I t e r a t e the r e s t o f the r o o t s

for i in range (1 , nterms ) :

l e f t = roo t s [ i −1] + margin

r i g h t = roo t s [ i −1] + 3 .65/(1 − zeta )

r oo t s [ i ] = b i s e c t ( B n transcendenta l , l e f t , r i ght ,

maxiter =2000)

return r oo t s

lmda t = t r a n s c e n d e n t a l r o o t s ( nterms )

return lmda t

def P h i s o l i d ( eta , Q dot , melt ) :

## Generate i n i t i a l s o l i d temperature p r o f i l e .

i f melt == True :

return −(Q dot /4)* eta

else :

return 0

def t h e t a s o l i d s s ( eta , zeta , Q dot , Q dp ) :

## Generates steady−s t a t e s o l i d temperature p r o f i l e .

term1 = ( Q dot /4)* ( ze ta **2 − eta **2)

term2 = Q dot/2 − Q dp

term3 = np . l og ( eta / zeta )

return term1 + term2* term3

def f n t i l ( eta , lmda t ) :

## Generates the e i g e n f u n c t i o n f o r the s o l i d reg ion .

return j 0 ( lmda t* eta ) − ( j 1 ( lmda t )/ y1 ( lmda t ) )* y0 ( lmda t* eta )

def f n bar ( zeta , lmda t ) :

term1 = −j 1 ( lmda t* zeta )

term2 = ( j1 ( lmda t )/ y1 ( lmda t ) )
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term3 = j1 ( lmda t* ze ta )

return term1 + term2* term3

def B n ( zeta , Q dot , Q dp , lmda t , melt ) :

## Fourier c o e f f i c i e n t f o r the s o l i d reg ion .

# Numerator in t egr and .

def B n num int ( eta , zeta , Q dot , lmda t ) :

# Determine regime

i f ( Q dot /2) > Q dp :

melt = True

else :

melt = Fal se

# Set term

term1 = P h i s o l i d ( eta , Q dot , melt ) \

− t h e t a s o l i d s s ( eta , zeta , Q dot , Q dp)

term2 = f n t i l ( eta , lmda t )* eta

return term1* term2

# Denominator i n teg ran d

def B n den int ( eta , lmda t ) :

return f n t i l ( eta , lmda t )**2* eta

# I n t e g r a t e numerator and denominator s e p a r a t e l y and combine .

B n num = quad ( B n num int , ze ta+eps , 1−eps ,

args=(zeta , Q dot , lmda t ) , l i m i t =100) [0 ]

B n den = quad ( B n den int , ze ta+eps , 1−eps ,

args=(lmda t ) , l i m i t =100) [0 ]

B n = B n num/B n den

return B n

def t h e t a s o l i d ( tau , zeta , Q dot , Q dp , nterms ) :

## S o l i d temperature p r o f i l e f o r g iven tau and z e t a .

# I n i t i a l i z e output arrays .
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eta = np . l i n s p a c e ( ze ta+eps , 1−eps , 51)

theta = np . z e r o s l i k e ( eta )

# Set regime .

i f ( Q dot /2) > Q dp :

melt = True

else :

melt = Fal se

# I d e n t i f y e i g e n v a l u e s .

lmda t = lambdas so l id ( zeta , nterms )

# Sum terms

for n in range ( nterms ) :

B = B n ( zeta , Q dot , Q dp , lmda t [ n ] , melt )

theta += B*np . exp(− lmda t [ n ]**2* tau )* f n t i l ( eta , lmda t [ n ] )

# Add steady−s t a t e impact

theta += t h e t a s o l i d s s ( eta , zeta , Q dot , Q dp)

return eta , theta

def i n t e r f a c e s o l u t i o n ( t a u f i n a l , Q dot , Q dp , nterms ) :

## Generates tau−z e t a p a i r s f o r a g iven case .

# Determine regime and s e t t i n g s

”””

Note : S t a b i l i t y i s s u e s r e q u i r e s l i g h t l y d i f f e r e n t s o l v e r s e t t i n g s

between the me l t ing and s o l i d i f i c a t i o n case −− v a l u e s o f z e t a ˜ 1

are h i g h l y s t i f f , n e c e s s i t a t i n g an i m p l i c i t s o l v e r f o r v i a b l e time

s t e p s . This problem i s l e s s acute f o r me l t ing cases , and b e t t e r

accuracy i s ach ieved us ing the e x p l i c i t Runge−Kutta 45 s o l v e r .

”””

i f ( Q dot /2) > Q dp :
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melt = True

method = ’RK45 ’

zeta0 = eps

mdt = 2e−3

else :

melt = Fal se

method = ’Radau ’

zeta0 = 1 − eps

mdt = 2e−3

def dzeta dtau ( tau , zeta , Q dot , Q dp , nterms ) :

## I n t e r f a c e d i f f e r e n t i a l equa t ion

# i n i t i a l i z e v a l u e

dzdt = 0

# p r i n t i n g term i n c l u d e d f o r t e l e m e t r y during run

print ( ’ { : . 5 f } \ t { : . 5 f } ’ . format ( f loat ( tau ) , f loat ( ze ta ) ) )

# Generate e i g e n v a l u e s

lmda = lambdas l i qu id ( zeta , nterms )

lmda t = lambdas so l id ( zeta , nterms )

# Sum terms

for n in range ( nterms ) :

A = A n ( zeta , Q dot , lmda [ n ] , melt )

l i q u i d t e r m = A* lmda [ n ] \

*np . exp(−lmda [ n ]**2* tau )* j 1 ( lmda [ n ]* zeta )

B = B n ( zeta , Q dot , Q dp , lmda t [ n ] , melt )

s o l i d t e r m = B* lmda t [ n ]* np . exp(− lmda t [ n ]**2* tau ) \

* f n bar ( zeta , lmda t [ n ] )

dzdt += l i q u i d t e r m
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dzdt −= s o l i d t e r m

# Add steady−s t a t e impact

dzdt += ( Q dot/2 − Q dp)/ zeta

return dzdt

## Determine time range o f run .

t range = [ 0 , t a u f i n a l ]

tau = np . l i n s p a c e (0 , t a u f i n a l , 201)

## F u l l s o l u t i o n . Set d e n s e o u t p u t=True and view s o l n v a r i a b l e

# f o r a d d i t i o n a l and debug in format ion .

so ln = s o l v e i v p ( dzeta dtau , t range , [ zeta0 ] ,

method=method , t e v a l=tau ,

args=(Q dot , Q dp , nterms ) ,

dense output=False , max step = mdt)

zeta = so ln . y [ 0 , : ]

tau = tau [ : len ( ze ta ) ]

return tau , ze ta

def t h e t a f u l l ( tau , zeta , Q dot , Q dp , nterms ) :

## Generates combined temperature p r o f i l e s by c a l l i n g f u n c t i o n s .

eta = np . z e ro s (102)

theta = np . z e r o s l i k e ( eta )

eta [ : 5 1 ] , theta [ : 5 1 ] = t h e t a l i q u i d ( tau , zeta , Q dot , Q dp , nterms )

eta [ 5 1 : ] , theta [ 5 1 : ] = t h e t a s o l i d ( tau , zeta , Q dot , Q dp , nterms )

return eta , theta
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