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Abstract

One of the most enduring puzzles in evolutionary biology is how processes operating at the level

of populations (microevolution) scale up to large-scale patterns of diversity (macroevolution).

Recent advances in our ability to infer the historical pattern of evolutionary branching—the

phylogeny—formany groups of organisms have provided opportunities to gain new perspectives

on this question. In this dissertation I develop statisticalmethods, computationalmachinery, and

theoretical frameworks that will enable researchers to make more meaningful inferences about

the processes that have driven diversity through deep time using phylogenetic data.

In my opening chapter, I develop a theoretical foundation for how researchers can use mod-

els of trait evolution to test hypotheses related to the long-controversial theory of punctuated

equilibrium, which asserts that speciation causes rapid evolution against a backdrop of stasis. I

break the hypothesis down into four key elements and argue that combining these conceptually

distinct ideas under the single framework of punctuated equilibrium is distracting and confusing,

and more likely to hinder progress than to spur it.

Next, I present a suite of statistical so�ware, written in the R programming language, for

�tting evolutionary models to phylogenetic data. �is is a complete overhaul of the popular

geiger package designed to facilitate analyses of large and complex comparative datasets.

As an example of how phylogenetic models of trait evolution can provide complimentary

insights to population-level models, I investigate the evolution of sex chromosome-autosome

fusions. Using discrete character models and a recently compiled database of sexual systems, I

�nd that Y-autosome fusions occur at a much higher rate than X-, Z-, or W-autosome fusions in

�sh and squamate reptiles. �is result grounded a theoretical investigation into the evolutionary

forces driving sex chromosome fusions—the phylogenetic results allowed my collaborators and

I to exclude from consideration several existing theories for why fusions become �xed in popula-

tions. Speci�cally, we found that the phylogenetic results cannot be accounted for by either direct

or sexually antagonistic selection on their own. We argue that the observed patterns can be best

explained when chromosomal fusions occur more frequently in males, are slightly deleterious,

and are primarily �x by dri�.

In the �nal two chapters, I address two outstanding statistical problems that hinder the use

and interpretation of phylogenetic models of trait evolution. First, I develop a novel statistical
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framework for assessing the absolute �t, or adequacy, of phylogenetic models of trait evolution.

To date, researchers have focused almost exclusively on the relative explanatory power of al-

ternative models, rather than the ability of a model to provide a good explanation for data on

its own terms. I use my approach to evaluate the statistical performance of commonly used

trait models on 337 comparative datasets covering three key functional traits of angiosperms

(“�owering plants”). In general, the models I considered o�en provide poor statistical expla-

nations for the evolution of these traits. �is was true for many di�erent groups and at many

di�erent scales. Whether such statistical inadequacy will qualitatively alter inferences drawn

from comparative datasets will depend on the context. Regardless, assessing model adequacy

can provide interesting biological insights—how and why a model fails to describe variation in a

dataset gives us clues about what evolutionary processes may have driven trait evolution across

time.

Second, I develop a new technique that leverages taxonomic information to assess and over-

come sampling biases in trait datasets; such sampling biases are likely prevalent and have the

potential to confound both tests of macroevolutionary and macroecological hypothesis. As an

example of the utility of thismethod, I use it to provide the �rst estimate of the global distribution

of woody and herbaceous plants from a database of 39,313 records and �nd that the world is likely

much woodier than researchers thought.



v

Table of Contents

Authorization to Submit Dissertation . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction: Models, meanings, and macroevolution . . . . . . . . . . . . 1
1.1 Objectives and structure of this dissertation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of phylogenetic comparative methods . . . . . . . . . . . . . . . . . . . 2
1.3 Current challenges in comparative biology . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Paths forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Revisitingthe punctuatedequilibriumdebate in lightof emergingphylogenetic
data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Introduction: the resurgence of punctuated equilibrium . . . . . . . . . . . . . . 8
2.3 Punctuated equilibrium as a conglomerate of concepts . . . . . . . . . . . . . . . 10
2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Box 1: Modeling trait evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Box 2: An example of how PE can mislead inferences . . . . . . . . . . . . . . . . 23
2.7 Box 3: Modeling species selection and cladogenetic change on phylogenies . . . 25

3 Software for fitting evolutionary models to phylogenetic data . . . . . . . 27
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Y fuse? Using phylogenetic and population genetic models to understand sex
chromosome fusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Analysis of patterns of sex chromosome-autosome fusions in vertebrates . . . . 37
4.4 �eoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



vi

5 Assessing the adequacy of phylogenetic models of trait evolution . . . . . . 60
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 A general framework for assessing the adequacy of phylogenetic models . . . . . 63
5.4 �e adequacy of models for the evolution of plant functional traits . . . . . . . . 72
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Arbutus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Howmuchof theworld iswoody? Dealingwith sampling error in comparative
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

a Supplement to Chapter 4: Theoretical results . . . . . . . . . . . . . . . 137

b Supplement to Chapter 5: Bayesian results . . . . . . . . . . . . . . . . . 144



vii

List of Tables

Table 3.1 Major features of geiger v2.0 . . . . . . . . . . . . . . . . . . . 28

Table 4.1 Records of sex chromosome-autosome fusions in vertebrates . . . . . . . 38



viii

List of Figures

Figure 2.1 Trait data simulated under alternative models . . . . . . . . . . . . . 22
Figure 2.2 Correlations between evolutionary divergence and speciation rates . . . . 24

Figure 3.1 Setting the medusa threshold via simulation . . . . . . . . . . . . . 33

Figure 4.1 Schematic of sex chromosome fusions. . . . . . . . . . . . . . . . 36
Figure 4.2 Phylogenetic distribution of sex chromosome fusions in �sh . . . . . . . 40
Figure 4.3 Phylogenetic distribution of sex chromosome fusions in squamates . . . . 41
Figure 4.4 Fusion rate di�erence between XY and ZW systems . . . . . . . . . . 43
Figure 4.5 Fusion rate di�erence between XY and ZW systems (alternate model) . . . 44
Figure 4.6 Fusion residency time in squamates. . . . . . . . . . . . . . . . . 46
Figure 4.7 Comparison of Y-autosome and X-/Z-autosome fusion rates (�sh) . . . . 48
Figure 4.8 Comparison of Y-autosome and W-/Z-autosome fusion rates (squamates) . 49
Figure 4.9 Establishment rates of sex-autosome fusions under direct selection . . . . 52
Figure 4.10 Establishment rates of sex-autosome fusions under SA selection . . . . . 55

Figure 5.1 Schematic of framework for assessing model adequacy . . . . . . . . . 65
Figure 5.2 Seed mass evolution in Meliaceae and Fagaceae . . . . . . . . . . . . 77
Figure 5.3 Type-1 error rates for BM simulations . . . . . . . . . . . . . . . . 79
Figure 5.4 Type-1 error rates for OU simulations . . . . . . . . . . . . . . . . 80
Figure 5.5 Type-1 error rates for EB simulations . . . . . . . . . . . . . . . . 81
Figure 5.6 Relative support for models across angiosperm datasets (ML) . . . . . . 83
Figure 5.7 Distribution of p-values for test statistics (ML) . . . . . . . . . . . . 84
Figure 5.8 Model adequacy vs. clade size (ML). . . . . . . . . . . . . . . . . 86

Figure 6.1 Distribution of woodiness proportion among genera . . . . . . . . . . 99
Figure 6.2 Distribution of woodiness proportion among families . . . . . . . . . 100
Figure 6.3 Distribution of woodiness proportion among orders . . . . . . . . . . 101
Figure 6.4 Estimates of woodiness proportion using alternative sampling approaches . 105
Figure 6.5 Distribution of the fraction of woodiness among orders of vascular plants I . 106
Figure 6.6 Distribution of the fraction of woodiness among orders of vascular plants II . 107
Figure 6.7 �e e�ect of character coding on estimates . . . . . . . . . . . . . . 108
Figure 6.8 Distribution of survey responses . . . . . . . . . . . . . . . . . . 110
Figure 6.9 Survey results by familiarity and training . . . . . . . . . . . . . . 111
Figure 6.10 Relationship between genus size and proportion of woodiness . . . . . . 113

Figure b.1 Relative support for models across angiosperm datasets (Bayesian) . . . . 145
Figure b.2 Distribution of p-values for test statistics (Bayesian) . . . . . . . . . . 146
Figure b.3 Model adequacy vs. clade size (Bayesian) . . . . . . . . . . . . . . 148



ix

Acknowledgements

LukeHarmon has been a tremendousmentor, teacher, collaborator, and friend. He came to know

me better than I knew myself. He found a way to bring out the best in me and restrain the worst.

And he made science fun—there is no one else I would rather make mistakes with.

I thank my committee: Jack Sullivan, for supporting and challenging me in science and in

life; Scott Nuismer, for making sure I knew where I stood; Paul Joyce, for always making time

when I got stuck on a problem; and Arne Mooers, for introducing me to evolutionary biology

and for keeping me honest over the years.

David Tank was practically a second advisor to me. He took me under his wing and taught

me how to think and how to be a scientist. And somehow he was able to convince me that plants

are actually pretty damn awesome (I will never forget digging up fossils in Clarkia). I am also

grateful to Larry Forney, for taking the time to talk tome, and for callingme onmy bullshit when

I needed to be called on it.

Simon Uribe-Convers, Brice Sarver, Travis Hagey, and Tyler Hether were my brothers in

the trenches—we worked late together, argued endlessly about biology and everything else, and

kept each other sane during the ups and downs of grad school. I am extremely grateful for their

friendship.

�ere is an old and persistent (not to mention, pernicious) myth that working towards a

doctorate is, or at least ought to be, a lonely journey. My own experience could not be farther

from this; collaboration and camaraderie have been central to all aspects of my intellectual life.

A great deal of this work, and somuch of the thought behind it, has sprung frommy interactions

with other (and, in many cases, young) scientists. In particular, I would like to thank Richard

FitzJohn and Josef Uyeda. �ey challenged me to think harder and to never take the easy way

out. I have learned so much from both of them and enjoyed ever minute (or at least, most) of the

many that we spent together brainstorming ideas, writing papers, and hacking code. I also thank

Jon Eastman for getting o� his rocket ship to help me whenever I fell o� my tricycle. And David

Bapst has beenmy constant sounding board and sparring partner throughout my dissertation. It

is only because of him that I can converse with paleontologists without complete embarrassment.

I would also speci�cally like to thank some of my collaborators and mentors—Michael Alfaro,

Steve Arnold, Frank Burbrink, Will Cornwell, Bernie Crespi, Joe Felsenstein, David Green, Paul



x

Harnik, Mark Kirkpatrick, Craig Miller, Brian O’Meara, Sally Otto, Erica Bree Rosenblum, Carl

Simpson, Graham Slater, David Swo�ord, and Amy Zanne—whose intellectual and personality

generosity is deeply humbling.

It has been an incredible privilege, and a whole lot of fun, to do science in the Harmon/RoHa

lab. You guys are the best: I thank Joseph Brown, Daniel Caetano, Simone Des Roches, Kayla

Hardwick, Denim Jochimsen, Suzanne Joneson, Rafael Maia, Eliot Miller, Tom Poorten, James

Rosindell, and Jamie Voyles.

I loved being an IBESTian at the University of Idaho. I am thankful to all the people who

made it so fun, both in and out of the o�ce. In particular, I would like to thank Daniel Beck, Lu-

cius Caldwell, Matthieu Delcourt, Anahi Espindola, Michael France, Sam Hunter, Sarah Jacobs,

CJ Jenkins, Maribeth Latvis, Wesley Lo�ie-Eaton, Hannah Marx, Genevieve Metzger, Diego

Morales-Briones, Matt Settles, Matt Singer, Chloe Stenkamp-Strahm, and ET�ornquist. I also

want to give an extra shoutout to all themembers, past and present, of the Phylogenetics Reading

Group (PuRGe); I loved arguing with you all for the past �ve years. I thank all the IBEST sta� and

faculty, especially Lisha Abendroth and Eva Top, for without their boundless patience, I would

literally not have �nished my Ph.D.

I thank Roxana Hickey for all the things: for celebrating with me when things were going

well; for commiserating when things were not; for listening to me rant even when she didn’t care;

for being my friend; for su�ering me when I was insu�erable; and for always pushing me to be

better. Last, I would like to thank my family: my parents, Richard and Brenna Pennell, and my

siblings, Stephen, Alec, and Laura. I cannot even begin to articulate the support they have given

me over the years nor my gratitude for it. For once, I have no words.



xi

Dedication

To my grandparents

Betty and Joseph Pennell

Frieda and Earl Harder



1

chapter 1

Introduction: Models, meanings, and macroevolution 1

1.1 objectives and structure of this dissertation

�e primary goal of my dissertation is to improve the statistical and conceptual foundations that

underlie phylogenetic tests of macroevolutionary hypotheses. To address the statistical compo-

nent, I have: led the development of statistical so�ware for �tting models and analyzing data

(Chapter 3), which I used to study the macroevolution of sex chromosomes across vertebrates

(Chapter 4); created a novel framework for assessing the absolute �t, or adequacy, of models

of trait evolution (Chapter 5); and developed a new approach for evaluating and dealing with

sampling biases in comparative datasets (Chapter 6), a problem that is becoming increasingly

pertinent, if understudied, as researchers rely more on curated collections of data. Additionally,

I have been involved in a number of other projects during my Ph.D. (not included in this disser-

tation) in which I have examined the statistical properties of existing phylogenetic comparative

approaches (Pennell et al., 2012; Uyeda et al., 2015), developed new ones (Slater and Pennell, 2014;

Cornwell et al., 2014) and applied these to test empirical questions in angiosperms (Cornwell et al.,

2014; Tank et al., 2015), ascidians (Maliska et al., 2013), and whales (Slater and Pennell, 2014).

As mentioned above, I have coupled my work in statistical methods with more theoretical

work, in which I aimed to provide roadmaps for better interpreting the results of tests using

thesemethods (Rosenblum et al., 2012; Pennell andHarmon, 2013; Pennell et al., 2014b,c; Pennell,

2015). One of these projects, an investigation into tests of the theory of punctuated equilibrium

(Eldredge, 1971; Eldredge andGould, 1972) is included as a chapter in this dissertation (Chapter

2).

As an introduction to my dissertation, I brie�y overview the �eld of comparative biology (for

a more comprehensive discussion, see Pennell and Harmon, 2013) and point out what I believe is

the biggest challenge facing the �eld—that we o�en have a poor understanding of precisely what
1�is chapter was previously published in a modi�ed form as: Pennell M.W. 2015. Modern Phylogenetic

Comparative Methods and �eir Application in Evolutionary Biology: Concepts and Practice—Book Review.
Systematic Biology 64:161–163
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we aremeasuring and explaining when we use phylogenetic comparativemethods (PCMs)—and

highlight possible ways forward.

1.2 overview of phylogenetic comparative methods

Investigating similarities and di�erences across species (the “comparative method”) has been an

esssential conceptual tool in the study of adaptation since Darwin (1859). Interspeci�c compar-

isons are especially valuable when there is little or no variation in the trait of interest within

species; in these cases, complimentary approaches such as �eld experiments are of limited utility.

Even when there is variation within a species, the comparative approach allows biologists to

assess the generalities of patterns. PCMs for the study of adaptation arose out of the recognition

that shared evolutionary history can confound statistical comparisons (Harvey and Pagel, 1991).

As a result of the process of descent with modi�cations, closely related species share many traits

and trait combinations and therefore individual species cannot be considered independent obser-

vations. In the 1980s and early 1990s, a number of highly in�uential statistical approaches were

developed to incorporate phylogeny into interspeci�c comparisons (Ridley, 1983; Felsenstein,

1985; Grafen, 1989; Maddison, 1990; Harvey and Pagel, 1991; Lynch, 1991; Pagel, 1994).

While initially controversial (e.g., Westoby et al., 1995), PCMs have gained near universal

acceptance in the ensuing decades, such that today, it is near impossible to publish an interspeci�c

study without considering phylogeny. �is victory for phylogenetics is so decisive that some

researchers have expressed concern that the pendulum has swung too far toward phylogenetic

approaches in the study of evolutionary ecology (Losos, 2011). While PCMs are still routinely

used to test for adaptation, the �eld has evolved in subtle yet substantial ways: researchers rec-

ognized that the same models developed for comparative questions could also be used to test

macroevolutionary questions—for example, what is the pattern of trait change through deep time

and what processes drove these trends?—that were long the exclusive domain of paleobiology

(Hansen and Martins, 1996; Hansen, 1997; Schluter et al., 1997; Pagel, 1997; Mooers and Schluter,

1998; Pagel, 1999;Mooers et al., 1999). �e rate of development of novel PCMshas been incredible

and this pace has been matched by the ever-increasing availability of more reliable phylogenetic

trees along with large-scale e�orts to aggregate phenotypic data from across the Tree of Life.
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1.3 current challenges in comparative biology

Despite the incredible progress of phylogenetic comparative methods over the last few decades,

there remain some fundamental issues that are deeply unsettling: while we have sophisticated

machinery for �tting many di�erent types of models to comparative data, we o�en lack a clear

interpretation of what exactly they mean. Reading many papers in the �eld (including my own!),

I cannot help but recall a sentiment expressed by Houle et al. (2011) in their lucid review of mea-

surement theory and its applications in biology. �ey criticize statisticianswho advocate that data

transformations are justi�able whenever they result in distributions that meet the assumptions

of a particular analysis: “If that is statistics, we want no part of it, as science is about nature, not

numbers” [p. 18]. I argue that our ability to analyze phylogenetic comparative data has outpaced

our ability to understand it.

Consider for example, regression models of the form

Y = β0 + β1X + є.

In phylogenetic regression (Grafen, 1989; Lynch, 1991), it is usually assumed that the tree only

enters into the model in the error term є such that є ∼ N(0,V)whereV is the expected variance-

covariance matrix for the traits given an evolutionary model. In other words, the evolutionary

model is used to model the structure of the residuals and not the actual traits. Formulating the

model in such a way allows us to make use of well-established statistical theory from general-

ized least squares (GLS) and generalized linear mixed-e�ects (GLM) models (Lynch, 1991; Rohlf,

2001, 2006; Housworth et al., 2004; Had�eld and Nakagawa, 2010). Including the phylogenetic

structure in the error variance is no di�erent from including any other type of covariance. By

recognizing this equivalency, we can now �t phylogenetic regression models with a variety of

distributions for the response variable Y (Ives and Garland Jr., 2010; Had�eld and Nakagawa,

2010), incorporate measurement error (Ives et al., 2007; Hansen and Bartoszek, 2012), and take

advantage of a large number of other standard statistical tricks (see Garamszegi, 2014, for a recent

review)

�ere are a variety of di�erent models one can use to createV. �emost popular is to assume

that the residuals are distributed according to the expectations of a Brownian motion (BM)

model. Indeed, the original independent contrasts method (Felsenstein, 1985) produces identical
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results to a phylogenetic regression model when this assumption is made (Blomberg et al., 2012).

A number of the researchers have advocated that a λ tree transformation (Pagel, 1999; Freckleton

et al., 2002, 2011) is o�en more appropriate than simply assuming BM for constructing the error

variance termV. (�e λ transformation involvesmultiplying the o�-diagonals ofVby a estimated

parameter between 0 and 1.) �is is a purely phenomenological construct—by shrinking every

branch except those leading to the tips, it implies that there is something special about extant

taxa, which is clearly not the case. Nonetheless, researchers o�en use such models to claim that

one trait is adapted to the value of another. In a series of papers, Hansen and colleagues have

clearly articulated the problem with such inferences (Hansen and Orzack, 2005; Hansen et al.,

2008; Labra et al., 2009; Hansen and Bartoszek, 2012). E�ectively, standard regression models

assume adaptation to a new environment is instantaneous and that maladaption is phylogeneti-

cally structured; closely related species will have similar deviations from the optimal trait value

even if the optimum di�ers between them. From a biological perspective, this seems very odd.

Perhaps evenmore confusing is the use ofOrnstein-Uhlenbeck (OU)models to construct the

error variance term. OU is attractive for modeling the residual variance because, unlike the λ

transformation, it is a coherent stochastic process and is directly analagous to a population level

model from quantitative genetics—quadratic stabilizing selection on a �xed adaptive landscape

(Lande, 1976;Hansen andMartins, 1996). While the λ transformation is obviously just a statistical

construct, OU seems biologically motivated. Indeed, researchers commonly interpret the OU-

structured variance term as representing stabilizing selection or constraints. But these does not

get around Hansen’s criticisms. �ese models still assume phylogenetically structured malada-

pation and they do not allow researchers to make speci�c inference about stabilizing selection

or evolutionary constraints—it is completely unclear precisely what is being constrained or how

the residuals are under stabilizing selection. OU error structures may o�en �t data better than

BM error structures but it is likely that this is simply because OU can accomodate more variance

towards the tips of the phylogeny than a BM model can (including λ has a similar e�ect). �e

evolutionary argument here seems merely window dressing for a purely statistical argument.

�e arguments I have made here apply equally well to models without predictor variables—

where what we want to explain with comparative methods are the distribution of traits through

time without considering predictor variables. It is now a common exercise in both phylogenetic

comparative biology and paleobiology to compare alternative models of trait evolution and then
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to interpret the best-�tting model in terms of evolutionary processes (e.g., Mooers et al., 1999;

Hunt, 2007; Harmon et al., 2010; Hopkins and Lidgard, 2012; Burbrink et al., 2012; Hunt, 2012)

1.4 paths forward

How then are we to make sense of comparative analyses? In my view, there are three possible

frameworks with which to think about comparative biology. First, we can take the view that

what we are measuring are strictly patterns and that we are not necessarily making inferences

about speci�c evolutionary processes. �is is certainly a defensible position: the patterns may be

interesting in and of themselves and documenting commonalities and di�erences among clades

and through time may provide a broader picture of the history of life on earth. In practice, this

is what researchers are o�en actually doing, even if they are hesitant to admit this. And since

the models we used in comparative biology predict trait distributions that conform to common

probability distributions, there are undoubtedly a huge number of processes that could generate

the patterns we observe (Jaynes, 2003; Frank, 2009, 2014). A bene�t of openly adopting this

perspecitve is that we can consider a much broader suite of models that may provide a much

better �t to our data and predictive power than current models—if we are not interested in

making speci�c evolutionary inferences, then we need not be beholden to speci�c evolutionary

models. Such alternatives may include macroevolutionary di�usion processes (e.g., Clauset and

Erwin, 2008), models derived frommacroecological theories (Brown et al., 2004; Harte, 2011) or

making use of statistical learning approaches divorced from any process whatsoever.

�e second framework is the quantitative genetics view: the models we �t in comparative

biology should be taken as literally representingmicroevolutionary hypotheses. Many of the com-

monly used models can be directly interpreted in terms of population-level parameters (Hansen

andMartins, 1996; Pennell andHarmon, 2013). We can compare the estimatedmodel parameters

to within-population measures to test if macroevolutionary divergences are consistent with evo-

lution by dri�, stabilizng selection, etc. �is project is certainly interesting and worth pursuing.

But given the results of studies that have explicitly examined this connection (Lynch, 1990; Estes

and Arnold, 2007; Hohenlohe and Arnold, 2008; Harmon et al., 2010; Bolstad et al., 2014) using

rather simplemodels, it appears that translating the parameters estimated from comparative data

to the terms of quantitative genetics (e.g., if we assume that BM is strictly a model of dri� with
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�xed additive genetic variance G, the estimated rate parameter σ2 is equal to G divided by the

e�ective population size Ne ; Lande 1976) will o�en result in nonsensical numbers.

�e third perspective is to take seriously the idea that macroevolutionary models re�ect the

dynamics of adaptive landscapes through deep time (Arnold et al., 2001; Hansen, 2012; Pennell

et al., 2014b). Comparative biologists have a tendency to discuss many of these ideas in scare

quotes. �e optimum of OU models is referred to as “clade level optimum”. A model with decel-

erating rates of change depicts an “early burst”. I argue that a much richer and more meaningful

connection can potentially be made. �eoretical work over the last century has produced a beau-

tiful and fairly comprehesive understanding of how populationsmove across adaptive landscapes

and empricists have tested the theoretical predictions in a wide variety of systems and contexts.

In contrast, we have only a preliminary understanding of how the landscapes themselves evolve

on longer time scales. �is is a fundamentally important question in evolutionary biology and

one which I believe, phylogenetic comparative biology and paleobiology can help address.

�ere is a lot of work to be done before we will really able to get at these types of questions.

Once we recognize that some of the classic concepts in evolutionary biology—such as adaptive

zones, adaptive radiations and key innovations—are actually hypotheses about the structure and

dynamics of adaptive landscapes (Hansen, 2012), we can start developing statistical models that

actually capture their essential properties. Current models are, at best, loosely tied to these ideas

(hence the scare quotes). Additionally, there are a number of exisiting mathematical frameworks

that make predictions about these higher order processes and trait evolution over longer time

periods (see for example, Holt et al., 2003; Gavrilets, 2004; Doebeli, 2011). But there is currently

no way to estimate the relevant parameters of these models from comparative data.

1.5 concluding remarks

Both the development of new PCMs and the interest in using them has grown tremendously over

the last decade. Nevertheless, I feel that we, as a �eld, are somewhat stuck. First, the same handful

of statistical models are employed over and over again with most of the progress representing

relatively minor variations on similar themes. (�at is not the say that such improvements are

not challenging or worthwhile; indeed a portion of my dissertation is aimed in precisely this

direction.) Second, we are o�enmuch too vague onwhat exactly wewant to explainwith PCMs. I
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argue that these twoproblems are deeply intertwined. �e standard collection ofmodels available

today, namely those based on BM and OU, have had such staying power in part because they

can be useful for detecting patterns, can be interpreted in light of evolutionary genetics and

can loosely be tied to questions about adaptive landscapes. Requiring this sort of conceptual

�exibility is also a limitation. More focused, question-speci�c approaches to modeling that are

directly tied to the inferences we actually want to make will likely get us much further than

sticking to models that are more general but address no questions particularly well.
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chapter 2

Revisiting the punctuated equilibrium debate in light of
emerging phylogenetic data and methods2

2.1 summary

�e long-controversial theory of punctuated equlibrium (PE) asserts that speciation causes rapid

evolution against a backdrop of stasis. PE is currently undergoing a resurgence driven by new

developments in statistical methods. However, we argue that PE is actually a tangle of four

unnecessarily con�ated questions: i) is evolution gradualistic or pulsed?; ii) does trait evolution

occur mainly at speciation or within a lineage?; iii) are changes at speciation adaptive or neutral?;

and iv) how important is species selection in shaping patterns of diversity? We discuss progress

towards answering these four questions but argue that combining these conceptually distinct

ideas under the single framework of PE is distracting and confusing, and more likely to hinder

progress than to spur it.

2.2 introduction: the resurgence of punctuated
equilibrium

�e following three quotations were all drawn from abstracts of recent papers purporting to use

statistical models to empirically evaluate punctuated equilibrium (PE):

A long-standing debate in evolutionary biology concerns whether species diverge
gradually through time or by punctuational episodes at the time of speciation. We
found that approximately 22% of substitutional changes at the DNA level can be
attributed to punctuational evolution, and the remainder accumulates from back-
ground gradual divergence. (Pagel et al., 2006, p. 119)

�is controversy, widely known as the ‘punctuated equilibrium’ debate, remained
unresolved, largely owing to the di�culty of distinguishing biological species from
fossil remains. We analyzed body masses of 2143 existing mammal species on a

2Previously published as: Pennell M.W., Harmon L.J., and Uyeda J.C. 2014. Is there room for punctuated
equilibrium in macroevolution? Trends in Ecology & Evolution 29:23–32
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phylogeny comprising 4510 (i.e., nearly all) extant species to estimate rates of gradual
(anagenetic) and speciational (cladogenetic) evolution. (Mattila and Bokma, 2008,
p. 2195)

Under such processes, observations at the tips of a phylogenetic tree have amultivari-
ate Gaussian distribution, which may lead to suboptimal model speci�cation under
certain evolutionary conditions, as supposed in models of punctuated equilibrium
or adaptive radiation. (Landis et al., 2013, p. 193)

�ese three papers are representative of a substantial number of other recent high-pro�le studies

that have discussed their research in the context of PE (e.g., Bokma, 2002, 2008; Webster et al.,

2003; Hunt, 2007, 2008, 2012; Hunt et al., 2008; Atkinson et al., 2008; Ingram, 2011; Uyeda et al.,

2011; Rabosky, 2012; Rabosky et al., 2013; Simpson, 2013; Baca et al., 2013; Bartoszek, 2014). �is is

somewhat remarkable given that arguably no idea has had such a turbulent history inmodern evo-

lutionary thought as punctuated equilibrium. In the early 1970s, Eldredge and Gould (Eldredge,

1971; Eldredge and Gould, 1972; Gould and Eldredge, 1977) proposed that the predominant pat-

tern of evolution throughout deep time is that of stasis “punctuated” by brief intervals of rapid

evolution, which o�en occurred during speciation events. �is was originally conceived as a way

of bridging the gap between prevailing ideas about speciation, i.e., Mayr’s allopatricmodel (1942),

and observations from the fossil record (Sepkoski, 2012). However, PE has expanded and shi�ed

in de�nition to become amuchmore far-reaching hypothesis tomany researchers. Consequently,

it has been viewed as both a a rather innocuous statement about the general patterns found in

the fossil record and as an a�ront to the central tenets of evolutionary theory (Stanley, 1975, 1979;

Gould, 1980; Charlesworth et al., 1982; Levinton, 2001). For some researchers, the stakes of the

debate over the prevalence of PE could not have been higher:

Ifmost evolutionary changes occurs during speciation events, and if speciation events
are largely random, natural selection, long viewed as the process guiding evolution-
ary change, cannot play a signi�cant role in determining the overall course of evolu-
tion. Macroevolution is decoupled from microevolution... (Stanley, 1975, p. 648)

In the wake of such claims, much of the intellectual history of PE was been characterized by

�erce, and o�en vitriolic, theoretical debates—exhaustively catalogued in (Levinton, 2001; Gould,

2002)—and the theory remains divisive (for more on the history of the idea, see Sepkoski, 2012).
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�e�eld of macroevolution has recently witnessed a resurgence of interest in PE as paleobiol-

ogists and, increasingly, comparative biologists armed with molecular phylogenies, have applied

sophisticated statistical models to quantitatively test the major hypotheses of PE. In this review,

we ask whether these new statistical advances have “rescued” PE from intellectual extinction. We

answer this question in the negative. �e challenges inherent in elucidating macroevolutionary

processes and patterns from paleontological and comparative data are only exacerbated by the

muddled historical legacy of PE. Although a number of studies have indeed discussed their

�ndings in light of PE, they have actually addressed a wide variety of conceptual issues; the

studies fromwhichwe have quoted above exemplify this—each one asks a fundamentally distinct

question.

What then, exactly, de�nes PE? �e central de�nitions and concepts of PE have shi�ed sub-

stantially over time, including the views of the theory’s chief advocates (for analysis, see Mayr,

1982; Ruse, 1989; Sepkoski, 2012). We argue that the key to disentangling this Gouldian knot,

lies not in attempting to parse the literature in search of the true “essence” of PE, but rather

in recognizing that the myriad concepts o�en associated with the theory can be conceptually

dissociated and evaluated independently. We believe that dissociating the di�erent components

of PE will lead to a more productive discussion of these ideas and facilitate progress in some of

the most fundamental questions in macroevolution. In this essay, we identify four key questions

that have been lumped under the topic of PE, discuss how their association with each other has

led to confusion, and comment on recent methodological developments, using a variety of types

of data, that may provide novel insights into large-scale patterns of diversity.

2.3 punctuated equilibrium as a conglomerate of concepts

In our view, the theory of PE, and the extensive discussion surrounding it, con�ates four separate

primary research questions: i) what is the relative importance of gradualistic versus pulsed evo-

lution?; ii) what is the role of speciational events (cladogenesis) vesus within lineage evolution

(anagensis) in generating trait divergence?; iii) when change is cladogenetic, are these changes

adaptive or driven by neutral processes?; and iv) how important is higher level selection (species

selection) in shaping patterns of diversity?
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2.3.1 Gradualistic versus pulsed evolution

In principle, it is quite feasible to distinguish gradualistic versus pulsed evolution using either

phylogenetic comparative or paleontological data. Constant-rate gradualism is typically mod-

eled as a random walk or Brownian motion process (BM; see box 1) in both phylogenetic and

paleobiological studies. Several recent studies have examinedwhether fossil time-series conform

better to predictions from constant-rate BM, phenotypic stasis, or directional evolution, which

each predict di�erent distributions of trait values through time and can be distinguished using

model selection techniques (Hunt, 2012). �ese studies have foundmixed support for eachmode

of evolution in di�erent lineages and traits (Hunt, 2007; Hunt et al., 2008; Hunt, 2008; Grey et al.,

2008;Hopkins andLidgard, 2012;Hunt, 2012). An exceptional demonstration of pulsed evolution

in the fossil recordwas examined byHunt et al. (2008), who found support for a rapid pulse of evo-

lution in sticklebacks as they colonized a novel adaptive peak. Similar model-�tting approaches

have been used to demonstrate that in particular fossil time-series shi�s in themode of evolution

(i.e., directional evolution, stasis, or BM) are separated by phenotypic bursts (Hunt, 2008). �is

pulsed pattern of evolution is supported by large collections of micro- and macroevolutionary

data (Estes and Arnold, 2007; Uyeda et al., 2011). Studies of fossil time-series o�en include a

number of caveats that may complicate inference of evolutionary modes. �ese include unequal

sampling probabilities and uncertain stratigraphic position, as well as issues relating to range

shi�s, time-averaging, and phenotypic plasticity (Patzkowsky and Holland, 2012). A particularly

promising, albeit data-intensive, method developed by Hannisdal (2007) incorporates some of

these additional sources of uncertainty in a Bayesian framework.

While fossil time-series provide direct observations of phenotypes over time, they are lim-

ited by the di�culty in con�dently assembling sequences of ancestor-descendant relationships.

Phylogenetic comparative methods provide a complementary means to study departures from

constant-rate gradualism; these can be applied to both extant and extinct data, if the fossil data

can be placed in a phylogenetic context (Pennell and Harmon, 2013). Several methods allow

the detection of rate shi�s across clades by allowing the BM rate parameter σ2 to di�er across

branches of the phylogeny (e.g., O’Meara et al., 2006; Eastman et al., 2011; Slater et al., 2012b).

However, thesemethodsmodel sustained shi�s in evolutionary rates, rather than pulsed patterns

suggested by PE. Pure-burst models, in which all change accumulates in pulses, can also be �t
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to phylogenies and more closely align with PE (Hansen and Martins, 1996; Khaitovich et al.,

2005; Uyeda et al., 2011). Landis et al. (2013) modeled both gradual and punctuational patterns

of evolution using jump-di�usion models, in which both jumps and gradual evolution come

from a single, long-tailed distribution (see also, Eastman et al., 2013b). In addition to these

methods, discrete shi�s in adaptive optima separated by long periods of stabilizing selection

have been extensively implemented in in phylogenetic comparative methods by using Ornstein-

Uhlenbeck (OU) models (Felsenstein, 1988; Hansen, 1997; Butler and King, 2004). OU models

are attractive alternatives to BM that can incorporate stasis, stabilizing selection and adaptive

hypotheses (Pennell and Harmon, 2013, see box 1 for further details).

Advances in quantitative model-�tting of evolutionary processes have allowed us to explore

much wider range of evolutionary hypotheses and processes than simple BM (Pennell and Har-

mon, 2013), including pulsed evolutionary patterns. However, to what extent does the framework

of punctuated equilibrium contribute to interpretation of the results of these models? Note

that none of the models described in this section can distinguish between cladogenetic or an-

agenetic change (see next section). Furthermore, PE is tied to a very speci�c pattern of evo-

lution and a speci�c temporal frame: stasis over the lifespan of a species—typically millions

of years—followed by geologically brief bursts of phenotypic evolution occurring at speciation

(Eldredge and Gould, 1972; Gould and Eldredge, 1977; Gould, 2002). �erefore, even robust

support for a pattern of pulsed evolution, represented by shi�s in trait values along branches

that are not accounted for by gradual evolution, may be incompatible with PE if the pulses

occur too infrequently for conventional PE theory, which predicts pulses at all, or nearly all,

speciation events. In addition, exactly as paleontologists have long recognized that repeated

burst-stasis episodes can appear gradualistic if viewed at too coarse a scale, gradualistic evolution

with variable rates can appear pulse-like at the same coarse scale. A pulsed pattern detected

from phylogenies, which typically have much longer timescales and coarser sampling than a

fossil time-series, may not re�ect phenotypic bursts between species. Instead, model-�ts may

re�ect “jumps” between higher-level niche space or adaptive zones, within which whole clades

or groups of species may cluster (Simpson, 1944; Hansen, 1997, 2012; Eastman et al., 2013b). �e

observation that groups of species cluster around di�erent phenotypic optima says nothing about

whether individual lineages exhibit a pattern of stasis and phenotypic bursts of evolution over the

lifespan of individual species. Tying patternsmeasured at phylogenetic scales to species-level and



13

not clade-level change is fraught with di�culty. However, we can still address other interesting

macroevolutionary questions such as whether evolution is characterized by pulses, how o�en

they occur and what ecological factors may be associated with them (Eastman et al., 2013b).

2.3.2 Anagenetic versus cladogenetic change

Although speciation is undoubtedly associatedwith genetic and trait divergence (Nosil, 2012, and

references therein), its relative importance compared to evolutionary change within a lineage

is currently poorly understood. Several studies have attempted to evaluate the contribution of

cladogenetic change to trait evolution (Wagner and Erwin, 1995; Jackson and Cheetham, 1999;

Aze et al., 2011; Strotz and Allen, 2013) using paleontological data. �is is evaluated by determin-

ing whether the stratigraphic ranges of descendant species overlap with their progenitor species,

indicative of coexistence and cladogenesis. However, robustly distinguishing between cladoge-

netic and anagenetic changes using fossil data crucially depends on several assumptions, such

as the accurate reconstruction of ancestor-descendant relationships, the equivalency of species

concepts applied to fossil and extant taxa, the robust estimation of species’ temporal ranges

and enough sampling to eliminate the possibility of gradual evolution (Jackson and Cheetham,

1999). Disputes over the validity of these assumptions have been well played out in the punctu-

ated equilibrium literature (e.g., the Turkana Basin molluscs, Williamson, 1981; Fryer et al., 1983;

Van Bocxlaer et al., 2008). Approaches have been developed to account for potential biases, such

as estimating ancestor-descendant relationships (Marshall, 1995; Foote, 1996) and stratigraphic

ranges (Marshall, 1990, 1994, 1997; Wagner, 2000), accounting for sampling, but di�culties re-

main. As a recent example, Strotz andAllen (2013) found a predominance of cladogenetic change

among fossil Foraminifera, using assumed ancestor-descendant relationships assembled from

stratigraphic and phenotypic data (Aze et al., 2011). We view such claims with considerable

skepticism because it is impossible to detect cryptic speciation—which is increasingly being

inferred in extant groups (Fujita et al., 2012)—in the fossil record, and therefore distinguish

decisively between anagenetic and cladogenetic change.

Another tactic to assess the relative contributions of anagenetic and cladogenetic change has

been to look for correlations between speciation rates (or species richness, as a proxy for speci-

ation rates) and rates of evolution using phylogenetic comparative data. �is has been done by

�tting regression models between inferred lineage-speci�c rates of evolution and diversi�cation.
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Several studies have demonstrated such a correlation using a variety of characters, including

genetic changes (Webster et al., 2003; Pagel et al., 2006; Venditti and Pagel, 2010), morphological

traits (Ricklefs, 2004; Adams et al., 2009; Rabosky and Adams, 2012; Rabosky et al., 2013) and

linguistic characters (Atkinson et al., 2008). However, demonstrating a correlation between

speciation rates and trait evolution does not demonstrate that the actual speciation events them-

selves are associated with evolutionary change. For example, higher rates of speciation and trait

evolution might both be driven by a common cause (Rabosky, 2012, see below, box 2).

Amore promising avenue for partitioning out the in�uence of cladogenetic versus anagenetic

change is to use statistical models, which explicitly parameterize both of these components and

simultaneously estimate them using maximum likelihood or Bayesian inference. Early forms of

such models assumed that all speciation events were captured by the reconstructed phylogeny.

�ese methods partition the variance in trait values between the speciation events and the back-

ground evolution occurring within a lineage (Pagel, 1997; Mooers et al., 1999; Bokma, 2002;

Wagner, 2000; Wagner and Marcot, 2010). More sophisticated approaches attempt to simulta-

neously model the diversi�cation process together with trait evolution (Bokma, 2002; Mattila

and Bokma, 2008; Bokma, 2008, 2010; Goldberg and Igić, 2012; Magnuson-Ford and Otto, 2012;

Simpson, 2013, see box 3 for details) to account for the fact that extinction has erased many of

the speciation events in the inferred phylogeny (Nee et al., 1992, 1994; Nee, 2006; Ricklefs, 2007).

Such model-based approaches are not without caveats. Importantly, violations of simplifying

assumptions may strongly a�ect inferences, and methods to evaluate model adequacy are sorely

needed. Furthermore, unaccountedmeasurement errormay be erroneously folded into estimates

of cladogenetic change. In fact, we should expect samples of recently diverged species to di�er

substantially regardless of whether evolution is punctuational or gradual—even a�er accounting

for simple forms of sampling error—due to within-lineage processes such as local adaptation

(Uyeda et al., 2011; Hansen, 2012). �ese processes may or may not be important for macroevo-

lutionary patterns (Futuyma, 1987, 2010), and are di�cult to model using current comparative

methods (Stone et al., 2011).

Even when speciation is inferred to be associated with divergence, a broader conceptual

issue remains: what are the causal mechanisms that could generate such an association against

a general backdrop of apparent stasis (Benton and Pearson, 2001; Eldredge et al., 2005)? Spe-

ciation has long been thought of as a major driver of phenotypic change, both in the context
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of PE and in evolutionary biology more broadly (Sætre, 2013). In their original conception of

PE, Eldredge and Gould (Eldredge, 1971; Eldredge and Gould, 1972) viewed the pattern posited

by PE as a consequence of Mayr’s (1942) model of allopatric speciation; as such, speciation is

considered a mechanism that interrupts stasis (Futuyma, 1987, 2010). However, the causes of

stasis in macroevolutionary data are still unclear (Hansen and Houle, 2004; Estes and Arnold,

2007; Walsh and Blows, 2009; Futuyma, 2010). In particular, the direction of causality cannot

be elucidated from the statistical methods we have described. Alternative explanations remain

such that trait evolution o�en generates reproductively isolated lineages. Regardless, it is impor-

tant to recognize that a central tenet of PE theory—that speciation causally leads to phenotypic

evolution—remains impossible to evaluate from either phylogenetic comparative or paleontolog-

ical data.

2.3.3 Adaptive versus neutral evolution at speciation

One of the most contentious ideas surrounding PE is that changes associated with speciation

are random or neutral; this is what led Gould, Stanley and others to claim that macro- and

microevolution were e�ectively “decoupled”. �ere are actually two speci�c versions of this ques-

tion and these, similarly to many of the ideas we discuss throughout the paper, have o�en been

con�ated. �e �rst version is that the changes that occur are random with respect to the di-

rection of a macroevolutionary trend. �is is referred to as “Wright’s rule” in the paleobiology

literature (Gould and Eldredge, 1977) and has been evaluated by testing whether trait di�erences

between ancestors and descendants are directionally biased. More precisely, researchers have

tested whether the mean of the distribution of changes in signi�cantly di�erent than zero, the

null expectation undermostmodels of trait evolution (Wagner, 1996, 2001). For example, if there

is a trend of increasing body size throughout the history of a clade (Cope’s rule), then Wright’s

rule requires that daughter species, at speciation, are on average no bigger (or smaller) than their

ancestor. ToGould and Eldredge (1977), as well as to other researchers (for example, Stanley, 1975,

1979), Wright’s rule was a key justi�cation for including species selection in a PE framework; if

change only occurs at speciation and that change is random with respect to macroevolutionary

trends, those trends can only be explained by species selection. However, if we recognize that the

nature of change at speciation is independent of species selection (see below), then establishing

Wright’s rule has no bearing on the strength of higher level selection (Simpson, 2013). At the same
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time, biased transmissionmay still be involved inmacroevolutionary trends (McShea, 1994, 1998;

Wagner, 1996).

�e second, broader version of the claim is that change at speciation is driven by neutral

processes rather than adaptive evolution (Stanley, 1979; Gould, 1980, 2002). �is is much more

complex to address. �ere have been several attempts to investigate the hypothesis that past

trait changes were adaptive using phylogenetic comparative or paleobiological data (see for ex-

ample, Rose and Lauder, 1996). For example, phylogenetic methods can attempt to associate

trait changes with changes in the selective regimes experienced by those lineages (Baum and

Larson, 1991; Butler and King, 2004; Beaulieu et al., 2012), or studies of functional morphology

can provide speci�c hypotheses about relationships between trait states and the environment,

which can then be tested statistically (Wainwright, 2007). However, these necessarily rely on

either detailed information about form, function, and the environment (e.g., Vermeij, 1987, and

references therein) or researcher’s a priori hypotheses regarding what was adaptive at some pe-

riod in the past. We know from studies of wild populations that the direction of selection is o�en

temporally and spatially variable (Grant and Grant, 2002; Siepielski et al., 2009, 2011) and it is

therefore extremely tenuous to draw conclusions regarding the adaptive value of changes during

speciation from comparative or paleontological data alone.

�ere has been a great deal of study investigating the patterns of evolution throughout the

course of speciation using natural populations, experimental systems and mathematical models

(Schluter, 2000; Coyne and Orr, 2004; Gavrilets, 2004; Rundle and Nosil, 2005; Doebeli, 2011;

Nosil, 2012, and references within). In particular, many recent studies have explored the dis-

tinction between ecological speciation, where speciation is driven by divergent natural selection

between lineages, and other forms of speciation (e.g., Bateson-Dobzhansky-Muller incompati-

bilities, speciation driven by sexual selection, etc.; reviewed in Nosil, 2012). As a result of these

studies, we have learned a great deal about the mechanisms involved in speciation and are begin-

ning to understand the relative importance of adaptive and neutral processes during speciation

across a broad suite of taxa, although it is much too early to draw any sweeping conclusions. We

strongly suggest that this avenue of research is far more appropriate for addressing this aspect of

PE than analyzing either phylogenetic comparative or paleontological data alone.
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2.3.4 Species selection as a macroevolutionary process

�ough long controversial in its own right (FitzJohn, 2012b), the idea that natural selection can

act on species-level characteristics is becoming more widely appreciated (Coyne and Orr, 2004;

Jablonski, 2008; Rabosky and McCune, 2010; FitzJohn, 2012b). Here we follow the lead of other

authors (Williams, 1992; Coyne and Orr, 2004; Rabosky and McCune, 2010) and de�ne species

selection as “repeatable e�ects of that trait on the rate of diversi�cation of species possessing it”

(Coyne and Orr, 2004, p. 444), regardless of whether or not the trait is an emergent property of

the lineage or the aggregate of individual-level traits. We therefore ignore the (in our view, un-

necessary) distinction between “species selection” and “species sorting” (sensu Vrba and Gould,

1986). For an alternative perspective on this issue, see Jablonski’s excellent review (2008) of the

topic.

�e idea that the tempo and mode of evolutionary change is inexorably linked to selection

at the lineage level is an old and persistent one and is, in the minds of at least some researchers,

part and parcel of a broader macroevolutionary theory (Stanley, 1975, 1979; Gould and Eldredge,

1977; Gould, 1980; Charlesworth et al., 1982; Dennett, 1995; Levinton, 2001; Gould, 2002). �e

reasoning behind this is that, in some researcher’s conception of the process, selection can only

act on “evolutionary individuals” (Hull, 1980) and species can only operate as such if they have a

de�nite beginning and end (Gould and Eldredge, 1977; Gould, 2002)—a pattern that is produced

if evolutionary change only occurs at cladogenesis. Although this may seem intuitive, such an

association is logically and mathematically unnecessary. Species selection does not require any

particular mode of evolutionary change and it certainly does not require the majority of change

to be concentrated at speciational events (Van Valen, 1975; Bookstein et al., 1978; Slatkin, 1981;

Arnold and Fristrup, 1982; Rice, 1995; McShea, 2004; Rice, 2004; Okasha, 2006; Jablonski, 2008;

Simpson, 2013). �e con�ation of species selection with punctuated change has been cited by

some authors to be a cause of antagonism towards species selection (Turner, 2010; FitzJohn,

2012b).

Species selection has been recently reviewed in depth (Jablonski, 2008; Rabosky andMcCune,

2010) and we will not attempt to be comprehensive here. Instead, we focus on recent method-

ological developments that have improved our ability to detect species selection. Conventionally,

inference regarding the in�uence of a trait on diversi�cation rate frommolecular phylogenies has
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been carried out by comparing the diversities or diversi�cation rate between independent pairs

of sister taxa (Mitter et al., 1988; Sargent, 2004; Vamosi and Vamosi, 2004; Rabosky andMcCune,

2010). However, this is problematic for several reasons including statistical power (Slowinski

and Guyer, 1989, 1993; Vamosi and Vamosi, 2005) and that asymmetries in character transition

rates can confound asymmetries in diversi�cation rate, and vise versa (Maddison, 2006). A

major innovation to simultaneously deal with this issue and investigate the correlation between

traits and speciation and extinction was made by Maddison et al. (2007), with their Binary State

Speciation and Extinction, or bisse, model (see box 3). �is has been extended beyond binary

traits to investigate the e�ect of multiple discrete traits (musse; FitzJohn, 2012a), quantitative

traits (quasse; FitzJohn, 2010) and geographic range (geosse; Goldberg et al., 2011) on lineage

diversi�cation.

Although these are certainly very promising statistical approaches, they rely on some large

sample sizes and potentially dubious assumptions, such as that diversi�cation can be modeled as

constant-rate branching process (i.e., a “birth-death” model; Kendall, 1948), that rates of evo-

lution are constant across the phylogeny, and that the directionality and strength of species

selection is consistent. �ere is substantial evidence that suggests that diversi�cation rates are

not constant through time or across clades (Rabosky et al., 2007; McPeek, 2008; Phillimore and

Price, 2008; Alfaro et al., 2009; Rabosky, 2012; Rabosky et al., 2013), perhaps owing to diversity-

dependent diversi�cation (Sepkoski, 1984; Alroy, 2008; Rabosky, 2009), a focus of much model-

ing work in both paleobiology (Roy, 1996; Eble, 2000; Sepkoski et al., 2000) and phylogenetic

comparative methods (Rabosky and Lovette, 2008; Etienne et al., 2012; Etienne and Haegeman,

2012). Similarly, rates of trait evolution are likely o�en quite heterogeneous (Eastman et al., 2011;

Beaulieu et al., 2013) and the vector of species selection has been inferred to be variable in some

groups (Jablonski, 1986; Simpson, 2010; Harnik et al., 2012). Some of these assumptions can

potentially be relaxed (Rabosky and Glor, 2010) but in general, the robustness of these methods

to severe violations awaits further investigation.

In paleontological research, there has been increasing development of multivariate methods

to partition out the e�ect of various correlated traits on speciation and or extinction, which is key

to elucidating causal mechanisms. �is has been accomplished using statistical techniques such

as general linearmodels (i.e., predict lineages’ diversi�cation rates or durations in the fossil record

from lineage-speci�c traits; Jablonski and Hunt, 2006; Harnik, 2011; Harnik et al., 2012). Alter-
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natively researchers have used the Price Equation (Price, 1972; Rice, 2004; Okasha, 2006; Frank,

2012) to examine the covariance between traits and diversi�cation rates. �e Price equation was

�rst proposed for the purposes of studying macroevolution by Arnold and Fristrup (Arnold and

Fristrup, 1982), and this has recently been expanded upon by Simpson and colleagues (Simpson

and Harnik, 2009; Simpson, 2010). Adopting the Price equation also allows for the possibility of

a uni�ed approach to the study of species selection across data-types that could potentially be

applied to both phylogenetic comparative data and fossil time-series (Jablonski, 2008; Simpson,

2013).

2.4 concluding remarks

We have described quantitative approaches to addressing four fundamental macroevolutionary

questions that have long been con�atedwith each other in the literature on PE. Confusion among

these disparate and independent questions has led many researchers to consider PE as being

robustly veri�ed, whereas others believe the theory bankrupt of empirical support. Either view

may be justi�ed depending on which component an individual researcher considers the essence

of PE theory. If macroevolutionary researchers dissociate these concepts, the fact that some may

be more di�cult to evaluate or are less theoretically sound should not impede progress on other

questions.

Although we argue throughout that the questions that make up PE can be addressed inde-

pendently, this does not preclude synthesis. Instead, multiple processes could be important (and

o�en, probably are) to understanding the accumulation of diversity and disparity through deep

time. For example, Goldberg et al. (2010) used the bisse model to demonstrate that species

selection was important for maintaining self-incompatibility in the plant family Solanaceae (the

“nightshade” family). In a subsequent paper, Goldberg and Igić (2012), re-analyzed the same

data but used a model that allowed for trait evolution within a lineage, species selection, and

(additionally) trait evolution occurring at cladogenesis (see box 3 for details). �ey found that

all three processes appear to be important in this group. Nonetheless, these are independent

processes that may or may not be linked mechanistically, in this group or others.

Instead of bringing new insight into PE—and thereby rescuing the term from its historical

problems—novel developments have demonstrated that the terminology associated with PE can
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be problematic. We believe that emerging statistical models and datasets are best suited for

testing independent components of PE theory. Evaluation of these methods in the context of PE

will only lead to confusion. Although PE undoubtedly served as a catalyst in the development of

concepts andmethods discussed above, we think it is time tomove on, and encourage researchers

in macroevolution to look forward rather than look back.

Paleontologically oriented readers may view our discussion of PE as being too harsh on the-

oretical constructs from their disciplines—and, admittedly, all of us were raised in the traditions

of population biology and evolutionary genetics. However, our reading of much of the literature

using phylogenetic comparative methods, we have found a recurrent theme of comparative biol-

ogists adopting concepts from the paleobiological literature (including, but not limited to PE),

but doing so rather blithely. Although it is widely recognized that incorporating fossil data into

comparative studies will dramatically improve the inferences we can draw from them (Quental

and Marshall, 2010; Slater et al., 2012a; Pennell and Harmon, 2013; Fritz et al., 2013), in our

opinion, concordant attention has not been paid to the conceptual foundations which underlie

the studies. Comparative biologists have much to gain by engaging more seriously with the argu-

ments and ideas from the rich literature in paleontology on rates of evolution, macroevolutionary

trends, species selection, adaptive radiations, and so forth. A truly synthetic macroevolutionary

research programme will involve the melding of data and theory from di�erent disciplines, and

a thoughtful examination of precisely what the fundamental questions are and how we can go

about answering them.

2.5 box 1: modeling trait evolution

�e same basic set of stochastic models are o�en �t to both fossil time-series and phylogenetic

comparative methods. Phyletic gradualism is formulated statistically as constant-rate BM. �is

model describes a continuous-time random-walk in which the amount of phenotypic change in

the population trait mean (z̄) over time-interval t is:

∆z̄ = σdW (2.1)
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where dW is a non-directional di�usion process with mean 0 and variance t. Because change

over each time interval is independent of previous time intervals (i.e., the process is Marko-

vian), the amount of variance among replicate lineages increases linearly through time such that

Var(z̄) = σ2t (Figure 2.1). �e covariance between observations is proportional to the shared

evolutionary history of samples, which for comparative methods is provided by the phylogeny.

Tomodel discontinuous processes, a shi� location is estimated either on a fossil timeseries or

a phylogeny. For pulsed models, a shi� corresponds to a burst in phenotypic evolution, against

a background of a single, constant-rate BM parameter (σ2). Multiple bursts can be modeled, for

example, as a compound Poisson point process, in which bursts occur stochastically at exponen-

tially distributed time-intervals at rate λt andmagnitudes drawn from a normal distributionwith

parameters (µburst, σ 2burst) (see Figure 2.1). However, several comparative methods do not model

bursts, but instead �t di�erent parameters or models on either side of the shi�, corresponding

to either an increased or decreased rate of evolution (O’Meara et al., 2006; Hunt, 2008; Eastman

et al., 2011). �us, for k shi�s, there would be k + 1 BM rate parameters, (σ 21 , . . . , σ 2k+1). �ese

models can also be combined to jointly model both bursts and rate shi�s (Eastman et al., 2013b).

BM models predict that divergence can increase without bounds, which is unrealistic under

adaptive scenarios of trait evolution or undermodels of stasis, where traits are expected to evolve

around adaptive optima. A simple extension of a BM model is an OU model of trait evolution.

�e per unit time change in mean phenotype under this model is:

∆z̄ = −α(z̄ − θ) + σdW (2.2)

where σdW is identical to a BM process and contributes stochastically to divergence, θ is the

optimum trait value, and α is a “pull” parameter that governs how strongly the population mean

is pulled toward θ. �us, divergence is a balance between the stochastic di�usion parameter (σ 2)

and the deterministic pull parameter (α) toward the optimum value (θ) (Figure 2.1). As with BM

models, discontinuous OUmodels can allow for shi�s in rate parameters (α, σ 2), which has been

implemented in a phylogenetic context (Beaulieu et al., 2012). Rapid shi�s in optima are more

naturally included in OUmodels via shi�s in the θ parameter, and have been used extensively in

phylogenetic comparative methods (Hansen, 1997; Butler and King, 2004; Beaulieu et al., 2012).

Population trait means approach a new optimum at a rate proportional to the strength of α.
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Figure 2.1: Simulated datasets for di�erentmodels of trait evolution from fossil time-series (A, B)
and phylogenetic comparative data (C, D) under Brownian motion models (A, C) and Ornstein-
Uhlenbeck models (B, D). Green lines are simulated as constant rate BM and OU processes,
with circles indicating sampled data. Blue lines are discontinuous processes in which a burst
of evolution occurs in the form of a single displacement (for BM models) or a walk to a new
optimum (θ2) for OUmodels. However, all other parameters are kept constant. By contrast, red
lines are models in which rate parameters (σ 2 and α for BM and OU models, respectively) shi�
to higher values and remain constant therea�er, but are not burst-like (no shi� in the expected
value of the process).
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Models with alternative patterns of selective regimes can then be compared via model selection

techniques to evaluate adaptive hypotheses (Butler and King, 2004). OU models have proven

to be very useful for inferring various processes using both phylogenetic comparative (Hansen

et al., 2008; Mahler et al., 2013) and paleontological (Hunt, 2008; Reitan et al., 2012) data.

2.6 box 2: an example of how pe can mislead inferences

From a historical perspective, it is undoubtedly accurate that numerous comparative methods

owe their genesis to the framework of PE. However, the temptation to frame these methods

as tests of PE is, in our opinion, unwarranted. For example, Webster et al. (2003) developed

amethod to correlate the total genetic distance between the root and the tip of the tree (herea�er,

the path length) with the number of nodes along that path (Figure 2.2). A signi�cant correlation

between path length and the number of nodes rejects constant-rate gradualism in molecular

evolution, purportedly in favor of a PEmodel. �is correlation has been repeatedly demonstrated

in a variety of datasets in traits ranging frommolecular sequences to human languages (Webster

et al. 2003; Pagel et al. 2006; Atkinson et al. 2008; Lanfear et al. 2010; but see Goldie et al. 2011).

However, towhat extent is there evidence in these cases for PE?We argue: very little. Eldredge

and Gould (Eldredge and Gould, 1972) hypothesized that allopatric speciation causes pulsed

phenotypic divergence. However, the direction of causality can just as easily be reversed. Genetic

divergence is expected to promote speciation under many models of speciation (Nosil, 2012).

Alternatively, divergence and speciationmay result indirectly from causal linkswith a third factor,

such as shorter generation times, higher fecundity, or increased genetic variation, to name a few

(Goldie et al., 2011). Furthermore, trait evolution need not be pulsed for a positive correlation to

exist. �is e�ect was demonstrated by Rabosky (Rabosky, 2012), who showed that correlations

between path length and speciation are expected whenever trait evolutionary rates are correlated

with rates of speciation, even under purely gradual models.

Finally, trait change may not be correlated with speciation at all, but instead be correlated

with extinction rates. �is may occur, for example, if higher evolvability decreases extinction

risk (Lanfear et al., 2010). It is certainly a worthwhile avenue of research to establish a correlation

between diversi�cation and trait evolutionary rates, but the available tests demonstrate nothing

about whether or not trait evolution is pulsed, whether trait change accumulates anagenetically
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Figure 2.2: Illustration of a method for correlating evolutionary divergence with speciation.
Branch lengths for both phylogenies are in units of evolutionary change. �e total path length
from the root of the tree to the tips is plotted against the total number of nodes along that path. A
positive correlation (blue) is indicative of a relationship between the number of speciation events
and evolutionary change, while under constant-rate gradualism no such relationship exists (red).
Adapted from (Pagel et al., 2006).
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or cladogenetically or the direction of causality. Taking the “o�-the-shelf ” interpretation of these

macroevolutionary patterns in the form of PE only obfuscates understanding, and worse, could

lead to recapitulating four decades worth of o�en unproductive and contentious debates. Instead,

we argue that we should focus on inferences that may be e�ectively tested using our available

statistical tools. �ese tools should be integrated with more narrowly-de�ned theories that are

free of the unwanted assumptions of PE.

2.7 box 3: modeling species selection and cladogenetic
change on phylogenies

In a ground-breaking paper, Maddison and colleagues (2007) developed a statistical framework

that has opened up investigation into two major components of PE: the in�uence of traits on

diversi�cation (“species selection”, sensu Coyne and Orr, 2004; Rabosky andMcCune, 2010) and

cladogenetic character change. �e premise of the approach is that instead of specifying a full

likelihood of the model, one need only to describe the probabilities of all possible events that

could occur in a very short time interval, ∆t, solve a di�erential equation and then use numerical

integration to evaluate the likelihood of the model given the phylogeny and trait data at the

tips (see Maddison et al. 2007, for full details). �e initial model considered by Maddison et al.

(2007) was the bisse model in which di�erent states for a single character resulted in di�erent

diversi�cation rates.

Consider that lineage diversi�cation can bemodeled by a birth-death process (Kendall, 1948),

in which there is a constant rate of speciation λ and extinction µ across the clade. Lineages

with a trait in state 0 diversify at rates λ0 and µ0 and lineages in state 1 diversify at rates λ1 and

µ1. Transitions (anagenetic evolution) between states 0 → 1 occur at rate q01 and transitions

from 1 → 0 occur at rate q10. �e probabilities of all possible events that can occur during ∆t

can be described as a set of di�erential equations. One can then use the integration machinery,

as described in Maddison et al. (2007), to simultaneously estimate all parameters using either

maximum likelihood or Bayesian inference to test for a statistical di�erence between λ0 and λ1

(or between µ0 and µ1) in order to infer the strength of species selection.

�e bisse model was extended by Magnuson-Ford and Otto (2012) (bisse-ness) to allow

for the possibility of character transitions at speciation (cladogenetic change). (An identical
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model was independently derived by Goldberg and Igić 2012, and related approaches were also

developed by Bokma 2002, 2008, 2010.)

In addition to the 6 parameters of the bisse model (λ0, λ1, µ0, µ1, q01, q10), their model in-

cludes the probabilities of a change occuring at a speciation event (p0c and p1c, for the two states,

respectively) as well as the probabilities that the character changes are asymmetrical, where the

change only occurs in one of the two daughter lineages, p0a and p0b (o�en referred to as “budding

cladogenesis” in the paleobiological literature). �is allows one to simultaneously evaluate the

importance of species selection as well as the relative importance of cladogenetic versus anage-

netic change. �is model also highlights the general message of our paper; the questions can be

evaluated independently of each other if parameter sets are constrained:
λ0 = λ1, µ0 = µ1 Estimate cladogenetic and anagenetic rates only

q01, q10 = 0 Estimate species selection with only cladogenetic change

p0c , p1c , p0a , p1a = 0 Estimate species selection with only anagenetic change

thus making it an excellent statistical framework, though certainly not the only one, for

evaluating the questions associated with PE.
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chapter 3

Software for fitting evolutionary models to phylogenetic
data3

3.1 summary

Phylogenetic comparative methods are essential for addressing evolutionary hypotheses with

interspeci�c data. �e scale and scope of such data has increased dramatically in the last few

years. Many existing approaches are either computationally infeasible or inappropriate for data

of this size. To address both of these problems, we present geiger v2.0, a complete overhaul of

the popular R package geiger (Harmon et al., 2008). We have re-implemented existingmethods

with more e�cient algorithms and have developed several new approaches for accomodating

heterogeneous models and data types.

3.2 introduction

In the past few decades, phylogenetic trees have become an key component of evolutionary

research. �is development has been fueled by the increased availability of robust time-calibrated

phylogenies for many groups, in addition to an expanding number of statistical techniques for

inferring patterns and processes from comparative data (reviewed in Pennell andHarmon, 2013).

Among themanyRpackages developed for phylogenetic and comparative data, geiger (Harmon

et al., 2008) has been a primary utility for making macroevolutionary inferences from phyloge-

netic trees.

However, in the six years since the initial release of geiger, the data available for comparative

biology have changed substantially. For some groups, we now have phylogenies and correspond-

ing trait datawith thousands, and even tens of thousands, of species (e.g., Jetz et al., 2012; Rabosky,

2012; Pyron and Burbrink, 2014; Cornwell et al., 2014; Zanne et al., 2014a). geiger v2.0 is a

complete overhaul of the previous release (Harmon et al., 2008), designed to scale up compar-
3Previously published as: Pennell M.W., Eastman J.M., Slater G.J., Brown J.W., Uyeda J.C., FitzJohn R.G., Alfaro

M.E., and Harmon L.J. 2014. geiger v2.0: an expanded suite of methods for �tting macroevolutionary models to
phylogenetic trees. Bioinformatics 15:2216–2218.
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Function Description Citations
fitContinuous Fit continuous trait models with

ML
Felsenstein (1973);
Hansen (1997); Pagel
(1997, 1999); Blomberg
et al. (2003); Hunt
(2006); Harmon et al.
(2010); FitzJohn (2012a)

fitDiscrete Fit discrete trait models with ML Pagel (1994); Lewis
(2001); FitzJohn et al.
(2009)

rjmcmc.bm Fit multi-rate models to continu-
ous traits

Eastman et al. (2011)

rjmcmc.bm Fit jump di�usion models to con-
tinuous traits

Eastman et al. (2013b)

mecca Fit continuous models to unre-
solved clades with ABC

Slater et al. (2012b)

fitContinuousMCMC Fit simple models of continuous
trait evolution with MCMC and
incorporate fossil data

Slater et al. (2012a)

pp.mcmc Posterior predictive simulations
to assess model adequacy

Slater and Pennell
(2014)

medusa Estimate shi�s in diversi�cation
rates

Alfaro et al. (2009)

congruify.phylo Time-scale large phylogenies Eastman et al. (2013a)

Table 3.1: Major functions of geiger v2.0 with description and citations

ative methods to large data sets. To do so, we have taken two complementary tacks. �e �rst

is to improve algorithms and implementations to increase computational e�ciency of existing

methods. �e second is to expand the suite of statistical approaches to allow for heterogeneity in

both models and data types across the phylogeny.

In this chapter, we brie�y describe the methods now in geiger, with a particular focus on

novel implementations and algorithms. Most of these methods have been previously published

elsewhere in some form and we refer readers to the relevant publications for full explanations.

For an overview of the main features of the package, see Table 3.1.
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3.3 methods

3.3.1 Fitting simple models of character evolution with maximum likelihood

Fitting and comparing models of trait evolution can provide insight into many macroevolution-

ary questions (Pennell and Harmon, 2013). �e two “workhorse” functions in geiger for �tting

models of trait evolution using maximum likelihood, fitContinuous and fitDiscrete, have

both been completely re-implemented. �e previous version of fitContinuous calculated the

likelihood of a set of continuous characters (e.g., body size) having evolved under a model using

a variance-covariance (vcv) matrix approach. �is involves inverting the vcv, which is extremely

computationally intensive, making themethod infeasible for large trees (Had�eld andNakagawa,

2010; FitzJohn, 2012a; Freckleton, 2012; Ho and Ané, 2014). FitzJohn (2012a) demonstrated that

using a “pruning”-based algorithm (Felsenstein, 1973) allows for much more e�cient likelihood

calculations. �is algorithm is used the diversitree package (FitzJohn, 2012a). (For related

algorithms, see Freckleton 2012, Ho and Ané 2014). �e approach has now been extended to all

themodels in fitContinuous. In addition to improving the e�ciency of the algorithm, we have

improved numerical optimization procedures and implemented a novel method to simultaneu-

ously estimate model parameters and an additional term to account for measurement error.

For discrete character data—for example, the presence or absence of fur—the most com-

monly used model is the Mk model (Pagel, 1994; Lewis, 2001). In this model, there are n states

1, 2, ..., n and the goal is to estimate rates of transition among these, where the rate of transition

from state i to state j ≠ i is qi j. Considering just one branch in a phylogeny, let D⃗ be the vector

of probabilities of the data given we are in state i, that is, the ith element of D is the probability

of the data descended from this point in the tree, given that we are in state i; see Maddison et al.

(2007) and FitzJohn (2012a) for notation.

In most R-based implementations of Mk, such as ape (Paradis et al., 2004) and previous

versions of geiger (Harmon et al., 2008), to move from the tip to the base of a branch, we

multiply D⃗ by P(t), the transition probability matrix with o�-diagonal elements that describe

the probability of moving from state i to state j over time t and diagonal elements that describe

the probability of not changing from state i. To compute P(t), we take the transition rate matrix

Q composed of q parameters above and compute P(t) = exp(Qt) where exp is the matrix

exponential (Sidje, 1998).
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For geiger v2.0 we have sped up these calculations by using an alternative algorithm. As the

number of states gets very large, it is simpler to compute exp(Qt)D⃗ directly, rather than in two

steps (Sidje, 1998). �is can be done by solving the system of di�erential equations

dD⃗

dt
= QD⃗ (3.1)

subject to the initial condtions at the branch tips.

For small state spaces (a few states to a few tens of states) there will be no speed di�erences

between these two approaches. However, for very large state spaces (hundreds of states) this

approachwill bemuch faster than computing exp(Qt)directly. Importantly, computing exp(Qt)

grows faster than linearly in the number of states, while the approach here should grow approxi-

mately linearly.

3.3.2 Bayesian methods for �tting models of character evolution

Amajor addition to geiger is the implementation of several Bayesianmethods for �ttingmodels

of trait evolution to comparative data. �ese include the auteur approach of Eastman et al.

(2011), which uses reversible jumpMarkov chain Monte Carlo machinery (Green, 1995) to move

across multi-rate models of various complexity. �e implementation of this method in geiger

v2.0 improves upon the original by allowing model partitions to be constrained a priori and

alternative models to be compared (Eastman et al., 2013b). Additionally, geiger now includes: a

method for �ttingmodels to phylogenies including unresolved clades usingApproximate Bayesian

Computation (mecca; Slater et al., 2012b); a method for including fossil information as priors

on node states (Slater et al., 2012a); and a posterior predictive simulation approach for assessing

the adequacy of common models of trait evolution (Slater and Pennell, 2014). �ese types of

approaches, which allow for greater complexity both in models and data, will be essential to

making robust evolutionary inferences from large comparative datasets.

3.3.3 Inferring shi�s in the rate of lineage diversi�cation

Alfaro et al. (2009) developed an approach, medusa, to detect shi�s in diversi�cation rates from

molecular phylogenies using a stepwise-AIC algorithm. A single-rate birth-death model is �t to

the entire tree, then the tree is partitioned into two rate classes, breaking the tree at all possible
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nodes. �e partition which improves the �t of themodel is then �xed and the process is repeated,

breaking the tree into three partitions, and so on, until a stopping criterion is reached. medusa

can be applied to both fully bifurcating and unresolved trees.

For this release of geiger, the medusa algorithm has been improved in a number of ways.

It has been re-coded so that it is now orders of magnitude faster and scales well to large trees;

this version of medusa has already been applied to a phylogeny of all 9,993 extant bird species

(Jetz et al., 2012). We have also developed tools for summarizing medusa analyses across a

distribution of trees, such as from a Bayesian posterior or from non-parametric bootstrapping,

so that uncertainty in both topology and branch lengths can be accomodated.

�emost signi�cant improvement for this version of medusa is in themodel selection proce-

dure. As stated above, the medusa algorithm involves comparing the �t of diversi�cationmodels

of varying dimensions (number of parameters). To select an appropriatemodel, we useAkaike In-

formation Criterion (AIC; Akaike, 1974), together with the small-sample bias-correction (AICc;

Burnham and Anderson, 2004b):

AICci = −2 log(Li) +
2kin

n − ki − 1
(3.2)

where Li is the maximized joint likelihood of model i with ki estimable (free) parameters,

and n data points. Here, k is the number of diversi�cation parameters (net diversi�cation rates,

ri = λi − µi , and extinction fractions, єi = µi/λi) plus the number of inferred rate shi�s. It is

unclear whether the shi� locations are indeed ‘free’ parameters of the model as they are not all

estimated simultaneously; each additional shi� that is introduced reduces the number of possible

locations in the next iteration of the algorithm. �is is a complex issue and we do not have a

strong statistical argument for including them as parameters or not; as such, we have elected to

be conservative and penalize adding them as we would any other parameter. For medusa, the

sample size n is taken to be the total number of “observed” nodes in a tree (internal + pendant).

However, because medusa considers all possible nested piecewise diversi�cation models, an

additional concern is that of multiple testing: as trees grow larger, it becomes increasingly likely

that spurious stochastic rate shi�s are inferred when no real shi�s exist. Indeed, simulations

show that the original version of medusa has a high rate of false positives for large phylogenetic

trees (more than approximately 50 unresolved tips). We therefore determined an an acceptance
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threshold (AICct) through simulation (Figure 3.1). 10,000 single-rate birth-death trees were

generated for each of a number of resulting extant taxa N = {10, 20, 50, 100, 200, 400, 500,

750, 1000, 1500, 2000, 2500} using the R package treesim (Stadler, 2011). For each simulation

we randomly drew diversi�cation parameters where λ ∼ U(0, 1] and µ ∼ U[0, λ). Each tree was

analyzed inmedusa, and the di�erence (∆AICc) inAICc values between the (true) 0-shi�model

and best (incorrect) 1-shi� model was logged. We then �t a x-shi�ed power function

AICct = a(N − b)c + x (3.3)

to the 95th percentile ∆AICc values for each tree size (Figure 3.1). �e best-�tting function

had a = -35.94, b = 6.74, c = -0.10, and x = 27.52. If partition=NA (the default argument in

the medusa function), the AICct is automatically calculated for the speci�ed tree from this best-

�tting function. For trees of 20 or fewer taxa, AICct is set to 0.

3.4 concluding remarks

In this note we provide a broad overview of the methods now available in geiger. We have not

discussed some methods implemented in geiger (e.g., ‘Congrui�cation’ for time-scaling large

trees; Eastman et al., 2013a) and many of the nuances of the methods described here have been

le� out. We refer readers to associated publications and the package documentation for more

information.

It is an exciting time for macroevolutionary research. We now have access to data sets of

unparalleled size and a wide variety of new statistical approaches with which to analyze them.

We hope that the so�ware presented here will help researchers address some fundamental and

long-standing questions in macroevolution.
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Figure 3.1: �e 95th percentile values for the di�erence in AICc scores (∆AICc) between the
(incorrect) 1-shi� model and the (true) 0-shi� model plotted against simulated tree size. We �t a
x-shi�ed power function to these points to estimate a AICct with a Type-1 error rate of 0.05 for
a given tree with N tips.
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chapter 4

Y fuse? Using phylogenetic and population genetic models to
understand sex chromosome fusions 4

4.1 summary

�e evolution of chromosome number plays an important role in divergent adaptation and spe-

ciation. Chromosomal fusion is a commonmechanism of karyotypic evolution, but there is little

understanding of the evolutionary forces that have driven chromosomal fusions. Because sex

chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic sys-

tems) di�er in their selective, mutational, and demographic environments, those di�erences pro-

vide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We

estimate the rate at which fusions between sex chromosomes and autosomes establish across the

phylogenies of both �shes and squamate reptiles. Both the incidence among extant species and

the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome,

or W-autosome fusions. Using population genetic models, we show that this pattern cannot be

reconciled with many standard explanations for the spread of fusions. In particular, direct se-

lection acting on fusions or sexually antagonistic selection cannot, on their own, account for the

predominance of Y fusions. We identify three plausible explanations for the excess of Y-autosome

fusions: (i) fusions are deleterious, and the mutation rate is male-biased or the reproductive

sex ratio is female-biased, (ii) fusions capture loci under sexually antagonistic selection, and the

mutation rate ismale-biased or the reproductive sex ratio is female-biased, and (iii) meiotic drive

acts against fusions in females. �ese results may shed light on the processes that drive structural

changes throughout the genome.

4.2 introduction

�e number of chromosomes is one of the most fundamental features of a eukaryotic genome.

Chromosome number o�en varies within species or between closely related species, and such
4In press as: Pennell M.W., Kirkpatrick M., Otto S.P., Vamosi J.C., Piechel C.L., Valenzuela N., and Kitano J. Y

fuse? Sex chromosome fusions in �shes and reptiles. PLoS Genetics.
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variation can contribute to divergent adaptation and speciation (White, 1973; King, 1993; Pérez-

Ortín et al., 2002; Chang et al., 2013; Hou et al., 2014). Although genetic dri�, selection for re-

duced recombination, andmeiotic drive are hypothesized to �x chromosomal fusions (Nachman

and Searle, 1995; Guerrero and Kirkpatrick, 2014), we have an incomplete understanding of the

evolutionary forces that allow fusions and �ssions to become established.

Sex chromosomes o�er a unique opportunity to dissect these forces. �e X and Y chromo-

somes of male-heterogametic species (as inmammals) and the Z andW chromosomes of female-

heterogametic species (as in birds) di�er in many aspects of their evolutionary environments,

particularly with respect to hemizygosity (i.e., XX and ZZ individuals are common, but not YY

and WW). While Y and W chromosomes are o�en thought to be evolutionarily similar, they

di�er in the amount of time spent in males and females: Y chromosomes spend 100% of their

evolutionary history in males, while W chromosomes spend none. X and Z chromosomes also

di�er: X chromosomes spend 1/3 of their evolutionary history in males, while Z chromosomes

spend 2/3 of their history in males. Consequently, the four types of sex chromosomes vary in

how selection acts on them, in their e�ective population sizes, in their mutation rates, and in the

relative importance of meiotic drive (Ellegren, 2011; Bachtrog et al., 2011; Beukeboom and Perrin,

2014). All of these factors could play a role in the evolution of chromosomal rearrangements, and

so di�erences in rates of rearrangement among sex chromosomes o�er clues towhat evolutionary

conditions favor changes to genome structure.

Structurally, sex chromosomes are the most rapidly evolving parts of the genome in many

groups of animals (White, 1973; Bull, 1983; Ezaz et al., 2006; Beukeboom and Perrin, 2014) In

some taxa, such as �shes and squamate reptiles, closely related species (and even populations

within a species) di�er in how sex is determined (Ezaz et al., 2006; Bachtrog et al., 2014). Fur-

ther, a large number of fusions between sex chromosomes and autosomes have been discovered

(White, 1973; �e Tree of Sex Consortium, 2014). �us there are many phylogenetically indepen-

dent events, providing the opportunity to test whether fusions involving the four di�erent types

of sex chromosomes are equally likely to occur and/or establish within a species.

A fusion between a sex chromosome and an autosome can usually be detected because it

creates an oddnumber of chromosomes in one sex (Figure 4.1; Ohno, 1967;White, 1973). WithXY

sex determination, a Y-autosome fusion creates an X1X2Y system, with the unfused homologue

segregating as a neo-X chromosome. Likewise, X-autosome fusions generate XY1Y2 systems, Z-
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Figure 4.1: Sex chromosome-autosome fusions create multiple sex chromosome systems. (A) In
XY systems, X-autosome and Y-autosome fusions make XY1Y2 and X1X2Y systems, respectively.
(B) In ZW systems, Z-autosome and W-autosome fusions make ZW1W2 and Z1Z2W systems,
respectively.

autosome fusions generate ZW1W2 systems, andW-autosome fusions generate Z1Z2W systems.

�ese neo-sex chromosome systems can o�en be identi�ed by light microscopy, without molec-

ular cloning or linkage mapping. �is has enabled cytogenetic studies to identify many species

with sex chromosome-autosome fusions (White, 1973; Ezaz et al., 2009; Kitano and Peichel, 2012;

Yoshida and Kitano, 2012; Maddison and Leduc-Robert, 2013). �ese data have yet to be used to

estimate rates of di�erent types of sex-autosome fusions.

�ree main evolutionary forces have been thought to be important to the establishment

of fusions. �e �rst is direct selection. While chromosome rearrangements are o�en consid-

ered deleterious (King, 1993; Gardner et al., 2012), chromosomal translocations may alter the

expression of genes near the breakpoint (Ohno, 1967; Dobigny et al., 2004), which may some-

times be bene�cial (Pérez-Ortín et al., 2002; Chang et al., 2013). A second mechanism that

has been proposed to establish fusions is sexually antagonistic selection at an autosomal locus

(Charlesworth et al., 1982). A fusion with a sex chromosome can cause an allele that is bene�cial

in one sex to spend more than half of its evolutionary life in that sex. Meiotic drive is a third

force. During female meiosis in animals, one of the products of meiosis goes into the egg, while

the others are discarded in the polar bodies. In some species, female meiotic drive preferentially
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transmits fused chromosomes to eggs, while unfused chromosomes go into polar bodies (Pardo-

Manuel de Villena and Sapienza, 2001a,b). �is drive favors X-autosome fusions because they

experience female meiosis in two of every three generations. In other species, female meiotic

drive preferentially transmits fused chromosomes, which should select against X-autosome fu-

sions (Yoshida and Kitano, 2012). While these evolutionary forces are known to a�ect the spread

of sex chromosome-autosome fusions, previouswork has not examined the relative rates atwhich

fusions with di�erent types of sex chromosomes establish within a population.

We begin this study by analyzing a large new data set that includes information on the sex

determination system and karyotypes across the tree of life (�e Tree of Sex Consortium, 2014).

We focus on �shes and squamate reptiles because these taxa includemany independent origins of

XY and ZW systems (Ezaz et al., 2009; Kitano and Peichel, 2012), allowing us to assess di�erences

in the rates of fusions. We �nd that Y-autosome fusions �x at a much higher rate than any of the

other three types of sex chromosome-autosome fusions. �is then motivates us to develop an

integrated body of analytic models that predict the relative �xation rates for the di�erent types

of fusions. �e models incorporate a large number of potentially important factors: deleterious

and bene�cial e�ects of fusions, sexually antagonistic selection, female meiotic drive, genetic

dri�, sex-biased mutation rates, and biased sex ratios. We �nd that several of the data cannot be

explained by some of themost frequently-discussed hypotheses. �ere are, however, several com-

binations of forces that are able account for the observed patterns of sex chromosomes fusions,

as we highlight.

4.3 analysis of patterns of sex chromosome-autosome
fusions in vertebrates

We compiled lists of species with multiple sex chromosome systems (X1X2Y, XY1Y2, ZW1W2,

and Z1Z2W systems) from the Tree of Sex database (�e Tree of Sex Consortium, 2014). Al-

thoughX1X2Y systems (or ZW1W2 systems) can also arise from species withXO (or ZO) systems

through a reciprocal translocation between an X (or a Z) and an autosome (White, 1973; Kitano

and Peichel, 2012), XO or ZO systems are rare in vertebrates (�e Tree of Sex Consortium, 2014).

In addition, although �ssion of sex chromosomes can also create multiple sex chromosome sys-

tems (White, 1973; Kitano andPeichel, 2012), such �ssions are also rare in vertebrates (Ohno, 1967;



38

Taxa Y-A
(X1X2Y)

X-A
(XY1Y2)

W-A
(Z1Z2W)

Z-A
(ZW1W2)

XY
systems

ZW
systems

Fish 42 3 0 2 109 38
Amphibians 1 0 0 0 29 16
Reptiles 40 0 2 4 120 240
Birds - - 2 4 0 192
Mammals 18 24 - - 467 0

Table 4.1: Observed number of species with multiple sex chromosome systems in vertebrates.
Only X1X2Y, XY1Y2, Z1Z2W, and ZW1W2 systems are counted here.

Kitano and Peichel, 2012; Yoshida andKitano, 2012). �erefore, we considered thatmostmultiple

sex chromosome systems are derived from sex chromosome-autosome fusions in vertebrates. We

address two questions with our empirical analyses. First, do Y-A (W-A) fusions occur at di�erent

rates than X-A (Z-A) fusions? Second, are there di�erences in rates of fusion between male and

female heterogametic lineages? For both questions, we �rst simply tabulated the numbers in

the database and computed Fisher’s exact test. �is ignores phylogenetic non-independence but

allowed us to use all of the available data.

Examining the raw counts (Table 4.1), two interesting patterns emerge. Herea�er, we refer to

the fusion between a Y chromosome and an autosome as Y-A fusion, and similarily for other sex

chromosomes. First, there aremore species withY-A fusions (X1X2Y karyotype, 101 species) than

with X-A fusions (XY1Y2 karyotype, 27 species). �e pattern is particularly strong in both �shes

and squamate reptiles, while the numbers are more nearly equal in mammals (Table 4.1). Such

counts, however, do not account for the phylogenetic relatedness among many of the species.

Second, sex chromosomes in XY lineages are more o�en fused than those in ZW lineages (Table

1). In �shes, 41.3% (45/109) of XY species have fused sex chromosomes, whereas only 5.3% (2/38)

of ZW species do (Fisher’s exact test p < 0.001). In reptiles, 33% (40/120) of XY species have

fusions, whereas only 2.5% of species (6/240) of ZW species do (Fisher’s exact test p < 0.001).

To gain a better estimate of the rates at which fusions establish with di�erent chromosomes,

we �t phylogenetic models to the fusion data. We �rst matched sex chromosome systems from

the �sh dataset to a recent time-calibrated phylogeny of teleosts (Rabosky et al., 2013), containing

7811 species (we note that a small number of species were removed from the published phylogeny

due to errors discovered a�er publication; M. Alfaro, personal communication). We matched

the data of sex chromosome systems from squamates to the squamate phylogeny (Pyron et al.,
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2013; Pyron and Burbrink, 2014) using genetic data from 4161 species. In order to maximize

overlap between the trait data and the species, we used an approximate matching algorithm for

unmatched species: 1) retain all species that occur in both the tree and the dataset; 2) replace an

unmatched species in the tree with a randomly selected unmatched species in the dataset from

the same genus as long as this did not result inmore than two representatives from the genus (this

assumes monophyly of genera but avoids determining node order for nodes not in the original

trees). We then pruned down the phylogeny down to those tips with data assignments.�is

resulted in phylogenetic comparative datasets containing 163 species of �sh (Figure 4.2) and 261

squamate (Figure 4.3) species.

We conducted two separate types of phylogenetic analyses on both groups. First, we ex-

amined di�erences between XY and ZW systems; here, we treat X-autosome and Y-autosome

fusions as equivalent (and likewise, Z-autosome and W-autosome fusions). Second, we investi-

gated autosomal fusion rates for all types of sex chromosomes individually (i.e., Y-, X-, W-, and

Z-autosome fusions). While the second analysis provides more detailed resolution, some of the

states are rarely observed (and in some cases, not at all). All analyses were performed using

the R package diversitree (FitzJohn, 2012a), and code to reproduce all results can be found at

https://github.com/mwpennell/fuse/analysis.

4.3.1 Fusion rates in XY vs. ZW systems

Using a Markov model (Pagel, 1994), we considered transitions among the following states:

1. XY : Male heterogametic unfused

2. XYF : Male heterogametic fused (X1X2Y or XY1Y2)

3. ZW : Female heterogametic unfused

4. ZWF : Female heterogametic fused (Z1Z2W or ZW1W2)

allowing transitions between all states with qA.B representing the transition rate between states

A and B. We then used likelihood ratio tests to restrict the model in order to improve our ability

to estimate the parameters of interest.

We �rst imposed the biologically reasonable constraint that prior to becoming XYF (or ZWF),

a lineagemust �rst be XY (or ZW); e.g., the transition rate from female heterogametic unfused to

https://github.com/mwpennell/fuse/analysis
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male heterogametic fused qZW .XYF would be zero. �ese restrictions did not lead to a signi�cant

decline in likelihood for either squamates or �sh and was accepted. Next, we proposed a model

in which the rate of switching the heterogametic sex, going from a XY to a ZW system and vice

versa, did not depend on whether the lineage contained a fused sex chromosome or not (e.g.,

qXYF .ZW = qXY .ZW). In both �sh and squamates, this restriction was acceptable.

In the next step, we proposed a model in which the rate of chromosomal �ssion, going from

a fused sex chromosome system to an unfused system of the same type, was the same for XY and

ZW systems. In �sh, a likelihood ratio test favored the more restricted model, whereas in squa-

mates, the more general model (where qXYF .XY ≠ qZWF .ZW) was favored (p = 0.012). �e support

for themore general model in squamates stems from the scarcity of ZW fusions in the data; there

is little information to reliably estimate the transition rate from fused female heterogametic to

unfused female heterogametic (qZWF .ZW) using maximum likelihood (see below). We therefore

took slightly di�erent approaches when analyzing the two clades.

For �sh, we compared the resulting model (qXYF .XY = qZWF .ZW , qZW .XYF = qXY .ZWF
= 0,

qXYF .ZW = qXYZ .ZW , qZWF .XY = qZW .XY ) to an even more reduced model in which the XY and

ZW fusion rates were set to be equal (qXY .XYF = qZW .ZWF
). We found the rate di�erence to be

highly signi�cant (p = 0.014) using a likelihood ratio test. To better accomodate uncertainty

in the estimate, we ran a Bayesian analysis. We set broad exponential priors on all parameters

(λ = 20) and sampled 50,000 generations of the MCMC, discarding the �rst 10,000 as burnin.

�is also supported our conclusion that XY fusions occur at a higher rate thanZW fusions (98.6%

of the posterior probability supported this and the 95% credibility interval for the di�erence in

rates did not overlap with zero; Figure 4.4).

For the squamate data, we took two approaches. First, we assumed that the ‘equal �ssion

rates model’ was indeed reasonable and performed the same analysis as in �sh. Using a likeli-

hood ratio test, the di�erence in fusion rates for XY and ZW was found to be highly signi�cant

(p = 0.003). �e same was true for the Bayesian analysis (99.9% of the posterior probability

distribution supported this conclusion; Figure 4.4). Second, we used a Bayesian MCMC to �t a

model in which the �ssion rate qZWF .ZW was estimated independently of qXYF .XY . For this model

the support for the di�erence between XY and ZW fusion rates was not as strong (92.0% of the

posterior probability supported qXY .XYF > qZW .ZWF
; Figure 4.5).
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Figure 4.4: Posterior probability density of the di�erence in �xation rates of fusions between
autosomes and sex chromosomes (rates in XY species minus in ZW species). �e plot illustrates
the di�erence in fusion rates over the last 40,000 steps of an MCMC chain, with the 95%
credibility intervals shown by the horizontal bars below the �gure.
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As mentioned above, the squamate data contain very little information about �ssion rates,

especially from ZWF to ZW . �e likelihood approach has di�culty distinguishing between

two explanations for the lack of fused ZW chromosomes: rare ZW fusions or common ZW

�ssions. Nevertheless, there is a strong signal that ZW fusions should be less common, which we

con�rmed by considering residency times tR. For XY fusions,

tR,XYF =
qXY .XYF

qXY .XYF + qXYF .XY
(4.1)

and for ZW fusions

tR,ZWF
=

qZW .ZWF

qZW .ZWF
+ qZWF .ZW

(4.2)

Using a Bayesian analysis, we found very strong support for the residency time being greater for

XY fusions than ZW fusions (99.8% of the posterior probability supported tR,XYF > tR,ZWF
; Figure

4.6). In the absence of direct information about �ssion rates for fused ZW chromosomes, we con-

clude that the data is more parsimoniously explained by rare ZW fusions, while acknowledging

that rapid ZW �ssion rates may also explain the data for squamates.

4.3.2 Comparing fusion rates between chromosomes

Rather than classifying the states as male/female heterogametic unfused/fused, we separated out

the di�erent types of fusions (e.g., classifying X-autosome [XA] and Y-autosome [YA] fusions

as di�erent states). �is allowed us to assess whether the patterns we observed were driven by

an overabundance of autosomal fusions with the Y chromosome. A�er matching the data to the

tree, we did not have any records of WA fusions in �sh while in squamates, XA fusions were

absent. We thus considered models with only three fused states (for �sh: XA, YA, and ZA; for

squamates: YA, WA, and ZA)

For both the �sh and the squamates, we again restricted the model via a nested series of

likelihood ratio tests. For both clades, we found it to be statistically justi�able to assume that:

a) transitions from one fused state directly to another fused state were impossible; b) prior to

becoming fused, a lineage had to be in the corresponding unfused state; and c) �ssion rates were

constrained to be equal. �is allowed us to reliably evaluate whether the fusion rates di�ered by

chromosome.
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Figure 4.6: Posterior estimate of the di�erence in residency time between XY and ZW fusions
(i.e., tR,XYF − tR,ZWF

) in squamate reptiles.
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For the �sh, using likelihood ratio tests, we found YA fusions to be signi�cantly higher than

XA fusions (p = 0.016) and ZA fusions (p = 0.035), but that XA and ZA fusion rates were not

signi�cantly di�erent (p = 0.658). Again, WA fusions did not exist in the �sh analysis so we

could not compare them to other classes. We then performed a Bayesian MCMC analysis to

gain a better estimate of the relevant parameters. For the purposes of this analysis, we �xed XA

and ZA fusions to occur at the same rate and then compared this rate to that for YA fusion. We

found that YA fusions occur at a much higher rate than XA/ZA fusions (Figure 4.7; 99.5% of the

posterior distribution supported this conclusion).

For the squamate analysis, YA fusions also occured at a higher rate than WA fusions (p <

0.001) and ZA fusions (p < 0.001). WA and ZA fusions rates were not signi�cantly di�erent from

one another (p ≈ 1). As with the �sh, for the Bayesian analysis we set WA and ZA fusion rates to

be equal and estimated the di�erence between YA fusions and other type of fusions. 99.9% of the

posterior probability distribution supported YA fusions occuring at a higher rate than fusions on

other chromosomes (Figure 4.8).

Taken together, these results strongly suggest that the di�erence between XY and ZW fusion

rates is driven almost entirely by the very high rates of autosomal fusions involving the Y chro-

mosome relative to the other sex chromosomes.

4.4 theoretical analysis

To evaluate the plausibility of various mechanisms to explain the excess of fusions involving

Y chromosomes, we modeled the rate of establishment of di�erent sex chromosome-autosome

fusions under various evolutionary scenarios. �e core results are derived in Appendix a, where

we approximate the rate, RC , at which a given type of chromosome fusion (C = X ,Y , Z , orW)

establishes within a population, accounting for both the rates that di�erent types of fusions arise

in a population and the probabilities that they �x.

To facilitate comparison to the data, we focus on the establishment rates for Y-A, Z-A, and

W-A fusions relative to the rate of X-A fusions. We begin by studying the neutral case, where

selection is absent. We allow, however, for sex-biased mutation rates and sex-biased sex ratios

(see Appendix a for de�nitions). We then ask how these neutral results are altered by the three
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main evolutionary forces thought to impact the rate of fusions: direct selection acting on the

fusion, meiotic drive, and sexually antagonistic selection.

Neutral case — We �rst consider the case without any selection or drive in the model. �e

overall establishment rates for fusions are given by the mutation rates generating each type of

fusion (Appendix a, Equation a.6). Interestingly, the sex ratio does not enter into these results.

Among newborns, each copy of a particular sex chromosome has an equal chance of being

the progenitor of the entire population of that sex chromosome at some distant point in the

future, regardless of subsequent changes in the survival and reproductive success of males versus

females.

Sex-biasedmutationwould alter the relative frequencies that di�erent types of neutral fusions

become �xed. Evidence suggests that the sexes di�er substantially in the rate at which fusions

arise: data from humans indicates that balanced translocations are the most likely source of

new fusions (Schubert and Lysak, 2011), and these seem to be predominantly paternal in origin

(Batista et al., 1993; Sartorelli et al., 2001; Wyrobek et al., 2006; �omas et al., 2010; Grossmann

et al., 2010; Schubert and Lysak, 2011). If mutation is male-biased but does not depend on the

type of chromosome (that is, the X and Y chromosomes in a male are equally likely to fuse),

then Y-A fusions will �x most frequently (see Equation a.7). In this case, however, Z-A fusions

would be almost as common as Y-A fusions (at least 2/3 as common, see Equation a.7 and Figure

4.9B, black curves), which is not seen in the data (Figures 4.2 and 4.3). �us the hypothesis that

sex-autosome fusions are selectively neutral does not appear consistent with the data.

Direct fitness effects — We next ask how relative establishment rates depend on the direct

�tness e�ects of a fusion (Appendix a). Assuming that the fusion has an additive e�ect on

�tness and that all else is equal (unbiased reproductive sex ratios and mutation rates, and equal

�tness e�ects for all types of fusions), the establishment rate is equal for X-A and Z-A fusions

and for Y-A andW-A fusions (Figure 4.9). Fusions involving the Y orW are a factor 13(1+ e−2Ns +

e−Ns) more common, where N is the number of reproductive adults and s is the �tness e�ect

of the fusion. �us, deleterious fusions (s < 0) are much more likely to involve the Y or W

chromosome, because of the smaller population size of these chromosomes (Figures 4.9A and
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4.9C). Conversely, bene�cial fusions aremore likely to involve X or Z chromosomes because they

are more numerous and so more o�en the targets of bene�cial fusions (Figures 4.9B and 4.9D).

Direct selection alone does not, however, explain why Y-A fusions are more common than

W-A fusions. Similarly, direct selection cannot, on its own, explain why fusions in XY lineages

are more common than in ZW lineages. To account for the observed data, therefore, we must

invoke a combination of direct selection and sex biases, either in the sex ratio or in the mutation

rate of fusions.

Sexual selection is o�en stronger in males, which leads to a female-biased reproductive sex

ratio (that is, more reproducing females than males; Bateman, 1948). �is situation will favor

Y-A fusions over all other types if fusions are deleterious (Figure 4.9A). In this case, fusions

are established by random genetic dri�. Y fusions establish most frequently because the Y has

the smallest e�ective population size of the four types of sex chromosomes because it is both

hemizygous and restricted to the sex (males) with the fewest number of breeding individuals.

By contrast, if fusions are bene�cial, Y-A fusions are unlikely to be the most common type of

fusion (only seen when there is an extremely male-biased sex ratio, with many fewer breeding

females than males; see Equation a.7 for very weak selection; Figure 4.9B). A second asymmetry

that may be important to explaining the data is sex-biased mutation. As in the neutral case, we

�nd that Y-A fusions will be most common when they are deleterious if they arise more o�en in

males than females (blue, Figure 4.9B). �ese results strictly apply only when the fusion has an

additive e�ect on �tness, but the relative frequencies of establishment for the di�erent types of

fusions are robust to changes in dominance.

Overall, selection acting against fusions combined with male-biased sex ratios and/or male-

biasedmutation rates can account for the observation that fusions inmale heterogametic systems

are substantially more common than in female heterogametic systems (Figure 4.4), and the ob-

servation that Y-A fusions are the most common (Figures. 4.7 and 4.8).

Meiotic drive — We next consider meiotic drive, which is thought to favor fused autosomes

in some species of mammals and unfused chromosomes in others (Pardo-Manuel de Villena and

Sapienza, 2001a,b). If meiotic drive is weak, we can treat it as a form of direct selection, and so

Equations a.4 and a.5 in Appendix a continue to apply. For clarity, we focus here on meiotic

drive in females. (�e results apply to meiotic drive in males if we interchange the sexes and
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the sex chromosomes, e.g., drive in ZW females becoming equivalent to drive in XY males.)

Speci�cally, we assume that the probability that the fusion is transmitted to an egg is multiplied

by a factor 1 + f in fusion heterozygotes. If unfused chromosomes are preferentially transmitted

to the egg, f is negative. Averaging over the sexes, the e�ect of weak meiotic drive on an X-A

fusion is equivalent to direct selection with a coe�cient sX = 2 f /3. (�e factor of 2/3 appears

because drive acts only when the fusion is in a female.) �us when female meiotic drive favors

fused chromosomes, the �xation probability for a single X-A fusion is higher than that for a

Y-A fusion, which never experiences female meiotic drive (that is, it has an e�ective selection

coe�cient of sY = 0). In ZW systems, a W-A fusion is always carried by females and so bene�ts

in every generation when female meiosis is biased towards fused chromosomes (sW = f ), while

Z-A fusions enjoy that advantage only one generation out of every three (sZ = f /3).

Once we account for the numbers of each chromosome type (and assuming unbiased mu-

tation rates and reproductive sex ratios), if female meiotic drive favors unfused chromosomes

( f < 0), then Y-A fusions are expected to establish at the highest rate, followed by W-A fusions,

Z-A fusions, and last X-A fusions. �e relative rankings are reversed if femalemeiotic drive favors

fused chromosomes ( f > 0). �us the observed excess of Y-A fusions can be accounted for by

meiotic drive in females if unfused chromosomes bene�t from drive relatively more o�en than

fused chromosomes.

Meiotic drive in males could also account for a higher rate of Y-A fusions than X-A fusions

if drive favors fusions, but under these conditions Z-A fusions would establish even more o�en

(because there are three times as many Z chromosomes as Y chromosomes, and the Z spends

2/3 of its time in males). �us, male meiotic drive alone cannot account for the excess of Y-A

fusions over any other type of fusion, all else being equal.�ese e�ects of meiotic drive are robust

to modest sex biases in mutation rates and the reproductive sex ratio. Large biases can, however,

cause the relative order of establishment rates to switch in a manner that is qualitatively similar

to that seen previously for fusions with direct �tness e�ects.

In sum, meiotic drive by itself does not seem a likely explanation for the observed excess of

Y-A fusions. It could generate that pattern if drive acts in females and consistently favors unfused

chromosomes. Data from mammals, however, suggest that when female meiotic drive acts on

fusions, it sometimes favors fused but other times unfused chromosomes (Pardo-Manuel de

Villena and Sapienza, 2001a,b).
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Sexually antagonistic selection — To study fusions driven by sexually antagonistic se-

lection, we developed a model that allows for sex-di�erences in selection (Appendix a). We

assume that an autosomal locus segregates for alleles whose frequencies are at equilibrium before

the fusion appears. (�is equilibrium only occurs under some �tness values [Clark 1988], and

the following results apply only when those conditions are met.)

�e �xation probability of a newly arisen fusion depends on several factors: which chromo-

some fuses with the autosome, whether the fusion originates in a male or a female, and which of

the two alleles is captured by the fusion. �e outcome also depends on the recombination rate

in fused chromosomes between the sexually antagonistic locus and the sex-determining region;

the models developed in Appendix a assume that linkage is complete. If dri� is weak relative

to selection, we �nd that fusions establish only if they are linked to the allele favoured in the sex

in which the fused chromosome spends the most time, i.e., Y-A and Z-A fusions that capture a

male-bene�cial allele, and X-A and W-A fusions that capture a female-bene�cial allele.

Interestingly, if all else is equal (no sex biases in mutation rates or the reproductive sex ratio),

the establishment rate of fusions is equal for all types of sex chromosomes (Equation a.10). Sex

antagonistic selection tends to favour Y-A fusions andW-A fusions more strongly than X-A and

Z-A fusions because these chromosomes are consistently found in a single sex (Charlesworth

and Charlesworth, 1980). �is advantage, however, is exactly balanced by the lower rate that

such fusions originate in the population because there are fewer Y and W chromosomes than X

and Z chromosomes. Consequently, sexually antagonistic selection alone causes no di�erence in

establishment rates.

To explain the observed excess of Y-A fusions by sexually antagonistic selection thus requires

that the sexes di�er in the mutation rate of fusions and/or in reproductive sex ratio (Equation

a.11). Again, Y-A fusions will be particularly common if fusions originate more frequently in

males. If the mutation rates are equal in males and females, however, then Y-A fusions will only

be more common than X-A fusions if the reproductive sex ratio is male-biased (that is, more

males than females reproduce), which is atypical. �ese conditions are illustrated in Figure 4.10.

In general, if there is a combination of sex-biasedmutation rates and biased sex ratios, Y-A fusions

establish most frequently due to sexually antagonistic selection as long as µmNm > µ fN f , where

µm and µ f are the female and male mutation rates, and Nm and N f are the e�ective population
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sizes of females and males. When this condition is met, fusions also arise more o�en in XY

lineages than in ZW lineages.

4.5 discussion

4.5.1 Sex chromosome-autosome fusions are Y-biased in �shes and squamate reptiles

A major �nding in our study is that Y-autosome fusions occur more frequently than other sex

chromosome fusions in vertebrates, particularly in �sh and squamate reptiles. In amphibians,

only one species in the database has multiple sex chromosomes, and it involves a Y-A fusion

(Table 4.1). Becausemammals and birds have onlymale heterogametic and female heterogametic

systems, respectively, we could not conduct phylogenetic tests to compare the relative rates of

sex chromosome fusions involving XY versus ZW chromosomes. However, there are many
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mammalian species with Y-A fusions, whereas there are only three avian species with fusions,

supporting our conclusion that Y-A fusions tend to occur more frequently than other fusions.

Interestingly, mammals have roughly as many species with X-A fusions as with Y-A fusions,

suggesting that the evolutionary forces acting on fusions may be di�erent in mammals than in

�sh and reptiles. In particular, the form of female meiotic drive appears to vary among mam-

mals, with drive favoring fused chromosomes in some species and unfused chromosomes in

others, leading to a pattern in which species with X-A fusions tend to have metacentric chro-

mosomes, while species with Y-A fusions tend to have acrocentric chromosomes (Yoshida and

Kitano, 2012).

Invertebrates provide a promising system for further phylogenetic analyses, with sex chro-

mosome variation in several groups (White, 1973; Bull, 1983; Charlesworth et al., 2005; �e Tree

of Sex Consortium, 2014). In Diptera there are seven ZW species and 986 XY species (plus 42

XO species) in the Tree of Sex database (�e Tree of Sex Consortium, 2014). Among these, there

is a preponderance of fusions involving the Y: six Y-A fusions, one X-A fusion, and one species

with both. Looking across all the invertebrates in the Tree of Sex database, there are many more

cases of Y-A fusions (247 species) than X-A fusions (32 species), W-A fusions (8 species), and

Z-A fusions (4 species); an additional 69 species have both X-A and Y-A fusions. While these

data are consistent with the idea that Y-A fusions establish at a higher rate among invertebrates,

a proper phylogenetic analysis is needed. A recent analysis of jumping spiders found only Y-A

fusions (involving between four and seven independent events) among species that had both X

and Y chromosomes (White, 1973; Maddison and Leduc-Robert, 2013). Several X-A fusions were

also identi�ed, but these occurred only in species lacking a Y. Similar analyses in other groups of

invertebrates promise to shed more light on sex chromosome evolution.

4.5.2 Accounting for the high rate of Y-A fusions

Our theoretical analyses clarify the conditions under which fusions involving the Y chromo-

some are more likely to establish. Interestingly, several plausible explanations fail to account

for the data. Neutral fusions could account for an excess of Y-A over X-A fusions if fusions

arise more o�en in males, but then the theory predicts that Z-A fusions should also be common,

which contradicts the data (Table 4.1, Figures 4.2 and 4.3). Bene�cial fusions also cannot explain

the data, as they would tend to favor the accumulation of fusions involving the X or Z, which
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provide more abundant targets for new fusions than the Y or W. Furthermore, hypotheses in

which fusions are established because they capture sexually antagonistic alleles also fail, because

the higher �xation probability of Y-A fusions capturing male-bene�cial alleles or W-A fusions

capturing female bene�cial alleles is exactly balanced by the lower population sizes of these sex

chromosomes, decreasing the rate at which Y-A andW-A fusions enter a population. To account

for the preponderance of Y-A fusions thus requires more complicated explanations, involving

both selection and sex biases. We consider three plausible explanations below.

Deleterious fusions with a sex biased mutation rate or reproductive sex ratio —

Chromosomal fusions may o�en have deleterious e�ects because fusions can lead to the loss

of genetic material, alter gene expression, or impact the rate of segregation errors (Ohno, 1967;

Gardner et al., 2012). Because the Y and W chromosomes have smaller e�ective population

sizes than Z and W chromosomes, deleterious Y-A and W-A fusions are expected to �x more

frequently than deleterious X-A and Z-A fusions. To account for the excess of Y-A over W-A

fusions, however, requires some sort of sex bias. One promising candidate is sexual selection,

which o�en increases the variance in reproductive success ofmales relative to females (Bateman’s

principle; Bateman, 1948). If fewer males are potentially successful as partners, the e�ective

population size would be further reduced for the Y (but not for the W, carried by females)

(Bachtrog et al., 2011; Bandyopadhyay et al., 2002). As a consequence, we might expect Y-A

fusions to be more frequent in polygynous mating systems (Figure 4.9A).

Another promising candidate is a male-biased mutation rate. Studies in humans suggest that

chromosomal translocations, a common route to fusions, are more o�en of paternal origin than

maternal (Batista et al., 1993;�omas et al., 2010; Grossmann et al., 2010). By contrast, Robertso-

nian fusions (with two acrocentric chromosomes resulting in a fused metacentric chromosome)

are more o�en maternal in origin (Chamberlin and Magenis, 1980; Bandyopadhyay et al., 2002),

but this pattern may be confounded by female meiotic drive favoring the transmission of meta-

centric fusions in humans (Pardo-Manuel de Villena and Sapienza, 2001a). While data from

other species is needed, a preponderance of Y-A fusions can be explained if fusions are primarily

deleterious and arisemore o�en inmales (Figure 4.9C). Of the three hypotheses we propose here,

this may be the most compelling.
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Meiotic drive — Because meiotic drive is o�en sex speci�c, it can break the symmetry be-

tween Y-A and W-A chromosomes and account for the high frequency of Y-A fusions. To do

so requires female meiotic drive that selects against fused chromosomes, eliminating Z-A, W-A,

and X-A fusions as they pass through female meiosis. Several cases of meiotic drive against fused

chromosomes have been reported in mammals, for example in mice (Pardo-Manuel de Villena

and Sapienza, 2001a,b). On the other hand, female meiotic drive favors fused chromosomes

in humans (Pardo-Manuel de Villena and Sapienza, 2001a), while male meiotic favors fused

chromosomes in the common shrew (Searle, 1986;Wyttenbach et al., 1997). Because the nature of

meiotic drive varies among taxa, it seems unlikely that one particular form—femalemeiotic drive

against fusions—is su�ciently widespread to explain the preponderance of Y-A fusions across

vertebrates, particularly among �sh (Figure 4.2) and squamate reptiles (Figure 4.3). Nevertheless,

meiotic drive likely plays an important role in some taxa and may underlie the variation among

mammals in rates of X-A and Y-A fusions (Yoshida and Kitano, 2012).

Sexually antagonistic selection with a sex biased mutation rate — Sexually antago-

nistic selection is generally considered a key evolutionary factor in the turnover of sex chromo-

somes (Charlesworth and Charlesworth, 1980; Van Doorn and Kirkpatrick, 2007). Our models,

however, indicate that fusions involving the Y will be no more common than those involving

other sex chromosomes once we account for the rate that Y fusions appear in the population and

the �tness they gain by capturing a male-bene�cial allele. In order to break the symmetry, we

must again have either a male-biased mutation rate and/or a biased reproductive sex ratio. In

this case, however, the sex ratio must be male biased, with less dri� among males than females

so that Y-A fusions establish more frequently than W-A fusions. Assuming that sexual selection

typically generates the opposite sex ratio bias, with fewer breeding males than females, sexually-

antagonistic selection requires even strongermale-biasedmutation to explain the preponderance

of Y-A fusions, compared to an explanation based on deleterious fusions.

4.5.3 Other considerations

Other evolutionary forces not considered in this study may be important to the evolution of sex

chromosome-autosome fusions. For example, we ignored inbreeding and spatial structure in our

models. (We also did not consider fusions that capture alleles held polymorphic by heterozygote
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advantage, but the fate of fusions is una�ected by such loci [Charlesworth and Charlesworth

1980] unless there is inbreeding [Charlesworth andWall 1999].) Furthermore, it is plausible that

fusions may be more likely to involve some sex chromosomes for reasons that are independent

of sex. For example, Y and W chromosomes o�en accumulate repetitive elements (Bull, 1983;

Charlesworth et al., 2005), which could make them more prone to fusion through nonhomolo-

gous recombination. Alternatively, the Y and W may be less likely to be captured by a fusion

when they are diminutive in size relative to the X and Z. Similarly, direct selection on fusions

may be chromosome speci�c. For example, deletions and changes to gene expression may be

less problematic on degenerated Y and Z chromosomes. While our analytical results allow for

mutation rates and �tness e�ectsto depend on the speci�c chromosome involved (Appendix

a), our �gures and conclusions were drawn assuming that there were only sex-speci�c and not

chromosome-speci�c e�ects. As more data emerge about chromosome-speci�c mutation rates

and selection, the analytical results can guide re�nements to these conclusions.

4.6 concluding remarks

Using phylogenetic analyses of �sh and squamate reptiles, we show that fusions between sex

chromosomes and autosomes more o�en involve the Y than other sex chromosomes. Using

population genetic models, we �nd that this pattern cannot be explained by models of selec-

tion unless there is also some mechanism generating a di�erence between the sexes, including

sex-biased mutation rates, biased sex ratios, or sex-speci�c selection (including meiotic drive).

Perhaps themost plausible hypothesis to explain the data is that fusions occurmore frequently in

males, are slightly deleterious, and �x by dri�. Similar factors may be important to the evolution

of autosome-autosome fusions. If so, we expect autosomal fusions are also typically paternal

origin in origin, deleterious, and established by dri�.
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chapter 5

Assessing the adequacy of phylogenetic models of trait
evolution5

5.1 summary

Makingmeaningful inferences fromphylogenetic comparative data requires ameaningfulmodel

of trait evolution. It is thus important to determine whether the model is appropriate for the

data and the question being addressed. One way to assess this is to ask whether the model

provides a good statistical explanation for the variation in the data. To date, researchers have

focused primarily on the explanatory power of a model relative to alternative models. Methods

have been developed to assess the adequacy, or absolute explanatory power, of phylogenetic

trait models but these have been restricted to speci�c models or questions. Here we present a

general statistical framework for assessing the adequacy of phylogenetic trait models. We use

our approach to evaluate the statistical performance of commonly used trait models on 337

comparative datasets covering three key angiosperm functional traits. In general, the models

we tested o�en provided poor statistical explanations for the evolution of these traits. �is was

true for many di�erent groups and at many di�erent scales. Whether such statistical inadequacy

will qualitatively alter inferences drawn from comparative datasets will depend on the context.

Regardless, assessing model adequacy can provide interesting biological insights—how and why

a model fails to describe variation in a dataset gives us clues about what evolutionary processes

may have driven trait evolution across time.

5.2 introduction

A statisticalmodelmay provide the best explanation for a dataset compared to a few othermodels

but still be a very poor explanation in terms of capturing the patterns of variation present in the

data. For simple linear regressionmodels, absolute model �t, or adequacy, is commonly assessed

by simply plotting the data alongside the best regression line. While not quantitative, visualizing
5In press as: Pennell M.W., FitzJohn R.G., Cornwell W.K., and Harmon L.J. Model adequacy and the

macroevolution of angiosperm functional traits. �e American Naturalist.
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the bivariate distribution can provide important insights regarding the �t of the model that are

not captured by summaries such as the R2 or p-value, such as whether the relationship is indeed

linear (for a classic case study, see Anscombe, 1973). For these types of models, there are also a

wide variety of statistical tests ofmodel adequacy (e.g., the relationship between the residuals and

the independent variable, χ2 goodness-of-�t test, etc.) that compliment our visual intuition about

model adequacy. Such formal tests used alongside informal visualizations can help researchers

assesswhether the inferences drawn from the �ttedmodel aremeaningful and,more interestingly,

suggest how a model can be improved (Gelman and Shalizi, 2013).

Modern phylogenetic comparative methods for investigating trait evolution are almost exclu-

sively model-based (recently reviewed in O’Meara, 2012; Pennell and Harmon, 2013), meaning

that inferences are contingent on both the phylogenetic tree and the model for the traits. Se-

lecting a good model is therefore essential for making robust inferences. Researchers typically

use likelihood ratio tests or Information �eoretic measures (i.e., AIC, BIC) to select amongst

models (Mooers et al., 1999; Harmon et al., 2010; Hunt, 2012) but these only provide a measure

of relative �t. Unlike in linear regression models, for most phylogenetic models of trait evolu-

tion, it is usually very challenging to visually assess the adequacy of a model. �is problem is

compounded for relatively complex models such as multi-rate Brownian motion (O’Meara et al.,

2006; Eastman et al., 2011) or multi-optima Ornstein-Uhlenbeck models (Hansen, 1997; Butler

and King, 2004; Beaulieu et al., 2012; Uyeda and Harmon, 2014). One can plot the trait values at

the tips of the phylogeny but determining “by eye” whether this distribution is consistent with

the traits having evolved under the proposed model is di�cult at small scales and impossible for

large phylogenies.

A number of statistical procedures have been proposed to quantitatively assess the absolute

�t of a model of trait evolution (e.g., Garland et al., 1992, 1993; Purvis and Rambaut, 1995; Díaz-

Uriarte and Garland, 1996; Freckleton andHarvey, 2006; Boettiger et al., 2012; Slater and Pennell,

2014; Beaulieu et al., 2013; Blackmon and Demuth, 2014). �ese can be generally classi�ed into

two types of approaches. �e �rst are tests for speci�c deviations from a particular model. In the

early days of phylogenetic comparative biology, the focus was primarily on inferring character

correlations in order to test hypotheses regarding adaptation (e.g., Felsenstein, 1985; Grafen, 1989;

Harvey and Pagel, 1991; Lynch, 1991). Accordingly, a number of tests were developed to assess the

reliability of assuming a Brownian motion (BM) model, which formed the basis for all phyloge-



62

netic tests of continuous character evolution at the time. Garland et al. (1992) proposed plotting

the standardized independent contrasts (sensu Felsenstein, 1985) against the standard deviation

of each contrast. If the contrasts and their standard deviations are correlated, this would suggest

that the model (or the phylogeny) is not adequate. Purvis and Rambaut (1995) suggested using

the relationship between the contrasts and the height above the root at which theywere generated

(see also Freckleton and Harvey, 2006, for a slight modi�cation of this test). Similarly, Beaulieu

et al. (2013) and Blackmon and Demuth (2014) used summary statistics to evaluate whether a set

of discrete character data was consistent with some variant of a Mk model (Pagel, 1994). �ese

are all very useful ideas, and we have adopted many of these in the method we present below, but

each approach is only informative with respect to a single type of misspeci�cation for a single

type of model.

�e second class of approaches is to use Monte Carlo simulations to compare an observed

dataset to those expected under a model. Garland et al. (1993) and Díaz-Uriarte and Garland

(1996) developed such an approach two decades ago. However, as this work preceded the develop-

ment of analytical tools for �tting alternative (i.e., non-BM) models, the simulation parameters

were not estimated directly from the data and therefore “reasonable” parameter estimates had

to be chosen a priori. More recently, two approaches have been suggested for assessing model

adequacy using parameters estimated directly from the data. Boettiger et al. (2012) proposed

simulating data under two candidatemodels using themaximum likelihood parameter estimates

from each model and then �tting both models to both simulated datasets. �ey then computed

the likelihood ratio between the two candidate models for each simulating condition. A�er

many simulations, a distribution of likelihood ratios could be obtained for each case, and these

distributions compared to assess whether therewas su�cient information in the data to favor one

model over the other. Slater and Pennell (2014) used posterior predictive simulation (explained

below) to assess the absolute �t of an “early burst” model of trait evolution, in which rates of

trait evolution declined through time, compared to that of a BM model. Both Boettiger et al.

(2012) and Slater and Pennell (2014) focused on the ability to distinguish between two models

using absolute �t. Our aim here is more general: we want to compare the �t of the model to the

universe of possible models.

In this paper, we propose a statistical framework for assessing the adequacy of phylogenetic

models of quantitative trait evolution that generalizes previous approaches to a wide variety of
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alternative models. Our central thesis is that assessing model adequacy in a general way can

provide valuable insights into evolutionary processes and patterns that are not evident from

comparing a limited set of models. For example, one common application of phylogenetic trait

models is to make inferences regarding the rate (tempo) of evolution using model selection (e.g.,

Mooers et al., 1999; Harmon et al., 2010; Hunt, 2012; Slater, 2013). Statements about rates are only

informative in the context of a speci�c model (Hunt, 2012). It is therefore imperative to know if

a model is really capturing the variation of the data in absolute terms.

In an o�-cited example of the model comparison approach, Harmon et al. (2010) compared

three simple models of trait evolution across 49 clades and tallied the frequency with which the

models were prefered in order to draw inferences about general patterns. We perform the same

analysis but on a much larger scale. We analyze 337 datasets on three important angiosperm

(�owering plants) functional traits using a recently published time-calibrated phylogeny (Zanne

et al., 2014b). We then assess the adequacy of the best-�tting model across all the datasets to

determine how o�en one of these simple models would be adequate to make reliable inferences

about rate of trait evolution.

5.3 a general framework for assessing the adequacy of
phylogenetic models

We focus here on models that describe the evolution of a single, continuously valued trait. More

speci�cally, our approach works for models that predict that trait values at the tips come from a

multivariate normal distribution. �is applies to most models of quantitative trait evolution that

have been developed to date (see below for details on the scope of the method).

If we have a phylogenetic tree consisting of n lineages and data on the trait values observed

at each tip X (X = x1, x2, . . . , xn), we can �t a model M with parameters θ to describe the

pattern of trait evolution along the phylogeny. �ere are two primary ways of �tting models to

comparative data. �e �rst is used to obtain a point estimate of θ (θ̂), via maximum likelihood

(ML), restricted maximum likelihood (REML), least-squares, etc. �e second is to estimate

the posterior probability distribution Pr(θ∣X ,M) using Bayesian approaches. For the models

used in comparative biology, estimating Pr(θ∣X ,M) requires using Markov chain Monte Carlo

(MCMC) machinery to sample values of θ.
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Most analyses using comparative data aim to answer one of the following questions: what

values of θ best explain X givenM?; or, doesM1 explain the data better thanM0? Our approach

is conceptually distinct in that we want to ask, how likely is it that modelM with parameters θ

would produce a dataset similar to X if we re-ran evolution?

While optimizing andBayesian approaches tomodel-�tting are philosophically di�erent from

one another, our approach to assessing model adequacy is the same for both: (1) �t the model

of trait evolution; (2) rescale the branch lengths of the phylogeny to place the data on a standard

scale; (3) calculate a set of test statistics, TX , which provide statistical summmaries of the ob-

served data; (4) simulate many new datasets Y1,Y2, . . . ,Ym under the model using the estimated

parameters; (5) calculate test statistics on the simulated data TY ,1, TY ,2, . . . , TY ,m; (6) compare TX
to the distribution of TY . If TX deviates signi�cantly from the distribution of TY , we can consider

the model as an inadequate descriptor (see Figure 5.1)

If we have a point estimate of the model parameters, we simulate Y1,Y2, . . . ,Ym on the phy-

logeny according to θ̂ andM. We then compare a single set of test statistics TX calculated from

our observed data to the distribution of values for TY computed across all m simulated datasets.

In statistical terminology, this procedure is known as parametric bootstrapping. Parametric

bootstrapping is likely familiar to phylogenetic biologists in the form of the Goldman-Cox test

(Goldman, 1993) for assessing the adequacy of sequence evolutionmodels andmore recently, the

phylogenetic Monte Carlo approach of Boettiger et al. (2012).

If we have a posterior probability distribution Pr(θ∣X ,M), we can assess model adequacy

using posterior predictive simulation (Rubin, 1984; Gelman et al., 1996). We obtain new datasets

by sampling from a second distribution, the posterior predictive distribution

Pr(Y ∣X ,M) = ∫ Pr(Y ∣θ ,M)Pr(θ∣X ,M)dθ (5.1)

where Pr(Y ∣X ,M) is the probability of a new dataset Y given X andM, averaged over the pos-

terior distribution of the parameters. Pr(Y ∣X ,M) can be approximated by simulating datasets

using paramaters drawn from the posterior distribution. �erefore, the datasets Y1,Y2, . . . ,Ym

are each generated from di�erent values of θ. Posterior predictive simulation approaches have

been previously developed for models in molecular phylogenetics (Bollback, 2002; Reid et al.,
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Figure 5.1: Schematic diagram representing our approach for assessing model adequacy. (1) Fit
a model of trait evolution to the data; (2) use the estimated model parameters to build a unit tree;
(3) compute the contrasts from the data on the unit tree and calculate a set of test statistics TX ; (4)
simulate a large number of datasets on the unit tree, using a BMmodel with σ2 = 1; (5) calculate
the test statistics on the contrasts of each simulated dataset TY ; and (6) compare the observed
and simulated test statistics. If the observed test statistic lies in the tails of the distribution of
simulated test statistics the model can be rejected as inadequate. �e rotational circle in the
center of the diagram indicates that assessing model adequacy is an iterative process. If a model
is rejected as inadequate, the next step is to propose a new model and repeat the procedure.
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2014; Lewis et al., 2014; Brown, 2014), and recently for PCMs (Slater and Pennell, 2014), but have

not been widely adopted in either �eld.

5.3.1 Test statistics

No simulated dataset will ever be exactly the same as our observed dataset. We therefore need to

choose informative test statistics in order to evaluate whether themodel predicts datasets that are

similar to our observed dataset in meaningful ways. As the states at the tips of the phylogeny are

not independent—this is why we are using PCMs in the �rst place!—calculating test statistics on

the data directly is not generally informative for models in comparative biology. We account for

the non-independence of the observed data by calculating test statistics on the set of contrasts

(i.e., “phylogenetically independent contrasts”; Felsenstein, 1985) computed at each node. (We

refer readers to Felsenstein, 1985; Rohlf, 2001; Blomberg et al., 2012, for details on how contrasts

are calculated.) Under Brownian motion (BM) the contrasts will be independent and identically

distributed (i.i.d.) according to a normal distribution with mean 0 and standard deviation σ ,

i.e., contrasts are ∼ N(0, σ), where σ 2 is the BM rate parameter (Felsenstein, 1985). �is i.i.d.

condition allows us to perform standard statistical tests on the contrasts.

�e choice of what test statistics to use for assessing model adequacy is ultimately one of

balancing statistical intuition and computational e�ort. We have chosen the following set of six

test statistics to compute on the contrasts because they capture a range of possible model viola-

tions and have well-understood statistical properties. All of these essentially evaluate whether

the contrasts come from the distribution expected under BM.

MSIG �emean of the squared contrasts. �is is equivalent to the REML estimator of the Brown-

ian motion rate parameter σ 2 (Garland et al., 1992; Rohlf, 2001). MSIG is a metric of overall

rate. Violations detected byMSIG indicate whether the overall rate of trait evolution is over-

or underestimated.

CVAR �ecoe�cient of variation (standard deviation/mean) of the absolute value of the contrasts.

If CVAR calculated from the observed contrasts is greater than that calculated from the

simulated contrasts, it suggests that we are not properly accounting for rate heterogeneity

across the phylogeny. If CVAR from the observed is smaller, it suggests that contrasts are
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more even than the model assumes. We use the coe�cient of variation rather than the

variance because the mean and variance of contrasts can be highly correlated.

SVAR �e slope of a linear model �t to the absolute value of the contrasts against their expected

variances (following Garland et al., 1992). Each (standardized) contrast has an expected

variance proportional to the sum of the branch lengths connecting the node at which it

is computed to its daughter lineages (Felsenstein, 1985). Under a model of BM, we expect

no relationship between the contrasts and their variances. We use SVAR to test if contrasts

are larger or smaller than we expect based on their branch lengths. If, for example, more

evolution occurred per unit time on short branches than long branches, we would observe

a negative slope. If SVAR calculated from the observed data deviates substantially from the

expectations, a likely explanation is branch length error in the phylogenetic tree.

SASR �e slope of a linear model �t to the absolute value of the contrasts against the ancestral

state inferred at the corresponding node. We estimated the ancestral state using the least-

squares method suggested by Felsenstein (1985) for the calculation of contrasts. (We note

that this is not technically an ancestral state reconstruction [see Felsenstein, 1985]; it is

more properly thought of as a weighted average value for each node.) We used this statistic

to evaluate whether there is variation in rates relative to the trait value. For example, do

larger organisms evolve proportionally faster than smaller ones?

SHGT �e slope of a linear model �t to the absolute value of the contrasts against node depth

(a�er Purvis and Rambaut, 1995). �is is used to capture variation relative to time. It is

alternatively known as the “node-height test” and has been used to detect early bursts of

trait evolution during adaptive radiations (see Freckleton and Harvey, 2006; Slater and

Pennell, 2014, for uses and modi�cations of this test).

DCDF �eD-statistic obtained fromKolmolgorov-Smirnov test from comparing the distribution

of contrasts to that of a normal distribution with mean 0 and standard deviation equal to

the root of the mean of squared contrasts (the expected distribution of the contrasts under

BM; see Felsenstein, 1985; Rohlf, 2001). We chose this to capture deviations fromnormality.

For example, if traits evolved via a “jump-di�usion” type process (Landis et al., 2013), in

which there were occasional bursts of rapid phenotypic evolution (Pennell et al., 2014b),
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the tip data would no longer be multivariate normal owing to a few contrasts throughout

the tree beingmuch larger than the rest (i.e., the distribution of contrasts would have heavy

tails).

Alternative test statisics are certainly possible. One could, for instance, calculate the median

of the squared contrasts, the skew of the distribution of contrasts, etc. If the generatingmodel was

known, we could use established procedures for selecting a set of su�cient (or, approximately

su�cient; Joyce and Majoram, 2008) test statistics for that model, as is typically done when

computing likelihood ratio tests. However, the aim of our approach is to assess the �t of a

proposed model without reference to a true model. Our test statistics will detect many types

of model misspeci�cation but this does not mean that they will necessarily detect every type

of model misspeci�cation. We encourage researchers interested in speci�c questions to explore

alternative test statistics that capture deviations relevant to the problem at hand.

An additional challenge is determining how to deal with the statistical problems (i.e., in�ated

Type-1 error rates) that may be introduced when using many test statistics. In our analyses, we

chose not to correct our p-values for multiple comparisons (using Bonferroni, false discovery

rates, etc.). We did this for a number of reasons. First, our tests are not truly independent and

the degree of correlation between test statisticswill necessarily depend on the “true”model of trait

evolution. Second, as argued by Gelman (2006), we might be interested in the speci�c aspects of

the data that di�er from the expectations under themodel; rather than focus on whether amodel

should be accepted or rejected, we “want to understand the limits of its applicability in realistic

replications” (p. 175).

Beyond Brownian motion

All of our test statistics are designed to evaluate the adequacy of a BM model of trait evolution.

However, if we propose a di�erent model for the evolution of the trait, such as an Ornstein-

Uhlenbeck (OU; Hansen, 1997) process, then the expected distribution of the contrasts is di�er-

ent. For example, under an OU model, contrasts will not be i.i.d. (Hansen, 1997). �e expected

distribution of contrasts under most models of trait evolution, aside from BM, is not formally

characterized and even if it was, this would necessitate a speci�c set of test statistics for every

model proposed.
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Our solution to this problem is to create what we term a “unit tree”, which is a phylogenetic

tree transformation that captures the dynamics of trait change under a particular evolutionary

model. For a particular evolutionary modelM (with parameter values θ), we de�ne a unit tree

as a phylogenetic tree that has the following property: the length of each branch is equal to the

amount of variance expected to accumulate over it underM, θ. �e variance is standardized,

such that the expected distribution of the trait data on the unit tree is equal to that of a Brownian

Motion (BM) model with a rate σ2 equal to 1.

If the �tted model is adequate, the trait data at the tips of the unit tree will have the same

distribution as data generated under a BM process with a rate of 1 and the contrasts will be

distributed according to a standard normal distribution (hence the name, unit tree). Creating the

unit tree from the estimated model parameters prior to computing the contrasts generalizes the

test statistics to most models of quantitative trait evolution (but see Landis et al., 2013; Schraiber

and Landis, 2014, for exceptions).

We also emphasize that because the contrasts are calculated on the unit tree, the test statistics

all must depend on both the data and the model; for this reason, the Bayesian version of our

approach produces a distribution of observed test statistics. Once we have created the unit tree

from the estimated parameters, new datasets can be simulated under the model simply using

a BM process with σ 2 = 1, which has the added bene�t of being computationally e�cient. �e

distribution of test statistics calculated on these simulated data sets can then be compared to the

test statistics from the observed data.

5.3.2 Details of unit tree construction and the scope of this approach

Here we formalize our de�nition of the unit tree and delimit the scope of our approach. Readers

can skip this section without missing the main point. A unit tree can be constructed from any

evolutionary model where the trait has expected variance-covariance matrix V that satis�es the

(generalized) 3-point condition proposed by Ho and Ané (2014) and the data follows a multi-

variate normal distribution. A matrix V has a strict 3-point structure if the following condition

holds: for any lineages i , j, k, the two smallest of Vi j,Vik ,Vjk are equal. Under a simple BM

model it is straightforward to show that this condition holds. If C is the matrix representation

of the phylogeny (such that Ci j is the shared path length between lineages i and j), then by the

nature of the tree structure, the 3-point condition will hold for C. Since under BM V = σ 2C,
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then V will also be 3-point structured. �e same holds true for any evolutionary model that is

a branch length transformation of a BM model including the λ, δ, κ models (Pagel, 1997, 1999)

and models where rates change through time (the “Early Burst” or EB model, also referred to

as the Accelerating/Decelerating Change, ACDC, model; Blomberg et al., 2003; Harmon et al.,

2010) or across the tree (O’Meara et al., 2006; �omas et al., 2006; Eastman et al., 2011; Revell

et al., 2012; �omas and Freckleton, 2012). Standard error can be incorporated into any of these

models by simply adding a species-speci�c scalar to each element of the diagonal. For all of the

models where the 3-point condition applies, we can construct a unit tree by setting the length ν

of the edge {(i , j), k} connecting the most recent common ancestor (MRCA) of lineages i and j

to the MRCA of lineages i and k to be

ν{(i , j),k} = Vi j − Vik (5.2)

where Vi j and Vjk are, by the requirements of the 3-point structured condition, equal to one

another. Once all branches have been transformed, the contrasts computed on the unit tree will

be i.i.d. ∼ N(0,1) under the model in question.

�e OU model of trait evolution also generates 3-point structured matrices when the tree is

ultrametric; this is true of both single optimum and multi-optima models (Ho and Ané, 2014).

However, while the variance structure can easily be transformed to a BM-like tree, the contrasts

on this treewill not necessarily be distributed according to a standard normal. For example, while

it is o�en assumed when �tting a single regime OU model that the ancestor is at the optimum

trait value (see, for example Harmon et al., 2010), this need not be the case. Furthermore, if there

are multiple optima on the phylogeny (Hansen, 1997; Butler and King, 2004; Ingram andMahler,

2013; Uyeda and Harmon, 2014), lineages will necessarily be tracking optima that are di�erent

from the root state. �erefore, a transformation must also be made to the data in addition to the

branch lengths of the phylogeny to produce contrasts that have are i.i.d. according to a standard

normal.

To accomplish this, we again turn to the recent work of Ho and Ané (2014). In addition to

3-point structured matrices, Ho and Ané de�ned a broader condition: a matrix of the form

V = D1ṼD2
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is considered to have a generalized 3-point structure if Ṽ is 3-point structured andD1 andD2 are

diagonal matrices. Ho and Ané (2014) prove that many phylogenetic models are indeed of this

class, including multi-optimum OU models (Butler and King, 2004; Ingram and Mahler, 2013;

Uyeda and Harmon, 2014), those with varying rates and models across the tree (e.g., Beaulieu

et al., 2012) as well as to OU models �t to non-ultrametric trees. For any model that satis�es

the generalized 3-point condition and where the data are assumed to come from a multivariate

normal distribution, there exists some transformation to the tree (appling Equation 5.2 to Ṽ)

and data (using D1 and D2) that will produce a unit tree with standard normal contrasts. We

note that Slater (2014) recently pointed out that for OUmodels �t to non-ultrametric trees, there

is no valid transformation that can make V BM-like. While this is indeed correct, it is however,

possible to get a BM-like tree by adding a species-speci�c scalar to the data matrix (Ho and Ané,

2014). �erefore, once the proper tree and data transformations have been made, all the test

statistics described above can apply.

�e above also applies to phylogenetic regressionmodels (Grafen, 1989; Lynch, 1991; Martins

and Hansen, 1997) of the form

Y = β0 + β1X + є.

In these models, the error variance is structured by phylogeny assuming somemodel of trait evo-

lution such that є ∼ N(0,V). In these regression models V represents the variance-covariance

matrix of the residuals rather than the traits (Rohlf, 2001). �erefore if V is either 3-point or

generalized 3-point structured, the tree (and possibly data) can be transformed such that the

contrasts on the residuals will be i.i.d. standard normal. �is fact allows researchers to use

our approach to assess the adequacy of a trait model for understanding correlations between

traits. We note however that as V only a�ects the error structure for these models, alternative

approaches (see for example Gelman et al., 2003, ch. 6) will be required to assess the adequacy

of the mean structure Y = β0 + β1X of the model.

5.3.3 Simulations

As a veri�cation of our method, we conducted a brief simulation study. We focused here on

assessing Type-1 error rates. As above, we emphasize that these are not necessarily the most

important quantities when thinking about model adequacy, but they do provide a useful metric
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for demonstrating that our code is functioning correctly. �ephilosophy behind approaches such

as ours is that the “true” model is outside of the candidate set. We want to ask whether a given

model can adequately describe the variaton in the data. If it does, we can consider it statistically

adequate even if it is not the true model or even the best model in our set (see Discussion for

comments on the relationship between model adequacy and model selection). Furthermore,

while it is certainly interesting to examine what types of deviations in model space produce what

types of deviations in the various test statistics, the number of possible simulation conditions is

in�nitely broad.

We simulated data under BM, single-optimumOU, and EB (the same models we used in the

analysis; see below). For each set of conditions, we simulated trees of 50, 100, and 200 taxa under

a pure-birth process, then rescaled the tree to be unit height. For BM, we set σ 2 = 1. For OU,

we used σ 2 = 1 but varied the “selection” parameter α (α = {1,2,4}). For EB, we again set σ2 to

be 1 and varied a, the exponential rate of decline (see Harmon et al., 2010; Slater and Pennell,

2014, for details), which was set to be a = {log(0.01), log(0.02), log(0.04)}. For each parameter

combination, we ran 500 simulations under two sets of conditions: (1) assuming nomeasurement

error; and (2) assuming known error rates of 5% of the expected variance in trait values across the

phylogeny. We then �t the corresponding model using maximum likelihood and evaluated the

Type-1 error under each set of conditions. All simulations were conducted using diversitree

(FitzJohn, 2012a).

5.4 the adequacy of models for the evolution of plant
functional traits

5.4.1 Data

We used a phylogeny of angiosperms, containing 30,535 species, from a recent study by Zanne

et al. (2014b). We conducted all analyses on the MLE of the phylogeny (available on DRYAD,

doi:10.5061/dryad.63q27/3). We used existing large datasets on three functionally important plant

traits: speci�c leaf area (SLA, de�ned as fresh area/dry mass), seed mass, and leaf nitrogen

content (% mass). Seed mass is a crucial part of species’ life-history strategy (Leishman et al.,

2000; Westoby et al., 2002) and SLA and leaf nitrogen content are important and widely mea-

sured components of species’ carbon capture strategies (Wright et al., 2004). Understanding the
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macroevolutionary patterns of these three traits can provide key insights into the evolutionary

processes that have shaped much of plant diversity (Cornwell et al., 2014). �e SLA and leaf

nitrogen data comes fromWright et al. (2004) with additional SLA data from the LEDA project

(Kleyer et al., 2008). Seed mass data comes the Kew database (Royal Botanical Gardens, Kew,

2014). We used an approximate grepping approach to �nd and correct spelling mistakes and

synonymy tools from �e Plant List (2014) to match the trait databases to the Zanne et al. phy-

logeny. �e full data set includes 3293 species for SLA, of which 2200match species in the Zanne

et al. (2014b) tree. For seed mass, the dataset included 22,817 species with 11,107 matched the

phylogeny. For leaf nitrogen content, we have data for 1574 species with 936 included in the tree.

See https://github/richfitz/modeladequacy for speci�c locations and scripts to access

and process the original data.

We log-transformed all data prior to analysis. We did this for biological reasons rather than

to conform the data to the assumptions of themodel (Houle et al., 2011). It is moremeaningful to

model trait evolution as amultiplicative process rather than an arithmetic one. An increase of two

grams ismuchmore signi�cant for the seed of an orchid than the seed of a palm tree. However, we

should recognize that both of these rationales are essentially statements about model adequacy

and thus the validity of the log transformation can be quantitatively assessed.

Because the vast majority of the species are only represented by a single record, it was not

possible to use a species-speci�c estimate of trait standard error (SE) to account for either mea-

surement error or intraspeci�c variation. As an alternative, we estimated a single SE for each

trait by calculating the mean standard deviation for all species for which we had multiple mea-

surements. �e assumption of a constant SE across all species is unlikely to be correct, but even

an inaccurate estimate of error is better than assuming none at all (Hansen and Bartoszek, 2012).

5.4.2 Analysis

We �rst matched our trait data to the whole phylogeny and then extracted subclades from this

dataset in a three ways: (1) by family; (2) by order; and (3) by cutting the tree at 50 My intervals

and extracting themost inclusive clades (namedor unnamed) forwhich themost recent common

ancestor of a group was younger than the time-slice. (�e crown age of angiosperms is estimated

to be ∼243 my in the MLE tree and the tree was cut at 50, 100, 150, and 200my.) We kept

only subclades for which there was at least 20 species present in both the phylogeny and trait
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data so that we had a reasonable ability to estimate parameters and distinguish between models

(Boettiger et al., 2012; Slater and Pennell, 2014). For SLA, this le� us with 72 clades, seed mass,

226 clades, and leaf nitrogen content, 39 clades (337 in total). We note that these datasets are not

independent as many of the same taxa were included in family, order and multiple time-slice

subtrees.

FollowingHarmon et al. (2010), we considered three simplemodels of trait evolution: (1) BM,

which can be associated with genetic dri� (Lande, 1976; Felsenstein, 1988; Lynch and Hill, 1986;

Lynch, 1990; Hansen and Martins, 1996), randomly varying selection (Felsenstein, 1973), or the

summation of many independent processes over macroevolutionary time (Hansen and Martins,

1996; Uyeda et al., 2011; Pennell et al., 2014b); (2) single optimum OU, which is o�en assumed

to represent stabilizing selection (following Lande, 1976), though we think a more meaningful

interpretation is that it represents an “adaptive zone” (Hansen, 2012; Pennell and Harmon, 2013);

and (3) EB, which was developed as a phenomenological representation of a niche-�lling process

during an adaptive radiation (Blomberg et al., 2003; Harmon et al., 2010). We �t each of these

models to all 337 subclades in our dataset. We then used the approach we developed to assess the

adequacy of each �tted model.

All of the analyses conducted in this paperwere conducted using both likelihood andBayesian

inference. We did so to demonstrate the scope of our approach and because both ML and

Bayesian inference are commonly used in comparative biology. We emphasize that our approach

is not tied to any single statistical paradigm.

For the likelihood analyses, we �t the three models (BM, OU, and EB) using ML with the

diversitree package (FitzJohn, 2012a). We calculated the AIC score for each model. We then

constructed a unit tree for each subtree, trait and model combination using the maximum like-

lihood estimates of the parameters. We calculated the six test statistics described above (MSIG,

CVAR, SVAR, SASR, SHGT, DCDF) on the contrasts of the data. We simulated 1000 datasets on each

unit tree using a BM model with σ2 = 1 and calculated the test statistics on the contrasts of each

simulated data set.

For the Bayesian analysis, we �t the samemodels as above using aMCMCapproach, sampling

parameter values using slice sampling (Neal, 2003), as implemented in diversitree (FitzJohn,

2012a). For the BMmodel we set a broad uniform prior on σ2 ∼ U[0, 2], the upper bound being

substantially larger than theML estimate of σ2 for any clade. For theOUmodel, we used the same
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prior for σ2 and drew α values, the strength of attraction to the optimum, from a Lognormal(µ =

log(0.5), σ = log(1.5)) distribution. A complication involved in �tting OU models is deciding

what assumptions to make about the state at the root z0. Here, we follow other authors (Butler

and King, 2004; Harmon et al., 2010) and assume that z0 is at the optimum. For the EB model,

we again used the same prior for σ 2 and a uniform prior on a, the exponential rate of decrease in

σ2, such that a ∼ U[−1, 0] (the minimum value is much more negative than we would typically

expect; Slater and Pennell, 2014).

Again, for each model/trait/subtree combination, we ran a Markov chain for 10,000 gener-

ations. Preliminary investigations demonstrated that this was more than su�cient to obtain

convergence and proper mixing for these simple models. A�er removing a burn-in of 1000

generations, we calculated the Deviance Information Criterion (DIC), a Bayesian analog of AIC

(Spiegelhalter et al., 2002), for each model. We drew 1000 samples from the joint posterior

distribution. For each of the sampled parameter sets, we used the parameter values to construct

a unit tree and calculated our six test statistics on the contrasts. We then simulated a dataset on

the same unit tree and calculated the test statistics on the contrasts of the simulated data.

In the likelihood analyses, for each dataset, we had one set TX of observed test statistics and a

1000 sets TY ,1, TY ,2, . . . , TY ,1000 of test statistics calculated on data simulated on the same unit tree.

In the Bayesian version, we had 1000 sets of observed test statistics TX ,1, TX ,2, . . . , TX ,1000 using a

di�erent unit tree for each set and 1000 sets of simulated test statistics TY ,1, TY ,2, . . . , TY ,1000, each

TY ,i corresponding to the unit tree used to compute TX ,i .

For both types of analyses, we report two-tailed p-values (i.e., the probability that a simulated

test statistic was more extreme than the observed). As a multivariate measure of model ade-

quacy, we calculated the Mahalanobis distance, a scale-invariant metric, between the observed

test statistics and the mean of our simulated test statistics, taking into account the covariance

structure between the simulated test statistics. We took the log of the KS D-statistic, DCDF, as

the Mahanalobis measure assumes data is multivariate normal and the D-statistic is bounded be-

tween 0 and 1. For the Bayesian analyses, we report the mean of the distribution of Mahalanobis

distances. All analyses were conducted in R v3.0.2 (R Development Core Team, 2013). Scripts to

fully reproduce all analyses are available at https://github.com/richfitz/modeladequacy.

https://github.com/richfitz/modeladequacy
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5.4.3 A case study: seed mass evolution in the Meliaceae and Fagaceae

As an illustration of our approach, we present a case study examining seed mass evolution in

two tree families, the Meliaceae, the “mahogany family”, and Fagaceae, which contains oaks,

chestnuts and beech trees. �e trait data and phylogeny for both groups are subsets of the larger

dataset used in the analysis. Super�cially, these datasets are quite similar. Both are of similar size

(Meliaceae: 44 species in the dataset, 550 in the clade; Fagaceae: 70 species in the dataset and

600 in the clade), age (crown age of Meliaceae: ∼53my; Fagaceae: ∼40my) and are ecologically

comparable in terms of dispersal strategy and climatic niche.

As described above, we �t three simple models of trait evolution (BM, OU, EB) to both

datasets using ML and computed AIC weights (AICw ; Akaike, 1974; Burnham and Anderson,

2004a) for the three models. For both datasets, an OU model was overwhelmingly supported

(AICw > 0.97 for both groups). �erefore, looking only at relative model support, we might

conclude that similar evolutionary processes are important in these two clades of trees.

Examining model adequacy provides a di�erent perspective. We took theMLE of the param-

eters from theOUmodels for each dataset and constructed a unit tree based on those parameters.

We calculated our six test statistics on the contrasts of the data, then simulated 1000 datasets on

the unit tree and calculated the test statistics on the contrasts of each simulated dataset (Figure

5.2). For seedmass evolution inMeliaceae, theOUmodelwas an adequatemodel; all six observed

test statistics were in the middle of the distribution of simulated test statistics (MSIG ∶ p = 0.921,

CVAR ∶ p = 0.605, SVAR ∶ p = 0.979, SASR ∶ p = 0.485, SHGT ∶ p = 0.170, DCDF ∶ p = 0.657). In

contrast, for Fagaceae we found that the test statistics calculated with an OU model lay outside

the expected values for SVAR (p ≈ 0) and SHGT (p = 0.014) suggesting that the process of evolution

that gave rise to these data was more complex than that captured by a simple OU process.

More speci�cally, the slope of the contrasts against their variances SVAR is negative, meaning

that contrasts computed on short branches are larger than expected (or conversely, contrasts

computed on long branches are too small). Such a pattern could be generated by phylogenetic

error: the terminal branches in the Fagaceae tree are very short and are likely underestimated

relative to the longer internal branches. �is explanation is further supported by the fact that

SHGT is also negative—the standardized contrasts close to the tips are much larger than expected.

�e rest of the observed test statistics did not di�er signi�cantly from the simulated test statistics
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Figure 5.2: Illustration of our approach to model adequacy. We �t three models (BM, OU,
and EB) to seed mass data from two di�erent tree families, the Meliaceae (top panel, red)
and the Fagaceae (bottom panel, yellow). In both cases, an OU model (analyzed here)
was strongly supported when �t with ML. �e plotted distributions are the test statistics
(MSIG,CVAR, SVAR, SASR, SHGT,DCDF) calculated from the contrasts of the simulated data; the bars
underneath the plots represent 95% of the density. �e dashed vertical lines are the values of the
test statistics calculated on the contrasts of the observed data. Using our test statistics, an OU
model appears to be an adequate model for the evolution of seed mass in the Meliaceae; for all
of the test statistics, the observed test statistic lies in the middle of the distribution of simulated
test statistics. For the Fagaceae, the slopes of the contrasts against their expected variances SVAR
and node height SHGT are much lower than the expectations under the model.
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(MSIG ∶ p = 0.298, CVAR ∶ p = 0.837, SASR ∶ p = 0.074, DCDF ∶ p = 0.551). �is example

illustrates the distinction between the conventional approach to model selection in PCMs and

model adequacy. Selecting amongst a limited pool of models does not give a complete picture of

the amount of variation that a chosen model is actually capturing.

5.5 results

5.5.1 Simulations

In our simulations, we found that when we assessed the adequacy of the generating model, all of

the test statistics showed Type-1 errors that were consistently around or less than 0.05. �is was

true across models, parameters, tree sizes and did not depend on whether we included a known

SE or not (Figures 5.3, 5.4, and 5.5). �ese results demonstrate that our unit tree construction

is working properly; if the MLE is equal to the generating value, then the constrasts will be i.i.d.

N(0, 1) and standard normal statistical properties will apply. Some of the test statistics are very

conservative (have very low Type-1 error rates) under some models. We are not aware of any

general statistical theory that will allow us to predict the conditions under which a test statistic

will have low power to detect deviations from the expected distributions. However, there is an

intiutive explanation for this pattern. Consider for example, our test statisticMSIG. Asmentioned

above, this is equivalent to the REML estimate of σ2. When we �t BM (or, a more general model,

of which BM is a special case), and then rescale the tree with σ̂2, the observed contrasts on the

unit tree will e�ectively be minimized with respect to this quantity and all of the contrasts on the

simulated dataset will tend to be larger than our observed contrasts. So if the quantity captured

by the test statistic is tightly correlated with one of the parameters being optimized in the model,

this test statistic will tend to have low power to detect deviations from this model.

We also found that by using multiple test statistics and reporting a Type-1 error if any of the

test statistics deviated signi�cantly from expectations, the error rate increased substantially (up

to around 20% under some conditions). However, as we discuss above, we do not think that this

is necessarily a defect of the analysis and are not overly concerned with this error rate. Looking

at what test statistics were violated and how they were violated is much more meaningful than

simply rejecting or accepting a model based on the overall p-value. Furthermore, the degree to

which the Type-1 error rate will rise with multiple comparisons will be a complex function of the
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Figure 5.3: Type-1 error rates for data simulated under a Brownian motion (BM) model. We
simulated 500 datasets under for 3 di�erent tree sizes (N = {50, 100, 200}, represented by the
di�erent colors) and two known values of standard error of observed species means (0 and 0.05,
le� and right panel, respectively). �e Type-1 error rates for each test statistic are consistently
around or lower than a 0.05 threshold. However, the frequency at which at least one of the test
statistics deviated signi�cantly from the expectations (the variable “Min” on the le� side of each
plot) was substantially greater, rising to above 20% in some cases. See text for why we decided
against correcting for the e�ect of multiple comparisons in the analysis.
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Figure 5.4: Type-1 error rates for data simulated under an Ornstein-Uhlenbeck (OU) model.
We simulated 500 datasets under for 3 di�erent tree sizes (N = {50, 100, 200}, represented by
the di�erent colors) and two known values of standard error of observed species means (0 and
0.05, le� and right panel, respectively). We also simulated under three values for the α parameter
(α = {1,2,4}, top, middle and bottom panel), representing phylogenetic half-lives of 69%, 35%,
17% of total tree depth, respectively. �e Type-1 error rates for each test statistic are consistently
around or lower than a 0.05 threshold. However, the frequency at which at least one of the test
statistics deviated signi�cantly from the expectations (the variable “Min” on the le� side of each
plot) was substantially greater, approaching 20% in some cases. See text for why we decided
against correcting for the e�ect of multiple comparisons in the analysis.
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Figure 5.5: Type-1 error rates for data simulated under anOrnstein-Uhlenbeck (OU)model. We
simulated 500 datasets under for 3 di�erent tree sizes (N = {50, 100, 200}, represented by the
di�erent colors) and two known values of standard error of observed species means (0 and 0.05,
le� and right panel, respectively). We also simulated under three values for the exponential rate
of slowdown, a (a = {log(0.01), log(0.02), log(0.04)}, top, middle and bottom panel), which
translate to the rate of trait evolution hal�ng every 0.15, 0.17, and 0.21 time units, respectively
(note that the tree was scaled so the total depth was equal to unity). �e Type-1 error rates for
each test statistic are consistently around or lower than a 0.05 threshold. However, the frequency
at which at least one of the test statistics deviated signi�cantly from the expectations (the variable
“Min” on the le� side of each plot) was substantially greater, approaching 15% in some cases. See
text for why we decided against correcting for the e�ect of multiple comparisons in the analysis.
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generating model and the size of the dataset and there is no suitable general correction that we

know of.

5.5.2 Models for the evolution of angiosperm functional traits

Our results for likelihood andBayesian inferencewere broadly similar; for conciseness, we present

only the results from the likelihood analyses here. Results from the Bayesian analysis are pre-

sented appendix b. Full results from all analyses can be reproduced using code and work�ows

available at https://github.com/richfitz/modeladequacy.

Across the 337 subclades, we found widespread support for OU models. For 236 clades, OU

had the highest AICw . OU had ∼100% of the AICw in 27 clades and >75% of the weight in 189

clades (�gure 5.6). Consistent with Harmon et al. (2010) we found that EB models rarely had

high support (only 6 clades supported EB with >75% AICw), though we acknowledge that even

if early burst dynamics were important to long-term patterns of trait evolution, these may be

di�cult to detect with extant species alone (Slater et al., 2012a; Slater and Pennell, 2014). Larger

clades commonly had very high support for a single model (of the 101 clades consisting of more

than 100 taxa, 44 had >90% of the AIC weight on a single model), and that was overwhelmingly

likely to be an OU model (42/44 clades).

We limit our analyses of model adequacy to only the most highly supported model in the

candidate set, as supported by AIC. We did this to present a best-case scenario; if a model

had very little relative support, it would be unremarkable if it also had poor adequacy (but see

Ripplinger and Sullivan, 2010). Even considering only the best of the set, in general, the datasets

o�en deviated from the expectations of the model in at least some ways (�gure 5.7).

Of the 72 comparative datasets of SLA, we detected deviations from the expectations in 32

datasets (using a cut-o� of p = 0.05), 22 by at least two, and 15 by three or more. Results were

similar in the seedmass data (of the 226 seedmass datasets, we detected deviations in 153 datasets

with at least one test statistic, 95 by at least two and 65 by three ormore) and leaf nitrogen content

(of the 39 datasets, we detected deviations in 19 by at least one, 12 by at least two, and 8 by three

or more test statistic).

Some test statistics weremuchmore likely to detect model violations than others. In 163 cases

CVAR revealed the data deviated signi�cantly from the expections of the best model. In 118 cases,

https://github.com/richfitz/modeladequacy
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Figure 5.6: �e relative support, as measured by AIC weight, for the three models used in our
study (BM, OU, and EB) across all 337 datasets. An OUmodel is highly supported for a majority
of the datasets.
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Figure 5.7: �e distribution of p-values for our six test statistics over all 337 datasets in our study
a�er �tting the models usingML.�e p-values are from applying our model adequacy approach
to the best supported of the three models (as evaluated with AIC). Many of the datasets deviate
from the expectations under the best model along a variety of axes of variation. Deviations are
particularly common for the coe�cient of variation CVAR and the slope of the contrasts against
their expected variances SVAR.
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SVAR did. �e rate of deviation was much somewhat lower for the other test statistics (MSIG: 39,

SASR: 84, SHGT: 54, DCDF: 67).

Across all 337 datasets, 133 are adequately modeled by either BM, OU or EB. As stated above,

the numbers of models that showed deviations with at least one test statistic may be somewhat

overin�ated. However, the proportion of clades in which p-values were less than 0.05 is much,

much greater than the error rates we found in our simulations. And the proportions for each

individual test statistic is much higher than would be expected by chance.

As the subclades are not independent (overlapping sets of taxa are present in family, order and

time-slice phylogenies), conventional statistics, such as linear regression, are not straightforward

to apply across datasets. Nonetheless, the trend is clear: the larger the phylogeny, the more likely

OU is to be highly supported and the stronger the evidence the model is inadequate. �ere is a

strong relationship between the size of a subclade and the overall distance between observed and

simulated test statistics, as measured by the Mahanalobis distance (Figure 5.8). While it is likely

that evolutionary rates and processes are more heterogeneous when one considers larger clades,

it is also true that violations frommodel expectations are more easily detected when considering

more data: the more contrasts that are examined, the lower the variance in the distribution of

simulated test statistics, and therefore we are more likely to detect model misspeci�cation (see

Discussion). We also note here that if themodel was adequate at all scales (for example, if a single

OU process described the evolution of these traits across all angiosperms), then there would be

no relationship between the Mahalanobis distance and the size of the phylogeny.

5.6 discussion

5.6.1 Why does model adequacy matter?

Whatever inferences we want to make from comparative data—e.g., characterizing broad-scale

patterns of evolution through time, investigating correlations between characters or testing hy-

potheses about the processes that have driven trait evolution over macroevolutionary time—it is

important that our chosen statistical model captures variation in the data relevant to the question

being addressed. If, for example, the goal is to assess variation in macroevolutionary rates over

time, it is essential that the model does a good job of explaning temporal heterogeneity. If we

want to know about the slope of an evolutionary allometric relationship, we need a model that
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Figure 5.8: �e relationship between clade size and a multivariate measure of model adequacy.
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observed and simulated test statistics, taking into account the covariance between test statistics.
�e greater the Mahalanobis distance, the worse the model captures variation in the data.
Considering only the best supported model for each clade (as chosen by AIC), there is a striking
relationship between the two—the larger the dataset, the stronger the evidence that the model
does not capture variation in the data.
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provides a meaningful estimate of this parameter (Hansen and Bartoszek, 2012). Comparing the

�t of a model to a set of alternatives (using likelihood ratio tests, Information�eoretic metrics,

Bayes Factors, etc.) can only allow for a relative assessment of the suitability of the model for

the task. Such a model comparison approach does not provide any information about whether a

model will allow us to actually get at the question we are interested in.

�e �ipside of this is that tests of model adequacy, such as ours, are designed to measure the

absolute �t but not the absolute appropriateness of the model. We know that all of the models

used in comparative biology are wrong. Whether they are useful or not will depend on the

question being addressed. We are far from the �rst to suggest that model adequacy is important

to consider when using comparative methods (see, for example Felsenstein, 1985, 1988; Harvey

and Pagel, 1991; Garland et al., 1992; Díaz-Uriarte and Garland, 1996; Hansen and Martins, 1996;

Price, 1997; Garland et al., 1999; Garland and Ives, 2000; Hansen and Orzack, 2005; Hansen and

Bartoszek, 2012; Felsenstein, 2012; Boettiger et al., 2012; Slater and Pennell, 2014; Beaulieu et al.,

2013; Blackmon and Demuth, 2014). �e contribution of our paper is to generalize many of these

previous approaches into a single, �exible statistical framework.

Again, we emphasize that simply because a dataset deviates from the expectations of the

model does not imply that the model should necessarily be rejected. In our analyses of model

adequacy across the 337 angiosperm clades, we were focused on whether the model was suitable

formeasuring rates of evolution, which is dependent on themodel being a good one (Hunt, 2012).

For other questions, the fact that a model fails to capture some aspects of the variation in the data

may not be that important. For example, if our question was that of Harmon et al. (2010)—are

early bursts of evolution common in macroevolution?—we could conclude with good certainty

that they are not. Our datasets may not be well described by an OUmodel, but they are certainly

nothing like what we would expect under an early burst scenario. Likewise, if we are interested

primarily in whether there is a pattern of correlation between two traits, the fact that the model

we used is not adequately describing much of the variation will in many cases, not greatly impact

the qualitative conclusions. A nuanced view of model adequacy is particularly important when

analyzing large phylogenies: the more data we consider, the greater our ability to detect subtle

deviations from model expectations (Figures 5.8 and b.3). Focusing only on the test statistic

p-values may lead us to reject models that are actually reasonably suitable for addressing our

question of interest.
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However, we view the most interesting cases to be where the best model does not adequately

describe the variation of interest. �eway in which amodel fails can provide a richer understand-

ing of our data and the processes that have driven the patterns we observe (Gelman and Shalizi,

2013). First, model inadequacy can point to problems in the data. We suspect that this is likely

a common cause of poor model �t. For the empirical analyses, we used a very large phylogeny

of angiosperms that was constructed to test speci�c global-scale biodiversity questions (Zanne

et al., 2014b). We recognize that the tree is poorly resolved in many places (particularly, near the

tips) and is likely ill-suited for addressing more detailed, clade-speci�c questions (see the recent

critique by Donoghue and Edwards, 2014). Speci�cally, the inaccurate placement of species will,

on average, cause evolutionary rates to be in�ated, which is precisely what we �nd (see below).

However, we emphasize that phylogenetic error is likely ubiquitous and this problem is certainly

not limited to the tree we used. Likewise, the dataset we assembled is rather heterogeneous in

terms of quality; the data were originally collected for a diverse set of reasons and some groups

have beenmeasured muchmore carefully than others. And while we have done our best to clean

the data, errors undoubtedly remain.

Second, and most excitingly, the failure of a model to adequately describe relevant aspects of

the data can provide insight into the processes we have failed to consider in our model (Gelman

and Shalizi, 2013). For example, if a model fails to capture variation relative to time (evaluated by

the test statistic SHGT), this suggests that temporal heterogeneity has been greater thanwe allowed

for. �e causes of such heterogeneity have long been a topic of interest in macroevolutionary

studies (e.g., Simpson, 1944; Foote, 1997) and there has been a great deal of recent development

towards more complex rate-varying models (e.g., O’Meara et al., 2006;�omas et al., 2006; East-

man et al., 2011; Weir and Mursleen, 2013; Rabosky et al., 2014). Likewise, failure to adequately

describe variation across the clademay indicate that the existence of multiple macroevolutionary

optima (sensu Hansen, 2012) are driving the dynamics of traits over time (see Hansen, 1997;

Butler and King, 2004; Beaulieu et al., 2012; Ingram andMahler, 2013; Uyeda and Harmon, 2014,

for models that have been used to capture these dynamics).

Model inadequacymay also suggest types ofmodels that have not previously been considered.

For example, if recently diverged species tend tomore dissimilar than can be accounted for under

a simple di�usion model such as BM or OU, this may be the result of character displacement.

However, almost no phylogenetic models have been put forth that explicitly model interactions
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between lineages (but see Nuismer and Harmon, 2015). Or if traits have lower variance than

expected under an OU process, this may be the result of hard bounds. Boucher et al. (2014)

recently argued that this is the case for climatic niches and that alternative models need to be

developed for this case. Of course, a researcher may discover that her dataset is poorly described

by all of the currently available models. Aside from deriving newmodels speci�c to her question

and dataset, she should at least carefully examine the extent to which model misspeci�cation is

likely to a�ect the major conclusions and proceed forward with due caution.

5.6.2 Implications for empirical studies

In our analysis of angiosperm functional traits, we found commonmacroevolutionarymodels to

o�en be poor descriptors for the patterns of variation and likely inadequate for estimating evolu-

tionary rates. While there are certainly a number of important caveats to our analysis (discussed

above), the overall trends are clear. �is should certainly give researchers some pause about the

models routinely used in our �eld—especially as they are o�en used in a model comparison

framework to evaluate the “tempo and mode” of macroevolution. We argue that our results

strongly suggest that we may o�en be missing a large part of the story.

�e 337 comparative datasets we analyzed varied in terms of traits, size, age and placement

in the angiosperm phylogeny. Nonetheless, several general patterns emerge. An OUmodel, was

by and large, the most supported of the three we examined. In an analysis of 67 comparative

datasets consisting of size and shape data from a variety of animal taxa, Harmon et al. (Harmon

et al., 2010) also found substantial support for OU models, though for their datasets, BM was

more commonly chosen by AIC. (We note, however, that many of their datasets were quite small;

see Slater and Pennell, 2014). Since their paper, a substantial number of studies conducted in

a diverse array of groups have also found OU models to be preferred over BM models (e.g.,

Burbrink et al., 2012; Quintero and Wiens, 2013; López-Fernández et al., 2013; �omas et al.,

2014).

�e tendency of OU to explain data better than BM has inspired diverse process-based expla-

nations, including stabilizing selection, evolutionary constraints and the presence of “adaptive

zones” (Hansen and Martins, 1996; Butler and King, 2004; Hansen, 2012; Pennell and Harmon,

2013). If the widespread support for OU models was indeed caused by the biological processes

that have been proposed, we would expect that an OU model would also be widely adequate.



90

However, this is not what we found. �e datasets deviated signi�cantly from the distributions

expected underOUmodels, most o�en detectedwithCVAR and SVAR but frequentlywith others as

well. OU models o�en failed to capture other important types of heterogeneity—variation with

respect to rate variation (MSIG), trait values (SASR) and time (SHGT). Additionally, a substantial

number of datasets were not well-modeled by a multivariate normal distribution (DCDF). �ese

results suggest a statistical explanation for the high support for OU models. OU predicts higher

variance near the tips of the phylogeny than do BM or EB models (see Figure 1 in Harmon et al.,

2010).

Heterogeneous evolutionary processes, phylogenetic misestimation and measurement error

could also produce such a pattern. In light of our results from model adequacy, it seems likely

that OU is o�en supported because it is able to accommodate more “slop” (phylogenetic and

trait error in addition to model misspeci�cation) than the other models. �is is not to say that

the processes captured by OU models are unimportant in macroevolution, but rather that OU

models may be favored for reasons that aremore statistical than biological. Future, and hopefully

more widely adequate, models of trait evolution could be developed that both include aspects of

the OU model, especially the bounds on trait values, while incorporating additional biological

realism (for a recent example of such a model, see Nuismer and Harmon, 2015).

�e way in which the observed test statistics deviate from the simulated values also supports

the claim that the widespread support for OU is largely a statistical artifact. Model violations

were most frequently detected by the variance estimate, CVAR. If the evolutionary process (or,

alternatively, phylogenetic/measurement error) is heterogeneous across the tree, the lineages in

some parts of the clade will be much more divergent than in others. �e only way for the model

to account for the highly divergent groups is to estimate a large σ2 (and/or a small α parameter

for the OU model). �e unit tree formed by these parameter estimates will have long branches

across the entire tree. In the less divergent parts of the tree, the contrasts calculated on this unit

tree will be small, relative to what we expect under BM. So perhaps counter-intuitively, when

heterogeneity in processes across taxa cause the estimated global rates of divergence to be in�ated,

this results in a higher value for CVAR.

�e second major take-home from the empirical analyses is that error, both in trait values

and phylogenies, can have serious consequences for model adequacy. We frequently detected

deviations frommodel expectationswith SVAR, the slope between the contrasts and their expected
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variances. �is is indicative the rate of evolution appears to be varying with regards to branch

length over which it is measured. �is seems unlikely to be attributable to any biological process;

it is far more probable that this re�ects phylogenetic error (particularly, branch length error).

Above, we outlined some of the de�ciencies of the datasets we used in this paper but argue that

these are likely to be widespread in comparative data. �e test statistics outlined above can serve

as useful diagnostics to aid researchers in identifying outliers thatmay be driving the pattern. We

recommend that researchers faced with an inadequate model plot the magnitude of the contrasts

on to the unit tree; this will usually be much more informative with regards to the model �t than

plotting the magnitude of the contrasts on the original phylogeny. Exceptionally large or small

contrasts on the unit tree can provide clues as towhere the datamay be erroneous. If phylogenetic

errorwere causing poormodel �ts, wewould predict thatmany of the anomalous contrasts would

occur in parts of the tree that are poorly supported.

5.6.3 Extensions of our approach

�ere are a number of additional ways our approach could be extended. First, we have only con-

sidered a limited set of test statistics. We chose them because each of these has a clear statistical

expectation and observed deviations from them have intuitive biological explanations. However,

they are certainly a subset of all possible test statistics that could be applied. For example, because

contrasts are i.i.d., there should be no autocorrelation between neighboring contrasts; the test

statistics could be expanded to detect non-zero autocorrelation. Second, as stated above, our

approach can be applied equally well to phylogenetic regression models, such as phylogenetic

generalized least squares (Grafen, 1989;Martins andHansen, 1997) or phylogeneticmixedmodels

(Lynch, 1991; Housworth et al., 2004; Had�eld and Nakagawa, 2010), where concerns regarding

model adequacy are just as pertinent (Hansen and Bartoszek, 2012). While our approach can be

used to assess the adequacy of the phylogenetic component of regressionmodels “out of the box”,

additional steps are required to assess the adequacy of the linear component. �ird, our method

was designed for quantitative trait models that assume data can be modeled with a multivariate

normal distribution. We need general model adequacy approaches for other types of traits, such

as: discrete traits (i.e., binary, multistate, ordinal; see Beaulieu et al., 2013; Blackmon andDemuth,

2014; Maddison and FitzJohn, 2015, for recent discussions of this); traits that in�uence speciation
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rates (e.g., Maddison et al., 2007; FitzJohn, 2010) and quantitative trait models that do not predict

a multivariate normal distribution of traits (Landis et al., 2013; Schraiber and Landis, 2014).

It may also be possible to extend our approach with an eye towards model selection. Slater

and Pennell (2014) developed their posterior predictive simulation approach (which is related

to our method) to distinguish between a BM model and one where rates of evolution decreased

through time. �ey chose test statistics speci�cally to address this question. Slater and Pennell

found using posterior predictive �t as amodel selection criterion to bemuchmore powerful than

comparing models using AIC or likelihood ratio tests, particularly when “outlier taxa” (lineages

where the pattern of evolution deviates from the overall model) were included in the analysis.

�e logic of Slater and Pennell could be extended to other scenarios; to test some evolutionary

hypotheses, we may care a lot about whether a model explains varation along some axes but be

less concerned about others. �is is a question-speci�c approach tomodel selection and has been

developed in the context of molecular phylogenetics (Bollback, 2002; Lewis et al., 2014). �is is

also the essence of theDecision-�eoretic approach tomodel selection (Robert, 2007), which has

also been well-used in phylogenetics (Minin et al., 2003), but has not previously been considered

in PCMs.

5.7 arbutus

We have implemented our approach in a new R package arbutus. It is available on github

https://github.com/mwpennell/arbutus. For this project, we have also adopted code from

the ape (Paradis et al., 2004), geiger (Pennell et al., 2014a) and diversitree (FitzJohn, 2012a)

libraries. We have written functions to parse the output of a number of di�erent programs for

�tting trait evolutionmodels (see the arbutuswebsite for an up-to-date list of supportedmodels

and packages). As this approach was developed to be general, we have written the code in such

a way that users can include their own test statistics and trait models in the analyses.

5.8 concluding remarks

Attempts to assess the adequacy of phylogeneticmodels are almost as old asmodern comparative

phylogenetic biology. In the 1980s and 1990s much discussion surrounded the appropriateness

https://github.com/mwpennell/arbutus
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of various methods and models (Felsenstein, 1985, 1988; Harvey and Pagel, 1991; Garland et al.,

1992; Díaz-Uriarte and Garland, 1996; Price, 1997; Garland et al., 1999; Garland and Ives, 2000).

We argue that this discussion is key to progressing in our �eld. �is is not simply because we are

concerned that many inferences may not be robust to model violations. Rather, we believe that

considering model adequacy can help suggest new ways of thinking about how to combine data

and models to test macroevolutionary hypotheses.
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chapter 6

How much of the world is woody? Dealing with sampling error
in comparative data6

6.1 summary

�e question posed by the title of this chapter is a basic one, and it is surprising that the answer

is not known. Recently assembled trait datasets provide an opportunity to address this, but

scaling these datasets to the global scale is challenging because of sampling bias. Although we

currently know the growth form of tens of thousands of species, these data are not a random

sample of global diversity; some clades are exhaustively characterised, while others we know

little-to-nothing about. Starting with a database of woodiness for 39,313 species of vascular plants

(12% of taxonomically resolved species, 59% of which were woody), we estimated the status of

the remaining taxonomically resolved species by randomisation. To compare the results of our

method to conventional wisdom, we informally surveyed a broad community of biologists. No

consensus answer to the question existed, with estimates ranging from 1% to 90% (mean: 31.7%).

A�er accounting for sampling bias, we estimated the proportion of woodiness among the world’s

vascular plants to be between 45% and 48%. �is was much lower than a simple mean of our

dataset and much higher than the conventional wisdom. Alongside an understanding of global

taxonomic diversity (i.e., number of species globally), building a functional understanding of

global diversity is an important emerging research direction. �is approach represents a novel

way to account for sampling bias in functional trait datasets and to answer basic questions about

functional diversity at a global scale.

6.2 introduction

�e distinction between a woody and non-woody growth-form is probably the most profound

contrast among terrestrial plants and ecosystems—the di�erence between a forest and a grassland

is the presence of wood. �e recognition of the fundamental importance of this divide dates back
6Previously published as: FitzJohn R.G., Pennell M.W., Zanne A.E., Stevens P.F., Tank D.C., and Cornwell W.K.

2014. How much of the world is woody? Journal of Ecology 102:1266–1272.
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at least to Enquiry into Plants by �eophrastus of Eresus (371–287 bce), a student of Plato and

Aristotle, who began his investigation into plant form and function by classifying the hundreds

of plants in his garden into woody and herbaceous categories (�eophrastus, 1916).

�e last two thousand years of research into wood since �eophrastus classi�ed his garden

have uncovered its origin in the earlyDevonian (∼400Mya; Gerrienne et al. 2011); that prevalence

of woodiness varies with climate (Moles et al., 2009); that wood has been lost many times in

diverse groups, both extant and extinct (Judd et al., 1994), o�en as an adaptation to freezing

temperatures (Zanne et al., 2014a); that it has also been gained many times, particularly on

island systems (Carlquist, 1974; Givnish, 1998); and that many di�erent forms of pseudo-woody

growth habit have appeared across groups that have lost true woodiness or diverged before true

woodiness evolved (Cornwell et al., 2009). We know about its mechanical properties and de-

velopmental pathways, its patterns of decomposition and their e�ects on ecosystem function

(Cornwell et al., 2009), and that woody and herbaceous species have markedly di�erent rates

of molecular evolution (Smith and Donoghue, 2008). However, we have no idea about what

proportion of species in the world are actually woody.

Recently assembled functional trait datasets provide an opportunity to address this question.

However, such datasets are, almost without exception, biased samples of global diversity. Re-

searchers collect data for speci�c questions on a local scale, and assembling these local datasets

creates a useful resource (Kattge et al., 2011). But as with GenBank’s assembly of genetic data

(Smith et al., 2011), the simple compilation of data is not an unbiased sample, and these initial

sampling biases will, in turn, bias downstream analyses. Understanding and accounting for the

biases in these datasets is an important and necessary next step.

We sought to develop an approach that accounts for this bias. In doing so, we were able to re-

ask�eophrastus’ 2000-year old question at a global scale: howmany of the world’s plant species

are woody? We also sought to understand howwell scientists were able to overcome this bias and

make a reasonable estimate. To do this, we took the unconventional approach of coupling our

analysis with an informal survey in which we asked our question to the broader community of

botanists and other biologists.
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6.3 materials and methods

6.3.1 Dataset

We used a recently assembled database with growth-form data for 49,061 vascular plant species

(i.e., lycopods, ferns, gymnosperms and angiosperms), which is the largest such database assem-

bled to date (Zanne et al., 2013, 2014a, available on theDryad data repository;). �is database uses

a functional de�nition of woodiness: woody species have a prominent above-ground stem that

persists through time and changing environmental conditions and herbaceous species lack such

a stem—a de�nition originally suggested by Asa Gray (1887). Zanne et al. (2014a) chose this

simple de�nition because it best characterised the functional aspect of growth form that they

investigated, allowing them to compare species that maintain an above-ground stem through

freezing conditions to ephemeral species that avoid freezing conditions. More precise de�ni-

tions that rely on lignin content and/or secondary vascular tissue from a bifacial cambium are

problematic because there are many exceptions depending on tissue type, times of development,

or environmental conditions (Groover, 2005; Spicer and Groover, 2010; Rowe and Paul-Victor,

2012). Because our analyses and survey were based on this database, we present this functional

de�nition of woodiness here for clarity (see Zanne et al. 2014a, for a discussion of the various

de�nitions of woodiness, their merits, and pitfalls). Note that in addition to species producing

secondary xylem, this de�nition classi�es, among other groups, palms, tree ferns and bamboo

as woody.

As with all large data assemblies, the underlying datasets were collected for a variety of re-

search goals. For example, a number of the datasets come from forestry inventories, which, of

course, are biased towards recording woody species. Other sources of sampling bias, including

geographically restricted sampling in many sub-datasets, may be less obvious but nonetheless

may have major implications for the inferences drawn from aggregate databases.

Because the e�ort to organise plant taxonomy, especially synonymy, is on-going, there was

uncertainty regarding the status of many plant names. To bring species binomials to a common

taxonomy among datasets, names were matched against accepted names in the Plant List (�e

Plant List, 2014). Any binomials not found in this list were matched against the International

Plant Name Index (http://www.ipni.org/) and Tropicos (http://www.tropicos.org/).

Potential synonymy in binomials arising from the three lists was investigated using the Plant

http://www.ipni.org/
http://www.tropicos.org/
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List tools (�e Plant List, 2014). As a result of this cleaning, the number of species in the �nal

dataset was reduced from 49,061 to 39,313.

�eophrastus recognised both the fundamental importance of the distinction betweenwoody

and herbaceous plants, and that this distinction is in some cases di�cult to make. �ere are

two ways that species were recorded as “variable” in form (Beaulieu et al., 2013). First, di�erent

records of a single species may con�ict in growth form (having both records of woodiness and

herbaceousness); this a�ected 307 of the 39,313 species in the database. Second, 546 species

(1.4%) were coded as variable. Following Beaulieu et al. (2013), we coded species in these groups

as “woody” or “herbaceous” when a majority of records were either “woody” or “herbaceous”,

respectively, and for these species, records of “variable” do not contribute to the analysis. Our

�nal database for themain analysis contained 38,810 recordswith both information onwoodiness

and documented taxonomy—15,957 herbs and 22,853 woody species. �is included records from

all �owering plant orders currently accepted by APG III (�e Angiosperm Phylogeny Group,

2009) and the fern taxonomy of Stevens (2001), covering 15,232 genera and 465 families. �e 503

species excluded at this step had identical numbers of records of being woody and herbaceous.

We also ran analyses where we coded growth forms by treating species with any record of woody

or variable as “woody” (and similarly for herbaceous), using all 39,313 species. Neither of these

cases are likely to be biologically realistic but allowed us to evaluate the maximal possible e�ect

of mis-coding variable species.

6.3.2 Estimating the percentage of species that are woody

To estimate the percentage of species that are woody, we cannot simply use the fraction of species

within our trait database that are woody (22,853 of 38,810 = 59%) as these records represent a

biased sample of vascular plants. For example, most Orchidaceae are probably herbaceous; we

have only one record of woodiness among the 1,537 species for which we have data. However, the

fraction of Orchidaceae species with known data (1,537 of 27,801 = 6%) is much lower than the

overall rate of knowledge for all vascular plants (38,810 of 316,143 = 12%), which will upwardly

bias the global estimate of woodiness. Conversely, systematic under-sampling of tropical species

would bias the global woodiness estimate downwards, as tropical �oras are thought to harbour a

greater proportion of woody species than temperate ones (Moles et al., 2009).
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We developed a simple method to account for this sampling bias when estimating the per-

centage of woody species. In our approach, we treat each genus separately, and in all cases know

that there are are nw woody and nh herbaceous species and a total of N species in the genus. For

example, the genus Microcoelia (Orchidaceae) has 30 species in total, and we know that 12 are

herbaceous and none are known to be woody (N = 30, nw = 0, nh = 12). We do not know the

state of the remaining 18 species, so the true number of woody species, Nw , must lie between 0

and 18. In general, we cannot assume that these species are all herbaceous, even though both

biological and mathematical intuition suggest that most of them will be.

We used two di�erent approaches for imputing the values of these unknown species. First, we

assumed that the known species were sampled without replacement from a pool of species with

Nw woody and Nh herbaceous species (Nw + Nh = N), following a hypergeometric distribution.

�e probability that x of the species of unknown state are woody (x = 0, 1, . . . ,N − nw − nh) is

proportional to

Pr(Nw = x) ∝ (
nw + x

nw

)(
N − nw − x

nh

) (6.1)

Under this sampling model, the more species for which we do not have data, the greater the

uncertainty in our estimates for the proportion of species which are woody. ForMicrocoelia this

model gives a 42% probability that all species are herbaceous, and a 90% chance that at most 3

species are woody. �is approach probably overestimates the number of woody species in this

case, and in other cases where all known species are woody (e.g., Actinidia [Ericaceae]) it will

probably underestimate the number of species that are woody. We see this as corresponding to a

weak prior on the shape of the distribution of the fraction of woody species within a genus and

will refer to this as the “weak prior” approach because it weakly constrains the state of missing

species.

However, the distribution of woodiness among genera and families is strongly bimodal; most

genera are either all-woody or all-herbaceous (Figure 6.1, Figure 6.2, and Sinnott and Bailey 1915).

Among the 791 genera with at least 10 records, 411 are entirely woody, 271 are entirely herbaceous,

and only 58 have between 10% and 90% woody species. Qualitatively similar patterns hold at

both the level of family and order, though the distribution becomes progressively less bimodal

as one moves up the taxonomic hierarchy (Figures 6.2 and 6.3). As a result, knowing the state of

a handful of species within a genus can give a reasonable guess at the state of remaining species.
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Figure 6.1: Distribution of the percentage of woodiness among genera. �e distribution of the
percentage of species that are woody within a genus is strongly bimodal among genera (panel A—
showing genera with at least 10 species only). �e two di�erent sampling approaches generate
distributions that di�er in their bimodality (panel B). If we sample species with replacement from
some pool, with a weak prior on the fraction of woodiness within the pool, then we generate
a broad distribution with many polymorphic genera (blue line). Sampling with replacement,
assuming that species are drawn from a pool of species that has a fraction of woody species equal
to the observed fraction of woodiness, generates a strongly bimodal distribution (red line).
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Figure 6.2: Distribution of the percentage of woodiness among families. �e distribution of the
percentage of species that are woody within a family is strongly bimodal among families (panel
A), though less strongly bimodal than among genera. �e two di�erent sampling approaches
generate distributions that di�er in their bimodality (panel B). Using the weak prior approach
generates a broad distribution with many polymorphic genera (blue line), while using the strong
prior approach generates a strongly bimodal distribution (red line).
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Figure 6.3: Distribution of the percentage of woodiness among orders. �e distribution of
the percentage of species that are woody within an order is bimodal among orders (panel A),
though less strongly bimodal than among both genera and families. �e two di�erent sampling
approaches generate distributions that di�er in their bimodality (panel B). Using the weak prior
approach generates a broad distribution with many polymorphic genera (blue line), while using
the strong prior approach generates a strongly bimodal distribution (red line).
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To model the other extreme of sampling, we used an approach where we computed the

observed fraction of woody species

pw = nw/(nw + nh)

and sampled the state of the unobserved species using a binomial distribution, which represents

the case of sampling with replacement. In this case the probability that x of the species are woody

is:

Pr(x = k) = (
N − nw − nh

k − nw

)pkw(1 − pw)
N−nh−k . (6.2)

In cases where all known species are woody (or herbaceous as in Microcoelia) this will assign

all unknown species to be woody (or herbaceous). For such genera, increasing the number of

unobserved species will not increase the uncertainty in the estimate, in contrast to the weak prior

sampling approach. We therefore see the binomial sampling approach as corresponding to a very

strong prior on the bimodal distribution of woodiness among genera, and we will refer to this

as the “strong prior” approach because it more strongly constrains the state of missing species

within genera with no known polymorphism. While neither of these approaches is “correct”, they

probably span the extremes of possible outcomes. In polymorphic genera the two approacheswill

give similar results, especially where the number of unknown species is relatively large.

For genera where there was no information on woodiness for any species, we sampled a

fraction of species that might be woody from the empirical distribution of woodiness fractions

among generawithin the same order. We did this a�er imputing themissing species values within

those other genera. So, if a genus is found in an order with genera that hadwoodiness fractions of

{0, 0, 0.1, 1}we would have approximately a 50% chance of sampling a 0% woodiness fraction for

a genus, with probabilities from 0.1 to 1 being fairly evenly spread. Given this woodiness fraction,

we then sampled the number of species that are woody from a binomial distribution with this

fraction and the number of species in the genus as its parameters.

In addition to the number of species known to be woody and herbaceous, we also require an

estimate of the number of species per genus. For this, we used the number of accepted names

within each genus in the Plant List (�ePlant List, 2014). �e taxonomic resourceswere compiled

by Zanne et al. (2014a) are on available on Dryad (Zanne et al., 2013).
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For each genus, we sampled the states of unobserved species, from either the hypergeometric

or binomial distribution, parametrised from the observed data for that genus. For each samplewe

can then combine these estimates to compute the number (or fraction) of species that are woody

at higher taxonomic levels (family, order or vascular plants). We repeated this sampling 1,000

times to generate distributions of the number (or fraction) of species that are woody. �e R code

and data to replicate this analysis are available on github (https://github.com/richfitz/

wood).

6.3.3 Survey

In estimating the number of species within angiosperm families, Joppa et al. (2010) found that

expert opinion generally agreed closely with estimates from a statistical model. We were inter-

ested in whether a consensus answer existed—even if not formalised in the literature—and if

so, whether it was consistent with our estimates. We created an English-language survey (which

we also translated into Portuguese) asking for an estimate of the percentage of species that are

woody according to the above de�nition. We also asked respondents to indicate their level of

familiarity with plants, level of formal training, and the country in which they received their

training. We distributed the survey to the community via several electronic mailing lists with

wide circulation among biologists: evoldir, ecolog, r-sig-phylo, taxacom, herbaria, as

well as local lists. We also posted links on the social-networking platforms google+, twitter

and facebook to reach a broad audience. In order to increase representation of survey responses

from Latin America, we translated the survey into Portuguese and distributed it to Brazilian

biology facebook groups and university mailing lists.

To analyse the survey data, we used linear regression on logit-transformed percent woodiness

as (see Warton and Hui, 2011) and treated the self-reported level of botanical familiarity and

education as factors. We converted country of training to coarse latitude using shape�les from

the gbif dataportal (GBIF, 2013), and converted these into “tropical” and “temperate” using an

absolute latitude of 23○ 26′.

https://github.com/richfitz/wood
https://github.com/richfitz/wood
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6.4 results

Across all vascular plants, we estimated the fraction of woody species to be between 45% and

48%. Speci�cally, using our strong prior sampling approach (binomial distribution) we estimated

45.6% of species are woody (95% con�dence interval of 45.3-45.9%) and with the weak prior

(hypergeometric distribution) approach we estimated 47.6% (95% CI of 46.9-48.2%) (Figure 6.4).

�e di�erent approaches generated di�erent distributions of the per-genus percentage of

woodiness (Figure 6.1), with a less strongly bimodal distribution using the weak prior approach.

(See Figures 6.2 and 6.3 for the distributions at the level of families and orders, respectively.)

However, the two di�erent approaches (strong versus weak priors) led to similar phylogenetic

distributions of estimated woodiness (Figure 6.5 versus Figure 6.6), di�ering only in the details.

We have compiled a table of the estimated number of woody species under both sampling ap-

proaches for all genera, families and orders included in our analysis. �is is available on the

Dryad data repository (FitzJohn et al., 2014, doi:10.5061/dryad.v7m14).

As stated above, neither of these sampling approaches is “correct”. However, as the observed

distribution of woodiness fraction among genera is itself strongly bimodal, we believe that the

true result lies closer to 45% than to 47%. A more sophisticated hierarchical modeling approach

could lead to a more precise answer, but we feel that our values probably span the range of

estimates that such an approach would generate. And in any case, we felt that addressing a simple

question warranted a simple approach.

Di�erent codings of variable species (see above) signi�cantly moved our estimates, despite af-

fecting a small minority of species. Coding all variable species as woody, our estimates increased

by 1.6% to 47.1% with the strong prior approach and by 1% to 48.6% with the weak prior approach

(Figure 6.7). Similarly, with coding all variable species as herbaceous, the fraction of woody

species decreased by 1.9% to 43.7% under a strong prior and by 1.3% to 46.3% under a weak prior

(Figure 6.7).

�ere was strikingly little consensus among researchers as to the percentage of species that

are woody. We received 292 responses from 29 countries, with estimates that ranged from 1% to

90% with a mean of 31.7% (Figure 6.8). �e lowest estimate from our analyses (45% woody) is

greater than 81% of our survey estimates.

We found little e�ect of respondents’ level of training on their estimate (Figure 6.9). �ere

was a signi�cant e�ect of the respondent’s familiarity with plants on the estimates, primarily
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Figure 6.4: �e posterior probability distribution for the proportion of the world’s �ora that is
woody, using our two sampling approaches. �e red (le�) distribution samples missing species
using the strong prior approach (binomial distribution), while the blue distribution (right)
samples missing species using the weak prior approach (hypergeometric distribution).
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Figure 6.5: Distribution of the percentage of woodiness among orders of vascular plants.
Each tip represents an order, with the width of the sector proportional to the square root of
the number of recognised species in that order (data from accepted names in �e Plant List
2014). �e bars around the perimeter indicate the percentage of woody (black) and herbaceous
(white) species, estimated using the “strong prior” (binomial) approach. Using the “weak
prior” (hypergeometric) approach generally leads to an estimated percentage that is closer
to 50% (see Figures 6.6 and 6.1). Phylogeny from Zanne et al. (2014a) (available on Dryad;
doi:10.5061/dryad.63q27/3). Orders not placed by APG III (�e Angiosperm Phylogeny Group,
2009) are not displayed. We note that there is some discrepancy between the Zanne et al. tree
and previous well-supported phylogenetic hypotheses (e.g., Soltis et al., 2011), most notably, in
the position of the Magnoliids; however, the higher-level relationships do not in�uence any of
the analyses.
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Figure 6.6: Distribution of the fraction of woodiness among orders of vascular plants. Each
tip represents an order, with the fraction of circumference proportional to the square root of
the number of recognised species in that order (data from accepted names in �e Plant List
2014). �e bars around the perimeter indicate the percentage of woody (black) and herbaceous
(white) species, estimated using the “weak prior” (hypergeometric) approach. Using the “strong
prior” (binomial) approach generally leads to an estimated percentage that is further away from
50% (see main text Figures 1 and 2). Phylogeny from Zanne et al. (2014a) (available on Dryad;
doi:10.5061/dryad.63q27/3). Orders not placed by APG III (�e Angiosperm Phylogeny Group,
2009) are not displayed.
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Figure 6.7: �e e�ect of di�erent coding on estimates of the fraction of species that are woody,
under the strong prior approach (binomial; panel A) and weak prior approach (hypergeometric;
panel B).�e dark distributions are the results from ourmain analysis (Figure 6.4). Distributions
to the le� (with lower estimates of woodiness) code all species with any record of herbaceousness
or variability as herbaceous. Similarly, distributions to the right (with higher estimates of
woodiness) code all species with any record of woodiness or variability as woody.
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driven by respondents with little botanical familiarity (the “What’s a Plant?” category in the

survey), whose estimates tended to be lower (less woody) than the estimates of those with more

familiarity. However, excluding respondents with little familiarity with plants had virtually no

e�ect on the mean estimate of respondents (32.4% excluding this category as compared to 31.7%

with them included). Restricting survey responses to only respondents at least “Familiar” with

plants, and with at least an undergraduate degree in botany or a related �eld (143 responses), only

increased the mean survey estimate to 32.9%.

Before carrying out the survey, we had hypothesised that researchers from tropical regions

may perceive the world as woodier than researchers from more temperate regions due to the

latitudinal gradient in woodiness (Moles et al., 2009). Indeed, there was an e�ect of being in a

tropical country, with the estimates from tropical countries being slightly higher than those from

temperate countries (p=0.02), but this e�ect was very small (R2=0.02, Figure 6.8).

6.5 discussion

Our estimates of woodiness di�ered from both the survey and the simple mean of the global

database: neither simple statistics nor biologists’ intuition were accurate in this case. �e di�er-

ence from community knowledge is in striking contrast to Joppa et al. (2010), who found that

that expert opinion on the number of species within di�erent angiosperm groups agreed closely

with results based on analyses of data and their bias.

�e respondents to our survey perceived there to be substantially fewer woody species in

the world than there probably are. �is herb-centric view of the world may arise from the

importance of our (mostly herbaceous) cultivated crops, or the fact that people—including most

researchers—likely spendmore time in the garden than in the forest, and especially not in tropical

forests where diversity is high and disproportionately woody.

Our estimates of the percentage of species that are woody (45/48%) di�er from the raw esti-

mate based on species in our database (59%). �is di�erence is caused by the interaction between

biased sampling and clustered trait data at a variety of taxonomic scales. �e distribution of

woodiness is bimodal among genera, and the distribution of sizes of those genera di�ers with

woodiness. Genera that are primarily herbaceous (less than 10% woody species for genera with

at least 10 records) were on average larger than primarily woody genera (more than 90% woody
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Figure 6.8: Distribution of all responses to the survey question “What percentage of the world’s
vascular plant species are woody?”. �e mean and 95% con�dence intervals for our estimates of
the proportion of woody species from the empirical data are depicted by the horizontal shaded
rectangles; the blue rectangle corresponds to the “weak prior” approach and the red rectangle
corresponds to the “strong prior” approach. Panel A includes all 292 responses. In panel B, the
282 responses that indicated country are shown separated into “tropical” (green distribution) and
“temperate” (purple). Estimates from tropical countries were slightly, but signi�cantly, higher
than those from temperate countries (p =0.02, R2=0.02).
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species), with a mean of 214 species compared to 151 (See Figure 6.10). �is means that even a

random sampling above the level of species will lead to a biased estimate.

�e e�ect of sampling biaswithin our database on the estimate is ampli�ed by the distribution

of woodiness at higher taxonomic levels, with families or even orders o�en being predominantly

either woody or herbaceous (Figure 6.5 and Sinnott and Bailey 1915). �ere are two major clades

that are primarily herbaceous—themonocots (Monocotyledons) and ferns (Monilophyta). How-

ever, there are many primarily herbaceous clades nested within woody clades, and vice versa,

which makes the combination of taxonomic and functional information crucial for answering

this type of question.

We also found that the way in which we handled variable species signi�cantly altered the

estimates. �at changing the state of such a relatively small number of species has the potential

to alter inferences made at a global scale is rather surprising. Two points regarding this are

worth noting here. First, we reiterate that our alternate coding schemes (all variable species

coded as herbaceous and all variable species coding as woody) are rather extreme and unlikely

to be biologically realistic. Second, while these alternate coding schemes certainly a�ected the

estimates, the magnitude of their e�ect is much less than that of the overall sampling bias in the

original database.

Higher-order classi�cations are at least as much a product of human pattern matching as

biological processes. Genera correspond to the morphological discontinuities among species

that humans deem important (Scotland and Sanderson, 2004), which likely includes woodiness

(e.g., Hutchinson, 1973). �e relative rarity of genera with signi�cant numbers of both woody

and herbaceous species (Figure 6.1) reinforces the importance of this trait. A signi�cant, but

unaccounted for, source of error is the likely nonrandom woodiness of undiscovered species.

We would predict that there are likely more herbs to be discovered than woody plants; larger

genera tend to be more herbaceous (Figure 6.10) and we think it is more likely that new species

are yet to be described in these large groups. In principle, rarefaction analysis could estimate

the number of species remaining to be discovered in di�erent groups, but this is not possible for

many plant clades (Costello et al., 2011); for many clades the “collecting curve” shows little sign

of saturation, which is required for such an analysis.

Sampling biases are pervasive in ecological datasets, and need to be addressed when using

them for analyses. Global databases of functional traits (e.g., TRY; Kattge et al., 2011) are central
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Figure 6.10: �e relationship between the size of a genus and its chance of being “variable” for
woodiness. We plotted the relationship between the level of variablitiy in the dataset (from all of
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in a genus (panel A) and the number of species with known state (panel B). Larger genera tend
to be more variable although this pattern is not strong. We then coded all genera as being either
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and the number of species per genus (panel C) and the number for which we have known states
(panel D). Using the binary characterization, it is clear that large genera have a higher probability
of being variable, even if few species actually vary (compare with panels A and B). �ough there
is a great deal of scatter, larger genera also tend to bemore herbaceous than woody genera (panel
E) but the genera for which we have more data tend to be more woody (panel F). �is shows
that the available data is generally biased towards woody species. In all panels, the red line is a
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to biodiversity research, but through no fault of the database collator they are inevitably biased

in terms of taxonomic breadth and this may have serious consequences for the reliability of

inferences drawn from them. For example, for woodiness the economic importance of forestry

species likely leads to their over-sampling in this dataset. �is sampling bias also a�ects many

commonly usedmethods in ecological and evolutionary research (e.g., Ackerly, 2000; Nakagawa

and Freckleton, 2008; Pennell and Harmon, 2013; Pakeman, 2014) in addition to its well under-

stood e�ects on conventional statistics. In our case, taking the data at face-value, we would have

greatly overestimated the global percentage of woody species. Inferring the global frequency of

any trait would face the same problem. For example, the ecologically important traits of nitrogen-

�xing, mycorrhizal symbioses and pollinator syndrome are strongly taxonomically structured,

and we would expect raw estimates to be biased in the same way that woodiness was. Our

approach was developed for binary traits but similar approaches could be developed for multi-

state categorical or continuous traits.

In addition to improving an estimate of the mean, the methods in this chapter can also be

used to generate a probability of each unobserved species being woody. �us, it can be used as

a type of taxonomically-informed data-imputation. Recently, two related approaches have been

developed to do just this, both focusing on continuous traits (Swenson, 2014; Guénard et al., 2013).

While their details di�er, both approaches are model-based in that they impute trait values for

missing species based on the �tted parameters of phylogeneticmodels estimated from the species

already in the database. �is is conceptually di�erent from our approach; we do not assume any

model for the evolution of woodiness, such as the Mk model (Pagel, 1994; Lewis, 2001), which is

commonly used tomodel discrete characters evolving on a phylogeny. Both types of approaches—

using taxonomic categories (this study) versusmodeling trait evolution along a phylogeny—have

advantages and disadvantages. One disadvantage of a modeling-based approach is that if the

sampling is biased with respect to the character states, the parameter estimates themselves will

be biased, leading to an incorrect estimation of the states for the remaining species. While

our approach avoids this issue, we ignore potentially useful information on the phylogenetic

relationships within genera and branch lengths separating lineages.
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6.6 concluding remarks

As a result of centuries of e�ort, we now have an increasingly complete understanding of taxo-

nomic diversity. More recent developments in assembling global trait databases o�er the promise

of gaining similar insights into the functional diversity of the earth’s biota. While the question

we ask in this chapter—what proportion of the world’s �ora is woody?—is simple, answering it

required dealing with the pervasive biases that will be present inmost large datasets. Researchers

should be aware that because of these biases and the phylogenetically structured distribution of

traits, the law of large numbers will not apply, and that estimates from trait databases will not

converge on the true value. Our approach is just one of many potential ways to address these

biases; we hope that our analysis encourages others to think critically and creatively about the

problem. Just as �eophrastus’ garden was a non-random sample of the Greek �ora, our trait

databases contain diverse biases; accounting for them will be important in making inferences

about broad-scale ecological and evolutionary patterns and processes.
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appendix a

Supplement to Chapter 4: Theoretical results

Here we describe the theoretical models discussed in the main text. We present only the main

results. We consider twomain types of models: those that include direct selection on fusions and

those that include sexually antagonistic selection. �e direct selectionmodels can also be used to

consider the special cases of neutral evolution, weak selection, andmeiotic drive. For all cases we

allow for the possibility of di�erences between chromosomes in both e�ective population sizes

and mutation rates. Several results have been previously derived (see Charlesworth et al., 1987;

Charlesworth, 1994; Kirkpatrick and Hall, 2004). We rederive them here to put them in a uni�ed

framework with a consistent notation.

a.0.1 Direct selection

We track the rate of appearance and establishment of a sex-autosome fusion, where the rate

at which mutation generates a fusion between a sex chromosome and an autosome is µsex
C per

gamete per generation for chromosome C (C = X ,Y , Z , orW) in males (sex = m) and females

(sex = f ). We assume that, at birth, the population is of constant total size N , consisting of an

equal number (N/2) of males and females. Not all individuals survive and successfully enter the

reproductive pool. Speci�cally, we assume that the numbers of females andmales that reproduce

are N f and Nm, where each of these reproductive individuals is expected to have a Poisson

distributed number of o�spring. �e e�ective population sizes of Y and W chromosomes are

then Ne ,Y = Nm and Ne ,W = N f , respectively, while the e�ective population sizes of X and Z

chromosomes equal:

Ne ,X =
9N fNm

N f + 2Nm
(a.1a)

Ne ,Z =
9N fNm

2N f + Nm
(a.1b)

(Wright 1933; see also Caballero 1995; Laporte and Charlesworth 2002 for extensions to non-

Poisson distributions). Note that the above equations de�ne the e�ective number of chromo-

somes, not the e�ective number of individuals.



138

Once the fusion appears, we approximate its establishment rate using Kimura’s (1962) di�u-

sion approximation for the �xation probability. Dominance has little e�ect on which type of

fusion is expected to become established most frequently. Hence, we focus here on the simpler

additive case, where the �xation probability of a fusion is:

PC =
1 − exp[−2sCNe ,Cp]

1 − exp[−2Ne ,CsC]
(a.2)

where sC is the selection coe�cient acting directly upon individuals carrying the fusion when

rare (as heterozygotes), p is the initial frequency of the fusion, and Ne ,C is the relevant e�ective

population size of the chromosome C. (Recall that Ne ,C is the e�ective number of chromosomes,

not individuals, which is why ‘2’ rather than the standard ‘4’ appears in Equation a.2.) We also

assume that selection on the fusion is su�ciently weak that the selection coe�cient can be taken

as the average over many generations, accounting for the time spent in each sex:

sX =
2
3
s
f

X +
1
3
smX (a.3a)

sY = smY (a.3b)

sZ =
1
3
s
f

Z +
2
3
smZ (a.3c)

sW = s
f

W (a.3d)

Below, we consider both the rate at which fusions originate and the rate at which they �x, for

fusions involving di�erent sex chromosomes.

Y-A fusions — Y-A fusions appear in the population at rate N
2 µ

m
Y . �e probability that the

fusion �xes is the chance that the fusion is present among the adult males of the population,

Nm/(N/2), times the probability that the fusion will be the ultimate ancestor of the Y chromo-

somes among the descendants a�er some long period of time, given by (a.2) for the C = Y

chromosome with Ne ,Y = Nm and p = 1/Nm. Multiplying the mutation rate by the �xation
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probability, the overall establishment probability for a Y-A fusion is

RY = Nmµm
Y PY

= Nmµm
Y

1 − exp[−2sY]
1 − exp[−2NmsY]

(a.4)

We note that (a.4) is the standard result for the establishment of a mutation in a haploid model,

with the additional subscripts and superscripts added for consistency.

X-A fusions — X-A fusions appear in the population at rate 2N2 µ
f

X among females and at rate
N
2 µ

m
X among males, where the former expression accounts for the fact that females carry two X

chromosomes. A fusion arising in a female has a chance N f /N
2 of surviving to reproduce. �e

probability that the fusion will be the ultimate ancestor of the X chromosomes a�er some long

period of time is then given by (a.2) for C = X, with Ne ,X given by (A.1a) and p = 2
3/(2N f )

accounting for the fact that 23 of the X chromosomes in the next generation come from these

mothers, among whom the fusion is at initial frequency 1/(2N f ). A similar calculation applies

to males, so that the net establishment rate is approximately:

RX = 2N f µ
f

X

1 − exp[−2Ne ,X(
2
3
1
2N f )sX]

1 − exp[−2Ne ,XsX]
+ Nmµm

X

1 − exp[−2Ne ,X(
1
3
1

Nm )sX]

1 − exp[−2Ne ,XsX]
(a.5)

W-A fusions — �e establishment rate of W-A fusions, RW , is derived as for Y-A fusions,

giving (a.4) but with m replaced by f and Y replaced byW .

Z-A fusions — �e establishment rate of Z-A fusions, RZ , is derived as for X-A fusions, giving

(a.5) but with m and f interchanged and X replaced by Z.

Neutral fusions — When selection is negligible, the above formulae can be simpli�ed sub-

stantially. In the limit for neutral fusions (sC = 0), the net establishment rate equals the rate at

which each type of fusion arises:

RY = µY , (a.6a)

RX =
2
3
µ
f

X +
1
3
µm
X , (a.6b)

RW = µW , (a.6c)
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RZ =
2
3
µm
Z +
1
3
µ
f

Z . (a.6d)

Observe that the reproductive population sizes of males (Nm) and females (N f ) are irrelevant to

the relative rate of fusion establishmentwhen there is nodirect selection on the fusions (Charlesworth

and Charlesworth, 1980). A neutral fusion is less likely to survive and reproduce if it �rst appears

in the sex with the lower reproductive population size, but if it does, then it has a higher chance

of being the progenitor chromosome; these e�ects exactly cancel out.

Weak selection — �e relative establishment rates also get simpli�ed substantially when

selection is very weak: ∣θ∣ << 1, where θ = 4NsC . To leading order in θ, the establishment rate

for each type of fusion, measured relative to the rate of X-A fusions, is:

RY

RX

=
3α
2 + α

(1 + θ
1 − 4γ
4γ(2 + γ)

) , (a.7a)

RW

RX

=
3
2 + α

(1 − θ
7 − γ

8(2 + γ)
) , (a.7b)

RZ

RX

=
2α + 1
2 + α

(1 + θ
9(1 − γ)

8(2 + γ)(1 + 2γ)
) , (a.7c)

where fusions arise in males at a rate α = µm/µ f times that in females and the number of

reproductive females is γ = N f /Nm times the number of males (so that the sex ratio Nm/(Nm +

N f ) = 1/(γ + 1)). In the absence of a sex bias in the mutation rate (α = 1) or number of

reproductive individuals (γ = 1), we �nd that

RY

RX

=
RW

RX

= 1 −
θ

4

and
RZ

RX

= 1.

�is con�rms that direct selection alone cannot explain the predominance of Y-A fusions.
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Similarly, the overall rate at which fusions arise in XY systems versus ZW systems is the sum

of the rates for the component chromosomes, keeping only leading order terms in θ:

RX + RY

RZ + RW

=
1 + 2α
α + 2

+
θ

2
[(
3α
2 + α

)(
1 − 4γ
4γ(2 + γ)

)+

(
3(1 + 2α)
(2 + α)2

)(
7 − γ

8(2 + γ)
) − (

(1 + 2α)2

(2 + α)2
)(

9(1 − γ)

8(2 + γ)(1 + 2γ)
)] . (a.8)

a.0.2 Sex-Antagonistic selection

Consider an autosomal locus with selection acting in opposite directions in males and females,

with allele A0 favored in males and allele A1 in females. If selection is weak, the allele frequency

qi of allele Ai is approximately the same in males and females. Given the sex-speci�c �tness of

genotype i j,W sex
i j , we can then de�ne the selection coe�cient favoring allele Ai in a particular

sex as

ssexi = (W sex
i . /W̄ sex) − 1.

HereW sex
i . is the marginal �tness of Ai in that sex (W sex

i . = q0W
sex
i0 + q1W

sex
i1 ), and W̄ sex is the

mean �tness (W̄ sex = q0W0. + q1W1.).

Following similar logic used to derive equations (A.4) and (A.5), fusions bearing allele Ai

arise with the Y chromosome and are found in a reproductive male at rate qiµm
Y N

m or arise with

the W and are found in a reproductive female at rate qiµ
f

WN f . Similarly, the rate at which X-A

fusions or Z-A fusions bearing allele Ai originate is qi(2µ
f

XN
f + µm

XN
m) or qi(µ

f

ZN
f + 2µm

Z N
m),

respectively. If we assume selection isweak, we can average over the time the chromosome spends

in a female and a male to obtain the strength of selection acting on a fusion bearing allele Ai :

sX ,i =
2
3 s

f

i +
1
3 s

m
i for an X-A fusion, sY ,i = smi for a Y-A fusion, sZ ,i =

1
3 s

f

i +
2
3 s

m
i for a Z-A fusion, and

sW ,i = s
f

i for a W-A fusion.

Because the X and W are more o�en found in females, the �xation probability of an X-A

or W-A fusion is much higher if it captures the female-bene�t allele A1 than if it captures the

male-bene�t allele (and vice versa for Y-A and Z-A fusions). Using 2sCNe ,Cp to approximate the

�xation probability (A.2) for a bene�cial fusion initially at frequency p, the �xation probability

of an X-A fusion is approximately PX = 2sX ,1Ne ,X p when it captures allele A1 and zero otherwise.
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Similarly, PW = 2sw ,1Ne ,W p when a W-A fusion captures A1, PY = 2sY ,0Ne ,Y p when a Y-A fusion

captures A0, and PZ = 2sZ ,0Ne ,Z p when a Z-A fusion captures A0.

Multiplying together the rate that fusions originate in each sex times their �xation probability

(accounting for the initial frequency in that sex), we get the rate at which fusions are expected to

become established for each sex chromosome:

RY = q0µYN
m(2sm0 ), (a.9a)

RX = 2q1
9N fNm

N f + 2Nm
(
2
3
µ
f

X +
1
3
µm
X)(

2
3
s
f
1 +
1
3
sm1 ) , (a.9b)

RW = q1µWN f (2s f1 ), (a.9c)

Rz = 2q0
9N fNm

2N f + Nm
(
1
3
µ
f

Z +
2
3
µm
Z )(

1
3
s
f

0 +
2
3
sm0 ) . (a.9d)

At an autosomal locus subject to sexually antagonistic selection, each allele has spent half

of its time in males and half in females, rising in frequency in one sex and falling in the other

sex. Consequently, to remain at equilibrium over the longer term, the selection coe�cients for

each allele must balance across the sexes, with s f0 = −sm0 and s
f
1 = −sm1 . Furthermore, the �tness

de�nitions imply that q0ssex0 + q1ssex1 must equal zero since they sum to

q0W
sex
0. + q1W sex

1.

W̄ sex
− 1 =

W̄ sex

W̄ sex
− 1 = 0.

Using these relationships to substitute for s fi and q1, we �nd:

RY = 2sm0 q0(µYNm), (a.10a)

RX = 2sm0 q0
⎛

⎝

(2µ f

X + µm
X )N

fNm

N f + 2Nm

⎞

⎠
, (a.10b)

RW = 2sm0 q0(µWN f ), (a.10c)

RZ = 2sm0 q0
⎛

⎝

(µ
f

Z + 2µ
f

Z)N
fNm

2N f + Nm

⎞

⎠
. (a.10d)

�us, with equal mutation rates and equal numbers of reproductive individuals of the two sexes,

the establishment rates all equal one another. Otherwise, recalling that α = µm/µ f and γ =
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N f /Nm, the establishment rates relative to the rate of X-A fusions become:

RY

RX

≈
α(2 + γ)

γ(2 + α)
, (a.11a)

RW

RX

=
2 + γ

2 + α
, (a.11b)

RZ

RX

=
(1 + 2α)(2 + γ)

(1 + 2γ)(2 + α)
, (a.11c)

Consequently, Y-A fusions are expected to predominate (with RY > max[RX , RW , RZ]) if, and

only if, α > γ.



144

appendix b

Supplement to Chapter 5: Bayesian results

As with the likelihood results (described in main text), OUmodels were highly supported across

many datasets; 177/337 clades had the highest DIC weight (DICw) on an OU model; 156 of them

with greater than 75% of the total DICw (see �gure b.1). While a generally similar pattern of

model support holds for both likelihood andBayesian inference, the likelihood analyses aremuch

cleaner (compare Figures 5.6 and b.1). �is di�ernce can be explained by the fact that there is

a tight statistical relationship between the AIC values for these three models. If two models

have identical likelihoods, the AIC scores, de�ned as −2L + 2k (where L is the log-likelihood of

the model and k is the number of parameters) will di�er by 2. As BM is a special case of both

OU and EB, in opposite directions in model space, the highest AICw possible for BM is ∼0.731.

�e rare clades where both OU and EB have higher support than BM likely re�ect problems in

optimization. Calculating DIC values from posterior samples is inherently more stochastic; if

there is little information in data, the best DIC model will depend on the values sampled by the

chain.

For the model adequacy results, the results were also very similar to that of the likelihood

analyses (compare to Results section in Chapter 5). �e adequacy of these simple models

was poor across the majority of the datasets (Figure b.2). Again, we limit our analyses of model

adequacy to only the most highly supported model in the candidate set.

Of the 72 comparative datasets of SLA, we detected deviations from the expectations of the

best supportedmodel using at least one test statistic in 35 cases, 26 by at least two, and 19 by three

or more. For the seed mass data, we detected deviations with at least one test statistic in 173 cases

(by two ormore in 109 datasets and by at least three in 72 cases). 24/39 leaf nitrogen datasets were

found to be inadequately described by the best supported model with at least one test statistic (13

by at least two and 10 by at least three).

Also, similar to the likelihood analyses, the frequency at which deviationswere found di�ered

between the test statistics. In 171 cases, we detected model misspeci�cation with CVAR and with

SVAR, 141 (MSIG: 24, SASR: 101, SHGT: 78, DCDF: 67). Again, only 105 datasets were adequately
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Figure b.1: �e relative support, as measured by DIC weight, for the three models used in our
study (BM, OU, and EB) across all 337 datasets. All models were �t with MCMC. Like the model
comparisons done with AIC, an OU model is highly supported for a majority of the datasets.
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Figure b.2: �e distribution of p-values for our six test statistics over all 337 datasets in our
study a�er �tting the models usingMCMC.�e p-values are from applying our model adequacy
approach to the best supported of the three models (as evaluated with DIC). Many of the
datasets deviate from the expectations under the best model along a variety of axes of variation.
Deviations are particularly common for the coe�cient of variation CVAR and the slope of the
contrasts against their expected variances SVAR.



147

modeled by one of the three models in our candidate set. As with the likelihood analyses, we

were more likely to detect model deviations when examining larger clades (�gure b.3).
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Figure b.3: �e relationship between clade size and a multivariate measure of model adequacy
from the Bayesian analysis. �e Mahalanobis distance is a scale-invariant metric that measures
the distance between the observed and simulated test statistics, taking into account the
covariance between test statistics. �e greater the Mahalanobis distance, the worse the model
captures variation in the data. Considering only the best supported model for each clade (as
chosen by DIC), there is a striking relationship between the two—the larger the dataset, the
stronger the evidence that the model does not capture variation in the data.
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