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ABSTRACT

Phase field modeling (PFM) is a well-known technique for simulating microstruc-

tural evolution. To model grain growth using PFM, typically each grain feature is

assigned a unique non-conserved spatial variable known as an order parameter. Each

order parameter field is then evolved in time. Traditional approaches for modeling

these individual grains uses a one-to-one mapping of grains to order parameters since

the interactions among grains is not known a priori. This presents a challenge when

modeling large numbers of grains due to the computational expense of using many

order parameters. This problem is exacerbated when using common numerical so-

lution schemes including the fully-implicit finite element method (FEM), as the global

matrix size is proportional to the number of order parameters squared. While previous

work has developed methods to reduce the number of required variables and thus

the computational complexity, none of the existing approaches can be applied to an

implicit FEM implementation of PFM. Additionally, polycrystal modeling with grain

growth and other coupled physics requires careful tracking of each grain’s position and

orientation, which is lost when using a reduced number of variables. Here, we present

a modular, scalable distributed feature tracking and remapping algorithm suitable for

solving these deficiencies. The algorithm presented in this dissertation maintains a

unique ID for each grain even after variable remapping without restricting the underly-

ing modeling method. This approach enables fully-coupled multiphysics using a fully

generalized finite element method. Implementation details and comparative results of

using this approach are presented.
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Chapter 1

INTRODUCTION

“Mathematical reasoning may be regarded rather schematically as the exercise of a combi-
nation of two facilities, which we may call intuition and ingenuity.”
- Alan Turing

Simulations consisting of multiple evolving features are common in the computa-

tional science community. A feature in this context refers to a topologically connected

region within the domain that changes over time. Examples include the tracking of

gas bubbles in a fluid, the formation of individual cracks in rocks or other media, and

the evolution of grains in a polycrystal material. However, analyzing the raw spatial

variable values that represent each of these features in these examples isn’t sufficient

for quantifying the number, sizes, or distribution information as important connection

information must also be extracted. The efficient discovery and extraction of feature

information is a well studied problem in the computer science field and is known as

connected component identification [41, 66, 25, 14, 65]. These techniques have in turn

been applied to create distributed feature extraction and tracking techniques for high

performance visualization workloads [83, 84, 16, 18].

Polycrystal grain evolution is an important problem in the materials science com-

munity. Understanding material microstructure evolution under a wide variety of

environmental conditions leads to the design and development of stronger, safer, and

longer lasting materials. These materials can then be used in the manufacture of

improved vehicles, stronger buildings, and safer power generation. The numerical

methods for studying this problem have been continuously improving over the last

30 years. The earliest polycrystal models were Monte Carlo Potts models [3, 87], but

since then, researchers have employed front tracking [27, 70], phase field (PF) [24, 49],

cellular automata [60], and level set methods [100]. While all of the various models
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have been shown to predict similar behavior, Monte Carlo Potts models and the phase-

field method are the most popular due to their flexibility and computational efficiency.

While the phase-field method was originally implemented using a finite-differencing

scheme, the finite element method (FEM) has gained in popularity in recent years

due to the myriad of features offered by this approach: irregular domain shapes, un-

structured mesh, multiphysics coupling, and mesh adaptivity. However, through all

of these advances in numerical techniques, a barrier has remained to running the

polycrystal grain evolution problem using the phase-field method with a pure finite

element implementation due to the more complex global basis function continuity and

consistency requirements of this method. Many scalable approaches to solving the

polycrystal evolution problem using a finite-differencing scheme do exist [57, 50, 39,

96, 97, 68]. These methods reduce the problem size by either reducing the number of

field variables required through clever remapping techniques or by restricting the com-

putational domain through bounding box techniques. We refer to the former technique

as “reduced order parameter” modeling.

The work in this dissertation focuses on the application of a scalable extraction

and tracking method along with a solution remapping algorithm to create a novel

reduced order parameter finite element phase-field modeling method. The algorithms

presented have been developed in a modular fashion to work on a wide variety of

problems with an extensive feature set. These capabilities includes the ability to run on

fully-unstructured meshes with adaptivity, and the use of arbitrary periodic boundary

conditions while remaining agnostic to the underlying physics being simulated.

1 . 1 Problem Description

Traditional polycrystal evolution models employ individual order parameter vari-

ables for each modeled grain that are defined over the entire simulation domain. This

is due to the fact that the size and location of the grains undergoing evolution is
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unknown. This approach lacks scalability as larger systems of grains are modeled

as the vast spatial area of each order parameter’s representation is unused. However,

these variables still need to be stored and computed wasting both memory and com-

putational resources. While there have been several solutions to this problem, their

applicability is limited to specific modeling methods. We seek a method that can be

completely generalized to run with a fully-implicit, fully-unstructured finite element

method with mesh adaptivity.

In order to reduce the number of variables required to represent a large number

of grains (features) that can potentially occupy the entire domain, we must employ a

technique to reuse variables to represent several grains while maintaining the integrity

of each grain. That is, we must assure that grains represented on the same variable

are never allowed to interact. A method to remap entire grains from one variable

to another dynamically will be used to minimize the number of variables needed

for each simulation while maintaining a unique identifier to each grain as it moves

to different solution fields. This approach must not interfere with the underlying

modeling method, in this case the finite element method. Finally, this approach must

be scalable both in terms of the number of grains represented, but also in the efficient

use of parallel computational resources.

1 . 2 Purpose and Scope

In this research we propose a novel extraction, tracking and remapping algorithm

and its corresponding implementation within the Multiphysics Object Oriented Sim-

ulation Environment (MOOSE) [30] phase-field module. The correctness and perfor-

mance of this algorithm is also evaluated versus identical phase-field models that

do not utilize this new algorithm. All findings and contributions in this research

are published as open-source software, free to the public to enable larger and more
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complex modeling efforts to advance the state of the art. Several parallel algorithms

are used for scalability and optimized for efficient execution.

In order to completely generalize the tracking and remapping algorithm, several

requirements have been identified that must be satisfied to solve this problem com-

pletely:

1. The algorithm shall function when using parallel mesh decomposition.

2. The algorithm shall support arbitrary periodic boundary constraints.

3. The algorithm will provide unique and consistent identities to grains throughout

the simulation.

4. The algorithm shall support mesh (h-) adaptivity

5. The algorithm shall function with simulations using fully-implicit time integra-

tion.

6. The algorithm shall be dimension agnostic.

7. The algorithm shall function under generalized phase-field problems (no assump-

tions).

8. The algorithm shall not limit parallel scaling.

9. The algorithm shall work with and not restrict the use of a general finite element

method.

1 . 3 Original Contribution

The primary original contribution of this work is a scalable, general purpose, fea-

ture extraction, tracking, and remapping algorithm designed to operate on a finite
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element mesh. The purpose is to provide a mechanism for maintaining clean sepa-

ration of several overlapping features represented by a small number of independent

piecewise continuous finite element solution fields for computational efficiency. These

algorithms have been designed to work on fully unstructured meshes using either

nodal or elemental centric solution fields and can handle both (h-) adaptivity and

arbitrary periodic boundary conditions.

The number of variables required to represent several competing features has been

further reduced when compared to previous algorithms for both 2D and 3D simula-

tions. Additionally several mechanisms aimed at providing robust material microstruc-

ture simulation capabilities have been added. These capabilities include selective fea-

ture recombination, feature separation, and tunable algorithms for handling “noisy”

feature creation detection. These algorithms have been extensively tested on various

“grain-growth” simulations with and without a multiphysics solid mechanics compo-

nent. At the time of publication these algorithms are currently being used by other

researchers to explore advanced simulations involving microstructure recrystallization

and sintering processes.

A novel method for handling special cases of feature appearance and disappear-

ance in tracking methods has been created. Specifically for microstructure modeling,

we have created an algorithm that can detect the differences between grain splitting

and grain nucleation based on each grain’s halo integrity. This algorithm also handles

the case where a grain may be absorbed while another is split leaving the total number

of features unchanged. This method has been used on different data sets containing

both of these behaviors.

Parts of this work have been published in Computation Material Science [74]. Further

papers have been submitted [75, 76].



6

Chapter 2

M ICROSTRUCTURE MODELING

“A mathematician . . . has no material to work with but ideas, and so his patterns are likely
to last longer, since ideas wear less with time than words.”
- G. H. Hardy

Microstructure modeling is an important aspect of materials science. It is a tool for

understanding the mesoscale structure of engineering materials to predict chemical,

mechanical, electrical and other properties of materials used in manufacturing and

engineering. Advances in modeling and simulation reduces the costs of analysis which

can lead to stronger and lighter materials with better properties to resist environmental

impacts that lead to the degradation of that material. The applicability of material

modeling and simulation cross cuts several industries such as power generation, civil

engineering, and transportation. The interest of the research is focused mainly on the

study of advanced nuclear fuels being designed to produce the next generation of safe

nuclear reactors, but the ideas and algorithms here are widely applicable to each of

these fields.

One focus area of microstructure modeling involves the analysis of polycrystalline

materials which consist of several crystallites or “grains”, which are commonly en-

countered in ceramics and medals. Within one of these grains, the atoms that form the

material are highly structured in a lattice configuration. Each grain is situated within

the material at a specific crystallographic orientation. However, neighboring grains

are situated at a completely different orientation. In a physical material the number of

possible orientations is effectively unbounded. To capture the correct behavior of each

grain in a model, these specific orientations must be accounted for in a simulation and

is part of the reasoning behind using separate order parameters to model individual

grains.
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2 . 1 Polycrsytal Phase-field modeling

In the phase field approach, microstructural features are described using contin-

uous variables. These variables take two forms: conserved variables representing

physical properties such as atom concentration or material density, and non-conserved

order parameters describing the microstructure of the material, including grains [94].

The evolution of these continuous variables is a function of the Gibbs free energy and

can be defined as a system of PDEs.

In [19], a general form of the phase field PDEs is defined. The evolution of all

conserved variables is defined using a modified Cahn-Hilliard equation:

∂ci

∂t
= ∇ ·Mi∇

∂F
∂ci

, (2.1)

where ci is a conserved variable and Mi is the associated mobility. The evolution of

non-conserved order parameters is represented with an Allen-Cahn equation:

∂ηj

∂t
= −Lj

∂F
∂ηj

, (2.2)

where ηj is an order parameter and Lj is the order parameter mobility. The Gibbs free

energy of the system is defined by the functional F.

The free energy functional, for a phase field model using N conserved variables ci

and M order parameters ηj, is described by

F =
∫

V

[
floc(c1, . . . , cN, η1, . . . , ηM) +

fgr(c1, . . . , cN, η1, . . . , ηM) + Ed
]

dV, (2.3)

where floc defines the local free energy density as a function of all concentrations and

order parameters. A system for solving these PDEs was originally created in a MOOSE-
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based application called MARMOT [94] and later open sourced as part of the MOOSE

framework’s phase_field module.

Many of the examples in this dissertation use the grain growth formulation pre-

sented in [69]. In this model, each grain is represented by a continuous order parameter

ηi equal to one within the grain and zero in all other grains. The evolution of each

grain’s order parameter is defined by

(
∂ηj

∂t
, φm

)
= −L

(
κj∇ηj,∇φm

)
− L

(
∂ floc
∂ηj

+
∂Ed
∂ηj

, φm

)
+ L

〈
κj∇ηj ·~n, φm

〉
. (2.4)

from the original Marmot paper [94]. The free energy functional from Eq. 2.3 is defined

by

∂ floc
∂ηi

= µ
(

η3
i − ηi + 2 ∑N

j=1 ηiη
2
j

)
. (2.5)

This model requires that each grain be modeled by a separate order parameter. This

effectively means that the number of grains in a simulation dictates the number of

variables needed to realistically predict the physical microstructural evolution. While

this restriction is not problematic for small systems, modeling larger systems quickly

becomes infeasible even on large scale cluster systems due to the lack of memory

scalability.

2 . 1 . 1 Reduced Order Parameter Modeling

Reduced order parameter modeling in the context of microstructure modeling is

the practice of reusing order parameter variables to represent more than one grain in a

model. Setting up this kind of simulation simply requires the researcher to distribute
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the limited number of order parameters among the much larger number of grains

being simulated. While this can be done using a simplistic algorithm, an improper

assignment can lead to incorrect simulation results. The problem of assigning a valid

initial condition is thoroughly discussed in §5. The reduced order parameter modeling

method drastically reduces the size of the equation system being solved as it turns

the linear growth of variables into a constant overhead as the number of simulated

grains is increased. The consequence of using fewer variables becomes apparent al-

most immediately however as the simulation will produce abnormally large grains

very quickly and artificially due to coalescence. During the evolution of the simulation,

whenever two grains represented by the same order parameter come into contact,

they immediately fuse or coalesce into a larger grain. While this behavior causes no

numerical issues and doesn’t affect convergence of the simulation, it is non-physical

and incorrect. To successfully employ reduced order parameter modeling, one must

correctly assign initial conditions and avoid the coalescence problem throughout the

simulation.

2 . 2 Finite Element Solution Data

In the finite element method, a simulation domain is discretized into a finite number

of discrete subdomains. These subdomains are typically simple shapes such as lines

in one dimension, triangles and rectangles in two dimensions, or tetrahedrons and

hexahedrons in three dimensions. These subdomains called “elements” are connected

together in such a way as to reconstruct the desired domain geometry. Each element

type is given a specific vertex ordering which makes up the element’s connectivity.

Another data structure then maps the global node ordering to the local vertex ordering

which yields information necessary to construct the orientation of each finite element

throughout the domain. We then setup a series of basis functions on each element and

solve for coefficients that are used to scale those basis functions, which we store in
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a solution vector. We can use those solution coefficients to reconstruct the original

piecewise functions on the elements, evaluating the actual interpolated solution at

any point throughout the domain. With this information, it is possible to construct

a complete image of any finite element solution.

In the context of PFM, the mesh and solution must be used to find grains for the

purpose of feature extraction [16]. One must first understand the layout of finite

element solution data. Generally there is a solution vector which contains a coefficient

for each globally numbered degree of freedom (DOF). The number and locations of

the DOFs depend upon the basis functions being used to represent each variable in

the finite element simulation. The basis functions fall into two categories, “nodal”

and “elemental”, where the locations of the DOFs correspond to the mesh nodes or

are positioned within elements respectively. These coefficients are used to reconstruct

the basis functions for each variable yielding a solution that spans the domain [8].

The most common basis functions used for finite element analysis come from the

“Lagrange” family. These are overlapping piece-wise continuous functions that have a

property where only one basis function has a value of one at every node in the mesh

while every other the basis function at that node has a value of zero. This property

makes it so that the nodal coefficients exactly correspond to the solution at every

node in the domain. Additionally, Lagrange functions are typically simple polynomial

functions making them very easy to evaluate and integrate over elements.

2 . 2 . 1 Nodal and Elemental information

As explained in the previous section. Finite element solution data is typically stored

at the mesh nodes. There is however a need for capturing information per element too.

Any quantity which is only defined, or only makes sense in the context of an element

cannot be stored at the nodes. This is due to the fact that nodes are generally shared

among several elements in the interior of the mesh. Information stored at a node
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cannot belong to any given element uniquely, thus it makes sense to store additional

information per element in these cases.

The mesh nodes represent a single point in space and therefore do not represent any

volume or mass. Only the elements in a finite element simulation represent these quan-

tities. Given this knowledge, one example where element data is typically desirable

is for the purpose of representing simulated material properties. Physical materials

have mass and volume and map nicely to elemental data. Adjacent elements can

be assigned different material properties representing fixed interfaces between mate-

rials. These capabilities are useful for simulating real geometries and these material

property differences can have large effects on simulation behavior. Since there are

many different use cases for storing information at nodes and elements, the algorithms

in this dissertation have been designed to work with both for maximum simulation

flexibility. For generality, all discussions regarding mesh nodes or elements where the

differentiation isn’t necessary will use the terms “entity” or “entities”.

2 . 3 Periodic Boundary Conditions

Periodic boundary conditions (PBCs) are a commonly used modeling tool for sim-

ulating quasi-infinite domains [21, 20, 91, 94]. They are often employed to reduce

computational requirements by reducing domain sizes of models with symmetry. They

also conserve quantities of interest such as mass, momentum, or energy, which can be

essential in many physical models.

In the finite element library that these algorithms are built upon. PBCs are imple-

mented as constraints applied to a boundary to force the DOFs on that boundary to

match those on some other boundary in the domain. Usually PBCs are applied on op-

posite boundaries for every dimension in the domain to create a quasi-infinite domain.

Any non-zero flux through a PBC has an equal flux on the matching boundary. These
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properties make the application of PBCs in a simulation useful for approximating the

macro-scale behavior of materials.
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Chapter 3

ALGORITHM DESIGN

“When I am working on a problem I never think about beauty. I only think about how to
solve the problem. But when I have finished, if the solution is not beautiful, I know it is
wrong.”
- Buckminster Fuller

If we consider the full list of requirements given in §1.2, one might consider a post-

processing approach for solving this problem. That is, the algorithm should work

agnostic of the simulation physics, working only with the solution and geometric

information available during the simulation. This approach has the advantage of

working on a wide variety of problems and doesn’t require the user of the software to

know or understand the inner workings of the algorithm. The main goal of this work

is to overcome the problem observed in reduced order modeling of grain coalescence

within a completely implicit finite element solution scheme. The idea is to observe the

solution process, only intervening when necessary to prevent grain coalescence. This

is done by assuring that no two grains represented by the same order parameter can

ever come into contact.

This idea is closely related to the concept of graph coloring [10]. One can view the

connectivity among grains in the microstructure as an undirected graph with the order

parameters representing the available coloring in traditional graph coloring problem

(Figure 3.1). Avoiding coalescence is then analogous to maintaining a proper coloring

as the microstructure evolves. Continuing the analogy, as the microstructure evolves,

several vertices will be removed and added and the connectivity of the graph will

change requiring that one or more vertices change color to maintain a proper coloring.
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F I G U R E 3 . 1 : Grain struc-
ture colored by order param-
eter with the correspond-
ing adjacency graph over-
laid. The solid edges in the
graph show physical neigh-
bors while the dotted edges
show extra edges added due
to feature halos (not pic-
tured).

3 . 1 Grain Identification

The first step in tracking grains is identification. Given a finite element solution we

must be able to identify the physical extents of each grain throughout the domain. In

a traditional phase-field polycrystal simulation, each grain is represented by a unique

variable so grain identification is trivial. The size and shape of each grain can simply

be recovered by inspecting the values of each independent variable. However when

utilizing reduced order parameter modeling §2.1.1, several grains can be represented

by each order parameter. Recall, that the value of the order parameter represents the

location of the grain. A grain interior is located anywhere where the order parameter

value is equal to one. No grain is represented by a value of zero and the grain boundary

is represented by all values between zero and one. When the same order parameter is

reused to represent multiple grains, what differentiates once grain from another is the

proximity of one set of ones which are disjoint from another set of ones. In other words,

the value of an order parameter must vary from one to zero and back up to one again

over some finite region within the domain.

Grain identification occurs by finding all connected regions of ones for each order

parameter. This is done by iterating over the mesh entities looking for values above a

chosen threshold that indicate grain interiors. Once a value is found, a flood (or seed)



15

fill algorithm is used to find all neighboring values above a given threshold on the

unstructured mesh.

Note that direct inspection of solution values given at the nodes does not work for

the general case. For many finite element types, the solution value at a node directly

corresponds to the value at that location, but that property is not guaranteed by the

FEM method. For the general case, the value is found by evaluating all of the shape

functions at the given point and summing them.

3 . 2 Grain Tracking

Microstructure evolution is complex and grain shapes and orientations may change

quite drastically over the course of a simulation depending on the boundary condi-

tions, material properties, and other forces, both internal and external. Rather than

creating an algorithm that attempts to predict grain structure from step to step, the ap-

proach taken with this work is to deduce the positions of each grain based on informa-

tion from the previous step. The first invocation of a tracking algorithm would record

the size and positions of all grains in the simulation. Each subsequent invocation

would then compare the current step to the previous step to determine the evolution

of grains, handling processes such as growth, shrinkage, absorption, splitting, and

nucleation.

The first step in tracking grains is to employ feature extraction techniques and

component identification [66, 25, 14, 65] choosing suitable information to uniquely

identify the locations of all grains in a given step. Each grain is identified by its centroid

and the current order parameter representing the grain. Both pieces of information are

necessary to assure positive identification from one step to the next for cases where

multiple grains have nearly coincidental centroids. This may happen where grains

are highly elongated or slightly concave and concentric. Tracking is accomplished
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by simply comparing and minimizing centroid movement of all grains for each order

parameter separately.

3 . 3 Graph Discovery and Validity checks

In order to maintain a clean separation of individual grains represented in the same

manner by the same spatial variables, we must detect features that will potentially

interact with one and other. We frame this problem in terms of a graph coloring

problem and implement a solution that builds on techniques for solving that type

of problem. After grains have been identified, graph discovery occurs based on the

microstructure and a validity check on the proper coloring is performed (i.e. no neigh-

boring grains may have the same order parameter). The connectivity of the graph is

defined by neighboring grains. It is not necessary to build the graph explicitly. Instead

it’s sufficient to determine if any grains represented by the same order parameter are

neighbors. If all pairs of grains represented by the same order parameter are not

neighbors, then the graph coloring is proper and no action further action is required

by the algorithm.

3 . 4 Grain Remapping

Should grains represented by the same spatial variable be determined as potentially

interacting, we must employ a mechanism to dynamically remap one or more grains

to maintain a valid system state. Recognizing that a simple single remap operation

may not be sufficient for recoloring a graph, an algorithm must be designed to han-

dle several remapping operations to maintain a valid state. We employ a recursive

recoloring algorithm that may explore a chain of remapping operations to dynamically

recolor the graph as the simulation evolves. Special cases must also be handled for

grain absorption and nucleation.
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3 . 5 Scalable Parallel Design

It is relatively easy to build a serial algorithm to meet the requirements for a dy-

namic tracking and remapping algorithm to satisfy the run time requirements of the

phase field model. In fact, this dissertation started out of a prototype implementation

that was completed in just a few days to handle this problem. The challenge in this

work lies in building a scalable parallel algorithm. If the size, shape, and location

of each feature is unknown and unrestricted, a sufficient amount of information to

uniquely identify each feature must be shared among processors without replicating

too much information. The algorithm design in this dissertation uses an asymmetric

parallel design, which means that the algorithm works differently on different ranks.

All of the global information is maintained and processed on a single rank with all of

the remaining ranks having minimal local to global mapping information. The detailed

implementation of this design are discussed thoroughly in the next chapter.
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Chapter 4

IMPLEMENTATION

“I often compare open source to science. To where science took this whole notion of develop-
ing ideas in the open and improving on other peoples’ ideas and making it into what science
is today and the incredible advances that we have had. And I compare that to witchcraft
and alchemy, where openness was something you didn’t do.”
- Linus Torvalds

All of the work in this dissertation is based upon the open-source Multiphysics Ob-

ject Oriented Simulation Environment (MOOSE) package and is now included as part

of the main distribution. MOOSE leverages several other high performance libraries:

libMesh [51], PETSc [4, 6, 5], MPI [38, 28, 56] and Hypre [61]. This list represents only

the solver stack and not the complete list of third-party tools leveraged by each of

these libraries. The implementation details require a brief overview of the MOOSE

architecture as well as pluggable systems leveraged for this work. These systems are

covered followed by a detailed discussion of the design and implementation of the

algorithms themselves.

4 . 1 MOOSE Pluggable Systems

The MOOSE framework provides several pluggable systems for implementing new

functionality via standardized interfaces. These interfaces are consistently designed so

that creating new functionality is similar regardless of which system a developer is

leveraging. Some of the key highlights of these systems are standardized constructors

with the ability to retrieve arbitrary numbers and types of parameters, rich inherited

class members, and prolific coupling interfaces. MOOSE typically does a good job of

hiding the complexities of parallel programming and concurrent execution, both in

terms of shared memory and distributed memory when possible. The main pluggable
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systems are designed around the support for solving nonlinear multiphysics partial

differential equation (PDE) operators focusing on straightforward coupling capabili-

ties and modularization. There are also several interfaces designed for auxiliary calcu-

lations and on-line post-processing functionality.

The algorithms described in this dissertation are implemented using several of

these interfaces but only a small subset of the total available interfaces. The evolution

of the algorithmic implementations of this work have also impacted some of the core

designs and capabilities of the framework itself. These enhancements are described

in §4.6. Each of the systems utilized by by this project are described in §4.1.1, §4.1.2,

§4.1.3, and §4.1.4.

4 . 1 . 1 MOOSE UserObjects

The MOOSE UserObject system is arguably the most flexible system in the frame-

work. It is typically utilized any time a developer needs to implement a new capability

that doesn’t match up well with the highly tuned interfaces available in the other

MOOSE systems. It is usually employed to maintain user-defined data structures and

can be executed over a wide range of mesh related entities such as elements, nodes,

sides, and boundaries in a parallel agnostic fashion. It can also just be used for general

purpose calculations that may or may not relate to any temporal or spatial data at all.

The execution control of UserObjects and several other systems in MOOSE is highly

customizable. UserObjects are normally designed to be executed once per time step,

but can be tuned to be execute more or less often if required. The available modes of

execution are INITIAL, TIMESTEP_BEGIN, TIMESTEP_END, NONLINEAR, LINEAR,

and CUSTOM.

Like many MOOSE systems, UserObjects can be coupled to almost every other

system. However, the UserObject system is unique in that it is designed to be coupled

by direct type, not just through a base class interface. This means that developers
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are allowed to, and encouraged to implement new interfaces on the objects that they

create which can be accessed directly by the objects that couple to them. This allows

developers the freedom to build, aggregate, and maintain rich data structures that

can be accessed by one or more objects in the system for the purpose of performing

calculations outside of the core design of the framework. The UserObject system

serves as the basis for several other systems such as the post-processing systems (§4.1.2,

§4.1.3).

4 . 1 . 2 MOOSE Postprocessors

Postprocessors in MOOSE are objects designed to consume information from

elsewhere in the simulation to produce a single scalar value at each invocation. These

objects are typically employed to produce aggregate values based on solution data.

They have interfaces and helper methods for aggregating data across threads and pro-

cesses when appropriate. The scalar values they produce get output to the screen and

most supported file formats automatically. They are an extension of the UserObject

system so they inherit all of the member data and interface functionality of their parent

objects.

The core algorithms for this dissertation have been implemented as Postprocessors.

The convenience of being able to output the count of features or grains while having

the full flexibility of the UserObjects makes this a logical choice. It also fulfills the core

design of this implementation as proposed in §3: In order to create a general purpose

tool that is physics independent, it should be implemented as a post-processing capa-

bility to avoid interfering or restricting the simulation process.

4 . 1 . 3 MOOSE VectorPostprocessors

VectorPostprocessors are the “vector” equivalent of Postprocessors. These

objects can produce multiple arbitrary length, named vectors at each invocation. The
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output of these objects is managed through the framework into a series of comma sep-

arated values (CSV) files separate from the normal mesh-based output. The interface is

similar to that seen in the UserObject and post-processing systems. The output format

has no restriction on the length of the vectors and they may differ from invocation

to invocation. The information in VectorPostprocessors can also be retrieved via a

coupling mechanism so that objects may access data live, during a simulation.

4 . 1 . 4 MOOSE AuxKernels

The AuxKernel system is used to calculate spatial field data based on other simu-

lation information (generally solution data) that can vary over time. The calculations

performed in AuxKernels produce coefficients that form the basis of shape functions

in the domain. This means that AuxKernel fields can generally be evaluated over the

entire domain with continuity restrictions based on the shape function families chosen

to support these coefficients.

These objects are generally employed to perform simple arithmetic calculations for

variables that are not directly a part of the PDEs that are being solved. For instance,

stress and strain calculations are typically a function of displacement, which is the

variable being solved for in solid mechanics models. They can also be used as a

“spatial post-processor” output capability for several types of mesh related data. Many

different spatial fields are produced as part of the work in this dissertation such as the

ability to view unique grain information, or the variable assignments to every grain

over time. Each of these fields can be visualized through MOOSE’s AuxKernel system.

4 . 1 . 5 Scalable Distributed Mesh Terminology

Before we discuss the distributed extraction algorithm that makes up the basis of

the main algorithms in this dissertation, a few terms need to be defined. As we inspect

portions of the FEM mesh and look and entities and neighboring entities, we must
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ensure that portions of the mesh and solution data structures that we need are actually

available on the local processor. For scalability, it cannot be assumed that the solution

for a given element is available, nor can it be assumed that the geometric information

about the element itself is even available [51]. The notion of entity ownership must first

be discussed. When the FEM mesh is partitioned, elements are assigned to different

partitions which are then assigned to different processors. Each element is given ex-

actly one owner and that attribute is saved for every element. If repartitioning occurs,

elements may be reassigned to different processors but they can only have a single

owner at any given time. All information relating to an element that is owned by the

local processor is always available. This includes any solution information or portions

of field variables that have degrees of freedom on those elements and the nodes that

make up those elements.

The presence of information on any element that is not owned by the current pro-

cessor must be verified before access. It’s possible that when we query an element

for a list of its neighboring elements, we instead get pointers to proxy objects telling

us that there are indeed neighboring elements, but that they’re not available on the

current processor. To differentiate between these two cases, we use the term “ghosted”

to indicate that an element is geometrically available on the local processor. However,

even if the element is geometrically available, the solution information on that non-

local element may not be. Here, we use the term “evaluable” to indicate that the

solution information is also available. Furthermore, evaluable automatically implies

that the element is “ghosted” since we cannot interpolate a solution across an element

without having the geometric information of the element present on the local processor.

The underlying FEM library is assumed to always maintain one level of evaluable

elements surrounding each partition. These elements are necessary for the normal

finite element assembly processor and can be assumed. This means that all of our first
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level edge-neighbor elements of the current partition can always be inspected without

explicitly checking if they are first “ghosted” or “evaluable”1.

Each node in the mesh also has an owner which can differ from one or more of the

attached elements since nodes can be shared among several elements. While the same

rules apply to the availability of information for local versus non-local nodes there

is one notable exception. All nodal solution information for a non-local node is also

available as long as one of the local attached elements shares ownership of that node.

4 . 2 The FeatureFloodCount Postprocessor

When analyzing field results from a simulation, it is straightforward to compute

statistical information such as medians, means, modes, extreme values and fluxes. This

is done by inspecting all of the data in any order and maintaining running calcula-

tions. Obtaining other types of information such as the number of “features” like gas

bubbles or crystallites (grains) can be much more challenging. This is especially true

when working with complex geometries, adaptive meshes, parallelism, and periodic

constraints.

A method for identifying solution features must first be implemented before more

advanced processing can occur. This is the purpose of the FeatureFloodCount

Postprocessor. A feature here is defined as a series of similar values (usually above or

below some desired threshold) collocated geometrically without any discontinuities.

Physical isolation of a pocket of values from another pocket of values is what defines

the individual features represented in a solution field. The FeatureFloodCount

Postprocessor distinctly identifies the extents of every feature in any number of field

variables. As previously mentioned, it may be used to provide the statistics on single

variable fields such as the number and size distribution of gas bubbles in a domain or

it can uniquely identify the individual grains contained in multiple order parameter

1These terms are not my own and do not exist in published work, they are part of the libMesh library.
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fields. This Postprocessor functions properly in parallel, handles fully-unstructured

meshes with or without h-adaptivity, as well as periodic boundary constraints. The

FeatureFloodCount object implementation is very similar to the work in [16, 18, 17, 82].

However, this implementation also supports unstructured mesh and arbitrary domain

shapes.

4 . 2 . 1 Distributed Feature Extraction

Before we are able to track or perform operations on simulation features, we must

first define the identifying criteria for a “feature” and implement a process for extract-

ing them from a finite element solution in some distributed fashion. We define a feature

to a be a topologically connected region in the solution domain that has some common

attribute. In a finite element setting, this usually means a connected region of elements

with a similar variable value or values above or below some pre-chosen threshold. In

parallel unstructured mesh simulations, typically each processor works on a subset

of the domain, or a partition [85]. Each partition consists of several non-overlapping

elements which can be processed independently to advance the simulation. To be-

gin, the distributed extraction process, each processor iterates over the elements of its

partition and inspects the values of the variable of interest. When a variable value is

encountered that matches the feature identification criteria, that element becomes the

starting point or seed location for the start of a new feature. A standard seed or flood

fill algorithm [63] is then used to recursively visit all of the neighboring elements until

the extent of the feature is explored, or an edge of the processor’s partition is reached.

This approach is similar to that described in [16].

When a seed is identified, the flood algorithm builds a list of all the face-neighbor

elements relative to the current element. If mesh h-adaptivity is being used, there may

be multiple neighbors for a given side if the adjacent elements are finer than the current

element. There are no modifications necessary for this scenario, each of the refined
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elements is visited in the same fashion as if there were only a single neighboring

element on a given side. Handling all of this neighbor visitation recursively allows

us to construct and update a data structure containing all of the relevant information

about these geometrically connected regions on each individual processor for further

processing.

4 . 2 . 2 Features Data Structure

Each feature is represented by a data structure, shown in code listing 1, contain-

ing several attributes that are created and manipulated as the algorithm progresses.

When the flood fill algorithm identifies the start of a feature as described in §4.2.1, a

new instance of the FeatureData struct is created and populated. During construc-

tion several attributes are populated. First, the current entity ID is inserted into the

_local_ids set. The _var_idx attribute is set to the current variable representing

the newly constructed feature. An initial entry is made into the _orig_ids list to track

the original processor’s local feature ID and processor ID indicating which processors

own a portion of the feature once it’s been merged by the master MPI rank (§4.3). This

list length always remains at one on all non-master processes since they never contain

the full global feature map. Finally, the feature’s status is set to either MARKED if the

initial entry is above the “starting threshold”, or INACTIVE if it’s only above the “con-

necting threshold” (§4.3.3). Additional statistical information may also be recorded

when appropriate (§4.5.1). After the recursion completes, the structure contains all of

entities on the local processor belonging to the current feature along with additional

attributes.
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enum class STATUS

{

CLEAR = 0x0,

MARKED = 0x1,

DIRTY = 0x2,

INACTIVE = 0x4

};

struct FeatureData

{

std::set<dof_id_type> _ghosted_ids;

std::set<dof_id_type> _local_ids;

std::set<dof_id_type> _halo_ids;

std::set<dof_id_type> _periodic_nodes;

unsigned int _var_idx;

unsigned int _id;

std::vector<MeshTools::BoundingBox> _bboxes;

std::list<std::pair<processor_id_type,

unsigned int>> _orig_ids;

dof_id_type _min_entity_id;

unsigned int _vol_count;

Point _centroid;

STATUS _status;

bool _intersects_boundary;

}

C O D E 1 : Data structure describing the attributes for an individual feature.

During the flood routine, additional attributes in this structure are also updated.

The _halo_ids set is used extensively in the tracking (§4.4.1) and remapping (§4.4.4)



27

algorithms discussed later. Also the _ghosted_ids set is updated which is used

for the “stitching” routine (§4.3.2) when information from all of the parallel ranks is

consolidated. The status of the neighboring entities determine when these additional

sets are updated. If the ownership of the neighboring entity differs from that of the

current processor, we insert the neighboring element’s ID into the ghosted set. The

recursion itself is performed if and only if the current entity is owned by the local

processor. It’s not a function of the ownership of the neighboring entity.

If it’s determined that a recursive call is to be made in the flooding routine, we save

the neighboring ID into the halo set just before the recursive call. This detail is vitally

important in avoiding spurious halo entries in the middle of our features. If we save

every neighboring entity of the current feature into the halo set up front, but then the

recursive call isn’t made, we end up with an extra halo interface along the partition

boundary that cannot be masked off later because the root processor lacks the local ID

information necessary to make that correction (§4.2.4, §4.2.5).

The in-progress discovery of a feature and its halo elements is shown in figure 4.1.

Several additional attributes are also recorded for use by later stages of the tracking and

remapping algorithms. When we visit a ghosted element, we save that information

as it is used to stitch features together. Each feature data structure also contains a

variable ID, sorting ID, bounding box information, and flags indicating the state of

the feature. Each of these attributes is described in more detail later. Depending on

the type of simulation being run, it may be necessary to expand the thickness of the

halo (number of element edge neighbors from any interior element in the feature), this

is discussed in §4.4.4. When applicable, this thickness is expanded after the flood

stage is complete and we have the single level of halo elements created during the

flooding process (Figure 4.1(c)). This expansion is accomplished by appending all

neighboring elements of the halo elements set for each additional layer of thickness

desired. After the additional elements are added to the halo set, the original interior
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(a) (b)

(c) (d)

F I G U R E 4 . 1 : The feature and halo identification stage on an unstructured mesh. The
feature markings are shaded dark and the halo elements are shaded light. (a) shows
the seed element and the corresponding halo elements. (b) shows the feature as it’s
being identified. (c) shows the completed feature and corresponding halo elements.
(d) shows the halo after it’s been expanded.
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elements representing the feature are subtracted (set difference) from the halo set to

maintain distinct feature and halo sets. An expanded halo is shown in figure 4.1(d).

4 . 2 . 3 Halo and Ghosted Set Construction

The _halo_ids set contained within each feature is used to hold a list of entities

immediately surrounding the feature excluding IDs that make up the feature (local

IDs). This information is used for tracking grains (§4.4.1) and during the remapping

operations described in §4.4.4. The construction of this set occurs during the recur-

sive portion of the flooding stage. After the addition of the current entity ID to the

_local_ids set the algorithm constructs a list of active neighbors relative to the cur-

rent entity. This list handles mesh adaptivity so it’s possible to have multiple neighbors

on each side when there is a mismatch in the adaptivity level.

Algorithm 1 Expand Halos

1: for level in 1..level do
2: for all f in L do
3: for all entities in f .halo_ids do
4: f .halo_ids← f .halo_ids ∪ entities.neighbors
5: end for
6: end for
7: end for

The halo “thickness” can be expanded after the full extent of the feature is explored

on the local processor. This is accomplished by adding all neighboring entities of all

current halo entities for each additional layer of thickness desired. This is done to allow

a sufficient interface width for the phase-field method. Without knowing the required

thickness, we performed several experiments to determine this value empirically. We

found that a minimum thickness of two was required for quadrilateral and hexahedral

elements when using a linear Lagrange basis. Moving to triangle and tetrahedral

elements bumped the required thickness to three. A thickness of one failed to prevent

coalescence in several cases. This was due to an insufficient interface width required



30

by the phase-field method. However, since pairs of halos are always compared against

one and other, the total number of elements in the interface is always greater than

the thickness of an individual halo. For quadrilateral and hexahedral elements, the

effective separation of two features is always double the halo width. For triangle

and tetrahedral elements the separation of two features can vary depending on the

alignment of halo comparisons.

Note that the halo set is always a superset of the local IDs set. This is enforced by

beginning each new feature with an entry in the halo set. Every other addition to the

local IDs set is always preceded by an addition to the halo set just before the recursive

flood call. This allows the halo to be properly created by using a set difference method

described in §4.2.4.

Figure 4.2 shows the halos and corresponding microstructure from a 2D grain-

growth simulation constructed from a parallel simulation run on a 12-core workstation.

Four levels of adaptive mesh refinement were used on this quadrilateral mesh to give

the halos a very fine, high fidelity appearance. The very tight halos allow for very

dense clustering of features for maximum reuse of variables to represent the features

in this microstructure. Note the difference in scales between figures 4.2(a) and 4.2(b).

The halo image has a low value of -1, while the low value on the grain image begins

at 0. The reason for the difference is that every element in the grain image is occu-

pied by a grain with indices in the range [0− 8). The halos however do not occupy

the interiors of any grain so they are assigned a value of -1 in the resulting image.

These images are produced by using an AuxKernel to report information from the

FeatureFloodCount object.

Figure 4.3 shows the volume rendered halos from a 3D grain-growth simulation on

a hexahedral mesh without adaptive mesh refinement. Two hundred elements were

used along each dimension for a total of eight million elements.
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(a)

(b)

F I G U R E 4 . 2 : 2D simulation with 100 Grains represented by 8 order parameters.
Grain halos are shown in (a) with corresponding order parameter (variable indices)
assignments shown in (b).
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(a)

(b)

F I G U R E 4 . 3 : Volume rendered halos from a 3D run containing 6000 grains. (a) shows
the halos in the initial condition. (b) shows the halos of the larger grains after several
time steps.
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4 . 2 . 4 Local Feature Data Processing

To maintain a scalable algorithm, only a subset of the local feature data from each

processor needs to be serialized and gathered on the root processor using the MPI

protocol [38]. While the creation of this remaining information could technically be

handled during the recursion stage, it adds unnecessary complication and is therefore

handled separately. A loop over each feature is performed to populate the _periodic

_nodes, _bboxes, and _min_entity_id variables. The periodic nodes set is used to

hold feature entities that lie on a periodic boundary constraint (§2.3). These nodes rep-

resent an additional non-topological stitching interface. This information is used in a

similar fashion as the ghosted entities are used to stitch feature pieces together on phys-

ically overlapped regions. The bounding box (_bboxes) variable holds axis-aligned

bounding boxes that completely enclosing the individual feature pieces. Finally the

_min_entity_id variable is populated to create a processor independent feature

numbering mechanism. The local feature pieces seen by each processor are dependent

on the partitioning and entity traversal order. In order to maintain consistent labeling

for a given problem as processor counts vary, each feature is tagged with a piece of

mesh dependent information. Each mesh entity contains a globally unique ID. The

lowest ID of every entity making up a feature is chosen as the sorting tag for a feature.

When the FeatureFloodCount Postprocessor is operating on a single variable this

guarantees a strict ordering among identified features. When multiple variables are

used, a consistent ordering can be derived by using this value in conjunction with

the _var_idx value (i.e. _var_idx=0, _min_entity_id=0 would come before

_var_idx=1, _min_entity_id=0).

To populate these additional pieces of information a loop over all of the local enti-

ties is performed on each feature and each of these variables is simply updated based

on the current value and incoming value. For the bounding box value, the minimum

or maximum position in each dimension is updated according to any new extremes
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encountered in the incoming value. The minimum entity id is updated if the incoming

value has lower value than the current value. The periodic nodes have one additional

special case to handle. Periodic constraints are always enforced on nodes, never ele-

ments in the libMesh library. If the FeatureFloodCount Postprocessor is operating

on elements, the nodes have to first be recovered from the element and compared to the

periodic constraint nodes. Any matches are then added to the periodic nodes set. For

generality in the stitching algorithm and communication efficiency discussed in §4.2.5,

all matches are added to the periodic nodes set, not just the corresponding match or

matches. For example, if node 0 and node 100 are periodically constrained to one and

other, then if either one of them is encountered directory in the local IDs set, they are

both added to the periodic nodes set.

Finally, the halo set that was discussed in §4.2.3 is adjusted to remove all interior

entries. All of the local ids are removed from the halo set except for those contained

within the ghosted ids set:

halo = halo \ (local \ ghost) (4.1)

This set operations for computing the final halo entries is described in equation (4.1)

and depicted in figure 4.4.

Halo	

Local	 Ghost	

F I G U R E 4 . 4 : A Venn diagram showing
the relationship between halo IDs, local
IDs, and ghosted IDs prior to the adjust-
ment described in §4.2.4. The shaded
region shows the IDs remaining in the halo
set after the adjustment.
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4 . 2 . 5 Data Serialization, Deserialization, Backup, and Recovery

The parallel communication of feature data takes advantage of multiple MOOSE

and libMesh technologies requiring very little code or effort to accomplish. The serial-

ization and deserialization of data occurs by specializing MOOSE’s built-in templated

dataStore and dataLoad routines for this new type. These routines are normally

used to serialize user-defined data into a byte stream to be stored in memory or on

disk and restored as needed by the framework for the purpose of checkpointing or ad-

vanced execution strategies. We take advantage of the serialization process to simplify

the parallel communication of the FeatureData structures introduced in §4.2.2. These

routines can be used to efficiently pack several variable-length records into a single

buffer for communicating via MPI.

To reduce the amount of data communicated, we avoid serializing the local IDs por-

tion of the data structure, which is usually the largest single piece of information. These

local IDs represent the interior of every feature and are not useful in reconstructing the

global feature map since they, by definition, are not used in any stitching operation.

After the data is serialized into a single byte stream, every processor participates in a

parallel “gather” operation where every rank communicates their buffers with the root

process. Each buffer is unpacked and deserizlized into a large linked-list data structure

on the root process where all stitching takes place.

4 . 3 Connected Component Identification

After all feature information has been extracted, serialized, and communicated with

the root process, that data must be stitched together to recover a consistent global

representation of all features. This stitching process is known as connected compo-

nent identification [41]. While there have been several efficient connected component

algorithms that work on both serial and distributed graphs [66, 25, 14, 65], the lack
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of a readily available graph data structure in this algorithm make the implementation

of those complex algorithms less advantageous in this context. Furthermore, the ap-

proach taken in both [66, 25] assume that graph vertices and edges can be inspected

at random and used in repeated set operations to find connected components. In our

implementation neither the complete set of vertices or edges are readily available in our

distributed finite element mesh data structures. As discussed in §4.2.1, each processor

instead only runs the flood algorithm on a subset of the mesh and the depth first search

algorithm consumes only a very small amount of the overall run time of the algorithm

(typically < 1% in measured runs). However, since each processor only contains a

small portion of the solution at any given time, the challenge of joining the partially

identified features cannot be avoided.

Figure 4.5(a) shows a mesh partitioned three ways with several distinct elemental

features illustrated as colored regions. The alpha characters used in the labeling repre-

sent a possible local identification order. The numeric subscripts represent the proces-

sor IDs. The label B1 would represent the second identified feature on processor one.

These separate features on the individual partitions represent partial features prior to

stitching. The processor partitions are shown as solid bold lines with a layer of ghost

elements, which are shown on the opposite side of each partition (lightly shaded ele-

ments). The ghost elements mirror corresponding elements and their current variable

solutions on neighboring processors. This information is automatically maintained by

the framework. Note that the features labeled B1 and C1 in figure 4.5(a) are distinct.

They only share a common node; they are not edge neighbors so flooding fails to

see that they are part of the same feature without information from the neighboring

processor.

Each processor only iterates over its partition’s elements (unshaded elements) as

it looks for feature seeds to initiate the flood fill algorithm. Once the flood fill begins,

both local and ghosted elements are inspected so that overlapping elements will be
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A1

B1

C1

D1

E1

A2

B2

C2

D2

A3

B3

C3

D3

(a)

(b)

F I G U R E 4 . 5 : Regular grid with 6 features partitioned 3 ways. Ghost elements and
local identifications are shown in (a). The alpha character represents a possible feature
identification ordering. The subscript represents the processor ID. Global identification
is shown in (b)
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marked appropriately for stitching. The elements circled in Figure 4.5(a) illustrate the

effect of only beginning the flood fill on local elements. Feature D3 has values that

appear in processor two’s ghosted region but not anywhere in processor two’s local

region. Note the substantial difference in feature counts between figures 4.5(a) and

4.5(b). Prior to communicating the data structures to the root processor and stitching

the partial features, the global feature count in this example is thirteen (five on the first

processor, and four on both the second and third processors). The final global count is

six (seven if periodic boundary conditions are not used).

4 . 3 . 1 Handling Periodic Boundary Conditions

If periodic boundaries are used in the simulation, grains intersecting any of the

domain edges that are on a periodic boundary are partially represented at multiple

disjoint locations on the domain. During the flooding stage these disjoint pieces are

generally recognized separately (multiple feature data structures), and are almost al-

ways on separate processor partitions. A typical feature intersecting a periodic bound-

ary is shown as the magenta color in Figure 4.5(b). The individual pieces are labeled as

D2, B3, and C3 in Figure 4.5(a). Periodic constraints can be applied in a variety of ways.

On regular grids they most often appear on opposite sides, however for some 2D and

3D simulations, only a subset of the axes might be made periodic while others are not.

Additionally it is possible to apply periodic constraints on orthogonal sides instead of

parallel sides. With all of the generalities available in applying periodic constraints no

assumptions can be made about how offsets are applied to join separated pieces of a

feature. Features split by a periodic constraint are never physically joined or treated

as a single continuous feature. Instead, each piece of a periodic feature maintains its

own axis-aligned bounding box. This greatly simplifies not only stitching (§4.3.2) but

also tracking (§4.4.1), since bounding box comparison logic does not require special
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logic cases when addressing periodic features. For cuboids, the maximum number of

disjoint pieces of a single feature is a function of the physical dimension: 2dim.

F I G U R E 4 . 6 : Solution field for one order
parameter (ηi) of a grain-growth simula-
tion where periodic boundary conditions
are applied. The feature appearing on all
four corners of the square domain is a sin-
gle grain. Its representation includes four
bounding boxes highlighted in yellow.

Figure 4.6 shows an order parameter field on a square domain from a simulation

where periodic constraints have been applied to both pairs of opposite sides (top/bot-

tom, left/right). In the figure, a single physical grain appears on all four corners of the

domain and is represented by four bounding boxes (highlighted). In three dimensions,

a grain appearing on the corner of the domain would appear on all eight corners

and would require eight corresponding bounding boxes to completely represent the

feature.

4 . 3 . 2 Feature Stitching

After the feature information has been gathered on the root process, it has all of the

information needed to identify and uniquely label all global features. It is important

to re-emphasize that the information on the root process is not complete. None of

the local identifiers are sent during the data serialization routine (§4.2.5) so all partial

features not identified by the root process do not contain any local ids (the volumetric
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interior element ids). All other data structure members populated during the flooding

routine (§4.2.1) and local processing (§4.2.4) are available.

There are two types of stitchings that can occur: “physical stitching” and “logical

stitching”. The former is the normal case where features physically overlap and are

split only due to domain partitioning. The latter is the case that arises due to the use of

periodic boundaries. Each of these cases requires special treatment in the way that they

are handled. The algorithm is illustrated in algorithm 2. The root processor begins the

stitching of the partial feature structures by comparing all possible pairs and checking

to see if each pair are merge candidates. A quick check is performed to make sure that

the current pair of features are identified by the same variable number. Information

identified by different variables fields is never merged.

The merge candidacy first performs a coarse level check on all pairs of axis-aligned

bounding boxes (the multiplicity of bounding boxes comes from logical merging which

is discussed shortly) to see if the two partial features physically overlap. This check is

relatively inexpensive and avoids the more expensive fine-grained checks for the vast

majority of the partial features. If the intersecting bounding box check succeeds, the

fine-grained check is performed to see if the partial features are actually intersecting

within the coarser bounding boxes. This operation is a set intersection check of the

ghosted identifier sets. If these checks fail, we still must check to see if the features

are logically intersecting so we perform a set intersection check on the partial feature’s

periodic nodes. If either the physical or logical checks succeed, then the feature struc-

tures are merged. The simplest case of a physical intersection is illustrated in 4.5(a) as

A1 and B2. A logical intersection case is shown as B3 and C3. It is also possible for

both checks to succeed when intersections occur “along” a periodic boundary instead

of “across” it. This case is shown by D2 and B3. These two partial features overlap on

both periodic nodes and also physically on ghosted entities. In this case the physical

case takes precedence.
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If two partial features require merging, each one of the member sets within the

feature data structure is merged by performing a set union operation. The type of

intersection between partial feature pieces dictates how the bounding box information

is stitched. If physical intersection occurs, the intersecting pair of bounding boxes is

also stitched. If only logical intersection occurs, then all bounding boxes from both

partial features are preserved in the stitched feature. Finally the _min_entity_id is

updated to contain the lowest identifier of both pieces for sorting purposes.

For efficiency, we actually perform some of these set operations multiple times:

once during the intersection check, and then again during the actual merge opera-

tion. While this may seem counter-intuitive, it turns out that the C++ standard library

creates temporary sets for most set operations including unions, intersections, and

differences, which creates significant memory churn. For this reason, a custom set

intersection method was developed that can return the Boolean result of a set intersec-

tion without creating any temporary data structures in memory.

Algorithm 2 Feature Stitching

1: it1← f eature_sets.begin
2: while it1! = f eature_sets.end do
3: f eature1← ∗it1
4: for all it2 in f eature_sets do
5: f eature2← ∗it2
6: if it1 != it2 and f eature1.intersects( f eature2) then
7: f eature2.merge( f eature1)
8: f eature_sets.push_back( f eature2)
9: f eature_sets.erase(it2)

10: old_it← it1
11: it1← it1 + 1
12: f eature_sets.erase(old_i1)
13: else
14: it1← it1 + 1
15: end if
16: end for
17: end while
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Algorithm 3 Feature Intersection

1: if a.var_idx = b.var_idx and
setsIntersect(a.periodic_entities, b.periodic_entities) or
(boundaryBoxesIntersect(a.bboxes, b.bboxes) and
setsIntersect(a.ghosted_entities, b.ghosted_entities)) then

2: return true
3: else
4: return false
5: end if

After a merge occurs, the two partial features are removed from the partial feature

list and the newly merged feature is appended to the end of the list. This action

ensures that all list entries will be included in a subsequent comparison ensuring that

all possible merges are performed at the termination of a double loop. Consider the

pathological case of a long spiral feature in a 2D domain or a helical feature in a 3D

domain. If the all of the partial segments in the list occur in reverse order relative to the

iteration direction, then a full traversal of the segments yields only a single intersection.

If the newly merged piece is left in place, some possible merges will be missed in this

scenario and similar scenarios requiring additional passes over the data structure.

The runtime of the stitching algorithm has been analyzed extensively and its imple-

mentation profiled as it is one of the most performance critical regions of the algorithm.

The upper bound performance of this algorithm is O(n2), where n is the number of

partial features. The lower bound however is Ω(n) when every comparison results in

a stitch (which can occur if the entire domain is a single feature). In real simulations

however, there are often several spatial variables used to represent features that are in

close proximity to one and other so that they can be identified and tracked separately.

If m variables are used to represent n partial features evenly, then the runtime of the

algorithm can be bounded by Eq. 4.2:

O
(( n

m

)2
)

. (4.2)
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While this algorithm is still quadratic, the practical numbers for real feature based

simulations are very manageable and far from the asymptotic limits for scaling pur-

poses. Our very largest simulations contain only thousands of features and require a

few dozen variables to represent them spatially. There are alternative implementations

that could result in a better asymptotic growth rate for larger numbers, such as the tree

based communication method in [16]. This communication method may be considered

for future enhancements.

Spatial partitioning algorithms including KD-trees [9] and Bounding Volume Hier-

archies [52], have been explored to further reduce the rum time cost of this algorithm.

While these data structures certainly would reduce the number of required compar-

isons the cost of construction and memory overhead may reduce the effectiveness of

these techniques since each data structure is only queried once before needing to be

rebuilt by subsequent invocations of this algorithm. The largest model executed to date

(§7.3.4) contained only 6000 grains and required 30 order parameters to successfully

run. These numbers are still relatively small for the largest models. Furthermore this

algorithm consumed well under 10% of the total runtime making it a poor candidate

for further optimization [2].

Several test cases were developed to ensure proper functionality of the stitching

algorithm. These test cases are illustrated in figure 4.7. Each of these test cases was

run on several different numbers of processors (domain partitionings). These images

reflect the 16 processor cases (4x4 tiled partition). Figure 4.7(a) shows a single global

spiral feature. The 4x4 partitioning splits this feature into a total of 36 pieces that must

be re-assembled into a single feature. Each processor initially sees multiple features

that are not mergeable since each processor owns different partial disconnected strips

of the spiral. The ghost elements of the spiral are illustrated in figure 4.7(b). These are

the identifying elements of the partial features gathered on the root processor for stitch-

ing. Figures 4.7(c) and 4.7(d) show concentric but non-intersecting boxes and their asso-
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ciated ghosting pattern on a 4x4 tiled partition. This case ensures that the bounding box

intersection checks are exercised while making sure that non-overlapping regions are

not merged. Figures 4.7(e) and 4.7(f) show a series of nested “l-shapes”. This pattern

is similar to the boxes in that the features do not overlap but many of the bounding

boxes do intersect.

4 . 3 . 3 Multiple Flooding Thresholds

In §4.2.1 we discuss locating and flooding features by sampling the solution field

on each mesh entity and comparing it to a threshold value. In this section we talk

about the addition of a second threshold to improve the robustness of several of the

algorithms in this work. We introduce the concept of a “starting threshold” and a “con-

necting threshold” to create a range where solution values may fall without triggering

the start of new features or stopping the flooding for the identification of an existing

feature. This dual threshold approach removes the jitter or numerical noise which can

cause failure of a simulation. This idea is similar to concepts found in signal analysis

for filtering [79].

The multiple flooding threshold approach has another application as well. In sim-

ulations involving grain nucleation, such as those involving recrystallization [13, 78],

there are many small features being formed and merged into one and other while they

are still very small. If we wish to ignore these nucleating features while simultaneously

tracking and remapping our full-sized features, we require another mechanism. Using

a very high starting threshold that only larger features can obtain while leaving the

connecting threshold very low is one approach to solving this issue. At the time of

publication, this approach is being investigated with promising results.

Unfortunately, the multiple flooding threshold approach creates another difficulty

for the distributed feature extraction algorithms. It’s highly likely with increasing num-

bers of features and processors that a single feature’s high entities may be separated
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 4 . 7 : Feature identification test cases and associated 4x4 ghosting patterns:
Figure (a) shows a single spiral which appears as multiple features in each partition (b)
until merged. Figures (c), (d) show concentric boxes where bounding boxes intersect
or are contained within one and other. Figures (e), (f) show disconnected features with
intersecting bounding boxes.
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from the complete set of low entities by a processor partition. To solve this problem, the

flood fill algorithm uses the STATUS flag introduced in §4.2.2 to keep track of whether

or not each partial feature on each processor contains a starting threshold value. Partial

features that do not have any high threshold values are marked as “inactive” but

maintained and communicated to the root processor for merging. If there are still no

starting threshold entities after a feature has been fully merged, it may be discarded.

4 . 3 . 4 Updating Non Root Ranks

After the feature stitching operation has been performed, the master rank contains

a complete global map of all features along with their corresponding partition indepen-

dent IDs. However, all of the remaining ranks in the parallel run still have only their

partial feature information that was last updated just before the serialization routine

(§4.2.4 and §4.2.5). Fortunately, each of the fully merged features on the root processor

contain a data structure with all of the original processor IDs and corresponding local

IDs (“original IDs”) that make up any portion of the fully merged feature. The root

processor iterates over each of these lists in each of the features and constructs a stacked

“local to global” feature vector to be distributed to the remaining ranks. This vector is

sized as the total number of partial features in the entire simulation. For each feature,

the stacked index is updated with the current feature’s ID. The stacked index s, is

calculated as follows:

s =
origj.p−1

∑
k=0

| f eaturesk|+ origj.l (4.3)

global_ f eatures[s] = f eaturei.id (4.4)

where i is used to index over the global features, j indexes over each feature’s original

IDs, | f eaturesk| represents the total number of partial features on the kth processor, origj

represents the current original ID containing both a local ID, origj.l and processor ID,
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origj.p. After this vector is built, an MPI “scatter” operation is performed to send a

slice of that vector to the remaining ranks. Each non-root processor then updates its

local partial feature information with the correct global ID. Additionally, an auxiliary

“global to local” map is constructed for handling queries where the global ID is known.

Note that we use an associative map as opposed to a vector for the “global to local”

map because there may be significant breaks in global feature indices.

4 . 3 . 5 Updating Reportable Data

After the feature maps are completely constructed on each processor, additional

post processing is performed to update auxiliary data structures that are queryable

from the user API. The features as they are constructed in §4.3.2 are not well suited

for algorithms that need feature information at a specific node or element in the mesh.

Auxiliary data structures are constructed by looping over all of the various sets in

each feature and creating maps, keyed by entity ID. Note that several features may

overlap at a given location in the domain if several variables are coupled into the

FeatureFloodCount Postprocessor. This information may also change quite signifi-

cantly depending on the chosen flooding threshold §4.2.1. Rather than storing several

feature values for a given entity in the mesh, only the feature with the highest variable

value is chosen instead. This practice removes any bias that could occur by processing

the various variables in a specific order creating a case where some variables where

over-represented (e.g. last value processed wins).

4 . 4 The GrainTracker Postprocessor

In this section we begin using the terminology “grain” instead of “feature”. A grain

(§2.1) is a specific type of feature. Whenever you see the term grain in the remainder of

this chapter, you may envision it as a feature. Similarly, we begin using the terminology
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“order parameter” instead of “variable”. An order parameter is simply the name given

to variables that represent non-conserved quantities in the Allen-Cahn model (§2.1).

The GrainTracker Postprocessor is what makes accurate reduced order parameter

(ROP) modeling (§2.1.1) possible. There is only a single requirement in making this

occur: no two grains represented by the same order parameter may ever come into con-

tact as the simulation evolves. Generally however, it is also useful to maintain unique

grain identifiers that are fixed over the lifetime of the simulation, which can be used

to query individual grain properties such as orientation. The work to identify grains

is completely handled by the FeatureFloodCount Postprocessor (§4.2). There are

however several additional functions that need to be performed to track and prevent

the merging of grains over the course of a simulation. The process flow of the grain

tracker is summarized in figure

4 . 4 . 1 Grain Tracking

In order to support the ability to query grain information throughout a simulation,

a unique and unchanging identifier must be assigned to each grain. Unless external

data is being used where identifiers may already be pre-chosen, the choice of identifiers

for grains is insignificant. However, the assignment of identifiers should be invariant

of domain partitioning or the number of processors used in a simulation. This prop-

erty aids in comparing simulations performed using different numbers of processors.

The GrainTracker Postprocessor supports each of these requirements. If the grain

structure is supplied from an external data source such as “Electron Back-Scatter Data”

(EBSD), the GrainTracker will simply query the external data object for grain identi-

fier information once the grains are extracted and merged. When generating an initial

condition, the grain identifiers are assigned in groups based on the order parameter

variable numbers. The grains represented by each order parameter are sorted by the

_min_entity_id stored in their respective data structures (1). Since grains may over-
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F I G U R E 4 . 8 : Grain Tracker Flow Chart: The actions on the right are performed only
on the master MPI process to save memory.
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lap, it’s possible for multiple grains to have the same _min_entity_id. However,

this cannot occur for grains represented by the same order parameter so the sorting is

guaranteed to be deterministic.

After the initial assignment is made, it is vitally important that each grain maintains

its original identifier for the duration of the simulation whether that grain grows,

shrinks, migrates through the domain, or even fractures. This is accomplished by a

careful comparison and analysis of each pair of time steps as the simulation progresses

to identify each grain over its lifetime. The general strategy to tracking grains is to cre-

ate a mapping that minimizes global grain movement. Any mapping created must not

permit any jumps or large translations of individual grains. The global mapping must

also support and correctly handle the movement of grains across periodic boundaries

while maintaining global minimal grain movements.

The tracking stage begins on the GrainTracker’s second “active” time step. Ac-

tive here is used to indicate that the GrainTracker need not begin tracking at the

beginning of the simulation. Like any other MOOSE Object, it may be turned on or

activated at some point after the simulation has started rather than being active at

the start of the simulation. This capability is useful for certain types of initial condi-

tions that need to evolve over a period of several steps such as those observed in the

PolycrystalRandomIC object (an intial condition which evolves a grain structure

from random noise). The grain structure from the previous time step is compared to

that of the current time step using a movement minimization algorithm to construct a

“new to existing” grain mapping (Algorithm 4).

There are several special cases that need to be handled during the construction

of the new to existing grain map to ensure proper model integrity under different

simulation scenarios. Grains may appear (nucleate), disappear (be absorbed), split

or join together (rapidly coalesce). While detecting single events is straightforward as

will be discussed next, there are pathological combinations of events that can be very
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Algorithm 4 Construct New To Existing Grain Map

1: for each grain in unique_grains do
2: min←MAX
3: min_grain←NULL
4: for each new_grain in new_grains do
5: if grain.var_idx = new_grain.var_idx then
6: curr ← distance(grain._bboxes, new_grain._bboxes, true)
7: if curr < min then
8: min← curr
9: min_grain← new_grain

10: end if
11: end if
12: end for
13: new_to_existing[new_grain].push_back(grain)
14: end for

difficult to detect. Consider the case where a single grain appears while another grain

disappears in a single time step. Similarly, consider the case where a grain may split

while another grain disappears leaving the overall count of grains unchanged.

For the purpose of discussing the grain tracking algorithm, we’ll call our grain data

structure from the previous time step “existing”, and the grain data structure from

the current time step “new”. To construct the new to existing map we loop over the

existing grains looking for best matches by distance in the new data structure. We

take advantage of the fact that the new grain data structure is constructed (sorted)

by variable index to reduce the number of comparisons the algorithm must make. We

only need to consider matching up grains with matching variable indices. The distance

routine in Line 6 is shown in Algorithm 5, but for the purposes of this discussion can be

assumed to return the centroid distance between its two grain arguments. As we loop

over the new grains, we make sure that its bounding box overlaps with the existing

grain to participate in the distance comparisons. This inexpensive check helps reduce

the chances of hitting a pathological edge case previewed earlier. Before saving the

“new to existing” pair to the map, we make sure that there isn’t already an existing key

(duplicate “new” grain). This case sometimes occurs when a grain disappears in the
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new time step and there is no best match for the existing grain. The closer of the two

grains to the old grain is chosen as the match and the other grain is marked inactive.

When the loop iteration over the existing grains has finished, the new to existing

data structure will contain the best mapping for most simulated grains. The grain IDs

for this subset are propagated from the existing grains to the new grains. After the

unique IDs have been transferred, there are two cases left to handle:

1. Any grain in the new set with an unset status is a new grain. Since we are

matching up grains by looking at the existing set and finding the closet matches

in the new set, any grain in the new set that isn’t matched up has to be new since

every other existing grain found a better match in the new set.

2. Any grain in the existing set that has an unset status is inactive. We can only

fall into this case when the very last grain on a given variable disappears during

the current time step. In that case we never have a matching variable index in

the comparison loop so this grain never competes for any new grains leaving its

status unset (i.e. it doesn’t even compete for an incorrect match).

The new grain case requires additional special handling since there are multiple

ways for new grains to be detected. The GrainTracker is currently designed to

handles two types of new grain discoveries: splitting and nucleating. Splitting grains

are grains that break apart or fracture in a time step. This may happen if a grain

is exposed to high mechanical stress. Nucleating grains are grains that are created

spontaneously in a simulation generally in a region of unstructured atoms. These

phenomena occur under a wide range of conditions ranging from mechanical fatigue

to radiation damage. The criteria for differentiating between these two conditions is

summarized as follows:

1. Splitting Grain: A new grain that is unmatched by any existing grain but has an

overlapping halo with another grain on the same variable index.
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2. Nucleating Grain: A new grain whose halo does not intersect with any other

grain on the same variable.

These new grain cases rely heavily on the integrity of halos from step to step to

differentiate between them. The fact that halos are also used by the intersection and

remapping algorithms discussed in §4.4.3, and §4.4.4 require that all halos are out of

contact at the end of each time step to ensure simulation integrity.

Algorithm 5 Grain Distance Algorithm

1: procedure D I S TA N C E(bboxes1, bboxes2, use_centroids_only)
2: min←MAX
3: for each bbox1 in bboxes1 do
4: centroid1 ← (bbox1.max() + bbox1.min())/2.0
5: for each bbox2 in bboxes2 do
6: centroid2 ← (bbox2.max() + bbox2.min())/2.0
7: curr ← minPeriodicDistance(centroid1, centroid2)
8: if curr < min then
9: min← curr

10: end if
11: end for
12: end for
13: return min
14: end procedure

4 . 4 . 2 Handling Nucleation and Splitting

As a simulation evolves, the grain tracker will encounter situations where there

are mismatches between the number of grains identified in the current and previous

steps. When the overall number decreases, this indicates the absorption or “joining” of

grains. When this number increases this indicates the presence of a new grain typically

through a nucleation process. It can also happen in simulations where nucleation is

not being simulated due to grain “splitting”. Both of these cases are illustrated in

figures 4.9 and 4.10.
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Figure 4.9 shows a case where a concave grain splits during a typical grain growth

simulation. While grains do not normally break or split physically during evolution,

numerically these cases are somewhat common for some grain shapes. The rounded

grain in figure 4.9 will typically shrink under normal circumstances. As the size of the

grain decreases, the thinning neck in the center of the grain will eventually disappear

leaving two distinct features in place of the larger feature. If we refer back to the pre-

vious section on grain tracking, we can see that this case may be handled by checking

to see if the halo of this new feature intersects the halo of any existing feature with a

matching variable index. There are additional highly unlikely cases possible that are

not currently implemented. These cases are discusses in §8.1.

(a)	 (b)	 (c)	

F I G U R E 4 . 9 : A possible progression of the absorption of a non-convex grain. The
grain halo is shaded around the grain body. Figure (a) shows the original shape of the
grain as it begins to be absorbed. Figure (b) shows the time step where the neck of the
grain becomes narrow enough that it eventually causes separation of the two larger
parts of the grain body. Figure (c) shows a complete separation of the grain and halo
regions. Note the general curved shape of the grain. This is typical for a grain that is
being absorbed by neighboring grains.
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(a)	 (b)	

F I G U R E 4 . 1 0 : A possible progression of the coalescence of a “split grain”. Figure (a)
shows two separate grains each with non-overlapping halo regions. Figure (b) shows
the initial contact of the halo regions of these grains. Grains sharing the same grain
ID are remapped to the same order parameter if they are not already represented by
a single variable in a given time step. They are allowed to coalesce if they come into
contact.
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Figure 4.10 shows a case where grains are beginning to join. Normally as two grains

represented by the same order parameter begin to come into contact (indicated by

touching halos), one of them is remapped to another order parameter. This algorithm

is discussed thoroughly in §4.4.4. However, if the two grains have the same ID, they

are allowed to coalesce into a single larger grain. It is important to note that this is

generally an artificial case that the grain tracker must handle due to the reduction from

a real 3D data set to a 2D simulation.

4 . 4 . 3 Grain Intersection Checks

After the grain tracking stage has completed, the updated grain information can

be immediately used to report unique grain identifiers and grain statistics. However

due to grain evolution, additional work may be needed to prevent grain coalesce due

to reduce order parameter modeling discussed in §4.4. The remapping algorithm

assumes that the order parameters in the previous time step are assigned in a valid

configuration. It is then reasonable to assume that most of the grain’s order parameters

are still in a valid configuration in the current time step. Rather than recoloring the

whole grain map, we only need to handle new grain neighbors that are in conflict.

The grain integrity check stage begins by looping over all grain pairs with matching

variable indices looking for conflicts. Grains that are represented by different order

parameters are by definition never in conflict so those comparisons are immediately

skipped. For grains that are represented by the same order parameter, a coarse check

of the grains’ bounding boxes is made first to see if the grains may be in contact. If any

of either grains’ bounding boxes are overlapping as shown in Fig 4.11(a), then a fine

level check is performed to see if there is a set intersection of the two grain’s halo sets

as shown in Fig 4.11(b). If an intersection occurs, this indicates that two grains have

become neighbors from a graph coloring point of view so grain remapping must occur.
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F I G U R E 4 . 1 1 : Illustration showing two features in close proximity triggering a
remapping operation. Figure (a) shows two features with intersecting bounding boxes
(coarse intersection check). This triggers a fine-grained “halo” check illustrated in (b).
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4 . 4 . 4 Grain Remapping

Grain remapping is implemented using a recursive backtracking algorithm capable

of performing several variable swaps to transform the improperly colored grain graph

into a proper one. This backtracking algorithm runs only on the root process which

is the only processor that contains the complete global grain graph. There are several

stages and utilities that make up this portion of the algorithm which are discussed

here. When a pair of grains are located that are in close proximity defined by the fine

intersection check covered in the previous section, one of them is arbitrarily chosen

and designated as the “target” grain indicating that we seek to remap its defining

variable values to a different solution variable. Depending on the number of neighbors

a graph has and the variables representing each of those neighbors, it may or may not

be possible to create a valid graph by remapping only the target grain. In this case a

depth-limited, depth-first search is performed seeking a series of neighbor swaps to

leave the graph in a valid state.

To begin, an array of lists of size m is built and populated, where m is the number

of variables (colors) in use. For each variable the nearest grain represented by that

variable (as determined by the bounding box distance) is located and its distance is

stored in the list at the corresponding array position along with the grain ID itself. In

cases where the nearest bounding boxes for a given variable overlap the target grain,

we maintain a negative count representing the total number of overlaps and the ID

of each grain which overlaps. Otherwise we store the closest bounding box edge to

bounding box edge distance for the given variable. We don’t bother to calculate or

store any information for grains with matching variable indices, or for grains that live

on a reserved order parameter (§6.1) since those variables are ineligible for remapping.

If there are any empty order parameters (an order parameter representing zero grains),

a distance of infinity (∞) is entered into the corresponding position prioritizing those

variables for remapping. This “color distance” array is then sorted in reverse order
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putting the grains furthest away near the front and leaving those with several overlaps

near the back. A case with all negative distances is illustrated in figure 4.12. In this

example, the target grain is chosen as the large grain labeled A, centered on the right

side of the image. All of the other colors have at least one bounding box that overlaps

the large A grain: 2 for B, 1 for C, and 3 for D. The empty list (∅) is used for the variable

represented by the target grain to ensure that the same variable is never considered as

a possible remapping option.
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Variable Distance
A ∅
B -2.0
C -1.0
D -3.0

F I G U R E 4 . 1 2 : Illustration showing the grain distance heuristic being calculated
for all variables (colors) in the simulation for the target “A” grain located on the
right-hand side. Figures (a), (b), and (c) show that all available variables in this
simulation are potentially neighbors (overlapping bounding boxes) with the current
target. The heuristic function penalizes each variable based on the number of overlaps
by maintaining an increasingly more negative value for each grain with one or more
overlapping bounding boxes. ∅ is used to prevent variables from attempting to remap
to themselves.

We iterate over the array of distances looking for available variables suitable for

remapping the target grain. If a positive value is encountered, the grain can be imme-
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Variable Distance
A 52.6
B 4.2
C ∅
D -1.0

F I G U R E 4 . 1 3 : Illustration showing the grain distance heuristic being calculated for
all variables (colors) in the simulation for the target “C” grain located in the lower right
corner. Figure (c) shows that one variable is still a potential neighbor. Figures (a) and
(b) however give us options for immediate remapping. The order parameter with the
larger positive distance is selected since it is further away.
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diately remapped and the algorithm returns “success”. If however a negative value

is encountered, we must first perform a fine-level check on each of the corresponding

grain halos to see if these grains actually overlap. If they do not, we can immediately

remap the target grain and return “success”. If we encounter a case where there is only

a single truly overlapping grain (bounding boxes and halos intersect), the algorithm

tentatively marks the target grain with the other grain’s variable effectively simulating

a remapping operation. It then recurses on the other neighboring grain making it

the new target. If the algorithm is able to find a successful remap in the recursive

call, the returned “success” value indicates to the caller that the tentative mark can

be removed. The “success” value can then be propagated on up the call stack. If all

items in the “color distance” array are exhausted without finding a successful swap or

set of swaps, the algorithm returns “fail”. If we are in a recursive call, the tentative

mark is removed and the next value in the array is inspected. We find that limiting

the depth-first search to a relatively small depth (2 or 3) works reasonably well to

fail out of impossibly tightly colored graphs faster. This also helps avoid the huge

runtime penalty and exponential growth rate possible with an unlimited backtracking

algorithm. Note: Tentative markings are indicated by turning on the DIRTY status flag

in the feature’s data structure. The DIRTY status uses an independent bit so it can exist

simultaneously with another status.

4 . 4 . 5 Remapping the Finite Element Solution

As previously noted, The grain remapping algorithm detailed in the previous sec-

tion runs only on the root processor since it is the only processor with the complete

global map of grain structure information. This represents a significant challenge

since solution variable information is typically distributed for scalability in many finite

element frameworks. To overcome this challenge, instead of performing the solution

remapping operation during the remapping algorithm, the root processor maintains
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F I G U R E 4 . 1 4 : Illustration showing the final remapping stages. Figure (a) shows the
grain colors after the table in Figure 4.13 is built prior to any remaps. The presence of
a positive distance means that we can immediately remap to one of those colors. We
choose A, the largest distance and remap (Figure (b)). As the algorithm backs out of
recursive call, it remaps the tentatively marked grain to C (Figure (c)).

a list of grain remapping operations that need to be performed. This information is

broadcast to all of the remaining ranks after the remapping algorithm has completed.

All of the ranks (including the root process) then iterate over this map and use the

remapping information contained within to update their individual local feature struc-

tures and corresponding solution values.

We abstract the solution value swapping algorithm into a little helper routine de-

scribed in §4.4.5. The actual solution value swapping must be performed in two passes

to handle any neighboring feature swaps (i.e. neighboring vertices that exchange

colors). This case is illustrated in figure 4.15. This is due to the fact that a single

element in the finite element will have variable values for all field variables in the

simulation and features are permitted to overlap in the phase-field model. During

the first pass, each rank that owns any portion of any of the remapped feature uses

its current variable index and local IDs to look-up corresponding degree of freedom

(DOF) indices. These DOF indices are then used to look-up the variable values in
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F I G U R E 4 . 1 5 : Solution remapping on neighboring features: The overlapping region
between features requires that the solution information is read and cached for all
variables before being re-written.

the solution vector. That information is cached in a local data structure. During the

second pass, the new variable index (color) is used to look-up the new DOF indices

where that cached information should be written. The cached data is copied into

the corresponding positions in the processor’s local solution vector. Finally the old

variable values are zeroed out effectively completing the transfers.

The remapping routine interacts with the finite element solution vectors. Since

the finite element method defines a solution based on field of global basis functions,

the solution modifications must be made precisely to preserve the integrity of the

simulation. The purpose of the grain tracker narrows the scope of what kinds of moves

are performed. We are only ever moving the values of order parameter fields within

a phase-field simulation and the properties and characteristics of these variables are

well-understood. First order parameters are non-conversed, greatly simplifying the

rigor needed in copying values around in the solution vector. Second, we are always

moving non-zero values from one order parameter (representing a grain) to any other

order parameter where there is a region containing only zeros in the target area. The

target area must completely encompass the volume of the grain being moved so that

no values are lost when the transfers are made. Finally, to preserve the integrity
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of the simulation, any corresponding degrees of freedom in solution vectors from

previous time steps (known as “old” and “older” in the MOOSE framework) must

also be updated when the current solution vector is changed. This is because many

physics simulations use information from previous time steps when calculating current

residual values. An astute observer may note that the graph coloring properties of the

previous solution vectors may not hold if information from the current time step is

propagated backwards in this manner. This is not a problem in practice since graph

and grain information is not used in calculating current residuals.

S O L U T I O N VA L U E C A C H I N G — The solution value rewrites that take place fol-

lowing the remapping algorithm are handled by a cache aware utility for convenience.

This utility has three modes of operation: FILL, USE, and BYPASS. The BYPASS mode

is used for performing live updates on the solution vector. The cache isn’t filled or used

in this case. The values are simply transferred from the source variable to the target

variable. It turns out that we can only use this method in single swap conditions as

an optimization. The other two modes for working with the solution vector are used

in concert. We first use the FILL mode, meaning that we read information from the

target variable into a cache indexed on the source variable. If we use the USE mode, we

read information out of the cache for the target variable into the DOFs on the solution

vector corresponding to the destination variable.

4 . 4 . 6 Updating Variable Field Information

After the remapping operation is complete, the GrainTracker Postprocessor needs

to update and create several data structures that can be queried by the remaining por-

tion of the simulation. These data structures provide unique IDs where they are needed

and are used to produce fields for visualization purposes. Multiple maps that are

indexed by entity IDs are created to produce the unique IDs, current order parameter
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assignments, halo fields (§4.2.3), and ghosted entities. Since the FeatureFloodCount

Postprocessor produces overlapping grain fields, the highest value at an entity always

determines the information displayed at that entity. This removes any bias that may

arise from looping over entity information in each of the grains and having either the

first or last value set determine the value at an entity.

This section is similar to the functionality provided by the similarly named section

in the FeatureFloodCount discussion 4.3.5. Its underlying purpose is indeed the

same but there are several additional attributes needed by grains that are not needed

by more generic features.

4 . 5 Feature Statistics

The ability of the FeatureFloodCount and GrainTracker objects to produce in-

formation about individual features throughout a given domain can be used to provide

statistical information for further post-processing analyzes. The FeatureFloodCount

object can provide the total number of features observed as well as the number of

features per solution variable. Several pieces of information can be obtained for each

identified feature: the centroid, the bounding boxes, the number of elements making

up the volume or the halo around the feature and a boundary intersecting indicator.

In addition to the physical statistics available, several simulation related statics can be

retrieved: The list of processors owning a piece of feature, a partition independent id

useful for stable sorting when running the same simulation over different numbers

of processors, and a status variable indicating the various states a feature may be in

during the simulation such as active, inactive, marked, and others.

One notable piece of information that is not directly available in these objects is

the actual computed volume of each feature. This value is not normally calculated

during a typical simulation because it is slightly more expensive to calculate since it

requires additional “shape function” evaluation and quadrature point loop to obtain
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the integral values. Even if these values were readily available, neither one of these

objects would have a natural ability to output this information in any useful way since

the values are neither spatial or scalar. Fortunately, the MOOSE framework has a vector

post-processing system (§4.1.3) for managing output of arbitrary “vector” data such as

these statistical value arrays.

4 . 5 . 1 Feature Volume Vector Postprocessor

The FeatureVolumeVectorPostprocessor is responsible for outputting vec-

tors of data from the FeatureFloodCount object that are not directly related to the

mesh. These include lists of feature volumes, corresponding variable indices, and

other relevant feature information. Creating several independent objects to implement

the algorithms in this dissertation limits the scope of each object, allowing for better

software design and maintenance. VectorPostprocessors discussed in §4.1.3 han-

dles the output of information which is often error prone and challenging in parallel

computing environments.
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F I G U R E 4 . 1 6 : 1D view of the inter-
section between two order parameters
(ηi) from a phase-field simulation. The
volume integral calculation of each “grain”
is shaded.

As noted in §4.5, neither the FeatureFloodCount nor the GrainTracker objects

calculate the feature volumes beyond maintaining a list of elements where the feature

is present. This object couples to either the FeatureFloodCount or GrainTracker

objects. As the vector post-processor is performing an elemental loop, it is able to
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retrieve an array of all active variables to the corresponding feature that they are rep-

resenting for the given element. As the integral value is calculated on every element,

the appropriate volume contributions are summed into the corresponding feature’s

volume. This procedure allows for accurate volume calculations based on the integrals

of the calculated variable values. This capability is important in the phase-field method

where the interface between adjacent grains is non-zero as seen in Figure 4.16. In the

interface regions, multiple variables will be non-zero but whose sum is approximately

equal to one.

4 . 6 MOOSE Core enhancements

MOOSE contains several systems where the execution frequency is user-controlled.

This concept is briefly introduced in the §4.1.1. This is useful in reducing expensive

computations where calculated fields are only used for things like output instead of

feeding back into a coupled solution computation. The algorithms presented in this dis-

sertation generally only need to execute once per solve to inspect and impact the con-

verged solution. This is accomplished by setting the execute_on flag for the target

objects all to the same value such as TIMESTEP_END. However, this doesn’t specify the

relative ordering among objects from different systems such as Postprocessors and

AuxKernels. During the development of the feature identification and grain tracking

capabilities, it became apparent that some amount of inter system dependency resolu-

tion would be necessary for the purpose of visualization. The FeatureFloodCount

and GrainTracker objects both create several data structures which can be used

to populate a number of auxiliary variable fields (AuxVariables). However, post

processing is usually the last operation run during a time step so that aggregation can

be performed on the field variables. This was indeed an assumption that was designed

into the MOOSE framework.
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To support the output of information to field variables, MOOSE was enhanced as

part of the grain tracking development effort so that user object and post processors

could be executed before AuxKernels. This enhancement was designed so that the

dependency resolution would be automatic based on the data dependency. This capa-

bility has become an important part of the MOOSE ecosystem and is continually being

expanded to incorporate more ad hoc resolutions in the future.
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Chapter 5

POLYCRYSTAL INITIAL CONDITIONS

“People think that computer science is the art of geniuses but the actual reality is the
opposite, just many people doing things that build on each other, like a wall of mini stones.”
- Donald Knuth

In order for the GrainTracker to function properly in a simulation, it must begin

with valid initial conditions. There are two types of grain structure initial conditions:

those that are dictated by real experimental data, and those that are generated by the

simulation to mimic real microstructures. In either case, an order parameter assign-

ment for the grain structure must be produced for running a reduced order modeling

simulations. To ensure the validity of the simulation, the initial assignment of these

order parameters to the grain structure must satisfy the same conditions as those being

held during the simulation execution. That is, no two grains represented by same order

parameter may be in contact for the same definition of contact. Recall that run-time

contact is defined in §4.4.3 as the intersection of halos of different grains represented

by the same order parameter.

5 . 1 Initial Conditions for Nodal FEM Basis Functions

When creating an initial condition for a finite element mesh, one must first choose a

suitable set of basis functions to represent the finite element solution on the domain de-

pending on the properties and continuity requirements of the PDE for which a solution

is being sought. For many types of FEM analysis, the Lagrange shape function family

is chosen for several of its desirable properties: simple fast numerical calculations, C0

continuity, linear interpolary solutions, and nodal values that correspond exactly to the

solution at those points [8, 67]. However, when projecting cell-centered or volumetric
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data, some smoothing or averaging technique must be applied to set the values at the

nodal positions between elements with different values. One option is to average all

of the elemental values connected to each node.

5 . 2 Initial Conditions from Experimental Data

Electron Backscatter Data (EBSD) is a very common experimental technique for

obtaining crystallographic microstructure and texture data, which is suitable for use

as initial conditions and for validation of phase-field simulations [42, 15, 99, 81, 88].

The MOOSE phase-field module has a rich interface for reading and querying EBSD

files exported by the de facto standard EBSD software DREAM3D. This EBSD data is

assumed to be cell-centered or an “elemental” data format so some projection method

must be used to produce initial condition values for nodal basis functions on the finite

element mesh. First, we must pick an order parameter to represent each grain identi-

fied in the EBSD data set (§5.4 and §5.5). After we have selected an order parameter for

a given grain, we must decide how to project the value onto the nodal basis. Consider

for example a regular structured 2D rectangular mesh and assume that we have a grain

that’s represented by a single element in that grid. If we set a value of 1.0 for each

of the four node points we will effectively initialize the phase-field with no interface

widths anywhere in the domain as opposed to the diffuse interface that the phase-field

method normally expects (Figure 4.16). This kind of sharp initial condition has a few

disadvantages: First, it creates larger, non-conservative grains throughout the domain

since every grain overlaps every other grain on at least one node. It may also cause the

first nonlinear FEM system assembled to fail to converge since the sharp interface is a

poor initial guess for the diffuse interface solution to the phase-field equations.

A better initial condition approximation is to set the nodal value for each variable

to the average of all neighboring elemental values for a given variable. This approach

creates a linear profile spreading away from each grain. Since every elemental value is
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either zero or one by definition, this approach assigns each node a value equal to the

percentage of attached elements with a value on each variable. Thus, in our 2D regular

grid example, each element contributes 25% of its value to each interior node, 50% to

each side node, and the full value to the corner nodes on the domain. In this manner,

we can initialize the nodal basis with an interface width while capturing every grain

in the original EBSD data set.

5 . 2 . 1 GrainTracker EBSD Initial Conditions

When setting the initial conditions following the approach in the previous section

we find that the interpolation of the nodal data is insufficient for recovering the origi-

nal elemental data. This severally impedes the grain tracker’s ability to successfully

identify grains less than three elements across their smallest dimension accurately.

To reason why this is the case, consider the small 3x3, 3 grain data set illustrated in

table 5.1. In this scenario, the center element will contribute 25% of its value to each

of its nodes. However, one of the surrounding grains will contribute at least 50% of its

values to each of those same nodes. When we sample the shape functions in the center

element the grain represented by B will have the largest value making it difficult to

locate the proper grain center for the smaller grain, C.

A A B
A C B
B B B

TA B L E 5 . 1 : Table representing a small EBSD data set. Using the initial condition from
§5.2 results in the center grain being missed by the feature extraction algorithm.

To overcome this problem, the grain tracking algorithm must consult the EBSD

data directly during the initial flood stage (§4.2.1) instead of relying solely on the

interpolated order parameter information. The first time that the flood algorithm

is called, the EBSD data for the given element is directly retrieved to determine if

the current region is part of an existing feature or the start of a new feature. This



72

allows the initial identification of grains to exactly match the EBSD initial condition

regardless of the size, shape, and discontinuities in the grain regions. On subsequent

tracking invocations, we resume using the interpolated nodal solution information.

Through empirical observation, this approach works reasonably well. While there

may be several absorption events and other changes detected by the grain tracking

algorithm, this approach is far less problematic than beginning with a condition that

simply doesn’t match at all. For modularity in the grain tracker implementation, this

special case logic for handling EBSD data sets is abstracted away from the normal logic

of the extraction and tracking in a virtual callback method and may be applied to any

elemental polycrystal initial condition.

F I G U R E 5 . 1 : Initial condition
from an EBSD data set contain-
ing several small grains. (A)
shows one of the several single
element grains present in the
sample. (B) and (C) both show
disjoint grains regions. The
colors represent the reduced
order parameter assignments.

Figure 5.1 shows the elemental initial condition constructed from an EBSD data file.

It contains several single element grains whose nodal values are set to a relatively low

order parameter value of 0.25 using the criterion from section 5.2. However, if we were

to use a projection method instead, these small grains would be completely missed

by the initial grain tracker invocation due to the larger surrounding grains that would
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dominate the elemental values due to the projection operation. Additionally this data

set contains two grains which are not topologically connected when viewing only a 2D

slice of this 3D sample. §4.4.2 discusses how these disjoint grains are handled. When

any experimental data format is used, it’s possible and quite common to have spatially

disjoint regions appear in the data file that share the same “unique” grain identifier.

The GrainTracker honors these repeated IDs even when they are disjoint and permits

regions represented by the same ID to coalesce if they should come into contact during

the simulation. The handling of these disjoint grain cases are discussed in section 4.4.2

and illustrated in figures 4.9 and 4.10.

(a) (b) (c)

(d) (e) (f)

F I G U R E 5 . 2 : A microstructure reconstructed from an irradiated sample of UO2.
The physics solution process and GrainTracker algorithms work nearly identically to
simulations using generated microstructures.
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Figure 5.2 shows the reconstructed initial condition from an irradiated sample of

Uranium Dioxide and the evolution of that sample under grain growth physics. The

corresponding grain halos are also illustrated. Figure 5.3 shows the reconstructed

initial condition from a high temperature alloy. Note the significant differences in the

microstructures between these two materials. Once the initial conditions have been

reconstructed for a material. The GrainTracker treats them identically for the duration

of the simulation.

(a) (b)

F I G U R E 5 . 3 : A sample of a high temperature alloy from a commercial company. This
microstructure of of this sample is very different from that observed in Figure 5.2.

5 . 3 Generated Initial Conditions

If experimental data is not available, one must generate a representative microstruc-

ture for the simulation. Generating realistic microstructures is a rather complex prob-

lem and there have been several proposed methodologies [37, 89, 62, 7, 98]. There most

common method for generating a polycrystal microstructure is by creating a Voronoi

Tessellation [11, 58, 94]. Voronoi Tessellations are produced by laying down a set of

random points within the domain and then assigning each element to the closest point.
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We have also implemented an experimental random initial condition where we use the

phase-field simulation to evolve a set of grains beginning with random noise on each

order parameter field. While this method is non-physical it can create very complex

microstructures with ease. The biggest drawback of the random approach is that it is

highly dependent on the number of order parameters used in the simulation. Since

the initial conditions evolve through a series of small cells coalescing, fewer order

parameters correspond with more coalescence. We demonstrate the use of a random

initial condition in §7.3.2.

When using a Voronoi Tessellation or starting from an EBSD data set with a reduced

order parameter simulation, one must distribute the smaller number of order param-

eters in some valid fashion to the grains in the simulation. If this is done incorrectly,

it can lead to simulations with very different and quite possibly incorrect behaviors.

An example of this change in behavior is discussed in §5.6 and illustrated in figure 5.4.

A proper distribution requires that neighboring grains are always assigned different

order parameters from any of their neighboring grains.

5 . 3 . 1 Reduced Order Modeling as a Graph Coloring Problem

To build a valid initial condition, we must first determine each grain’s neighbors

and then distributed the order parameters among all of the grains such that no two

adjacent grains have the same variable. This is analogous to solving a graph coloring

problem [43], which is NP-complete [47]. To visualize this problem, refer back to

the figure 3.1 in §3. There are a few key differences in the traditional graph coloring

problem and the assignment of initial conditions for a grain simulation. Namely, we

aren’t looking for a solution using only the number of order parameters allowed by

the given graph’s chromatic number [71], instead we are looking for a valid coloring

using some slightly higher number of order parameters. This allows the simulation to
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evolve with headroom to allow for new edges to appear in the graph without having

to worry about changing the fixed number of order parameters in a simulation.

Using a higher number of order parameters has several advantages. First, we don’t

spend a lot of computing resources determining the minimum number of required

variables for a given problem, we simply pick some higher pre-chosen value and

immediately use it to color the graph. The use of extra order parameters can also

improve the performance of stochastic and more rudimentary deterministic coloring

algorithms since there are many more valid colorings possible with additional avail-

able variables. Finally, less remapping is necessary with more order parameters as

grains are more spaced out throughout the domain. This helps to reduce truncation

errors in the solution since a finite number of elements containing a non-zero solution

can be remapped for a given remapping operation. This is due to the “sigmoid-like”

shape of the solution field (Figure 4.16). While, this truncation does not appear to

effect the bulk-behavior of the simulation, it can increase localized variations in the

solution field in the tail ends of the shape functions representing the solution fields.

Two different polycrystal initial condition algorithms are compared in §5.4 and §5.5.

Before any order parameter assignment algorithm can be implemented, we first

need to construct a graph indicating all neighboring grains using our finite element

mesh and polycrystal structure. For maximum flexibility in implementing algorithms

in this work, we use a traditional adjacency matrix [35] to represent the grain adjacency

graph. This algorithm is discussed in the next section.

5 . 3 . 2 Adjacency Matrix Construction

To construct the adjacency matrix, a well-defined grain structure Application Pro-

gram Interface (API) must be defined. Regardless of whether the grain structure is

recreated from experimental data or generated the spatial information, the API needs

to be queryable to determine vertex connections. Since our work is always constrained
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by the underlying unstructured finite element mesh representing our domain, a natural

API to support for all data types is simply a method that returns the current grain ID

given an element ID. We can then use this interface to construct an element to grain

map which will be used to construct a graph.

The element to grain interface is naturally supported for the commonly used EBSD

format (§5.2). This format already consists of a list of positions and corresponding

grain identifiers. In the MOOSE framework, the EBSDMesh format captures the full

fidelity of this format and can optionally further refine the mesh beyond the initial

resolution to capture lower length physical effects. For a generated Voronoi Tessella-

tion, one can sample a point anywhere in the domain and determine the corresponding

grain ID. Additional microstructure algorithms can easily be plugged in to support this

interface if needed.

Armed with this interface, we begin by constructing the element to grain ID map,

the adjacency matrix can then be readily constructed. This data structure is created

by iterating over all elements in the mesh and inspecting neighboring mesh elements.

We consult our map and whenever adjacent elements have different grain IDs, this

indicates an “edge” in our graph. Those grain IDs can be inserted directly into the

adjacency matrix. In this manner, all physical neighbors can be determined. Handling

periodic boundary conditions is straight-forward in this phase as well. Instead of just

inspecting physical neighbors, we look at “topological” neighbors which may point

to corresponding elements along a corresponding periodic interface. This algorithm

however is not sufficient to satisfy the run time intersection conditions discussed in

§4.4.3 due to the lack of visibility of neighbors that can only be detected through the

addition of grain halos (§4.2.3), so additional work is needed to fill in the missing edge

information in our adjacency matrix.

To find find the missing edges in our adjacency matrix, we have to construct grain

halos as we build the adjacency graph. When we encounter a grain interface, we
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track both the “local IDs” and the “halo IDs” of the two elements in question in two

auxiliary data structures. We append the element ID to a list keyed on the current

grain ID. This is because the current element is an actual interior element since that’s

what the API is designed to report. We then insert the neighboring element ID (the

one with a different grain ID) into a halo list also keyed by the current grain ID. Since

that element is neighboring this grain, it is a first level halo element because it does

not have a matching grain ID. To generate the symmetric map for the neighboring

element we insert a local ID and halo ID into our two data structures using the neighbor

element as a frame of reference too. This step is not strictly necessary if one loops over

every element as we’d insert this information for the neighboring grain eventually.

However, In our implementation we insert the element as an optimization to handle

the expensive of calculating which neighbors are active only once for the adaptive

mesh refinement case.

Once the elemental loop is complete, we have a data structure containing all of

the first level halo elements for all grains and a data structure containing the outer

rim of interior local ids for all grains. With these two structures, the halos can be

expanded in a similar fashion as the algorithm described in §4.2.3. The difference

being that additional set differences are performed to avoid building the halos into

the interior of each grain since we don’t have the full grain interiors mapped. After a

matching halo depth is constructed the halos can be used to construct a full adjacency

graph. Each pair of halos is inspected to check for intersections indicating an edge

in our graph. This procedure constructs a full adjacency matrix with the exact same

definition as the intersection definition used during run-time §4.4.3. The advantage of

building the adjacency matrix is that it abstracts the graph information away from the

finite element mesh and details of the initial condition generation. Once the graph is

succinctly represented in an adjacency matrix, any number of advanced graph coloring
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algorithms may be employed to assign order parameters to the grains [23, 44, 26, 55,

29].

The algorithm described in this section has not been parallelized and does not

currently work with the distributed mesh functionality. Each rank in a simulation

using MPI builds the full adjacency matrix. While there are not any significant concerns

in terms of memory usage since the adjacency matrix is a simple integer matrix, there

may be opportunities for speedup in the construction of this matrix and the use of a

parallel graph coloring algorithm [1, 45, 33, 34].

5 . 4 Backtracking Algorithm Assignment

The backtracking algorithm [53, 54, 36] is a simple algorithm that can be applied

to the graph coloring problem with a high likelihood of a successful coloring. This is

especially true as the space of possible valid colorings increases through the addition

of extra colors. The most significant drawback to using the backtracking algorithm for

the purpose of order parameter assignment is the potential exponential complexity of

using this algorithm on the graph coloring problem. However, for real graphs based on

polycrystal microstructures where the number of physical neighbors can be bounded

and the number of colors can be sufficiently over-estimated, the run-time probabilistic

expected run-time can be drastically reduced to polynomial time [64].

The backtracking algorithm takes an adjacency matrix (§5.3.2), the number of grains,

and the number of available order parameters for the simulation. It assigns a color

and recursively visits each graph vertex to assign the remaining colors. If an invalid

configuration is created at any point in time, the recursion is terminated and a new

color is attempted for a vertex at some earlier recursive invocation. The algorithm

terminates when either all vertices are assigned and the graph coloring is valid or

all colors for all nodes are exhausted (a highly unlikely scenario resulting in the full
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exponential run time in the number of grains). This algorithm has been implemented

as part of the MOOSE phase field module as a starting point for analysis.

5 . 5 Greedy Algorithm Assignment

One of the most straightforward deterministic algorithms for assigning order pa-

rameters to a microstructure is to use a greedy algorithm [59]. We loop over all of the

unsorted grains in the simulation. For each grain we loop over all of the remaining

grains and keep track of which order parameter is furthest away by distance to the

other grain centroids. If there are a sufficient number of order parameters and each

grain has a relatively small number of neighbors, this algorithm can work reasonably

well. The problem with this algorithm is it only makes the best choice available for

each grain instead of verifying that the choice of assignment is valid (i.e. if the as-

signment of order parameters to grains is chosen poorly, it’s possible to wind up with

two neighboring grains being represented by the same order parameter as illustrated

in center of Figure 5.4(c). The advantages of using this algorithm include its trivial

implementation and its ability to produce a valid initial condition for a wide range

of smaller test problems. Unfortunately, the likelihood of it producing valid coloring

drastically decreases with the reduction in number of variables (or colors) used or if the

average degree of connectivity within the graph increases [12]. It is possible to use the

greedy algorithm as the starting point of a stochastic algorithm where invalid edges

are removed in a later stage. The PETSc package provides a greedy coloring algorithm

with these characteristics.

5 . 6 Greedy Algorithm vs Backtracking

The initial order parameter assignment is very important to reduced order param-

eter modeling. Using a simple “greedy” algorithm or another naïve approach may
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yield an invalid initial condition which can have significant impacts on a simulation.

Consider a simple grain growth simulation where an analyst would like to measure

the largest grain under various conditions. If an invalid initial condition (i.e. invalid

graph coloring) is produced, one or more abnormally large grains would exist in the

initial condition with abnormal shapes, significantly impacting the physics of such

a simulation. A comparison of using a proper order parameter assignment versus

a naive assignment is show in figure 5.4. A valid initial condition is shown in fig-

ure 5.4(a), with the corresponding evolution at 40 time steps is shown in figure 5.4(b).

Compare this with the initial condition created with the greedy algorithm (§5.5) shown

in figure 5.4(c). Note the two grains in the center of the image with the same color.

Since they are assigned the same order parameter, the physics simulation has no way

to differentiate them and treats them as a single larger body. The incorrect assign-

ment produces a single grain with a concave shape in the otherwise exclusive convex

Voronoi initial condition. This leads to the evolution of outwardly curved surfaces on

the grain as can been seen in Figure 5.4(d) leading to accelerated grain growth of the

incorrectly assigned grains. This effect completely invalidates any analysis involving

the sizes or distributions of grains.

5 . 7 Advanced Graph Coloring Algorithms

In addition to the two built-in graph coloring algorithms presented in §5.4 and

§5.5, additional graph coloring algorithms are available if the PETSc package is being

used as the underlying solver (§4). PETSc contains several advanced graph coloring

algorithms for the purpose of building an approximate Jacobian matrix through a finite

differencing technique [22]. These algorithms however, can be re-used for determining

a proper polycrystal initial condition coloring by utilizing the adjacency matrix con-

structed in §5.3.2. The only drawback of re-using these existing routines is that we

have little control over their implementation and characteristics. For instance, some of
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(a) (b)

(c) (d)

F I G U R E 5 . 4 : Comparison of two different order parameter assignment algorithms
at the initial condition and after 40 time steps. Figure (a) shows a proper assignment
using a backtracking algorithm with the corresponding evolution in (b). Figure (c)
shows an incorrect assignment using a greedy algorithm with the corresponding
evolution in (d) after 40 time steps. The concave edges created on the center grain
due to incorrect assignment result in very rapid growth.
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them produce a coloring that is as dense as possible regardless of the number of order

parameters requested at the start of the simulation. Also, these algorithms are not

designed to produce relatively even distributions of colors if several possible colorings

exist. Both of these characteristics generally force the grain tracker to perform several

more remapping operations in the first few time steps as the diffuse interface begins

to form. Both of these differences are illustrated in figure (figure 5.5). However, these

algorithms generally perform much better than either of the built-in algorithms at scale

and should be used for larger 3D simulations provided PETSc is available.

(a) (b)

F I G U R E 5 . 5 : Comparison of a hand coded back tracking coloring algorithm designed
to distribute colors somewhat evenly (a) versus an advanced coloring algorithm
designed to produce a valid coloring quickly (b).

5 . 8 Further Initial Condition Challenges

Depending on the type of analysis being run, it may be of interest to the researcher

that the specified number of grains will always be reliably created when using arti-

ficially generated initial conditions. Much of this chapter is devoted to discussing

valid order parameter assignment which solves much of this problem but still does

not guarantee that the desired number of grains are created using one of the stochastic
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methods in §5.3. The problem arises from the use of randomly generated center points

in R space and the potential loss of information once transferred to the finite element

mesh. Consider the method used in generating a Voronoi initial condition; Several

points are chosen randomly within the domain. Once those points are chosen, the

mesh elements are assigned to the Voronoi cell in a discrete fashion based on proximity

to the nearest center point. If by chance a cluster of points fall close to one and other

with respect the mesh element sizes. It’s possible that very few, or even no elements

will be assigned to one of the Voronoi cells. While this is perfectly valid, it may not be

desirable.

One approach to ensuring that the desired number of grains are generated is given

here: We can query the mesh data structure as each center point is generated to avoid

certain situations. The Mesh’s built-in space querying capability can be used to locate

the elements containing each grain center (plural here because a center can fall exactly

on an element edge or even on a node creating multiple owners). Those element IDs

can then be saved to a list (or hash map for fast look-ups) for the purpose of disallowing

any other center to fall within the same element for a given simulation. While this

method may have an adverse impact on the random distribution properties of the grain

center points, it does solve the problem of having a simulation begin with fewer than

the expected number of grains. Another workaround to this problem is simply to use

finer elements as the number of grains is increased. The likelihood of encountering this

problem is proportional to the number of grains being simulated divided by the total

number of elements in the simulation.



85

Chapter 6

ADVANCED CAPABILITIES

“If you’re teaching today what you were teaching five years ago, either the field is dead or
you are.”
- Noam Chomsky

6 . 1 Reserved Order Parameters

Irradiation induced recrystallization [77, 73, 72, 95] is another phenomenon being

modeled with the MOOSE phase-field module. This process is much more challenging

to model with a reduced order parameter formulation than the grain-growth model

used extensively throughout this dissertation due to the rapidly changing microstruc-

ture. From an observation point of view, the irradiation damage in this process essen-

tially causes the initial microstructure to be “replaced” by an entirely new microstruc-

ture. Instead of individual grain boundaries slowly evolving over several time steps,

the grain boundaries in one of these recrystallization simulations appear to open where

several new smaller grains appear and absorb the existing grain structure in all direc-

tions. With the core of the grain tracking algorithm being designed upon step to step

comparisons, new capabilities where added to handle these types of simulations.

The notion of a “reserve” order parameter was added to GrainTracker object. These

reserve order parameters do not differ from regular order parameter to the physics

simulation but have several different attributes in the context of the GrainTracker that

enable more robust handling of recrystallization simulations.

1. A separate threshold value for the flooding (grain identification) stage.

2. Grains are immediately remapped once identified on a reserve order parameter.

3. Reserved order parameters are never considered as a remapping target.
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4. Grain IDs are pre-chosen and fixed for reserve order parameter grains.

The idea of the reserved order parameter is that they may serve as an nucleation

and incubation area for the nucleation and initial growth of new grains. These fields

are necessarily numerically “noisy”, as they undergo transient randomly placed source

terms to simulate some underlying physical process such as irradiation damage. The

higher threshold of the reserve field allows the GrainTracker to ignore spurious feature

identification and also allows it to ignore very small grains that have nucleated but

have yet to reach some critical mass allowing them to stabilize. As these new grains

incubate for a few time steps, they eventually contain a point, whose value is large

enough to keep an identified grain as discussed in §4.3.3. These grains are immediately

remapped away from the reserve order parameter allowing new grains to be nucleated

in their place.

There are no restrictions on the number of reserve or regular order parameters

that may exist in a phase-field simulation. This allows researchers the flexibility to

add varying numbers of each type to support a wide range of nucleation rates while

balancing the associated matrix sizes.

6 . 2 Distributed Mesh Functionality

The libMesh [51] library upon which MOOSE [31, 32, 86] is built has support for a

distributed mesh data structure. This mesh structure maintains only local and ghosted

elements on each rank discarding all remaining portions of the mesh. The vast majority

of users of MOOSE and libMesh do not leverage this mode because replicating the

mesh data structure has speed advantages and does not consume large amounts of

memory until element counts reach well into the millions and simulations are spread

out to several hundred to thousands of ranks. The GrainTracker capability is fully

parallelized for solution variable information as discussed throughout §4. The core
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grain tracking algorithms also support distributed mesh and can use this capability

when used with libMesh’s “ghosting functor” system.

The halo construction algorithm discussed in section 4.2.3 requires additional ele-

ments around the surface of each element. When grains are split on processor bound-

aries, no additional information is required to properly construct a complete halo around

the grain. Each processor owning any piece of a grain is able to contribute its portion

of the corresponding halo elements to the master rank for final assembly. The cases

where additional information is necessary with the current implementation is when a

grain’s extent approaches a boundary region but does not extend onto the neighboring

processor (Refer to grain D3 in Figure 4.5 in §4.2.1). If each processor only stores the

parts of the mesh it owns (plus ghosted regions), we cannot construct the complete

halo without significant increases in communication. One simple solution to this issue

is to have libMesh increase the thickness of the ghosted regions along all processor

boundaries. The GrainTracker halos are normally sized to a thickness of at least two

for all simulation types. The desired halo thickness should also be used as the ghosting

thickness for full functionality. While the grain tracker has been made to support

distributed mesh capability, more work remains to be done before we can successfully

run larger simulations. Additional work and analysis is planned for the future (§8.1).

6 . 2 . 1 Mesh Pre-splitting

Distributed mesh can consume substantial amounts of memory during problem

start-up when reading traditional mesh formats. This is because the framework focuses

on ease of use and maximum flexibility in its supported mesh formats. Fortunately,

the choice of mesh format and the mesh mode are independent. The framework is

capable of reading in any serial format and broadcasting it to all ranks where several

mesh setup steps are performed such as partitioning and neighbor discovery. When

each processor performs the same steps on the complete mesh data structure, the
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amount of necessary communication and algorithmic complexity can be drastically

decreased. Furthermore, the subroutines for preparing a replicated or distributed mesh

can remain largely the same. The primary difference is that the processors delete all of

their non-local mesh information after the meshes are setup and prepared for use in the

simulation. This strategy however comes at a significant memory cost. When reading

in a very large serial format, it is first replicated on all ranks before it is finalized. While

each rank may have some amount of reserve headroom before the solvers, matrices and

vectors are built for the problem, there is an upper limit on the amount of replicated

mesh information that can be stored on all ranks. This is where pre-splitting can be

used.

Pre-splitting the mesh is performed by using a utility to read in a serial mesh on

some number of ranks (typically far fewer than will be used for the simulation). These

ranks each work on a full replicated copy of the mesh but write out a pre-chosen num-

ber of separate non-overlapping partitions to be used by the actual simulation. The

simulation is then run on the pre-chosen number of ranks exactly matching the same

number of partitions previously written out. Each rank then reads in its designated

mesh partition number processing only the bare minimum portion of the mesh that it

owns before running the simulation.

6 . 3 Checkpoint Recovery Support

The MOOSE framework features a checkpoint and recovery system that can be used

to split up a long running job over multiple batch runs when using computing system

with limited wall-time resources. This same system also serves as a fault-tolerance

system for spurious failures that may occur at scale on massively parallel simulations

due to problems involving networking, memory, CPU cores or other hardware issues.

When using the check-pointing system, MOOSE automatically saves the necessary

mesh data structures along with all finite element data and solution fields. Developers
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creating objects that maintain state must request memory locations from MOOSE that

will be backed up and restored as needed under a variety of conditions without user

intervention.

The FeatureFloodCount object 4.2 requires no stateful data despite holding large

data structures of all features in a given time step in addition to storing several maps

containing “field” (spatial variable) data. The GrainTracker object has a single data

structure which must be maintained across time steps and is therefore declared as

restartable data. This is the “existing grains” data structure discussed in Section 4.4.1.

All other data structures in both the FeatureFloodCount and GrainTracker objects are

generated before each use. Simulations using either of these objects can therefore be

stopped and restarted (“recovered”) on demand.
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Chapter 7

RESULTS

“Success is a science; if you have the conditions, you get the result.”
- Oscar Wilde

The grain tracking algorithms covered in this dissertation are designed to make

3D finite element phase-field modeling feasible without impeding the advanced multi-

physics capabilities present in the MOOSE phase-field module. These same algorithms

drastically accelerate and reduce the sizes of 2D models making larger models possible

on workstation class machines. Numerous simulations demonstrating the capabilities

of the these grain tracking algorithms are presented in this section showing the drastic

memory and solution time reductions possible with this tool while retaining a high

degree of confidence in the correctness of the underlying model.

7 . 1 Reduced Computational Resources

It is difficult to make a direct comparison of the required number of order pa-

rameters between phase-field implementations using finite difference (FD) and finite

element methods (FEM). While the solution values in a finite difference method are

formed from discrete stencil based calculations, in FEM, the solution represents coef-

ficients to element shape functions which make up larger basis functions that span

multiple elements. As a result, FD remapping techniques are able to remap solution

values on individual points without interfering with the global solution. The same

approach cannot be used with FEM. Still, the minimum number of order parameters

required for coalescence-free conditions presented in this work are comparable despite

the additional constraints imposed when using the finite element method.



91

Table 7.1 shows the number of required variables for a few recent remapping im-

plementations. The values from [50] in the second column represent the absolute

minimum number of active order parameters at each simulation point without concern

for neighboring values or basis functions. This method however is only applicable

to explicit time integration schemes. In contrast, the halo method we are using to

surround each grain allows for the closest possible interaction among entire grains

while still respecting the diffuse interface requirements of the phase-field method. The

author’s previous work, which used a remapping method triggered by a bounding

sphere collision detection algorithm [74] required several more order parameters than

the current state-of-the-art FD methods. However, the values present in this disserta-

tion (4th column) are more comparable with the FD approach in [57].

FD: Krill [57] FD: Kim [50] FD: Vanherpe [96] FEM: Permann [74] FEM: Halo
2D 17 5 20 8
3D 20 6 7 120 24

TA B L E 7 . 1 : Table representing the number of order parameter (or independent phase-
field variables) required for coalescence free conditions. The first two columns contain
values for recent finite difference methods, while the final two columns are numbers
applicable to finite element methods. The FEM Halo method values come from the
work presented in this dissertation.

Comparing memory usage and reduction is a more difficult task. The general FEM

method with unstructured mesh arguably uses significantly more memory than does a

stencil based finite difference method due to several extra data structures which must

be maintained by the former. We can however make a meaningful comparison between

the implementations written as part of this dissertation. The first implementation

performed the tracking and remapping portions of this algorithm on all ranks for sim-

plicity. While no noticeable or significant increase in memory was noted on large 2D

runs, a significant jump in memory was observed on the largest 3D problems. The final

implementation was written so that all tracking and remapping was performed on the

master rank only with corresponding local to global maps distributed to the remaining
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ranks. This resulted in a memory savings of more than two terabytes of combined

system memory on the 6000 grain simulation that was run on 1600 processors (§7.3.4).

7 . 2 Run time Reduction

To begin verification of the GrainTracker implementation we begin with a square

2D domain and vary the number of grains in the modeled polycrystal from 6 to 100

with 24 separate runs. In the control model, we use the same number of order param-

eters as we do grains and observe the evolution of the system over 10 time steps. In

the test model, we begin we use the same number of order parameters on the runs

containing exactly 6 and 8 grains. We then hold the number of order parameters fixed

at 8 while continuing to increase the number of grains modeled. For both models we

also enable mesh adaptivity as would typically be done in a production run to further

reduce the run time of the model. A standard “Kelly Error Estimator” [48, 101] is used

to control the mesh adaptivity of the simulation. This estimator adds more mesh where

solution error is higher, which in the case of a phase-field simulation of the solution of

several order parameters is effectively on the boundary interfaces between grains. As

the number of simulated grains is increased, additional mesh is added to maintain the

desired level of error for the simulation.

Figure 7.1 shows the run time comparison of a “small” simulation with and without

the the use of the GrainTracker. Figure 7.1(a) shows the total run time of both simula-

tion types while figure 7.1(b) shows the run time normalized by the maximum number

of degrees of freedom used by the adaptive mesh simulation. This normalization

allows us to compare runs with different numbers of grains to one and other in a fair

manner. The normalized figure shows that the simulation run time is constant with

respect to the number of grains simulated, while the full order parameter simulations

without the grain tracker scale with a rate Ω(n).
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F I G U R E 7 . 1 : Plots showing the run time of a 2D adaptive mesh phase-field
simulation on a workstation using 2 processors as a function of the number of
simulated grains. Figure (a) shows the raw run time with and without the use of the
grain tracker while figure (b) shows the run time normalized by the maximum number
of degrees of freedom used in the adaptive mesh simulation.
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Figure 7.2 shows the same simulation as shown in figure 7.1 run on 12 processors of

a workstation. The overall run time is reduced for both simulation types as expected

while maintaining the same growth rates as before. Note how both the 2 processor

and 12 processor runs have a kink in the raw runs around the 70-75 grain cases. Upon

further examination of these cases, these particular runs required slightly fewer solver

iterations to obtain a converged solution thus impacting the overall run time. These

kinds of variations are possible when using iterative methods as was done for these

simulations.

7 . 3 Simulation Results

We investigate the performance of the grain remapping algorithm using various 2D

and 3D simulations. Every simulation is run in parallel on at least 24 processors using

a 16,000 core cluster at Idaho National Laboratory.2

7 . 3 . 1 Grain growth in a 2D copper polycrystal using periodic boundary conditions

We model a 2D copper polycrystal on a 1 µm× 1 µm domain with 450 initial grains.

The grain growth is predicted using the model from [69] and implemented using the

MOOSE Phase Field module. The initial grain structure is created using a Voronoi

tessellation and the simulation is run at T = 500 K until 25 grains remain (see Figs. 7.3(a)

and 7.3(b)). To represent copper, we assume isotropic GB properties and use a grain

boundary mobility of MGB = 2.5× 10−6e−0.23/kbT m4/(Js) and GB energy γGB = 0.708

taken from [80] for a Σ29 twist boundary. The solution was computed using implicit

backward-Euler time integration with periodic boundary conditions. The simulations

utilized mesh and time step adaptivity, to reduce computational expense.

2Each of the examples in this section were originally published in Computational Materials
Science [74].
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F I G U R E 7 . 2 : Plots showing the run time of a 2D adaptive mesh phase-field
simulation on a workstation using 12 processors as a function of the number of
simulated grains. Figure (a) shows the raw run time with and without the use of the
grain tracker while figure (b) shows the run time normalized by the maximum number
of degrees of freedom used in the adaptive mesh simulation.
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450 grains were represented within the grain tracker using various numbers of

order parameters ranging from 10 to 30 in increments of two. To evaluate the impact of

the number of order parameters on the simulation, we plotted the average grain area

over time (Fig. 7.3(c)). Using the original bounding sphere collision detection approach,

simulations with less than 14 order parameters failed due to an insufficient number

of order parameters for remapping. Simulations with 16 or more order parameters

predicted the same grain growth irrespective of the number of order parameters used.

The run containing 14 parameters initially failed to predict the same microstructure

evolution due to an invalid initial condition where adjacent grains where assigned

to the same order parameter. The average grain area over time is also shown for

a simulation with 16 order parameters run without the remapping algorithm. The

increase in the average grain area is significantly faster due to coalescence which is

non-physical for this model.

A valid initial assignment of the order parameters is necessary to avoid coalescence

during the first time step. If the initial condition assigns two adjacent grains to the

same order parameter, a comparative study cannot be performed. We realized this de-

fect and implemented a more advanced initial condition assignment algorithm (§5.4),

which resolved this issue. After the halo collision detection mechanism was developed

(§4.4.3), this example was re-run resulting in a model that required no more than 8

order parameters to predict the same microstructure as the reference run.

The scalable grain tracker algorithm doesn’t increase the computational expense of

2D simulations by any significant amount. In 2D 450 grain run, the grain tracker used

less than 2 percent of the total computational time for the 8 order parameter simulation

when compared to a reduced order model without the grain tracker algorithm. How-

ever, the use of the grain tracking algorithm guarantees the same behavior of a simula-

tion running on a non-reduced order parameter set (correct evolution without coales-

cence). When comparing to a non-reduced 2D simulation on the same microstructure,
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the savings is substantial in terms of both memory and time. Typical simulations run

about two orders of magnitude faster and consume roughly two orders of magnitude

less memory.

7 . 3 . 2 Grain growth in a circular 2D copper polycrystal

The grain tracker algorithm works for all domain sizes and shapes. In this example,

we model grain growth in a circular polycrystal with 1735 initial grains, where the

initial grain structure was randomly generated (see Fig. 7.4(a)). The simulation was

initially conducted with 18 order parameters using the bounding sphere approach.

Since this simulation uses a random evolution initial condition the number of order pa-

rameters cannot be significantly reduced without changing the properties of the grain

sizes and distributions. However, using the bounding sphere and halo approaches

both work reasonably well at this number of order parameters. We simulated the grain

growth at T = 500 K and the same model and material parameters were used as were

used in the previous example. The domain has a 500 nm radius and zero flux boundary

conditions were applied to all order parameters on the outer edge.

After 1.23 µs, 111 grains remain in the system, as shown in Fig. 7.4(b). The average

grain area over time can be computed from the number of grains recorded by the grain

tracker algorithm, showing the expected linear relationship (Fig. 7.4(c)). The grain

tracker also records the grain area, from which we calculated the grain size distribution.

The size distribution quickly reaches a steady state value, as shown in Fig. 7.4(d). The

Hillert distribution [40] is shown for reference. The grain tracker algorithm took less

than 2 percent of the total computation time.

7 . 3 . 3 Grain growth in a deformed 2D copper polycrystal

Because the grain tracker algorithm maintains a unique ID for every grain through-

out the simulation, it can be used with models that consider the impact of crystal
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F I G U R E 7 . 3 : 2D simulation with grains spanning periodic boundary conditions. (a)
initial grain structure, (b) final grain structure after 6000 ns, (c) plot of the average
grain area versus time. (a) and (b) are shaded by unique grain ID. Average grain
area behaves the same for sixteen or more order parameters once the grain tracker
is activated. Therefore, the model is evolving correctly (without coalescence).
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F I G U R E 7 . 4 : 2D simulations on a circular domain with zero flux boundary conditions
for all order parameters in a copper polycrystal. The initial grain structure with 1723
grains, created by randomly seeding each order parameter and running for ten time
steps, is show in (a). The final grain structure after 1.23 µs is shown in (b). Using
information collected by the algorithm, the average grain area over time is shown in
(c) and the grain size distribution is shown in (d).
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orientation. In this simulation we model grain growth in a 2D copper polycrystal that

is undergoing deformation using the model from [93] and [92]. The polycrystal has 400

grains with the initial structure created by a Voronoi tessellation, as shown in Fig. 7.5(a).

We assume isotropic GB properties, though we consider elastic anisotropy. The initial

texture is random and only involves rotations around the z−axis ranging from 0◦ to

45◦, due to the cubic symmetry. Sixteen order parameters were used to represent the

400 grains.

To account for the mechanical deformation, we couple the phase field equations

to a solution of a linear elastic mechanics problem, in the manner shown in [90]. The

values for the three cubic elastic constants for copper are C11 =, C12 =, and C14 = [80].

The square domain is 1 µm× 1 µm and it is deformed downward on the top boundary

by 50 and 100 nm, in two simulations respectively. The applied deformation begins

at zero at time equals zero and increases linearly until it reaches the maximum value

at t = 25 ns. For the rest of the simulation, the applied deformation is constant. The

bottom surface is fixed in the y-direction, while the left and right boundaries are fixed

in the x-direction. Again, the simulation is solved using implicit time integration and

mesh and time step adaptivity to reduce the computational expense. The grain tracker

algorithm took only a fraction of 1% of the total computation time, due to additional

costs from the mechanics calculation.

As shown in the previous work [92], the slope of the plot of grain area over time in-

creases with increasing magnitude of the applied deformation (see Fig. 7.4(d)). As the

grains grow under the applied load, specific orientations grow preferentially over other

grains in order to reduce the total elastic energy in the system. With no applied load,

the final texture is random. As the applied load increases, the final texture becomes

more and more pronounced (7.5(b), 7.5(c), and 7.5(d)). Note that this simulation would

not be possible using 10 order parameters without the grain tracker algorithm, as there
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F I G U R E 7 . 5 : 2D simulations on a square domain of a 2D copper polycrystal with 400
grains under an applied load, where the initial grain structure is shown in (a). The final
grain structures are shown in (b) to (d), where the grains are shaded by Euler angle.
The structure with no applied strain is shown in (b), with a 50 nm applied load in (c),
and with a 100 nm applied load in (d). The final texture becomes more pronounced
with increasing load. The average grain area is shown over time for the three applied
deformations in (e).

would be no unique ID to determine which crystal orientation should be assigned to

each grain.

7 . 3 . 4 Grain growth in a 3D copper polycrystal

The final demonstration of the grain tracker algorithm is in a 3D copper polycrys-

talline cube with each side having a length of 15 µm. The number of order parameters

required to represent 3D grain structures is significantly larger in 3D than in 2D be-

cause of the many more interactions between grains. The 6000 initial grains are gener-
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ated using a Voronoi tessellation, as shown in Fig. 7.6(a). The evolved microstructure

is also shown. As was done in the 2D circle example 7.3.2, we use the grain tracker

information to compute the average grain volume over time (Fig. 7.6(b)). In addition,

we compute the grain size distribution from the grain volume data taken from the

grain tracker, as shown in Fig. 7.6(c). As has been shown in previous simulations,

the grain size distribution rapidly changes until it reaches steady state. The steady

state distribution deviates from the Hillert distribution [40] in a similar manner to that

reported in [46].

In the 3D simulation, 100 order parameters were required to successfully model the

grain growth using the bounding sphere approach. However, with the implementation

of the halo approach, we were able to successfully run this model with only 25 order

parameters. The grain tracker algorithm consumed about 7% of the computation time

in 3D depending on the number of steps executed. We noted that the grain tracker

consumed roughly 10% of the time in the early portion of the simulation, but as the

number of grains dropped the computational requirements of the grain tracker did as

well. Towards the final steps of the simulation the grain tracker was consuming about

5% of the computation time per step.

These results are significant when compared to the original grain tracker implemen-

tation. The bounding sphere implementation accounting for 72.6% of the total compu-

tation time. In either case, these simulations are only computationally feasible due

to the reduced order parameter algorithm in this dissertation. Using a non-reduced

order parameter set, the 6000 grain polycrystal would require 6000 order parameters

to model. The grain tracker makes this simulation possible with significantly fewer

variables while still maintaining a unique ID for each grain. The number of degrees

of freedom have been reduced by a factor of 240 by the grain tracker algorithm. This

grain tracking capability will enable many new types of 3D polycrystal simulations

using FEM.
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F I G U R E 7 . 6 : 3D simulations on a cubic domain of a 3D copper polycrystal with 6000
grains created with a Voronoi tessellation. The evolving grain structure is shown in (a),
the the initial structure on the left, the structure after 0.03 seconds in the center and the
structure after 0.065 s on the right. The average grain volume vs time is shown in (b)
and the grain size distribution is shown in (c). The steady state distribution deviates
slightly from the Hillert distribution, as expected [46].
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Chapter 8

CONCLUSION AND FUTURE WORK

“...if you aren’t, at any given time, scandalized by code you wrote five or even three years
ago, you’re not learning anywhere near enough”
- Nick Black

The grain tracker is an advanced mesoscale modeling utility useful for drastically

reducing the number of nonlinear solution variables needed in a finite element phase-

field simulation. This reduction in model sizes allows developers to execute existing

models at greatly reduced simulation times on few processing cores or alternatively,

enables the execution of significantly larger simulations given the same resources over

current approaches. The grain tracker algorithm in MOOSE advances previous work

by moving grain tracking and remapping techniques on reduced order parameter sim-

ulations into a fully-implicit multiphysics FEM framework. The current contribution

supports all time integration schemes while providing unique IDs without simulation

restrictions presented in previous work. The algorithm constantly monitors the loca-

tions and potential interactions of all grains in a simulation and ensures that grains

represented by the same order parameters remain out of contact at all times. This

is accomplished by remapping one or more order parameters of a grain nearing an

interaction to another variable in the system that is not involved in the interaction

while simultaneously maintaining a unique, unchanging identifier for every grain in

the simulation. The grain tracking algorithm was designed to run completely indepen-

dently of the mesoscale physics used in any particular simulation. This design enables

the grain tracker to work seamlessly with advanced mesoscale simulations involving

heat transfer, solid mechanics, or fission gas studies without requiring any knowledge

of the physics implemented in those models nor does it require any modification of

those models.
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Significant effort has been put into a scalable implementation, so that the grain

tracker may be used on thousands of processors with mesh sizes reaching well into the

millions of elements. This was accomplished with a two-pronged approach: First, the

amount of data that is communicated was reduced so that only the minimum amount

of information necessary to track and detect collisions is sent. Secondly, the global

grain map is only maintained on one processor regardless of the size of the problem.

While this creates extra complexity in the implementation of the algorithms in this

dissertation, the reduction in memory and computational resources is substantial.

Several examples of the grain tracker algorithm working with various grain evolu-

tion models on different domain shapes under different conditions were presented and

verified by comparing results (when possible) to non-reduced order parameter models.

Finally, the grain tracker’s impact to application run time was discussed and compared

against other reduced order parameter models.

8 . 1 Future Work

The grain tracker project will usher in many new simulation possibilites and will

spawn more work within the grain tracker itself as new features and capbilites are

requested. The most significant and important upcoming work is the continued re-

duction in memory footprint possible through the use of the distributed mesh feature

which requires additional work with the grain tracker’s expanded halos. The initial

implementation is already complete and is being debugged at the time of publication.

While we were able to run distributed mesh on smaller problems, the true advantage of

this system will not be fully-realized until it functions properly on very large problems.

The completed and debugged functionality of the grain tracker under the distributed

mesh capability will allow researchers to unlock even larger simulations than what are

currently possible today.
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Recently advanced initial condition coloring algorithms were added to the poly-

crystal initial conditions system. These algorithms are currently being tested and com-

pared against the existing algorithms to ensure that they are functioning properly and

as intended. These new algorithms will enable the proper distribution of order parame-

ters on the largest problems without coalesce. However, before these algorithms can be

fully employed, additional capabilities are required in the polycrystal initial conditions

systems to avoid creating and coloring the same graph for each order parameter.

The grain tracking system has been designed with many safeguards to prevent

incorrect identification of grains over a wide range of conditions. However, there

will likely always exist a few pathelogical cases that will cause the system to fail. A

few highly unlikely scenarios have already been identified that would not be handled

properly should they be encountered. These cases involve things like simultaneous

nucleation and absorbtion of nearby grains or highly concentric grains represented by

the same order parameter being mismatched. Even though these cases are unlikely

to happen in any simulation scenario. Proper safeguards should be added to prevent

failure should they ever be encountered.

Finally, verification and validation of the phase-field method using an FEM imple-

mentation both with and without the grain tracker is an important area of research

that needs to be completed before the full potential of the software can be applied

to real world problems. This is a substantial amount of work that may take several

years and involve many researchers. However, the fact that the grain tracker capabilty

enables the software to be used in this capacity at all speaks to the successful path that

this implementation is already on. Phase-field modeling beginning from EBSD initial

conditions is already beginning to show its promise as a viable tool for both validating

and predicting real-world experiments. These capabilities will need to be thoroughly

tested on a much larger cache of data sets that were not easily obtainable through this

research project. At the time of publication we are also investigating the use of creating
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initial conditions from other more readily available microstructure data such as images

and grain orientation maps.

As this dissertation goes to publication, there are several researchers actively us-

ing the capabilities already in the grain tracker which makes this probject even more

exciting. The ongoing recrystallization and sintering work will likely yeild ongoing

development and improved modeling techniques.
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Passing Interface UsersâĂŹ Group Meeting, pages 280–287. Springer, 2001.

[15] M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe. Orientation gradients
and geometrically necessary dislocations in ultrafine grained dual-phase steels
studied by 2d and 3d ebsd. Materials Science and Engineering: A, 527(10):2738–
2746, 2010.

[16] J. Chen, Y. Kusurkar, and D. E. Silver. Distributed feature extraction. In Electronic
Imaging 2002, pages 189–195. International Society for Optics and Photonics,
2002.

[17] J. Chen, D. Silver, and L. Jiang. The feature tree: Visualizing feature tracking in
distributed amr datasets. In Proceedings of the 2003 IEEE Symposium on Parallel
and Large-Data Visualization and Graphics, page 14. IEEE Computer Society, 2003.

[18] J. Chen, D. Silver, and M. Parashar. Real time feature extraction and tracking in
a computational steering environment. In Proceedings of the 11th high performance
computing symposium (HPC 2003), Orlando, FL, 2003.

[19] L. Chen. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res.,
32:113–40, 2002.

[20] L.-Q. Chen. Phase-field models for microstructure evolution. Annual review of
materials research, 32(1):113–140, 2002.

[21] L. Q. Chen and J. Shen. Applications of semi-implicit fourier-spectral method to
phase field equations. Computer Physics Communications, 108(2-3):147–158, 1998.

[22] T. F. Coleman and J. J. Moré. Estimation of sparse jacobian matrices and graph
coloring blems. SIAM journal on Numerical Analysis, 20(1):187–209, 1983.

[23] D. Eppstein. Small maximal independent sets and faster exact graph coloring. J.
Graph Algorithms Appl., 7(2):131–140, 2003.

[24] D. Fan and L. Chen. Computer simulation of grain growth using a continuum
field model. Acta mater, 45(2):611–622, 1997.

[25] L. K. Fleischer, B. Hendrickson, and A. Pınar. On identifying strongly connected
components in parallel. In International Parallel and Distributed Processing
Symposium, pages 505–511. Springer, 2000.

[26] C. Fleurent and J. A. Ferland. Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research, 63(3):437–461, 1996.

[27] H. Frost, C. Thompson, C. Howe, and J. Whang. A 2-Dimensional Computer-
Simulation Of Capillarity-Driven Grain-Growth - Preliminary-Results. Scripta
Metallurgica, 22(1):65–70, Jan 1988.

[28] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al. Open mpi: Goals,
concept, and design of a next generation mpi implementation. In European
Parallel Virtual Machine/Message Passing Interface UsersâĂŹ Group Meeting, pages
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Appendix A

C++ IMPLEMENTATION IN THE MOOSE FRAMEWORK

The following pages contain the most current source code implementations used for

all simulation results contained in this dissertation. The MOOSE open-source project

contains the complete revision history of these files. All code is compliant with the

C++11 standard and compiles under multiple compilers (GNU 4.8+, Clang 3.4.0, and

Intel2013+).

While the algorithms contained within are designed to work with the MOOSE

framework built upon libMesh, the algorithms themselves could easily be abstracted to

work with other simulation frameworks if a suitable API is made available. The author

highly encourages those who wish to use or expand upon the implementation here to

contact the MOOSE framework mailing list for assistance. Contributions and exten-

sions to the original code may be accepted into the project. The MOOSE phase-field

module contains extensive documentation, test cases and example problems which

employ these objects. It is our hope that they continue to function any remain a vital

part of the MOOSE suite for many years to come.

The expected external interface for implementing these algorithms into another

project is not insurmountable. Access to the mesh data structure and solution variables

is essentially all that is required. Periodic boundary constraints require a bit more

information but could be worked in easily enough. The MOOSE infrastructure has a

nice abstraction to the DOFs in the solution vector but as long as these values can be

measured, that’s all that’s required for using these algorithms. Since these algorithms

are designed for unstructured mesh with h-adaptivity, we expect to be able to query

the mesh structure for all neighbors (at any level) at every point. In a structured mesh,

a simple stencil can be used to determine neighbors at any point.
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I’ve tried to document the code as much as possible. I’ve attempted to remove

duplicated code as much as possible which is why these two separate classes exist in

the first place. The feature data structure can be found in the header of the feature

flood count object and is used extensively throughout both objects. I used modern

C++11 coding standards and made that object movable, not copyable. This allowed

me to drop the prolific use of pointers throughout these objects and store entire data

structures inside containers. The syntactic sugar of this approach is quite nice.
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A . 1 FeatureFloodCount.h

1 /****************************************************************/

2 /* MOOSE - Multiphysics Object Oriented Simulation Environment */

3 /* */

4 /* All contents are licensed under LGPL V2.1 */

5 /* See LICENSE for full restrictions */

6 /****************************************************************/

7 #ifndef FEATUREFLOODCOUNT_H

8 #define FEATUREFLOODCOUNT_H

9

10 #include "Coupleable.h"

11 #include "GeneralPostprocessor.h"

12 #include "InfixIterator.h"

13 #include "MooseVariableDependencyInterface.h"

14 #include "ZeroInterface.h"

15

16 #include <iterator>

17 #include <list>

18 #include <set>

19 #include <vector>

20

21 #include "libmesh/mesh_tools.h"

22 #include "libmesh/periodic_boundaries.h"

23

24 // External includes

25 #include "bitmask_operators.h"

26

27 // Forward Declarations

28 class FeatureFloodCount;

29 class MooseMesh;

30 class MooseVariable;

31

32 template <>

33 InputParameters validParams<FeatureFloodCount>();

34

35 /**

36 * This object will mark nodes or elements of continuous regions all with a unique number for the

37 * purpose of counting or "coloring" unique regions in a solution. It is designed to work with

38 * either a single variable, or multiple variables.

39 *

40 * Note: When inspecting multiple variables, those variables must not have regions of interest

41 * that overlap or they will not be correctly colored.

42 */

43 class FeatureFloodCount : public GeneralPostprocessor,

44 public Coupleable,

45 public MooseVariableDependencyInterface,

46 public ZeroInterface

47 {

48 public:

49 FeatureFloodCount(const InputParameters & parameters);

50 ~FeatureFloodCount();

51

52 virtual void initialSetup() override;

53 virtual void meshChanged() override;

54
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55 virtual void initialize() override;

56 virtual void execute() override;

57 virtual void finalize() override;

58 virtual Real getValue() override;

59

60 /// Returns the total feature count (active and inactive ids, useful for sizing vectors)

61 virtual std::size_t getTotalFeatureCount() const;

62

63 /// Returns a Boolean indicating whether this feature intersects _any_ boundary

64 virtual bool doesFeatureIntersectBoundary(unsigned int feature_id) const;

65

66 /**

67 * Returns a list of active unique feature ids for a particular element. The vector is indexed by

68 * variable number with each entry containing either an invalid size_t type (no feature active at

69 * that location) or a feature id if the variable is non-zero at that location.

70 */

71 virtual const std::vector<unsigned int> & getVarToFeatureVector(dof_id_type elem_id) const;

72

73 /// Returns the variable representing the passed in feature

74 virtual unsigned int getFeatureVar(unsigned int feature_id) const;

75

76 /// Returns the number of coupled varaibles

77 std::size_t numCoupledVars() const { return _n_vars; }

78

79 ///@{

80 /// Constants used for invalid indices set to the max value of std::size_t type

81 static const std::size_t invalid_size_t;

82 static const unsigned int invalid_id;

83 ///@}

84

85 /// Returns a const vector to the coupled variable pointers

86 const std::vector<MooseVariable *> & getCoupledVars() const { return _vars; }

87

88 enum class FieldType

89 {

90 UNIQUE_REGION,

91 VARIABLE_COLORING,

92 GHOSTED_ENTITIES,

93 HALOS,

94 CENTROID,

95 ACTIVE_BOUNDS,

96 };

97

98 // Retrieve field information

99 virtual Real

100 getEntityValue(dof_id_type entity_id, FieldType field_type, std::size_t var_index = 0) const;

101

102 inline bool isElemental() const { return _is_elemental; }

103

104 /// This enumeration is used to indicate status of the grains in the _unique_grains data structure

105 enum class Status : unsigned char

106 {

107 CLEAR = 0x0,

108 MARKED = 0x1,

109 DIRTY = 0x2,

110 INACTIVE = 0x4
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111 };

112

113 struct FeatureData

114 {

115 FeatureData() : FeatureData(std::numeric_limits<std::size_t>::max(), Status::INACTIVE) {}

116

117 FeatureData(std::size_t var_index,

118 unsigned int local_index,

119 processor_id_type rank,

120 Status status)

121 : FeatureData(var_index, status)

122 {

123 _orig_ids = {std::make_pair(rank, local_index)};

124 }

125

126 FeatureData(std::size_t var_index, Status status)

127 : _var_index(var_index),

128 _id(invalid_id),

129 _bboxes(1), // Assume at least one bounding box

130 _min_entity_id(DofObject::invalid_id),

131 _vol_count(0),

132 _status(status),

133 _intersects_boundary(false)

134 {

135 }

136

137 ///@{

138 /**

139 * We do not expect these objects to ever be copied. This is important

140 * since they are stored in standard containers directly. To enforce

141 * this, we are explicitly deleting the copy constructor, and copy

142 * assignment operator.

143 */

144 #ifdef __INTEL_COMPILER

145 /**

146 * 2016-07-14

147 * The INTEL compiler we are currently using (2013 with GCC 4.8) appears to have a bug

148 * introduced by the addition of the Point member in this structure. Even though

149 * it supports move semantics on other non-POD types like libMesh::BoundingBox,

150 * it fails to compile this class with the "centroid" member. Specifically, it

151 * supports the move operation into the vector type but fails to work with the

152 * bracket operator on std::map and the std::sort algorithm used in this class.

153 * It does work with std::map::emplace() but that syntax is much less appealing

154 * and still doesn’t work around the issue. For now, I’m allowing the copy

155 * constructor so that this class works under the Intel compiler but there

156 * may be a degradation in performance in that case.

157 */

158 FeatureData(const FeatureData & f) = default;

159 FeatureData & operator=(const FeatureData & f) = default;

160 #else // GCC CLANG

161 FeatureData(const FeatureData & f) = delete;

162 FeatureData & operator=(const FeatureData & f) = delete;

163 #endif

164 ///@}

165

166 ///@{
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167 // Default Move constructors

168 FeatureData(FeatureData && f) = default;

169 FeatureData & operator=(FeatureData && f) = default;

170 ///@}

171

172 ///@{

173 /**

174 * Update the minimum and maximum coordinates of a bounding box

175 * given a Point, Elem or BBox parameter.

176 */

177 void updateBBoxExtremes(MeshTools::BoundingBox & bbox, const Point & node);

178 void updateBBoxExtremes(MeshTools::BoundingBox & bbox, const Elem & elem);

179 void updateBBoxExtremes(MeshTools::BoundingBox & bbox, const MeshTools::BoundingBox & rhs_bbox);

180 ///@}

181

182 /**

183 * Determines if any of this FeatureData’s bounding boxes overlap with

184 * the other FeatureData’s bounding boxes.

185 */

186 bool boundingBoxesIntersect(const FeatureData & rhs) const;

187

188 ///@{

189 /**

190 * Determine if one of this FeaturesData’s member sets intersects

191 * the other FeatureData’s corresponding set.

192 */

193 bool halosIntersect(const FeatureData & rhs) const;

194 bool periodicBoundariesIntersect(const FeatureData & rhs) const;

195 bool ghostedIntersect(const FeatureData & rhs) const;

196 ///@}

197

198 /**

199 * Located the overlapping bounding box between this Feature and the

200 * other Feature and expands that overlapping box accordingly.

201 */

202 void expandBBox(const FeatureData & rhs);

203

204 /**

205 * Merges another Feature Data into this one. This method leaves rhs

206 * in an inconsistent state.

207 */

208 void merge(FeatureData && rhs);

209

210 // TODO: Doco

211 void clear();

212

213 /// Comparison operator for sorting individual FeatureDatas

214 bool operator<(const FeatureData & rhs) const

215 {

216 if (_id != invalid_id)

217 {

218 mooseAssert(rhs._id != invalid_id, "Asymmetric setting of ids detected during sort");

219

220 // Sort based on ids

221 return _id < rhs._id;

222 }
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223 else

224 // Sort based on processor independent information (mesh and variable info)

225 return _var_index < rhs._var_index ||

226 (_var_index == rhs._var_index && _min_entity_id < rhs._min_entity_id);

227 }

228

229 /// stream output operator

230 friend std::ostream & operator<<(std::ostream & out, const FeatureData & feature);

231

232 /// Holds the ghosted ids for a feature (the ids which will be used for stitching

233 std::set<dof_id_type> _ghosted_ids;

234

235 /// Holds the local ids in the interior of a feature.

236 /// This data structure is only maintained on the local processor

237 std::set<dof_id_type> _local_ids;

238

239 /// Holds the ids surrounding the feature

240 std::set<dof_id_type> _halo_ids;

241

242 /// Holds the nodes that belong to the feature on a periodic boundary

243 std::set<dof_id_type> _periodic_nodes;

244

245 /// The Moose variable where this feature was found (often the "order parameter")

246 std::size_t _var_index;

247

248 /// An ID for this feature

249 unsigned int _id;

250

251 /// The vector of bounding boxes completely enclosing this feature

252 /// (multiple used with periodic constraints)

253 std::vector<MeshTools::BoundingBox> _bboxes;

254

255 /// Original processor/local ids

256 std::list<std::pair<processor_id_type, unsigned int>> _orig_ids;

257

258 /// The minimum entity seen in the _local_ids, used for sorting features

259 dof_id_type _min_entity_id;

260

261 /// The count of entities contributing to the volume calculation

262 std::size_t _vol_count;

263

264 /// The centroid of the feature (average of coordinates from entities participating in

265 /// the volume calculation)

266 Point _centroid;

267

268 /// The status of a feature (used mostly in derived classes like the GrainTracker)

269 Status _status;

270

271 /// Flag indicating whether this feature intersects a boundary

272 bool _intersects_boundary;

273 };

274

275 protected:

276 /**

277 * This method is used to populate any of the data structures used for storing field data (nodal

278 * or elemental). It is called at the end of finalize and can make use of any of the data
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279 * structures created during the execution of this postprocessor.

280 */

281 virtual void updateFieldInfo();

282

283 /**

284 * This method will "mark" all entities on neighboring elements that

285 * are above the supplied threshold. If feature is NULL, we are exploring

286 * for a new region to mark, otherwise we are in the recursive calls

287 * currently marking a region.

288 */

289 void flood(const DofObject * dof_object, std::size_t current_index, FeatureData * feature);

290

291 /**

292 * Return the starting comparison threshold to use when inspecting an entity during the flood

293 * stage.

294 */

295 virtual Real getThreshold(std::size_t current_index) const;

296

297 /**

298 * Return the "connecting" comparison threshold to use when inspecting an entity during the flood

299 * stage.

300 */

301 virtual Real getConnectingThreshold(std::size_t current_index) const;

302

303 /**

304 * This method is used to determine whether the current entity value is part of a feature or not.

305 * Comparisons can either be greater than or less than the threshold which is controlled via

306 * input parameter.

307 */

308 bool compareValueWithThreshold(Real entity_value, Real threshold) const;

309

310 /**

311 * Method called during the recursive flood routine that should return whether or not the current

312 * entity is part of the current feature (if one is being explored), or if it’s the start

313 * of a new feature.

314 */

315 virtual bool isNewFeatureOrConnectedRegion(const DofObject * dof_object,

316 std::size_t current_index,

317 FeatureData *& feature,

318 Status & status,

319 unsigned int & new_id);

320

321 ///@{

322 /**

323 * These two routines are utility routines used by the flood routine and by derived classes for

324 * visiting neighbors. Since the logic is different for the elemental versus nodal case it’s

325 * easier to split them up.

326 */

327 void visitNodalNeighbors(const Node * node,

328 std::size_t current_index,

329 FeatureData * feature,

330 bool expand_halos_only);

331 void visitElementalNeighbors(const Elem * elem,

332 std::size_t current_index,

333 FeatureData * feature,

334 bool expand_halos_only);
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335 ///@}

336

337 /**

338 * The actual logic for visiting neighbors is abstracted out here. This method is templated to

339 * handle the Nodal

340 * and Elemental cases together.

341 */

342 template <typename T>

343 void visitNeighborsHelper(const T * curr_entity,

344 std::vector<const T *> neighbor_entities,

345 std::size_t current_index,

346 FeatureData * feature,

347 bool expand_halos_only);

348

349 /**

350 * This routine uses the local flooded data to build up the local feature data structures

351 * (_feature_sets). This routine does not perform any communication so the _feature_sets data

352 * structure will only contain information from the local processor after calling this routine.

353 * Any existing data in the _feature_sets structure is destroyed by calling this routine.

354 *

355 * _feature_sets layout:

356 * The outer vector is sized to one when _single_map_mode == true, otherwise it is sized for the

357 * number of coupled variables. The inner list represents the flooded regions (local only

358 * after this call but fully populated after parallel communication and stitching).

359 */

360 void prepareDataForTransfer();

361

362 ///@{

363 /**

364 * These routines packs/unpack the _feature_map data into a structure suitable for parallel

365 * communication operations. See the comments in these routines for the exact

366 * data structure layout.

367 */

368 void serialize(std::string & serialized_buffer);

369 void deserialize(std::vector<std::string> & serialized_buffers);

370 ///@}

371

372 /**

373 * This routine is called on the master rank only and stitches together the partial

374 * feature pieces seen on any processor.

375 */

376 void mergeSets(bool use_periodic_boundary_info);

377

378 /**

379 * This routine handles all of the serialization, communication and deserialization of the data

380 * structures containing FeatureData objects.

381 */

382 void communicateAndMerge();

383

384 /**

385 * Sort and assign ids to features based on their position in the container after sorting.

386 */

387 void sortAndLabel();

388

389 /**

390 * Calls buildLocalToGlobalIndices to build the individual local to global indicies for each rank
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391 * and scatters that information to all ranks. Finally, the non-master ranks update their own data

392 * structures to reflect the global mappings.

393 */

394 void scatterAndUpdateRanks();

395

396 /**

397 * This routine populates a stacked vector of local to global indices per rank and the associated

398 * count vector for scattering the vector to the ranks. The individual vectors can be different

399 * sizes. The ith vector will be distributed to the ith processor including the master rank.

400 * e.g.

401 * [ ... n_0 ] [ ... n_1 ] ... [ ... n_m ]

402 *

403 * It is intended to be overridden in derived classes.

404 */

405 virtual void buildLocalToGlobalIndices(std::vector<std::size_t> & local_to_global_all,

406 std::vector<int> & counts) const;

407

408 /**

409 * This method builds a lookup map for retrieving the right local feature (by index) given a

410 * global index or id. max_id is passed to size the vector properly and may or may not be a

411 * globally consistent number. The assumption is that any id that is later queried from this

412 * object that is higher simply doesn’t exist on the local processor.

413 */

414 void buildFeatureIdToLocalIndices(unsigned int max_id);

415

416 /**

417 * Helper routine for clearing up data structures during initialize and prior to parallel

418 * communication.

419 */

420 virtual void clearDataStructures();

421

422 /**

423 * This routine adds the periodic node information to our data structure prior to packing the data

424 * this makes those periodic neighbors appear much like ghosted nodes in a multiprocessor setting

425 */

426 void appendPeriodicNeighborNodes(FeatureData & data) const;

427

428 /**

429 * This routine updates the _region_offsets variable which is useful for quickly determining

430 * the proper global number for a feature when using multimap mode

431 */

432 void updateRegionOffsets();

433

434 /**

435 * This method detects whether two sets intersect without building a result set.

436 * It exits as soon as any intersection is detected.

437 */

438 template <class InputIterator>

439 static inline bool setsIntersect(InputIterator first1,

440 InputIterator last1,

441 InputIterator first2,

442 InputIterator last2)

443 {

444 while (first1 != last1 && first2 != last2)

445 {

446 if (*first1 == *first2)
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447 return true;

448

449 if (*first1 < *first2)

450 ++first1;

451 else if (*first1 > *first2)

452 ++first2;

453 }

454 return false;

455 }

456

457 /*************************************************

458 *************** Data Structures *****************

459 ************************************************/

460

461 /// The vector of coupled in variables

462 std::vector<MooseVariable *> _vars;

463

464 /// The threshold above (or below) where an entity may begin a new region (feature)

465 const Real _threshold;

466 Real _step_threshold;

467

468 /// The threshold above (or below) which neighboring entities are flooded

469 /// (where regions can be extended but not started)

470 const Real _connecting_threshold;

471 Real _step_connecting_threshold;

472

473 /// A reference to the mesh

474 MooseMesh & _mesh;

475

476 /**

477 * This variable is used to build the periodic node map.

478 * Assumption: We are going to assume that either all variables are periodic or none are.

479 * This assumption can be relaxed at a later time if necessary.

480 */

481 unsigned long _var_number;

482

483 /// This variable is used to indicate whether or not multiple maps are used during flooding

484 const bool _single_map_mode;

485

486 const bool _condense_map_info;

487

488 /// This variable is used to indicate whether or not we identify features with

489 /// unique numbers on multiple maps

490 const bool _global_numbering;

491

492 /// This variable is used to indicate whether the maps will contain unique region

493 /// information or just the variable numbers owning those regions

494 const bool _var_index_mode;

495

496 /// Indicates whether or not to communicate halo map information with all ranks

497 const bool _compute_halo_maps;

498

499 /// Indicates whether or not the var to feature map is populated.

500 const bool _compute_var_to_feature_map;

501

502 /**
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503 * Use less-than when comparing values against the threshold value.

504 * True by default. If false, then greater-than comparison is used

505 * instead.

506 */

507 const bool _use_less_than_threshold_comparison;

508

509 // Convenience variable holding the number of variables coupled into this object

510 const std::size_t _n_vars;

511

512 /// Convenience variable holding the size of all the datastructures size by the number of maps

513 const std::size_t _maps_size;

514

515 /// Convenience variable holding the number of processors in this simulation

516 const processor_id_type _n_procs;

517

518 /**

519 * This variable keeps track of which nodes have been visited during execution. We don’t use the

520 * _feature_map for this since we don’t want to explicitly store data for all the unmarked nodes

521 * in a serialized datastructures.

522 * This keeps our overhead down since this variable never needs to be communicated.

523 */

524 std::vector<std::map<dof_id_type, bool>> _entities_visited;

525

526 /**

527 * This map keeps track of which variables own which nodes. We need a vector of them for multimap

528 * mode where multiple variables can own a single mode.

529 *

530 * Note: This map is only populated when "show_var_coloring" is set to true.

531 */

532 std::vector<std::map<dof_id_type, int>> _var_index_maps;

533

534 /// The data structure used to find neighboring elements give a node ID

535 std::vector<std::vector<const Elem *>> _nodes_to_elem_map;

536

537 /// The number of features seen by this object per map

538 std::vector<unsigned int> _feature_counts_per_map;

539

540 /// The number of features seen by this object (same as summing _feature_counts_per_map)

541 unsigned int _feature_count;

542

543 /**

544 * The data structure used to hold partial and communicated feature data.

545 * The data structure mirrors that found in _feature_sets, but contains

546 * one additional vector indexed by processor id

547 */

548 std::vector<std::list<FeatureData>> _partial_feature_sets;

549

550 /**

551 * The data structure used to hold the globally unique features. The outer vector

552 * is indexed by variable number, the inner vector is indexed by feature number

553 */

554 std::vector<FeatureData> _feature_sets;

555

556 /**

557 * The feature maps contain the raw flooded node information and eventually the unique grain

558 * numbers. We have a vector of them so we can create one per variable if that level of detail
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559 * is desired.

560 */

561 std::vector<std::map<dof_id_type, int>> _feature_maps;

562

563 /// The vector recording the local to global feature indices

564 std::vector<std::size_t> _local_to_global_feature_map;

565

566 /// The vector recording the grain_id to local index (several indices will contain invalid_size_t)

567 std::vector<std::size_t> _feature_id_to_local_index;

568

569 /// A pointer to the periodic boundary constraints object

570 PeriodicBoundaries * _pbs;

571

572 /// Average value of the domain which can optionally be used to find features in a field

573 const PostprocessorValue & _element_average_value;

574

575 /// The map for holding reconstructed ghosted element information

576 std::map<dof_id_type, int> _ghosted_entity_ids;

577

578 /**

579 * The data structure for looking up halos around features. The outer vector is for splitting out

580 * the information per variable. The inner map holds the actual halo information

581 */

582 std::vector<std::map<dof_id_type, int>> _halo_ids;

583

584 /**

585 * The data structure which is a list of nodes that are constrained to other nodes

586 * based on the imposed periodic boundary conditions.

587 */

588 std::multimap<dof_id_type, dof_id_type> _periodic_node_map;

589

590 /// The set of entities on the boundary of the domain used for determining

591 /// if features intersect any boundary

592 std::set<dof_id_type> _all_boundary_entity_ids;

593

594 std::map<dof_id_type, std::vector<unsigned int>> _entity_var_to_features;

595

596 std::vector<unsigned int> _empty_var_to_features;

597

598 /// Determines if the flood counter is elements or not (nodes)

599 bool _is_elemental;

600

601 /// Convenience variable for testing master rank

602 bool _is_master;

603 };

604

605 template <>

606 void dataStore(std::ostream & stream, FeatureFloodCount::FeatureData & feature, void * context);

607 template <>

608 void dataStore(std::ostream & stream, MeshTools::BoundingBox & bbox, void * context);

609

610 template <>

611 void dataLoad(std::istream & stream, FeatureFloodCount::FeatureData & feature, void * context);

612 template <>

613 void dataLoad(std::istream & stream, MeshTools::BoundingBox & bbox, void * context);

614
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615 template <>

616 struct enable_bitmask_operators<FeatureFloodCount::Status>

617 {

618 static const bool enable = true;

619 };

620

621 #endif // FEATUREFLOODCOUNT_H
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A . 2 FeatureFloodCount.C

1 /****************************************************************/

2 /* MOOSE - Multiphysics Object Oriented Simulation Environment */

3 /* */

4 /* All contents are licensed under LGPL V2.1 */

5 /* See LICENSE for full restrictions */

6 /****************************************************************/

7

8 #include "FeatureFloodCount.h"

9 #include "IndirectSort.h"

10 #include "MooseMesh.h"

11 #include "MooseUtils.h"

12 #include "MooseVariable.h"

13 #include "SubProblem.h"

14

15 #include "Assembly.h"

16 #include "FEProblem.h"

17 #include "NonlinearSystem.h"

18

19 // libMesh includes

20 #include "libmesh/dof_map.h"

21 #include "libmesh/mesh_tools.h"

22 #include "libmesh/periodic_boundaries.h"

23 #include "libmesh/point_locator_base.h"

24

25 #include <algorithm>

26 #include <limits>

27

28 template <>

29 void

30 dataStore(std::ostream & stream, FeatureFloodCount::FeatureData & feature, void * context)

31 {

32 /**

33 * Not that _local_ids is not stored here. It’s not needed for restart, and not needed

34 * during the parallel merge operation

35 */

36 storeHelper(stream, feature._ghosted_ids, context);

37 storeHelper(stream, feature._halo_ids, context);

38 storeHelper(stream, feature._periodic_nodes, context);

39 storeHelper(stream, feature._var_index, context);

40 storeHelper(stream, feature._id, context);

41 storeHelper(stream, feature._bboxes, context);

42 storeHelper(stream, feature._orig_ids, context);

43 storeHelper(stream, feature._min_entity_id, context);

44 storeHelper(stream, feature._vol_count, context);

45 storeHelper(stream, feature._centroid, context);

46 storeHelper(stream, feature._status, context);

47 storeHelper(stream, feature._intersects_boundary, context);

48 }

49

50 template <>

51 void

52 dataStore(std::ostream & stream, MeshTools::BoundingBox & bbox, void * context)

53 {

54 storeHelper(stream, bbox.min(), context);
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55 storeHelper(stream, bbox.max(), context);

56 }

57

58 template <>

59 void

60 dataLoad(std::istream & stream, FeatureFloodCount::FeatureData & feature, void * context)

61 {

62 /**

63 * Not that _local_ids is not loaded here. It’s not needed for restart, and not needed

64 * during the parallel merge operation

65 */

66 loadHelper(stream, feature._ghosted_ids, context);

67 loadHelper(stream, feature._halo_ids, context);

68 loadHelper(stream, feature._periodic_nodes, context);

69 loadHelper(stream, feature._var_index, context);

70 loadHelper(stream, feature._id, context);

71 loadHelper(stream, feature._bboxes, context);

72 loadHelper(stream, feature._orig_ids, context);

73 loadHelper(stream, feature._min_entity_id, context);

74 loadHelper(stream, feature._vol_count, context);

75 loadHelper(stream, feature._centroid, context);

76 loadHelper(stream, feature._status, context);

77 loadHelper(stream, feature._intersects_boundary, context);

78 }

79

80 template <>

81 void

82 dataLoad(std::istream & stream, MeshTools::BoundingBox & bbox, void * context)

83 {

84 loadHelper(stream, bbox.min(), context);

85 loadHelper(stream, bbox.max(), context);

86 }

87

88 template <>

89 InputParameters

90 validParams<FeatureFloodCount>()

91 {

92 InputParameters params = validParams<GeneralPostprocessor>();

93 params.addRequiredCoupledVar(

94 "variable",

95 "The variable(s) for which to find connected regions of interests, i.e. \"features\".");

96 params.addParam<Real>(

97 "threshold", 0.5, "The threshold value for which a new feature may be started");

98 params.addParam<Real>(

99 "connecting_threshold",

100 "The threshold for which an existing feature may be extended (defaults to \"threshold\")");

101 params.addParam<bool>("use_single_map",

102 true,

103 "Determine whether information is tracked per "

104 "coupled variable or consolidated into one "

105 "(default: true)");

106 params.addParam<bool>(

107 "condense_map_info",

108 false,

109 "Determines whether we condense all the node values when in multimap mode (default: false)");

110 params.addParam<bool>("use_global_numbering",
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111 true,

112 "Determine whether or not global numbers are "

113 "used to label features on multiple maps "

114 "(default: true)");

115 params.addParam<bool>("enable_var_coloring",

116 false,

117 "Instruct the Postprocessor to populate the variable index map.");

118 params.addParam<bool>(

119 "compute_halo_maps",

120 false,

121 "Instruct the Postprocessor to communicate proper halo information to all ranks");

122 params.addParam<bool>("compute_var_to_feature_map",

123 false,

124 "Instruct the Postprocessor to compute the active vars to features map");

125 params.addParam<bool>(

126 "use_less_than_threshold_comparison",

127 true,

128 "Controls whether features are defined to be less than or greater than the threshold value.");

129

130 /**

131 * The FeatureFloodCount and derived objects should not to operate on the displaced mesh. These

132 * objects consume variable values from the nonlinear system and use a lot of raw geometric

133 * element information from the mesh. If you use the displaced system with EBSD information for

134 * instance, you’ll have difficulties reconciling the difference between the coordinates from the

135 * EBSD data file and the potential displacements applied via boundary conditions.

136 */

137 params.set<bool>("use_displaced_mesh") = false;

138

139 params.addParamNamesToGroup("use_single_map condense_map_info use_global_numbering", "Advanced");

140

141 MooseEnum flood_type("NODAL ELEMENTAL", "ELEMENTAL");

142 params.addParam<MooseEnum>("flood_entity_type",

143 flood_type,

144 "Determines whether the flood algorithm runs on nodes or elements");

145 return params;

146 }

147

148 FeatureFloodCount::FeatureFloodCount(const InputParameters & parameters)

149 : GeneralPostprocessor(parameters),

150 Coupleable(this, false),

151 MooseVariableDependencyInterface(),

152 ZeroInterface(parameters),

153 _vars(getCoupledMooseVars()),

154 _threshold(getParam<Real>("threshold")),

155 _connecting_threshold(isParamValid("connecting_threshold")

156 ? getParam<Real>("connecting_threshold")

157 : getParam<Real>("threshold")),

158 _mesh(_subproblem.mesh()),

159 _var_number(_vars[0]->number()),

160 _single_map_mode(getParam<bool>("use_single_map")),

161 _condense_map_info(getParam<bool>("condense_map_info")),

162 _global_numbering(getParam<bool>("use_global_numbering")),

163 _var_index_mode(getParam<bool>("enable_var_coloring")),

164 _compute_halo_maps(getParam<bool>("compute_halo_maps")),

165 _compute_var_to_feature_map(getParam<bool>("compute_var_to_feature_map")),

166 _use_less_than_threshold_comparison(getParam<bool>("use_less_than_threshold_comparison")),
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167 _n_vars(_vars.size()),

168 _maps_size(_single_map_mode ? 1 : _vars.size()),

169 _n_procs(_app.n_processors()),

170 _entities_visited(_vars.size()), // This map is always sized to the number of variables

171 _feature_counts_per_map(_maps_size),

172 _feature_count(0),

173 _partial_feature_sets(_maps_size),

174 _feature_maps(_maps_size),

175 _pbs(nullptr),

176 _element_average_value(parameters.isParamValid("elem_avg_value")

177 ? getPostprocessorValue("elem_avg_value")

178 : _real_zero),

179 _halo_ids(_maps_size),

180 _is_elemental(getParam<MooseEnum>("flood_entity_type") == "ELEMENTAL"),

181 _is_master(processor_id() == 0)

182 {

183 if (_var_index_mode)

184 _var_index_maps.resize(_maps_size);

185

186 addMooseVariableDependency(_vars);

187 }

188

189 FeatureFloodCount::~FeatureFloodCount() {}

190

191 void

192 FeatureFloodCount::initialSetup()

193 {

194 // Get a pointer to the PeriodicBoundaries buried in libMesh

195 _pbs = _fe_problem.getNonlinearSystemBase().dofMap().get_periodic_boundaries();

196

197 meshChanged();

198

199 /**

200 * Size the empty var to features vector to the number of coupled variables.

201 * This empty vector (but properly sized) vector is returned for elements

202 * that are queried but are not in the structure (which also shouldn’t happen).

203 * The user is warned in this case but this helps avoid extra bounds checking

204 * in user code and avoids segfaults.

205 */

206 _empty_var_to_features.resize(_n_vars, invalid_id);

207 }

208

209 void

210 FeatureFloodCount::initialize()

211 {

212 // Clear the feature marking maps and region counters and other data structures

213 for (auto map_num = decltype(_maps_size)(0); map_num < _maps_size; ++map_num)

214 {

215 _feature_maps[map_num].clear();

216 _partial_feature_sets[map_num].clear();

217

218 if (_var_index_mode)

219 _var_index_maps[map_num].clear();

220

221 _halo_ids[map_num].clear();

222 }
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223

224 _feature_sets.clear();

225

226 // Calculate the thresholds for this iteration

227 _step_threshold = _element_average_value + _threshold;

228 _step_connecting_threshold = _element_average_value + _connecting_threshold;

229

230 _ghosted_entity_ids.clear();

231

232 // Reset the feature count and max local size

233 _feature_count = 0;

234

235 _entity_var_to_features.clear();

236

237 clearDataStructures();

238 }

239

240 void

241 FeatureFloodCount::clearDataStructures()

242 {

243 for (auto & map_ref : _entities_visited)

244 map_ref.clear();

245 }

246

247 void

248 FeatureFloodCount::meshChanged()

249 {

250 _mesh.buildPeriodicNodeMap(_periodic_node_map, _var_number, _pbs);

251

252 // Build a new node to element map

253 _nodes_to_elem_map.clear();

254 MeshTools::build_nodes_to_elem_map(_mesh.getMesh(), _nodes_to_elem_map);

255

256 /**

257 * We need to build a set containing all of the boundary entities

258 * to compare against. This will be elements for elemental flooding.

259 * Volumes for nodal flooding is not supported

260 */

261 _all_boundary_entity_ids.clear();

262 if (_is_elemental)

263 for (auto elem_it = _mesh.bndElemsBegin(), elem_end = _mesh.bndElemsEnd(); elem_it != elem_end;

264 ++elem_it)

265 _all_boundary_entity_ids.insert((*elem_it)->_elem->id());

266 }

267

268 void

269 FeatureFloodCount::execute()

270 {

271 const auto end = _mesh.getMesh().active_local_elements_end();

272 for (auto el = _mesh.getMesh().active_local_elements_begin(); el != end; ++el)

273 {

274 const Elem * current_elem = *el;

275

276 // Loop over elements or nodes

277 if (_is_elemental)

278 {
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279 for (auto var_num = beginIndex(_vars); var_num < _vars.size(); ++var_num)

280 flood(current_elem, var_num, nullptr /* Designates inactive feature */);

281 }

282 else

283 {

284 auto n_nodes = current_elem->n_vertices();

285 for (auto i = decltype(n_nodes)(0); i < n_nodes; ++i)

286 {

287 const Node * current_node = current_elem->get_node(i);

288

289 for (auto var_num = beginIndex(_vars); var_num < _vars.size(); ++var_num)

290 flood(current_node, var_num, nullptr /* Designates inactive feature */);

291 }

292 }

293 }

294 }

295

296 void

297 FeatureFloodCount::communicateAndMerge()

298 {

299 // First we need to transform the raw data into a usable data structure

300 prepareDataForTransfer();

301

302 /**

303 * The libMesh packed range routines handle the communication of the individual

304 * string buffers. Here we need to create a container to hold our type

305 * to serialize. It’ll always be size one because we are sending a single

306 * byte stream of all the data to other processors. The stream need not be

307 * the same size on all processors.

308 */

309 std::vector<std::string> send_buffers(1);

310

311 /**

312 * Additionally we need to create a different container to hold the received

313 * byte buffers. The container type need not match the send container type.

314 * However, We do know the number of incoming buffers (num processors) so we’ll

315 * go ahead and use a vector.

316 */

317 std::vector<std::string> recv_buffers;

318 if (_is_master)

319 recv_buffers.reserve(_app.n_processors());

320

321 serialize(send_buffers[0]);

322

323 // Free up as much memory as possible here before we do global communication

324 clearDataStructures();

325

326 /**

327 * Send the data from all processors to the root to create a complete

328 * global feature map.

329 */

330 _communicator.gather_packed_range(0,

331 (void *)(nullptr),

332 send_buffers.begin(),

333 send_buffers.end(),

334 std::back_inserter(recv_buffers));
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335

336 if (_is_master)

337 {

338 // The root process now needs to deserialize and merge all of the data

339 deserialize(recv_buffers);

340 recv_buffers.clear();

341

342 mergeSets(true);

343 }

344

345 // Make sure that feature count is communicated to all ranks

346 _communicator.broadcast(_feature_count);

347 }

348

349 void

350 FeatureFloodCount::sortAndLabel()

351 {

352 mooseAssert(_is_master, "sortAndLabel can only be called on the master");

353

354 /**

355 * Perform a sort to give a parallel unique sorting to the identified features.

356 * We use the "min_entity_id" inside each feature to assign it’s position in the

357 * sorted vector.

358 */

359 std::sort(_feature_sets.begin(), _feature_sets.end());

360

361 #ifndef NDEBUG

362 /**

363 * Sanity check. Now that we’ve sorted the flattened vector of features

364 * we need to make sure that the counts vector still lines up appropriately

365 * with each feature’s _var_index.

366 */

367 unsigned int feature_offset = 0;

368 for (auto map_num = beginIndex(_feature_counts_per_map); map_num < _maps_size; ++map_num)

369 {

370 // Skip empty map checks

371 if (_feature_counts_per_map[map_num] == 0)

372 continue;

373

374 // Check the begin and end of the current range

375 auto range_front = feature_offset;

376 auto range_back = feature_offset + _feature_counts_per_map[map_num] - 1;

377

378 mooseAssert(range_front <= range_back && range_back < _feature_count,

379 "Indexing error in feature sets");

380

381 if (!_single_map_mode && (_feature_sets[range_front]._var_index != map_num ||

382 _feature_sets[range_back]._var_index != map_num))

383 mooseError("Error in _feature_sets sorting, map index: ", map_num);

384

385 feature_offset += _feature_counts_per_map[map_num];

386 }

387 #endif

388

389 // Label the features with an ID based on the sorting (processor number independent value)

390 for (auto i = beginIndex(_feature_sets); i < _feature_sets.size(); ++i)
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391 _feature_sets[i]._id = i;

392 }

393

394 void

395 FeatureFloodCount::buildLocalToGlobalIndices(std::vector<std::size_t> & local_to_global_all,

396 std::vector<int> & counts) const

397 {

398 mooseAssert(_is_master, "This method must only be called on the root processor");

399

400 counts.assign(_n_procs, 0);

401 // Now size the individual counts vectors based on the largest index seen per processor

402 for (const auto & feature : _feature_sets)

403 for (const auto & local_index_pair : feature._orig_ids)

404 // local index // rank

405 if (local_index_pair.second >= static_cast<std::size_t>(counts[local_index_pair.first]))

406 counts[local_index_pair.first] = local_index_pair.second + 1;

407

408 // Build the offsets vector

409 unsigned int globalsize = 0;

410 std::vector<int> offsets(_n_procs); // Type is signed for use with the MPI API

411 for (auto i = beginIndex(offsets); i < offsets.size(); ++i)

412 {

413 offsets[i] = globalsize;

414 globalsize += counts[i];

415 }

416

417 // Finally populate the master vector

418 local_to_global_all.resize(globalsize, FeatureFloodCount::invalid_size_t);

419 for (const auto & feature : _feature_sets)

420 {

421 // Get the local indices from the feature and build a map

422 for (const auto & local_index_pair : feature._orig_ids)

423 {

424 auto rank = local_index_pair.first;

425 mooseAssert(rank < _n_procs, rank << ", " << _n_procs);

426

427 auto local_index = local_index_pair.second;

428 auto stacked_local_index = offsets[rank] + local_index;

429

430 mooseAssert(stacked_local_index < globalsize,

431 "Global index: " << stacked_local_index << " is out of range");

432 local_to_global_all[stacked_local_index] = feature._id;

433 }

434 }

435 }

436

437 void

438 FeatureFloodCount::buildFeatureIdToLocalIndices(unsigned int max_id)

439 {

440 _feature_id_to_local_index.assign(max_id + 1, invalid_size_t);

441 for (auto feature_index = beginIndex(_feature_sets); feature_index < _feature_sets.size();

442 ++feature_index)

443 {

444 if (_feature_sets[feature_index]._status != Status::INACTIVE)

445 {

446 mooseAssert(_feature_sets[feature_index]._id <= max_id,



137

447 "Feature ID out of range(" << _feature_sets[feature_index]._id << ’)’);

448 _feature_id_to_local_index[_feature_sets[feature_index]._id] = feature_index;

449 }

450 }

451 }

452

453 void

454 FeatureFloodCount::finalize()

455 {

456 // Gather all information on processor zero and merge

457 communicateAndMerge();

458

459 // Sort and label the features

460 if (_is_master)

461 sortAndLabel();

462

463 // Send out the local to global mappings

464 scatterAndUpdateRanks();

465

466 // Populate _feature_maps and _var_index_maps

467 updateFieldInfo();

468 }

469

470 const std::vector<unsigned int> &

471 FeatureFloodCount::getVarToFeatureVector(dof_id_type elem_id) const

472 {

473 mooseDoOnce(if (!_compute_var_to_feature_map) mooseError(

474 "Please set \"compute_var_to_feature_map = true\" to use this interface method"));

475

476 const auto pos = _entity_var_to_features.find(elem_id);

477 if (pos != _entity_var_to_features.end())

478 {

479 mooseAssert(pos->second.size() == _n_vars, "Variable to feature vector not sized properly");

480 return pos->second;

481 }

482 else

483 return _empty_var_to_features;

484 }

485

486 void

487 FeatureFloodCount::scatterAndUpdateRanks()

488 {

489 // local to global map (one per processor)

490 std::vector<int> counts;

491 std::vector<std::size_t> local_to_global_all;

492 if (_is_master)

493 buildLocalToGlobalIndices(local_to_global_all, counts);

494

495 // Scatter local_to_global indices to all processors and store in class member variable

496 _communicator.scatter(local_to_global_all, counts, _local_to_global_feature_map);

497

498 std::size_t largest_global_index = std::numeric_limits<std::size_t>::lowest();

499 if (!_is_master)

500 {

501 _feature_sets.resize(_local_to_global_feature_map.size());

502
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503 /**

504 * On non-root processors we can’t maintain the full _feature_sets data structure since

505 * we don’t have all of the global information. We’ll move the items from the partial

506 * feature sets into a flat structure maintaining order and update the internal IDs

507 * with the proper global ID.

508 */

509 for (auto & list_ref : _partial_feature_sets)

510 {

511 for (auto & feature : list_ref)

512 {

513 mooseAssert(feature._orig_ids.size() == 1, "feature._orig_ids length doesn’t make sense");

514

515 auto global_index = FeatureFloodCount::invalid_size_t;

516 auto local_index = feature._orig_ids.begin()->second;

517

518 if (local_index < _local_to_global_feature_map.size())

519 global_index = _local_to_global_feature_map[local_index];

520

521 if (global_index != FeatureFloodCount::invalid_size_t)

522 {

523 if (global_index > largest_global_index)

524 largest_global_index = global_index;

525

526 // Set the correct global index

527 feature._id = global_index;

528

529 /**

530 * Important: Make sure we clear the local status if we received a valid global

531 * index for this feature. It’s possible that we have a status of INVALID

532 * on the local processor because there was never any starting threshold found.

533 * However, the root processor wouldn’t have sent an index if it didn’t find

534 * a starting threshold connected to our local piece.

535 */

536 feature._status &= ~Status::INACTIVE;

537

538 // Move the feature into the correct place

539 _feature_sets[local_index] = std::move(feature);

540 }

541 }

542 }

543 }

544 else

545 {

546 for (auto global_index : local_to_global_all)

547 if (global_index != FeatureFloodCount::invalid_size_t && global_index > largest_global_index)

548 largest_global_index = global_index;

549 }

550

551 buildFeatureIdToLocalIndices(largest_global_index);

552 }

553

554 Real

555 FeatureFloodCount::getValue()

556 {

557 return static_cast<Real>(_feature_count);

558 }
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559

560 std::size_t

561 FeatureFloodCount::getTotalFeatureCount() const

562 {

563 /**

564 * Since the FeatureFloodCount object doesn’t maintain any information about

565 * features between invocations. The maximum id in use is simply the number of

566 * features.

567 */

568 return _feature_count;

569 }

570

571 unsigned int

572 FeatureFloodCount::getFeatureVar(unsigned int feature_id) const

573 {

574 // Some processors don’t contain the largest feature id, in that case we just return invalid_id

575 if (feature_id >= _feature_id_to_local_index.size())

576 return invalid_id;

577

578 auto local_index = _feature_id_to_local_index[feature_id];

579 if (local_index != invalid_size_t)

580 {

581 mooseAssert(local_index < _feature_sets.size(), "local_index out of bounds");

582 return _feature_sets[local_index]._status != Status::INACTIVE

583 ? _feature_sets[feature_id]._var_index

584 : invalid_id;

585 }

586

587 return invalid_id;

588 }

589

590 bool

591 FeatureFloodCount::doesFeatureIntersectBoundary(unsigned int feature_id) const

592 {

593 // TODO: This information is not parallel consistent when using FeatureFloodCounter

594

595 // Some processors don’t contain the largest feature id, in that case we just return invalid_id

596 if (feature_id >= _feature_id_to_local_index.size())

597 return false;

598

599 auto local_index = _feature_id_to_local_index[feature_id];

600

601 if (local_index != invalid_size_t)

602 {

603 mooseAssert(local_index < _feature_sets.size(), "local_index out of bounds");

604 return _feature_sets[local_index]._intersects_boundary;

605 }

606

607 return false;

608 }

609

610 Real

611 FeatureFloodCount::getEntityValue(dof_id_type entity_id,

612 FieldType field_type,

613 std::size_t var_index) const

614 {
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615 auto use_default = false;

616 if (var_index == invalid_size_t)

617 {

618 use_default = true;

619 var_index = 0;

620 }

621

622 mooseAssert(var_index < _maps_size, "Index out of range");

623

624 switch (field_type)

625 {

626 case FieldType::UNIQUE_REGION:

627 {

628 const auto entity_it = _feature_maps[var_index].find(entity_id);

629

630 if (entity_it != _feature_maps[var_index].end())

631 return entity_it->second; // + _region_offsets[var_index];

632 else

633 return -1;

634 }

635

636 case FieldType::VARIABLE_COLORING:

637 {

638 const auto entity_it = _var_index_maps[var_index].find(entity_id);

639

640 if (entity_it != _var_index_maps[var_index].end())

641 return entity_it->second;

642 else

643 return -1;

644 }

645

646 case FieldType::GHOSTED_ENTITIES:

647 {

648 const auto entity_it = _ghosted_entity_ids.find(entity_id);

649

650 if (entity_it != _ghosted_entity_ids.end())

651 return entity_it->second;

652 else

653 return -1;

654 }

655

656 case FieldType::HALOS:

657 {

658 if (!use_default)

659 {

660 const auto entity_it = _halo_ids[var_index].find(entity_id);

661 if (entity_it != _halo_ids[var_index].end())

662 return entity_it->second;

663 }

664 else

665 {

666 // Showing halos in reverse order for backwards compatibility

667 for (auto map_num = _maps_size;

668 map_num-- /* don’t compare greater than zero for unsigned */;)

669 {

670 const auto entity_it = _halo_ids[map_num].find(entity_id);
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671

672 if (entity_it != _halo_ids[map_num].end())

673 return entity_it->second;

674 }

675 }

676 return -1;

677 }

678

679 case FieldType::CENTROID:

680 {

681 if (_periodic_node_map.size())

682 mooseDoOnce(mooseWarning(

683 "Centroids are not correct when using periodic boundaries, contact the MOOSE team"));

684

685 // If this element contains the centroid of one of features, return one

686 const auto * elem_ptr = _mesh.elemPtr(entity_id);

687

688 for (const auto & feature : _feature_sets)

689 {

690 if (feature._status == Status::INACTIVE)

691 continue;

692

693 if (elem_ptr->contains_point(feature._centroid))

694 return 1;

695 }

696

697 return 0;

698 }

699

700 default:

701 return 0;

702 }

703 }

704

705 void

706 FeatureFloodCount::prepareDataForTransfer()

707 {

708 MeshBase & mesh = _mesh.getMesh();

709

710 std::set<dof_id_type> local_ids_no_ghost, set_difference;

711

712 for (auto & list_ref : _partial_feature_sets)

713 for (auto & feature : list_ref)

714 {

715 /**

716 * We need to adjust the halo markings before sending. We need to discard all of the

717 * local cell information but not any of the stitch region information. To do that

718 * we subtract off the ghosted cells from the local cells and use that in the

719 * set difference operation with the halo_ids.

720 */

721 std::set_difference(feature._local_ids.begin(),

722 feature._local_ids.end(),

723 feature._ghosted_ids.begin(),

724 feature._ghosted_ids.end(),

725 std::insert_iterator<std::set<dof_id_type>>(local_ids_no_ghost,

726 local_ids_no_ghost.begin()));
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727

728 std::set_difference(

729 feature._halo_ids.begin(),

730 feature._halo_ids.end(),

731 local_ids_no_ghost.begin(),

732 local_ids_no_ghost.end(),

733 std::insert_iterator<std::set<dof_id_type>>(set_difference, set_difference.begin()));

734 feature._halo_ids.swap(set_difference);

735 local_ids_no_ghost.clear();

736 set_difference.clear();

737

738 mooseAssert(!feature._local_ids.empty(), "local entity ids cannot be empty");

739

740 /**

741 * Save off the min entity id present in the feature to uniquely

742 * identify the feature regardless of n_procs

743 */

744 feature._min_entity_id = *feature._local_ids.begin();

745

746 for (auto & entity_id : feature._local_ids)

747 {

748 /**

749 * Update the bounding box.

750 *

751 * Note: There will always be one and only one bbox while we are building up our

752 * data structures because we haven’t started to stitch together any regions yet.

753 */

754 if (_is_elemental)

755 feature.updateBBoxExtremes(feature._bboxes[0], *mesh.elem(entity_id));

756 else

757 feature.updateBBoxExtremes(feature._bboxes[0], mesh.node(entity_id));

758 }

759

760 // Now extend the bounding box by the halo region

761 for (auto & halo_id : feature._halo_ids)

762 {

763 if (_is_elemental)

764 feature.updateBBoxExtremes(feature._bboxes[0], *mesh.elem(halo_id));

765 else

766 feature.updateBBoxExtremes(feature._bboxes[0], mesh.node(halo_id));

767 }

768

769 // Periodic node ids

770 appendPeriodicNeighborNodes(feature);

771 }

772 }

773

774 void

775 FeatureFloodCount::serialize(std::string & serialized_buffer)

776 {

777 // stream for serializing the _partial_feature_sets data structure to a byte stream

778 std::ostringstream oss;

779

780 /**

781 * Call the MOOSE serialization routines to serialize this processor’s data.

782 * Note: The _partial_feature_sets data structure will be empty for all other processors
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783 */

784 dataStore(oss, _partial_feature_sets, this);

785

786 // Populate the passed in string pointer with the string stream’s buffer contents

787 serialized_buffer.assign(oss.str());

788 }

789

790 /**

791 * This routine takes the vector of byte buffers (one for each processor), deserializes them

792 * into a series of FeatureSet objects, and appends them to the _feature_sets data structure.

793 *

794 * Note: It is assumed that local processor information may already be stored in the _feature_sets

795 * data structure so it is not cleared before insertion.

796 */

797 void

798 FeatureFloodCount::deserialize(std::vector<std::string> & serialized_buffers)

799 {

800 // The input string stream used for deserialization

801 std::istringstream iss;

802

803 mooseAssert(serialized_buffers.size() == _app.n_processors(),

804 "Unexpected size of serialized_buffers: " << serialized_buffers.size());

805 auto rank = processor_id();

806 for (auto proc_id = beginIndex(serialized_buffers); proc_id < serialized_buffers.size();

807 ++proc_id)

808 {

809 /**

810 * We should already have the local processor data in the features data structure.

811 * Don’t unpack the local buffer again.

812 */

813 if (proc_id == rank)

814 continue;

815

816 iss.str(serialized_buffers[proc_id]); // populate the stream with a new buffer

817 iss.clear(); // reset the string stream state

818

819 // Load the communicated data into all of the other processors’ slots

820 dataLoad(iss, _partial_feature_sets, this);

821 }

822 }

823

824 void

825 FeatureFloodCount::mergeSets(bool use_periodic_boundary_info)

826 {

827 Moose::perf_log.push("mergeSets()", "FeatureFloodCount");

828

829 // Since we gathered only on the root process, we only need to merge sets on the root process.

830 mooseAssert(_is_master, "mergeSets() should only be called on the root process");

831

832 // Local variable used for sizing structures, it will be >= the actual number of features

833 for (auto map_num = decltype(_maps_size)(0); map_num < _maps_size; ++map_num)

834 {

835 for (auto it1 = _partial_feature_sets[map_num].begin();

836 it1 != _partial_feature_sets[map_num].end();

837 /* No increment on it1 */)

838 {
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839 bool merge_occured = false;

840 for (auto it2 = _partial_feature_sets[map_num].begin();

841 it2 != _partial_feature_sets[map_num].end();

842 ++it2)

843 {

844 // clang-format off

845 if (it1 != it2 && // iters aren’t pointing at the same item and

846 it1->_var_index == it2->_var_index && // the sets have matching variable indices and

847 ((it1->boundingBoxesIntersect(*it2) && // (if the feature’s bboxes intersect and

848 it1->ghostedIntersect(*it2)) // the ghosted entities also intersect)

849 || // or

850 (use_periodic_boundary_info && // (if merging across periodic nodes and

851 it1->periodicBoundariesIntersect(*it2) // those node sets intersect)

852 )))

853 // clang-format on

854 {

855 it2->merge(std::move(*it1));

856

857 /**

858 * Insert the new entity at the end of the list so that it may be checked against all

859 * other partial features again.

860 */

861 _partial_feature_sets[map_num].emplace_back(std::move(*it2));

862

863 /**

864 * Now remove both halves the merged features: it2 contains the "moved" feature cell just

865 * inserted at the back of the list, it1 contains the mostly empty other half. We have to

866 * be careful about the order in which these two elements are deleted. We delete it2 first

867 * since we don’t care where its iterator points after the deletion. We are going to break

868 * out of this loop anyway. If we delete it1 first, it may end up pointing at the same

869 * location as it2 which after the second deletion would cause both of the iterators to be

870 * invalidated.

871 */

872 _partial_feature_sets[map_num].erase(it2);

873 it1 = _partial_feature_sets[map_num].erase(it1); // it1 is incremented here!

874

875 // A merge occurred, this is used to determine whether or not we increment the outer

876 // iterator

877 merge_occured = true;

878

879 // We need to start the list comparison over for the new it1 so break here

880 break;

881 }

882 } // it2 loop

883

884 if (!merge_occured) // No merges so we need to manually increment the outer iterator

885 ++it1;

886

887 } // it1 loop

888 } // map loop

889

890 /**

891 * Now that the merges are complete we need to adjust the centroid, and halos.

892 * Additionally, To make several of the sorting and tracking algorithms more straightforward,

893 * we will move the features into a flat vector. Finally we can count the final number of

894 * features and find the max local index seen on any processor
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895 * Note: This is all occurring on rank 0 only!

896 */

897 // Offset where the current set of features with the same variable id starts in the flat vector

898 unsigned int feature_offset = 0;

899 // Set the member feature count to zero and start counting the actual features

900 _feature_count = 0;

901

902 for (auto map_num = decltype(_maps_size)(0); map_num < _maps_size; ++map_num)

903 {

904 std::set<dof_id_type> set_difference;

905 for (auto & feature : _partial_feature_sets[map_num])

906 {

907 // If after merging we still have an inactive feature, discard it

908 if (feature._status == Status::CLEAR)

909 {

910 // First we need to calculate the centroid now that we are doing merging all partial

911 // features

912 if (feature._vol_count != 0)

913 feature._centroid /= feature._vol_count;

914

915 _feature_sets.emplace_back(std::move(feature));

916 ++_feature_count;

917 }

918 }

919

920 // Record the feature numbers just for the current map

921 _feature_counts_per_map[map_num] = _feature_count - feature_offset;

922

923 // Now update the running feature count so we can calculate the next map’s contribution

924 feature_offset = _feature_count;

925

926 // Clean up the "moved" objects

927 _partial_feature_sets[map_num].clear();

928 }

929

930 /**

931 * IMPORTANT: FeatureFloodCount::_feature_count is set on rank 0 at this point but

932 * we can’t broadcast it here because this routine is not collective.

933 */

934

935 Moose::perf_log.pop("mergeSets()", "FeatureFloodCount");

936 }

937

938 void

939 FeatureFloodCount::updateFieldInfo()

940 {

941 for (auto i = beginIndex(_feature_sets); i < _feature_sets.size(); ++i)

942 {

943 auto & feature = _feature_sets[i];

944 decltype(i) global_feature_number;

945

946 if (_is_master)

947 /**

948 * If we are on processor zero, the global feature number is simply the current

949 * index since we previously merged and sorted the partial features.

950 */
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951 global_feature_number = i;

952 else

953 {

954 /**

955 * For the remaining ranks, obtaining the feature number requires us to

956 * first obtain the original local index (stored inside of the feature).

957 * Once we have that index, we can use it to look up the global id

958 * in the local to global map.

959 */

960 mooseAssert(feature._orig_ids.size() == 1, "feature._orig_ids length doesn’t make sense");

961

962 // Get the local ID from the orig IDs

963 auto local_id = feature._orig_ids.begin()->second;

964 mooseAssert(local_id < _local_to_global_feature_map.size(),

965 "local_id : " << local_id << " is out of range ("

966 << _local_to_global_feature_map.size()

967 << ’)’);

968 global_feature_number = _local_to_global_feature_map[local_id];

969 }

970

971 // If the developer has requested _condense_map_info we’ll make sure we only update the zeroth

972 // map

973 auto map_index = (_single_map_mode || _condense_map_info) ? decltype(feature._var_index)(0)

974 : feature._var_index;

975

976 // Loop over the entity ids of this feature and update our local map

977 for (auto entity : feature._local_ids)

978 {

979 _feature_maps[map_index][entity] = static_cast<int>(global_feature_number);

980

981 if (_var_index_mode)

982 _var_index_maps[map_index][entity] = feature._var_index;

983

984 // Fill in the data structure that keeps track of all features per elem

985 if (_compute_var_to_feature_map)

986 {

987 auto map_it = _entity_var_to_features.lower_bound(entity);

988 if (map_it == _entity_var_to_features.end() || map_it->first != entity)

989 map_it = _entity_var_to_features.emplace_hint(

990 map_it, entity, std::vector<unsigned int>(_n_vars, invalid_id));

991 map_it->second[feature._var_index] = feature._id;

992 }

993 }

994

995 if (_compute_halo_maps)

996 // Loop over the halo ids to update cells with halo information

997 for (auto entity : feature._halo_ids)

998 _halo_ids[map_index][entity] = static_cast<int>(global_feature_number);

999

1000 // Loop over the ghosted ids to update cells with ghost information

1001 for (auto entity : feature._ghosted_ids)

1002 _ghosted_entity_ids[entity] = 1;

1003

1004 // TODO: Fixme

1005 if (!_global_numbering)

1006 mooseError("Local numbering currently disabled");
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1007 }

1008 }

1009

1010 void

1011 FeatureFloodCount::flood(const DofObject * dof_object,

1012 std::size_t current_index,

1013 FeatureData * feature)

1014 {

1015 if (dof_object == nullptr)

1016 return;

1017

1018 // Retrieve the id of the current entity

1019 auto entity_id = dof_object->id();

1020

1021 // Has this entity already been marked? - if so move along

1022 if (_entities_visited[current_index].find(entity_id) != _entities_visited[current_index].end())

1023 return;

1024

1025 // See if the current entity either starts a new feature or continues an existing feature

1026 auto new_id = invalid_id; // Writable reference to hold an optional id;

1027 Status status =

1028 Status::INACTIVE; // Status is inactive until we find an entity above the starting threshold

1029 if (!isNewFeatureOrConnectedRegion(dof_object, current_index, feature, status, new_id))

1030 return;

1031

1032 /**

1033 * If we reach this point (i.e. we haven’t returned early from this routine),

1034 * we’ve found a new mesh entity that’s part of a feature. We need to mark

1035 * the entity as visited at this point (and not before!) to avoid infinite

1036 * recursion. If you mark the node too early you risk not coloring in a whole

1037 * feature any time a "connecting threshold" is used since we may have

1038 * already visited this entity earlier but it was in-between two thresholds.

1039 */

1040 _entities_visited[current_index][entity_id] = true;

1041

1042 auto map_num = _single_map_mode ? decltype(current_index)(0) : current_index;

1043

1044 // New Feature (we need to create it and add it to our data structure)

1045 if (!feature)

1046 {

1047 _partial_feature_sets[map_num].emplace_back(

1048 current_index, _feature_count++, processor_id(), status);

1049

1050 // Get a handle to the feature we will update (always the last feature in the data structure)

1051 feature = &_partial_feature_sets[map_num].back();

1052

1053 // If new_id is valid, we’ll set it in the feature here.

1054 if (new_id != invalid_id)

1055 feature->_id = new_id;

1056 }

1057

1058 // Insert the current entity into the local ids map

1059 feature->_local_ids.insert(entity_id);

1060

1061 /**

1062 * See if this particular entity cell contributes to the centroid calculation. We
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1063 * only deal with elemental floods and only count it if it’s owned by the current

1064 * processor to avoid skewing the result.

1065 */

1066 if (_is_elemental && processor_id() == dof_object->processor_id())

1067 {

1068 const Elem * elem = static_cast<const Elem *>(dof_object);

1069

1070 // Keep track of how many elements participate in the centroid averaging

1071 feature->_vol_count++;

1072

1073 // Sum the centroid values for now, we’ll average them later

1074 feature->_centroid += elem->centroid();

1075

1076 // Does the volume intersect the boundary?

1077 if (_all_boundary_entity_ids.find(elem->id()) != _all_boundary_entity_ids.end())

1078 feature->_intersects_boundary = true;

1079 }

1080

1081 if (_is_elemental)

1082 visitElementalNeighbors(static_cast<const Elem *>(dof_object),

1083 current_index,

1084 feature,

1085 /*expand_halos_only =*/false);

1086 else

1087 visitNodalNeighbors(static_cast<const Node *>(dof_object),

1088 current_index,

1089 feature,

1090 /*expand_halos_only =*/false);

1091 }

1092

1093 Real FeatureFloodCount::getThreshold(std::size_t /*current_index*/) const

1094 {

1095 return _step_threshold;

1096 }

1097

1098 Real FeatureFloodCount::getConnectingThreshold(std::size_t /*current_index*/) const

1099 {

1100 return _step_connecting_threshold;

1101 }

1102

1103 bool

1104 FeatureFloodCount::compareValueWithThreshold(Real entity_value, Real threshold) const

1105 {

1106 return ((_use_less_than_threshold_comparison && (entity_value >= threshold)) ||

1107 (!_use_less_than_threshold_comparison && (entity_value <= threshold)));

1108 }

1109

1110 bool

1111 FeatureFloodCount::isNewFeatureOrConnectedRegion(const DofObject * dof_object,

1112 std::size_t current_index,

1113 FeatureData *& feature,

1114 Status & status,

1115 unsigned int & /*new_id*/)

1116 {

1117 // Get the value of the current variable for the current entity

1118 Real entity_value;
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1119 if (_is_elemental)

1120 {

1121 const Elem * elem = static_cast<const Elem *>(dof_object);

1122 std::vector<Point> centroid(1, elem->centroid());

1123 _subproblem.reinitElemPhys(elem, centroid, 0);

1124 entity_value = _vars[current_index]->sln()[0];

1125 }

1126 else

1127 entity_value = _vars[current_index]->getNodalValue(*static_cast<const Node *>(dof_object));

1128

1129 // If the value compares against our starting threshold, this is definitely part of a feature

1130 // we’ll keep

1131 if (compareValueWithThreshold(entity_value, getThreshold(current_index)))

1132 {

1133 Status * status_ptr = &status;

1134

1135 if (feature)

1136 status_ptr = &feature->_status;

1137

1138 // Update an existing feature’s status or clear the flag on the passed in status

1139 *status_ptr &= ~Status::INACTIVE;

1140 return true;

1141 }

1142

1143 /**

1144 * If the value is _only_ above the connecting threshold, it’s still part of a feature but

1145 * possibly part of one that we’ll discard if there is never any starting threshold encountered.

1146 */

1147 return compareValueWithThreshold(entity_value, getConnectingThreshold(current_index));

1148 }

1149

1150 void

1151 FeatureFloodCount::visitElementalNeighbors(const Elem * elem,

1152 std::size_t current_index,

1153 FeatureData * feature,

1154 bool expand_halos_only)

1155 {

1156 mooseAssert(elem, "Elem is NULL");

1157

1158 std::vector<const Elem *> all_active_neighbors;

1159

1160 // Loop over all neighbors (at the the same level as the current element)

1161 for (auto i = decltype(elem->n_neighbors())(0); i < elem->n_neighbors(); ++i)

1162 {

1163 const Elem * neighbor_ancestor = elem->neighbor(i);

1164 if (neighbor_ancestor)

1165 /**

1166 * Retrieve only the active neighbors for each side of this element, append them to the list

1167 * of active neighbors

1168 */

1169 neighbor_ancestor->active_family_tree_by_neighbor(all_active_neighbors, elem, false);

1170 }

1171

1172 visitNeighborsHelper(elem, all_active_neighbors, current_index, feature, expand_halos_only);

1173 }

1174
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1175 void

1176 FeatureFloodCount::visitNodalNeighbors(const Node * node,

1177 std::size_t current_index,

1178 FeatureData * feature,

1179 bool expand_halos_only)

1180 {

1181 mooseAssert(node, "Node is NULL");

1182

1183 std::vector<const Node *> all_active_neighbors;

1184 MeshTools::find_nodal_neighbors(_mesh.getMesh(), *node, _nodes_to_elem_map, all_active_neighbors);

1185

1186 visitNeighborsHelper(node, all_active_neighbors, current_index, feature, expand_halos_only);

1187 }

1188

1189 template <typename T>

1190 void

1191 FeatureFloodCount::visitNeighborsHelper(const T * curr_entity,

1192 std::vector<const T *> neighbor_entities,

1193 std::size_t current_index,

1194 FeatureData * feature,

1195 bool expand_halos_only)

1196 {

1197 // Loop over all active element neighbors

1198 for (const auto neighbor : neighbor_entities)

1199 {

1200 if (neighbor)

1201 {

1202 if (expand_halos_only)

1203 feature->_halo_ids.insert(neighbor->id());

1204

1205 else

1206 {

1207 auto my_processor_id = processor_id();

1208

1209 if (neighbor->processor_id() != my_processor_id)

1210 feature->_ghosted_ids.insert(curr_entity->id());

1211

1212 /**

1213 * Only recurse where we own this entity. We might step outside of the

1214 * ghosted region if we recurse where we don’t own the current entity.

1215 */

1216 if (curr_entity->processor_id() == my_processor_id)

1217 {

1218 /**

1219 * Premark neighboring entities with a halo mark. These

1220 * entities may or may not end up being part of the feature.

1221 * We will not update the _entities_visited data structure

1222 * here.

1223 */

1224 feature->_halo_ids.insert(neighbor->id());

1225

1226 flood(neighbor, current_index, feature);

1227 }

1228 }

1229 }

1230 }
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1231 }

1232

1233 void

1234 FeatureFloodCount::appendPeriodicNeighborNodes(FeatureData & data) const

1235 {

1236 if (_is_elemental)

1237 {

1238 for (auto entity : data._local_ids)

1239 {

1240 Elem * elem = _mesh.elemPtr(entity);

1241

1242 for (auto node_n = decltype(elem->n_nodes())(0); node_n < elem->n_nodes(); ++node_n)

1243 {

1244 auto iters = _periodic_node_map.equal_range(elem->node(node_n));

1245

1246 for (auto it = iters.first; it != iters.second; ++it)

1247 {

1248 data._periodic_nodes.insert(it->first);

1249 data._periodic_nodes.insert(it->second);

1250 }

1251 }

1252 }

1253 }

1254 else

1255 {

1256 for (auto entity : data._local_ids)

1257 {

1258 auto iters = _periodic_node_map.equal_range(entity);

1259

1260 for (auto it = iters.first; it != iters.second; ++it)

1261 {

1262 data._periodic_nodes.insert(it->first);

1263 data._periodic_nodes.insert(it->second);

1264 }

1265 }

1266 }

1267 }

1268

1269 void

1270 FeatureFloodCount::FeatureData::updateBBoxExtremes(MeshTools::BoundingBox & bbox,

1271 const Point & node)

1272 {

1273 for (unsigned int i = 0; i < LIBMESH_DIM; ++i)

1274 {

1275 bbox.min()(i) = std::min(bbox.min()(i), node(i));

1276 bbox.max()(i) = std::max(bbox.max()(i), node(i));

1277 }

1278 }

1279

1280 void

1281 FeatureFloodCount::FeatureData::updateBBoxExtremes(MeshTools::BoundingBox & bbox, const Elem & elem)

1282 {

1283 for (auto node_n = decltype(elem.n_nodes())(0); node_n < elem.n_nodes(); ++node_n)

1284 updateBBoxExtremes(bbox, *(elem.get_node(node_n)));

1285 }

1286
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1287 void

1288 FeatureFloodCount::FeatureData::updateBBoxExtremes(MeshTools::BoundingBox & bbox,

1289 const MeshTools::BoundingBox & rhs_bbox)

1290 {

1291 for (unsigned int i = 0; i < LIBMESH_DIM; ++i)

1292 {

1293 bbox.min()(i) = std::min(bbox.min()(i), rhs_bbox.min()(i));

1294 bbox.max()(i) = std::max(bbox.max()(i), rhs_bbox.max()(i));

1295 }

1296 }

1297

1298 bool

1299 FeatureFloodCount::FeatureData::boundingBoxesIntersect(const FeatureData & rhs) const

1300 {

1301 // See if any of the bounding boxes in either FeatureData object intersect

1302 for (const auto & bbox_lhs : _bboxes)

1303 for (const auto & bbox_rhs : rhs._bboxes)

1304 if (bbox_lhs.intersects(bbox_rhs))

1305 return true;

1306

1307 return false;

1308 }

1309

1310 bool

1311 FeatureFloodCount::FeatureData::halosIntersect(const FeatureData & rhs) const

1312 {

1313 return setsIntersect(

1314 _halo_ids.begin(), _halo_ids.end(), rhs._halo_ids.begin(), rhs._halo_ids.end());

1315 }

1316

1317 bool

1318 FeatureFloodCount::FeatureData::periodicBoundariesIntersect(const FeatureData & rhs) const

1319 {

1320 return setsIntersect(_periodic_nodes.begin(),

1321 _periodic_nodes.end(),

1322 rhs._periodic_nodes.begin(),

1323 rhs._periodic_nodes.end());

1324 }

1325

1326 bool

1327 FeatureFloodCount::FeatureData::ghostedIntersect(const FeatureData & rhs) const

1328 {

1329 return setsIntersect(

1330 _ghosted_ids.begin(), _ghosted_ids.end(), rhs._ghosted_ids.begin(), rhs._ghosted_ids.end());

1331 }

1332

1333 void

1334 FeatureFloodCount::FeatureData::merge(FeatureData && rhs)

1335 {

1336 mooseAssert(_var_index == rhs._var_index, "Mismatched variable index in merge");

1337 mooseAssert(_id == rhs._id, "Mismatched auxiliary id in merge");

1338

1339 std::set<dof_id_type> set_union;

1340

1341 /**

1342 * Even though we’ve determined that these two partial regions need to be merged, we don’t
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1343 * necessarily know if the _ghost_ids intersect. We could be in this branch because the periodic

1344 * boundaries intersect but that doesn’t tell us anything about whether or not the ghost_region

1345 * also intersects. If the _ghost_ids intersect, that means that we are merging along a periodic

1346 * boundary, not across one. In this case the bounding box(s) need to be expanded.

1347 */

1348 std::set_union(_periodic_nodes.begin(),

1349 _periodic_nodes.end(),

1350 rhs._periodic_nodes.begin(),

1351 rhs._periodic_nodes.end(),

1352 std::insert_iterator<std::set<dof_id_type>>(set_union, set_union.begin()));

1353 _periodic_nodes.swap(set_union);

1354

1355 set_union.clear();

1356 std::set_union(_local_ids.begin(),

1357 _local_ids.end(),

1358 rhs._local_ids.begin(),

1359 rhs._local_ids.end(),

1360 std::insert_iterator<std::set<dof_id_type>>(set_union, set_union.begin()));

1361 _local_ids.swap(set_union);

1362

1363 set_union.clear();

1364 std::set_union(_halo_ids.begin(),

1365 _halo_ids.end(),

1366 rhs._halo_ids.begin(),

1367 rhs._halo_ids.end(),

1368 std::insert_iterator<std::set<dof_id_type>>(set_union, set_union.begin()));

1369 _halo_ids.swap(set_union);

1370

1371 set_union.clear();

1372 std::set_union(_ghosted_ids.begin(),

1373 _ghosted_ids.end(),

1374 rhs._ghosted_ids.begin(),

1375 rhs._ghosted_ids.end(),

1376 std::insert_iterator<std::set<dof_id_type>>(set_union, set_union.begin()));

1377

1378 // Was there overlap in the physical region?

1379 bool physical_intersection = (_ghosted_ids.size() + rhs._ghosted_ids.size() > set_union.size());

1380 _ghosted_ids.swap(set_union);

1381

1382 /**

1383 * If we had a physical intersection, we need to expand boxes. If we had a virtual (periodic)

1384 * intersection we need to preserve all of the boxes from each of the regions’ sets.

1385 */

1386 if (physical_intersection)

1387 expandBBox(rhs);

1388 else

1389 std::move(rhs._bboxes.begin(), rhs._bboxes.end(), std::back_inserter(_bboxes));

1390

1391 // Keep track of the original ids so we can notify other processors of the local to global mapping

1392 _orig_ids.splice(_orig_ids.end(), std::move(rhs._orig_ids));

1393

1394 // Update the min feature id

1395 _min_entity_id = std::min(_min_entity_id, rhs._min_entity_id);

1396

1397 /**

1398 * Combine the status flags: Currently we only expect to combine CLEAR and INACTIVE. Any other
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1399 * combination is currently a logic error. In this case of CLEAR and INACTIVE though,

1400 * we want to make sure that CLEAR wins.

1401 */

1402 mooseAssert((_status & Status::MARKED & Status::DIRTY) == Status::CLEAR,

1403 "Flags in invalid state");

1404

1405 // Logical AND here to combine flags (INACTIVE & INACTIVE == INACTIVE, all other combos are CLEAR)

1406 _status &= rhs._status;

1407

1408 _vol_count += rhs._vol_count;

1409 _centroid += rhs._centroid;

1410 }

1411

1412 void

1413 FeatureFloodCount::FeatureData::clear()

1414 {

1415 _local_ids.clear();

1416 _periodic_nodes.clear();

1417 _halo_ids.clear();

1418 _ghosted_ids.clear();

1419 _bboxes.clear();

1420 _orig_ids.clear();

1421 }

1422

1423 void

1424 FeatureFloodCount::FeatureData::expandBBox(const FeatureData & rhs)

1425 {

1426 std::vector<bool> intersected_boxes(rhs._bboxes.size(), false);

1427

1428 auto box_expanded = false;

1429 for (auto & bbox : _bboxes)

1430 for (auto j = beginIndex(rhs._bboxes); j < rhs._bboxes.size(); ++j)

1431 if (bbox.intersects(rhs._bboxes[j]))

1432 {

1433 updateBBoxExtremes(bbox, rhs._bboxes[j]);

1434 intersected_boxes[j] = true;

1435 box_expanded = true;

1436 }

1437

1438 // Any bounding box in the rhs vector that doesn’t intersect

1439 // needs to be appended to the lhs vector

1440 for (auto j = beginIndex(intersected_boxes); j < intersected_boxes.size(); ++j)

1441 if (!intersected_boxes[j])

1442 _bboxes.push_back(rhs._bboxes[j]);

1443

1444 // Error check

1445 if (!box_expanded)

1446 {

1447 std::ostringstream oss;

1448 oss << "LHS BBoxes:\n";

1449 for (auto i = beginIndex(_bboxes); i < _bboxes.size(); ++i)

1450 oss << "Max: " << _bboxes[i].max() << " Min: " << _bboxes[i].min() << ’\n’;

1451

1452 oss << "RHS BBoxes:\n";

1453 for (auto i = beginIndex(rhs._bboxes); i < rhs._bboxes.size(); ++i)

1454 oss << "Max: " << rhs._bboxes[i].max() << " Min: " << rhs._bboxes[i].min() << ’\n’;
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1455

1456 ::mooseError("No Bounding Boxes Expanded - This is a catastrophic error!\n", oss.str());

1457 }

1458 }

1459

1460 std::ostream &

1461 operator<<(std::ostream & out, const FeatureFloodCount::FeatureData & feature)

1462 {

1463 static const bool debug = true;

1464

1465 out << "Grain ID: ";

1466 if (feature._id != FeatureFloodCount::invalid_id)

1467 out << feature._id;

1468 else

1469 out << "invalid";

1470

1471 if (debug)

1472 {

1473 out << "\nGhosted Entities: ";

1474 for (auto ghosted_id : feature._ghosted_ids)

1475 out << ghosted_id << " ";

1476

1477 out << "\nLocal Entities: ";

1478 for (auto local_id : feature._local_ids)

1479 out << local_id << " ";

1480

1481 out << "\nHalo Entities: ";

1482 for (auto halo_id : feature._halo_ids)

1483 out << halo_id << " ";

1484

1485 out << "\nPeriodic Node IDs: ";

1486 for (auto periodic_node : feature._periodic_nodes)

1487 out << periodic_node << " ";

1488 }

1489

1490 out << "\nBBoxes:";

1491 Real volume = 0;

1492 for (const auto & bbox : feature._bboxes)

1493 {

1494 out << "\nMax: " << bbox.max() << " Min: " << bbox.min();

1495 volume += (bbox.max()(0) - bbox.min()(0)) * (bbox.max()(1) - bbox.min()(1)) *

1496 (MooseUtils::absoluteFuzzyEqual(bbox.max()(2), bbox.min()(2))

1497 ? 1

1498 : bbox.max()(2) - bbox.min()(2));

1499 }

1500

1501 out << "\nStatus: ";

1502 if (feature._status == FeatureFloodCount::Status::CLEAR)

1503 out << "CLEAR";

1504 if (static_cast<bool>(feature._status & FeatureFloodCount::Status::MARKED))

1505 out << " MARKED";

1506 if (static_cast<bool>(feature._status & FeatureFloodCount::Status::DIRTY))

1507 out << " DIRTY";

1508 if (static_cast<bool>(feature._status & FeatureFloodCount::Status::INACTIVE))

1509 out << " INACTIVE";

1510
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1511 if (debug)

1512 {

1513 out << "\nOrig IDs (rank, index): ";

1514 for (const auto & orig_pair : feature._orig_ids)

1515 out << ’(’ << orig_pair.first << ", " << orig_pair.second << ") ";

1516 out << "\nVar_index: " << feature._var_index;

1517 out << "\nMin Entity ID: " << feature._min_entity_id;

1518 }

1519 out << "\n\n";

1520

1521 return out;

1522 }

1523

1524 const std::size_t FeatureFloodCount::invalid_size_t = std::numeric_limits<std::size_t>::max();

1525 const unsigned int FeatureFloodCount::invalid_id = std::numeric_limits<unsigned int>::max();
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A . 3 GrainTracker.h

1 /****************************************************************/

2 /* MOOSE - Multiphysics Object Oriented Simulation Environment */

3 /* */

4 /* All contents are licensed under LGPL V2.1 */

5 /* See LICENSE for full restrictions */

6 /****************************************************************/

7

8 #ifndef GRAINTRACKER_H

9 #define GRAINTRACKER_H

10

11 #include "FeatureFloodCount.h"

12 #include "GrainTrackerInterface.h"

13

14 // libMesh includes

15 #include "libmesh/mesh_tools.h"

16

17 class GrainTracker;

18 class EBSDReader;

19 struct GrainDistance;

20

21 template <>

22 InputParameters validParams<GrainTracker>();

23

24 class GrainTracker : public FeatureFloodCount, public GrainTrackerInterface

25 {

26 public:

27 GrainTracker(const InputParameters & parameters);

28 virtual ~GrainTracker();

29

30 virtual void initialize() override;

31 virtual void execute() override;

32 virtual void finalize() override;

33

34 virtual std::size_t getTotalFeatureCount() const override;

35

36 // Struct used to transfer minimal data to all ranks

37 struct PartialFeatureData

38 {

39 bool intersects_boundary;

40 unsigned int id;

41 Point centroid;

42 Status status;

43 };

44

45 struct CacheValues

46 {

47 Real current;

48 Real old;

49 Real older;

50 };

51

52 enum class RemapCacheMode

53 {

54 FILL,
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55 USE,

56 BYPASS

57 };

58

59 // GrainTrackerInterface methods

60 virtual Real getEntityValue(dof_id_type node_id,

61 FieldType field_type,

62 std::size_t var_index = 0) const override;

63 virtual const std::vector<unsigned int> &

64 getVarToFeatureVector(dof_id_type elem_id) const override;

65 virtual unsigned int getFeatureVar(unsigned int feature_id) const override;

66 virtual std::size_t getNumberActiveGrains() const override;

67 virtual Point getGrainCentroid(unsigned int grain_id) const override;

68 virtual bool doesFeatureIntersectBoundary(unsigned int feature_id) const override;

69 virtual std::vector<unsigned int> getNewGrainIDs() const override;

70

71 protected:

72 virtual void updateFieldInfo() override;

73 virtual Real getThreshold(std::size_t current_index) const override;

74 virtual bool isNewFeatureOrConnectedRegion(const DofObject * dof_object,

75 std::size_t current_index,

76 FeatureData *& feature,

77 Status & status,

78 unsigned int & new_id) override;

79

80 void communicateHaloMap();

81

82 /**

83 * When the tracking phase starts (_t_step == _tracking_step) it assigns a unique id to every

84 * FeatureData object found by the FeatureFloodCount object. If an EBSDReader is linked into

85 * the GrainTracker the information from the reader is used to assign grain information,

86 * otherwise it’s ordered by each Feature’s "minimum entity id" and assigned a non-negative

87 * integer.

88 */

89 void assignGrains();

90

91 /**

92 * On subsequent time_steps, incoming FeatureData objects are compared to previous time_step

93 * information to track grains between time steps.

94 *

95 * This method updates the _feature_sets data structure.

96 * This method should only be called on the root processor

97 */

98 void trackGrains();

99

100 /**

101 * This method is called when a new grain is detected. It can be overridden by a derived class to

102 * handle setting new properties on the newly created grain.

103 */

104 virtual void newGrainCreated(unsigned int new_grain_id);

105

106 /**

107 * This method is called after trackGrains to remap grains that are too close to each other.

108 */

109 void remapGrains();

110
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111 /**

112 * Broadcast essential Grain information to all processors. This method is used to get certain

113 * attributes like centroids distributed and whether or not a grain intersects a boundary updated.

114 */

115 void broadcastAndUpdateGrainData();

116

117 /**

118 * Populates and sorts a min_distances vector with the minimum distances to all grains in the

119 * simulation for a given grain. There are _vars.size() entries in the outer vector, one for

120 * each order parameter. A list of grains with the same OP are ordered in lists per OP.

121 */

122 void computeMinDistancesFromGrain(FeatureData & grain,

123 std::vector<std::list<GrainDistance>> & min_distances);

124

125 /**

126 * This is the recursive part of the remapping algorithm. It attempts to remap a grain to a new

127 * index and recurses until max_depth is reached.

128 */

129 bool attemptGrainRenumber(FeatureData & grain, unsigned int depth, unsigned int max_depth);

130

131 /**

132 * A routine for moving all of the solution values from a given grain to a new variable number. It

133 * is called with different modes to only cache, or actually do the work, or bypass the cache

134 * altogether.

135 */

136 void swapSolutionValues(FeatureData & grain,

137 std::size_t new_var_index,

138 std::vector<std::map<Node *, CacheValues>> & cache,

139 RemapCacheMode cache_mode);

140

141 /**

142 * Helper method for actually performing the swaps.

143 */

144 void swapSolutionValuesHelper(Node * curr_node,

145 std::size_t curr_var_index,

146 std::size_t new_var_index,

147 std::vector<std::map<Node *, CacheValues>> & cache,

148 RemapCacheMode cache_mode);

149

150 /**

151 * This method returns the minimum periodic distance between two vectors of bounding boxes. If the

152 * bounding boxes overlap the result is always -1.0.

153 */

154 Real boundingRegionDistance(std::vector<MeshTools::BoundingBox> & bboxes1,

155 std::vector<MeshTools::BoundingBox> & bboxes2) const;

156

157 /**

158 * This method returns the minimum periodic distance between the centroids of two vectors of

159 * bounding boxes.

160 */

161 Real centroidRegionDistance(std::vector<MeshTools::BoundingBox> & bboxes1,

162 std::vector<MeshTools::BoundingBox> & bboxes2) const;

163

164 /**

165 * This method takes all of the partial features and expands the local, ghosted, and halo sets

166 * around those regions to account for the diffuse interface. Rather than using any kind of
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167 * recursion here, we simply expand the region by all "point" neighbors from the actual

168 * grain cells since all point neighbors will contain contributions to the region.

169 */

170 void expandEBSDGrains();

171

172 /**

173 * This method colors neighbors of halo entries to expand the halo as desired for a given

174 * simulation.

175 */

176 void expandHalos(unsigned int num_layers_to_expand);

177

178 /**

179 * Retrieve the next unique grain number if a new grain is detected during trackGrains. This

180 * method handles reserve order parameter indices properly. Direct access to the next index

181 * should be avoided.

182 */

183 unsigned int getNextUniqueID();

184

185 /*************************************************

186 *************** Data Structures *****************

187 ************************************************/

188

189 /// The timestep to begin tracking grains

190 const int _tracking_step;

191

192 /// The thickness of the halo surrounding each grain

193 const unsigned int _halo_level;

194

195 /// Depth of renumbering recursion (a depth of zero means no recursion)

196 static const unsigned int _max_renumbering_recursion = 4;

197

198 /// The number of reserved order parameters

199 const unsigned short _n_reserve_ops;

200

201 /// The cutoff index where if variable index >= this number, no remapping TO that variable

202 /// will occur

203 const std::size_t _reserve_op_index;

204

205 /// The threshold above (or below) where a grain may be found on a reserve op field

206 const Real _reserve_op_threshold;

207

208 /// Inidicates whether remapping should be done or not (remapping is independent of tracking)

209 const bool _remap;

210

211 /// A reference to the nonlinear system (used for retrieving solution vectors)

212 NonlinearSystemBase & _nl;

213

214 /**

215 * This data structure holds the map of unique grains from the previous time step.

216 * The information is updated each timestep to track grains over time.

217 */

218 std::vector<FeatureData> & _feature_sets_old;

219

220 /// Optional ESBD Reader

221 const EBSDReader * _ebsd_reader;

222
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223 /// Optional EBSD OP variable pointer (required if EBSD is supplied)

224 MooseVariable * _ebsd_op_var;

225

226 /// The phase to retrieve EBSD information from

227 const unsigned int _phase;

228

229 /// Boolean to indicate that we should retrieve EBSD information from a specific phase

230 const bool _consider_phase;

231

232 /**

233 * Boolean to indicate the first time this object executes.

234 * Note: _tracking_step isn’t enough if people skip initial or execute more than once per step.

235 */

236 bool _first_time;

237

238 /**

239 * Boolean to terminate with an error if a new grain is created during the simulation.

240 * This is for simulations where new grains are not expected. Note, this does not impact

241 * the initial callback to newGrainCreated() nor does it get triggered for splitting grains.

242 */

243 bool _error_on_grain_creation;

244

245 private:

246 /// Holds the first unique grain index when using _reserve_op (all the remaining indices are sequential)

247 unsigned int _reserve_grain_first_index;

248

249 /// The previous max grain id (needed to figure out which ids are new in a given step)

250 unsigned int _old_max_grain_id;

251

252 /// Holds the next "regular" grain ID (a grain found or remapped to the standard op vars)

253 unsigned int _max_curr_grain_id;

254

255 /// Boolean to indicate whether this is a Steady or Transient solve

256 const bool _is_transient;

257 };

258

259 /**

260 * This struct is used to hold distance information to other grains in the simulation. It is used

261 * for sorting and during the remapping algorithm.

262 */

263 struct GrainDistance

264 {

265 GrainDistance(Real distance, std::size_t var_index);

266

267 GrainDistance(Real distance,

268 std::size_t var_index,

269 std::size_t grain_index,

270 unsigned int grain_id);

271

272 // Copy constructors

273 GrainDistance(const GrainDistance & f) = default;

274 GrainDistance & operator=(const GrainDistance & f) = default;

275

276 // Move constructors

277 GrainDistance(GrainDistance && f) = default;

278 GrainDistance & operator=(GrainDistance && f) = default;
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279

280 bool operator<(const GrainDistance & rhs) const;

281

282 Real _distance;

283 std::size_t _var_index;

284 std::size_t _grain_index;

285 unsigned int _grain_id;

286 };

287

288 template <>

289 void dataStore(std::ostream & stream, GrainTracker::PartialFeatureData & feature, void * context);

290 template <>

291 void dataLoad(std::istream & stream, GrainTracker::PartialFeatureData & feature, void * context);

292

293 #endif
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A . 4 GrainTracker.C

1 /****************************************************************/

2 /* MOOSE - Multiphysics Object Oriented Simulation Environment */

3 /* */

4 /* All contents are licensed under LGPL V2.1 */

5 /* See LICENSE for full restrictions */

6 /****************************************************************/

7

8 // MOOSE includes

9 #include "EBSDReader.h"

10 #include "GeneratedMesh.h"

11 #include "GrainTracker.h"

12 #include "MooseMesh.h"

13 #include "NonlinearSystem.h"

14

15 // LibMesh includes

16 #include "libmesh/periodic_boundary_base.h"

17

18 #include <algorithm>

19 #include <limits>

20 #include <numeric>

21

22 template <>

23 void

24 dataStore(std::ostream & stream, GrainTracker::PartialFeatureData & feature, void * context)

25 {

26 storeHelper(stream, feature.intersects_boundary, context);

27 storeHelper(stream, feature.id, context);

28 storeHelper(stream, feature.centroid, context);

29 storeHelper(stream, feature.status, context);

30 }

31

32 template <>

33 void

34 dataLoad(std::istream & stream, GrainTracker::PartialFeatureData & feature, void * context)

35 {

36 loadHelper(stream, feature.intersects_boundary, context);

37 loadHelper(stream, feature.id, context);

38 loadHelper(stream, feature.centroid, context);

39 loadHelper(stream, feature.status, context);

40 }

41

42 template <>

43 InputParameters

44 validParams<GrainTracker>()

45 {

46 InputParameters params = validParams<FeatureFloodCount>();

47 params += validParams<GrainTrackerInterface>();

48 params.addClassDescription("Grain Tracker object for running reduced order parameter simulations "

49 "without grain coalescence.");

50

51 return params;

52 }

53

54 GrainTracker::GrainTracker(const InputParameters & parameters)
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55 : FeatureFloodCount(parameters),

56 GrainTrackerInterface(),

57 _tracking_step(getParam<int>("tracking_step")),

58 _halo_level(getParam<unsigned int>("halo_level")),

59 _n_reserve_ops(getParam<unsigned short>("reserve_op")),

60 _reserve_op_index(_n_reserve_ops <= _n_vars ? _n_vars - _n_reserve_ops : 0),

61 _reserve_op_threshold(getParam<Real>("reserve_op_threshold")),

62 _remap(getParam<bool>("remap_grains")),

63 _nl(_fe_problem.getNonlinearSystemBase()),

64 _feature_sets_old(declareRestartableData<std::vector<FeatureData>>("unique_grains")),

65 _ebsd_reader(parameters.isParamValid("ebsd_reader") ? &getUserObject<EBSDReader>("ebsd_reader")

66 : nullptr),

67 _ebsd_op_var(_ebsd_reader

68 ? &_fe_problem.getVariable(0, getParam<std::string>("var_name_base") + "_op")

69 : nullptr),

70 _phase(isParamValid("phase") ? getParam<unsigned int>("phase") : 0),

71 _consider_phase(isParamValid("phase")),

72 _first_time(true),

73 _error_on_grain_creation(getParam<bool>("error_on_grain_creation")),

74 _reserve_grain_first_index(0),

75 _old_max_grain_id(0),

76 _max_curr_grain_id(0),

77 _is_transient(_subproblem.isTransient())

78 {

79 if (_ebsd_reader && !_ebsd_op_var)

80 mooseError("EBSD OP variable must be supplied if the reader is supplied");

81 }

82

83 GrainTracker::~GrainTracker() {}

84

85 Real

86 GrainTracker::getEntityValue(dof_id_type entity_id,

87 FieldType field_type,

88 std::size_t var_index) const

89 {

90 if (_t_step < _tracking_step)

91 return 0;

92

93 return FeatureFloodCount::getEntityValue(entity_id, field_type, var_index);

94 }

95

96 const std::vector<unsigned int> &

97 GrainTracker::getVarToFeatureVector(dof_id_type elem_id) const

98 {

99 return FeatureFloodCount::getVarToFeatureVector(elem_id);

100 }

101

102 unsigned int

103 GrainTracker::getFeatureVar(unsigned int feature_id) const

104 {

105 return FeatureFloodCount::getFeatureVar(feature_id);

106 }

107

108 std::size_t

109 GrainTracker::getNumberActiveGrains() const

110 {
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111 // Note: This value is parallel consistent, see FeatureFloodCount::communicateAndMerge()

112 return _feature_count;

113 }

114

115 std::size_t

116 GrainTracker::getTotalFeatureCount() const

117 {

118 // Note: This value is parallel consistent, see assignGrains()/trackGrains()

119 return _max_curr_grain_id + 1;

120 }

121

122 Point

123 GrainTracker::getGrainCentroid(unsigned int grain_id) const

124 {

125 mooseAssert(grain_id < _feature_id_to_local_index.size(), "Grain ID out of bounds");

126 auto grain_index = _feature_id_to_local_index[grain_id];

127

128 if (grain_index != invalid_size_t)

129 {

130 mooseAssert(_feature_id_to_local_index[grain_id] < _feature_sets.size(),

131 "Grain index out of bounds");

132 // Note: This value is parallel consistent, see GrainTracker::broadcastAndUpdateGrainData()

133 return _feature_sets[_feature_id_to_local_index[grain_id]]._centroid;

134 }

135

136 // Inactive grain

137 return Point();

138 }

139

140 bool

141 GrainTracker::doesFeatureIntersectBoundary(unsigned int feature_id) const

142 {

143 // TODO: This data structure may need to be turned into a Multimap

144 mooseAssert(feature_id < _feature_id_to_local_index.size(), "Grain ID out of bounds");

145

146 auto feature_index = _feature_id_to_local_index[feature_id];

147 if (feature_index != invalid_size_t)

148 {

149 mooseAssert(feature_index < _feature_sets.size(), "Grain index out of bounds");

150 return _feature_sets[feature_index]._intersects_boundary;

151 }

152

153 return false;

154 }

155

156 void

157 GrainTracker::initialize()

158 {

159 // Don’t track grains if the current simulation step is before the specified tracking step

160 if (_t_step < _tracking_step)

161 return;

162

163 /**

164 * If we are passed the first time, we need to save the existing

165 * grains before beginning the tracking on the current step. We’ll do that

166 * with a swap since the _feature_sets contents will be cleared anyway.
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167 */

168 if (!_first_time)

169 _feature_sets_old.swap(_feature_sets);

170

171 FeatureFloodCount::initialize();

172 }

173

174 void

175 GrainTracker::execute()

176 {

177 // Don’t track grains if the current simulation step is before the specified tracking step

178 if (_t_step < _tracking_step)

179 return;

180

181 Moose::perf_log.push("execute()", "GrainTracker");

182 FeatureFloodCount::execute();

183 Moose::perf_log.pop("execute()", "GrainTracker");

184 }

185

186 Real

187 GrainTracker::getThreshold(std::size_t var_index) const

188 {

189 // If we are inspecting a reserve op parameter, we need to make sure

190 // that there is an entity above the reserve_op threshold before

191 // starting the flood of the feature.

192 if (var_index >= _reserve_op_index)

193 return _reserve_op_threshold;

194 else

195 return _step_threshold;

196 }

197

198 bool

199 GrainTracker::isNewFeatureOrConnectedRegion(const DofObject * dof_object,

200 std::size_t current_index,

201 FeatureData *& feature,

202 Status & status,

203 unsigned int & new_id)

204 {

205 /**

206 * When working with the EBSD reader we need to make sure that we get an accurate map

207 * of the EBSD initial condition for the physics simulation to be correct. This is

208 * incredibly difficult if we can only view the nodal interpolation of the elemental

209 * EBSD data. Instead, we’ll use the EBSD Reader data directly the first time this

210 * object runs. Using EBSD data is only valid if we begin tracking in the zeroeth step

211 */

212 if (_ebsd_reader && _first_time)

213 {

214 mooseAssert(_t_step == 0, "EBSD only works if we begin in the initial condition");

215 mooseAssert(_is_elemental, "EBSD only works with elemental grain tracker");

216

217 /**

218 * First inspect the order parameter assigned to the feature at this

219 * element and see if it matches the current_index.

220 */

221 const Elem * elem = static_cast<const Elem *>(dof_object);

222 unsigned int op = static_cast<unsigned int>(std::round(_ebsd_op_var->getElementalValue(elem)));
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223 if (current_index != op)

224 return false;

225

226 // Sample the EBSD Reader and retrieve the global_id or local_id and phase for the current

227 // element

228 std::vector<Point> centroid = {elem->centroid()};

229 const EBSDAccessFunctors::EBSDPointData & d = _ebsd_reader->getData(centroid[0]);

230 const auto phase = d._phase;

231

232 // See if we are in a phase that we are actually tracking

233 if (_consider_phase && phase != _phase)

234 return false;

235

236 // Get the ids from the EBSD reader

237 const auto global_id = _ebsd_reader->getGlobalID(d._feature_id);

238 const auto local_id = _ebsd_reader->getAvgData(global_id)._local_id;

239

240 /**

241 * If we don’t have an active feature we’ll need to populate new_id with the actual EBSD

242 * grain number so that the flood routine will set it after creating the new feature.

243 * We’ll use that information when assigning the initial grain IDs.

244 */

245 if (!feature)

246 {

247 // Set the ID (EBSD ID)

248 new_id = _consider_phase ? local_id : global_id;

249

250 // EBSD Grains are _always_ kept

251 status &= ~Status::INACTIVE;

252

253 return true;

254 }

255 else

256 {

257 mooseAssert(feature->_id != invalid_id, "Expected EBSD ID missing");

258

259 /**

260 * If we have an active feature just make sure that the current active feature ID

261 * matches the current entities EBSD local_id.

262 */

263 return feature->_id == (_consider_phase ? local_id : global_id);

264 }

265 }

266 else

267 // Just use normal variable inspection on subsequent steps

268 return FeatureFloodCount::isNewFeatureOrConnectedRegion(

269 dof_object, current_index, feature, status, new_id);

270 }

271

272 void

273 GrainTracker::finalize()

274 {

275 /**

276 * Some perf_log operations appear here instead of inside of the named routines

277 * because of multiple return paths.

278 */
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279

280 // Don’t track grains if the current simulation step is before the specified tracking step

281 if (_t_step < _tracking_step)

282 return;

283

284 Moose::perf_log.push("finalize()", "GrainTracker");

285

286 // Expand the depth of the halos around all grains

287 auto num_halo_layers = _halo_level >= 1

288 ? _halo_level - 1

289 : 0; // The first level of halos already exists so subtract one

290 if (_ebsd_reader && _first_time)

291 {

292 expandEBSDGrains();

293

294 /**

295 * By expanding the EBSD Grains we’ve effectively erased one level of halo.

296 * We’ll just request one additional layer of halo this time around.

297 */

298 ++num_halo_layers;

299 }

300 expandHalos(num_halo_layers);

301

302 // Build up the grain map on the root processor

303 communicateAndMerge();

304

305 /**

306 * Assign or Track Grains

307 */

308 Moose::perf_log.push("trackGrains()", "GrainTracker");

309 if (_first_time)

310 assignGrains();

311 else

312 trackGrains();

313 Moose::perf_log.pop("trackGrains()", "GrainTracker");

314 _console << "Finished inside of trackGrains" << std::endl;

315

316 /**

317 * Broadcast essential data

318 */

319 broadcastAndUpdateGrainData();

320

321 /**

322 * Remap Grains

323 */

324 Moose::perf_log.push("remapGrains()", "GrainTracker");

325 if (_remap)

326 remapGrains();

327 Moose::perf_log.pop("remapGrains()", "GrainTracker");

328

329 updateFieldInfo();

330 _console << "Finished inside of updateFieldInfo" << std::endl;

331

332 // Set the first time flag false here (after all methods of finalize() have completed)

333 _first_time = false;

334
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335 // TODO: Release non essential memory

336

337 _console << "Finished inside of GrainTracker" << std::endl;

338 Moose::perf_log.pop("finalize()", "GrainTracker");

339 }

340

341 void

342 GrainTracker::broadcastAndUpdateGrainData()

343 {

344 std::vector<PartialFeatureData> root_feature_data;

345 std::vector<std::string> send_buffer(1), recv_buffer;

346

347 if (_is_master)

348 {

349 root_feature_data.reserve(_feature_sets.size());

350

351 // Populate a subset of the information in a small data structure

352 std::transform(_feature_sets.begin(),

353 _feature_sets.end(),

354 std::back_inserter(root_feature_data),

355 [](FeatureData & feature) {

356 PartialFeatureData partial_feature;

357 partial_feature.intersects_boundary = feature._intersects_boundary;

358 partial_feature.id = feature._id;

359 partial_feature.centroid = feature._centroid;

360 partial_feature.status = feature._status;

361 return partial_feature;

362 });

363

364 std::ostringstream oss;

365 dataStore(oss, root_feature_data, this);

366 send_buffer[0].assign(oss.str());

367 }

368

369 // Broadcast the data to all ranks

370 _communicator.broadcast_packed_range((void *)(nullptr),

371 send_buffer.begin(),

372 send_buffer.end(),

373 (void *)(nullptr),

374 std::back_inserter(recv_buffer));

375

376 // Unpack and update

377 if (!_is_master)

378 {

379 std::istringstream iss;

380 iss.str(recv_buffer[0]);

381 iss.clear();

382

383 dataLoad(iss, root_feature_data, this);

384

385 for (const auto & partial_data : root_feature_data)

386 {

387 // See if this processor has a record of this grain

388 if (partial_data.id < _feature_id_to_local_index.size() &&

389 _feature_id_to_local_index[partial_data.id] != invalid_size_t)

390 {
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391 auto & grain = _feature_sets[_feature_id_to_local_index[partial_data.id]];

392 grain._intersects_boundary = partial_data.intersects_boundary;

393 grain._centroid = partial_data.centroid;

394 if (partial_data.status == Status::INACTIVE)

395 grain._status = Status::INACTIVE;

396 }

397 }

398 }

399 }

400

401 void

402 GrainTracker::expandHalos(unsigned int num_layers_to_expand)

403 {

404 if (num_layers_to_expand == 0)

405 return;

406

407 for (auto & list_ref : _partial_feature_sets)

408 {

409 for (auto & feature : list_ref)

410 {

411 for (auto halo_level = decltype(num_layers_to_expand)(0); halo_level < num_layers_to_expand;

412 ++halo_level)

413 {

414 /**

415 * Create a copy of the halo set so that as we insert new ids into the

416 * set we don’t continue to iterate on those new ids.

417 */

418 std::set<dof_id_type> orig_halo_ids(feature._halo_ids);

419

420 for (auto entity : orig_halo_ids)

421 {

422 if (_is_elemental)

423 visitElementalNeighbors(_mesh.elemPtr(entity),

424 feature._var_index,

425 &feature,

426 /*expand_halos_only =*/true);

427 else

428 visitNodalNeighbors(_mesh.nodePtr(entity),

429 feature._var_index,

430 &feature,

431 /*expand_halos_only =*/true);

432 }

433 }

434 }

435 }

436 }

437

438 void

439 GrainTracker::expandEBSDGrains()

440 {

441 mooseAssert(_t_step == 0, "EBSD only works if we begin in the initial condition");

442 mooseAssert(_is_elemental, "EBSD only works with elemental grain tracker");

443

444 const auto & node_to_elem_map = _mesh.nodeToActiveSemilocalElemMap();

445 decltype(FeatureData::_local_ids) expanded_local_ids;

446 auto my_processor_id = processor_id();
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447

448 /**

449 * To expand the EBSD region to the actual flooded

450 * region we need to add in all point neighbors of the

451 * current local region for each feature. This is

452 * because the variable influence spreads from the

453 * EBSD data out exactly one element from every

454 * point by design (elem_to_node_weight_map)

455 */

456 for (auto & list_ref : _partial_feature_sets)

457 {

458 for (auto & feature : list_ref)

459 {

460 expanded_local_ids.clear();

461

462 for (auto entity : feature._local_ids)

463 {

464 const Elem * elem = _mesh.elemPtr(entity);

465 mooseAssert(elem, "elem pointer is NULL");

466

467 // Get the nodes on a current element so that we can add in point neighbors

468 auto n_nodes = elem->n_vertices();

469 for (auto i = decltype(n_nodes)(0); i < n_nodes; ++i)

470 {

471 const Node * current_node = elem->get_node(i);

472

473 auto elem_vector_it = node_to_elem_map.find(current_node->id());

474 if (elem_vector_it == node_to_elem_map.end())

475 mooseError("Error in node to elem map");

476

477 const auto & elem_vector = elem_vector_it->second;

478

479 expanded_local_ids.insert(elem_vector.begin(), elem_vector.end());

480

481 // Now see which elements need to go into the ghosted set

482 for (auto entity : elem_vector)

483 {

484 const Elem * neighbor = _mesh.elemPtr(entity);

485 mooseAssert(neighbor, "neighbor pointer is NULL");

486

487 if (neighbor->processor_id() != my_processor_id)

488 feature._ghosted_ids.insert(elem->id());

489 }

490 }

491 }

492

493 // Replace the existing local ids with the expanded local ids

494 feature._local_ids.swap(expanded_local_ids);

495

496 // Copy the expanded local_ids into the halo_ids container

497 feature._halo_ids = feature._local_ids;

498 }

499 }

500 }

501

502 void
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503 GrainTracker::assignGrains()

504 {

505 mooseAssert(_first_time, "assignGrains may only be called on the first tracking step");

506

507 /**

508 * When using the EBSD reader, the grain IDs will already be assigned. We’ll

509 * use that information to sort the grains. Otherwise, we’ll use the default

510 * sorting that doesn’t require grainIDs (relies on _min_entity_id and _var_index).

511 * These will be the unique grain numbers that we must track for

512 * the remainder of the simulation.

513 */

514 if (_is_master)

515 {

516 mooseAssert(!_feature_sets.empty(), "Feature sets empty!");

517

518 // Find the largest grain ID, this requires sorting if the ID is not already set

519 if (_ebsd_reader)

520 {

521 auto grain_num =

522 _consider_phase ? _ebsd_reader->getGrainNum(_phase) : _ebsd_reader->getGrainNum();

523 _max_curr_grain_id = grain_num - 1;

524 }

525 else

526 {

527 sortAndLabel();

528 _max_curr_grain_id = _feature_sets[_feature_sets.size() - 1]._id;

529 }

530

531 for (auto & grain : _feature_sets)

532 grain._status = Status::MARKED; // Mark the grain

533

534 // Set up the first reserve grain index based on the largest grain ID

535 _reserve_grain_first_index = _max_curr_grain_id + 1;

536 } // is_master

537

538 /*************************************************************

539 ****************** COLLECTIVE WORK SECTION ******************

540 *************************************************************/

541

542 // Make IDs on all non-master ranks consistent

543 scatterAndUpdateRanks();

544

545 // Build up an id to index map

546 _communicator.broadcast(_max_curr_grain_id);

547 buildFeatureIdToLocalIndices(_max_curr_grain_id);

548

549 // Now trigger the newGrainCreated() callback on all ranks

550 for (auto new_id = decltype(_max_curr_grain_id)(0); new_id <= _max_curr_grain_id; ++new_id)

551 newGrainCreated(new_id);

552 }

553

554 void

555 GrainTracker::trackGrains()

556 {

557 mooseAssert(!_first_time, "Track grains may only be called when _tracking_step > _t_step");

558
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559 // Used to track indices for which to trigger the new grain callback on (used on all ranks)

560 auto _old_max_grain_id = _max_curr_grain_id;

561

562 /**

563 * Only the master rank does tracking, the remaining ranks

564 * wait to receive local to global indices from the master.

565 */

566 if (_is_master)

567 {

568 // Reset Status on active unique grains

569 std::vector<unsigned int> map_sizes(_maps_size);

570 for (auto & grain : _feature_sets_old)

571 {

572 if (grain._status != Status::INACTIVE)

573 {

574 grain._status = Status::CLEAR;

575 map_sizes[grain._var_index]++;

576 }

577 }

578

579 // Print out stats on overall tracking changes per var_index

580 for (auto map_num = decltype(_maps_size)(0); map_num < _maps_size; ++map_num)

581 {

582 _console << "\nGrains active index " << map_num << ": " << map_sizes[map_num] << " -> "

583 << _feature_counts_per_map[map_num];

584 if (map_sizes[map_num] > _feature_counts_per_map[map_num])

585 _console << "--";

586 else if (map_sizes[map_num] < _feature_counts_per_map[map_num])

587 _console << "++";

588 }

589 _console << ’\n’ << std::endl;

590

591 /**

592 * To track grains across time steps, we will loop over our unique grains and link each one up

593 * with one of our new unique grains. The criteria for doing this will be to find the unique

594 * grain in the new list with a matching variable index whose centroid is closest to this

595 * unique grain.

596 */

597 std::vector<std::size_t> new_grain_index_to_existing_grain_index(_feature_sets.size(),

598 invalid_size_t);

599

600 for (auto old_grain_index = beginIndex(_feature_sets_old);

601 old_grain_index < _feature_sets_old.size();

602 ++old_grain_index)

603 {

604 auto & old_grain = _feature_sets_old[old_grain_index];

605

606 if (old_grain._status == Status::INACTIVE) // Don’t try to find matches for inactive grains

607 continue;

608

609 std::size_t closest_match_index = invalid_size_t;

610 Real min_centroid_diff = std::numeric_limits<Real>::max();

611

612 /**

613 * The _feature_sets vector is constructed by _var_index so we can avoid looping over all

614 * indices. We can quickly jump to the first matching index to reduce the number of
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615 * comparisons and terminate our loop when our variable index stops matching.

616 */

617 // clang-format off

618 auto start_it =

619 std::lower_bound(_feature_sets.begin(), _feature_sets.end(), old_grain._var_index,

620 [](const FeatureData & item, std::size_t var_index)

621 {

622 return item._var_index < var_index;

623 });

624 // clang-format on

625

626 // We only need to examine grains that have matching variable indices

627 for (decltype(_feature_sets.size()) new_grain_index =

628 std::distance(_feature_sets.begin(), start_it);

629 new_grain_index < _feature_sets.size() &&

630 _feature_sets[new_grain_index]._var_index == old_grain._var_index;

631 ++new_grain_index)

632 {

633 auto & new_grain = _feature_sets[new_grain_index];

634

635 /**

636 * Don’t try to do any matching unless the bounding boxes at least overlap. This is to avoid

637 * the corner case of having a grain split and a grain disappear during the same time step!

638 */

639 if (new_grain.boundingBoxesIntersect(old_grain))

640 {

641 Real curr_centroid_diff = centroidRegionDistance(old_grain._bboxes, new_grain._bboxes);

642 if (curr_centroid_diff <= min_centroid_diff)

643 {

644 closest_match_index = new_grain_index;

645 min_centroid_diff = curr_centroid_diff;

646 }

647 }

648 }

649

650 // found a match

651 if (closest_match_index != invalid_size_t)

652 {

653 /**

654 * It’s possible that multiple existing grains will map to a single new grain (indicated by

655 * finding multiple matches when we are building this map). This will happen any time a

656 * grain disappears during this time step. We need to figure out the rightful owner in this

657 * case and inactivate the old grain.

658 */

659 auto curr_index = new_grain_index_to_existing_grain_index[closest_match_index];

660 if (curr_index != invalid_size_t)

661 {

662 // The new feature being competed for

663 auto & new_grain = _feature_sets[closest_match_index];

664

665 // The other old grain competing to match up to the same new grain

666 auto & other_old_grain = _feature_sets_old[curr_index];

667

668 auto centroid_diff1 = centroidRegionDistance(new_grain._bboxes, old_grain._bboxes);

669 auto centroid_diff2 = centroidRegionDistance(new_grain._bboxes, other_old_grain._bboxes);

670
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671 auto & inactive_grain = (centroid_diff1 < centroid_diff2) ? other_old_grain : old_grain;

672

673 inactive_grain._status = Status::INACTIVE;

674 _console << "Marking Grain " << inactive_grain._id

675 << " as INACTIVE (variable index: " << inactive_grain._var_index << ")\n"

676 << inactive_grain;

677

678 /**

679 * If the grain we just marked inactive was the one whose index was in the new grain

680 * to existing grain map (other_old_grain). Then we need to update the map to point

681 * to the new match winner.

682 */

683 if (&inactive_grain == &other_old_grain)

684 new_grain_index_to_existing_grain_index[closest_match_index] = old_grain_index;

685 }

686 else

687 new_grain_index_to_existing_grain_index[closest_match_index] = old_grain_index;

688 }

689 }

690

691 // Mark all resolved grain matches

692 for (auto new_index = beginIndex(new_grain_index_to_existing_grain_index);

693 new_index < new_grain_index_to_existing_grain_index.size();

694 ++new_index)

695 {

696 auto curr_index = new_grain_index_to_existing_grain_index[new_index];

697

698 // This may be a new grain, we’ll handle that case below

699 if (curr_index == invalid_size_t)

700 continue;

701

702 mooseAssert(_feature_sets_old[curr_index]._id != invalid_id,

703 "Invalid ID in old grain structure");

704

705 _feature_sets[new_index]._id = _feature_sets_old[curr_index]._id; // Transfer ID

706 _feature_sets[new_index]._status = Status::MARKED; // Mark the status in the new set

707 _feature_sets_old[curr_index]._status = Status::MARKED; // Mark the status in the old set

708 }

709

710 /**

711 * At this point we have should have only two cases left to handle:

712 * Case 1: A grain in the new set who has an unset status (These are new grains, previously

713 * untracked) This case is easy to understand. Since we are matching up grains by

714 * looking at the old set and finding closest matches in the new set, any grain in

715 * the new set that isn’t matched up is simply new since some other grain satisfied

716 * each and every request from the old set.

717 *

718 * Case 2: A grain in the old set who has an unset status (These are inactive grains that

719 * haven’t been marked) We can only fall into this case when the very last grain on

720 * a given variable disappears during the current time step. In that case we never have

721 * a matching _var_index in the comparison loop above so that old grain never competes

722 * for any new grain which means it can’t be marked inactive in the loop above.

723 */

724 // Case 1 (new grains in _feature_sets):

725 for (auto grain_num = beginIndex(_feature_sets); grain_num < _feature_sets.size(); ++grain_num)

726 {
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727 auto & grain = _feature_sets[grain_num];

728

729 // New Grain

730 if (grain._status == Status::CLEAR)

731 {

732 mooseAssert(!_ebsd_reader || !_first_time,

733 "Can’t create new grains in initial EBSD step, logic error");

734

735 /**

736 * Now we need to figure out what kind of "new" grain this is. Is it a nucleating grain that

737 * we’re just barely seeing for the first time or is it a "splitting" grain. A grain that

738 * gets pinched into two or more pieces usually as it is being absorbed by other grains or

739 * possibly due to external forces. We have to handle splitting grains this way so as to

740 * no confuse them with regular grains that just happen to be in contact in this step.

741 *

742 * Splitting Grain: An grain that is unmatched by any old grain

743 * on the same order parameter with touching halos.

744 *

745 * Nucleating Grain: A completely new grain appearing somewhere in the domain

746 * not overlapping any other grain’s halo.

747 *

748 * To figure out which case we are dealing with, we have to make another pass over all of

749 * the existing grains with matching variable indices to see if any of them have overlapping

750 * halos.

751 */

752

753 // clang-format off

754 auto start_it =

755 std::lower_bound(_feature_sets.begin(), _feature_sets.end(), grain._var_index,

756 [](const FeatureData & item, std::size_t var_index)

757 {

758 return item._var_index < var_index;

759 });

760 // clang-format on

761

762 // Loop over matching variable indices

763 for (decltype(_feature_sets.size()) new_grain_index =

764 std::distance(_feature_sets.begin(), start_it);

765 new_grain_index < _feature_sets.size() &&

766 _feature_sets[new_grain_index]._var_index == grain._var_index;

767 ++new_grain_index)

768 {

769 auto & other_grain = _feature_sets[new_grain_index];

770

771 // Splitting grain?

772 if (grain_num != new_grain_index && // Make sure indices aren’t pointing at the same grain

773 other_grain._status == Status::MARKED && // and that the other grain is indeed marked

774 other_grain.boundingBoxesIntersect(grain) && // and the bboxes intersect

775 other_grain.halosIntersect(grain)) // and the halos also intersect

776 // TODO: Inspect combined volume and see if it’s "close" to the expected value

777 {

778 grain._id = other_grain._id; // Set the duplicate ID

779 grain._status = Status::MARKED; // Mark it

780 _console << "Split Grain Detected "

781 << " (variable index: " << grain._var_index << ")\n"

782 << grain << other_grain;
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783 }

784 }

785

786 // Must be a nucleating grain (status is still not set)

787 if (grain._status == Status::CLEAR)

788 {

789 auto new_index = getNextUniqueID();

790 grain._id = new_index; // Set the ID

791 grain._status = Status::MARKED; // Mark it

792 }

793 }

794 }

795

796 // Case 2 (inactive grains in _feature_sets_old)

797 for (auto & grain : _feature_sets_old)

798 {

799 if (grain._status == Status::CLEAR)

800 {

801 grain._status = Status::INACTIVE;

802 _console << "Marking Grain " << grain._id

803 << " as INACTIVE (variable index: " << grain._var_index << ")\n"

804 << grain;

805 }

806 }

807 } // is_master

808

809 /*************************************************************

810 ****************** COLLECTIVE WORK SECTION ******************

811 *************************************************************/

812

813 // Make IDs on all non-master ranks consistent

814 scatterAndUpdateRanks();

815

816 // Build up an id to index map

817 _communicator.broadcast(_max_curr_grain_id);

818 buildFeatureIdToLocalIndices(_max_curr_grain_id);

819

820 /**

821 * Trigger callback for new grains

822 */

823 if (_old_max_grain_id < _max_curr_grain_id)

824 {

825 for (auto new_id = _old_max_grain_id + 1; new_id <= _max_curr_grain_id; ++new_id)

826 {

827 // Don’t trigger the callback on the reserve IDs

828 if (new_id >= _reserve_grain_first_index + _n_reserve_ops)

829 {

830 // See if we’ve been instructed to terminate with an error

831 if (!_first_time && _error_on_grain_creation)

832 mooseError(

833 "Error: New grain detected and \"error_on_new_grain_creation\" is set to true");

834 else

835 newGrainCreated(new_id);

836 }

837 }

838 }
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839 }

840

841 void

842 GrainTracker::newGrainCreated(unsigned int new_grain_id)

843 {

844 if (!_first_time && _is_master)

845 {

846 mooseAssert(new_grain_id < _feature_id_to_local_index.size(), "new_grain_id is out of bounds");

847 auto grain_index = _feature_id_to_local_index[new_grain_id];

848 mooseAssert(grain_index != invalid_size_t && grain_index < _feature_sets.size(),

849 "new_grain_id appears to be invalid");

850

851 const auto & grain = _feature_sets[grain_index];

852 _console << COLOR_YELLOW

853 << "\n*****************************************************************************"

854 << "\nCouldn’t find a matching grain while working on variable index: "

855 << grain._var_index << "\nCreating new unique grain: " << new_grain_id << ’\n’

856 << grain

857 << "\n*****************************************************************************\n"

858 << COLOR_DEFAULT;

859 }

860 }

861

862 std::vector<unsigned int>

863 GrainTracker::getNewGrainIDs() const

864 {

865 std::vector<unsigned int> new_ids(_max_curr_grain_id - _old_max_grain_id);

866 auto new_id = _old_max_grain_id + 1;

867

868 // Generate the new ids

869 std::iota(new_ids.begin(), new_ids.end(), new_id);

870

871 return new_ids;

872 }

873

874 void

875 GrainTracker::remapGrains()

876 {

877 // Don’t remap grains if the current simulation step is before the specified tracking step

878 if (_t_step < _tracking_step)

879 return;

880

881 _console << "Running remap Grains" << std::endl;

882

883 /**

884 * Map used for communicating remap indices to all ranks

885 * This map isn’t populated until after the remap loop.

886 * It’s declared here before we enter the root scope

887 * since it’s needed by all ranks during the broadcast.

888 */

889 std::map<unsigned int, std::size_t> grain_id_to_new_var;

890

891 // Items are added to this list when split EBSD grains are found

892 std::list<std::pair<std::size_t, std::size_t>> ebsd_pairs;

893

894 /**
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895 * The remapping algorithm is recursive. We will use the status variable in each FeatureData

896 * to track which grains are currently being remapped so we don’t have runaway recursion.

897 * To begin we need to clear all of the active (MARKED) flags (CLEAR).

898 *

899 * Additionally we need to record each grain’s variable index so that we can communicate

900 * changes to the non-root ranks later in a single batch.

901 */

902 if (_is_master)

903 {

904 // Build the map to detect difference in _var_index mappings after the remap operation

905 std::map<unsigned int, std::size_t> grain_id_to_existing_var_index;

906 for (auto & grain : _feature_sets)

907 {

908 // Unmark the grain so it can be used in the remap loop

909 grain._status = Status::CLEAR;

910

911 grain_id_to_existing_var_index[grain._id] = grain._var_index;

912 }

913

914 // Make sure that all split pieces of an EBSD grain are on the same OP

915 if (_ebsd_reader)

916 {

917 for (auto i = beginIndex(_feature_sets); i < _feature_sets.size(); ++i)

918 {

919 auto & grain1 = _feature_sets[i];

920

921 for (auto j = beginIndex(_feature_sets); j < _feature_sets.size(); ++j)

922 {

923 auto & grain2 = _feature_sets[j];

924 if (i == j)

925 continue;

926

927 // The first condition below is there to prevent symmetric checks (duplicate values)

928 if (i < j && grain1._id == grain2._id)

929 {

930 ebsd_pairs.push_front(std::make_pair(i, j));

931 if (grain1._var_index != grain2._var_index)

932 {

933 _console << COLOR_YELLOW << "Split EBSD Grain (#" << grain1._id

934 << ") detected on unmatched OPs (" << grain1._var_index << ", "

935 << grain2._var_index << ") attempting to remap to " << grain1._var_index

936 << ".\n"

937 << COLOR_DEFAULT;

938

939 /**

940 * We’re not going to try very hard to look for a suitable remapping. Just set it to

941 * what we want and hope it all works out. Make the GrainTracker great again!

942 */

943 grain1._var_index = grain2._var_index;

944 grain1._status |= Status::DIRTY;

945 }

946 }

947 }

948 }

949 }

950
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951 /**

952 * Loop over each grain and see if any grains represented by the same variable are "touching"

953 */

954 bool any_grains_remapped = false;

955 bool grains_remapped;

956 do

957 {

958 grains_remapped = false;

959 for (auto & grain1 : _feature_sets)

960 {

961 // We need to remap any grains represented on any variable index above the cuttoff

962 if (grain1._var_index >= _reserve_op_index)

963 {

964 _console << COLOR_YELLOW << "\nGrain #" << grain1._id

965 << " detected on a reserved order parameter #" << grain1._var_index

966 << ", remapping to another variable\n"

967 << COLOR_DEFAULT;

968

969 for (auto max = decltype(_max_renumbering_recursion)(0);

970 max <= _max_renumbering_recursion;

971 ++max)

972 if (max < _max_renumbering_recursion)

973 {

974 if (attemptGrainRenumber(grain1, 0, max))

975 break;

976 }

977 else if (!attemptGrainRenumber(grain1, 0, max))

978 {

979 _console << std::flush;

980 mooseError(COLOR_RED,

981 "Unable to find any suitable order parameters for remapping."

982 " Perhaps you need more op variables?\n\n",

983 COLOR_DEFAULT);

984 }

985

986 grains_remapped = true;

987 }

988

989 for (auto & grain2 : _feature_sets)

990 {

991 // Don’t compare a grain with itself and don’t try to remap inactive grains

992 if (&grain1 == &grain2)

993 continue;

994

995 if (grain1._var_index == grain2._var_index && // grains represented by same variable?

996 grain1._id != grain2._id && // are they part of different grains?

997 grain1.boundingBoxesIntersect(grain2) && // do bboxes intersect (coarse level)?

998 grain1.halosIntersect(grain2)) // do they actually overlap (fine level)?

999 {

1000 _console << COLOR_YELLOW << "\nGrain #" << grain1._id << " intersects Grain #"

1001 << grain2._id << " (variable index: " << grain1._var_index << ")\n"

1002 << COLOR_DEFAULT;

1003

1004 for (auto max = decltype(_max_renumbering_recursion)(0);

1005 max <= _max_renumbering_recursion;

1006 ++max)
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1007 if (max < _max_renumbering_recursion)

1008 {

1009 if (attemptGrainRenumber(grain1, 0, max))

1010 break;

1011 }

1012 else if (!attemptGrainRenumber(grain1, 0, max) &&

1013 !attemptGrainRenumber(grain2, 0, max))

1014 {

1015 _console << std::flush;

1016 mooseError(COLOR_RED,

1017 "Unable to find any suitable order parameters for remapping."

1018 " Perhaps you need more op variables?\n\n",

1019 COLOR_DEFAULT);

1020 }

1021

1022 grains_remapped = true;

1023 }

1024 }

1025 }

1026 any_grains_remapped |= grains_remapped;

1027 } while (grains_remapped);

1028

1029 // Verify that EBSD split grains are still intact

1030 if (_ebsd_reader)

1031 for (auto & ebsd_pair : ebsd_pairs)

1032 if (_feature_sets[ebsd_pair.first]._var_index != _feature_sets[ebsd_pair.first]._var_index)

1033 mooseError("EBSD split grain remapped - This case is currently not handled");

1034

1035 /**

1036 * The remapping loop is complete but only on the master process.

1037 * Now we need to build the remap map and communicate it to the

1038 * remaining processors.

1039 */

1040 for (auto & grain : _feature_sets)

1041 {

1042 mooseAssert(grain_id_to_existing_var_index.find(grain._id) !=

1043 grain_id_to_existing_var_index.end(),

1044 "Missing unique ID");

1045

1046 auto old_var_index = grain_id_to_existing_var_index[grain._id];

1047

1048 if (old_var_index != grain._var_index)

1049 {

1050 mooseAssert(static_cast<bool>(grain._status & Status::DIRTY), "grain status is incorrect");

1051

1052 grain_id_to_new_var.emplace_hint(

1053 grain_id_to_new_var.end(),

1054 std::pair<unsigned int, std::size_t>(grain._id, grain._var_index));

1055

1056 /**

1057 * Since the remapping algorithm only runs on the root process,

1058 * the variable index on the master’s grains is inconsistent from

1059 * the rest of the ranks. These are the grains with a status of

1060 * DIRTY. As we build this map we will temporarily switch these

1061 * variable indices back to the correct value so that all

1062 * processors use the same algorithm to remap.
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1063 */

1064 grain._var_index = old_var_index;

1065 // Clear the DIRTY status as well for consistency

1066 grain._status &= ~Status::DIRTY;

1067 }

1068 }

1069

1070 if (!grain_id_to_new_var.empty())

1071 {

1072 _console << "\nFinal remapping tally:\n";

1073 for (const auto & remap_pair : grain_id_to_new_var)

1074 _console << "Grain #" << remap_pair.first << " var_index "

1075 << grain_id_to_existing_var_index[remap_pair.first] << " -> " << remap_pair.second

1076 << ’\n’;

1077 _console << "Communicating swaps with remaining processors..." << std::endl;

1078 }

1079 } // root processor

1080

1081 // Communicate the std::map to all ranks

1082 _communicator.broadcast(grain_id_to_new_var);

1083

1084 // Perform swaps if any occurred

1085 if (!grain_id_to_new_var.empty())

1086 {

1087 // Cache for holding values during swaps

1088 std::vector<std::map<Node *, CacheValues>> cache(_n_vars);

1089

1090 // Perform the actual swaps on all processors

1091 for (auto & grain : _feature_sets)

1092 {

1093 // See if this grain was remapped

1094 auto new_var_it = grain_id_to_new_var.find(grain._id);

1095 if (new_var_it != grain_id_to_new_var.end())

1096 swapSolutionValues(grain, new_var_it->second, cache, RemapCacheMode::FILL);

1097 }

1098

1099 for (auto & grain : _feature_sets)

1100 {

1101 // See if this grain was remapped

1102 auto new_var_it = grain_id_to_new_var.find(grain._id);

1103 if (new_var_it != grain_id_to_new_var.end())

1104 swapSolutionValues(grain, new_var_it->second, cache, RemapCacheMode::USE);

1105 }

1106

1107 _nl.solution().close();

1108 _nl.solutionOld().close();

1109 _nl.solutionOlder().close();

1110

1111 _fe_problem.getNonlinearSystemBase().system().update();

1112

1113 _console << "Swaps complete" << std::endl;

1114 }

1115 }

1116

1117 void

1118 GrainTracker::computeMinDistancesFromGrain(FeatureData & grain,
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1119 std::vector<std::list<GrainDistance>> & min_distances)

1120 {

1121 /**

1122 * In the diagram below assume we have 4 order parameters. The grain with the asterisk needs to

1123 * be remapped. All order parameters are used in neighboring grains. For all "touching" grains,

1124 * the value of the corresponding entry in min_distances will be a negative integer representing

1125 * the number of immediate neighbors with that order parameter.

1126 *

1127 * Note: Only the first member of the pair (the distance) is shown in the array below.

1128 * e.g. [-2.0, -max, -1.0, -2.0]

1129 *

1130 * After sorting, variable index 2 (value: -1.0) be at the end of the array and will be the first

1131 * variable we attempt to renumber the current grain to.

1132 *

1133 * __ ___

1134 * \ 0 / \

1135 * 2 \___/ 1 \___

1136 * / \ / \

1137 * __/ 1 \___/ 2 \

1138 * \ * / \ /

1139 * 3 \___/ 3 \___/

1140 * / \ /

1141 * __/ 0 \___/

1142 *

1143 */

1144 for (auto i = beginIndex(_feature_sets); i < _feature_sets.size(); ++i)

1145 {

1146 auto & other_grain = _feature_sets[i];

1147

1148 if (other_grain._var_index == grain._var_index || other_grain._var_index >= _reserve_op_index)

1149 continue;

1150

1151 auto target_var_index = other_grain._var_index;

1152 auto target_grain_index = i;

1153 auto target_grain_id = other_grain._id;

1154

1155 Real curr_bbox_diff = boundingRegionDistance(grain._bboxes, other_grain._bboxes);

1156

1157 GrainDistance grain_distance_obj(

1158 curr_bbox_diff, target_var_index, target_grain_index, target_grain_id);

1159

1160 // To handle touching halos we penalize the top pick each time we see another

1161 if (curr_bbox_diff == -1.0 && !min_distances[target_var_index].empty())

1162 {

1163 Real last_distance = min_distances[target_var_index].begin()->_distance;

1164 if (last_distance < 0)

1165 grain_distance_obj._distance += last_distance;

1166 }

1167

1168 // Insertion sort into a list

1169 auto insert_it = min_distances[target_var_index].begin();

1170 while (insert_it != min_distances[target_var_index].end() && !(grain_distance_obj < *insert_it))

1171 ++insert_it;

1172 min_distances[target_var_index].insert(insert_it, grain_distance_obj);

1173 }

1174
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1175 /**

1176 * See if we have any completely open OPs (excluding reserve order parameters) or the order

1177 * parameter corresponding to this grain, we need to put them in the list or the grain tracker

1178 * won’t realize that those vars are available for remapping.

1179 */

1180 for (auto var_index = beginIndex(_vars); var_index < _reserve_op_index; ++var_index)

1181 {

1182 // Don’t put an entry in for matching variable indices (i.e. we can’t remap to ourselves)

1183 if (grain._var_index == var_index)

1184 continue;

1185

1186 if (min_distances[var_index].empty())

1187 min_distances[var_index].emplace_front(std::numeric_limits<Real>::max(), var_index);

1188 }

1189 }

1190

1191 bool

1192 GrainTracker::attemptGrainRenumber(FeatureData & grain, unsigned int depth, unsigned int max_depth)

1193 {

1194 // End the recursion of our breadth first search

1195 if (depth > max_depth)

1196 return false;

1197

1198 std::size_t curr_var_index = grain._var_index;

1199

1200 std::vector<std::map<Node *, CacheValues>> cache;

1201

1202 std::vector<std::list<GrainDistance>> min_distances(_vars.size());

1203

1204 /**

1205 * We have two grains that are getting close represented by the same order parameter.

1206 * We need to map to the variable whose closest grain to this one is furthest away by bounding

1207 * region to bounding region distance.

1208 */

1209 computeMinDistancesFromGrain(grain, min_distances);

1210

1211 /**

1212 * We have a vector of the distances to the closest grains represented by each of our variables.

1213 * We just need to pick a suitable grain to replace with. We will start with the maximum of this

1214 * this list: (max of the mins), but will settle for next to largest and so forth as we make more

1215 * attempts at remapping grains. This is a graph coloring problem so more work will be required

1216 * to optimize this process.

1217 *

1218 * Note: We don’t have an explicit check here to avoid remapping a variable to itself. This is

1219 * unnecessary since the min_distance of a variable is explicitly set up above.

1220 */

1221 // clang-format off

1222 std::sort(min_distances.begin(), min_distances.end(),

1223 [](const std::list<GrainDistance> & lhs, const std::list<GrainDistance> & rhs)

1224 {

1225 // Sort lists in reverse order (largest distance first)

1226 // These empty cases are here to make this comparison stable

1227 if (lhs.empty())

1228 return false;

1229 else if (rhs.empty())

1230 return true;
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1231 else

1232 return lhs.begin()->_distance > rhs.begin()->_distance;

1233 });

1234 // clang-format on

1235

1236 for (auto & list_ref : min_distances)

1237 {

1238 const auto target_it = list_ref.begin();

1239 if (target_it == list_ref.end())

1240 continue;

1241

1242 // If the distance is positive we can just remap and be done

1243 if (target_it->_distance > 0)

1244 {

1245 _console << COLOR_GREEN << "- Depth " << depth << ": Remapping grain #" << grain._id

1246 << " from variable index " << curr_var_index << " to " << target_it->_var_index;

1247 if (target_it->_distance == std::numeric_limits<Real>::max())

1248 _console << " which currently contains zero grains." << COLOR_DEFAULT;

1249 else

1250 _console << " whose closest grain (#" << target_it->_grain_id << ") is at a distance of "

1251 << target_it->_distance << "\n"

1252 << COLOR_DEFAULT;

1253

1254 grain._status |= Status::DIRTY;

1255 grain._var_index = target_it->_var_index;

1256 return true;

1257 }

1258

1259 // If the distance isn’t positive we just need to make sure that none of the grains represented

1260 // by the target variable index would intersect this one if we were to remap

1261 auto next_target_it = target_it;

1262 bool intersection_hit = false;

1263 std::ostringstream oss;

1264 while (!intersection_hit && next_target_it != list_ref.end())

1265 {

1266 if (next_target_it->_distance > 0)

1267 break;

1268

1269 mooseAssert(next_target_it->_grain_index < _feature_sets.size(),

1270 "Error in indexing target grain in attemptGrainRenumber");

1271 FeatureData & next_target_grain = _feature_sets[next_target_it->_grain_index];

1272

1273 // If any grains touch we’re done here

1274 if (grain.halosIntersect(next_target_grain))

1275 intersection_hit = true;

1276 else

1277 oss << " #" << next_target_it->_grain_id;

1278

1279 ++next_target_it;

1280 }

1281

1282 if (!intersection_hit)

1283 {

1284 _console << COLOR_GREEN << "- Depth " << depth << ": Remapping grain #" << grain._id

1285 << " from variable index " << curr_var_index << " to " << target_it->_var_index

1286 << " whose closest grain:" << oss.str()
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1287 << " is inside our bounding box but whose halo(s) are not touching.\n"

1288 << COLOR_DEFAULT;

1289

1290 grain._status |= Status::DIRTY;

1291 grain._var_index = target_it->_var_index;

1292 return true;

1293 }

1294

1295 // If we reach this part of the loop, there is no simple renumbering that can be done.

1296 mooseAssert(target_it->_grain_index < _feature_sets.size(),

1297 "Error in indexing target grain in attemptGrainRenumber");

1298 FeatureData & target_grain = _feature_sets[target_it->_grain_index];

1299

1300 /**

1301 * If we get to this case and the best distance is less than -1, we are in big trouble.

1302 * This means that grains represented by all of the remaining order parameters are

1303 * overlapping this one in at least two places. We’d have to maintain multiple recursive

1304 * chains, or just start over from scratch...

1305 * Let’s just return false and see if there is another remapping option.

1306 */

1307 if (target_it->_distance < -1)

1308 return false;

1309

1310 // Make sure this grain isn’t marked. If it is, we can’t recurse here

1311 if ((target_grain._status & Status::MARKED) == Status::MARKED)

1312 return false;

1313

1314 /**

1315 * Propose a new variable index for the current grain and recurse.

1316 * We don’t need to mark the status as DIRTY here since the recursion

1317 * may fail. For now, we’ll just add MARKED to the status.

1318 */

1319 grain._var_index = target_it->_var_index;

1320 grain._status |= Status::MARKED;

1321 if (attemptGrainRenumber(target_grain, depth + 1, max_depth))

1322 {

1323 // SUCCESS!

1324 _console << COLOR_GREEN << "- Depth " << depth << ": Remapping grain #" << grain._id

1325 << " from variable index " << curr_var_index << " to " << target_it->_var_index

1326 << ’\n’

1327 << COLOR_DEFAULT;

1328

1329 // Now we need to mark the grain as DIRTY since the recursion succeeded.

1330 grain._status |= Status::DIRTY;

1331 return true;

1332 }

1333 else

1334 // FAILURE, We need to set our var index back after failed recursive step

1335 grain._var_index = curr_var_index;

1336

1337 // ALWAYS "unmark" (or clear the MARKED status) after recursion so it can be used by other remap

1338 // operations

1339 grain._status &= ~Status::MARKED;

1340 }

1341

1342 return false;
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1343 }

1344

1345 void

1346 GrainTracker::swapSolutionValues(FeatureData & grain,

1347 std::size_t new_var_index,

1348 std::vector<std::map<Node *, CacheValues>> & cache,

1349 RemapCacheMode cache_mode)

1350 {

1351 MeshBase & mesh = _mesh.getMesh();

1352

1353 // Remap the grain

1354 std::set<Node *> updated_nodes_tmp; // Used only in the elemental case

1355 for (auto entity : grain._local_ids)

1356 {

1357 if (_is_elemental)

1358 {

1359 Elem * elem = mesh.query_elem(entity);

1360 if (!elem)

1361 continue;

1362

1363 for (unsigned int i = 0; i < elem->n_nodes(); ++i)

1364 {

1365 Node * curr_node = elem->get_node(i);

1366 if (updated_nodes_tmp.find(curr_node) == updated_nodes_tmp.end())

1367 {

1368 // cache this node so we don’t attempt to remap it again within this loop

1369 updated_nodes_tmp.insert(curr_node);

1370 swapSolutionValuesHelper(curr_node, grain._var_index, new_var_index, cache, cache_mode);

1371 }

1372 }

1373 }

1374 else

1375 swapSolutionValuesHelper(

1376 mesh.query_node_ptr(entity), grain._var_index, new_var_index, cache, cache_mode);

1377 }

1378

1379 // Update the variable index in the unique grain datastructure after swaps are complete

1380 if (cache_mode == RemapCacheMode::USE || cache_mode == RemapCacheMode::BYPASS)

1381 grain._var_index = new_var_index;

1382 }

1383

1384 void

1385 GrainTracker::swapSolutionValuesHelper(Node * curr_node,

1386 std::size_t curr_var_index,

1387 std::size_t new_var_index,

1388 std::vector<std::map<Node *, CacheValues>> & cache,

1389 RemapCacheMode cache_mode)

1390 {

1391 if (curr_node && curr_node->processor_id() == processor_id())

1392 {

1393 // Reinit the node so we can get and set values of the solution here

1394 _subproblem.reinitNode(curr_node, 0);

1395

1396 // Local variables to hold values being transferred

1397 Real current, old = 0, older = 0;

1398 // Retrieve the value either from the old variable or cache
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1399 if (cache_mode == RemapCacheMode::FILL || cache_mode == RemapCacheMode::BYPASS)

1400 {

1401 current = _vars[curr_var_index]->nodalSln()[0];

1402 if (_is_transient)

1403 {

1404 old = _vars[curr_var_index]->nodalSlnOld()[0];

1405 older = _vars[curr_var_index]->nodalSlnOlder()[0];

1406 }

1407 }

1408 else // USE

1409 {

1410 const auto cache_it = cache[curr_var_index].find(curr_node);

1411 mooseAssert(cache_it != cache[curr_var_index].end(), "Error in cache");

1412 current = cache_it->second.current;

1413 old = cache_it->second.old;

1414 older = cache_it->second.older;

1415 }

1416

1417 // Cache the value or use it!

1418 if (cache_mode == RemapCacheMode::FILL)

1419 {

1420 cache[curr_var_index][curr_node].current = current;

1421 cache[curr_var_index][curr_node].old = old;

1422 cache[curr_var_index][curr_node].older = older;

1423 }

1424 else // USE or BYPASS

1425 {

1426 const auto & dof_index = _vars[new_var_index]->nodalDofIndex();

1427

1428 // Transfer this solution from the old to the current

1429 _nl.solution().set(dof_index, current);

1430 if (_is_transient)

1431 {

1432 _nl.solutionOld().set(dof_index, old);

1433 _nl.solutionOlder().set(dof_index, older);

1434 }

1435 }

1436

1437 /**

1438 * Finally zero out the old variable. When using the FILL/USE combination to

1439 * read/write variables, it’s important to zero the variable on the FILL

1440 * stage and not the USE stage. The reason for this is handling swaps as

1441 * illustrated in the following diagram

1442 * ___ ___

1443 * / \/ \ If adjacent grains (overlapping flood region) end up

1444 * / 1 /\ 2 \ swapping variable indices and variables are zeroed on

1445 * \ 2*\/ 1* / "USE", the overlap region will be incorrectly zeroed

1446 * \___/\___/ by whichever variable is written to second.

1447 *.

1448 */

1449 if (cache_mode == RemapCacheMode::FILL || cache_mode == RemapCacheMode::BYPASS)

1450 {

1451 const auto & dof_index = _vars[curr_var_index]->nodalDofIndex();

1452

1453 // Set the DOF for the current variable to zero

1454 _nl.solution().set(dof_index, 0.0);
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1455 if (_is_transient)

1456 {

1457 _nl.solutionOld().set(dof_index, 0.0);

1458 _nl.solutionOlder().set(dof_index, 0.0);

1459 }

1460 }

1461 }

1462 }

1463

1464 void

1465 GrainTracker::updateFieldInfo()

1466 {

1467 for (auto map_num = decltype(_maps_size)(0); map_num < _maps_size; ++map_num)

1468 _feature_maps[map_num].clear();

1469

1470 std::map<dof_id_type, Real> tmp_map;

1471 MeshBase & mesh = _mesh.getMesh();

1472

1473 for (const auto & grain : _feature_sets)

1474 {

1475 std::size_t curr_var = grain._var_index;

1476 std::size_t map_index = (_single_map_mode || _condense_map_info) ? 0 : curr_var;

1477

1478 for (auto entity : grain._local_ids)

1479 {

1480 // Highest variable value at this entity wins

1481 Real entity_value = std::numeric_limits<Real>::lowest();

1482 if (_is_elemental)

1483 {

1484 const Elem * elem = mesh.elem(entity);

1485 std::vector<Point> centroid(1, elem->centroid());

1486 if (_ebsd_reader && _first_time)

1487 {

1488 const EBSDAccessFunctors::EBSDPointData & d = _ebsd_reader->getData(centroid[0]);

1489 const auto phase = d._phase;

1490 if (!_consider_phase || phase == _phase)

1491 {

1492 const auto global_id = _ebsd_reader->getGlobalID(d._feature_id);

1493 const auto local_id = _ebsd_reader->getAvgData(global_id)._local_id;

1494 const auto grain_id = _consider_phase ? local_id : global_id;

1495 if (grain_id == grain._id)

1496 entity_value = std::numeric_limits<Real>::max();

1497 }

1498 }

1499 else

1500 {

1501 _fe_problem.reinitElemPhys(elem, centroid, 0);

1502 entity_value = _vars[curr_var]->sln()[0];

1503 }

1504 }

1505 else

1506 {

1507 Node & node = mesh.node(entity);

1508 entity_value = _vars[curr_var]->getNodalValue(node);

1509 }

1510
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1511 if (entity_value != std::numeric_limits<Real>::lowest() &&

1512 (tmp_map.find(entity) == tmp_map.end() || entity_value > tmp_map[entity]))

1513 {

1514 mooseAssert(grain._id != invalid_id, "Missing Grain ID");

1515 _feature_maps[map_index][entity] = grain._id;

1516

1517 if (_var_index_mode)

1518 _var_index_maps[map_index][entity] = grain._var_index;

1519

1520 tmp_map[entity] = entity_value;

1521 }

1522

1523 if (_compute_var_to_feature_map)

1524 {

1525 auto map_it = _entity_var_to_features.lower_bound(entity);

1526 if (map_it == _entity_var_to_features.end() || map_it->first != entity)

1527 {

1528 map_it = _entity_var_to_features.emplace_hint(

1529 map_it, entity, std::vector<unsigned int>(_n_vars, invalid_id));

1530

1531 // insert the reserve op numbers (if appropriate)

1532 for (auto reserve_index = decltype(_n_reserve_ops)(0); reserve_index < _n_reserve_ops;

1533 ++reserve_index)

1534 map_it->second[reserve_index] = _reserve_grain_first_index + reserve_index;

1535 }

1536 map_it->second[grain._var_index] = grain._id;

1537 }

1538 }

1539

1540 if (_compute_halo_maps)

1541 for (auto entity : grain._halo_ids)

1542 _halo_ids[grain._var_index][entity] = grain._var_index;

1543

1544 for (auto entity : grain._ghosted_ids)

1545 _ghosted_entity_ids[entity] = 1;

1546 }

1547

1548 communicateHaloMap();

1549 }

1550

1551 void

1552 GrainTracker::communicateHaloMap()

1553 {

1554 if (_compute_halo_maps)

1555 {

1556 // rank var_index entity_id

1557 std::vector<std::pair<std::size_t, dof_id_type>> halo_ids_all;

1558

1559 std::vector<int> counts;

1560 std::vector<std::pair<std::size_t, dof_id_type>> local_halo_ids;

1561 std::size_t counter = 0;

1562

1563 if (_is_master)

1564 {

1565 std::vector<std::vector<std::pair<std::size_t, dof_id_type>>> root_halo_ids(_n_procs);

1566 counts.resize(_n_procs);
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1567

1568 auto & mesh = _mesh.getMesh();

1569 // Loop over the _halo_ids "field" and build minimal lists for all of the other ranks

1570 for (auto var_index = beginIndex(_halo_ids); var_index < _halo_ids.size(); ++var_index)

1571 {

1572 for (const auto & entity_pair : _halo_ids[var_index])

1573 {

1574 DofObject * halo_entity;

1575 if (_is_elemental)

1576 halo_entity = mesh.elem(entity_pair.first);

1577 else

1578 halo_entity = &mesh.node(entity_pair.first);

1579

1580 root_halo_ids[halo_entity->processor_id()].push_back(

1581 std::make_pair(var_index, entity_pair.first));

1582 }

1583 }

1584

1585 // Build up the counts vector for MPI scatter

1586 std::size_t global_count = 0;

1587 for (const auto & vector_ref : root_halo_ids)

1588 {

1589 std::copy(vector_ref.begin(), vector_ref.end(), std::back_inserter(halo_ids_all));

1590 counts[counter] = vector_ref.size();

1591 global_count += counts[counter++];

1592 }

1593 }

1594

1595 _communicator.scatter(halo_ids_all, counts, local_halo_ids);

1596

1597 // Now add the contributions from the root process to the processor local maps

1598 for (const auto & halo_pair : local_halo_ids)

1599 _halo_ids[halo_pair.first].emplace(std::make_pair(halo_pair.second, halo_pair.first));

1600

1601 // Finally remove halo markings from stitch regions

1602 for (const auto & grain : _feature_sets)

1603 for (auto local_id : grain._local_ids)

1604 _halo_ids[grain._var_index].erase(local_id);

1605 }

1606 }

1607

1608 Real

1609 GrainTracker::centroidRegionDistance(std::vector<MeshTools::BoundingBox> & bboxes1,

1610 std::vector<MeshTools::BoundingBox> & bboxes2) const

1611 {

1612 /**

1613 * Find the minimum centroid distance between any to pieces of the grains.

1614 */

1615 auto min_distance = std::numeric_limits<Real>::max();

1616 for (const auto & bbox1 : bboxes1)

1617 {

1618 const auto centroid_point1 = (bbox1.max() + bbox1.min()) / 2.0;

1619

1620 for (const auto & bbox2 : bboxes2)

1621 {

1622 const auto centroid_point2 = (bbox2.max() + bbox2.min()) / 2.0;
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1623

1624 // Here we’ll calculate a distance between the centroids

1625 auto curr_distance = _mesh.minPeriodicDistance(_var_number, centroid_point1, centroid_point2);

1626

1627 if (curr_distance < min_distance)

1628 min_distance = curr_distance;

1629 }

1630 }

1631

1632 return min_distance;

1633 }

1634

1635 Real

1636 GrainTracker::boundingRegionDistance(std::vector<MeshTools::BoundingBox> & bboxes1,

1637 std::vector<MeshTools::BoundingBox> & bboxes2) const

1638 {

1639 /**

1640 * The region that each grain covers is represented by a bounding box large enough to encompassing

1641 * all the points within that grain. When using periodic boundaries, we may have several discrete

1642 * "pieces" of a grain each represented by a bounding box. The distance between any two grains

1643 * is defined as the minimum distance between any pair of boxes, one selected from each grain.

1644 */

1645 auto min_distance = std::numeric_limits<Real>::max();

1646 for (const auto & bbox1 : bboxes1)

1647 {

1648 for (const auto & bbox2 : bboxes2)

1649 {

1650 // AABB squared distance

1651 Real curr_distance = 0.0;

1652 bool boxes_overlap = true;

1653 for (unsigned int dim = 0; dim < LIBMESH_DIM; ++dim)

1654 {

1655 const auto & min1 = bbox1.min()(dim);

1656 const auto & max1 = bbox1.max()(dim);

1657 const auto & min2 = bbox2.min()(dim);

1658 const auto & max2 = bbox2.max()(dim);

1659

1660 if (min1 > max2)

1661 {

1662 const auto delta = max2 - min1;

1663 curr_distance += delta * delta;

1664 boxes_overlap = false;

1665 }

1666 else if (min2 > max1)

1667 {

1668 const auto delta = max1 - min2;

1669 curr_distance += delta * delta;

1670 boxes_overlap = false;

1671 }

1672 }

1673

1674 if (boxes_overlap)

1675 return -1.0; /* all overlaps are treated the same */

1676

1677 if (curr_distance < min_distance)

1678 min_distance = curr_distance;
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1679 }

1680 }

1681

1682 return min_distance;

1683 }

1684

1685 unsigned int

1686 GrainTracker::getNextUniqueID()

1687 {

1688 /**

1689 * Get the next unique grain ID but make sure to respect

1690 * reserve ids. Note, that the first valid ID for a new

1691 * grain is _reserve_grain_first_index + _n_reserve_ops because

1692 * _reserve_grain_first_index IS a valid index. It does not

1693 * point to the last valid index of the non-reserved grains.

1694 */

1695 _max_curr_grain_id = std::max(_max_curr_grain_id + 1,

1696 _reserve_grain_first_index + _n_reserve_ops /* no +1 here!*/);

1697

1698 return _max_curr_grain_id;

1699 }

1700

1701 /*************************************************

1702 ************** Helper Structures ****************

1703 ************************************************/

1704 GrainDistance::GrainDistance(Real distance, std::size_t var_index)

1705 : GrainDistance(distance,

1706 var_index,

1707 std::numeric_limits<std::size_t>::max(),

1708 std::numeric_limits<unsigned int>::max())

1709 {

1710 }

1711

1712 GrainDistance::GrainDistance(Real distance,

1713 std::size_t var_index,

1714 std::size_t grain_index,

1715 unsigned int grain_id)

1716 : _distance(distance), _var_index(var_index), _grain_index(grain_index), _grain_id(grain_id)

1717 {

1718 }

1719

1720 bool

1721 GrainDistance::operator<(const GrainDistance & rhs) const

1722 {

1723 return _distance < rhs._distance;

1724 }
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A . 5 FeatureVolumeVectorPostprocessor.h

1 /****************************************************************/

2 /* MOOSE - Multiphysics Object Oriented Simulation Environment */

3 /* */

4 /* All contents are licensed under LGPL V2.1 */

5 /* See LICENSE for full restrictions */

6 /****************************************************************/

7

8 #ifndef FEATUREVOLUMEVECTORPOSTPROCESSOR_H

9 #define FEATUREVOLUMEVECTORPOSTPROCESSOR_H

10

11 #include "GeneralVectorPostprocessor.h"

12 #include "MooseVariableDependencyInterface.h"

13

14 // Forward Declarations

15 class FeatureVolumeVectorPostprocessor;

16 class FeatureFloodCount;

17

18 template <>

19 InputParameters validParams<FeatureVolumeVectorPostprocessor>();

20

21 /**

22 * This VectorPostprocessor is intended to be used to calculate

23 * accurate volumes from the FeatureFloodCount and/or GrainTracker

24 * objects. It is a GeneralVectorPostProcessor instead of the

25 * more natural elemental kind so that dependency resolution

26 * will work properly when an AuxVariable is not depending

27 * on the FeatureFloodCount object. It obtains the coupled

28 * variables from the FeatureFloodCount object so that there’s

29 * one less thing for the user of this class to worry about.

30 */

31 class FeatureVolumeVectorPostprocessor : public GeneralVectorPostprocessor,

32 public MooseVariableDependencyInterface

33 {

34 public:

35 FeatureVolumeVectorPostprocessor(const InputParameters & parameters);

36

37 virtual void initialize() override;

38 virtual void execute() override;

39 virtual void finalize() override;

40

41 /**

42 * Returns the volume for the given grain number.

43 */

44 Real getFeatureVolume(unsigned int feature_id) const;

45

46 protected:

47 /// A Boolean indicating how the volume is calculated

48 const bool _single_feature_per_elem;

49

50 /// A reference to the feature flood count object

51 const FeatureFloodCount & _feature_counter;

52

53 VectorPostprocessorValue & _var_num;

54 VectorPostprocessorValue & _feature_volumes;
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55 VectorPostprocessorValue & _intersects_bounds;

56

57 private:

58 /// Add volume contributions to one or entries in the feature volume vector

59 void accumulateVolumes(const Elem * elem,

60 const std::vector<unsigned int> & var_to_features,

61 std::size_t num_features);

62

63 /// Calculate the integral value of the passed in variable (index)

64 Real computeIntegral(std::size_t var_index) const;

65

66 const std::vector<MooseVariable *> & _vars;

67 std::vector<const VariableValue *> _coupled_sln;

68

69 MooseMesh & _mesh;

70 Assembly & _assembly;

71 const MooseArray<Point> & _q_point;

72 QBase *& _qrule;

73 const MooseArray<Real> & _JxW;

74 const MooseArray<Real> & _coord;

75 };

76

77 #endif
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A . 6 FeatureVolumeVectorPostprocessor.C

1 /****************************************************************/

2 /* MOOSE - Multiphysics Object Oriented Simulation Environment */

3 /* */

4 /* All contents are licensed under LGPL V2.1 */

5 /* See LICENSE for full restrictions */

6 /****************************************************************/

7

8 #include "FeatureVolumeVectorPostprocessor.h"

9 #include "FeatureFloodCount.h"

10 #include "GrainTrackerInterface.h"

11 #include "MooseMesh.h"

12 #include "Assembly.h"

13

14 #include "libmesh/quadrature.h"

15

16 template <>

17 InputParameters

18 validParams<FeatureVolumeVectorPostprocessor>()

19 {

20 InputParameters params = validParams<GeneralVectorPostprocessor>();

21

22 params.addRequiredParam<UserObjectName>("flood_counter",

23 "The FeatureFloodCount UserObject to get values from.");

24 params.addParam<bool>("single_feature_per_element",

25 false,

26 "Set this Boolean if you wish to use an element based volume where"

27 " the dominant order parameter determines the feature that accumulates the "

28 "entire element volume");

29 return params;

30 }

31

32 FeatureVolumeVectorPostprocessor::FeatureVolumeVectorPostprocessor(

33 const InputParameters & parameters)

34 : GeneralVectorPostprocessor(parameters),

35 MooseVariableDependencyInterface(),

36 _single_feature_per_elem(getParam<bool>("single_feature_per_element")),

37 _feature_counter(getUserObject<FeatureFloodCount>("flood_counter")),

38 _var_num(declareVector("var_num")),

39 _feature_volumes(declareVector("feature_volumes")),

40 _intersects_bounds(declareVector("intersects_bounds")),

41 _vars(_feature_counter.getCoupledVars()),

42 _mesh(_subproblem.mesh()),

43 _assembly(_subproblem.assembly(_tid)),

44 _q_point(_assembly.qPoints()),

45 _qrule(_assembly.qRule()),

46 _JxW(_assembly.JxW()),

47 _coord(_assembly.coordTransformation())

48 {

49 addMooseVariableDependency(_vars);

50

51 _coupled_sln.reserve(_vars.size());

52 for (auto & var : _vars)

53 _coupled_sln.push_back(&var->sln());

54 }
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55

56 void

57 FeatureVolumeVectorPostprocessor::initialize()

58 {

59 }

60

61 void

62 FeatureVolumeVectorPostprocessor::execute()

63 {

64 const auto num_features = _feature_counter.getTotalFeatureCount();

65

66 // Reset the variable index and intersect bounds vectors

67 _var_num.assign(num_features, -1); // Invalid

68 _intersects_bounds.assign(num_features, -1); // Invalid

69 for (auto feature_num = beginIndex(_var_num); feature_num < num_features; ++feature_num)

70 {

71 auto var_num = _feature_counter.getFeatureVar(feature_num);

72 if (var_num != FeatureFloodCount::invalid_id)

73 _var_num[feature_num] = var_num;

74

75 _intersects_bounds[feature_num] =

76 static_cast<unsigned int>(_feature_counter.doesFeatureIntersectBoundary(feature_num));

77 }

78

79 // Reset the volume vector

80 _feature_volumes.assign(num_features, 0);

81 const auto end = _mesh.getMesh().active_local_elements_end();

82 for (auto el = _mesh.getMesh().active_local_elements_begin(); el != end; ++el)

83 {

84 const Elem * elem = *el;

85 _fe_problem.prepare(elem, 0);

86 _fe_problem.reinitElem(elem, 0);

87

88 /**

89 * Here we retrieve the var to features vector on the current element.

90 * We’ll use that information to figure out which variables are non-zero

91 * (from a threshold perspective) then we can sum those values into

92 * appropriate grain index locations.

93 */

94 const auto & var_to_features = _feature_counter.getVarToFeatureVector(elem->id());

95

96 accumulateVolumes(elem, var_to_features, num_features);

97 }

98 }

99

100 void

101 FeatureVolumeVectorPostprocessor::finalize()

102 {

103 // Do the parallel sum

104 _communicator.sum(_feature_volumes);

105 }

106

107 Real

108 FeatureVolumeVectorPostprocessor::getFeatureVolume(unsigned int feature_id) const

109 {

110 mooseAssert(feature_id < _feature_volumes.size(), "feature_id is out of range");
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111 return _feature_volumes[feature_id];

112 }

113

114 void

115 FeatureVolumeVectorPostprocessor::accumulateVolumes(

116 const Elem * elem,

117 const std::vector<unsigned int> & var_to_features,

118 std::size_t libmesh_dbg_var(num_features))

119 {

120 unsigned int dominant_feature_id = FeatureFloodCount::invalid_id;

121 Real max_var_value = std::numeric_limits<Real>::lowest();

122

123 for (auto var_index = beginIndex(var_to_features); var_index < var_to_features.size();

124 ++var_index)

125 {

126 // Only sample "active" variables

127 if (var_to_features[var_index] != FeatureFloodCount::invalid_id)

128 {

129 auto feature_id = var_to_features[var_index];

130 mooseAssert(feature_id < num_features, "Feature ID out of range");

131 auto integral_value = computeIntegral(var_index);

132

133 // Compute volumes in a simplistic but domain conservative fashion

134 if (_single_feature_per_elem)

135 {

136 if (integral_value > max_var_value)

137 {

138 // Update the current dominant feature and associated value

139 max_var_value = integral_value;

140 dominant_feature_id = feature_id;

141 }

142 }

143 // Solution based volume calculation (integral value)

144 else

145 _feature_volumes[feature_id] += integral_value;

146 }

147 }

148

149 // Accumulate the entire element volume into the dominant feature. Do not use the integral value

150 if (_single_feature_per_elem && dominant_feature_id != FeatureFloodCount::invalid_id)

151 _feature_volumes[dominant_feature_id] += elem->volume();

152 }

153

154 Real

155 FeatureVolumeVectorPostprocessor::computeIntegral(std::size_t var_index) const

156 {

157 Real sum = 0;

158

159 for (unsigned int qp = 0; qp < _qrule->n_points(); ++qp)

160 sum += _JxW[qp] * _coord[qp] * (*_coupled_sln[var_index])[qp];

161

162 return sum;

163 }


	Authorization to Submit Dissertation
	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Description
	Purpose and Scope
	Original Contribution

	Microstructure Modeling
	Polycrsytal Phase-field modeling
	Finite Element Solution Data
	Periodic Boundary Conditions

	Algorithm Design
	Grain Identification
	Grain Tracking
	Graph Discovery and Validity checks
	Grain Remapping
	Scalable Parallel Design

	Implementation
	MOOSE Pluggable Systems
	The FeatureFloodCount Postprocessor
	Connected Component Identification
	The GrainTracker Postprocessor
	Feature Statistics
	MOOSE Core enhancements

	Polycrystal Initial Conditions
	Initial Conditions for Nodal FEM Basis Functions
	Initial Conditions from Experimental Data
	Generated Initial Conditions
	Backtracking Algorithm Assignment
	Greedy Algorithm Assignment
	Greedy Algorithm vs Backtracking
	Advanced Graph Coloring Algorithms
	Further Initial Condition Challenges

	Advanced Capabilities
	Reserved Order Parameters
	Distributed Mesh Functionality
	Checkpoint Recovery Support

	Results
	Reduced Computational Resources
	Run time Reduction
	Simulation Results

	Conclusion and Future Work
	Future Work

	Bibliography
	Appendices
	C++ Implementation in the MOOSE Framework
	FeatureFloodCount.h
	FeatureFloodCount.C
	GrainTracker.h
	GrainTracker.C
	FeatureVolumeVectorPostprocessor.h
	FeatureVolumeVectorPostprocessor.C


