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Abstract

This study assesses the bacterial and fungal communities within the Priest River Exper-

imental Forest in northern Idaho. We employed multiple methods to test for significant

impacts of season, habitat type (i.e. moisture level), and sample depth on the soil

microbial community compositions, as well as explore how members within these

communities interact. Abundance data were obtained using two different loci for

both bacterial and fungal taxa, therefore, we were able to compare the communities

captured. Results suggest that the bacterial component of the forest soil biome dif-

fers with habitat type and sampling depth below the forest floor, while the fungal

component differs with habitat type. Hierarchical clustering was performed to iden-

tify microbes with similar interactions; however, there were no apparent patterns in

ecological functionality to explain the clustering. These findings indicate that further

analysis is required to enhance our grasp of the microbial interactions and to provide

insights into which microbes are aiding the spread, or suppression, of different dis-

eases. Conclusions also suggest that future analyses should use both loci from the

respective taxa to obtain a more complete snapshot of the community.
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chapter 1

Introduction

Forests are critical to the overall health of the planet, and the health of the forest itself

is largely dependent on soil quality. Astonishingly, within a single gram of soil there

can be upwards of thousands of microbes present (Fierer et al., 2012; Torsvik et al.,

1990). These microorganisms are diverse and play critical roles in the carbon and

nitrogen cycles, as well as breaking down other nutrients to be used by plants (Fierer

et al., 2012). While some microorganisms are crucial to the flourishing of plants, others

can sometimes be detrimental to the host, resulting in a forest becoming vulnerable to

disease outbreak. For instance, Armillaria root disease is a diverse fungal disease that

effects a broad range of trees and shrubs (Worrall, 2007). In 2008, it was revealed

by the Forest Health Protection and State Forestry Organizations that this disease,

notably found in northern Idaho and western Montana forests, is potentially causing

large areas of timber-producing sites to be destroyed (Hagle, 2008). In addition to

the microbes being diverse and potentially harmful, the overall soil composition is

exceedingly diverse from region to region, due to the associated environmental factors

that are location specific (Talbot et al., 2014). Therefore, the importance of soil quality

for the overall health of a forest, along with the high complexity of the ecosystem,

makes soil communities a widely studied topic.

While the diversity within soil microbial communities is a well studied topic, ad-

vances in biotechnologies have only recently begun to allow soil ecologists to deter-

mine the full extent of the community captured within a sample. Many of the previous

methods of measuring microbial diversity have been culture-dependent experiments.

Approximately 99% of bacterial microbes, along with many fungal microbes, are not

able to be cultured with the standard laboratory protocols (Kirk et al., 2004). There-

fore, various methods were developed to overcome the non-culturable nature of the

microbes. Some of these methods include biochemical-based methods (e.g. plate

counts, community level physiological profiling, and fatty acid methyl ester analysis)

and molecular-based methods (e.g. guanine plus cytosine, DNA microarrays and DNA
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hybridization, and denaturing and temperature gradient gel electrophoresis) (Kirk

et al., 2004). Each of these methods have associated limitations, such as favoring fast

growing microbes, or requiring large amounts of DNA; in addition each method still

only provides a partial snapshot of the community (Kirk et al., 2004).

The limitation of only identifying part of the community captured may never be

fully overcome, but through the use of metagenomics the other limitations listed can

be addressed. Metagenomics is becoming a widely used method because it allows

for both the bacterial and fungal communities to be identified without the loss of

non-cultrable material (Sharpton, 2014). In order to examine the microbes within a

soil sample, researchers begin by classifying the microbial sequences to determine the

respective community compositions; this is widely done through amplicon sequencing.

The basic protocol is to extract taxonomically informative genomic markers common

to all organisms of interest within your collected sample, amplify it through poly-

merase chain reaction (PCR), then sequence using modern technologies (e.g. Illumina

sequencers) (Sharpton, 2014). Common genomic markers used within bacterial mi-

crobes are the variable regions within the 16S ribosomal RNA (rRNA) locus, and the

internal transcribed spacer (ITS) regions, as well as the large-subunit (LSU) and small-

subunit (SSU) rRNA are used to identify the fungal microbes present (Fierer et al.,

2012; Sharpton, 2014). While these loci are present in all bacteria or fungi, respectively,

the hypervariable regions allow for the taxonomic variation within in the communities

to be captured. In addition, the multiple regions allow for the identification of pseudo-

replicate communities from the same sample. Therefore, despite metagenomic ap-

proaches still being relatively new, it is a culture-independent method that allows for

advances in understanding of members within the bacterial and fungal communities.

Once the DNA has been extracted and sequenced, researchers begin to determine

the respective community compositions by classifying the sequences. The most exten-

sively used method of sequence classification is by clustering the sequences into opera-

tional taxonomic units (OTUs) based on sequence similarity, with a percent similarity

usually between 90-100% (Navas-Molina et al., 2013; Větrovský and Baldrian, 2013).

Previous research has provided a solid foundation for soil microbial analysis using

OTUs for classification and determining functionality from the clusters. Still, a limita-
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tion to this approach is the number of OTUs is often reported, but this value provides

little to no information to how each sequence was grouped (Sun et al., 2012). There

is also significant variation between the estimates derived from different methods

(e.g. QIIME, and mothur), due to differences in the underlying clustering algorithms

(Sun et al., 2012). Nevertheless, an advantage of using OTUs is the ability to assess

diversity with such indices as species richness, intra-variation (alpha diversity), and

inter-variation (beta diversity). OTUs were utilized in the study of a Tibetan forest to

explore the relationship between alpha diversity and the environmental factors, such

as pH, moisture, and organic matter, within the fungal community. In this study it

was observed that the alpha diversity was considerably affected by the pH level (Wang

et al., 2015). While Wang et al. determined pH significantly affected alpha diversity,

Coince et al. (2013) examined the fungal community observed in a French beech forest

and determined that pH did not have a significant impact on the community structure

within a plot. Coince et al. did, however, conclude the fungal composition was spatially

correlated by depth, meaning there were distinct differences in the compositions at dif-

ferent sample depths from the same plot. This conclusion further confirmed previous

findings of autocorrelation within the fungal community determined by Lilleskov et al.

(2004), and Toljander et al. (2006).

Although the previous studies found relationships between environmental factors

and the fungal community, these studies did not investigate the relationships within

the bacterial community. Yet, since the bacterial and fungal communities coexist, it

makes sense to explore interactions between bacteria and fungi within the forest soil

ecosystem. By examining the interactions between community microbes insights into

which microbes aide, or suppress, different detrimental diseases will be established.

Recent studies have thus begun to examine the two communities as a whole (Demath-

eis et al., 2012; He et al., 2008; Urbanová et al., 2015; Young et al., 2014). In 2008, He et

al. reported that the two communities were correlated and there was a significant

difference in taxonomic diversity between summer and winter observations. This

conclusion confirms that differences in the overall soil composition may result from the

environmental factor of changes in seasonality. Therefore, these studies have provided

independent evidence that distinctions within soil composition can be attributed to
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changes in sample depth and season, however, these studies did not consider the two

factors together.

Another factor to take in to consideration when analyzing microbial communities

is that the communities are sparsely distributed and therefore using the raw abun-

dance values is problematic. Using the raw abundance community data is problem-

atic because it can result in microbes with high abundance masking the underlying

community patterns. In 2007, Lozupone et al. compared a qualitative method to a

quantitative method and reported noticeable differences in the conclusions regarding

beta diversity, which is defined as the ratio between the regional (gamma) and local

(alpha) diversities (Whittaker, 1960; Jost, 2007). Qualitative measures are useful when

the communities differ based on global environmental factors, or phylogenetic differ-

ences; whereas quantitative measures are effective in determining differences due to

changes in relative abundances (Lozupone et al., 2007). The present study will focus

on exploring what the effect of different quantitative standardization techniques is on

the resulting conclusions. Some of the standardization techniques used are: frequency,

normalization, presence/absence, χ2, and hellinger distance. The frequency technique

divides each microbe in the sample by the sample maximum; the resulting value is

then multiplied by the total number of microbes present in the sample (Oksanen,

1983). Normalization standardizes the values so the sum of squares across samples

for each microbe is equal to one; presence/absence scales the data to be 1 or 0 whether

the microbe is present or absent, respectively (Oksanen et al., 2016). The χ2 method

divides the microbe sum by the sample sum, this value is then adjusted by the square

root of the sum for the entire community (Legendre and Gallagher, 2001). Finally, the

hellinger distance standardizes the community data by calculating the square root of

the relative microbe frequency (Legendre and Gallagher, 2001). The χ2 and hellinger

distance methods are commonly used within the field of community ecology. Each of

these techniques will be examined in an exploratory manner to examine a measure of

evenness for this data.

The aforementioned conclusions do confirm that the soil composition is diverse

from region to region; also suggesting that there are other factors effecting the com-

position, e.g. changes in climate. In 2008, He et al. investigated the bacterial and
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fungal communities together and concluded the two communities within that partic-

ular study site were correlated. The two communities were also examined across two

seasons (summer and winter) and significant differences between the seasons were

recorded. This conclusion confirms that there are some differences between the com-

positions; yet, this does not signify if there are differences between fall and spring.

While there has been evidence of significant differences in soil composition from

environmental factors, as well as sample depth, these differences have been deter-

mined on independent study sites. This present study will aim to determine the

effect of seasonal changes and moisture level on the composition of the soil within

one study site, the Priest River Experimental Forest in northern Idaho. The study

will also identify if significant differences are observed at various depths. Finally, the

interplay between the bacterial and fungal communities present will be examined, and

potentially determine if environmental factors explain any significant interactions.
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chapter 2

Methods

2.1 motivation and experimental design

This study was motivated by the lack in knowledge of how the bacterial and fungal

communities differ across seasons, habitat type series, and with depth below the for-

est floor, within the Priest River Experimental Forest (PREF) in northern Idaho. As

mentioned, Armillaria root disease is a diverse fungal disease that affects a wide range

of plants and trees, however, the presence of the fungi does not mean that it will be

detrimental to the host, which may be the result of cross community interactions. The

associations across communities related to season, habitat type series, and depth below

the forest floor were explored through the implementation of metagenomic approaches

to identify the microbial communities without losing information about microbes that

are not able to be cultured. However, since soil microbial communities are a global

topic of interest, many different techniques have been developed. Each method imple-

ments a slightly different algorithm, producing unique limitations that were explored

within this dataset. Therefore, this study was not only motivated by the need to delve

into the associations between communities, microbial and environmental, but into the

methods implemented as well.

Samples were collected by Dr. Ross-Davis from sites previously established within

the forest by the Forest Inventory and Analysis (FIA). The sites were established in two

different habitat type series: western red cedar (Thuja pilcata)/western hemlock (Tsuga

heterophylla), and Douglas-fir (Pseudotsuga menziesii)/grand fir (Abies grandis). These

two habitat type series provide a comparison of soil moisture levels; the western red

cedar/western hemlock habitat type can be attributed to a wetter environment, while

the Douglas-fir/grand fir habitat type can be attributed to a dryer environment. In this

study, data were collected from 12 sites: six in the western red cedar/western hemlock

(wet environment) and six in the Douglas-fir/grand fir (dry environment) (see Figure

2.1). Mineral soil core samples were collected from each plot at the midpoint between
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the bole and drip line of the tree nearest the center of the plot. Four 0.25g subsamples

were collected from each soil core (three from different depths below the forest floor [0

cm, 7.5 cm, and 15 cm], and a composite sample). Sampling began fall 2013 and was

repeated in spring 2014. In addition to exploring the associations related to season,

moisture level, and sample depth (which will aide Dr. Ross-Davis’s current analysis),

the data collected was used in this study to characterize the interactions between the

different microbial communities present within the PREF.

(a) (b)

Figure 2.1: Priest River Experimental Forest (PREF). The location of the PREF
in northern Idaho (A), and the location of the sampling sites and their associated
environment (B)1.

2.2 microbial community characterization across

samples

In order to begin to address these interactions, the microbial composition across sam-

ples needed to be characterized. There are five loci studied to determine what is

present within the bacterial and fungal communities: variable regions of the 16S ribo-

somal RNA (rRNA) gene (V1-V3 and V4-V5), the first and second internal transcribed

spacer regions (ITS1 and ITS2), and the large subunit rRNA gene (LSU). The 16S V1-V3

and V4-V5 regions are frequently used to examine regional composition and diversity

of a bacterial community because the gene is ubiquitous in bacteria and the sequences

vary across bacterial species (Schloss et al., 2016; Smets et al., 2016). The ITS1 and

1Images were obtained from http://forest.moscowfsl.wsu.edu/ef/pref/ and Dr. Amy Ross-Davis.
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ITS2 regions are commonly used to identify fungal communities because of the high

variability within the regions; the spacers are also present in all fungi, making it

similar to the 16S rRNA gene (Porter et al., 2016; Žifčáková et al., 2016). LSU sequences

are conserved, and therefore can be used as an alternative to the two hypervariable

ITS regions to determine the fungal community captured (Brown et al., 2014). The

four subsamples from each site were stored in a buffer and held on ice until the DNA

was isolated from each using the PowerLyzer® PowerSoil® DNA Isolation Kit (MoBio

Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer’s recommended

protocol with the following exceptions: samples were heated to 65°C for 10 min in a

water bath prior to bead beating using a FastPrep® FP120 cell disruptor (Qbiogene

Inc., Carlsbad, CA, USA) for 45 sec at speed 4.5 and centrifuged at 10,000 x 1g for 3

min at room temperature. DNA yields were quantified via a Qubit® 2.0 Fluorometer

(Thermo Fisher Scientific Inc., Waltham, MA, USA). Using double-barcoded amplicons

generated from replicated polymerase chain reaction (PCR), the microbial communi-

ties for each loci described were obtained from each of the samples and utilized in this

analysis.

Once the DNA from the respective regions has been extracted and sequenced, one

of two methods is commonly implemented to identify the microbes present. These

methods include clustering the sequences based on similarity into operational taxo-

nomic units (OTUs), or classifying each sequence separately by utilizing a database

of known reference sequences. Currently, there are three widely used applications

in microbial community analysis. Two of these (QIIME (Navas-Molina et al., 2013)

and mothur (Schloss et al., 2009)) are OTU based methods and provide information

about clusters and classification, whereas the other, RDP (Vilo and Dong, 2012), is

used for classification purposes only. Determining the functionality of the sequences

classified was out of the scope of the present study, therefore the RDP classifier was uti-

lized through the implementation of dbcAmplicons (https://github.com/msettles/

dbcAmplicons). dbcAmplicons is a custom Python pipeline that was developed at the

University of Idaho in the Genomic Resources Core; this pipeline was used to char-

acterize the two bacterial and three fungal communities. Read sequences were first

classified using the RDP classifier, then abundance tables were generated by aggregat-

https://github.com/msettles/dbcAmplicons
https://github.com/msettles/dbcAmplicons
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ing all the sequences with the same classifications. The resulting abundance tables

allowed for the assessment of community diversity and correlation metrics, as well as

verification that the two respective regions do indeed represent the same community

composition. Should the two respective communities differ, the non-redundant classi-

fications between the two regions provide evidence supporting the use of both regions

to obtain a more complete depiction of the community.

2.3 identification of environmental differences

As previously mentioned, detecting if changes in seasonality, moisture level, or depth

of the sample, had a significant effect on the soil composition was a question of in-

terest. Since communities are often dominated by few relatively abundant taxa, the

raw abundance data needed to transformed to accurately weight the observations,

in order to reduce the potential for misleading influence when drawing conclusions.

However, choosing a transformation technique to precisely depict the differences is

not a trivial task. For instance, within the commonly used R package, vegan, there are

10 different standardization methods for community ecology (Oksanen et al., 2016).

The methods include: freq, pa (presence/absence), hellinger distance, normalize, total,

max, range, standardize, χ2, and log. The freq method standardizes the data by dividing

each taxa in a sample by the sample maximum and multiplies the resulting values by

the number of taxa present within the sample (Oksanen, 1983). The pa method scaled

the microbes identified to be represented by a 1 or 0 depending on if the microbe

was present or absent, respectively, within each sample (Oksanen et al., 2016). The

range standardization technique transforms the values within a sample to range from

0 to 1 (Oksanen et al., 2016). The hellinger distance and χ2 methods are widely used

within ecological community analysis and were published by Legendre and Gallagher

(2001). The hellinger distance is calculated by taking the square root of the relative

frequencies, whereas the χ2 distance is the sample sum divided by the microbial sum,

adjusted for the total sum (Legendre and Gallagher, 2001). Normalize transforms the

data so the sum of squares for each taxa are equal to one, and the standardize technique

standardizes the values to have mean 0 and variance 1 (Oksanen et al., 2016). Finally,
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the log technique transforms the data by calculating the log of the non-zero elements

and adding 1; this method was suggested by Anderson et al. (2006). A representative

subset of the methods (hellinger distance, χ2, normalize, and log) were implemented

in an exploratory capacity by comparing Pielou’s evenness J measure (McCune et al.,

2002).

We first examined the effects of standardization on a commonly used evenness mea-

sure within community analysis, Pielou’s evenness J. Pielou’s evenness J is calculated

by dividing Shannon’s diversity index, H, by the log of the total number of species

(Oksanen et al., 2016). Shannon’s diversity index is one of the most commonly used

diversity indices, and is calculated using the following equation:

H = −
S∑
i=1

pilog(pi)

where pi is the proportion of microbe i, and S is the number of microbes to meet

the constraint
∑S
i=1pi = 1 (Hill, 1973). Using the diversity and specnumber functions

within the vegan package, Pielou’s evenness J was easily calculated. The number

of microbes is unaffected by the standardization method; therefore, this exploratory

analysis examined the effects on the diversity measure. To test for significant dif-

ferences within the measures, the evenness distributions from each standardization

method was tested against the mean evenness measure from the other methods using

a students t-test. Due to the fact that the composite samples contain information

from the various depths, these samples were removed from further analyses to detect

independent variations.

In order to detect compositional differences and remove weighted influence from

high abundant microbes, the data were first transformed using the pa method. Using

the resulting matrix, the samples were condensed into 12 sample categories based on

group (season and environment) and depth, i.e. Fall from a wet environment at depth

0. In this case, the samples are explained by the categorical predictor variables: group,

Xi1, and depth, Xi2, and the response vector, yi = (yi1, . . . , yir)T , which consists of the

microbes present, j = 1, . . . , r, for i = 1, . . . ,12 categories. Finally, we then supposed that

yi followed a multinomial distribution with probabilities, πj(x), and implemented a

multinomial logistic regression model to determine the odds of being in one category
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relative to the designated baseline category, j∗ (Agresti, 2002). The logistic model

equation is then

log
( πj(x)

πj∗(x)

)
= αj +β′jx

where j , j∗, αj = intercept coefficient, β′ = vector of estimated coefficients given j∗, and

x = vector of predictor variable indicators. The exponentiated log-odds, log
( πj(x)

πj∗(x)

)
,

are interpreted as the odds of a particular taxa relative to the baseline taxa within a

set combination of predictor values. The multinomial logistic regression model was

implemented for each community abundance table and inferences within, and across,

communities were identified.

The compositional differences were also tested by implementing the adonis func-

tion within the vegan package. This method is a permutational multivariate analysis

of variance that utilizes distance matrices to determine significant differences within

the data (Oksanen et al., 2016). In this study adonis was executed using the Bray-Curtis

dissimilarity distance metric to test three main hypotheses. The Bray-Curtis index of

dissimilarity is calculated using the equation

dkl =
∑
|xrk − xrl |∑
(xrk + xrl)

where r = the microbes classified, and k and l = the samples such that k , l, and is

the default metric within the vegdist function (Oksanen et al., 2016). Under default

conditions, the hypotheses that the associations related to group, depth, and/or their

interaction do not effect the composition (H01), the associations related to group inde-

pendently do not effect the composition (H02), and the associations related to depth

independently do not effect the composition (H03) were tested. These hypotheses,

however, negate the fact plots are nested within an environment. The use of the

strata parameters within the function tested the hypotheses taking plot into account

by restricting the permutation within the strata (i.e. plot). At the same time, this also

restricted the samples to a certain environment, thus not measuring the variable associ-

ations. Lastly, since each group is defined by a season and environment/moisture level,

hypotheses to test if season, moisture level, or both, have no significant associations to

differences within sample composition were tested.
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2.4 quantify the strength of community interactions

Recent studies have only begun to study the interactions between the bacterial and

fungal communities. Identifying the interactions could however, provide insights into

which microbes are key to aiding the spread, or suppression, of different diseases, e.g.

Armillaria root disease. In this method of analysis the samples are not considered

independent; therefore, to investigate microbial interactions from independent sam-

ples, the communities were grouped by season and depth, e.g Fall at depth 7.5, and

visualized through heatmaps. The correlations between the pairwise bacterial and

fungal communities were first calculated using the spearman rank-correlation analysis

technique.

Hierarchical clustering was then implemented on each individual community, us-

ing hclust in R. This clustering aided in identifying the members of the respective com-

munity that commonly appear with the same correlation values across the microbial

community, and are potentially influential in driving the community correlations. This

analysis method, however, again brought up the issue of which distance clustering

algorithm to use, and where to cut the hierarchical tree, or dendrorgram, to determine

the clusters. There are eight different clustering approaches within hclust, therefore,

to test the strength of the determined clusters four widely used methods from the

list were implemented: Ward’s minimum variance (ward.D2), single-linkage, average-

linkage, and complete-linkage. These four methods provide a representative subset

of the clustering algorithms within the function. Each of these methods is an agglom-

erative approach, meaning every microbe is its own cluster and the tree is built from

the bottom-up. Ward’s minimum variance method combines clusters by determining

the increase in the sum of squares should the two clusters merge and merging the

two clusters with the smallest increase (Rencher and Christensen, 2012). The single-

linkage method merges clusters based on the shortest distance between two single

microbes, whereas the complete-linkage approach consolidates clusters based on the

shortest maximum distance between two elements of the existing clusters (Rencher

and Christensen, 2012). While the average-linkage approach combines clusters based

on the average distance between all the elements of two existing clusters (Rencher and

Christensen, 2012).
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After the implementation of each of these methods, elbow plots were generated

and examined to determine the optimal number of clusters; then using that optimal

number, the four resulting trees were cut and the clusters were examined. The elbow

plots were generated using the function fviz_nbclust in the factoextra R package (Kas-

sambara and Mundt, 2016). This function calculates the total within sum of squares

and where the values start to taper off, or a bend in the graph, is determined to be

the optimal number of clusters (Kassambara and Mundt, 2016). For the purposes of

the this study, the euclidean distances were calculated, using dist, for each step in the

clustering algorithms and correlation heatmaps were constructed and the interactions

were investigated further.
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chapter 3

Results

3.1 microbial community characterization across

samples

There were 1,024 and 1,026 microbes classified within the bacterial community using

the 16S V1-V3 and 16S V4-V5 regions, respectively, and 605 and 711 within the fungal

community using ITS1 and ITS2, after the implementation of dbcAmplicons. The data

was cleaned to remove possible classification errors; this was done through the removal

of microbes with relative frequencies below a certain threshold. In order to increase

the probability of obtaining accurate classifications, for a microbe to be retained there

needed to be at least two samples where the relative frequency was above 1%, or at

least one sample with a relative frequency greater than 5%. These criteria reduced the

chances of uncertain classifications due to sequencing errors. After this reduction tech-

nique was executed there were 79, 79, 61, and 68 total microbial classifications, and

77, 78, 70, 82, and 129 genus microbial taxonomic classifications within the respective

bacterial and fungal communities (see Table 3.2). Another aspect of the reduction

technique included removing those samples with minimal information due to a lack

in read sequences, which may be the result of sampling errors. If a sample contained

fewer than 3,000 read sequences, it was removed from downstream analysis. The

samples that were removed from each region can be seen in Tables 3.3-3.7. When

examining the LSU region, 14 of the 96 samples were removed, therefore further

analysis will focus on the 16S V1-V3, 16S V4-V5, ITS1, and ITS2 regions.

Once the data had been cleaned the microbial classifications of each region were

examined further. After additional investigation into the bacterial microbes classified

to the genus level, inconsistencies were identified. Of the 77 and 78, genus level

bacterial taxonomic classifications, there were 26 and 27 classification distinctions

between the 16S V1-V3 and V4-V5 regions, respectively. Similarly, of the 70 and

82 genus level fungal classifications, there were 13 and 25 classification distinctions
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between the ITS1 and ITS2 regions, respectively. These non-redundant classifications

within the respective communities therefore provide evidence for continued use of

both regions to gain a more complete bacterial, or fungal, community composition,

and analysis of the community.

Table 3.1: Raw Community Classifications by Level. The number of taxonomic
classifications identified at each region broken down by taxonomic level, before the
data were reduced.

Level Bacterial Fungal
16S V1-V3 16S V4-V5 ITS1 ITS2 LSU

Phylum 38 37 5 5 16
Class 88 91 28 30 47
Order 151 154 81 97 128
Family 265 276 189 227 292
Genus 824 819 464 554 730

Table 3.2: Reduced Community Classifications by Level. The number of
taxonomic classifications identified at each region broken down by taxonomic level,
after the data were reduced.

Level Bacterial Fungal
16S V1-V3 16S V4-V5 ITS1 ITS2 LSU

Phylum 12 12 4 4 4
Class 27 25 12 13 16
Order 40 46 29 34 36
Family 56 63 54 60 68
Genus 77 78 70 82 129
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Table 3.3: 16s V1-V3 all taxonomic level totals per sample. Using the reduced set
of the taxonomic classifications, and the data from all taxonomic levels, the table below
describes the number of taxa in each sample for the 16s V1-V3 region. The maximum
number of taxa per sample is 79. Samples may have a variety of taxa present, however,
if a sample had fewer than 3,000 read sequences, it was removed from downstream
analysis due to the possibility of sampling error (red).

Environment Plot Season Depth
0 7.5 15 C

Dry 3106 FA 73 79 77 4
SP 77 78 79 78

3111 FA 69 73 70 75
SP 77 76 75 76

3128 FA 70 76 67 8
SP 74 75 77 75

3276 FA 76 76 78 76
SP 74 77 75 78

3317 FA 76 75 77 75
SP 75 76 77 77

3381 FA 77 79 79 79
SP 76 79 79 79

Wet 3104 FA 73 77 77 4
SP 76 78 77 79

3136 FA 74 74 72 78
SP 77 78 78 79

3139 FA 73 68 76 78
SP 76 4 78 79

3146 FA 71 75 78 77
SP 75 77 76 78

3147 FA 74 64 74 76
SP 73 69 76 75

3161 FA 75 75 76 75
SP 73 73 79 78
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Table 3.4: 16s V4-V5 all taxonomic level totals per sample. Using the reduced set
of the taxonomic classifications, and the data from all taxonomic levels, the table below
describes the number of taxa in each sample for the 16s V4-V5 region. The maximum
number of taxa per sample is 79. Samples may have a variety of taxa present, however,
if a sample had fewer than 3,000 read sequences, it was removed from downstream
analysis due to the possibility of sampling error (red).

Environment Plot Season Depth
0 7.5 15 C

Dry 3106 FA 76 77 78 79
SP 78 79 78 78

3111 FA 76 78 78 76
SP 77 77 77 77

3128 FA 76 77 73 77
SP 75 78 79 77

3276 FA 78 79 78 79
SP 77 79 78 79

3317 FA 78 77 78 78
SP 78 78 78 78

3381 FA 78 78 79 77
SP 78 79 79 79

Wet 3104 FA 76 77 77 79
SP 76 78 78 78

3136 FA 74 76 69 78
SP 76 10 78 79

3139 FA 73 77 76 78
SP 78 77 78 53

3146 FA 75 78 78 79
SP 75 78 76 79

3147 FA 75 31 78 54
SP 76 72 76 75

3161 FA 77 76 78 74
SP 77 75 76 78
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Table 3.5: ITS1 all taxonomic level totals per sample. Using the reduced set of
the taxonomic classifications, and the data from all taxonomic levels, the table below
describes the number of taxa in each sample for the ITS1 region. The maximum
number of taxa per sample is 61. Samples may have a variety of taxa present, however,
if a sample had fewer than 3,000 read sequences, it was removed from downstream
analysis due to the possibility of sampling error (red).

Environment Plot Season Depth
0 7.5 15 C

Dry 3106 FA 42 35 48 46
SP 42 40 42 39

3111 FA 45 42 46 44
SP 41 42 40 46

3128 FA 25 19 28 47
SP 36 38 38 41

3276 FA 39 39 40 39
SP 46 48 36 43

3317 FA 40 39 40 44
SP 45 41 41 47

3381 FA 50 48 49 49
SP 49 47 44 53

Wet 3104 FA 35 39 44 43
SP 46 40 42 45

3136 FA 43 35 29 49
SP 39 44 43 45

3139 FA 39 32 38 43
SP 47 44 46 48

3146 FA 26 42 45 46
SP 45 49 44 46

3147 FA 43 35 43 42
SP 43 33 43 44

3161 FA 44 32 43 42
SP 42 40 41 46
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Table 3.6: ITS2 all taxonomic level totals per sample. Using the reduced set of
the taxonomic classifications, and the data from all taxonomic levels, the table below
describes the number of taxa in each sample for the ITS2 region. The maximum
number of taxa per sample is 88. Samples may have a variety of taxa present, however,
if a sample had fewer than 3,000 read sequences, it was removed from downstream
analysis due to the possibility of sampling error (red).

Environment Plot Season Depth
0 7.5 15 C

Dry 3106 FA 54 46 63 61
SP 54 56 55 65

3111 FA 66 61 59 65
SP 61 59 57 67

3128 FA 51 30 45 64
SP 51 62 57 57

3276 FA 67 62 60 63
SP 67 58 55 62

3317 FA 58 62 60 69
SP 66 54 60 64

3381 FA 76 69 72 72
SP 71 70 63 38

Wet 3104 FA 50 53 63 54
SP 40 58 52 65

3136 FA 57 45 30 64
SP 60 64 60 64

3139 FA 52 55 62 56
SP 67 58 60 64

3146 FA 34 62 59 56
SP 54 61 62 68

3147 FA 58 42 57 57
SP 59 51 60 66

3161 FA 62 50 62 63
SP 64 60 57 66
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Table 3.7: LSU all taxonomic level totals per sample. Using the reduced set of
the taxonomic classifications, and the data from all taxonomic levels, the table below
describes the number of taxa in each sample for the LSU region. The maximum
number of taxa per sample is 114. Samples may have a variety of taxa present, however,
if a sample had fewer than 3,000 read sequences, it was removed from downstream
analysis due to the possibility of sampling error (red).

Environment Plot Season Depth
0 7.5 15 C

Dry 3106 FA 5 61 89 77
SP 69 60 73 73

3111 FA 65 74 71 73
SP 68 78 70 80

3128 FA 34 11 47 70
SP 61 74 66 74

3276 FA 11 68 69 70
SP 75 73 62 78

3317 FA 11 61 68 68
SP 72 62 66 73

3381 FA 67 70 74 1
SP 80 86 69 87

Wet 3104 FA 6 49 72 71
SP 77 65 65 78

3136 FA 84 42 31 78
SP 71 74 69 24

3139 FA 58 43 59 75
SP 84 71 78 79

3146 FA 54 74 79 75
SP 69 82 68 86

3147 FA 66 52 63 67
SP 74 67 60 63

3161 FA 22 57 67 67
SP 74 66 41 74
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3.2 compositional differences within a community

In order to detect if season, moisture level, and/or depth had an impact on the mi-

crobial compositions, the data first needed to be transformed. Previously shown, the

standardization method implemented can significantly affect the diversity measure

calculations (Lozupone et al., 2007). Therefore, using the decostand, diversity, and

specnumber functions within the vegan R package, a representative subset of four differ-

ent standardization methods were implemented, and the resulting Pielou’s evenness

J measures were tested for a significant difference. The standardization techniques

implemented were the hellinger distance, χ2, normalize, and log. When the Peilou’s

evenness J values were tested for significant differences using a student’s t-test, all

values were statistically significant except for the normalize technique when tested

against the raw evenness measure (Table 3.8). Due to the clear-cut calculation of

the hellinger distance, and that it is among the more commonly used methods within

soil community analysis, this standardization technique was chosen for downstream

analyses within this study.

Table 3.8: Standardization method effects on Pielou’s evenness J. The mean
evenness measure for each region. The normalize method resulted in the same evenness
measure as using the raw data for each region.

16S V1-V3 16S V4-V5 ITS1 ITS2

Raw 0.836 0.848 0.563 0.627
Hellinger 0.948 0.954 0.820 0.854

χ2 0.907 0.918 0.660 0.664
Normalize 0.836 0.848 0.563 0.627

Log 0.987 0.990 0.954 0.958

We then began to explore how the community composition differed with season,

habitat type series, and depth below the forest floor. These differences were investi-

gated using two methods: multinomial logistic regression and a permutational multi-

variate analysis of variance. To implement the multinomial logistic regression model

the data needed to be standardized into a presence/absence (pa) matrix, and for the

permutational multivariate analysis of variance the data was standardized using the

hellinger distance.
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The multinomial logistic regression was first implemented using the vglm within

the vgam R package to select the best fit model (Yee, 2016). The vglm function is used

to fit vector generalized linear models, and the multinomial model is specified through

the parameter family, as can be seen in the command below:

vglm(data_f rame ∼ group + depth+ group : depth, data = data_f rame,

f amily =multinomial)

In order to select the model to be used, an analysis of deviance was conducted to

compare the significance of the each variable. The deviance G2 for each fitted model

within each region can be found in Table 3.9 and were calculated using deviance. Each

model was then tested using Pearson’s χ2 test, and the model with the main effects

from group and depth (group + depth) was determined to be the best fit model for

each region.

Table 3.9: Deviance calculations for model selection. The devianceG2 and degrees
of freedom (df) for each model fitted for each region. These values were used to
implement Pearson’s χ2 test. The main effects model was selected for further analysis
in each region.

(a) 16S V1-V3

Model G2 df

Group + Depth 47.226 468
Group 78.876 624
Depth 65.355 702
Null 96.844 858

(b) 16S V4-V5

Model G2 df

Group + Depth 31.552 468
Group 52.607 624
Depth 51.288 702
Null 72.213 858

(c) ITS1

Model G2 df

Group + Depth 102.083 360
Group 160.004 480
Depth 274.088 540
Null 332.938 660

(d) ITS2

Model G2 df

Group + Depth 174.358 522
Group 250.323 696
Depth 424.435 783
Null 501.213 957
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When fitting the main effects model for the two fungal communities, the model

did not converge using the default number of iterations (100), therefore, the iterations

were increased to 200, and the model converged after ∼160 iterations. The estimated

coefficients and odds ratios were then examined using multinom within the nnet pack-

age (Ripley and Venables, 2016). The odds ratios were calculated by exponentiating

the coefficient values and are displayed in Figures 3.1-3.4. First investigating the

changes within the two bacterial communities (Figures 3.1 and 3.2), there are many

microbes that did not have an increase or decrease in odds relative to the baseline

taxa (Ganoderma) across the various levels of the two predictor variables. However,

there were a few microbes that a one-unit increase in a category appeared to yield a

significant increase, or decrease, in the odds for that microbe. For example, in the

16S V1-V3 region, there was an increase in the odds of Thermoactinomyces relative

to Ganoderma within samples at 7.5 and 15 cm below the forest floor. Examining

the 16S V4-V5 region, the presence of Thermoactinomyces appeared to have similar

associations relative to changes in depth, but a decrease in odds with changes in group.

However, after investigating the 95% confidence intervals, in both bacterial commu-

nities, only the increased odds at depth 7.5 cm below the forest floor were significant.

Further, Segetibacter appeared to have a decreased odds relative to Ganoderma across

the different levels of both variables, but this decrease was inconclusive due to non-

significance. While there was some overlap in potentially influential microbes between

the two communities, most were distinct, providing further evidence for the use of

both regions to gain a more complete understanding of the bacterial composition with

the PREF.

We next examined the changes in the two fungal communities (Figures 3.3 and 3.4).

While again the odds of a microbe did not appear to increase or decrease relative to the

baseline taxa (Ganoderma), across the two regions there were microbes with significant

increases or decreases, suggesting potentially noteworthy associations; these include

Diversispora, Tylospora, and Bevicellicium. However, each of the 95% confidence inter-

vals spanned across one, making the apparent associations inconclusive. Similarly to

the bacterial regions, within the fungal communities potentially influential microbes

overlapped between the two regions, within the exception of Diversispora in the ITS1
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community. While the associations between microbes relative to Ganoderma were

largely inconclusive, the distinctions within the community provides further evidence

for the use of both fungal regions as well.

Figure 3.1: Odds ratios for the 16S V1-V3 community. The heatmap indicates there
are a few microbes with odds increased, or decreased, across the variables examined.
The microbes with decreased odds relative to the baseline taxa (Ganoderma are blue,
and odds with increased odds are red. The significant odds ratios with p < 0.05 are
signified with a *.
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Figure 3.2: Odds ratios for the 16S V4-V5 community. The heatmap indicates there
are a few microbes with odds increased, or decreased, across the variables examined.
The microbes with decreased odds relative to the baseline taxa (Ganoderma are blue,
and odds with increased odds are red. The significant odds ratios with p < 0.05 are
signified with a *.
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Figure 3.3: Odds ratios for the ITS1 community. The heatmap indicates there are
a few microbes with odds increased, or decreased, across the variables examined. The
microbes with decreased odds relative to the baseline taxa (Ganoderma are blue, and
odds with increased odds are red. The significant odds ratios with p < 0.05 are signified
with a *.
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Figure 3.4: Odds ratios for the ITS2 community. The heatmap indicates there are
a few microbes with odds increased, or decreased, across the variables examined. The
microbes with decreased odds relative to the baseline taxa (Ganoderma are blue, and
odds with increased odds are red. The significant odds ratios with p < 0.05 are signified
with a *.
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As mentioned, a permutational multivariate analysis of variance (adonis) was also

implemented to detect differences within the samples. The three hypotheses were

tested using the following commands:

H01: Associations related to the interaction between group and depth do not effect

the community composition

adonis(data_f rame ∼ group ∗ depths, data = data_f rame).

H02: Associations related to group do not effect the community composition

adonis(data_f rame ∼ group ,data = data_f rame).

H03: Associations related to depth do not effect the community composition

adonis(data_f rame ∼ depths, data = data_f rame).

The results in Table 3.10 indicate group and depth both have significant associations

within the bacterial sample composition, while the fungal sample compositions were

only significantly associated to differences in the group (see Table 3.11). Even though

the associations related to both group and depth were determined significant through

H01 for both bacterial communities, the associations were still tested independently.

Tables 3.12 and 3.13 show that the associations were significant with p < 0.05. When

group and depth were independently tested for the fungal communities, the associa-

tions related to depth were calculated to be significant with p < 0.05 within the ITS2

fungal community, and remained non-significant within the ITS1 fungal community.

Therefore, these results provide evidence that both the group and from what depth the

sample was collected had a significant impact on the sample composition, in three out

of the four communities examined. However, the associations related to the interaction

of these factors did not result in a significant difference.

Due to the fact that the associations related to group were significant in all four

communities, we used the same procedure to examine the independent associations

related to season and moisture level. Interestingly, in all four communities the in-

teraction was non-significant. In addition the associations due to season were non-

significant in all communities except the 16S V1-V3 community. These results suggest

that the microbes present are impacted by the moisture level within the soil, rather
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than the time of year. Therefore, in the case of the bacterial communities, composition

was impacted mainly by moisture level and depth of the sample. Whereas the fungal

community composition was mainly impacted by moisture level.

Table 3.10: Group & depth associations in the bacterial communities. The results
for the adnois permutation analysis for the associations related to group and depth on
the sample composition (H01) when examining the two bacterial communities. The
tables show there is a significant association (p < 0.05) from group and depth, but the
interaction is not significant.

(a) 16S V1-V3

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Group 3 0.244 0.081 2.680 0.098 0.003
Depths 2 0.398 0.199 6.552 0.160 0.001
Group:Depths 6 0.175 0.029 0.958 0.070 0.538
Residuals 55 1.671 0.030 0.672
Total 66 2.488 1

(b) 16S V4-V5

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Group 3 0.137 0.046 2.683 0.100 0.001
Depths 2 0.223 0.111 6.535 0.163 0.001
Group:Depths 6 0.090 0.015 0.885 0.066 0.627
Residuals 54 0.919 0.017 0.671
Total 65 1.369 1
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Table 3.11: Group & depth associations in the fungal communities. The results for
the adnois permutation analysis for the associations related to group and depth on the
sample composition (H01) when examining the two fungal communities. The tables
show there is only significant associations (p < 0.05) from group, but associations
related to depth and the interaction between group and depth were not significant.

(a) ITS1

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Group 3 0.729 0.243 2.057 0.096 0.002
Depths 2 0.238 0.119 1.007 0.031 0.408
Group:Depths 6 0.400 0.067 0.564 0.052 0.999
Residuals 53 6.262 0.118 0.821
Total 64 7.629 1

(b) ITS2

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Group 3 1.141 0.380 2.913 0.128 0.001
Depths 2 0.360 0.180 1.378 0.040 0.061
Group:Depths 6 0.513 0.086 0.655 0.057 0.999
Residuals 53 6.921 0.131 0.775
Total 64 8.936 1
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Table 3.12: Independent associations related to group & depth within the 16S
V1-V3 community. The results for the independent associations related to group (H02)
and depth (H03). The associations from group and depth remained significant at the
p < 0.05 level.

(a) H02 Group effect

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Group 3 0.182 0.061 2.452 0.109 0.001
Residuals 60 1.481 0.025 0.891
Total 63 1.663 1

(b) H03 Depth effect

Df Sum of Sqs Mean Sq F.Model R2 Pr(>F)

Depths 2 0.283 0.142 6.262 0.170 0.001
Residuals 61 1.379 0.023 0.830
Total 63 1.663 1
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Table 3.13: Independent associations related to group & depth within the 16S V4-
V5 community. The results for the associations related to group (H02) and depth (H03).
The significant association based on group and depth previously concluded remained
significant at the p < 0.05 level.

(a) H02 Group effect

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Group 3 0.137 0.046 2.298 0.100 0.002
Residuals 62 1.232 0.020 0.900
Total 65 1.369 1

(b) H03 Depth effect

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Depths 2 0.222 0.111 6.087 0.162 0.001
Residuals 63 1.148 0.018 0.838
Total 65 1.369 1
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Table 3.14: Independent associations related to group & depth within the ITS1
community. The results for the associations related to group (H02) and depth (H03).
The associations based on depth were examined by restricting the samples to the
correct groups, and remained non-significant.

(a) H02 Group effect

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Group 3 0.729 0.243 2.148 0.096 0.002
Residuals 61 6.900 0.113 0.904
Total 64 7.629 1

(b) H03 Depth effect

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Depths 2 0.242 0.121 1.016 0.032 0.341
Residuals 62 7.387 0.119 0.968
Total 64 7.629 1
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Table 3.15: Independent associations related to group & depth within the ITS2
community. The results for the associations related to group (H02) and depth (H03).
The associations based on depth were examined by restricting the samples to the
correct groups, and were calculated to be significant with p < 0.05.

(a) H02 Association based on group

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Group 3 1.141 0.380 2.978 0.128 0.001
Residuals 61 7.794 0.128 0.872
Total 64 8.936 1

(b) H03 Association based on depth

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Depths 2 0.359 0.180 1.298 0.040 0.048
Residuals 62 8.577 0.138 0.960
Total 64 8.936 1
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Table 3.16: Season & moisture level associations in the bacterial communities.
The results for the adnois permutation analysis for the significance of season and
moisture on the sample composition when examining the two bacterial communities.
Interestingly, the tables show within the 16S V1-V3 community there was a significant
association (p < 0.05) from season and moisture level. However, within the 16S V4-V5
community there was only significant associations due to moisture level.

(a) 16S V1-V3

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Season 1 0.070 0.070 2.763 0.039 0.012
Moisture 1 0.097 0.097 3.852 0.055 0.001
Season:Moisture 1 0.022 0.022 0.854 0.012 0.533
Residuals 63 1.590 0.025 0.894
Total 66 1.778 1

(b) 16S V4-V5

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Season 1 0.028 0.028 1.351 0.019 0.225
Moisture 1 0.099 0.099 4.830 0.068 0.001
Season:Moisture 1 0.011 0.011 0.544 0.008 0.804
Residuals 64 1.311 0.020 0.905
Total 67 1.448 1
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Table 3.17: Season & moisture level associations in the fungal communities. The
results for the adnois permutation analysis for the significance of season and moisture
level on the sample composition when examining the two fungal communities. The
tables show there was only a significant association (p < 0.05) from the moisture level.

(a) ITS1

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Season 1 0.131 0.131 1.158 0.017 0.275
Moisture 1 0.451 0.451 3.986 0.059 0.002
Season:Moisture 1 0.147 0.147 1.302 0.019 0.167
Residuals 61 6.900 0.113 0.904
Total 64 7.629 1

(b) ITS2

Df Sum of Sq Mean Sq F.Model R2 Pr(>F)

Season 1 0.205 0.205 1.605 0.023 0.058
Moisture 1 0.809 0.809 6.328 0.090 0.001
Season:Moisture 1 0.128 0.128 0.999 0.014 0.422
Residuals 61 7.794 0.128 0.872
Total 64 8.936 1
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3.3 community associations

Using the hclust function in R, four agglomerative clustering methods (single-linkage,

average-linkage, complete-linkage, and ward.D2) were implemented to determine the

differences associated with the clustering approach. Before we could compare the clus-

tering methods, the optimal number of clusters was first determined from elbow plots

(Kassambara and Mundt, 2016). When examining the elbow plots for each method, the

general trend of single-, average-, and complete-linkage resulted in a more prominent

bend at an optimal number of clusters (Figures 3.5a,b, and c); this was consistent

across regions. Ward’s minimum variance method, however, generally resulted in a

smooth curve, making the determination of an optimal number of clusters exceed-

ingly subjective (Figure 3.5d). Since there was a prominent bend at four clusters

using both single- and complete-linkage for this dataset, this was the value used to

compare the dendrograms from each clustering method. Figure 3.6 displays the four

resulting dendrograms with clusters highlighted. From these results it appeared that

the Ward minimum variance and complete-linkage methods performed similarly in

terms of cluster size and members, with one large cluster and three smaller clusters

(Figures 3.6c and d). The average-linkage method resulted in four relatively even

cluster sizes (Figure 3.6b). However, the single-linkage method resulted in one large

cluster and three single microbe clusters; this is a result of the sequential (nearest

neighbor) approach of the single-linkage method (Figure 3.6a). Due to the straight

forward and stringent nature of the algorithm, complete-linkage was implemented for

the community interaction analysis. Since the general clustering trend was consistent

across communities and regions, only the results from fall at depth 0 using the 16S

V1-V3 region are shown in Figures 3.5 and 3.6.

While the optimal number of clusters was detected to be four from the elbow plot,

after examination of the correlation heatmaps, the number of clusters that appeared to

optimally highlight the correlations consistently well across the regions was six. In or-

der to ensure that appropriate microbial interactions were observed, the data for each

region was first divided into season and depth, i.e. Fall at depth 0. Spearman’s rank

correlations were then calculated for each pairwise combination, at each depth, using

the cor function in R. Using the resulting correlation matrix the microbial clusters for
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(a) Single-linkage
clustering method

(b) Average-linkage
clustering method

(c) Complete-linkage
clustering method

(d) Ward minimum
variance clustering method

Figure 3.5: Elbow plots for 16S V1-V3 Fall at depth 0 samples. The four elbow
plots used to determine the optimal number of clusters for the 16S V1-V3 Fall at depth
0 samples. There is a more prominent bend in total within sum of squares at k = 4
clusters when using the single-linkage methods; the bend is prominent at k = 3 using
the average-linkage method. Within the complete-linkage method there are two bends
in the graph at k = 2,4. However, the curve is smooth in the case of Ward’s minimum
variance, which resulted in determining the optimal number of clusters exceedingly
subjective.
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(a) Single-linkage
clustering method

(b) Average-linkage
clustering method

(c) Complete-linkage
clustering method

(d) Ward minimum
variance clustering method

Figure 3.6: Hierarchical clusterings for 16S V1-V3 Fall at depth 0 samples. The
four resulting dendrograms for the 16S V1-V3 Fall at depth 0 samples. The single-
linkage method resulted in one large cluster with three outlying microbes, whereas the
complete-linkage and ward minimum variance methods clustered similarly in terms
of size and membership. The average-linkage method resulted in four relatively equal
clusters.
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each community were determined through complete-linkage hierarchical clustering.

Figures 3.7 and 3.9 display the correlation heatmap for the interaction between the

16S V1V3 and ITS1 regions for the fall and spring at depth 0, and the rest of the

interaction heatmaps are located in Appendix A.

In Figures 3.7 and 3.9 there were clusters of microbes identified that were all cor-

related similarly; this trend was consistent across region and depth. After further

examination into these correlations, it was seen that for some microbial combinations

there was one sample where the two microbes were present and abundant, but in most

samples either one or the other was present (see Figure 3.11d). The microbes contained

in the four clusters displayed in Figures 3.8 and 3.10 were further examined for pat-

terns explaining why the interactions were clustered. After further investigation there

were no readily apparent patterns related to overall ecological functions within genera,

however, there were still some commonalities among the clusters across region. For in-

stance within the two bacterial regions, Bacillus, Gaiella, and Opitutus tended to be clus-

tered together, as well as WPS-1_genera_incertae_sedis, WPS-2_genera_incertae_sedis,

and Subdivision3_genera_incertae. There were also sets of fungal microbes commonly

clustered across the two regions and the different combinations of variables examined.

These include Penicilium, Cryptococcus_g1, and Cryptococcus_g2, and Piloderma and

Lactarius. However, there were distinctions between the microbes classified between

the two communities. Thus within the ITS1 community, Armillaria tended to be clus-

tered with Spirosphaera, or Tylospora, and within the ITS2 community, Russula was as-

sociated with Suillus. Nevertheless, while not consistently clustered, within the fungal

community there were multiple microbes associated with edible coral (e.g. Inocybe and

Clavulinopsis), as well as genera associated with toxic and non-toxic mushrooms (e.g.

Lacterius and Tricholoma) clustered together. Further research is required to interpret

the commonalities in clustering across community interaction combinations, along

with the diversity in the ecological functions associated with each genera.
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Figure 3.7: Correlations between 16S V1-V3 and ITS1 for Fall at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes
that commonly appear with the same correlations across the community. Strong
negative correlations (-1) are red, while strong positive correlations (1) are white, with
significant correlations (p < 0.05) designated by *.
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(a) Cluster of microbes with generally positive
correlations

(b) Cluster of microbes with generally negative
correlations

Figure 3.8: Specific clusters from Figure 3.7. These two clusters of microbes were
pulled out of Figure 3.7 to allow for further examination of the respective members,
since the entire cluster generally had the same correlation. The bacterial (row) and
fungal (column) cluster colors are directly related to the cluster colors within the full
heatmap, with significant correlations (p < 0.05) designated by *.
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Figure 3.9: Correlations between 16S V1-V3 and ITS1 for Spring at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes
that commonly appear with the same correlations across the community. Strong
negative correlations (-1) are red, while strong positive correlations (1) are white, with
significant correlations (p < 0.05) designated by *.
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(a) Cluster of microbes with generally positive
correlations

(b) Cluster of microbes with generally negative
correlations

Figure 3.10: Specific clusters from Figure 3.9. These two clusters of microbes were
pulled out of Figure 3.9 to allow for further examination of the respective members,
since the entire cluster generally had the same correlation. The bacterial (row) and
fungal (column) cluster colors are directly related to the cluster colors within the full
heatmap, with significant correlations (p < 0.05) designated by *.
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(a) Negative correlation between
microbes

(b) Positive correlation between
microbes

(c) No, or low, correlation
between microbes

(d) No correlation, bacteria not
present in most samples

Figure 3.11: Interaction scatterplot correlations. The four types of correlation
influences that were consistent across regions. The plots display the hellinger
standardized abundances for the specified bacteria (x) and fungi (y) for the Fall
samples at depth 0.
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chapter 4

Conclusion

Soil communities are well studied around the globe and are used to determine the

health of the area. As the climate continues to change the health of forests are increas-

ing at risk for disease, which are often diverse and difficult to detect. For example,

Armillaria root disease is a diverse fungal disease which effects a broad range of trees

and shrubs and can be found in the forests in northern Idaho, specifically Priest River

Experimental Forest (PREF) (Worrall, 2007). Recent studies showed that while the dis-

eases are diverse, the general microbial communities are also complex from region to

region. Therefore, samples from the PREF were analyzed to study the environmental

correlates on the bacterial and fungal communities, as well as microbial interactions.

After the communities were cleaned, 14 of the 96 samples were removed from the

LSU region, therefore this community was removed from further analysis. The quanti-

tative and qualitative methods compared by Lozupone et al. (2007) were the weighted

and unweighted UniFrac distances; these methods are implemented in QIIME and

mothur (two OTU based methods) and can be used to test for phylogenetic differences,

or cluster samples. Therefore, the significant results from the exploration of standard-

ization methods implies that the standardization method does affect conclusions about

the evenness measure, as well as phylogenetic differences. However, it is infeasible to

test all standardization methods for every dataset, thus for future analyses consistency

is key.

Analysis indicated that this study was unable to detect statistically significant in-

teractions between season and moisture level, and depth within the sites samples. In

each community there were microbes that appeared to be significantly associated with

changes in the predictor variables. Within the two fungal communities, there were

taxa that resulted in a significant increase in odds when compared to the baseline taxa

(Ganoderma); while this increase suggests a strong association, further examination of

the 95% confidence intervals suggested uncertainty within the data, since each interval

spanned across 1. This implies that more data may be needed to determine if the
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environmental variables examined do explain variation within taxa present. When the

variables were tested using the permutational analysis of variance, there was signifi-

cance in three out of the four communities, implying that the variables do explain some

of the variation within the compositions. Although group had a significant association,

the significance was a result from the moisture level (or habitat types series) rather

than season. This implies that correlates associated with season (e.g. temperature)

may be too similar between fall and spring to explain variation.

Due to limitations in knowledge and understanding of the ecological importance

of identified microbes, the clusters with members that all interacted similarly were

briefly investigated. Although there were no apparent patterns to how the microbes

clustered, there were some commonalities among the members. For instance, fungi

associated with edible coral were clustered and had similar interactions with the bac-

terial community. However, determining the specific species would be beneficial to

the understanding of the community, as well as management plans when investigating

a genera with species known to be detrimental to the host, such as Armillaria. Bacillus

is a well studied bacterial microbe that has species known to be utilized in controlling

insects, as well as others to be medically important. Therefore, the speciation of pivotal

genera and those commonly clustered across the different variables is required as the

next step to advance ecological interpretations of the community interactions.

In addition to the limitation of ecological knowledge about the specific functions

of the microbes identified, there are other limitations about the study that should

be considered for further research. First, although the sampling method and data

collection was carefully designed and well executed, the data was only collected for

a year long pilot study by Dr. Ross-Davis and her team. For this reason, information

was lost from a location during the cleaning process when samples had to be removed.

Therefore, in order to make definite conclusions about the environmental impacts on

the compositional structure, replicate samples would need to be collected. Secondly,

there are two fungal databases within the RDP classifier, for the purposes of this study

only the warcup fungal ITS databased was implemented. Applying the other database

(UNITE fungal ITS) may result in different community compositions, thus leading to

distinct conclusions, due to differences in the microbes present in the database. A
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limitation embedded within the RDP classifier is classifications are only to the genus

level, causing information to be lost since there can be a wide range of ecological

functions within genera. Thirdly, since soil communities are a well studied topic

there are many different methods of analysis. Thus, while this study attempted to

implement most of these methods, at least in an exploratory capacity, subjectivity

based on understanding was employed when choosing which method to use for down-

stream analysis. Lastly, modifying differential expression analyses (e.g. gene ontology)

accordingly may provide further insights into the community interactions.

Overall, this study sought to investigate the soil communities within the PREF, as

well as provide an alternative procedure to identify microbial communities within soil

samples, through the implementation of a reference database. While there was no

comparison of the communities identified through the OTU based methods, it has

been shown that for this dataset a reference based approach sufficed. However, it is

recommended to examine the fungal communities identified using the UNITE fungal

ITS database within the RDP classifier; as a result a better understanding of variable

microbes within the samples will be obtained. Additionally, since there were only

12 independent samples for each season and depth, it is recommended for future

research to increase the sample size, or take replicate samples at each current plot.

After further ecological analysis of the microbes identified our grasp of the microbial

structure between communities would be enhanced, thus leading to a more thorough

understanding of the community interactions.

Despite the aforementioned limitations, this exploration provided valuable knowl-

edge into the delicate balance of soil microbial communities within the PREF. Through

this analysis differences that were observed previously on multiple sites were tested

within a single site. This study also provided support for the use of metagenomic

sequencing to analyze soil microbes. Specifically, using multiple amplicon regions

for each community validated the community identified, as well as provided a more

complete snapshot of the captured community. Thus providing significant evidence

for the continued use of each region in future analyses. While the environmental

differences based on specific taxa were inconclusive, the analysis of variance did show

moisture level and depth had a significant association with differences in the soil
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composition. Therefore, with replicate sampling these specific taxa differences may

become more apparent. The loss of classification to the species level masked some of

the associations between bacterial and fungal microbes, as well as within community

associations. Nevertheless, the exploration of the associations provided a baseline for

the balance between fungi and bacteria. In conclusion, the communities below the

forest floor are vast and complex, and this exploration only scratched the surface of

soil microbial communities within the PREF.
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appendix a

Community Interaction Heatmaps

Figure a.1: Correlations between 16S V1-V3 and ITS1 for Fall at depth 7.5.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.2: Correlations between 16S V1-V3 and ITS1 Fall at depth 15.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.3: Correlations between 16S V1-V3 and ITS1 for Spring at depth 7.5.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.4: Correlations between 16S V1-V3 and ITS1 for Spring at depth 15.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.5: Correlations between 16S V1-V3 and ITS2 for Fall at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.6: Correlations between 16S V1-V3 and ITS2 for Fall at depth 7.5.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.7: Correlations between 16S V1-V3 and ITS2 Fall at depth 15.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.8: Correlations between 16S V1-V3 and ITS2 for Spring at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.



61

Figure a.9: Correlations between 16S V1-V3 and ITS2 for Spring at depth 7.5.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.10: Correlations between 16S V1-V3 and ITS2 for Spring at depth 15.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.11: Correlations between 16S V4-V5 and ITS1 for Fall at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.12: Correlations between 16S V4-V5 and ITS1 for Fall at depth 7.5.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.13: Correlations between 16S V4-V5 and ITS1 Fall at depth 15.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.14: Correlations between 16S V4-V5 and ITS1 for Spring at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.15: Correlations between 16S V4-V5 and ITS1 for Spring at depth 7.5.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.16: Correlations between 16S V4-V5 and ITS1 for Spring at depth 15.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.17: Correlations between 16S V4-V5 and ITS2 for Fall at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.18: Correlations between 16S V4-V5 and ITS2 for Fall at depth 7.5.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.



71

Figure a.19: Correlations between 16S V4-V5 and ITS2 for Fall at depth 15.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.20: Correlations between 16S V4-V5 and ITS2 for Spring at depth 0.
Hierarchical clustering was performed on the bacterial (row) and fungal (column)
communities independently. The six clusters on each axis signify the microbes that
commonly appear with the same correlations across the community. Strong negative
correlations (-1) are red, while strong positive correlations (1) are white.
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Figure a.21: Correlations between 16S V4-V5 and ITS2 for Spring at depth
7.5. Hierarchical clustering was performed on the bacterial (vertical axis) and fungal
(horizontal axis) communities independently. The six clusters on each axis signify the
microbes that commonly appear with the same correlations across the community.
Strong negative correlations (-1) are red, while strong positive correlations (1) are
white.
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Figure a.22: Correlations between 16S V4-V5 and ITS2 for Spring at depth
15. Hierarchical clustering was performed on the bacterial (vertical axis) and fungal
(horizontal axis) communities independently. The six clusters on each axis signify the
microbes that commonly appear with the same correlations across the community.
Strong negative correlations (-1) are red, while strong positive correlations (1) are
white.
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