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Abstract

In this thesis, we study some topics in Microlocal Analysis and its applications to Imaging.

In particular, the applications are singularity and analysis of artifacts for a class of weighted

filtered back projection operators.

The organization of this thesis is as following:

• In Chapter 1, we review some basic notions and properties of classical Functional

Analysis.

• In Chapter 2, we present the classical theory of Pseudodifferential Operators and some

Symbolic calculus tools.

• In Chapter 3, we consider the problem about artifacts in weighted filtered back pro-

jection operators.
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CHAPTER 1

Preliminaries on classical distribution theory and

wavefront sets

1.1 Introduction

This chapter is devoted to introduce some basic notion about the Functional analysis and

the concept of wavefront sets. A good reference for this topic is [4] and [5]. Most of the

concepts and proofs in this chapters follows from [4] and [5] with some slight modifications.

1.2 Topologies on some test function spaces

In this section we will briefly define the topologies in some test function spaces: the space

of smooth functions, the space of smooth-compactly supported functions and the space of

tempered test functions. Through out this section, we will use U to denote an open set in

Rn, C∞ (U) to denote the space of all smooth function on U and C∞0 (U) to denote the space

of all smooth compactly supported functions in U .

The classical distribution theory deals with three function spaces(which will be defined

shortly): C∞(Ω)(or E(Ω)), S(Rn) and C∞0 (Ω)(or D(Ω)).

Definition 1 (Topology on C∞ (U)). Let K be a compact subset of U and let {pK,n} be

a family of seminorms defined by pK,n(f) = sup
x∈K,|α|≤n

|Dαf(x)|. Take a countable family of

compact sets Ki such that U =
∞⋃
i=1

Ki and Ki ⊂ int(Ki+1) then the topology on C∞ (U) is

defined as the topology generated by the family
{
pKi,nj

}
where i, j runs over all N

Remark 2. A few observations on the space C∞ (U) equipped with the above topology:

1. Since the above family of seminorms is countable, C∞(U) is a locally convex TVS and

metrizable.
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2. This space is not normable since there exists an unbounded neighborhood of 0 . More-

over, this space is not reflexive.

A similar function space that we will encounter frequently is the space of tempered function,

the smooth functions that decay faster than any polynomial:

Definition 3 (The space S (Rn)). Let f be a smooth function in Rn, we say that f is

a tempered test function if it decays faster than any polynomial of positive degree, i.e

sup
x∈Rn

∣∣xαDβf(x)
∣∣ <∞ for any multi indexes α, β. The space that consists of all tempered

test functions on Rn will be denoted by S (Rn).

The topology on this space can be defined in a similar way as C∞ (U):

Definition 4 (Topology on S (Rn)). Let qα,β (f) = sup
x∈Rn

∣∣xαDβf(x)
∣∣. The topology on

S (Rn) is defined as the locally convex topology generated by the family of seminorms qα,β

where α, β runs through all possible indexes.

Remark 5. All the properties from Remark 2 apply to S (Rn) with the above topology.

Next, we define the topology on the most important function space: C∞0 (U). This space

is completely different from the above two spaces and has some interesting properties. Before

defining the topology on this space, we need to define the topology on appropriate family of

subspaces:

Definition 6. Let C∞K (U) be the space of all smooth functions with support lies inside K.

We define the topology on C∞K (U) as the locally convex , metrizable topology generated by

the family of semi norms pK,n(f) = sup
x∈K,|α|≤n

|Dαf(x)|.

We are now ready to define the topology on the space of all smooth, compactly supported

functions:

Definition 7 (Topology on C∞0 (U)). Let Ki be a sequence of compact subset of U such

that Ki ⊂ int (Ki+1) and U =
∞⋃
i=1

Ki . We define the topology on C∞0 (U) as the inductive
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limit topology of the sequence of subspace C∞Ki(U), i.e the coarsest locally convex topology

such that the embedding i : C∞Kn (U)→ C∞0 (U) is continuous for all n.

Remark 8. The space C∞0 (U) equipped with the topology above has some remarkable prop-

erties:

1. This space is not normable or metrizable due to the properties of inductive limit topol-

ogy.

2. Although it is not normable or metrizable, its dual space can be characterized by the

convergence in sequence as we will see in the next section.

3. A set is bounded in C∞0 iff it is contained in some subspace C∞Ki(U) and bounded in

that subspace.

1.3 Relation between different types of distributions, continuity

and support

1.3.1 Characterization of continuity, relations between three types

of distributions

Distributions are simply the dual spaces of test functions space. We have three types of

distribution corresponding to three function spaces in Section 1.2. Before introducing the

space of distributions, let us recall a useful fact from Functional Analysis:

Lemma 9. Let X, Y be two locally convex TVS. Suppose that the topology on X is generated

by the family of seminorm {pα} and the topology on Y is generated by the family of seminorm

{qβ}. If T : X → Y is a linear mapping, then T is continuous iff:

∀qβ,∃p1, p2, ..., pn : qβ (Tx) ≤ C

n∑
i=1

pi(x).
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Proof. Assume that T is continuous, then for every β, qβ ◦ T is continuous as a mapping

from X to R. So there exist a neighborhood U of 0 in X such that qβ (Tx) < 1 whenever

x ∈ U . WLOG, we can assume that U has the form U = {x : pi(x) < ε, i = 1, 2, ..., n}. From

this we have the property:

∀i = 1, 2, ..., n, pi(x) < ε =⇒ qβ(Tx) < 1.

For each x, let x′ =
εx∑n

i=1 pi(x)
, we have pi(x

′) < ε for all i = 1, 2, ..., n and the above

property give us:

qβ(Tx′) < 1⇐⇒ qβ (Tx) ≤ 1

ε

n∑
i=1

pi(x).

The other direction is obvious and hence the proof is complete.

The above lemma give us the following definition of distribution:

Theorem 10. Let D
′
(Ω), E ′(Ω), S

′
(Rn) be the distributions space associated with C∞0 (U),

C∞(U) and S (Rn), then we have:

1. T ∈ D
′
(Ω) iff for every compact subset K ⊂ U , there exists a constant CK and a

number n such that for all f ∈ C∞0 (U) and supp(f) ⊂ K, we have:

|T (f)| ≤ CK sup
x∈K,|α|≤n

|Dαf(x)|.

2. T ∈ E ′ (Ω) iff there exists a constant C , a compact subset K and a number nsuch that

for every f ∈ C∞ (U) we have:

|T (f)| ≤ CK sup
x∈K,|α|≤n

|Dαf(x)|.
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3. T ∈ S (Rn) iff there exists a constant C and a number n such that for every tempered

test function f , we have:

|T (f)| ≤ C sup
x∈Rn,|α|+|β|≤n

∣∣xαDβf(x)
∣∣.

Proof. This follows directly from Lemma 9.

Moreover, distributions can also be characterized as convergent in test sequence space:

Theorem 11. With the same notations as previous theorems, we have:

1. T ∈ D′ (Ω) iff for every sequence of test functions φn and φ such that φn → φ in C∞0 (U)

(this is understood in the sense that there exists a fixed compact set K containing all

the support of φ and φi and φn → φ in C∞K (U)) we have T (φn)→ T (φ).

2. T ∈ E ′ (Ω) iff for every sequence of smooth functions φn, φ in C∞ (U) such that φn → φ

(convergent in the metric of C∞ (U)), we have T (φn)→ T (φ).

3. T ∈ S ′ (Rn) iff for every sequence of tempered test functions φn, φ in S (Rn) such that

φn → φ (convergent in the metric of S (Rn) ), we have T (φn)→ T (φ).

Proof. The second and the third statement is obvious since these two spaces are metrizable.

We only need to prove the first one.

Assume that φn → φ in C∞0 (U) and the conclusion fails then we can find a compact set

K such that for every n, there exists a test function φn supported inside K such that:

|T (φn)| > n sup
x∈K,|α|≤n

|Dαφn(x)|.

Put φ
′

n(x) =
1

n

φn(x)

supx∈K,|α|≤n |Dαφn(x)|
then we have

∣∣T (φ′n)∣∣ > 1 and φ
′
n → 0 in C∞0 (U)

which is a contradiction.

The converse part is trivial and hence the proof is complete.



6

Remark 12. From Theorem 11 above, we can see that:

• A tempered distribution is a distribution in D
′
(U) since the convergent of sequences

in C∞0 (U) implies the convergent of sequences in S (Rn).

• A distribution in E ′ (U) is a tempered distribution (and hence a distribution in D
′
(U))

for the same reason.

1.3.2 Support of distributions, distributions of finite order

Definition 13 (Support of distributions). We say that a distribution T is equal to 0 in

an open set Ω if T (φ) = 0 for all test functions φ supported inside Ω. The support of T is

the complement of largest open set where T vanishes there.

We can see that this definition makes sense since if T vanishes on a family of open sets

Ωi then T vanishes in the union of Ωi. This can easily be seen by taking a partition of unity

for a given test function supported inside the union of Ωi. Also, from the definition of E ′(U),

it follows that each element in E ′(U) must have compact support .

Definition 14 (Distributions of finite order). We say that a distribution T has finite

order n if nis the smallest number such that the following continuity estimate holds uniformly

in very compact subset K of U :

|T (f)| ≤ CK sup
x∈K,|α|≤n

|Dαf(x)|.

We see immediately that tempered distributions and compactly supported are of finite

order.

1.4 Differentiation, multiplication and Fourier transforms

In this section, we define the differentiation of a distribution (by integrating by parts), the

multiplication and the fourier transform for tempered distributions by duality. The fourier
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transform only makes sense for S
′
(Rn) and E ′(U) since the fourier transform of a compactly

supported function does not have compact support unless it is 0.

Definition 15 (Differentiation of distributions). Let α be a multi-index and T be a

distribution, we define the differentiation of T , DαT by:

DαT (φ) = (−1)|α| T (Dαφ).

This definition obviously makes sense since it defines a distribution with |α| order higher

than the original distribution (on each compact subset).

The multiplication of a smooth function and a distribution can be defined in a similar

way:

Definition 16 (Multiplication with a smooth function). Let f be a smooth function

and T be a distribution in either E ′(U) or D
′
(U) then we can define the multiplication fT

as:

fT (φ) = T (fφ).

Next we define the fourier transform for tempered distributions. Before doing so, we need

a technical lemma:

Lemma 17. The Fourier transform, denoted by F is a linear isomorphism from S(Rn) to

itself and preserve the L2-norm.

Proof. The preservability of L2-norm is trivial. Moreover, F is injective by the fourier

inversion formula. We only need to verify the continuity

Let us first verify that F(f) is a tempered test function of f is a tempered test function.
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The smoothness of F(f) is obvious, we need to verify the decay property:

sup
ε∈Rn
|εαF(f)(ε)| = sup

ε∈Rn

∣∣∣∣∣∣
∫
Rn

e−ixεDαf(x)dx

∣∣∣∣∣∣
≤
∫
Rn

|Dαf(x)| dx <∞.

So the fourier transform maps S(Rn) to itself . Now we will verify the continuity

Let fn ∈ S (Rn) and fn → 0 in S (Rn), we will show that F(fn)→ 0. Using the estimate

above, we have:

sup
ε∈Rn
|εαF(fn)(ε)| ≤

∫
Rn

|Dαfn(x)| dx

≤ sup
x∈Rn

∣∣(1 + |x|2n)Dαfn(x)
∣∣ ∫
Rn

1

1 + |x|2n
dx

≤C sup
x∈Rn

∣∣(1 + |x|2n)Dαfn(x)
∣∣ .

Since fn → 0 in S (Rn), supx∈Rn |(1 + |x|2n)Dαfn(x)| → 0 and hence the continuity is

proved. The proof is complete.

From this lemma, we can define the fourier transform of a tempered distribution:

Definition 18 (Fourier transform of tempered distributions). Let T be a tempered

distribution, we define F(T ), the fourier transform of T by duality:

F(T )(φ) = T (Fφ).

This definition makes sense since F maps the space of tempered distributions continuously

into itself. Moreover, all the calculus rules of fourier transform apply to the fourier transform

as we state in the next theorem (without giving proofs):
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Theorem 19. Let T be a tempered distribution, then we have:

1. F (DαT ) = (ix)αF(T ).

2. F ((ix)αT ) = Dα (F(T )).

A special case that we will use a lot during the study of singularities is the fourier transform

of a compactly supported distribution. Indeed, its fourier transform are smooth functions

which grow like polynomials. We have the following theorem:

Theorem 20. Let T be a compactly supported distribution then F (T ) is actually generated

by a smooth function gwhich grows like a polynomial:

|g(ε)| ≤ C(1 + |ε|)N .

Ofcourse, by “generated” we mean F(T ) (φ) =
∫
gφ for all test function φ.

Proof. Let f be a smooth compactly supported function that is identically 1 on a neighbor-

hood of the support of T . Let g(ε) = T (eixεf(x)) (T acts on the function of x)

• We first prove that g is a smooth function. We have:

g(ε+ hei)− g(ε)

h
= T

(
eix(ε+he1)f(x)− eixεf(x)

h

)
.

Fix an ε, it suffices to prove that
eix(ε+he1)f(x)− eixεf(x)

h
converges to eixεx1f(x) in C∞0 (Rn)

when h→ 0. Put P (x, ε) = eixεf(x) then we have:

∣∣∣∣P (x, ε+ he1)− P (x, ε)

h
− ∂P

∂ε1
(x, ε)

∣∣∣∣ ≤
1∫

0

∣∣∣∣∂P∂ε1 (x, ε+ hte1)− ∂P

∂ε1
(x, ε)

∣∣∣∣ dt
≤ C|h| sup

x∈Rn,|α|≤2

|Dα
ε P (x, ε)| .
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The last term tends to 0 as h→ 0 since we have sup
x∈Rn,|α|≤2

|Dα
ε P (x, ε)| = sup

x∈Rn,|α|≤2

|xαf(x)| <∞.

Using the same argument we can show that all derivatives of P (x,ε+he1)−P (x,ε)
h

converges

uniformly to the corresponding derivatives of ∂P
∂ε1

(x, ε) and hence P (x,ε+he1)−P (x,ε)
h

converges

to ∂P
∂ε1

(x, ε) in C∞0 (Rn).

Combining together, we have:

g(ε+ hei)− g(ε)

h
= T

(
eix(ε+he1)f(x)− eixεf(x)

h

)
→ T

(
eixεx1f(x)

)
.

So gis a smooth function.

• Now we prove the growth rate of g. We have:

|g(ε)| ≤ C
∑
|α|≤n

|Dα(eixεf(x))| ≤ C(1 + |ε|)2n.

• Finally we prove that F(T ) is generated by g which means:

F(T )(φ) =

∫
Rn

g(y)φ(y)dy.

Fix a test function φ with compact support, choose a family of open ball Bi, i = 1, 2, ..., n

that covers the support of φ, the LHS can be written as the following Riemann sum:

∫
Rn

g(y)φ(y)dx = lim
n→∞

lim
µ(Bi)→0

n∑
i=1

µ(Bi)φ(yi)T
(
e−iyixf(x)

)
= lim
n→∞

lim
µ(Bi)→0

n∑
i=1

T
(
µ(Bi)e

−iyixφ(yi)f(x)
)

=T (fFφ) = T (Fφ) .

Since C∞0 (Rn) is dense in S (Rn), we conclude that the equality above holds for every

tempered test function and the proof is complete
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1.5 Tensor product of distributions and the Schwartz kernel the-

orem

In this section, we define the tensor product and derive the Schwartz kernel theorem on the

linear operators between distribution spaces. We will just give the main ideas of the proof

and skip some technical parts. Let us begin with a useful lemma:

Lemma 21. Let U ⊂ Rm and V ⊂ Rn be open sets then the linear space spanned by

C∞0 (U)⊗C∞0 (V ) is a dense subspace of C∞0 (U×V ) with respect to the topology on C∞0 (U×V )

Proof. Let f ∈ C∞0 (U × V ). We will approximate f in 2 steps:

1. We will approximate f(x, y) in C∞. Consider the function k(x, y) = 1
c
e−|x|

2−|y|2 where

c is chosen such that : ∫ ∫
e−|x|

2−|y|2

c
dxdy = 1.

Put kε(x, y) = 1
εm+nk( x

εm
, y
εn

)Consider the convolution :

gε(u, v) = [kε ∗ f ](u, v).

Standard Real Analysis give us that gε and all of its derivative converges uniformly to

f and its corresponding derivative on every compact set.

Now we approximate gε by linear combination of tensor product of test functions by

using Taylor polynomials:

ex =
∞∑
i=1

xi

i!
.

Fix u, v. Write kε(u − x, v − y) as the sum the Taylor’s polynomial in u, v and note

that f has compact support and the Taylor seris converges in every compact set, we

can find a sequence of polynomials in u, v: gεn,n(u, v) such that it converges to f(u, v)

in C∞.
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2. Let K be the support of f . Let KU and KV be the projection of K to U, V .

Choose test functions χU ∈ C∞0 (U) equal to 1 on a neighborhood of KU and χV ∈

C∞0 (V ) equal to 1 on a neighborhood of KV then the following sequence converges to

f in C∞0 (U × V ):

pn(u, v) = χU ⊗ χV gεn,n(u, v).

The proof is complete.

With Lemma 21 above, we can now define the tensor product of two distributions:

Definition 22. Let T ∈ D
′
(U) and S ∈ D

′
(V ) be distributions. We define the tensor

product of T and S as:

T ⊗ S(u⊗ v) = T (u)S(v).

for all test functions u ∈ D′(U) and v ∈ D′(V ).

The definition is well-defined since the the linear space spanned by C∞0 (U) ⊗ C∞0 (V ) is

a dense subspace of C∞0 (U × V ) with respect to the topology on C∞0 (U × V ).

Now we introduce an important theorem that we will use a lot during the next three chapters:

the Schwartz kernel theorem.

Theorem 23. Let T : C∞0 (U) → D
′
(V ) be a continuous linear operator then there exists a

unique distribution on the product space A ∈ D′(U × V ) such that:

Tu(v) = A(u⊗ v).

Remark 24. The converse statement also holds but it is trivial so we do not include it in the

statement of the theorem.

Proof. • We first prove the existence part. The main idea is to define A by the density

of the tensor product of functions and then prove that A is continuous. We need
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to be careful with the density argument since A is not yet continuous. Choose two

sequence of increasing compact sets Ki ⊂ U and Li ⊂ V such that Ki ⊂ int(Ki+1) and

Li ⊂ int(Li+1) and the union of Ki and Vi cover U and V respectively. We will define

A on C∞Ki×Li(U × V ).

Before defining A, we need an estimate on A. Consider the following bilinear mapping:

Bi(u, v) = Tu(v) on C∞Ki×Li(U × V ).

Since T : C∞0 (U)→ D
′
(V ) is continuous, the two component linear maps u→ B(u, v)

and v → B(u, v) is continuous and hence By Banach Steinhauss’s theorem for Frechet

space, we have the following estimate for some n:

|Bi(u, v)| ≤ C sup
x∈Ki,|α|≤n

|Dαu| sup
x∈Li,|α|≤n

|Dαv| ≤ C sup
x∈Ki×Li,|α|≤n

|Dα(u⊗ v)|.

So we conclude that |Bi(u, v)| ≤ C supx∈Ki×Li,|α|≤n |D
α(u⊗ v)|.

Now on C∞Ki×Li(U × V ) we define A by:

A(f) = lim
n→∞

Bi+1(un ⊗ vn).

where un ∈ C∞0 (int(Ki+1)) and vn ∈ C∞0 (int(Li+1)) and un ⊗ vn → f in

C∞0 (int(Ki+1)× int(Li+1))).

From the construction, A is continuous on each C∞Ki×Li(U × V ) and well-defined ( this

follows from the estimate we establish above, it forces the value of A coincides whenever

two Cauchy net converges to the same limit).

• The uniqueness is obvious by the density of the linear space spanned by tensor product

of test functions. The proof is complete.
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1.6 Convolution of distributions

In this section, we define the convolution of two distributions. Our construction is based on

the tensor product of two distributions. More precisely, we have:

Definition 25. Let T, S be distributions on an open set Ω and assume that at least one of

them has compact support, we define their convolution as:

T ∗ S(φ) = T ⊗ S(φ(x+ y)).

This definition is fully compatible with the convolution of functions as we have:

∫
f ∗ g(x)φ(x)dx =

∫ ∫
f(x)g(y)φ(x+ y)dxdy.

We need either T or S to have compact support so that the tensor product makes sense. A

special case that we will encounter a lot later on is the following identity:

T = δ ∗ T.

The identity above is true for all distributions T . All of the properties of convolutions hold

for the convolutions of two distributions:

Theorem 26. Let Let T, S be distributions on an open set Ω and assume that at least one

of them has compact support the we have:

1. supp(T ∗ S) ⊂ supp(T ) + supp(S).

2. Dα(T ∗ S) = DαT ∗ S = T ∗DαS.
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3. If T ( or similarly S) generated by a test function g the the convolution is also genrated

by a smooth function:

T ∗ S(x) = S(g(x− y)).

4. If g is a test function then :

T̂ ∗ g = ĝT̂ .

Proof. All the claims follows from definitions of convolution.

1.7 Local structures of distributions

In this section, we discuss two special structures of distributions:

• Locally on every compact set, distributions are genrated by integrable functions and

the more we integrate it, the smoother function we have.

• If a distribution is supported at a point then it is the linear combination of the deriva-

tives of dirac delta functions.

1.7.1 Local structures on precompact neighborhoods

Theorem 27. Let T ∈ D′(Ω) and K ⊂ U be a compact subset then there exists integrable

functions uα, |α| ≤ m such that for all test functions φ supported in K

T (φ) =
∑
|α|≤m

∫
uαD

αφdx.

Proof. There are two common approaches for this theorem

• For the first proof, since we are interested in a compact subset K, we can assume that

T has compact support. This can easily be seen by taking a smooth cut off function
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which is identically 1 on a neighborhood of K and vanish outside a larger open set.

Consider the dirac delta distribution δ. If we integrate it n times in each variables (

with n large enough) then we get a sufficiently smooth function un such that δ = Dnu.

The convolution identity of δ then give us:

T = δ ∗ T = Dnu ∗ T = Dn(un ∗ T ).

Due to the compactness of support, T is of finite order m, so if n ≥ m + 2 then

Dn(un ∗ T ) is a continuous function and hence the first proof is complete.

• The second proof makes use of the Riesz Representation theorem for Hilbert spaces.

As in the first proof, we can assume that the support of T is compact. First of all, we

claim that the family of seminorm pn,K(f) =
∣∣supx∈K,|α|≤n f(x)

∣∣ is equivalent to the

following family of seminorms:

qn,K(f) =
∑
|α|≤n

∫
K

|Dαf(x)|2 dx.

It’s obvious that qn,K(f) ≤ Cpn,K(f) and we need to bound the L∞ norm of the

derivative by the L2 norm. This can done by a similar argument with the 1-dimensional

estimate: ∣∣∣f ′(x)
∣∣∣ =

∣∣∣∣∣∣
x∫

−∞

f
′′
(t)dt

∣∣∣∣∣∣ ≤ C||f ′′||L2 .

where C is a constant depends only on the support of f .

So the two family of semi norms are equivalent and hence T can be extended to a

continuous linear functional on the sobolev space Hm(Ω) and hence the Riesz Repre-

sentation theorem for Hilbert spaces give us:

T (φ) =
∑
|α|≤m

∫
uαD

αφdx.
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The proof is complete.

1.7.2 Distributions supported at a point

Theorem 28. Let T be a distribution supported at the origin then T has the following

representatiion:

T =
∑
|α|≤n

Dαδ.

where δ is the dirac delta distribution.

Proof. We will give a proof for 1-dimensional case. The proof for higher dimension is entirely

similar.

1. We claim that there exist a number n sucth that if f is a test function and Dαf = 0

for every α ≤ n then T (f) = 0.

Since T has compact support, it has finite order, say n. Choose a test function f

supported in (−1, 1), equal to 1 in a smaller neighborhood around 0 and consider the

fε = f(x
ε
), then for every test function φ such that the derivative at 0 vanish up to

order n, we have:

|T (φ)| = T (fεφ)| ≤ C
∑
k≤n

∣∣∣∣sup
x
Dk(fε(x)φ(x)

∣∣∣∣ .
For a k ≤ n, we have:

∣∣Dk(fε(x)φ(x)
∣∣ ≤ k∑

i=1

∣∣∣∣ 1

εi
Dif(

x

ε
)Dk−iφ(x)

∣∣∣∣ .
On the other hand, Taylor’s formula give us:

|Dk−iφ(x)| ≤ εn+1−k+i sup
x
|Dn+1φ(x)|.
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Combine all the estimate corresponding to k, we have:

|T (φ)| = |T (fεφ)| ≤ Cε.

Let ε→ 0, we have T (φ) = 0 and hence the claim is proved.

2. Now we use a well known lemma in linear algebra: if fi and f are linear functionals

on a vector space X and Kerf ⊂
⋂n
i=1Kerfi then f =

∑n
i=1 aifi.

Apply the above lemma to this case we conclude that

T =
∑
α≤n

Dαδ.

1.8 Singular support and wavefront set of distributions

In this section, we define the singular support and then the wavefront set of distributions

and summarize some of its elementary properties. The wavefront set is a generalized concept

of the singular support as it shows both the location and the direction of the singularites.

This is also the notion of singularities in imaging which we will analyze in the next chapter.

Definition 29 (Singular support of a distribution). Let T be a distrubtion. We say

that T is smooth in a neighborhood V if there exists a smooth function f so that for all test

function φ supported in V :

T (φ) =

∫
fφ.

The completment of the largest open set V so that T is smooth in V is defined to be the

singular support of u, denoted by singsuppT .

This definition makes sense since if T is smooth in a Vi then by choosing a partition of

unity we can prove that T is smooth in
⋃
i Vi.
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As a generalization of the singular support, we have the following defintion of wavefront sets:

Definition 30 (Wavefront set of a distribution). Let u be a dsitribution. We say that

(x, ε) is not in the wavefront set of x, if there exists a conical neighborhood V of ε and a test

function φ which does not vanish at x such that for every n, the following estimate holds for

ε ∈ V :

|φ̂u(ε)| ≤ Cn(1 + |ε|)−n.

We denote the wavefront set of u by WF (u), the complement of all (x, ε) with the above

property.

This definition is equivalent to say that: in order to determine the wavefront set of a

distribution at a point, we localize the distribution at a point by mutiplying a test function

which does not vanish at that point, then eliminate all the direction such that the fourier

transform decays (this is called the ”regular directions”). We next squeeze the support

of the test function to that point and the remaining direction (which are called ”singular

directions”) are the wavefront sets.

Note that this definition is independent of the choice of the test function. More precisely,

we have:

Theorem 31. Let u be a distribution then (x, ε) /∈ WF (u) if and only if there exists a

neighborhood of U of x and a conical neighborhood V of ε such that for every n, the following

estimate holds for every test function φ supported in U and ε ∈ V :

|φ̂u(ε)| ≤ Cn,φ(1 + |ε|)−n.

Proof. 1. If (x, ε) satisfies the property stated in the theorem then obviously (x, ε) is not

in WF (u).

2. For the other direction, let us take (x, ε) /∈ WF (u). By definition, we can choose a

conical neighborhood V of ε and test function φ which does not vanish near x so that
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|φ̂u(ε)| satisfies the decay property. Let U be an open ball near x such that φ does not

vanish in U . Consider another test function φ1 supported inside U , we have:

φ̂1u(ε) =
φ̂1

φ
∗ φ̂u(ε).

Put f = φ1
φ

, we can treat f like a test function since suppφ1 ⊂ suppφ. Now we have:

|φ̂1u(ε)| ≤
∫
|f̂(y)||φ̂u(ε− y)|dy.

We divide the integral into two parts: on V and on Rn \ V .

On V , we have the following estimate:

∫
V

|f̂(y)||φ̂u(ε− y)|dy ≤ CN

∫
Rn

1

(1 + |ε|)2N(1 + |ε− y|)2N
dy ≤ CN

(1 + |ε|)N
.

The estimate above is true since f̂ decays in Rn and φ̂u decays in V .

For the integral on Rn \V , we will squeeze V to have an estimate of the form |ε− y| ≥

C(|ε| + |y|). To see it, let V
′

be a smaller conical neighborhood around ε of V , then

tsmallest angle form by any vectors ε ∈ V ′ and y ∈ Rn \ V ′ is strictly greater than 0

and hence we have an estimate of the form |ε − y| ≥ C(|ε| + |y|) for any ε ∈ V ′ and

y ∈ Rn \ V ′ .

The estimate above give us:

∫
Rn\V ′

|f̂(y)||φ̂u(ε− y)|dy ≤
∫
Rn

(1 + |y|)m

(1 + C(|ε|+ |y|))n
dy ≤ CN

(1 + |ε|)N
.

Combining this with the first estimate in V we have the desired result. The proof is

complete.

We have some properties of the wavefront set:
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1. The projection of the wavefront set to the x-coordinate is precisely the singular support.

• To see this, let x /∈ singsuppT , we can choose a smooth cut off function f sup-

ported near x so that fT is a generated by a test function. Since the fourier

transform of a test function decays in every direction, we have (x, ε) /∈ WF (T )

for any ε.

• Conversely, if (x, ε) /∈ WF (T ) for every ε, then for every ε we can find a test

function fε non-vanish at x and the fourier transform of fεT decays in a conical

neighborhood of ε, say Vε. Since the sphere is compact, we can find a finite

numbers of Vεi , i = 1, 2..., n such that their union cover the sphere and hence the

the fourier transform of T
n∏
i=1

fεi decays in Rn. By fourier inversion formula, T is

smooth around x and hence x /∈ singsuppT .

2. From definition, we have WF (f + g) ⊂ WF (f)
⋃
WF (g).

3. Let Ω be an open set with smooth boundary and denote nx by the unit normal vector

then we have:

WF (χΩ) ⊂ {(x, tnx) : x ∈ ∂(Ω), t ∈ R} .
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CHAPTER 2

Pseudodifferential operators and the calculus of

wavefront sets

2.1 Introduction

In this chapter, we define the pseudodifferential operators with smooth symbols and

introduce some basic result about Fourier Integral Operators. These result will be used

in the study of artifacts generated in imaging in the next chapter. The symbol classes we

consider is the standard Hormander’s symbol classes and the class of classical symbols. Some

good reference for this topic are [2] and [3].

2.2 Oscillatory integrals and the method of stationary phases

In this section, we introduce the definition and some basic results about Oscillatory Integrals.

The main idea is the phase function eiφ oscillates a lot and hence creates a lot of cancellation

which makes the integral of the form
∫
eiφ(x,λ)a(x, λ) finite. An important result in this

section is the wavefront set generated by an oscillatory integrals.

2.2.1 Symbols, Phase functions and Oscillatory integrals

Definition 32 (The class Smρ,δ). Let X be an open set in Rn, m ∈ R and 0 ≤ δ < ρ ≤ 1.

Let a(x, λ) ∈ C∞(X × Rn) such that for every compact subset K ⊂ X and multi indexes

α, β the following estimate holds:

|Dα
xD

β
λa(x, λ)| ≤ CK,α,β(1 + |λ|)m−ρ|β|+δ|α|.
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Then we say that the symbol a(x, λ) belongs to the class Smρ,δ. We say that the symbol is of

class S−∞ if the estimate above holds for every m ∈ R.

We do not consider the case in which either ρ > 1 or δ < 0 since these properties

imply that the symbol is indeed in S−∞. A useful approximation that we will use later

on is the following: φ is a test function that equal 1 in a neighborhood of the origin and

aε(x, λ) = φ(ελ)a(x, λ). We see that aε is a S−∞ symbol and aε → a in the sense that for

all multi indexes α, β, and for all compact subset K ⊂ Xwe have:

lim
ε→0

(
sup

x∈K,λ∈Rn
(1 + |λ|)m−ρ|β|+δ|α||Dα

xD
β
λ(aε − a)|

)
= 0.

Next, we define the phase functions of an oscillatory integral:

Definition 33 (Phase functions). A smooth function φ(x, λ) ∈ C∞(X ×Rn \ {0}) is said

to be a phase function if it has the following properties:

• φ is homogeneous of degree 1 in λ, i.e φ(x, tλ) = tφ(x, λ).

• The gradient dx,λφ is nonzero.

With these definitions, we can now give the definition of an oscillatory integral by the

following the theorem:

Theorem 34 (Oscillatory Integrals). The following oscillatory integral make sense as a

distribution in D
′
(X):

Ia,φ(u) =

∫
X×Rn

eiφ(x,λ)a(x, λ)u(x)dxdλ.

Moreover we can obtain an formal representation by choosing a test function f equals to 1

in a neighborhood of the origin:

Ia,φ(u) = lim
ε→0

∫
X×Rn

eiφ(x,λ)f(ελ)a(x, λ)u(x)dxdλ.
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Proof. 1. We claim that it’s possible to choose a linear differential operator L = ai(x, λ) ∂
∂xi

+

bj(x, λ) ∂
∂λj

+ c(x, λ) so that a, c ∈ S−1
1,0 , b ∈ S0

1,0 and the formal adjoint Lt ( defined by

integrating by parts) satisfies Lteiφ = eiφ.

Note that we have d
dxi
eiφ = eiφφxi and d

dλj
eiφ = eiφφλj , so we have:

(
∑
i

φλi |λ|2 +
∑
j

φxj)e
iφ = (

∑
i

|φxi |2 +
∑
j

|λ|2|φλj |2)eiφ.

Since the phase function φ has a singularity at 0, we will get rid of this singularity

by using a smooth cut off function at 0. Let χ be a test function that equal to1 in a

neighborhood of the origin, and put ψ =
∑

j |λ|2φ2
λj

+
∑

i φ
2
xi

we have:

(
∑
j

|λ|2 (1− χ)

ψ
φλj +

∑
i

(1− χ)

ψ
φxi + χ)eiφ = eiφ.

This equality give us a choice for the tranpose Lt as:

ai(x, λ) =
(1− χ)

ψ
φxi , bj(x, λ) = |λ|2 (1− χ)

ψ
φλj , c = χ.

From this, it is easy to verify that the coeficients of L have the desired properties.

2. Now put Iε(u) =

∫
X×Rn

eiφ(x,λ)f(ελ)a(x, λ)u(x)dxdλ for some test function f equals to

1 in a neighborhood of the origin. Applying the operator L repeatedly k times, we

have:

Iε(u) =

∫
X×Rn

eiφ(x,λ)Lk(f(ελ)a(x, λ)u(x))dxdλ.

For k large enough, the integral converges to the following limit as ε→ 0:

∫
X×Rn

eiφ(x,λ)Lk(a(x, λ)u(x))dxdλ.

Note that we can also estimate the integral above by derivative of u up to order k for
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k large enough, so the theorem is proved.

2.2.2 Wavefront sets generated by Oscillatory Integrals

We consider the following important result regarding the wavefront set of an oscillatory

integral:

Theorem 35 (Wavefront sets generated by Oscillatory Integrals). Let a ∈ Smρ,δ(X ×

Rn). Consider the distribution generated by the following oscillatory integral:

I(u) =

∫
X×Rn

eiφ(x,λ)a(x, λ)u(x)dxdλ.

Then we have WF (I) ⊂ {(x, φx(x, λ)) : φλ(x, λ) = 0}.

Proof. 1. Put Cφ = {(x, ε) : φλ(x, ε) = 0}. Obviously, Cφ is a closed cone, let C be the

projection of Cφ to the x-coordinate. We will prove that singsupp(I) ⊂ C.

Let x0 /∈ C ( which means φλ(x, λ) 6= 0 ∀λ ∈ Rn), we will prove that I is smooth in a

neighborhood of x0.

We will show that the function I(x) =
∫
Rn e

iφ(x,λ)a(x, λ)dλ is defined and smooth in a

neighborhood around x0.

By the compactness of Sn, we can find a neighborhood V around x0 such that φλ(x, λ) 6=

0 for all (x, λ) ∈ V × Rn \ {0}.

Now let χ be a test function that equals to 1 in a neighborhood around the origin, put

ψ =
∑

j |φj|2then consider the linear operator:

L = χ+
∑
j

(1− χ)
φj
ψ

d

dλj
.

Then we have L(eiφ) = eiφ and applying the operator L for large k with a test function
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T equals to 1 in a neighborhood of 0 give us:

I(x) =

∫
Rn

eiφ(x,λ)a(x, λ)dλ

= lim
ε→0

∫
Rn

eiφ(x,λ)a(x, λ)T (ελ)dλ

= lim
ε→0

∫
Rn

eiφ(x,λ)(Lt)k(a(x, λ)T (ελ))dλ

=

∫
Rn

eiφ(x,λ)(Lt)k(a(x, λ))dλ.

For k large enough, we can freely differentiate under the integral sign and hence the

function I(x) is smooth around x0, the claim is proved.

2. Now we prove the assertion about the frequency. Let x0 ∈ C. Using the same argument

as the first part, we see that if the symbol a vanishes in a conical neighborhood of Cφ

then the distribution I is smooth (if there is a point u ∈ C, we just need to modify the

differential operator L smoothly on a conical neighborhood of the frequency set at u)

and hence we can assume that a has support in a small conical neighborhood O of Cφ.

Consider a frequency ε0 /∈ {φx(x0, λ), λ 6= 0},we can choose a conical neighborhood of

U of ε0 that is disjoint from O. The homogenity of the phase function φ give us:

|φx − t| ≥ C(|λ|+ |t|) ∀λ ∈ O, t ∈ U.

Indeed if there exist sequences xn → x0, λn and tn such that |λn| + |tn| = 1 and

|φx(xn, λn) − tn| ≤ 1
n

then either φ(x, λ) = ε or λ = ε = 0 for some ε, λ which is a

contradiction.

Now consider the differential operator:

L =
∑
i

φxi − ti∑
i |φxi − t|2

d

dxi
.
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Since L(eiφ(x,λ)−xt) = ei(φ(x,λ)−xt), applying L to the integral above k-times for a large

enough number k give us:

I(e−ixtu(x)) =

∫
eiφ(x,λ)Lk(a(x, λ)u(x))dxdλ.

The homogenity estimate then give us |I(e−ixtu(x))| ≤ O(t
−k
2 ). The proof is complete.

2.3 Pseudodifferential operators and some calculus rules with sym-

bols

In this section, we define the pseudodifferential operators associated to the symbol class Smρ,δ

and introduce some symbolic calculus rules with symbols. The main purpose of this chapter

is to develope the paramextrix for elliptic pseudodifferential operators with classical symbols

as we will use it in the next chapter.

2.3.1 Pseudodifferential operators and Properly supported pseu-

dodifferential operators

We begin with two definitions of pseudodifferential operators (usual symbols and symbols of

double amplitude). We will see later on that they are equivalent in some sense and under

some certain conditions about supports.

Definition 36 (Pseudodifferential operators). Let a(x, λ) ∈ Smρ,δ(Ω × Rn), We define

the pseudodifferential operator a(x,D) as a continuous mapping:

a(x,D) :D(Ω)→ C∞(Ω),

u(x)→
∫
ei(x−y)λa(x, λ)u(y)dydλ.
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The mapping a(x,D) in the form above is called pseudodifferential operator with symbol

a(x, λ) and by duality, it extends to the following continuous linear operator:

a(x,D) : D
′
(Ω)→ E ′(Ω).

A somewhat more general class of pseudodifferential operators is those with symbols of

double amplitude :

Definition 37 (Double amplitude symbols). Let a(x, y, λ) ∈ Smρ,δ(Ω×Ω×Rn), We define

the pseudodifferential operator a(x,D) as a continuous mapping:

a(x,D) :D(Ω)→ C∞(Ω)

u(x)→
∫
ei(x−y)λa(x, y, λ)u(y)dydλ.

Next we introduce an important topological properties so that it allow us to establish

the equivalent between two definitions in the next section:

Definition 38. Let a(x,D) be a pseudodifferential operator with symbol a. We say that

a(x,D) is a properly supported pseudodifferential operator if the support of the symbols a

in the x, y variables is a proper subset of Ω×Ω, i.e the projection onto x and y coordinates

are proper mappings.

An immediate property of properly supported pseudo differential operators is that it

maps C∞0 (Ω) into C∞0 (Ω) and C∞(Ω) into C∞(Ω). Thus the properly supported property

will allow us to define composition of pseudodifferential operators which is really interesting

to study.

We have the following important property about properly supported pseudodifferential op-

erators:

Theorem 39. Let a(x,D) be any pseudodifferential operator with symbol a(x, y, λ) ∈ Smρ,δ(Ω×

Ω × Rn), then we can write a = a1 + a2 where a1 is a properly supported pseudodifferential
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operator and a2 is a smoothing operator, i.e a linear operator with smooth Schwartz kernel.

Proof. Consider the symbol a, we will decompose it into two part a1 and a2 where suppa1 is

a proper subset of Ω × Ω and a2 vanishes in a neighborhood of the diagonal. The two new

pseudodifferential operator a1(x,D) and a2(x,D) satisfy the desired property.

Indeed, a1(x,D) is properly supported since the support of its symbol a1 is a proper subset.

To see that a2 is a smoothing operator, recall from Section 2.2.2 that the Oscillatory integral∫
ei(x−y)λa2 has singular support equals to the diagonal. Moreover since a2 vanishes around

the diagonal, the singular support is smoothen out and hence it is a smoothing operator.

It is left to prove the decomposition of a. Choose a locally partition of unity in Ω: {φi(x)}.

We define a smooth function f(x, y) by:

f(x, y) =
∑

suppφi
⋂
suppφj 6=∅

φi(x)φj(y).

The support of f is a proper subset since for a fixed compact subset K, the set contains x

such that (x, y) ∈ suppf has to be compact (it is closed and by the locally finiteness of φ, it

has to stay in a fixed compact set). Moreover we have:

1− f(x, y) =
∑

suppφi
⋂
suppφj=∅

φi(x)φj(y).

So 1 − f vanishes on a neighborhood around the origin. Hence we can decompose a =

fa+ (1− f)a and the proof is complete.

2.3.2 Double amplitude representation of pseudodifferential op-

erators

In this section, we prove the relation between the double amplitude pseudodifferential oper-

ators and the usual pseudodifferential operators. More precisely, we have:
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Theorem 40. Let a(x,D) be a properly supported pseudodifferential operator with symbol

a(x, y, λ) ∈ Smρ,δ(Ω× Ω× Rn), then we can rewritten a as a pseudodifferential operator with

symbol b(x, λ) = e−ixλa(x,D)(eixλ). This symbols make sense as a(x,D) maps C∞(Ω) into

C∞(Ω). Moreover we have the asymptotic expansion:

b(x, λ) ∼
∑
α

Dα
yD

α
λa(x, y, λ)|x=y.

The asymptotic expansion is understood in the sense that the difference is in S−mρ,δ

Proof. The theorem is very technical and long so we will just give a formal proof

1. We will derive a formal estimate first. Direct calculation show that:

b(x, λ) =

∫
Ω×Rn

ei(x−y)(λ1−λ)a(x, y, λ1)dydλ1

=

∫
Ω×Rn

e−iyλ1a(x, x+ y, λ+ λ1)dydλ1.

The last equality is the change of variables y → x+ y and λ1 → λ1 + λ.

Now we use the Taylor expansion of a(x, x+ y, λ+ λ1) in λ1:

a(x, x+ y, λ+ λ1) =
∑
|α|≤N

1

α!
λα1D

α
λ1
a(x, x+ y, λ) + rN(x, x+ y, λ, λ1)

Moreover, Fourier’s inversion formula give us:

∫
Ω×Rn

Dα
λ1
a(x, x+ y, λ)λα1 e

−iyλ1dydλ1 = Dα
λD

α
xa(x, x, λ).

The Fourier inversion formula is valid here since a has proper support and the integra-

tion on Ω is actually taken over a compact subset.
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Combining everything together, we arrived at:

|b(x, λ)−
∑
|α|<N

Dα
λD

α
xa(x, x, λ)| ≤ |

∫
Ω×Rn

e−iyλ1rN(x, x+ y, λ, λ1)dydλ1|.

2. We are left with estimating the remaining term in the Taylor’s expansion and this can

be done in many ways, for example one can use the properly support property and

integrating by parts to have the decay of derivatives inside the integrals.

2.3.3 Composition of two pseudodifferential operators

Given two pseudodifferential operators, if one of them is properly supported then the compo-

sition make sense as mappings between distribution spaces. Moreover we have the following

asymptotic property:

Theorem 41. Let a(x,D), b(x,D) be pseudodifferential operators with symbols a, b respec-

tively. Assume that a is a properly supported pseudodifferential operators then we have the

following asymptotic behaviour:

b ◦ a ∼
∑
α

1

α!
Dα
λb(x, λ)Dα

xa(x, λ).

Proof. We will use the double amplitude representation here. Direct calculus give us:

b ◦ a(x,D)u(x) =

∫ ∫ ∫ ∫
ei(x−z)λb(x, λ)ei(z−y)λ1a(z, λ1)u(y)dydλ1dλdz

=

∫ ∫
ei(x−y)λ1c(x, λ1)u(y)dydλ1.

where c(x, λ1) =
∫ ∫

ei(x−z)(λ−λ1)a(x, λ)b(z, λ1)dzdλ.
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By the double amplitude representation, we have:

c(x, λ) ∼
∑
α

1

α!
Dα
λb(x, λ)Dα

xa(x, λ).

The proof is complete.

2.3.4 Ellipticity and Parametrix

In this section, we introduce the class of Elliptic pseudodifferential operators and give

parametrixes for them. Although the results in this section hold for a larger symbol classes,

we mainly focus on the class of classical symbols.

Definition 42. A smooth function a(x, λ) ∈ C∞(Ω×Rn) is said to be a classical symbols if

there exists a sequence mj tending to−∞ so that we can find aj ∈ S
mj
1,0 (Ω×Rn), homogeneous

of degree mj and we have:

a−
n∑
j=1

aj ∈ Smn+1

1,0 (Ω× Rn).

The first term a0 is defined to the principal part of a.

A converse statement also holds: for every sequence mj tending to −∞ and aj ∈ S
mj
ρ,δ (Ω×

Rn), we can find a unique a ( modulo S−∞) so that a ∼
∑∞

j=1 aj. To see this, we smoothly

cut aj ( in the frequency variable) outside the the ball B(0, tj) and let tj grows quickly

enough so that the series
∑∞

j=1 aj makes sense and it follows easily that we have the desired

asymptotic property.

Next we define the ellipticity of classical symbols:

Definition 43 (Elliptic classical symbols). If a is a classical symbol and the principal part

a0 of a satisfies the property a(x0, λ0) 6= 0 at a point (x0, λ0) then we say that the symbol a

is microlocally elliptic around (x0, λ0).
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The pseudodifferential operator a(x,D) associated with a is then said to be microlocally

elliptic at (x0, λ0).

We next introduce an important result of elliptic classical pseudodifferential operators in

a microlocal settings (see also [6]):

Theorem 44. Let a(x,D) be a classical pseudodifferential operators that is microlocally

elliptic around a point (x0, λ0). Then in a conical neighborhood of (x0, λ0) we can find a

pseudodifferential operaotors b(x,D) so that b ◦ a = Id+R where R is a smoothing symbol.

This theorem is understood in the ”microlocal sense”, i.e it’s true in a conical neighborhood

of (x0, λ0).

Proof. 1. We first prove the theorem in the whole space, i.e a is elliptic at every point.

We can assume that a is properly supported since we can write a = a1 + a2 which

a1 properly supported and a2 is a smoothing operator. Now the composition theorem

allows us to calculate the asymptotic expansion of b ◦ a ( assume that we can find such

b):

b ◦ a =
∑
α

1

α!
Dα
x (a0 + a1 + a2 + ...)Dα

λ(b0 + b1 + b2 + ...)

So in order to have b ◦ a = Id+R where R is a smoothing operator, the symbols of b

have to satisfy the system:


a0b0 = 1

a0b1 + a1b0 +
∑n

i=1Dλia0Dxib0 = 0.

....
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So we can find the sequence bi inductively:


b0 = 1

a0

b1 =
−a1b0−

∑n
i=1Dλia0Dxib0

a0

....

The sequence bi defined an asymptotic limit since the homogeneous degree of bi decrease

as i increase.

2. Next we prove the theorem for microlocally elliptic symbols. To do this, we introduce

the conical cut off: let f be a test function that equals to 1 in a small neighborhood of

x0 and let χ be a test function in R such that χ(x) = 1 near 0. Take ε small enough

and consider the following function:

χ1(λ) = χ

(
| λ|λ| −

λ0
|λ0| |

ε

)
.

The function above is homogeneous of degree 1 in λ and supported in a small conical

neighborhood of λ0 when ε small enough.

We can write the symbol a as: a(x, λ) = f(x)χ1(λ)a(x, λ)+(1−f(x)χ1(λ))a(x, λ). By

the choice of f, χ1, the second term is a smoothing operator microlocally near (x0, λ0).

For the first term, we can use the same argument as for the previous part with bi

replaced by f(x)χ1(λ)bi(x, λ).
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2.4 Some calculus rules for wavefront sets

2.4.1 Wavefront set of convolution of distributions

In this section we investigate the wavefront set of the convolution of two distributions. As

we have seen from the construction of the convolution of two distributions, we need at least

one of them to have compact support so that the convolution makes sense. When it does,

we have an upper bound on the wavefront set of the convolution. We will give a direct proof

for this upper bound.

Theorem 45. Let T1, T2 be two distribution and assume that at least one of them has compact

support. We have the following bound for the wavefront set of T1 ∗ T2:

WF (T1 ∗ T2) ⊂ {(x+ y, ε) : (x, ε) ∈ WF (T1), (y, ε) ∈ WF (T2)} .

Proof. WLOG, we can assume that both Ti has compact support. Indeed, let T1 be the distri-

bution with compact support and consider a point z ∈ singsupp(T1)+singsupp(T2). Let f be

a cut-off function that is equal to 1 on a neighborhood of (z−singsupp(T2))
⋂
singsupp(T1).

Then we can write:

T1 ∗ T2 = T1 ∗ (fT2) + T1 ∗ [(1− f)T2].

The first term is the convolution of two compactly supported distributions and the second

term is smooth a way from z, so the behavior of the singularities at z depends completely

on the first term, which is the convolution of two compactly supported distributions.

Now let us consider a point z ∈ singsupp(T1) + singsupp(T2) and a frequency ε such that

whenever z = x + y then we have (x, ε) /∈ WF (T1) or (x, ε) /∈ WF (T2). We will show that

(z, ε) /∈ WF (T1 ∗ T2).

By the property of z above, for every x ∈ supp(T1), we can find an rx such that either ĝT1(ε)

decays in a conical neighborhood of ε for all g ∈ C∞c (B(x, rx)) or ĥT2(ε) decays in a conical
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neighborhood of ε for all h ∈ C∞c (B(z − x, rx)). Since the family B(x, rx) cover supp(T1)

, we can extract a finite subcover: supp(T1) ⊂
⋃n
i=1B(xi, ri). Take a partition of unity φi

corresponding to the open cover
⋃n
i=1B(xi, ri) (i.e

∑n
i=1 φi = 1 and supp(fi) ⊂ B(xi, ri)),

we have:

T̂1 ∗ T2 =
n∑
i=1

(φiT1) ∗ T2.

Now, choose a function u ∈ D(B(z, δ)) such that u(z) = 1 and δ small enough to be

chosen later, we have:

̂u(T1 ∗ T2)(ε) =
n∑
i=1

∫
Rn

û(ε− t)φ̂iT1(t)T̂2(t)dt.

For each i, if (xi, ε) /∈ WF (T1) then the integral
∫
Rn û(ε − t)φ̂iT1(t)T̂2(t)dt will decay in a

conical neighborhood of ε . Indeed, let Vi be the conical neighborhood of ε such that φ̂iT1

decays in and choose a smaller conical neighborhood Ui ⊂⊂ Vi, we have:

∫
Rn

û(ε− t)φ̂iT1(t)T̂2(t)dt =

∫
Ui

û(ε− t)φ̂iT1(t)T̂2(t)dt+

∫
Rn\Ui

û(ε− t)φ̂iT1(t)T̂2(t)dt. (2.4.1)

For the first integral, we can easily bound it by (1+|ε|)−N for any N . For the second integral,

we have |ε− t| ≥ a(|ε|+ |t|) since the angle formed by any ε ∈ Vi and t ∈ Rn \ Vi is strictly

greater than 0. These estimates give the desired decay property of the first integral.

Let K be the set of indexes i such that (xi, ε) ∈ WF (T2). For such an i, we should have

(z−xi, ε) /∈ WF (T2). Now for i ∈ K, by the compactness of supp(T2), we can find a partition

of unity
{
ψij
}Ni
j=1

such that supp(ψi1) ⊂ B(z−xi, ri) and supp(ψij)
⋂

({z}−suppφi) = ∅ when

j ≥ 2. We can rewrite the sum of K − indexes as:

∑
i∈K

∫
Rn

û(ε− t)φ̂iT1(t)T̂2(t)dt =
∑
i∈K

Ni∑
j=1

∫
Rn

û(ε− t)φ̂iT1(t)ψ̂ijT2(t)dt.

For any i ∈ K, we have z /∈ supp(φi) + supp(ψij) if j ≥ 2, so for any j ≥ 2 the integral
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∫
Rn û(ε− t)φ̂iT1(t)ψ̂ijT2(t)dt will decay in a conical neighborhood of ε if δ small enough.

For the integrals with j = 1, we have (z − xi, ε) /∈ WF (T2) and supp(ψ ı́1) ⊂ B(z − xi, ε)

. Combining this with the same estimate as (2.4.1) yield the desired decay property. The

proof is complete.

2.4.2 Wavefront set of product of two distributions

In this section, we give a sufficient condition to define the product of two distributions, the

idea is to have some “non-cancelling” condition on the wavefront set of them and then we use

the inverse fourier transform to define it via a partition of unity. There are a more precise

way to define it (which we will not give details here) by defining the tensor product of them

and then investigate the changes of wavefront sets under the smooth map (x, y)→ x.

Theorem 46 (Product Rule). Let u, v ∈ D′ (Ω) and assume that (x, 0) /∈ WF (u)
⊕

WF (v)

then the product of u and v is well-defined and we have:

WF (uv) ⊂ WF (u)
⋃

WF (v)
⋃(

WF (u)
⊕

WF (v)
)
.

Proof. Let f be a test function that is equal to 1 near x. We will prove that under the

assumption (x, 0) /∈ WF (u)
⊕

WF (v) , the following integral make sense for every ε:

I(ε) =

∫
Rn

f̂u (ε− y) f̂v (y) dy.

Let T1, T2 be two open cones slightly bigger than WFx(u),WFx(v) such that 0 /∈ T1 + T2

The integral above can be splitted into 4 parts :

1. ε− y ∈ T1 and y ∈ T2.

2. ε− y /∈ T1 and y ∈ T2.

3. ε− y ∈ T1 and y /∈ T2.
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4. ε− y /∈ T1 and y /∈ T2.

Let I1, I2, I3, I4 be the corresponding 4 integrals.

• On I4, by the compactness of Sn−1 \ Ti, for every n, we have:

∣∣∣f̂u (ε− y)
∣∣∣ ≤ Cn (1 + |ε− y|)−n and

∣∣∣f̂v (y)
∣∣∣ ≤ Cn (1 + |y|)−n.

• On I3 ( and similarly for I2), we have f̂u is polynomially bounded and
∣∣∣f̂v (y)

∣∣∣ ≤ Cn (1 + |y|)−n

for every n, so I3 decays rapidly in terms of ε.

• Finally , on I1, since 0 /∈ T1 + T2, the angle formed by any t1 ∈ T1 and t2 ∈ T2 has to

be strictly less than π
2
, so we have:

|ε|2 = |ε− y|2 + |y|2 − 2 |ε− y| |y| cos (ε− y, y) ≥ (1− α)
(
|ε− y|2 + |y|2

)
,

where α < 1 is the supremum of all | cos(t1, t2)| where t1 ∈ T1 and t2 ∈ T2.

So we have |ε− y|2 + |y|2 ≤ |ε|2

1− α
, which means for a fixed ε, the integral of I1 is taken only

on the part where |y| ≤ |ε| .

Hence I1 exists and is polynomially bounded. Thus, the integral I (ε) exists for every ε.

Let’s take ε /∈ T1

⋃
T2

⋃
(T1 ⊕ T2), we will show that I (ε) decays rapidly in a conical neigh-

borhood around ε. Since ε /∈ T1

⊕
T2, we have I1 = 0.

For I4 and for an arbitrary ε the integral in terms of ε decays faster than every polynomial

by the decay property on the complement of T1 and T2.

Let’s consider I3 ( and similar arguments could be used for I2) , from the bound above we

have:

|I2 (ε)| ≤
∫
I2

f̂u (ε− y) f̂v (y) dy ≤
∫
I2

(1 + |ε− y|)n

(1 + |y|)m
dy.

By a change of variables, t = ε− y, we have :|I2 (ε)| ≤
∫

ε−I2

(1 + |t|)n

(1 + |ε− t|)m
dt (∗).

Since ε− y ∈ T1, we have t ∈ T1.Choose a closed conical neighborhood E of ε such that it is
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disjoint from T1, we have :

|ε− t|2 = |ε|2 + |t|2 − 2 |ε| |t| cos (ε, t).

Since the angle formed by any e ∈ E and t ∈ T1 is away from 0, we have sup
ε∈E,t∈T1

cos (ε, t) = α < 1

So we have the estimate |ε− t| ≥
√

1− α
2

(|ε|+ |t|). From this and together with (∗), we

have I2(ε) decays rapidly in E Thus we have WFx (uv) ⊂ T1

⋃
T2

⋃
(T1 ⊕ T2). Let T1 and

T2 shrink down to WFx (u) and WFx (v) we have the desired bound on the wavefront set of

the product of u and v.
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CHAPTER 3

Singularities in Tomography: Artifacts generated by a

class of fitlered backprojection formulas

3.1 Introduction

The well-known spherical Radon transform (also known as Funk transform) is defined by

integrating a function on the spheres with respect to the surface measure. To be more

precised, given a continuous function f , we define the spherical Radon transform Rf(z, r)

of f as:

Rf(z, r) =

∫
S(z,r)

f(x)dS.

The spherical Radon transform has a lot of applications to many fields of mathematics. For

examples, it is known that it can be used to represent the solution of the wave equations

(see [7]).

It also appears in a lot of imaging techniques like thermo/photoacoustic tomography (see

[8],[9]).

Some reconstruction formulas for f from Rf are known (see [11]). However, in many situa-

tions, the exact formulas are not as important as the singularities and we are interested in

the reconstruction of singularites rather than exact formulas.

In this thesis, we investigate a class of weighted filtered backprojection formulas in the sit-

uation where the surface is not smooth (a square, to be more specific). The case where the

data is known only on a subset of the surface has been well-studied (see [1]).

We follow the approach in [1]) to study the cancellation of singularities at the corners of the

square. Our result indicates that there is no cancellation at all when the weight behaves like

a classical symbol.
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3.2 Settings in the problems

Consider the open square Ω = (−1, 1)× (−1, 1). The spherical radon transform we consider

in this chapter has the center z in the boundary of the square, i.e:

Rf(z, r) =

∫
|y−z|=r

f(y)dy, z ∈ ∂Ω.

Our goal is to reconstruct the singularities of f based on the data Rf(z, r).

Now we consider the filtering operator :

PaRf(z, |z − x|) =

∫
R

∫ ∞
0

ei(r
2−|z−x|2)λa(z, r, x, λ)Rf(z, r)drdλ,

and back propagation operator:

Bg(x) =

∫
∂Ω

〈z, z − x〉g(z)dz.

Our reconstruction algorithm will make use of the operator: T : D(Ω)→ D
′
(Ω):

Tf(x) = BPaRf(x).

Here we make some assumptions on the weight a(z, r, x, λ)

• a is positive and piecewise smooth, i.e a(z, r, x, λ) ∈ C∞(∂Ω×Ω×R+ ×R) when z is

at the four corners.

• a has the property of a classical symbol of order k, which means we have the following

conditions:
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1. The following estimate hold for x, r lies in a compact sets and z in the square:

| ∂αx∂βz ∂tr∂nλa(z, r, x, λ) |≤ C

(1+ | λ |)n−i
. (3.2.1)

2. a has the following asymptotic expansion:

a(z, r, x, λ) ∼ a0(z, r, x, λ) + a1(z, r, x, λ) + ..., (3.2.2)

where ai is homogeneous of degree k − i in λ. The asymtotic expansion (3) is

understood in the usual sense of asymtotic expansion of principal symbols.

We are interested in how the transform T affects the artifacts and its order when the do-

main is the square (−1, 1)× (−1, 1). It is well known that in the case where the domain is

half plane Ω = {(x, y) : x > 0} and the weight a = χ(z) is defined on the line x = 0, zero

outside the segment from (0,-1) to (0,1) and smooth up to order k at the these end points,

the transform will generate artifacts along circles with center at these end points and these

artifacts are k order smoother than the original singularities (see [1]). In this chapter, we

investigate the problem in the case where the domain is an open square and the weight a is

more general. This chapter is organized as following:

• In Section 3.3 we will derive some explicit formulas for T and the singularities gen-

erated by T.

• In Section 3.4 we will discuss the visible singularities and invisible singularities of T.

Our main result is the non-cancellation of artifacts at the corners of the square.
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3.3 Some auxiliary lemmas

Lemma 47. With the notations above and S be the boundary of the square, let K be the

Schwartz kernel of T, we have the following formulas of K:

K(x, y) =

∫
S

∫
R
ei[|y−z|

2−|x−z|2]λa(z, x, | y − z |, λ)dλdz. (3.3.1)

Moreover, let z+(x, ε) be the intersection of the ray {x+ tε, t > 0} with S and z−(x, ε) be

the intersection of the ray {x+ tε, t < 0} with S, we have the following representation of a

pseudodifferential operator:

K(x, y) = K+(x, y) +K−(x, y), (3.3.2)

where

K+(x, ε) =

∫
R2

e
i

[
〈x−y,ε〉+ |x−y|2|ε|

|x−z+(x,ε)|

]
λ
a

(
z+ (x, ε) , x, |y − z+ (x, ε)| , |ε|

|x− z+ (x, ε)|

)
| x− z+(x, ε) |

| ε |
dλ,

(3.3.3)

K−(x, ε) =

∫
R2

e
i

[
〈x−y,ε〉+ |x−y|2|ε|

|x−z−(x,ε)|

]
λ
a

(
z− (x, ε) , x, |y − z− (x, ε)| , |ε|

|x− z− (x, ε)|

)
| x− z−(x, ε) |

| ε |
dλ.

(3.3.4)
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Proof. Let us write the spherical radon transform in terms of Fourier Integral Operators:

Rf(z, r) =

∫
|y−z|=r

f(y)dy

=

∫
R2

f(y)δ(| y − z | −r)dy (3.3.5)

=

∫
R2

f(y)

∫
R
ei(|y−z|−r)λdλdy

=

∫
R

∫
R2

ei(|y−z|−r)λf(y)dydλ.

Substitute (3.3.5) to T , we have:

Tf(x) =

∫
S

〈z, z − x〉PaRf(z, | z − x |)dz

=

∫
S

∫
R

∫ ∞
0

ei(t
2−|z−x|2)λa(z, x, t, λ)Rf(z, t)dtdλdz

=

∫
S

∫
R

∫ ∞
0

∫
R2

ei(t
2−|z−x|2)λa(z, x, t, λ)δ(| y − z | −t)f(y)dydtdλdz

=

∫
S

∫
R

∫
R2

ei(|y−z|
2−|z−x|2)λa(z, x, | y − z |, λ)f(y)dydtdλdz.

So the kernel of T is:

K(x, y) =

∫
S

∫
R
ei[|y−z|

2−|x−z|2]λa(z, x, | y − z |, λ)dλdz. (3.3.6)

For the second part, we will use the following change of variables:

(z, λ)→ ε = 2(z − x)λ.

From this change of variables, we have:

dε = 4 | λ〈z, z − x〉 | dλdz.
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Note that we have

| y − z |2 − | x− z |2= 2〈x− y, z − x〉+ | x− y |2 .

So the kernel K can be written as:

K(x, y) =

∫
S

∫ ∞
0

ei[|y−z|
2−|x−z|2]λa(z, x, | y − z |, λ)dλ+

∫
S

∫ 0

−∞
ei[|y−z|

2−|x−z|2]λa(z, x, | y − z |, λ)dλdz

=

∫
R2

e
i

[
〈x−y,ε〉+ |x−y|2|ε|

|x−z+(x,ε)|

]
λ
a

(
z+ (x, ε) , x, |y − z+ (x, ε)| , |ε|

|x− z+ (x, ε)|

)
| x− z+(x, ε) |

| ε |
dλ

+

∫
R2

e
i

[
〈x−y,ε〉+ |x−y|2|ε|

|x−z−(x,ε)|

]
λ
a

(
z− (x, ε) , x, |y − z− (x, ε)| , |ε|

|x− z− (x, ε)|

)
| x− z−(x, ε) |

| ε |
dλ.

Let A = (−1,−1), B = (1,−1), C = (1, 1), D = (−1, 1). We define the following

canonical relations on T ∗(Ω)× T ∗(Ω):

T = {(x, ε, x, ε) : {(A;B;C;D} 6⊂ {x+ tε, t ∈ R}}

TA = {(x, t(x− A), y, t(y − A) :| x− A |=| y − A |} ,

TB = {(x, t(x−B), y, t(y −B) :| x−B |=| y −B |} ,

TC = {(x, t(x− C), y, t(y − C) :| x− C |=| y − C |} ,

TD = {(x, t(x−D), y, t(y −D) :| x−D |=| y −D |} .

Lemma 48. With the notations above, we have:

WF (K)
′ ⊂ T

⋃
TA
⋃

TB
⋃

TC
⋃

TD.

Proof. From (3.3.5), we see that the spherical radon transform is a Fourier Integral Operator

with the phase function:
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φ(z, r, x, λ) = i(| x− z | −r)λ.

Let µR be the Schwartz kernel of R, we have:

WF (µR)
′
⊂ CR = {(z, r, x, t (x− z) ,−tr, t (x− z)) , |x− z| = r}.

For simplicity, let’s split the integral over the square into 4 integrals, corresponding with the

4 sides:

K(x, y) = K1(x, y) +K2(x, y) +K3(x, y) +K4(x, y). (3.3.7)

where K1 is the integral on the segment joining (−1,−1) and (−1, 1), K2 is the integral on

the segment joining (−1, 1) and (1, 1), K3 is the integral on the segment joining (1, 1) and

(1,−1) and K4 is the integral on the segment joining (1,−1) and (−1, 1)

Consider K1, we can express K1 as:

K1(x, y) =
x1 + 1

π2
R∗P (a(z, x, rλ)Rf(z, r)), (3.3.8)

where R∗ is the transpose of R.

Consider a as a function of z2, r, x, we have:

WF (a) ⊂ {(z2, r, x, t, 0, 0, 0) , t 6= 0}. (3.3.9)

From this we see that WF (µR) and WF (a) satisfies the non-cancelling condition, so their

product is well defined and we have:

WF (aµR) ⊂ CR
⋃
{(z2, r, x, t, t(z2 − x2) + t1,−tr, t(x− z)) , t1 6= 0, z2 = ±1}. (3.3.10)
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Since P is a standard pseudodifferential operator, it does not increase the wavefront set of

distributions and since the WF (µR∗) is just the tranpose of WF (µR), we have:

WF (K)
′ ⊂ T

⋃
TA
⋃

TB
⋃

TC
⋃

TD. (3.3.11)

The following lemma is used in the proof of Theorem 50:

Lemma 49. Let f (x, y, z, λ) be a smooth function in C∞ (R× R× [−1, 1]× R), homoge-

neous of degree k in λ and assume that f vanish when z is near −1 and f (x, y, 1, λ) 6= 0,

then we have:

g (x, y, λ) =

1∫
−1

e−2i(y−x)(z−1)λf (x, y, z, λ) dz.

is a principal symbol of top order k − 1 when x 6= y

Proof. By integrating by parts, we have:

g (x, y, λ) =
f (x, y, 1, λ)

−2i (y − x)λ
− 1

−2i(y − x)λ

1∫
−1

e−2i(y−x)(z−1)λ d

dz
f (x, y, z, λ) dz.

The leading term is a symbol of order k−1 when y 6= x since
f (x, y, 1, λ)

−2i (y − x)λ
=
|λ|k f (x, y, 1, 1)

−2i (y − x)λ

by the homogenity of f in λ.

Similarly, by integrating by parts, we can prove that
∫ 1

−1
e−2i(y−x)(z−1)λ d

dz
f (x, y, z, λ) dz is a

classcial symbol of order k − 2.

3.4 Visible singularities and boundary singularities

Theorem 50. Let f ∈ D′(Ω) be any distribution. Then for a singularity (x, ε) we have:

1. If (x, ε) is a visible singularity, in the sense that the ray {x+ tε, t > 0} does not inter-

sect the four corners, then Tf will reconstruct (x, ε).
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2. If (x, ε) is a boundary singularity, in the sense that the ray {x+ tε} passes one of

the four corners, then Tf will generate artifacts along circles with centers at the four

corners. Moreover, the artifacts will be k−1 order smoother as the original singularity.

This implies, in particular, no cancellation of singularities can occur at the corners.

Remark 51. The result in the first part of this theorem was obtained in [1] with a similar

settings. Our original result is the second part, i.e there is no cancellation at the corners.

Proof. Let us start with the first part:

1. Consider a visible singularity (x, ε). Microlocally near (x, ε), from Lemma 47 and

some standard results on equivalent of phase functions( see [2], Theorem 3.2.1), we

see that T is a pseudodifferential operator with the symbol:

σ(x, ε) = a

(
z− (x, ε) , x, |y − z− (x, ε)| , |ε|

|x− z− (x, ε)|

)
| x− z−(x, ε) |

| ε |

+a

(
z+ (x, ε) , x, |y − z+ (x, ε)| , |ε|

|x− z+ (x, ε)|

)
| x− z+(x, ε) |

| ε |
.

So this symbol is positive in a conical neighborhood of (x, ε) and hence T will recon-

struct (x, ε) .

2. For the second part, consider the Schwartz kernel K of T , thanks to Lemma 47, we

have:

K(x, y) =
4∑
i=1

Ki(x, y).

Let’s consider the boundary singularities generated at the corner A = (−1,−1). The

boundary singularities at the other corners will be treated similarly. The kernels

K2,K3 can be written as sum of Fourier Integral Operators with the phase function

φ2(x, y, λ) = i(|x−(−1, 1)|2−|y−(−1, 1)|2)λ, φ3(x, y, λ) = i(|x−(1, 1)|2−|y−(1, 1)|2)λ

and φ4(x, y, λ) = i(|x− (1,−1)|2−|y− (1,−1)|2)λ which will not generate singularities

at the corner (−1,−1). So only K1 and K4 contributes to the singularities generated
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at (−1,−1).

We can write the sum of K1 and K4 as:

K1(x, y)+K4(x, y) =

∫
R

ei[(y1+1)2−(x1+1)2+y22−x22]λ
1∫

−1

e−2i(y2−x2)z2λa (−1, z2, x, |z − y| , λ) dz2dλ

−
∫
R

ei[(y2+1)2−(x2+1)2+y21−x21]λ
1∫

−1

e−2i(y1−x1)z1λa (z1,−1, x, |z − y| , λ) dz1dλ.

Consider K1:

K1 (x, y) =

∫
R

ei[(y1+1)2−(x1+1)2+y22−x22]λ
1∫

−1

e−2i(y2−x2)z2λa (−1, z2, x, |z − y| , λ) dz2dλ.

Let us put f1 (x, y, z2, λ) = a (−1, z2, x, |z − y| , λ) and decompose f1 (x, y, z2, λ) =

f+
1 (x, y, z2, λ) + f−1 (x, y, z2, λ) where f+

1 and f−1 vanishes at 1 and −1 respectively

(with respect to z2). This decomposition is possible by choosing a smooth function

h(z2) which is 0 near 1 and 1 near −1.

Now we can write K1(x, y) as:

K1 (x, y) = K
(+)
1 (x, y) +K

(−)
1 (x, y),

whereK
(+)
1 (x, y) =

∫
R

ei[|y−(−1,−1)|2−|x−(−1,−1)|2]λ
1∫

−1

e−2i(y2−x2)(z2+1)λf+
1 (x, y, z2, λ) dz2dλ

and K
(−)
1 (x, y) =

∫
R

ei[|y−(−1,1)|2−|x−(−1,1)|2]λ
1∫

−1

e−2i(y2−x2)(z2−1)λf−1 (x, y, z2, λ) dz2dλ.

Note that the Fourier distribution K
(−)
1 has the phase function φ(x, y, λ) = i(|x −

(−1, 1)|2 − |y − (−1, 1)|2)λ and hence will not generate singularities at the corner

(−1,−1). So only the Fourier distribution K
(+)
1 will generate singularities at the cor-

ner (−1,−1).
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Similarly, with the same decomposition forK4, let f4 (x, y, z1, λ) = a (z1,−1, x, |z − y| , λ),

we see that only the following part of K4 contribute to the singularity at the corner

(−1,−1):

K
(−)
4 (x, y) = −

∫
R

ei[|y−(−1,−1)|2−|x−(−1,−1)|2]λ
1∫

−1

e−2i(y1−x1)(z1+1)λf−4 (x, y, z1, λ) dz1dλ,

where f−4 vanishes near 1 (with respect to z1).

By Lemma 49, the top order of the symbol of the Fourier distribution K
(+)
1 −K(−)

4 is:

σ (x, y, λ) =
a+ (−1,−1, x, |(−1,−1)− y| , λ)

2i (x2 − y2)λ
− a− (−1,−1, x, |(−1,−1)− y, |λ)

2i (x1 − y1)λ
,

where a+ = f+
1 and a− = f−4 .

From the asymptotic expansion of a, we can assume that a+ and a− are homogeneous

of degree k in λ. We will prove that σ is microlocally a symbol of order k − 1, which

is equivalent to:

σ(x0, y0, λ) 6≡ 0,

in any microlocal neighborhood of (x0, y0, λ) such that |x0−(−1,−1)| = |y0−(−1,−1)|.

Assuming the contrary then for some neighborhood V of (x0, y0) such that |x0 −

(−1,−1)| = |y0 − (−1,−1)| we would have:

a+ (−1,−1, x, |(−1,−1)− y| , λ)

a− (−1,−1, x, |(−1,−1)− y| , λ)
=
x2 − y2

x1 − y1

.

Let y0 = (−1 + r cos θ0,−1 + r sin θ0) and fix x0, for θ close to θ0, we have:

x2 + 1− r cos θ

x1 + 1− r sin θ
= c.
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This give us:

d

dθ

(
x2 + 1− r cos θ

x1 + 1− r sin θ

)
= 0,

which means:

r sin θ (x1 + 1− r sin θ)− r cos θ (x2 + 1− r cos θ)

(x1 + 1− r sin θ)2 = 0.

So we have
x2 + 1− r cos θ

x1 + 1− r sin θ
=

cos θ

sin θ
= c for all θ close to θ0 which is impossible.

So since σ is microlocally a symbol of order k−1 at (x0, y0), by the mapping properties

of Fourier Integral Operators (see [3]), we conclude that the artifacts is k − 1 order

smoother than the original singularities.
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