
Deep Learning Approaches for Modeling

and Inferring Neuronal Dynamics

Presented in Partial Fulfillment of
the Requirements for the Degree of

Master of Science

with a Major in

Chemical Engineering

in the

College of Graduate Studies

University of Idaho

by

Benjamin B. Plaster

Major Professor
Gautam Kumar , Ph .D.

Committee
D. Eric Aston , Ph .D.
James Moberly, Ph .D.
Fuchang Gao , Ph .D.

Department Administrator
Ching -An Peng , Ph .D.

December 2020

ii

Authorization to Submit Dissertation

This thesis of Benjamin B. Plaster, submitted for the degree of Master of Science with a

Major in Chemical Engineering and titled “Deep Learning Approaches for Modeling

and Inferring Neuronal Dynamics,” has been reviewed in final form. Permission, as

indicated by the signatures and dates below, is now granted to submit final copies to

the College of Graduate Studies for approval.

Major Professor:
Gautam Kumar, Ph.D. Date

Committee Members:
D. Eric Aston, Ph.D. Date

James Moberly, Ph.D. Date

Fuchang Gao, Ph.D. Date

Department Administrator:
Ching-An Peng, Ph.D. Date

iii

Abstract

Recent developments in GPU-accelerated computing, as well as the advent of artificial

intelligence and the rise of deep artificial neural networks (ANNs), have created a

wealth of opportunity to explore purely data-driven computational modeling tech-

niques on datasets and dynamical systems previously deemed overly complex or

outright infeasible to model. One such example of a domain in which these questions

are now being brought to light is in the field of computational neuroscience, where

both single neuron and neuronal network dynamical responses prove difficult and

arduous to model in many cases.

This thesis work is dedicated to the development of computationally feasible,

purely data-driven machine learning methods for inferring, learning, and modeling

both single-neuron and many-neuron dynamics at multiple time-scales through novel

employment of ANNs.

The first portion of this dissertation focuses on the development of purely data-

driven recurrent neural network (RNN) models of hippocampal CA1 pyramidal neu-

ron dynamics in response to constant-amplitude applied external input. These CA1

pyramidal neurons exhibit highly nonlinear dynamics, with multiple bifurcations in

behavioral response dependent on the magnitude of the externally applied input to

the system. This approach involves the use of deep LSTM networks in conjunction

with a novel translation trick borrowed from natural language processing (NLP) appli-

cations in language translation problems. We demonstrate that the network is capable

of learning a complete representation of the dynamics, including multiple bifurcations

in behavior. Additionally, we demonstrate that predictive accuracy of the devised

LSTM network increases as the length of timeseries on which it is trained does as

well.

The second portion of this work focuses on the development of a generative

machine learning method to infer firing rate dynamics of a neuronal population in an

unsupervised autoencoding framework. This is centered around the idea that stochas-

tic neuronal populations are better described using powerful rate-based dynamical

models under the assumption that their firing activity can be described as a many-

iv

body nonhomogeneous Poisson point process. We use a sequential adaptation of a

popular generative machine learning algorithm, the Variational Autoencoder (VAE) to

infer firing rates that maximize the likelihood of the original data in an unsupervised

manner, and demonstrate that this architecture is capable of discovering coherent

dynamical representations of smoothed firing rates directly from binned spiking data.

v

Acknowledgements

I would like to express my sincerest thanks to my advisor, Dr. Gautam Kumar, for his

constant support, guidance, patience, and help throughout the course of my graduate

studies. As an instructor, he introduced me to my favorite academic subject and was

a great mentor. As an advisor, he has supported me through some of the lowest and

most trying periods of my life. I greatly appreciate the independence with which

he allowed me to work on our research problems in our time together - this has

undoubtedly left me a far better researcher and engineer. For that, I will be forever

grateful, it has been an honor to work with him.

I must also thank my committee members, Dr. Eric Aston, Dr. Frank Gao, and

Dr. James Moberly for their support in my various endeavors over my time at the

university, as well as for their help in feedback and furthered development of this

thesis work. They have all been instrumental in my development.

I would also like to gratefully acknowledge the University of Idaho College of

Engineering and the Department of Chemical and Materials Engineering for their

support over these last two and a half years.

vi

Dedication

This thesis is dedicated to my parents, John and Leslie, who have been my main line

of support and encouragement throughout my entire life. I would not be half the

person I am today if not for them. I also would like to thank my sister, Mallory, and

my brother, Nicholas, for their love and friendship. They are my best friends.

vii

Table of Contents

Authorization to Submit D issertation ii

Abstract . iii

Acknowledgements . v

Dedication . vi

Table of Contents . vii

L ist of Tables . viii

L ist of F igures . ix

1 Introduction . 1

1.1 Artificial Neural Networks . 2

1.2 Sparse Identification of Nonlinear Dynamics 9

1.3 Neuronal Modeling . 11

1.4 Thesis Overview . 16

2 Data -Driven Predictive Modeling of Neuronal Dynamics Using

Long Short -Term Memory . 17

2.1 Introduction . 17

2.2 Neural Network Architecture, Algorithm and Approach 21

2.3 Simulation Results . 34

2.4 Simulation Results on Full State Predictions of Hodgkin-Huxley Model 44

2.5 Discussion . 64

3 D iscovering Latent Dynamics Embedded In H igh -D imensional

Neural Spiking Activity . 68

3.1 Introduction . 68

3.2 Relevant Background and Literature . 71

3.3 Methods . 74

3.4 Results . 85

3.5 Discussion . 106

4 Summary and D irections for Future Work 113

4.1 Summary . 113

4.2 Future Works . 114

B ibliography. 118

viii

List of Tables

Table 2 .1 Comparison of computational requirement for the iterative approach
presented in this chapter.. 66

ix

List of Figures

F igure 1 .1 Illustration of a closed-loop feedback optimal control neurostimulation
strategy. 1

F igure 1 .2 A McCulloch-Pitts neuron, on which the Perceptron was modeled.
Figure sourced from O’Reilly - ’The McCulloch-Pitts Neuron’. . . 3

F igure 1 .3 Illustration of typical ANN structure with an input layer, two
hidden layers, and an output layer. Figure sourced from Medium
- ’The Artificial Neural Networks Handbook’.. 5

F igure 1 .4 Left: RNN cell, complete with recurrent connections. Right:
RNN cell, unfolded in time to reveal temporal connections between
timesteps. Figure sourced from Wikipedia. 6

F igure 1 .5 Left: A single neuron. Figure sourced from ’Brain Facts - Society
for Neuroscience’. Right: Schematic of an action potential. 12

F igure 1 .6 Illustration of various levels of neuronal modeling. Figured sourced
from ’Modeling the Mind - Science (1)’. 13

F igure 2 .1 A schematic illustrating the overall data-driven approach developed
in this chapter for multi-timestep predictions of high-dimensional
dynamical systems’ behavior over a long time-horizon. An initial
sequence of states and inputs are fed to the ”Stacked LSTM Network”
in a reverse-order for multi-timestep prediction of the system’s
states (”Reverse-order sequence-to-sequence mapping”). The predicted
output from each stacked LSTM network is concatenated with
the next sequence of inputs and fed into the next stacked LSTM
network in a reverse-order to increase the predictive horizon. This
process is iterated an arbitrary number of times, creating long
dynamical predictions.. 20

F igure 2 .2 A schematic illustrating the internal gating operation in a single
LSTM cell. The ”+” represents an additive operation and the
“◦” represents a multiplicative operation. σg is the sigmoidal
activation function and σc is the hyperbolic tangent activation
function. 22

F igure 2 .3 Iterative prediction of the system’s outputs over a long time-horizon.
Each “Deep LSTM" receives the predicted sequence of outputs
from the previous “Deep LSTM" and an equivalent length of new
system’s inputs in reverse order and predict the next sequence of
outputs of same time duration in future. 25

x

F igure 2 .4 Forward and reversed sequence-to-sequence mapping approach
for translating letters (inputs) to their numerical indices (outputs)
in recurrent neural network (RNN). (a) shows the forward sequence-
to-sequence mapping approach. The input is fed into the network
in the same sequence as the desired output. The “distance” between
all corresponding inputs and outputs is uniform. (b) shows the
reversed sequence-to-sequence mapping approach. This approach
introduces a temporal symmetry between input and output sequences
while keeping the average “distance” between the corresponding
inputs and outputs same as the forward approach. As shown in
(b), A→ 1 is the shortest “distance" to map, B → 2 the second,
and C → 3 the furthest. 26

F igure 2 .5 Diversity in the spiking patterns of hippocampal CA1 pyramidal
neurons to applied currents. (a) Regular bursting in response to
the external current of 0.23 nA. (b) Irregular bursting in response
to the external current of 1.0 nA. (c) Plateau potentials followed
by regular spiking in response to the external current of 3.0 nA. . 28

F igure 2 .6 Training and validation loss for the deep long short term memory
(LSTM) neural network with multi-timestep predictive horizon.
(a) 1 timestep predictive horizon. (b) 50 timesteps predictive
horizon. (c) 100 timesteps predictive horizon. (d) 200 timesteps
predictive horizon. 35

F igure 2 .7 Comparison of predicted membrane potential traces by the deep
LSTM neural network (“LSTM Network”) to the regular spiking
pattern exhibited by the Hodgkin-Huxley model (“HH Model”)
in response to the external stimulating current I = 3.0 nA. (a)
Prediction using 1 timestep predictive LSTM network (Np = 1).
(b) Prediction using 50 timesteps predictive LSTM network (Np =
50). (c) Prediction using 100 timesteps predictive LSTM network
(Np = 100). (d) Prediction using 200 timesteps predictive LSTM
network (Np = 200). 37

F igure 2 .8 The effect of the length of predictive horizon of the deep LSTM
neural network on the accuracy of regular spiking patterns prediction.
(a) shows the time-averaged root mean squared error (RMSE)
versus predictive horizon of the LSTM network (Np = 1, 50, 100, 200)
for the simulation results shown in Figure 2.7; (b) shows the
RMSE versus simulation time for 5000 independent realizations,
drawn from the predicted membrane potential trajectories of 50

randomly selected stimulating currents from a Uniform distribution
U (2.3, 3.0) and 100 random initial conditions for each stimulating
current. 39

xi

F igure 2 .9 Comparison of predicted membrane potential traces by the deep
LSTM neural network (“LSTM Network”) to the irregular bursting
spiking patterns exhibited by the Hodgkin-Huxley model (“HH
Model”) in response to the external stimulating current I = 1.5
nA. (a) Prediction using 1 timestep predictive LSTM network
(Np = 1). (b) Prediction using 50 timesteps predictive LSTM
network (Np = 50). (c) Prediction using 100 timesteps predictive
LSTM network (Np = 100). (d) Prediction using 200 timesteps
predictive LSTM network (Np = 200). 42

F igure 2 .10 The effect of the prediction horizon of the deep LSTM neural
network on the accuracy of irregular bursting dynamics prediction.
(a) shows the time-averaged root mean squared error (RMSE)
versus predictive horizon of the LSTM network (Np = 1, 50, 100, 200)
for the simulation results shown in Figure 2.9. (b) shows the
RMSE versus simulation time for 5000 independent realizations,
drawn from the predicted membrane potential trajectories of 50

randomly selected stimulating currents from a Uniform distribution
U (0.79, 2.3) and 100 random initial conditions for each stimulating
current. 43

F igure 2 .11 Comparison of predicted membrane potential traces by the LSTM
network (“NN Prediction”) to the irregular bursting spiking patterns
exhibited by the Hodgkin-Huxley model (“HH Model”) in response
to the external stimulating current I = 0.5 nA. (a) Prediction
using 1 timestep predictive LSTM network (Np = 1); (b) Prediction
using 50 timesteps predictive LSTM network (Np = 50); (c) Prediction
using 100 timesteps predictive LSTM network (Np = 100); (d)
Prediction using 200 timesteps predictive LSTM network (Np =
200). 45

F igure 2 .12 The effect of the prediction horizon of the multi-timestep LSTM
network on the accuracy of regular bursting dynamics prediction.
(a) shows the time-averaged root mean squared error (RMSE)
versus predictive horizon of the LSTM network (Np = 1, 50, 100, 200)
for the simulation results shown in Figure 2.11. (b) shows the
RMSE versus simulation time for 5000 independent realizations,
drawn from the predicted membrane potential trajectories of 50

randomly selected stimulating currents from a Uniform distribution
U (0.24, 0.79) and 100 random initial conditions for each stimulating
current. 46

F igure 2 .13 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 1 timestep predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 3.0 nA. 49

xii

F igure 2 .14 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 50 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 3.0 nA. 50

F igure 2 .15 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 100 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 3.0 nA. 51

F igure 2 .16 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 200 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 3.0 nA. 52

F igure 2 .17 The root mean squared error (RMSE) versus simulation time for
5000 independent realizations, drawn from the predicted membrane
potential trajectories of 50 randomly selected stimulating currents
from a Uniform distribution U (2.3, 3.0) and 100 random initial
conditions for each stimulating current. 53

F igure 2 .18 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 1 timestep predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 1.5 nA. 54

F igure 2 .19 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 50 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 1.5 nA. 55

F igure 2 .20 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 100 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 1.5 nA. 56

F igure 2 .21 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 200 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 1.5 nA. 57

F igure 2 .22 The root mean squared error (RMSE) versus simulation time for
5000 independent realizations, drawn from the predicted membrane
potential trajectories of 50 randomly selected stimulating currents
from a Uniform distribution U (0.79, 2.3) and 100 random initial
conditions for each stimulating current. 58

F igure 2 .23 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 1 timestep predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 0.5 nA. 59

xiii

F igure 2 .24 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 50 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 0.5 nA. 60

F igure 2 .25 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 100 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 0.5 nA. 61

F igure 2 .26 Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics
using the 200 timesteps predictive horizon-based deep LSTM neural
network (“LSTM Network”) in response to I = 0.5 nA. 62

F igure 2 .27 The root mean squared error (RMSE) versus simulation time for
5000 independent realizations, drawn from the predicted membrane
potential trajectories of 50 randomly selected stimulating currents
from a Uniform distribution U (0.24, 0.79) and 100 random initial
conditions for each stimulating current. 63

F igure 3 .1 Illustration of general inference approach. Measured binned spikes
are fed into the encoder LSTM network in array form. The bidirectional
encoding LSTM returns a vector of Gaussian parameters, z0, describing
the initial condition of the network. A sample is drawn from
the Gaussian distribution described by the parameters, and is
fed into the decoder LSTM network, which returns the smoothed
inferred firing rates of the neurons. These can then be compared
in a probabilistic loss function to return the likelihood that the
inferred firing rates generated the original measured spiking activity.
This loss is then used to further optimize the network in iterative
fashion via backpropagation. 70

F igure 3 .2 A sample solution of the Lorenz attractor dynamics when ρ =
28, β = 8/3, and σ = 10. The ’butterfly’ orbit can be clearly
visualized. 81

F igure 3 .3 Illustration of linearly transformed and exponentiated Lorenz attractor
dynamics. 82

F igure 3 .4 Example of chaotic firing rate dynamical behavior. 83

F igure 3 .5 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike
trains binned at 50ms. 86

F igure 3 .6 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on Lorenz dynamical spiking binned at 50ms.
Top: Integer binned spike train input from the neuron. Middle:
Comparison of ground truth and inferred neuron firing rate underlying
spikes shown above. Bottom: Error between the prediction and
ground truth, measured in Hz. 87

xiv

F igure 3 .7 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike
trains binned at 40ms. 89

F igure 3 .8 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on Lorenz dynamical spiking binned at 40ms.
Top: Integer binned spike train input from the neuron. Middle:
Comparison of ground truth and inferred neuron firing rate underlying
spikes shown above. Bottom: Error between the prediction and
ground truth, measured in Hz. 90

F igure 3 .9 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike
trains binned at 30ms. 91

F igure 3 .10 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on Lorenz dynamical spiking binned at 30ms.
Top: Integer binned spike train input from the neuron. Middle:
Comparison of ground truth and inferred neuron firing rate underlying
spikes shown above. Bottom: Error between the prediction and
ground truth, measured in Hz. 92

F igure 3 .11 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike
trains binned at 20ms. 94

F igure 3 .12 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on Lorenz dynamical spiking binned at 20ms.
Top: Integer binned spike train input from the neuron. Middle:
Comparison of ground truth and inferred neuron firing rate underlying
spikes shown above. Bottom: Error between the prediction and
ground truth, measured in Hz. 95

F igure 3 .13 Illustration of recreated and originally inferred high-dimensional
chaotic Lorenz firing rates from deterministic autoencoder. This
example is from the 20ms binning case. 96

F igure 3 .14 Illustration of recreated latent Lorenz chaotic firing rates from
deterministic autoencoder. This example is from the 20ms binning
case. It can be visualized that these recovered latent rates exhibit
purely linear behavior, moving along a line in near perfect unison,
instead of the classical Lorenz ’butterfly’ attractor trajectories. . . 98

F igure 3 .15 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic
continuous-time RNN spike trains binned at 50ms. 99

xv

F igure 3 .16 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on chaotic continuous-time RNN neuronal spiking
binned at 50ms. Top: Integer binned spike trains input from
the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error
between prediction and ground truth, measured in Hz. 100

F igure 3 .17 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic
continuous-time RNN spike trains binned at 40ms. 102

F igure 3 .18 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on chaotic continuous-time RNN neuronal spiking
binned at 40ms. Top: Integer binned spike trains input from
the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error
between prediction and ground truth, measured in Hz. 103

F igure 3 .19 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic
continuous-time RNN spike trains binned at 30ms. 104

F igure 3 .20 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on chaotic continuous-time RNN neuronal spiking
binned at 30ms. Top: Integer binned spike trains input from
the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error
between prediction and ground truth, measured in Hz. 105

F igure 3 .21 Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic
continuous-time RNN binned spike trains of 20ms. 107

F igure 3 .22 Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the
network trained on chaotic continuous-time RNN neuronal spiking
binned at 20ms. Top: Integer binned spike trains input from
the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error
between prediction and ground truth, measured in Hz. 108

F igure 3 .23 Mean absolute percentage error in inference of chaotic Lorenz
firing rates for chaotic binned spiking activity plotted against bin
size window, measured in milliseconds. We see that as bin size
increases, the mean absolute percentage error of those predictions
decreases. 109

xvi

F igure 3 .24 Mean absolute percentage error in inference of chaotic continuous-
time RNN firing rates for chaotic binned spiking activity plotted
against bin size window, measured in milliseconds. We see that
as bin size increases, the mean absolute percentage error of those
predictions decreases. 110

F igure 4 .1 Illustration of potential diagnostic inference approach. Measured
binned spikes are fed into the encoder LSTM network in array
form. The bidirectional encoding LSTM returns a vector of Gaussian
parameters, z0, describing the initial condition of the network. A
sample is drawn from the Gaussian distribution described the the
parameters, and is fed into the decoder LSTM network, which
returns the smoothed inferred firing rates of the neurons. These
firing rates could then in theory be fed into a third LSTM network,
which would return the probability of a certain disease, or the
likelihood of a set of potential diagnoses. The firing rates and
spikes are compared in a probabilistic loss function to return
the likelihood that the inferred firing rates generated the original
measured spiking activity, while the loss from the final diagnostic
LSTM network may be some form of categorical accuracy loss.
These losses would then be used to further optimize the network
in iterative fashion via backpropagation. 116

1

chapter 1

Introduction

Advents in parallel processing due to recent advances in graphics processing unit

(GPU) acceleration of large linear algebraic systems has led to renewed interest in the

field of artificial neural networks (ANNs) and machine learning over the course of

the last decade (2). ANNs have been employed in various novel manners in a variety

of fields, producing incredible advances in the fields of machine vision (3), speech

recognition (4) natural language processing (5; 6) and many others. Their purely data-

driven nature combined with their ability to approximate nearly any function (7) have

made them especially useful in modeling applications on datasets previously thought

too complicated to handle.

ControllerModel

Measurement

Electrical Stimulation

Neuronal Responses

Optimal Control

F igure 1 .1 : Illustration of a closed-loop feedback optimal control neurostimulation
strategy.

This ability to handle and learn otherwise intractably complex relationships con-

tained within high-dimensional datasets has also opened the door to a data revolution

within the practice of computational neuroscience. Data sets and relationships previ-

ously thought infeasible to model and uncover have become available for investigation.

Ultimately, this may allow for the development of data-driven, computationally feasi-

ble models of neuronal behaviors in response to externally applied inputs - this would

2

be of tremendous use to modelers, biologists, mathematicians, and engineers alike as

control-theoretic neurostimulation strategies could be systematically investigated and

explored.

The focus of this thesis work is to develop purely data-drive, advanced, novel

ANN-centered approaches to modeling neuronal behaviors at both the single-neuron

level, as well as within the context of high-dimensional neuronal circuits.

1 .1 artificial neural networks

Broadly speaking, artificial neural networks (ANNs) are a class of parametric comput-

ing systems. At the most primitive level, they are comprised of artificial "neurons"

arranged in a layer-wise orientation with weighted connections between neurons in

neighboring layers. They accept input from neurons from the layer previous, perform

a nonlinear transformation the weighted sum, and output a single value, which is

passed on to other neurons in the subsequent layer. The inputs to the network are

numerical values representing samples from the data. The network’s output is the

product of the nonlinear transformation of the final layer. The nature of the output

from the network depends on the objective function used to train the network, this

is known as the loss function. These details will be further laid out in sections 1.1.2,

1.1.3, and 1.1.4.

1 .1 .1 Historical Background

Unsurprisingly, artificial neural networks derive their original inspirations from the

structure of biological neural networks. Donald Hebb first proposed that biological

neural pathways strengthen when they are used repetitively and successively, espe-

cially when firing together. This led to the idea of ’Hebbian Learning’, a model of

neural plasticity and learning. He famously said in his book, The Organization of

Behavior, that "Cells that fire together, wire together" (8). This observation led to

interest in computing systems that sought to emulate this behavior.

The first artificial neural network was developed by Frank Rosenblatt in 1960, and

is known as the Mark I Perceptron (9), as an attempt to understand and model the

3

F igure 1 .2 : A McCulloch-Pitts neuron, on which the Perceptron was modeled.
Figure sourced from O’Reilly - ’The McCulloch-Pitts Neuron’.

decision systems of the eye of a simple fly. This was modeled as a McCulloh-Pitts

neuron, which can be visualized in Figure 1.2. It is comprised of a set of m inputs,

I, with m weighted connections, W, and a simple summation with an linear output

threshold, and some output quantity, y. Thus, the output from the neuron can be fully

described as

y = φ

(m

∑
j=0

Wj Ij

)
(1.1)

where φ represents a linear gating threshold, returning 0 if the weighted sum is

greater than or equal to zero, and 1 otherwise. The key innovation was their iterative

learning procedure, in which the weights were updated with each pass of new input

information into the neuron.

The perceptron models of fly decision systems gave rise to a new interest in artifi-

cial neural networks, and their potential for applications in data and signal processing

fields. The first application of these neural network models to real-world engineering

problems came from Stanford researcher Brian Widrow and his graduate student,

Marcian Hoff, in the chemical memistor solutions known as ADALINE (ADAptive

4

LINear Elements) and MADALINE (Multiple ADAptive LINear Elements), which

were used to filter noisy signals along phone lines (10; 11).

However, from these primitive single-layered unsupervised neural networks came

a long period of nearly zero activity on the front of research into the furthered devel-

opment of these neural networks. This arose for several reasons; firstly, computational

resources in the 1960’s pale in comparison to modern-era digital computers. Secondly,

the combination of backpropagation with stochastic gradient descent had not yet been

pioneered for training multi-layer networks, limiting both the efficacy and feasibility

of training the networks to learn anything meaningful.

1985 became the year that artificial neural networks came back to the forefront of

parametric computing, with the introduction of iterative backpropagation through

layers introduced by Rumelhart, Hinton, and Williams (12). Their innovation of

teaching networks through iterative backpropagation based learning opened the door

for neural networks to learn highly complex internal representations, and has resulted

in the deep, complicated, and hugely parametrized ANN models of the modern era.

1 .1 .2 Feedforward Networks

Feedforward networks, often referred to as densely connected networks, vanilla ANNs,

or multi-layer perceptrons (MLPs) form the most basic of the archetypal modern

ANNs. In these networks, information flows unilaterally in one direction, from input

neurons to output neurons, traversing all hidden (intermediate) layers in between.

Similarly to the earliest iterations of the perceptron, all feedforward networks can

be viewed as multi-layered constructions of various types of McCulloch-Pitts neurons.

However, there are some key differences between modern use cases and the original

Mark I Perceptron. The perceptron made use of a discontinuous threshold activation,

and thus outputs binary signals. Modern ANN neurons make use of a continuous

transformation function, also known as an activation function, which affords them

compatibility with backpropagation-based training methods. Common activation

functions in modern ANNs include the sigmoid activation, σ(x) = 1/(1 + e−x), the

hyperbolic tangent activation, f (x) = tanh(x) = (ex − e−x)/(ex + e−x), the rectified

linear unit (ReLU) function, f (x) = max{0, x}, and their many variants. Additionally,

5

F igure 1 .3 : Illustration of typical ANN structure with an input layer, two hidden
layers, and an output layer. Figure sourced from Medium - ’The Artificial Neural
Networks Handbook’.

in modern ANNs, a learnable bias term is included in the affine transformation before

the non-linear activation.

Thus, the output from the kth neuron in the lth layer of the feedforward network

can be expressed as

y[l]k = φ

(
∑

j
w[l]

kj y[l−1]
j + b[l]k

)
= φ

(
W[l]

k
Ty[l−1] + b[l]

k

)
(1.2)

where W[l]
k and b[l]

k represent trainable weight and bias matrices and vectors,

respectively, corresponding to the kth output from the network. The ability to stack

weighted nonlinear transformations of the outputs from the previous layers allow

these feedforward networks to approximate nearly any continuously valued function

(7). Combined with their inherent dimensional flexibility, this makes them extremely

6

useful for regression, estimation, and categorization problems on complicated and

high dimensional datasets.

1 .1 .3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of ANNs suited for processing sequen-

tial or temporal data. Unlike traditional feedforward networks, where information

simply flows unidirectionally from input to output, RNNs allow information to flow

both forward to the subsequent layer, as well as in a recurrent loop back into the cell

at the next time step. This allows them to inherit information from previous timesteps,

thus giving the RNN the ability to learn and model data with temporal structure. This

recurrent loop of information back into the cell at a subsequent timestep is a defining

characteristic of the RNN, and can be visualized in Figure 1.4.

F igure 1 .4 : Left: RNN cell, complete with recurrent connections. Right: RNN cell,
unfolded in time to reveal temporal connections between timesteps. Figure sourced
from Wikipedia.

This recurrent connection that allows informational flow of previous outputs into

the network is made possible through the creation of a second state within the recur-

rent neural network - this is known as the hidden state. The hidden state constitutes

the RNN’s second defining feature. The differences in output from the RNN arise

from differences in the hidden state, h, which is updated at each time step. The

following equations define an RNN’s evolution over time

ht = gψ(ht−1, xt) (1.3a)

7

yt = fθ(ht) (1.3b)

Here, fθ represents the nonlinear transformation of the hidden state vector, h into the

network output at any given time, t, which is characterized by the set of weight and

bias parameters, θ. Similarly, gψ represents the nonlinear transformation of both the

previous timestep’s hidden state, ht−1 and the input at the current timestep, xt, which

is charracterized by the set of weight and bias parameters, ψ.

The nature of the general parametrized nonlinear functions, fθ and gψ, as well as

the inclusion of multiple variants and iterations on the concept and method of the

cell having additional internal states constitutes the majority of difference amongst

the various types of RNNs. In future sections, details of more complicated RNN

structures will be covered in more detail. Here, we will cover the basic gating structure

of what is known as a simple, or ’vanilla’, RNN.

ht = tanh
(
Wxhxt + Whhht−1 + bh

)
(1.4a)

yt = Whyht + by (1.4b)

Here, Wxh, Whh and Why are trainable weight matrices, and bh and by are trainable

bias vectors. The hidden state is a nonlinear transformation of the previous hidden

state and the input to the network in the current time step, and the output is a

linear transformation of the hidden state. Thus, all differences in output sequence are

dependent upon differences in computation of the hidden state within each timestep.

1 .1 .4 Generative Neural Networks

Generative models constitute a class of unsupervised learning techniques in ANN-

based modeling approaches to high-dimensional datasets. Broadly speaking, their

goal is to learn the inherent relationships governing high-dimensional, stochastic

datasets.

8

To begin, consider a set of n data points, x = {x1, x2, ..., xn} as samples from

some distribution, P(x). It is possible that these data arise from a high-dimensional,

stochastic process involving the interactions of an incredible number of variables. In

this case, it becomes arduous or outright infeasible to develop closed-form equations

describing the interactions of these stochastic variables, casting doubt on the possibil-

ity to develop equations capable of re-generating the original input dataset, or even

generating entirely new samples.

However, it is very well known how to generate simple random distributions, such

as a Gaussian distribution. Additionally, it is well known that ANNs may learn to

approximate any given function given appropriate parameters, θ. Thus, generative

models aim to learn transformations that generate highly complex, deterministic

transformations of simple stochastic distributions into highly complex distributions,

such that the network’s recreation of the data, P̂θ(x), closely resembles the original

distribution of data, P(x). This deterministic ANN that learns to transform samples

from a simple distribution to approximate samples from a highly complex one is

known as a generative neural network.

There are two major archetypes of ANN-based generative modeling approaches:

the variational autoencoder (VAE) (13) and the generative adversarial network (GAN)

(14). The VAE and GAN seek to solve the same types of problems in machine learning,

however they take very different approaches to doing so.

The VAE poses this problem in the framework of a probabilistic graphical model,

where we seek to maximize the evidence lower bound (ELBO) on the log-likelihood

of the data. GANs pose training as a min-max game, in which two networks are

employed, a generator network and a classifier network, also known as the discrim-

inator. The generator seeks to turn samples of gaussian noise into complicated data

distributions, while the discriminator tries to discern whether or not the generated

samples are from the original data or not. Given proper training, the discriminator

will grow better at discerning real samples from fake samples over time, while the

generator improves at fooling the discriminator. The game has finished when the

discriminator can no longer tell the difference between samples generated from the

generator from those from the original dataset.

9

1 .1 .5 Training Neural Networks

Training neural networks is framed as a constrained optimization problem, in which

the goal is to find an optimal set of weights in a given architecture that minimizes

some objective function, L, commonly referred to as a loss function. This can be

formally expressed as

θ∗ = arg min
θ

L (1.5)

The exact form of the loss function varies wildly from problem to problem, and

constitutes much of the novelty of modern machine learning. For regression problems,

common loss functions include the mean squared error, the absolute mean error, the

smooth mean absolute error, the quantile loss, and the log-cosh loss. For problems

of classification, common loss functions include the cross-entropy loss, the hinge loss,

and the Kullback-Leibler Divergence loss.

Training is carried out in an iterative learning procedure known as backpropa-

gation (15; 16; 17), in which parameter updates are calculated as the solution to a

stochastic gradient descent problem.

1 .2 sparse identification of nonlinear dynamics

The ability to distill closed-form dynamical equations governing a system’s behavior

has been of interest to scientists, engineers, and mathematicians from nearly every

field for decades. Recent advances in neural networks have allowed for the modeling

of hugely-complex time series - however, they still lack interpretability, leading to

questions of the robustness of the internal representation that they possess when

working to extrapolate outside of the dataset they were trained on.

Sparse identification of nonlinear dynamics (SINDy) (18) is a spare regression

technique developed to find a closed-form representation of a non-linear dynamical

system by performing sparse regression on a large set of basis candidate functions

within an optimization framework. Similarly to many problems in modeling, it is

10

desired in the SINDy framework to recover dynamical equations of the form

d
dt

x(t) = F(x(t)) (1.6)

where d/dt represents the time derviative, x(t) is the state of the dynamical system,

and F represents the nonlinear equations governing the time evolution of the system.

In this framework, model identification is formulated as a sparse regression op-

timization problem. SINDy assumes that time series data is observed at n discrete

time intervals, such that m individually observed time-series from the system can be

stacked into large matrix form, as

X = [x1, x2, ..., xm]
T (1.7)

with numerically computed time-derivatives as

Ẋ = [ẋ1, ẋ2, ..., ẋm]
T (1.8)

where X represents the m x n matrix of observed state values, Ẋ represents the m

x n matrix of numerically computed state derivatives, and xi represent individually

measured vectors of system states.

In this framework, the governing equations underlying X are unknown. Thus, a

set of p candidate basis functions, Θ must be constructed, such that each element of

the candidate basis functions describing the right hand side of Equation 1.6, θj, is a

candidate model term. This candidate library can be expressed as

Θ(X) = [θ1(X), θ2(X), ..., θp(X)] (1.9)

Now, the set of potential mathematical descriptors of the system’s dynamical

behaviors can be expressed as

Ẋ = Θ(X) (1.10)

However, this raises the issue of non-feasibility to compute in numerical inte-

gration, and is unlikely to model anything meaningful, as all candidate terms are

11

contributing equally to the estimated dynamics. The solution to this issue is to

introduce a p x n matrix of coefficients, Ξ, that can be optimized to provide insight

into active dynamical terms. Formally, this matrix is defined as

Ξ = [ξ1, ξ2, ..., ξn] (1.11)

where each individual term, ξ j represents a vector determining which coefficients are

active in the overall expression for the kth term in x, xk. Now, the estimated dynamics

can be expressed as

Ẋ = Θ(X)Ξ (1.12)

with

ẋk = Θ(xT)ξk (1.13)

This entire problem is then cast as a numerical optimization problem, in which

the objective is to minimize the reconstruction cost of the observed timeseries data by

optimizing the matrix of coefficients determining which terms in Θ are active, that is

Ξ∗ = arg min
Ξ

‖Θ(X)Ξ− Ẋ‖2 + λ‖‖Ξ‖1 (1.14)

where ‖ · ‖2 represents the L2 norm, and ‖ · ‖1 represents the L1 norm, and λ is a

tunable scalar hyperparameter used to tune the sparsity of the regressed solution

The inclusion of L2 error between the reconstructed dynamics and the data observed

promotes accuracy of solution, while the L1 norm encourages sparsity and inter-

pretability of the regressed solution.

1 .3 neuronal modeling

Neurons compromise the basic cellular building blocks of our nervous system. A

typical biological neuron is comprised of a cell body, dendrites extending from the

cell body, and a long axon. The dendrites extending away from the cell body establish

synapses with the axons of other neurons, forming a large cellular network through

12

which the information flows. It is well understood that neurons largely communicate

through electric signals known as action potentials.

F igure 1 .5 : Left: A single neuron. Figure sourced from ’Brain Facts - Society for
Neuroscience’. Right: Schematic of an action potential.

Broadly speaking, neurons receive electric inputs from other neurons at their

dendrite terminals. This input is processed within the cell body, causing a rise in

the voltage on the cell’s membrane surface, a phenomenon known as depolarization.

Once the input to the cell exceeds a certain threshold, there is a large spike of voltage,

known as an action potential, followed by a strongly negative drop in potential,

known as repolarization/hyperpolarization. After the repolarization, the neuron goes

into a refractory period before another action potential can be generated based on the

incoming inputs. Figure 1.5 shows a typical morphological structure of a neuron

along with an action potential.

13

In computational neuroscience, a variety of modeling approaches and models exist

to describe how a neuron process the information and generate action potentials. At

a broader level, these models can be categorized into five classes based on the level

of details in incorporating the underlying biological mechanisms: detailed compart-

mental models, reduced compartmental models, single-compartment models, cascade

models, and black-box models (1). Figure 1.6 illustrates this hierarchy of model types.

F igure 1 .6 : Illustration of various levels of neuronal modeling. Figured sourced
from ’Modeling the Mind - Science (1)’.

Detailed compartmental models focus on the fine details of spatial structure of a

neuron and their contributions to dynamical behaviors. This is also true, albeit to a

lesser degree, of reduced compartmental models. However, both of these model types

14

are extremely computationally expensive due to the incredible detail they possess -

this renders them unsuitable for use in modeling the behaviors of neuronal networks.

Reduced compartmental models, such as the famous Hodgkin-Huxley model (19;

20; 21; 22), ignore the spatial structure of the cell, treating the cell as a walled ob-

jects, with ionic channels modeled as circuits governing the dynamical relationships

between the cell’s membrane potential and the ionic currents that flow across it. This

model, as well as its expanded and simplified forms, have found great success in

describing a variety of neurological behavioral responses to externally applied input

currents, including bursting spiking, regular spiking, irregular bursting spiking, as

well as bifurcations in dynamics of spiking responses (23; 24; 25; 26).

Cascade models and black box models opt for non-biophysical models of spiking

activity, and instead focus on probablistic frameworks of collective neuronal behaviors.

For this reason, they are useful when studying the behavior of large populations

of neurons, when numerical simulation of individual neurons within the network

becomes computationally infeasible when considering biophysical models.

1 .3 .1 Neuronal Network Models

It is apparent that neurons influence each other’s behavior, as they pass electric signals

along synaptic connections, which are then transformed and passed on once again,

forming a biological network of informational flow. Mathematical models of how

these synapses integrate and process these synaptic currents have been developed.

Typically, this is modeled as

Is(t) = −ge(t)
(
v(t)− Ee

)
− gi(t)

(
v(t)− Ei

)
(1.15)

where ge(t) and gi(t) represent excitatory and inhibitory synapse conductances, and

Ee and Ei are excitatory and inhibitory membrane reversal potentials. The synaptic

conductances, ge(t) and gi(t), are modeled by as the weighted sum of all relevant

15

connected neuron’s presynaptic activity as given in (24)

ge(t) =
Ne

∑
j=1

∑
f

wjK
(
t− t f

j
)

(1.16)

gi(t) =
Ni

∑
j=1

∑
f

wjK
(
t− t f

j
)

(1.17)

where wj is the weight of the jth synapse connected to the post-synaptic neuron, and

t f
j is the event time of the f th action potential incoming to the post synaptic neuron

from the jth neuron. Additionally, here the term K(t− t f
j) represents the time course

of postsynaptic conductances following a pre-synaptic spike. Two typical expressions

for are

K
(
t− t f

j
)
=

qj

τs

(
t− t f

j
)
e−
(t−t f

j
τs

)
Θ(t− t f

j) (1.18)

K
(
t− t f

j
)
=

qj

τs
e−
(t−t f

j
τs

)
Θ(t− t f

j) (1.19)

where qj represents the maximum conductance transmittable through an action po-

tential to the jth synapse. Additionally, τs represents a time constant, and Θ(·) is the

Heavyside function, returning 1 for argument t− t f
j > 0 and 0 otherwise.

When parameters are properly fit, these equations combined with a model of

single-neuron dynamics, such as the Hodgkin-Huxley model, are capable of pre-

dicting qualitative behavior of large-scale neuronal networks in various dynamical

regimes.

However, as neuronal network scale increases, so does computational complexity

involved in numerical simulation. Additionally, fitting the large number of parame-

ters involved poses a non-trivial multivariate numerical optimization problem of its

own. This renders these types of models problematic for the development of high-

speed dynamical inference algorithms.

To overcome this potential challenge, an alternate framework that has been em-

ployed is to treat neurons as a point process with a continuously-valued instantaneous

firing rate (27; 28).

16

1 .4 thesis overview

This thesis is organized in the following manner: In Chapter 2, we develop a deep

long-short term memory (LSTM) approach to predict long-horizon dynamical re-

sponses of a experimentally validated, 9-dimensional Hodgkin-Huxley neuron. We

demonstrate that as the length of the predictive horizon increases, so does the ac-

curacy of the predictions from the network. In Chapter 3, we develop a generative

machine learning method, specifically a sequential adaptation of a VAE framework,

to infer poisson firing rates for circuit models of neuronal behaviors. We validate

the performance of this approach on both chaotic and non-chaotic synthetic datasets,

and demonstrate that the framework is capable of discovering cohesive dynamical

representations of the underlying firing rates. Finally, we discuss limitations and

future works in Chapter 4.

17

chapter 2

Data-Driven Predictive Modeling of Neuronal Dynamics

Using Long Short-Term Memory
1

2 .1 introduction

Our brain generates highly complex nonlinear responses at multiple temporal scales,

ranging from few milliseconds to several days, in response to an external stimu-

lus (29; 30; 31). One of the long-time interests in computational neuroscience is

to understand the dynamics underlying various cognitive and non-cognitive brain

functions by developing computationally efficient modeling and analysis approaches.

In the last four decades or so, several advancements have been made in the direction

of dynamical modeling and analysis of brain dynamics (25; 32; 33). In the context

of modeling the dynamics of single neurons, several modeling approaches, ranging

from detailed mechanism-based biophysiological modeling to simplified phenomeno-

logical/probabilistic modeling, have been developed to understand the diverse firing

patterns (e.g., simple spiking to bursting) observed in electrophysiological exper-

iments (1; 34). These models provide a detailed understanding of various ionic

mechanisms that contribute to generating specific spiking patterns as well as allowing

the performance of large-scale simulations to understand the dynamics underlying

cognitive behaviors. However, most of these models are computationally expensive

from the perspective of developing novel real-time neurostimulation strategies for

controlling neuronal dynamics at single neurons and network levels. In this chapter,

we investigate purely data-driven long short-term memory (LSTM) based recurrent

neural network (RNN) architectures in multi-timestep predictions of a single neuron’s

dynamics for the use in developing novel neurostimulation strategies in an optimal

control framework.

The availability of an abundant amount of data and advances in machine learning

has recently revolutionized the field of predictive data-driven dynamical modeling
1Plaster, B., Kumar, G. (2019). Data-Driven Predictive Modeling of Neuronal Dynamics using Long

Short-Term Memory. Algorithms, 12(10), 203.

18

of complex systems using neural networks (NNs) and deep learning approaches.

Various nonlinear system identification approaches have been developed to map static

input-output relations using multi-layer perceptrons (MLPs) (35; 36; 37; 38) and their

variations (39; 40). Reinforcement learning has recently been explored in robotics

dynamical modeling in Reference (41). NN architectures that make use of vanilla

recurrent neural network (RNNs) elements have also been explored for nonlinear

system identification and modeling in References (42; 43; 44). However, network

architectures that make use of vanilla recurrent layers often suffer from the exploding

or vanishing gradient problem when used to model dynamics over long time series

horizons (45). In Reference (44), a highly specialized multi-phase training algorithm

was used to ensure that the network did not suffer from this problem. LSTM based

approaches to modeling dynamical systems (46; 47; 48) mitigate the vanishing gradi-

ent problem but suffer from poor early trajectory predictive performance when using

long predictive horizons (49; 46). LSTMs have been used to model high-dimensional

chaotic systems (50) but these studies have been limited to single step prediction

applications. Additionally, machine learning techniques have begun to be explored

in neuroscientific modeling applications. Multi-layer Spiking Artificial Neural Net-

works (SANNs) for use in spatiotemporal spike pattern transformations have been

developed in References (51; 52). This is achieved by using novel approximations

and surrogates of the partial derivatives of the spike train functions with respect to

the weights. This partial derivative is typically problematic when used in backprop-

agation, as it is undefined at spike times for many neuronal models, rendering it

incompatible with traditional backpropagation-based approaches. In Reference (53),

a novel gated recurrent unit (GRU) based encoder/decoder approach is used to learn

and predict neuronal population dynamics and kinematic trajectories from single-trial

spike train data.

In this chapter, we have developed a novel deep LSTM neural network architec-

ture, which can make multi-timestep predictions in large-scale dynamical systems.

In particular, we use a reversed sequence-to-sequence mapping technique, developed

for language translation applications of multi-layer LSTM networks in Reference (6),

19

and generalize the application of this technique to dynamical systems time-series

forecasting. Figure 2.1 illustrates our overall approach.

In contrast to existing approaches in modeling dynamical systems using neural

networks, our architecture uses (1) stacked LSTM layers in conjunction with a single

densely connected layer to capture temporal dynamic features as well as input/output

features; (2) sequence-to-sequence mapping, which enables multi-timestep predic-

tions; and (3) reverse ordered input and measured state trajectories to the network,

resulting in highly accurate early predictions and improved performance over long

horizons. We show the efficacy of our developed approach in making stable multi-

timestep predictions of various firing patterns exhibited by hippocampal CA1 pyrami-

dal neurons, obtained from simulating an experimentally validated highly nonlinear

9-dimensional Hodgkin-Huxley model of CA1 pyramidal cell dynamics, over long

time-horizons. Our approach is contingent on the network being trained on the entire

state vector of the neuronal model.

The remaining chapter is organized as follows. In Section 2.2, we describe our

developed deep LSTM neural network architecture and methodological approach to

data-driven multi-timestep predictions of dynamical systems. We show the efficacy

of our approach in making stable multi-timestep predictions over long time-horizons

of neuronal dynamics in Section 2.3, which is followed by a thorough discussion on

the limitations of our approach in Section 2.5.

In Section 2.2.1, we describe our developed deep LSTM neural network architec-

ture which combines stacked LSTMs with a fully-connected dense output layer. We

describe the sequence-to-sequence mapping with reversed order input sequences used

throughout this chapter in Section 2.2.2. In Section 2.2.3, we provide the details on

the synthetic data used to train our networks. Finally, in Section 2.2.5, we provide the

details on the approach used to train the developed neural network architecture.

20

Initial Measured
States and Inputs

Reverse Sequence
States and Inputs

Concatenated Predicted States
and Input Sequences

Multi-Timestep
State Prediction

Arbitrary Sequence
of Inputs

Long Horizon Prediction of System States

Deep LSTM
Neural

Network

F igure 2 .1 : A schematic illustrating the overall data-driven approach developed in
this chapter for multi-timestep predictions of high-dimensional dynamical systems’
behavior over a long time-horizon. An initial sequence of states and inputs are fed
to the ”Stacked LSTM Network” in a reverse-order for multi-timestep prediction of
the system’s states (”Reverse-order sequence-to-sequence mapping”). The predicted
output from each stacked LSTM network is concatenated with the next sequence of
inputs and fed into the next stacked LSTM network in a reverse-order to increase the
predictive horizon. This process is iterated an arbitrary number of times, creating
long dynamical predictions.

21

2 .2 neural network architecture , algorithm

and approach

In Section 2.2.1, we describe our developed deep LSTM neural network architecture

which combines stacked LSTMs with a fully-connected dense output layer. We de-

scribe the sequence-to-sequence mapping with reversed order input sequences used

in this work in Section 2.2.2. In Section 2.2.3, we provide the details on the synthetic

data used to train our networks. Finally, in Section 2.2.5, we provide the details on

the approach used to train the developed neural network architecture.

2 .2 .1 Deep LSTM Neural Network Architecture

Long short-term memory (LSTM) neural networks (54) are a particular type of re-

current neural networks (RNNs) which mitigate the vanishing or exploding gradient

problem during the network training while capturing both the long-term and the

short-term temporal features in sequential time-series data processing (45). Specifi-

cally, LSTM uses multiple gating variables that control the flow of information of a

hidden cell state and assign temporal importance to the dynamical features that are

present in the time series data flowing through the cell state. Figure 2.2 shows a

schematic illustrating the internal gating operation in a single LSTM cell.

A forward pass of information through a single LSTM cell is described by the

following cell and gating state equations (reference):

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc), (2.1a)

ht = ot ◦ σc(ct). (2.1b)

ft = σg(W f xt + U f ht−1 + b f), (2.1c)

it = σg(Wixt + Uiht−1 + bi), (2.1d)

22

+

σg σg σc σg

σc

ct

ht

ct-1

ht-1

xt
ft

ot

it

F igure 2 .2 : A schematic illustrating the internal gating operation in a single LSTM
cell. The ”+” represents an additive operation and the “◦” represents a multiplicative
operation. σg is the sigmoidal activation function and σc is the hyperbolic tangent
activation function.

23

ot = σg(Woxt + Uoht−1 + bo), (2.1e)

in Equations 2.1a–2.1e, ct ∈ IRh and ht ∈ IRh represent the cell state vector and the

hidden state vector, respectively, at time t. ft ∈ IRh, it ∈ IRh, and ot ∈ IRh are the

“forget gate”, “input gate”, and “output gate” activation vector, respectively, at time

t. xt ∈ IRd is the input vector to the LSTM unit at time t, and ht−1 ∈ IRh is the

previous time step hidden state vector passed back into the LSTM unit at time t.

The matrices W f , Wi, and Wo represent the input weights for the “forget gate”, “input

gate”, and “output gate”, respectively. The matrices U f , Ui and Uo represent the

weights of the recurrent connections for the “forget gate”, “input gate”, and “output

gate”, respectively. The vectors b f bi, and bo represent the “forget gate”, “input gate”,

and “output gate” biases, respectively. ◦ represents the element-wise multiplication.

The function σg represents the sigmoidal activation function, and σc is the hyperbolic

tangent activation functions.

Here, we use stacked LSTM network integrated with a fully connected feedfor-

ward output layer to make multi-timestep state predictions. The use of a single

feedforward dense output layer allows the network to effectively learn the static input-

output features, while the stacked LSTM network captures the temporal dynamical

features. To appropriately select the optimum dimensionality of the hidden states

in a single hidden layer, we systematically varied the number of hidden states in a

sequence of {n, n2, 2n2, 4n2, · · · }, where n is the dimension of the system’s state and

evaluated the training performance for each case. We found that for our application

(n = 9), a hidden state dimensionality of 4n2 = 324 was optimal in learning dy-

namical behaviors while avoiding overfitting. To select the number of hidden layers,

we systematically increased the number of hidden layers of identical hidden state

dimensionality (i.e., 324 states) and compared the network performance during the

training. We found that increasing the number of hidden layers beyond 3 layers did

not improve the network performance on the training and validation dataset. Thus,

we fixed the number of hidden layers to 3 in our study. Throughout this chapter, we

utilized stateless LSTMs which reset the internal cell and hidden states to zero after

24

processing and performing gradient descent for a given minibatch. We initialized the

network weights using the Xavier method (55). Specifically, the initial weights were

drawn from a uniform distribution using

Wij ∼ U
(
− 6√

nj + nj+1
,

6√
nj + nj+1

)
, (2.2)

where nj is the dimensionality of the input units in the weight tensor, and nj+1 is the

dimensionality of the output units in the weight tensor.

To generate a long time-horizon dynamical prediction beyond the multi-timestep

prediction by a single stacked deep LSTM neural network (shown as “Deep LSTM”

in Figure 2.3), we used an iterative approach as described here. We made copies

of the trained single stacked LSTM network and connected them in the feedforward

manner in a sequence. We concatenated the sequence of predicted output from the

previous stacked LSTM network with an equivalent length sequence of new inputs

to the system and fed them in the reverse sequence order to the next stacked LSTM

network. Figure 2.3 illustrates this iterative approach.

2 .2 .2 Sequence to Sequence Mapping with Neural Networks

To make multi-timestep predictions of dynamical systems’ outputs using the deep

LSTM neural network architecture described in the previous section (Section 2.2.1), we

formulate the problem of mapping trajectories of the network inputs to the trajectories

of the predicted outputs as a reverse order sequence-to-sequence mapping problem.

The central idea of the reverse order sequence-to-sequence mapping approach is to

feed the inputs to the network in reverse order such that the network perceives the

first input as the last and the last input as the first. Although this approach has been

developed and applied in language translation applications (6), it has never been

considered in the context of predicting dynamical systems behaviors from time-series

data. Figure 2.4 illustrates the basic idea of the reverse order sequence-to-sequence

mapping approach for translating letters (inputs) to their numerical indices (outputs).

As shown in Figure 2.4, in the forward sequence-to-sequence mapping approach

(Figure 2.4a), that is, A, B, C → 1, 2, 3, the distance between all mappings is same

25

Deep
LSTM

R
ev

er
se

 O
rd

er

R
ev

er
se

 O
rd

er

In
it

ia
l S

eq
ue

nc
e

R
ev

er
se

 O
rd

er...x0

u0

x1

u1

x2

u2

xi-1 xi

u1 u2 ui-1

x2 x3 xi-1

ui-1

Deep
LSTM

Deep
LSTM

Deep
LSTM

F igure 2 .3 : Iterative prediction of the system’s outputs over a long time-horizon.
Each “Deep LSTM" receives the predicted sequence of outputs from the previous
“Deep LSTM" and an equivalent length of new system’s inputs in reverse order and
predict the next sequence of outputs of same time duration in future.

26

RNN RNN RNN RNN RNN RNN

A B C

1 2 3

1 2

RNN RNN RNN RNN RNN RNN

C B A

1 2 3

1 2

(a)

(b)

F igure 2 .4 : Forward and reversed sequence-to-sequence mapping approach for
translating letters (inputs) to their numerical indices (outputs) in recurrent neural
network (RNN). (a) shows the forward sequence-to-sequence mapping approach.
The input is fed into the network in the same sequence as the desired output.
The “distance” between all corresponding inputs and outputs is uniform. (b) shows
the reversed sequence-to-sequence mapping approach. This approach introduces a
temporal symmetry between input and output sequences while keeping the average
“distance” between the corresponding inputs and outputs same as the forward
approach. As shown in (b), A→ 1 is the shortest “distance" to map, B → 2 the
second, and C → 3 the furthest.

27

(i.e., 3 “units”). In the reverse sequence-to-sequence mapping approach (Figure 2.4b),

the network receives the input in a reverse order to map to the target output sequence,

i.e., C, B, A → 1, 2, 3. As noted here, the average distance between the mappings

remains the same for both approaches (i.e., 3 “units”) but the reverse order approach

introduces short and long-term symmetric temporal dependencies between inputs

and outputs. These short and long-term symmetric temporal dependencies provide

improved predictive performance over long temporal horizons (6).

2 .2 .3 Synthetic Data

Hippocampal CA1 pyramidal neurons exhibit various multi-timescale firing patterns

(from simple spiking to bursting) and play an essential role in shaping spatial and

episodic memory (56). In the last two decades, several biophysiological models of

the CA1 pyramidal (CA1Py) neurons ranging from single compartmental biophys-

iological and phenomenological models (26; 57; 58) to detailed morphology-based

multi-compartmental models (59; 60; 61; 62; 63; 64; 65) have been developed to under-

stand the contributions of various ion-channels in diverse firing patterns (e.g., simple

spiking to bursting) exhibited by the CA1Py neurons.

In this work, we use an experimentally validated 9-dimensional nonlinear model

of CA1 pyramidal neuron in the Hodgkin-Huxley formalism given in Reference (26)

to generate the synthetic data for the network training and validation. The model ex-

hibits several different bifurcations to the external stimulating current and has shown

its capability in generating diverse firing patterns observed in electrophysiological

recordings from CA1 pyramidal cells under various stimulating currents. Figure 2.5

shows three different firing patterns generated from this model based on the three

different regimes of the applied input currents.

To construct the synthetic training and validation dataset for the deep LSTM neural

networks we designed in this chapter with different predictive horizons, we simulated

the Hodgkin-Huxley model of CA1 pyramidal neuron given in (26) (see Section 2.2.4

for the details of the model) for 1000 ms duration for 2000 constant stimulating

currents, sampled uniformly between I = 0.0 nA and I = 3.0 nA. From these

2000 examples, we randomly and uniformly drew 50 samples (i.e., 104 data points)

28

(a) (b) (c)

F igure 2 .5 : Diversity in the spiking patterns of hippocampal CA1 pyramidal
neurons to applied currents. (a) Regular bursting in response to the external current
of 0.23 nA. (b) Irregular bursting in response to the external current of 1.0 nA. (c)
Plateau potentials followed by regular spiking in response to the external current of
3.0 nA.

29

of the desired predictive horizon as the input/output sequence data for training

and validation. As described in Section 2.2.5, we used 1/32 of these data points

for validation, that is, 96,875 data points for the training and 3125 data points for

the validation. Since our deep LSTM neural network takes an initial sequence of

outputs of appropriate predictive horizon length (i.e., Np = 1, 50, 100, 200) as an input

sequence to make the next time-horizon prediction of equivalent length of sequence,

we assume that this initial output sequence data is available to the deep LSTM neural

network throughout our simulations.

2 .2 .4 Hodgkin-Huxley Model of CA1 Pyramidal Neuron Dynamics

We used the following Hodgkin-Huxley model of CA1 pyramidal neuron from (26)

to demonstrate the efficacy of our data-driven modeling approach presented in this

chapter:

C
dV
dt

= −gL(V −VL)− INa − INaP − IKdr − IA − IM − ICa − IC − IsAHP + Iapp, (2.3)

where the ionic currents INa, INaP, IKdr, IA, IM, IsAHP, IC, and ICa are given by

INa = gNam3
∞(V)hNa(V −VNa), (2.4a)

INaP = gNaP p∞(V)(V −VNa), (2.4b)

IKdr = gKdrn4
Kdr(V −VK), (2.4c)

IA = gAa3
∞(V)bKdr(V −VK), (2.4d)

IM = gMzM(V −VK), (2.4e)

ICa = gCar2
Ca(V −VCa), (2.4f)

30

IC = gCd∞([Ca2+]i)cC(V −VK), (2.4g)

IsAHP = gsAHPqsAHP(V −VK), (2.4h)

here, V is the membrane potential in mV, C is the membrane capacitance, VL is the

reversal potential of the leak current, gL is the conductance of the leak current, and Iapp

is the externally applied stimulating current. The ionic currents INa, INaP, IKdr, IA,

IM, IsAHP, IC, and ICa represent the transient sodium current, persistent sodium

current, delayed rectifier potassium current, A-type potassium current, muscarinic-

sensitive potassium current, slow calcium-activated potassium current, fast calcium-

activated potassium current, and high threshold calcium current respectively. gi,

i ∈ {Na, NaP, Kdr, A, M, Ca, C, sAHP} represents the conductance of the ion channel

i. Vi, i ∈ {Na, K, Ca} is the reversal potential of the ion channel i.

The dynamics of the transient activation/deactivation variables of the ionic and

calcium currents, i.e., hNa, nKdr, bKdr, zM, rCa, cC, qsAHP, and [Ca2+]i, are given by:

dhNa

dt
= φ

h∞(V)− hNa

τhNa(V)
, (2.5a)

dnKdr
dt

= φ
n∞(V)− nKdr

τnKdr(V)
, (2.5b)

dbKdr
dt

=
b∞(V)− bKdr

τbKdr

, (2.5c)

dzM

dt
=

z∞(V)− zM

τz
, (2.5d)

drCa

dt
=

r∞(V)− rCa

τrCa

, (2.5e)

dcC

dt
=

c∞(V)− cC

τcC

, (2.5f)

31

dqsAHP

dt
=

q∞(V)− qsAHP

τqsAHP

, (2.5g)

d[Ca2+]i
dt

= −νICa −
[Ca2+]i

τCa
, (2.5h)

here, m∞(V), h∞(V), n∞(V), p∞(V), a∞(V), b∞(V), z∞(V), r∞(V), c∞(V), q∞([Ca2+]i),

and d∞([Ca2+]i) are the steady-state activation/deactivation functions. φ is a scal-

ing parameter. τhNa(V), τnKdr(V), τbKdr
, τrCa , τcC , and τqsAHP are the time constants.

The steady-state activation/deactivation functions are given by:

m∞(V) =
1

1 + e−(V−θm)/σm
, (2.6a)

n∞(V) =
1

1 + e−(V−θn)/σn
, (2.6b)

h∞(V) =
1

1 + e−(V−θh)/σh
, (2.6c)

p∞(V) =
1

1 + e−(V−θp)/σp
, (2.6d)

b∞(V) =
1

1 + e−(V−θb)/σb
, (2.6e)

z∞(V) =
1

1 + e−(V−θz)/σz
, (2.6f)

a∞(V) =
1

1 + e−(V−θa)/σa
, (2.6g)

r∞(V) =
1

1 + e−(V−θr)/σr
, (2.6h)

c∞(V) =
1

1 + e−(V−θc)/σc
, (2.6i)

32

d∞([Ca2+]i) =
1

(1 + ac/[Ca2+]i)
, (2.6j)

q∞([Ca2+]i) =
1

1 + (a4
q/[Ca2+]4i)

, (2.6k)

here, ac, aq, θi, σi for i ∈ {m, n, h, p, b, z, a, r, c} are the model parameters. The voltage

dependent time constants τhNa(V) and τnKdr(V) are given by

τhNa(V) = 1 +
7.5

1 + e−(V−θht)/σht
, (2.7a)

τnKdr(V) = 1 +
5

1 + e−(V−θnt)/σnt
, (2.7b)

where θht, θnt, σht, and σnt are model parameters.

Throughout this chapter, we used the following numerical values for the unknown

model parameters (26): C = 1 F/cm2, gL = 0.05 mS/cm2, VL = −70 mV, ν = 0.13

cm2/(ms × A), gNa = 35 mS/cm2, VNa = 55 mV, gNaP = 0.4 mS/cm2, gKdr = 6.0

mS/cm2, VK = −90 mV, gA = 1.4 mS/cm2, gM = 0.5 mS/cm2, gCa = 0.08 mS/cm2, gC

= 10 mS/cm2, VCa = 120 mV, and gsAHP = 5 mS/cm2, θm = −30 mV, σm = 9.5 mV, θh

= −45 mV, σh = −7 mV, θht = −40.5 mV, σht = −6 mV, φ = 10, θP = −47 mV, σP = 3

mV, θn = −35 mV, σn = 10 mV, θnt = −27 mV, σnt = −15 mV, θa = −50 mV, σa = 20 mV,

θb = −80 mV, σb = −6 mV, θz = −39 mV, σz = 5 mV, θr = −20 mV, σr = 10 mV, τr = 1

ms, θc = −30 mV, σc = 7 mV, θc = 2 ms, ac = 6, τq = 450 ms, and aq = 2.

Unless otherwise stated, we used the following initial conditions to simulate the

Hodgkin-Huxley model for generating the synthetic data: V0 = −71.81327 mV, hNa0 =

0.98786, nKdr0 = 0.02457, bKA0 = 0.203517, uKM0 = 0.00141, rCa0 = 0.005507, [Ca]i0 =

0.000787, cC0 = 0.002486, qCa0 = 0.0.

33

2 .2 .5 Network Training

We formulated the following optimization problem to train a set of network weights

θ:

θ∗ = arg min
θ

L(θ), (2.8)

where the loss function L(θ) is given by

L(θ) = 1
NP

NP

∑
k=0

(~x(k)− x̂(k|θ))T(~x(k)− x̂(k|θ)). (2.9)

Here NP represents the length of horizon over which the predictions are made, ~x(k)

is the known state vector at time step k, and x̂(k|θ) is the neural network’s prediction

of the state vector at time k, given θ.

To solve the optimization problem in Equations 2.8 and 2.9, we used the standard

supervised backpropagation learning algorithm (15; 16; 17) along with the Adaptive

Moment Estimation (Adam) method (66). The Adam method is a first-order gradient-

based optimization algorithm and uses lower-order moments of the gradients between

layers to optimize a stochastic objective function.

Given the network parameter θ(i) and the loss function L(θ), where i represents

the algorithm’s training iteration, the parameter update is given by Reference (66)

m(i+1)
θ ← β1m(i)

θ + (1− β1)∇θL(i), (2.10)

ν
(i+1)
θ ← β2m(i)

θ + (1− β2)(∇θL(i))2, (2.11)

m̂θ =
m(i+1)

θ

1− (β1)i+1 , (2.12)

ν̂θ =
ν
(i+1)
θ

1− (β2)(i+1)
, (2.13)

θ(i+1) ← θ(i) − η
m̂θ√
ν̂θ + ε

, (2.14)

where mθ is the first moment of the weights in a layer, νθ is the second moment of the

weights in a layer, η is the learning rate, β1 and β2 are the exponential decay rates for

the moment estimates, ∇ is the differential gradient operator, and ε is a small scalar

34

term to help numerical stability. Throughout this work, we used β1 = 0.9, β2 = 0.999

and η = 0.001 (66).

It should be noted that there is a trade-off between the predictive time-horizon

of deep LSTM neural network and the computational cost involved in training the

network over the predictive horizon. As the predictive horizon increases, the com-

putational cost of training the network over that horizon increases significantly for

an equivalent number of examples. To keep the computational tractability in our

simulations, all networks with long predictive horizons (i.e., NP = 50, 100, 200) were

trained for 200 epochs except the one-step predictive network, which was trained for

1000 epochs.

For all training sets throughout this chapter, we used the validation to training

data ratio as 1/32. We set the minibatch size for training to 32. We performed all the

training and computation in the TensorFlow computational framework on a discrete

server running CentOS 7 with twin Nvidia GTX 1080Ti GPUs equipped with 11 Gb

of VRAM.

2 .3 simulation results

In this section, we present our simulation results on predicting the multi-timescale

spiking dynamics exhibited by hippocampal CA1 pyramidal neurons over a long

time-horizon using our developed deep LSTM neural network architecture described

in Section 2.2. We trained 4 LSTM networks for making one timestep prediction

(equivalently, 0.1 ms), 50 timesteps prediction (equivalently, 5 ms), 100 timesteps

prediction (equivalently, 10 ms), and 200 timesteps prediction (equivalently, 20 ms).

Figure 2.6 shows the training and validation loss for these 4 LSTM networks.

Using the iterative approach described in Section 2.2.1, we simulated the LSTM

networks over 500 ms of time duration under different initial conditions and stimulat-

ing input currents between three different regimes of dynamical responses (“Regular

Spiking” (I ∈ [2.3, 3.0] nA), “Irregular Bursting” (I ∈ [0.79, 2.3) nA), and “Regular

Bursting” (I ∈ [0.24, 0.79)) nA) and compared the predicted state trajectories with the

Hodgkin-Huxley model.

35

(a) (b)

(c) (d)

F igure 2 .6 : Training and validation loss for the deep long short term memory
(LSTM) neural network with multi-timestep predictive horizon. (a) 1 timestep
predictive horizon. (b) 50 timesteps predictive horizon. (c) 100 timesteps predictive
horizon. (d) 200 timesteps predictive horizon.

36

2 .3 .1 Regular Spiking

In this section, we demonstrate the efficacy of our trained deep LSTM neural network

over the range of external current between 2.3 nA and 3 nA in predicting the regular

spiking dynamics shown by the biophysiological Hodgkin-Huxley model of CA1

pyramidal neuron in response to the external current I ≥ 2.3 nA. In this range, we

observe firing rates between approximately 165 Hz and 187 Hz. For clarity, we here

show our results only for the membrane potential traces. We provide the complete set

of simulation results on the LSTM network performance in predicting the dynamics

of all the 9 states of the Hodgkin-Huxley model in Appendix 2.4.1 (see Figures 2.13–

2.17).

Figure 2.7 shows a comparison of the membrane potential traces simulated using

the Hodgkin-Huxley model and the 4 different predictive horizons of the LSTM

network (i.e., 1 timestep, 50 timesteps, 100 timesteps and 200 timesteps, which we

represent as Np = 1, 50, 100, 200) for the external stimulating current I = 3.0 nA. Note

that all the simulations are performed using the same initial condition as provided in

Appendix 2.2.4. Since our LSTM network uses the initial sequence of outputs of appro-

priate predictive horizon (i.e., Np = 1, 50, 100, 200) from the Hodgkin-Huxley model

to make future time predictions, the LSTM network predictions (shown by dashed

red line) start after 0.1 ms, 5 ms, 10 ms, and 20 ms in Figure 2.7a–d, respectively.

As shown in Figure 2.7, the iterative prediction of the membrane potential traces

by the LSTM network did not differ significantly over a short time horizon (up to 200

ms) for Np = 1, 50, 100, 200, but it significantly improved afterward with the increased

predictive horizon of the LSTM network (i.e., Np = 1 to Np = 200). In particular,

the LSTM network performance significantly improved in predicting the timing of

the occurrence of spikes, but the magnitude of the membrane potential traces during

spikes degraded as we increased Np from 1 to 200. For clarity, we also computed

the time-averaged root mean squared error (RMSE) of the membrane potential traces

between the Hodgkin-Huxley model and the LSTM network for Np = 1, 50, 100, 200

over 500 ms of simulation time. Figure 2.8a shows that the time-averaged RMSE

decreased consistently with the increased predictive horizon of the LSTM network.

37

(a)

(b)

(c)

(d)

F igure 2 .7 : Comparison of predicted membrane potential traces by the deep LSTM
neural network (“LSTM Network”) to the regular spiking pattern exhibited by the
Hodgkin-Huxley model (“HH Model”) in response to the external stimulating current
I = 3.0 nA. (a) Prediction using 1 timestep predictive LSTM network (Np = 1). (b)
Prediction using 50 timesteps predictive LSTM network (Np = 50). (c) Prediction
using 100 timesteps predictive LSTM network (Np = 100). (d) Prediction using 200

timesteps predictive LSTM network (Np = 200).

38

Overall, these results show that our LSTM network with a longer predictive horizon

prefers to capture temporal correlations more accurately over the amplitude while

an LSTM network with a shorter predictive horizon prefers to capture the amplitude

more accurately over the temporal correlations.

To systematically evaluate whether the designed LSTM networks provide reason-

able predictions of the membrane potential traces of the regular spiking dynamics

across the range of external input currents between 2.3 nA and 3.0 nA, we performed

simulations for 50 random stimulating currents drawn from a Uniform distribution

U (2.3, 3.0). For each stimulating current, we chose 100 initial conditions drawn ran-

domly from the maximum and minimum range of the Hodgkin-Huxley state variables

(Note that the network was not trained over this wide range of initial conditions).

Figure 2.8b shows the LSTM network performance, represented in terms of the root

mean squared error vs time over 5000 realizations, for Np = 1, 50, 100, 200. As shown

in this figure, the root mean squared error decreased with the increased predictive

horizon of the LSTM network for all time, which is consistent with the result shown

in Figure 2.8a.

In conclusion, these results suggest that our deep LSTM neural network with a

longer predictive horizon feature can predict the regular (periodic) spiking patterns

exhibited by hippocampal CA1 pyramidal neurons with high accuracy over a long-

time horizon.

2 .3 .2 Irregular Bursting

In this section, we demonstrate the efficacy of our trained deep LSTM neural network

over the range of external current between 0.79 nA and 2.3 nA in predicting the

irregular bursting dynamics shown by the biophysiological Hodgkin-Huxley model

of CA1 pyramidal neuron in response to the external current I ∈ [0.79, 2.3) nA. In this

range, we observe firing rates between approximately 53 Hz and 164 Hz. For clarity,

we here show our results only for the membrane potential traces. We provide the

complete set of simulation results on the LSTM network performance in predicting

the dynamics of all the 9 states of the Hodgkin-Huxley model in Appendix 2.4.2 (see

Figures 2.18–2.22).

39

(a)

(b)

0 25 50 75 100 125 150 175 200
Predictive Horizon (Timesteps)

18.0

18.5

19.0

19.5

20.0

20.5

21.0

R
M

S
E
 (

m
V
)

0 100 200 300 400 500
Time (ms)

0

5

10

15

20

25

30

R
M

S
E
 (

m
V
)

Single Step
50 Step
100 Step
200 Step

F igure 2 .8 : The effect of the length of predictive horizon of the deep LSTM neural
network on the accuracy of regular spiking patterns prediction. (a) shows the time-
averaged root mean squared error (RMSE) versus predictive horizon of the LSTM
network (Np = 1, 50, 100, 200) for the simulation results shown in Figure 2.7; (b) shows
the RMSE versus simulation time for 5000 independent realizations, drawn from
the predicted membrane potential trajectories of 50 randomly selected stimulating
currents from a Uniform distribution U (2.3, 3.0) and 100 random initial conditions for
each stimulating current.

40

Figure 2.9 shows a comparison of the membrane potential traces simulated using

the Hodgkin-Huxley model and the 4 different predictive horizons of the LSTM

network (i.e., Np = 1, 50, 100, 200) for the external stimulating current I = 1.5 nA. Note

that all the simulations are performed using the initial condition used for I = 3.0 nA

in Figure 2.7. Since our LSTM network uses the initial sequence of outputs of appro-

priate prediction horizon (i.e., Np = 1, 50, 100, 200) from the Hodgkin-Huxley model

to make future time predictions, the LSTM network predictions (shown by dashed

red line) start after 0.1 ms, 5 ms, 10 ms, and 20 ms in Figure 2.9a–d, respectively.

As shown in Figure 2.9, the LSTM performance significantly improved in predict-

ing the timing of the occurrence of spikes up to 100 ms with the increased predictive

horizon of the LSTM network from Np = 1 to Np = 200, but the performance

degraded in capturing the magnitude of the membrane potentials during spiking

with an increased value of Np. Although the time-averaged root mean squared error

of the membrane potential traces between the Hodgkin-Huxley model and the LSTM

network for Np = 1, 50, 100, 200 showed an improved performance with the increased

value of Np (see Figure 2.10a), none of the LSTM networks showed a reasonable

prediction of the timing of the occurrence of spikes in this regime beyond 100 ms of

the time-horizon.

To systematically evaluate whether the designed LSTM networks provide reason-

able predictions of the membrane potential traces of the regular spiking dynamics

across the range of external input currents between 0.79 nA and 2.3 nA, we performed

simulations for 50 random stimulating currents drawn from a Uniform distribution

U (0.79, 2.3). For each stimulating current, we chose 100 initial conditions drawn ran-

domly from the maximum and minimum range of the Hodgkin-Huxley state variables

(note that the network was not trained over this wide range of initial conditions).

Figure 2.10b shows the LSTM network performance, represented in terms of the root

mean squared error vs time over 5000 realizations, for Np = 1, 50, 100, 200. As shown

in this figure, the root mean squared error decreased with the increased predictive

horizon of the LSTM network for all time, which is consistent with the result shown

in Figure 2.10a.

41

In conclusion, these results suggest that our deep LSTM neural network with a

longer predictive horizon feature can predict the irregular bursting patterns exhib-

ited by hippocampal CA1 pyramidal neurons with high accuracy over only a short-

time horizon.

2 .3 .3 Regular Bursting

In this section, we demonstrate the efficacy of our trained deep LSTM neural network

over the range of external current between 0.24 nA and 0.79 nA in predicting the

regular bursting dynamics shown by the biophysiological Hodgkin-Huxley model of

CA1 pyramidal neuron in response to the external current I ∈ [0.24, 0.79) nA. In this

range, we observe firing rates between approximately 8 Hz and 52 Hz. For clarity,

we here show our results only for the membrane potential traces. We provide the

complete set of simulation results on the LSTM network performance in predicting

the dynamics of all the 9 states of the Hodgkin-Huxley model in Appendix 2.4.3 (see

Figures 2.23–2.27).

Figure 2.11 shows a comparison of the membrane potential traces simulated using

the Hodgkin-Huxley model and the 4 different predictive horizons of the LSTM

network (i.e., Np = 1, 50, 100, 200) for the external stimulating current I = 0.5 nA. Note

that all the simulations are performed using the initial condition used for I = 3.0 nA

in Figure 2.7. Since our LSTM network uses the initial sequence of outputs of appro-

priate prediction horizon (i.e., Np = 1, 50, 100, 200) from the Hodgkin-Huxley model

to make future time predictions, the LSTM network predictions (shown by dashed

red line) start after 0.1 ms, 5 ms, 10 ms and 20 ms in Figure 2.11a–d, respectively.

By analyzing the results shown in Figure 2.11, we found that the LSTM network

performance in predicting the timing of spikes during bursts as well as tracking the

subthreshold potential improved significantly from Np = 1 to Np = 200, but the

performance substantially degraded in capturing the magnitude of the membrane

potentials during spiking. In conclusion, the 200 timesteps prediction horizon based

LSTM network (see Figure 2.11d) predicts the temporal dynamics with reasonable

accuracy over the first 300 ms of prediction.

42

(a)

(b)

(c)

(d)

F igure 2 .9 : Comparison of predicted membrane potential traces by the deep
LSTM neural network (“LSTM Network”) to the irregular bursting spiking patterns
exhibited by the Hodgkin-Huxley model (“HH Model”) in response to the external
stimulating current I = 1.5 nA. (a) Prediction using 1 timestep predictive LSTM
network (Np = 1). (b) Prediction using 50 timesteps predictive LSTM network
(Np = 50). (c) Prediction using 100 timesteps predictive LSTM network (Np = 100).
(d) Prediction using 200 timesteps predictive LSTM network (Np = 200).

43

(a)

(b)

0 25 50 75 100 125 150 175 200
Predictive Horizon (Timesteps)

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5
R
M

S
E
 (

m
V
)

0 100 200 300 400 500
Time (ms)

0

5

10

15

20

25

30

R
M

S
E
 (

m
V
)

Single Step
50 Step
100 Step
200 Step

F igure 2 .10 : The effect of the prediction horizon of the deep LSTM neural network
on the accuracy of irregular bursting dynamics prediction. (a) shows the time-
averaged root mean squared error (RMSE) versus predictive horizon of the LSTM
network (Np = 1, 50, 100, 200) for the simulation results shown in Figure 2.9. (b) shows
the RMSE versus simulation time for 5000 independent realizations, drawn from
the predicted membrane potential trajectories of 50 randomly selected stimulating
currents from a Uniform distribution U (0.79, 2.3) and 100 random initial conditions
for each stimulating current.

44

Figure 2.12a shows the time-averaged root mean squared error of the membrane

potential traces between the Hodgkin-Huxley model and the LSTM network for Np =

1, 50, 100, 200. As noted in this figure, the root mean squared error decreased substan-

tially between 100 timesteps and 200 timesteps prediction horizon compared to the

regimes of regular spiking (Figure 2.8a) and irregular bursting (Figure 2.10a), which

indicates that a longer predictive horizon based LSTM network is necessary to capture

the two different timescales (i.e., short intraburst spiking intervals and long interburst

subthreshold intervals) presented in these dynamics.

Figure 2.12b shows the LSTM networks performances, represented in terms of the

root mean squared error vs time over 5000 realizations, for Np = 1, 100, and 200

timestep prediction horizon LSTM network. As shown in this figure, the root mean

squared error decreased with the increased predictive horizon of the LSTM network

for all time, which is consistent with the result shown in Figure 2.12a. Note that we

have excluded the simulation result for Np = 50 as we found out in our detailed

analysis that the trained LSTM network for Np = 50 led to instability in predicting

spiking responses for some of the initial condition values in this regime. The reason

for this may be that the network may not have seen these initial conditions during

the training.

2 .4 simulation results on full state predictions of

hodgkin -huxley model

In Section 2.3, we showed our simulation results only for the membrane potential

traces. Here, we provide the simulation results for all the 9 states of the Hodgkin-

Huxley model of CA1 pyramidal neuron (HHCA1Py) predicted by the deep LSTM

neural network over a long-time horizon and show the comparison between these

predictions and the simulated dynamics from HHCA1Py.

2 .4 .1 Regular Spiking

In this section, we show the simulation results on predicting the dynamics of all

the 9 states of HHCA1Py over a long-time horizon using the deep LSTM neural

45

(a)

(b)

(c)

(d)

F igure 2 .11 : Comparison of predicted membrane potential traces by the LSTM
network (“NN Prediction”) to the irregular bursting spiking patterns exhibited by the
Hodgkin-Huxley model (“HH Model”) in response to the external stimulating current
I = 0.5 nA. (a) Prediction using 1 timestep predictive LSTM network (Np = 1); (b)
Prediction using 50 timesteps predictive LSTM network (Np = 50); (c) Prediction
using 100 timesteps predictive LSTM network (Np = 100); (d) Prediction using 200

timesteps predictive LSTM network (Np = 200).

46

(a)

(b)

0 100 200 300 400 500
Time (ms)

0

5

10

15

20

25

R
M

S
E
 (

m
V
)

Single Step
100 Step
200 Step

0 25 50 75 100 125 150 175 200
Predictive Horizon (Timesteps)

7

8

9

10

11

12

13
R
M

S
E
 (

m
V
)

F igure 2 .12 : The effect of the prediction horizon of the multi-timestep LSTM
network on the accuracy of regular bursting dynamics prediction. (a) shows the
time-averaged root mean squared error (RMSE) versus predictive horizon of the
LSTM network (Np = 1, 50, 100, 200) for the simulation results shown in Figure 2.11.
(b) shows the RMSE versus simulation time for 5000 independent realizations,
drawn from the predicted membrane potential trajectories of 50 randomly selected
stimulating currents from a Uniform distribution U (0.24, 0.79) and 100 random initial
conditions for each stimulating current.

47

network for the regular periodic spiking regime (I ∈ [2.3, 3.0] nA). Figures 2.13–2.16

show the comparison between the state’s dynamics simulated using the Hodgkin-

Huxley model and the deep LSTM neural network model developed for 1 timestep,

50 timesteps, 100 timesteps, and 200 timesteps (equivalently, Np = 1, 50, 100, 200)

predictive horizon, respectively.

As shown in these figures, the performance of the deep LSTM neural network

model in predicting state dynamics significantly improved with the increased pre-

dictive horizon of the LSTM network (i.e., Np = 1 to Np = 200) for all the states

except qsAHP for which we found that the magnitude is comparable to the numerical

precision of the performed simulations. Figure 2.17 shows the root mean squared

error between the states of HHCA1Py and the deep LSTM neural network model as a

function of simulation time over 5000 random realizations, for Np = 1, 50, 100, 200.

These results show that the root mean squared error decreases from Np = 1 to

Np = 200.

2 .4 .2 Irregular Bursting

In this section, we show the simulation results on predicting the dynamics of all the 9

states of HHCA1Py over a long-time horizon using the deep LSTM neural network for

the irregular bursting regime (I ∈ [0.79, 2.3) nA). Figures 2.18–2.21 show the compar-

ison between the state’s dynamics simulated using the Hodgkin-Huxley model and

the deep LSTM neural network model developed for 1 timestep, 50 timesteps, 100

timesteps, and 200 timesteps (equivalently, Np = 1, 50, 100, 200) predictive horizon,

respectively.

As shown in these figures, the deep LSTM neural network model provides a

reasonable prediction of the dynamics of all the states except qsAHP over the initial

100 ms of simulations. Moreover, the prediction improved from Np = 1 to Np = 200,

which is consistent with the results for the regular spiking regime (see Figures 2.13–

2.17). We found that the magnitude of qsAHP was comparable to the numerical

precision of our simulations, which hindered the capability of the LSTM network

in making a reasonable prediction for this state.

48

Figure 2.22 shows the root mean squared error between the states of HHCA1Py

and the deep LSTM neural network model as a function of simulation time over

5000 random realizations, for Np = 1, 50, 100, 200. As shown here, the root mean

squared error decreased with the increased predictive horizon of the LSTM network

(i.e., Np = 1 to Np = 200).

2 .4 .3 Regular Bursting

In this section, we show the simulation results on predicting the dynamics of all the 9

states of HHCA1Py over a long-time horizon using the deep LSTM neural network for

the regular bursting regime (I ∈ [0.24, 0.79) nA). Figures 2.23–2.26 show the compar-

ison between the state’s dynamics simulated using the Hodgkin-Huxley model and

the deep LSTM neural network model developed for 1 timestep, 50 timesteps, 100

timesteps, and 200 timesteps (equivalently, Np = 1, 50, 100, 200) predictive horizon,

respectively.

As shown in these figures, the performance of the deep LSTM neural network

model in predicting state dynamics significantly improved between 1 timestep predic-

tive horizon (Figure 2.23) and 200 timesteps predictive horizon (Figure 2.26) across all

the states except qsAHP for the similar reason we provided for the regular spiking

and irregular bursting regimes. More importantly, the LTSM network predicted

the temporal correlations with high accuracy over the time-horizon of 300 ms for

Np = 200. The extrapolation of these results suggest that increasing the predictive

horizon beyond Np = 200 could improve the prediction beyond 300 ms of time-

horizon.

In Figure 2.22, we show the root mean squared error between the states of HHCA1Py

and the deep LSTM neural network model as a function of simulation time over

5000 random realizations, for Np = 1, 50, 100, 200. As shown here, the root mean

squared error decreased with the increased predictive horizon of the LSTM network

(i.e., Np = 1 to Np = 200), which is consistent with the results of the regular spiking

and irregular bursting regimes.

49

F igure 2 .13 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 1 timestep
predictive horizon-based deep LSTM neural network (“LSTM Network”) in response
to I = 3.0 nA.

50

F igure 2 .14 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 50

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 3.0 nA.

51

F igure 2 .15 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 100

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 3.0 nA.

52

F igure 2 .16 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 200

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 3.0 nA.

53

F igure 2 .17 : The root mean squared error (RMSE) versus simulation time for 5000

independent realizations, drawn from the predicted membrane potential trajectories
of 50 randomly selected stimulating currents from a Uniform distribution U (2.3, 3.0)
and 100 random initial conditions for each stimulating current.

54

F igure 2 .18 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 1 timestep
predictive horizon-based deep LSTM neural network (“LSTM Network”) in response
to I = 1.5 nA.

55

F igure 2 .19 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 50

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 1.5 nA.

56

F igure 2 .20 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 100

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 1.5 nA.

57

F igure 2 .21 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 200

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 1.5 nA.

58

F igure 2 .22 : The root mean squared error (RMSE) versus simulation time for 5000

independent realizations, drawn from the predicted membrane potential trajectories
of 50 randomly selected stimulating currents from a Uniform distribution U (0.79, 2.3)
and 100 random initial conditions for each stimulating current.

59

F igure 2 .23 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 1 timestep
predictive horizon-based deep LSTM neural network (“LSTM Network”) in response
to I = 0.5 nA.

60

F igure 2 .24 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 50

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 0.5 nA.

61

F igure 2 .25 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 100

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 0.5 nA.

62

F igure 2 .26 : Comparison between the Hodgkin-Huxley model (“HH Model”)
states’ dynamics and the iterative predictions of states’ dynamics using the 200

timesteps predictive horizon-based deep LSTM neural network (“LSTM Network”)
in response to I = 0.5 nA.

63

F igure 2 .27 : The root mean squared error (RMSE) versus simulation time for 5000

independent realizations, drawn from the predicted membrane potential trajectories
of 50 randomly selected stimulating currents from a Uniform distribution U (0.24, 0.79)
and 100 random initial conditions for each stimulating current.

64

2 .5 discussion

In this chapter, we developed and presented a new data-driven long short-term mem-

ory (LSTM) based neural network (NN) architecture to predict the dynamical spiking

patterns of single neurons. Compared to other LSTM-based NN architectures for

forecasting dynamical systems behavior reported in the literature, our architecture

incorporated a single dense feedforward output layer with an activation function and

a reverse-order sequence-to-sequence mapping approach into traditional LSTM based

neural networks to enable truly multi-timestep stable predictions of the dynamics over

a long time-horizon. We demonstrated the efficacy of our architecture in predicting

the multi-time scale dynamics of hippocampal CA1 pyramidal neurons and compared

the predictions from our model with the ground truth synthetic data obtained from

an experimentally validated biophysiological model of CA1 pyramidal neuron in the

Hodgkin-Huxley formalism. Through simulations, we showed that (1) the presented

architecture can learn multi-timescale dynamics; and (2) the predictive accuracy of the

network increases with the increase in the predictive horizon of the LSTM network.

Our results for irregular bursting regime showed the limitation of the designed

deep LSTM neural network architecture in making an accurate prediction of the

timing of the occurrence of spikes over a long-time horizon compared to regular

spiking and regular bursting regimes. A possible reason for this may be the archi-

tecture itself or the dataset used for training these networks, which requires further

investigations by training the networks on the dataset explicitly generated from this

regime. In addition, it has been shown that this regime of bursting exhibits chaotic

dynamics (67), which may provide further explanation for the network’s struggle to

accurately predict this bursting behavior, as the system exhibits a high sensitivity

to the initial conditions. Hybrid approaches that combine LSTM networks with

mean stochastic models (MSM) have been explored for predictively modeling chaotic

dynamical systems in Reference (50). However, this LSTM-MSM approach is limited

to iterative single step prediction, and the application of this technique falls beyond

the scope of this chapter.

Another limitation of our presented approach in modeling neuronal dynamics

as currently constructed is the inclusion of the full state vector in both training and

65

predictive evaluation. In experiment, it may be infeasible to have the entire state vector

of the neuron measured for any given time. This should provide a valuable direction

for future research, as partially observed systems or neuronal spike train recordings

are much more feasible to measure in vivo or vitro and merit further consideration in

combination with this approach.

In all dynamical regimes, our results showed a degraded performance of the deep

LSTM neural network in predicting the amplitude of membrane potentials during the

timing of the occurrence of spikes with the increased predictive horizon of the LSTM

network. This issue may be related to the equally weighted norm-2 loss function

used for training the networks. A further investigation is required by considering

different loss functions, such as norm-1 or weighted norm-2, which we consider as

our future work.

In addition, we make a note on the computational requirement of our presented

approach. The computational cost of inference with an artificial neural network can

effectively be boiled down to the number of multiplications and additions needed to

complete a forward pass of information. The inference complexity for an LSTM is

roughly O(di · d · h + d · h2), as described in Reference (50), where di is the dimen-

sionality of each input, d is the number of inputs, and h is the dimensionality of

the hidden states. Using this, we estimated the inference complexity of our LTSM

network, represented by O(I), for the prediction horizon of 1, 50, 100, and 200. Using

a single Nvidia GTX 1080Ti, we have also calculated the average computation time

required for each of the predictive horizons used to predict 500 ms of state values

from 1000 examples. We report these values in Table 2.1.

Although the data-driven approach developed in this chapter showed the ability

of the designed LSTM-based neural network in learning multi-timescale dynamics,

we note that the network struggles to accurately capture the dynamics of some state

variables where the magnitude of the state variable is comparable to the numerical pre-

cision of our simulations. This can particularly be seen in Figures 2.14–2.16 and 2.26,

where the network is not able to reconstruct the dynamics of the state variable qsAHP

with a reasonable accuracy. One possible way to alleviate this issue may be to increase

66

Table 2 .1 : Comparison of computational requirement for the iterative approach
presented in this chapter.

NP (∆t = 0.1 ms) Predicted Time (ms) Iterations Computation Time (s) O(I)

1 500 5000 8.896 5.3× 109

50 500 100 3.778 1.6× 108

100 500 50 3.679 1.1× 108

200 500 25 3.565 8.0× 107

67

the tolerance of the numerical errors in simulations, which may increase the overall

computational cost during training.

In conclusion, our results showed that a longer predictive horizon-based LSTM

network can provide a more accurate prediction of multi-time scale dynamics, but at

the expense of extensive offline training cost.

68

chapter 3

Discovering Latent Dynamics Embedded In Large-Scale

Neural Spiking Activity

3 .1 introduction

Neural populations encode information, at least partly, in the spatiotemporal patterns

of spiking activity (68; 69; 70). Thus, understanding the spatiotemporal dynamics

which generate these patterns is a critical step towards understanding neural coding.

However, most of our current understanding of neural coding relies on the statistical

modeling and analysis of neural spiking patterns (71; 72; 73) while ignoring the un-

derlying dynamics which generate these patterns. Although computational modeling

and analysis approaches in the framework of dynamical systems theory developed

in computational neuroscience (74) have attempted to fill this gap, these approaches

are often based on several underlying assumptions. More importantly, most of these

approaches suffer from the issue of scalability to analyze large-scale neuronal pop-

ulations. In the realm of our growing ability to record spiking activity from large

neuronal populations in behaving animals over an extended time, we require scalable

computationally efficient tools that can meet the ever-growing data with minimal

assumptions on the underlying dynamics. In this chapter, we aim to take advantage

of both worlds (i.e., dynamical systems theory and statistical analysis) by developing

novel scalable data-driven dynamical systems modeling and analysis approaches to

infer, and analyze the neural dynamics underlying large-scale spatiotemporal spiking

patterns.

There is growing evidence in the brain-machine interface literature that there exist

low-dimensional neural manifolds embedded in the high-dimensional neuronal spik-

ing spatiotemporal patterns underlying reaching tasks (72). Such low dimensional

neural dynamical structures have been found in various brain regions including the

motor cortex (75), premotor cortex (76), thalamus (77), and the visual cortex (78).

A wealth of single-trial spiking data analysis tools, such as Gaussian process factor

69

analysis (GPFA) (79; 80) and latent factor analysis via dynamical systems (LFADS) (53),

exists in the neuroscience literature to reveal these low-dimensional manifolds from

the single-trial population spiking data. These tools utilize dimensionality reduction

techniques to infer the low dimensional spatiotemporal neural structures from single-

trial spiking patterns while providing a way to reconstruct the spiking patterns from

these inferred neural structures. These tools not only allow us to gain insight into

single-trial variability factors, such as change in the initial states or the stimulus, but

also to visualize how these neural manifolds vary across different experimental trials

or different tasks (81). However, these approaches lack to provide detailed systems-

theoretic analysis of various spatial modes and temporal dynamics underlying the

low-dimensional neural manifolds, which could provide a better understanding of

the dynamics governing the observed spiking activity. More importantly, it is not

possible to answer relevant questions on understanding neural dynamics such as

what the governing dynamical equations of the low-dimensional neural manifolds

are as well as how similar or different these dynamics are for behaviorally similar but

different tasks using these existing approaches.

In this chapter, we develop novel data-driven approaches to infer the firing rates

and latent neural manifolds from the high-dimensional spiking data such that the un-

derlying high-dimensional neural spiking activity can be reconstructed. For this, we

leverage techniques from deep learning and generative models. Figure 3.1 illustrates

the overall framework for inferring firing rates from the high-dimensional spiking

data.

As shown in Figure 3.1, our central idea is based on sequential variational autoen-

coders, a class of generative models based on the dimensionality reduction that allows

the reconstruction of the high-dimensional data from the inferred latent dynamics.

Sequential variational autoencoding approaches have found success in applications

such as collaborative filtering (82), outlier detection and removal(83), and natural

language processing (84). Here, we introduce an implementation of a sequential

variational autoencoder for inferring smoothed firing rates of neuronal populations

directly from binned spiking data in an unsupervised manner by generating smooth

firing rates that maximize the likelihood of the reconstruction of the original data.

70

F igure 3 .1 : Illustration of general inference approach. Measured binned spikes
are fed into the encoder LSTM network in array form. The bidirectional encoding
LSTM returns a vector of Gaussian parameters, z0, describing the initial condition
of the network. A sample is drawn from the Gaussian distribution described by the
parameters, and is fed into the decoder LSTM network, which returns the smoothed
inferred firing rates of the neurons. These can then be compared in a probabilistic loss
function to return the likelihood that the inferred firing rates generated the original
measured spiking activity. This loss is then used to further optimize the network in
iterative fashion via backpropagation.

71

This approach centers on several central assumptions: (1) we assume that the

stochastic firing behavior of individual neurons can be modeled as a nonhomoge-

neous Poisson point process, (2) that underlying dynamics governing the firing rates

of the neurons exist, and (3) that trial-specific initial conditions underlying the neural

circuit exist and can be inferred. A major strength of this approach lies in the RNN

autoencoder’s ability to model highly non-linear temporal patterns, such as those ex-

pressed in neuronal circuits. This can be attributed to the general properties of ANNs

as universal function approximators (7) (85). Their ability to learn highly-complex

and otherwise intractable nonlinear functions governing the encoding and decoding

of complex data structures forms the backbone of this autoencoding approach.

The remainder of this chapter is organized as follows. In Section 3.2, we provide

background information relating to variational autoencoding approaches, and detail

related approaches to the one developed in this Chapter. In Section 3.3, we provide

technical details regarding formulation of the inference problem, and the development

of our novel autoencoding approach adapted for sequential data. Additionally, we

provide descriptions of the dynamical systems we use in simulation for generation of

training and validation data, and detail the generation of our synthetic datasets used

in training. We present the results from training, and quantify the inference ability of

the trained autoencoders in Section 3.4. Finally, in Section 3.5, we provide discussion

of results and limitations of the developed approach, and provide directions for future

works and research.

3 .2 relevant background and literature

In Section 3.2.1 we provide an overview of the background of variational autoencod-

ing approaches. In Section 3.2.2 we detail related inference techniques and approaches

to our own, which we will develop in detail in Section 3.3.

3 .2 .1 Variational Autoencoders

A Variational Autoencoder (VAE) is a class of generative neural network models,

which are a probabilistic interpretation of the autoencoder, a model type that generally

72

performs dimensional compression on high-dimensional input data by reducing it to

a latent state. However, the VAE is a class of generative neural network model whose

goal is not to learn to compress data into a deterministic latent state vector, but rather

to compress it into parameters of a probabilistic distribution.

Our method can be considered as an RNN-based extension of a Variational Au-

toencoder (VAE) extended to processing sequential data. This autoencoding approach

can be broken down into two main components: the encoder, E, and the decoder,

D. The encoder transforms the input sequence of binned spike trains, x, into a

conditional distribution over some latent state z, E(z|x). Typically, this is assumed

as an independent diagonal Gaussian distribution, with each element zi ∼ N (µi, σi).

This assumption is used in the construction of this Sequential VAE model.

Let ẑ denote a sample from the stochastic latent state, z. The decoder accepts this

sample and attempts to transform it back into the original data upon which the latent

state is conditioned. That is, the output of the decoder can be represented as D(x|ẑ).
The autoencoder is comprised of these two different encoding and decoding net-

works being jointly trained on the same probabilistically formulated loss function,

forming the variational autoencoding approach. If the autoencoder has been designed

properly, x̂ should closely resemble the input data into the encoder portion of the

network, x.

Unlike traditional applications of variation autoencoding approaches, we are not

interested in dimensionality reduction in this portion of the approach. We are only

interested in inference of the N neuron’s firing rates.

3 .2 .2 Comparison With Existing Approaches for Inferring Latent Neural Manifolds from

Single Trial Spiking Data

This approach is not unique in its goal to discover low-dimensional neural trajectories

from higher-dimensional neural population activity. Several previous approaches

have been developed and have found success inferring smoothed firing activity from

noisy higher-dimensional data, such as Gaussian-process factor analysis (GPFA)(79)

and Latent factor analysis for dynamical systems (LFADS) (53).

73

GPFA is a novel method for extracting low-dimensional dynamical representations

of high-dimensional behavior, constructed in a probabilistic framework that inherently

allows for simultaneous smoothing and dimensionality reduction. The GPFA model

is a set of factor analyzers at each time point, with a common Gaussian process prior.

This introduction of a Gaussian process allows for time-correlation of data points,

which in turn allows for inference of low-dimensional dynamical behavior. However,

GPFA does not allow for the discovery of non-linear low-dimensional manifolds of

activity, leaving it best used for exploratory studies of neural trajectories.

Similarly to the method we have devised, LFADS makes use of a sequential varia-

tional autoencoding approach to discover smoothed firing rates underlying recorded

and binned neural spiking activity. This is done by use of a jointly-trained, encoding-

decoding approach. In LFADS, the encoder is a bidirectional implementation of a

gated recurrent unit (GRU)(86), a type of gated RNN whose internal gating structure

is more complicated than a vanilla RNN, but not so complicated as the LSTM. This

bidirectional GRU returns an initial condition of the system, which is passed on to the

generator portion of the network. The generator is comprised of a forward-directional

GRU network, with additional custom layer structure. This custom layer structure is

comprised of a linear layer, which transforms the high-dimensional representation of

the dynamics into a low-dimensional latent representation of the dynamics, which

is then transformed linearly and exponentiated to recreate strictly positive firing rate

dynamics. This differs from our approach, in which we seek to identify only smoothed

firing rates from our implementation of a sequential variational autoencoder, and per-

form dimensionality reduction and latent-state dynamical identification separately in

a downstream process. This process of encoding, decoding, dimensionality-reduction,

and subsequent firing rate reconstruction from the low-dimensional representation

makes the process of convergent learning extremely difficult, as there are a huge

number of parameters to be learned. To overcome this, LFADS makes use of a highly

tailored, complex custom learning algorithm.

In the coming sections, we will detail a statistical inference method that seeks to

capture smoothed Poisson firing rates underlying binned spiking data, with the goal

74

of being able to learn complex, non-linear dynamics while allowing for compatibility

with standard optimization and training techniques.

3 .3 methods

Here, we present the overview of the structure underlying the developed autoencoder

architecture and dynamical inference approach. For notational simplicity in the com-

ing sections, we denote the affine transformation WT
i x + bi as Wi(x). In Section 3.3.1,

we provide an overview of the encoder, which accepts input binned spike trains and

returns the initial condition of the system. In Section 3.3.2, we delve into details

regarding the generation of firing rates from the initial condition provided by the

encoder. Section 3.3.3 details the development of the probabilistic loss function that

our model is trained to maximize in an unsupervised learning framework. In Section

3.3.4, we provide details related to implementation and best practices in constructing

the network. Specifics regarding the approach to further distill low-dimensional latent

firing rate dynamics from the high-dimensional inferred firing rate data is given in

Section 3.3.5. Finally, in Section 3.3.6, we provide descriptions of synthetic systems

and detail the generation of synthetic neuronal spiking data from them to evaluate

our approach.

3 .3 .1 Encoder

We consider data in the form of binned spike counts, x, collected over T discrete time

intervals, recorded from N individual neurons. As in many variational autoencoding

approaches, we assume that the encoded latent state of the network is some diagonal

Gaussian distribution, with form Nn(µ, σIn). We wish to encode the entire sequence

of these binned spike counts into an initial state vector, z0, which will be used to

initialize the iterative prediction of the firing rate dynamics.

To accomplish this, we use a multi-layered, bidirectional LSTM network to run

over the binned spiking data in both directions from t = 1 to t = T, and from t = T

to t = 1, returning a single vector with 2N elements, C. The bidirectional nature of

the LSTM encoder allows for the entire time series worth of input data to be encoded

75

into a single vector, while minimizing bias attributed to directionality of sequential

processing, and can be described as

C = LSTMenc(x) (3.1)

The initial condition vectors, µ0 and σ0, are the output of two densely connected

nonlinear transformations given by

µ0 = Wµ0(C) (3.2)

σ0 = exp
(
Wσ0(C)

)
(3.3)

where Wµ0 and Wσ0 are separate, trainable weight matrices. The sample from the

encoded mean and variance vector is then taken as

ẑ0 ∼ E(z|x) = N (z|µ0, σ0In) (3.4)

where each ith element of the latent initial condition, zi ∼ N (µi, σi) is a element of a

diagonal Gaussian distribution.

3 .3 .2 Decoder

This approach assumes that the observed binned spikes, x, are samples from a Poisson

process, with underlying firing rates, r. We consider each neuron to have an corre-

sponding independent Poisson firing rate, ri. The overarching goal of this approach

is to reconstruct the estimated firing rates, r̂ that maximize the probability of the

input binned spikes into the system, x. The rates are obtained as the exponentiated

output of the final layer of the generative LSTM cell. The choice of the final non-linear

exponentiation, exp(·), ensures that the estimated firing rate of the network remains

positive. Additionally, exp(·) is the inverse canonical link function to the Poisson

distribution, making it a natural choice in that regard.

76

The decoding process begins when a sample is drawn from the encoded initial

state vector, ẑ0 ∼ E(z|x). This is passed into the decoder LSTM cell, and the initial

latent firing rate is generated as,

ĝ0 = LSTMgen(ẑ0) (3.5)

For each subsequent time step t = 1, ..., T, the subsequent latent firing rate is gener-

ated by accepting the previous time step’s estimated latent rate as the input into the

decoder cell

ĝt = LSTMgen(ĝt−1) (3.6)

Due to the nature of the LSTM cell, which typically necessitate the use of a hyperbolic

tangent or sigmoidal output function, this constrains the output from the generative

LSTM network to be on {-1,1} or {0,1}. Thus, we pass the output latent firing rates

through a densely-connected output layer with an exponential activation. This allows

for strictly positive firing rates, and exp(·) is the inverse canonical link function to

the Poisson distribution, making it a natural choice for the output layer activation

function. The firing rates are then output as

r̂t = exp
(
Wout(ĝt)

)
(3.7)

where Wout represents a trainable parameter matrix. Once the firing rates have been

generated, Poisson sampling can be used to approximately recreate the original input

binned spike trains,

x̂t ∼ Poisson(xt|r̂t) (3.8)

where Poisson indicates that independent Poisson sampling is performed for each

of the individual neuronal firing rates expressed as an element of the estimated rate

vector, r̂t. This final step is not typically done, as inference of the firing rates, rather

than total reconstruction of the original binned spike trains, is the overarching goal of

this developed inference technique.

77

3 .3 .3 Autoencoder Loss Function

The probability mass function of a Poisson distribution within a discrete time interval

can be expressed as

P(k|λ) = e−λλk

k!
(3.9)

where k represents the number of events within some discrete time period, λ is the

underlying event frequency, often denoted as the rate parameter, and e is Euler’s num-

ber. The event frequency could also be described as the product of an instantaneous

firing rate, r and the measure of the discrete time interval ∆t.

This is easily translated to Poisson spiking neurons, where the observed event

counts, k, are equivalent to the observed spike trains, x, binned into discrete time

intervals of length ∆t, with the governing Poisson rate parameters, λ, equivalent to

the estimated inferred firing rates from the autoencoder within each timestep, r̂∆t .

Thus, for each timestep, t, the probability mass function can be expressed as

P(xt|r̂t∆t) =
e−r̂t∆t(r̂t∆t)xt

xt!
(3.10)

The autoencoder model is optimized such that it maximizes the log-likelihood

of the original binned spike trains, given the estimated firing rates from the au-

toencoder, logP(x|r̂∆t). The log-likelihood is used as opposed to the likelihood to

ensure numerical stability and avoid rounding errors in training. Thus at each time

step, we compute the log-likelihood of the original binned spike trains, given the

autoencoder’s estimated firing rates as

logP(xt|r̂t∆t) = xtlog(r̂t∆t)− r̂t∆t− log(xt!) (3.11)

Thus, for the entire timeseries of inferred firing rates over T timesteps, the total firing

rate reconstruction loss can be computed as

Lr =
T

∑
t=1

logP(xt|r̂t∆t) (3.12)

78

However, the VAE framework centers around maximizing the lower evidence bound

of the data,

logP(x) ≥ L = Lr − LKL (3.13)

where Lr represents the aforementioned reconstruction cost of the firing rates given

the original data, and LKL represents a non-negative Kullback-Leibler Divergence

term that serves to restrict the posterior initial condition to the decoder from deviating

too far from the uninformative assumed Gaussian prior, and is defined as

LKL = DKL
(
Nn(z0|µ0, σ0In)|Nn(0, In)

)
(3.14)

where DKL represents the Kullback Leibler Divergence between the two distributions.

This term serves as a regularizer on the posterior inferred from the network, ensuring

that the distribution inferred remains ’near’ the uninformative Gaussian prior.

We wish to maximize the lower evidence bound, L, thus in practice we minimize

the additive inverse, −L.

3 .3 .4 Further Details of Autoencoder Implementation

Here, we provide details of implementation of the SVAE that were not mentioned in

the more general functional description from sections 3.3.1, 3.3.2, and 3.3.3.

For all instances of an RNN being used throughout this work, we have used

recurrent dropout, a form of regularization on the recurrent weights of the neural

network architecture, to ensure generality of the solutions learned by the network. It

is common to use L2 regularization as a means to achieve the same end, but tuning

L2 regularization weight penalties by hand or automating the process becomes an

extremely difficult problem in and of itself. Recurrent dropout ensures that at any

given time step, a certain number of recurrent weights are masked, ensuring that the

total set of recurrent weights is not overly dependent on any singular element.

Additionally, we employed dropout in the exponential output layer, ensuring that

the network’s weights transforming the generator’s latent firing rate representation

to the real-valued one remains generalized, and not over-reliant on a single particular

weight within the layer.

79

3 .3 .5 Identification of Latent Firing Dynamics

In addition to inference of smoothed Poisson firing rate dynamics directly from the ob-

served binned spiking data, we are also interested in the distillation of low-dimensional

latent dynamics capable of describing their high-dimensional behavior. Towards this

end, we employ deterministic autoencoders to recreate the original latent dynamical

behavior. In practice, this deterministic autoencoder is simply a multi-layer percep-

tron, whose innermost layer, known as a "bottleneck", is comprised of a significantly

fewer number of artificial neurons than both the input and output layers. This sharp

decrease in the number of available neurons forces the data into a low-dimensional,

high-information representation of the original data. It is this low-dimensional, ’latent’

representation that we wish to ultimately distill, as this would enable identification

techniques such as SINDY to relate this latent dynamical behavior to closed-form

differential equation representation.

3 .3 .6 Synthetic Datasets

Lorenz Chaotic System — To examine the inference ability of this approach,

we examined its performance on a variation of the well-characterized chaotic Lorenz

system, with latent dynamics of the form

ẏ1 = σ(y2 − y1) (3.15)

ẏ2 = y1(ρ− y3)− y2 (3.16)

ẏ3 = y1y2 − βy3 (3.17)

where σ, β, and ρ are the typical parameters used to induce chaotic behavior, and are

valued at 10, 8/3, and 28, respectively. Euler integration was used with ∆t = 0.001

s. The chaotic behavior exhibited by this system can be visualized in Figure 3.2. As

done in (87), a linear readout matrix was used to transform this low-dimensional

chaotic system into a high dimensional one, and firing rates were finally generated

by exponentiating the linearly transformed system. For the linear readout matrix, all

80

weights were selected randomly and independently from a uniform distribution on

(1, 2). The resultant firing rate behaviors can be visualized in Figure 3.3.

To generate the data, we sampled 25 initial conditions, and integrated each re-

sponse for 100 seconds, yielding timeseries of length 100, 000. The first 20, 000 steps

were discarded to ensure the system’s steady state behavior. The remaining 80, 000

timesteps were divided into sequences of 1, 000 timesteps (equaling 1 second), yield-

ing 80 firing rate examples per initial condition. Poisson sampling was then per-

formed to generated spiking events from synthetic firing rate data. The spikes were

then binned at intervals of 20, 30, 40, and 50 milliseconds, yielding spiking activity

vectors of length 50, 33, 25, and 20, respectively.

Chaotic Continuous -Time RNN System — To further test the ability of this

generative framework, we We generated an N-dimensional, synthetic dataset from a

continuous-time, nonlinear equation of the form

τṙ(t) = −r(t) + γWtanh(r(t)) (3.18)

where r(t) represents the firing rates as a function of time, ṙ(t) represents the first

order time derivative of the firing rates, γ is a parameter set to 1.5− 2.5 depending

on the severity of the desired chaotic behavior, τ is a parameter set to 0.025s, and the

elements of the matrix W are drawn independently from a normal distribution with

mean zero and variance 1/N, where N is the number of neuronal firing rates being

described. For our applications, N = 50. For our purposes, we used γ = 1.5 for

simulations. In this regime, the system exhibits chaotic dynamical behavior. Once all

responses were generated, they were normalized, and subsequently multiplied by a

scaling factor of 150, giving rise to instantaneous firing rates in the range of 0− 150

Hz. An example of the resulting firing rates for a single array of neurons can be seen

in Figure 3.4.

Euler integration at ∆t = 0.001 s was used. To generate the data, we sampled from

random initial conditions with elements drawn from mean zero with unit variance.

Simulation carried on for 100 timesteps, yielding firing rate vectors totaling 1 second.

81

F igure 3 .2 : A sample solution of the Lorenz attractor dynamics when ρ = 28,
β = 8/3, and σ = 10. The ’butterfly’ orbit can be clearly visualized.

82

F igure 3 .3 : Illustration of linearly transformed and exponentiated Lorenz attractor
dynamics.

83

0 200 400 600 800 1000
Time (ms)

0

20

40

60

80

100

120

140

Fi
rin

g
Ra

te
 (H

z)

F igure 3 .4 : Example of chaotic firing rate dynamical behavior.

84

We generated 2000 examples of independent firing rates, and then performed Poisson

sampling from those rates. These Poisson spike events were then binned at 20, 30,

40, and 50ms, yielding binned spike trains of length 50, 33, 25, and 20 time steps,

respectively.

The training/testing split was set as 1/5, leading to 4000 examples used as the

training set, and 1000 examples used as the test set. In training, we allowed for a

randomly split 1/20 of the training set to be used as an on-line validation set during

training.

3 .3 .7 Optimization

For all network training, the Adam (66) optimizer was used. Adam is a first-order

gradient-based stochastic optimization algorithm, which makes use of lower-order

moments of the gradients between layers to optimize the stochastic objective function.

Given network parameters, θ(i), and the objective function L(θ(i), the ith update to the

parameters is given by

m(i+1)
θ ← β1m(i)

θ + (1− β1)∇θL(i), (3.19)

ν
(i+1)
θ ← β2m(i)

θ + (1− β2)(∇θL(i))2, (3.20)

m̂θ =
m(i+1)

θ

1− (β1)i+1 , (3.21)

ν̂θ =
ν
(i+1)
θ

1− (β2)(i+1)
, (3.22)

θ(i+1) ← θ(i) − η
m̂θ√
ν̂θ + ε

, (3.23)

where mθ is the first moment of the weights in a layer, νθ is the second moment of

the weights in a layer, η is the learning rate, β1 and β2 are the exponential decay rates

for the moment estimates, ∇ is the differential gradient operator, and ε is a small

scalar term to help numerical stability. For all optimization in this Chapter, we used

β1 = 0.9, β2 = 0.999 and η = 0.001 (66).

85

3 .4 results

In this section, we present simulation results from both training and inference of the

firing rates underlying the binned spiking activity given to the network, for both the

non-chaotic and chaotic synthetic dynamical datasets. In Section 3.4.1, we present

results from chaotic Lorenz dynamics with bin sizes of 50, 40, 30, and 20 milliseconds,

and demonstrate the network’s inference performance at each bin size. Additionally,

we discuss the recovery of the latent 3-dimensiona chaotic Lorenz dynamics from the

inferred high-dimensional firing rate data. In Section 3.4.2, we present results for

inference of chaotic continuous-time RNN dynamical firing rates with bin sizes of 50,

40, 30, and 20 milliseconds.

3 .4 .1 Chaotic Lorenz Dynamics

50ms B in — The network was trained for 5, 000 epochs to ensure thoroughness in

training. This can be visualized in Figure 3.5. Once trained, the network evaluated

each of the 400 test set examples. From this, the mean absolute percentage error

between the inferred firing rates and those used to generate the binned spiking data

was used to quantify the inference performance of the approach. Once fully trained,

the network’s mean absolute percentage error in inferring the test set’s original firing

rates was 5.07%. Figure 3.6 demonstrates an example of the network’s ability to infer

firing rates underlying observed binned spiking activity.

Here we see the inference procedure has little trouble discovering the underlying

firing rates on the chaotic Lorenz dataset binned at 50ms. Qualitatively, while there

is mild error in timescale and magnitude, the dynamics inferred from the network

closely resemble the ground truth firing rates on which the binned data was created.

This behavior is characteristic of the inference approach’s performance on this dataset.

From this, we may conclude that the network successfully has learned to capture the

dynamical behavior governing the firing rates of this system.

40ms B in — The network was trained for 5, 000 epochs to ensure thoroughness in

training. This can be visualized in Figure 3.7. Once trained, the network evaluated

each of the 400 test set examples. From this, the mean absolute percentage error

86

F igure 3 .5 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike trains binned at
50ms.

87

F igure 3 .6 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
Lorenz dynamical spiking binned at 50ms. Top: Integer binned spike train input from
the neuron. Middle: Comparison of ground truth and inferred neuron firing rate
underlying spikes shown above. Bottom: Error between the prediction and ground
truth, measured in Hz.

88

between the inferred firing rates and those used to generate the binned spiking data

was used to quantify the inference performance of the approach. Once fully trained,

the network’s mean absolute percentage error in inferring the test set’s original firing

rates was 5.86%. Figure 3.8 demonstrates an example of the network’s ability to infer

firing rates underlying observed binned spiking activity.

Here we see the inference procedure has little trouble discovering the underlying

firing rates on the chaotic Lorenz dataset binned at 40ms. Qualitatively, while there

are errant estimations in both timescale and magnitude, the dynamics inferred from

the network closely resemble the ground truth firing rates on which the binned

data was created, and error remains very low. This behavior is characteristic of the

inference approach’s performance on this dataset. From this, we may conclude that

the network successfully has learned to capture the dynamical behavior governing

the firing rates of this system.

30ms B in — Once again, the network was trained for 5, 000 epochs to ensure

thoroughness in training. This can be visualized in Figure 3.9. Once trained, the

network evaluated each of the 400 test set examples. From this, the mean absolute

percentage error between the inferred firing rates and those used to generate the

binned spiking data was used to quantify the inference performance of the approach.

Once fully trained, the network’s mean absolute percentage error in inferring the test

set’s original firing rates was 6.02%. Figure 3.10 demonstrates an example of the

network’s ability to infer firing rates underlying observed binned spiking activity.

Here we see the inference procedure does well in discovering the underlying

firing rates on the chaotic Lorenz dataset binned at 30ms. We note that there are

errors in both the timescale and magnitude of the dynamics, but that ultimately the

network’s inferred rates closely resemble those of the ground truth. This behavior

is characteristic of the inference approach’s performance on this dataset. From this,

we may conclude that the network successfully has learned to capture the dynamical

behavior governing the firing rates of this system.

89

F igure 3 .7 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike trains binned at
40ms.

90

F igure 3 .8 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
Lorenz dynamical spiking binned at 40ms. Top: Integer binned spike train input from
the neuron. Middle: Comparison of ground truth and inferred neuron firing rate
underlying spikes shown above. Bottom: Error between the prediction and ground
truth, measured in Hz.

91

F igure 3 .9 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike trains binned at
30ms.

92

F igure 3 .10 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
Lorenz dynamical spiking binned at 30ms. Top: Integer binned spike train input from
the neuron. Middle: Comparison of ground truth and inferred neuron firing rate
underlying spikes shown above. Bottom: Error between the prediction and ground
truth, measured in Hz.

93

20ms B in — The network was trained for 5, 000 epochs to ensure thoroughness in

training. This can be visualized in Figure 3.11. Once trained, the network evaluated

each of the 400 test set examples. From this, the mean absolute percentage error

between the inferred firing rates and those used to generate the binned spiking data

was used to quantify the inference performance of the approach. Once fully trained,

the network’s mean absolute percentage error in inferring the test set’s original firing

rates was 6.47%. Figure 3.12 demonstrates an example of the network’s ability to infer

firing rates underlying observed binned spiking activity.

We note that at the 20ms bin, performance begins to degrade, as can be seen

in Figure 3.12. The network’s inferred firing rate dynamics begin to err further in

both magnitude and timescale of features exhibited, resulting in significantly higher

error. While the inference procedure is certainly learning a representation of the

dynamical firing rates underlying the chaotic binned spiking data, the representation

is less accurate than at larger bin sizes.

Recovery of Governing Latent Dynamics — Finally, we must make a note

on the use of deterministic autoencoders to recover governing latent dynamics, with

the hopes of identifying their closed-form representations using SINDY regression

techniques. These autoencoders were trained to reproduce the inferred firing rate data

output from the sequential variational autoencoder for 2,000 epochs. The autoencoder

used was a 3-layer densely connected network with widths of 50, 3, and 50 neurons,

from input layer to output layer, respectively.

The deterministic autoencoder was able to reproduce the inferred firing rates from

the network with exceptional accuracy in all cases of binning size, with mean absolute

reconstruction error rates ranging from 0.2% to 0.55%, with mild variance depending

on random weight initialization in the network. This behavior is consistent across all

binning window sizes.

However, of more particular concern is the recreation of the original latent 3-

dimensional Lorenz dynamics. If the deterministic autoencoder is properly trained

and configured, the 3-dimensional encoded latent state from the autoencoder should

closely resemble the 3-dimensional Lorenz dynamical data. However, as can be

94

F igure 3 .11 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer Lorenz spike trains binned at
20ms.

95

F igure 3 .12 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
Lorenz dynamical spiking binned at 20ms. Top: Integer binned spike train input from
the neuron. Middle: Comparison of ground truth and inferred neuron firing rate
underlying spikes shown above. Bottom: Error between the prediction and ground
truth, measured in Hz.

96

F igure 3 .13 : Illustration of recreated and originally inferred high-dimensional
chaotic Lorenz firing rates from deterministic autoencoder. This example is from
the 20ms binning case.

97

visualized in Figure 3.14, there are currently rather large issues in recovery of the true

latent state used to generate the data, as the pictured dynamics do not resemble the

Lorenz attractor of Figure 3.2. Without properly recovering the raw latent dynamics,

application of the SINDY algorithm to discover their closed-form representation is

extremely unlikely to succeed. This result provides a direction for future improvement

and research, and constitutes our current most outstanding challenge in discovering

latent dynamical representations embedded in high-dimensional spiking activity.

3 .4 .2 Chaotic RNN Dynamics

50ms B in — The network was trained for 5, 000 epochs to ensure thoroughness in

training. This can be visualized in Figure 3.15. Once trained, the network evaluated

each of the 400 test set examples. From this, the mean absolute percentage error

between the inferred firing rates and those used to generate the binned spiking data

was used to quantify the inference performance of the approach. Once fully trained,

the network’s mean absolute percentage error in inferring the test set’s original firing

rates was 5.38%. Figure 3.16 demonstrates an example of the network’s ability to infer

firing rates underlying observed binned spiking activity.

Here we see the inference procedure has little trouble discovering the underlying

firing rates on the chaotic dataset binned at 50ms. Qualitatively, while there is mild

error, the dynamics inferred from the network closely resemble the ground truth firing

rates on which the binned data was created. This behavior is characteristic of the

inference approach’s performance on this dataset. From this, we may conclude that

the network successfully has learned to capture the dynamical behavior governing

the firing rates of this system.

40ms B in — The network was trained for 5, 000 epochs to ensure thoroughness in

training. This can be visualized in Figure 3.17. Once trained, the network evaluated

each of the 400 test set examples. From this, the mean absolute percentage error

between the inferred firing rates and those used to generate the binned spiking data

was used to quantify the inference performance of the approach. Once fully trained,

the network’s mean absolute percentage error in inferring the test set’s original firing

98

F igure 3 .14 : Illustration of recreated latent Lorenz chaotic firing rates from
deterministic autoencoder. This example is from the 20ms binning case. It can be
visualized that these recovered latent rates exhibit purely linear behavior, moving
along a line in near perfect unison, instead of the classical Lorenz ’butterfly’ attractor
trajectories.

99

Epoch

Lo
ss

F igure 3 .15 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic continuous-time RNN
spike trains binned at 50ms.

100

F igure 3 .16 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
chaotic continuous-time RNN neuronal spiking binned at 50ms. Top: Integer binned
spike trains input from the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error between prediction
and ground truth, measured in Hz.

101

rates was 6.14%. Figure 3.18 demonstrates an example of the network’s ability to infer

firing rates underlying binned spiking activity.

Similarly to the 50ms chaotic dataset, we observe that again the inference proce-

dure of the network is able to discover firing rate dynamics that closely resemble the

ground truth. This behavior is characteristic of the inference approach’s performance

on this dataset. From this, we conclude that the inference approach is able to success-

fully learn the dynamical behavior of the firing rates underlying the binned chaotic

dataset.

30ms B in — The network was trained for 5, 000 epochs to ensure thoroughness in

training. This can be visualized in Figure 3.19. Once trained, the network evaluated

each of the 400 test set examples. From this, the mean absolute percentage error

between the inferred firing rates and those used to generate the binned spiking data

was used to quantify the inference performance of the approach. Once fully trained,

the network’s mean absolute percentage error in inferring the test set’s original firing

rates was 6.83%.

Here, we observe that the inference procedure is again able to reconstruct dy-

namical firing rate behavior that closely resembles the ground truth of the system.

However, we must note that the network fails to capture all nuances of the dynamical

behavior, often creating slightly overly-smoothed firing rates relative to the ground

truth, as can be visualized in Figure 3.20. However, we can conclude that the network

has successfully learned the dynamical behavior of the firing rates underlying the

binned chaotic dataset.

20ms B in — The network was trained for 7, 500 epochs to ensure thoroughness

in training. The network was trained for the extra epochs to ensure that duration

of training was not an issue, as this model struggled to generate dynamical firing

rates. This can be visualized in Figure 3.21. Once trained, the network evaluated

each of the 400 test set examples. From this, the mean absolute percentage error

between the inferred firing rates and those used to generate the binned spiking data

was used to quantify the inference performance of the approach. Once fully trained,

102

Lo
ss

Epoch

F igure 3 .17 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic continuous-time RNN
spike trains binned at 40ms.

103

F igure 3 .18 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
chaotic continuous-time RNN neuronal spiking binned at 40ms. Top: Integer binned
spike trains input from the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error between prediction
and ground truth, measured in Hz.

104

F igure 3 .19 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic continuous-time RNN
spike trains binned at 30ms.

105

F igure 3 .20 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
chaotic continuous-time RNN neuronal spiking binned at 30ms. Top: Integer binned
spike trains input from the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error between prediction
and ground truth, measured in Hz.

106

the network’s mean absolute percentage error in inferring the test set’s original firing

rates was 9.75%.

We note that at the 20ms bin, performance begins to degrade, as can be seen in

Figure 3.22. The first several timesteps exhibit sharp, non-smooth behavior. From

there, the network’s inferred firing rate dynamics begin to err further in both magni-

tude and timescale of features exhibited, resulting in significantly higher error. While

the inference procedure is certainly learning a representation of the dynamical firing

rates underlying the chaotic binned spiking data, the representation is less accurate

than at larger bin sizes.

3 .4 .3 Impact of Binning Size

Here, we briefly present summary graphs of mean absolute percentage error in pre-

diction of the test sets binned at, 20, 30, 40, and 50 milliseconds, for both the chaotic

Lorenz system as well as the chaotic continuous-time RNN system. We note that for

both systems, we observe decreases in mean absolute error percentages between the

ground truth firing rates and the network’s inferred firing rates as the discrete-time

binning window is increased. Figure 3.23 illustrates this for the network trained to

infer firing rates from the chaotic Lorenz dynamical spiking data, while Figure 3.24

does so for the network trained to infer firing rates from the chaotic continuous-time

RNN spiking data.

3 .5 discussion

In this work, we have developed and presented a novel data-driven adaptation of a

variational autoencoder to sequential data in order to approximately infer smoothed

firing rate dynamics underlying discretely-observed Poisson event spiking. In compar-

ison to other approaches which cannot learn highly nonlinear dynamics, do not neces-

sarily scale well with increased system dimensionality, and make use of complicated,

highly tailored, multi-phase learning algorithms, we make use of multi-layered LSTM

networks, with a single dense output layer with an exponential activation paired with

commonly-used and highly flexible stochastic gradient descent algorithms, such as

107

F igure 3 .21 : Training and validation loss for the SVAE inference network for
inferring firing rates, for the network trained to infer chaotic continuous-time RNN
binned spike trains of 20ms.

108

F igure 3 .22 : Example of firing rate inference for a randomly selected neuron,
computed from a randomly selected test set example, for the network trained on
chaotic continuous-time RNN neuronal spiking binned at 20ms. Top: Integer binned
spike trains input from the neuron. Middle: Comparison of ground truth and inferred
neuron firing rate underlying spikes shown above. Bottom: Error between prediction
and ground truth, measured in Hz.

109

20 25 30 35 40 45 50
Bin Size (ms)

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

M
ea

n
Ab

so
lu

te
 P

er
ce

nt
ag

e
Er

ro
r

Test Set Error vs. Bin Size

F igure 3 .23 : Mean absolute percentage error in inference of chaotic Lorenz firing
rates for chaotic binned spiking activity plotted against bin size window, measured in
milliseconds. We see that as bin size increases, the mean absolute percentage error of
those predictions decreases.

110

20 25 30 35 40 45 50
Bin Size (ms)

5.4

5.6

5.8

6.0

6.2

6.4

6.6

M
ea

n
Ab

so
lu

te
 P

er
ce

nt
ag

e
Er

ro
r

Test Set Error vs. Bin Size

F igure 3 .24 : Mean absolute percentage error in inference of chaotic continuous-
time RNN firing rates for chaotic binned spiking activity plotted against bin size
window, measured in milliseconds. We see that as bin size increases, the mean
absolute percentage error of those predictions decreases.

111

Adam. We demonstrate the efficacy of this approach to infer smoothed firing rates

directly from discrete spiking data generated from simulations of a 50-neuron network

of neurons with latent chaotic Lorenz dynamical behavior as well as a 50-neuron

network with latent dynamics generated from a chaotic continuous-time RNN.

Through these simulations and training we have demonstrated that (1) the pre-

sented autoencoder architecture is capable of learning cohesive dynamical represen-

tations of smoothed firing rate data directly from discretely-observed event-based

spiking data; and (2) that the predictive accuracy of the network increases as the

discrete-time binning window is increased over an equivalent-time spiking sequence.

In both cases, the 20 millisecond binning window illustrated the limitation of this

designed inference approach in inferring smoothed firing rates from the spiking data.

At this binning window, degraded performance in prediction was observed with re-

spect both to temporal features and raw magnitude. A possible reason for this may be

the increased number of iterative predictions necessary due to the finer discrete time

window at which data is binned. As the length of the predicted firing rate sequence

increases, so does the necessary number of timesteps over which backpropagation

must be carried out - this may result in weak gradients by the time that the iterative

backpropagation reaches backwards to the initial timestep; however, this is merely a

suspicion from related work in dynamical timeseries prediction with recurrent neural

network architectures (88) (45) that merits further systematic investigation.

Another limitation of this approach as currently constructed is the assumption that

all neurons within the synthetic systems devised above are fully observable. In prac-

tice, as the scale of the system increases, the ability to record spiking activity of each

individual neuron within each circuit becomes increasingly less feasible, as neuronal

circuits are comprised of many millions of neurons. There has been major progress

made by prominent capital research ventures on this front, enabling recordings of

many thousands of neurons in a potentially scalable fashion (89), but this remains

a prohibitive and developing technology with much work to be done. Further work

must be done to investigate the efficacy of this approach on partially observed spiking

systems. This is of particular concern for real world applications, where data from in

vitro and in vivo experiments are nearly always from partially observed systems.

112

Additionally, the topic of off-line training cost must be addressed. As is common

to applications of RNNs to sequential datasets in sequence-to-sequence learning, as

the length of the predictive horizon of the sequence increases, so does the offline

computational cost of training said networks.

Finally, we must comment on the current limitations in distilling latent represen-

tations of the smoothed firing rate dynamics output from the SVAE. The current

autoencoding-based method is not fully operational, as it is highly capable of re-

covering the high-dimensional smoothed firing rates, but is not capable of properly

rediscovering the governing latent dynamics used to generate the high-dimensional

firing rate data. This remains an outstanding challenge and poses a clear direction for

future research endeavors.

In conclusion, our results showed that an increased discrete-time binning window

in combination with our novel sequential variational autoencoder is highly capable

of learning cohesive representations of firing rate dynamics underlying discretely-

observed spiking data in a completely unsupervised variational autoencoding frame-

work.

113

chapter 4

Summary and Directions for Future Work

4 .1 summary

The approach of using data-driven neural networks to solve unique and otherwise

intractable computational problems across a wide variety of fields has proved to be

critical for the development of tools for modeling datasets previously thought infeasi-

ble. In this thesis, we have focused on the development and applications of novel deep

neural network architectures for modeling and inferring neuronal dynamics at both

the single-neuron and neuronal circuit level. Chapters 2 and 3 of this thesis cover

the development of two separate ANN-centered techniques for modeling neuronal

dynamics, in order to facilitate the development of computationally feasible optimal

control systems, which are dependent upon a robust, multi-timestep predictive model

of neuronal dynamics in order to properly function.

In Chapter 2, we present a novel deep LSTM architecture, which makes use of

reversed-order sequence-to-sequence mapping, for use in predicting long-horizon

simulated single-neuron responses to constant current stimulation. We used an exper-

imentally validated, 9-dimensional Hodgkin-Huxley model with multiple dynamical

bifurcations for use in generation of simulated data to be used in both training and

evaluation of the network. These bifurcations resulted in three major dynamical

behaviors: regular spiking, chaotic irregular bursting, and regular bursting. We

systematically explored the impact of both architecture depth and length of predic-

tive horizon used, and demonstrate that as the length of the predictive horizon of

the LSTM used in prediction is increased so is the network’s predictive accuracy.

Simultaneously, we show that the on-line time required for inference also decreases

as predictive horizon is increased, but at the expense of increased off-line training

cost before use in inference. Additionally, we demonstrate that the use of reversed-

order sequence-to-sequence mapping can increase accuracy of both early portions

of predicted sequences, as well as improve overall network performance as a whole.

114

In conclusion, the developed LSTM architecture was demonstrated to be capable of

learning and accurately predicting neuronal responses to externally applied input

currents across a range of dynamical behaviors.

In Chapter 3, we develop a novel sequential adaptation of a variational autoen-

coder architecture for use in recovering smoothed Poisson firing rates directly from

discrete, binned neuronal spiking data in an unsupervised learning framework and

investigate the impact of binning size on the inference ability of the network. To

do this, we created two synthetic chaotic datasets and quantitatively evaluated the

performance of the networks on each. In both cases, chaotic firing rates were gener-

ated, binned spiking data was gathered through simulation of Poisson spiking activity

from those firing rates, and the network was then allowed to discover firing rates that

maximized the probability of the reconstruction of the data directly from the binned

spiking activity. From this, performance of this approach was quantified in terms of

mean absolute percentage error between the inferred firing rates and the ground truth

firing rates used to generate the Poisson spiking data. We systematically investigate

the impact of the binning window size on the performance of the network, and demon-

strate that increased binning window size corresponds with decreased predictive error

across both synthetic datasets. In conclusion, this approach is demonstrated to be

capable of discovering cohesive firing rate dynamics directly from binned spiking

behavior in an unsupervised framework.

4 .2 future works

In Chapter 2, we designed a novel deep LSTM architecture that was capable of

learning long-horizon neuronal responses to externally applied inputs. It was demon-

strated that as the predictive horizon of the network was increased, that so too was

the predictive accuracy of the network. However, one cannot simply extend sequence

lengths arbitrarily to many hundreds or even thousands of timesteps using traditional

RNN architectures. Even the LSTM, which was specifically designed to mitigate the

exploding gradient problem and allow for processing of lengthened sequences cannot

extend beyond 200-300 timesteps at once without running into severe instability in

115

training and degraded inference performance. Recent and highly novel sequence

processing architectures, such as transformer networks with attention mechanisms

(90), have completely revolutionized and reset the field of sequence-to-sequence map-

ping and sequential inference algorithms in natural language processing applications,

as they do not suffer from degraded performance over sequence lengths considered

infeasible for modern RNNs. Novel adaptations of these networks to become compat-

ible with neuronal modeling problems is a challenge in an of itself, but it possesses

the ability to once again revolutionize data-driven neuronal modeling techniques.

In Chapter 3, we designed an adaptation of a variational autoencoder for sequen-

tial data. This was used to infer underlying firing rate dynamics. However, there

are multiple areas of potential improvement and expansion for this approach. To

begin, there is no inclusion of external inputs to the neuronal network designed in the

current iteration of this approach, which limits this autoencoding approach to a data-

analysis tool. A novel method of accounting for inclusion of external inputs applied

by a controller or experimentalist would greatly expand this approach in terms of

applicability to in vivo and in vitro data, where external input is often applied and

recorded. Secondly, this approach has thus far been used to recover smoothed firing

rates in what is effectively a statistical inference problem - however, this approach

could be modified for use in diagnostic applications, in which firing rates inferred

by the network are fed into another sequential processing architecture to produce

an estimate of pathological disease likelihood in a two-stage process. This can be

visualized below in Figure 4.1.

Finally, there is work to be done towards distillation of low-dimensional latent

firing-rate dynamics from the inferred firing rates output from the sequential varia-

tional autoencoder. Currently, while highly accurate reconstruction of the inferred

firing rate dynamics has been achieved, there are significant challenges and deficien-

cies in recovery of the ground truth latent dynamics from them. Currently, this

deterministic autoencoding approach to discover the latent dynamics makes use of

non-recurrent multi-layer perceptrons; it is not unreasonable to suggest that use of

recurrent architectures in lieu of multi-layer perceptrons could yield a more cohesive

and realistic recreation of the latent firing dynamics, as RNNs must process sequences,

116

F igure 4 .1 : Illustration of potential diagnostic inference approach. Measured
binned spikes are fed into the encoder LSTM network in array form. The bidirectional
encoding LSTM returns a vector of Gaussian parameters, z0, describing the initial
condition of the network. A sample is drawn from the Gaussian distribution described
the the parameters, and is fed into the decoder LSTM network, which returns the
smoothed inferred firing rates of the neurons. These firing rates could then in theory
be fed into a third LSTM network, which would return the probability of a certain
disease, or the likelihood of a set of potential diagnoses. The firing rates and spikes
are compared in a probabilistic loss function to return the likelihood that the inferred
firing rates generated the original measured spiking activity, while the loss from the
final diagnostic LSTM network may be some form of categorical accuracy loss. These
losses would then be used to further optimize the network in iterative fashion via
backpropagation.

117

instead of modeling static single-timestep dependencies as is done with the multi-

layer perceptron. Additionally, these deterministic autoencoder structures are trained

separately from the sequential autoencoder architecture. There is potential to greatly

improve performance in this regard if the networks were to be jointly trained; however,

the formulation of such a loss function, the relative weighting of each term expressed

in the loss, and the implementation of such a function poses an arduous and difficult

task.

118

Bibliography

[1] A. V. Herz, T. Gollisch, C. K. Machens, and D. Jaeger, “Modeling single-neuron
dynamics and computations: a balance of detail and abstraction,” science, vol. 314,
no. 5796, pp. 80–85, 2006.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–
90, 2017.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups,” IEEE
Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[5] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceedings of the
25th international conference on Machine learning, pp. 160–167, 2008.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, pp. 3104–3112,
2014.

[7] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[8] D. O. Hebb, The organization of behavior: A neuropsychological theory. Psychology
Press, 2005.

[9] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para.
Cornell Aeronautical Laboratory, 1957.

[10] B. Widrow et al., Adaptive" adaline" Neuron Using Chemical" memistors.". 1960.
[11] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: perceptron,

madaline, and backpropagation,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1415–
1442, 1990.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” tech. rep., California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[13] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, pp. 2672–2680, 2014.

119

[15] P. J. Werbos, “Generalization of backpropagation with application to a recurrent
gas market model,” Neural networks, vol. 1, no. 4, pp. 339–356, 1988.

[16] P. J. Werbos et al., “Backpropagation through time: what it does and how to do
it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[17] M. C. Mozer, “A focused backpropagation algorithm for temporal,” Backpropaga-
tion: Theory, architectures, and applications, vol. 137, 1995.

[18] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,” Proceedings
of the National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[19] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” The Journal
of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[20] A. L. Hodgkin and A. F. Huxley, “The components of membrane conductance in
the giant axon of loligo,” The Journal of physiology, vol. 116, no. 4, p. 473, 1952.

[21] A. L. Hodgkin and A. F. Huxley, “Currents carried by sodium and potassium
ions through the membrane of the giant axon of loligo,” The Journal of physiology,
vol. 116, no. 4, p. 449, 1952.

[22] A. L. Hodgkin, A. F. Huxley, and B. Katz, “Measurement of current-voltage
relations in the membrane of the giant axon of loligo,” The Journal of physiology,
vol. 116, no. 4, p. 424, 1952.

[23] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural
networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[24] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

[25] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press,
2014.

[26] D. Golomb, C. Yue, and Y. Yaari, “Contribution of persistent na+ current
and m-type k+ current to somatic bursting in ca1 pyramidal cells: combined
experimental and modeling study,” Journal of neurophysiology, vol. 96, no. 4,
pp. 1912–1926, 2006.

[27] K. D. Miller and F. Fumarola, “Mathematical equivalence of two common forms
of firing rate models of neural networks,” Neural computation, vol. 24, no. 1,
pp. 25–31, 2012.

[28] D. Heeger, “Poisson model of spike generation,” Handout, University of Standford,
vol. 5, pp. 1–13, 2000.

[29] R. Salmelin, R. Hari, O. Lounasmaa, and M. Sams, “Dynamics of brain activation
during picture naming,” Nature, vol. 368, no. 6470, p. 463, 1994.

120

[30] M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E.
Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated
functional networks,” Proceedings of the National Academy of Sciences, vol. 102,
no. 27, pp. 9673–9678, 2005.

[31] S. J. Kiebel, J. Daunizeau, and K. J. Friston, “A hierarchy of time-scales and the
brain,” PLoS computational biology, vol. 4, no. 11, p. e1000209, 2008.

[32] C. Siettos and J. Starke, “Multiscale modeling of brain dynamics: from single
neurons and networks to mathematical tools,” Wiley Interdisciplinary Reviews:
Systems Biology and Medicine, vol. 8, no. 5, pp. 438–458, 2016.

[33] M. Breakspear, “Dynamic models of large-scale brain activity,” Nature neuro-
science, vol. 20, no. 3, p. 340, 2017.

[34] W. Gerstner and R. Naud, “How good are neuron models?,” Science, vol. 326,
no. 5951, pp. 379–380, 2009.

[35] S. Chen and S. Billings, “Neural networks for nonlinear dynamic system
modelling and identification,” International journal of control, vol. 56, no. 2,
pp. 319–346, 1992.

[36] S. Purwar, I. Kar, and A. Jha, “Nonlinear system identification using neural
networks,” IETE journal of research, vol. 53, no. 1, pp. 35–42, 2007.

[37] J. G. Kuschewski, S. Hui, and S. H. Zak, “Application of feedforward neural
networks to dynamical system identification and control,” IEEE Transactions on
Control Systems Technology, vol. 1, no. 1, pp. 37–49, 1993.

[38] S. Pan and K. Duraisamy, “Long-time predictive modeling of nonlinear
dynamical systems using neural networks,” Complexity, vol. 2018, 2018.

[39] P. Gupta and N. K. Sinha, “Modeling robot dynamics using dynamic neural
networks,” IFAC Proceedings Volumes, vol. 30, no. 11, pp. 755–759, 1997.

[40] J. C. Patra, R. N. Pal, B. Chatterji, and G. Panda, “Identification of nonlinear
dynamic systems using functional link artificial neural networks,” IEEE
transactions on systems, man, and cybernetics, part b (cybernetics), vol. 29, no. 2,
pp. 254–262, 1999.

[41] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning,” in
2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7559–
7566, IEEE, 2018.

[42] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication,” science, vol. 304, no. 5667, pp. 78–80,
2004.

[43] C. A. Bailer-Jones, D. J. MacKay, and P. J. Withers, “A recurrent neural network
for modelling dynamical systems,” network: computation in neural systems, vol. 9,
no. 4, pp. 531–547, 1998.

[44] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep latent features
for model predictive control.,” in Robotics: Science and Systems, Rome, Italy, 2015.

121

[45] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in International conference on machine learning, pp. 1310–1318,
2013.

[46] N. Mohajerin and S. L. Waslander, “Multistep prediction of dynamic systems
with recurrent neural networks,” IEEE transactions on neural networks and learning
systems, 2019.

[47] L. Lin, S. Gong, T. Li, and S. Peeta, “Deep learning-based human-driven vehicle
trajectory prediction and its application for platoon control of connected and
autonomous vehicles,” in The Autonomous Vehicles Symposium, vol. 2018, 2018.

[48] J. Gonzalez and W. Yu, “Non-linear system modeling using lstm neural
networks,” IFAC-PapersOnLine, vol. 51, no. 13, pp. 485–489, 2018.

[49] Y. Wang, “A new concept using LSTM neural networks for dynamic system
identification,” in 2017 American Control Conference (ACC), pp. 5324–5329, IEEE,
2017.

[50] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos, “Data-
driven forecasting of high-dimensional chaotic systems with long short-term
memory networks,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 474, no. 2213, p. 20170844, 2018.

[51] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer spiking
neural networks,” Neural computation, vol. 30, no. 6, pp. 1514–1541, 2018.

[52] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural networks,” in
Advances in Neural Information Processing Systems, pp. 1433–1443, 2018.

[53] C. Pandarinath, D. J. O’Shea, J. Collins, R. Jozefowicz, S. D. Stavisky, J. C. Kao,
E. M. Trautmann, M. T. Kaufman, S. I. Ryu, L. R. Hochberg, et al., “Inferring
single-trial neural population dynamics using sequential auto-encoders,” Nature
methods, p. 1, 2018.

[54] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[55] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp. 249–256, 2010.

[56] E. C. McKiernan and D. F. Marrone, “CA1 pyramidal cells have diverse
biophysical properties, affected by development, experience, and aging,” PeerJ,
vol. 5, p. e3836, 2017.

[57] J. Nowacki, H. M. Osinga, J. T. Brown, A. D. Randall, and K. Tsaneva-Atanasova,
“A unified model of CA1/3 pyramidal cells: An investigation into excitability,”
Progress in biophysics and molecular biology, vol. 105, no. 1-2, pp. 34–48, 2011.

[58] K. A. Ferguson, C. Y. Huh, B. Amilhon, S. Williams, and F. K. Skinner, “Simple,
biologically-constrained CA1 pyramidal cell models using an intact, whole
hippocampus context,” F1000Research, vol. 3, 2014.

122

[59] P. Poirazi, T. Brannon, and B. W. Mel, “Arithmetic of subthreshold synaptic
summation in a model CA1 pyramidal cell,” Neuron, vol. 37, no. 6, pp. 977–987,
2003.

[60] M. Royeck, M.-T. Horstmann, S. Remy, M. Reitze, Y. Yaari, and H. Beck, “Role of
axonal NaV1. 6 sodium channels in action potential initiation of CA1 pyramidal
neurons,” Journal of neurophysiology, vol. 100, no. 4, pp. 2361–2380, 2008.

[61] Y. Katz, V. Menon, D. A. Nicholson, Y. Geinisman, W. L. Kath, and N. Spruston,
“Synapse distribution suggests a two-stage model of dendritic integration in CA1

pyramidal neurons,” Neuron, vol. 63, no. 2, pp. 171–177, 2009.
[62] D. Bianchi, A. Marasco, A. Limongiello, C. Marchetti, H. Marie, B. Tirozzi,

and M. Migliore, “On the mechanisms underlying the depolarization block
in the spiking dynamics of CA1 pyramidal neurons,” Journal of computational
neuroscience, vol. 33, no. 2, pp. 207–225, 2012.

[63] A. Marasco, A. Limongiello, and M. Migliore, “Fast and accurate low-
dimensional reduction of biophysically detailed neuron models,” Scientific reports,
vol. 2, no. 928, pp. 1–7, 2012.

[64] Y. Kim, C.-L. Hsu, M. S. Cembrowski, B. D. Mensh, and N. Spruston, “Dendritic
sodium spikes are required for long-term potentiation at distal synapses on
hippocampal pyramidal neurons,” Elife, vol. 4, pp. (e06414) 1–30, 2015.

[65] M. J. Bezaire, I. Raikov, K. Burk, D. Vyas, and I. Soltesz, “Interneuronal
mechanisms of hippocampal theta oscillations in a full-scale model of the rodent
CA1 circuit,” Elife, vol. 5, pp. (e18566) 1–106, 2016.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[67] R. Naud, N. Marcille, C. Clopath, and W. Gerstner, “Firing patterns in the
adaptive exponential integrate-and-fire model,” Biological cybernetics, vol. 99,
no. 4-5, p. 335, 2008.

[68] D. N. Mastronarde, “Correlated firing of retinal ganglion cells,” Trends in
neurosciences, vol. 12, no. 2, pp. 75–80, 1989.

[69] M. N. Shadlen and W. T. Newsome, “The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding,” Journal of
neuroscience, vol. 18, no. 10, pp. 3870–3896, 1998.

[70] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. Chichilnisky, and
E. P. Simoncelli, “Spatio-temporal correlations and visual signalling in a complete
neuronal population,” Nature, vol. 454, no. 7207, pp. 995–999, 2008.

[71] S. Shinomoto, K. Shima, and J. Tanji, “Differences in spiking patterns among
cortical neurons,” Neural computation, vol. 15, no. 12, pp. 2823–2842, 2003.

[72] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian,
S. I. Ryu, and K. V. Shenoy, “Neural population dynamics during reaching,”
Nature, vol. 487, no. 7405, pp. 51–56, 2012.

123

[73] D. Kobak, W. Brendel, C. Constantinidis, C. E. Feierstein, A. Kepecs, Z. F.
Mainen, X.-L. Qi, R. Romo, N. Uchida, and C. K. Machens, “Demixed principal
component analysis of neural population data,” Elife, vol. 5, p. e10989, 2016.

[74] K. V. Shenoy, M. Sahani, and M. M. Churchland, “Cortical control of arm
movements: a dynamical systems perspective,” Annual review of neuroscience,
vol. 36, 2013.

[75] C. Pandarinath, V. Gilja, C. H. Blabe, P. Nuyujukian, A. A. Sarma, B. L. Sorice,
E. N. Eskandar, L. R. Hochberg, J. M. Henderson, and K. V. Shenoy, “Neural
population dynamics in human motor cortex during movements in people with
als,” Elife, vol. 4, p. e07436, 2015.

[76] F. Carnevale, V. de Lafuente, R. Romo, O. Barak, and N. Parga, “Dynamic
control of response criterion in premotor cortex during perceptual detection
under temporal uncertainty,” Neuron, vol. 86, no. 4, pp. 1067–1077, 2015.

[77] J. M. Shine, L. J. Hearne, M. Breakspear, K. Hwang, E. J. Müller, O. Sporns,
R. A. Poldrack, J. B. Mattingley, and L. Cocchi, “The low-dimensional neural
architecture of cognitive complexity is related to activity in medial thalamic
nuclei,” Neuron, vol. 104, no. 5, pp. 849–855, 2019.

[78] J. A. Goldberg, U. Rokni, and H. Sompolinsky, “Patterns of ongoing activity and
the functional architecture of the primary visual cortex,” Neuron, vol. 42, no. 3,
pp. 489–500, 2004.

[79] B. M. Yu, J. P. Cunningham, G. Santhanam, S. Ryu, K. V. Shenoy, and M. Sahani,
“Gaussian-process factor analysis for low-dimensional single-trial analysis of
neural population activity,” Advances in neural information processing systems,
vol. 21, pp. 1881–1888, 2008.

[80] J. Luttinen and A. Ilin, “Variational gaussian-process factor analysis for modeling
spatio-temporal data,” in Advances in neural information processing systems,
pp. 1177–1185, 2009.

[81] C. D. Harvey, P. Coen, and D. W. Tank, “Choice-specific sequences in parietal
cortex during a virtual-navigation decision task,” Nature, vol. 484, no. 7392,
pp. 62–68, 2012.

[82] N. Sachdeva, G. Manco, E. Ritacco, and V. Pudi, “Sequential variational
autoencoders for collaborative filtering,” arXiv preprint arXiv:1811.09975, 2018.

[83] Y. Wang, B. Dai, G. Hua, J. Aston, and D. Wipf, “Recurrent variational
autoencoders for learning nonlinear generative models in the presence of
outliers,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 6, pp. 1615–
1627, 2018.

[84] J.-T. Chien and C.-W. Wang, “Variational and hierarchical recurrent autoencoder,”
in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3202–3206, IEEE, 2019.

124

[85] A. M. Schäfer and H. G. Zimmermann, “Recurrent neural networks are universal
approximators,” in International Conference on Artificial Neural Networks, pp. 632–
640, Springer, 2006.

[86] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[87] Y. Zhao and I. M. Park, “Variational latent gaussian process for recovering single-
trial dynamics from population spike trains,” Neural computation, vol. 29, no. 5,
pp. 1293–1316, 2017.

[88] B. Plaster and G. Kumar, “Data-driven predictive modeling of neuronal dynamics
using long short-term memory,” Algorithms, vol. 12, no. 10, p. 203, 2019.

[89] E. Musk et al., “An integrated brain-machine interface platform with thousands
of channels,” Journal of medical Internet research, vol. 21, no. 10, p. e16194, 2019.

[90] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, pp. 5998–6008, 2017.

	Authorization to Submit Dissertation
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Artificial Neural Networks
	Sparse Identification of Nonlinear Dynamics
	Neuronal Modeling
	Thesis Overview

	Data-Driven Predictive Modeling of Neuronal Dynamics Using Long Short-Term Memory
	Introduction
	Neural Network Architecture, Algorithm and Approach
	Simulation Results
	Simulation Results on Full State Predictions of Hodgkin-Huxley Model
	Discussion

	Discovering Latent Dynamics Embedded In High-Dimensional Neural Spiking Activity
	Introduction
	Relevant Background and Literature
	Methods
	Results
	Discussion

	Summary and Directions for Future Work
	Summary
	Future Works

	Bibliography

