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Abstract

Image Processing and computer vision has always been a major component in the

field of robotics and machine learning. The information extracted from image processing

varies widely depending upon the nature of tasks to be performed by the robot. The

goal of this research is to enable a robot to find a path for autonomous trail following. In

the research an evolutionary approach has been used to determine the minimal regions

in input images, which are discriminating enough for the robot to distinguish between

path and non-path. Image processing is computationally intensive in nature, requiring

significant processing time and main memory. So, any reduction in area of the image

to be processed for decision making is always advantageous. In this research two sets of

experiments are done to compare the effectiveness of evolved regions for image processing

against processing the whole image. In the first set the robot processed the entire frame

from the camera to make decisions for driving on a trail by avoiding non-trail. In the

second set image processing is done on only the evolved region of the frame to make the

decision. It was found that image processing over the evolved region covering less than

30% of the captured image can give results comparable to processing the whole image.
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Chapter 1: Introduction

With advances in computing people have been automating more and more things.

Tellers in bank have been replaced by ATM machines, concession stands in public places

have been replaced by vending machines, and cashiers in supermarkets have been replaced

by self-checkout machines. This desire for automation has affected many different aspects

of our life. In the past few years people have been working hard on automating the

vehicles we drive. Private organizations and government agencies have supported many

research projects and invested millions of dollars in the field. The Defense Advanced

Research Projects Agency grand challenge for autonomous vehicle driving conducted

by DARPA (Defense Advanced Research Projects Agency), an agency of the US DOD

(Department Of Defense), is a vivid example of such an investment [1]. In 2005 and 2007

teams from Stanford University and Carnegie Mellon University were each awarded $2

million cash prizes for winning the competition [5] [6].

A major challenge for autonomous driving is the huge variation in types of road

surfaces and their similarity with surrounding environment. The color, texture, and other

visual cues for paved road, graveled road, asphalt road and muddy trail are very different

from each other. Using only color detection will almost certainly be insufficient to solve

the problem of differentiating road from non-road. Moreover, color detection approaches

are very susceptible to lighting conditions. The same road surface might appear to be

colored differently, generating different color profiles under different lighting conditions.

For this reason, it is desirable to have multiple image processing techniques in addition to

color detection (e.g. texture, edge, Hough Lines, etc.) applied to the image, before any

decision regarding road surface is made. As image processing is computationally intensive

in nature, it requires significant processing time and main memory. So, any reduction

in area of the image to be processed for decision making is advantageous. Moreover, for

many purposes, the objects of interest lie in certain regions of the image, rather than

covering the whole image. For example, in using image processing for identifying road
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Figure 1.1: Robot Platform over artificial track made of felt
The robot platform built at UI using commodity off the shelf (COTS) principle comprises of
an android smart-phone, an arduino microcontroller, and a rover 5 tank chassis. The felt track

is sky-blue in color and is 18 inches wide.

surfaces, the upper half of the image might not be as important as the lower half and

might even be completely ignored. So, if we could focus only on those specific areas

of interest, and do image processing only over them, it would save a lot of processing

time. This research focuses on identifying the regions of an image that are discriminating

enough for color based image processing techniques to differentiate a road surface from

non-road surface.

The research implements a genetic based feature extraction method [16, 17, 18] for

evolving regions of interest in the images captured from a camera. An individual in the

population is represented by a tuple < X1, Y1, X2, Y2 . . .Xn, Yn >, where a pair of Xi

and Yi represent a point in the X-Y plane. Two of these points collectively represent

a region. Here, a generational approach (Section 2.4) for evolution has been used for

evolving individuals. A tournament of size three is used for selecting parents. Two of

the best individuals from the tournament (the parents) exchange their genetic materials

using uniform crossover to produce a child. This child undergoes mutation, and is placed
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in a separate child population. When the child population is the same size as the parent

population, the evolutionary process is switched from the parent population to the child

population. This process of creating a child population and switching the evolutionary

process to it, is continued for some predetermined number of generations. By the end

of the evolutionary process, we will have determined an useful individual that represents

good set of regions. Image processing is then done only on those regions and the values

obtained are used for making a decision regarding a surface being road or non-road, for

driving the robot.

The research uses a neural network to control the robot (Figure 4.4, 4.5). The im-

plemented neural network has three layers. The number of nodes in the input layer

corresponds to the number of regions that have been evolved. The hidden and output

layers have three nodes each. In this research the number of regions evolved (hence the

inputs to neural network) varies from two to ten. So, having higher number of nodes

in hidden layer would over learn the training data set, whereas having fewer of them

would experience information loss. Having three nodes in hidden layer seemed to be a

good balance between these two, so the number was chosen. Similarly, the reason behind

having three nodes in output layer is that the robot uses three discrete drive commands

(forward, left, and right) to drive itself on the track. Output from each of the nodes

correspond to one of these drive commands. The largest value among these three output

nodes is chosen to be the direction for autonomous driving. All of the nodes in each layer

are connected to all of the nodes in the next layer. The hidden and output layer nodes,

in addition to connections from the previous layer’s node, have a separate bias input. So

for a neural network with 5 inputs, the neural network has 30 weights (5*3+3*3+3+3)

that represent the network. The activation function used in all of these nodes is sigmoid.

The tests in the experiment are all done by using a small tracked robot, controlled

by a smart-phone mounted on its top (Figure 1.1). The tests were conducted indoors by

creating an artificial track made of felt. It was found that by doing image processing in
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less than 30% area of input image, the robot could drive autonomously on the testing

track. The accuracy of driving decisions made while doing image processing on evolved

regions only was similar to the driving decisions made while doing image processing in

the whole input image. This saving of CPU resources by removing image processing in

unwanted regions of input image can be used for doing other useful tasks.

The thesis is divided as follows. Chapter 2 presents a brief overview and related

work in the field of image processing, machine learning, commodity off the shelf (COTS)

bots, evolutionary computation, genetic and evolutionary feature extraction, local binary

pattern and edge and contour detection. Chapter 3 describes the goals of this research.

Chapter 4 presents a detailed explanation of the experimental setup, methods imple-

mented, data collection process, analysis of those collected data, and the results that

could be drawn from them. Chapter 5 presents a brief summary and conclusion of the

research. Finally, Chapter 6 concludes the thesis with a discussion of possible future

works.
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Chapter 2: Background

2.1 Image Processing

Image Processing has always been a major component and favored technique for au-

tonomous vehicle driving [7, 22]. To make autonomous navigation more accurate, image

processing is often accompanied by different sensor modalities viz. infra-red, RADAR,

LIDAR, etc. This combination of image processing with other navigation techniques

have shown promising results in autonomous vehicle driving on roads with proper lane

markings [21]. However, achieving a similar result in off-road environment remains a

huge challenge. Lack of proper lane markings and distinctive road-shoulder boundaries

are the major hurdles to overcome. Finding a technique to differentiate between the

roadway and its surrounding, when both exhibit very similar color and texture, is the

biggest challenge.

Much of the previous research on off-road autonomous vehicle driving involved iden-

tifying unique color cues on the road surface and exploiting them. These approaches

are often found to be accompanied by different image processing techniques such as seg-

mentation [11] or edge detection [9]. However, all of these approaches exhibit a major

drawback. They are not able to adapt to the changes in road surfaces and its surrounding

environment. Even a slight change in lighting conditions might confuse the system and

lead the vehicle off trail. The system’s identifiers then need to be manually re-tuned or

re-trained to accommodate to these changes.

Color classification and learning by constructing and using multiple models for road

and background has shown successful results in autonomous road following [22]. The

approach used in [22] assumes the surface immediately in front of the vehicle to be

road, and uses color classification and machine learning to construct multiple road and

background models. The input images from camera mounted at front of the vehicle is

compared with these road and background models to find a probability that a pixel in the
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input image belongs to a particular road model or background model. Temporal fusion

is then used to stabilize the results, and generate a final value. To make the vehicle

adjust itself to changing conditions in road, these models are regularly updated such

that any changes in road surface get incorporated in the model library. When the road

model library is full, and a new model has to be added, the oldest one gets removed to

make room for the new one. With the implementation of this approach of real time color

learning by maintaining a library of road and background model, the authors in [22] were

able to successfully deal with unstructured, non-homogeneous, and complex road shapes

with varying lighting conditions.

The experiments conducted in this research implement a similar approach. In the

research a 50 by 50 pixel square region at the lower center of the image is used to

generate models of road surface during the vision training step (refer to Figure 4.3).

These models are then used in determining the probability of whether a region in input

image is road surface or not. As image processing is computationally intensive in nature,

generating a histogram of the input image colors and comparing them with the road

histogram models in the image library consumes significant amount of processing time

and memory. This research aims at evolving the regions of interest in an image such

that performing image processing on those regions only, instead of the whole image, will

produce a similar result. This saves an enormous amount of computational resources

that can be utilized in performing other important tasks.

2.2 Machine Learning

Machine learning is a branch of artificial intelligence, where an agent learns on its own

from the provided training data set, rather than only following explicitly programmed

instructions [12, 2]. It is strongly related to the concepts in statistics, optimization and

is often conflicted with data mining and pattern recognition. Machine learning can be
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divided into three broad categories: unsupervised learning, reinforcement learning and

supervised learning.

2.2.1 Unsupervised Learning

Unsupervised learning is a form of machine learning that deals with finding the hidden

structures in a series of unlabeled data. Since the data are unlabeled and there is no

error or reward signal to evaluate a potential solution, the learning agent tries to cluster

the data to find hidden structures. Common approaches of unsupervised learning include

hidden Markov models and principle component analysis. In evolutionary robotics an

unsupervised learning system has the requirement of being able to judge its performance

on its own. This might be easy in simulation, but requires additional hardware or software

to be implemented in a physical robot. For example a robot learning to follow a road

on its own would require many more sensors than just a camera for computer vision.

It might require gyroscope for measuring orientation, LASER or RADAR for measuring

distance, tactile sensors for feeling the surface to drive on, bump sensors to find if it has

bumped into anything or not, plus other different types of sensors for measuring different

parameters. It is only after analyzing the information from this array of sensors, the

robot might be able to learn and refine its behaviors for following a road on its own.

2.2.2 Reinforcement Learning

Reinforcement learning is a form of machine learning where the learning strategy in-

cludes guiding an agent towards some desired behaviors. The desired positive behaviors

are reinforced and unwanted negative behaviors penalized in some way, such that the

chances of demonstrating positive behaviors by the agent again in future gets increased.

Under this approach an agent performs various actions randomly or based upon the poli-

cies learned so far, and is given a feedback for its immediate action. Based upon the
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information of surrounding environment and feedback received, the agent builds up its

policies. One of the simplest approaches to Reinforcement Learning is “Clicker Training”

[10]. Clicker training is a learning approach which is similar to the clicker training used

to train animals. Under this approach, the agent performs various actions in response to

the provided input or environment, and is given a positive or negative reward for those

actions. Based upon the input, action performed and the corresponding reward received,

the agent builds up its policies such that it can get more and more rewards.

2.2.3 Supervised Learning

Supervised learning is a form of machine learning where the agent is given a series of

labeled data, and has to generalize a function mapping the inputs to outputs. It involves

telling an agent what it should do when given a set of inputs, and then using that

information to generalize its behaviors. One of the major categories of supervised learning

is “Learning from Demonstration”. It has been explained in detail below.

2.2.3.1 Learning From Demonstration

Learning from demonstration is a form of supervised learning where the agent builds

up its policies by observing and imitating the actions being performed by some trainer.

The trainer is usually a human, but it could be another robot or even a simulated

demonstrator. This mapping of real world states to actions (called policies) lies at the

heart of many robotics applications [3]. The actual method of learning varies, and can

include learning policies, mimicking trajectories, model building, and matching movement

primitives [15, 3]. Furthermore, learning a desired behavior is complicated by whether

or not output behaviors are discrete or continuous within the problem space. Learning

from demonstration has been used to train robots to play soccer [20] and to train a large

crusher robot to drive through varied, outdoor terrain [19]. In [20] the authors have used
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learning from demonstration called “Hierarchical Training of Agent Behaviors” to train

humanoid robots to play soccer in RoboCup competition. Similarly, in [19] the authors

have used an expert’s examples of proper navigation behavior, readings from onboard

camera and LIDAR and satellite imagery of terrain to plan an optimal route from point

A to point B and drive a huge crusher vehicle along the route autonomously.

An approach very similar to the one described in this thesis has been presented in [14].

That system combines learning from demonstration with back propagation on a neural

network to train a controller capable of driving a modified Chevy van autonomously on

roads. The controller used was a neural network with 960 input nodes, 5 hidden nodes

and 30 output nodes. The controller was able to learn to drive the van autonomously at

speeds of around 20 miles per hour by observing the reactions of a human driver, with less

than 5 minutes of training. Using learning from demonstrations, the parameter tuning

problem, which is an important component in any system involving complex perception

system and planning system, gets automated through demonstration instead of experts

intervention and manually tuning the parameters. It demonstrates the successful appli-

cation of imitation learning in improving robustness of autonomous navigation systems,

while still minimizing human expert‘s interaction.

Based upon the manner of execution, learning from demonstration can be broadly

divided into two categories viz. “Demonstration” and “Imitation” [3]. In the first cate-

gory “Demonstration”, the demonstration is performed on the actual robot or a physically

equivalent platform. Based upon how recording is done, “Demonstration” can be sub-

divided into “Teleoperation” and “Shadowing”. In teleoperation, the robot is operated

by the teacher itself, such that the robot can use its own sensor data for learning. In

shadowing the teacher demonstrates the motions externally, and robot mimics those mo-

tions while using its own sensor data for learning. The second category of learning from

demonstration is “Imitation”, where there is an embodied mapping and demonstration is

not done on the robot itself or a physically equivalent platform. Based upon how record-
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ing is done, “Imitation” can be sub-divided into “Sensors on Teacher” and “External

Observation”. In sensors on teacher, data obtained from sensors placed on the teacher

while he/she is teaching the behavior are used for learning. In external observation the

data from sensors external to the teacher while he/she is teaching the behavior are used

for learning.

Using the terminology of [3], our learning from demonstration can be classified as

having a teleoperation demonstrator, with a mapping policy derivation scheme, and

discrete output actions. The ability of the robot to imitate human behavior using sensor

data mapping makes this technique a good candidate for both neurocontroller control

and for evolutionary learning.

2.3 COTS Bots

This research is conducted using a robot designed and built at University of Idaho using

Commodity Off The Shelf (COTS) components (Figure 1.1). The robot consists of three

parts viz. Android smart-phone, Arduino micro-controller, and Rover 5 tank chassis. a

The smart-phone behaves as the eye and brain of the robot. Images from the camera

are processed, fed to the robot controller, and then a decision regarding the direction

to be driven (forward, left, right) is made. In this research, both regions for feature

extraction and weights of the neural network controller are evolved by using a genera-

tional evolutionary algorithm. The individual obtained at the end of the evolutionary

process comprises both the co-ordinates of the regions for feature extraction from the in-

put image, along with the weights of the neural network controller (Section 4.2.2, 4.3.2).

Image processing is done only on the regions defined by the co-ordinates, and the ob-

tained values are passed as inputs to the neural network. The neural network uses these

input values, weights, and an activation function to generate the driving commands. The

aRover 5 Tank chassis http://www.dfrobot.com
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driving commands are transmitted to the Arduino micro-controller via Bluetooth. The

microcontroller then rotates the motors of the chassis making the robot move. This re-

search uses an additional android smart-phone which acts as a remote control, and is

used by the trainer to drive the robot during the training phase. The remote phone com-

municates with the main smart-phone mounted over the top of the robot via Bluetooth

and transmits the driving directions (forward, left, right) given by the trainer. All of the

image processing in the research is done using the OpenCV library for android. b

2.4 Evolutionary Computation

Evolutionary computation is a branch of artificial intelligence that mimics natural evolu-

tion as an approach for solving problems [8, 4]. The process uses mutation, crossover and

selection operators in a fashion similar to nature. The purpose of these operators is to

maintain diversity in the population, and preserve the best parts of the best individuals

to recombine into novel solutions. The fitness operator used in the process differentiates

good individuals from bad ones, and the selection operator ensures that those good indi-

viduals get transferred from one generation to another. The evolutionary process starts

with random possible solutions, which are then continuously optimized through muta-

tion, crossover and selection (both individually or in combination with other individuals)

until the desired solution is found.

To better demonstrate evolutionary computation, let’s try to solve the knapsack prob-

lem by using an evolutionary approach. Knapsack problem is a problem related to com-

binatorial optimization where we are given a set of items; each with their own mass and

value [13]. The goal is to determine whether an item is to be included in a collection,

such that the total weight is less than or equal to a given limit, and the total value is as

large as possible. The problem derives its name from the dilemma faced by anyone who

bhttp://opencv.org/
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is constrained by a fixed-size knapsack, and has to fill it with as much valuable items as

possible. In Evolutionary computation, every individual in the population represents a

possible solution to the problem. So, if we tried to solve this problem using evolutionary

approach, an individual could be represented by an array of 0’s and 1’s with length equal

to the number of items. The value “0” in the array would indicate that the corresponding

item is not included, whereas a “1” would indicate that it is included. A fitness function

is defined that measures the fitness of each individual. In the above knapsack problem,

the fitness could be a measure of total weight of items placed in the bag. If an individual

indicates total weight of items carried is over the maximum weight limit, that individ-

ual is assigned a fitness penalty and eventually gets discarded through the evolutionary

computation process. The individuals then undergo crossover and mutation operations

to produce new individuals. Under the crossover operation, portions of an individual

(parent 1) get swapped with portions of another individual (parent 2) to generate one

or more children. This process is similar to the crossover of genes seen in nature. In the

mutation operation, a portion of the individual is changed by a some small amount to

generate a new individual. This process is also similar to the mutation of genes seen in

nature. The purpose of the crossover operation is to ensure that good genetic material

get transferred from parents to their children. On the other hand, the purpose of muta-

tion operation is to introduce new genetic material into the population and maintain its

diversity. The fitness of new individuals (children) after crossover/mutation operations

is then computed.

The incorporation of children into the population can be done using a steady state

or generational approach. In a steady state approach, the children replaces the worst

in the population, thus maintaining the population size throughout the process. In a

generational approach, the children are stored in a new location, thus creating a separate

population of children. When the size of the population of children equals the current

population size, the old population is discarded and the evolutionary process switches
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to the child population. No matter which approach is chosen, with the passage of every

generation, individuals in the population get optimized to find a better solution. This

process of generating new individuals by crossover and mutation operations, computing

their fitness, incorporating them into the population is continued for some predefined

number of generations or until some desired fitness level is achieved.

2.5 GEFE and Evolving regions

Genetic and Evolutionary Feature extraction (GEFE) is an implementation of Evolu-

tionary Computation where a set of feature extractors are evolved such that maximum

recognition accuracy can be achieved with minimum number of extractors. GEFE applied

to facial images for biometric recognition of faces has shown very good results [17, 16].

In [17], the authors evolved uniform, overlapping, unevenly distributed regions, which

did not cover the entire image. The results obtained with these evolved regions were

better than the use of standard local binary pattern (LBP) method over the whole image

(Section 2.6). By allowing evolving regions to focus on any part of the image, the regions

could evolve to focus more on the areas of image that were most discriminating for fea-

ture extraction. In the case of [17] most of the regions were found to be focused around

the ocular region, suggesting that these regions hold maximum texture information for

LBP to differentiate individuals from each other. Use of a similar approach of evolving

regions for mitigating iris based replay attacks was also found to be successful [18].

In Genetic and Evolutionary Feature Extraction (GEFE) the population consists of

individuals each representing a feature extractor. An individual in the population usually

takes the form of six tuples < Xi, Yi,Wi, Hi,Mi, fi >. The variables Xi and Yi represent

x and y co-ordinates of the center of a patch. The variables Wi and Hi represent the

width and height of the patch. The variable Mi represents a boolean that determines

whether the patch will be used in computing the fitness of the individual or not. If the
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Figure 2.1: GEFE with best 3 (left) and 10 (right) regions
The three regions cover 8% area of the whole image and by doing image processing on these
regions only the robot could successfully navigate 83.33% of the test track. The ten regions
cover 26% area of the whole image and by doing image processing on these regions only the
robot could successfully navigate 91.67% of the test track, which is the same accuracy that was

obtained when processing the whole image.

value is 1, the patch contributes to the fitness computation, else it is ignored. Finally

the variable fi represents the fitness of the individual. The individuals in the population

then go through an evolutionary process (Section 2.4) to find the best individual in the

population.

In this research, an approach similar to GEFE has been used for evolving regions.

An individual in the population is represented by tuple < X1, Y1, X2, Y2 . . .Xn, Yn

>, where a pair of Xi and Yi represent a point in the X-Y plane. Two of these points

represent a region. So an individual with n x and y pairs would represent n/2 regions.

These regions are then evolved using evolutionary algorithm (Section 2.4) to find the

best regions. An individual’s fitness measure is the accuracy of driving decisions made

when image processing is done only on the regions selected by the individual. Once

the best regions have been determined, image processing is done only on those regions

when making driving decisions. Figure 2.1 shows sample evolved regions with 3 and 10

regions respectively, which could drive the robot on the test track fairly successfully. It

can be seen that in both cases the processed part covers less than 30% of the whole
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image. In the best case where three regions are evolved, the regions cover only 8%

area of the whole image. By doing image processing on these regions only the robot

could successfully navigate the test track with failures in 4 corners out of 24 corners in

clockwise and counter clockwise direction (Figure 4.1). Similarly, in the best case where

ten regions are evolved the regions cover 26% area of the whole image. By doing image

processing on these regions only, the robot could successfully navigate the test track

with failures on 2 corners out of 24. This best result for evolving 10 regions is equal to

the autonomous driving accuracy that was obtained while processing the whole image

(failures in 2 corners out of 24, 91.67% successful navigation). As image processing

is computationally intensive in nature requiring significant processing time and main

memory, reduction in area of the image to be processed makes the computation much

faster. Moreover, the freed resources can be used for doing other important tasks.

2.6 Local Binary Pattern

The authors in [17] have implemented local binary pattern for facial recognition. They

have used both fixed size regions and varying size regions for feature extraction. Use of

fixed size regions had given an accuracy of 100% for face recognition. It was found that

the majority of evolved regions were focused around the ocular region, indicating that

this area holds textures that are enough to differentiate one person from another. Similar

to the approach in [17], in this research we have used fixed size regions of dimensions 120

pixels by 80 pixels and variable size regions for genetic and evolutionary feature extraction

(Section 2.5). However, the local binary pattern has been replaced by backprojection. A

brief introduction to local binary pattern has been given in the following paragraph for

reference purposes.

Local Binary Pattern (LBP) is a feature extraction technique used in computer vision.

It is used to capture the texture information from an image. The advantage of LBP over
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Figure 2.2: Local Binary Pattern
Computation of LBP for the pixel with intensity level 5 (left figure), based upon the intensity
level of its neighbors. The value ‘0’ for a neighbor (right figure) indicates that the neighbor has

its intensity level less that the pixel of interest, and vice versa.

other texture operators is that it is fast to compute and resilient to variations in lighting

conditions. In LBP, the value of any pixel in the image is computed based upon the

relative values of its neighbors, so the variation in lighting condition gets canceled out.

If the image is bright, the pixel of interest, along with all its neighbors, will probably

have high intensity level, and if the image is dark, the pixel of interest, along with all its

neighbors, will probably have low intensity level. Thus, the results of relative intensity

level computation will be same in either case. LBP computation is usually done with

radius 1 or 2 or 3. For simplicity let us consider a LBP computation with radius 1

and thus 8 neighbors (Figure 2.2). For any pixel in the image whose LBP value has to

be computed, its intensity level is compared with the intensity level of its surrounding

neighbors. If the neighbors have intensity level greater than the pixel of interest, the

neighbor would get a value of 1. Otherwise, it gets a value of 0. The LBP value for

the pixel of interest would now be the equivalent binary number when starting from any

corner (top-left corner has been chosen in Figure 2.2) and writing the 8 neighbors binary

values. To better illustrate the computation of LBP, let us consider a pixel with intensity

level 5 in Figure 2.2. The relative value of the pixel with respect to its neighbors is shown

in the second rectangle. The final LBP value for the pixel is then the binary number

which we get by starting at top-left neighbor, and going in the clockwise direction. In

Figure 2.2 (page 16), the value is calculated to be 00010011 or 19.
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2.7 Edge and Contour Detection

Edge detection and contour detection are two other very useful approaches in image

processing. Though the experiment does not implement edge detection and contour de-

tection, implementing them can be a next step into the research. Both of these techniques

have been described below for reference purposes.

Edge detection is defined as the use of mathematical tools for identifying discontinu-

ities in a digital image. The tools detect sudden changes in brightness and/or color and

use it to determine if there is an edge between two surfaces. It is one of the many feature

detection methods that are used in image processing. Some of the other feature detec-

tion methods that resemble edge detection include Harris corner detection, Hough circle

detection, and Hough line detection. The most popular, and commonly used method for

edge detection is Canny edge detection. It is based upon Canny algorithm developed by

Jonh F. Canny in 1986. The method uses multistage approach for detecting a wide range

of edges in an image. Some of the stages include noise reduction, finding of intensity

gradient and hysteresis thresholding. A lot of image processing libraries support Canny

edge detection (including the openCV library for Android used in this project).

Contour detection is the approach of joining neighboring edges such that they form

a closed curve. This method is often used in image processing to identify the objects

present in an image. As contour detection involves forming of closed curves, objects that

are partially present in an image often get left out. To detect them as well, four lines have

to be draws along the edges of the image such that these lines close the curve enabling

the partially present object to be detected. OpenCV library for android supports contour

detection as well. The method “findContours()” can be used for this purpose.
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Chapter 3: Goal

The experiments conducted in this research evolve regions in an image with an attempt

of finding the minimum number of regions that can effectively capture sufficient informa-

tion from the image, for the task of autonomous path following. The regions are evolved

using Genetic and Evolutionary Feature Extraction (GEFE) method (Section 2.5) in the

robot phone, mounted at the top of COTS Bots platform (Section 2.3). The task chosen

for measuring performance is the ability of robot to navigate the test track autonomously,

when image processing is done on the evolved regions only. The robot is first trained on

a training track, and then put on an autonomous mode on a testing track. In the au-

tonomous mode, only the portion of image covered by evolved regions are used for image

processing and making driving decisions. The training and testing track are deliberately

chosen to be different such that the generalization ability of neural network controllers

used in this research could also be tested.

The first goal of the experiments is to see if GEFE can be successfully implemented for

autonomous trail following without hampering the robot’s performance, in comparison to

case where entire image is processed. For this, two sets of experiments are performed. In

the first set the whole input image is processed, whereas in the second set GEFE is used

to evolve regions for image processing. The trade-off between the area of the image that

has to be processed with the performance of the robot in driving autonomously over the

testing track is measured. The second goal of the experiments is to determine if allowing

the evolving regions to have different sizes leads to any performance improvement over

evolving the regions by restricting them to a fixed size. For this a set of experiments are

done by evolving same number of regions, where in the first set the size of regions are fixed,

and in the other set the regions are allowed to have varying size. The third goal of the

experiments is to determine if the use of an evolutionary approach or backpropgation is

better for evolving weights of a neural network controller, while using GEFE for evolving

regions. For this a set of experiments are conducted, where in the first set of experiments
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the weights of the neural network are evolved by using evolutionary approach, and in the

second set of experiments backpropagation is used to train the values of the weights. A

summary of all the goals in this research has been listed in table 3.1

Goal Details
1 Determine feasibility of GEFE in autonomous road following
2 Determine effect of nature of regions (fixed vs. variable) in GEFE pro-

cess
3 Compare the efficiency of backpropagation vs evolution to train neural

network while using GEFE

Table 3.1: Goals of the experiment

It was found that by doing image processing in less than 30% area of input image,

the robot could drive autonomously in testing track (Table 4.2, 4.8 and Figure 2.1). The

accuracy of driving decisions made while doing image processing on evolved regions only

were similar to the driving decisions made while doing image processing in the whole input

image. This saving of CPU resources by getting rid of image processing in less important

regions of the input image can be used for doing other useful tasks. Moreover, evolving

regions by fixing their size was found to produce better results than evolving regions

with varying size. In evolving regions with varying size, the regions were found to cover a

larger percentage of the input image for image processing, and the performance of robot

in autonomous mode was also not very good (Table 4.8 and Table 4.9). Furthermore,

while using GEFE for evolving regions, evolving weights of neural network controller by

using evolutionary approach was found to be faster and more successful in driving the

robot during autonomous mode, than using backpropataion to train its weights (Section

4.3.5).
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Chapter 4: Experiment

4.1 Experimental Setup

The experiments are done indoors using a COTS robot (Section 2.3) and artificial tracks

made of felt (Figure 4.1). The android smart-phone in the robot used for capturing and

processing images was a Samsung Galaxy Nexus. The phone has a dual core, 1200 MHz,

ARM Cortex-A9 processor, 1 GB main memory and a 5 Mega Pixel rear facing camera.

The remote control phone used was a Samsung Galaxy Y. The remote control phone is

used only for transmitting the driving directions (forward, left, right) via Bluetooth to the

robot during the training phase. No processing is done on it, so it’s hardware specification

has no impact on the experiment. The training and testing tracks are shown in Figure

4.1. The training track consists of 3 stretches of paths with angles of 45 degrees between

them. On the other hand, the testing track comprises of a series of straight paths and

angular turns. The numbering of corners on the testing track, along with the lengths of

the outer edges for the tracks are given in Figure 4.1. As the training and testing track

are different from each other, with differences in both the lengths of the straight stretches

and of the angles between them, any success of the robot while drive autonomously on

testing track implicitly demonstrates the generalization ability of neural networks.

The experiment conducted can be broadly divided into two sub-experiments. In the

first sub-experiment, the input image (640 pixels wide by 480 pixels high) is divided

into 32 static regions (80 pixels wide by 120 pixels high) covering the whole image, and

image processing is done on all 32 regions. In the second sub-experiment, the regions for

feature extraction in input image are evolved. Based upon the different goals mentioned

in Chapter 3 (Table 3.1), the second sub-experiment includes experiments with fixed size

regions, varying size regions, and training of weights by the evolutionary algorithm versus

training by backpropagation.
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Figure 4.1: Training (left) and Testing (right) tracks
The training track comprises of 3 stretches of paths with angles of 45 degree between them.
The testing track comprises of 12 stretches of paths with varying lengths and angle in between
them. During autonomous mode, the robot is placed in between corners 3 and 4, and run

autonomously in both clockwise and counter clockwise directions.

Each of these sub-experiments comprises of 3 steps (Figure 4.2). The first step is

“Vision Training” step, followed by “Training and Evolution” step and “Test” step. In

vision training step, human operator drives the robot on the training track by placing it

in “Train Vision” mode, where some samples of road surfaces get collected for building a

histogram library of safe road surfaces. This library is later used during image processing

for finding road probabilities in input image. In the evolution step the human trainer

drives the robot on the training track by placing it in “Training” mode. In this mode
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Figure 4.2: Different steps of the experiment
The experiment comprises three different steps. In the vision training step a histogram library
of safe road surfaces is build. In the evolution step a training library set comprising of images
and corresponding driving directions is build by driving the robot on training track. This
library is used for evolving regions and weights of neural network. In test step the robot is run

on test track and the corners where it fails to successfully navigate is recorded.

the robot phone builds a training library set comprising of images captured from the

camera, and driving direction given by the trainer for that image. This training set is

used for fitness measurement while evolving regions and evolving weights for the neural

network controller. In the test step the robot is placed in “Autonomous” mode and

run on the testing track. The best neural network obtained from the training phase

acts as the robot controller during testing, and makes its driving decision by processing

input images from robot phone’s camera. If the regions for image processing have been

evolved, image processing is done only on those regions and passed as input to the neural

network. Otherwise the whole image is processed by dividing it into 32 regions, each of

which is passed as an input to the neural network. In either test, the robot is initially

placed midway between corners 3 and 4 of the testing track, and run autonomously in

both clockwise and counter clockwise directions. So, for each training case, two sets of

test data are collected. A detailed explanation of the phases of the experiments and the

experiments conducted are given in following sections.
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Figure 4.3: Demonstrating the region of image assumed to be safe road surface
The 50 by 50 pixel square region at the bottom of input image is assumed to be safe road
surface. A color histogram library of these safe road surface is used during backprojection

calculation to find the probability of a pixel in input image belonging to a road surface.

4.2 Static 32 regions

In this sub-experiment, the input image (640 pixels wide by 480 pixels high) is divided

into 32 static regions (80 pixels wide by 120 pixels high) covering the whole image. The

probability of each region being road surface calculated by using backprojection method

is then passed as an input to the neural network controller for making autonomous driving

decisions. Thus the neural network controller has 32 input nodes. A detailed explanation

of each phases of the sub-experiment is given below.

4.2.1 Vision Training Step

This is the first step of the sub-experiment, where a library of histograms of safe road

surfaces is prepared. It is done by giving the robot thirty drive commands on the training

track. With each command, a sample image is taken from the bottom center region

which is assumed to be safe road surface (Refer Figure 4.3). The histogram values

of those images are used to generate a road color histogram library. This library is

later used during the learning/training and autonomous/testing phases to calculate road
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probabilities. The road probability values are calculated for each regions in the input

images by using the BackProjection method in the OpenCV library running on robot

phone. Backprojection is a technique used for finding objects of interest in an image. The

operation creates an output image of the same size as input, where each pixel corresponds

to a probability that it belongs to the object of interest. In our case the object of interest

is road surface, so the output probability values from the method indicates the probability

that a pixel in the input image is road surface. Then we compute the probability values

for regions by using backprojection and the histogram library of safe road surfaces. To

find the probability value of a region, the individual probability values of pixels within

that region are averaged. Average probability values are computed for all the histograms

in the library. The largest probability value among them is chosen to be the probability

value for that region. Pseudo-code representing the probability value computation for

regions in an input image is shown in Algorithm 1.

Algorithm 1 : Computation of road probability for regions in an image
outputProbabilities [ number-of-regions ] {initialize array to 0}
for each histograms in library do

for each regions in image (indexed as r) do
avgProbability = Sum of probabilities of every pixel in region / number of pixels
if avgProbability > outputProbabilities [ r ] then

outputProbabilities[ r ] = avgProbability
end if

end for
end for
return outputProbabilities

4.2.2 Training and Evolution Step

In the second step of the sub-experiment a library of training cases is generated and the

weights of neural network are trained. Each of these training cases is comprised of an

image and a driving direction (forward, left, right) pair associated with that image. To

generate the library, a human trainer switches the remote phone to “training” mode, and

drives the robot on training track. When the user gives a drive command (forward, left
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or right) the robot phone captures the frame at that moment from its camera, and stores

the pair (image and drive command) as a training case. Multiple cases are combined to

create a library of training cases, which is then used to train the weights of the neural

network controller. The size of training cases library was fixed to be 45. This library

contained fifteen training cases for each of the three drive commands (forward, left, and

right).

The neural network implemented in both sub-experiments has 3 layers (Figure 4.4).

In this sub-experiment, the input layer consists of 32 nodes. The input to these nodes are

the probability values of 32 regions from the images of the training set computed using

backprojection and the histogram library from the vision training step. The number of

nodes in both hidden and output layers are fixed to be three. Three nodes are used in the

hidden layer because the number of regions evolved varies from two to ten. Having higher

number of nodes in hidden layer would over learn the training data set, whereas having

fewer of them would experience information loss. Having three nodes in hidden layer

seemed to be a good balance between these two, so the number was chosen. Similarly,

the reason behind having three nodes in output layer is that the robot uses three discrete

drive commands (forward, left and right) to drive itself on the track. Output from each

of the nodes correspond to one of these drive commands. The largest value among these

three output nodes is chosen to be the direction for autonomous driving. The output from

all of the nodes in a layer are passed as input to all of the nodes in next layer. Each node

in the hidden and output layer has an additional bias input. So, in the sub-experiment

every neural network has a total of 111 (32 * 3 + 3 * 3 + 3 + 3) weights. An array of 111

floating point values is used to represent the neural network. An evolutionary algorithm is

used to train the weights of the neural networks. By the end of the evolutionary process,

the network should have its weights trained such that it can successfully generate correct

driving direction for input values of road-probability. The best trained neural network is

then used for driving the robot in autonomous mode for testing.



26

Figure 4.4: Neural Network Structure
The neural network consists of three layers and is fully connected. The number of nodes in
input layer correspond to the static 32 regions covering the whole image. The hidden and

output layers consist of three nodes each with an additional bias.

The evolutionary algorithm used for the evolving weights of neural network is a stan-

dard generational evolutionary algorithm (Section 2.4). An individual in the population

is represented by an array of floats of size 111. Each element in the array corresponds to

one of the weights in the neural network. The array is initialized with random values in

range of -1.0 to 1.0. Selection of individuals for evolution is based upon a tournament

of size three. The two best parents selected in the tournament undergo mutation and

crossover to produce one offspring. This offspring is then added to the next generation.

For crossover, uniform crossover was used. So, every gene (a floating point number) from

the parents chromosomes have a 50% chance of being exchanged in generating the child

chromosome. The mutation rate is 0.2. So, every weight of the neural network has a

1/5 probability of being mutated. The mutation added a uniformly distributed random

value in the range [-0.1, 0.1] to the original weight. Fitness of an individual is then cal-

culated. The library of training images with associated driving direction collected during
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the training step is used for this purpose. The neural network represented by an array

of weights (an individual in the population) is provided the road probability values from

the 32 regions of an image in the training set, and uses that value to calculate the output

driving direction. The output driving direction computed by the network is compared

with the actual driving direction associated with that image. If the network generated

the same action as the action stored in the training set, fitness is improved (here decre-

mented because we are minimizing the error, refer Algorithm 2). To ensure that the

child population always contains good individuals, elitism has been implemented. The

two best individuals from parent population are always copied to the child generation.

The process of passing the road probability values to the neural network and com-

paring the resulting driving direction is done for all the training cases in the training

library, thereby determining the fitness value of a single individual in the population.

The fitness values of all individuals are initially 0.0, and are only calculated during the

construction of the next generation. So, in the case of first generation, a random selection

of individuals get transferred to the second generation. The training cases are divided

into categories based upon expected actions (left, right, and forward). An individual can

earn an equal amount of fitness for getting all the cases in a category correct, regardless

of the number of cases within the category. Algorithm 2 describes the fitness function

which assigns a better fitness to an individual if it’s output of the correct action is higher

than the output at its other actions. Full fitness is given if the difference between the

highest activated output node and the sum of the remaining nodes is above a threshold

value of 0.4. No testing was done on this threshold value; it was chosen because it was

a mid range value, and both high and low values were expected to work poorly in the

fitness function. If the network chooses the correct action, it always gets a positive fitness

for that training case, but the fitness bonus in larger if the difference is at least equal to

the threshold.
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Algorithm 2 : Genetic Algorithm Fitness Function
for each network in population do

fitness = 0
for each training case do

actualResults = network result from running training case
expectedResults = results from training case
winningValue = actualResults at the position of the expectedResults winner
difference1 = winningValue - actualResults at first position other than winner
difference2 = winningValue - actualResults at second position other than winner
for each difference do

if difference ≥ threshold (0.4) then
fitness += 0.5 / number of training cases in that category

else
fitness += 0.5 * (difference / threshold) / number of training cases in that category

end if
end for

end for
fitness = 1 - fitness / 3

end for

A summary of the evolutionary algorithm is given in Table 4.1. The table presents

the evolutionary parameters used during the evolution process and their corresponding

values.

Population Size 75
Generations 200

Mutation Rate 0.2
Crossover type Uniform

Selection Method Tournament (size 3)
Elitism 2 best individuals form parent generation

gets copied to children generation

Table 4.1: Summary of the evolutionary algorithm parameters
The evolutionary algorithm used is a standard generational algorithm. To ensure that the

children population always contains good individuals, elitism has been implemented.

4.2.3 Test

As mentioned in Section 4.1, the experiment conducted comprises 3 different steps viz.

train vision, evolution/training, and testing. The experiment begins by placing the robot

phone in train vision mode and using the remote phone to issue the driving commands.

Once the robot is in the train vision mode, it is driven on the training track (Figure



29

4.1) where it generates a color histogram library of safe road surfaces (Subsection 4.2.1).

A total of thirty sample road images are generated during this phase, so the histogram

library comprises thirty road surface histograms. The robot is then placed in evolu-

tion/training mode by issuing a command from remote phone. In this step, the robot

is driven on the training track where it associates each user provided drive command

with the frame from camera at that moment, to prepare a library of training cases. The

size of training cases library is fixed to be 45. The library contains 15 training cases for

each of the three drive commands (forward, left, right). When the training set comprises

of 10 cases of forward, left and right commands each, evolution of the neural network

weights is triggered. The number 10 for training cases was chosen such that from the very

beginning of the training/evolution process there are enough cases to train the weights.

As mentioned in section 4.2.2, the evolution process is continued for 200 generations.

When the evolution process is complete, the robot phone is placed in “Autonomous”

mode and driven on the testing track (Figure 4.1) to collect test data. The robot is

placed midway between corners 3 and 4 and run in both clockwise and counter clockwise

directions. During each test run, the corner in which robot fails to navigate successfully

is recorded. Here, failure means the cases where the robot goes off track, or cannot

not make a decision to move forward, or left and right in more than five repetitions.

In the case of any failure, the robot is picked up and placed on the track following the

failed corner. For example, when the robot fails to navigate corner 7, it is picked up and

placed in the stretch between corners 7 and 8 or 6 and 7 depending upon the clockwise

or counter clockwise direction it is driving, thus skipping the failed corner. The data

collection process then continues normally until the robot navigates the whole track.

While placing the robot on a stretch, it is always placed at a position equidistant from

both edges of the 18” wide test track.
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Clockwise Counter Clockwise
Training
Set

Run
Time

Failed Corners Run
Time

Failed Corners Total
Success

Success
(in %)

1 12:56
min

7 11:32
min

12 22 91.67 %

2 9:36
min

6,2,3 11:45
min

1,5 19 79.17 %

3 6:50
min

6,10 9:45
min

1,12,4 19 79.17 %

4 7:48
min

7,12 7:41
min

no failures 22 91.67 %

5 10:57
min

success 9:08
min

12,7 22 91.67 %

Total 104 86.67 %

Table 4.2: Evolving neural network controller weights using inputs from 32 static regions
The columns indicate training set, runtime and corners failed in both clockwise and counter
clockwise directions, number of corners successfully navigated (out of 24 corners) and the per-

centage of successful navigation.

The data that was obtained during the experiment is given in Table 4.2. It comprises

of a list of corners for the clockwise and counter clockwise runs, that the robot failed to

successfully navigate.

4.2.4 Result

Analyzing the data in table 4.2 it can be seen that when the whole image is used the

robot is able to successfully navigate 104 corners out of total 120 corners (12*2*5) for

the five training cases on the testing track (an accuracy of 86.66%). The reason behind

failures in 16 corners is likely to be due to a combination of different factors. The factors

include flaws in learning of weights by neural network controller, training library set being

insufficient, flaws in image processing, image auto-correction in robot phone, vision train-

ing library being insufficient, blurring of images, etc. The learning of weights by neural

network controller might not have been effective because of the evolutionary parame-

ters chosen in the sub-experiment. The number of generations for evolution (200 in this
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sub-experiment) could have been insufficient to train the weights of the neural network

controller, or the fitness function chosen might be missing some important components.

Neural networks normally require a large data-set to be properly trained. So, a total of 45

training images and their associated driving direction could have been insufficient to fully

train the network. The backprojection method of image processing is sensitive to lighting

conditions. Though the experiments are all done indoors and the lighting conditions are

constant, the flaw could have been introduced due to image auto-correction feature of

robot phone. Whenever the robot moves and a new frame is captured, auto-correction of

brightness for that frame by the phone software could be observed. The library of road

samples collected during vision training phase (30 in this sub-experiment) might have

been insufficient to accurately represent the entire track. The portion of track directly

under the fluorescent lights on the ceiling are brightly lit than the portions around it.

The 30 samples of road library collected might not have been able to cover all the vari-

ations in lighting over the test track. As the images for processing are collected from a

moving robot, the frame captured by the robot phone’s camera can be blur. So image

processing on the blurred image is likely to produce bad road probability values, which

then gets used by the neural network controller for making the robot’s driving decision.

Considering all of these factors, the 87% accuracy in autonomous navigation when pro-

cessing the whole image, is taken as the base case for all the further experiments in this

research. As these factors remain same in all the experiments, to prove the feasibility

of GEFE in autonomous road following the experiments implementing GEFE for feature

extraction should produce an equivalent or better accuracy level.
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4.3 Evolving regions using GEFE

In this sub-experiment in addition to evolving the weights of neural network controller,

the regions for image processing are also evolved with the goal of capturing sufficient

information using the minimum area of the input image. As the evolving regions can

place in themselves in any area of input image, the evolutionary process can focus on

areas of image which are more discriminating for road following. Image processing is

then done on those regions only and passed as input to the neural network controller

for making autonomous driving decisions. The result of this sub-experiment is compared

with the results of sub-experiment comprising of static 32 regions covering the whole

image (Section 4.2) to determine the feasibility of GEFE in autonomous road following.

The results obtained within this sub-experiment are also used to determine the effect

of nature of regions (fixed versus variable) in GEFE process, and determine the effect

of backpropagation versus evolutionary algorithm to train neural network weights while

using GEFEA for evolving regions (Table 3.1). A detailed explanation of each phase of

this sub-experiment has been given below.

4.3.1 Vision Training Step

This is the first step of the sub-experiment where a histogram of safe road surfaces is

prepared. This step is identical to vision training step of the sub-experiment comprising

of 32 static regions. Please refer to subsection 4.2.1 for more details.

4.3.2 Training and Evolution Step

This is the second step of the sub-experiment where a library of training cases is generated

and regions for image processing are evolved along with evolving the weights of the neural

network controller. In the test where backpropagation has been used for training weights,
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only the regions are evolved. The process of generating a library of training cases is

identical to the process mentioned in subsection 4.2.2.

The neural network implemented in the sub-experiment is similar to the one men-

tioned in subsection 4.2.2, and comprises three layers. However, unlike the previous

sub-experiment, the number of input nodes in this sub-experiment is not fixed. The

number of nodes in the input layer of this sub-experiment corresponds to the number of

regions that are evolved. Similar to the previous sub-experiment, the number of nodes

in both hidden and output layers are fixed to be three. Output from all the nodes in a

layer are passed as input to the next layer. The nodes in hidden and output layers have

an additional bias input. A pictorial representation of the neural network structure is

shown in Figure 4.5. For example if 5 regions are evolved, then the number of weights

in the neural network will be 30 ( 5 * 3 + 3 * 3 + 3 + 3 ). The regions and weights are

collectively represented by a tuple, and the evolutionary algorithm is used for evolving

regions and training weights of neural network. If backpropagation is used for training

the weights, the tuple comprises only regions. By the end of the evolution process, the

regions for image processing will have evolved and the weights of the neural network will

be trained. Image processing is then done on those regions only, and passed as input to

the best neural network.

The evolution process in the sub-experiment is also similar to the one described in

subsection 4.2.2. Similar to subsection 4.2.2, the training library set is used to train

the weights of neural network and evolve the regions for image processing. A major

difference is the representation of an individual in the population. Instead of an array

representation comprising of 32 regions, an individual in the population is represented

by a tuple. The tuple encapsulates both the regions of the image to be evolved and

the weights of neural network to be trained. A tuple representing an individual in the

population is of form < W1, W1 . . .Wm, X1, Y1, X2, Y2 . . .Xn, Yn >. The part < W1,

W1 . . .Wm > represents the weights of neural network to be trained. The number of
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Figure 4.5: Neural Network Structure Taking Input From Evolved Region
The neural network consists of three layers and is fully connected. The number of nodes in
input layer correspond to the total number of regions evolved in input image. The hidden and

output layers consist of three nodes each with an additional bias.

weights in the tuple correspond to number of weights in the neural network. Unlike the

sub-experiment with static regions, where the number of weights is always fixed to be

111, the number of weights is this sub-experiment varies and depends upon the number

of regions being evolved. There is a one to one mapping between number of regions being

evolved and the number of nodes in input layer. So, as the number of regions increases,

the number of nodes in input layer also increases. In the case where backpropagation

is used to train the weights of the neural network, this part is completely absent in the

tuple because backpropagation rather than evolutionary algorithm, is used to train the

weights. The remaining part of the tuple < X1, Y1, X2, Y2 . . .Xn, Yn > represent regions

to be evolved. A pair of Xi and Yi in the tuple represents a point in the X-Y plane.

The co-ordinate system for X-Y plane in the experiment comprises of a grid of squares

with 20 * 20 pixel dimensions. The input image from the camera, which is 640 pixel by

480 pixel is divided into 32 * 24 small squares, and the co-ordinate system is applied to
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this grid. So, the value of Xn in the tuple is bound to the range of [ 0, 31 ], and the

value of Yn in the tuple is bound to the range of [ 0, 23 ]. While computing the fitness

of an individual, image processing is done only on the evolved regions and the resulting

probability values passed as inputs to the neural network. The fitness of an individual

is increased if the network generated same action for an input, as the action stored in

the training set. The crossover, mutation and selection policy are similar to those of the

evolution for static 32 regions (Section 4.2.2). A summary of the evolutionary algorithm

has been given in Table 4.3.

The regions that are evolved in this sub-experiment are of fixed size or variable size.

A pair of x and y co-ordiantes in the < X1, Y1, X2, Y2 . . .Xn, Yn > part of the tuple

represents a point in the 32 * 24 grid system mentioned in the above paragraph. If the

regions evolved are of variable size, two of these consecutive points collectively represent a

region. So a tuple with n x and y pairs would represent n/2 regions in the image. On the

other hand, if the regions evolved are of fixed size, only first half of the tuple representing

regions get used, and the second half gets discarded. Similar to the case of variable size

regions, a pair of x and y co-ordinates in the tuple represents the top-left corner for the

fixed size region. The co-ordinates for bottom-right corner are then computed by using

the fixed size region’s dimensions. In this research the dimensions of the fixed size region

are set to be 120 pixels wide by 80 pixels high.

Population Size 75
Generations 200

Mutation Rate 0.2
Crossover type Uniform

Selection Method Tournament (size 3)
Elitism 2 best individuals form parent generation

gets copied to children generation

Table 4.3: Summary of the evolutionary algorithm parameters
The evolutionary algorithm used is a standard generational algorithm. To ensure that the chil-
dren population always contains good individuals, elitism has been implemented. The number
of inputs to the neural network controller is equal to the number of regions that have been

evolved.
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4.3.3 Test for number of regions

The procedure followed for identifying effectiveness of different number of regions in

GEFE process, is very similar to the procedure followed for sub-experiment involving

static 32 regions (Section 4.2.3). The test can be divided into three different phases

viz. train vision, evolution/training and test. The process begins by placing the robot in

train vision phase. During this phase thirty road samples are collected, which are used to

generate a color histogram library of safe road surfaces (Section 4.2.1). The robot is then

placed in evolution/training phase. During this phase the robot is driven on the training

track where it associates user provided drive commands with the frame from camera at

that moment, to prepare a library of training cases. A total of 45 training cases (15 each

of forward, right and left) are used in the experiment. When the library comprises at

least 10 of each (forward, left, and right) training cases, evolution gets triggered. The

evolutionary process evolves the regions for image processing, and trains the weights of

neural networks. The evolution process is continued for 200 generations (Table 4.3). By

the end of evolutionary process, the best regions in the input image for image processing,

and the best neural network controller to drive robot autonomously are identified. The

robot is then placed in autonomous mode and driven on the test track (Figure 4.1) for

data collection. Data collection is done by placing the robot midway in between corners

3 and 4, and running autonomously in both clockwise and counter clockwise directions.

In the case of any failure, the robot is picked up and placed on the next stretch following

that corner. The major difference in this experiment with the procedure mentioned in

subsection 4.2.3 is that instead of having 32 static regions for image processing, image

processing is done on the evolved regions only. As the experiment is focused on analyzing

the effect of number of regions on GEFE, the size of the evolved regions is fixed. Similar

to the experiment comprising of 32 regions, each evolved region is 120 pixel wide and 80

pixel high. The resulting road probability values computed by using backprojection on
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Clockwise Counter Clockwise
Training
Set

Run
Time

Failed Corners Run
Time

Failed Corners Total
Success

Success
(in %)

1 11:07
min

4,5,6,7,12,2,3 15:32
min

12,11,10,9,8 12 50 %

2 5:07
min

4,5,7,8,11,3 7:30
min

2,12,11,7,5,4 12 50 %

3 10:10
min

5,7,8,9,11,1 8:15
min

9 17 70.83 %

4 8:01
min

4,5,6,7,11,12,2,3 9:16
min

9 15 62.5 %

5 6:08
min

7,9,10 8:49
min

3,2,1,11,8,7,6,5 13 54.17 %

Total 69 57.5 %

Table 4.4: Evolving 2 fixed size regions and weights of neural network controller by
running evolution for 200 generations

those regions are passed as inputs to the neural network for making autonomous driving

decisions.

To test the effect of numbers of regions in autonomous road following using GEFE,

four different sets of experiments were conducted. The four sets comprise evolving 2,

3, 5 or 10 regions and running the robot autonomously on the testing track. Except

for the number of regions being evolved, all the other factors of the experiment have

been kept the same in all these experiments. The effect of number of regions during

evolution is then analyzed by observing the performance of the robot for all these cases

in autonomous mode. The data obtained from these sets of experiments have been given

in tables from 4.4 to 4.8.

From the data in tables 4.4 to 4.7 it can be seen that in the test track comprised of 120

corners (12*2*5), the robot could successfully navigate 57.5%, 78.33% , 70.83% , 77.5%

of it when 2, 3, 5, 10 regions are evolved. As all the experimental parameters except the

number of regions being evolved are identical in these experiments, the results indicate

the optimal number of evolving regions required for the chosen test case of autonomous

navigation. The results suggest that evolving only 3 regions is sufficient to make accurate
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Clockwise Counter Clockwise
Training
Set

Run
Time

Failed Corners Run
Time

Failed Corners Total
Success

Success
(in %)

1 8:54
min

10 11:09
min

3,12,8,5 19 79.17 %

2 7:54
min

4,5,2,3 7:18
min

no failures 20 83.33 %

3 7:35
min

10 10:34
min

1,11,10,5 19 79.17 %

4 8:14
min

7 9:57
min

1,10,8,4 19 79.17 %

5 9:50
min

4,6,7,8,12,1 10:09
min

9 17 70.84 %

Total 94 78.33 %

Table 4.5: Evolving 3 fixed size regions and weights of neural network controller by
running evolution for 200 generations

Clockwise Counter Clockwise
Training
Set

Run
Time

Failed Corners Run
Time

Failed Corners Total
Success

Success
(in %)

1 13:20
min

6,7,11 13:48
min

12,11 19 79.17 %

2 6:45
min

6,7,11,12 6:30
min

12 19 79.17 %

3 8:33
min

6,10,11,12,2 7:15
min

11 18 75 %

4 9:20
min

4,5,6,7,10,11,12,2,3 7:34
min

no failures 15 62.5 %

5 8:46
min

4,5,7,8,11,12,1,2 7:30
min

10,8 14 58.33 %

Total 85 70.83 %

Table 4.6: Evolving 5 fixed size regions and weights of neural network controller by
running evolution for 200 generations
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Clockwise Counter Clockwise
Training
Set

Run
Time

Failed Corners Run
Time

Failed Corners Total
Success

Success
(in %)

1 12:57
min

4,6,11,3 10:12
min

no failures 20 83.33 %

2 8:00
min

6,7,8,10 9:10
min

8 19 79.17 %

3 7:53
min

4,5,7,12,3 10:30
min

8,7,5 16 66.67 %

4 15:01
min

7,12 13:10
min

12,10,7 19 79.17 %

5 9:10
min

7 13:41
min

12,11,7,4 19 79.17 %

Total 93 77.5 %

Table 4.7: Evolving 10 fixed size regions and weights of neural network controller by
running evolution for 200 generations

Clockwise Counter Clockwise
Training
Set

Run
Time

Failed Corners Run
Time

Failed Corners Total
Success

Success
(in %)

1 12:42
min

7 12:54
min

10 22 91.67 %

2 8:45
min

7,2,3 20:20
min

1,2,3,9 17 70.83 %

3 9:28
min

7,10 12:10
min

4 21 87.5 %

4 6:29
min

no failures 6:56
min

12,11 22 91.67 %

5 15:49
min

4,5,10,12,1,3 15:25
min

12,8 16 66.67 %

Total 98 81.67 %

Table 4.8: Evolving 10 fixed size regions and weights of neural network controller by
running evolution for 300 generations
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Figure 4.6: GEFE with 3 regions
The three regions evolved using training set 2 cover 8% area of the whole image, and by doing
image processing on these regions only the robot could successfully navigate the test track in

20 corners out of total 24 corners (83.33% accuracy)

Figure 4.7: Evolved regions of all 5 training cases for 3 regions (left) and 5 regions (right).
The summary of evolved regions for all 5 training cases show the regions to be more focused in
central one-third portion of input image. The top and lower one-third portions are found to be

less significant for image processing to identify a road from non-road.
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driving decisions. The GEFE process would spread out the evolving regions in center,

left and right portions of input image, such that even by doing image processing on these

regions only the neural network controller can make accurate driving decisions for the

robot (refer figure 4.6). In figure 4.6 it can be seen that the evolved regions cover only

8% area of the input image and can still make 83.33% accurate driving decisions. This

result is comparable to the 86.66% accuracy level that was obtained when processing the

whole image (Section 4.2.4).

The summary of evolved regions for all five training cases when observed for three

and five regions show the regions to be focused more on central one-third portion of input

image (Figure 4.7). The lower distribution of evolved regions in upper one-third and lower

one-third portions of input image suggested these portions to be less significant for image

processing to distinguish a road surface from non-road surface. Doing image processing

on the median one-third strip was found to be sufficient to identify directions for making

autonomous driving decisions. The lower one-third strip might not have made sense

because most portion of it would always contain road surface in it. The upper one-third

strip might not have made sense because road surface would be sparsely distributed in it.

It is the median strip which would have a good variation of both road-surface and non-

road surfaces. So, doing image processing in the middle one-third strip of input image,

and learning from the variations in road/non-road surface in it for making autonomous

driving decisions does make sense.

To test the effect of number of generations in evolutionary process the experiment

comprising 10 evolving regions run for 200 generations (Table 4.7) was re-run by pushing

up the number of generations to 300 (Table 4.8). It can be seen that pushing up the

number of generations has a positive effect in the evolutionary process. In Table 4.7 it

can be seen that running the evolution for 200 generations the robot could successfully

navigate 93 corners out of 120 (77.5% accuracy). By pushing up the number of generating

to 300 (Table 4.8), the robot could now successfully navigate 98 corners out of 120 (81.66%
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accuracy).

4.3.4 Test for nature of regions

The procedure followed for identifying the effectiveness of variable size areas (instead of

fixed one) in GEFE process, is very similar to the procedures mentioned in subsection

4.2.3 and subsection 4.3.3. The experiment can be divided into three distinct steps viz.

“vision training”, “evolution/training” and “test”. During vision training step thirty

road samples are collected, which are used to generate a color histogram library of safe

road surfaces. During evolution/training step a library of training cases is generated.

As in previous sub-experiments, a total of 45 training cases (15 each of forward, right

and left) are used in this sub-expriment. These training cases are used for evolving the

regions for image processing, and training the weights of neural network controller. The

difference with the evolutionary process described in subsection 4.3.3 is that in the case

of subsection 4.3.3 the evolving regions are fixed to have a size of 120 pixel width by

80 pixel height. Whereas, in this sub-experiment the regions are allowed to take any

rectangular shape. An individual in the population is represented by a tuple of form <

W1, W1 . . .Wm, X1, Y1, X2, Y2 . . .Xn, Yn >. The part < W1, W1 . . .Wm > represents the

weights of neural network to be trained and the part < Y1, X2, Y2 . . .Xn, Yn > represents

the regions to be evolved. The number of weights in the tuple correspond to number of

weights in the neural network. The sub-experiment comprising of tests for number of

regions (subsection 4.3.3) gave best result for evolving 10 regions (table 4.8), hence the

number of regions evolved in this sub-experiment has been chosen to be 10. So, the

total number of weights in an individual tuple is 45 (10*3+3*3+3+3). Every evolving

region is represented by two points and each point comprises of x and y coordinates.

So, to represent 10 regions evolved, the part < Y1, X2, Y2 . . .Xn, Yn > comprises of

40 coordinates (10 regions = 20 points = 40 coordinates). The evolution process gets
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Clockwise Counter Clockwise
Training
Set

Run
Time

Failed Corners Run
Time

Failed Corners Total
Success

Success
(in %)

1 7:55
min

10 8:09
min

1,8,4 20 83.3 %

2 6:41
min

7,8,10,1 7:08
min

5,4 18 75 %

3 12:22
min

5,7,11,12,2,4 14:18
min

12,11,8 15 62.5 %

4 9:34
min

5,1 7:20
min

5 21 87.5 %

5 8:19
min

4,5,6,11,2,3 9:33
min

9,8 16 66.67 %

Total 90 75 %

Table 4.9: Evolving 10 variable size regions and weights of neural network controller by
running evolution for 300 generations

triggered when training library loads 10 of each training cases. Evolution is continued

for 300 generation, and image processing is done on the evolved regions regions only

for computing the fitness of an individual. By the end of evolutionary process, the best

regions for image processing and the best neural network controller to drive autonomously

are identified. The robot is then placed in autonomous mode and drives around the test

track in both clockwise and counter clockwise direction for data collection. The data

obtained has been given in Table 4.9.

To test the effect of allowing regions to have different size during GEFE process,

the result of subsection 4.3.3 comprising 10 fixed size regions and evolution run for 300

generations (Table 4.8) is compared to the result of this sub-experiment (Table 4.9)

where the 10 regions are allowed to take any size and the evolution has been run for 300

generations. Besides the regions being fixed size versus allowing them to have variable

size, all the other factors between these two experiments have been kept the same. The

effect of allowing/disallowing regions to have variable size during GEFE process is then

analyzed by observing the performance of robot for both cases in autonomous mode. It

can be seen that by allowing regions to have variable size, the evolutionary process has a
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Figure 4.8: 10 regions GEFE with fixed size regions (left) and variable size regions (right)
GEFE with 10 fixed size regions covered 26% of the whole image area and was able to au-
tonomously navigate 91.67% of the test track. GEFE with 10 variable size regions covered 64%

of the whole image area and was able to autonomously navigate 87.5% of the test track.

tendency to cover larger area of input image for getting better performance. Figure 4.8

shows the evolved regions that gave the best performance during autonomous run when

10 fixed size regions were evolved (refer table 4.8), along with evolved regions that gave

the best performance during autonomous run when 10 variable size regions were evolved

(refer table 4.9). It can be seen that evolving 10 fixed size regions covered 26% of the

input image and could successfully navigate 91.67% of the test track. Whereas, evolving

10 variable size regions covered 64% of the input image but could only navigate 87.5% of

the test track. This result favoring fixed size region is similar to the result obtained by

authors in [17]. In [17] the authors were able to obtain 100% face recognition accuracy

by processing 35.82% of uniform patches evolved, against 99.84% of face recognition

accuracy when processing 36.90% of non-uniform patches were evolved.

4.3.5 Test for learning by backpropagation

The goal of this sub-experiment is to determine whether use of an evolutionary approach

or backpropgation is better for evolving the weights of the neural network controller,

while using GEFE for evolving regions. The experimental procedure followed is very
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similar to the procedures followed in previous experiments. This sub-experiment can

also be divided into three different steps viz. vision training step, evolution/training

step and testing step. The vision training step and testing step are identical to the steps

described in sections 4.2 and 4.3. The evolution/training step is however different. Unlike

subsections 4.2.2 and 4.3.2 where evolutionary algorithm has been used for evolving the

weights of neural network, this sub-experiment uses backpropagation to train the weights

of its neural network controller. The procedures for generating a library of training cases

and evolving regions for image processing are identical to subsections 4.2.2 and 4.3.2

Backpropagation is a common method for training the weights of a neural network. It

is an abbreviation for “backward propagation of errors” and uses the errors at the output

nodes of a neural network to update its weights, such that the errors get minimized. As,

the process involves computing error, the desired outputs for a given set of inputs must be

known before hand. With every iteration of backpropagation, the weights in the neural

network get updated such that for any given input, correct output gets generated.

In this sub-experiment, 10 regions have been evolved by running evolutionary algo-

rithm for 75 generations, and backpropagation has been run for 40 iterations to train

the weights of a neural network controller. The number of generations is chosen to be

75 because for every generation, every individual in the population goes through back-

propagtion to train its weights. So running evolutionary algorithm for larger number of

generations would take a long time. Image processing is done on training set images at

coordinates indicated by the evolved regions, and the computed road probability values

are passed as inputs to the neural network. The output driving direction generated by

the network is compared against the stored driving direction for that training set image

to compute the error. This error is used by backpropagation to update the weights of

the neural network. The best neural network and evolved regions are used as the neural

network controller during the testing step and data collection. During the testing step,

it was found that the neural network controller was totally unsuccessful in driving the
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robot autonomoulsy on test track. The robot either moved in circles or moved in the

forward direction taking it off the track.

To determine the effectiveness of evolutionary approach versus backpropagation for

training the weights of a neural network controller while using GEFE for evolving regions,

the results obtained in this sub-experiment is compared with the results in table 4.8. In

table 4.8, evolutionary approach has been used to train the weights of neural network

controller while GEFE has been used to evolve 10 fixed size regions. The results show

81.67% success rate in driving the robot autonomously on test track, in comparison

to 0% success rate for this sub-experiment. So, it can be concluded that while using

GEFE to evolve the regions for image processing, use of an evolutionary algorithm is

better than use of backpropagation to train the weights of neural network controller.

The reason behind this could be the efficient generalization nature of neural network and

bacpropagation. As backpropagation is good at mapping the neural network‘s inputs to

outputs, no matter which regions are chosen for image processing, it adjusts the neural

network’s weights to cope to those regions. So, every combination of regions produced

similar result, thus severely hampering the GEFE process of evolving regions for image

processing.

4.3.6 Results

Analyzing the results from subsections 4.3.3, 4.3.4 and 4.3.5 it can be seen that GEFE can

be successfully applied to the task of autonomous road following. The best case obtained

when GEFE is used for evolving regions for image processing is 91.67% accuracy in

successfully driving the robot on test track in autonomous mode (training set 1 and 4

in table 4.8). This result is equal to the 91.67% best accuracy level that was obtained

when image processing is done on the whole input image (training set 1, 4 and 5 in

table 4.2). The best “average success rate” using GEFE was obtained when 10 fixed
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size regions were evolved for 300 generations. This average success rate (81.67% in table

4.8) is comparable to the average success rate which was obtained when the whole input

image was proceed for making autonomous driving decisions (86.67% in table 4.2).

In the sub-experiment comprising of tests checking the effect of number of regions,

it could be seen that number of regions evolved, and successful navigation are not lin-

early related. The robot in an autonomous mode performed poorly for 2 regions (57.5%

success), but well for 3 regions (78.33% success). The result for 5 regions was also poor

(70.83%), whereas the result for 10 regions was similar to that of 3 regions (77.5%).

Increasing the number of generations for evolution however, had a positive effect on the

performance of robot during autonomous mode. When 10 regions were evolved for 200

generations, 77.5% successful navigation was observed. But by increasing the number of

generations from 200 to 300, the percentage of successful navigation increased from 77.5%

to 81.67%. In the summary image of evolved regions (Figure 4.7), it could be seen that

majority of the regions were concentrated in the median one-third portion of the input

image. I speculate this occurred because, a major percentage of lower one-third portion

always consisted of road surface in it, whereas the upper one-third portion occasionally

consisted of road surface in it. So, it is the median one-third strip that contained max-

imum variations in road/non-road surfaces, and the GEFE approach could successfully

place the evolved regions in this strip.

In the sub-experiment testing the nature of evolving regions for GEFE, it was found

that fixed size regions performed better than variable sized regions. When 10 regions

were evolved using both fixed sized regions (120 pixel width by 80 pixel height) and

variable sized regions for 300 generations, it was found that in the sub-experiment with

fixed sized regions the robot could successfully navigate 81.67% of the test track (table

4.8). In the sub-experiment comprising of variable sized regions only 75% success in

autonomous navigation could be achieved (table 4.9). Moreover, variable sized regions

were found to have a tendency of covering larger area of input image to achieve better
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fitness (Figure 4.8). In the sub-experiment with 10 regions the best training set for

variable regions covered 64% of input image while successfully navigating 87.5% of the

test track (table 4.9). On the other-hand the best training set for 10 fixed size regions

covered only 26% area of the input image while successfully navigating 91.67% of the

test track (table 4.8).

In the sub-experiment testing the effectiveness of evolutionary approach versus back-

propagation for training the weights of neural network controller while using GEFE for

evolving regions, it was found that evolutionary approach outperformed backpropagation

(as implemented in subsection 4.3.5). Evolutionary approach was found to be both fast

and successful in driving the robot autonomously. Using evolutionary approach for 300

generations to train the weights of neural network with 10 inputs, the neural network

could successfully navigate 81.67% of the test track. On the other-hand use of backprop-

agation to train the same network was totally unsuccessful in driving the robot in test

track. The reason behind this could be the generalization nature of neural networks and

backpropagation. No matter which reasons are used for image processing, backpropaga-

tion adjusts the weights of neural network to cope with those reasons, thus producing

similar fitness values and hampering the GEFE process.
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Chapter 5: Summary and Conclusions

The goal of the research was to test the feasibility of GEFE in autonomous road fol-

lowing. As image processing is computationally intensive in nature, requiring significant

processing time and main memory, any reduction in area of the image to be processed

for decision making is advantageous. In this research, GEFE has been used to evolve

regions for image processing in an input image. Performance of the robot in autonomous

mode when image processing is done only using the evolved regions, has been analyzed

to determine the success or failure of GEFE approach in autonomous road following.

Dividing the input image into static 32 regions covering the whole image, and doing

image processing on those regions for making driving decisions allowed the robot to

successfully navigate 86.67% of the testing track. The reasons behind the robot failing to

successfully navigate the whole test track could be due to flaws in image processing, flaws

in learning the weights of the neural network, the training set being insufficient, vision

training library being insufficient, image auto-correction by the robot phone, or blurring

of images (subsection 3.3.4 discusses these potential issues in more detail). Similar levels

of accuracy were obtained when GEFE was used to evolve 10 regions for 300 generations.

Using 10 evolved regions the robot was able to successfully navigate 81.67% of the test

track. In the best case, the 10 evolved regions covered only 26% of the whole image while

still successfully driving the robot on 91.67% of the test track (refer table 4.8 training

set 1).

The relationship between number of regions for GEFE, and successful autonomous

navigation was found to be non-linear. In the sub-experiments where 2, 3, 5 and 10

regions were evolved, the rate of success in autonomous navigation increased when going

from two to three regions, then decreased for five regions, and again increased for ten

regions. The corresponding success for two, three, five, and ten regions were 57.5%,

78.33%, 70.83% and 77.5% respectively (table 4.4 to table 4.7). Increasing the number of

generation had a positive impact on the performance of the robot in autonomous mode.



50

Pushing the number of generations for evolving 10 regions from 200 to 300 increased

the success in autonomous navigation from 77.5 % to 81.67% (table 4.7 and table 4.8).

It was found that for autonomous road following, the GEFE process aligned evolved

regions in median one-third horizontal strip of input image (figure 4.7). I speculate this

occurred because maximum variations in road and non-road surfaces can be observed in

this strip (subsection 4.3.3). Evolving fixed sized regions was found to perform better

than variable sized regions (Section 4.3.4). It was also found that while using GEFE to

evolve the regions for image processing, use of an evolutionary algorithm to train the

weights of neural network controller outperforms use of backpropagation for training the

weights (Section 4.3.5).

Based upon the data collected and results analyzed, it can be concluded that GEFE

can be successfully applied to the task of autonomous road following in a controlled

environment. When fixed sized regions are evolved for significant number of generations,

GEFE is found to place them at positions such that sufficient information for autonomous

navigation can be obtained by processing image on those regions only. This information

can then be used in making decisions for autonomous road following. While GEFE has

been used to evolve the regions for image processing, an evolutionary algorithm has to

be used to train the weights of the neural network controller. Use of the evolutionary

approach is found to be both fast and successful in training the weights of the neural

network. When the final regions for image processing have been identified using GEFE,

and the evolutionary algorithm has trained the weights of the neural network controller,

image processing can then be done on those regions only for autonomous navigation,

instead of the whole input image. This saves a significant amount of CPU time and main

memory, which can be used for doing other important tasks.
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Chapter 6: Future Work

The research presented in this thesis presents support for several important conclusions,

but the presented approach has room for improvements and suggests a number of addi-

tional research projects.

The backprojection approach of image processing used in this research is very sus-

ceptible to changes in lighting conditions. Slight variation in lighting condition can give

a different result. Implementation and testing of image processing approaches which are

less susceptible to changes in lighting conditions (e.g. Local Binary Pattern, HSV, etc.)

can be a good extension to this research.

The research currently uses backprojection to calculate the road probability values

in an input image. Decisions for autonomous navigation are solely based upon these

calculated road probability values. Incorporating other image processing techniques in

addition to probability values from backprojection in the decision making process, might

make the driving decision more accurate. Some of the other promising image processing

approaches that can be incorporated include edge detection and texture detection.

The machine learning representation used in this research is a neural network. Though

neural networks have been shown to be effective in learning the test problem of au-

tonomous road following in this research, various other approaches for machine learning

can be implemented. Some of the other promising techniques that are wroth testing

include decisions trees and fuzzy logic.

The experiments done in this research are all done indoors. As the image processing

for identifying road from non-road becomes more robust, a natural extension to this

research can be doing the experiment outdoors.
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