
Computer Controlled Eddy Current Brake Bicycle Trainer

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies at

University of Idaho

by

Kathryn Price

Major Professor: Axel Krings, Ph.D.

Committee Members: Robert Rinker, Ph.D.; Terry Soule, Ph.D.

Department Administrator: John Crepeau, Ph.D.

December 2017

ii

Authorization to Submit Thesis

This thesis of Kathryn Price, submitted for the degree of Master of Science with a major

in Computer Science and titled “Computer Controlled Eddy Current Brake Bicycle

Trainer,” has been reviewed in final form. Permission, as indicated by the signatures and

dates given below, is now granted to submit final copies to the College of Graduate Studies for

approval.

Major Professor: Date
Axel Krings, Ph.D.

Committee
members: Date

Robert Rinker, Ph.D.

Date
Terry Soule, Ph.D.

Department
Administrator: Date

John Crepeau, Ph.D.

iii

Abstract

Dynastream Innovations developed a proprietary multi-cast network protocol called Advanced

and Adaptive Network Technology (ANT). This protocol has gained popularity for applications

in the exercise industry. Bicycle smart trainers can now use a prescribed workout and feedback

communicated by ANT to precisely control resistance.

This research builds upon the ANT protocol to create a proof of concept bicycle trainer that

controls resistance by use of an eddy current brake on the bicycle’s aluminum rear wheel rim.

The eddy current brake does not touch the bicycle so it provides minimal wear to the rider’s

gear. The trainer uses a pre-programmed workout and the rider’s power feedback to adjust the

trainer’s resistance. The power feedback is achieved via the ANT protocol, while the trainer

control and communication processing is provided by a Microcontroller Unit (MCU).

iv

Acknowledgments

I want to thank my major professor, Dr. Axel Krings, for his support, encouragement, and

knowledge during all aspects of this thesis research. His guidance was key to my thesis research

selection and his kind encouragement helped me throughout the process. Dr. Krings and my

committee members, Dr. Robert Rinker and Dr. Terry Soule, all provided insightful feedback

and thoughtful questions for me to consider. I thank them all.

I am indebted to the administrative people in the College of Graduate Studies. In particular,

Kathy Duke and Lana Unger showed much patience and understanding while working with me.

As an Engineering Outreach student in Alaska, it was sometimes difficult to find and deliver

all the necessary paperwork and they made it much easier.

Finally, I also wish to thank my friend, Marcia Bird, M.A., for her help proofreading this

thesis.

v

Dedication

My thesis is dedicated to my husband, whose love and support have helped me to achieve

my dreams.

vi

Table of Contents

Authorization to Submit Thesis . ii

Abstract . iii

Acknowledgments . iv

Dedication . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

List of Listings . xi

List of Acronyms . xii

1 Introduction . 1

1.1 Exercise Technologies . 3

1.2 Motivation . 3

1.3 Contribution . 4

1.4 Thesis Outline . 4

2 Background . 6

2.1 Application Overview . 6

2.2 ANT Overview . 6

2.2.1 Radios . 8

2.2.2 Nodes . 9

2.2.3 Channels . 11

2.2.4 Networks . 18

2.2.5 Messages and ANT+ Profiles . 20

2.3 Eddy Current . 23

2.4 Eddy Current Brake . 24

2.5 Crank Power . 26

vii

3 System Architecture . 29

3.1 System Hardware Configuration . 29

3.1.1 Bicycle Trainer and Bicycle . 29

3.1.2 Magnets, Power Supplies and Relay Control 33

3.2 MCU Controllers . 35

3.2.1 Arduino Relay Controller . 37

3.2.2 nRF51 Trainer Controller . 37

4 Experimental Validation . 43

4.1 Experimental Set-up . 44

4.2 Experimental Results . 45

5 Conclusion and Future Work . 46

Bibliography . 47

Appendix . 50

A Bill of Materials . 50

B ELPAC Power Supply Wiring . 51

C Arduino Relay Control . 52

C.1 Integrated Development Environment (IDE) . 52

C.2 Arduino Code . 52

D nRF51 Programming Software . 55

E nRF51 Code . 58

E.1 Workout Interrupt . 58

E.2 Start Workout Interrupt . 60

E.3 Trainer Control Infomation . 61

E.4 Output Pins . 61

E.5 Power Compare . 62

F ANT+ License . 66

viii

List of Figures

1.1 Wahoo Fitness KICKR Smart Trainer . 1

1.2 STAC Zero Trainer (Source: [4]) . 2

1.3 Connected sensors on a bicycle (Source: [5]) . 4

2.1 OSI Layers (Source: [17]) . 7

2.2 ANT OSI Layers (Source: [28]) . 7

2.3 An overview of radio power (Source: [18]) . 8

2.4 A host MCU and ANT engine are considered a node (Source: [10]) 9

2.5 Host MCUs communicate via the node ANT engines (Source: [10]) 10

2.6 Example of the host-ANT serial protocol commands (Source: [10]) 11

2.7 ANT message structure. (Source: [10]) . 11

2.8 Host MCU to ANT engine communication commands and manufacturer’s sup-

port (Source: [10]) . 12

2.9 ANT channel communications (Source: [10]) . 15

2.10 ANT slave node channel searches for a master node channel transmission (Source:

[7]) . 16

2.11 Master and slave nodes channel established. Dotted lines represent optional set

up, i.e. default values are specified. (Source: [10]) 17

2.12 ANT simple network example (Source: [10]) . 18

2.13 Examples of ANT network typologies (Source: [10]) 19

2.14 ANT flagged extended data message format (Source: [10]) 20

2.15 Shared channel addressing using one or two payload bytes (Source: [10]) 21

2.16 Bicycle power sensor ANT+ channel configuration (Source: [8]) 22

2.17 General ANT+ message payload format (Source: [8]) 22

2.18 Eddy currents on the leading and trailing edges of a moving magnet field 24

2.19 Eddy Current Brake . 25

2.20 Inductor circuit with and without a flyback diode 26

2.21 STAC Zero trainer (Source: [24]). 27

2.22 STAC Zero trainer rare earth magnet sets (Source: [24]). 27

2.23 STAC Zero trainer with attached bicycle (Source: [24]). 28

ix

3.1 Block diagram of Computer Controlled Eddy Current Brake Bicycle Trainer . . . 30

3.2 Design detail of eddy current brake . 30

3.3 Trainer before electromagnets are mounted . 31

3.4 Unistrut mounted to the trainer . 31

3.5 Brackets for electromagnet mounts. 32

3.6 Spacers for multiple magnet mounting. 32

3.7 Aluminum donut mounted to rear wheel . 33

3.8 Automobile industry trailer brake electromagnets used in the eddy current brake 34

3.9 Schematic showing electromagnets in parallel to power supply. There are two of

these setups for the Computer Controlled Eddy Current Brake Bicycle Trainer. . 35

3.10 ELPAC power supply . 35

3.11 Power ID Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) relay . 36

3.12 Schematic showing MOSFET relay connections (Source: [39]) 36

3.13 Nordic Semiconductor nRF51 development kit 38

3.14 Block diagram of softdevice protocol for System on a Chip (SoC) nRF51422

(Source: [38]) . 39

3.15 Block diagram of SoC application with softdevice (Source: [38]) 39

3.16 Bicycle crank with Stages Cycling power meter attached 40

3.17 Level converter to convert signal from 3 VDC to 5 VDC 41

3.18 Arduino and nRF51 boards connected via a level converter 42

4.1 Set-up for the power supplies and relays to the electromagnets. 43

4.2 Set-up of the Computer Controlled Eddy Current Brake Bicycle Trainer. 44

B.1 Wiring for the ELPAC ELV250 power supply (Source: [39]) 51

C.1 Arduino IDE information . 52

D.1 Set up information for Keil µVision . 55

D.2 Device selection for project from Keil µVision . 56

D.3 ANTware II software example . 56

D.4 nRFgo software example . 56

D.5 PuTTY serial communication configuration for the nRF51 board 57

x

List of Tables

2.1 Descriptions of ANT serial message structure. (Source: [10]) 10

2.2 Acceptable ANT channel type examples (Source: [10]) 14

2.3 Master and Slave Nodes depicted in Figure 2.12 (Source: [10]) 18

4.1 Results of ride test on Computer Controlled Eddy Current Brake Bicycle Trainer 45

xi

List of Listings

2.1 ANT+ raw data . 22

2.2 ANT+ decoded data . 23

3.1 Stages power meter data . 40

samplecodes/arduino/TrainerControl1.ino . 52

samplecodes/nRF51/workout.c . 58

samplecodes/nRF51/workoutstart.c . 60

samplecodes/nRF51/trainercontrol.h . 61

samplecodes/nRF51/outputpins.c . 61

E.1 Directory for Advanced and Adaptive Network Technology Plus (ANT+) exam-

ple code . 62

samplecodes/nRF51/page16.c . 62

xii

List of Acronyms

A Amperes

ANT Advanced and Adaptive Network Technology

ANT+ Advanced and Adaptive Network Technology Plus

ANT-FS Advanced and Adaptive Network Techology File Share

API Application Programming Interface

ARM Advanced RISC Machine

cm centimeters

CMSIS ARM Cortex Microcontroller Software Interface Standard

CPU Central Processing Unit

dBm decibel-milliwatts

EMF Electromotive Force

GFSK Gaussian Frequency Shift Keying

GHz gigahertz

GPIO General Purpose Input Output

Hz hertz

ID identification

IDE Integrated Development Environment

ISM Industrial, Scientific, and Medical

kbps kilobits per second

MCU Microcontroller Unit

MHz megahertz

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

mph miles per hour

mA milliampere

OSI Open Systems Interconnection

PAN Personal Area Network

PWM Pulse Width Modulation

xiii

RF Radio Frequency

RISC Reduced Instruction Set Computer

RPM Revolutions per Minute

RX Receiver

SDK Software Development Kit

SoC System on a Chip

SoM Systems on Module

Tch Channel Period

TDMA Time Division Multiple Access

TX Transmitter

ULP Ultra Low Power

Unistrut Unistrut Metal Framing System

USB Universial Serial Bus

VAC Voltage of Alternating Current

VDC Voltage of Direct Current

W Watt

1

Chapter 1

Introduction

Competitive cycling requires specific workouts to ensure maximum benefit from precise physical

training [2]. Many times it is easier to control the workout variables, such as intensity and

duration, doing an indoor workout because the indoor workout removes the weather and road

conditions as factors in the workout exercise [1].

Figure 1.1: Wahoo Fitness KICKR Smart Trainer1

For indoor cycling there are a variety of indoor trainers, but they fall into two categories;

basic and smart. Basic trainers use a resistance that cannot be modulated externally, for exam-

ple with the use of fluid or wind resistance. Smart trainers use an external signal to modulate

the resistance level of the training session. This modulated resistance is often implemented

using an eddy current braking system. Through a system of belts or gears, a small conductive

1Unless otherwise noted, all photos and figures by Kathryn Price.

2

disk is spun between a number of electromagnets the current to which are controlled through

an external workout signal.

Figure 1.2: STAC Zero Trainer (Source: [4])

Most trainers that allow a bicycle to be attached either use the bicycle’s rear wheel to spin a

cylinder that is in turn attached to a resistance, or the bicycle’s rear wheel is removed altogether

and the chain is attached to a cog set on the trainer. An example of the cog set type of trainers

is shown in Figure 1.1. In either case, moving an outdoor bicycle onto a trainer or from a

trainer to be outdoor ride ready is an awkward task. For instance, the trainer requiring a tire

will add wear to the tire and demands that the tire be maintained at the proper pressure for

3

correct frictional force on the cylinder. The benefit of this type of trainer, however, is that the

bicycle is road ready at a moments notice. For the chain driven cog set type of trainer, there is

obviously no tire wear; however, a cog set is needed for the trainer. This means installing the

correct cog set onto the smart trainer and connecting the bicycle via the chain each time it is

used. Conversely, to ride the bicycle outside, the cog would have to be reinstalled on the rear

wheel and then the wheel mounted on the bicycle again.

A trainer that has tried to overcome both the awkward bicycle mounting and the tire wear

is the STAC Zero trainer [4]. This trainer has the bicycle held by the rear wheel skewer, but the

wheel can spin freely - that is there is no cylinder on which to apply frictional force. Instead,

there are a series of rare earth permanent magnets mounded along each side of the aluminum

rim of the rear wheel as in Figure 1.2. These magnets induce a corresponding eddy current as

the aluminum rim rotates through the magnet banks [4] [3].

1.1 Exercise Technologies

There is an ever-expanding world of personal sensors for fitness. In particular for cycling, specific

sensors are used for such things as heart rate, power, cadence, speed, and ride mapping. All of

the data needs to be collected via a wireless Personal Area Network (PAN). Figure 1.3 shows an

overview of how these sensors might be arranged and connected on a bicycle. Furthermore, there

is a need to control exercise equipment itself in order to facilitate specific directed workouts.

Much of this wireless communications is done through the proprietary protocol ANT. A number

of independent companies in the fitness industry have adopted ANT protocol for sensor and

smart trainer communications [6].

1.2 Motivation

The motivation for this thesis stems from the desire to overcome the awkwardness of indoor

bicycle trainers that require either partial disassembly of the bicycle or wear and tear on the

bicycle itself, and to combine that with the power of a smart trainer. The STAC Zero bicycle

trainer is an example of overcoming the physical restraints of indoor bicycle trainers mentioned

above. The next logical step is to incorporate the use of eddy current braking on a rear bicycle

wheel using electromagnets. This would allow an externally controlled workout that controls

the resistance, and it does so with minimal wear on the bicycle, as well as leaving it nearly road

ready for outdoor riding.

4

Figure 1.3: Connected sensors on a bicycle (Source: [5])

1.3 Contribution

This thesis project showed that it is possible to have an eddy current brake indoor bicycle

trainer that has minimal set-up for the bicycle and practically no wear on the bicycle itself.

The trainer was externally controlled by a preprogrammed workout. A proof of concept was

built and tested for this type of trainer.

1.4 Thesis Outline

This thesis is dedicated to developing an indoor bicycle trainer that will use electromagnets on

a rear wheel to control trainer resistance. The remainder of this thesis is organized as follows:

Chapter 2, Background, introduces the ANT protocol and the ANT+ messaging structure.

Finally, a discussion of the basics of eddy current brakes and power calcuations are introduced.

Chapter 3, System Architecture, presents the overall structure of the trainer set-up. This

includes the design of the eddy current brake and the control of power to the electromagnents.

In addition, the software overview is discussed, as well as is any hardware needed to implement

the software on each MCU.

Chapter 4, Experimental Validation of Computer Controlled Eddy Current Brake Bicy-

cle Trainer, provides an overview of the Computer Controlled Eddy Current Brake Bicycle

Trainer prototype. The data from the trainer testing are presented here.

Chapter 5, Conclusion and Future Work, reviews the results of the trainer testing and

provides some ideas for future improvements and work.

5

A number of appendices are provided for clarity of the Computer Controlled Eddy Current

Brake Bicycle Trainer. Appendix A, Bill of Material, provides a list of items used to build

the prototype. It does not include items such as fasteners. Appendix B, ELPAC Power Supply

Wiring, shows how to wire the ELPAC power supply for the Computer Controlled Eddy Current

Brake Bicycle Trainer usage. Appendix C, Arduino Relay Control, shows the Arduino IDE

and lists the C code for controlling the power relay switches. Appendix D, Programming

Software, shows examples of the software used to program the Systems on Module (SoM) nRF51

development kit. Appendix E, nRF51 Code, gives the C code for the nRF51 Development Kit

that is used for the trainer controller, while Appendix F, ANT+ License give the licensing

information from Nordic Semiconductor on the use of the example code.

6

Chapter 2

Background

2.1 Application Overview

The Computer Controlled Eddy Current Brake Bicycle Trainer makes use of two very different

technologies. First, it uses a proprietary wireless protocol called ANT to provide power feedback

from the bicycle rider to the trainer controller MCU. Second, it uses the concept of eddy currents

to create braking action and thus resistance for the rider.

This background section will first cover the ANT protocol in as much detail as possible given

that it is proprietary and second, it will delve into the physics of eddy currents, eddy current

brakes, power calculations as well as cover where the concept of the Computer Controlled Eddy

Current Brake Bicycle Trainer originated. The ANT protocol will be described using the Open

Systems Interconnection (OSI) stack model, as seen in Figure 2.1, as a reference. The structure

building, component assembly and wiring as well as MCU programming will all be described

in Chapter 3.

2.2 ANT Overview

The ANT protocol consists of low cost, low power transceivers that can arrange themselves in

an ad hoc network rapidly. The wireless PAN requirements are ease of installation, a simple yet

flexible protocol, reliable data transfer, very low cost, and low power that results in reasonable

battery life [10].

The ANT protocol is specifically written for wireless PAN sensor systems and similar appli-

cations and is proprietary. It was developed by a Canadian company, Dynastream Innovations

Inc. ANT implements the media layers and the host transport layer of the OSI stack. Figure 2.1

shows the OSI stack model with the media and host layers identified.

The ANT protocol is managed by ANT Wireless which is a division of Dynastream Innova-

tions Inc. which in turn is owned by Garmin. ANT is specifically developed for low data rate,

wireless sensor networks with the following considerations [6].

1. ANT systems are Ultra Low Power (ULP) - the power requirements are designed such

that the system can operate on a coin cell for years.

2. ANT systems are highly compact. The protocol uses a small amount of memory.

7

Figure 2.1: OSI Layers (Source: [17])

3. ANT protocol is flexible and can easily scale in terms of network topology.

4. ANT is a low cost system.

The above requirements make it well suited to sports and fitness fields for performance and

health monitoring [6].

The ANT protocol provides management of the OSI layers two through four, that is the

data-link layer, the network layer, and the transport layer, as shown in Figure 2.2. A 2.4

gigahertz (GHz) radio is used for the physical layer.

Figure 2.2: ANT OSI Layers (Source: [28])

8

2.2.1 Radios

The ANT radios operate in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band. Specif-

ically, the frequency range is 2.4 GHz to 2.524 GHz [10]. The radios use Gaussian Frequency

Shift Keying (GFSK) which is a type of frequency modulation for digital communications. For

example, in frequency shift keying, the carrier signal frequency will increase when a 1 is trans-

mitted and, conversely, it will decrease when a 0 is transmitted. A Gaussian filter is applied to

this frequency shift keying in order to create a GFSK modulation scheme. This type of filter

makes the transitions smoother while reducing side-band power [16].

ANT transceivers can change channel frequency in special cases, but ANT does not fre-

quency hop. Instead, ANT relies on Time Division Multiple Access (TDMA) in order to avoid

collisions from other transmitters in the same band. This means ANT allows different devices to

communication on a shared frequency by assigning individual time slots for each channel [22].

The relatively short transmission time slots are at a chosen interval, but the time slots can

be adjusted by the transceivers as interference is discovered. Only in special cases can the

transceivers can change frequency. For example, if too much interference is detected across the

whole channel from another source such as WiFi, the transceivers can change frequency alto-

gether. This is called frequency agility by ANT and differs from hopping because the frequency

is only changed when a threshold signal degradation is observed [9].

Figure 2.3: An overview of radio power (Source: [18])

9

An overview of the ANT radio power consumption is given in Figure 2.3. Ultra low power

consumption is one of the main goals of the ANT protocol [6]. Figure 2.3 shows that very little

current is used for the idle modes and moderate current is used for the active modes. The

power consumption for both the transmitter and receiver of the SoC chip, nRF51422, selected

for the Computer Controlled Eddy Current Brake Bicycle Traineris lower than what is shown

in Figure 2.3. For this specific SoC, the peak transmitter current at 0 decibel-milliwatts (dBm)

is 10.5 milliampere (mA) while the peak receiver current is 12 mA [19].

2.2.2 Nodes

As seen in Figure 2.2, the developer defines the top three OSI layers, session, presentation,

and application layers, by using a host MCU. The host MCU is external to the ANT protocol

engine [10], but they can be packaged together. For instance, the Computer Controlled Eddy

Current Brake Bicycle Trainer SoC, nRF51422, has both an ANT protocol engine and a host

MCU on the SoC. The ANT engine is proprietary and the design is owned by Dynastream,

but the host MCU is an Advanced RISC Machine (ARM) Cortex M0 32 bit processor [19]

whose design is licensed by ARM Holdings. In general, though, most MCUs that have a serial

connection capability can be used as a host MCU to the ANT engine.

An ANT protocol engine acts as a network processor and an ANT node is defined as a

combined ANT protocol engine and a host MCU as seen in Figure 2.4. The ANT protocol

engine takes care of establishing and maintaining ANT connections and channel operations. The

host MCU takes care of the application needs. It is the host MCU that sets all communication

parameters and initiates communications to other nodes.

Figure 2.4: A host MCU and ANT engine are considered a node (Source: [10])

The protocol stack for the ANT engine is licensed directly to silicon manufacturers. It is

embedded in silicon network processors so that no hardware stack integration is required. This

10

Figure 2.5: Host MCUs communicate via the node ANT engines (Source: [10])

reduces development time and concentrates application development on the host MCU. The

developer uses the host MCU to establish and maintain application communications to other

nodes via the ANT protocol engine as seen in Figure 2.5. This is done through a bidirectional,

serial message protocol between the host MCU and the ANT protocol engine. Through this

ANT-host serial protocol, the application configures ANT channels, opens channels, pairs de-

vices, and transfers data. This is all done through a set of simple commands an example of

which can be seen in Figure 2.6 [10].

Figure 2.7 shows the basic format of a serial message between the host MCU and ANT

engine while Table 2.1 outlines each block of the message structure with a description [10].

Table 2.1: Descriptions of ANT serial message structure. (Source: [10])

Byte Name Length Description

0 SYNC 1 Byte Fixed value of 0xA4 or 0xA5

1 MSG LENGTH 1 Byte Number of data bytes in message

2 MSG ID 1 Byte Data Type Identifier (1-255 valid)

3..N+2 MSG CONTENT N Bytes Message content

N+3 CHECKSUM 1 Byte XOR of all previous bytes including SYNC

11

Figure 2.6: Example of the host-ANT serial protocol commands (Source: [10])

Figure 2.7: ANT message structure. (Source: [10])

Interestingly, not all manufacturer’s chips have the full suite of the ANT-host serial protocol

messages. Different ANT engines have different purposes and may be packaged with other

modules so they may or may not need the full ANT-host serial protocol. Figure 2.8 shows a

small sample list of host MCU and ANT engine configuration class messages and which messages

the different manufacturer’s chips support.

2.2.3 Channels

ANT node to node communication is channel based, that is, each ANT node connects to other

ANT nodes through dedicated channels. The simplest channel connects a single master node

and a single slave node. A master node acts a the primary transmitter and a slave node acts as

the primary receiver. In some cases, such as a hub, a node acts as both a slave and a master. In

those cases, however, the hub is a master or a slave for a particular channel and it is supporting

12

Figure 2.8: Host MCU to ANT engine communication commands and manufac-
turer’s support (Source: [10])

multiple channels [10]. Specifying whether a node is a slave or a master is part of the channel

configuration.

There are three channels modes used for communication; independent, shared, and scan.

The independent channel is most basic and has one master and one slave. The shared channel is

used for one master to send data to multiple slaves, either individually or all at once. The scan

channel is used by one slave node to receive data from multiple master nodes [23]. Figure 2.12

depicts three independent channels. Each channel, A, B, and C, has only one master and one

slave. Although Hub 1 is a node in all three channels, each channel is considered independent.

For a shared channel, there is a one or two byte shared channel address field. This field is

controlled by the host application and, if used, displaces one or two bytes of the eight payload

bytes. The master will transmit data to a number of slaves but the ANT engine will only send

up data to the slave application if the shared channel address matches the slave node’s shared

channel address, or if the slave node’s channel address is set to a wildcard value. The one byte

channel address field allows 255 slave devices to share one channel while the two byte address

allows for 65,025 slaves [10].

13

The channel scan mode allows a slave node to receive from multiple master nodes. This is

accomplished by leaving the slave node radio in continuous scanning mode. Because the radio

is always occupied, the node cannot have any other channels open [10].

Most ANT communication implementations use channels that are synchronous, indepen-

dent, and bidirectional; however, the way in which the ANT nodes communicate depends on

how each node configures the channel. At its most basic, a channel is a radio frequency and a

time slot. An ANT channel, however, is defined by five parameters; network number, channel

type, channel identification (ID), Radio Frequency (RF) frequency, and channel period [10].

Each of these parameters will be discussed in turn.

The network number is a number that refers to the network on an ANT device. Each ANT

network requires an ANT network key and, depending on the ANT chip used, anywhere from

one to eight network keys can be assigned. For the Computer Controlled Eddy Current Brake

Bicycle Trainer SoC, only three network numbers could be used for all eight channels. The

network number is an eight bit field with the network number 0 being assigned to the default

public network key [10].

Channel type is indicated by an 8-bit field set to an acceptable value between the range

of 0 to 255. Table 2.2 lists several common channel types [10]. In order for two nodes to

communicate on the same channel, they need to have the same channel type, but one must be a

master and one must be a slave. For example, a node can set a channel type to a bidirectional

master channel. This means that it will only connect with a node that has a channel type set

to a bidirectional slave channel because only a slave and a master can communicate.

The bidirectional channel, of course, means that data flow both ways, but the primary

direction of the data flow is determined by the node. For example, the slave node operates

mostly as a receiver while the master node operates mostly as a transmitter. When the channel

is shared, it means that a single, central ANT node must receive data from many other nodes.

In this case, the transmitting nodes share a single channel to the central node [10].

The next part of the channel configuration is the channel ID. The channel ID is a 4-bit

value that contains three fields; transmission type, device type, and the device number. The

transmission type is a number which represents a device’s transmission characteristics such as

independent or shared channel [28]. This number is either pre-defined in managed networks

or determined by the device’s manufacturer. The device type is a number that represents the

type of master device, for example, a heart rate monitor or bicycle power meter, while the

14

Table 2.2: Acceptable ANT channel type examples (Source: [10])

8 bit Value Channel Description

0x00 Bidirectional Slave Channel

0x10 Bidirectional Master Channel

0x20 Shared Bidirectional Slave Channel

0x30 Slave Receive Only Channel (diagnostic)

0x40 Master Transmit Only Channel (legacy)

device number is a number that is specific to a particular device. By specifying the individual

device number, ANT wireless PANs can be set to prevent picking up devices in an overlapping

wireless PANs, such as two bicycle riders next to each other. Of course, for private networks,

the channel ID can be user defined. Only nodes with matching channel IDs or channel IDs set

to zero, which represents a wildcard value, can communicate with each other. In the situation

where the channel ID is set to a wildcard, the salve will find the first master that has a matching

network key and frequency [10].

In addition to specifying the channel type and ID, the channel configuration also includes

specifying RF frequency. There are 125 RF operating frequencies supported and the one selected

is determined by an 8-bit field. In this field, the acceptable values range from 0 to 124. The

value is just the offset in 1 megahertz (MHz) increments from 2400 MHz with a maximum

frequency of 2524 MHz. The value for this field is given by Equation 2.1. The default RF

operating frequency is 2466 MHz. Many channels can exist on one frequency because ANT

uses TDMA [10].

RF Frequency val =
Desired RF Frequency(MHz)− 2400MHz

1MHz
(2.1)

The Channel Period (Tch) is part of the channel configuration and can be set using the

channel period value. The channel period value is a 16-bit field parameter that is used to set

the message rate. The developer can set the desired message rate and then use Equation 2.2

to determine the application parameter, channel period value. The default message rate is 4

hertz (Hz) [10].

Channel Period val =
32768

Tch(Hz)
(2.2)

15

In addition to these main channel parameters just discussed, there is also the option to set

the master and slave transmitter power. The default value for the transmitter power is set to a

value 3 which is equal to 0 dBm. The process of establishing a channel between a master node

and a slave node is summarized by Figure 2.11. In this figure, the channel parameters with

solid lines have no default values. These values must be set by the application. The parameters

with the dashed lines can use the default value if none is specified in the application [10].

To begin the node connection process, a master node opens a search window in order to

check that its transmission is not going to interfere with other device transmissions. From

this search, a designated Tch is found. This Tch is the message rate of data packets sent by

the master. The master node will then always transmit a message on that specific Tch once

the channel is opened. In the bidirectional channel case, the master node will leave the radio

receiver on for a short time after each transmitted message finishes. If needed, this allows

the slave node to send back data immediately after receiving a message. Figure 2.9 shows the

channel communication period, Tch, between two nodes [10].

Figure 2.9: ANT channel communications (Source: [10])

When a channel is already open and a slave wishes to connect, it will immediately enter

search mode when its channel opens. Even in search mode the radio is only intermittently active

rather than constantly on, which helps to conserve power. Because of this, master transmission

detection may not be made on the first master transmission after the slave channel is opened [7].

Figure 2.10 shows a slave node channel searching for a master node channel transmission. The

circle denotes when the master transmission is detected. Once the slave node detects the master

node transmission, it exits search mode and enters tracking mode.

The slave Tch should be set to either the master’s Tch or a multiple of it. If it is set to a

multiple, then the slave will miss master data transmissions. If the slave’s Tch is set to a factor

16

Figure 2.10: ANT slave node channel searches for a master node channel trans-
mission (Source: [7])

of the master’s Tch then the slave is wasting power by turning on the radio when there is no

transmission [7].

There are four ANT data types; broadcast data, acknowledged data, burst data and ad-

vanced burst data. Broadcast data is the default data type and is the most basic data type. It

is sent from the master to slave on every Tch. If there is no new broadcast data to send, then

the previous data packet will be resent. In addition, broadcast data is never acknowledged by

the slaves so the master will not know if data packets are lost. Broadcast data uses the least

amount of power and bandwidth [10].

A node host application may request that data packets be acknowledged. When this hap-

pens, the receiving node will send an acknowledgment back to the transmitting node on the

next Tch slot. If the transmission is not acknowledged, there is no automatic re-transmission.

The master host application can mix and match broadcast data with acknowledged data, that

is, the master can send a data packet not requiring acknowledgment and, in the next Tch

time slot, it can send a data packet that requires acknowledgment. The acknowledged data

transmission will use more power and bandwidth than broadcast data [10].

Burst data messages are used when large amounts of data need to be sent. Burst data are

a series of continuous messages that are acknowledged. The rate of these data messages does

not correspond to the Tch and, in fact, is significantly faster. Burst data has a maximum data

throughput of 20 kilobits per second (kbps). Prolonged burst data transmissions could cause

slave nodes to lose synchronization. If this happens, the slave node will automatically drop into

search mode to reestablish synchronization [10].

Finally, there is advanced burst data which allows some ANT devices to increase the max-

imum data throughput to 60 kbps. This uses the most power and is not recommended unless

the host application specifically needs it [10].

17

Figure 2.11: Master and slave nodes channel established. Dotted lines represent
optional set up, i.e. default values are specified. (Source: [10])

18

2.2.4 Networks

A simple ANT network is depicted in Figure 2.12. Each channel depicted in Figure 2.12 has a

master node and a slave node at minimum. In addition, the arrows reflect the direction of data

exchange with the large arrows depicting the master node or primary transmitter. Table 2.3

shows the status of each node as a master, Transmitter (TX), or slave, Receiver (RX), for

Figure 2.12 [10].

Figure 2.12: ANT simple network example (Source: [10])

Table 2.3: Master and Slave Nodes depicted in Figure 2.12 (Source: [10])

Channel Master Node Slave Node

Channel A Sensor 1 (TX-Only) Hub 1 (RX)

Channel B Sensor 2 (TX) Hub 1 (RX)

Channel C Hub 1 (TX) Hub 2 (RX)

ANT supports many network topologies from a simple 2-node unidirectional communica-

tion to a complex multi-transceiver system with point-to-multipoint communications. Some

examples of the topology types supported are shown in Figure 2.13 [10].

Each network has a network key that is either public, managed, or private. For development,

a public network key is provided by Dynastream Innovations. This public network is considered

19

Figure 2.13: Examples of ANT network typologies (Source: [10])

open, that is, it will accept any node wishing to connect and let anyone listen to the data

exchange [6].

A managed network key is used for interoperability across an industry sector, for example,

fitness. When these keys are used, devices must adhere to specific specifications in the channel

20

configurations as well as data formatting in order to facilitate interoperability across different

companies and devices. Dynastream provides two managed ANT network keys.

1. The ANT+ network key is specifically used for devices communicating via the ANT

protocol and, in addition, implements a higher level control of exercise data. It must be

used only at the specific frequency of 2457 MHz.

2. The Advanced and Adaptive Network Techology File Share (ANT-FS) network key uses

the ANT stack and implements higher level file sharing protocol as well.

Finally, private networks allow the greatest control and security. The private network allows

the developer to set all channel configurations and data formatting while allowing full control

over who can join the network. The private network keys are assigned Dynastream Innovations.

If the key is not defined by Dynastream, the invalid key will be replaced with the public key

when the device channel is configured. This will allow devices to communication although the

communications will not be private [6].

2.2.5 Messages and ANT+ Profiles

The node to node ANT message contains only eight bytes of application data. The standard

message format and the optional extended message format are shown in Figure 2.14. Recall

that, if specified, up to two of the payload bytes can be used to specify a shared address for the

shared channel usage. This is shown in Figure 2.15.

The extended data message is the same as the standard data message up to and including

the payload; however, after the payload there is a flag byte that signals the ANT engine that

more information fields follow. This is called the flagged extended data message format and it

is important because the ANT+ profiles use this format [28].

Figure 2.14: ANT flagged extended data message format (Source: [10])

21

Figure 2.15: Shared channel addressing using one or two payload bytes (Source:
[10])

ANT+ is a managed ANT network and an ANT+ profile is a standardization of how partic-

ular devices send data over the ANT+ managed network. For example, all heart rate monitors

conform to one profile standard while all bicycle power meters conform to another profile stan-

dard. These standards are implemented in the application or host MCU on OSI layers five, six

and seven, as seen in Figure 2.2 [8].

Currently, the ANT+ managed network classifications include sports, wellness, and home

health. All ANT+ devices use the ANT+ network key and they all must implement an ANT+

profile. Besides message payload formats the ANT+ profiles also include specific slave and

master channel configurations. Figure 2.16 shows the specific ANT+ channel configuration for

a receiver of bicycle power sensor data [8].

Next, there are several general and sensor specific message payload formats known as pages.

In general, whether the page is generic or sensor specific, the payload format is shown in

Figure 2.17 [8] and an example of the raw received bicycle power data is shown in Listing 2.1.

In Listing 2.1, 4e is the data type, broadcast. The next byte, 00 is the channel number followed

by the eight byte payload. Listing 2.2 shows the decoded bicycle power sensor data from the

message received on line 8 from Listing 2.1.

22

Figure 2.16: Bicycle power sensor ANT+ channel configuration (Source: [8])

Figure 2.17: General ANT+ message payload format (Source: [8])

Listing 2.1: ANT+ raw data

1 Auto−Open I n i t i a t e d . . .
2 > Se t t i ng Channel ID . . .
3 Channel Id Set : 0 ,11 ,0
4 > Opening Channel . . .
5 Received BROADCAST DATA 0x4E
6 : : 4e , 00−10−65−FF−3A−73−13−32−00
7 Received BROADCAST DATA 0x4E
8 : : 4e , 00−12−65−65−3A−71−7E−94−6E

23

Listing 2.2: ANT+ decoded data

1 4e Broadcast Data
2 00 Channel Number 0
3 12 Data Page Number 0x12 or decimal 18
4 65 Event Count − increments with each in fo rmat ion update .
5 65 Crank Ticks − increments with each crank r e v o l u t i o n .
6 71 Period LSB − Accumulated crank per iod l e a s t s i g n i f i c a n t byte
7 7E Period MSB − Accumulated crank per iod most s i g n i f i c a n t byte
8 94 Accumulated Torque LSB − Accumulated torque l e a s t

s i g n i f i c a n t byte
9 6E Accumulated Torque MSB − Accumulated torque most s i g n i f i c a n t

byte

2.3 Eddy Current

Eddy currents are loops of electrical current that are induced within a conductor. The currents

are induced by changing the magnet field within the conductor. This can be done by moving

either a conductor through a magnetic field or by moving a magnet by a stationary conductor.

This phenomenon was discovered by Michael Faraday in the early 1830s. He saw that any

change in a magnetic field of a wire coil caused a voltage to be induced in the same coil. The

demonstration that a spark will jump the gap across a switch when that switch breaks the

circuit to a large electromagnet made of many turns of wire around an iron core is an example

of this. Faraday expressed this as a single equation known as Faraday’s Law [21].

ε = − dΦB

dt
(2.3)

Equation 2.3 is Faraday’s Law and it states that the Electromotive Force (EMF), ε, is equal

to the negative of the rate of change of the magnetic flux, ΦB. In addition to moving a magnet

relative to a conductor, there are other ways to change the magnetic field, for instance, changing

the current to an electromagnet will change the magnetic flux thereby inducing an EMF.

The other laws that apply to eddy currents are Lenz’s law which states: The direction of

an induced current is such as to oppose the cause producing it [29] and Ampere’s law which is

shown in Equation 2.4 [21]. ∮
B · d` = µ0I (2.4)

Lenz’s law can be seen as a negative sign in Equation 2.3. Simply stated, Ampere’s law says

that the integral of the magnetic field, B, around a closed loop is equal to the static electric

current, I, which passes through the loop times a magnetic constant, µ0.

24

Figure 2.18: Eddy currents on the leading and trailing edges of a moving magnet
field1

Figure 2.18 shows the induced eddy currents in the conductor, C, with red lines. The

currents are induced in opposite directions on each edge of the magnet. On the leading edge

of the magnet, the magnetic flux is building so the induced eddy current will try to counteract

that be creating its own flux. On the trailing edge of the magnet, the magnetic flux is waning

so the conductor tries and keep the magnet flux from changing so it creates an eddy current in

the opposite direction [21].

2.4 Eddy Current Brake

The eddy current brake is a device used to slow or stop a moving object. Instead of using

frictional force to slow the moving object, the eddy current brake uses induced currents, eddy

currents, on a conductor that is moving relative to a magnetic field. This is, of course, an

application of Lenz’s law [29]. This concept can be seen on a spinning disk, D, in Figure 2.19.

In the example, the green arrows are the direction of the magnetic flux caused by the magnets,

the red circles are the induced eddy currents in the conductor and the blue arrows show the

induced magnetic field from the eddy currents.

The benefit of this type of brake is that there is no contact. In other words, there is no

mechanical wear. The downside is that the eddy current brake cannot provide a holding torque

1Picture is in the Public Domain and licensed via Wikimeda Commons https://creativecommons.org/licenses/
by-sa/3.0, created by user Chetvorno and found at https://commons.wikimedia.org/wiki/File:Eddy currents
due to magnet.svg

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Eddy_currents_due_to_magnet.svg
https://commons.wikimedia.org/wiki/File:Eddy_currents_due_to_magnet.svg

25

since the braking action is only in play when there is relative movement between the conductor

and the magnet field. The braking action dissipates the kinetic energy as heat [29].

Figure 2.19: Eddy Current Brake2

A strong magnetic field will create a strong eddy current thus supplying the greatest brak-

ing action. The power of electromagnets are given in Ampere-turns, that is the amount of

current flowing through a number of wire turns [27]. Another way to have the conductor feel

the maximized force of the magnetic field is to place the magnets as close as possible to the

conductor. The smaller the air gap, the more concentrated the magnetic flux, the more eddy

current is developed [13].

One way to control the strength of the eddy current brake is by increasing or decreasing the

current to the electromagnets. If the power supply to the eddy current brake is not controllable,

then control can be achieved by using power relays to turn the current on and off to the

electromagnets. Since the second control scenario is similar to the experiment that Faraday

used to develop Equation 2.3, it is important to limit the induced current spike into power

supply as the relays are opened. This is done by use of a flyback diode [11]. Figure 2.20 shows

an inductor circuit similar to the one that is used to control the eddy current brake, with and

without a flyback diode.

Exercise equipment such as bicycle trainers use eddy current brakes to provide resistance

for workout purposes. In particular, the STAC Zero bicycle trainer uses 13 sets of rare earth

2Picture is in the Public Domain and licensed via Wikimeda Commons https://creativecommons.org/licenses/
by-sa/3.0, created by user Chetvorno and found at https://en.wikipedia.org/wiki/Eddy current brake#/media/
File:Eddy current brake diagram.svg.

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/Eddy_current_brake#/media/File:Eddy_current_brake_diagram.svg
https://en.wikipedia.org/wiki/Eddy_current_brake#/media/File:Eddy_current_brake_diagram.svg

26

permanent magnets to affect eddy currents on an aluminum rim of a bicycle wheel. This set-up

has practically no mechanical wear on the bicycle because it is statically held by the rear wheel

skewer, and it is easy to set up as there is no need to remove the rear wheel. The resistance is

changed by the rider pedaling faster. The faster the aluminum rim moves through the sets of

magnets the more eddy current is developed. Although this system provides a good workout,

it is not able to use a preprogrammed workout to change the resistance for the rider [4]. The

STAC Zero bicycle trainer is the inspiration for this project.

Figure 2.20: Inductor circuit with and without a flyback diode3

Figure 2.21 shows the STAC Zero trainer with no bicycle attached. Figure 2.22 shows the

sets of rare earth magnets that induce eddy currents in the wheel’s aluminum rim. Figure 2.23

shows a bicycle attached to the STAC Zero trainer.

2.5 Crank Power

The Computer Controlled Eddy Current Brake Bicycle Trainer depends on the feedback from a

commercially available bicycle power meter. A strain gauge attached to a bicycle crank detects

small flexing of the crank on each pedal stroke. This defection along a timeline gives two crucial

3Picture is in the Public Domain and licensed via Wikimeda Commons https://creativecommons.org/licenses/
by-sa/3.0, created by user MrCrackers and found at https://upload.wikimedia.org/wikipedia/commons/7/76/
FlybackExample.GIF

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://upload.wikimedia.org/wikipedia/commons/7/76/FlybackExample.GIF
https://upload.wikimedia.org/wikipedia/commons/7/76/FlybackExample.GIF

27

Figure 2.21: STAC Zero trainer (Source: [24]).

Figure 2.22: STAC Zero trainer rare earth magnet sets (Source: [24]).

28

Figure 2.23: STAC Zero trainer with attached bicycle (Source: [24]).

pieces of information: cadence in Revolutions per Minute (RPM) and downward force. The

power is then calculated using Equation 2.5.

Power = τ ∗ Cadence (2.5)

In Equation 2.5, τ is torque. Torque is calculated using Equation 2.6.

τ = F ∗ 9.8 ∗ L (2.6)

In Equation 2.6, F is the average force per crank revolution, L is the length of the crank, and

9.8 is the gravitational constant.

Equation 2.7 show the final calculation of power for a bicycle crank meter.

Power = 2 ∗ (F ∗ 9.8 ∗ L) ∗ (R ∗ 0.1047) (2.7)

In this calculation, the torque is multiplied by 2 in order to take into account the crank force

for each leg. R is the RPM and the constant 0.1047 is the conversion from RPM to radians per

second [29] [41].

29

Chapter 3

System Architecture

3.1 System Hardware Configuration

A bicycle smart trainer uses several technologies that are pieced together for affecting resistance

control. Some of the components are an eddy current brake, wireless protocol (to give feedback

to a controlling MCU in order to determine current requirements to the electromagnets), a

stand to hold the bicycle and brake. An overview of the Computer Controlled Eddy Current

Brake Bicycle Trainer is shown in Figure 3.1 and Figure 3.2 shows a detail of the eddy current

brake itself. Appendix A lists a bill of material for the Computer Controlled Eddy Current

Brake Bicycle Trainer. This chapter will start with an overview of how to set up the physical

system. This will include electrical schematics for the eddy current brake. The next section

will cover the programming and wiring of the two controlling MCUs.

3.1.1 Bicycle Trainer and Bicycle

First, there is the actual trainer which holds the rider’s bicycle. In this case, the trainer must

be of the type that holds the bicycle by the rear wheel skewer. This is because the goal is

minimal wear on the bicycle itself and instead of having the rear tire turn a resistance cylinder

by friction, the trainer will have electromagnets mounted near the wheel’s aluminum rim. The

trainer itself has no moving parts. Its only purpose is to position the aluminum rim of the

bicycle’s rear wheel as close as possible to the electromagnets. It also stabilizes the bicycle so

the rider is able to ride without the need to balance it upright. The trainer used for this project

is shown in Figure 3.3 before modifications were done to it.

The next step for the trainer is to mount brackets to hold the electromagnets. For this,

Unistrut Metal Framing System (Unistrut) [42] is used. There are angle brackets that are bolted

to the Unistrut on which the electromagnets are mounted. Figure 3.4 shows the Unistrut bolted

to the trainer. Figure 3.5 shows the angle brackets mounted to the Unistrut with electromagnets

mounted on either side of the wheel rim. It is worth noting that in the final configuration

wooden spacers were used between the angle bracket holding the magnets and the angle bracket

connected to the Unistrut as seen in Figure 3.6. These spacers were used to allow multiple sets

of electromagnets to be mounted.

30

Figure 3.1: Block diagram of Computer Controlled Eddy Current Brake Bicycle
Trainer

Figure 3.2: Design detail of eddy current brake

31

Figure 3.3: Trainer before electromagnets are mounted

Figure 3.4: Unistrut mounted to the trainer

The next modification needed was to the bicycle rear wheel. From early testing, not enough

eddy current could be generated in the wheel rim itself. This is because the electromagnets

used were not strong enough to induce an eddy current in the rim itself. Also the angle of the

rim made it difficult to get the electromagnets close to the spinning conductor material. The

rim angled in like a V so the mounted magnets were close to the rim near their upper edge,

but further away from the lower edge of the rim. There was little resistance generated with

32

Figure 3.5: Brackets for electromagnet mounts

Figure 3.6: Spacers for multiple magnet mounting

this configuration and since the electromagnets selected could not be modified, a modification

to the rear wheel itself was made.

A donut shape was water-jet cut from a sheet of aluminum that is 0.6 centimeters (cm)

thick with an inner radius of 27 cm and an outer radius of 34 cm. It was then bolted to the rear

bicycle wheel. The edge of the donut protruded far enough and was flat so the electromagnets

could be mounted very close to it. This configuration created enough eddy current to use for a

33

Figure 3.7: Aluminum donut mounted to rear wheel

controlled workout and can be seen in Figure 3.7. Another benefit of this modification is that

the added weight of the donut causes the wheel momentum to smooth out the spinning of the

rear wheel when resistance is applied.

3.1.2 Magnets, Power Supplies and Relay Control

The electromagnets need to be able to handle a low Voltage of Direct Current (VDC) but high

current. For this reason, electromagnets from the automobile industry were selected. Trailer

brake electromagnets run off of a 12-volt car battery and are made for high current. They

are readily available at most automobile part stores and an example of one can be seen in

Figure 3.8. Four of these electromagnets were mounted on the modified trainer.

34

Figure 3.8: Automobile industry trailer brake electromagnets used in the eddy
current brake

Now that the rear wheel had a thick, flat, aluminum donut attached and the electromagnets

were as close as possible to the surface of the donut, the power supplies needed to be attached.

For this application, two ELPAC Power Systems [33] power supplies, model ELV250-24, were

used. Each power supply runs off of 120 Voltage of Alternating Current (VAC) and outputs 24

VDC at 10.4 Amperes (A) to power one set of two electromagnets. Each set of electromagnets

were put in parallel to a power supply as in the schematic seen in Figure 3.9. This put 24 VDC

across each electromagnet, but allows the maximum current of 10.4 A through each one as well.

Figure 3.10 shows an example of one of the power supplies used. Appendix B has the wiring

diagram for this usage.

At this point, with the power supplies on, there was maximum current flowing through

all four electromagnets, which means there was a maximum resistance from the eddy current

brake. The next step was to be able to control the the resistance level of the eddy current

brake. The power supplies could not be varied, that is, they only output 12 VDC at 10.4 A.

In order to vary the electromagnetic flux, the electromagnets were controlled by Pulse Width

Modulation (PWM). This means the electromagnets will be turned on and off quickly at about

490 Hz. At 100% duty cycle the electromagnets was fully on and at 0% duty cycle they were

fully off. This control of the 24 VDC, 10.4 A power supplies output was accomplished using

two fast solid state relays.

35

Figure 3.9: Schematic showing electromagnets in parallel to power supply. There
are two of these setups for the Computer Controlled Eddy Current Brake Bicycle
Trainer.

Figure 3.10: ELPAC power supply

A Power-IO [39] MOSFET relay, model HDD-1V25E, as seen in Figure 3.11 was used to

control each power supply output to the electromagnets. The relays are rated for 100 VDC

at 25 A with the control side using anywhere from 3 VDC to 32 VDC. Figure 3.12 shows a

schematic of the how the MOSFET relay is added to the system. The flyback diode that is

added across the load which in this case is the electromagnets is also shown in this figure. The

flyback diode protects the circuit from the voltage spike that is generated by the collapsing

magnetic field when the relay switch is opened [39].

3.2 MCU Controllers

Two MCU controllers were used for the Computer Controlled Eddy Current Brake Bicycle

Trainer. One controller was specifically for controlling the PWM to the MOSFET relays. The

36

Figure 3.11: Power ID MOSFET relay

Figure 3.12: Schematic showing MOSFET relay connections (Source: [39])

second controller was used as a ANT+ application to receive feedback from the bicycle’s power

meter and to implement a computerized workout for the ride. The second controller, or trainer

controller, decided if the eddy brake current needed to be increased or decreased while the first

controller, or relay controller, was solely responsible for the PWM output to the relays.

37

3.2.1 Arduino Relay Controller

An Arduino Uno platform was used to control the MOSFET relays. The Arduino program

simply monitored two digital lines from the trainer controller. One line indicated that the PWM

output value to the MOSFET relays was to be lowered or the duty cycle lowered while the other

line indicated the PWM value was to be raised or the duty cycle increased. If neither line had

a signal, then no change was done and the PWM output to the relays remained unchanged.

The coding for this Arduino application was done on the Arduino IDE. The Arduino IDE

information screen and the code for this application can be seen in Appendix C.

Once the Arduino Uno was programmed, two output pins were connected to the relay

control pins; pins 3 and 4 in Figure 3.12. The board itself was powered off the Universial Serial

Bus (USB) port. The USB also was able to be used with the Arduino IDE Serial Monitor in

order to see program informational output.

3.2.2 nRF51 Trainer Controller

The Nordic Semiconductor nRF51 development kit, as seen in Figure 3.13, was selected to be

the trainer controller [35]. This development kit combines two Central Processing Unit (CPU)s

and a 2.4 GHz radio for implementing the wireless communications. One CPU and the RF radio

are packaged together on the board in a SoC, nRF51422, which is used to facilitate wireless

ANT protocol and application development. There is also a general purpose advanced Reduced

Instruction Set Computer (RISC) CPU, Atmel AT91SAM3 on the board, which is used as an

interface MCU for programming, debugging, and updating the firmware on the nRF51422. This

complete system is a SoM.

The IDE that was used to develop the application for the nRF51 is a third party application

called Keil µVision [34] with the ARM MDK-Lite toolchain. Segger J-Link [40] was used to flash

the application to the SoM board. This software also aided in debugging the application. This

setup allowed for seamless development, debugging and flashing of the Computer Controlled

Eddy Current Brake Bicycle Trainer code.

Other resources that were helpful in programming and debugging were nRFGo Studio which

was downloaded from [35]. This allowed flashing of the latest Segger firmware to the nRF51

board CPU, AT91SAM3. ANTware II, download from [6], allowed direct configuration of the

ANT radio and the ability to send and receive ANT and ANT+ packets. Also helpful in

38

debugging and outputting program information was the telnet client, PuTTY [36]. Set up and

information screens for these software packages can be seen in Appendix D.

Once the programming IDE was set up, the next step was to select the Software Develop-

ment Kit (SDK) with the correct softdevice for the nRF51422 SoC. The softdevice implements

the desired protocol which in this case is ANT and provides an Application Programming In-

terface (API) for application development. Based on the SoC nRF51422 and the protocol,

ANT, softdevice S210 was selected [38]. The only SDK that supports softdevice S210 and

SoC nRF51422 is SDK10 [35]. Figure 3.14 shows what the softdevice implements on the SoC

nRF51422, and Figure 3.15 shows a block diagram of where the softdevice fits in for applica-

tion development. In Figure 3.15, HW stands for hardware and ARM Cortex Microcontroller

Software Interface Standard (CMSIS) is the hardware abstraction layer for the ARM CPU on

SoC, nRF51422 [37].

Figure 3.13: Nordic Semiconductor nRF51 development kit

The nRF51 development kit not only controlled the Arduino relay controller, but also re-

ceived power feedback from the bicycle power meter. On the bicycle being used, there was a

Stages Cycling power meter [41], model SPM-1, as seen in Figure 3.16, attached to the crank

of the bicycle. This power meter detected crank deflection from the rider’s pedal stroke. The

power meter then transmitted the rider’s detected power via ANT+. Since the information was

flowing from the power meter, it was considered the master node and the SoC, nRF51422, was

the slave node.

39

Figure 3.14: Block diagram of softdevice protocol for SoC nRF51422 (Source: [38])

Figure 3.15: Block diagram of SoC application with softdevice (Source: [38])

Included with the SDK10 was an ANT+ example of a bicycle power meter receiver or slave

node. See Appendix E for the directory where this software was found. This code was used for

the basis of the Computer Controlled Eddy Current Brake Bicycle Trainer. Using this receiver

40

Figure 3.16: Bicycle crank with Stages Cycling power meter attached

code and the PuTTY serial terminal, an example of the Stages power meter output can be seen

in Listing 3.1.

Listing 3.1: Stages power meter data

1 B−PWR rx page : 16
2 event count : 206
3 pedal power : −−
4 accumulated power : 22363 W
5 i n s tantaneous power : 59 W
6 i n s tantaneous cadence : 59 rpm
7
8 B−PWR rx page : 18
9 Crank :

10 event count : 207
11 t i c k : 207
12 per iod : 30 .115 s
13 accumulated torque : 370 .0Nm
14 i n s tantaneous cadence : 59 rpm
15
16 B−PWR rx page : 16
17 event count : 208
18 pedal power : −−
19 accumulated power : 22475 W
20 i n s tantaneous power : 57 W
21 i n s tantaneous cadence : 59 rpm
22
23 B−PWR rx page : 18
24 Crank :
25 event count : 208
26 t i c k : 208
27 per iod : 31 .125 s
28 accumulated torque : 379 .3Nm
29 i n s tantaneous cadence : 59 rpm

The ANT+ bicycle power profile data page 16 has the instantaneous bicycle power received

via ANT+ [8]. This data page also included an event counter. The example code was changed

so that when the event counter changed, the new instantaneous bicycle power was compared

to the current load power from the computerized workout.

If the rider’s power differed from the workout load power by more than a 10 Watt (W)

hysteresis, then a digital General Purpose Input Output (GPIO) pin on the development kit

41

was raised. Pin P0.07 was used to signal an increase in power to the eddy current brake and

pin P0.30 was used to signal a decrease in power to the eddy current brake. These lines were

monitored by the Arduino relay controller which in turn changed the PWM, either increasing or

decreasing the duty cycle, to the power relays. The Arduino only monitored the rising edge of

the signals from the nRF51 board. When the rising edge was detected, the PWM was increased

or decreased by 5 depending on which digital pin was active. The range of the Arduino PWM

output was kept between 0 and 255.

The Arduino relay control board ran off of 5 VDC while the nRF51 board ran off of 3 VDC.

Since the signal lines needed to be a two different levels, a level converter was used to connect

the two boards. Figure 3.17 shows a picture of the level converter while Figure 3.18 shows the

nRF51 board and the Arduino connected together via the level converter.

Figure 3.17: Level converter to convert signal from 3 VDC to 5 VDC

Figure 3.18 shows the yellow and black wires going off out of the picture. These are the

wires that went to the MOSFET relays. The two boards were each powered through their

respective USB connections, which were also used for serial output from the programs.

The computerized workout was implemented through a repeat interrupt timer in the nRF51

board API. Appendix E has the code for the set up of the timer and the interrupt handler

which implements the computerized workout. At each interrupt, the output lines, P0.07 and

P0.30 were set low again. This was to allow a new rising edge signal for the Arduino to detect

if, at the next page 16 feedback event, the load power needed to be adjusted. Code examples

42

Figure 3.18: Arduino and nRF51 boards connected via a level converter

of the GPIO output pins setup, page 16 instantaneous power comparison, and the controller

header file that was added to the project are given in Appendix E as well. Since part of the

code in Appendix E is licensed, a copy of the license is given in Appendix F.

43

Chapter 4

Experimental Validation

The Computer Controlled Eddy Current Brake Bicycle Trainer was tested for proof of concept.

As a review, the goal was to have the computer control the braking power of the eddy current

brake based on a computerized workout. There needed to be enough braking power generated

in order for the rider to feel the difference in resistance as the workout cycled through the

different power levels.

The set-up of the power supplies and relays can be seen in Figure 4.1. The overall set-up

with the bicycle in the trainer can be seen in Figure 4.2.

Figure 4.1: Set-up for the power supplies and relays to the electromagnets.

44

Figure 4.2: Set-up of the Computer Controlled Eddy Current Brake Bicycle
Trainer.

4.1 Experimental Set-up

The computerized workout was called Rolling Hills and consisted of 20-second intervals that

got progressively more difficult for 80 seconds. After 80 seconds, there were 20 seconds of no

resistance to mimic riding down the hill and then the ”hill” started over.

The experiment used a speedometer that was not part of the Computer Controlled Eddy

Current Brake Bicycle Trainer, which was mounted on the bicycle. In addition, two amp meters

were used to measure the current to each set of electromagnets. The goal was to ride a steady

speed of 30 miles per hour (mph) as the workout resistance changed. The Stages power meter

provided feedback to the trainer controller, but it was also used in a separate visual display to

determine the rider’s power output. Once the power changed, a few seconds were given to the

rider to adjust to the new load and to make sure the speed was still at 30 mph. Once a steady

speed was achieved, the current to the two sets of electromagnets was recorded, as were the

45

PWM values sent to the two relays. In addition to that data, the power from the Stages power

meter was recorded.

4.2 Experimental Results

Table 4.1 shows the values that were collected during the test ride. The PWM column is the

value that was sent to each relay and represents a specific duty cycle.

Table 4.1: Results of ride test on Computer Controlled Eddy Current Brake Bicycle
Trainer

Speed
(mph)

PWM Magnet Set 1
(A)

Magnet Set 2
(A)

Rider power
(W)

Workout
power (W)

30 64 0.7 0.8 40 50

30 127 2.7 3.1 120 125

30 191 5.8 6.8 217 225

30 255 10.1 10.0 270 300

This table shows that the proof of concept worked. Each rider power reading is within the

10 W hysteresis of the workout power except for the final workout power of 300 where it is 30

W off of the rider’s power. It is worth noting that 270 W is the maximum power output of

this set-up. The last row of Table 4.1 shows a PWM value of 255 for both relays, which means

the duty cycle is 100% and the maximum current is going through all electromagnets. This is

enough power for a proof of concept, but not for a commercial trainer.

46

Chapter 5

Conclusion and Future Work

This thesis was the proof of concept for a computerized indoor bicycle trainer that combined

minimal set up for and minimal wear and tear on a bicycle. It made use of a power meter

connected sensor to provide feedback to the trainer controller, which in turn signaled whether

to increase or decrease resistance through the use of an eddy current brake affecting the rear

wheel of the bicycle. The proof of concept worked; however, there are many improvements and

more developments that can be made.

The proof of concept eddy current brake only produced a maximum of 270 W. This is

far below the standard for indoor eddy current trainers which can produce up to 2000 W of

resistance. In this thesis, an aluminum donut was added to the wheel to increase the conductor

material for eddy currents to develop. Developing more powerful electromagnets might be a

method to do away with the need for the extra donut conductor. This can be done with more

current through the electromagnets or by using electromagnets with an extremely high winding

count. It is possible to develop powerful eddy currents in the wheel rim, as seen with the STAC

Zero trainer, which used rare earth permanent magnets.

If the aluminum donut is still to be used in the future, quick connect clips can be made so

as to not have the need to bolt it to the rim as this proof of concept did.

Finally, a communications link to a web workout can be developed in the future. This

proof of concept design used a preprogrammmed workout in the trainer controller which is

difficult to change, as it requires programming and flashing the nRF51 development kit. If the

trainer controller can be changed to receive a workout signal and then compare that to the

power feedback in order to signal the relay control, then computerized workouts from the web

or another computer can be used.

47

Bibliography

[1] R. Van der Plas, “The Bicycle Racing Guide,” San Francisco, CA: Bicycle Books Inc, 1986.

[2] R. Sleamaker, “Serious Training for Serious Athletes,” Champaign, IL: Leisure Press, 1989.

[3] Sports Technology and Athletics Consulting, “STAC Zero User Manual,” Rev 1.4, August

30, 2017.

[4] STAC Zero website: http://www.staczero.com/.

[5] S. Gharghan, R. Nordin, M. Ismail, “A Survey on Energy Efficient Wireless Sensor Networks

for Bicycle Performance Monitoring Application,” Journal of Sensors, vol. 2014.

[6] ANT Alliance website: http://www.thisisant.com

[7] “ANT Channel Search,” rev 3.0, thisisant.com, Dynastream Innovations Inc., 2016.

[8] “ANT+ Device Profile Bicycle Power,” rev. 5.0, thisisant.com, Dynastream Innovation Inc.,

2007-2016.

[9] “ANT Frequency Agility,” rev 2.2, thisisant.com, Dynastream Innovations Inc., 2011.

[10] “ANT Message Protocol and Usage,” rev 5.1, thisisant.com, Dynastream Innovations Inc.,

2014.

[11] P. Horowitz, W. Hill, “The Art of Electronics,” 2nd ed., New York, NY: Cambridge Uni-

versity Press, 1989.

[12] J. S. Lee, Y. W. Su and C. C. Shen, “A Comparative Study of Wireless Protocols: Blue-

tooth, UWB, ZigBee, and Wi-Fi,” IECON 2007 - 33rd Annual Conference of the IEEE

Industrial Electronics Society, Taipei, 2007, pp. 46-51.

[13] C. Stoica, L. Melcescu, E. Lefter and L. M. Constantinescu, “Computation of the charac-

teristics eddy current electromagnetic brake for a bicycle, by the finite element method 3D,”

2010 12th International Conference on Optimization of Electrical and Electronic Equipment,

Basov, 2010, pp. 436-440.

[14] S. K. Gharghan, R. Nordin and M. Ismail, “Design Consideration of an Energy Efficient

Wireless Sensor Network for High Performance Track Cycling,” 2014 International Confer-

ence on Information Science & Applications (ICISA), Seoul, 2014, pp. 1-5.

http://www.staczero.com/
http://www.thisisant.com

48

[15] S. Gasparrini, E. Gambi and S. Spinsante, “Evaluation and possible improvements of the

ANT protocol for home heart monitoring applications,” Measurements and Networking

Proceedings (M&N), 2013 IEEE International Workshop on, Naples, 2013, pp. 214-219.

[16] S. Gerez, “Implementation of Digitial Signal Processing: Some Background on GFSK

Modulation,” lecture notes ver 5, University of Twente, Netherlands, March 9, 2016.

[17] J. T. Adams, “An introduction to IEEE STD 802.15.4,” 2006 IEEE Aerospace Conference,

Big Sky, MT, 2006, pp. 8.

[18] A. Zaher, T. Aasebo, J. Noll, “Near Field Communication, Bluetooth, ZigBee, and

ANT+,” lecture notes, Department of Technology Systems at the University of Oslo, Nor-

way, Sept. 9, 2013.

[19] “nRF51422 Multiprotocol ANT/Bluetooth low energy System on Chip Product Specifica-

tion,” ver. 3.2, Nordic Semiconductor, 2014.

[20] C. Gomez, J. Oller, J. Paradells, “Overview and Evaluation of Bluetooth Low Energy: An

Emerging Low-Power Wireless Technology,” Sensors, vol 12, issue 9, 2012, pp. 11734-11753.

[21] P. Tipler, “Physics,” vol 2, 2th ed., New York, NY: Worth Publishers, Inc., Jul 1982.

[22] A. Dementyev, S. Hodges, S. Taylor and J. Smith, “Power consumption analysis of Blue-

tooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario,” 2013 IEEE

International Wireless Symposium (IWS), Beijing, 2013, pp. 1-4.

[23] S. Khssibi, H. Idoudi, A. Van Den Bossche, T. Val, and L. A. Saidane, “Presentation and

analysis of a new technology for low power wireless sensor network,” International Journal

of Digital Information and Wireless Communications, vol. 3, no. 1, pp. 7586, 2013.

[24] Product review website: https://www.dcrainmaker.com/2016/06/stac-zero-trainer.html

[25] M. Naeve, “IEEE 802.15.4 MAC Overview,” Eaton Corporation, May 10, 2004.

[26] “IEEE Standard for Low-Rate Wireless Networks,” in IEEE Std 802.15.4-2015 (Revision

of IEEE Std 802.15.4-2011) , vol., no., pp.1-709, April 22, 2016.

[27] C. Underhill, “Solenoids Electromagnets and Electromagnetic Windings,” 3rd ed., New

York, NY: D. Van Nostrand Company, 1918.

https://www.dcrainmaker.com/2016/06/stac-zero-trainer.html

49

[28] M. Ericsson, ”Transmission, Storage, and Visualization of Data with ANT+,” M.S. thesis,

Technical University of Linkoping, Sweden, 2015.

[29] F. Sears, M. Zemansky, H. Young, “University Physics,” 6th ed., Boston, MA: Addison-

Wesley Publishing Comp. Inc., 1984.

[30] L. Frenzel, “What’s the Difference Between IEEE 802.15.4 and ZigBee Wireless,” Elec-

tronic Design, Mar. 2013.

[31] H. Fahmy, “Wireless Sensor Networks Concepts, Applications, Experimentation and Anal-

ysis”, Springer, Singapore, 2016.

[32] Arduino website: https://www.arduino.cc/en/Guide/HomePage

[33] ELPAC Power Systems owned by Inventus Power website: https://inventuspower.com/

[34] Keil µVision website: http://www.keil.com/

[35] Nordic Semiconductor website: https://www.nordicsemi.com/

[36] PuTTY telenet client website: http://www.putty.org/

[37] “nRF51 Series Reference Manual”, rev 3.0.1, Nordic Semiconductor, Dec. 2016.

[38] “S210 nRF51422 ANT SoftDevice, SoftDevice Specification,” ver 3.0, Nordic Semiconduc-

tor, Jul. 2015.

[39] Power-IO website: http://www.power-io.com/power-io.htm

[40] Segger Microcontroller website: https://www.segger.com

[41] Stages Cycling website: https://stagescycling.com/us/

[42] Unistrut Metal Framing System website: http://www.unistrut.us/

https://www.arduino.cc/en/Guide/HomePage
https://inventuspower.com/
http://www.keil.com/
https://www.nordicsemi.com/
http://www.putty.org/
http://www.power-io.com/power-io.htm
https://www.segger.com
https://stagescycling.com/us/
http://www.unistrut.us/

50

Appendix A

Bill of Materials

Below is a bill of materials list for Computer Controlled Eddy Current Brake Bicycle Trainer.

Please note that simple items such as fasteners and wiring have not been listed.

1. Bicycle trainer that holds bicycle by rear wheel skewer with friction cylinder removed

2. 4 trailer brake electromagnets

3. Unistrut and bracket hardware to hold electromagnets

4. 2 Power supplies, ELPAC ELV250, 24 VDC, 10.4 A

5. 2 power relays, Power-IO HDD-1V25E, 100 VDC, 25 A

6. 2 flyback diodes

7. Level Converter

8. Arduino Uno

9. nRF51 Development Kit with SoC nRF51422

10. Bicycle with Stages Cycling crank power meter

11. Aluminum donut, 0.6 cm thick, inner radius of 27 cm, outer radius of 34 cm

51

Appendix B

ELPAC Power Supply Wiring

Figure B.1 shows how to wire the ELPAC ELV250 power supply for the Computer Controlled

Eddy Current Brake Bicycle Trainer.

Figure B.1: Wiring for the ELPAC ELV250 power supply (Source: [39])

52

Appendix C

Arduino Relay Control

C.1 IDE

The Arduino IDE can be downloaded from the Arduino website [32]. The IDE information is

shown in Figure C.1.

Figure C.1: Arduino IDE information

C.2 Arduino Code

This program code monitors two digital input lines, and, based on their conditions, modifies

two PWM output lines that control the MOSFET relays.

1

2 // input p ins
3 #define UP PIN 7 // s i g n a l on t h i s pin means inc rea se PWM (

nRF P0 .07)
4 #define DOWN PIN 2 // s i g n a l on t h i s pin means decrease PWM (

nRF P0 .30)

53

5 // output p ins
6 #define OUT PIN1 9 // PWM output to sw i t ch 1
7 #define OUT PIN2 13 // PWM output to sw i t ch 2
8

9 // input pin s t a t e s
10 int upState = 0 ; // current up pin s t a t e
11 int l a s tUpState = 0 ; // prev ious up pin s t a t e
12 int downState = 0 ; // current down pin s t a t e
13 int lastDownState = 0 ; // prev ious down pin s t a t e
14

15 // output va l u e s f o r PWM
16 int value1PWM = 0 ; // sw i t ch 1 PWM
17 int value2PWM = 0 ; // sw i t ch 2 PWM
18

19 // func t i on to s e r i a l wr i t e f o r debugg ing
20 void w r i t e v a l u e (int val1 , int va l2) ;
21

22 void setup ()
23 {
24 // s e r i a l output f o r debugg ing
25 S e r i a l . begin (9600) ;
26 S e r i a l . p r i n t l n (”BEGIN! ”) ;
27

28 // pin con f i g
29 pinMode (OUT PIN1 , OUTPUT) ;
30 pinMode (OUT PIN2 , OUTPUT) ;
31 pinMode (UP PIN , INPUT) ; // r e gu l a r low un l e s s s e t h i
32 pinMode (DOWN PIN, INPUT) ;
33

34 // s e t s t a r t PWM' s
35 analogWrite (OUT PIN1 , value1PWM) ;
36 analogWrite (OUT PIN2 , value2PWM) ;
37

38 w r i t e v a l u e (value1PWM , value2PWM) ;
39 }
40

41 void w r i t e v a l u e (int val1 , int va l2)
42 {
43 S e r i a l . p r i n t (”PWM 1 output = ”) ;
44 S e r i a l . p r i n t l n (val1 , DEC) ;
45 S e r i a l . p r i n t (”PWM 2 output = ”) ;
46 S e r i a l . p r i n t l n (val2 , DEC) ;
47 }
48

49 void loop ()
50 {
51 // l e t ' s l ook at the input p ins
52 upState = d ig i ta lRead (UP PIN) ;
53 downState = d ig i ta lRead (DOWN PIN) ;
54

55 // check f o r s t a t e changes
56 i f (upState != lastUpState)
57 {
58 l a s tUpState = upState ;
59 i f (upState == HIGH)
60 {
61 value1PWM += 5 ;
62 i f (value1PWM > 255)

54

63 {
64 value1PWM = 255 ;
65 }
66 }
67 }
68 i f (downState != lastDownState)
69 {
70 lastDownState = downState ;
71 i f (downState == HIGH)
72 {
73 value1PWM −= 5 ;
74 i f (value1PWM < 0)
75 {
76 value1PWM = 0 ;
77 }
78 }
79 }
80

81 // wr i t e new va lue s to sw i t ch e s
82 value2PWM = value1PWM ; // f o r now s e t both sw i t che s to the

same va lue
83 analogWrite (OUT PIN1 , value1PWM) ;
84 analogWrite (OUT PIN2 , value2PWM) ;
85 w r i t e v a l u e (value1PWM , value2PWM) ;
86 }

55

Appendix D

nRF51 Programming Software

The Keil µVision MDK-Lite IDE can be downloaded from the Keil µVision website [34]. This

download installs the ARM toolchain as well as the IDE. Once the IDE is installed, the device

to be programmed needs to be selected.

Figure D.1 shows the set up information for Keil µVision IDE.

Figure D.1: Set up information for Keil µVision

Figure D.2 shows the device selection for the nRF51 board. In this case, the Nordic Semi-

conductor SoC nRF51422 is being selected.

Figure D.3 shows the application ANTware II. This software allows maual configuration of

the ANT radios. It also allows transmission and reception of the ANT and ANT+ packets.

Figure D.4 shows the nRFgo application. This application allowed the flashing of the

softdevice to run the ANT protocol to the nRF51422 SoC.

Figure D.5 shows the communications serial line configuration for communicating with the

nRF51 development kit via PuTTY.

56

Figure D.2: Device selection for project from Keil µVision

Figure D.3: ANTware II software example

Figure D.4: nRFgo software example

57

Figure D.5: PuTTY serial communication configuration for the nRF51 board

58

Appendix E

nRF51 Code

E.1 Workout Interrupt

This code uses the SDK10 interrupt API to create a computerized workout. This section of

code is located before the start of the main function.

1 // crea t e app t imer f o r workout updates
2 APP TIMER DEF(wo t imer id) ;
3

4 int wattArray [5] = {50 , 125 , 225 , 300 , 0} ; // −k l p r o l l i n g h i l l
wat t l e v e l

5

6 // t imeout hand ler f o r repea t t imer
7 stat ic void t imer a hand l e r (void * p context)
8 {
9 // Ro l l i n g H i l l s

10 // we s e t workout Watts here
11 // 4 x 20 seconds i n t e r v a l s
12 // wat t s s t a r t a t 50 and increa se wi th each i n t e r v a l

(50 , 125 , 225 , 300)
13 // a f t e r 4 x 20 seconds the r e i s f i n a l 20 seconds wi th 0

W (downh i l l)
14 // repea t
15
16 workoutCnt++;
17 i f (workoutCnt > 100)
18 {
19 //we ' re at 20 seconds
20 workoutCnt = 0 ;
21 requestedLoad = wattArray [workoutIndex] +

i n t e n s i t y O f f s e t ;
22 workoutIndex++;
23 i f (workoutIndex > 4)
24 {
25 // repea t 80 second at d i f f e r e n t l e v e l s f o r

r o l l i n g h i l l s
26 // then 20 seconds f o r the downh i l l
27 workoutIndex = 0 ;
28 }
29 }
30 // r e s e t a l l ou tpu t s
31 o u t p u t o f f (LOAD TOO HI) ;
32 o u t p u t o f f (LOAD TOO LOW) ;
33 }
34
35

36 // Create t imers
37 stat ic void c r ea t e wo t imer (void)
38 {
39 u i n t 3 2 t e r r c o d e ;
40 // crea t e t imers
41 e r r c o d e = app t imer c r ea t e (&wo t imer id ,

APP TIMER MODE REPEATED, t imer a hand l e r) ;
42 APP ERROR CHECK(e r r c o d e) ;

59

43 }

60

E.2 Start Workout Interrupt

This code is located inside of the main function before the program loop starts. It begins the

interrupt timer for the workout routine.

1 // beg in workout
2 c r ea t e wo t imer () ;
3 workoutIndex = 0 ;
4 workoutCnt = 0 ;
5 e r r c o d e = a p p t i m e r s t a r t (wo t imer id , APP TIMER TICKS(200 ,

APP TIMER PRESCALER) , NULL) ;
6 APP ERROR CHECK(e r r c o d e) ;

61

E.3 Trainer Control Infomation

This file, trainer control.h, defines several globals used to determine and control output to the

Arduino relay control and should be included in the file with the main function as well as the

file with the ANT+ page 16 functions.

1 /* t r a i n e r c o n t r o l . h
2 *

3 * Globa l s used to determine and con t r o l output to
4 * the Arduino
5 */
6

7 /* p lu s or minus Watt d i f f e r e n c e a l l owed in f eedback (0−240) */
8 #define LOAD HYSTERESIS 10
9 #define LOAD TOO LOW 7 // Arduino pin 7

10 #define LOAD TOO HI 30 // Arduino pin 2
11

12 stat ic int requestedLoad = 50 ; // watt load t ha t the workout i s
r e qu i r i n g

13 stat ic int i n t e n s i t y O f f s e t = 0 ; // user can r a i s e or lower the
t o t a l i n t e n s i t y by 50 Watts

14 // s t a t i c i n t
15 stat ic u i n t 8 t workoutIndex = 0 ; // s e l e c t s watt l e v e l from

array
16 stat ic int workoutCnt = 0 ; // i n t e r r u p t count used to es t imate

20 seconds

E.4 Output Pins

This code shows the functions used to set up and control the digital GPIO pins which are used

to communicate with the Arduino relay control. This code should go before the main function.

1 void output setup (u i n t 3 2 t pin)
2 {
3 n r f g p i o c f g o u t p u t (pin) ;
4 }
5

6 void output on (u i n t 3 2 t pin)
7 {
8 n r f g p i o p i n s e t (pin) ;
9 }

10

11 void o u t p u t o f f (u i n t 3 2 t pin)
12 {
13 n r f g p i o p i n c l e a r (pin) ;
14 }

62

E.5 Power Compare

This code is part of the Nordic Semiconductor SDK10 [35] example code for ANT+ bicycle

power. It has been edited to compare the received instantaneous power to the computerized

workout power. If the instantaneous power differs by more than plus or minus 10W of the

computerized workout power, then the GPIO pins signal to the Arduino relay control to either

raise or lower the PWM to the MOSFET relays.

The example code was found in the following directory:

Listing E.1: Directory for ANT+ example code

1 C:\Program F i l e s \Nordic Semiconductor\nRF51 SDK10\ examples\ant\
ant p lu s \ant bpwr\bpwr rx

Please see Appendix F for ANT+ licensing information.

1 /* Copyright (c) 2015 Nordic Semiconductor . A l l Righ t s Reserved .
2 *

3 * The in format ion conta ined here in i s proper ty o f Nordic
Semiconductor ASA.

4 * Terms and cond i t i on s o f usage are de s c r i b ed in d e t a i l in
NORDIC

5 * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
6 *

7 * Licensees are granted f ree , non−t r a n s f e r a b l e use o f the
in format ion . NO

8 * WARRANTY of ANY KIND i s prov ided . This heading must NOT be
removed from

9 * the f i l e .
10 *

11 */
12
13 #include ” ant bpwr page 16 . h”
14 #include ” ant bpwr page logger . h”
15 #include ” a p p u t i l . h”
16 #include ”nordic common . h”
17

18 #include ” t r a i n e r c o n t r o l . h” // −k l p
19

20 extern void output on (u i n t 3 2 t pin) ; // −k l p
21 extern void o u t p u t o f f (u i n t 3 2 t pin) ; // −k l p
22

23 /**@br ie f b i c y c l e power page 16 data l a you t s t r u c t u r e . */
24 typedef struct
25 {
26 u i n t 8 t update event count ;
27 u i n t 8 t pedal power ;
28 u i n t 8 t r e s e rved ;
29 u i n t 8 t accumulated power [2] ;
30 u i n t 8 t instantaneous power [2] ;
31 } ant bpwr page16 data layout t ;
32

33 // used to make sure event counts are changing , t h i s means we ' re
g e t t i n g r e a l time data −k l p

34 stat ic u i n t 8 t lastEventCount16 = 0 ;
35 stat ic bool f i r s tPage16Event = f a l s e ;
36

63

37 stat ic void page16 data log (ant bpwr page16 data t const *

p page data)
38 {
39 // r e s e t ou tpu t s −k l p
40 o u t p u t o f f (LOAD TOO HI) ;
41 o u t p u t o f f (LOAD TOO LOW) ;
42

43 // func t i on ed i t e d to s i g n a l arduino −k l p
44 u i n t 8 t l o a d D i f f = 0 ;
45 i f (lastEventCount16 != p page data−>update event count)
46 {
47 i f (lastEventCount16 != 0)
48 {
49 // we are l oo k in g f o r the f i r s t t rue update to

the event count ;
50 // t h i s p reven t s l o o k in g at the f i r s t event

count as v a l i d
51 f i r s tPage16Event = true ;
52 }
53 lastEventCount16 = p page data−>update event count ;
54

55 LOG PAGE16(” event count : %u\n\ r
” , p page data−>update event count) ;

56

57 i f (p page data−>pedal power . byte != 0xFF)
58 {
59 LOG PAGE16(” pedal power :

%u %%\n\ r ” ,
60 p page data−>

pedal power . i tems .
d i s t r i b u t i o n) ;

61 }
62 else
63 {
64 LOG PAGE16(” pedal power :

−−\n\ r ”) ;
65 }
66

67 LOG PAGE16(” accumulated power : %u W\n
\ r ” , p page data−>accumulated power) ;

68 LOG PAGE16(” ins tantaneous power : %u W\n
\ r ” , p page data−>ins tantaneous power) ;

69

70 i f (f i r s tPage16Event == true)
71 { // We don ' t want to s e t f e edback un l e s s we ge t a

t rue event change .
72 i f (p page data−>ins tantaneous power <

requestedLoad)
73 {
74 l o a d D i f f = requestedLoad − p page data−>

ins tantaneous power ;
75 i f (l o a d D i f f > LOAD HYSTERESIS)
76 {
77 // load i s too low
78 o u t p u t o f f (LOAD TOO HI) ;
79 output on (LOAD TOO LOW) ;
80 }
81 }

64

82 else
83 {
84 i f (p page data−>ins tantaneous power >

requestedLoad)
85 {
86 l o a d D i f f = p page data−>

ins tantaneous power − requestedLoad ;
87 i f (l o a d D i f f > LOAD HYSTERESIS)
88 {
89 // load i s too h igh
90 o u t p u t o f f (LOAD TOO LOW) ;
91 output on (LOAD TOO HI) ;
92 }
93 }
94 }
95 }
96 }
97 }
98
99

100 void ant bpwr page 16 encode (u i n t 8 t *

p page bu f f e r ,
101 ant bpwr page16 data t const *

p page data)
102 {
103 ant bpwr page16 data layout t * p outcoming data =
104 (ant bpwr page16 data layout t *) p p a g e b u f f e r ;
105
106 p outcoming data−>update event count = p page data−>

update event count ;
107 p outcoming data−>pedal power = p page data−>

pedal power . byte ;
108

109 UNUSED PARAMETER(uint16 encode (p page data−>
accumulated power ,

110 p outcoming data−>
accumulated power)) ;

111 UNUSED PARAMETER(uint16 encode (p page data−>
instantaneous power ,

112 p outcoming data−>
ins tantaneous power)) ;

113

114 page16 data log (p page data) ;
115 }
116
117

118 void ant bpwr page 16 decode (u i n t 8 t const *

p page bu f f e r ,
119 ant bpwr page16 data t *

p page data)
120 {
121 ant bpwr page16 data layout t const * p incoming data =
122 (ant bpwr page16 data layout t *) p p a g e b u f f e r ;
123
124 p page data−>update event count = p incoming data−>

update event count ;
125 p page data−>pedal power . byte = p incoming data−>

pedal power ;

65

126 p page data−>accumulated power = uint16 decode (
p incoming data−>accumulated power) ;

127 p page data−>ins tantaneous power = uint16 decode (
p incoming data−>ins tantaneous power) ;

128

129 page16 data log (p page data) ;
130 }

66

Appendix F

ANT+ License

This software is subject to the ANT+ Shared Source License www.thisisant.com/swlicenses

Copyright (c) Dynastream Innovations, Inc. 2015 All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-

mitted provided that the following conditions are met:

1) Redistributions of source code must retain the above copyright notice,this list of condi-

tions and the following disclaimer.

2) Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution.

3) Neither the name of Dynastream nor the names of its contributors may be used to endorse

or promote products derived from this software without specific prior written permission.

The following actions are prohibited:

1) Redistribution of source code containing the ANT+ Network Key. The ANT+ Network

Key is available to ANT+ Adopters. Please refer to http://thisisant.com to become an ANT+

Adopter and access the key.

2) Reverse engineering, decompilation, and/or disassembly of software provided in binary

form under this license.

	Authorization to Submit Thesis
	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Exercise Technologies
	Motivation
	Contribution
	Thesis Outline

	Background
	Application Overview
	ANT Overview
	Radios
	Nodes
	Channels
	Networks
	Messages and ANT+ Profiles

	Eddy Current
	Eddy Current Brake
	Crank Power

	System Architecture
	System Hardware Configuration
	Bicycle Trainer and Bicycle
	Magnets, Power Supplies and Relay Control

	MCU Controllers
	Arduino Relay Controller
	nRF51 Trainer Controller

	Experimental Validation
	Experimental Set-up
	Experimental Results

	Conclusion and Future Work
	Bibliography
	Appendix
	Bill of Materials
	ELPAC Power Supply Wiring
	Arduino Relay Control
	IDE
	Arduino Code

	nRF51 Programming Software
	nRF51 Code
	Workout Interrupt
	Start Workout Interrupt
	Trainer Control Infomation
	Output Pins
	Power Compare

	ANT+ License

