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Abstract 

Unintentional injury remains a significant burden on society and has attracted a broad range 

of research. Previous injury research has identified a host of risk factors in various injury 

domains such as inhibitory control, age, cognitive development, and distraction for 

pedestrian injury. However, much is still left to explore despite extensive work to understand 

injury etiology. Human error research provides a robust framework to transcend domain-

specific prediction by applying performance-shaping factors. In two studies, I examined the 

impact of several performance-shaping factors on an injury-relevant cross-contextual 

behavior, multiple object tracking. Specifically, each study examines the impact of task 

complexity, time pressure, sensory limitations, and nonverbal working memory span on 

multiple object tracking. The first study examined the impact of performance-shaping factors 

in an abstract dot tracking task. The second study examined the impact of performance-

shaping factors in a pedestrian street-crossing scenario. In both studies, increases in time 

pressure and sensory limitations were associated with degraded performance and a higher 

task failure rate. Lower nonverbal working memory spans were also associated with poorer 

performance and higher failure rates in both studies. In the abstract dot tracking task, an 

increase in task complexity led to a reduction in performance and increased failure rate, but 

the relationship was the opposite in the pedestrian scenario. Implications for injury 

prevention and etiology research are discussed along with future directions. 
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Chapter 1 : Introduction 

 Unintentional injury places a significant burden on society. In the United States, 

unintentional injury is the leading cause of death for individuals between the ages of 1 and 44 

and the third leading cause of death across the lifespan (WISQARS, 2021). An additional 28 

million non-fatal unintentional injuries were also reported in 2017 (WISQARS, 2021). The 

cost of unintentional injury is also high, with an estimated $396 billion being spent on 

lifetime medical and work loss expenses in 2019 (C. Peterson et al., 2021). Overall, 

unintentional injury constitutes a costly and prevalent cause of mortality. Not surprisingly, a 

large body of research has focused on the etiology and prevention of unintentional injury. 

 Research examining the etiology and prevention of unintentional injury is broad and 

varied. Research can focus on a type of injury, such as traumatic brain injuries (Shen et al., 

2020), modes of injury, such as pedestrian injury (Davis & Barton, 2017), risk factors leading 

to injuries, such as inhibitory control (Barton & Schwebel, 2007a), or even perceptual factors 

related to injury, such as audition and vision (Pugliese et al., 2020). A large portion of injury 

research taking an ecological approach has focused on the psychological, behavioral, and 

environmental risk factors associated with unintentional injury (Allegrante et al., 2010). 

Similar to the likelihood of contracting a disease, specific injuries have a particular set of risk 

factors increasing an individual’s susceptibility to injury.   

Researchers have identified a plethora of risk factors for various injury risk behaviors. 

Sets of risk factors have been identified for bike injuries (Chihak et al., 2014), pedestrian 

injury (Barton, Ulrich, & Lew, 2012; Morrongiello et al., 2016), and unintentional child 

injury (Barton & Schwebel, 2007b; Morrongiello & Barton, 2009). Child injury is one area 

where antecedents have been extensively examined for various injuries. For example, some 

risk factors identified for child pedestrian injury include demographic characteristics such as 

gender (Barton & Schwebel, 2007a) and intrapersonal factors such as temperament and 

inhibitory control (Schwebel & Plumert, 1999). Overall, a wide variety of factors predictive 

of risk behaviors have been identified and explored 

In addition to examining collections of risk factors, behavioral scientists also apply 

various models and theories to examine unintentional injury. The Risk Appraisal Framework, 

the Health Belief Model, Social Learning Theory, Theory of Planned Behavior,  and others 
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have been applied to the problem of injury (Barton et al., 2021; Gielen & Sleet, 2003; Sleet et 

al., 2010; Trifiletti et al., 2005). For example, the Theory of Planned Behavior examines the 

intention to engage in a given behavior by challenging subjective norms, attitudes, and 

perceived level of behavioral control  (Sleet, Diekman, et al., 2010). In the field of injury 

prevention, the theory of planned behavior has been applied to topics such as seatbelt usage  

(Şimşekoǧlu & Lajunen, 2008), driving violations  (Forward, 2009), and pedestrian safety  

(Barton et al., 2016). In one study by Barton, Kologi, and Siron (2016), perceived behavioral 

control and attitudes were most predictive of behavioral intention to cross a street while 

distracted. Even with the wide variety of models applied to the problem of injury, few 

models originated specifically to study injury, and research remains largely atheoretical 

(Barton et al., 2021; Schwebel & Barton, 2005; Wallander, 1992). 

 Despite our growing understanding of injury etiology and the applied nature of the 

problem, much is left to explore. One unanswered question is why the same risk behavior 

will result in an injury in some instances but no injury in others (L. Peterson et al., 1987). In 

other words, how does a risk behavior become an injury? Further, how can we better predict 

an impending injury? What is certain, unintentional injuries are an undesired outcome. To 

this end, the concept of human error can help illuminate when a risk behavior transitions into 

an injury. The unintended result of an error does not always result in an unintentional injury, 

but an unintentional injury almost always includes some aspect of human error. Identifying 

where and how human errors occur can enhance the scientific understanding of injury 

etiology and help design more effective injury prevention programs. 

The remainder of the introduction comprises four sections. The first section explores 

the concept of human error in a simplified 3-part model, including human fallibility, context, 

and barriers. The second reviews the application of human error regarding the 

conceptualization of accidents. The third investigates how the study of human error can 

enrich the study of unintentional injury. Finally, the last section of the introduction focuses 

on the aims and hypotheses of two studies examining the application of human error 

principles to better understand injury. 
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Human Error 

 Simply put, human error is when some action has gone wrong and may lead to an 

unintended consequence (Hollnagel, 2007). For instance, take someone intending to reverse 

out of a parking spot but putting the car in drive instead. Depending on the physical 

environment, this error could result in a minor consequence, like driving onto grass, or a 

significant consequence, like driving through a dining establishment window. Either way, the 

outcome is unintended, but context decides the impact of the action. Notice in the presented 

example the error is in an action the driver did not intend rather than in the intention itself. 

The intention was to put the car in reverse, but the action was flawed, resulting in an error. 

An error can also occur when an action goes perfectly, but the intended action results 

in an unintended outcome. For instance, on March 27th, 1977, two Boeing 747s collided on a 

runway at Tenerife, Canary Islands, resulting in the worst accident in aviation history 

(Cistone, 2014). The planes collided while one plane attempted to take off, and the other was 

taxiing to their required runway. Each pilot performed the action they intended to complete, 

but the outcome was unintended. Some analyses identify a miscommunication between air 

traffic control and the airplane pilot attempting to take off as the potential critical error 

(Salmon et al., 2011). Still, in the Tenerife accident, the pilots performed the intended actions 

correctly, but the intention was wrong. 

Identifying errors is only part of the problem, understanding the causes is arguably 

more important. By understanding errors, we can better predict and prevent when errors 

might occur. One framework breaks error into the variability of three components: human 

fallibility, context, and barriers (Sharit, 2012). Through the interplay between each element, 

human fallibility, context, and barriers, actions can result in a range of unintended and 

intended outcomes. Specifically, an error results from the interaction between variability in 

human fallibility and variability in context, where barriers can interact with behavior in 

various ways. Barriers can physically prevent behaviors, redirect behaviors, elicit behaviors, 

or interact with the consequences of behaviors by nullifying the potential unintended 

outcomes (Hollnagel, 2014; Reason, 1990).  
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Variability in Human Fallibility 

 The concept of human fallibility refers to the constraints of human-environment 

interaction created by human limitations. One way human fallibility could be conceptualized 

is through the functional limitations and tendencies of a human’s sensory, cognitive, and 

motor systems  (Sharit, 2012). The eye needs a certain amount of light to see. Working 

memory can only manipulate a finite amount of information at a given time, and controlled 

movement can only be steady. For instance, there is a certain threshold in which humans can 

discriminate between specific spatial frequencies  (Georgeson & Sullivan, 1975). If a human 

must interact with a system where the discrimination of spatial frequency regularly moves 

outside of typical thresholds, the human will be unable to complete the task effectively. 

 The model of human information processing provides a helpful lens to understand 

human fallibility. The model of human information processing examines the process in 

which humans perceptually encode, process, and then respond to information in their 

environment  (Wickens & Carswell, 2012). Understanding how humans handle information 

enables examining and predicting how environmental demands might overwhelm someone. 

The general model of information processing conceptualizes received information as 

beginning with perceptual encoding, moving into central processing, and ending with some 

sort of response  (Wickens, Hollands, Banbury, & Parasuraman, 2016). Perceptual encoding 

is the process in which some of the information sensed from the environment is perceived or 

consciously recognized by the individual. Any information perceived by an individual is then 

passed into the central processing network, where working memory and long-term memory 

handle the perceived information. In this case, working memory acts as the conscious 

platform for perceived information, and long-term memory acts as a reference system 

(Wickens & Carswell, 2012). Working memory is also responsible for manipulating 

information called from long-term memory, evaluation, decision making, and planning  

(Evans, 2008). Following working memory, a response is selected and then executed. 

Throughout the information processing model, attentional resources are selectively applied 

from the point something is sensed through response execution.   

Understanding how humans process information and the limitations of the 

information processing system make the concept of human fallibility clearer. Take, for 
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example, the attentional and long-term memory subsystems. Humans are often in a forced 

state of cognitive underspecification or in a state where information is incomplete, and 

humans are forced to fill in unknowns (Reason, 1990). When in a state of cognitive 

underspecification, attentional and long-term memory systems rely on top-down processing 

or previous experience to fill in the missing information (Connor et al., 2004). Depending on 

top-down processing can impact selective attention (Barton, 2006), visual search (Wolfe, 

2010), and decision making (Klein, 2008). At any given moment, underspecified 

environments are activating long-term memory systems, creating expectancy, and enabling 

the potential for errors. 

Working memory plays a pivotal role in understanding human error and impacts 

various activities. Each stage of information processing has the potential for a menagerie of 

potential errors but few impact errors as much as working memory. Working memory has 

multiple functions and links to errors in detection, planning, sensemaking, and decision 

making (Whaley et al., 2016). For example, working memory has been associated with 

performance in situation awareness (Gugerty & Tirre, 2000), vigilance tasks (Helton & 

Russell, 2011), prospective memory (Dodhia & Dismukes, 2009), and decision making 

(Klein, 2008). Working memory has also been associated with pedestrian injury and 

inefficient visual search (Kovesdi & Barton, 2013). 

 Human fallibility is an essential concept within the study of human error. 

Understanding the limitations of human ability, both physically and cognitively, allows for 

safer and more efficient designs. Also, understanding how humans are fallible makes the 

identification and analysis of human error much more accessible. By identifying exactly how 

human fallibility contributed to an incident of human error, the components of the context 

that exceeded the human’s capabilities can be identified. 

Variability in Context 

 Context is difficult to define as all available information characterizing a given 

situation is included. Context includes information relating to people, places, and objects 

within a situation and the dynamic interactions between these entities (Dekker, 2006; Dey, 

2001). Some examples of contextual information include the immediate environments 

design, social factors, individual differences, and previous training, just to name a few. The 
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dynamic interactions between human actions and contextual factors make context even more 

challenging to map.  

 Human error is an emergent property of the interaction between the variability in 

human action and context (Hollnagel, 2007). Context not only outlines and defines human 

actions, but context also plays a crucial role in the emergence of human error. Context is a 

dynamic field constantly requiring humans to adjust and calibrate to achieve identified goals. 

However, the process of calibrating is far from straightforward, as the context and the 

calibration process have built-in variability. To make matters more complex, context and 

human activity interact in potentially unexpected ways. 

The concept of Performance-Shaping Factors (PSFs) is one way some accident/error 

models operationalize context. Performance-Shaping Factors (PSFs) are all the contextual 

factors that can impact human performance (Lee et al., 2011). A PSFs impact does not 

necessarily need to be negative and can also lead to improved performance. Time pressure is 

an example PSF. If a situation offers more than enough time for an individual to complete a 

task, performance might be improved. On the other hand, if a situation does not provide 

sufficient time, performance might be degraded to the point of an error. 

 Many accident analysis and error models use PSFs, but even if models share some 

PSFs, most models use unique PSFs. PSF sets across accident models vary in structure, use, 

and specific PSFs (Kirwan, 1998; Salmon et al., 2011). Some of the differences are due to 

domain-specific models, such as the Technique for the Retrospective and Predictive Analysis 

of Cognitive Errors (TRACEr). TRACEr, initially designed for predicting error in air traffic 

control, includes the unique PSF of traffic complexity (Shorrock & Kirwan, 2002). Other 

differences emerge from the way PSFs are meant to be applied. For example, models such as 

the Technique for Human Error Rate Prediction (THERP) and The Human Error Assessment 

and Reduction Technique (HEART) both apply specific probabilistic impacts on human error 

if a particular PSF is present (Boring, 2012; Kim et al., 2018; Williams, 1988). 

On the other hand, other models such as the Cognitive Reliability and Analysis 

Method (CREAM) does not directly apply a specific probability of failure if one particular 

PSF is present but instead places a qualitative impact on performance (Hollnagel, 1998). The 

differences in PSFs across models makes comparing and interpreting the findings using 
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specific methods difficult without being an expert in various analysis method. Furthermore, 

the lack of standardization makes an unwieldy list of PSFs challenging to support with 

empirical research.  

Recently the breadth of methods using PSFs has sparked interest in creating a 

standardized list of PSFs applicable across a wide variety of domains. One such 

standardization introduced a data-informed PSF hierarchy capable of being mapped onto 

several of the most popular error models (Groth & Mosleh, 2012). Heavily inspired by the 

nuclear power industry, this hierarchical model of PSFs uses a combination of previous sets 

of PSFs and data gathered from research surrounding the Information, Decision, and Action 

in crew Context (IDAC) to inform the structure and inclusion of the PSFs (see table 1.1). The 

PIF hierarchy outlined by Groth and Mosleh (2012) offers a comprehensive list of PSF and 

allows researchers to examine each PSF's impacts at a more refined level. The PSF hierarchy 

has also been linked with cognitive mechanisms for a comprehensive link between cognitive 

failures and PSFs in the nuclear power industry (Whaley et al., 2016). Despite being 

conceptualized in the nuclear power industry, a link between high-level cognitive processes 

and contextual PSFs provides a good framework for researching error in any situation. 

 

 

Table 1.1. PSF hierarchy adapted from Groth and Mosleh (2012). 

Organization-based Team-based Person-based Situation/stressor-based Machine-based

Training program Communication Attention External environment Human-system interface

Availability Availability To task Conditioning events Input

Quality Quality To surroundings Task load Output

Corrective action program Direct supervision Physical and psychological abilities Time load System response

Availability Leadership Alertness Other loads

Quality Team coordination Fatigue Non-task

Other programs Team cohesion Impairment Passive information

Availability Role awareness Sensory limits Task complexity

Quality Physical attributes Cognitive

Safety culture Other Execution

Management activities Knowledge/experience Stress

Staffing Skills Perceived situation

Scheduling Bias Severity

Workplace adequacy Familiarity with situation Urgency

Resources Morale/motivation/attitude Perceived decision

Procedures Responsibility

Availability Impact

Quality Personal

Tools Plant

Availability Society

Quality

Necessary information

Availability

Quality
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In all, context sets the stage for any attribution of human error. As humans attempt to 

calibrate their behavior to a dynamic context, their predictions may fail to prepare for 

unexpected changes previous experience does not consider. The state of cognitive 

underspecification requires the interaction between context and the cognitive-perceptual 

structures an individual brings to a context. Human actions stem from context, and context 

allows for value judgments to be applied to the outcomes of action  (Dekker, 2005). The 

interaction between human fallibility and context is more important than either component 

alone. 

Variability in Barriers 

 Barriers are another vital component in the study of human error. Barriers are 

mechanisms within a context possessing the ability to nullify or lessen potentially hazardous 

outcomes possibly caused by human error  (Hollnagel, 2004; Reason, 1990; Reason, 

Hollnagel, & Paries, 2006). However, understanding how barriers impact error can be 

complex. The insertion of barriers into a context inherently alters how human fallibility, 

context, and barriers interact. By introducing a new barrier to a context, both the context and 

how human fallibility presents itself are changed, changing the interaction. 

Barriers are not only physical mechanisms possessing the ability to prevent error but 

also include less tangible mechanisms meant to curve error. For example, the social norms of 

a group could act as a powerful barrier against performing an action like stealing. Hollnagel 

(2004) described four ways humans interact with barriers: physical, functional, symbolic, and 

incorporeal (see table 1.2).  
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Table 1.2. A barrier classification adapted from Sharit(2012) and Hollnagel (2004). 

 

Physical barriers are physical objects that limit movement and include objects like 

walls, safety belts, and safety rails. Functional barriers are objects in the environment capable 

of preventing a typical function of something through limiting behaviors and include locks, 

passwords, and distance. Symbolic barriers are symbolic objects or ideas capable of limiting 

action and include procedures, signs, and alarms. Finally, incorporeal barriers are intangible 

objects capable of limiting behaviors, including self-restraint, morals, or laws. 

Barriers remain an essential part of the study of human error. Barriers represent 

contextual manipulations meant to reduce the number of errors or nullify their effect. Some 

forms of accident analysis and human error investigation focus solely on how accidents arise 

from a cluster of failed barriers  (Reason et al., 2006; Wiegmann & Shappell, 2001). The 

focus of some human error methods on barriers is not surprising as barriers are some of the 

most corporeal components in the concept of human error. The introduction of a seat belt is 

Barrier Function Example

Containing or protecting/ Prevent transporting something from the 

present location (e.g., release) or into the present location 

(penetration)

Walls, doors, buildings, restricted physical access, railings, fences, 

filters, containers, tanks, valves, rectifiers

Restraining or preventing movement or transportation of mass or 

energy

Safety belts, harnesses, fences, cages, restricted physical movements, 

spatial distance (gulfs, gaps)

Keeping together; cohesion, resilience, indestructibility Components that do not break or fracture easily (e.g., safety glasses)

Separating, protecting, blocking Crumble zones, scrubbers, filters

Preventing movement or action (mechanical, hard) Locks, equipment alignment, physical interlocking, equipment match

Preventing movement or action (logical, soft)
Passwords, entry codes, action sequences, preconditions,

physiological matching (e.g., iris, fingerprint, alcohol level)

Hindering or impeding actions (spatial-temporal)
Distance (too far for a single person to reach), persistence

(deadman button), delays, synchronization

Dampening, attenuation Active noise reduction, active suspension

Dissipating energy, quenching, extinguishing Air bags, sprinklers

Countering, preventing, or thwarting actions

Coding of functions (e.g., by color, shape, spatial layout), 

demarcations, labels, and (static) warnings (facilitating correct actions 

may be as effective as countering incorrect ones)

Regulating actions Instructions, procedures, precautions/conditions, dialogues

Indicating system status Signs (e.g., traffic signs), signals (visual, auditory), warnings, alarms

Permission or authorization (or the lack thereof) Work permit, work order

Communication, interpersonal dependency
Clearance, approval (on-line or off-line) in the sense that the lack of 

clearance, etc., is a barrier

Complying, conforming to Self-restraint, ethical norms, morals, social or group pressure

Prescribing: rules, laws, guidelines, prohibitions Rules, restrictions, laws (all either conditional or unconditional)

Physical Barrier

Functional Barrier

Symbolic Barriers

Incorporeal Barriers
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much easier to conceptualize than how the working memory system interacts with the 

perceptual system interact with traffic injuries. 

System Level Analyses 

Systems level thinking in accident analysis is the modern standard of examining 

major accidents and incidences of error. A classic interpretation of error examines the sharp 

end of error or the individual most closely associated with an unintended outcome  (Vuorio et 

al., 2014). However, more modern interpretations of human error examine the blunt end of 

error or the entire system in which the error occurred (Cook & Woods, 1994). In other words, 

modern analyses of error examine how unintended outcomes emerge from latent interactions 

within a system potentially originating far from the person who made the error. For example, 

HFACS, Accimap, FRAM, and the Systems Theoretic Accident Modelling and Process 

Model  (STAMP) all examine the entire system during both prospective and retrospective 

analyses of error  (Hollnagel, 2012; Leveson, 2004, 2017; Rasmussen, 1997; Rasmussen & 

Svedung, 2000; Reason, 1990; Wiegmann & Shappell, 2001).  

  Numerous methods exist to model an accident system, but the Swiss Cheese Model 

(SCM) is arguably one of the best-known conceptualizations. According to the SCM, 

accidents emerge from the interaction between latent failures within a system and unsafe acts 

(Reason, 1990). To illustrate, one could imagine latent and active failures as the holes in 

slices of swiss cheese. Accidents only occur when, after you stack the slices of swiss cheese, 

the holes line up in a way in which one can place one’s finger through the stack (see Figure 

1.1). Reason identified several levels at which latent failures can exist: the organizational 

level, the supervisory level, precursors to unsafe acts, and barriers (Reason et al., 2006). 

Beyond latent failures, active failures, or errors, must also be present for an accident to occur 

(Sheridan, 2008). The conceptualization of accidents as a rare outcome due to a perfect storm 

of contextual factors, barriers, and human error is a concept permeating many modern 

accident analysis techniques.   
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Figure 1.1  The Swiss Cheese Model. Latent failures are represented by rectangular holes in layers. Active 

failures are represented by circular holes in layers. Each layer can contain latent failures, active failures, or both. 

When the holes of each layer align, an accident can occur. Adapted from (Reason, 1990) 

 

The SCM serves as an excellent conceptual description of how accidents occur and 

significantly impacts accident analysis techniques. For instance, HFACS is a modified 

version of the SCM used initially to examine aviation accidents but now applied to various 

transportation incidents (Reinach & Viale, 2006; Shappell et al., 2007; Wiegmann & 

Shappell, 2001). HFACS conceptualizes accidents and errors the same as the SCM but also 

includes easy to apply taxonomies for latent and active failures across four levels of a 

system: organizational influences, unsafe supervision, preconditions for unsafe acts, and 
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unsafe acts (Shappell et al., 2007). The low incidence of accidents in the aviation industry 

could be credited to good use of retrospective, system-level accident analyses (Wiegmann & 

Shappell, 2003).   

The Space Shuttle Challenger disaster in 1986 can be used to illustrate how HFACS 

can be implemented. On January 28th, 1986, the Space Shuttle Challenger was scheduled to 

take off for a satellite deployment mission  (Rogers, 1986). However, a little over a minute 

after the space shuttle Challenger was launched by NASA, the shuttle disintegrated, and all 

seven crew members died. Investigations after the disaster eventually discovered a failed O-

ring seal at a crucial joint on the right rocket booster. Still, a closer examination of the 

incident illustrates an alignment of latent and active failures (Altabbakh, 2013). 

Organizationally, the budget was a significant constraint upon NASA at the time of the 

Challenger incident, the turnover rate for management was relatively high, and 

communication throughout the company was poor  (Kerzner, 2013). Supervisory violations 

regarding safety practices were common due to external pressure to launch the rocket on 

schedule. Preconditions for unsafe acts included poor weather conditions, which included ice 

on the launch pad, the failure of the O-ring to seal properly was related to the weather, and 

management applied significant pressure on the crew to launch on schedule. If one of the 

latent failures was not present, the Space Shuttle Challenger disaster might have been 

avoided. 

Macrocognition and Human Error 

 One novel way of looking at human error is by applying PSFs at the macrocognitive 

level. The high-level idea is to predict and prevent error cross-contextually by understanding 

how PSFs impact typical behaviors (Whaley et al., 2016; Whaley, Hendrickson, & Boring, 

2012). However, because macrocognition is not a widely-known concept outside the field of 

human factors, I will briefly discuss macrocognition before discussing the application of 

PSFs to the macrocognitive level. 

Macrocognition comprises all mental steps and functions required to complete a real-

world task in a natural environment (Klein et al., 2003). Instead of focusing on a specific 

cognitive component, like working memory or long-term memory, macrocognition 

encompasses cross-contextual functions potentially encompassing multiple cognitive 
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components (Klein & Wright, 2016). Take decision-making as an example. Decision-making 

relies on numerous cognitive components in the information processing model. Making a 

decision depends on perceptual systems, attention, working memory, long-term memory, and 

action working together. Studying working memory alone to better understand decision-

making can help understand decision-making but may never illuminate the complexities of 

the cognitive interactions making expert decision-making possible.  

Macrocognitive models include a mixture of functions and processes. The classic 

model proposed by Klein et al. (2003) contains naturalistic decision-making, sensemaking, 

planning, coordinating, problem detection, and adapting/replanning. Other models include 

other functions and processes based on their focus, such as group collaboration (Letsky et al., 

2007) or the nuclear power industry (Whaley et al., 2016). In all, the specific components 

included in a macrocognitive model will depend on the end goal of the model. Still, the 

purpose of macrocognitive models is always the same, to examine cognition as groups of 

mechanisms work together in natural settings (Klein et al., 2003). The model is designed to 

flex with need and research. 

Recently, PSFs have been applied at the macrocognitive level to better understand the 

relevant causes and contributors to failure in cognition (Whaley, Hendrickson, & Boring, 

2012). Specifically, macrocognitive functions relevant in the nuclear power industry have 

been examined in terms of what causes them to fail, the cognitive mechanisms associated 

with that failure, and the PSFs that impact those cognitive mechanisms (Whaley, 

Hendrickson, & Boring, 2012; Whaley, Hendrickson, Boring, et al., 2012). For example, 

specific PSFs impact the performance of a cognitive mechanism, like working memory, a 

failure in working memory can lead to incorrect pattern matching, and the incorrect pattern 

matching can lead to a failure in decision making. The cognitive framework proposed by 

Whaley et al. (2016) includes detecting/noticing, sensemaking/understanding, decision 

making, action, and team coordination at the macrocognitive level and a host of failures, 

cognitive mechanisms, and PSFs.  

The strength of this model is the applicability across tasks. Many tasks share different 

levels of similar macrocognitive processes, and focusing on the macrocognitive level allows 

research to cross task-specific research. For example, diagnosing an alarm and detecting 
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cancerous cells in an x-ray require several of the same macrocognitive functions, detecting, 

and understanding. Understanding the types of PSFs impacting detection or understanding 

can help reduce error in both tasks. Though this thinking has not expanded much outside of 

the nuclear power industry, the cross-contextual reach of understanding what leads to 

macrocognitive failures is immense. 

Injury Risk and Human Error 

 Preventing error is preventing unintentional injury. Theoretical frameworks from the 

study of human error provide applicable concepts capable of reducing and preventing 

unintentional injury. Injury research has found various risk factors for specific injury types, 

but the contexts and nature of the injury are potentially limitless. Because of the potentially 

unlimited causes and types of injury, researchers may gain more insight into the causes of an 

injury by examining the potential errors associated with a context. By focusing on predicting 

human error using the human fallibility, context, and barriers framework, researchers can 

predict and stop the injury by preventing unintentional outcomes. 

Take, for example, a hypothetical child bicycle accident. From an injury risk 

perspective alone, one might identify low inhibitory control, age, gender, and aggression as 

predictive of poor route selection and injury (Marsh et al., 2000; Stevens et al., 2013). 

However, there is no way to tell when an injury might occur, just the characteristics of a 

child more likely to be injured or the ways one can prevent injury by redesigning the task. By 

examining human fallibility, context, and barriers, we can predict the specific potential for 

injury and even redesign the task to prevent injuries.  

In line with the systems approach, examining each element together will provide a 

clearer picture of injury risk. First, human fallibility and context come together to describe 

how the child might fail to meet the requirements for the situation. Specific contexts 

exacerbate individual characteristics, making the two constructs difficult to separate. To 

examine the two together from a holistic perspective, the application of PSFs can identify 

targets in particular contexts that increase error rate and injury rate.  

Task complexity, for example, is associated with a degraded performance in primary 

tasks, in this case riding a bike (Liu & Li, 2012). Traffic flow of a specific area, traffic 

frequency, the child's age, experience the child has riding bikes, the characteristics of the 
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bike, and weather can all immediately impact task complexity. For example, traffic flow 

increases the number of things in the environment for the child to keep track of and the visual 

search capabilities of a child are already lower than an adult’s (Barton, Ulrich, & Lyday, 

2012). From identifying potential for failure caused by the human-context interaction, 

barriers can be examined to minimize the specific types of dangers. For example, controlling 

the location, a child rides their bike to remove the impact of traffic flow. Understanding the 

impact of even one PSF can begin to help illuminate the likelihood of an injury at any given 

time and help identify the types of barriers needed to prevent a severe injury. 

Cross-Contextual Behaviors and Injury Prevention 

 One way to better understand injury risk is by applying PSFs at the macrocognitive 

level. As a relatively new approach, the application of PSFs to macrocognitive processes has 

yet to expand much further than the nuclear power industry (Whaley et al., 2016). However, 

the approach has immense potential in the research and prevention of injury. To better make 

my point, I will first briefly discuss current injury research then elucidate how implementing 

a macrocognitive approach may prove helpful as an etiology and prevention tool. 

Current research in unintentional injury is heavily siloed by the mechanisms and 

types of injury. Some research focuses on the mechanisms of injury such as dog bites, 

pedestrian injury, playground injury, occupational injury (Barton et al., 2016b; Guerin & 

Sleet, 2020; Meints & De Keuster, 2009; Schwebel, 2006). Other research focuses on the 

types of injuries such as traumatic brain injury, abdominal injuries, or back injuries (Cassidy 

et al., 2004; Michaud et al., 2021; Muggenthaler et al., 2017). None of this is to say research 

on unintentional injury is ineffective. Research on injury etiology and prevention does an 

excellent job of finding the antecedents to injury and subsequently preventing them. 

However, by taking a step back from the specific injury domain and focusing on cross-

contextual behavior, we can identify a set of factors at a high enough level to impact multiple 

injury types.  

Implementing a macrocognitive-inspired approach provides a ready-made mechanism 

to understand injury from a cross-contextual perspective. Research necessarily unifies by 

focusing on functions performed by humans across the various injury domains. For example, 

one of the most common injury causes in the U.S. is unintentional stuck by/ or against 
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(WISQARS, 2021). Research focusing on specific scenarios where one might be struck by an 

object, such as a pedestrian or sports setting, is an effective way to reduce injury in that 

particular context. However, examining cross-contextual behaviors relevant for being struck 

by an object can provide insight into various injuries where an object strikes individuals. At 

the cross-contextual level, research might focus on the PSFs that impact the detection of 

potentially dangerous objects, the tracking of multiple objects, or the actions taken to avoid 

the impact. 

Aims and Hypotheses 

 My goal was to integrate systems level accident analysis and the concept of PSFs in 

order to enhance understanding of injury risk behavior. Specifically, I hope to apply PSFs to 

an injury-relevant cross-contextual behavior to better predict and prevent injury outside of 

specific contexts. Across two studies, I explored the impact of a group of task-relevant PSFs 

on performance and error/injury rate at the macrocognitive level. First, I examined the 

relative impact of task complexity, time pressure, psychological abilities (non-verbal memory 

span), and sensory limitations on performance and error rate in an abstract multiple object-

tracking (MOT) task. In the second study, I expanded the first study's findings by examining 

the relative impact of the same PSFs on performance and injury rate in an applied pedestrian 

crossing task. Both studies examined tracking of multiple objects, an injury-relevant cross-

contextual behavior. 

 Both studies share a set of common hypotheses. I expected each PSF to result in 

degraded performance on experimental tasks. As task complexity, time pressure, and sensory 

limitations increased, performance was expected to degrade. I also expected the increase in 

task complexity, time pressure, and sensory limitations to result in an increased error rate in 

the abstract MOT task and an increased injury rate in the pedestrian task. Additionally, I 

expected individual differences in working memory psychological ability would also predict 

performance on experimental tasks and an increased error rate. Participants with a lower non-

verbal memory span are expected to have lower performance on experimental tasks and an 

increased likelihood of injury/error. 
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Chapter 2 : Methods 

Experiment 1 

Sample 

Previous research indicates large effect sizes for time pressure (ηp
2 = 0.20) (Irwin et 

al., 2013), task complexity (R = 0.65) (Maynard & Hakel, 1997), and sensory limitations (ηp
2 

= 0.36) (Pugliese et al., 2020). Based on those effect sizes, a power analysis indicated a 

required sample of 50 participants to achieve a power of 0.8. Seventy-five adults participated 

in the study but nine were excluded from the final data analysis due to incomplete or 

irregular data. For example, several participants were excluded for not following task 

directions or admitting to guessing on MOT trials. Sixty-six adults aged 18-36 years (M = 

20.26, SD = 3.24, 26 males) were included in the final data analysis. Of the participants who 

completed the experiment, 83% identified as Caucasian, 3% identified as Native American, 

3% identified as Asian, and 11% identified as other. Forty-three participants reported 

wearing corrective lenses, but no participants reported having trouble seeing the computer 

screen. No participants reported having problems with auditory perception. 

Measures 

Demographic questionnaire. No demographic hypotheses were examined, but 

general demographic information was collected to understand our sample better. Participants 

reported age, sex, visual or auditory deficits, and previous injury history. Previous injury 

history includes any medically attended unintentional injury sustained within the year.  

Non-verbal working memory span. The Corsi Block Task (CBT) measured non-

verbal working memory. The CBT has been used extensively in clinical and nonclinical 

settings to measure non-verbal working memory (Arce & McMullen, 2021; Berch et al., 

1998; Gupta et al., 2019). Our CBT was a digital version of the CBT presented in previous 

research (Pagulayan et al., 2006). No significant differences have been found in visual 

memory span between the traditionally physical task and an analog computer task (Robinson 

& Brewer, 2016).  

The CBT implemented in this study consists of 9 purple 3-dimensional blocks 

arranged on a dark blue background and was previously used in Davis & Barton (2021). The 

pointer-object was modeled after a pencil to stay as close to the physical task as possible and 
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retain the motor priming associated with moving between blocks (Davis & Barton, 2021; 

Pagulayan et al., 2006). See figure 2.1 for an image of the task. The CBT was presented on a 

23-inch 1080p resolution monitor, and participants were given four practice trials with two-

block sequences to ensure they understood the task. Participants were required to remember 

the sequence in which a preset number of boxes were selected and subsequently tap the 

boxes in the same order. Boxes were selected by the pointer at a one box per second rate, and 

increased difficulty as the trials progressed (Pagulayan et al., 2006). Level of difficulty is 

defined as the number of blocks included in each sequence progressing from level 3 to level 

9 (Berch et al., 1998). Each level consisted of 3 randomly generated standardized sequences 

and did not include repetitions of the same block in the same trial. In line with previous 

research, accuracy was used as the primary score of working memory (Berch et al., 1998; 

Pagulayan et al., 2006; Rowe et al., 2009). Accuracy is defined as the ratio of total correct 

responses from the total possible correct responses. 

 

 

Figure 2.1 The Corsi Block Task used to test participant’s nonverbal working memory span. This task was also 

used in Davis & Barton 2021. 
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Multiple object-tracking task. Participants were asked to participate in a digital 

multiple object-tracking (MOT) task. In a typical laboratory-based MOT, participants are 

asked to track several objects as they move randomly among a larger set of independent 

objects (Luo et al., 2021; Pylyshyn, 2004; Trick et al., 2005). The MOT used in this study 

was created by me in the Unity gaming engine and guided by Trick et al., 2005. Participants 

were tasked with keeping track of several blue circles (targets) as they moved around a 

rectangular black tracking area with other non-target blue circles (distractors). Participants 

sat 50 cm (20 in) away from the computer screen, and the tracking area occupied 21.24° X 

36.86° visual angle (19.06 cm x 33.86 cm) on the computer screen. The targets and 

distractors, 10 in total, had diameters of  2° and were repelled by the borders of the tracking 

area. Targets and distractors could occlude one another. See figure 2.2 for an image of the 

MOT used for this study.   

 

 

Figure 2.2 The abstract multiple object tracking task used in study 1. 
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Each MOT trial consisted of 4 stages. The first stage consists of the initialization of 

the targets and distractors. Participants were required to press the space bar when they felt 

ready to initialize the next trial. The second stage consisted of the target acquisition stage. 

Over 4.5 seconds, 2-5 targets alternated between blue and green at 500ms per color to 

indicate which circles the participant needed to track. The 4.5 second target acquisition phase 

ended with a 500ms pause. Stage 3 was the tracking phase where all items, targets, and 

distractors, moved randomly and independently for 10 seconds. The final stage consisted of 

identifying the targets the participant managed to track by clicking on the targets using a 

computer mouse. During the identification stage, participants were instructed only to select a 

ball as a target if they felt sure they were correct in its identification to reduce the likelihood 

of random guessing.  

After the initial instructions, participants were given eight practice trials: 2 at each 

level of targets with 100% salience and 1x speed. Seventy-two randomized trials followed 

the practice trials with varying levels of the following factors: task complexity (4 levels as 

the number of targets: 2, 3, 4, or 5), time pressure (3 levels by the speed of balls: 1x [2.25°/s], 

2x [4.5°/s], 3x[6.75°/s]), and sensory limitations (6 levels of salience: 100%, 80%, 60%, 

40%, 20%, 10%). Each factor was manipulated within the typical range used in MOT 

research. For example, 2-5 targets and movement speeds between 0°/s- 9°/s are typical 

manipulations in MOT trials (Meyerhoff et al., 2017; Pylyshyn, 2004; Trick et al., 2005). On 

the other hand, salience, or surface features in general, do not have an extensive presence in 

the MOT literature (Meyerhoff et al., 2017; Papenmeier et al., 2014; Scholl et al., 2001). 

Participants were scored based on their accuracy (number of targets selected 

correctly/number of targets in the trial) and if they managed to track all the objects. The more 

objects a participant was able to keep track of, the better their score would be for that trial. 

For example, keeping track of 4 out of 5 balls would lead to a score of 80% accuracy and 3 

out of 5 would lead to a score of 60% accuracy. 

Time pressure, task complexity, and sensory limitations are PSFs included in the 

data-informed PSF hierarchy and present themselves in models such as HFACS (Wiegmann 

& Shappell, 2001, 2003). Time pressure was operationalized as the movement speed of 

objects. Time pressure effectively reduces the amount of time an individual has to process 
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and act upon some stimuli. By conceptualizing time pressure as the speed of stimuli, the need 

to have set trial times is removed, and participants were able to participate in many more 

trials. Task complexity can be operationalized in many ways, but temporal demand, quantity, 

and action complexity were captured by increasing the number of targets (Liu & Li, 2012). 

Finally, rather than alter the sensory system of participants, the salience of stimuli was 

manipulated for a similar effect. 

Procedures 

 The procedure comprised several steps after informed consent. First, the 

demographics questionnaire was administered. Second, the participants completed the Corsi 

Block Task. Finally, participants completed the multiple object-tracking task. 

Analyses 

Analyses proceeded in several steps. First, I screened the collected data irregular data 

at the participant level. Irregular data included participants that were flagged due to 

irregularities during data collection or data that was impacted by technical issues. Second, 

descriptive statistics were examined. Third, a targets (4) x speed (3) x salience (6) repeated 

measures factorial ANOVA was performed to examine the impact of time pressure, task 

complexity, and environmentally imposed sensory constraints on the safety time. Sphericity 

was checked for each main effect using Maulchy’s test of sphericity. Where sphericity was 

violated, the Greenhouse-Geisser correction was used. Interactions were excluded from 

analyses to stay consistent with the originally stated hypotheses, and a large number of levels 

in factors make interpretation difficult. Fourth, because nonverbal working memory span was 

measured continuously, including the Corsi accuracy measure as a between-subject measure 

in the factorial ANOVA would have been inappropriate. Instead, a correlation was done to 

determine the relationship between nonverbal working memory span and multiple object-

tracking accuracies for each participant. Finally, a set of logistic regressions using a 

generalized linear mixed-effect model (GLMM) procedure were performed to identify the 

relative impact of PSFs (Kim et al., 2015).  

GLMM removes the statistical assumption of measurement independence required for 

a typical regression (Keith, 2019). A typical regression may increase the likelihood of 

significance for repeated measures due to the correlated residuals of each within-subjects 
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measure (Galwey, 2014). Generalized linear mixed models were performed in two steps 

(Sommet & Morselli, 2017). The first step examined model tested for significant clustering 

effects for participant-level data. The second model includes all of the components 

hypothesized as predictors of error. 

Experiment 2 

Sample 

Previous research indicates large effect sizes for time pressure (ηp
2 = 0.20) (Irwin et 

al., 2013), task complexity (R = 0.65) (Maynard & Hakel, 1997), and sensory limitations (ηp
2 

= 0.36) (Pugliese et al., 2020). Based on those effect sizes, a power analysis indicated a 

required sample of 40 participants with a power of 0.8. The original sample consisted of 88 

participants, but 7 were excluded from the final data analysis due to incomplete or abnormal 

data. For example, there were early connectivity issues with the virtual reality system. The 

final sample consisted of 81 participants aged 18-27 (M = 19.70, SD = 2.00, 23 males) 

recruited from the undergraduate population at the University of Idaho. Of the participants 

who completed the experiment, 76.5% identified as Caucasian, 2.5% identified as African 

American, 3.7% identified as Native American, 7.4% identified as Asian, and 9.9% identified 

as other. Forty participants reported wearing corrective lenses, but no participants reported 

having trouble seeing the computer screen or the VR simulation. No participants reported 

having known auditory issues. Finally, no participants reported ever having been struck by a 

vehicle, but 12 participants reported having known someone who has been. 

Apparatuses 

Virtual Environment. Stimuli presentation took place in a high-fidelity pedestrian 

crossing simulation. Previous research has validated the use of virtual reality simulators to 

examine pedestrian behavior (Deb et al., 2017; Schwebel et al., 2008). The simulation was 

presented using an HTC Vive Pro virtual reality head-mounted display (HMD). The Vive Pro 

has dual 3.5” AMOLED high definition displays (1440 x 1600 resolution per eye, 90 Hz 

refresh rate) and provides a 110-degree field of view. Besides presenting a high-fidelity 

display of a pedestrian crossing environment, the Vive Pro also supports real-time tracking of 

a user’s location in space over a 7m x 7m space.  
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Vive positioning was tracked using 2 Vive base stations angled down at 

approximately 30 degrees. Base stations were positioned facing each other on opposite 

corners of available lab space, approximately 5m apart and 2m high. Participants always 

stood in the middle of this area to ensure proper tracking of participants’ movements. 

Furthermore, the Vive Pro was equipped with a wireless attachment. Previous research has 

found tracking accuracy for the Vive HMD to be about 1.5cm (Borrego et al., 2018).  

The virtual environment was created using the Unity engine, game development 

software often used to create realistic simulations. The virtual environment was built using a 

combination of asset packages from Unity and custom-built C# scripts. Participants stood at 

the side of a three-lane one-way road (12m wide) in an urban area as if they were crossing 

the street. The crossing location in the urban environment consisted of storefronts, sidewalks, 

curbs, street signs, trees, and a park. The urban environment also had varying levels of fog 

introduced using the inbuilt physics and light engine included in the Unity software to limit 

visual stimuli. See figure 2.3 for an image of the crossing location as the participant saw. 

 

 

Figure 2.3 The view of the pedestrian task looking straight across the street from the perspective of the 

participant. 

 

Vehicle Stimuli. The virtual vehicle models consisted of a red four-door sedan used 

in previous research (Pugliese et al., 2020). Vehicles emitted realistic engine and tire noise. 
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Our vehicle sound library consists of stereo recordings used in previous work made using a 

tripod-mounted Edirol R-09HR digital field recorder placed on the side of the road while the 

vehicles drove passed approaching from the left (Davis & Barton, 2017; Pugliese et al., 2020; 

Ulrich et al., 2014). Vehicle sounds used in this study include a 2008 Toyota Camry used in 

previous pedestrian safety research (Davis et al., 2019). Sound stimuli were recorded at night 

on a clean road to isolate the sounds made by the vehicle.  

Input Device. Participants used one of the two Vive controllers as an input device. 

Participants held the Vive controller in their dominant hand and were instructed to pull the 

controller’s trigger using their index fingers when they felt they could safely cross the virtual 

road.  

Measures 

Demographic questionnaire. No demographic hypotheses were examined, but 

general demographic and previous injury data were collected to understand our sample 

better. Participants reported age, sex, visual deficits, auditory deficits, and prior experience 

with vehicle-pedestrian accidents (Pugliese et al., 2020). Specifically, participants reported if 

they had ever been struck by a vehicle, they had ever nearly been hit by a vehicle, and if they 

knew anyone ever hit by a vehicle.  

Pedestrian Crossing Task. Participants were placed in the virtual environment via 

the HTC Vive Pro HMD and asked to decide when they would cross a 3-lane one-way road. 

Vehicles only approached participants from the left, as previous research has found no 

meaningful differences in pedestrian decision-making based on the directionality of 

approaching vehicles (Barton, Ulrich, & Lyday, 2012; Davis & Barton, 2017). Vehicles 

approached participants in constant streams. Participants were instructed to identify 

whenever they felt they could safely cross the road through the press of a trigger on the Vive 

controller. Participants never physically walked across the virtual road. Instead, the trigger 

press on the Vive controller spawned a blue avatar at the participant’s position, which walked 

across the street at the average pedestrian walking speed of 1.46 m/s (4.79 ft/s) (Fitzpatrick et 

al., 2006). The use of an avatar provided feedback to participants in each trial and avoided 

the potential for dangerous maneuvers participants might make to avoid a collision. See 
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figure 2.4 for an example of the avatar and figure 2.5 for an example stream of vehicles, both 

seen from a participant's perspective.  

 

 

Figure 2.4 The view from a participant’s perspective when the summon their avatar to cross the road for them. 

The avatar walked at 1.46 m/s, the average pedestrian walking speed (Fitzpatrick et al., 2006). 

 

Figure 2.5 A stream of traffic as seen from the participant’s point of view. 

 

The pedestrian task consisted of a total of 45 randomized trials. Each trial contained 

varying levels of the following factors: task complexity (3 levels as the number of lanes: 1, 2, 

or 3), time pressure (3 levels by speed: 12mph, 25mph, 35mph), and sensory limitations (5 
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levels of fog: 100%, 80%, 60%, 40%, 20% visibility). Each trial comprised a stream of 

vehicles approaching participants from the left in 1, 2, or 3 lanes with varying fog and 

vehicle speed levels. Each stream of vehicles in a trial consisted of 21 vehicles per lane with 

17 uncrossable gaps and 3 crossable gaps between vehicles randomly interspersed. We 

calculated the gap sizes by multiplying the minimum amount of time the avatar would need 

to cross through each vehicle gap by an uncrossable modifier (0.85) or a crossable modifier 

(1.15). A mixture of pilot testing and previous research done in our lab helped set the 

modifiers.  

After the initial instructions, participants participated in 3 practice trials where they 

could practice crossing the road with their avatar as many times as they wanted through an 

endless stream of traffic. All practice trials had no fog and vehicles moving at 15mph in one, 

two, and three lanes, respectively. Participants were instructed to adjust their judgments to 

the avatar’s walking speed and let the researcher know when they were ready to move 

forward to the subsequent trial. Unlike practice trials, during experimental trials, participants 

were only able to cross the road once using their avatar and only after the first vehicle in the 

stream of traffic crossed their position. Participants had a mandatory 2-minute break every 16 

trials. 

Independent variables. The independent variables examined in this study are unique 

in the pedestrian literature. Of the three components manipulated (number of lanes, speed, 

and fog), only speed has a strong precedent in the literature. The speeds included in this study 

are considered typical road speeds and have been implemented in previous research (Davis et 

al., 2021; Pugliese et al., 2020). On the other hand, pedestrian literature does not commonly 

include the examination of visibility and lanes of traffic. 

The visibility level for this study was controlled through the application of fog. 

Previous research has set fog lines at specific viewing distances to manipulate visibility 

(Davis & Barton, 2021). However, a set distance would not consider the vehicular distance 

required between a pedestrian and a vehicle to make a safe crossing. A 100m fog distance 

would impact crossing decisions for faster moving vehicles as a safe crossing would require a 

faster-moving vehicle to be further away. Instead, fog distances for this study were based on 

the spawning distance of vehicles and the minimum distance a vehicle would need to be for 
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the participant to cross the road safely. One hundred percent visibility was defined as the fog 

line being set at the same distance as vehicles spawned to allow participants to see for 100% 

of their existence, whereas 0% visibility would set the fog line at the minimum crossing 

distance for a vehicle. The fog line would move between the 0% and 100% points based on 

the visibility percentage of the specific trial. The fog line is where nothing beyond that 

distance is visible to the participant. 

This study’s number of active lanes necessitates describing the procedure used to 

create gaps between vehicles. Previous laboratory research using virtual reality simulations 

has primarily focused on one lane of approaching vehicles from one direction (Davis et al., 

2021; Davis & Barton, 2021; Morrongiello et al., 2019; Pugliese et al., 2020). For one-lane 

conditions, the gaps are the distance in time between the first car’s rear bumper and the front 

bumper of the following vehicle. For multi-lane traffic gaps, 1-3 vehicles traveling in close 

proximity across lanes and readily distinguishable from other traffic (referred to as pods from 

here on) were included in the calculations rather than using individual vehicles to determine 

gaps. Each pod of vehicles spawned utilizing an algorithm based on the minimum gap size 

needed to cross between two pods of vehicles with a small amount of added variability to 

increase realism. Multi-lane traffic gaps are the distance in time between the rear bumper of 

the last car in a pod of vehicles and the front bumper of the nearest vehicle in the following 

pod of vehicles. 

Road Crossing Performance. Road crossing performance was measured using two 

modified metrics used frequently in previous research: time left to spare (Morrongiello et al., 

2016) and likely collisions (O’Neal et al., 2016). Time left to spare refers to the amount of 

time, in seconds, remaining for the approaching vehicle to intersect with the participants path 

at the moment the participant exits the path of the vehicle. We called this time leftover, safety 

time.  For example, in a one-lane trial, participants’ safety time would be the number of 

seconds before a vehicle in the first lane would reach their position after they completely 

crossed the first lane. Safety time could range from 0, meaning the participant had no time to 

spare, to the size of the gap the participant chose to cross through. Likely collisions were 

collected as actual collisions between the participant’s avatar and a vehicle.  
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Procedure 

 The procedure for this experiment comprised several steps after informed consent and 

included some materials described in experiment 1. First, the demographics questionnaire 

was administered. Second, participants completed the Corsi Block Task. Third, participants 

were shown a video describing the study and their task. Finally, participants completed the 

pedestrian crossing task. 

Analyses 

 Analyses proceeded in several steps. First, I screened the collected data irregular data 

at the participant level. Irregular data included participants that were flagged due to 

irregularities during data collection or data that was impacted by technical issues. Second, 

descriptive statistics were examined. Third, a lane (3) x speed (3) x visibility (5) repeated 

measures factorial ANOVA was performed to examine the impact of time pressure, task 

complexity, and environmentally imposed sensory constraints on the safety time. Sphericity 

was checked for each main effect using Maulchy’s test of sphericity. Where sphericity was 

violated, the Greenhouse-Geisser correction was used. Interactions were excluded from 

analyses to stay consistent with the originally stated hypotheses, and a large number of levels 

in factors make interpretation difficult. Fourth, because nonverbal working memory span was 

measured continuously, including the Corsi accuracy measure as a between-subject measure 

in the factorial ANOVA would have been inappropriate. Instead, a correlation was done to 

determine the relationship between nonverbal working memory span and average safety time 

for each participant. Finally, a set of logistic regressions using a generalized linear mixed 

model procedure was performed to identify the relative impact of time pressure, task 

complexity, nonverbal working memory limit, and environmentally imposed sensory 

limitations on the likelihood of being struck by a vehicle.  

Like study 1, regressions were performed using a generalized mixed effect model 

procedure to account for the repeated-measures nature of the study. Mixed models consider 

the correlated residuals of repeated measures designs (Galwey, 2014). A typical regression 

would force significance for repeated measures even if significance does not exist due to the 

correlated residuals of each within-subjects measure. Generalized linear mixed models were 

performed in two steps (Sommet & Morselli, 2017). The first step examined model tested for 
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significant clustering effects for participant-level data. The second model includes all of the 

components hypothesized as predictors of injury. 
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Chapter 3 : Results 

Experiment 1  

Sex Differences and Descriptive Statistics 

 Sex differences in performance and failure rates were examined in a series of 

independent-samples t-tests and chi-square tests of independence. No significant systematic 

differences were found, with significance values ranging from p = .05 and p = .98. Therefore, 

sex was excluded in all subsequent analyses. Descriptive statistics for performance are 

reported in table 3.1. 

Performance-Shaping Factor Impact on Performance 

 MOT performance was evaluated in a targets (4) x speed (3) x salience (6) repeated-

measures ANOVA, see figures 3.1-3.3. Significant main effects were found for all variables. 

A significant main effect was found for the number of targets being tracked, F (2.58, 159.67) 

= 286.59, p < .01, partial η2=0.82 (Maulchy’s: χ2 (5) = 16.411, p < .05). Bonferroni follow-

up tests showed a significant difference in target tracking accuracy across all conditions, with 

accuracy significantly decreasing as the number of targets increased. There was also a 

significant main effect for the speed of objects being tracked, F (2, 124) = 486.85, p < .01, 

partial η2 = .89 (Maulchy’s: χ2 (2) = 2.86, p > .05). Bonferroni follow-up tests showed a 

significant difference in target tracking accuracy across all conditions, with accuracy 

significantly decreasing as the speed of targets increased. Finally, there was also a significant 

main effect of salience, F (5, 310) = 17.80, p < .01, partial η2 = .22 (Maulchy’s: χ2 (14) = 

22.86, p > .05). Bonferroni follow-up tests revealed a more complex pattern of change across 

the saliency conditions. Differences in accuracy were generally larger for larger changes in 

saliency. Still, accuracy does not seem to be significantly impacted by the saliency of the 

tracked objects until salience reaches 10%. 

 To better understand the relationship between performance and nonverbal working 

memory span, a correlation was performed between Corsi accuracy scores and average 

performance across all conditions for each participant. Corsi accuracy and average 

participant performance on the MOT task were moderately positively correlated, r (64) = .32, 

p < .01.   
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  Salience 10% 20% 40% 60% 80% 100% 

Targets Speed M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

2 

Targets 

1X 
0.76 

(0.31) 

0.85 

(0.25) 

0.93 

(0.20) 

0.93 

(0.20) 

0.91 

(0.23) 

0.92 

(0.18) 

2X 
0.60 

(0.34) 

0.63 

(0.31) 

0.75 

(0.28) 

0.76 

(0.31) 

0.72 

(0.28) 

0.71 

(0.32) 

3X 
0.40 

(0.31) 

0.48 

(0.33) 

0.49 

(0.33) 

0.52 

(0.31) 

0.52 

(0.29) 

0.53 

(0.37) 

3 

Targets 

1X 
0.66 

(0.31) 

0.73 

(0.27) 

0.71 

(0.25) 

0.75 

(0.27) 

0.78 

(0.25) 

0.77 

(0.25) 

2X 
0.41 

(0.30) 

0.50 

(0.27) 

0.57 

(0.28) 

0.52 

(0.27) 

0.56 

(0.29) 

0.61 

(0.26) 

3X 
0.30 

(0.21) 

0.35 

(0.22) 

0.41 

(0.24) 

0.37 

(0.28) 

0.37 

(0.22) 

0.40 

(0.27) 

4 

Targets 

1X 
0.51 

(0.27) 

0.58 

(0.26) 

0.61 

(0.26) 

0.61 

(0.25) 

0.60 

(0.26) 

0.67 

(0.22) 

2X 
0.37 

(0.18) 

0.38 

(0.17) 

0.42 

(0.22) 

0.39 

(0.24) 

0.39 

(0.21) 

0.45 

(0.21) 

3X 
0.32 

(0.19) 

0.34 

(0.16) 

0.31 

(0.17) 

0.27 

(0.20) 

0.31 

(0.18) 

0.30 

(0.18) 

5 

Targets 

1X 
0.48 

(0.20) 

0.52 

(0.23) 

0.51 

(0.18) 

0.57 

(0.19) 

0.53 

(0.22) 

0.53 

(0.24) 

2X 
0.35 

(0.19) 

0.36 

(0.21) 

0.37 

(0.19) 

0.36 

(0.19) 

0.39 

(0.20) 

0.35 

(0.18) 

3X 
0.24 

(0.18) 

0.28 

(0.16) 

0.28 

(0.19) 

0.32 

(0.18) 

0.29 

(0.15) 

0.28 

(0.19) 

N=63               

Table 3.1. Descriptive statistics examining the average performance for each condition, study 1. 
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Figure 3.1. The main effect of targets on accuracy, study 1. 

 

Figure 3.2. The main effect of speed on accuracy, study 1. 
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Figure 3.3. The main effect of salience on accuracy, study 1. 

 

Performance-Shaping Factor Impact on Error Rate  

Intercept-only model. Participants were added to the initial model to assess 

performance clustering across participants. A significant random effect was found for 

participants, Z = 3.86, p <.01, with an interclass correlation of ICC = .08.  The significant 

results of the intercept-only model support the use of a mixed model approach with 

participant scores showing significant clustering.  

Performance-shaping model. All predictors, number of targets, speed of targets, the 

salience of target, and Corsi tapping task accuracy were significantly predictive of error. The 

number of targets and target speed were positively predictive of error, while CBT accuracy 

and salience were negatively predictive of error. See table 3.2 for the odds ratios, t-tests, and 

confidence intervals. The final model correctly predicted 95% of the errors committed on the 

MOT task and 65% of successes. The final model was 90% correct on all predictions. Taken 

together these results mean the number of targets being tracked, the speed of targets, the 
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salience of targets, and the participant’s nonverbal memory span significantly impact 

performance and error rate. 

 

Model Term 

Coefficient 

(B) 

Odds Ratio (Exp 

B) 

Odds Ratio (95% 

CI) 

t-

value 

p-

value 

Intercept -4.79 0.01 0.01 - 0.03 -8.15 <.01 

Targets 1.80 6.04 5.40 - 6.74 31.81 <.01 

Speed 1.69 5.43 4.80 - 6.13 27.02 <.01 

Salience -0.01 0.99 0.98 - 0.99 -7.90 <.01 

Corsi Accuracy -2.84 0.06 0.01 - 0.45 -2.73 <.01 

Table 3.2. Generalized linear mixed model logistic regression data for study 1. 

 

Experiment 2 

Sex Differences and Descriptive Statistics 

Sex differences in performance and failure rates were examined in a series of 

independent-samples t-tests and chi-square tests of independence. No significant systematic 

differences were found, with significance values ranging from p = .04 and p = .99. Therefore, 

sex was excluded in all subsequent analyses. Descriptive statistics for performance are 

reported in table 3.3. 

Performance-Shaping Factor Impact on Crossing Performance 

 Road crossing performance was evaluated in a lane (3) x speed (3) x visibility (5) 

repeated-measures ANOVA, see figures 3.4-3.6. Significant main effects were found for all 

variables. A significant main effect was found for the number of lanes, F (1.30, 103.58) = 

22.12, p < .01, partial η2 = .22 (Maulchy’s: χ2 (2) = 62.15, p < .05). Bonferroni follow-up 

tests showed a significant difference in safety time across all conditions, with safety time 

significantly decreasing as the number of lanes increased. There was also a significant main 

effect for the speed of vehicles, F (1.72, 137.12) = 298.95, p < .01, partial η2 = .79 

(Maulchy’s: χ2 (2) = 14.42, p < .05). Bonferroni follow-up tests showed a significant 

difference in safety time across all conditions, with safety time significantly decreasing as the 
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speed of targets increased. Finally, there was also a significant main effect of visibility, F 

(3.55, 284.35) = 11.89, p < .01, partial η2 = .13 (Maulchy’s: χ2 (9) = 21.53, p < .05). 

Bonferroni follow-up tests revealed a less intuitive pattern of change in safety time across the 

visibility conditions. Safety time generally increased as visibility increased except for the 

60% visibility condition (M = .71, SD = .08) which had around the same level of 

performance as the 20% condition (M = .73, SD = .09).  

 To better understand the relationship between performance and nonverbal working 

memory span, a correlation was performed between Corsi accuracy scores and average 

performance across all conditions for each participant. Corsi accuracy and average safety 

time on the crossing task were weakly positively correlated, r (79) = .22, p < .05.   

 

  Visibility 20% 40% 60% 80% 100% 

Lanes 
Vehicle 

Speed 
M (SD) M (SD) M (SD) M (SD) M (SD) 

1 Lane 

12mph 0.79 (0.76) 0.83 (0.93) 0.74 (1.30) 0.88 (1.25) 1.05 (0.87) 

25mph 0.64 (0.74) 0.42 (0.97) 0.57 (0.82) 0.67 (0.79) 0.60 (0.87) 

35mph 0.39 (0.85) 0.39 (0.79) 0.25 (0.88) 0.52 (0.78) 0.42 (1.05) 

2 Lanes 

12mph 0.98 (1.13) 1.52 (1.30) 1.34 (1.18) 1.44 (1.32) 1.66 (1.28) 

25mph 0.57 (1.02) 0.51 (1.09) 0.68 (1.05) 1.12 (1.18) 0.98 (1.13) 

35mph 0.35 (1.08) 0.66 (1.21) 0.68 (1.14) 0.63 (1.19) 0.39 (1.06) 

3 Lanes 

12mph 1.81 (1.78) 2.26 (1.99) 1.78 (1.71) 2.34 (2.06) 2.54 (1.99) 

25mph 0.75 (1.54) 1.08 (1.78) 0.25 (1.40) 1.23 (1.89) 0.89 (1.43) 

35mph 0.31 (1.48) 0.53 (1.65) 0.09 (1.34) 0.48 (1.60) 0.17 (1.08) 

N=81             

Table 3.3. Descriptive statistics examining the average safety time buffer for each condition, study 2. 

 



 36 

 

Figure 3.4 The main effect of number of lanes on safety time buffer, study 2. 

 

 

Figure 3.5 The main effect of vehicle speed on safety time buffer, study 2. 
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Figure 3.6 The main effect of visibility on safety time buffer, study 2. 

 

Performance-Shaping Factor Impact on Crossing Failures 

Intercept-only model. Participants were added to the initial model to assess 

performance clustering across participants. A significant random effect was found for 

participants, Z = 5.07, p <.01, with an interclass correlation of ICC = .17.  The significant 

results of the intercept-only model support the use of a mixed model approach with 

participant scores showing significant clustering. 

Performance-shaping model. All predictors, lanes, speed of vehicles, visibility of 

vehicles, and Corsi tapping task accuracy were significantly predictive of being struck by a 

vehicle while crossing a virtual road. The speed of approaching vehicles was positively 

predictive of error, while the number of lanes, Corsi accuracy, and opacity was negatively 

predictive of injury. See table 3.4 for the odds ratios, t-tests, and confidence intervals. The 

final model correctly predicted 72% of the success and failures. Taken together these results 

mean the number of vehicles, the speed of vehicles, the visibility of vehicles, and the 

participant’s nonverbal memory span significantly impact crossing safety and injury rate. 
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Model Term 

Coefficient 

(B) 

Odds Ratio (Exp 

B) 

Odds Ratio (95% 

CI) 

t-

value 

p-

value 

Intercept 1.74 5.69 0.80 - 40.53 1.74 >.05 

Lanes -0.38 0.69 0.63 - 0.75 -8.02 <.01 

Speed 0.10 1.10 1.08 - 1.12 10.41 <.01 

Visibility -0.48 0.62 0.48 - 0.80 -3.63 <.01 

Corsi Accuracy -3.47 0.03 0.02 - 0.42 -2.61 <.01 

Table 3.4. Generalized linear mixed model logistic regression data for study 2. 
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Chapter 4 : Discussion 

 My goal was to better understand injury risk by integrating the concepts of PSFs and 

systems-level accident analysis. Specifically, I hoped to better understand and predict injury 

by applying PSFs to injury-relevant cross-contextual behaviors.  Current injury research 

focuses heavily on domain-specific problems, limiting the generalizability of the research 

findings. For example, an unintentional injury study might concentrate on pedestrian injury, 

drowning, motor vehicle accidents, or falls. Research on the relative impact of PSFs, despite 

their broad use in human error and accident models, is disparate and not often done with 

human error models in mind (Whaley et al., 2016).  My approach applies the cross-

contextual capabilities of PSFs to study injury across domains.  

The relative impact of PSFs was examined across two studies. Both studies focused 

on tracking multiple objects, a behavior relevant for various injury scenarios. In the first 

study, the impact of task complexity, time pressure, sensory limitations, and nonverbal 

working memory span were examined on an abstract multiple object tracking task. In the 

second study, the same PSFs were applied to a virtual reality crossing task where participants 

interacted with groups of vehicles approaching their position.  

In both studies, the relative impact of PSFs followed a similar pattern of results on 

performance and error/injury rate, with the exception of task complexity. Task complexity 

(number of items being tracked/lanes of traffic) impacted performance and error/injury rate 

differently across the two studies. The results from both studies suggest performance and 

error/injury rate on a task requiring multiple object tracking is degraded by sensory 

limitations (reduced salience/visibility due to fog), time pressure (the speed of 

objects/vehicles being tracked), and individual differences in psychological ability 

(nonverbal working memory span). The following sections discuss the results in relation to 

relevant literature. Each PSF will be discussed independently in relation to performance and 

error/injury. Following the discussion on each PSF and results of the studies, general impact 

and study limitations are discussed. 
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Impact of Performance-Shaping Factors 

Task Complexity- Number of Objects and Lanes 

 MOT performance and error/injury rate findings fit well with previous research 

regarding the abstract MOT task but not the applied pedestrian setting task. Previous research 

indicates degradation in performance for MOT tasks when an individual is required to track 

more targets (Pylyshyn & Storm, 1988; Trick et al., 2005). There is also support for a 

reduction in performance in applied settings, such as the tracking of multiple streams of 

vehicles while driving (Lochner & Trick, 2014). Similar to previous work, the abstract MOT 

task showed a significant decrease in performance and a larger likelihood of error when more 

objects were required to be tracked. However, study two's performance and error/injury 

results showed a contradictory relationship. In the pedestrian task, an increase in the number 

of lanes of traffic increased safe behavior. 

 One potential explanation for the contradictory outcomes between the two studies is 

the number of items being tracked. According to previous MOT research, humans can track 

up to between 4 and 8 objects, depending on the context (Meyerhoff et al., 2017; Scholl, 

2019; Scholl et al., 2001). The number of objects being tracked pushed the limits of multiple 

object tracking for the abstract tracking task. On the other hand, the pedestrian task only 

reached three total lanes (assuming participants tracked each lane independently), well within 

the number of objects a human can track at once. There is also the possibility participants did 

not track lanes of traffic at all. Instead, participants may have been tracking the available 

gaps between each pod of vehicles, meaning participants may have only ever been tracking 

one object at a time. Furthermore, crossings with more lanes of traffic involved would 

require participant avatars to spend more time sharing the road with potentially dangerous 

vehicles. With the potential for less strenuous tracking than expected and the increased 

amount of time avatars spent in the road with vehicles, participants may have chosen to be 

more conservative with their 3-lane crossings than their 1-lane crossings. 

 Another possible explanation for the contradictory outcome of the pedestrian task is 

the necessarily increased distance of crossable gaps. A crossable gap for one lane of traffic 

only needs to account for the time a pedestrian needs to travel across one lane, about 4m. 

Alternatively, crossing in front of 2 or 3 lanes of traffic would require safe gaps to allow a 
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participant to cross 8m or 12m, respectively. This increase in time needed for more lanes 

means vehicles are further away when participants decide to cross a street with 3-lanes of 

traffic than one. While the increase in the distance might intuitively lead to the assumption 

that crossing would be more difficult as further time-to-contact estimates are usually less 

accurate (Davis & Barton, 2021), the inclusion of crossable and uncrossable gaps may have 

reduced the impact. The increase in distance for crossings also meant that the crossable and 

uncrossable gaps for 3-lanes of traffic had greater absolute differences than 1-lane of traffic. 

The larger the number, the greater the absolute difference caused by percent changes. 

Time Pressure-Speed 

 My findings echo findings from previous research regarding the speed of tracked 

objects. In a strictly MOT sense, an increase in object speed is associated with a reduced 

ability to track objects (Alvarez & Franconeri, 2007; Holcombe & Chen, 2012) successfully. 

The faster object speed potentially overwhelms an individual’s processing ability to track and 

predict object motion. In an all-or-nothing paradigm, where missing even one tracked object 

results in failure of the task, poorer performance should translate directly to a higher error 

rate- a similar pattern to what is seen in the abstract MOT task. In a more applied sense, 

previous pedestrian injury literature has found a link between vehicle speed for one lane of 

approaching traffic and riskier crossing decisions (Davis & Barton, 2021; Morrongiello et al., 

2016). An increase in vehicle speed has been associated with degradation in crossing 

performance and an increase in the likelihood of being struck by a vehicle (Morrongiello et 

al., 2016). Results from study two support the impact of speed on pedestrian safety, with 

performance decreasing and injury rate increasing with an increase in vehicle speed. Overall, 

the literature supports the degradation in tracking performance and error/injury rate when 

tracking faster moving objects.  

 Regarding vehicular speed in pedestrian environments specifically, one potential 

explanation for the impact of speed on safety time and injury rate is the change in judgment 

requirements. First, greater distances have been associated with worse time-to-contact 

estimates in previous pedestrian work (Davis & Barton, 2021; Pugliese et al., 2020). A faster 

moving vehicle, by necessity, needs to be farther away to create the same time gap as a 
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slower moving vehicle. This increase in distance may require a greater level of processing to 

cross in front of.  

Sensory Limitations- Salience and Visibility 

 The results of studies one and two show salience/visibility as an important 

characteristic of an individual’s ability to track objects. However, in study 1, the salience of 

objects did not impact performance and error rate until they reached about 20% salience, 

while study 2 showed a systematic degradation of performance. Both sets of findings make 

sense in the contexts of their studies, but the results regarding the abstract MOT task are less 

supported by the literature. Previous research using abstract MOT tasks has not directly 

examined the impact of salience, but other surface features, such as shape or color, have only 

been found to impact MOT task performance in particular circumstances (Meyerhoff et al., 

2017; Papenmeier et al., 2014). For example, the color of objects might impact performance 

on an MOT task when there is a color discrepancy between targets and distractors but not 

when all objects share the same surface features. Extending surface feature thinking to 

salience, a reduction in performance at any level would not have been expected. One 

explanation for the impact of salience found in the abstract MOT task includes a large 

variability of visibility levels. Salience may not impact performance and error rate until the 

visibility is reduced to a low enough level. 

The systematic reduction in performance in the pedestrian task aligns well with 

previous work examining the impact of fog in the driving literature. Previous research has 

shown fog negatively impacts an individual’s driving performance by reducing hazard 

avoidance efficacy, less vehicle control, more steering variability, and higher speeds (Li et 

al., 2015; Mueller & Trick, 2012). On the other hand, one study examining the impact of fog 

on pedestrian behavior found no impact on choosing safe gaps and time-to-contact judgments 

(Davis & Barton, 2021). The operationalization of how the fog was implemented across the 

different studies may have impacted the results. In Davis & Barton (2021), the fog line was 

set at a specific distance regardless of vehicle characteristics, and the fog was either present 

or not. Instead, the pedestrian task presented here changed the fog's characteristics to provide 

the same visibility for each stream of traffic—consistent visibility rather than consistent fog.  
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One potential reason for the pattern of results seen in the abstract MOT task is how 

the nature of the task interacts with our ability to track objects. In terms of behavior at the 

macrocognitive level, salience is more strongly linked to object detection than tracking 

objects (Levi, 2008; Whaley et al., 2016). Once an object is detected, tracking relies more on 

temporospatial processing than feature processing (Papenmeier et al., 2014). Still, with low 

enough opacity, objects begin to blend with the background characteristics, and the 

background becomes another potential distractor (Cuthill et al., 2019). The background 

becoming another distractor might explain why performance did not seem to degrade in the 

abstract task until opacity reached about 20%. Before opacity reached 20%, the targets and 

distractors were salient enough to be easily differentiated from the background.  

Similar reasoning likely impacts the pattern of results regarding visibility in the 

pedestrian task as the abstract task. Like the abstract task, at the macrocognitive level, the 

pedestrian task focused on tracking rather than detection, making visibility a bit less 

impactful. Still, the presence of fog potentially softens cues used to make crossing judgments 

and gives participants less time to process information regarding approaching vehicles. 

Having less time to process the approaching vehicles may have led to riskier judgments 

(Pugliese et al., 2020). The pedestrian and abstract task differences potentially stemmed from 

the reduced time participants had with the tracked objects. In the abstract task, participants 

only briefly lost sight of objects when other objects occluded them. In contrast, the pedestrian 

task objects were only visible after they emerged from the fog. 

Individual Differences in Ability- Nonverbal Working Memory Span 

 The results from study one and two agree with previous findings that individuals with 

a lower nonverbal working memory span perform worse on MOT tasks. In terms of the 

abstract MOT task, the actual task has been likened to a test of visual attention (Meyerhoff et 

al., 2017). If construct reliability is assumed, a relationship between two measures of similar 

constructs should be correlated with one another. Furthermore, previous research has found 

evidence of a shared mechanism for MOT and nonverbal memory span (Chesney & 

Haladjian, 2011). In terms of the pedestrian task, previous research has also found links 

between nonverbal working memory, visual search in a pedestrian setting, safe gap selection, 

and time-to-contact estimates (Davis & Barton, 2021; Kovesdi & Barton, 2013). In dynamic, 
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complex environments such as a pedestrian setting, the ability to filter through unimportant 

information and focus on relevant crossing information would be expected to align with safer 

behavior. 

General Discussion 

Human Error 

 The study of human error is a largely inductive endeavor. Generally, human error is 

examined in retrospect, and the antecedents leading to error are divined by analysts (Salmon 

et al., 2011). If an analyst is predisposed to believing humans are the problem, they might 

overlook the contribution of a technological system. Natural human biases further complicate 

the retrospective and inductive nature of looking for antecedents carry with them when 

drawing conclusions (Hollnagel, 2007; Sharit, 2012). For example, the availability and 

confirmation bias both make retrospective accident analysis a difficult practice.  

This is not to say human error models cannot be predictive, but many predictive 

models also work inductively. Starting with the potential outcomes, the analyst attempts to 

determine the possible ways in which a process can fail, then attempts to determine the 

likelihood and methods for failure (Stanton et al., 2013). Even in predictive models, the 

inductive nature makes potential biases a serious problem in determining what impacts 

potential error in a system. In this case, the biases are likely built into the predictive models 

when initially designed. 

A large body of research examining human performance has been borrowed from 

human error research. However, research on human performance is broad and can be difficult 

to synthesize succinctly (Whaley et al., 2016). Still, despite the inductive nature of the study 

of error, some empirical deductive work does exist. The broad and disparate nature of 

research on human performance partly explains the large variety of PSFs found across human 

error models (Groth & Mosleh, 2012). Furthermore, the relative impact of PSFs on 

performance is often estimated in models without the benefit of empirical support (Kim et al., 

2015). For example, a commonly discussed Human Reliability Analysis method, SPAR-H, 

multiplies the likelihood of a human error by 10X when there is barely enough time to 

complete a task (Kim et al., 2018). The relative impact of time pressure may be as high as 
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10x, but there is no clear empirical line drawn between the likelihood of failure or even how 

time pressure might interact with other PSFs to impact error. 

 Taken together, study one and study two are a direct attempt to empirically examine 

the impact of PSFs on the likelihood of error at a high enough level to be useful for 

predicting various contexts. By examining an abstract judgment task and then applying the 

same PSFs to an applied setting, we can determine if examining PSFs at the macrocognitive 

level is appropriate to cross contexts but still successfully quantify and predict errors 

(Whaley et al., 2016). If the results across both activities mirror one another, we may have a 

new unifying method for examining error and injury. 

Furthermore, we can determine how closely performance and error overlap by 

examining both errors and performance accuracy. Research examining error often assumes a 

drop in performance predicts error. The assumption that a reduction in performance is the 

same as predicting error makes sense but may not always be the case. If a system is resilient 

enough, poor performance may not lead to an attribution of error, and poor performance may 

not predict error (Sheridan, 2008). Poor performance probably does predict higher error rates 

in most things, but the relationship between performance and error has not been thoroughly 

examined. 

Injury Prevention and Etiology  

 Another area that benefits from this research lie in injury etiology and prevention. 

Injury is still one of the most expensive and common reasons for death in the United States 

(National Center for Injury Prevention and Control, 2020). To have an accurate and reliable 

way to predict when an injury might occur, would be priceless. Especially since most 

unintentional injuries are thought to be preventable (L. Peterson et al., 1987). The following 

section discusses how my dissertation impacts injury prevention and etiology.  

Injury research does a respectable job of predicting and preventing injury in specific 

injury domains. Sets of predictive factors have been identified for pedestrian injury (Barton, 

Ulrich, & Lyday, 2012), drowning (Shen et al., 2016), playground falls (Schwebel, 2006), 

and even poisoning (Brayden et al., 1993). Identifying risk factors for specific injuries is 

important and provides injury prevention efforts with specific targets. However, the modes 

and context of injury are potentially limitless. How can we, as safety researchers, hope to 
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prevent unknown types of injuries in unknown contexts if we continue to study injury by 

domain? Rather than examining the behavioral antecedents preceding injury, we should be 

examining the antecedents to the system failures which lead to injury. 

The work here examines unintentional injury resulting from a system failure due to 

error. If an unintentional injury happens unintentionally, by error, then error prediction might 

be a good place to target our research. By taking a step back from the specific injury domain, 

we can determine a general set of factors at a high enough level to permeate various injury 

types but low enough to help predict and prevent injury by examining how PSFs impact error 

rate in cross-contextual behaviors, such as in making judgments, decisions, or perceiving a 

problem, we essentially identify what PSFs have the potential to cause injury. The beauty of 

this method is researchers can apply the same thinking to any number of situations. By 

looking at the impact of a PSF like task complexity on perceptual judgments, researchers can 

predict and reduce potential injuries in any task where a failure in a perceptual judgment will 

result in an injury, such as: crossing a street, vehicle collisions, nuclear power operation, 

manufacturing-line injuries, some types of construction injuries, and countless other 

possibilities.  

The linking of error to real-world cognitive functions can improve safety as early as 

the initial design stage of products and spaces. We can build more resilient, safe systems if 

we know what factors are likely to lead to errors and subsequent injury. For example, if time 

pressure is identified as a major contributor to object tracking failures, a road designer can 

design safeguards for traffic signals at a potentially dangerous intersection. By identifying 

and researching these factors leading to injury, we are essentially adding more protective 

factors, layers of Swiss cheese, to potentially dangerous systems. 

Another benefit of predicting failure by cognitive function rather than domain is we 

can begin to unravel what transforms a near-miss into an actual injury. A risk behavior might 

lead to injury the first time the behavior is performed, or it might never lead to an actual 

injury (L. Peterson et al., 1987). By examining the PSFs associated with context and human 

fallibility, we can begin to unravel at what level a system of PSFs needs to be to become an 

injury. Rather than identifying age or experience alone to prevent future injuries, we can 

determine the specific sets of PSFs which lead to a failure in action and build more resilient 
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methods for preventing those near misses from becoming full-blown injuries. For example, 

perhaps a skiing injury only occurs when time pressure, task complexity, and training 

interact. Furthermore, perhaps a risk behavior will only be a near miss if the impact of the 

PSFs stay below a certain threshold. Understanding the relationship between the system and 

behavior is paramount to understanding when an injury will occur. 

Limitations 

 Several limitations are worth mentioning regarding the samples collected for the two 

studies and the experimental controls of the pedestrian task. First, the samples used in these 

studies consisted entirely of an undergraduate population at an inland northwest university.  

The samples had little diversity, potentially limiting the generalizability of both studies. Most 

participants were mostly female, white students between 18 and 25. The impact of the sample 

composition is currently unknown, but results would likely vary across development (Trick 

& Enns, 1998). Future research might aim for a more diverse sample to ensure that results 

represent the population. Second, there was a trade-off in experimental and mundane realism 

for the pedestrian task. The high level of control and difficult nature of the task was 

important for three reasons: 1) error and injury have a low base rate, so the task needed to be 

more difficult than normal, 2) people are generally great at crossing roads safely, 3) the 

experimental control was necessary to draw more solid conclusions. Despite the mentioned 

reasons for the task having less external validity, future studies might examine the impact of 

each PSF in less controlled settings.  

Other limitations worth mentioning are the way participants crossed the street in the 

pedestrian task and the overall impact of COVID-19. In the pedestrian study, participants 

were required to choose crossing opportunities based on the set walking speed of an avatar. 

The use of the avatar may have impacted participant performance in two ways. 1) The use of 

an avatar may have impacted the overall workload of the task as participants were required to 

keep the avatar’s movement speed on their mind while making crossing judgements, 2) The 

set walking speed of the avatar may not have matched the participant’s mental model of their 

movement speed. Practice trials were used to try and minimize the impact of  the crossing 

avatar. Finally, data for both studies was collected during the COVID-19 pandemic. Besides 

the extra procedures implemented in the lab, such as social distancing, mask-wearing, and 
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increased sanitation procedures, the impact of the pandemic on cognitive, perceptual, and 

psychological ability is unknown. 
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Chapter 5 : Conclusion and Future Directions 

The goal was to explore a novel method for predicting unintentional injury using 

concepts from the human error literature. Across two studies, I examined the relative impact 

of PSFs on the performance of an MOT task on performance and error/injury rate. In both 

studies, time pressure, task complexity, sensory limitations, and working memory capacity 

were manipulated as the main PSFs but applied in different contexts. In the first study, the 

PSFs were applied to an abstract MOT task. In the second study, the PSFs were applied to a 

pedestrian scenario where participants were required to track multiple lanes of traffic and 

make crossing decisions. Both studies showed similar results and provided a proof of concept 

for an early examination of error and injury together. 

 My dissertation sets the groundwork for a novel line of work examining how to better 

predict unintentional injury and error in general. By separating research from individual 

injury domains and focusing on cross-contextual behavioral processes, we can better predict 

and prevent future injuries from falling into specific categories. Furthermore, we can predict 

and prevent various injury types within one study as many domains of injury share similar 

cognitive processes. The methods discussed here make way for future predictive studies 

related to sensemaking, problem detection, decision making, communication, and action. 

Each category can be explored for the specific factors that lead to error and, therefore, injury. 

Beyond laboratory settings, the outlined work also provides new avenues for injury 

prevention agnostic of injury mode, a method for examining the design of resilient systems, 

and ensuring safe products.  
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