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Abstract 

Past studies have estimated residential water with different econometric model choices. 

Inconsistency in the choice of the price signal, its instruments, and appropriate weather 

variables have offered qualitatively different estimates of price elasticity — both elastic (>1) 

and inelastic (<1) — in the water demand literature. This distinction is important, not only 

because elasticity estimates are critical in creating efficient and effective water conservation 

and management practices, but also because accurate demand responses to price changes 

help water utilities stabilize and anticipate future revenue. Therefore, an accurate estimate of 

price elasticity is necessary, which requires specifying the appropriate demand model. 

However, specifying residential water demand with an appropriate model (under increasing 

block rates) is challenging for three reasons: 1) little theoretical motivation exists for 

determining which weather variables affect demand, 2) there is an ongoing debate over the 

appropriate price signal on residential water bills, and 3) simultaneity issues in estimation 

require the use of instruments, which vary within the literature.  

In this paper, we elucidate the effects of model choices on elasticity estimates by 

systematically varying the specification of price, instruments, and weather variables across a 

suite of models. Fixed Effects with Instrumental Variables (FE-IV) is employed in our model 

to control time-invariant effects and solve the problem of simultaneity, generating consistent 

and unbiased estimates of the coefficient. First, we conduct a formal Shin Test to investigate 

the price variables to which the households respond; after selecting the price signal, we fix 

the price variable and its instrument and re-specify the model across all possible 

combinations of weather variables (511 different combinations from the use of nine weather 

variables) to create a distribution of elasticity estimates. Lastly, we hold price signal and 

weather variables constant and run 31 separate model specifications using a suite of 

instrumental variables. Thus, this paper systematically evaluates how model choices 

influence elasticity estimates of residential demand estimation, providing insight into model 

choices and the validity of previous work. 

As found in other work, our results suggest that average price rather than marginal price is 

the appropriate price signal to which households respond. For the choice of weather, we find 

97% of our estimates between -0.83 to -0.57, which implies that choices in weather variables 
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(average versus maximum daily temperature, for example) have little (or no) impact on 

elasticity estimates. Notable exceptions to this result are model specifications which only use 

precipitation variables (excluding temperature information). In these model specifications, 

elasticity estimates are qualitatively different (>1) and the model fit is worse. These results 

suggest that, so long as temperature variables are included, parsimonious models can provide 

consistent and efficient estimates, thereby reducing the need for more in-depth measurements 

(air pressure, humidity, wind speed, for instances) offered by advanced weather stations. 

Similarly, the choice of price instruments has a negligible impact on elasticity estimates 

(estimates clustered between -0.77 to -0.69), so long as the set of instruments are valid.  

These results provide guidance to future researchers for if and how to include different 

weather metrics while modeling residential water demand. Further, these results also help 

stakeholders and water managers establish appropriate water price and pricing structure, 

thereby helping utilities stabilize and generate the revenue along with the proper demand-side 

management of water. 
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1. Introduction 

Global water demand is expected to increase by 55% from 2000 to 2050, with domestic 

water use increasing to 130% of current levels by 2050 (OECD, 2012). Accordingly, water 

utilities have engaged in pricing policies as a viable option for demand-side management, 

because the associated losses in the economic efficiency with this option are lower than many 

other conservation methods (Pérez-Urdiales et al., 2016; Roibás et al., 2007). While water 

utilities have found block rate structure as an attractive option to encourage conservation 

(Wichman, 2014), they can obfuscate the direct relationship between price and consumption, 

making it difficult for policymakers to anticipate the precise consumption and revenue effects 

of rate changes (Pérez-Urdiales et al., 2016). Though most of the literature has reported 

inelastic estimates (<1) of residential water demand, there are still some cases wherein the 

estimates are elastic (>1) (see Espey et al., 1997; Arbués et al., 2003; Worthington & 

Hoffman, 2008). Even within the inelastic estimates of water, past studies have noted a 

quantitative difference of price elasticity. For instance, Martínez-Espiñeira (2002) found 

price elasticity estimates range between -0.12 and -0.17, while Nieswiadomy & Molina 

(1989) found the price elasticity estimate of -0.86 – both of these studies computed these 

elasticities to estimate household-level water demand under increasing block rates structure 

with instrumental variables technique. These distinctions – both qualitative and quantitative – 

are important since price elasticity of demand is very crucial in finding a way of collecting 

revenue. For instance, when the demand is price elastic, quantity demanded falls sharply 

(more than the percentage change in price) even for the small increment in price, thereby 

reducing the total revenue. However, utilities can significantly encourage conservation 

through an increase in price since quantity is expected to fall substantially under elastic 

demand. For an inelastic demand of water, quantity demanded falls only slightly with the 

increase in price, which increases the amount of revenue. By comparison with elastic 

demand, if water demand is inelastic, small price increases have limited ability to induce 

conservation. So, from revenue and conservation perspectives, an accurate estimate of price 

elasticity is necessary, which requires the choice of an appropriate demand model.  

While theory and past work dictate some econometric model choices, there is an ongoing 

debate over the appropriate price signal (for instance, average vs marginal price where the 
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specification of the model with the former yields significantly higher estimates of price 

elasticity (Dalhuisen et al., 2003; Espey et al., 1997)), which is compounded by the need to 

instrument for a price, because price and quantity are simultaneously determined under 

increasing block rates structure. To address this problem of simultaneity, different studies use 

a different set of price instruments which vary across the literature. The choice of weather 

metrics as control variables is also inconsistent and lacks concrete theoretical motivation for 

if and how to include these terms in demand estimation. Logic dictates that such choices 

should not bias price estimates so long as weather is uncorrelated with price, but little work 

has formally evaluated this relationship empirically. Further, different ranges of price 

elasticity are observed across different studies. Because the demand for water differs with the 

geographical location and time, land use patterns, demographic characteristics (household 

size, income, gender, culture etc.) (Sebri, 2014), it is difficult to determine which differences 

in elasticity estimates are legitimate (real), and which ones result from model choices, which 

is why it is essential to realize the outcome of different model choices.1 

The goal of this paper is to better elucidate the effects of model choices on elasticity 

estimates by systematically varying specifications of price, instruments, and weather 

variables across a suite of regression models. This paper estimates water demand for single-

family households in the City of Fort Collins, Colorado. Fort Collins Utilities has set the goal 

of reducing the water use to 130 gallons per capita per day (gpcd) by 2030 (Water 

Conservation Annual Report, 2017).2 An increasing block rate (IBR) structure has been 

adopted by Fort Collins Utilities as a management tool to reduce the consumption of water. 

IBR structure is designed in such a way where the marginal rate of water (price per unit) 

increases with the volumetric increase in consumption i.e., a specific volume of water is 

associated with each block which is specified by different (increasing) price levels. 

Households face lower marginal rates when their consumption is in the lower block group 

and vice versa. Such block rate structure discourages the consumption of water since 

households are obliged to pay higher marginal rates when their consumption increases, 

                                                
1 Model choices in the literature include pooled OLS, Random Effects, Fixed Effects, First Differences, etc. and 

choice of functional forms include linear, log-linear, log-log, Stone-Geary. Each of these choices may effect the 

specific point estimate of own-price elasticity (Arbues et al., 2003). 
2 This goal was set in 2015 when the water usage was 141 gpcd. The water usage increased by 11.34% (157 

gpcd) in 2016 and decreased by 10.19% (141 gpcd) in 2017. 
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thereby inducing conservation among high users. IBR structures also do not place a burden 

on low-income/low-users (Wichman, 2014), making it politically attractive. 

Results from this work will provide guidance on which choices may be more appropriate 

based on statistical and economic theory and which choices affect the stability of elasticity 

estimates. This paper employs the Shin Test for the appropriate choice of price signal in 

modeling water demand and uses a suite of price instruments and weather variables to 

evaluate the sensitivity, thereby creating a distribution of price elasticity estimates based on 

model choices. We provide empirical evidence on how households respond to price and 

weather variables and how sensitive estimation results are to model specification. 

Specifically, we examine if: 

1. Households respond to average price rather than marginal price; 

2. Price elasticity of demand is sensitive to the choice of weather variables; and 

3. Price elasticity of demand is sensitive to the choice of instruments. 

Results suggest that an average price rather than marginal price is the appropriate price signal 

to which consumers respond. We find reasonably stable and robust estimates of price 

elasticity across different weather specification and choice of price instruments, with some 

notable exceptions. Understanding the implications of model choice can inform better 

estimation methodologies and ultimately help water managers and stakeholders predict 

revenue while satisfying households’ demand. 

The remainder of this paper is comprised of the following sections: Section 2 reviews the 

existing literature; Section 3 provides some insight about data, methods, and model 

specification; Section 4 summarizes and discusses results; and Section 5 concludes.
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2. Literature Review 

The relationship between price and consumption of water under different block rate 

structures has been reviewed extensively in the literature, and yet the price signal to which 

consumers respond is controversial. An accurate estimation of water demand requires an 

appropriate choice of price variable, which is coupled with the need for instruments because 

price and quantity are simultaneously determined under block rate structure. However, the 

use of price instruments varies significantly across the literature, which augments the 

complexity of the estimation process. While water demand is also determined by the weather 

the households face, there exists little theoretical economic motivation to the choice of 

weather variables and their inclusion in water demand model. Further, imprecise estimates of 

elasticity can be found when the model is mis-specified with an inappropriate functional 

form. 

2.1 Choice of Price Variables (Price and its Structure) 

In the United States, water rates system – decreasing, constant and increasing block rates –

have historically varied across time and location. These rate systems are designed either as a 

flat rate (constant block rates) or with the combination of fixed fee and variable fee (across 

blocks; increasing or decreasing block rates structures). Also, within the block rate system, 

the relative size of the fixed and variable costs varies by city and time period (for instances, 

City of Santa Fe, New Mexico vs City of Fort Collins, Colorado). Previously, water utilities 

had favored the decreasing block rates (DBR) structure to stabilize revenue because a greater 

proportion of consumers can be found in the first block group from where a large portion of 

revenue can be generated (Griffin, 2016). Under DBR structure, the marginal price of water 

decreases with an increase in quantity consumed, reflecting economies of scale. Opposingly, 

under IBR structure, the marginal price of water increases with an increase in consumption, 

which discourages the consumption of non-basic use of water. Discouraging consumption of 

water among high-users is important to cope with the increasing demand of water due to the 

increasing population for sustainable use.  

Thus, from conservation perspectives, IBR structure has become more appealing these days – 

the effectiveness of which can be measured using price elasticity as a tool (Asci et al., 2017). 

Water pricing is considered an economically efficient tool for designing incentives and 
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making the most valuable use of water (Hoyos & Artabe, 2017). Further, price can be used as 

a conservational tool by water utilities to forecast future revenue. Theoretically, for a given 

good, an increase in price decreases quantity demanded; but, because water has few 

substitutes, raising price reduces water demand only slightly – i.e., the demand of water is 

price inelastic (Worthington & Hoffman, 2008). While water demand is relatively 

unresponsive, price can still be used as a tool for demand-side management of water (Arbués 

et al., 2003), particularly when IBR are used to promote conservation. 

However, under block pricing structure, it is difficult to determine the price to which 

consumers respond (Wichman, 2014). As many consumers spend only a small portion of 

their total expenditure on water3, they are less concerned about the details of the rate 

structure such that most consumers perceive an average price rather than a marginal price as 

the cost of water (Foster & Beattie, 1981). The informational costs associated with 

understanding marginal price are substantial, primarily because it is difficult to keep track of 

cumulative consumption throughout the billing periods, which advocates the use of average 

price in lieu of marginal price (Ito, 2014; Pérez-Urdiales et al., 2016). Economic theory and 

some past studies assume that consumers understand the structure of the price and suggest 

the use of marginal price to equate costs with benefits at the margin (see Nataraj & 

Hanemann, 2011; Rinaudo et al., 2012; Vásquez Lavín et al., 2017). In contrast to these 

assumptions, Nieswiadomy & Molina (1991) commented that it is the pricing structure – IBR 

or DBR – faced by households which makes them respond to either marginal or average 

price. They concluded that consumers respond to marginal price under IBR structure and to 

average price under DBR structure. 

Taylor (1975) argued that households may face the same marginal price even if they are in 

different pricing structures and suggested the inclusion of both marginal and average prices 

to estimate demand. Taylor et al. (2004) used both marginal and average price to estimate 

residential water demand. They found that the average price specification yields an upward 

                                                
3 A notable exception to this statement is low-income households in midwestern United States that block pricing 

in those cities can be many times what it is in the fixed charge. For instance, households with a 3/4” tap in the 

City of Fargo, North Dakota pay an average variable charge of $39.6/month (for an average monthly 

consumption of 9000 gallons) which is two times higher than the minimum charge (fixed charge) of 

$17.55/month (as of 2019), reflecting the high cost-burden on water consumption across low-income 

households. 
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biased (towards unity) estimate of elasticity because of the presence of fixed charge in 

average price. They also mentioned that the exclusion of fixed charges produces a steep 

decline in the significance level of average price elasticity estimates. Maas et al. (2017) also 

excluded fixed price from the average price and used average variable price while evaluating 

the effect of conservational motives on residential water demand. Shin (1985) made an 

argument in favor of the inclusion of a fixed price while estimating electricity demand. He 

stated that the exclusion of fixed rates from the average price shifts the perceived budget 

constraints of the consumers and consequently shifts their indifference curve. Further, the 

author added that the share of the fixed charges in the total bill is even more for water 

compared to electricity, which underscores the importance of fixed charges.  

While different studies continue to use average price, marginal price or some combination of 

both as the relevant price, Shin (1985) proposed an econometric test to identify the price 

signal to which households respond. In his work, he found that households respond to 

average price rather than marginal price under DBR structure. Nieswiadomy & Molina 

(1991) used this formal test to estimate the residential water demand and found the results 

consistent to Shin (1985). Flyr et al. (2019) used the same test to explore the price 

specification in commercial water demand and found firms respond to lagged average price 

rather than marginal price, contemporaneous average price and the average price over the last 

12 months. Most recently, Ito (2014) employed the Encompassing Test, as suggested by 

Davidson and MacKinnon (1993), to choose among alternative prices (marginal price, 

expected marginal or average price), though in electricity pricing, and found consumers 

respond to the average price. 

2.2 Choice of Price Instruments 

Under linear pricing models, consumers face and react to constant marginal price to 

determine their consumption level. However, under non-linear pricing (IBR or DBR), 

consumers face a non-constant marginal price, which cannot be determined without 

determining households’ consumption level, causing simultaneity (Clarke et al., 2017). Even 

though households are assumed to respond to the average price, the simultaneity issue still 

prevails since water prices increase even with the decrease in water demand because of the 
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associated fixed costs in the average price (Schleich & Hillenbrand, 2009).4 Even if the water 

rate structure is known properly, a simultaneous-equation problem theoretically occurs unless 

there exists an infinitely elastic price (Arbués et al., 2003). 

Further, it is difficult to include all the relevant explanatory variables in the model due to the 

limitations of the available data or because the effect of omitted variables from the model is 

unknown (Kenney et al., 2008). If such omitted variables are correlated either with the 

dependent variable or with both dependent and one or more of the included independent 

variables, then the estimates from OLS will be biased and inconsistent (Greene, 2003).5 

Both simultaneity and omitted variables can create endogeneity issues while modeling water 

demand and require the use of instrument variables (IV). However, the choice of instrument 

varies across the literature. Clarke et al. (2017) used total annual expenditure on water for 

each household, the price for first block group, and the difference between each successive 

block price, along with the fixed charge as a set of instrumental variables and regressed them 

on lagged price and the price-difference variable. Utility determines all these instrument 

variables, except total annual expenditure, so they are not directly related to the water 

consumption; however, they are strongly correlated with price variables. Also, total annual 

expenditure is not substantially correlated with the consumption in a given period, though 

correlated to some extent with annual consumption. Kenney et al. (2008), consistent with 

Nieswiadomy and Molina (1988), also employed parameters of rate structure i.e., the actual 

marginal prices that households face at the different consumption level as instrumental 

variables. They argued that the width of each block i.e., the difference between the 

consumption between each successive block cannot be the valid instruments because they 

might be correlated with any unobserved variables during any period when specific water 

costs are allocated. Wichman et al. (2016) followed Olmstead (2009) and used basic service 

fees and marginal price (full block rate structure i.e., price for each block group) to account 

                                                
4 Households might not have the separate information on average fixed and variable price that are associated 
with average price. 
5 Such omission of variables also affects the standard error of the estimators, the extent of which depends on the 

correlation between omitted variables and the included independent variables. For example, if omitted variables 

are highly correlated with the included independent variables, then the omission of variables decreases the 

standard error of the coefficient; however, if they are also found to be correlated with the dependent variable at 

the same time, then omission of variables might increase the standard error of the coefficient.  
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for endogeneity since they are correlated with the water consumption only through the price 

variables. Similarly, Pérez-Urdiales et al. (2016) also used a full set of marginal price in each 

block as a price instrument. Other literature to use marginal price as a price instrument are 

Nieswiadomy and Molina (1989), Price et al. (2014), and Reynaud et al. (2005). 

Most recently, the number of billing days was introduced as the possible instrument for the 

price to solve for endogeneity because it is correlated with the lagged average price but 

uncorrelated with the current water consumption (Flyr et al., 2019). The author also 

mentioned that using billing days as price instruments reflects the exogenous variation across 

both households and time, whereas simply using block rates to instrument does not allow for 

interhousehold variation among instruments because price structures are usually identical 

across a service area. 

2.3 Choice of Weather Variables 

Water demand is also determined by the weather that households experience, which 

necessitates the inclusion of weather variables in regression-based water demand modeling 

(Gutzler & Nims, 2005; Kenney et al., 2008). However, the inclusion of weather variables in 

the model is challenging for two reasons: first, the weather varies within the region because 

of the microclimatic variation; and second, the impact of weather on consumption is likely to 

vary by land-use characteristics (urban density, for instance) (Kenney et al., 2008). 

Moreover, it is unclear how individuals perceive temperature and precipitation events and 

how those perceptions align with actual evapotranspiration (ET) requirements of the 

landscape (Kenney et al., 2008). 

Accordingly, the use of weather variables for estimating water demand is inconsistent in the 

literature. Vásquez Lavín et al. (2017) used monthly average temperature and monthly 

average precipitation to estimate monthly household water consumption. They found a 

negative correlation of consumption with both weather variables. In contrast, Hoyos & 

Artabe (2017) used average annual temperature and found the relation as positive. Espey et 

al. (1997), in their meta-analyses, found significantly lower estimates of elasticity when both 

ET and rainfall were included in the model. Clarke et al. (2017) used potential ET instead of 

temperature. They also used number of rainy days along with total precipitation and found 

the former to be a better indicator and more significant in consumer landscape-watering 
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decisions. Martínez-Espiñeira (2002) suggested a similar result – the impact of a number of 

rainy days on the water demand is larger than that of the total rainfall. Hoffmann et al. (2006) 

used the number of rainy days and the number of warm days in each quarter (those with a 

daily maximum in the uppermost quartile of all daily temperatures) and found a significantly 

negative impact on water demand. Romano (2014) found no influence of temperature while 

estimating the average consumption of drinking water for domestic use; however, they 

showed that precipitation exerts a significant negative effect on water consumption. 

Maidment and Miaou (1986) showed the non-linear effect of weather variables in water 

demand using daily water use data. They specified that the effect of rainfall in water demand 

diminishes over time; also, there is no effect of daily maximum air temperature between 40 

to 70-degree Fahrenheit; beyond 70, water demand increases with the increases in 

temperature. A consensus for weather variable parameterizations in water demand modeling 

has not yet been reached (Kenney et al., 2008), and since the above studies differ in location, 

time, and model choice, it is unclear if differences in their results are a function of study 

setting or model choice. 

2.4 Choice of Functional Form 

While reviewing water demand literature, Arbués et al. (2003) mentioned the choice of 

functional form as another problem in the estimation process. Vásquez Lavín et al. (2017) 

added that the use of different functional form in water demand estimation yields different 

estimates of the coefficient and recommended to report the different estimated values for 

different functional form.  

Economic theory states that any specification of functional form while modeling water 

demand should characterize households’ utility function. Two common approaches in the 

literature for defining the model in the similar outline are Cobb-Douglas utility function 

(Howe & Linaweaver, 1967) and Stone-Geary utility function (Clarke et al., 2017; Gaudin et 

al., 2001; Vásquez Lavín et al., 2017). The former approach does not segregate between 

different uses of water (indoor or outdoor water uses, for example) and models the water 

demand as a single commodity, while the latter approach separates the demand of water 

across different uses and models the water demand treating each use of water as a separate 
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entity (Baumann et al., 1997). Both Cobb-Douglas and Stone-Geary functional form are 

inflexible in terms of direct estimation of price elasticity.  

Alternatively, simpler and flexible functional form are offered across the literature; among 

which, the most commonly used functional form is the linear water demand function.  

Dalhuisen et al. (2001) found a linear specification to be much simpler and to have 

substantial explanatory power as compared to the non-linear specification. This functional 

form has faced criticism in the literature for two reasons: first, there is a constant change in 

water demand with respect to the change in price at every price level, i.e., price elasticity 

decreases along the demand curve under linear price specification (Arbués et al., 2003; 

Gaudin, 2006); and second, the consumption of water is zero at the choke price which 

contradicts properties of water as an essential good (Arbués et al., 2003; Hoyos & Artabe, 

2017). 

Recent literature has used log-log (double-log) functional form more frequently. Under the 

log-log functional form, price elasticity coefficients can be directly estimated and can be 

compared with the previous estimates (Gaudin, 2006; Hewitt & Hanemann, 1995). This 

functional form assumes elasticities to be constant over the entire domain of variables which 

actually might differ for the low and high prices (Arbúes et al., 2004). Because of the 

nonconstant price elasticities, the double-log functional form requires the use of the squared 

term, which lets the price elasticity to decrease with the price (Gaudin, 2006; Hoyos & 

Artabe, 2017). Alternately, the semi-log functional form is used because it allows us to 

measure price elasticity when it is not constant (Arbúes et al., 2004).



11 

 

3. Methods and Model Specification 

3.1 Data 

3.1.1 Water Billing Data (Water Consumption and Pricing Structure) 

Meter-level billing data on monthly water consumption and water rates (pricing structure) are 

obtained from Fort Collins Utilities for a period of nine years (2006-2014). This raw dataset 

is an unbalanced panel6 of single-family households7 from where we obtain monthly water 

consumption, number of days in each billing period, amount of revenue collected for 

corresponding billing periods, bill dates, and a unique identification for households’ and 

water-tap numbers. Differentiation across households and tap accounts allow us to remove 

accounts which serve many locations, under the assumptions that these are rental homes 

where utilities are likely included in the lease rate.8 

Fort Collins Utilities use a combination of base charges (fixed irrespective to the 

consumption level) and volumetric charges (per 1,000 gallons) to bill the households. 

Households face different marginal rates (per unit price) based on the block they are in and 

rates increase across blocks. Three-blocked water rate structure is used to calculate the total 

bill of the households. These blocks are determined based on the volume of consumption, 

which breaks at 7,000 and 13,000 gallons (for single-family households) i.e., 0 to 7,000 

gallons for the first block, 7,000 to 13,000 gallons for the second block, and over 13,000 

gallons for the third block. Although these volumetric breaks of consumption levels for 

different blocks remained constant throughout the study periods, the price at each block 

changed five times between 2006 to 2014 (see Figure 1). 

Figure 1 

                                                
6 Panel data approaches have comparative advantage over cross-section or time series data as they estimate 

water demand more accurately, allowing both temporal and subject-based variability to integrate into the 

coefficient estimates (Polebitski & Palmer, 2009).   
7 About 76% of taps in Fort Collins Utility service areas are for the single-family households. 
8 While these customers may still respond to price increases through higher lease rates or the installation of 

efficiency appliances, these premises add a complication in single family home estimation and are unlikely to 

have the same underlying data-generating process as homes who pay their utility bill directly. 
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3.1.2 Construction of Price Variables 

The consumption level of the households determines the block group they face for any given 

period. Consequently, such block group determines the rate that the households face, which 

we considered as their marginal price (MP). We create an average price (AP) variable based 

on total revenue and consumption data as recorded on the water bill.9 Both MP and AP were 

lagged by one period since households are aware of the price only from the previous billing 

period when deciding their current consumption level (Clarke et al., 2017).10 While it is not 

the primary reason to do so, an additional benefit of using lagged price as the explanatory 

variable is the possibility of reducing simultaneity between price and consumption (Clarke et 

al., 2017; Garcia‐Valiñas et al., 2014). 

3.1.3  Weather data 

Daily weather data from a period 2006 to 2014 are collected from the Colorado Agricultural 

Meteorological Network (CoAgMet) station located in Fort Collins (CCC, 2018). As shown 

Table 1, we include only those weather variables that are frequently used in the literature 

which are: maximum temperature (Martínez-Espiñeira & Nauges, 2004; Olmstead et al., 

2007; Wichman et al., 2016), minimum temperature (Guhathakurta & Gober, 2007), average 

temperature (Klaiber et al., 2014; Price et al., 2014), average precipitation (Vásquez Lavín et 

al., 2017; Yoo et al., 2014), evapotranspiration (Baerenklau et al,, 2014; Wichman, 2014), 

number of cooling degree days (Lyman, 1992; Strong & Smith, 2010), total amount of 

precipitation (Clarke et al., 2017; Kenney et al., 2008; Maas et al., 2017), number of days 

with precipitation (Clarke et al., 2017; Martínez-Espiñeira, 2002) and average relative 

humidity (Hung et al., 2017). The first five weather variables are obtained directly from 

CoAgMet station while the other four weather variables are created using maximum 

temperature, minimum temperature, precipitation, maximum relative humidity, and minimum 

relative humidity (see Appendix 1 for construction of weather variables). We aggregate 

                                                
9 We also computed the actual revenue for each observation using the fixed charge and the block price they face 

in accordance to their consumption level to calculate actual average price that the households face. Observations 

were dropped from the dataset if the absolute difference between actual average price and the average price 

based on the recorded data on water bill is more than $2. 
10 While creating a lagged variables, we ensure that the observations for the given households take the value 

from the previous bill which is only one month ago.  
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these daily weather variables across the exact date of each household to match the number of 

days in the billing cycle. 

Table 1 

3.1.4 Data Cleaning 

Any observations with more than one tap per household, observations with a consumption 

level of less than 10 gallons and more than 2,160,000 gallons11, observations with total 

revenue less than base charge (fixed charge) and observations with days of service (number 

of days in each billing period) less than 25 days and more than 35 days12 are dropped from 

the dataset for analysis. We also drop observations when the difference between the action 

date (defined as the date when the bill is notified to the households) and the charge date 

(defined as the date when the bill is actually charged) is more than 30. Further, any 

observations that do not appear for more than 24 times throughout the period of study are 

also dropped to assure sufficient within variation in each group of the household. Lastly, we 

drop observations with any missing information. 

3.1.5  Summary Statistics 

After cleaning the data, we are left with 1,278,882 unique observations for a total of 21,874 

single-family households from the period of Jan 2006 to Dec 2014. The share of these 

observations across different blocks i.e., first, second and third block group are 55.32%, 

22.84%, and 21.84% respectively, indicating that majority of the observations face the lower 

marginal price.  

We begin our analysis plotting mean monthly value for consumption, average price, and 

marginal price, across the study period (Figure 2). As expected, there is a noticeable decline 

in the average consumption of water over the years. One reason might be the prevalence of 

IBR structure throughout the study period which induced conservation since households face 

higher marginal price when their consumption increases. The city of Fort Collins has faced 

                                                
11 This is the maximum amount of water that a ¾” tap could dispense in a month given the average water 

pressure in the city. Realistically, this upper bound is likely too high, since it can only be achieved by running 

water from every faucet continuously for 30 days.  
12 Fort Collins Utility used human meter readers during this study period so the billing length (days) were not 

same across households. Households might face higher marginal rate if their billing cycles are longer. On that 

account, we decide to control the number of billing days using this arbitrary number. 
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the same marginal rate in each block from the period of 2007 to 2009, which means 

households are consuming either in the same block group or in the lower one, but not in the 

higher block. This should hold the consumption constant or should decrease it. Not 

surprisingly, we observe the declining trend of water consumption in those years. The 

sharpest decline in consumption can be observed during 2013-2014, which coincided with 

the largest incremental increase in blocked rates. Consistent with economic theory, an 

increase in price during this period corresponds to a decrease in consumption.   

Figure 2 

Descriptive statistics of the variables along with their description used in our analysis are 

listed in Table 2 and Table 3 respectively. A large variation can be observed in the water 

consumption – the dependent variable of our data referring to the total water consumption of 

a household in a distinct billing period (which is identical to one month) – since standard 

deviation (8367.87 gallons) is very large and almost close to the mean consumption (9039.83 

gallons). We observe a noticeable difference between mean monthly average price ($5.50 per 

1000 gallons) and mean monthly marginal price ($2.27 per 1000 gallons) because the fixed 

charges are embedded only into the average price but not into the marginal price. Except 

price, other independent variables that have been used for the analysis are different weather 

parameters as stated in Section 3.1.3 and number of billing days in each cycle (DOS).13 

Table 2 and Table 3 

3.2 Model Specification 

Pooled Ordinary Least Squares vs Fixed Effects vs Random Effects model 

Prior to modeling our residential water demand, we decide to specify our model with the 

correct form of functional form, which otherwise will lead to imprecise estimates of price 

elasticity. Valid reasoning for the choice of functional form has often been ignored in the 

literature. The appropriate functional form in which the data fits better can be known by 

                                                
13 We choose not to include income variables in our model, since we expect income of the households to be 

constant throughout the study period. We also choose not to adjust the price for inflation because adjusting the 

price without the real adjustment in income will lead to imprecise (upward biased) estimation of price elasticity. 

While adjusting the nominal price to real one helps to remove the affect of general inflation, the true effect of 

price changes on consumption cannot be determined without adjusting income. 
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knowing the data itself. Rather than following many sophisticated approaches of empirically 

fitting the data to choose different functional form, we choose simply to plot the predicted 

value of consumption against different possible values of price (average).14 As shown in 

Figure 3, the relationship between water consumption and price is found to be non-linear. 

We compare this graph with the graphs of the standard non-linear form (linear-log, log-

linear, and log-log) and found it to coincide with the plot of log-log functional form. Also, 

this functional form preserves the assumptions of zero mean and normality of the residuals 

for all the specified model in Equation (1), (2) and (4) under both MP and AP specification 

(see Figure 4).15 

Figure 3 and Figure 4 

To ensure robustness, we begin our specification with the pooled Ordinary Least Squares 

(OLS) model: 

𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡 + 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡

+  𝛽6𝑝𝑝𝑡 +  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡 +  𝛽10𝑐𝑑𝑑𝑡

+ 𝛽11𝐷𝑂𝑆𝑖𝑡 + 𝛼 + 𝜀𝑖𝑡 

(1) 

where 𝑙𝑛(𝑄𝑖𝑡) is the natural log of water consumption for households i over billing period t; 

𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) is the natural log of one period lagged average or marginal price; 𝑡𝑚𝑎𝑥𝑡 is 

maximum daily temperature; 𝑡𝑚𝑖𝑛𝑡 is minimum daily temperature; 𝑡𝑎𝑣𝑒𝑡 is an average of 

daily mean temperature; 𝑟ℎ𝑎𝑣𝑒𝑡 is average relative humidity; 𝑝𝑝𝑡 is average precipitation; 

𝑝𝑝𝑑𝑎𝑦𝑠𝑡 is number of days with precipitation; 𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 is the total amount of 

precipitation; 𝐸𝑇𝑡 is average evapotranspiration rate; 𝑐𝑑𝑑𝑡 is number of cooling degree days; 

𝐷𝑂𝑆𝑖𝑡 is number of billing days for each billing period; 𝛽𝑠 are the coefficients of parameters 

to be estimated; 𝛼 is estimated as the constant term which neither varies with the households 

nor with the time; and 𝜀𝑖𝑡 is an error term. 

                                                
14 We simulate our model with the assumed function i.e., �̂� = 𝐴𝑃𝛽, where �̂�= predicted consumption, P is a 

vector of average prices between $1 to $12 per 1000 gallons, 𝛽= price elasticity form preferred model (from 

Table 7), and A = constant generated by using the monthly average (of June 2014) of each of the independent 

variables. 
15 Before plotting the histogram of the residuals, all three models in Equation (1), (2) and (4) are instrumented 

with fixed charge, price of block one, successive difference between block groups and days of service as in 

Equation (5a); and also standard errors estimated are robust to households. 
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Under zero conditional mean of 𝜀𝑖𝑡, homoscedasticity, strict exogeneity of explanatory 

variables, OLS renders consistent and efficient estimates and needs no further analysis 

(Greene, 2003). However, our dataset is not rich enough to include housing characteristics 

like household size, number of bathrooms, income and demographic characteristics like age, 

sex and social attitudes in our model – which should also be considered as the factors 

influencing residential water demand as found in different water demand literature (Arbués et 

al., 2003; Klein et al., 2007; Maas et al., 2017). The estimates from OLS will no longer be 

consistent and suffer biases when such variables are excluded from the model. 

Fortunately, panel data allows us to incorporate such unobserved household heterogeneity, 

introducing a household-specific fixed or random effect term into the model. If household 

effects are assumed to be constant over time (i.e., time-invariant) and are correlated with 

independent variables, then a fixed effects (FE) model (the introduction of fixed-term16 – 

household-specific constant effect – into the model) reduces the threat of omitted variable 

biases and removes the effect of all the variation across households.17 

The FE model is specified as follows: 

where 𝛼𝑖 is the fixed effects term (time-invariant unobservable) that are averaged out of the 

model using the within transformation. 

Equation (2) can be rewritten as: 

                                                
16 If such unobservable heterogeneity of households are time-invariant, then the effects of such variables on 

households will be same across the study period so they are considered as fixed (Allison, 2009); and such fixed 

characteristics do not influence any change in the dependent variable (Stock & Watson, 2015). 
17 Here, we assume that any changes over time in unobservable heterogeneity within each household are 

uncorrelated with changes over time in price and consumption, or else FE model will still suffer from omitted 

variable bias. 

 

𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡 + 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡 +  𝛽6𝑝𝑝𝑡

+  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡 +  𝛽10𝑐𝑑𝑑𝑡 + 𝛽11𝐷𝑂𝑆𝑖𝑡 +  𝛼𝑖

+ 𝜀𝑖𝑡 

(2) 

𝑙𝑛(𝑄𝑖𝑡
) = 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒

𝑖𝑡−1
) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡 + 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡 +  𝛽6𝑝𝑝

𝑡

+ 𝛽7𝑝𝑝𝑑𝑎𝑦𝑠
𝑡

+ 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝
𝑡

+ 𝛽9𝐸𝑇𝑡 +  𝛽10𝑐𝑑𝑑𝑡 +  𝛽11𝐷𝑂𝑆𝑖𝑡 + 𝜀𝑖𝑡 
(3) 
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where each of these variables is represented in demeaned form. 

However, if we assume such time-invariant characteristics to be uncorrelated with the 

included variables of all past, present and future time periods, then random effects (RE) 

model (the introduction of household-specific random effects into the model) produces 

efficient estimates (smaller standard error than FE model) of the coefficient.18 Compared to 

the FE model, the RE model allows us to estimate the effects of time-invariant characteristics 

– improper control of which in the model may lead to the biased and inconsistent estimates of 

the coefficient. 

The RE model is specified as follows: 

𝑙𝑛(𝑄𝑖𝑡) = 𝛽0 + 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡 + 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡

+  𝛽6𝑝𝑝𝑡 +  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡 +  𝛽10𝑐𝑑𝑑𝑡

+ 𝛽11𝐷𝑂𝑆𝑖𝑡 + 𝑣𝑖𝑡 

(4) 

where 𝑣𝑖𝑡 = 𝜇𝑖 + 𝜀𝑖𝑡 is the composite error term; 𝜇𝑖 refers to the household-specific random 

effect term which does not vary with the time; 𝜀𝑖𝑡 is an error term that explains both temporal 

and spatial variation; and 𝛽0 is the constant term. 

We test for heteroscedasticity specifying both FE and RE models with MP and AP 

specification.19 For the FE model, we compute modified Wald statistics as suggested by 

Greene (2003); while for the RE model, we perform the Breusch-Pagan LM test. Regardless 

of the specified price, heteroskedasticity is present in both models (for FE - with MP: 𝜒2 =

8.7 × 105, with AP: 𝜒2 = 8.7 × 105and for RE - with MP: 𝜒2 = 4.2 × 106, with AP: 𝜒2 =

1.0 × 106) because the variance in price for the households in each block group differs from 

each other, which means the effect of price on consumption is different for the households in 

the different block group. Such variance does not affect the observations individually but 

affects the households within each group, leading to the groupwise heteroskedasticity.  

                                                
18 However, efficiency is rarely a concern in our model because of the very large sample size, which produces 

very small standard errors. 
19 We do not know the price variables that households respond to, so we conducted test for heteroscedasticity on 

both average and marginal prices. 
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We choose between FE and RE models using a Mundlak approach as suggested by Greene 

(2011), as an alternative to a Hausman Test.20 The Mundlak approach tests if time-invariant 

characteristics in the model are correlated with the independent variables in the RE model. 

This technique computes the average of each of the independent variables at household-level 

and uses those averages as a regressor (separate variable) in addition to what is already in 

Equation (4). Then, we test for whether those averages are jointly equal to zero as a null 

hypothesis. Rejection of the null indicates that the time-invariant characteristics in Equation 

(4) are correlated with the other independent variables (which is an assumption for the FE 

model), suggesting the use of the FE model. 

This test assumes that the regressors in the RE model are uncorrelated with the household-

specific error terms (i.e., 𝜇𝑖 in Equation 4). Under the null, such orthogonality condition is 

valid, which increases the efficiency of random effects estimators compared to fixed effects; 

alternatively, the rejection of null suggests the estimates from RE model is not consistent 

because the condition of orthogonality might not be valid; hence FE model should be 

preferred. 

We employ this Mundlak technique to our model and find the FE model to yield consistent 

coefficients estimates for both MP (𝜒2(11) = 5.5 × 104, 𝑝 =  0.00) and AP (𝜒2(11) =

4.0 × 104, 𝑝 =  0.00) specification. 

Instrumental Variables Approach 

Under block rate pricing structure, both price (MP or AP) and consumption are 

simultaneously determined which biases coefficient estimates (Arbués et al., 2003). The use 

of instrumental variables to resolve the problem of simultaneity between price and 

consumption is increasingly common in water demand literature. In the presence of 

simultaneity, price is endogenous i.e., it is correlated to the error. It appears that much of the 

variation in consumption is due to the variation in price, though some part of the variation is 

                                                
20 Hausman Specification Test relies on the assumption of homoscedasticity so we cannot perform this test to 

choose between FE and RE model. Unlike Hausman test, this test allows us to cluster the estimates of standard 

error at households’ level. Clustering the error at household level is necessary, since these observations are 

related, and will lead to more consistent estimates of  standard error. 
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because of the variation in error (caused by the variables outside the equation). Under such 

condition, OLS suffers from biases and the estimated price coefficient will not be consistent. 

An introduction of the instrumental variable, if valid, helps to find the true effect of price on 

consumption by isolating the exogenous part of the price (the part that is uncorrelated with 

the error). The validity of the instruments relies on two assumptions: 1) Relevance and 2) 

Exogeneity (Greene, 2003). The first assumption of relevance states that the instruments 

should not only be correlated with the endogenous variables (price variable in our model) but 

also should explain the large variation of that variable (i.e., instruments should not be weak). 

The second assumption requires that such instruments should not be correlated to the error 

term. Valid instrumental variables improve the estimates by consistently estimating the 

coefficients though less precisely than OLS – in the presence invalid instruments, the loss of 

precision will be severe, and the estimates, compared to corresponding OLS, will be more 

biased and inconsistent.21 This highlights the necessity of having valid instruments in the 

model. 

Lagging price variable by one period may help ameliorate the problem of simultaneity; 

however, we still suspect the presence of simultaneity in our model because households may 

choose their current consumption level based on the last period of consumption, which is 

simultaneously determined by the price at that period. To confirm this suspicion, we perform 

a Davidson-MacKinnon test of exogeneity, which tests for the consistency of the OLS 

estimates against IV estimates. The null hypothesis for this test states that estimates from 

OLS estimator are consistent; rejecting the null suggests the presence of endogeneity and 

hence requires the use of IV estimator (Davidson & MacKinnon, 1993).  

While most of the water demand literature rely on the theoretical explanation to justify the 

validity of the instruments, few – Flyr et al. (2019), for instance – have tested the validity of 

instrument choice empirically. We test a complete set of instruments commonly used in the 

literature (a fixed charge, price for block one, the successive difference between block groups 

and days of service).22 We select two-stage least squares (2SLS) regression as our IV 

                                                
21 Further, in the presence of weak instruments, the sampling distribution of 2SLS and its t-stat will not be 

normal even if the number of observations are very large, leading to possible type I or II errors.  
22 See Section 2.2 for the theoretical explanation on validity of these instruments. 
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techniques. First, we regress the lagged price variable on the set of price instruments and 

weather variables and test the correlation of our instruments with price variables running first 

stage regression; we also check the Kleibergen-Paap rk Wald F-statistic (hereafter referred as 

Kleibergen-Paap F-stat) to see whether these instruments are weak.23  

This first stage of the 2SLS estimator is specified as follows: 

where 𝜂𝑠 and 𝛿𝑠 are the coefficients of parameters to be estimated; 𝐹𝐶𝑖𝑡−1 is one period 

lagged fixed charge set by the utility; 𝑏𝑙𝑜𝑐𝑘𝑝𝑟𝑖𝑐𝑒1𝑖𝑡−1 is one period lagged price in block 

group one i.e., first block; 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1𝑖𝑡−1 is one period lagged difference in prices between 

block group one and block group two; 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2𝑖𝑡−1 is one period lagged difference in 

prices between block group two and block group three; 𝐷𝑂𝑆𝑖𝑡−1 is one period lagged days of 

service; 𝜌𝑖 is the fixed effect term; and 𝛾𝑖𝑡  is the error term. 

We predict the price from this first stage (using Equation 5a) and then use it as a regressor on 

the consumption of water in the second stage where we test the exogeneity of the instruments 

using the Hansen J-statistic.24  

This second stage of the 2SLS estimator is specified as follows: 

                                                
23 Since we clustered our error over both households and time to solve the problem of heteroskedasticity in our 

model, Cragg-Donald Wald F-statistic is no longer valid and hence should not be used as a measure to check 

the weakness of the instrument; instead Kleibergen-Paap F-statistic can be used (Baum, 2007). However, the 

rule of thumb for both of these F-statistics is same, that the value of F-statistic (joint significance) of the 

instrument(s) from first stage regression should be greater than 10 for exactly identified model i.e., when 

number of instruments equals the number of endogenous regressors and 13.91 when the number of instruments 

used exceeds the number of endogenous regressors or else those instrument(s) will be considered as weak. 
24 Hansen J-statistic, often regarded as J-test, is not the actual test of exogeneity, however, is the test of 

overidentifying restrictions, which tests the exogeneity of the overall instruments given at least one of the 

instruments used in the model is exogenous. Under null, the instruments are exogenous i.e., uncorrelated with 

the error; rejecting the null suggests at least one of the instruments in the model is not exogenous i.e., not valid. 

This test does not perform when the model is exactly identified i.e., when number of instruments used in the 

model are equal to the number of endogenous regressors.  

𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) = 𝜂1𝑡𝑚𝑎𝑥𝑡 + 𝜂2𝑡𝑚𝑖𝑛𝑡 + 𝜂3𝑡𝑎𝑣𝑒𝑡 + 𝜂4𝑟ℎ𝑎𝑣𝑒𝑡 + 𝜂5𝑝𝑝𝑡

+  𝜂6𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝜂7𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝜂8𝐸𝑇𝑡 +  𝜂9𝑐𝑑𝑑𝑡 + 𝜂10𝐷𝑂𝑆𝑖𝑡

+ 𝛿1𝐹𝐶𝑖𝑡−1 + 𝛿2𝑏𝑙𝑜𝑐𝑘𝑝𝑟𝑖𝑐𝑒1𝑖𝑡−1 + 𝛿3𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1𝑖𝑡−1

+  𝛿4𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2𝑖𝑡−1 + 𝛿5𝐷𝑂𝑆𝑖𝑡−1 + 𝜌𝑖 + 𝛾𝑖𝑡  

(5a) 
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𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1̂ ) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡 + 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡

+  𝛽6𝑝𝑝𝑡 +  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡 +  𝛽10𝑐𝑑𝑑𝑡

+ β11DOSit +  𝛼𝑖 + 𝜀𝑖𝑡 

(5b) 

where 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1̂ ) is the predicted price from equation (5a), 𝛼𝑖 is the fixed effect term and 

𝜀𝑖𝑡 is the error term. 

The Kleibergen-Paap F-stats from the first-stage regression for both AP and MP specification 

are 92.88 and 88.04 respectively (which are greater than the critical value of 13.91) 

suggesting that the IVs used in Equation (5a) are not weak instruments. The p-values from 

Hansen J-statistic for both AP and MP specification are 0.0018 and 0.30 respectively, 

indicating that at least one of the instruments is not exogenous when our model is specified 

with the average price. Since we have valid economic reasoning for exogeneity of each of 

our instruments, we are not much concerned for the rejection of null with J-test and still 

prefer all five instruments in Equation (5a) to perform Davidson-MacKinnon Test of 

exogeneity.25  

By employing Davidson-Mackinnon Test, we reject the null hypothesis (at 5% level of 

significance) that price variables (both AP and MP) are exogenous, which confirms the 

presence of endogeneity and requires the use of price instruments to get unbiased estimates 

of coefficients. 

Using the FE-IV model, we proceed with the remainder of this section as follows: first, we 

employ Shin Test to determine the price variable that households respond to; second, we test 

the sensitivity of price elasticity to the choice of weather variables; third, we test the 

sensitivity of price elasticity to the choice of instrumental variables; and fourth we select a 

model using different measures of goodness-of-fit and cross-validate it. 

                                                
25 We recommend that the results from J-test should be taken lightly since J-test does not strictly determine if 

instruments are valid. Indeed, the sensitivity tests around the instrument choice suggests, they are valid (in most 

cases). Even if the instruments used are valid, the test can be rejected for two reasons: i) because of the wrong 

functional form associated with the model (though not a problem in our case) ii) or because of the 

heterogeneous effect of the price on consumption. We argue that the rejection of the null hypothesis in our 

model is because of the second reason (see Appendix 2 for details). 
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3.2.1 Shin Test 

The very first objective of this research is to determine the price variables – average or 

marginal price – to which households respond and correctly specify this price signal into the 

residential water demand model. Shin (1985) developed a formal test called the Shin Test to 

determine the perceived price while estimating electricity demand. He introduced a perceived 

price (𝑃∗) as a function of marginal price (MP), average price (AP) and the price perception 

parameter (k) such that: 

𝑃∗ = 𝑀𝑃𝑖𝑡 (
𝐴𝑃𝑖𝑡−1

𝑀𝑃𝑖𝑡
) 𝑘 (6) 

The price that households perceive depends on the value of k. Households perceive marginal 

price when 𝑘 = 0; households perceive average price when 𝑘 = 1; perceived price rests 

between marginal and average price when 0 < 𝑘 < 1; and it is above average price when  

𝑘 > 1 (see Flyr et al., 2019; Nieswiadomy & Molina, 1991; Shin, 1985; Taylor et al., 2004 

for details). 

Because water shares a similar rate structure to electricity, we decide to employ this test, 

similar to Flyr et al. (2019) and Nieswiadomy and Molina (1991), in our water demand 

model.26 We lag the average price by one period but use the contemporaneous marginal price 

to create 𝑃∗ and substitute the price variable (𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1)̂  in Equation (5b) with 𝑃∗.27 We 

estimate the following equation to test the price variable that households perceive: 

𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛 (𝑀𝑃𝑖�̂� (
𝐴𝑃𝑖𝑡−1

̂

𝑀𝑃𝑖�̂�

) 𝑘) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡 + 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡

+  𝛽6𝑝𝑝𝑡 +  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡 +  𝛽10𝑐𝑑𝑑𝑡

+ 𝛽11𝐷𝑂𝑆𝑖𝑡 + 𝛼𝑖 + εit 

(7) 

where 𝑀𝑃𝑖�̂� is the instrumented contemporaneous marginal price; 𝐴𝑃𝑖𝑡−1
̂  is one period lagged 

predicted average price using full set of instruments. 

                                                
26 Flyr et al. (2019) employed this test while modeling commercial water demand and Nieswiadomy & Molina 

(1991) performed this test while modelling residential water demand. 
27 We first predicted the lagged AP and MP from the first stage (identical to Equation 5a) and then used such 

predicted prices to construct P* in the second stage (as an substitute 𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1̂  in Equation 5b) to solve the 

endogeneity issues in P*, if any. 
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Equation (7) can be rewritten as: 

𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛(𝑀𝑃𝑖�̂�) + 𝛿 𝑙𝑛 (
𝐴𝑃𝑖𝑡−1
̂

𝑀𝑃𝑖�̂�

) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡

+ 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡 +  𝛽6𝑝𝑝𝑡 +  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡

+  𝛽10𝑐𝑑𝑑𝑡 + 𝛽11𝐷𝑂𝑆𝑖𝑡 + 𝛼𝑖 + εit 

(8) 

where 𝛿 = 𝛽1𝑘 and 𝛿 is not clearly identified.    

We use Equation (8) to test the null hypothesis: 𝛽1 = 𝛿. Failing to reject this hypothesis 

means 𝑘 = 1, indicating households are more responsive to average price than marginal 

price.  

3.2.2 Test Sensitivity to the Choice of Weather Variables 

The second objective of this paper is to formally evaluate the effect of weather variable 

choices on own-price elasticity estimates of water demand. To begin, we combine the nine 

weather variables from our dataset in 511 possible ways.28 Keeping the instrument variable 

constant, we remodel the first stage regression Equation (5a) as follows: 

where 𝑋𝑡 is every possible set of weather variable during period t; and 𝜂𝑘+1 are the 

coefficients of weather variables to be estimated. 

Using the predicted price from Equation (9a), we estimate the second stage regression as: 

𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1̂ ) + 𝛽2𝐷𝑂𝑆𝑖𝑡 + 𝛽𝑠+2𝑋𝑡 +  𝛼𝑖 + 𝜀𝑖𝑡 (9b) 

where 𝛽𝑠+2 are the coefficients of weather variables to be estimated. 

Equation (9b) provides us the direct estimation of price elasticity of water demand. 

3.2.3 Test Sensitivity to the Choice of Instrumental Variables 

The third objective of this paper is to evaluate the effect of the choice of price instrument on 

own-price elasticity of water demand. We hold the weather variables in Equation (5a) as 

                                                
28 We determine the number of n-combinations for all n using formula 2n -1 where ‘1’ rules out the empty set. In 

our case, n = 9 (total number weather variables), so 2n -1= 511. 

𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) = 𝜂0 + 𝜂1𝐷𝑂𝑆𝑖𝑡 + 𝜂𝑘+1𝑋𝑡 + 𝛿1𝐹𝐶𝑖𝑡−1 + 𝛿2𝑏𝑙𝑜𝑐𝑘𝑝𝑟𝑖𝑐𝑒1𝑖𝑡−1

+ 𝛿3𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1𝑖𝑡−1 +  𝛿4𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2𝑖𝑡−1 + 𝛿5𝐷𝑂𝑆𝑖𝑡−1 + 𝜌𝑖 + 𝛾𝑖𝑡 
(9a) 
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constant and allow the instrumental variables to run across the model. We create 31 different 

sets of price instruments (using the same technique of 2n -1 as in Section 3.2.2) by combining 

five different price instruments that we used before and then remodel Equation (5a) as 

follows: 

𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) = 𝜂1𝑡𝑚𝑎𝑥𝑡 + 𝜂2𝑡𝑚𝑖𝑛𝑡 + 𝜂3𝑡𝑎𝑣𝑒𝑡 + 𝜂4𝑟ℎ𝑎𝑣𝑒𝑡 +  𝜂5𝑝𝑝𝑡

+ 𝜂6𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝜂7𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝜂8𝐸𝑇𝑡 +  𝜂9𝑐𝑑𝑑𝑡 + 𝜂10𝐷𝑂𝑆𝑖𝑡

+ 𝛿𝐾𝑍𝑖𝑡−1 + 𝜌𝑖 + 𝛾𝑖𝑡  

(10a) 

where 𝑍𝑖𝑡−1 is every possible set of instrumental variables; and 𝛿𝐾 are the coefficients of 

instrumental variables to be estimated. 

As discussed earlier, the Kleibergen-Paap F-stat is reported and compared to the critical 

value to inspect the weakness of each set of price instrument. We use predicted price from 

Equation (10a) – ruling out any prediction from a weak set of instruments – and estimate the 

second stage regression as follows to create the distribution of elasticity.  

We also report Hansen J-statistic (though we recommend this test to be taken lightly) as a 

test of overidentifying restriction whenever possible. 

3.2.4 Model Selection and Cross-Validation 

We follow a global search regression technique – an exhaustive search approach – to select 

the optimal model based on different measures of goodness-of-fit (Gluzmann & Panigo, 

2013). Unlike heuristic search approaches with backward and forward looping, this technique 

assures the optimality of the variable choices while selecting models by completing the 

regression across every possible combination of independent variables. 

We conduct this global search regression technique in two steps: first, we select the best set 

of instruments based on its strength using the Kleibergen-Paap F-stat (as reported from 

Equation 10a); and second, we use the predicted price from that chosen set of instruments in 

the second stage (identical to Equation 9b) across all combinations of weather variables. At 

𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1̂ ) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡 + 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡

+  𝛽6𝑝𝑝𝑡 +  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡 +  𝛽10𝑐𝑑𝑑𝑡

+ 𝛽11𝐷𝑂𝑆𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡 

(10b) 
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the same time, we generate a normalized index (nindex29) based on three different measures 

of goodness of fit which are adjusted-R2, the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) (weighted on the ratio of 0.3:0.3:0.4 respectively), 

using gsreg command in Stata (Gluzmann & Panigo, 2013). We consider the model with the 

highest value of nindex as the optimal one.  

To avoid over-fitting, we perform k-fold cross-validation (CV) techniques on our optimal 

model –similar to Yang et al. (2019). This technique divides the observation randomly into k 

groups (or folds) of equal size to see whether the model fits out-of-sample data or not (James 

et al., 2013). The model is first fitted on the k-1 group and later tested on the remaining one 

group (i). This process is followed iteratively to test each of the k different groups, each time 

fitting on remaining k-1 groups. Root mean squared error (RMSE) is estimated for each of 

the k trails which are averaged out to calculate k-fold CV estimate. 

𝐶𝑉𝑘 =  
1

𝑘
∑ 𝑅𝑀𝑆𝐸𝑖

𝑘

𝑖=1

 (11) 

We set the value of k as 10 to cross-validate our model.

                                                
29 This is the normalized linear combination of user-selected criterias (goodness-of-fit) which in our case are 

adjusted-R2, AIC and BIC. 
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4. Results and Discussion 

This section presents and discusses results from 1) a Shin Test, 2) the sensitivity of estimates 

to the choice of weather variables, 3) the sensitivity of estimates to the choice of price 

instruments, and 4) model selection and cross-validation. 

4.1 Shin Test 

Table 4 presents the results from the Shin Test estimated using Equation (7). The 

coefficients on both 𝑙𝑛 (𝑀𝑃𝑖�̂�) and 𝑙𝑛 (
𝐴𝑃𝑖𝑡−1̂

𝑀𝑃𝑖�̂�
) are tested to see whether they are statistically 

different from one another or not. Using a Wald Test, we find that the two coefficients – 

𝛽1and 𝛿 – are equal (p-value=0.36). At this p-value, we fail to reject the null hypothesis that 

the two coefficients are statistically different, suggesting that households respond to lagged 

average price rather than marginal price. This result is different from what Shin (1985) and 

Nieswiadomy & Molina (1991) proposed that households respond to marginal price under 

IBR structure and to average price under DBR structure. However, our finding – households 

respond to average price under IBR structure – is consistent with more recent studies (Flyr et 

al., 2019; Ito, 2014; Kenney et al., 2008). As addressed in other literature, results from the 

Shin Test only provide weak evidence on the price to which households responds.30 So, 

consistent with Flyr et al. (2019), we also do not suggest this test as valid in every case. 

Table 4 

Lagged average price specification, under IBR structure, can arguably be considered the 

appropriate and conventional approach for modeling residential water demand because 

households might not respond to the marginal price since the associated information costs in 

perceiving marginal price are substantial. Further, during the years of our study, Fort Collins 

Utility (FCU) provides information only on the payments from the last bill,31 so households 

can only respond to the price (average) they face in the previous billing period. The result 

                                                
30 For instances, Taylor et al. (2004) argued that the estimates of k (Shin’s price perception parameter) will be 

biased towards unity due to presence of fixed charge which might invalidate a Shin Test; Binet et al. (2014) also 

argued that the model specification might be wrong for households responding to marginal price when k = 0. 
31 Note that since this time, FCU has moved to a real time metering system, which provides opportunity for 

future research. 
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from the Shin Test, in this paper, provides empirical guidance to such theoretical argument, 

directing us to the use of lagged average price in modeling water demand. 

4.2 Test Sensitivity to Choice of Weather Variables 

As shown in Figure 5, the range of the distribution of price elasticity to the different choice 

of weather variables is -1.22 to -0.57 with the mean value of -0.71. Though this range falls on 

a qualitatively different group of elasticity, a large density of estimates is clustered around 

the mean since the standard deviation is very low (0.09). 97% of these estimates are between 

the range of -0.83 to -0.57. This range is consistent with the estimates in the meta-analysis 

done by Espey et al. (1997) where they found 90% of their estimates between -0.75 to 0. By 

comparison, our range is even smaller, and estimates are clustered around the mean because 

unlike their meta-analysis, our study is time and location-specific. Such high stability in 

estimates of price elasticity suggests that the residential water demand estimation for the 

single-family households is not sensitive to the choice of weather variables, which is because 

most of the weather variables are highly correlated to each other but are very slightly 

correlated with the price variable (see Table 5). Thus, the inclusion of either one or all the 

weather variables in the model does not strongly affect the price elasticity estimates. For 

example, the range of price elasticity using only the combinations of temperature-related 

variables i.e., maximum temperature, minimum temperature, average temperature, 

evapotranspiration, and cooling degree days – as a set of weather variables is -0.80 to -0.65. 

This is because these metrics are highly correlated with each other – the highest of 0.99 for 

maximum temperature, minimum temperature and average temperature among each other 

and the lowest of 0.73 between evapotranspiration and cooling degree days (see Table 5).  

Table 5 

Since these weather variables (control variables) in our model have little to no correlation 

with the average price (variable of interest), we observe high stability in the estimates of 

price elasticity across the suite of weather variables. This result allows us to predict price 

elasticity efficiently and consistently even without knowing all the weather that the 

households face since households’ consumption does not change significantly with change in 

weather conditions. 
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We find a similar case i.e., narrow range of estimates (-1.21 to -1.18) while using only 

rainfall-related variables i.e., average precipitation, total precipitation and number of rainy 

days as a preferred set of weather variables in our model. It is noteworthy that this range is 

qualitatively different (absolute elasticities greater than 1) from the estimates (-0.80 to -0.65) 

of only temperature-related variables, which points to different policy formulations (and 

implications) in terms of collecting revenue and inducing conservation as discussed in 

Section 1. However, so long as one metric for each (temperature and precipitation-related 

variables) is included in the model, relatively stable (both qualitatively and quantitatively) 

price elasticity estimates (-0.83 to -0.63) can be obtained. Surprisingly, this range is similar 

to the estimates of only temperature-related variables, suggesting that a complete exclusion 

of temperature-related metrics from the model will produce biased estimates of price 

elasticity whereas doing such for the precipitation (or related) variables may not have any 

effect on the estimates.  

Our mean price elasticity estimate (-0.71) is slightly higher (in terms of absolute value) than 

what has been reported in previous meta-analysis of residential water demand estimation by 

Espey et al. (1997), Dalhuisen et al. (2003) and Sebri (2014), which are -0.51, -0.41 and -

0.37 respectively because of four reasons: 1) IBR structure, 2) average price specification, 3) 

double-log functional form, and 4) panel data. Compared to DBR structure, IBR structure is 

likely to produce higher estimates of price elasticity; so is the case when the model is 

specified with the average price rather than marginal price (Dalhuisen et al., 2003; Marzano 

et al., 2018). Similarly, the likeliness to get relatively higher estimates of price elasticity is 

also greater when panel data are used for analysis (compared to time-series and cross-

sectional data) and also when the model is specified with double-log functional form (in 

comparison to semi-log functional form) (Marzano et al., 2018).  

Figure 5 

4.3 Test Sensitivity to Choice of Instrumental Variables 

Out of 31 different sets of instruments that are used in Equation (10a), we find the sole use of 

days of service as a weak instrument since the value of Kleibergen-Paap F-stat from first-

stage regression is 9.53 (see Table 6) which is below the critical value of 10 (for exactly 

identified model). Though Flyr et al. (2019) discussed it as a valid instrument for addressing 
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exogenous variation across both households and time, we find that the sole use of days of 

service is insufficient without the inclusion of an additional price metric or other instrument. 

Table 6 

With the use days of service as a sole instrument, demand for water is estimated as almost 

perfectly inelastic, -0.087 and insignificant (p-value = 0.78). As discussed earlier in Section 

3.2, the use of weak instruments (invalid instruments) results in the severe loss of precision 

of the estimates and hence, estimates will be more biased and inconsistent compared to 

corresponding OLS. Thus, we eliminate the sole use of this instrument from our model. 

Across other instruments, we find the range of price elasticity between -0.77 to -0.69 with a 

standard deviation of 0.01 (see Table 6 and Figure 6). This range is very small and 

consistent with our expectation that any linear combination of instruments should be valid 

and should not produce significantly different estimates if each instrument is valid itself. As 

shown in the fourth column of Table 6, each of the instruments in the first five-row (except 

days of service) pass the weak identification test of instruments, preserving the first 

properties (i.e., relevance) of valid instruments, because of which all other linear 

combinations of these five instruments are also strong in explaining the true effect of price on 

consumption. For the second properties (i.e., exogeneity), we have mixed empirical results – 

rejecting and failing to reject the null hypothesis – for the p-values of Hansen J-statistics (see 

column 6 in Table 6). However, as discussed earlier, we do not rely on this test (see Section 

3.2 and Appendix 2 for details) and rather prefer to go with the theoretical argument as 

stated in Section 2.2. 

Figure 5 

The mean price elasticity from the different choice of instrument variables (-0.72) is roughly 

equal to the mean price estimates from the different choice of weather variables (-0.71). This 

is because our estimates are consistent across the choice of both weather and instruments 

variables.32 

                                                
32 To clarify, we run an augmented model allowing both weather and instruments run together across the model. 

We find consistent estimates of price elasticity, regardless of which weather or instruments are allowed in the 

model (see Appendix 3 for details). 
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4.4 Model Selection and Cross-Validation 

We find the sole use of one period lagged price in block one as a strong set of instruments 

with Kleibergen-Paap F-statistic of 315.00, amongst others (see Table 6 column 4). So 

block1it-1 is our preferred instrument, and there is little reason to include additional 

instruments. Instrumenting the price variable with this instrument, we conduct a global 

search technique (identical to Equation 9b) to find the optimal set of weather variables based 

on the value of nindex. We find the highest value of nindex as 0.76 when the maximum 

temperature is excluded from the model, concluding that the model fits better when the full 

set of weather variables, except tmax, are used to predict price elasticity. 

Table 7 shows the regression results for our preferred FE-IV model with the inclusion of the 

optimal set of weather and instruments variables. We find the elasticity of average price as -

0.74 at the significance level of 0.01. This elasticity is not significantly different than the 

mean price elasticity, -0.71 and -0.72, across different choices of weather and price 

instruments respectively. We also find statistically significant coefficients for each of the 

weather variables, except for average precipitation (pp) and total amount of precipitation 

(totalpp); the high multicollinearity from these explanatory variables makes their 

interpretation difficult and reduces the statistical significance of each. Multicollinearity 

increases the standard error of the coefficient and consequently, the null hypothesis cannot be 

rejected because of the low power of the t-test. However, multicollinearity among control 

variables does not affect the parameter of our interest (average price) and thus can be ignored 

with ease, particularly given our large sample.33 

Table 7 

Table 8 shows the predicted RMSE for k (=10) different trials. We find similar predicted 

values of RMSE across each trail, which suggests that our preferred model equally (with 

accuracy) fits the out-of-sample data and hence can be implemented safely across similar 

cases. 

Table 8 

                                                
33 To confirm, we run the regression removing pp and totalpp from the model and find similar estimates of 

elasticity and centered R2 as tabulated in Table 8. 
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5. Conclusion 

Overall, results from our in-depth analysis suggest that model choices with different—but 

reasonable—specification of weather metrics and instrumental variables have a negligible 

effect on own-price elasticity estimates. This is encouraging and suggests that previous 

works, despite inconsistency in the choice of weather or price instrument, may be are 

accurate in the point estimates of price elasticity and suggests that difference in elasticity 

may be a function of place, not figments of model choice. 

Price is an appropriate tool for the demand-side management of residential water, but the 

effectiveness of price as a conservation tool requires an understanding of the household 

demand. While there is a different theoretical argument for employing the appropriate price 

signal into the model, there is no concrete test to provide empirical insight. The result from 

Shin Test, though it should be taken lightly, accords with our theoretical reasoning for the 

choice of average price into our model, thereby guiding us to specify our model with the 

average price.  

Further, water demand literature is inconsistent with the choice of weather-related variables 

in demand modeling. Despite many studies, there is still limited consistency and theoretical 

motivation for (and how) the inclusion of weather variables into the water demand model. To 

our knowledge, this study constitutes the first attempt at formally evaluating the sensitivity of 

price elasticity estimates to weather variable choices. We find consistent estimates of price 

elasticity – 97% of our estimates between -0.83 to -0.57– across the different combination of 

weather variables, which suggests that the inconsistency of weather as control variables in 

past econometric studies may have little effect on their results.   

Moreover, this result suggests that low-cost information like average temperature and total 

precipitation are sufficient to accurately reflect the data-generating-process, reducing costs 

and resulting in a parsimonious model. However, we do note that qualitatively different 

elasticity (>1) is estimated when only precipitation variables are used. While the inclusion of 

at least one variable from each temperature and precipitation related metrics produce 

relatively more stable (both qualitatively and quantitatively) estimates (-0.83 to -0.63) of 

price elasticity, similar estimates (-0.80 to -0.65) can be found just with the inclusion of 
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temperature-related metrics. This further reduces the costs of obtaining more information on 

weather variables. 

Similar to the choice of weather variables, we find highly stable estimates of elasticity (-0.77 

to -0.69) to the choice of instrumental variables. So long as the instruments variables are 

valid, this result should hold and need no further analysis. Though days of service introduces 

enough exogenous variation across both households and time, it fails in explaining the true 

effect of price on consumption, and hence should not be used alone, which otherwise will 

lead to the imprecise estimation of price elasticity. 

We find the price elasticity of average price as -0.74 for our preferred model i.e., when tmax 

is excluded from the model. This estimate is robust across the choice of both weather and 

price instruments and has also been cross-validated to fit out-of-sample data estimates with 

the aim of providing better insight to the stakeholders and water managers in establishing 

appropriate water pricing and pricing structure to induce conservation. 

These findings may have important policy implications from demand-side management 

perspectives. First, while designing water management policies, it is important to understand 

that the types of weather variables that the households face will barely affect the estimation 

of households’ demand. Second, since our estimates are consistent with the choice of both 

weather metrics and price instruments, it is possible to accurately estimate the demand with 

low-cost information such as only evapotranspiration as a weather variable and only price of 

the first block as a price instrument;34 and, with such estimation, policies can be formulated 

with relatively less risk. Finally, water managers can use price as an effective tool to increase 

revenue since we find a high elasticity (-0.74) within inelastic range from our preferred 

model; however, pricing policies alone should not be used as a conservational tool to 

significantly reduce the water use, implying the need for combination of pricing and other 

dynamic (non-pricing policies, for example) strategies. 

                                                
34 With such choices, we find price elasticity as -0.61, which is roughly equal to what Kenney et al. (2008) 

found (price elasticity = 0.60) for the City of Aurora, Colorado. It is important to note this result because despite 

having less information in our model, compared to Kenney et al. (2008), we are able to precisely estimate the 

elasticity in a similar environment (i.e., City of Aurora and City of Fort Collins share a similar landscape and 

weather conditions.). 
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While we aim to help improve understanding of households’ water consumption behavior 

and contribute to the existing literature by systematically evaluating model specification 

choices, there are still some methodological considerations in this paper that are debatable. 

First, we do not consider the possibility of estimating price elasticity at margin i.e., the 

likeliness of getting different elasticity for a high and low price; instead, we assume a 

constant elasticity over the entire domain of price variables to avoid the complexity in the 

estimation process, highlighting the need for a comprehensive modeling approach. Second, 

the use of the Shin Test to determine price signal can be argued for different reasons as 

discussed in Section 4.1 and therefore requires experimental testing. Last, prices are 

generally more elastic in outdoor water use as evidenced in the literature, which is largely 

ignored in this research because of the data limitation. We do not know to which water uses 

(indoor vs outdoor, for instance) households respond when there is an increase in price. This 

suggests a need for future research to determine how each use type is affected by the increase 

in price. 

 

 



34 

 

References 

Allison, P. D. (2009). Fixed effects regression models (Vol. 160). SAGE publications. 

Arbúes, F., Barberan, R., & Villanua, I. (2004). Price impact on urban residential water 

demand: A dynamic panel data approach. Water Resources Research, 40(11). 

Arbués, F., Garcıa-Valiñas, M. Á., & Martınez-Espiñeira, R. (2003). Estimation of 

residential water demand: a state-of-the-art review. The Journal of Socio-Economics, 

32(1), 81–102. 

Asci, S., Borisova, T., & Dukes, M. (2017). Are price strategies effective in managing 

demand of high residential water users? Applied Economics, 49(1), 66–77. 

Baerenklau, K. A., Schwabe, K. A., & Dinar, A. (2014). The residential water demand effect 

of increasing block rate water budgets. Land Economics, 90(4), 683–699. 

Baum, C. F. (2007). ivreg2: Stata module for extended instrumental variables/2SLS, GMM 

and AC/HAC, LIML and k-class regression. Http://Ideas. Repec. 

Org/c/Boc/Bocode/S425401. Html. 

Baumann, D. D., Boland, J. J., & Hanemann, M. W. (1997). Urban water demand 

management and planning. 

Binet, M.-E., Carlevaro, F., & Paul, M. (2014). Estimation of residential water demand with 

imperfect price perception. Environmental and Resource Economics, 59(4), 561–581. 

Center, C. C. (n.d.). No Title. Retrieved from https://coagmet.colostate.edu/cgi-

bin/dailydata_form.pl 

Clarke, A. J., Colby, B. G., & Thompson, G. D. (2017). Household water demand seasonal 

elasticities: a stone-geary model under an increasing block rate structure. Land 

Economics, 93(4), 608–630. 

Dalhuisen, J. M., Florax, R. J. G. M., de Groot, H. L. F. M., & Nijkamp, P. (2001). Price and 



35 

 

income elasticities of residential water demand: Why empirical estimates differ. 

Tinbergen Institute Discussion Paper. 

Dalhuisen, J. M., Florax, R. J. G. M., De Groot, H. L. F., & Nijkamp, P. (2003). Price and 

income elasticities of residential water demand: a meta-analysis. Land Economics, 

79(2), 292–308. 

Davidson, R., & MacKinnon, J. G. (1993). Estimation and inference in econometrics. OUP 

Catalogue. 

Espey, M., Espey, J., & Shaw, W. D. (1997). Price elasticity of residential demand for water: 

A meta‐analysis. Water Resources Research, 33(6), 1369–1374. 

Flyr, M., Burkhardt, J., Goemans, C., Hans, L., Neel, A., & Maas, A. (2019). Modeling 

Commercial Demand for Water: Exploring Alternative Prices, Instrumental Variables, 

and Heterogeneity. Land Economics, 95(2), 211–224. 

Foster, H. S., & Beattie, B. R. (1981). On the specification of price in studies of consumer 

demand under block price scheduling. Land Economics, 57(4), 624–629. 

Garcia‐Valiñas, M. A., Athukorala, W., Wilson, C., Torgler, B., & Gifford, R. (2014). 

Nondiscretionary residential water use: the impact of habits and water‐efficient 

technologies. Australian Journal of Agricultural and Resource Economics, 58(2), 185–

204. 

Gaudin, S. (2006). Effect of price information on residential water demand. Applied 

Economics, 38(4), 383–393. 

Gaudin, S., Griffin, R. C., & Sickles, R. C. (2001). Demand specification for municipal water 

management: evaluation of the Stone-Geary form. Land Economics, 77(3), 399–422. 

Gluzmann, P., & Panigo, D. (2013). GSREG: Stata module to perform Global Search 

Regression. 

Greene, W H. (2011). Econometric Analysis. Pearson Education. 



36 

 

Greene, William H. (2003). Econometric analysis. Pearson Education India. 

Griffin, R. C. (2016). Water resource economics: The analysis of scarcity, policies, and 

projects. MIT press. 

Guhathakurta, S., & Gober, P. (2007). The impact of the Phoenix urban heat island on 

residential water use. Journal of the American Planning Association, 73(3), 317–329. 

Gutzler, D. S., & Nims, J. S. (2005). Interannual variability of water demand and summer 

climate in Albuquerque, New Mexico. Journal of Applied Meteorology, 44(12), 1777–

1787. 

Hewitt, J. A., & Hanemann, W. M. (1995). A discrete/continuous choice approach to 

residential water demand under block rate pricing. Land Economics, 173–192. 

Hoffmann, M., Worthington, A., & Higgs, H. (2006). Urban water demand with fixed 

volumetric charging in a large municipality: the case of Brisbane, Australia. Australian 

Journal of Agricultural and Resource Economics, 50(3), 347–359. 

Howe, C. W., & Linaweaver, F. P. (1967). The impact of price on residential water demand 

and its relation to system design and price structure. Water Resources Research, 3(1), 

13–32. 

Hoyos, D., & Artabe, A. (2017). Regional differences in the price elasticity of residential 

water demand in Spain. Water Resources Management, 31(3), 847–865. 

Hung, M.-F., Chie, B.-T., & Huang, T.-H. (2017). Residential water demand and water waste 

in Taiwan. Environmental Economics and Policy Studies, 19(2), 249–268. 

Ito, K. (2014). Do consumers respond to marginal or average price? Evidence from nonlinear 

electricity pricing. American Economic Review, 104(2), 537–563. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical 

learning (Vol. 112). Springer. 

Kenney, D. S., Goemans, C., Klein, R., Lowrey, J., & Reidy, K. (2008). Residential water 



37 

 

demand management: lessons from Aurora, Colorado1. JAWRA Journal of the 

American Water Resources Association, 44(1), 192–207. 

Klaiber, H. A., Smith, V. K., Kaminsky, M., & Strong, A. (2014). Measuring price 

elasticities for residential water demand with limited information. Land Economics, 

90(1), 100–113. 

Klein, B., Kenney, D., Lowrey, J., & Goemans, C. (2007). Factors influencing residential 

water demand: a review of the literature. Unpublished Paper, Colorado State 

University, January. 

Lyman, R. A. (1992). Peak and off‐peak residential water demand. Water Resources 

Research, 28(9), 2159–2167. 

Maas, A., Goemans, C., Manning, D., Kroll, S., Arabi, M., & Rodriguez-McGoffin, M. 

(2017). Evaluating the effect of conservation motivations on residential water demand. 

Journal of Environmental Management, 196, 394–401. 

Maidment, D. R., & Miaou, S. (1986). Daily water use in nine cities. Water Resources 

Research, 22(6), 845–851. 

Martínez-Espiñeira, R., & Nauges, C. (2004). Is all domestic water consumption sensitive to 

price control? Applied Economics, 36(15), 1697–1703. 

Martínez-Espiñeira, R. (2002). Residential water demand in the Northwest of Spain. 

Environmental and Resource Economics, 21(2), 161–187. 

Marzano, R., Rougé, C., Garrone, P., Grilli, L., Harou, J. J., & Pulido-Velazquez, M. (2018). 

Determinants of the price response to residential water tariffs: Meta-analysis and 

beyond. Environmental Modelling & Software, 101, 236–248. 

Nataraj, S., & Hanemann, W. M. (2011). Does marginal price matter? A regression 

discontinuity approach to estimating water demand. Journal of Environmental 

Economics and Management, 61(2), 198–212. 



38 

 

Nieswiadomy, M. L., & Molina, D. J. (1988). Urban water demand estimates under 

increasing block rates. Growth and Change, 19(1), 1–12. 

Nieswiadomy, M. L., & Molina, D. J. (1989). Comparing residential water demand estimates 

under decreasing and increasing block rates using household data. Land Economics, 

65(3), 280–289. 

Nieswiadomy, M. L., & Molina, D. J. (1991). A note on price perception in water demand 

models. Land Economics, 67(3), 352–359. 

OECD. (n.d.). OECD Environmental Outlook to 2050: The Consequences of Inaction. 

Retrieved from www.oecd.org/environment/outlookto2050 

Olmstead, S. M. (2009). Reduced-form versus structural models of water demand under 

nonlinear prices. Journal of Business & Economic Statistics, 27(1), 84–94. 

Olmstead, S. M., Hanemann, W. M., & Stavins, R. N. (2007). Water demand under 

alternative price structures. Journal of Environmental Economics and Management, 

54(2), 181–198. 

Parente, P. M. D. C., & Silva, J. M. C. S. (2012). A cautionary note on tests of 

overidentifying restrictions. Economics Letters, 115(2), 314–317. 

Pérez-Urdiales, M., García-Valiñas, M. A., & Martínez-Espiñeira, R. (2016). Responses to 

changes in domestic water tariff structures: a latent class analysis on household-level 

data from Granada, Spain. Environmental and Resource Economics, 63(1), 167–191. 

Polebitski, A. S., & Palmer, R. N. (2009). Seasonal residential water demand forecasting for 

census tracts. Journal of Water Resources Planning and Management, 136(1), 27–36. 

Price, J. I., Chermak, J. M., & Felardo, J. (2014). Low-flow appliances and household water 

demand: an evaluation of demand-side management policy in Albuquerque, New 

Mexico. Journal of Environmental Management, 133, 37–44. 

Reynaud, A., Renzetti, S., & Villeneuve, M. (2005). Residential water demand with 



39 

 

endogenous pricing: the Canadian case. Water Resources Research, 41(11). 

Rinaudo, J.-D., Neverre, N., & Montginoul, M. (2012). Simulating the impact of pricing 

policies on residential water demand: a Southern France case study. Water Resources 

Management, 26(7), 2057–2068. 

Roibás, D., García-Valiñas, M. Á., & Wall, A. (2007). Measuring welfare losses from 

interruption and pricing as responses to water shortages: an application to the case of 

Seville. Environmental and Resource Economics, 38(2), 231–243. 

Romano, G., Salvati, N., & Guerrini, A. (2014). Estimating the determinants of residential 

water demand in Italy. Water, 6(10), 2929–2945. 

Schleich, J., & Hillenbrand, T. (2009). Determinants of residential water demand in 

Germany. Ecological Economics, 68(6), 1756–1769. 

Sebri, M. (2014). A meta-analysis of residential water demand studies. Environment, 

Development and Sustainability, 16(3), 499–520. 

Shin, J.-S. (1985). Perception of price when price information is costly: evidence from 

residential electricity demand. The Review of Economics and Statistics, 591–598. 

Stock, J. H., & Watson, M. W. (2015). Introduction to econometrics. 

Strong, A., & Smith, V. K. (2010). Reconsidering the economics of demand analysis with 

kinked budget constraints. Land Economics, 86(1), 173–190. 

Taylor, L. D. (1975). The demand for electricity: a survey. The Bell Journal of Economics, 

74–110. 

Taylor, R. G., McKean, J. R., & Young, R. A. (2004). Alternate price specifications for 

estimating residential water demand with fixed fees. Land Economics, 80(3), 463–475. 

Vásquez Lavín, F. A., Hernandez, J. I., Ponce, R. D., & Orrego, S. A. (2017). Functional 

forms and price elasticities in a discrete continuous choice model of the residential 

water demand. Water Resources Research, 53(7), 6296–6311. 



40 

 

Water Conservation Annual Report. (2017). Retrieved from 

https://www.fcgov.com/utilities/img/site_specific/uploads/WC_annual_report.pdf%0D 

Wichman, C. J. (2014). Perceived price in residential water demand: Evidence from a natural 

experiment. Journal of Economic Behavior & Organization, 107, 308–323. 

Wichman, C. J., Taylor, L. O., & Von Haefen, R. H. (2016). Conservation policies: Who 

responds to price and who responds to prescription? Journal of Environmental 

Economics and Management, 79, 114–134. 

Worthington, A. C., & Hoffman, M. (2008). An empirical survey of residential water demand 

modelling. Journal of Economic Surveys, 22(5), 842–871. 

Yang, Q., Yoder, J., & Brady, M. (2019). The value of including site metrics in meta-analysis 

for estimate transfer: Reducing generalization error in water demand estimation. 

Yoo, J., Simonit, S., Kinzig, A. P., & Perrings, C. (2014). Estimating the price elasticity of 

residential water demand: the case of Phoenix, Arizona. Applied Economic Perspectives 

and Policy, 36(2), 333–350. 



41 

 

Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Water Rate Structure (Increasing Block Rate) for the City of Fort Collins 
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Figure 2: Mean Monthly Water Consumption, Average Price, and Marginal Price of 

Single-Family Households for the City of Fort Collins over Time 
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Figure 3: Average Price Vs Consumption 
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Figure 4: Residuals Plots for Pooled OLS, Fixed Effects, and Random Effects 

Model under Marginal and Average Price Specification 
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Figure 5: Test Sensitivity to Choice of Weather Variables 
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Figure 6: Test Sensitivity to Choice of Instruments Variables 
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Tables 

Table 1: Weather Specification across Different Study 

Weather Variables Study 

maximum temperature Martínez-Espiñeira & Nauges (2004) 

Olmstead et al. (2007) 

Wichman et al. (2016) 

minimum temperature Guhathakurta & Gober (2007) 

average temperature Klaiber et al. (2014) 

Price et al. (2014) 

average precipitation Vásquez Lavín et al. (2017);  

Yoo et al., (2014) 

number of days with precipitation Clarke et al., (2017) 

Martínez-Espiñeira (2002) 

total amount of precipitation Clarke et al. (2017)  

Kenney et al. (2008) 

Maas et al. (2017) 

average relative humidity Hung et al. (2017) 

evapotranspiration  Baerenklau et al. (2014)  

Wichman (2014) 

number of cooling degree days Lyman (1992) 

Strong & Smith (2010) 
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Table 2: Descriptive Statistics for Billed Monthly Water Consumption along with the 

Associated Weather Variables 

Variables Mean Std. Dev. Min Max 

Q 9039.83 8367.87 11.00 439820.00 

AP 5.50 9.87 2.51 1158.18 

MP 2.27 0.28 1.87 3.15 

tmax 68.09 14.61 33.38 93.15 

tmin 36.83 13.39 8.01 58.90 

tave 52.77 14.08 20.97 76.46 

rhave 0.55 0.06 0.37 0.69 

pp 0.04 0.04 0.00 0.26 

ppdays 6.69 3.22 0.00 19.00 

totalpp 1.24 1.25 0.00 6.83 

cdd 8.87 11.57 0.00 35.00 

ET 0.18 0.07 0.03 0.34 

FC 13.19 0.59 12.72 14.14 

block1 2.06 0.14 1.87 2.38 

block2 2.37 0.16 2.15 2.74 

block3 2.72 0.18 2.48 3.15 

blockdiff1 0.31 0.02 0.28 0.36 

blockdiff2 0.35 0.02 0.33 0.41 

DOS 30.33 1.95 25.00 35.00 

N=1,278,822 

n= 21,874 
Notes: Descriptive statistics are for January to December single-family household water consumption form 

2006-2014. Billing records and water rates data were obtained from Fort Collins water utility. Weather 

variables were obtained from CoAgMet station located at Fort Collins. 
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Table 3: Description of Variables 

Variables Description 
Unit of 

measurements 

Q monthly household consumption gallons 

AP Average price 
USD per 1000 

gallons 

MP marginal price 
USD per unit 

consumption 

tmax maximum daily temperature over a billing period degree Celsius 

tmin minimum daily temperature over a billing period degree Celsius 

tave 
an average of daily mean temperature over a billing 

period 
degree Celsius 

rhave average relative humidity over billing periods fraction 

pp average precipitation over a billing period inches 

ppdays number of precipitation days over a billing period number of days 

totalpp the total amount of precipitation over a billing period inches 

cdd number of cooling degree days over a billing period number of days 

ET average evapotranspiration rate over a billing period inches 

FC fixed charge set by the utility US Dollars ($) 

block1 price in block group one 
USD per 1000 

gallons 

block2 price in block group two 
USD per 1000 

gallons 

block3 price in block group three 
USD per 1000 

gallons 

blockdiff1 
the difference in price between block group one and block 

group two 

USD per 1000 

gallons 

blockdiff2 
the difference in price between block group two and 

block group three 

USD per 1000 

gallons 

DOS billing length number of days 
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Table 4: Results for Shin Test 

 

 

ln(Q) Coef.  Robust Std. Err. z P>z [95% Conf. Interval] 

ln(MPit) 1.13 0.47 -2.40 0.02 -2.05 -0.21 

ln(APit-1/MPit) -0.47 0.27 -1.77 0.08 -0.99 0.05 

tmaxt 0.00 0.02 -0.32 0.75 -0.03 0.03 

tmint -0.04 0.02 -2.47 0.01 -0.07 -0.01 

tavet 0.06 0.03 1.89 0.06 0.00 0.12 

rhavet 2.00 0.44 4.50 0.00 1.13 2.88 

ppt -1.91 2.32 -0.82 0.41 -6.45 2.63 

ppdayst -0.01 0.00 -2.47 0.01 -0.02 0.00 

totalppt 0.03 0.08 0.35 0.72 -0.13 0.19 

ETt 3.94 0.87 4.51 0.00 2.23 5.65 

cddt 0.01 0.00 2.20 0.03 0.00 0.01 

DOSit 0.04 0.00 8.49 0.00 0.03 0.05 

Instruments FCit-1       block1it-1        blockdiff1it-1      blockdiff2it-1     DOSit-1  

Hansen J (p-

value) 0.34  

Centered R2 0.54  

Observations 1,278,882  

Shin Test (p-

value) 0.36  
Notes: This test is performed using two stages least squares IV techniques with FE specification. Robust 

standard errors are produced clustering the errors on both households and time. Hansen J-statistic is for the 

overidentification test of all instruments. Instruments used are fixed charge (FC), marginal price in first block 

(block1), difference between each successive block prices (blockdiff1 and blockdiff2) and days of service 

(DOS), all lagged by one period. 
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Table 5: Correlation Matrix among Independent Variables 

 

 

 

 

  AP tmax tmin tave cdd ET   ppdays totalpp pp rhave 

AP  1.00 
         

tmax  -0.12 1.00 
        

tmin  -0.12 0.98 1.00 
       

tave  -0.12 1.00 0.99 1.00 
      

cdd  -0.10 0.87 0.87 0.87 1.00 
     

ET  -0.11 0.85 0.82 0.86 0.73 1.00 
    

ppdays  -0.02 0.20 0.33 0.26 0.15 0.17 1.00 
   

totalpp  -0.02 0.23 0.35 0.28 0.16 0.18 0.73 1.00 
  

pp  -0.02 0.22 0.34 0.27 0.14 0.17 0.72 1.00 1.00 
 

rhave  0.05 -0.36 -0.24 -0.33 -0.27 -0.59 0.51 0.36 0.36 1.00 
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Table 6: Average Price Elasticity for Different Choice of Price Instruments with Weak Identification F-statistics and Hansen J-

statistics 

 

Instruments 

Average 

Price 

Elasticity Z 

Weak 

ID F-

stat 

Hansen 

J-stat 

P-value  

(J-test) 

 DOSit-1 -0.0865 -0.28 9.53 0.00 . 

 blockdiff2it-1 -0.721*** -8.00 255.60 0.00 . 

 blockdiff1it-1 -0.729*** -8.02 244.80 0.00 . 

 block1it-1 -0.734*** -8.45 315.00 0.00 . 

 FCit-1 -0.769*** -7.18 117.00 0.00 . 

 blockdiff2it-1, DOSit-1 -0.694*** -8.12 150.90 5.17 0.02 

 blockdiff1it-1, DOSit-1 -0.703*** -8.14 141.80 5.28 0.02 

 blockdiff1it-1, blockdiff2it-1 -0.729*** -8.02 149.70 0.17 0.68 

 block1it-1, DOSit-1 -0.708*** -8.56 184.30 5.43 0.02 

 block1it-1, blockdiff2it-1 -0.747*** -8.75 176.60 0.99 0.32 

 block1it-1, blockdiff1it-1 -0.735*** -8.46 163.00 0.10 0.75 

 FCit-1, DOSit-1 -0.732*** -7.25 71.91 5.82 0.02 

 FCit-1, blockdiff2it-1 -0.730*** -8.03 145.70 0.72 0.40 

 FCit-1, blockdiff1it-1 -0.735*** -8.06 128.20 0.48 0.49 

 FCit-1, block1it-1 -0.734*** -8.45 173.20 0.47 0.49 

 blockdiff1it-1, blockdiff2it-1, DOSit-1 -0.703*** -8.14 120.10 5.45 0.07 

 block1it-1, blockdiff2it-1, DOSit-1 -0.721*** -8.84 130.90 7.29 0.03 

 block1it-1, blockdiff1it-1, DOSit-1 -0.709*** -8.58 127.90 5.67 0.06 

 block1it-1, blockdiff1it-1, blockdiff2it-1 -0.747*** -8.70 123.80 1.00 0.61 

 FCit-1, blockdiff2it-1, DOSit-1 -0.703*** -8.14 112.40 6.22 0.04 

 FCit-1, blockdiff1it-1, DOSit-1 -0.709*** -8.17 103.10 6.04 0.05 

 FCit-1, blockdiff1it-1, blockdiff2it-1 -0.736*** -8.05 108.00 0.85 0.65 

 FCit-1, block1it-1, DOSit-1 -0.708*** -8.56 126.60 5.99 0.05 

 FCit-1, block1it-1, blockdiff2 -0.744*** -8.83 134.00 1.12 0.57 

 FCit-1, block1it-1, blockdiff1 -0.734*** -8.48 125.70 0.49 0.78 

 block1it-1, blockdiff1it-1, blockdiff2it-1, 

DOSit-1 -0.721*** -8.81 104.20 7.29 0.06 
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 FCit-1, blockdiff1it-1, blockdiff2it-1, 

DOSit-1 -0.710*** -8.16 94.77 6.45 0.09 

 FCit-1, block1it-1, blockdiff2it-1, DOSit-1 -0.719*** -8.92 104.00 7.37 0.06 

 FCit-1, block1it-1, blockdiff1it-1, DOSit-1 -0.708*** -8.60 103.30 6.07 0.11 

 FCit-1, block1it-1, blockdiff1it-1, 

blockdiff2it-1 -0.745*** -8.78 111.10 1.13 0.77 

 FCit-1, block1it-1, blockdiff1it-1, 

blockdiff2it-1, DOSit-1 -0.720*** -8.88 92.88 7.37 0.12 
Notes: The dependent variable is the natural log of consumption. Asterisk (***) indicates the statistical significance at 99% levels. Regressions were 

run clustering the errors on both households and time. Kleibergen-Paap rk Wald F-statistic is represented as weak identification (id) F-stat and is 

reported form the first stage regression. Hansen J-statistic is for the overidentification test of all instruments, which does not yield any value when the 

number of endogenous regressors are equal to the number of instruments. P-values from the J-test are for the instrument exogeneity, reported from 

second stage regression. 
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Table 7: Regression Table for the Preferred Model 

ln(Q) Coef. Robust Std. Err. z P>z 

[95% Conf. 

Interval] 

      

APit-1 -0.74*** 0.08 -8.80 0.00 -0.91 -0.58 

ETt 4.66*** 0.43 10.74 0.00 3.81 5.51 

cddt 0.00*** 0.00 2.07 0.04 0.00 0.01 

rhavet 1.97*** 0.35 5.65 0.00 1.28 2.65 

tmint -0.03*** 0.01 -3.07 0.00 -0.05 -0.01 

ppdayst -0.01*** 0.00 -2.18 0.03 -0.02 0.00 

tavet 0.04*** 0.01 3.63 0.00 0.02 0.05 

ppt -2.38 2.05 -1.16 0.25 -6.40 1.64 

totalppt 0.05 0.07 0.70 0.48 -0.09 0.19 

DOSit 0.04*** 0.00 8.90 0.00 0.03 0.05 

Instrument  block1it- 

Weak ID F-stat 294.52      

Hansen J (p-

value) 

. 

(Equation exactly identified)     

Centered R2 0.62      

Observations 1,278,882      

Number of clusters: Across households: 21,874 

           Across time:            90    
Notes: This test is performed using two stages least squares IV techniques with FE specification. 

Asterisk (***) denotes the statistical significance at 99% levels. Robust standard errors are produced 

clustering the errors on both households and time. Kleibergen-Paap rk Wald F-statistic is represented as 
weak identification (id) F-stat. Hansen J-statistic is for the overidentification test of all instruments. 

Instrument used is the price in the first block (block1), lagged by one period. 
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Table 8: Model Validation  

Estimates RMSE 

est1 0.536 

est2 0.537 

est3 0.537 

est4 0.537 

est5 0.536 

est6 0.540 

est7 0.536 

est8 0.536 

est9 0.537 

est10 0.537 
Note: This table represents the k-fold (=10) 

cross-validation of our model predicting the root 
mean squared error in each fold. RMSE 

determines the accuracy of the model, out-of-

sample in our case. 
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Appendices 

Appendix 1 

Construction of Weather variables 

Daily weather data on maximum temperature (tmax), minimum temperature (tmin), average 

temperature (tave), precipitation (pp), evapotranspiration (ET), maximum relative humidity 

(rhmax) and minimum relative humidity (rhmin) for the City of Fort Collins are pulled from 

Colorado Agricultural Meteorological station. Variables like average relative humidity 

(rhave) and cooling degree days (cdd) are constructed in the following ways: 

𝑟ℎ𝑎𝑣𝑒 =
𝑟ℎ𝑚𝑎𝑥 + 𝑟ℎ𝑚𝑖𝑛

2
 

     𝑐𝑑𝑑 =  
𝑡𝑚𝑎𝑥 + 𝑡𝑚𝑖𝑛

2
− 18°𝐶 

 

These variables are averaged out for a different number of days of services i.e., 25 to 35 days 

(which we considered to be standard) and matched to the water consumption data based on 

these days.  

Total amount of precipitation (totalpp) is calculated by adding daily precipitation during the 

given billing cycle, and number of days with precipitation (ppdays) is computed by counting 

the number of days with any amount of precipitation in the given billing period.
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Appendix 2 

Validity of the Instruments 

The households in our sample are divided into three different block groups based on their 

consumption, and the effects of the price on consumption are different for each of these block 

group – for example, 𝛽1
𝑖  for the first block group, 𝛽1

𝑗
 for second block group, and 𝛽1

𝑘 for third 

block group, with 𝑖 ≠ 𝑗 ≠ 𝑘.35 Considering an unobservable indicator, 𝜁𝑖, 𝜁𝑗 and 𝜁𝑘 which 

sums up to one, our demand model can be written as: 

Our set of instruments behave differently to the consumption level for a different group of 

households. For instances, instrument 𝑏𝑙𝑜𝑐𝑘𝑝𝑟𝑖𝑐𝑒1 is correlated with the average price 

mainly for the households in block one, i.e., 𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘1, 𝜀𝑖𝑡) = 0, 𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘1, 𝜁𝑖𝑝𝑟𝑖𝑐𝑒) ≠

0, instrument 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1 is more correlated with the average price for the households in 

block group one and two i.e., 𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1, 𝜀𝑖𝑡) = 0, 𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1, 𝜁𝑖𝑝𝑟𝑖𝑐𝑒) ≠ 0, 

𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1, 𝜁𝑗𝑝𝑟𝑖𝑐𝑒) ≠ 0, while instrument 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2 is correlated with the average 

price for the households in block group two and three i.e., 𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2, 𝜀𝑖𝑡) = 0, 

𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2, 𝜁𝑗𝑝𝑟𝑖𝑐𝑒) ≠ 0, 𝑐𝑜𝑣(𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2, 𝜁𝑘𝑝𝑟𝑖𝑐𝑒) ≠ 0. 

The following conditions hold under statistical regularity: 

These are the conditions which make our instruments valid. However, J-test requires error to 

be orthogonal to each instrument; and when used together, we see no single coefficient of 

price that allows the condition of orthogonality – rejecting the null hypothesis to make our 

                                                
35 We make an argument analogous to Parente & Silva (2012), where the authors elucidated the heterogeneous 

effect of education on wages which makes overidentification restrictions to be invalid even if each instrument 

for education is valid individually (see Parente & Silva (2012) for details). 

𝑙𝑛(𝑄𝑖𝑡) = [𝛽1
𝑖𝜁𝑖 + 𝛽1

𝑗
𝜁𝑗 + 𝛽1

𝑘𝜁𝑘] 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) + 𝛽2𝑡𝑚𝑎𝑥𝑡 + 𝛽3𝑡𝑚𝑖𝑛𝑡 + 𝛽4𝑡𝑎𝑣𝑒𝑡

+ 𝛽5𝑟ℎ𝑎𝑣𝑒𝑡 +  𝛽6𝑝𝑝𝑡 +  𝛽7𝑝𝑝𝑑𝑎𝑦𝑠𝑡 + 𝛽8𝑡𝑜𝑡𝑎𝑙𝑝𝑝𝑡 + 𝛽9𝐸𝑇𝑡

+  𝛽10𝑐𝑑𝑑𝑡 +  𝛼𝑖 + 𝜀𝑖𝑡 

(12) 

𝐸[(𝑙𝑛(𝑄𝑖𝑡) − 𝛼𝑖 − 𝛽𝑘𝑋𝑘 − 𝛽1
𝑖 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1))𝑏𝑙𝑜𝑐𝑘𝑝𝑟𝑖𝑐𝑒1] = 0 (13a) 

𝐸[(𝑙𝑛(𝑄𝑖𝑡) − 𝛼𝑖 − 𝛽𝑘𝑋𝑘 − (𝛽1
𝑖 + 𝛽1

𝑗
) 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1))𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓1] = 0 (13b) 

𝐸[(𝑙𝑛(𝑄𝑖𝑡) − 𝛼𝑖 − 𝛽𝑘𝑋𝑘 − (𝛽1
𝑗

+ 𝛽1
𝑘) 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1))𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑓𝑓2] = 0 (13c) 
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instruments invalid. We can raise a similar argument for every other set of instruments used 

in Section 4.3, whenever the p-values for Hansen J-statistic for each overidentified model is 

less than 0.05. Therefore, the test overidentifying restrictions are invalid, regardless of any 

set (any linear combination) of price instruments.
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Appendix 3 

Augmented Model 

As evidenced in Section 4, running the model across the choice of either weather variables or 

instrumental variables produces stable estimates of price elasticity. To ensure the robustness 

of our results, we decide to run an augmented model, which runs together across the choice 

of both weather and price instruments. We build our model combining and redefining the 

equations in Sections 3.2.2 and 3.2.3. We predict the price from first stage regression using 

each possible set of instruments which picks each possible combination of weather variables 

as follows: 

where 𝑍𝑖𝑡−1 is every possible set of instrumental variables; 𝑋𝑡 is every possible set of 

weather variable during period t; 𝛿𝐾 and 𝜂𝑘  are the coefficients of instrumental variables and 

weather variables that need to be estimated.  

We rule out any prediction from the sole use of days of service as a price instrument and 

define the second stage regression as:  

𝑙𝑛(𝑄𝑖𝑡) = 𝛽1 𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1̂ ) + 𝛽𝑠𝑋𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡 (14b) 

where 𝛽𝑠 are the coefficients of weather variables to be estimated 

A total of 15,330 point estimates (30 sets of instrumental variables picking 511 different 

combinations of weather variables) are used to create a distribution of elasticity (Figure 7).  

We find the mean price elasticity of water as -0.70 with a standard deviation of 0.08, 

consistent with our previous estimates in Section 4.2 and 4.3. Further, we find 92% of our 

estimates between the range of between -0.80 to -0.52, which ensures the robustness of our 

previous estimates (Figure 5 and Figure 6) across the choice of weather and price 

instruments. 

 

 

𝑙𝑛(𝑝𝑟𝑖𝑐𝑒𝑖𝑡−1) = 𝜂0 + 𝛿𝑙𝑍𝑖𝑡−1 + 𝜂𝑘𝑋𝑡 + 𝜌𝑖 + 𝛾𝑖𝑡  (14a) 
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Figure 7: Test Sensitivity to Choice of Both Weather and Instruments Variables 

Using Augmented Model 


