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Abstract 

Mass loss across the Greenland Ice Sheet (GrIS) margin is increasing, with dynamic ice flux 

into the oceans and negative surface mass balance (SMB) being the two main mechanisms of mass 

loss. In this study, we focus on the SMB component, particularly negative SMB changes in the 

marginal ablation zone. Currently, SMB models struggle to represent spatial and temporal ablation 

variations near the GrIS margin, and recent studies have recommended using in-situ measurements 

and new remote sensing datasets to improve model skill along the ice sheet boundary. We detail and 

demonstrate a new satellite-based mass budget approach for estimating ablation rates throughout the 

Upernavik Isstrøm (UI) and Kangiata Nunaata Sermia (KNS) outlet regions. From 2019-2021, we 

report 396 total ablation rates and uncertainties over nine seasonal, temperate periods, with average 

measurements of -2.13±3.59 cm/d at UI and -2.50±3.25 cm/d at KNS. Validation efforts using nearby 

Automatic Weather Station (AWS) observations from the Programme for Monitoring of the 

Greenland Ice Sheet (PROMICE) network are encouraging, as the ablation rates are within or closely 

reflect spatially bounded ablation observations. Our mass budget method also shows an ability to 

reproduce observed ablation rates ranging from ~0 to -6 cm/d. While the average uncertainty at UI 

and KNS is about ±3.4 cm/d, uncertainty analysis reveals ablation rates at slow-flowing areas, with 

low longitudinal and transverse stresses, can be estimated within ±2 cm/d. Further validation and 

uncertainty analyses may improve spatial confidence to where our method can be scaled across a 

considerable extent of the GrIS margin, without an AWS.
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1. Introduction 

Since the 1990s, the GrIS has been losing mass at an accelerated rate due to a warming 

climate (Mouginot et al., 2019; Rignot and Kanagaratnam, 2006; van den Broeke et al., 2009), 

causing concerns about future sea level rise and prompting rigorous sea level projections (IPCC, 

2014; Shepherd et al., 2012). Greenland’s mass balance is driven by SMB changes and dynamic ice 

discharge via marine-terminating glaciers, which have caused 10.8 ± 0.9 mm of mean global sea level 

rise from 1992-2018 (The IMBIE Team, 2020). The GrIS stores ~7.4 meters water equivalent of 

mean global sea level (Morlighem et al., 2017), and currently, Greenland’s contribution to sea level 

rise is growing faster than all other sources, making the ice sheet a major source of sea level rise 

(Rietbroek et al., 2016; van den Broeke et al., 2016). This increasing rate of sea level contribution is 

due to the GrIS’s unstable response to the warming climate and its feedbacks, which may initiate 

irreversible mass loss on regional scales (Hanna et al., 2020). While surface mass balance (SMB) and 

dynamic ice discharge have contributed nearly equally to Greenland’s total mass loss from 1992-2018 

(The IMBIE Team, 2020), increased surface melting and runoff are emerging as Greenland’s leading 

mass loss terms in the 21st century (Enderlin et al., 2014). If negative SMB changes remain the 

dominant sea level rise contributor, improving the performance of SMB models, particularly around 

the GrIS margins where SMB models have the greatest deficiencies (Fettweis et al., 2020), will be 

important for future mass balance and sea level projections. We present a method for quantifying 

SMB changes in the ablation zone, using the 2-D mass continuity equation, which evaluates mass 

change through ice thickness changes and ice flow mechanisms. 

 Ice sheet flow is controlled by two fundamental processes; (1) ice kinematics, which describe 

how the ice sheet responds to surface mass changes, irrespective of forces, and (2) ice dynamics, 

which consider the forces and stresses acting on a body of ice, as well as the rheological properties of 

the ice. More precisely, ice kinematics define how the ice sheet should flow based on the surface 

slope set by accumulation and ablation, with surface melt and runoff being the main physical 

mechanism of motion (Catania et al., 2020). Accumulation is dominated by snowfall, but other 

processes such as wind-blown snow, melt refreezing, avalanche deposition and frost/rime formation 

may contribute to accumulation (Cuffey and Paterson, 2010). Ablation occurs in several ways, most 

notably through meltwater runoff, surface and frontal melting, sublimation, and iceberg calving 

(Cuffey and Paterson, 2010). Ablation is forced by the energy budget’s radiative and turbulent fluxes, 

including shortwave and longwave radiation, sensible heat, and latent heat. Shortwave radiation 

absorption has been identified as the most important energy source for seasonal melt cycles, however, 

in the low-lying ablation zone, the sensible and latent heat turbulent fluxes significantly affect 
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interannual melt variability (van den Broeke et al., 2011). The SMB anywhere on the ice sheet is 

defined as the difference between accumulation (mass gain) and ablation (mass loss) at the surface 

(Ettema et al., 2010). Applying SMB concepts to a glacier, if accumulation and ablation are equal, the 

glacier is balanced and in steady state; however, most glaciers are unbalanced, meaning that their 

size, shape, and mass will change over time. Ice dynamics are largely defined by stresses within a 

body of ice, which manifest through spatial changes in the ice velocity and thickness. Since ice is an 

incompressible material, when it’s stressed, the ice will deform by stretching or compressing, 

depending on the orientation of the stresses; when stretched or compressed, the ice surface lowers or 

rises. To summarize, ice flows down a topographic gradient, where kinematic motion exists to offset 

SMB gradients and dynamic flow causes deformation, resulting in ice thinning or thickening. 

Although kinematics and dynamics are exclusive descriptions of ice flow, when considered 

together, they describe how an ice body changes over time. This relationship is apparent in the 2-D 

mass continuity equation, where temporal ice thickness changes are controlled by the SMB and ice 

flux divergence: 

 
𝜕𝐻

𝜕𝑡
=  �̇� − ∇ ∙ �⃗� (1) 

In equation 1,  is the rate of ice thickness change, �̇� is the SMB, and ∇ ∙ �⃗� is the ice flux 

divergence. The mass continuity equation states that ice thickness changes are the difference between 

the climate-controlled SMB and the dynamic ice flux divergence. However, in this study, we are 

interested in quantifying the SMB, particularly the ablation component; therefore, the continuity 

equation is rearranged to solve for SMB: 

  �̇� =
𝜕𝐻

𝜕𝑡
+ ∇ ∙ �⃗� (2) 

Through equation 2, a mass budget approach is used to estimate SMB changes at high spatial 

resolutions (1 km), near the GrIS margin. Mass budget methods require detailed knowledge of SMB 

and ice discharge on local scales, which has become possible with new and improved satellite data 

(Hanna et al., 2020). The recently launched ICESat-2 satellite (Markus et al., 2017) measures high 

resolution ice surface changes, InSAR derived velocity maps (Joughin et al., 2010) and a GrIS-wide 

ice thickness map (Morlighem et al., 2017) can quantify dynamic ice fluxes, and when all datasets are 

combined, SMB may be calculated. In addition, the continued operation and maintenance of the 

PROMICE AWS network (Fausto et al., 2021), largely located in low-lying marginal areas, facilitates 

validation efforts of SMB estimates. While the mass budget method has limited regional utility, one 
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major advantage is that mass balance is partitioned into SMB and dynamic discharge components, 

which can give insight into the physical processes driving mass change (Hanna et al., 2020; van den 

Broeke et al., 2016). 

Large SMB uncertainties (Fettweis et al., 2020; The IMBIE Team, 2020) are typically the 

greatest source of error in mass budget methods (Vernon et al., 2013). Since ice-sheet wide SMB 

cannot be directly measured, regional climate models (RCM) are often used to simulate SMB (Hanna 

et al., 2020). Intercomparison of these SMB models revealed significant regional and seasonal 

discrepancies, prompting recommendations to implement a common ice sheet mask in future SMB 

modelling efforts to reduce uncertainties (Vernon et al., 2013). Using this recommendation, the GrIS 

SMB model intercomparison project (GrSMBMIP; Fettweis et al., 2020) discovered the greatest 

spread between model uncertainties were near the GrIS margins, in the ablation zone. Their results 

highlight SMB models’ inability to accurately represent physical ablation processes, while stressing 

model improvements by integrating satellite data and in-situ measurements. A major deficiency in 

near-margin model performance is the low, 50-100 km horizontal resolution of Earth System Models 

(climate forcing fields used in RCM inputs), which are too coarse to reliably simulate SMB changes 

(Hanna et al., 2020). Still, RCMs can produce SMB outputs up to 5 km native resolutions (e.g., 

RACMO, HIRHAM; Fettweis et al., 2020). Superimposed on the climate forcing issue is the 

statistical downscaling of native RCM outputs across the narrow fjords of marine-terminating 

glaciers. To resolve marginal SMB gradients, RCMs may be downscaled to 1 km resolution (Noël et 

al., 2016), however, downscaling can misrepresent surface processes, such as runoff (van den Broeke 

et al., 2016). Assessing RCM/SMB model performance is valuable because the outputs contain spatial 

and temporal errors and biases, potentially compromising their dependability (Vernon et al., 2013). 

In this study, our goals are to demonstrate a new satellite-based mass budget method for 

estimating ablation, which has scalable potential across much of the GrIS ablation zone, to provide 

ablation estimates at two locations along the western GrIS margin, and to help resolve spatial and 

temporal SMB changes at low-elevation areas. The ability to accurately estimate marginal SMB is 

important for better understanding the ice sheet’s long-term health (Vernon et al., 2013), and its 

potential future contributions to sea-level rise. Past mass balance studies (Hanna et al., 2005; Rignot 

et al., 2008; Shepherd et al., 2012; van den Broeke et al., 2009) must rely upon SMB models and their 

uncertainties, which may impact the precision of the total mass balance estimates. Erroneous model 

outputs and mass balance estimates have major implications, especially in a warming Greenland 

climate, as these products are often used to project global sea level rise (Shepherd et al., 2012; The 

IMBIE Team, 2020) .       
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2. Background 

2.1 Datasets 

2.1.1 ATLAS/ICESat-2 L3A Land Ice Height 

Surface elevation profiles are selected from NASA’s ICESat-2 mission. Launched in 

September 2018, ICESat-2 is a satellite equipped with the state-of-the-art Advanced Topographic 

Laser Altimeter System (ATLAS) instrument designed to measure the Earth’s surface with 

unprecedented detail. ICESat-2 builds upon NASA’s original ICESat mission (2003-2009), greatly 

improving on the original design and technical specifications (Markus et al., 2017; Smith et al., 

2019). The ATLAS instrument houses a laser altimeter split into six beams and organized into three 

beam pairs; the beam pairs are spaced by ~3.3 km, while two beams composing a pair are separated 

by ~90 meters (Markus et al., 2017). The 3x2 beam array, therefore, provides consistent and thorough 

spatial coverage of surface elevations across the GrIS. Further, ICESat-2 operates on quarterly 91-day 

repeat cycles, allowing for high-resolution seasonal surface measurements, which are critical for 

estimating ablation during temperate months. Since the early 1990s, ice sheet and mass changes have 

been captured by radar and laser altimeters, though laser altimetry has two key advantages in that 

surface elevation measurements exhibit minimal subsurface scattering and are capable of precise 

measurements over steep sloping, near-terminus regions (Smith et al., 2020). These advantages 

contribute to ICESat-2’s utility in measuring ice sheet, glacier, and mass changes.  

Of ICESat-2’s many data products, we use the Land Ice Height (ATL06) product for 

geolocated land-ice surface elevation measurements. Derived from the lower-level Global Geolocated 

Photon Data (ATL03) product, the ATL06 algorithm describes land-ice surfaces by fitting 40 m 

along-track segments to thousands of ATL03 photon elevation measurements and spacing segment 

centers by 20 meters. This process creates a 50% overlap between consecutive linear segments (Smith 

et al., 2019), therefore, the final ATL06 product has a 40 m spatial resolution, posted at 20 m 

intervals. Critical to our project design, ATL06 elevation measurements contain a quality flag with 

ratings of 0 or 1, where 0 indicates the highest quality and 1 indicates the lowest quality 

measurements (Smith et al., 2019). High quality measurements must meet all four criteria outlined in 

Smith et al. (2019), while flagged low-quality measurements fail to meet at least one of the four 

criteria. We found that flagged measurements are generally associated with fast-flowing ice that is 

crevassed. After testing, we found that inclusion of the flagged measurements did not significantly 

affect our surface elevation change estimates, instead, they greatly improved the quantity and spatial 

coverage of points available for elevation differencing. Therefore, we opted to use all ATL06 
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measurements within our study sites. Still, the posting of high/low quality data for a given ICESat-2 

cycle may be affected by cloud and fog presence, heavily crevassed terrain, ATL03 photon surface 

location, and photon return flight path, with cloud coverage often being the most problematic. For this 

reason, criteria for ICESat-2 cycle selection was based on consecutive 91-day repeat tracks with 

complete spatial coverage throughout the study sites. Consecutive quarterly cycles are only 

considered to maintain a consistent surface elevation differencing period. 

2.1.2 MEaSUREs Greenland Ice Velocity 

Surface velocity data are obtained from NASA’s MEaSUREs program, in particular, from the 

‘Selected Glacier Site’ dataset. This dataset provides velocity estimates at 55 major glacier outlet 

regions (200+ marine-terminating glaciers), near the GrIS margins. The velocity data are produced 

using feature speckle tracking and conventional interferometry synthetic aperture radar (InSAR) 

techniques (Joughin et al., 2002; Joughin et al., 2010), with image pairs provided from the TerraSAR-

X and TanDEM-X twin satellites. The velocity fields have a 100 m spatial resolution and varying 

temporal resolutions of 11, 22, or 33 days, on an 11-day repeat cycle; however, the majority of 

velocity fields we use are at 11-day resolution. At our study sites, we collect a subset of all available 

x/y vector velocity fields from 2019 to 2021, concurrent with ICESat-2’s operation. Velocity error 

estimates typically range from ~1 to 15 m/yr and are not proportional to the vector magnitude, 

meaning the errors of fast and slow-flowing ice are generally similar.   

2.1.3 IceBridge BedMachine Greenland 

Ice thickness estimates are sampled from the BedMachine Greenland v4 dataset, which 

provides complete spatial coverage of ice thicknesses across the GrIS at 150 m resolution. The ice 

sheet wide map was adapted by combining ice thickness observations from radar sounders (HiCARS 

and PARIS) and Operation IceBridge flight missions, then applying several interpolation methods to 

infill data gaps; all thickness observations were obtained between 1993 and 2016 (Morlighem et al., 

2017). Thicknesses near the GrIS margin were primarily developed using a mass conservation 

method, while the ice sheet interior was mapped with kriging and interpolation (Morlighem et al., 

2017). To create mass conservation estimates, radar and airborne data were combined with high-

resolution, InSAR derived surface velocities. Areas of fast flowing ice ( > 50 m/yr) produced the 

highest quality and most trustworthy mass conservation estimates, due to relatively smaller vector 

errors (Morlighem et al., 2014b). Here, we sample ice thicknesses from the ablation zone, where the 

mass conservation method was applied. However, at small scales, some of our sampled thicknesses 

are inferred by interpolation, kriging, or from the Greenland Ice Mapping Project DEM (Howat et al., 
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2014). Mass conservation derived thicknesses have a typical reported error of 36 meters, however, the 

error may exceed 100 meters in areas where thickness observations are limited (Morlighem et al., 

2013). Across our study regions, the ice thicknesses have an average error of ~52 meters, or ~9% the 

average measured thickness. 

2.1.4 PROMICE Automatic Weather Stations 

Ice ablation validation data are provided by PROMICE AWSs near our study sites. Climatic 

monitoring of the GrIS dates back to the late 1970s, however, year-round observations were not 

available until the 1990s when the Greenland Climate Network installed several AWS, most of which 

were located in the accumulation zone (Fausto et al., 2021). Since few stations were monitoring the 

low-lying ablation zone, PROMICE was developed to help address this issue. Initiated in 2007, the 

PROMICE project aimed to improve the understanding of spatio-temporal variability in Greenland’s 

climate by installing additional AWS, mostly in the underrepresented ablation zone where melting 

dominates the SMB (Fausto et al., 2021). Currently, the PROMICE AWS network has 25 operational 

instruments, which deliver daily, hourly, and monthly climatic data products. The AWSs have proven 

to be a valuable resource for assessing the quality of satellite-based observations, calibrating RCMs, 

and other numerical models that seek to refine SMB reconstructions (Fettweis et al., 2020; Noël et al., 

2018; Van As et al., 2014a). To validate ablation estimates, we use an ice ablation time-series product 

that is derived from a pressure transducer assembly described in Fausto et al. (2021). Important to 

note, the PROMICE AWS use a naming convention with suffixes of ‘U’ and ‘L’, standing for upper 

and lower, respectively. The lower designated AWS are positioned near the GrIS margin, while the 

upper AWS is located higher in the ablation zone, near the equilibrium line altitude. 

2.2 Study Sites 

Our ablation estimates are made across general outlet regions, still, we refer to study sites by 

the major tidewater glacier within the region. As such, we create ablation estimates at Upernavik 

Isstrøm and Kangiata Nunaata Sermia (Figure 2.1a). These outlet regions, approximately 930 km 

apart, were selected to test the mass continuity ablation method under different climate and ice 

dynamics systems. In addition, both sites have outstanding ICESat-2, MEaSUREs, and PROMICE 

data availability and quality.       
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Figure 2.1: Study site location map. (a) Study site locations, relative to the GrIS; UI (red) lies on the west-
central coast and is ~930 km north of KNS (green). (b) UI MEaSUREs velocity grid (W72.90N) and AWS 
sites, plotted over an August 2019 Sentinel-2 optical image. All ablation estimates are created within the grid 
extent. The velocities represent the 3-year average velocity, on a cell-by-cell basis, for all velocity magnitude 
fields from 2019-2021. (c) Same as panel b, except at KNS (N64.25W). 

2.2.1 Upernavik Isstrøm (UI) 

Located in west-central Greenland (72°50’N, 54°10’W), UI is characterized by a group of 

four tidewater glaciers that terminate into the Upernavik Icefjord (Larsen et al., 2016). Despite similar 

climate forcings, the four outlet glaciers exhibit asynchronous behavior, which may be explained by 

their distinct geometries (Larsen et al., 2016). Two PROMICE AWS (UPE_U and UPE_L) are 

situated within the MEaSUREs velocity grid, which provide ablation observations that constrain 

much of the region (Figure 2.1b). From 2019-2021, UI has 33 available MEaSUREs velocity fields: 

14 in 2019, 10 in 2020, and 9 in 2021. In addition, five ICESat-2 repeat tracks (two flyovers spaced 

by 91 days) are available with consistent and complete spatial coverage throughout the MEaSUREs 

grid, optimizing the number of potential ablation estimates; the five ICESat-2 cycles range from May 

2019 to July 2021. 
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2.2.2 Kangiata Nunaata Sermia (KNS) 

Flowing into the Nuup Kangerlua Fjord, KNS is the largest tidewater glacier in southwest 

Greenland (64°29’N, 49°61’W), draining ~2% of the GrIS (Moyer et al., 2017). While KNS is the 

largest, the region consists of three marine-terminating glaciers that also exhibit asynchronous 

behavior, however the causality is ambiguous (Motyka et al., 2017). Like UI, two PROMICE AWS 

are present at KNS (NUK_U and NUK_L), one of which is located within the MEaSUREs velocity 

grid, the other lying just outside the grid bounds (Figure 2.1c). These AWS are positioned closer to 

each other (~13 km), compared to the stations at UI (~23 km), therefore less area is constrained by 

KNS observations. KNS is generally warmer and receives slightly greater incoming radiative fluxes 

during temperate months (Table 2.1), therefore, we expect enhanced ablation rates across the region. 

At KNS, 35 MEaSUREs velocity fields are available from 2019-2021, distributed as follows: 14 in 

2019, 11 in 2020, and 10 in 2021. There are four optimal ICESat-2 repeat flyovers, ranging from May 

2019 to September 2020. 

AWS 
Station 

Air 
Temperature 

(°C) 

Surface 
Temperature 

(°C) 

Incoming 
SW 

Radiation 
(W/m2) 

Incoming 
LW 

Radiation 
(W/m2) 

Albedo 
Elevation   
(m a.s.l.) 

UPE_U -3.10    -6.49 *    242 *    240 * 0.68 940 

UPE_L  0.30 -2.86 213 271 0.65 220 

NUK_U -1.55    -11.24 **      245 **      250 **    0.78 *    1120 

NUK_L  2.08 -1.64 216 276 0.41 530 
                                                                                                                                                                                                       
Table 2.1: PROMICE AWS temperatures, incoming radiative fluxes, and physical conditions. Statistics are 

based on a 6-month, 3-year average from April to October, 2019-2021. The time period reflects the warmer 
seasonal climates at UI and KNS, and temporally bounds all ablation estimate periods. Sensible and latent heat 
turbulent fluxes are not included, due to poor temporal coverage. Given the temperature and elevation, greater 
ablation is expected at the lower designated (‘L’) AWSs. Similarly, more ablation is expected at KNS, given its 
southerly location. 

  

* Limited Data;   ** Mostly 2019 Data 
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3. Methods 

 3.1 Ablation Equation 

To create remotely sensed ablation estimates, first we revisit the 2-D mass continuity 

equation to derive an ablation equation:  

 �̇� =
𝜕𝐻

𝜕𝑡
+  ∇ ∙ �⃗� (2) 

Recalling equation 2, the SMB term (�̇�) may be partitioned into its constitutive components, 

accumulation (c) and ablation (a): 

 𝑐 + 𝑎 =
𝜕𝐻

𝜕𝑡
+  ∇ ∙ �⃗� (3a) 

In equation 3a, quantifying the accumulation term’s contribution to ice thickness changes is 

difficult due to snow densification. When snow is on the ice surface, ICESat-2 surface elevation 

changes do not directly correspond to ice thickness changes. The mass continuity equation assumes 

that SMB rates and ice thickness changes have equal densities: the density of ice. Because of this 

assumption, snow densification is problematic, therefore, we constrain ablation estimates to mostly 

summer months when we assume accumulation equals zero. Thus, the accumulation term is dropped, 

and since we assume operation on bare ice, by definition, ICESat-2 surface elevation changes should 

directly correlate to ice thickness changes:  

 𝑎 =
𝜕𝐻

𝜕𝑡
+ ∇ ∙ �⃗� (3b) 

Here, negative ablation (𝑎) values indicate mass loss and positive values signify mass gain. 

In the 2-D mass continuity equation, the ice flux divergence (∇ ∙ �⃗�) describes spatial ice flux changes 

in two dimensions, the ice flux in the x and y directions. Thus, the flux divergence in equation 3b may 

be split into exclusive x and y flux components, which transforms the flux divergence from a vector 

to a scalar field that defines the flux gradient: 

𝑎 =
𝜕𝐻

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
+

𝜕𝑞

𝜕𝑦
 (4a) 

The ice flux is defined as the volume of ice flowing through a cross-section of a glacier over 

time. Ice fluxes are calculated from velocity and ice thickness measurements, such that 𝑞 ( ) =  𝑢𝐻 

(𝑣𝐻), where 𝑞 ( ) is the ice flux, 𝑢(v) is the x(y) depth-averaged velocity, and 𝐻 is the ice thickness. 

The MEaSUREs dataset provides surface velocity measurements, but we convert all surface-based 
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terms to depth-averaged terms before calculating an ablation rate (see section 3.7). The velocity and 

ice thickness products are substituted for ice flux in equation 4a, as follows: 

𝑎 =
𝜕𝐻

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢𝐻) +

𝜕

𝜕𝑦
(𝑣𝐻)  (4b) 

Through differentiation, by way of the product rule, the x and y flux components are 

expanded to reflect the dynamic relationships between ice velocity and thickness that impact temporal 

ice thickness changes: 

𝑎 =
𝜕𝐻

𝜕𝑡
+ 𝑢

𝜕𝐻

𝜕𝑥
+ 𝐻

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝐻

𝜕𝑦
+ 𝐻

𝜕𝑣

𝜕𝑦
 (5) 

Equation 5 is the final form of our ablation equation, where 𝑢 is the x-vector velocity, 𝑣 is the 

y-vector velocity, 𝐻 is the ice thickness,  and  are velocity gradients in the x and y directions,  

and  are the x and y ice thickness gradients, and  is the rate of ice thickness change.  

In addition, an ablation uncertainty is estimated by propagating the five ablation equation 

components in quadrature: 

𝛥𝑎 = 𝛥
𝜕𝐻

𝜕𝑡
+ 𝛥 𝑢

𝜕𝐻

𝜕𝑥
+ 𝛥 𝐻

𝜕𝑢

𝜕𝑥
+ 𝛥 𝑣

𝜕𝐻

𝜕𝑦
+ 𝛥 𝐻

𝜕𝑣

𝜕𝑦
 (6) 

In equation 6, the final four components are products, which require further expansion 

through the multiplication error propagation rule; the final uncertainty equation is as follows: 

 𝛥𝑎 =

⎷
⃓
⃓⃓
⃓⃓
⃓
⃓⃓
⃓

𝛥
𝜕𝐻

𝜕𝑡
+

⎝

⎛𝑢
𝜕𝐻

𝜕𝑥
 

∆𝑢

𝑢
+  

∆
𝜕𝐻
𝜕𝑥

   
𝜕𝐻
𝜕𝑥 ⎠

⎞ +

⎝

⎛𝐻
𝜕𝑢

𝜕𝑥

∆𝐻

𝐻
+

∆
𝜕𝑢
𝜕𝑥

   
𝜕𝑢
𝜕𝑥 ⎠

⎞ +

⎝

⎜
⎛

𝑣
𝜕𝐻

𝜕𝑦

∆𝑣

𝑣
+

∆
𝜕𝐻
𝜕𝑦

   
𝜕𝐻
𝜕𝑦

⎠

⎟
⎞

+

⎝

⎜
⎛

𝐻
𝜕𝑣

𝜕𝑦

∆𝐻

𝐻
+

∆
𝜕𝑣
𝜕𝑦

   
𝜕𝑣
𝜕𝑦

⎠

⎟
⎞

 (7) 

 3.2 Ablation Geometry and Grids 

Before quantifying ablation estimates and uncertainties, we define the extent and geometry of 

ablation estimates at UI and KNS. Since we use remotely sensed data, by nature, spatial and temporal 

overlaps between datasets are sparse. Although ICESat-2 has ice-sheet-wide spatial coverage, our 

ablation estimates are limited to the spatial extent of the MEaSUREs velocity grids. We estimate 

ablation inside a circular geometry, with the ablation rate representing the entire circle. We create an 

evenly spaced grid of ablation circles that closely follows the flight path of subsetted ICESat-2 
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ground tracks (Figure 3.1a). To maximize the number of circles in a grid, we extend the grid beyond 

the horizontal bounds of ICESat-2’s beams by 2 km in each direction. The diameter of all circles 

comprising the grid is a constant 1 km. This diameter was chosen for three reasons; (1) to reduce 

potential sampling biases inherent in a smaller circle, (2) to ensure that circles are not too large, so 

that an ablation estimate is representative of the entire area within a circle, and (3) to maintain 

consistent circle sizes throughout a grid. Ablation equation terms are calculated by sampling vector 

points or raster cells inside a circle. Below we outline how each term is processed from the original 

dataset. 

3.3 Ice Thickness Change Rate 

The rate of ice thickness change  is derived from ICESat-2’s ATL06 data product. 

ATL06 measures surface elevations over time, however, because we constrain our ablation estimates 

to temperate months, when we assume accumulation is zero, surface elevation changes should 

directly reflect ice thickness changes. While some subglacial processes contribute to ice surface and 

thickness changes, such as the vertical bed separation rate (Andrews et al., 2014) and basal melt rate 

(Karlsson et al., 2021), these processes are insignificant compared to the changes on the ice sheet 

surface (The IMBIE Team, 2020); therefore, we assume all ice thickness changes occur at the surface. 

Thickness changes are calculated by differencing ATL06 surface elevations, at all six beams, from 

consecutive 91-day repeat ICESat-2 cycles. Since ATL06 measurements are not posted at exact 

locations upon repeat cycles and any given cycle may have missing data, we interpolate and average 

surface elevations onto a common line segment for each beam. Points on these segments are spaced 

20 meters, consistent with ICESat-2’s spatial posting. Point values are determined by searching for 

surface measurements within ±20 meters of each point; in cases where multiple measurements are 

identified, a mean is taken. Geospatial coordinates are then assigned to the spatially averaged points 

by using the original along-track coordinates as an interpolant. This line segment process allows 

direct comparison of surface elevations from 91-day repeat flyovers. Once processed, the line 

segments are differenced at each beam. A single thickness change rate is determined by sampling 

thickness change points from all beams within the vertical bounds of an ablation circle (Figure 3.1b). 

A median thickness change and x-position is taken at each beam, then, with these six points an 

ordinary least squares regression is performed to predict the thickness change at the centroid x-

position of a circle (Figure 3.1c). Thickness change rates of circles located outside the ICESat-2 

horizontal bounds are extrapolated based on the linear regression; for this reason, we choose to extend 

the circle grid just 2 km to avoid over-extrapolation. To determine an uncertainty, a 95% prediction 
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interval is applied to a circle’s prediction point, based on the linear regression. The uncertainty is 

defined as half of the prediction interval. 

Figure 3.1: (a) An ablation circle grid (red circles) at UI mirroring the given ICESat-2 ground track (green 
lines). The grid is horizontally extended 2 km past the ICESat-2 extent to maximize potential ablation estimates. 
(b) On-ice image of thickness change (𝜕𝐻) points within a circle’s geometry. The median thickness change of 
all points is sampled at each beam; if the ICESat-2 spatial coverage is complete, a maximum of 50 thickness 
change points (per beam) may exist within the circle’s vertical bounds. (c) The six median beam-sampled 
thickness changes (orange points) are used to linearly predict the thickness change at the circle center (black 
point). The blue dotted bars represent the 95% prediction interval, which defines the thickness change 
uncertainty. 

3.4 Vector Velocities 

MEaSUREs velocity maps provide a basis for deriving the x-direction (𝑢) and y-direction 

(𝑣) velocities, however, we reconstruct, smooth, downscale, and daily interpolate these velocity 

fields to create a time-series consistent with our ICESat-2 periods. We apply these techniques because 

the original velocity maps have inconsistent spatial coverage, and less than ten maps are available 

around each summer. Empirical orthogonal functions (EOFs) are used to reconstruct spatial gaps in 

each of the 33 and 35 maps at UI and KNS, respectively. An EOF is derived by decomposing the 

signal of known data, if multiple coherent signals exist, then multiple EOFs may be defined. Each 

subsequently defined EOF is a mode that describes the spatial variance of the input data. As the data 

signal is decomposed, the modes become less coherent, and consequently, hold less weight in the 

reconstruction. Once all EOFs are defined, missing data are reconstructed by applying the appropriate 
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signal and weight of each EOF. In Earth science, EOFs are typically used in meteorology and 

oceanography, however, our EOF reconstruction reproduces acceptable velocity fields with plausible 

magnitudes and spatial patterns. To begin, we create a mean velocity map from 2019-2021, then 

calculate the velocity anomaly from the three-year mean for each map. An initial EOF reconstruction 

is performed, assuming the anomaly equals zero at unmeasured locations. From the initial 

reconstruction, the first four EOFs, which describe the prevailing spatial patterns in the velocity 

anomaly, are used to reconstruct the velocity anomalies. Only the first four EOFs are considered  

because additional EOFs have incoherent modes that explain less than 2% of the input data’s spatial 

variance. During reconstruction, the anomaly maps are continuously updated until a sufficient 

solution is reached; the reconstruction is complete when the maximum difference between subsequent 

anomaly updates is less than 5 m/yr. 
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Figure 3.2: (a) Example of full velocity field reconstruction using EOFs. All x and y velocity fields at UI and 
KNS are reconstructed to their respective 2019-2021 mean spatial extent. (b) Small-scale (4 km2) parcel 
comparison of original MEaSUREs velocity to censored, reconstructed velocities at the same location. This 
comparison informs the reconstruction’s typical contribution to the velocity error maps. The reconstruction 
reproduces original spatial velocity patterns with reasonable fidelity (< 8% average change) at UI and KNS. 

After updating, the final anomaly maps are combined with the mean velocity map, resulting 

in velocity fields with complete spatial coverage (Figure 3.2a). To reduce noise, the reconstructed 

velocities are smoothed with a gaussian filter, using an ~1200 m kernel. The 100 m velocity fields are 

then downscaled to a 150 m resolution, matching the cell size of the BedMachine dataset; a cubic 

interpolation is used in the downscale. Finally, the median velocity of cells within a circle’s geometry 

is sampled (Figure 3.3a). We sample median velocities for all maps bounding a 91-day ICESat-2 

period, then linearly interpolate for each day between the sampled dates (Figure 3.3c). The median 

velocity of the 91 days composing an ICESat-2 period is taken as the circle’s final vector velocity. 
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These velocity procedures are performed separately for x and y vector velocity maps, and the final 

median sampling is iterated for all circles within a grid. 

Vector velocity uncertainties are difficult to assess, given the operations performed on the 

reported MEaSUREs measurements, still, we account for each operation’s contribution to the error 

with conservative thresholds. Since the velocities are reconstructed to the spatial extent of the 2019-

2021 mean, missing errors must also be infilled to this extent. At UI and KNS, velocity errors do not 

scale with speed, instead the errors typically fall within a range of 1 to 15 m/yr. Thus, a constant 

absolute velocity is chosen to fill error gaps. The absolute velocity error is derived from a bivariate 

kernel density plot of all original MEaSUREs velocity measurements and errors from 2019-2021. A 

conservative infilling value is manually selected for x and y velocities, based on the kernel density 

distribution; at UI (KNS), the x and y infilling errors are 7(5) and 9(7) m/yr, respectively. After filling 

missing error data with these velocities, we convert from absolute to relative errors, then propagate 

the relative errors and the effect of the EOF reconstruction in quadrature. Fittingly, the 

reconstruction’s effect is only applied to infilled errors, where the measured velocity was 

reconstructed.  

To quantify the reconstruction’s contribution to the error, parcels where the original velocity 

is known are censored, then the EOF reconstruction is performed again. In this way, original velocity 

data can be directly compared to how the EOFs have recreated the data (Figure 3.2b). At UI and 

KNS, three 20 x 20 square parcels (4 km2) are masked from a selection of all available 2019-2021 

velocity fields. If multiple velocity fields are available for a given year/month, then the first field for 

that year/month is masked. We use this criteria to not bias the reconstructed parcels to a particular 

time period, and to not oversample velocity fields for a given year/month, which may alter the EOFs 

spatial velocity patterns. In total, 10 of the 33 fields (12,000 cells) at UI, and 12 of the 35 fields 

(14,400 cells) at KNS are masked. Once reconstructed, the absolute value of the percent change from 

original to reconstructed data is calculated on a cell-by-cell basis for each field. Finally, the median of 

all magnitude-adjusted percent change measurements is taken as the reconstruction’s impact. The 

reconstruction’s impact at UI (KNS) for x and y velocities are ~5.6% (~3.8%) and ~7.6% (~5.9%), 

respectively.  

To account for the gaussian smooth’s error contribution, a percent change from 

original/reconstructed velocities to smoothed velocities is calculated on a cell-by-cell basis for each 

velocity field within or temporally bounding an ICESat-2 period. The percent changes are propagated 

in quadrature with the original and newly infilled/reconstructed relative errors, also on a cell-by-cell 

basis. The results are relative error maps, with complete spatial coverage, that account for the 
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reconstruction and smooth’s effect, appropriately and conservatively. These relative error maps are 

then resampled to 150 m resolution and multiplied by the time-corresponding smoothed velocity field 

to convert back to absolute errors. From here, the absolute error maps follow the same median 

sampling and daily interpolation procedures as the vector velocities (Figure 3.3c). However, to 

account for the effect of time interpolation, the mean sampled velocity difference is propagated with 

the final 91-day median velocity error in quadrature. The mean sampled difference metric is 

determined by differencing consecutive median vector velocities of a circle, for all velocity fields 

within or bounding an ICESat-2 period. The mean velocity of these sampled differences is defined as 

the uncertainty for the daily interpolation, on a circle-by-circle basis. Thus, the mean sampled 

difference will reflect modest or substantial velocity variations in the sampled velocity fields for any 

given circle. 

3.5 Velocity Gradients 

The velocity gradients ,  are calculated from the reconstructed, smoothed, and 

downscaled velocity fields. A second order finite difference is used to approximate the partial 

derivatives (Figure 3.3b); for example, the approximation’s general form for  is:  

𝜕𝑢

𝜕𝑥
≈  

𝑢(𝑥 + ∆𝑥) − 𝑢(𝑥 − ∆𝑥)

2∆𝑥
 

Where 𝑢(𝑥 + ∆𝑥) and 𝑢(𝑥 − ∆𝑥) represent the velocities of cells adjacent to the 

approximated cell, and ∆𝑥 is the raster spatial resolution, 150 meters. Complete finite difference maps 

are produced, then the median sampling and daily interpolation vector velocity methods are applied to 

obtain an x/y gradient value for each circle. 
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Figure 3.3: (a) Schematic for sampling the median velocity within circle geometry. (b) Schematic for finite 
difference approximations. Finite differences are calculated on a cell-by-cell basis, then a median is sampled as 
shown in panel a. (c) Example of daily interpolation and final median velocity sampling. Red points are the 
median circle-sampled velocities, and orange points are the linear, daily interpolated velocities. A final 91-day 
median velocity (dark blue point) is taken, corresponding to the given ICESat-2 period (black dotted lines). The 
error bars represent the mean sampled difference between all consecutive sampled points. 

Velocity gradient uncertainties are produced by propagating the two velocity errors that 

correlate to the measurements used in a finite difference approximation. The velocity errors are 

sampled from the final vector velocity errors maps, and the errors are propagated in quadrature. Error 

propagation is performed everywhere a velocity gradient has been approximated, therefore, like the 

vector velocity error maps, there are complete gradient uncertainty maps. In addition, because 

velocity gradients are daily interpolated, we propagate the average sampled gradient difference onto 

the final 91-day averaged gradient error to account for the impact of time interpolation. Similar to the 

final vector velocities, the average sampled difference is propagated on a circle-by-circle basis, which 

reflects the variability of velocity gradients within each circle. 
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3.6 Ice Thickness and Gradients 

The ice thickness (𝐻) and gradients ,  are determined with methods similar to the 

velocity terms. Since BedMachine is a time-averaged product, provided at a single time-step, daily 

interpolation is not necessary. However, we apply the previously described raster sampling and finite 

difference approximations to solve for all ice thickness terms. The only difference is that a mean, 

instead of median, is taken as the typical thickness and gradient value. A mean is used because 

outliers are rare, particularly in ice thicknesses derived from mass conservation, and the variance of 

thickness measurements within a circle is less extreme than velocity variations. The ice thickness 

uncertainty is the mean error within a circle, and like the velocity gradients, the thickness gradient 

uncertainties are the mean of propagated errors. 

3.7 Depth-Averaged Terms and Circle Filtering 

Once a measured and error value are obtained for each ablation equation term, the terms are 

converted to cm/d. Since all vector velocities and velocity gradients represent surface measurements, 

we transform these terms into more realistic depth-averaged measurements; the depth-averaged 

product is defined as 90% of the surface measurement, and to account for this adjustment, 10% of the 

surface measurement is propagated with the corresponding error in quadrature. Finally, an ablation 

estimate and uncertainty are calculated for all gridded circles, using equations 5 and 7. We report all 

ablation estimates with an uncertainty less than 5 cm/d, which generally reflect ideal criteria for 

producing lower uncertainty estimates. 

3.8 AWS Validation 

Ablation estimates are validated with a pressure transducer assembly, outfitted at each 

PROMICE AWS (Figure 3.4). The pressure transducer is placed at the bottom of a water/antifreeze 

filled hose, drilled over ten meters into the ice, and quantifies surfaces changes due to ice ablation by 

measuring the hydrostatic pressure of the vertical liquid column above the sensor (Fausto et al., 

2021). After correcting for the influence of air pressure variations, reductions in hydrostatic pressure 

correlate directly to ice ablation (Fausto et al., 2021). More details about the transducer assembly and 

function are outlined in Fausto et al (2021). The observed AWS ablation is calculated as the 

difference between the water column depth on the first and last day of a given ICESat-2 period. 

Although there are five ICESat-2 periods at UI and four at KNS, as well as two AWS stations at each 

study site, we only compare ablation estimates within 2 km of an AWS; these areas are most likely to 

have physical conditions and ablation rates that are comparable to the AWS. 
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Figure 3.4: Photograph of the PROMICE AWS installation at UPE_U (Fausto et al., 2021). Objects labeled 
with a ‘7’ denote the pressure transducer assembly, which measures ice ablation directly and is used to validate 
our mass continuity ablation estimates. 
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4. Results 

At UI and KNS, ablation rates are produced for five and four ICESat-2 periods, respectively. 

In total, we report 396 ablation rates with uncertainties less than ±5 cm/d. Coincidentally, UI and 

KNS returned 198 estimates each, which is useful for a general outlet region comparison (Table 4.1), 

despite variable estimate quantities over different ICESat-2 periods. 

Outlet Region 
Total 

Estimates 

Average 
Ablation 
(cm/d) 

Average 
Uncertainty       

(± cm/d) 

Average 
AWS 'U' 
Ablation 
(cm/d) 

Average 
AWS 'L' 
Ablation 
(cm/d) 

UI 198 -2.13 3.59 -1.70 -2.11 

KNS 198 -2.50 3.25 -1.76 -3.85 

Table 4.1: General ablation results at UI and KNS. The ablation and uncertainty rates are the mean of all 
estimates, over all ICESat-2 periods (2019-2021). Likewise, AWS ablation rates are averaged at the upper (‘U’) 
and lower (‘L’) stations for the same periods. 

Averaged for all estimates across the entire outlet region, we report an ablation rate of -2.13 

cm/d at UI and -2.50 cm/d at KNS. The average uncertainties suggest slightly lower confidence in the 

estimates at UI (± 3.59 cm/d), compared to KNS (± 3.25 cm/d). The ablation rate at KNS is within the 

upper and lower AWS bounds, whereas the ablation rate at UI slightly overestimates the lower AWS 

rate. However, the AWS observed rates at UI have a tighter spread (0.41 cm/d) than at KNS (2.09 

cm/d), reducing the likelihood of producing a spatially bounded rate. Although, the ablation rate is 

overestimated at UI, the majority of ablation estimates are located closer to the lower AWS at both 

study sites, therefore the estimates at UI and KNS should be more representative of the lower AWS 

rate. However, the average KNS ablation rate is more comparable to the upper AWS rate. This is 

likely due to a significantly steeper ablation gradient at KNS; not only is the observed spread greater 

at KNS, but the AWSs are positioned closer (~13 km) than UI’s (~23 km). Consequently, ablation 

rates at KNS have greater spatial variability and observed rates are more difficult to reproduce. Still, 

greater ablation rates are observed at the lower-lying AWSs, confirming the expected mass loss 

relationship with elevation and proximity to the margin. Also expected, our ablation rates and the 

AWS observations agree with enhanced ablation at the southerly KNS region. To provide complete 

context, we examine the ablation estimates from all ICESat-2 periods and their spatial distribution at 

each site. 

 

 

 



21 

4.1 Upernavik Isstrøm 

At UI, ablation rates are consistently within the AWS observation bounds and are more 

comparable to closer UPE_L station (Table 4.2). The June to September 2020 period has a small 

sample size over faster-flowing ice and is not representative of the observed ablation; this period is 

not further considered but is analyzed in the discussion. The uncertainties are consistent across all 

ICESat-2 periods, suggesting temporal reliability in uncertainties across slow-flowing ice. The 

greatest observed rates in 2019 are reflected in our 2019 estimates, and similarly, we appropriately 

estimate the lower observed rates in 2020 and 2021. Perhaps, the mass continuity method can not 

only capture spatial ablation gradients, but can also distinguish annual ablation variability. 

ICESat-2 Period Total Estimates 
Average 
Ablation 
(cm/d) 

Average 
Uncertainty    

(± cm/d) 

UPE_U 
Ablation 
(cm/d) 

UPE_L 
Ablation 
(cm/d) 

May 14 : Aug 13, 
2019 

67 -2.89 3.73 -3.27 -2.95 

Jun 12 : Sep 11, 
2019 

19 -2.51 3.42 -3.25 -2.86 

Apr 4 : Jul 4, 
2020 

13 -0.60 3.43 -0.26 -0.65 

Jun 30 : Sep 29, 
2020 

2 -3.43 4.18 -0.79 -2.09 

May 1 : Jul 31, 
2021 

97 -1.72 3.54 -0.94 -2.00 

Table 4.2: Ablation results for all five ICESat-2 periods at UI. All ablation and uncertainty estimates are 
averaged for each period. AWS rates are the observed ice ablation over the respective ICESat-2 period.                                            

Spatially, the ablation estimates are clustered around low-lying, slow-flowing ice (Figure 

4.1). On small scales (2-5 km), coherent ablation patterns are evident, with the lowest rates and 

uncertainties typically situated on the slowest flowing ice. Ablation and uncertainty magnitudes 

become progressively larger towards the fast-flowing, marine-terminating glaciers. These spatial 

patterns highlight the mass continuity method’s utility and weaknesses; mass continuity can 

distinguish ablation gradients at high resolutions, but struggles to estimate reasonable ablation rates 

with low uncertainties on the dynamic glacier trunks. 
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Figure 4.1: Composite spatial distribution of ablation rates and uncertainties, plotted over an August 2019 
Sentinel-2 image at UI. All unique ablation circle geometries are shown, from all ICESat-2 periods at UI; if a 
circle geometry contains multiple estimates from separate periods, the lower uncertainty estimate is plotted. 
Reds indicate mass loss, blues indicate mass gain, and grey represents mass-balanced areas. All uncertainties 
are less than ±5 cm/d and denoted by three circle sizes: large circles (< ±2 cm/d), medium circles (± 2 to 4 
cm/d), and small circles (> ±4 cm/d). Stars are the AWS locations; UPE_L (turquoise) and UPE_U (red). 

4.2 Kangiata Nunaata Sermia  

Ablation rates at KNS do not agree as well with AWS observations, underestimating ablation 

during enhanced melting periods in 2019 and 2020 (Table 4.3). The average uncertainties are very 

consistent, more so than at UI, strengthening the idea of temporally reliable uncertainties. Like UI, the 

AWS observations reveal enhanced ablation in 2019, compared to 2020. Our greatest ablation rate (-

2.97 cm/d) occurs in 2019 too and is aided by the largest sample size (110 estimates) of all ICESat-2 

periods in the study. Warm AWS air temperatures from May to September 2019 at KNS (~0.8 to 4.3 

°C) and UI (~0.8 to 4 °C), combined with enhanced ablation observations, suggest increased mass 

loss across the western GrIS in 2019.  
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ICESat-2 Period Total Estimates 
Average 
Ablation 
(cm/d) 

Average 
Uncertainty    

(± cm/d) 

NUK_U 
Ablation 
(cm/d) 

NUK_L 
Ablation 
(cm/d) 

May 27 : Aug 26, 
2019 

110 -2.97 3.25 -3.31 -5.58 

Apr 2 : Jul 2, 
2020 

14 -0.37 3.26 -0.19 -2.01 

May 24 : Aug 23, 
2020 

58 -2.35 3.24 -1.72 -4.35 

Jul 2 : Sep 30, 
2020 

16 -1.77 3.22 -1.83 -3.44 

Table 4.3: Ablation results for the four ICESat-2 periods at KNS. All ablation and uncertainty estimates are 
averaged for each period. AWS rates are the observed ice ablation over the respective ICESat-2 period. 

A particularly powerful result is the sequential progression of AWS ablation rates between 

the three near-evenly spaced ICESat-2 periods in 2020. The NUK_L rate is low in spring (-2.01 

cm/d), significantly increases in summer (-4.35 cm/d), and tapers to a medium by fall (-3.44 cm/d). 

Our ablation rates mirror this observed 2020 trend, with -0.37 cm/d during spring, -2.35 cm/d in 

summer, and -1.77 cm/d by fall. While only based on the temperate seasons of 2020, the mass 

continuity method shows an ability to capture intra-annual ablation variations.  
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Figure 4.2: Composite spatial distribution of ablation rates and uncertainties, plotted over an August 2019 
Sentinel-2 image at KNS. All unique ablation circle geometries are shown, from all ICESat-2 periods at KNS; if 
a circle geometry contains multiple estimates from separate periods, the lower uncertainty estimate is plotted. 
Reds indicate mass loss, blues indicate mass gain, and grey represents mass-balanced areas. All uncertainties 
are less than ±5 cm/d and denoted by three circle sizes: large circles (< ±2 cm/d), medium circles (± 2 to 4 
cm/d), and small circles (> ±4 cm/d). Stars are the AWS locations; NUK_L (turquoise) and NUK_U (red). 

Similar to UI, ablation estimates are located on low-lying, slow-flowing ice, however, some 

estimates are reported along the boundaries of land- and marine-terminating glaciers (Figure 4.2). 

Ablation rates along the two north-most glacier margins provide circumstantial support of the mass 

continuity method’s utility; south-facing slopes are characterized by greater ablation rates than the 

more shaded northern aspects. Some of these marginal glacier estimates indicate mass gain or 

balance, perhaps from avalanching or wind-blown snow deposition from the mountain slopes. In 

addition, ablation generally decreases further inland, an expected result that is observed by the AWSs. 

Like UI, proximal ablation estimates have coherent spatial patterns, which may indicate the prevailing 

behavior of localized surface processes.  
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4.3 Validation with AWS Observations 

We attempt to validate the mass continuity method by comparing 11 ablation measurements 

with three AWS observations, from three distinct ICESat-2 periods (Figure 4.3). Two ablation rates 

correspond to the NUK_L observation from May 27 to August 26, 2019 (-5.58 cm/d), two rates at 

UPE_L from April 4 to July 4, 2020 (-0.65 cm/d), and seven rates at UPE_L from May 1 to July 31, 

2021 (-2 cm/d); therefore, the three AWS rates represent distinct intra-annual periods, over three 

separate years, supporting temporal validation. All 11 ablation rate centroids are within 2 km of their 

respective AWS observation, which should closely resemble the observed rates and support spatial 

validation. The upper AWSs, NUK_U and UPE_U, are not considered as zero rates are within 2 km 

of the stations. Since ablation grids follow the ICESat-2 ground tracks, in most cases the gridded 

circles are not near an AWS, explaining why only 11 of 396 total estimates are available for 

validation. While the sample size is small, the mass continuity estimates compare reasonably to the 

AWS observations, with eight underestimations and three overestimations. All ablation rates are 

within ±0.87 cm/d of their corresponding AWS observation, and ten rates are within ±0.55 cm/d.  

Figure 4.3: Comparison of mass continuity ablation rates to observed AWS ablation rates. The shapes indicate 
which AWS the measurement is compared to, and the shape color is the distance from the measurement to the 
AWS. The grey dotted line is a 1:1 line, representing equal mass continuity and AWS ablation rates. Ablation 
uncertainties are not included due to visual overlaps that are difficult to distinguish; still, all uncertainties 
encompass the 1:1 line, meaning observed AWS rates are plausible. 
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Thus, the mass continuity method is capable of closely reproducing observed rates near the 

AWS, across variable timescales, and at different outlet regions. Currently, SMB models particularly 

struggle to reproduce increasingly negative mass loss observations, as the models systematically 

underestimate observations greater than 2 m.w.e. (Fettweis et al., 2020). The mass continuity method 

shows a marked improvement, particularly for the -5.58 cm/d observed rate at NUK_L, which is the 

largest observed ablation rate in this study. The two mass continuity rates accurately describe this 

NUK_L observation within ±0.48 cm/d, revealing that the mass continuity method can produce 

reliable rates when and where ablation is greatest. Being confident in the trend is difficult due to the 

limited sample size, however, this validation analysis provides evidence that our mass continuity 

method is robust, as ablation rates compare favorably to AWS observations, spatially and temporally. 

Including future AWS observations with new mass continuity rates, and expanding this study to other 

locations could yield unrepresented rates (-2.5 to -5 cm/d), which may strengthen these encouraging 

results. 
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5. Discussion 

At UI and KNS, our mass continuity method demonstrates several common strengths. 

Expanding the scope of this study is needed for greater confidence, but mass continuity showed an 

ability to capture annual ablation changes, intra-annual variability, and spatial ablation gradients. 

Enhanced ablation in 2019 and the comparatively moderate rates of 2020 and 2021 are represented in 

our estimates. Similarly, we can quantify small and large observed seasonal ablation changes 

appropriately. These temporal capabilities have great potential to better understand the evolution of 

marginal GrIS SMB changes during temperate months, when mass losses are greatest, and to inform 

or calibrate RCM/SMB models in the low-lying ablation zone.  

Our ablation estimates also describe coherent ablation gradients at incredibly high resolutions 

(2-5 km), and may reveal the spatial behavior of surface processes and difference in surface 

conditions. For example, local ablation gradients may be explained by existing surface melt channels, 

surface slope and aspect, surface albedo, wind speed, and prevailing wind direction. Perhaps, greater 

ablation rates are caused by enhanced surface melt via runoff channels, increased incident solar 

radiation based on surface aspect and albedo, and wind scour or snow redistribution depending on 

wind direction and surface slope. Similarly, wind speed, wind direction, and surface slope are 

important conditions for turbulent heat transfer during the summer, which is a major driver of melt in 

the lower ablation zone (van den Broeke et al., 2011), possibly explaining small-scale ablation 

gradients. Further, positive and balanced rates at UI and KNS may indicate ablation offset driven by 

avalanching or wind-blown snow from nearby mountains; nearly all of these rates are located close to 

mountainous topography. However, differentiating the causality of ablation gradients is complicated 

without detailed field observations. On regional scales, particularly at KNS, ablation magnitudes 

decline further inland, which is supported by the AWS observations. UI is more complex, as the 

region contains fewer outcrops or mountainous features, and the four marine-terminating glaciers 

likely affect the slow-flowing ice more freely. Also at UI, ablation magnitudes are generally larger 

near or on the fast-flowing glacier trunks, revealing one of the mass continuity method’s limitations. 

Still, the method is able to identify not only temporal ablation changes, but also spatial changes, both 

of which are deficiencies in the marginal performance of current RCM/SMB models (Fettweis et al., 

2020; Vernon et al., 2013).  

While the mass continuity method has clear strengths, weaknesses also exist, particularly the 

unreasonable ablation rates on fast-flowing ice, the underestimation of observed rates at KNS, and the 

ablation rate uncertainties in general. The physical mechanisms responsible for large ablation 

estimates and uncertainties on fast-flowing ice are unclear, but we suggest a couple explanations. 
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First, some surface meltwater from slower-flowing areas is likely routed to the glacier trunks, where it 

ultimately pools or drains to the glacier bed. Meltwater pools that collect within the crevassed ice may 

ablate below the glacier surface, causing surface lowering and increased ablation. However, this 

process would be incredibly difficult to account for, and the more likely explanation lies within the 

crevassed ice itself. The ICESat-2 ATL06 product measures surface elevation changes, and by nature 

of fast flow, the 20 m resolution measurements are most definitely capturing different phases of the 

crevassed ice every 91 days. These highly variable surface measurements lead to extremely positive 

or negative ablation estimates, depending on the position of crevasses when the surface was 

measured. Therefore, we think ablation estimates on fast-flowing ice are not viable, limiting our 

method to only slow-flowing areas. Supporting this conclusion, the circle grid for the June to 

September 2020 ICESat-2 period at UI is largely located over faster-flowing ice and only returned 

two ablation rates; both rates are much greater than the AWS observations and have relatively large 

uncertainties.  

At KNS, we underestimate the observed ablation during the two ICESat-2 periods of 

heightened ablation. While ablation has greater spatial variability at KNS and might explain some of 

the underestimation, the trend remains slightly concerning. After masking the positive (mass gain) 

ablation estimates, the average ablation for the May to August 2019 period changes from -2.97 cm/d 

to -3.26 cm/d, however, this new estimate still slightly underestimates the NUK_U observed rate       

(-3.31 cm/d); the July to September 2020 period does not have positive estimates and cannot be 

corrected. Fortunately, all 16 ablation estimates of the 2020 period are located further inland of the 

NUK_U station and closely resemble the physical conditions at NUK_U. Therefore, the average -1.77 

cm/d rate is spatially consistent with the observed -1.83 cm/d rate. After masking positive estimates 

for the 2019 period, 101 ablation estimates remained. Approximately 65 of these 101 are located    

35-55 km south of both KNS AWS stations; while not particularly close, the ~65 estimates are at 

surface elevations more analogous with the NUK_U station, therefore, the lower average ablation rate 

is justified. Although the 2019 and 2020 underestimations are explained by their relationships to 

NUK_U, assessing ablation rates far from an AWS is challenging without field observations.  

At both sites, uncertainties are temporally consistent across the ICESat-2 periods, and 

although all estimates have an uncertainty less than ± 5 cm/d, the average uncertainties have similar 

magnitudes: ± 3.25 cm/d at KNS and ± 3.59 cm/d at UI. This suggests uncertainties are not only 

systematic over time, but also along the west-central coast of the GrIS, and possibly across the GrIS 

ablation zone with further testing. Still, we only report a small subset of ablation estimates from the 

circle grids (Figure 3.1a), as the majority of uncertainties are greater than ± 5 cm/d. While many of 
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these larger uncertainties are on fast-flowing ice and impacted by the ICESat-2 crevasse issue, our 

method would benefit if the uncertainties could be reduced and more ablation rates could be reported. 

Therefore, we focus on uncertainty analysis and identifying potential routes for improvement. 

To better understand what controls the uncertainties, we calculate sensitivity coefficients for 

all terms in the ablation uncertainty equation (see eq. 7). Sensitivity coefficients reveal how equation 

terms are related to the equation’s result. If a term is particularly sensitive (i.e. large coefficient), the 

term has greater potential to change the equation result, or in this case, the ablation uncertainty. For a 

consistent process, all 396 UI and KNS values for a single term are scaled by 10%, then we calculate 

new uncertainty values. The difference between the new uncertainty and original uncertainty, divided 

by the difference between the new and original term value is the sensitivity coefficient. Because the 

sensitivity coefficient magnitudes are similar at UI and KNS, we combine the sites and report a 396 

coefficient average for all uncertainty terms (Figure 5.1), finding that velocity gradients, particularly 

error gradients, are the most sensitive terms. The thickness change rate error is also considerably 

sensitive, while all other terms have relatively low sensitivity. 
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Figure 5.1: Sensitivity coefficients averaged for all 396 uncertainty estimates at UI and KNS. A coefficient is 
provided for each term in the ablation uncertainty equation. The top panel contains all error terms, and the 
bottom panel contains all measured terms. The coefficient values are inside the dark blue box. 

While the sensitivity coefficients suggest that uncertainty changes should be dominated by 

velocity gradients, the observed uncertainty change somewhat disagrees. In addition to the sensitivity 

coefficients, we calculate the actual average uncertainty change when scaling each term by 10% and 

holding the others constant (Figure 5.2). On average, the scaled velocity gradients and thickness 

change rate errors increased the ablation uncertainty by ~0.05-0.13 cm/d, however, scaling the ice 

thickness resulted in the greatest change: ~0.17 cm/d. It is unclear why some terms ,  are 

characterized as sensitive, but do not exhibit much change, and conversely, why other terms 

𝐻, 𝑢, ∆  , etc.  are not sensitive, but result in significant uncertainty changes. A plausible 

explanation might be that equation terms are more susceptible to change the uncertainty depending on 

the location of an estimate and the relative magnitudes of the terms themselves. Perhaps, the average 

term magnitude favors ice thickness as a facilitator of uncertainty change on slow-flowing ice. 
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Velocity gradients, in turn, may dominant uncertainty change on faster-flowing ice, where ice is 

likely to be more stressed and their magnitudes are larger.  

Figure 5.2: Average increase (cm/d) in the reported uncertainty after individually scaling each uncertainty term 
by 10% and keeping all other terms constant per iteration. The uncertainty change is averaged for all 396 
estimates at UI and KNS. Average uncertainty changes are inside the dark blue boxes. The terms in the top-left 
box changed the uncertainty by less than 0.003 cm/d.  

Despite an ambiguous relationship between term sensitivity and observed uncertainty change, 

we describe ideal conditions for producing low uncertainties with the mass continuity method. Of the 

396 total estimates, 49 have uncertainties less than ±2 cm/d, 205 are between ± 2-4 cm/d, and 142 are 

between ± 4-5 cm/d. Average term values are compared between these low, moderate, and high 

uncertainty sets (Table 5.1). The measured and error vector velocity (𝑢, 𝑣, ∆𝑢, ∆𝑣) and ice thickness 

(𝐻, ∆𝐻) terms, as well as the thickness change rate error ∆ , all have greater magnitudes in the 

high uncertainty set. Thickness gradient measurements and errors , , ∆ , ∆  are generally 

similar, but still slightly larger in the high uncertainty set. In addition, the high uncertainties have 

greater velocity gradient ,  magnitudes; however, the velocity gradient errors ∆ , ∆  are 

larger for the low uncertainty set. These findings further support that larger uncertainties are 

commonly located on faster-flowing, more dynamic ice. In general, the mass continuity method 

performs best over slow-flowing, low-stress areas, and there are opportunities to improve the 

uncertainties across faster-flowing areas. 
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Table 5.1: Average term value for low, moderate, and high uncertainty classifications, combined        
at UI and KNS. Asterisks indicate unitless terms. 

While we are confident in the mass continuity method as currently constructed, potential 

method adjustments may make the ablation rates more precise and reduce the uncertainties. Quick 

modifications that could be beneficial include a different velocity smoothing function or kernel size, 

  Term  (Units) 
Low                      

(U < ±2 cm/d) 
Moderate               

(±2 < U < ±4 cm/d) 
High                       

(U > ±4 cm/d) 

 

 ∆   (cm/d) 
 

0.96 
 

1.58 
 

1.84 

 
       𝑢  (cm/d) 

 
-1.81 

 
-2.87 

 
-6.91 

 
    ∆𝑢  (cm/d) 

 
1.79 

 
1.91 

 
2.12 

 
            𝑣  (cm/d) 

 
1.88 

 
1.84 

 
4.08 

 
         ∆𝑣  (cm/d) 

 
2.48 

 
2.71 

 
2.74 

 

            (1/d) 
 

-9.6E-06 
 

-1.1E-05 
 

-2.2E-05 

 

      ∆   (1/d) 
 

1.0E-04 
 

9.2E-05 
 

8.7E-05 

 

            (1/d) 
 

-4.0E-06 
 

2.2E-06 
 

1.7E-05 

 

      ∆   (1/d) 
 

1.6E-04 
 

1.7E-04 
 

1.5E-04 

 

             * 

 
0.049 

 
0.048 

 
0.036 

 

       ∆   * 
 

0.141 
 

0.158 
 

0.168 

 

             * 
 

-0.014 
 

0.023 
 

0.029 

 

       ∆   * 
 

0.141 
 

0.159 
 

0.171 

 
           𝐻  (m) 

 
68 

 
147 

 
248 

 
        ∆𝐻  (m) 
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dynamic ablation circle diameters, and larger spatially averaged ATL06 thickness change points (i.e. 

> 40 m). Ablation rates could also be estimated at a 150 m resolution, on a cell-by-cell basis, which 

may prove to be a more powerful tool. One major idea that could considerably improve the 91-day 

median velocity measurements and the mean sampled difference metric is developing a historically 

referenced periodicity of velocity, which might capture seasonal velocity fluctuations more 

adequately than daily, linear interpolation through a handful of sampled dates. By collecting velocity 

observations, at a given study site, over the past 10-20 years, perhaps a smoothing function can 

capture typical, temporal velocity variations. Improving the velocity time-series would certainly result 

in more precise ablation rates; likewise, the mean sampled difference, which accounts for time-

interpolation in the velocity error, would benefit from a smoothed historical time-series that might 

reduce ablation uncertainty. Just like the mean sampled difference, the effect of all operations 

performed on measured terms are accounted for in the respective errors, with conservative thresholds. 

More aggressive methods and thresholds, such as a tighter thickness change rate prediction interval, 

smaller infilling error velocities, expanded reconstruction censoring, velocity-specific reconstruction 

errors, and a more skilled temporal interpolation metric would surely alter the uncertainties, but the 

effects are currently unclear. Another effort could involve using more AWS variables, such as 

temperature and snow surface data, to be truly confident in the observed ablation time series. The 

AWS data is indeed from the field, particularly the harsh ablation zone, making the time-series messy 

and difficult to interpret. There are many possibilities to improve this mass continuity method, 

however, further testing is needed, and balancing being too aggressive, conservative, and subjective 

with future decisions is important. 

Moving forward, three major opportunities are presented to expand on this study, all of which 

have incredible potential to further improve our understanding of ablation rates around the GrIS 

margins. First, future mass continuity ablation estimates could be validated with field observations, 

using the glaciological method (Cuffey and Paterson, 2010). Drilling ablation stakes into the ice, then 

measuring the ice surface before and after the summer would provide field validated ablation rates. 

One advantage of this method is the ability to select multiple installation sites across a glacier outlet 

region not near AWSs. In this way, more observations are located throughout the region, which 

would help validate ablation estimates far from the AWSs. Because reasonable uncertainties are 

important, circle selection should be optimized based on where past estimate uncertainties were 

consistently low (i.e. areas/circles with multiple estimates). Another potential difficulty is the data 

return of ICESat-2; if the satellite passes over on a cloudy/foggy day, then the surface elevation 

measurements may be spotty or missing entirely. Still, more dispersed field validated observations 

would help establish greater spatial confidence in the mass continuity method presented here, 
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especially for non-validated estimates not near AWSs. Second, if spatial confidence is established to 

where AWS observations are not necessary, the mass continuity method may be scaled across much 

of the GrIS margin, within the extent of other MEaSUREs velocity grids. The MEaSUREs dataset has 

55 total velocity grids, predominantly located on Greenland’s north, west, and southeast coasts. While 

some of the grids have been discontinued, there is potential to apply this method at many other glacier 

outlet regions from 2019 until the ICESat-2 or MEaSUREs missions are terminated. In this study, UI 

and KNS were selected due to their exceptional spatial and temporal satellite coverage, and more 

importantly, because both sites had two PROMICE AWSs, facilitating validation. Without the 

restraints of needing AWS validated estimates, the mass continuity method may be implemented 

wherever MEaSUREs and ICESat-2 observations exist. Third, our ablation rates at UI and KNS, or 

future regions, may be compared to the marginal outputs of RCM/SMB models such as RACMO, 

MAR, and HIRHAM. Such an effort might help inform and improve these models spatial and 

temporal deficiencies around the GrIS margin. 

  



35 

6. Conclusions 

The mass continuity method presented here, provides a new mass budget-based approach for 

quantifying ablation rates at high resolutions, in the GrIS ablation zone. New and powerful satellite 

datasets including ICESat-2, IceBridge BedMachine, and MEaSUREs enable such ablation 

measurements through the 2-D mass continuity equation. We directly calculate ablation rates during 

warmer months, on seasonal timescales, by combining temporal ice thickness change observations 

with thickness changes caused by dynamic flow. The results indicate slow-flowing and low-stress ice 

typically produces the most precise ablation rates and lowest uncertainties. AWS observations 

facilitate ablation validation, and we find that our ablation rates largely agree with observed rates, 

especially for estimates located near or at similar physical conditions as the AWS. Validating more 

ablation rates closely positioned to an AWS will certainly improve spatial confidence in estimates not 

near the AWS. This is a crucial step for potentially implementing the mass continuity method across 

more of the GrIS margin. 

This study was developed to complement recent mass balance and SMB model 

intercomparison projects (Fettweis et al., 2020; Hanna et al., 2020; Vernon et al., 2013), and to act on 

recommendations of using satellite data and in-situ observations to reconcile spatial and temporal 

ablation rates near the ice sheet margin. RCM/SMB model performance would benefit from more 

measurements that better represent the physical processes controlling mass loss, and our method is 

able to partition dynamic thickness and ice surface changes at regions with scarce field observations. 

Improving marginal model performance is critical for future surface mass loss and sea level rise 

projections. We believe the mass continuity method is a robust tool for properly representing spatial 

and temporal mass loss gradients. Still, future efforts need to focus on reducing uncertainties, 

validating more ablation rates with AWS observations, manual field validation, and comparing 

ablation rates with RCM/SMB outputs. 
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