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Abstract 

Farmers in the Inland Pacific Northwest (IPNW) typically cultivate dryland wheat-based crop 

rotations, which often include spring crops and, in lower precipitation areas, fallow. As part of the 

Landscapes in Transition (LIT) project, the CropSyst model was employed to evaluate traditional 

(business-as-usual, BAU) and novel crop rotations at two locations: St. John, Washington, an annual 

crop-fallow transition site, and Genesee, Idaho, an annual crop site. Incremental (INC) and 

aspirational (ASP) crop rotations, which included winter peas and cover crops, respectively, allow 

farmers to intensify and diversify operations through the inclusion of winter crops and reduction in 

fallow. Data collected during LIT field studies, carried out during the 2018-2021 growing seasons, 

was used to parameterize and calibrate the CropSyst model and evaluate its ability to simulate field 

conditions.  Subsequently, scenario testing explored the viability of the alternate crop rotations under 

long-term, historic climate conditions.  

The developed CropSyst models appeared powerful and robust, especially given the variability and 

range of the observed data. CropSyst achieved good agreement between predicted yield and biomass 

and observed values on an overall, rotational, and yearly basis (R2 greater than 0.5 and root mean 

square error, RMSE, less than the standard deviation, σ, of observations). Additionally, soil moisture 

simulated by Cropsyst exhibited greater accuracy than the precision available in the observed 

datasets. Crop nitrogen was also predicted well (R2>0.5 and RMSE<σ). However, more work is 

necessary to improve simulated soil inorganic nitrogen.  

Long-term simulations of the models, from 1980-2010, suggest opportunities exist for adoption of 

diversified and intensified rotations in both the annual crop and annual crop-fallow transition regions 

of the IPNW. In both Genesee and St. John, INC produced the greatest biomass and yield and 

displayed the greatest stability, based on its coefficient of variation (cv). Baling a cover crop for 

forage markedly increased ASP’s yield and presents an opportunity for producers to diversify. 

Overall, winter crops better utilized available water and reduced water loss. However, in St. John, the 

inclusion of fallow in the BAU rotation reduced its susceptibility to drought. Scenario testing 

suggested that altering management practices strategically can improve outcomes. For example, in St. 

John, terminating the previous cover crop earlier in the year prevented any detrimental effects on 

subsequent ASP winter wheat yields. Additionally, the inclusion of legume crops (winter pea, 

chickpea, or a nitrogen-fixing cover crop) reduced fertilization requirements. 

CropSyst simulations emphasize relationships and trade-offs existing between cropping choices and 

production outcomes and contribute to a better overall understanding of these traditional and novel 
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crop rotations. However, consideration of factors not captured by CropSyst, such as weeds, disease, 

and pests would prove valuable. Additional model simulations could include future climate to explore 

longer-term implications of changing environmental conditions. 
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Chapter 1: Background and Introduction 

Purpose 

The Inland Pacific Northwest (IPNW) contains much of Idaho and Washington’s 3.4 million acres of 

wheat (NASS USDA, 2020), and its local economy and many of its people depend on the success of 

wheat crops.  However, changing environmental and economic conditions promote shifts in typical 

production models.  Unfavorable environmental impacts, reduced yield or quality, and diminishing 

resources motivate farmers to pursue alternate crops and markets to improve farm stability and 

resilience (Reganold et al., 1990).   

Replacing traditional crop rotations with those that include winter peas or cover crops may improve 

the long-term profitability, nutrient/water cycling outcomes, and environmental impacts of IPNW 

wheat-based systems.  While positive impacts of these alternative crops have established (Chen et al., 

2006; Finkelnburg et al., 2019; Kirby et al., 2017; Reganold et al., 1990), they are infrequently 

employed in large-scale IPNW farm operations due to their limited immediate economic returns and 

lack of knowledge.  This research assesses the long-term viability of alternate rotations, with respect 

to productivity, resource utilization, and stability.   

Introduction 

It is challenging to conclusively and comprehensively assess the effects of dryland crop rotations with 

respect to production, resource utilization, and profitability.  While existing field experiments and 

industry data collection provides valuable insight to current conditions, additional research is needed 

to investigate and compare large-scale and long-term impacts of agricultural practices.   

Traditional crop rotations, which may include fallow or spring crops, present both managerial and 

environmental concerns.  The CropSyst model can be employed to evaluate these traditional rotations 

as well as novel rotations, which replace fallow or spring crops with cover crops or winter peas.  

CropSyst is a process-based, multi-crop, multi-year model, frequently employed to study the 

interactions of crops, soils, weather, and management (Stöckle, 2003).  The model allows users to 

identify important crop-environment relationships.     

This research was completed in conjunction with the larger United States Department of Agriculture 

Coordinated Agricultural Project (USDA-CAP) grant entitled “Inland Pacific Northwest Wheat-based 

Systems: Landscapes in Transition” (LIT).  The project focusses on IPNW dryland wheat-based 

cropping systems and aims to help farmers adapt to change and increase farm resilience through 

diversification and optimization.  The multi-year project includes extensive data collection and 

analysis from soil, water, agronomic, entomological, atmospheric, and economic perspectives.  This 
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research complements the effort, assessing the viability and stability of ‘aspirational’ and 

‘incremental’ cropping rotations, by extrapolating and forecasting smaller scale, shorter-term data to 

predict larger-scale, longer-term impacts. 

Model Description 

CropSyst simulates crop growth based on the availability of resources such as radiation, nutrients, and 

water, effectively modeling responses to environmental and management conditions (Stöckle et al., 

2014). In conjunction with crop production, CropSyst models complete water and nitrogen budgets. 

The program can simulate a large number of crops, including those assessed in the LIT study, 

although cover crop modeling efforts are very limited. The model undergoes frequent updates and 

developments, and the descriptions below reflect the current model options and explanations provided 

in the current user manual (Stöckle, n.d.). 

Multiple evapotranspiration (ET) models are available in CropSyst, with these simulations utilizing 

the Penman-Monteith method. A crop coefficient adjusts the actual crop ET from the computed 

potential value, and transpiration is assumed equal to water uptake. However, water uptake is also 

limited by availability in the soil (i.e., the potential difference between the soil and plant). The 

Cascade daily or hourly approach estimates water transport in the soil profile (Stöckle et al., 2014), 

and the Soil Conservation Service (SCS) curve number approximates runoff. 

Biomass accumulation is simulated by one of three submodels that determine water use efficiency. 

Simulations reported in this thesis utilized the transpiration use efficiency regression-based method, 

which requires inputs for unstressed radiation use efficiency and temperature limitations. Biomass 

accumulation can also be limited by nitrogen availability. The canopy development relies on a leaf 

area index model, and phenological events are triggered by thermal time accumulation. Harvest yield 

is simulated as a function of a specified harvest index. CropSyst can also adjust for the effects of heat 

and water stress on parameters, such as those associated with phenology, leaf area index, and the 

harvest index.  

CropSyst simulates cycling of nitrogen, including transformations, sorption, mineralization, fixation, 

and plant uptake. Nitrogen dependent growth and plant uptake follow the approach outlined in 

Godwin and Jones (1991). Fixation fulfills a fraction of a legume crop’s daily demand, influenced by 

crop development, temperature, nitrogen present in root zone, and other factors. The rate of 

mineralization, nitrification, and denitrification are computed using first order kinetics and are 

assumed to occur between 30 and 50 centimeters below ground surface. Nitrogen transport through 

the soil is modified utilizing a mass balance method modified from Corwin et al., (1991). 
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Many studies, such as Bellocchini et al. (2002), Chi et al. (2017), and Ward (2015), support 

CropSyst’s ability to accurately simulate field conditions and crop outcomes. The CropSyst model 

has also been used to assess the effects of climate and management on agricultural management 

decisions (Karimi et al., 2017; Stöckle et al., 2018).  However, it appears few studies employ datasets 

as thorough or extensive as the one provided by the LIT project. Additionally, the model's ability to 

predict the impacts of winter pea and cover crops has not been thoroughly tested. 

Region Description 

The region of study for this project is the Palouse bioregion. The Palouse covers approximately 9,000 

square kilometers (3,500 square miles) within the IPNW and is characterized by rolling hills and 

deep, fertile soil (Brooks et al., 2012).  Geomorphology of the Palouse region has been influenced by 

flooding of Glacial Lake Missoula upwind during the Pleistocene period (Busacca et al., 1989) and 

the subsequent deposition of windblown sediment known as loess. In addition to loess, soils in the 

Palouse have been influenced by volcanic eruptions and distribution of volcanic ash. Soils are 

generally loamy to silty and overly basalt bedrock, with some granite and sedimentary outcrops 

(McNab and Avers, 1994). Grassland and meadows, converted to cropland, cover most of the western 

Palouse, with vegetation transitioning to forests and woodlands in the east (McNab and Avers, 1994). 

The Palouse experiences warm, dry summers, with approximately 70% of precipitation received 

between November and May (Brooks et al., 2012). A steep precipitation gradient exists across the 

IPNW, with greater annual rainfall observed in the east. Annual precipitation can be divided into 

three zones: low, less than 300 mm (less than 12 inches); intermediate, 300-450 mm (12-18 inches); 

and high; greater than 450 mm (over 18 inches) (Schillinger et al., 2003). The LIT project maintained 

two field studies sites, one in St. John, Washington in the intermediate precipitation zone, and one in 

Genesee, Idaho in the high precipitation zone. In both areas, dryland agriculture is practiced (i.e., no 

irrigation inputs), and precipitation, stored in the soil for use during the growing season, heavily 

influences a crop’s success.  

Growers generally cultivate wheat-based field crop rotations. The region’s high precipitation zone 

produces world record dryland winter wheat yields, upwards of 135 bushels per acre (bu/ac) 

(Schillinger et al., 2003). In addition to wheat, other common crops include barley, canola, and 

legumes (such as lentil or chickpea). In low and intermediate precipitation zones, fallow, the practice 

of leaving ground unsewn for a growing season, is also common (Schillinger et al., 2003). The 

heterogeneity of this highly productive agricultural area in management practices, environment, and 

performance, make the IPNW an ideal location to study dryland crop rotations.  
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Current Land Use Practices 

Agricultural land use in the region can be defined via agroecological classes (AEC), which include 

annual cropping (AC), annual crop-fallow transition (ACT) (i.e., three-year crop rotation: winter 

wheat-spring grain-fallow), grain-fallow (GF) (i.e., two-year crop rotation: winter wheat-fallow), and 

irrigated (Huggins et al., 2014).  Dryland wheat farming in low to intermediate rainfall areas of the 

IPNW often relies on fallow in multi-year crop rotations (ACT or GF) to preserve and replenish soil 

water.  Fallow also serves to reduce overall rotational inputs and maximize soil nutrient availability 

and production stability during the subsequent growing season (Nielsen and Calderón, 2011).  

Overall, fallow rotations are considered more profitable and less risky than continuously cultivating a 

crop in lower precipitation areas (Juergens et al., 2004; Schillinger et al., 2006).  Generally, 

production costs increase with cropping intensity (Zentner, 2002).  Reduced time demand also 

provides growers with the opportunity to cultivate other land, perform other farm activities, and 

complete custom work (Zentner, 2002). 

However, fallow poses many environmental and managerial concerns.  This approach often 

represents lost time and opportunities (reduced production efficiency on a given field), leads to 

reduced soil health, and leaves ground susceptible to wind and rain erosion.  As crop prices rise, the 

opportunity cost of leaving land fallow rises (Zentner, 2002).  Though historically successful, wheat-

based fallow rotations can also be risky, as the profitability of the farm is highly sensitive to the price 

and performance of a single crop.   

In higher precipitation regions, AC systems are typically employed.  This includes the common 

winter wheat-spring wheat-spring pulse rotation (i.e., no summer fallow).  These crops have 

established success and markets.  Farmers are familiar with their cultivation, which promotes 

efficiency, operational simplicity, and streamlined use of technology/mechanization.  Unfortunately, 

this approach’s inherent lack of diversity and adaptability leave farmers vulnerable to environmental 

or marketplace change.  Spring crop emergence, fertile pod production, seed weight, and, 

consequently, yield is especially sensitive to environmental conditions, such as soil temperature and 

moisture, and delayed planting can reduce profitability (Gan et al., 2002; Miller et al., 2006).  

Research indicates the susceptibility of spring crops to abiotic stress results in highly variable yields 

and economic instability (Schillinger, 2020). While earlier planting helps avoid late season drought 

stress, wet early season soil conditions can delay planting (Chen et al., 2006; Gan et al., 2002).   This 

may become an increasing concern in coming years, as climate forecasts project greater winter 

precipitation and less summer precipitation (Mote and Salathé, 2010).   
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Across all AECs, most farms continue to follow conventional practices, such as monocultures, 

synthetic fertilization, and conservation tillage.  In an effort to improve profits and reduce inputs, 

farmers are beginning to turn to less conventional management practices, such as livestock 

integration, precision seeding and chemical application, and no till to increase soil health, reduce 

fertilizer use, increase soil water retention and infiltration, and improve drought resistance.  Such 

practices generally support regenerative agriculture, a form of production that enhances and restores 

resilient, healthy, and functional agricultural ecosystems (Gosnell et al., 2019). Unfortunately, if not 

carefully orchestrated, transitions to new techniques and crops may not prove immediately successful 

and could require years of gradual transition (Liebhardt et al., 1989).  This reduces attractiveness and 

serves as a barrier to adoption for many. 

Alternative Rotations 

Cover crops and winter pea rotations allow farmers to diversify (and intensify, if replacing fallow), 

while providing potential economic and nutrient and water cycling benefits.  Integrating different 

crops into rotations provides opportunities to mitigate economic risk, expand microbe and insect 

communities, break pest cycles, and better manage greenhouse gas emissions (Pan et al., 2017).  

Research indicates possible future opportunities, as forecasted climate may improve yields in 

diversified rotations, resultant of water availability and demand (Jareki et al., 2018; Stöckle et al., 

2018).   

Alternative crops can also build soil fertility and promote microbial mineralization, ultimately 

reducing fertilizer requirements.  Additionally, increased groundcover associated with winter crops 

and cover crops can prevent nitrogen loss through pathways such as erosion, runoff, and leaching.  

This study will evaluate nitrogen fertilizer requirements, as fertilizer production and use threatens 

negative environmental impacts, and its application represents a significant time and money 

investment for farmers.  Research, such as that described in Smith et al. (2008), supports the theory 

that diversity improves nutrient cycling and reduced inputs and enhances overall ecosystem function.  

Smith et al. (2008) conducted a rotational study in the absence of fertilizer or pesticide and 

determined that the most diverse three-year rotation (three different crops and three different cover 

crops) had the highest yields.  In comparison to a monoculture rotation, the diverse rotation achieved 

up to 32% greater soybean yields, up to 53% greater winter wheat, and over 100% greater corn yield 

(a result very similar to local average yields), despite lack of inputs.  Varying degrees of success 

among species suggest crops respond differently to rotational diversity and its impact on ecosystem 

function (Smith et al., 2008).   
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Many speculate that diversified rotations will also improve overall performance, stability, and 

resiliency.  Often, stability is marked by a crop’s/rotation’s ability to maintain yields and quality 

under or following stressful conditions, and resiliency describes a crop’s/rotation’s ability to return to 

its previous state following a stressor/disturbance (Gaudin et al., 2015). A stable and resilient rotation 

will yield consistently and will exhibit attenuated responses to extreme conditions.  These qualities 

prove valuable in volatile environmental and market conditions.   

There are several examples available of rotational studies that investigate these longer-term 

considerations. A 31-year study in Ontario, Canada observed that traditional corn-soybean rotations 

experienced greater variations in yield, reduced cumulative and average yields, higher probabilities of 

crop failure, and reduced performance under abnormal conditions versus longer rotations that 

integrated additional crops, particularly legumes (Gaudin et al., 2015).  However, the most significant 

effects occurred during dry/warm weather, with minimal to no rotational impact during cool/wet 

conditions, implying diversified rotations’ ability to better preserve and manage water. 

Overall, diverse farms inherently incur less risk, both biologically and economically, than farms 

which rely on a few, limited crops for income and employ external resources, such as chemical 

fertilizers, for production (Reganold et al., 1990).  The alternative management practices captured in 

diverse operations promote soil health and reduce inputs, the extent and conditions of which this 

research seeks to further define and quantify.   

Winter Peas 

Winter peas, a legume, fix nitrogen and rarely require nitrogen fertilizer applications, which may 

influence soil nitrogen availability throughout the rotation (Smith et al., 2008).  They yield 

consistently; emerge from deep seeding depths, allowing better access to remaining soil water deep in 

the profile; survive cold winter temperatures; can be cultivated with the same equipment as wheat; 

and tolerate certain common herbicides (Schillinger, 2020).  While currently considered less 

economically favorable, CropSyst modeling indicates that under future scenarios winter crops like 

winter pea may outperform spring crops in the IPNW, especially in high precipitation zones, and 

partial replacement of winter wheat with winter peas could be feasible in all precipitation zones 

(Stöckle et al., 2018).  Moreover, winter peas reach maturity earlier than spring-planted peas and 

avoid the heat and water stress that already dramatically reduces yield, particularly in lower 

precipitation zones (Schillinger, 2020).   

 The region currently only grows food quality winter peas.  Current varieties are used as an ingredient 

in both human and animal foods but cannot be marketed as whole or split pea (Schillinger, 2020).  If 
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an edible variety becomes available, the crop would likely become far more profitable.  Still, a recent 

study in Ritzville, WA, which compared fallowed rotations with winter wheat versus winter pea, 

showed that the winter pea rotation generated comparable economic return when considering the 

entire rotation, as well as used less water, left more soil water in the spring, and required no fertilizer 

applications (Schillinger, 2017).  Similarly, studies in Genesee, ID and Ritzville, WA found winter 

pea cultivars exhibited higher yields than did spring pea cultivars as a result of mild, wet winters, 

which promote growth and suppress evaporation but also delay spring planting (Chen et al., 2006). 

While winter crops may manage and utilize water better than spring crops, low summer precipitation 

poses a challenge to winter peas, as planting needs to occur later or in drier seedbeds (Chen et al., 

2006).   Moreover, winter pea roots do not reach as great a depth as winter wheat, and the crop 

produces less residue, leaving ground more susceptible to evaporation and erosion (Schillinger, 

2017).  The presence of many, competing factors and complex relationships highlights the need to 

consider outcomes on a rotational basis instead of only individual crops.  The introduction of winter 

peas in rotations is identified as an incremental method (INC), as it does not require major changes to 

existing practices (Janowiak et al., 2016).   

Cover Crops 

Alternatively, integration of cover crops can increase soil organic matter and nutrients and/or be used 

for grazing livestock (Finkelnburg et al., 2019).  Because this approach requires more dramatic 

changes or transformations of existing practices, the cover crop rotations are considered 

“aspirational” (ASP) (Janowiak et al., 2016). Replacing fallow rotations with cover crops may 

improve water infiltration to the root zone and protect the soil surface, retaining more nutrients on site 

by reducing runoff and soil export.  Additionally, cover crops can effectively disrupt disease and 

weed cycles (Kirby et al, 2017).  Currently, cover crops are limited in the region, as they demand 

valuable soil moisture, which may reduce the yield of subsequent crops in the rotation (e.g., winter 

wheat), and farmers must manage and fund their production and harvest, often with no direct 

economic return.   

However, cover crops can be baled for beneficial use or grazed by livestock instead of incorporated 

back into the soil, as is more traditional, providing some economic gain.  This is a particularly 

attractive strategy to producers who already raise livestock.  Further, some proponents, including 

Gabe Brown, a well-known North Dakota farmer and rancher, consider livestock integration a key 

contributor to soil health.  In addition to redeeming cover crop economics, livestock provide fertilizer, 

cause soil surface disturbance, and stimulate root growth and microbial activity (White, 2020).    



8 

 

 

 

A recent short-term study in South Dakota identified some tradeoffs in grazed versus ungrazed cover 

crop systems.  Tobin et al. (2020) reported soils supporting grazed cover crops experienced increased 

bulk density, decreased soil organic carbon, and reduced water retention compared to soils managed 

by ungrazed cover crops.  However, the grazed, cover cropped soils still had greater total nitrogen and 

increased economic return over a fallowed system.  No differences in subsequent seasonal yields 

emerged between grazed and ungrazed cover crop.  The value of the livestock feed produced 

outweighed production expenses and cost of maintaining the cattle in the field (such as water and 

fencing) (Tobin et al., 2020).  Regardless, to avoid potential ill effects, a farmer could elect to bale 

cover crops for animal consumption elsewhere, although baling forage crops removes carbon and 

nutrients from the field. 

Unlike in areas such as the Midwest United States, climate, particularly seasonal rainfall distribution, 

influences effectiveness and adoption of cover or forage crop practices, warranting additional 

investigation in the Palouse region where precipitation is concentrated in winter months.  

Nonetheless, the practice is gaining more traction locally.  Farmers like Drew Leitch of Nez Perce, ID 

use both spring and fall cover crops to supplement pasture for cattle (Finkelnburg et al., 2019).  The 

cover crops also help address specific soil issues such as compaction.  Leitch must carefully manage 

the cover crops to achieve the greatest soil and agronomic benefits, grazing period, and forage 

quantity and quality.  Leitch attributes cover crops to improved soil health and greater weight gain, 

and consequently profit, in his cattle.  However, Finkelnburg et al. (2019) noted greater labor 

demands and Leitch’s reliance on a government incentive program.   

Producers can, to some degree, select cover crop residue quantity and characteristics and water use by 

choosing specific cover crop species, planting date, and termination timing (Jones et al., 2020).  

Determining cover crop termination time can pose a challenge due to seasonal precipitation patterns, 

and, if not carefully considered, cover crops can have detrimental effects.  In a recent study conducted 

during a summer of limited rainfall in Wilke, WA, cover crops withdrew too much moisture and 

delayed winter wheat seeding (Roberts, 2018).  Resulting delayed development and reduced size 

created challenging management conditions, and, consequently, herbicide damage killed the crop.  

The research highlighted the inherent risks of cover cropping, especially in regards to soil moisture, 

and the need to be “flexible and opportunistic” with management decisions (Roberts, 2018).  For 

example, terminating spring cover crops earlier in the season during drier years could preserve soil 

moisture for the subsequent crop and could provide additional benefits, such as high root mass (Jones 

et al., 2020).  This is likely critical in drier areas, such as St. John, as it is improbable that potential 

soil benefits will outweigh the effects of water depletion later in the season.  This research further 
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investigates the termination timing which maximizes the advantages and minimizes disadvantages of 

cover crop cultivation.   

It is also important to note that many farmers rely on public agencies for crop management guidance 

and must conform to the requirements of their insurance policies.  In Latah County (Genesee, ID), 

USDA guidance for cover crop termination recommends growers terminate cover crops “at or before 

planting the crop”, and in Whitman County (St. John, WA), they suggest terminating late spring to 

fall seeded cover crops “15 days or earlier prior to planting the crop” and early spring seeded cover 

crops “as soon as practical prior to planting the crop” (USDA, 2019).  Also, cover crops are not 

considered an insurable crop, and cover crop management can impact federal crop insurance coverage 

(USDA, 2019). However, the USDA allows cover crops to be hayed, grazed, or harvested for silage, 

unless specifically prohibited by the insurance policy. These are important considerations when 

investigating and determining optimal management strategies.  Regardless, agricultural systems are 

subject to dynamic environmental conditions, which may influence appropriate termination timing 

year-to-year. 

Research Approach 

Agricultural research is inherently complex due to the intricate interactions among environment, weed 

and disease pressures, and human inputs.  It is difficult to isolate variables and clearly identify 

relationships. However, modeling allows one to eliminate variability across scenarios and evaluate 

the interaction of multiple factors with few, representative metrics.   

LIT data was used to parameterize and calibrate the CropSyst model and evaluate its ability to 

simulate field conditions and outcomes.  Once developed, model scenarios were run over a 

historic/current period.  In addition to the different crop rotations, model simulations incorporated 

approximately 30 years of detailed climate data obtained from gridMET, high resolution blended data 

from Parameter-elevation Regressions on Independent Slopes Model and North American Land Data 

Assimilation System (Abatzoglou, 2011).   

This research evaluates metrics intended to capture crop/rotation performance and stability, including 

yield and water and nitrogen outcomes.  Yield is a common measure of productivity and success and 

affects profit.  Water metrics, such as water use efficiency (grain produced per water used), provide 

insight to crop-climate relations and overall efficiency.  Nitrogen cycling influences input 

requirements, crop quality, and water quality.  The CropSyst model is also employed to identify 

strategies and develop techniques to maximize production and quality, while minimizing risk when 
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employing these alternate cropping systems. This includes fertilization requirements and cover crop 

termination timing (where applicable).   

Research Objectives 

As introduced above, research investigates the performance and stability of winter pea (INC), cover 

crop (ASP), and business as usual (BAU) crop rotations over time.  The main research objectives are 

to: 

1. Parameterize and assess the ability of the CropSyst model to simulate crop production 

and nitrogen/water cycling at an annual crop and a crop-fallow transition location using 

replicated rotational strip trial data  

2. Evaluate viability of alternate crop rotations under current and historic climate conditions 

and identify management strategies to optimize/adapt rotation success and stability  

This research compliments the greater efforts of the Inland Pacific Northwest Wheat-based Systems: 

Landscapes in Transition project (LIT), funded under USDA National Institute of Food and 

Agriculture grant 2017-68002-26819. LIT aims to “guide ongoing land use change in the IPNW 

towards sustainable, resilient agricultural landscapes and food systems”. This research utilized LIT 

data to better understand the long-term and large-scale impacts of the environment and management 

strategies on alternate crop rotations and provides insight as to how best to apply rotations and 

optimize practices in the years ahead.  Researchers and those involved in industry can employ the 

findings of the LIT project to guide agricultural management decisions, future research, and further 

model development.  
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Chapter 2: CropSyst Model Development 

Introduction 

Process-based models can be valuable research and assessment tools for identifying the net impact of 

disturbances, management decisions, and climatic changes in complex systems where positive and 

negative feedbacks are difficult to capture through field experimentation.  However, it is often very 

difficult to parameterize, calibrate, and validate a process-based model due to issues of equifinality, 

spatial variability, and limited data availability to constrain and reduce uncertainty (Bevan, 1989; 

Grayson et al., 1992).  This chapter relies on a detailed four-year strip trial crop study (Landscapes in 

Transition, LIT) to parameterize, calibrate, and assess the predictive ability of a complex process-

based model, CropSyst (Stöckle, 2003), for alternative cropping situations in the dryland cereal grain 

production region of the Inland Pacific Northwest (IPNW). A validated model allows users to 

effectively extend short-term observations to long-term scenarios and simulate the interactions of 

crops, soils, weather, and management (Stöckle, 2003). It will help isolate variables, identify 

relationships, and observe responses to varying conditions, supporting the larger goals of 

understanding the impacts of diverse and intense crop rotations and determining management 

strategies to optimize their success.  

Under the first research objective, two, site-specific CropSyst models were developed using 

replicated rotational strip trial data from the LIT project, one for the Genesee, annual cropping field 

site and one for the St. John, crop-fallow transition field site. Unique combinations of weather, soil, 

management, initialization, and crop input files make up different CropSyst model scenarios. During 

the calibration phase, each crop file underwent discrete calibration to obtain accurate yield/biomass, 

soil moisture, and nitrogen simulations. The primary objective of the calibration was to assess the 

ability of the CropSyst model to simulate crop biomass and yield production, as well as water and 

nitrogen storage and cycling.  

Methodology 

Site Description  

Available experimental data covers four years (2018-2021) at two trial sites, one corresponding to an 

annual crop-fallow transition system (ACT) in the intermediate precipitation zone (St. John, 

Washington) and one corresponding to an annual crop system (AC) in the high precipitation zone 

(Genesee, Idaho).  Field treatments cover three separate, three-year crop rotations: spring wheat-

fallow-winter wheat (BAU), spring wheat-winter pea-winter wheat (INC), and spring wheat-spring 

cover crop-winter wheat (ASP) in the intermediate precipitation zone and spring wheat-chick pea-

winter wheat (BAU), spring wheat-winter pea-winter wheat (INC), and winter cover crop-chick pea-
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winter wheat (ASP) in the high precipitation zone.  Cover crops were five-to-nine-way crop mixes; 

see Appendix A. In total, each site contains 45, approximately 10-meter-wide by 23-meter-long plots 

and a larger, field-scale study. As an example, Figure 1 shows the 2018-2019 strip trial design at the 

Genesee site.   

 

Figure 1: 2018-2019 strip trial design in Genesee, ID. 

Field and Laboratory Data 

CropSyst parameterization relied heavily on strip trial data collection. Each “treatment” (i.e., crop in a 

specific rotation) is replicated five times. Management information, such as planting and harvest dates 

and fertilization amounts, was carefully recorded throughout the field trial. The Management section 

of Model Development details management practices. Game cameras, installed in replicate 5 of 

Genesee and replicate 3 of St. John during the 2021 season only, provided insight to timing of crop 

growth stages, particularly flowering. Sentinel-derived NDVI imagery for the entire growing season 

for the associated field trials and other nearby fields was downloaded from the FluroSense (Regrow 

Agriculture) crop management tool. 

Soil sampling occurred pre-plant each spring (¾-inch diameter manual soil sampling probes) and 

post-harvest each fall (using a 2.3-centimeter Giddings probe, Giddings Machine Company Inc.TM, or 

with 3-inch diameter soil augers). Samples were taken in every individual “strip” of the strip trial at 

30-centimeter (cm) depth increments down to 150 cm below ground surface. For each depth, three 

individual samples, taken approximately one meter apart in a triangular pattern, contributed to a 

single composite sample. At the 0-30 cm depth, an additional six samples were taken perpendicular to 

plant rows to ensure banded fertilizer zones were adequately sampled.  Sub-samples of the 

composites were analyzed for pre-plant and post-harvest soil moisture content, nitrate, and 

ammonium in the soil profile. Soil nitrate and ammonia concentrations on a weight per weight basis 

(converted from milligrams per 0.025-liter extract) were determined with a 0.1 molar potassium 
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chloride (KCl) extraction, analyzed by a Lachat flow injection analyzer (Lachat InstrumentsTM).  

Gravimetric water content was determined by measuring weight change after drying soil samples at 

105°C for 24 hours or more and was converted to volumetric water content using bulk density 

measurements. Bulk density throughout the soil profile was measured twice, once in fall 2019 and 

once in fall 2021, from undisturbed 2.3-cm Giddings probe cores (Giddings Machine Company 

Inc.TM). Additional soil health analysis, conducted by Ward Laboratories, Inc. (Kearney, Nebraska), 

provided metrics including soil organic matter content and soil water-extractable organic C:N ratios. 

The CropSyst soil input file necessitated additional laboratory tests beyond those discussed above to 

determine soil-water retention properties and soil texture analysis, described in the Soil section. In 

addition to the manual soil moisture measurements, at each site, continuous soil moisture and 

temperature sensors (Acclima, Inc.), installed in each strip of a single replicate at each site, recorded 

values at six-hour increments for much of the trial period (approximately summer 2019 to fall 2021). 

The sensors were installed at 30-cm increments down to 150 cm below ground surface.  

During harvest, (four) one square meter aboveground biomass samples were hand harvested from 

each strip, dried at 38°C for 48 hours or until no longer losing mass, and weighed. A plot combine 

also recorded grain weight for each strip.  Grain nitrogen content was estimated from measurements 

of grain protein and moisture made using an Infratec 1241 Grain Analyzer (FOSSTM). A TruSpecTM 

(LECO Corp.) provided nitrogen concentrations of ground crop residue subsamples (0.1-millimeter). 

The accompanying field-scale trials (one at each location) split 180-acre and 90-acre fields in 

Genesee and St. John, respectively, into three smaller areas, each planted to either BAU, ASP, and 

INC rotations.  In addition to providing a valuable reference for soil and crop data, the field trials also 

contained three weather stations, one in each rotation field. The weather stations (Campbell 

Scientific, Inc.) provided temperature, wind, solar radiation, and humidity data. At each site, one of 

the three weather stations also collected precipitation data. Weather data manipulation is described in 

the Weather section of Model Development below.  

Model Development 

CropSyst requires weather, soil, management, and crop input files.  Most input parameters reflected 

field/laboratory observations and measurements or established values for the region and were not 

calibrated.  This includes weather data, management information, and soil properties. Select crop 

parameters (refer to Table 4 and Table 6) were updated or calibrated to better match simulated model 

outputs to observed field data. The following sections detail data collection and input file creation and 

subsequent calibration and evaluation efforts. 
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Weather  

The CropSyst weather file includes precipitation, solar radiation, wind, minimum and maximum 

relative humidity, and minimum and maximum temperature on a daily timestep. The weather 

instrumentation used in this study automatically logged these measurements at five-minute intervals. 

This data was summarized into daily values using the daily average or daily minimum/maximum 

observed values, as appropriate. Unfortunately, this solar powered equipment stopped working each 

winter, due to reduced incidence of sunlight, and during some periods other times of year, as a result 

mechanical or electrical failures. Gaps in on-site data were filled with nearby weather stations (e.g., 

Pullman, 53 kilometers to the southeast of St. John field site, or University of Idaho Kambitsh farm, 

12 kilometers northwest of the Genesee field site), corrected as necessary to reflect the field sites.  

The Genesee site lies in a high precipitation region and St. John in an intermediate precipitation 

region based on normal average annual precipitation (Schillinger et al., 2003). Table 1 summarizes 

precipitation observed from our period-of-interest, October 1, 2017 – October 31, 2021. For 

reference, St. John’s average annual precipitation for the years 1963 – 2016 is 17.2 inches, and 

Moscow, Idaho’s (27 kilometers northwest of the Genesee site) average annual precipitation as 23.8 

inches for the years 1893 – 2016 (WRCC DRI, 2022). During the majority of the study period, the 

annual precipitation fell below these normal values, with greater drought conditions experienced in 

2020 and 2021.  

Table 1: Observed precipitation at each field site with gaps filled with data from nearby weather stations by water year 

(October 1 – September 30) and calendar year (January 1 – December 31) 

 

 

 Genesee St. John 

Water year mm in mm in 

2017-2018 540.0 21.3 433.8 17.1 

2018-2019 474.0 18.7 390.4 15.4 

2019-2020 435.5 17.1 354.6 14.0 

2020-2021 342.3 13.5 311.2 12.3 

Calendar year mm in mm in 

2018 444.2 17.5 380.5 15.0 

2019 429.5 16.9 342.3 13.5 

2020 483.9 19.1 423.1 16.7 
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Soil  

CropSyst soil files require inputs for soil texture, soil-water retention properties, saturated hydraulic 

conductivity, and bulk density (Table 2). Soil texture was measured based on composite soil samples 

from 2019.  The Genesee strip trial site primarily contains Thatuna-Naff and Naff-Palouse soils (silt 

loams), and the St. John strip trial is mapped as Mondavi (silt loam) (Soil Survey Staff, n.d.).  NRCS 

soil survey maps indicate little variability throughout the field sites, and sampling depth divisions 

captured dominant soil horizons.  Small quantities of soil (5-10 grams) from a strip (strip D) in each 

replicate were combined to create three composite texture samples from each site: 0-30 cm, 30-90 cm, 

and 90-150 cm.  Analysis was run on a Meter PARIO (METER Group, Inc.). The PARIO conducts 

soil particle analysis using the integral suspension method, based on Stoke’s Law. Appendix B  

includes particle size distributions, with results summarized in Table 2. Data classifies Genesee soil 

as silt loam and silty clay loam and St. John as silt loam, consistent with NRCS soil survey. 

Soil-water characteristic curves were measured with a Meter HYPROP (METER Group, Inc.) and 

Meter WP4 equipment (METER Group, Inc.).  Soil cores were collected from replicate 5’s BAU 

spring wheat in Genesee and replicate 3’s BAU fallow in St. John during June 2021 at depths of six 

inches and 1.5 feet below ground surface.  Strip selection considered biomass present (for ease of 

sampling) and utilized soil moisture sensor replicates and BAU rotation plots for consistency.  Based 

on the NRCS soil survey maps (Soil Survey Staff, n.d.), little spatial variability among strips or 

depths existed and was not expected to influence measurements.  HYPROP and WP4 measurements 

provided complete water retention curves, from which values for water content at saturation, water 

content at permanent wilting point, water content and potential at field capacity, air entry potential, 

and Campbell pore size distribution index (b) were determined.   

Saturation, wilting point, and field capacity are soil hydraulic properties, which define soil moisture 

held under a specific tension. CropSyst defines permanent wilting point potential as -1,500 kilopascal 

(kpa), and field capacity potential was specified as -33 kpa. To identify saturation, wilting point, and 

field capacity values, the laboratory-measured water retention curve was fit to the van Genuchten 

model (van Genuchten, 1980); see Appendix C.  Fitting the Campbell model provided the air entry 

potential and Campbell b values (Appendix C). The models fit observed data well, with R2 statistics 

greater than 0.9 and root mean square error (RMSE) less than the standard deviation (σ) of 

observations for both the van Genuchten model and the Campbell model.  The difference between 

field capacity and wilting point represents plant available soil water (Kirkham, 2014). Saturated 

hydraulic conductivity, the ease at which water passes through the soil, was computed within 
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CropSyst using pedotransfer functions based on soil texture and other properties (Saxton and Rawls, 

2006).   



 

 

 

 

1
7
 

Table 2: CropSyst soil file input values 

Site 
Depth 

(cm) 

Sand1 

(%) 

Silt1 

(%) 

Clay1 

(%) 

Saturation 

(%V) 

Field 

capacity at 

33 kPa 2 

(%V) 

Permanent 

wilting point 

at 1,500 kPa 2 

(%V) 

Saturated 

hydraulic 

conductivity3 

(m/d) 

Campbell 

b4 

Air entry 

potential4 

(J/kg) 

Bulk 

density 

(g/cc) 

St. John 

0-30 15% 70% 14% 49 28.3 8.9 0.013 3.2 -5.59 1.18 

30-60 17% 74% 9% 50 28.6 9.8 0.019 3.6 -4.32 1.18 

60-90 17% 74% 9% 50 28.6 9.8 0.019 3.6 -4.32 1.09 

90-120 16% 74% 10% 50 28.6 9.8 0.019 3.6 -4.32 0.87 

120-150 16% 74% 10% 50 28.6 9.8 0.019 3.6 -4.32 0.81 

Genesee 

0-30 7% 65% 28% 45 30.6 14.4 0.035 4.9 -5.40 1.25 

30-60 5% 62% 33% 43 31.1 13.8 0.009 4.8 -6.87 1.39 

60-90 5% 62% 33% 43 31.1 13.8 0.009 4.8 -6.87 1.54 

90-120 7% 71% 22% 43 31.1 13.8 0.047 4.8 -6.87 1.55 

120-150 7% 71% 22% 43 31.1 13.8 0.047 4.8 -6.87 1.52 

1 Based on composite samples of 0-30 cm, 60-90 cm, and 90-120 cm.  

2 0-30 cm and 30-150 cm samples taken at 0.5-feet (15-cm) and 1.5-feet (45-cm) depths, respectively. Based on van Genuchten model (van Genuchten, 1980); see  

   Appendix C. 

3 Estimated by CropSyst using soil texture values. 

4 Based on Campbell approach (Campbell, 1974); see Appendix C. 
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CropSyst also requires initialization of soil organic matter (SOM), included directly in a scenario 

(simulation). The mineralization of SOM serves as an important source of nitrogen. SOM 

measurements, based on loss by ignition, were taken yearly throughout the strip trials at depths of 0-

10 cm and 10-20 cm below ground surface. While loss by ignition is a widely used method for 

determining SOM, it is worth mentioning the many factors influence its accuracy, including the 

chemical composition of the SOM, type of furnace used, and test protocol such as size of sample, 

duration, and temperature of ignition (Hoogsteen et al., 2015). SOM remained fairly consistent over 

the course of the experiment (2018-2021) and across strips and replicates. Consequently, at each site, 

these measurements were averaged and assigned to the uppermost soil layer universally (same value 

for all strips). SOM for deeper layers (to 150 cm below ground surface) were estimated from the 

NRCS soil survey database (Table 3).  

Table 3: Initial soil organic matter in percent, separated by depth below ground surface 

Percent SOM 

Depth (cm) Genesee St. John 

0-30 4.53 3.90 

30-60 2.10 1.34 

60-90 1.00 1.13 

90-120 1.00 1.13 

120-150 1.00 1.13 

 

Management  

A unique CropSyst management file was created for each crop for each year, totaling 68 files.  

CropSyst management file inputs included planting date; fertilizer application form, rate, and date; 

and harvest date.  Fertilization rates were assigned each year based on composite pre-plant fertility 

tests taken from each treatment.  At planting, winter and spring wheat crops were fertilized with urea 

ammonium nitrate (UAN), ammonium phosphate, and ammonium thiosulfate.  CropSyst offers an 

option to automatically supply nitrogen at deficient requirements, but during model development and 

calibration, fertilizations were assigned in the model at the rates applied during the strip trials. 

CropSyst does not simulate phosphorus or sulfur uptake, but management files included the nitrogen 

introduced as ammonium phosphate and thiosulfate.  In select years, wheat was top dressed later in 

the growing season with urea granules.  Winter peas, chickpeas, and cover crops were never 

fertilized.   
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In Genesee, winter crops were planted in early October, and spring crops were generally planted at 

the end of April. In St. John, winter crops were typically planted at the end of September and spring 

crops in early April. Most harvests occurred via combine in August. In 2020 and 2021, chickpeas 

were desiccated prior to harvest.  However, harvest was still assigned to the true harvest date.  Cover 

crops were harvested via swather in mid-summer, with total biomass measured and analyzed as 

described in Field and Laboratory Data.  No tillage, irrigation, or residue/biomatter additions 

occurred.   

Appendix D contains planting dates, harvest dates, and fertilization information.  

Initialization/Recalibration  

CropSyst simulations were initialized with pre-plant observed soil moisture, nitrate, and ammonium 

values. For early biomass/yield and soil moisture calibration purposes, CropSyst simulations used 

observed initial conditions for each growing season.  Later, the model was initialized at the start of 

the crop rotation and allowed to run without further recalibration/initialization to assess the long-term 

predictive ability of the model. 

Crop  

Single crop files for each crop type at each site, applicable across all rotations and years, were 

developed based on default crop files in the model. Calibration efforts focused on replicate 5 in 

Genesee and replicate 3 in St. John, with each strip simulated separately for a total of nine rotational 

simulations per site. These replicates were selected, as they included continuous soil moisture sensors 

and game cameras (2021), and certain soil parameters, discussed above, were only available in these 

strips.  

Calibration followed a sequential manual approach. For every crop, each calibrated parameter was 

incrementally increased or decreased until the best results were achieved (i.e., minimized error in 

predicted values). Calibration utilized 2018-2020 data, as it represented a complete cycle of the three-

crop rotations, with 2021 data included in validation. Calibration started with the BAU strips and their 

crops, and then progressed across all strips. Initially, each year was calibrated independently, using 

the initialization/recalibration files discussed earlier, and then complete rotations were simulated and 

assessed. Initial yield/biomass and soil moisture calibration efforts occurred with nitrogen modeling 

off; after yield/biomass calibrations were acceptable, only nitrogen parameters were calibrated with 

nitrogen modeling enabled. Nitrogen calibration aimed to produce the same yield and biomass 

outcomes as simulated with the nitrogen submodel disabled, as it was assumed no nitrogen stress 

affected the field trial crops. 
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Yield/Biomass and Soil Moisture Calibration 

Parameter adjustment and calibration followed a specific stepwise approach. Calibration primarily 

focused on observed data within a specific strip; however, the overall assessment of predictive ability 

also considered agreement with replicated averages and 95% confidence intervals for a given 

“treatment”. First, harvest indices were adjusted to better reflect the range of biomass and yield 

relationships observed in the field. Next, phenology parameters were calibrated to reflect game 

camera information and achieve agreement between normalized difference vegetation index (NDVI) 

from satellite imagery and the leaf area index (LAI) simulated by CropSyst. LAI, with units of area 

per area (e.g., m2/m2), defines the leaf area in a canopy, and NDVI quantifies vegetative ‘greenness’, 

which has been proven to be strongly linked to above ground crop biomass and chlorophyll content, 

as a function of reflected light. These two metrics should correlate strongly, as green areas are 

“selective absorbers of solar radiation” (Chen and Cihlar, 1996). However, because LAI and NDVI 

assess two different canopy characteristics, structure and color, the parameters are not always directly 

proportional. 

Next, canopy extinction coefficient for solar radiation (k) and, finally, radiation use efficiency (RUE) 

were calibrated for all crop files, both of which strongly influence yield, biomass, soil moisture 

outcomes. In the CropSyst canopy model, k serves as a first-order rate constant in the canopy cover 

fraction calculation. A low k value implies lower efficiency, with much of the radiation reaching the 

bottom on the canopy (Zhang et al., 2014). The unitless variable varies between zero and one, and a 

greater value of k results in a greater fraction of canopy cover. The specified RUE value is associated 

with unstressed conditions at very low vapor pressure deficits (high humidity) and factors into the 

transpiration use efficiency based attainable growth model. It represents biomass produced per light 

intercepted by the canopy. It generally varies between one and five grams per megajoule (g/MJ). 

Cover crop stands included a significant amount of winter wheat, so the winter wheat crop file was 

used as a starting point for cover crop file development. Although adjusting the phenology, k, and 

RUE values allowed for better simulation of observed cover crop outcomes, the “base” crop file 

utilized was not reflective of a cover mix, so it was determined an additional parameter was needed 

for cover crop calibration. In the final step of calibration, TUE, another influential parameter in 

determining biomass simulated by CropSyst (Confalonieri et al., 2006a), was calibrated for cover 

crops only. CropSyst defines transpiration use efficiency, also known as a biomass transpiration 

coefficient, as grams of biomass produced per kilogram of water at a vapor pressure deficit of one 

kilopascal. It serves as the slope of the linear regression model (Kemanian et al., 2005). 

Table 4 summarizes the sequence of yield/biomass and soil moisture calibration. 
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Table 4: Summary of the yield/biomass and soil moisture calibration process applied during model development 

Adjusted/calibrated parameter Observed metric 

1. Unstressed and stressed 

harvest indices 

Relationship between yield and 

biomass  

2. Phenology (flowering, filling, 

maturity) 

Growth stage timing and agreement 

between measured NDVI and 

CropSyst simulated LAI 

3. Canopy extinction coefficient 

for solar radiation, k 
Yield, biomass, and soil moisture  

4. Radiation use efficiency, RUE Yield, biomass, and soil moisture  

5. Transpiration use efficiency, 

TUE1 
Yield, biomass, and soil moisture  

1Calibrated for cover crops only 

 

Nitrogen Calibration 

Similar to the yield/biomass and soil moisture calibration, nitrogen parameter adjustment and 

calibration followed a manual, stepwise approach. Calibration focused on the strip of interest’s 

replicated average crop nitrogen observed value, while maintaining crop biomass and yield achieved 

during previous calibration efforts (nitrogen submodel disabled). While CropSyst simulates nitrogen 

fixation for legume crops, it does not offer input parameters to adjust. It is also worth noting that 

during yield/biomass and soil moisture calibration efforts, results were computed on a daily timestep. 

However, CropSyst requires Cascade method simulations (utilized in this work) that include nitrogen 

use an hourly timestep. Small discrepancies may have resulted from this change. The nitrogen 

submodel was completely ‘calibrated’ for Genesee only. Select parameters established for Genesee 

(maximum apparent soil carbon decomposition for undisturbed soil and critical and maximum 

nitrogen concentrations of the canopy at emergence) were assigned to the St. John crop files, 

effectively splitting the dataset and allowing for further verification of calibrated parameters.   

CropSyst simulates the complete nitrogen cycle, with processes manipulated through crop nitrogen 

parameters and organic matter characteristics. Although CropSyst offers the option to simulate 

organic carbon cycling as three different pools, measurements of each pool were not available to 

parameterize the model, so a single soil carbon pool was simulated. To begin calibration, the soil 

organic matter’s carbon to nitrogen ratio (C:N) was updated to reflect field observations at both sites. 

The dimensionless C:N relationship affects the relative amount of carbon and nitrogen converted in 
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the soil or assimilated by microbes (Janssen, 1996). Laboratory C:N values corresponded to water-

extractable organic carbon and nitrogen. Water-extractable organic carbon and nitrogen represent 

portions of the overall organic carbon and nitrogen fractions, as not all organic carbon and nitrogen 

will partition into water, but these subsets are critical to the microorganisms that drive the nitrogen 

cycle (Haney et al., 2012). Water-extractable organic matter is considered most representative of the 

labile fraction (Zhang et al., 2011). However, total and water-extractable C:N ratios can be very 

similar (Haney et al., 2012). A limited LIT dataset of total soil organic carbon and total soil nitrogen 

suggested that, in this case, the total organic C:N ratios may be lower than water-extractable values. 

However, this dataset was not available at the time of model development, and the C:N ratio did not 

appear highly influential on model outputs. Parameterizing the C:N value left a single unknown decay 

rate parameter, the ‘maximum apparent soil carbon decomposition for undisturbed soil’, which was 

calibrated in the Genesee model to maintain observed organic matter levels and achieve crop nitrogen 

uptake as observed during the field trial. Organic matter decomposition follows first order kinetics, 

with the rate constant in units of 1/day (Stöckle, n.d.).  

The maximum aboveground nitrogen concentration at maturity and the maximum concentration of 

nitrogen in chaff and stubble were adjusted based on observed harvest data at each site. Nitrogen 

concentrations are related as kilograms nitrogen per kilogram dry matter (kg N/kg DM). Next, critical 

nitrogen concentration at emergence and, finally, maximum nitrogen concentration of the canopy at 

emergence values were calibrated for the Genesee site. These parameters feed the nitrogen demand 

model, which CropSyst computes as a dilution curve based on a critical nitrogen concentration. The 

nitrogen dilution curve is a negative power function, with nitrogen declining over time (“diluting”). 

Concentration at emergence values correspond to early, linear growth stage in a plant well-supplied 

with nitrogen and are measured in units of kg N/kg DM (Stöckle, n.d.). Parameter calibration focused 

on minimizing the error between simulated and observed total crop nitrogen.  

Table 5 summarizes the nitrogen calibration process. 

 

 

 

 

 

 



23 

 

 

 

Table 5: Summary of the nitrogen calibration process applied during model development 

Adjusted/calibrated parameter Observed metric 

1. Carbon to nitrogen ratio, C:N C:N values, soil organic matter 

2. Maximum apparent soil 

carbon decomposition for 

undisturbed soil (decay rate) 

Soil organic matter 

3. Maximum aboveground 

nitrogen concentration at 

maturity 

Percent nitrogen in grain and biomass 

4. Maximum concentration of 

nitrogen in chaff and stubble  
Percent nitrogen in biomass 

5. Critical nitrogen 

concentration of the canopy at 

emergence 

Total nitrogen in crop, occurrence of 

nitrogen stress 

6. Maximum nitrogen 

concentration of the canopy at 

emergence 

Total nitrogen in crop 

 

Statistical Assessment 

Statistical analysis confirmed parameter selection. The coefficient of determination (R2), equation (1), 

describes the linearity of the relationship between observed and simulated data. It ranges from 0 to 1 

and represents the portion of variance explained by the model. Root mean square error (RMSE), 

equation (2), serves as an error index. This work considers R2 values greater than 0.5 (Moriasi et al., 

2007) and RMSE values less than one standard deviation (σ) of observations as acceptable. The 

relative error (RE), equation (3), normalizes the RMSE and quantifies error without dimensions; a 

value of 1 indicates perfect agreement (Stöckle et al., 2004). Standard deviation (σ), equation (4), 

relates data variation or spread. Mean difference (MD), equation (5), quantifies the difference 

between the averages of two datasets, and confidence intervals (CI), described in equation (6), 

provide interval estimates for a parameter based on observations. Finally, the Willmott index of 

agreement (d), equation (7), is a standardized metric of model error, varying between 0 (no 

agreement) and 1 (perfect agreement) (Willmott, 1981). It is frequently used to assess cropping 

models (Ahmed et al., 2016; Benli et al., 2007; Todorovic et al., 2009). 



24 

 

 

 

𝑅2 =
∑ (𝑦𝑖

𝑠𝑖𝑚−𝑦𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

∑ (𝑦𝑖
𝑜𝑏𝑠−𝑦𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

     (1) 

Where 𝑦𝑖
𝑜𝑏𝑠 𝑖𝑠 ith observation of 𝑦, 𝑦𝑖

𝑠𝑖𝑚 is the simulated value of y for ith observation, 𝑦𝑚𝑒𝑎𝑛is the mean of the observed 𝑦 

values, and 𝑛 is the sample size. 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖
𝑜𝑏𝑠−𝑦𝑖

𝑠𝑖𝑚)2𝑛
𝑖=1

𝑛
       (2) 

Where 𝑦𝑖
𝑜𝑏𝑠 𝑖𝑠 ith observation of 𝑦, 𝑦𝑖

𝑠𝑖𝑚 is the simulated value of y for ith observation, and 𝑛 is the sample size. 

 

𝑅𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑒𝑎𝑛       (3) 

Where RMSE is the root means square error, and 𝑦𝑚𝑒𝑎𝑛is the mean of the observed 𝑦 values. 

 

𝜎 = √
∑ (𝑦𝑖

𝑜𝑏𝑠−𝑦𝑚𝑒𝑎𝑛)𝑛
𝑖=1

n
     (4)

  

Where 𝑦𝑖
𝑜𝑏𝑠 𝑖𝑠 ith observation of 𝑦, 𝑦𝑚𝑒𝑎𝑛is the mean of the observed 𝑦 values, and 𝑛 is the observation dataset size. 

 

𝑀𝐷 =
∑ (𝑦𝑖

𝑜𝑏𝑠−𝑦𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

n
     (5)

  

Where 𝑦𝑖
𝑜𝑏𝑠 𝑖𝑠 ith observation of 𝑦, 𝑦𝑖

𝑠𝑖𝑚 is the simulated value of y for ith observation, and 𝑛 is the sample size. 

 

𝐶𝐼 = 𝑦𝑚𝑒𝑎𝑛  ± 𝑡𝛼/2 ×
𝑠

√𝑛
    (6)

  

Where 𝑦𝑚𝑒𝑎𝑛is the mean of the values, t is the t-test statistic, α is the confidence level, s is the sample standard deviation, 

and 𝑛 is the sample size. 

 

𝑑 = 1 − 
∑ (𝑦𝑖

𝑠𝑖𝑚−𝑦𝑖
𝑜𝑏𝑠)2𝑛

𝑖=1

∑ (|𝑦𝑖
𝑠𝑖𝑚−𝑦𝑖

𝑚𝑒𝑎𝑛|+|𝑦𝑖
𝑜𝑏𝑠−𝑦𝑖

𝑚𝑒𝑎𝑛|) 2𝑛
𝑖=1

  (7)

  

Where 𝑦𝑖
𝑜𝑏𝑠 𝑖𝑠 ith observation of 𝑦, 𝑦𝑖

𝑠𝑖𝑚 is the simulated value of y for ith observation, 𝑦𝑚𝑒𝑎𝑛is the mean of the observed y 

values, and 𝑛 is the sample size. 
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Results  

Yield/Biomass and Soil Moisture Calibration 

All results summarized in this section correspond to outcomes achieved during full rotational 

simulations (i.e., no recalibration or re-initialization of soil properties each cropping year). In general, 

the stressed harvest index fell 0.1 to 0.2 units below the unstressed index (Table 6). Slightly higher 

harvest indices were achieved in Genesee than in St. John. 

Table 6: Adjusted harvest indices applied to CropSyst crop files 

Crop  
Harvest index 

(unstressed/stressed) 

Genesee 

Winter wheat 0.51/0.35 

Spring wheat 0.45/0.34 

Chickpea 0.54/0.34 

Winter pea 0.50/0.35 

Cover crop - 

St. John 

Winter wheat 0.45/0.35 

Spring wheat 0.45/0.30 

Winter pea 0.40/0.20 

Cover crop - 

  

In all cases, degree days for emergence were left at default values due to insufficient field data and 

the parameter’s limited influence (Table 7). Key phenological growth stage timing for winter wheat 

and winter pea, the only winter crops common to Genesee and St. John, were identical.  
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Table 7: Calibrated phenology values in growing degree days applied to CropSyst crop files 

Crop  
Phenology, °C-day 

(emergence/flowering/filling/maturity) 

Genesee 

Winter wheat 50/1,300/1,500/2,100 

Spring wheat 50/800/900/1,400 

Chickpea 1/500/600/1,100 

Winter pea 50/1,300/1,500/2,100 

Cover crop 50/1,350/1,500/2,500 

St. John 

Winter wheat 50/1,300/1,500/2,100 

Spring wheat 50/700/850/1,300 

Winter pea 50/1,300/1,500/2,100 

Cover crop 50/600/700/2,000 

 

Phenology parameters were established based on agreement between simulated LAI and measured 

NDVI (example plotted in Figure 2), as well as game camera images from 2021.  A strong correlation 

should exist between the rising arm of the seasonal LAI and NDVI curves. 

 

Figure 2: Example graphical comparison of CropSyst simulated leaf area index (LAI) and FluroSense normalized difference 

vegetation index (NDVI), Strip G in Genesee; INC = Incremental, WW=winter wheat, SW=spring wheat, WP=winter pea 
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Table 8 and Table 9 list the compared crops, as direct comparisons were not always available. For 

example, for Genesee strip A in 2020, the CropSyst simulated LAI for spring wheat was compared to 

a nearby spring barley field’s NDVI.  Cover crops in the area, beyond those planted in the tower 

fields, could not be located. The tables only include 2018-2020 crop years, as they represent a 

complete cycle of the three-year rotations, and 2021 crop type data was not available at the time of 

analysis. R2 values reflect the “development stage”, the rising arm of the seasonal curve on the graph 

above. Agreement between simulated LAI and NDVI was good (R2 > 0.5).   
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Table 8: R2 between Genesee simulated leaf area index (LAI) and normalized difference vegetation index (NDVI) of nearby 

fields by strip (labeled A-I); ASP=aspiration, INC=incremental, BAU=business-as-usual, CP=chickpea, SW=spring wheat, 

WW=winter wheat, WP=winter pea, CC=cover crop, SB=spring barley 

  2018 2019 2020 

A (BAU) 

LAI (strip) CP WW SW 

NDVI (nearby field) CP WW SB 

R2 0.90 0.96 0.94 

B (INC) 

LAI (strip) WP WW SW 

NDVI (nearby field) WW WW SB 

R2 0.81 0.93 0.93 

C (BAU) 

LAI (strip) SW CP WW 

NDVI (nearby field) SB CP WW 

R2 0.93 0.96 0.95 

D (ASP) 

LAI (strip) CC CP WW 

NDVI (nearby field) -1 CP WW 

R2 -1 0.97 0.97 

E (INC) 

LAI (strip) WW CC CP 

NDVI (nearby field) WW CC CP 

R2 0.77 0.80 0.97 

F (INC) 

LAI (strip) SW WP WW 

NDVI (nearby field) SB WW WW 

R2 0.91 0.95 0.95 

G (INC) 

LAI (strip) WW SW WP 

NDVI (nearby field) WW SW WP 

R2 0.90 0.96 0.94 

H (ASP) 

LAI (strip) CP WW CC 

NDVI (nearby field) CP WW -2 

R2 0.90 0.98 -2 

I (BAU) 

LAI (strip) WW SW CP 

NDVI (nearby field) WW SW CP 

R2 0.91 0.94 0.88 

1No NDVI comparison available 
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Table 9: R2 between St. John simulated leaf area index (LAI) and normalized difference vegetation index (NDVI) of nearby 

fields by strip (labeled A-I); ASP=aspiration, INC=incremental, BAU=business-as-usual, SW=spring wheat, WW=winter 

wheat, WP=winter pea, CC=cover crop 

  2018 2019 2020 

A (INC) 

LAI (strip) WP WW SW 

NDVI (nearby field) WW WW SW 

R2 0.94 0.98 0.97 

B (BAU) 

LAI (strip) F WW SW 

NDVI (nearby field) - WW SW 

R2 - 0.99 0.97 

C (ASP) 

LAI (strip) SW CC WW 

NDVI (nearby field) SW CC WW 

R2 0.69 0.98 0.90 

D (INC) 

LAI (strip) WW SW WP 

NDVI (nearby field) WW SW WW 

R2 0.97 0.98 0.99 

E (INC) 

LAI (strip) SW WP WW 

NDVI (nearby field) SW WP WW 

R2 0.72 0.96 0.90 

F (BAU) 

LAI (strip) WW SW F 

NDVI (nearby field) WW SW - 

R2 0.93 0.98 - 

G (ASP) 

LAI (strip) CC WW SW 

NDVI (nearby field) -1 WW SW 

R2 -1 0.91 0.96 

H (ASP) 

LAI (strip) WW SW CC 

NDVI (nearby field) WW SW -1 

R2 0.94 0.98 -1 

I (BAU) 

LAI (strip) SW F WW 

NDVI (nearby field) SW - WW 

R2 0.73 - 0.89 

1No NDVI comparison available 
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While somewhat iterative, k values were manipulated prior to RUE. In most instances, k values were 

increased from default values. Consequently, calibrated k values and relatively high default TUE 

values resulted in well simulated yield and biomass outcomes without significant changes to default 

RUE values (Table 10). In many cases, crops common to both sites have the same calibrated 

parameter values.  

Table 10: Calibrated k and RUE values applied to CropSyst crop files 

Crop  

Canopy extinction 

coefficient for solar 

radiation (k) 

Radiation use 

efficiency (RUE), 

g/mJ 

Genesee 

Winter wheat 0.60 1.50 

Spring wheat 0.80 2.75 

Chickpea 0.60 1.10 

Winter pea 0.56 1.24 

Cover crop 0.40 1.50 

St. John 

Winter wheat 0.60 1.50 

Spring wheat 0.70 2.75 

Winter pea 0.56 1.50 

Cover crop 0.50 1.50 

 

As discussed, TUE was only calibrated for cover crops. However, for reference, Table 11 summarizes 

TUE values for all crops. Cover crop TUE was adjusted downward from the default value provided in 

the winter wheat file. 
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Table 11: TUE values applied to CropSyst crop files; TUE calibrated for cover crops only, with all other values 

corresponding to CropSyst defaults 

Crop 
Transpiration use 

efficiency (TUE), g/kg 

Genesee 

Winter wheat 4.6 

Spring wheat 6.6 

Chickpea 4.0 

Winter pea 3.6 

Cover crop 3.25 

St. John 

Winter wheat 4.6 

Spring wheat 6.6 

Winter pea 3.6 

Cover crop 3.7 

 

Observed versus simulated biomass and yield center around the dashed diagonal line, which 

represents a 1:1 relationship (i.e., a “perfect” prediction); refer to Figure 3 – Figure 6. The graphs 

include a datapoint for each strip for each year. As indicated by the R2 and RMSE values, simulated 

biomass and yield outcomes achieve acceptable agreement with observed data, with Genesee 

predicted with greater accuracy than St. John. Reported d values are also similar to or exceed those 

reported in similar crop model assessments (Ahmed et al., 2016; Benli et al., 2007; Todorovic et al., 

2009). Unlike these similar studies, this work combines multiple crops.  
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Figure 3: Genesee observed versus simulated biomass; 

ASP=aspiration, INC=incremental, BAU=business-as-usual, 

RMSE=root mean square error, σobs=standard deviation of 

the observations, RE=relative error, d=index of agreement 

 

Figure 4: Genesee observed versus simulated yield; 

ASP=aspiration, INC=incremental, BAU=business-as-usual, 

RMSE=root mean square error, σobs=standard deviation of the 

observations, RE=relative error, d=index of agreement   

 

Figure 5: St. John observed versus simulated biomass; 

ASP=aspiration, INC=incremental, BAU=business-as-usual, 

RMSE=root mean square error, σobs=standard deviation of 

the observations, RE=relative error, d=index of agreement 

 

Figure 6: St. John observed versus simulated yield; 

ASP=aspiration, INC=incremental, BAU=business-as-usual, 

RMSE=root mean square error, σobs=standard deviation of the 

observations, RE=relative error, d=index of agreement 
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The R2 and RMSE values for individual rotations also exceed the acceptable criterion; see Table 12. 

The table also includes a normalized RMSE, RE, and the index of agreement (d), which are 

approximately equal to or greater than those achieved in CropSyst studies such as Todorovic et al. 

(2009) and Umair et al. (2017).  

Table 12: R2, root mean square error (RMSE), relative error (RE), and index of agreement (d) between simulations and 

observations and standard deviation (σ) of the observations, separated by yield and biomass of rotation; ASP=aspiration, 

INC=incremental, BAU=business-as-usual    

 

Biomass Yield 

R2 
RMSE, 

kg/ha 

σ, 

kg/ha 
RE d R2 

RMSE, 

kg/ha 

σ, 

kg/ha 
RE d 

Genesee 

BAU 0.94 1379 5729 0.15 0.98 0.95 526 2416 0.14 0.99 

INC 0.84 2088 5393 0.22 0.95 0.89 793 2425 0.19 0.97 

ASP 0.94 2095 6711 0.24 0.97 0.98 393 2882 0.10 0.99 

St. John 

BAU 0.80 3250 7428 0.41 0.94 0.80 1254 2885 0.41 0.94 

INC 0.67 2563 4565 0.25 0.90 0.68 1173 2125 0.34 0.91 

ASP 0.80 2229 5155 0.26 0.95 0.67 1238 2215 0.28 0.90 

 

Figure 7 – Figure 10 show yearly simulated and observed biomass and yield, separated by crop type 

and year, with individual datapoints for each strip.  
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Figure 7: Genesee yearly observed and simulated biomass; 

CP=chickpea, SW=spring wheat, WW=winter wheat, 

WP=winter pea, CC=cover crop 

 

Figure 8: Genesee yearly observed and simulated yield; 

CP=chickpea, SW=spring wheat, WW=winter wheat, 

WP=winter pea 

 

Figure 9: St. John yearly observed and simulated biomass; 

SW=spring wheat, WW=winter wheat, WP=winter pea, 

CC=cover crop 

 

Figure 10: St. John yearly observed and simulated yield; 

SW=spring wheat, WW=winter wheat, WP=winter pea 

Again, the model appears to successfully simulate yield and biomass when separated by year (Table 

13). As mentioned, 2021 data was reserved for validation (i.e., was not considered in calibration).  
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Table 13: R2, root mean square error (RMSE), relative error (RE), and index of agreement (d) between simulations and 

observations and standard deviation (σ) of the observations, separated by yearly yield and biomass 

 

Biomass Yield 

R2 
RMSE, 

kg/ha 

σ, 

kg/ha 
RE d R2 

RMSE, 

kg/ha 

σ, 

kg/ha 
RE d 

Genesee 

2018 0.88 2128 5931 0.20 0.96 0.99 452 2733 0.11 0.99 

2019 0.79 1590 4200 0.23 0.93 0.86 435 1632 0.22 0.93 

2020 0.98 2126 7643 0.13 0.99 0.97 913 2745 0.08 0.99 

2021 0.86 1460 3210 0.30 0.93 0.88 534 1065 0.30 0.93 

St. John 

2018 0.93 2247 4177 0.28 0.94 0.90 1577 1734 0.48 0.81 

2019 0.87 2850 5202 0.31 0.90 0.95 1927 2689 0.46 0.79 

2020 0.80 2980 7126 0.25 0.94 0.95 1347 2912 0.30 0.92 

2021 0.87 2723 5591 0.42 0.89 0.90 786 1989 0.37 0.92 

 

Figure 11 – Figure 14 highlight the year-to-year variability, as well as variability across strips and 

rotations. In particular, 2021 biomass and yield are markedly lower than those measured in previous 

years. Each average and confidence interval graphed include five data points, one for each replicate 

of the strip trial.
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Figure 11: Genesee overall replicate average biomass with 95% confidence interval error bars around observations; ASP=aspiration, INC=incremental, BAU=business-as-usual, 

CP=chickpea, SW=spring wheat, WW=winter wheat, WP=winter pea, CC=cover crop    

 

Figure 12: Genesee overall replicate average yield with 95% confidence interval error bars around observations; ASP=aspiration, INC=incremental, BAU=business-as-usual, 

CP=chickpea, SW=spring wheat, WW=winter wheat, WP=winter pea, CC=cover crop    
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Figure 13: St. John overall replicate average biomass with 95% confidence interval error bars around observations; ASP=aspiration, INC=incremental, BAU=business-as-usual, 

SW=spring wheat, WW=winter wheat, WP=winter pea, CC=cover crop    

 

Figure 14: St. John overall replicate average yield with 95% confidence interval error bars around observations; ASP=aspiration, INC=incremental, BAU=business-as-usual, 

SW=spring wheat, WW=winter wheat, WP=winter pea, CC=cover crop    
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With the exception of St. John spring wheat, average simulated biomass and yield values fit within 

the 95% confidence intervals of field observations (Figure 15 – Figure 18). Between 10 and 60 

datapoints contributed to each of the averages and confidence intervals, which reflect all years and all 

rotations. 
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Figure 15: Genesee overall average biomass by crop type 

with 95% confidence interval error bars around 

observations 

 

Figure 16: Genesee overall average yield by crop type with 

95% confidence interval error bars around observations 

 

Figure 17: St. John overall average biomass by crop type 

with 95% confidence interval error bars around 

observations 

 

Figure 18: St. John overall average yield by crop type with 

95% confidence interval error bars around observations 
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Appendix E contains biomass and yield statistics by crop, including R2, MD, and RMSE between the 

observed biomass/yield and values predicted by CropSyst. R2 values vary between 0.04 (cover crop 

biomass) and 0.95 (winter wheat yield) for Genesee and between 0.10 (cover crop biomass) and 0.90 

(winter pea yield) for St. John. RMSE falls between 322 and 4,828 kg/ha for Genesee and between 

481 and 3,522 kg/ha for St. John. Based on the R2 and RMSE, model agreement for some individual 

crops does not meet acceptable criteria. However, since the simulated and observed yield and biomass 

for each crop (summarized in Table 14 and Table 15) fall in close range, and, over entire crop 

rotations, biomass and yield results indicate successful agreement, it was concluded that ability to 

simulate crop biomass and yield was acceptable. 

Table 14: Genesee observed and simulated average biomass and yield by crop 

  

Average biomass (kg/ha) Average yield (kg/ha) 

Observed Simulated Observed Simulated 

Chickpea 3,931 3,920 1,876 1,737 

Spring wheat 8,675 8,330 3,432 2,946 

Winter pea 7,286 6,990 2,770 3,020 

Winter wheat 15,262 14,483 6,421 6,238 

Cover crop 5,849 5,506 - - 

 

Table 15: St. John observed and simulated average biomass and yield by crop 

 
Average biomass (kg/ha) Average yield (kg/ha) 

Observed Simulated Observed Simulated 

Spring wheat 6,961 8,657 2,444 2,913 

Winter pea 6,903 6,969 1,644 2,018 

Winter wheat 13,165 13,654 5,390 5,534 

Cover crop 3,468 3,785 - - 

 

As discussed in Field and Laboratory Data, LIT data collection included manual soil moisture 

measurements each spring and fall (see graphic examples in Figure 19 and Figure 20 for 2018 and 

2019). 
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Figure 19: Observed manual and simulated CropSyst soil moisture for 2018-2019 sampling dates, Genesee strip E; PAW = 

approximate plant available water (soil moisture between field capacity and permanent wilting point) 

 

Figure 20: Observed manual and simulated CropSyst soil moisture for 2018-2019 sampling dates, St. John strip I; PAW = 

approximate plant available water (soil moisture between field capacity and permanent wilting point) 

Automated soil moisture sensors were also installed in replicate 5 of Genesee and 3 of St. John. 

Stored soil water values recorded were compared with CropSyst outputs during calibration; see 

example profiles in Figure 21 and Figure 22. At times, sensors failed to record, indicated by gaps in 

the gold “average observed” datapoints.  
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Figure 21: Genesee strip B average sensor observed and CropSyst simulated stored soil water, based on 150-cm profile; 

WP=winter pea, WW=winter wheat, SW=spring wheat 

 

Figure 22: St. John strip D average sensor observed and CropSyst simulated stored soil water, based on 150-cm profile; 

WW=winter wheat, SW=spring wheat, WP=winter pea 
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In some instances, limited overlap occurred between the two observed datasets (indicated by low “n” 

values in Table 16 and Table 17), or dramatic differences between the observed datasets were present.  

Especially at the St. John site, sensors occasionally malfunctioned or stopped working.  To account 

for these inconsistencies in the observed data, the calibration efforts aimed to achieve simulated soil 

moisture with as much accuracy as was estimated between the observed datasets, R2=0.55 and 

RMSE=0.056 in Genesee and R2=0.76 and RMSE=0.127 in St. John.  Appendix F contains 

summaries for individual strips. 

Table 16: Genesee soil moisture R2, mean difference (MD), and root mean square error (RMSE) comparisons (replicate 5 

average results) by depth (cm) 

Observed sensor versus observed manual 

Depth Profile Avg. 0-30 30-60 60-90 90-120 120-150 

R2 0.549 0.791 0.785 0.655 0.317 0.195 

MD -0.023 0.027 -0.023 -0.031 -0.039 -0.048 

RMSE 0.056 0.049 0.044 0.051 0.063 0.074 

n   45 38 40 33 44 

Observed sensor versus CropSyst simulated 

Depth Profile Avg. 0-30 30-60 60-90 90-120 120-150 

R2 0.620 0.792 0.494 0.253 0.298 0.271 

MD 0.040 -0.009 0.043 0.041 0.039 0.052 

RMSE 0.049 0.051 0.070 0.071 0.067 0.063 

n   7,350 6,699 6,628 5,818 7,334 

Observed manual versus CropSyst simulated 

Depth Profile Avg. 0-30 30-60 60-90 90-120 120-150 

R2 0.623 0.938 0.889 0.431 0.246 0.277 

MD 0.011 0.022 0.019 0.001 0.004 0.011 

RMSE 0.051 0.040 0.039 0.060 0.054 0.052 

n   72 71 72 72 72 
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Table 17: St. John soil moisture R2, mean difference (MD), and root mean square error (RMSE) comparisons (replicate 3 

average results) by depth (cm) 

Observed sensor versus observed manual 

Depth Profile Avg. 0-30 30-60 60-90 90-120 120-150 

R2 0.076 0.158 0.080 0.014 0.074 0.055 

MD 0.035 0.050 0.023 0.016 0.067 0.017 

RMSE 0.127 0.130 0.129 0.110 0.118 0.148 

n   20 25 25 27 28 

Observed sensor versus simulated 

Depth Profile Avg. 0-30 30-60 60-90 90-120 120-150 

R2 0.600 0.324 0.423 0.217 0.244 0.249 

MD 0.030 0.002 0.007 0.030 -0.017 0.011 

RMSE 0.096 0.097 0.094 0.106 0.124 0.132 

n   4,331 4,602 4,644 4,847 4,821 

Observed manual versus simulated 

Depth Profile Avg. 0-30 30-60 60-90 90-120 120-150 

R2 0.685 0.877 0.881 0.520 0.267 0.260 

MD 0.050 0.043 0.038 0.063 0.061 0.046 

RMSE 0.073 0.069 0.054 0.082 0.087 0.061 

n   72 71 72 71 72 

 

Nitrogen Calibration 

Again, all results summarized in this section correspond to outcomes achieved during full rotational 

simulations. Table 18 summarizes soil organic matter carbon to nitrogen ratios (SOM C:N), updated 

for each site, and the calibrated soil carbon decay rate, developed based on Genesee data. Both sites 

display relatively low organic matter C:N ratios and will decompose faster than materials with higher 

C:N ratios. 
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Table 18: Organic matter parameters; water-extractable SOM C:N values measured by Ward Laboratories and soil carbon 

decay rate calibrated in the CropSyst model 

Site 
SOM 

C:N 

Soil carbon 

decay rate 

(1/day) 

Genesee 15.02 
0.0000164 

St. John 17.32 

 

Maximum above ground nitrogen concentration at maturity and maximum aboveground nitrogen 

concertation of chaff and stubble values (Table 19) were estimated with measured data. Aboveground 

nitrogen concentration was typically approximately twice as great as maximum nitrogen 

concentration of the residue due to a higher concentration of nitrogen in the grain. At both sites, 

legume crops exhibited the greatest nitrogen concentrations. 

Table 19: Nitrogen submodel parameters, adjusted based on measured values 

Crop  

Maximum 

aboveground nitrogen 

concentration at 

maturity, kg N/kg DM 

Maximum 

aboveground nitrogen 

concentration of chaff 

and stubble, kg N/kg 

DM 

Genesee 

Winter wheat 0.015 0.0075 

Spring wheat 0.023 0.0090 

Chickpea 0.031 0.0100 

Winter pea 0.025 0.0150 

Cover crop 0.015 0.0075 

St. John 

Winter wheat 0.015 0.006 

Spring wheat 0.019 0.009 

Winter pea 0.027 0.020 

Cover crop 0.020 0.009 

 



46 

 

 

 

 

Table 20 summarizes calibrated crop nitrogen demand values, based on Genesee observations but 

assigned to both Genesee and St. John crop files.  

Table 20: Calibrated nitrogen parameters applied in CropSyst crop files 

Crop  

Critical nitrogen 

concentration of 

canopy at emergence 

kg N/kg DM 

Maximum nitrogen 

concentration of 

canopy at emergence, 

kg N/kg DM 

Winter wheat 0.045 0.055 

Spring wheat 0.030 0.055 

Chickpea 0.030 0.050 

Winter pea 0.042 0.065 

Cover crop 0.020 0.050 

 

Observed crop nitrogen values represent the summation of the nitrogen in residue and estimated 

nitrogen in grain. Simulated values correspond to aboveground nitrogen retained by the plant. Based 

on the R2 and RMSE between observed and simulated Genesee crop nitrogen, the model performance 

was acceptable (Figure 23).  

Figure 23: Genesee observed versus simulated crop nitrogen uptake; ASP=aspiration, INC=incremental, BAU=business-as-

usual, RMSE=root mean square error, σobs=standard deviation of the observations, RE=relative error, d=index of agreement 
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Considering R2 and RMSE on a rotational basis, all values exceed acceptable criterion established in 

the Statistical Assessment of Methodology, except INC’s R2 (Table 21). Table 21 also includes a 

normalized RMSE (RE) and d values, which match acceptable ranges presented in other CropSyst 

modeling studies, such as Benli et al. (2007) and Todorovic et al. (2009). 

Table 21: Mean difference (MD), R2, root mean square error (RMSE), relative error (RE), and index of agreement (d) 

between simulated and observed crop nitrogen and standard deviation (σ) of the crop nitrogen observations, separated by 

rotation; ASP=aspiration, INC=incremental, BAU=business-as-usual   

  

MD, kg-

N/ha 
R2 

RMSE, 

kg-N/ha 

σ, kg-

N/ha 
RE d 

BAU -3.49 0.70 25 47 0.20 0.91 

INC 3.01 0.39 42 56 0.30 0.71 

ASP 4.86 0.81 21 48 0.19 0.95 

 

Each observed average and confidence interval shown in Figure 24 includes five data points, one for 

each replicate of the strip trial. In addition, Appendix E contains R2, RMSE, and σ statistics on a 

yearly basis, with all statistics meeting acceptable criterion, except 2019 RMSE.  

  



 

 

 

 

 

4
8

 

 

Figure 24: Genesee replicate average crop nitrogen with 95% confidence intervals around observations; ASP=aspiration, INC=incremental, BAU=business-as-usual, CP=chickpea, 

SW=spring wheat, WW=winter wheat, WP=winter pea, CC=cover crop    
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Per Figure 25, all average simulated crop nitrogen values fell inside the 95% confidence intervals of 

the observed values. 

 

Figure 25: Genesee overall average crop nitrogen by crop type with 95% confidence intervals around observations 

Table 22 summarizes average observed and simulated crop nitrogen values, with winter wheat, spring 

wheat, and chickpea observations and simulations identical. Appendix E contains nitrogen in crop 

statistics by crop, including the R2, MD, and RMSE between simulated and observed datasets and the 

pairs of datapoints that contributed to the metrics. R2 varies between 0.20 and 0.97 (some values 

falling below the acceptable 0.5) and RMSE between 15 and 56 kg-N/ha, all less than the standard 

deviation of observations.   

Table 22: Average Genesee observed and simulated nitrogen in crop 

Crop nitrogen, kg-N/ha 

Crop Observed Simulated 

Winter wheat 163 167 

Spring wheat 123 123 

Chickpea 86 86 

Winter pea 140 122 

Cover crop 78 71 

 

CropSyst closely maintained biomass and yield achieved with the nitrogen model disabled (Figure 26 

and Figure 27). R2 and RMSE values displayed meet acceptable criterion. 
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Figure 26: Genesee simulated biomass with and without nitrogen submodel active; RMSE=root mean square error, σN-

disabled=standard deviation of the simulations with the nitrogen model disabled, RE=relative error, d=index of agreement 

 

Figure 27: Genesee simulated yield with and without nitrogen submodel active; RMSE=root mean square error, σN-

disabled=standard deviation of the simulations with the nitrogen model disabled, RE=relative error, d=index of agreement 

Figure 28 shows an example of crop and soil nitrogen outputs, with simulations and observations 

displaying similar trends but not values. Calibration efforts focused on simulating observed crop 

nitrogen. In many cases, observed nitrate higher in the soil profile (0-90 cm) did not follow the same 

trends as CropSyst simulations; however, observed and simulated values fell in a same range. 

Generally, CropSyst simulated greater nitrate deeper in the soil profile (90-150 cm) than measured. 

Several ammonium observations were also relatively high, driving elevated levels of total inorganic 
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nitrogen. For example, in Genesee replicate 5’s strip F (Figure 28, below), spring 2020 ammonium 

measured 214 kg/ha, and in fall 2021, ammonium measured 174 kg/ha, both in excess of measured 

nitrate. In fact, at four of eight sampling dates (2020 and 2021), measured ammonium exceeded 

measured nitrate. This was common among simulated strips. 

 

Figure 28: Example of soil and crop nitrogen outputs, replicate 5 Strip F in Genesee (spring wheat-winter pea-winter wheat). 

Replicated average (“rep’d avg”) values represent the average treatment value across all five replicates; simulated values 

represent replicate 5 Strip F only. 

St. John long-term simulations focus on production and water cycling, so an exhaustive nitrogen 

submodel development was not completed. However, St. John nitrogen simulations further validated 

selection of nitrogen parameters calibrated for Genesee (refer to Table 18 and Table 20). St. John 

simulated and observed data achieved an R2=0.61, but an RMSE value greater than σ (Figure 29). 
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Figure 29: St. John observed versus simulated crop nitrogen uptake; ASP=aspiration, INC=incremental, BAU=business-as-

usual, RMSE=root mean square error, σobs=standard deviation of the observations, RE=relative error, d=index of agreement 

Likewise, simulated crop nitrogen fell close to average measured values and well within the 95% 

confidence interval of observations; see Figure 30. 

 

Figure 30: St. John overall average crop nitrogen by crop type with 95% confidence interval 
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Discussion 

Yield/Biomass and Soil Moisture Calibration 

Overall, simulated crop growth during the growing season was well represented by CropSyst with 

only minor adjustments to phenological parameters. Degree days associated with emergence, 

flowering, filling, and maturity timing were adjusted before calibrating other parameters, as crop 

phenology drives many important growth processes, varies across crops and cultivars, and 

significantly impacts model simulations (Archontoulis et al., 2014). All NDVI and simulated crop 

LAI matched well, with R2 values exceeding 0.69. Some studies note uncertainty in developed LAI-

NDVI relationships, due to spatial variability, complex environments, and error in ground-based 

measurements (Chen and Cihlar, 1996). However, CropSyst’s simulation of LAI effectively 

eliminates any variability or measurement errors, and this work considered only the correlation 

between the two indices. In conjunction with the LAI-NDVI relationship, phenology timing also 

agreed with the growth stages captured by the 2021 game cameras. Although the cameras captured 

only a single year of photo observations, thermal time targets (growing degree days) and photoperiod 

algorithms are dynamic and should adapt to environmental conditions observed during other years 

(Archontoulis et al., 2014; Aslam et al., 2017). 

The calibrated canopy extinction radiation coefficient, k, fell within expected values. Values for k 

range from 0.40 (Genesee cover crop) to 0.8 (Genesee spring wheat). Zhang et al. (2014) reports k for 

general cropland whole growth season as 0.62 +/- 0.17 based on the results of 35 different studies. k 

can also vary dramatically depending on many factors, including location and time of year. For 

example, Zhang et al. (2014) summarized wheat k values between 0.4 (Argentina; gleaned from 

Carretero et al., 2010) and 0.93 (Australia; gleaned from O’Connell et al., 2004). After calibrating k, 

only minor adjustments were made to default RUE values. Calibrated RUE also fell within the 

expected ranges, as identified in studies such as those summarized in Sinclair and Muchow (1999) 

and Stöckle and Kemanian (2009).  

Although only calibrated for cover crops, all TUE values fall within the suggested range presented in 

the CropSyst documentation and data summarized in publications such as Kemanian et al. (2005) and 

Mannam (2011). TUE represents a relationship between a plant and a specific environment, and it 

will increase for a more water-stressed cropped, like a dryland spring wheat (Mannam, 2011). As 

shown in Table 11, cover crop TUE was adjusted downward from the default wheat values (original 

base file), which effectively reduced simulated biomass, closer to observed values.  

CropSyst appeared to simulate Genesee’s observed biomass and yield well (R2>0.5 and RMSE<σ on 

overall, rotational, and yearly bases); see Figure 3, Figure 4, Table 12, and Table 13. Although not 
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considered a criterion for model agreement, d values were also at or above the expected range, as 

presented in other similar studies such as Ahmed et al. (2016), Benli et al. (2007), and Todorovic et 

al., (2009). In general, CropSyst simulated Genesee’s winter wheat, chickpea, and cover crop more 

accurately, with greater error in winter pea and spring wheat predictions, especially when considering 

the replicated averages (Figure 11 and Figure 12). In some instances, CropSyst simulated an 

individual strip’s observed biomass and yield well, but that prediction did not reflect the replicated 

average well (or vice versa). For example, the 2021 BAU winter wheat biomass prediction was nearly 

2,000 kg/ha less than the observed value in the simulated replicate 5 strip, an approximately 25% 

error, but this simulated value was nearly identical to the replicated average 2021 BAU winter wheat 

value.  

CropSyst generally simulated the St. John cropping system with less accuracy than Genesee cropping 

system. This may have, in part, resulted from the range of data observations in St. John. For example, 

in 2019, the winter pea biomass ranged from approximately 4,000 to 14,000 kg/ha across the five 

replicates in the field, a dramatic 10,000 kg/ha spread with the largest value approximately 3.5 times 

larger than the smallest. Additionally, while visually unremarkable, lower producing crops, like cover 

crop, and lower producing years, such as 2021, exhibit higher percentage-based error. Regardless, 

biomass and yield predictions exceeded R2>0.5 and RMSE<σ on overall, rotational, and yearly basis  

(Figure 5, Figure 6, Table 12, and Table 13). Note that 2021 data was reserved for model validation 

and was not considered during calibration. Despite the abnormal weather encountered in 2021(warm 

and very dry), the model still met established statistical criteria during 2021. Again, d values, while 

not explicitly considered in model agreement assessment, fell in the expected range (Ahmed et al., 

2016; Benli et al., 2007; Todorovic et al., 2009). 

When considering the replicated averages, CropSyst appeared to underpredict 2018 and 2019 and 

overpredict 2020 and 2021 in Genesee (Figure 11 and Figure 12) and underpredict 2019 and 2021 and 

overpredict 2018 and 2020 in St. John (Figure 13 and Figure 14). This suggesting that the model may 

not have responded well to specific environmental conditions at the two locations. Likely, both 

temporal and spatial variability contributed to outcomes. Nonetheless, this dataset included a diversity 

of conditions, thoroughly testing the model’s capability. For example, in addition to the unusual 

weather experienced in 2021, 2020 weather was also an anomaly. Despite its drought conditions, 

well-timed precipitation led to exceptional crop yields. It was challenging to develop crop files 

representative of all years that will predict all individual outcomes well. Nevertheless, considering the 

crop average biomass and yield outcomes, Figure 15 – Figure 18, it appears CropSyst still performed 
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very well. These figures highlight the universality of the calibrated crop files, with a single file 

reflecting all years and rotations. 

Simulated soil moisture by CropSyst exhibited similar/greater accuracy than the precision available in 

the observed soil moisture data. Statistical comparisons of simulated and observed data yielded 

R2>0.62 and RMSE<0.051 in Genesee and R2>0.60 and RMSE<0.096 in St. John versus R2=0.55 and 

RMSE=0.056 between observed datasets in Genesee and R2=0.08 and RMSE=0.127 in St. John; see 

Table 16 and Table 17. Typically, both observed datasets were higher than CropSyst simulated soil 

moisture, as indicated by positive MD values. CropSyst generally limits soil moisture to field 

capacity and simulates rapid drainage of gravitational water, whereas some field observations, 

particularly at greater depths in the profile, indicated soil moisture above field capacity. However, this 

likely did not influence crop outcomes markedly, as water held in the soil over field capacity is not 

considered plant available. CropSyst’s soil file was parameterized almost entirely from measured 

values, with no parameter estimation or calibration; see the Soil section of Model Development. In 

addition to well-calibrated crop files, this was likely crucial to successful soil moisture predictions, as 

hydraulic properties “directly control the movement of water and water balance partitioning” 

(Loosvelt et al., 2011). 

Overall, CropSyst adequately simulated yield, biomass, and soil moisture outcomes. However, as 

indicated by graphic and statistic results, particularly Figure 11 – Figure 14 and statistics included in 

Appendix E, CropSyst did not always accurately simulate individual strips or crops successfully. 

However, it is important to remember the LIT project provided an extensive and highly variable 

dataset with wide ranges of field and environmental observations. Considering this, CropSyst proved 

very powerful and robust. Additionally, many existing studies support the use of CropSyst for 

simulating crop production and water cycling, including several specific to the region’s dryland 

wheat-based systems (Chi et al., 2017; Karimi et al., 2018; Ward, 2015).  

Nitrogen Calibration 

There was little difference in observed soil organic matter content over the four-year period, which 

the model was able to replicate using observed soil water-extractable organic C:N ratios and the 

calibrated decay rate parameter. The soil C:N ratio in the organic matter submodel was set to the 

average values observed in the strip trials at both Genesee and St. John. Theoretically, soil 

microorganisms consume SOM at ratios of 24:1; C:N ratios lower than this ratio (Table 18) leave 

excess soil nitrogen for plant growth or for microbial decomposition of higher C:N matter (NRCS 

East National Technology Support Center, 2011). Generally, wheat crops exhibit higher C:N ratios, 

around 80:1, with legume (17:1) and common cover crop materials (11:1) much lower (NRCS East 
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National Technology Support Center, 2011). The remaining SOM parameter, the decay rate, was 

calibrated to match the relatively constant SOM concentration observed throughout the strips and 

five-year trial period at the Genesee site.  The calibrated decay rate value falls within the expected 

range for a single pool (Jastrow and Six, 2006). 

Several crop file nitrogen parameters were also adjusted or calibrated to known values. The measured 

maximum above ground nitrogen concentration at maturity (between 0.015 and 0.031 kg N/kg DM) 

and the maximum aboveground concentration of nitrogen in chaff and stubble (between 0.006 and 

0.020 kg N/kg DM) reflect measured percent nitrogen in harvest samples and percent protein in grain. 

Generally, pea crops contained greater nitrogen than did non-legume crops. Critical nitrogen 

concentration of canopy at emergence and maximum nitrogen concentration of canopy at emergence 

were calibrated against the observed crop nitrogen values measured at the Genesee site. Reducing the 

critical nitrogen value also reduced nitrogen stress simulated by CropSyst. Maximum nitrogen 

concentration at emergence more strongly influenced crop nitrogen values, with a reduction in the 

concentration parameter effectively reducing the simulated crop nitrogen. CropSyst documentation 

notes that typical maximum nitrogen concentration of grasses is 0.02 to 0.04, with non-leguminous 

dicotyledons approximately 10% higher and legumes about 30% higher than grasses (Stöckle, n.d.). 

The calibrated critical concentration values fall closer to these guidelines, with the maximum 

concentrations exceeding them (Table 20).  However, it appears little published data is available to 

either support or oppose parameter selection. 

Simulated and observed Genesee crop nitrogen were in close agreement following calibration with R2 

values generally exceeding 0.5 and RMSE values lower than σ, the acceptable criteria (Figure 23 and 

Table 21). High d values also suggested good agreement between observations and simulations. Due 

to variability across replications, some nitrogen in crop values deviated from the average replicated 

value and/or 95% confidence interval, as show in Figure 24. Many factors influence crop nitrogen 

storage, including crop growth and physiology, climate, management practices like fertilization and 

tillage, and soil conditions (Balasubramanian et al., 2004), contributing to temporal variability in crop 

nitrogen. CropSyst generally overpredicted Genesee crop nitrogen in 2018 and 2021 and 

underpredicted 2019 and 2020 (also see Appendix E). Interestingly, this is not consistent with the 

direction of biomass and yield error, suggesting that different sources of error affected production and 

nitrogen outcomes. However, when considering results on a per crop basis (Figure 25), CropSyst 

performed very well, with all simulated values falling within their respective 95% confidence 

interval.  
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During the nitrogen submodel development, the accuracy in simulated crop yield and biomass were 

maintained largely to the same extent as with the simulations with the nitrogen model disabled, as it 

was assumed no nitrogen stress occurred; see Figure 26 and Figure 27. As mentioned in the 

Methodology section, the change in computational timestep may have caused the very minor 

differences observed in yield and biomass outcomes between model simulations with nitrogen 

enabled versus disabled. Although St. John long-term model simulations focus on production and 

water cycling outcomes, St. John nitrogen simulations were run to further validate nitrogen submodel 

calibration. CropSyst simulated St. John crop nitrogen well (Figure 29 and Figure 30), suggesting 

parameters calibrated at Genesee may be appropriate for both sites, although the RMSE between 

observations and predictions were greater than the specified acceptable criterion (σ) at St. John. 

Regardless, long-term simulations of St. John nitrogen outcomes can provide insight to general 

nitrogen trends and responses to alternative cropping rotations. 

CropSyst simulates soil nitrogen cycling and transport, but the calibration available to the user is 

primarily through the soil C:N ratio and decay parameters in the organic matter submodel or to the 

crop nitrogen parameters discussed above. The nitrogen calibration of CropSyst focused primarily on 

minimizing the error between predicted and observed crop nitrogen to better understand and compare 

rotational nitrogen needs. While changes to calibrated nitrogen parameters successfully drove 

responses in crop nitrogen, soil nitrogen proved less responsive and more challenging to manipulate. 

As highlighted in the example shown in Figure 28, CropSyst did not simulate soil nitrogen well. In 

many cases, a smaller range of soil nitrogen was simulated than measured in the field; field 

observations generally indicated greater consumption of inorganic soil nitrogen during the growing 

season. However, because the model still simulates adequate nitrogen removal by the crop, it is 

possible that competing soil nitrogen processes offset each other in the model. For example, perhaps 

CropSyst simulated fewer nitrogen losses (such as through leaching, runoff, or during application) 

and less mineralization than actually occurred during the strip trial, reducing the range of modeled 

soil nitrogen. Although CropSyst outputs values for each component of the nitrogen cycle, observed 

data necessary to assess the accuracy of all elements was not collected during the strip trial.  

Considering the two inorganic nitrogen components, nitrate and ammonium, independently also 

provides insight. Accumulation of simulated nitrate deep in the soil profile suggests simulated 

nitrogen distribution and movement through the soil profile did not reflect observations. It is unlikely 

the crops withdrew significantly more nitrate deep in the soil profile during the strip trial than was 

simulated; CropSyst predicted soil moisture well, and both simulated and measured values indicate 
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little water withdrawal at deeper soil layers. However, belowground biomass nitrogen demand or 

leaching, neither of which were well assessed, could account for at least some of this discrepancy.  

High ammonium levels call into question fertilization rates and nitrogen transformations processes. 

Elevated ammonium can serve as an indicator of mineralization, the decomposition of organic matter 

to ammonium. Fertilization was based on fall nitrogen levels, so appreciable over-winter 

mineralization would result in excess inorganic soil nitrogen. This would account for relatively high 

overall inorganic nitrogen levels. Additionally, most fertilizer was introduced as ammonium (see the 

Management section of Methodology), although nitrification, the conversion of ammonium to nitrate, 

typically occurs rapidly (within approximately a week at warmer temperatures) (Faber, 2016). 

Specific microbes carry out nitrification, and factors such as temperature, moisture, aeration, and salt 

content affect nitrogen conversion processes in the soil (Sawyer, 2010). Although unusual, high 

observed ammonium levels could suggest limited nitrification in the strip trials. It is also, of course, 

possible that inaccuracies in measured values accounted for ‘error’ between the observations and 

simulations, or that certain soil samples hit pockets of elevated nitrogen concentrations in the soil, 

misrepresenting overall levels in the respective strip.   

It is also worth noting that these simulations utilized a single organic matter pool, with a single soil 

C:N value and single decay rate, as only single pool C:N values were measured. Soil C:N values 

corresponded to water extractable organic carbon and nitrogen. Utilizing total organic carbon and 

total organic nitrogen or another measure of carbon and nitrogen could change or improve outcomes, 

although the organic matter decay rate was much more sensitive than the C:N ratio in simulating 

organic matter processes. CropSyst also offers the option to model multiple organic matter pools 

(microbial, labile, metastable, and passive), with C:N ratios and decay rates for each. Single pool 

models treat SOM as a homogenous reservoir, which can be misleading, as turnover of SOM 

components varies continuously depending on its composition (Jastrow and Six, 2006). Multiple pool 

models tend to be more representative of true SOM dynamics. Unfortunately, sufficient field data to 

populate this model was not available, leaving too many unknown variables to reasonably or 

accurately calibrate.  However, if CropSyst was utilized as a decision support tool, in most 

applications, this single pool carbon cycling model would be selected, as it is difficult to measure 

these pools. 

Assessments of CropSyst’s soil nitrogen balance in published literature are limited and generally 

focus on nitrogen fertilization’s influence on biomass and yield outcomes. Both Confalonieri et al., 

(2006b) and Bellocchi et al., (2002) noted that CropSyst simulation of soil nitrogen seemed 

acceptable, especially given the wide variability in soil nitrogen and the many factors influence it, but 
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that further investigation and testing was needed. More locally, Ward (2015) assessed multiple 

nitrogen outcomes of the three-dimensional version of CropSyst, CropSyst-Microbasin, in the 

Palouse region. Ward noted several limitations in modeling nitrate transport and nitrogen uptake, 

including stripping and accumulation of nitrate in a manner not supported by field observations and 

inaccurate response to excess nitrogen scenarios. 

The poor simulation of soil nitrogen is a main deficiency of these modeling efforts. It is unclear 

whether overfertilization, poorly parameterized variables, inexact model processes, inaccurate 

measured values, or a combination thereof contributed to the poor simulations. Nevertheless, without 

successful simulation of critical soil processes, nitrogen cycling cannot be completely assessed during 

Objective 2. Future work associated with this project could focus on better understanding and 

developing the soil nitrogen submodels, while maintaining accurate predictions of crop nitrogen. 

Parameterization of the multiple pool organic matter model may be an appropriate first step in 

improving this aspect of the model. However, based on previous CropSyst research, additional 

investigation and possibly development of the model’s nitrogen processes may also be necessary. 

Limitations 

There are several limitations inherent to the CropSyst model and/or the LIT field trials. A select few 

are discussed here. Firstly, model development can only consider the conditions of the field study. 

During the LIT field trial period, for example, precipitation generally fell below average levels, so 

modeling efforts could not explore or assess outcomes achieved during wet years. 

CropSyst does not model weeds or insects or changes to soil properties, significant considerations 

when selecting a crop rotation. For example, winter peas, “provide a means to control grass weeds 

and soil-borne wheat diseases on fields that have been in monoculture” (Schillinger, 2020), and some 

cover crops increase soil water holding capacity over time (Jones et al., 2020). These qualities have 

significant economic and management implications to which CropSyst modeling can provide no 

insight. Erosion is another significant factor effecting crop/variety selection and management 

decisions, especially in regions with steep topography (Kirby et al., 2017). Although CropSyst can 

model erosion, the submodel was disabled during this work, as it was not a main focus of the LIT 

study, and little information was available to populate or assess the model. 

Model inputs also ignored error in field trial management or measurement. Soil moisture 

comparisons, (see Table 16 and Table 17) highlight error in measured results.  It is impossible to 

judge the accuracy of the simulated outcomes to a degree greater than those detected in the measured 

values. Another obvious example is fallow strip management. During fallow years, no crop file is 
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input to CropSyst, and the program does not simulate plant water or nitrogen demand; it assumes the 

land lies completely barren. Unfortunately, during the 2017-2018 and 2020-2021 growing seasons, 

weeds overgrew the fallow plots for significant fractions of the growing season, compromising the 

collected data. As depicted in Figure 31, weed growth outpaced crop growth in 2021 until mid-July 

when the fallow strips were sprayed. The strips were managed more carefully in 2018-2019 and in 

2019-2020.  A fallow strip not managed to industry standards will produce results that inherently 

disfavor the practice, as weeds effectively waste the soil resources that could be used to cultivate a 

marketable crop.   

 

 

 

 

 

   
Figure 31: Fallow strip (left) adjacent to a spring wheat strip (right) in St. John, June 2021 

Unfortunately, it is challenging to assess the weeds’ impact on resources in CropSyst, as weed growth 

in fallow plots was not quantified, CropSyst did not simulate soil inorganic nitrogen concentrations 

well, and observed soil moisture data in fallow strips was limited and incorporated error (refer to 

Table 17 and Appendix F). However, it appears CropSyst generally simulated lower moisture content 

deeper in the soil profile (60-150 cm) in fallow strips than was recorded by the sensors or measured 

manually. This is consistent with results observed in other St. John strips. Conversely, observed data 

indicated greater fall dry down occurred in upper layers of the soil profile (0-60 cm) than was 

simulated by CropSyst, possibly suggesting weed transpiration utilized some water higher in the soil 

profile.  

Finally, while CropSyst simulated the strip trials well, there can be challenges extending results to 

larger fields or regions. Yield and input gaps can exist between plot-scale and field-scale research, as 

a result of increased variability and greater management challenges encountered in larger areas 
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(Kravchenkoa et al., 2017). Additionally, conventional crops and management are more resilient to 

field-scale challenges than are alternative practices or crops (such as the cover crops studied here), 

which can be more susceptible to biotic stresses or spatial and temporal variability. This leads to 

uneven outcomes across a landscape and requires more careful and timely management (Kravchenkoa 

et al., 2017). Additionally, certain parameters, such as soil properties, are heterogeneous across larger 

landscapes and, hence, are often 'up-scaled’ for larger-scale simulations (such as by percentage 

weighting soil properties across a field). However, a recent crop modelling study found that results 

were more sensitive to weather scenarios than spatially variable parameters (Fry et al., 2017). Still, 

these are important considerations when utilizing CropSyst to assess field outcomes or as a decision 

support tool. 

Conclusion 

There is a need for accurate cropping models that can assess the impacts of management choices 

across broad regions. Two site-specific CropSyst models were developed to reflect the LIT project’s 

IPNW strip trial locations: the annual cropping site in Genesee, ID and the annual crop-fallow 

transition site in St. John, WA. The LIT project provided extensive laboratory and field datasets. 

Weather, soil, and management files were completely parameterized using measured data or known 

values. Certain static crop file parameters and organic matter submodel parameters were updated or 

calibrated to reflect the observed datasets and improve the model’s ability to predict yield/biomass, 

soil moisture, and nitrogen in crop values.  

Especially given the replication and range of observed data, the model displayed adequate predictive 

power of yield, biomass, soil moisture, and nitrogen in crop across the four-year crop rotations and 

under a variety of conditions. Several calibrated parameters, including many of the calibrated nitrogen 

parameters, were common to both locations, suggesting the model may be robust and reliable at 

locations within this region without calibration data.  Conclusions are consistent with existing 

CropSyst research. The developed model will be used under research Objective 2. However, the long-

term simulations will not directly consider the soil inorganic nitrogen concentration outcomes. Future 

research efforts should focus on further developing this aspect of the nitrogen model.  
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Chapter 3: Long-term Model Simulations 

Introduction 

Crop models contribute to agricultural advancement by helping us “explore the dynamics between the 

atmosphere, the crop, and the soil” and assisting in decisions, such as those associated with resource 

management (Asseng et al., 2014). Robust, validated, process-based models provide a powerful tool 

for assessing short- and long-term impacts of management, disturbance, and climate. While not 

intended to be predictive, the CropSyst model provides great insight to crop-environment 

relationships and the underlying mechanisms that influence outcomes.  

In this chapter, the calibrated CropSyst model is utilized to evaluate intensified and diversified 

rotations under recent climate conditions at each IPNW location: Genesee, the annual cropping site in 

the high precipitation zone, and St. John, the annual crop-fallow transition site in the intermediate 

precipitation zone.  Crop rotations mirror those of the field experiments, as outlined in the CropSyst 

Model Development Methodology section. Three long-term rotational simulations were run for each 

site, one each to reflect business-as-usual (BAU; winter wheat-spring wheat-chickpea in Genesee and 

winter wheat-spring wheat-fallow in St. John), incremental (INC; winter wheat-spring wheat-winter 

pea), and aspirational (ASP; winter wheat-winter cover crop-chick pea in Genesee and winter wheat-

spring wheat-spring cover crop in St. John).  

Employing a longer, 30-year period for this baseline captures the effects of extreme or variable 

weather years.  Unlike observed data or short-term model runs, these simulations include multiple 

rotation iterations (a single rotation repeated continually over simulation period).  This provides 

insight to cumulative effects and also allows one to more easily attribute and explain outcomes.  

Although a farmer may elect to change crop rotations over time, combining multiple crop rotations in 

a single model simulation would render it impossible to identify the effects of specific rotations.   

Long-term simulated yield/biomass, water use, and nitrogen use are analyzed and compared across 

different rotations. The analysis of the annual crop-fallow transition site at St. John focuses more on 

water cycling and availability following summer fallow replacement, as it drives crop production and 

crop choice in lower precipitation annual crop-fallow transition areas (Kirby et al., 2017), while the 

analysis of the annual cropping Genesee location will more carefully consider crop nitrogen use. 

Additionally, the stability of the crop rotation is assessed, focusing on crop performance over time 

and vulnerability to extreme weather conditions.  Specifically, Objective 2 aims to address key 

management challenges at these locations and explore the impacts of: 
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1. Diverse/intense rotations on production outcomes and nitrogen requirements    

2. Fallow replacement on winter wheat crop yields (St. John) 

3. Cover crop termination approach (unharvested, baled, grazed)  

4. Cover crop termination date on subsequent winter wheat crop years (St. John) 

Methodology  

The long-term historic simulations utilized the calibrated crop and soil parameter files developed 

under Objective 1. All three rotations (BAU, INC, ASP) began with a winter wheat crop, planted in 

1980. This approach allows a direct comparison of the impacts of crop management strategies across 

a 30-year time period on specific crop performance in each climate zone. New weather and 

management files were developed to represent conditions from 1980-2010.  

Weather 

High resolution (approximately 4-kilometer) historical daily weather data for 1980-2010 were 

retrieved from gridMET (Abatzoglou, 2011). Weather metrics included precipitation, temperature, 

relative humidity, wind, and solar radiation. In comparison to the historic precipitation (Table 23), 

during the 2018-2021 growing seasons, both sites experienced a lower average precipitation (see 

Table 1).  

Table 23: 1980-2010 average precipitation at Genesee, ID and St. John, WA by water year (October 1 – September 30) and 

calendar year (January 1 – December 31) 

Location  

Water year Calendar year 

mm in mm in 

Genesee, ID 564 22.2 568 22.4 

St. John, WA 445 17.5 448 17.6 

 

Wide variations in annual precipitation were observed over the 30-year period (Figure 32). 

Precipitation at the two sites followed similar trends, with Genesee receiving greater precipitation 

each year. 
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Figure 32: 1980-2010 annual calendar year precipitation 

Interestingly, St. John typically experienced lower average temperatures than Genesee; see Figure 33. 

St. John experienced greater fluctuations in daily temperatures, with higher maximum temperatures 

and lower minimum temperatures. Large error bars indicate wide variations in observations. 

 

Figure 33: 1980-2010 average monthly temperature with error bars representing one standard deviation of observations 

  

12

16

20

24

28

32

300

400

500

600

700

800

900

1975 1980 1985 1990 1995 2000 2005 2010 2015

P
re

ci
p

it
at

io
n
 (

in
)

P
re

ci
p

it
at

io
n
 (

m
m

)

Genesee St. John

-10

-5

0

5

10

15

20

25

30

A
v
er

ag
e 

m
o

n
th

ly
 t

em
p

er
at

u
re

 (
°C

)ׄ

Genesee

St. John



65 

 

 

Management 

It was assumed the planting dates selected during the field trial (2018-2021) reflected normal 

practices. Average winter crop plant dates (day of year) for the long-term historic simulations match 

those established during the strip trial. The historic spring plant dates correspond to the first day the 

15-day average temperature consistently exceeded the average temperature experienced during the 

strip trial spring plant dates.  While farmers also consider precipitation when planting, simulated plant 

dates were not based on rainfall, as CropSyst does not model the ill effects of planting in wet ground 

(for example, possible seed rot, planting equipment malfunction, or rutting). Table 24 summarizes 

planting information. See Table 31 and  

Table 32 in Appendix D for all 2018-2021 strip trial planting dates.   

Table 24: Historic plant dates 

 Winter Crops Spring Crops 

Site 
1980-2010 simulated 

spring planting date 

Minimum spring 

planting temperature 

(°C) 

1980-2010 average 

simulated spring 

planting date 

Genesee October 5th  9.35 May 2nd 

St. John September 28th  6.25 April 5th 

 

While farmers let crops “dry down” after reaching maturity to reduce grain moisture content and 

promote successful grain storage (Mrema, 2011), immediately simulating harvest following maturity 

versus modeling a dry-down waiting period results in very minor differences in CropSyst outputs. 

Consequently, for consistency, harvest was specified as the day after crops reach phonologic maturity 

for all crops except cover crops.  

During the strip trial, cover crops were harvested with a swather prior to reaching maturity, typically 

in early July. For most long-term simulations, cover crops were terminated on the average harvest 

date, but all biomass remained in the field (no harvest) to investigate the long-term effects of a true 

“cover crop”. Additional simulations investigated the effects of removing cover crops (i.e., a forage 

crop) and varied termination date to help identify trade-offs between production and input 

requirements. 

CropSyst offers an option to automatically supply nitrogen at “deficient requirements, applied directly 

to plant tissues” to optimize growth. This allows users to model nitrogen cycling and cropping 

outcomes over long periods, without manually determining and simulating nitrogen fertilizer 
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applications. During long-term simulations, this option was selected for all crops, including pea and 

cover crops that were not fertilized during the strip trials. The functionality allows users to easily 

determine rotational fertilization differences and resultant impact on performance. Additionally, it 

prevents yield or biomass reduction resultant of nitrogen deficiency from occurring. Note that several 

nitrogen parameters were developed specifically for the Genesee site, although their selection was 

validated with St. John nitrogen results.   

Statistical Assessment  

In addition to average outcomes, the stability of the crops and rotations was assessed.  The coefficient 

of variation, equation (8), helps identify fluctuations in metrics like yield over the simulation periods.  

It describes the distribution of a dataset (Abdi, 2010).  In a dataset of “n” values, cv will vary between 

0 and the square root of (n-1).  A higher coefficient of variation implies high variability in the dataset. 

𝑐𝑉 =
𝜎

µ
     (8) 

Where µ is the mean, and  is the standard deviation. 

Results 

Simulated results obtained during the first complete rotation (1980-1983) were removed to prevent 

the effects of initialization values. Unless noted, graphical results include water year precipitation, as 

it better captures growing seasons.  

Genesee 

Limited crop variability exists across rotations, as summarized in Table 25. Generally, winter crops 

outperformed spring crops. 
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Table 25: Genesee long-term simulation biomass and yield outcomes by crop for simulations spanning from 1984-2010; 

WW=winter wheat, SW=spring wheat, CP=chickpea, CC=cover crop, WP=winter pea, ASP=aspiration, INC=incremental, 

BAU=business-as-usual   

  

Average biomass, 

kg/ha 

Average yield, 

kg/ha 
Biomass cv Yield cv 

WW 

ASP 15,600  6,668  0.19  0.25  

INC 15,644  6,654  0.18  0.23  

BAU 15,601 6,667 0.19  0.25  

SW 
INC 6,922 2,497 0.21  0.25  

BAU 6,925 2,500 0.21  0.25  

CP 
ASP 4,252  1,966  0.27  0.25  

BAU 4,254 1,967 0.27  0.25  

CC ASP 5,637  - 0.13  - 

WP INC 7,181 3,042 0.27  0.30  

 

INC produced the greatest biomass and yield and lowest variability on a rotational basis (Table 26). 

While ASP produced comparable biomass to BAU, it generated markedly less yield, resultant of an 

unharvested cover crop. 

Table 26: Genesee long-term simulation rotational biomass and yield outcomes; ASP=aspiration, INC=incremental, 

BAU=business-as-usual 

 

Total biomass, 

kg/ha 

Total yield, 

kg/ha 
Biomass cv Yield cv 

ASP 25,490 8,634 0.12 0.21 

INC 29,747 12,193 0.10 0.14 

BAU 26,780 11,134 0.14 0.18 

 

As displayed in Figure 34, INC biomass outperformed ASP and BAU during each rotation period.  In 

most cases, BAU generated greater biomass than ASP. 
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Figure 34: Genesee simulated total rotational crop biomass for each three-year aspirational (ASP), business-as-usual (BAU), 

and incremental (INC) crop rotation; ASP rotational biomass includes all cover crop biomass (does not account for any 

removal)  

INC produced the greatest yields during most rotation periods but was nearly matched by BAU 

during select years (Figure 35). Results are included for a harvested cover crop “ASP, harvested CC”, 

which dramatically increases ASP’s yield outcomes. This assumes 80% of total aboveground biomass 

is baled and removed from the field for livestock feed, similar to the strip trials. 

 

Figure 35:Genesee simulated total rotational crop yield for each three-year aspirational (ASP), business-as-usual (BAU), and 

incremental (INC) crop rotation; “ASP with harvested CC” assumes 80% of biomass produced contributes to yield 

Figure 36 shows total rotational nitrogen fertilization, with BAU demanding the greatest nitrogen 

followed by INC. The crop file developed for the strip trial’s cover crop did not specify nitrogen 
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fixation. However, as this could be a desirable cover crop trait, the figure includes the ASP rotation 

with a nitrogen-fixing cover crop (“ASP with CC fixation”), which requires the least nitrogen of any 

rotation. The figure also includes results for a baled non-fixing cover crop (“ASP with harvested 

CC”), which increases nitrogen demands over the base ASP scenario. 

 

Figure 36: Genesee total rotational automatic nitrogen applications; ASP=aspiration, INC=incremental, BAU=business-as-

usual. “ASP with CC fixation” includes a nitrogen-fixing cover crop, and “ASP with harvest CC” assumes a non-fixing 

cover crop, with 80% of its biomass baled.  

Rotational mineralization results, presented in Figure 37, suggest the greatest mineralization occurs in 

INC, followed by the ASP rotations. In all rotations, mineralization increased throughout time. The 

figure includes the fixing and harvested cover crops. 
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Figure 37: Genesee total rotational mineralization; ASP=aspiration, INC=incremental, BAU=business-as-usual. “ASP with 

CC fixation” includes a nitrogen-fixing cover crop, and “ASP with harvest CC” assumes a non-fixing cover crop, with 80% 

of its biomass baled. 

Figure 38 shows the greatest rotational water loss (estimated as precipitation received minus 

evapotranspiration) in BAU. CropSyst simulated an average yearly water loss of 268 mm in BAU, 

197 mm in ASP, and 199 in INC. 

  

Figure 38: Genesee total rotational water loss, computed as precipitation minus evapotranspiration; ASP=aspiration, 

INC=incremental, BAU=business-as-usual 
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St. John 

Unlike Genesee, winter wheat and spring wheat outcomes, common to all rotations, differed at St. 

John (Table 27). Generally, the winter crops exhibited higher cv values. 

Table 27: St. John long-term simulation biomass and yield outcomes by crop; WW=winter wheat, SW=spring wheat, 

CC=cover crop, WP=winter pea, ASP=aspiration, INC=incremental, BAU=business-as-usual   

  

Biomass, 

kg/ha 

Yield, 

kg/ha 

Biomass 

cv 
Yield cv 

WW 

ASP 12,169  4,734  0.27  0.28  

INC 12,889  5,001  0.24  0.25  

BAU 14,069 5,384 0.17  0.22  

SW 

ASP 7,429 2,362  0.18  0.21  

INC 7,506 2,395 0.19  0.22  

BAU 7,337 2,334 0.17  0.20  

CC ASP 4,621  - 0.19  - 

WP INC 6,512 1,839 0.16  0.31  

 

As shown in Table 28, INC produced the greatest yield and biomass and lowest variability on a 

rotational basis. 

Table 28: St. John long-term simulation rotational biomass and yield outcomes; ASP=aspiration, INC=incremental, 

BAU=business-as-usual 

  

Biomass, 

kg/ha 

Yield, 

kg/ha 

Biomass 

cv 
Yield cv 

ASP 24,218 7,096 0.15 0.21 

INC 26,907 9,236 0.13 0.16 

BAU 21,405 7,717 0.14 0.19 
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Figure 39 shows total rotational biomass by rotation, with INC displaying the greatest biomass during 

each rotation period. In most instances, ASP outperformed BAU.

 

Figure 39: St. John simulated total rotational crop biomass for each three-year aspirational (ASP), business-as-usual (BAU), 

and incremental (INC) crop rotation; ASP rotational biomass includes all cover crop biomass (does not account for any 

removal)  

A harvested cover crop (assumed 80% of biomass removed from the field) increases ASP rotational 

yield outcomes over that of INC, second highest, and BAU, typically third highest (Figure 40). In 

contrast, ASP generates the lowest yield if the cover crop is left unharvested. 

 

Figure 40: St. John simulated total rotational crop yield for each three-year aspirational (ASP), business-as-usual (BAU), 

and incremental (INC) crop rotation; “ASP with harvest CC” assumes a non-fixing cover crop, with 80% of its biomass 

baled. 
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Figure 41 shows winter wheat yields, which directly follow fallow (in BAU), cover crop (in ASP), 

and winter pea (in INC). Generally, BAU winter wheat yielded highest, most pronounced during dry 

periods. 

 

Figure 41: St. John simulated winter wheat yield by rotation; columns represent rotations with ASP=aspiration, 

INC=incremental, BAU=business-as-usual, and precipitation shown with the yellow line 

Schillinger et al., 2008 defines available water as the net increase in soil water from harvest of the 

previous crop or beginning of the previous fallow period to March 31st plus rainfall received between 

April 1st and June 30th. The equation displayed on the graph describes the relationship developed by 

Schillinger et al. (2008) and corresponds to a study conducted in 1993-2005. It suggests each 

additional centimeter of water increases wheat yield by 154 kg/ha, equivalent to approximately 2.3 

bushels per acre per one centimeter of water. In comparison, the CropSyst simulated data yielded a 

relationship of 186 kg/ha per one centimeter water (2.8 bushels per acre per one centimeter of water) 

(see Figure 42; R2 = 0.96). 
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Figure 42: St. John simulated winter wheat available moisture (over winter gain, spring rainfall, and summer fallow water) 

versus yield; ASP=aspiration, INC=incremental, BAU=business-as-usual 

ASP and INC soil water increased over winter during winter wheat years, whereas BAU remained 

more static; see Figure 43. Fall (solid lines) was assumed October 1 and spring (dashed lines) April 

15. 

  

Figure 43: Fall (October 1) and spring (April 15) simulated stored soil moisture for winter wheat crops; ASP=aspiration, 

INC=incremental, BAU=business-as-usual 

Figure 44 shows water loss, assumed as the difference in precipitation and transpiration over the 

growing season/fallow period, another metric of water use efficiency. In St. John water storage in the 

soil profile is critical, as water availability governs management decisions and crop success (Kirby et 
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al., 2017), and loss through leaching or runoff pathways is less likely than in Genesee, which receives 

greater precipitation. On average, BAU lost 314 mm of water per year, INC lost 248 mm, and ASP 

lost 265 mm. Note that BAU water loss includes the fallow period (considered from the harvest of the 

previous spring wheat crop to the plant of the subsequent winter wheat crop) when no transpiration 

occurs.  

 

Figure 44: St. John total rotational water loss, computed as precipitation minus crop transpiration; ASP=aspiration, 

INC=incremental, BAU=business-as-usual 

Additional long-term simulations investigated the effects of varying cover crop termination dates. 

Generally, termination was simulated on the average strip trial termination date and approximately 

two weeks prior, four weeks prior, and two weeks after than the average strip trial date. As shown in 

Figure 45, early cover crop termination typically led to an increase in the subsequent wheat yield. 

Each year BAU winter wheat outperformed ASP winter wheat (following a cover crop with an 

average termination date) is represented. 
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Figure 45: Variable cover crop (CC) termination dates and fraction of business-as-usual (BAU) winter wheat yield achieved 

for years during which BAU winter wheat outperformed ASP winter wheat (following a cover crop with an average 

termination date) 

CropSyst applied nitrogen directly to tissues at ‘deficient requirements’, summarized in Figure 46. 

For reference, the graph also includes results of ASP simulations with a baled cover crop (“ASP with 

harvested CC”) and with a nitrogen-fixing cover crop (“ASP with CC fixation”). INC required the 

least fertilization, with the non-fixing ASP rotations requiring the most. 

 

Figure 46: Rotational total automatic nitrogen applications; ASP=aspiration, INC=incremental, BAU=business-as-usual. 

“ASP with CC fixation” includes a nitrogen-fixing cover crop, and “ASP with harvest CC” assumes a non-fixing cover crop, 

with 80% of its biomass baled. 
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Discussion 

Genesee 

Crop success in the high precipitation zone is generally not limited by water use of the previous crop, 

and the region supports annual crop cultivation (Kirby et al., 2017). Rotational biomass and yield 

generally followed annual precipitation trends. As shown in Table 25, differences in simulated total 

biomass and crop yield were minimal for winter wheat, spring wheat, and chickpea in each rotation. 

Consequently, variations in Genesee’s rotational biomass and yield result primarily from the type of 

crop in each rotation. However, field-based studies show that diversifying rotations can lead to 

benefits for staple crops/crops common across rotations, such as improved yield, reduced risk of 

failure, and protection against abnormal weather (Bowles et al., 2020; Gaudin et al., 2015). Simulated 

results may not have supported that conclusion for a variety of reasons; for instance, the model 

eliminates field variability; does not account for factors like weeds, disease, pests, or erosion, which 

can compromise production; and does not capture changes in soil properties.   

As displayed in Figure 34 and Figure 35, the INC rotation produced the greatest biomass in all 

instances, followed by BAU. However, BAU generated similar yield to INC. In part, the chickpea 

included in the BAU rotation exhibited a higher average harvest index (produced more grain per 

biomass) than the winter pea included in INC, and a greater range of winter pea biomass and yield 

outcomes were observed throughout time. These results are consistent with those of the strip trial. 

CropSyst simulated the lowest rotational biomass and yield in the ASP rotation, as it included the two 

lowest producing crops, chickpea and cover crop. However, during the 1990-1992 and 2002-2004 

rotations, both low precipitation periods, ASP produced greater biomass than did BAU, indicating the 

ASP rotation may be less vulnerable to drought conditions.  

If considering forage harvested from the cover crops as a yield outcome, ASP appears advantageous, 

in part due to a high yield to biomass ratio; CropSyst simulated 80% of aboveground cover crop 

biomass harvested versus an average harvest index of about 0.42 for the other market crops. 

However, it is important to distinguish true seed yield versus biomass harvested as yield, as is the 

case for the forage crops. Nonetheless, based on total crop production, a grower that also raises 

livestock, can lease land to a rancher, or has access to forage/hay markets could benefit from high 

yield outcomes associated with harvested cover crops. For example, in 2019, the larger, field-scale 

ASP tower field was planted to cover crop and grazed in June-July, with calves averaging 107 pounds 

of weight gain over 46 days, equivalent to 2.3 pounds per day. 

Surprisingly, harvesting cover crops (i.e., using as a forage crop) versus leaving all biomass in the 

field as residue did not affect biomass or yield outcomes of subsequent crops. This may have resulted 
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from the overall lower biomass production of the cover crops versus the market crops and the 

considerable residue contribution of the other crops in the rotation. Field research suggests that 

residue must be carefully managed, as some residue will improve soil and water conservation, but too 

much will cause unfavorable spring growing conditions (Tao et al., 2017), thereby affecting 

production outcomes. By comparison, in the CropSyst simulations, differences in harvested cover 

crop outcomes primarily emerged in nitrogen results.  

In addition to production, stability is a highly desired cropping system characteristic, as it implies a 

cropping system’s ability to maintain outcomes, even under stressful conditions (Gaudin et al., 2015). 

The biomass and yield outcomes, and consequently coefficient of variations (dispersion of data about 

the mean), of a specific crop did not vary markedly across rotations. However, when considering the 

overall rotation, INC exhibits greater biomass and yield stability, as indicated by lower cv values; see 

Table 26. ASP resulted in the greatest yield cv, which was strongly influenced by its low mean yield, 

as it only included two harvestable crops. Despite INC’s low rotational variability, winter pea exhibits 

the highest variation on an individual crop basis, likely due to limited and highly variable 

observations during the strip trials, which influenced the development of the model’s crop file.  

Generally, the value of increased production must offset cost of fertilization, so crop nitrogen 

demands must be carefully considered. Nitrogen demand followed similar trends to production, with a 

slight decrease over time, likely resultant of increased mineralization. The BAU rotation demanded 

the greatest nitrogen, followed by INC; see Figure 36. However, because the unharvested cover crop 

produced no yield, the INC rotation, followed by the BAU rotation, used applied nitrogen more 

efficiently, producing more grain per fertilizer addition. In general, CropSyst simulated less nitrogen 

fixation by chickpea than winter pea (chickpea fixation was approximately 58% of winter pea). 

Winter peas produce more grain nitrogen than spring peas and also exhibited “the ability to 

overcompensate” for high nitrogen removal through greater fixation (Neugschwandtner et al., 2021). 

ASP rotations replace the spring wheat in a BAU or INC rotation with a cover crop, which demands 

less nitrogen (average yearly automatic nitrogen application of 18 kg-N/ha for cover crop versus 51 

kg-N/ha for spring wheat). It is also worth noting that in many instances, legumes would represent a 

portion of a cover crop mix. Model development and, consequently, outputs only reflect strip trial 

observations, but selection of a different cover crop mix and changing management practices could 

potentially increase biomass production, nitrogen fixation, and mineralization (Jones et al, 2020).  

Simulating ASP with a nitrogen-fixing cover crop further reduced its rotational nitrogen requirements 

(Figure 36).  However, CropSyst utilizes a single crop file to represent a given cover crop, and while 
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CropSyst allows users to select “nitrogen fixation” for a crop, the submodel is not modifiable (i.e., 

users cannot specify partial crop fixation).  

Cover crop simulations modeled unharvested and baled forage, but producers could elect to graze 

cover crops directly. This would likely yield nitrogen outcomes between those of unharvested and 

baled cover crops, as greater biomatter would remain in the field in the form of livestock manure. In 

addition to providing fertilizer, grazed cover crops are also reported cause soil surface disturbance 

and stimulate root growth and microbial activity (White, 2020) but can increase bulk density, 

decrease soil organic carbon, and reduce water retention compared to ungrazed cover crops (Tobin et 

al., 2020). These tradeoffs must be carefully balanced. 

As discussed previously, simulated soil nitrogen does not represent strip trial observations well, so 

complete nitrogen cycling outcomes cannot be assessed. However, CropSyst mineralization outputs 

still provide insight to general soil nitrogen trends and relationships. As shown in Figure 37, CropSyst 

simulated mineralization generally increasing throughout time for all three rotations. Simulations did 

not consider tillage, which increases organic matter decomposition through increased microbial 

activity and carbon oxidation (Al-Kaisi and Licht, 2005), and assumed all crop residues remained in 

the field, which builds organic matter (Tao et al., 2017). Greatest mineralization occurred in INC, 

followed by ASP. The winter pea and spring wheat in the INC rotation produced greater biomass than 

the chickpea and cover crop in the ASP rotation, respectively, so more residue was left in the field 

post-harvest. The harvested cover crop further reduced field residue, consequently decreasing 

mineralization and increasing nitrogen demands versus the unharvested cover crop.  

In addition to high production and improved nitrogen outcomes, winter crops offer environmental 

advantages over spring crops. Genesee’s BAU rotation includes two spring-seeded crops, spring 

wheat and chickpea, and a single fall-seeded crop, winter wheat. By comparison, both ASP and INC 

include two fall-seeded crops. Generally, fall crops better manage and utilize winter precipitation 

(Kirby et al., 2017), and in the IPNW most precipitation falls during winter months (Brooks et al., 

2012).  Consistent with this, CropSyst simulated approximately 70 mm greater average yearly water 

loss (precipitation minus evapotranspiration) in BAU than the other rotations, with ASP and INC 

approximately equivalent; see Figure 38. In addition to utilization by crops directly, this highlights 

winter crops’ ability to protect surfaces from evaporative losses by increasing ground cover. Lost 

water also includes surface runoff and leached water and can carry nitrogen and other valuable 

nutrients. Additionally, while not simulated, lack of winter surface cover encourages erosion, which 

can further pollute waterways and reduce farm ground’s production capacity (Schillinger et al., 2010). 
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Growers aiming to better control water and other resource loss may consider fall-seeded crops for this 

reason.   

St. John 

Winter wheat and spring wheat crops were common to all St. John rotations. In contrast to Genesee, 

differences emerged between winter wheat and spring wheat crops planted in different rotations at St. 

John (Table 27). However, winter wheat crops preceded all spring wheat crops, effectively 

diminishing the effects of the third year in the rotation (cover crop, winter pea, or fallow) on the 

spring wheat. As expected, minor differences in spring wheat biomass and yield outcomes suggest 

water stored during fallow (BAU) or the excess unused water by the cover crop (ASP) had been 

utilized by the winter wheat crops.  

INC rotations produced the greatest average three year total biomass and yield of the three ASP, INC, 

and BAU rotations considered; see Figure 39 and Figure 40. ASP rotations generally produced greater 

biomass than did BAU rotations, but the cover crop contributed no yield, so BAU yields were 

typically higher. During 1987-1990, a low precipitation period, rotational BAU biomass nearly 

matched ASP, and yield outcomes approached INC, suggesting that BAU’s fallow period reduces 

vulnerability to drought conditions. In contrast, greater precipitation was received during 1996-1998, 

and ASP and INC increased during this period, whereas BAU decreased slightly, indicating the 

intensified ASP and INC rotations could better capture and utilize precipitation. Generally, the water 

use efficiency of a fallowed system decreases with increasing precipitation, as the crop is not as 

reliant on the stored water for biomass production (Lauenroth et al., 2000). Like Genesee, a harvested 

cover crop (forage crop) increases ASP yields over those observed in any other rotation (if 

considering biomass harvested as yield equivalent to a grain yield produced by the other market 

crops), an advantage for growers with access to livestock or to forage markets.  

Water availability strongly influences crop choice in the intermediate precipitation, annual crop-

fallow transition zone, with winter wheat considered the most reliable, profitable, and stable (Kirby et 

al., 2017; Papendick, 1996; Schillinger et al., 2010). Still, winter wheat yields varied throughout time, 

especially during the first ten years of the simulation (1984-1993) (Figure 41). BAU winter wheat 

outperformed the other rotations 67% of the time (6 out of 9 instances) with only 4 of 9 instances 

resulting in 5% or greater differences in crop yield between BAU and ASP/INC. This was primarily 

observed during or following lower precipitation years. Winter wheat in the INC rotation exceeded 

that of the ASP rotation 78% of the time (7 out of 9 instances) and nearly matched yields in the BAU 

during the latter part of the simulation, although differences between INC and ASP were generally 

minor.  
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Interestingly, spring crops exhibited lower variability than did winter crops based on cv values 

contained in Table 27. By comparison, Schillinger (2020) and Kirby et al. (2017) note that spring- 

planted crops showed higher variability and limited viability when compared to winter crops in lower 

precipitation regions due to greater susceptibility to environmental stressors. The data with which the 

crop files were developed may not have exhibited typical variability, or it is possible that CropSyst is 

not entirely capturing the effects of water or heat stress, such as challenges associated with 

germinating spring crops in poor conditions. Of all crops, winter pea exhibited the lowest biomass 

variability and highest yield variability, likely a function of the wide range of harvest indices 

observed during the strip trial. BAU spring wheat and winter wheat crops had slightly lower 

coefficients of variability than those included in the other rotations, indicating less year-to-year 

variability. Despite the highly variable winter pea, on a rotational basis, INC exhibited the least 

variability, in part due to its high production. Compared to Genesee, St. John outcomes were slightly 

more variable, likely a result of greater environmental stress. 

Schillinger et al. (2008) identified a relationship between wheat grain yield and available soil 

moisture at dryland wheat sites throughout eastern Washington. In a 180-cm soil profile, each 

additional 1 cm of moisture resulted in a 149-154 kg/ha gain in wheat grain yield. This relationship 

helps farmers determine grain yield potential, which factors into production decisions and 

profitability outcomes (Schillinger et al., 2008). CropSyst outputs indicate wheat yields increased 186 

kg/ha per centimeter of available water. By comparison to these CropSyst simulations, Schillinger et 

al.’s assessment included spring wheat, utilized a deeper soil profile, and focused on lower 

precipitation regions, primarily those receiving 240-350 mm precipitation per year. Schillinger et al. 

(2008) also noted that water efficiency relationships can improve over time based on use of newer 

cultivars and improved agronomic practices and timing of field operations. Between rotations, BAU 

exhibited a higher use efficiency than the other rotations, approximately 209 kg/ha / cm water. 

However, it is important to note the tradeoff between BAU’s improved winter wheat outcomes and 

the greater overall production of the intensified ASP and INC rotations. 

Water cycling results indicated BAU protected winter wheat outcomes during unfavorably dry 

conditions, but ASP and INC better utilized available precipitation. For example, winter wheat 

preplant soil moisture differed; see Figure 43. CropSyst simulated an average of 0.19 m3/m3 soil 

moisture in ASP and INC on October 1st, with nearly 0.27 m3/m3 present in the BAU rotation. ASP 

and INC recovered more water over winter but to a lesser degree during low precipitation periods, 

emphasizing the advantage of fallow during drought conditions. BAU also experienced the greatest 

water loss during each rotational period, computed as precipitation minus transpiration (Figure 44).  
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Similar to Genesee, INC, with two winter crops, lost the least water per rotation, again highlighting 

the advantage of winter crops in preventing surface runoff, leaching, and erosion. Overall, St. John 

rotations experienced less water loss than Genesee, a function of reduced precipitation. 

Cover crops in ASP did provide some protection from water loss during the following winter wheat 

seasons. For example, during the winter wheat seasons following cover crops with average harvest 

dates in St. John, ASP experienced approximately 377 mm of soil water drainage over the simulation 

period (equivalent to 9.6% of precipitation received during winter wheat years) versus 1,182 mm of 

drainage in BAU (30% of precipitation). This can also be observed rotationally in Figure 44. Figure 

45 relates the impact of cover crop termination timing on subsequent yield outcomes. Winter wheat 

yield decreased with later cover crop harvests, although outcomes appeared to plateau mid-July. Early 

termination (up to four weeks prior to the average termination date) increased winter wheat yields 

between 6 and 36% over those observed for later terminated cover crops and, in four of six instances, 

eliminated any detrimental effects on winter wheat yields, indicated by a fraction of BAU yield 

greater than one.  

Especially in dry conditions, excessive moisture depletion by cover crops can delay planting of the 

subsequent crop, which can cause germination failure or promote challenging management conditions 

(Roberts, 2018), effects not captured by CropSyst. For reference, the NRCS’s cover crop termination 

guidelines suggest terminating spring cover crops 15 days prior to planting the next crop but as late as 

crop planting, depending on cover crop seeding date (USDA, 2019). The average CropSyst 

simulation cover crop harvest date, July 8th, was separated by 82 days from average winter wheat 

plant date, September 28th. It is also worth mentioning that, in both Whitman (St. John) and Latah 

(Genesee) counties, the USDA considers ground with cover crops planted during a fallow year that 

are hayed, grazed, harvested, or otherwise terminated after June 1 insurable as “continuous cropping 

practice” acreage (i.e., not fallowed). Terminating cover crops earlier reduces their biomass 

production and positive soil effects (Jones et al., 2020), so it is important to weigh timing against 

potential improved winter wheat outcomes. While average cover crop termination date generated 

4,621 kg/ha biomass on average and used 145 cm of water for transpiration, the earliest simulated 

termination date produced only 2,817 kg/ha on average with 86 cm of water directed to transpiration.  

If it is assumed a cow consumes 15 kg/day for 50 days, the 4,621 kg/ha produced under the average 

termination date would support approximately 6.4 cows/ha, whereas the 2,817 kg/ha from the earliest 

termination would support 3.8 cows/ha. Note that cattle feed intake varies dramatically based on feed 

quality and animal age, size, stage of production, and other factors (Rasby, 2013). 
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As expected, the INC rotation required the lowest nitrogen fertilization, as it was the only rotation 

that included a nitrogen-fixing crop (winter pea) (Figure 46). BAU required the second highest 

amount of nitrogen fertilizer, as it included only two crops over three years. ASP, with three non-

fixing crops, required the greatest nitrogen. However, simulating a nitrogen-fixing cover crop can 

reduce overall rotational requirements markedly. Utilizing a cover crop for forage increased nitrogen 

requirements, as less organic matter remained in the field postharvest.  

Additional Considerations 

 Although CropSyst is a powerful and valuable tool, crop and management decisions must consider 

other measured effects and adoption factors not quantified by the model, such as those addressed in 

the Limitations section of the CropSyst Model Development chapter. Crop choices are very individual 

and situational and will vary based on a farm’s existing practices, available resources, and specific 

environmental or economic needs (Reganold, 1990). Economic constraints serve as one of the biggest 

adoption barriers for new crops and practices. Crop selection often dictates farm revenue and 

ecosystem services, and crop diversity serves as a key strategy to mitigate risk and income 

uncertainties (Lee et al., 2016; Reganold et al., 1990). Besides economics, marketing efforts, 

equipment requirements, nutrient information, and federal farm programs are among the top factors 

identified for conversion or adoption of practices (Drost et al., 1996). Accordingly, crop choice and 

rotation selection require an interdisciplinary assessment of opportunities and limitations.  

The 1980-2010 weather data included a wide range of environmental conditions and captured some 

climatic shifts; for instance, 1998, 2002, 2003, 2005, 2006, 2007, and 2010 were the warmest years 

on record globally (Hansen, 2011). However, future climate scenarios will likely alter historic and 

existing crop-environment dynamics. On average, climate models predict up to a 1°F increase in 

temperature and 2% increase in precipitation per decade over the next century primarily in winter 

months (Mote, et al., 2010). Many speculate that future climate will improve crop performance and 

provide opportunities to diversify via incorporation of new crops, particularly winter crops (Jareki et 

al., 2018; Karimi et al, 2018; Stöckle et al., 2018). Further CropSyst modeling efforts could focus on 

the effects of future climate scenarios on BAU, ASP, and INC rotational outcomes. Long-term 

simulations may provide insight as to how best to apply rotations and optimize practices in the years 

ahead. 

Conclusion 

Long-term CropSyst modeling provides great insight to interactions between crop and environment 

and rotational effects over time. Results suggest opportunities exist for adoption of diversified and 

intensified rotations in both the annual crop and annual crop transition regions of the IPNW. 
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CropSyst simulated similar winter wheat, spring wheat, and chickpea outcomes across all Genesee 

rotations. On a rotational basis, INC produced the greatest biomass and yield and displayed the 

greatest stability, based on its coefficient of variation (cv). However, considering baled cover crop 

(forage) as yield increased simulated ASP yield over that of INC, and ASP rotation appeared less 

vulnerable to drought conditions. BAU demanded the greatest nitrogen, followed by INC. 

In St. John, CropSyst simulated differences in biomass and yield between winter wheat and spring 

wheat crops, common among all three rotations. Like Genesee, INC generated the greatest biomass 

and yield. BAU appeared less vulnerable to drought conditions, while INC and ASP better utilized 

available precipitation. Surprisingly, CropSyst simulated greater variability among winter crops than 

spring crops, but, rotationally, INC appeared the most stable. INC and ASP rotations recovered more 

soil water over winter but to a lesser degree during drought. INC, with two winter crops, lost the least 

water. Earlier cover crop termination dates increased subsequent winter wheat yields, in some cases 

to a greater degree than BAU. 

Some differences arose between Genesee and St. John outcomes as a function of water availability. 

However, at both sites, winter crops’ longer grower period reduced reliance on scarce spring 

precipitation and allowed them to better harness limited resources.  When considering nitrogen 

requirements, production, and water utilization, winter pea appears advantageous over alternative 

crops like chickpea. Cover crops, especially Genesee’s fall planted crop, improved water outcomes 

over BAU and could provide producers with an additional opportunity to diversify, if baled for forage 

or grazed by livestock. Variable termination dates, modeled in St. John, emphasize the importance of 

flexible and opportunistic management strategies. Depending on current environmental or other 

conditions, growers can elect to employ strategies such as fallowing, altering cover crop mix 

composition, or delaying planting to spring. 

Crop choice or management decisions often result in tradeoffs, such as cost of fertilization versus the 

value of increased production or cover crop biomass production versus moisture preservation. While 

this work helps quantify these effects, many factors contribute to cropping outcomes beyond those 

simulated by the CropSyst model. Further integration of this work with other disciplines, such as 

agronomy, economics, or policy, would prove valuable. Additional CropSyst model simulations 

could focus on future climate scenarios and understanding longer-term implications of developing 

environmental conditions. 
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Chapter 4: Summary and Future Work 

Introduction 

Farmers in the Inland Pacific Northwest (IPNW) typically cultivate dryland wheat-based crop 

rotations, which often include spring crops and, in lower precipitation areas, fallow. However, 

changing environmental conditions, economics, and emerging research motivates shifts in existing 

production practices. Many speculate that replacing traditional crop rotations with those that include 

winter peas or cover crops will allow farmers to diversify (or intensify, if replacing fallow) and may 

improve production and nutrient/water cycling outcomes. This research utilized a process-based crop 

model to simulate field conditions and investigate the long-term viability of traditional and novel 

rotations. 

Work was completed as part of the Landscapes in Transition (LIT) project. LIT carried out four-year 

(2018-2021) strip trials at two sites, one corresponding in an annual crop-fallow transition system 

(ACT) in the intermediate precipitation zone (St. John, Washington) and one corresponding to an 

annual crop system (AC) in the high precipitation zone (Genesee, Idaho).  Field treatments covered 

three separate, three-year crop rotations: spring wheat-fallow-winter wheat (business-as-usual, BAU), 

spring wheat-winter pea-winter wheat (incremental, INC), and spring wheat-spring cover crop-winter 

wheat (aspirational, ASP) in the intermediate precipitation zone and spring wheat-chick pea-winter 

wheat (BAU), spring wheat-winter pea-winter wheat (INC), and winter cover crop-chick pea-winter 

wheat (ASP) in the high precipitation zone.   

This work aimed to: 

1. Parameterize and assess the ability of the CropSyst model to simulate crop production 

and nitrogen/water cycling at an annual crop and a crop-fallow transition location using 

the replicated rotational strip trial data  

2. Evaluate viability of alternate crop rotations under current and historic climate conditions 

and identify management strategies to optimize/adapt rotation success and stability 

CropSyst Model Development 

Two site-specific CropSyst models were developed to reflect the LIT project’s IPNW strip trial 

locations: the annual cropping site in Genesee, ID and the annual crop-fallow transition site in St. 

John, WA. CropSyst is a process-based, multi-crop, multi-year model, frequently employed to study 

the interactions of crops, soils, weather, and management (Stöckle, 2003).  The LIT project provided 

an extensive dataset with which to constrain and calibrate the model. The weather, soil, management, 

and initialization files were completely populated from known or measured values. During the 
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calibration phase, certain crop files were calibrated to obtain accurate yield/biomass, soil moisture, 

and nitrogen outcomes.  

CropSyst did not always simulate yield, biomass, and moisture outcomes successfully for individual 

strips or crops, but it predicted observations very well on an overall, rotational, and yearly basis. 

Considering the variability and extent of the data observed during the LIT trial, it proved powerful 

and robust. Following biomass/yield and soil moisture calibration, several nitrogen parameters were 

also calibrated, focusing on the Genesee site. Overall, crop nitrogen was simulated well.  However, 

improvement of inorganic soil nitrogen predictions may be valuable in the future. There are several 

other limitations inherent to this work, including the exclusion of factors such as weeds, disease, and 

pests.  

The two CropSyst models developed under Objective 1 adequately reflect field conditions and were 

used for scenario testing under Objective 2. They help identify important crop-environment 

relationships and provide insight to management impacts. 

Long-term Model Simulations 

Objective 2 utilized the calibrated CropSyst model to evaluate intensified and diversified rotations 

under recent climate conditions at each IPNW location.  Three (one reflecting each ASP, BAU, INC), 

30-year simulations were run to explore the long-term interactions between crop and environment. 

Scenario testing focused on four main subobjectives: 

1. Evaluating impacts of diverse/intense rotations on production outcomes and nitrogen 

requirements    

2. Assessing the effects of fallow replacement on winter wheat crops (St. John) 

3. Addressing the implications of cover crop termination approach  

4. Exploring the impacts cover crop termination date on subsequent winter wheat crop years (St. 

John) 

At both sites, winter crops’ longer grower period reduced reliance on spring precipitation and allowed 

them to better harness limited resources. However, BAU in St. John appeared less vulnerable to 

drought conditions, especially with respect to winter wheat outcomes. When considering nitrogen 

requirements, production, and water utilization, the winter pea in INC appeared advantageous over 

alternative crops like chickpea. In general, inclusion of legume crops reduced nitrogen fertilization 

demand. 
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Considering baled cover crop (forage) as yield increased simulated ASP rotational yield over that of 

INC or BAU, suggesting opportunities for those interested in using cover crops as livestock forage. 

Integration of livestock directly on land could have further soil health implications not addressed by 

this study. Earlier cover crop termination dates in St. John led to increased winter wheat yields in the 

following year; however, termination timing must be balanced with crop biomass production.  

While these results provide valuable insight, crop modeling effectively simplifies field conditions by 

eliminating variability and key factors such as weeds, disease, or policy or economic considerations. 

It is, therefore, important to integrate this work with other field-based outcomes from various 

disciplines. Regardless, CropSyst simulations emphasize key relationships and trade-offs that can 

contribute to a better overall understanding of these traditional and novel crop rotations. 

Conclusions and Future Work 

The CropSyst model exhibited good predictive ability of LIT strip trial observations across all crop 

rotations and years. There are limited examples of CropSyst studies which calibrate the model over 

multiple years using static parameters and achieve good rotational agreement. However, the CropSyst 

model did not simulate soil inorganic nitrogen well. This can be improved in future work with better 

parameterization and calibration of the organic matter model or potentially crop nitrogen parameters. 

It is also possible that measurement errors or overfertilization occurred or that the nitrogen transport 

and uptake processes simulated in CropSyst require some improvement. 

Long-term simulations of the models indicate opportunities exist for adoption of diversified and 

intensified rotations in both the annual crop and annual crop-fallow transition regions of the IPNW. 

Scenario testing also suggested that altering management practices strategically can improve 

outcomes. This might consist of carefully selecting cover crop mixes, integrating livestock, altering 

cover crop termination date, and incorporating legumes to reduce fertilizer use. 

There are many opportunities for future work utilizing the developed CropSyst models. Further 

scenario-based testing may include future climate predictions, as changing climate conditions will 

likely influence cropping systems’ success. There are also opportunities to link CropSyst with 

economic tools such as Oregon State University’s AgBiz LogicTM or to use it as an online decision 

support tool, similar to the Flex Cropping tool developed by Washington State University at their 

Cook Agronomy Farm Long-term Agroecosystem Research station. Additional CropSyst simulations 

and integrative tools would greatly enhance the current efforts by expanding applicability and 

flexibility to different locations or situations.   
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Appendix A 

Genesee, ID 

Winter cover crop mixture 

2017/2018: winter wheat, winter pea, Sudan grass, proso millet, crimson clover, lentil, turnip, radish, 

flax  

2018/2019 – 2020/2021: winter oat, winter pea, crimson clover, turnip, radish, winter wheat 

(volunteer, not seeded) 

 

St. John, WA 

Spring cover crop mixture 

2017/2018 – 2020/2021: spring pea, spring oats, spring barley, turnip, sunflower 
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Appendix B  

 

Figure 47: Genesee 0-30 cm cumulative particle size distribution with cumulative mass as a fraction and particle diameter in 

micrometer (Strip D, rep. 1-5) 

 

 

Figure 48: Genesee 0-30 cm soil taxonomy texture triangle (Strip D, rep. 1-5) 
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Figure 49: Genesee 30-90 cm cumulative particle size distribution with cumulative mass as a fraction and particle diameter 

in micrometer (Strip D, rep. 1-5) 

 

 

Figure 50: Genesee 30-90 cm soil taxonomy texture triangle (Strip D, rep. 1-5) 
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Figure 51: Genesee 90-150 cm cumulative particle size distribution with cumulative mass as a fraction and particle diameter 

in micrometer (Strip D, rep. 1-5) 

 

 

Figure 52: Genesee 90-150 cm soil taxonomy texture triangle (Strip D, rep. 1-5) 
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Figure 53: St. John 0-30 cm cumulative particle size distribution with cumulative mass as a fraction and particle diameter in 

micrometer (Strip D, rep. 1-5) 

 

 

Figure 54: St. John 0-30 cm soil taxonomy texture triangle (Strip D, rep. 1-5) 
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Figure 55: St. John 30-90 cm cumulative particle size distribution with cumulative mass as a fraction and particle diameter 

in micrometer (Strip D, rep. 1-5) 

 

 

Figure 56: St. John 30-90 cm soil taxonomy texture triangle (Strip D, rep. 1-5) 
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Figure 57: St. John 90-150 cm cumulative particle size distribution with cumulative mass as a fraction and particle diameter 

in micrometer (Strip D, rep. 1-5) 

 

 

Figure 58: St. John 90-150 cm soil taxonomy texture triangle (Strip D, rep. 1-5) 
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Appendix C 

Table 29: Soil-water retention model statistics by depth; RMSE=root mean square error, σobs=standard deviation of 

observations 

  van Genuchten Campbell 

Site Depth RMSE R2 σobs RMSE R2 σobs 

Genesee 
0-30 cm 0.68 0.98 9.88 0.41 0.93 1.06 

30-150 cm 1.46 0.98 8.96 0.36 0.93 0.91 

St. John 
0-30 cm 1.40 0.99 10.56 0.41 0.90 0.68 

30-150 cm 1.77 0.98 10.30 0.30 0.95 0.61 

 

 

Figure 59: Genesee 0-30 cm soil water retention curve; PWP = permanent wilting point, FC = field capacity 
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Figure 60: Genesee 30-150 cm soil water retention curve; PWP = permanent wilting point, FC = field capacity 

 

Figure 61: St. John 0-30 cm soil water retention curve; PWP = permanent wilting point, FC = field capacity 
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Figure 62: St. John 30-150 cm soil water retention curve; PWP = permanent wilting point, FC = field capacity 
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Appendix D 

Table 30: Nitrogen fertilization by rotation and crop, kg-N/ha; INC=incremental, ASP=aspiration, BAU=business-as-usual, 

WW=winter wheat, SW=spring wheat 

  

2017/2018 2018/2019 2019/2020 2020/2021 

Plant 
Top 

dress 
Plant 

Top 

dress 
Plant 

Top 

dress 
Plant 

Top 

dress 

Genesee 

INC WW 101 0 101 45 129 45 112 0 

ASP WW 101 0 123 45 129 45 165 0 

BAU WW 101 0 123 45 129 45 165 0 

INC SW 67 0 165 0 165 45 165 24 

BAU SW 67 0 165 0 165 45 165 24 

St. John 

INC WW 101 0 56 0 84 0 34 0 

ASP WW 101 0 90 0 112 0 112 0 

BAU WW 101 0 90 0 22 0 34 0 

INC SW 129 0 129 0 62 0 90 0 

ASP SW 129 0 129 0 112 0 90 0 

BAU SW 129 0 129 0 56 0 90 0 

 
Table 31: Genesee site strip trial plant and harvest dates 

Planting 

 
2017-2018 2018-2019 2019-2020 2020-2021 

Winter crops 10/5/2017 10/4/2018 10/7/2019 10/6/2020 

Spring crops 4/27/2018 5/2/2019 4/21/2020 4/22/2021 

Harvest 

 
2017-2018 2018-2019 2019-2020 2020-2021 

Cover crop 6/20/2018 7/1/2019 7/7/2020 7/1/2021 

Winter wheat 8/2/2018 8/7/2019 8/6/2020 7/27/2021 

Winter pea 8/2/2018 8/7/2019 8/6/2020 7/27/2021 

Spring wheat 8/23/2018 8/28/2019 8/25/2020 8/24/2021 

Chickpea 8/23/2018 9/5/2019 9/10/2020 8/24/2021 
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Table 32: St. John site strip trial plant and harvest dates 

Planting 

 
2017-2018 2018-2019 2019-2020 2020-2021 

Winter crops 10/3/2017 9/25/2018 9/24/2019 9/30/2020 

Spring crops 3/30/2018 4/25/2019 4/9/2020 4/5/2021 

Harvest 

 
2017-2018 2018-2019 2019-2020 2020-2021 

Cover crop 7/2/2018 7/12/2019 7/9/2020 7/8/2021 

Winter pea 8/3/2018 8/2/2019 8/7/2020 7/22/2021 

Winter wheat 8/21/2018 8/20/2019 8/7/2020 7/22/2021 

Spring wheat 8/21/2018 8/27/2019 8/24/2020 8/9/2021 
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Appendix E 

Table 33: Genesee biomass and yield statistics by crop; MD=mean difference, RMSE=root mean square error, n=number of 

observations 

  

Biomass Yield 

R2 

MD, 

kg/ha 

RMSE, 

kg/ha n R2 

MD, 

kg/ha 

RMSE, 

kg/ha n 

Chickpea 0.81 -208 493 8 0.59 -44 322 8 

Spring wheat 0.69 -1118 4,828 7 0.69 366 876 8 

Winter pea 0.20 -597 2,673 4 0.71 -252 791 4 

Winter wheat 0.86 651 2,088 12 0.95 -17 469 12 

Cover crop 0.04 -106 1,880 4         

 

Table 34: St. John biomass and yield statistics by crop; MD=mean difference, RMSE=root mean square error, n=number of 

observations 

  

Biomass Yield 

R2 

MD, 

kg/ha 

RMSE, 

kg/ha n R2 

MD, 

kg/ha 

RMSE, 

kg/ha n 

Spring wheat 0.45 -918 2,544 12 0.21 -13 1,179 12 

Winter pea 0.55 977 2,872 4 0.90 -379 481 4 

Winter wheat 0.27 1317 3,522 12 0.28 483 1,583 12 

Cover crop 0.10 162 1,197 4 - - -   

 

Table 35: Genesee crop nitrogen statistics by crop; MD=mean difference, RMSE=root mean square error, n=number of 

observations, σ=standard deviation of observations 

  R2 MD, kg-N/ha RMSE, kg-N/ha n σ, kg-N/ha 

Spring wheat 0.20 0.20 39 8 46 

Chickpea 0.37 0.86 15 8 22 

Winter pea 0.97 18.34 56 4 81 

Winter wheat 0.67 -4.25 19 12 31 

Cover crop 0.46 6.68 26 4 33 
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Table 36: Genesee crop nitrogen statistics by year; MD=mean difference, RMSE=root mean square error, n=number of 

observations, σ=standard deviation of observations 

 R2 
MD, kg-

N/ha 

RMSE, 

kg-N/ha 

σ, kg-

N/ha 

2018 0.81 -11.16 20 38 

2019 0.59 19.52 34 29 

2020 0.67 22.52 38 55 

2021 0.88 -25.05 28 37 
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Appendix F 

Table 37: Genesee soil moisture comparison by depth (cm) – replicate 5, strip A; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.994 0.880 0.807 0.801 0.545 

MD 0.036 -0.022 -0.080 -0.010 0.028 

RMSE 0.037 0.050 0.095 0.026 0.044 

n 5 5 5 5 5 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.713 0.446 0.441 0.113 0.058 

MD -0.007 0.051 0.058 0.026 -0.003 

RMSE 0.049 0.077 0.073 0.054 0.047 

n 828 828 810 828 828 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.966 0.826 0.376 0.060 0.208 

MD 0.013 0.015 -0.023 0.005 0.029 

RMSE 0.037 0.053 0.062 0.054 0.041 

n 8 8 8 8 8 
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Table 38: Genesee soil moisture comparison by depth (cm) – replicate 5, strip B; MD=mean difference, RMSE=root mean 

square error, n=number of observations  

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.831 0.991 0.868 0.618 0.933 

MD 0.040 0.002 -0.013 -0.036 -0.012 

RMSE 0.056 0.014 0.030 0.050 0.025 

n 6 5 6 5 6 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.820 0.680 0.375 0.169 0.350 

MD -0.032 0.043 0.018 0.019 0.052 

RMSE 0.046 0.059 0.053 0.045 0.057 

n 849 828 935 828 935 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.964 0.963 0.787 0.064 0.215 

MD 0.021 0.032 0.001 -0.013 0.042 

RMSE 0.034 0.036 0.033 0.060 0.057 

n 8 8 8 8 8 
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Table 39: Genesee soil moisture comparison by depth (cm) – replicate 5, strip C; MD=mean difference, RMSE=root mean 

square error, n=number of observations  

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.998 0.984 0.884 0.202 0.749 

MD -0.018 -0.053 -0.065 -0.090 -0.039 

RMSE 0.020 0.061 0.074 0.108 0.043 

n 5 5 5 5 5 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.812 0.397 0.269 0.404 0.435 

MD 0.041 0.056 0.067 0.091 0.058 

RMSE 0.054 0.075 0.086 0.099 0.065 

n 878 878 878 878 878 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.925 0.929 0.248 0.155 0.008 

MD 0.027 0.017 -0.004 -0.001 0.025 

RMSE 0.044 0.030 0.061 0.065 0.055 

n 8 8 8 8 8 
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Table 40: Genesee soil moisture comparison by depth (cm) – replicate 5, strip D; MD=mean difference, RMSE=root mean 

square error, n=number of observations  

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.993 0.885 0.952 0.541 0.546 

MD 0.003 -0.052 -0.035 -0.071 -0.063 

RMSE 0.009 0.062 0.047 0.080 0.084 

n 5 5 5 5 5 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.800 0.429 0.077 0.357 0.628 

MD 0.020 0.069 0.052 0.105 0.057 

RMSE 0.042 0.086 0.082 0.114 0.066 

n 878 878 878 878 878 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.960 0.888 0.519 0.182 0.504 

MD 0.027 0.022 0.011 0.036 0.024 

RMSE 0.047 0.034 0.050 0.067 0.063 

n 8 8 8 8 8 
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Table 41: Genesee soil moisture comparison by depth (cm) – replicate 5, strip E; MD=mean difference, RMSE=root mean 

square error, n=number of observations  

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.732 0.986 0.974 0.896 0.956 

MD 0.077 -0.001 -0.026 -0.037 -0.021 

RMSE 0.085 0.012 0.032 0.040 0.037 

n 6 4 6 6 6 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.804 0.518 0.347 0.294 0.175 

MD -0.053 0.003 0.025 0.039 0.025 

RMSE 0.062 0.052 0.046 0.049 0.032 

n 900 624 874 900 900 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.861 0.942 0.683 0.622 0.607 

MD 0.031 0.012 0.000 0.004 0.005 

RMSE 0.046 0.026 0.038 0.031 0.049 

n 8 8 8 8 8 
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Table 42: Genesee soil moisture comparison by depth (cm) – replicate 5, strip F; MD=mean difference, RMSE=root mean 

square error, n=number of observations  

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.913 0.956 0.974   0.862 

MD 0.022 0.002 -0.001   -0.111 

RMSE 0.036 0.027 0.015   0.111 

n 6 6 6   6 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.870 0.641 0.339   0.326 

MD -0.018 0.006 -0.033 0.009 0.101 

RMSE 0.036 0.054 0.072 0.034 0.107 

n 878 878 878 67 878 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.975 0.812 0.461 0.073 0.019 

MD 0.010 -0.010 -0.033 0.014 0.004 

RMSE 0.028 0.058 0.072 0.061 0.048 

n 8 7 8 8 8 
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Table 43: Genesee soil moisture comparison by depth (cm) – replicate 5, strip G; MD=mean difference, RMSE=root mean 

square error, n=number of observations  

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 1.000 0.981     0.983 

MD 0.001 -0.052     -0.088 

RMSE 0.013 0.068     0.096 

n 4 4     4 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.792 0.437 0.112 0.777 0.032 

MD 0.016 0.096 0.134 0.043 0.042 

RMSE 0.040 0.108 0.137 0.061 0.049 

n 716 716 54 140 716 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.933 0.945 0.001 0.438 0.301 

MD 0.029 0.039 0.055 -0.005 -0.017 

RMSE 0.051 0.045 0.119 0.050 0.057 

n 8 8 8 8 8 
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Table 44: Genesee soil moisture comparison by depth (cm) – replicate 5, strip H; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.973   1.000 0.986 0.786 

MD 0.068   -0.023 -0.028 -0.067 

RMSE 0.072   0.023 0.034 0.069 

n 4   3 3 3 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.909 0.312 0.003 0.001 0.161 

MD -0.072 0.009 0.030 0.069 0.078 

RMSE 0.077 0.059 0.054 0.090 0.083 

n 653 276 528 528 528 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.927 0.793 0.278 0.115 0.117 

MD 0.012 0.019 -0.003 0.002 0.004 

RMSE 0.028 0.036 0.053 0.055 0.046 

n 8 8 8 8 8 
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Table 45: Genesee soil moisture comparison by depth (cm) – replicate 5, strip I; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.944 0.993 1.000 0.976 0.010 

MD 0.003 -0.020 -0.007 0.025 -0.086 

RMSE 0.035 0.028 0.045 0.043 0.111 

n 4 4 4 4 4 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.605 0.585 0.317 0.272 0.270 

MD 0.024 0.049 0.016 -0.045 0.058 

RMSE 0.053 0.064 0.039 0.053 0.059 

n 770 793 793 771 793 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.933 0.903 0.529 0.507 0.511 

MD 0.022 0.026 0.010 -0.007 -0.015 

RMSE 0.043 0.035 0.049 0.041 0.057 

n 8 8 8 8 8 
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Table 46: St. John soil moisture comparison by depth (cm) – replicate 3, strip A; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2   0.938 0.874 0.840 0.987 

MD   -0.014 -0.040 0.029 -0.060 

RMSE   0.028 0.045 0.034 0.064 

n   5 5 5 5 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.223 0.613 0.000 0.214 0.220 

MD 0.021 0.094 0.166 0.090 0.082 

RMSE 0.088 0.110 0.181 0.096 0.096 

n 398 801 810 810 810 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.994 0.983 0.469 0.060 0.193 

MD 0.064 0.062 0.098 0.091 0.030 

RMSE 0.077 0.066 0.110 0.103 0.049 

n 8 8 8 8 8 
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Table 47: St. John soil moisture comparison by depth (cm) – replicate 3, strip B; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.943 0.972 0.989 0.995 0.958 

MD 0.010 -0.120 -0.095 0.018 -0.042 

RMSE 0.048 0.128 0.099 0.019 0.043 

n 4 4 4 3 4 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.284 0.392 0.207 0.014 0.007 

MD -0.021 0.046 0.086 0.098 0.087 

RMSE 0.087 0.084 0.109 0.103 0.092 

n 849 828 935 828 935 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.586 0.568 0.357 0.368 0.386 

MD 0.018 0.015 0.060 0.101 0.033 

RMSE 0.082 0.067 0.089 0.114 0.047 

n 8 8 8 8 8 
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Table 48: St. John soil moisture comparison by depth (cm) – replicate 3, strip C; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2           

MD 0.026   -0.058 -0.002 -0.142 

RMSE 0.055   0.061 0.004 0.142 

n 2   2 2 2 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.569 0.621 0.128 0.008 0.010 

MD 0.012 0.026 0.106 0.084 0.165 

RMSE 0.053 0.055 0.121 0.100 0.167 

n 568 376 556 568 568 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.895 0.970 0.689 0.525 0.387 

MD 0.041 0.022 0.031 0.075 0.023 

RMSE 0.065 0.033 0.049 0.089 0.043 

n 8 7 8 8 8 
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Table 49: St. John soil moisture comparison by depth (cm) – replicate 3, strip D; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.970 0.988 0.973 0.872 0.882 

MD 0.040 0.001 0.019 -0.009 -0.096 

RMSE 0.046 0.014 0.056 0.018 0.098 

n 3 5 5 5 5 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.653 0.660 0.350 0.039 0.354 

MD 0.045 0.029 0.015 0.072 0.142 

RMSE 0.070 0.065 0.038 0.079 0.146 

n 424 675 675 675 676 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.970 0.914 0.574 0.133 0.264 

MD 0.061 0.043 0.059 0.073 0.061 

RMSE 0.073 0.054 0.080 0.085 0.070 

n 8 8 8 8 8 
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Table 50: St. John soil moisture comparison by depth (cm) – replicate 3, strip E; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.979 0.874 0.928 0.982   

MD 0.041 0.014 -0.010 -0.039   

RMSE 0.050 0.036 0.021 0.042   

n 3 4 5 4  

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.419 0.595 0.001 0.025 0.034 

MD 0.059 0.061 0.062 0.103 0.073 

RMSE 0.087 0.080 0.083 0.117 0.085 

n 429 507 675 675 497 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.877 0.871 0.601 0.000 0.403 

MD 0.046 0.029 0.044 0.015 0.021 

RMSE 0.070 0.045 0.064 0.127 0.042 

n 8 8 8 7 8 
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Table 51: St. John soil moisture comparison by depth (cm) – replicate 3, strip F; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.847 0.982   0.630 0.464 

MD 0.146 0.185   0.206 0.245 

RMSE 0.223 0.251   0.220 0.254 

n 4 3   4 4 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.000 0.000   0.281 0.269 

MD -0.078 -0.100   -0.131 -0.154 

RMSE 0.140 0.134   0.135 0.156 

n 502 413   452 508 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.885 0.940 0.564 0.243 0.129 

MD 0.050 0.042 0.072 0.053 0.086 

RMSE 0.074 0.053 0.088 0.069 0.098 

n 8 8 8 8 8 
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Table 52: St. John soil moisture comparison by depth (cm) – replicate 3, strip G; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus observed manual 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.958 0.986 0.969 0.939 0.950 

MD 0.103 0.137 0.210 0.189 0.212 

RMSE 0.203 0.211 0.234 0.209 0.227 

n 4 4 4 4 4 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.374 0.301 0.375 0.371 0.339 

MD -0.050 -0.064 -0.067 -0.112 -0.163 

RMSE 0.157 0.142 0.117 0.132 0.167 

n 623 631 631 626 630 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.929 0.913 0.175 0.258 0.228 

MD 0.033 0.042 0.079 0.061 0.042 

RMSE 0.050 0.051 0.109 0.079 0.061 

n 8 8 8 8 8 
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Table 53: St. John soil moisture comparison by depth (cm) – replicate 3, strip H; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.331 0.363 0.272 0.298 0.760 

MD 0.001 -0.085 -0.134 -0.153 -0.141 

RMSE 0.098 0.107 0.137 0.155 0.142 

n 340 198 186 197 197 

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.927 0.862 0.740 0.479 0.116 

MD 0.049 0.056 0.075 0.044 0.073 

RMSE 0.072 0.067 0.081 0.055 0.081 

n 8 8 8 8 8 
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Table 54: St. John soil moisture comparison by depth (cm) – replicate 3, strip I; MD=mean difference, RMSE=root mean 

square error, n=number of observations 

Observed sensor versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.067 0.262 0.402 0.944   

MD 0.034 0.055 0.009 -0.199   

RMSE 0.089 0.069 0.058 0.199   

n 198 173 176 16   

Observed manual versus simulated 

Depth 0-30 30-60 60-90 90-120 120-150 

R2 0.829 0.906 0.512 0.341 0.232 

MD 0.023 0.032 0.052 0.039 0.046 

RMSE 0.059 0.045 0.073 0.061 0.063 

n 8 8 8 8 8 

 

 


