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Abstract

This dissertation presents fundamental relations satisfied by the Fourier coefficients of a Siegel

paramodular form F : H2 → C which is an eigenform for the paramodular Hecke operators at

primes which do not divide the level of the Siegel paramodular form. We exhibit relations between

coefficients indexed by positive-definite, primitive, integral binary quadratic forms of discriminant

δf2 where δ < 0 is a fundamental discriminant and f is a positive integer.
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1 Introduction

“Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy

so many internal symmetries that their mere existence seem like accidents. But they do exist”

-Barry Mazur, Nova’s “The Proof”, PBS

1.1 Background and Motivation

Elliptic modular forms are complex-valued holomorphic functions on the complex upper half-plane

H = {z ∈ C : Im(z) > 0},

that are invariant under the action of SL(2,Z) and satisfy certain growth conditions [12] which,

together with the identity

f(z) = f(z + 1),

ensure that they admit a Fourier expansion

f(z) =

∞∑
n=0

a(n)e2πinz.

To each elliptic modular form we associate a positive integer called the weight, and we denote

the vector space of weight k elliptic modular forms by Mk(SL(2,Z)). The term modular form is

attributed to Hecke [14].

The theory of Hecke operators on the vector space of weight k elliptic modular forms estab-

lishes that Fourier coefficients of eigenforms enjoy arithmetic relations. For example, the Fourier

coefficients of the discriminant function, often called the Ramanujan delta function,

∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24

=

∞∑
n=1

τ(n)e2πinz

satisfy multiple arithmetic relations including the multiplicative relation

τ(mn) = τ(m)τ(n)

for m and n relatively prime. This relation was conjectured by Ramanujan and proved by Mordell

[28]. Furthermore, the Dirichlet series formed by the Fourier coefficients,

L(s) =

∞∑
n=1

τ(n)

ns
,
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expands as an Euler product over all primes p [8],

∞∑
n=1

τ(n)

ns
=
∏
p

(1− τ(p)p−s + p11p−2s)−1.

For a more thorough exposition on the theory of elliptic modular forms the reader should see [12],

[21], and [38].

1.2 Siegel Modular Forms

Siegel modular forms of genus 2 are complex-valued holomorphic functions defined on the Siegel

upper half-space

H2 = {Z ∈M(4,C) : tZ = Z and Im(Z) > 0}

that are invariant under the action of Sp(4,Z). We note here that the Koecher principle [2, 5]

implies that a Siegel modular form F : H2 → C has a Fourier expansion

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ),

without any assumed boundary conditions. Here, for M ≥ 1 an integer,

A(M) =


Mr t/2

t/2 s

 ∈M(4,Q) : r, t, s ∈ Z and Mrs− t2

4
≥ 0

 .

The work of Andrianov [1, 2, 3, 4] extended the theory of Hecke operators to Siegel modular

forms. As Siegel modular forms are more complicated than elliptic modular forms, it is natural

to expect that the Fourier coefficients exhibit more complex relations. Andrianov established the

existence of an Euler product attached to Siegel modular eigenforms. We state the result pertaining

to indices of fundamental discriminant [1] here.

Theorem 1.2.1 (Andrianov, 1971). Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

with k > 0. Suppose that F is an eigenform of the Hecke operators {T (m)}m≥1 with eigenvalues

{µ(m)}m≥1. Let δ < 0 be a fundamental discriminant and let K = Q(
√
δ). Let S1, . . . , Sh be a

complete set of representatives from the classes of equivalent binary quadratic forms of discriminant

δ which are positive-definite, integral, and primitive. For m ≥ 1, set

a(m) =

h∑
i=1

a(mSi).
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Then in some right half-plane

LK(s− k + 2)

∞∑
m=1

a(m)

ms
= a(1)

∏
p

Lp(p
−s)−1

where LK is the L-series of the field K and

Lp(p
−s) = 1− µ(p)p−s + (µ(p)2 − µ(p2)− p2k−4)p−2s − µ(p)p2k−3p−3s + p4k−6p−4s.

Theorem 1.2.1 was extended to indices of general discriminant in [3] and later was extended to

the principal congruence subgroup of Sp(4,Z) by Evdokimov [13]. We define for an integer M ≥ 1

A(M, δf2) = {S ∈ A(M) : S is primitive of discriminant δf2}.

Theorem 1.2.2 (Evdokimov, 1976). Let M ≥ 1 be an integer. Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ)/M ∈Mk(Γ(M))

with k > 0. Suppose that F is an eigenform of the Hecke operators {T (m)}m≥1, gcd(m,M)=1 with

eigenvalues {µ(m)}m≥1, gcd(m,M)=1. Let δ < 0 be a fundamental discriminant and let K = Q(
√
δ).

Fix an order of of K for some f ∈ N. Then for every S ∈ A(1, δf2), we have in some right

half-plane

Lδf2(s− k + 2)
∑

[u]∈H(of ,M)

∞∑
m=1

gcd(m,M)=1

a(mSu)

ms
= χS,F (s)

∏
p-M

Qp,F (p−s)−1

where Qp,F (t) is the Euler factor at p, Lδf2(s) is the L-series of of , the matrix Su is determined

by the action of H(of ,M), and χS,F (s) is a function depending on S and F .

Theorems 1.2.1 and 1.2.2 provide an amazing connection between the Fourier coefficients of

the Siegel modular eigenform and its eigenvalues. More recently, McCarthy [25] established from

Andrianov’s formulas that arithmetic relations exist for specific Fourier coefficients. We state this

result here.

Theorem 1.2.3 (McCarthy, 2016). Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

with k > 0. Suppose that F is an eigenform. Let I1,0 denote the 2× 2 identity matrix.

(i) If a(I1,0) = 0, then a(mI1,0) = 0 for all m ∈ N.

(ii) If m,n ∈ N with gcd(m,n) = 1, then

a(mnI1,0)a(I1,0) = a(mI1,0)a(nI1,0).
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Theorem 1.2.3 has been generalized to Siegel modular forms with level by Walling [41] utilizing

an alternative formula for the action of the Hecke operators on a Siegel modular form [15].

If the reader has more interest in the theory of Siegel modular forms we recommend they see

[1] and [40].

1.3 Current Work and Summary of Results

The objects of study in this work are known as Siegel paramodular forms which are Siegel modular

forms for the paramodular group K(M). We will define these objects more carefully in Chapter 2.

The study of Siegel paramodular forms has gained a lot of traction recently due to a conjecture of

Brumer and Kramer [6] which roughly states that there is a correspondence between the collection

of isogeny classes of abelian surfaces over Q of conductor M ∈ Z with trivial endomorphism ring

together with isogeny classes of abelian fourfolds over Q of conductor M2 and certain weight 2

Siegel paramodular forms on K(M).

This work in particular presents extensions of Theorem 1.2.2 and Theorem 1.2.3. Our method of

proof is similar to that used by Andrianov and Evdokimov, however proofs are built with invariance

properties of Fourier coefficients of Siegel paramodular forms in mind.

The main results of Chapter 6 are extensions of Theorems 1.2.2 and 1.2.3. We start with

multiplicative relations exhibited in another collection of Fourier coefficients.

Theorem 1.3.1 (R., 2019). Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

for k > 0. Suppose that F is an eigenform. Let I1,1 denote the matrix 1 1/2

1/2 1

 .
(i) If a(I1,1) = 0, then a(mI1,1) = 0 for all m ∈ N.

(ii) For m,n ∈ N with gcd(m,n) = 1 we have

a(mnI1,1)a(I1,1) = a(mI1,1)a(nI1,1).

In addition, we see that other arithmetic relations hold for any S ∈ A(1) whose discriminant is

a fundamental discriminant.
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Theorem 1.3.2 (R., 2019). Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

for k > 0. Suppose that F is an eigenform. Let S1, . . . , Sh be a complete set of representatives of

the classes of positive-definite, primitive, integral binary quadratic forms of discriminant δ with δ

a fundamental discriminant.

(i) If a(Si) = 0 for each i ∈ {1, . . . , h}, then a(mSi) = 0 for all m ∈ N and all i ∈ {1, . . . , h}.

(ii) For m,n ∈ N with gcd(m,n) = 1 we have

h∑
i=1

h∑
j=1

a(mnSi)a(Sj) =

h∑
i=1

h∑
j=1

a(mSi)a(nSj).

To prove these results we rely heavily on the theory of full modules in imaginary quadratic

fields. We note here that McCarthy’s result and Theorems 1.3.1 and 1.3.2 provide relations between

Fourier coefficients seen for paramodular level M = 1 associated to binary quadratic forms of fixed

discriminant given by a fundamental discriminant. To approach the general case where M ≥ 1

we start by looking for relations between Fourier coefficients associated to binary quadratic forms

whose discriminant corresponds to a class group of size 1. We note the following theorem which is

due to Gauss.

Theorem 1.3.3 (Gauss). Suppose δf2 ≡ 0, 1 (mod 4) with δ < 0 a fundamental discriminant.

Then h(δf2) = 1 if and only if δf2 = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67, or

−163.

The previous theorm provides an analog to Theorems 1.2.3 and 1.3.1 for Siegel paramodular

eigenforms of level M = 2, 3, 4, 5, 7, 11, 17, and 41 where we see strictly multiplicative relations in a

specific collection of Fourier coefficients. More precisely, we have the following theorem.

Theorem 1.3.4 (R., 2019). Let M ≥ 1 be an integer. Let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

with k > 0. Suppose that F is an eigenform. Let IM,0 and IM,1 denote the matricesM 0

0 1

 and

M 1/2

1/2 1


respectively. Let h(D) denote the size of the class group of forms of discriminant D < 0.
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(i) If h(−4M) = 1, then for m,n ∈ N with n odd and gcd(mM,n) = 1 we have

a(mnIM,0)a(IM,0) = a(mIM,0)a(nIM,0).

(ii) If h(−4M + 1) = 1, then for m,n ∈ N with n 6≡ 0 (mod 3) and gcd(mM,n) = 1 we have

a(mnIM,1)a(IM,1) = a(mIM,1)a(nIM,1).

We then move to the main results of Chapter 6. The first result characterizes the arithmetic re-

lations seen between Fourier coefficients of Siegel paramodular forms associated to binary quadratic

forms of fixed discriminant D < 0. This result captures McCarthy’s result and much more.

Theorem 1.3.5 (R., 2019). Let M ≥ 1 be an integer. Let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

with k > 0. Suppose that F is an eigenform. Let S1, . . . , Sd be a complete set of representatives of

the set Γ0(M) \A(M, δf2) where δ < 0 is a fundamental discriminant and f ∈ N.

(i) If a(Si) = 0 for each i ∈ {1, . . . , d}, then a(mSi) = 0 for all m ∈ N with gcd(m, f) = 1 and for

all i ∈ {1, . . . , d}.

(ii) For m,n ∈ N with gcd(mM,n) = gcd(mn, f) = 1 we have

d∑
i=1

d∑
j=1

a(mnSi)a(Sj) =

d∑
i=1

d∑
j=1

a(mSi)a(nSj).

The next theorem presents a modest generalization of Theorems 1.2.1 and 1.2.2. In particular,

we show that when viewing Theorems 1.2.1 and 1.2.2 in the context of Siegel paramodular forms,

the quantities contained in the formula are in general non-zero.

Theorem 1.3.6 (R., 2019). Let M ≥ 1 be an integer. Let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

with k > 0. Suppose that F is an eigenform of the Hecke operators {T (m)}m≥1, gcd(m,M)=1 with

eigenvalues {µ(m)}m≥1, gcd(m,M)=1. Let δ < 0 be a fundamental discriminant and let K = Q(
√
δ).

Fix an order of of K for some f ∈ N. Then for every S ∈ A(M, δf2), we have in some right

half-plane

Lδf2(s− k + 2)
∑

[u]∈H(of ,M)

∞∑
m=1

gcd(m,M)=1

a(mSu)

ms
= χS,F (s)

∏
p-M

Qp,F (p−s)−1

where Qp,F (t) is the Euler factor at p, Lδf2(s) is the L-series of of , the matrix Su is determined

by the action of H(of ,M), and χS(s) is a function depending on S and F .
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Chapters 2-5 build up the necessary machinery required to prove our main results in Chapter

6. In Chapter 2, we address the abstract Hecke theory that is prominent throughout this work.

In Chapter 3, we present the definitions of the paramodular group and Siegel paramodular forms

and present some basic structural theory on the matrix groups GSp(4,R) and Sp(4,Z) that will be

utilized in later computations. In particular, we prove a theorem on the Smith normal form for

matrices in M(2,Z). In Chapter 4, we give a construction of the paramodular Hecke operators for

p - M following the construction of Andrianov [1] and for p|M with M squarefree following the

work of Johnson-Leung and Roberts [20] and the work of Roberts and Schmidt [34]. In Chapter 5,

we build the theory of full modules in imaginary quadratic fields following works such as [7] which

we will exploit in the proofs of the main results in Chapter 6. It is a topic of further research to

understand the action of the paramodular Hecke operators for p|M on the Fourier coefficients of a

Siegel paramodular form of squarefree level M .

1.4 Related Results

When discussing Siegel paramodular forms which are eigenforms of the paramodular Hecke opera-

tors we are often interested in determining how the eigenvalues relate to the Fourier coefficients of

the form. McCarthy proves the following theorem [25].

Theorem 1.4.1. Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

with k > 0. Suppose that F is an eigenform normalized such that a(I1,0) = 1. Let(
n

p

)
denote the Legendre symbol where p is an odd prime. Set

h1(p) =


2 if (−4

p ) = 1,

1 if p = 2,

0 if (−4
p ) = −1,

and

h2(p) =


2 if (−4

p ) = 1,

0 if p = 2 or (−4
p ) = −1.
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Then for any prime p, the eigenvalues of index p and p2 associated to F satisfy

µ(p) = a(pI1,0) + h1(p)pk−2

and

µ(p2) = a(p2I1,0) + h1(p)pk−2a(pI1,0) + h2(p)p2k−4.

Determining such a relation between Fourier coefficients of Siegel paramodular eigenforms and

its eigenvalues is still an open problem and is a topic of future research.
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2 Abstract Hecke Rings

The structure of this chapter loosely follows [27]. For this chapter we let G be a topological group

and X a topological space.

2.1 Function Space

Suppose that G acts on X on the left. We will denote this action by g · z for g ∈ G and z ∈ X. Let

H(X) denote the set of all holomorphic functions from X to C, and let Γ be a subgroup of G. Let

{Cg}g∈G be a collection of constants such that Cg1g2 = Cg1Cg2 for g1, g2 ∈ G and Cg = 1 for all

g ∈ Γ.

Definition 2.1.1. Let j : G ×X → C be a non-zero holomophic function. We say j is a factor

of automorphy if for all g1, g2 ∈ G and for all z ∈ X,

j(g1g2, z) = j(g1, g2 · z)j(g2, z).

This relation is known as the cocycle relation.

Let j be a factor of automorphy. Note that the cocycle relation implies that j(1G, z) = 1 for all

z ∈ X where 1G denotes the identity in G. The left action of G on X induces a right action of G

on H(X). Let k be a nonnegative integer. For g ∈ G, define f ?k g : X → C to be

(f ?k g)(z) = Ckg j(g, z)
−kf(g · z).

We call k the weight. We will show that this defines a right action. Let f ∈ H(X). Then

(f ?k 1G)(z) = Ck1Gj(1G, z)
−kf(1G · z)

= f(z).

and for g1, g2 ∈ G

(f ?k g1g2)(z) = Ckg1g2j(g1g2, z)
−kf(g1g2 · z)

= Ckg1C
k
g2j(g1, g2 · z)−kj(g2, z)

−kf(g1 · (g2 · z))

= Ckg2j(g2, z)(f ?k g1)(g2 · z)

= ((f ?k g1) ?k g2)(z).

Hence G acts via ?k on H(X).
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Definition 2.1.2. Let f ∈ H(X). We say f is an automorphic form for Γ if for some integer

k ≥ 0,

(f ?k g)(z) = f(z)

for all g ∈ Γ and for all z ∈ X. If we want to emphasize the integer k then we call f a weight k

automorphic form for Γ.

For fixed k ∈ Z≥0 we denote by Mk(Γ) the set of all weight k automorphic forms for Γ. It is

clear that Mk(Γ) is a vector space over C. We emphasize a few important properties of Mk(Γ).

1. If Γ′ and Γ′′ are subgroups of Γ such that Γ′ ⊆ Γ′′ then Mk(Γ′′) ⊆Mk(Γ′).

2. If f ∈Mk(Γ) and g ∈ G then f ?k g ∈Mk(g−1Γg).

3. If f ∈Mk(Γ) and f ′ ∈M1(Γ) then ff ′ ∈Mk+1(Γ).

Define M(Γ) to be the module generated by all of the Mk(Γ). That is

M(Γ) =

∞∑
k=0

Mk(Γ).

We will assume that this has the structure of a graded ring,

M(Γ) =

∞⊕
k=0

Mk(Γ).

2.2 Hecke Rings

Here we will describe briefly the necessary information on Hecke rings that we will need for the

material ahead.

Definition 2.2.1. Let Γ and Γ′ be subgroups of G. We say that Γ and Γ′ are commensurable if

the indices [Γ : Γ ∩ Γ′] and [Γ′ : Γ ∩ Γ′] are both finite.

If Γ and Γ′ are commensurable subgroups of G, we shall write Γ ∼ Γ′. For a fixed subgroup, Γ,

of G we let

ComG(Γ) = {g ∈ G : g−1Γg ∼ Γ}.

We prove some properties of the relation ∼ and the set ComG(Γ).
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Proposition 2.2.2. The relation ∼ is an equivalence relation.

Proof. The reflexivity and symmetry of ∼ is obvious. We prove transitivity. Let Γ,Γ′, and Γ′′ be

subgroups of G such that Γ ∼ Γ′ and Γ′ ∼ Γ′′. Then

[Γ : Γ ∩ Γ′ ∩ Γ′′] = [Γ : Γ ∩ Γ′][Γ ∩ Γ′ : Γ ∩ Γ′ ∩ Γ′′]

≤ [Γ : Γ ∩ Γ′][Γ′ : Γ′ ∩ Γ′′]

<∞.

Similarly, [Γ′′ : Γ ∩ Γ′ ∩ Γ′′] <∞. Since Γ ∩ Γ′ ∩ Γ′′ ⊆ Γ ∩ Γ′′ it follows that [Γ : Γ ∩ Γ′′] <∞ and

[Γ′′ : Γ ∩ Γ′′] <∞. Hence Γ ∼ Γ′′ and transitivity is proved.

Proposition 2.2.3. Let Γ and Γ′ be subgroups of G.

(i) The set ComG(Γ) is a subgroup of G.

(ii) If Γ ∼ Γ′, then ComG(Γ) = ComG(Γ′).

(iii) Suppose Γ ∼ Γ′. Then for any g ∈ ComG(Γ) we have

ΓgΓ′ =

c⊔
i=1

Γgγi =

d⊔
j=1

δjgΓ′

where {γi}ci=1 and {δj}dj=1 are finite sets of representatives of (Γ′ ∩ g−1Γg) \Γ′ and Γ/(Γ∩ gΓ′g−1)

respectively.

Proof. We start by proving (i). Let g1, g2 ∈ ComG(Γ). We need to show that g1g2 ∈ ComG(Γ).

Consider τ : G → G given by τ(g) = g1gg
−1
1 . Then τ is an inner automorphism of G and hence

preserves the index of subgroups. Let Γ′ = g1Γg−1
1 and Γ′′ = g2Γg−1

2 . Since Γ′ ∼ Γ′′ we have

[τ(Γ) : τ(Γ ∩ Γ′′)] < ∞ and [τ(Γ′′) : τ(Γ ∩ Γ′′)] < ∞. We have τ(Γ) = Γ′, τ(Γ′′) = g1Γ′′g−1
1 , and

τ(Γ ∩ Γ′′) = Γ′ ∩ g1Γ′′g−1
1 . It follows that τ(Γ′′) ∼ Γ′. By transitivity, τ(Γ′′) ∼ Γ. Thus g1g2 ∈

ComG(Γ). Now let h ∈ ComG(Γ). Then Γ′′′ = h−1Γh ∼ Γ. We want to show hΓh−1 ∼ Γ. Let

σ : G→ G be the inner automorphism σ(g) = hgh−1. Since Γ′′′ ∼ Γ we have [σ(Γ) : σ(Γ∩Γ′′′)] <∞

and [σ(Γ′′′) : σ(Γ∩Γ′′′)] <∞. It is clear that σ(Γ) = hΓh−1, σ(Γ′′′) = Γ, and σ(Γ∩Γ′′′) = hΓh−1∩Γ.

Hence hΓh−1 ∼ Γ and h−1 ∈ ComG(Γ). Since 1G is clearly in ComG(Γ) this proves (i). We now

prove (ii). Suppose that Γ ∼ Γ′. Then, since g−1Γ′g ∼ g−1Γg ∼ Γ ∼ Γ′, we have that

ComG(Γ) = {g ∈ G : g−1Γg ∼ Γ}

= {g ∈ Γ : g−1Γ′g ∼ Γ′}

= ComG(Γ′).
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Lastly, we prove (iii). Suppose again that Γ ∼ Γ′. We prove only one decomposition as the other is

follows mutatis mutandis. Every right coset in ΓgΓ′ is of the form Γgγ for some γ ∈ Γ′. It is easy

to see that if Γgγ = Γgγ′ for γ, γ′ ∈ Γ′ then γ(γ′)−1 ∈ Γ′ ∩ g−1Γg. Since g−1Γg is commensurable

with Γ and hence with Γ′ the desired decomposition follows.

Let Γ be a subgroup of G and let s(Γ) be a subgroup of G such that Γ ⊆ s(Γ) ⊆ ComG(Γ). We

then call the pair (Γ, s(Γ)) a Hecke pair. We define the Hecke algebra, H (Γ, s(Γ)), as the free

Z-module generated by the double cosets ΓgΓ with g ∈ s(Γ),

H (Γ, s(Γ)) =

 ∑
g∈s(Γ)

mgΓgΓ : mg ∈ Z, mg = 0 for all but finitely many g

 .

Suppose further that s(Γ) acts on a Z-module N on the right via (n, g) 7→ ng and let NΓ be the

submodule consisting of Γ-invariant elements of N .

Proposition 2.2.4. Let n ∈ NΓ and let ΓgΓ ∈H (Γ, s(Γ)). Suppose we have two disjoint decom-

positions

ΓgΓ =

c⊔
i=1

Γgi =

c⊔
i=1

Γg′i.

Then

c∑
i=1

ngi =

c∑
i=1

ng
′
i .

Furthermore,

c∑
i=1

ngi ∈ NΓ.

Proof. Let

ΓgΓ =
⊔
i

Γgi =
⊔
i

Γg′i

be disjoint decompositions of ΓgΓ. If Γgi = Γg′i then there exists γ ∈ Γ such that g′i = γgi. Then

for n ∈ NΓ,

ng
′
i = nγgi = ngi

which proves the first part of the proposition. To prove the second part of the proposition let γ ∈ Γ

and notice that

ΓgΓ =
⊔
i

Γgi =
⊔
i

Γgiγ.
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Then for n ∈ NΓ,

n[ΓgΓ]γ =
∑
i

ngiγ

=
∑
i

ngi

= n[ΓgΓ]

establishing that n[ΓgΓ] ∈ NΓ.

The previous proposition shows that a fixed element ΓgΓ ∈ H (Γ, s(Γ)) defines a map on

[ΓgΓ] : NΓ → NΓ given by

n[ΓgΓ] =

c∑
i=1

ngi .

where

ΓgΓ =

c⊔
i=1

Γgi

is a disjoint decomposition. Extending linearly, every element of H (ΓgΓ) defines a map from NΓ

to NΓ. We call the elements of H (Γ, s(Γ)) Hecke operators.

Proposition 2.2.5. Let ΓgΓ,ΓhΓ ∈H (Γ, s(Γ)). Suppose we have disjoint decompositions

ΓgΓ =
⊔
i

Γgi

and

ΓhΓ =
⊔
j

Γhj .

The multiplication

ΓgΓ · ΓhΓ =
∑

[γ]∈Γ\s(Γ)/Γ

cγΓγΓ

where cγ = #{(i, j) : Γgihj = Γγ} extends to a well-defined binary operation on H (Γ, s(Γ)).

Proof. Consider the free Z-module Z[Γ \ s(Γ)] generated by the right cosets Γg for g ∈ s(Γ). We

then have a map from H (Γ, s(Γ)) into Z[Γ \ s(Γ)] given by

ΓgΓ =
⊔
i

Γgi 7→
∑
i

Γgi.
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We then consider H (Γ, s(Γ)) as a Z-submodule of Z[Γ \ s(Γ)]. It follows from the definitions that

H (Γ, s(Γ)) ∼= Z[Γ \ s(Γ)]Γ.

Let

ΓgΓ =
⊔
i

Γgi and ΓhΓ =
⊔
j

Γhj

be disjoint decompositions. It is clear that s(Γ) act on Z[Γ \ s(Γ)] via(∑
k

Γγk

)g
=
∑
k

(Γγk)g =
∑
k

Γγkg.

By the definition of the mapping [ΓhΓ : Z[Γ \ s(Γ)]Γ → Z[Γ \ s(Γ)]Γ] we have(∑
i

Γgi

)
[ΓhΓ] =

∑
j

(∑
i

Γgi

)hj
=
∑
j

∑
i

(Γgi)
hj

=
∑
i

∑
j

Γgihj

=
∑

[γ]∈Γ\s(Γ)/Γ

cγΓγΓ

with cγ = #{(i, j) : Γgihj = Γγ}. Thus the mapping for elements of H (Γ, s(Γ)) on Z[Γ \ s(Γ)]Γ is

just the multiplication defined on H (Γ, s(Γ)). The result now follows from the previous proposition.

Proposition 2.2 endows H (Γ, s(Γ)) with the structure of a ring. Moreover, we have the following

corollary

Corollary 2.2.6. Let n ∈ NΓ. Then for ΓgΓ,ΓhΓ ∈H (Γ, s(Γ)) we have

n[ΓgΓ][ΓhΓ] = n[ΓgΓ · ΓhΓ].

In particular, H (Γ, s(Γ)) acts on NΓ.

Proof. The proposition follows easily from the definitions and the fact that the product ΓgΓ · ΓhΓ

is well-defined.

We end this chapter by giving a sufficient condition for the Hecke ring H (Γ, s(Γ)) to be com-

mutative.
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Theorem 2.2.7. Let σ : s(Γ)→ s(Γ) be a map that satisfies

(i) σ(gh) = σ(h)σ(g) and σ(σ(g)) = g for all g, h ∈ s(Γ),

(ii) σ(Γ) = Γ,

(iii) ΓgΓ = Γσ(g)Γ for all g ∈ s(Γ).

Then the product of elements in H (Γ, s(Γ)) is commutative.

Proof. Let g ∈ s(Γ) and let

ΓgΓ =

c⊔
i=1

Γgi.

Then

ΓgΓ = Γσ(g)Γ

= σ(ΓgΓ)

=

c⊔
i=1

σ(gi)Γ.

We prove that Γgk ∩ σ(gl)Γ 6= ∅ for all k and l. Assume that Γgk ∩ σ(gl)Γ = ∅. Then

Γgk ⊆
⊔
i 6=l

σ(gi)Γ

implying that

ΓgΓ = ΓgkΓ ⊆
⊔
i6=l

σ(gi)Γ ⊂ ΓgΓ

which is, of course, a contradiction. Thus Γgk ∩ σ(gl)Γ 6= ∅. In particular, Γgi ∩ σ(gi)Γ 6= ∅ for all

i. For each i, let g′i ∈ Γgi ∩ σ(gi)Γ. Then

ΓgΓ =
⊔
i

Γg′i =
⊔
i

g′iΓ.

Now let ΓgΓ,ΓhΓ ∈ H (Γ, s(Γ)). By the above argument we have sets of representatives {gi} and

{hj} such that

ΓgΓ =
⊔
i

Γgi =
⊔
i

giΓ

and

ΓhΓ =
⊔
j

Γhj =
⊔
j

hjΓ.
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Moreover, we have

ΓgΓ =
⊔
i

Γσ(gi) =
⊔
i

σ(gi)Γ

and

ΓhΓ =
⊔
j

Γσ(hj) =
⊔
j

σ(hj)Γ.

Now we compute the products ΓgΓ · ΓhΓ and ΓhΓ · ΓgΓ. By definition,

ΓgΓ · ΓhΓ =
∑

[γ]∈Γ\s(Γ)/Γ

cγΓγΓ

and

ΓhΓ · ΓgΓ =
∑

[γ]∈Γ\s(Γ)/Γ

c′γΓγΓ.

We need to prove that cγ = c′γ for all γ ∈ s(Γ). To this end, we have that

cγ = #{(i, j) : Γgihj = Γγ}

=
#{(i, j) : ΓgihjΓ = ΓγΓ}

|Γ \ ΓγΓ|

=
#{(i, j) : Γσ(hj)σ(gi)Γ = Γσ(γ)Γ}

|Γ \ Γσ(γ)Γ|

= c′γ .

The claim is proved.

2.3 Hecke Operators on the Space of Automorphic Forms

Recall that we showed previously that if the group G acts on X on the right then G acts on the

Z-module H(X) on the left via ?k. Let Γ be a subgroup of G and let s(Γ) be a subgroup of G such

that Γ ⊆ s(Γ) ⊆ ComG(Γ). By definition, H(X)Γ =Mk(Γ) and hence H (Γ, s(Γ)) acts on Mk(Γ)

by

f [ΓgΓ]k =
∑
i

f ?k gi

for f ∈Mk(Γ), g ∈ s(Γ), and with

ΓgΓ =
⊔
i

Γgi

a disjoint decomposition into right cosets. By Proposition 2.2.4 we know that f [ΓgΓ]k ∈ Mk(Γ).

It is often common to include a normalization factor in the definition of f [ΓgΓ]k, however we will

be sure to specify when this is included in our later definitions.
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3 The General Symplectic Group, the Paramodular Group

and Siegel Paramodular Forms

3.1 The General Symplectic Group and the Paramodular Group

The goal of this section is to define the key groups and objects that will play a big role in this

work. In addition, we will identify important elements and relations that these groups and objects

exhibit.

Let En denote the n× n identity matrix, and let 0n denote the n× n zero matrix. We put

Jn =

 0n En

−En 0n

 .
We call Jn a symplectic form.

Definition 3.1.1. The general symplectic group is defined as

GSp(2n,R) = {g ∈ GL(2n,R) : tgJng = λ(g)Jn}

where λ : GSp(2n,R)→ R\{0} is a group homomorphism called the multiplier homomorphism.

We denote by GSp+(2n,R) the subgroup of the general symplectic group consisting of elements

g with λ(g) > 0. Let

g =

A B

C D

 ∈ GSp(2n,R)

with A,B,C,D ∈ M(2n,R). Then a computation establishes that tAC = tCA, tBD = tDB, and

tAD − tCB = λ(g)En. We further note here that if tgJng = λ(g)Jn then

tg = λ(g)Jng
−1J−1

n = −λ(g)Jng
−1Jn

and

t(tg)Jn
tg = t(−λ(g)Jng

−1Jn)Jn(−λ(g)Jng
−1Jn)

= (λ(g)2)tJn(tg−1)tJnJnJng
−1Jn

= (λ(g)2)tJn(tg−1)Jng
−1Jn

= (λ(g)2)λ(g−1)tJnJnJn

= λ(g)Jn



18

which implies that tg ∈ GSp(2n,R). It is clear that if g ∈ GSp+(2n,R) then tg ∈ GSp(2n,R). This

closure under transposition property implies that if

g =

A B

C D

 ∈ GSp(2n,R)

with A,B,C,D ∈ M(2n,R) we have the additional relations AtB = BtA, CtD = DtC, and AtD −

BtC = λ(g)En.

Definition 3.1.2. The symplectic group is defined to be

Sp(2n,R) = {g ∈ GSp(2n,R) : λ(g) = 1}.

From an arithmetic point of view we will be interested in some specific subgroups of Sp(2n,R).

Definition 3.1.3. The modular group is defined to be

Sp(2n,Z) = Sp(2n,R) ∩M(2n,Z).

Definition 3.1.4. Let M ≥ 1 be an integer. The principal congruence subgroup of level M

is defined to be

Γ(M) = {g ∈ Sp(2n,Z) : g ≡ E2n (mod M)}.

We call Γ ⊆ Sp(2n,Z) a congruence subgroup of level M if Γ(M) ⊆ Γ and Γ(M ′) 6⊆ Γ for all

M ′ < M .

From this point on we fix n = 2 and we set J2 = J . We mention some important congruence

subgroups. For an integer M ≥ 1, the Siegel congruence subgroup is

Si(4,M) = Sp(4,Z) ∩


Z Z Z Z

Z Z Z Z

MZ MZ Z Z

MZ MZ Z Z

 ,

i.e., those matrices in the modular group whose lower left 2× 2 block is congruent to 0 modulo M .

The Klingen congruence subgroup is

Kl(4,M) = Sp(4,Z) ∩


Z Z Z Z

MZ Z Z Z

MZ MZ Z MZ

MZ Z Z Z

 .
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The Klingen congruence subgroup will play an important role in this work. We also define the

subgroup of GSp(4,R) that will be of the most importance to us.

Definition 3.1.5. Let M ≥ 1 be an integer. We define the paramodular group of level M to

be

K(M) = Sp(4,R) ∩M(4,Q) ∩


Z Z M−1Z Z

MZ Z Z Z

MZ MZ Z MZ

MZ Z Z Z

 .

We note that Kl(M) = Kl(4,M) ⊆ K(M) and K(1) = Sp(4,Z). The paramodular group also

contains some important symmetry elements that we will abuse frequently.

Proposition 3.1.6. Let M ≥ 1 be an integer. Let

V ∈ Γ0(M) ∪


1 0

0 −1

 ,

and let

T ∈

M−1Z Z

Z Z

 .
with tT = T . Then V 02

02
tV −1

 ,
E2 T

02 E2

 ∈ K(M).

Proof. It is clear that the elements are of the appropriate form. We need only show that they are

in GSp+(4,R). We havetV 02

02 V −1

 02 E2

−E2 02

V 02

02
tV −1

 =

tV 02

02 V −1

 02
tV −1

−V 02


=

 02 E2

−E2 02


and E2 02

tT E2

 02 E2

−E2 02

E2 T

02 E2

 =

E2 02

T E2

 02 E2

−E2 −T


=

 02 E2

−E2 02

 .
The claim is proved.
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The paramodular group also contains the following four symmetry elements which will be in-

valuable in many computations

tM =


0 0 −M−1 0

0 1 0 0

M 0 0 0

0 0 0 1

 , p1 =


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 , and p2 =


1 0 0 0

0 a′ 0 b′

0 0 1 0

0 c′ 0 d′

 ,

where a b

c d

 ∈ Γ0(M) and

a′ b′

c′ d′

 ∈ SL(2,Z).

For much of the matrix theory ahead, it is convenient to prove some claims for M = 1 and then

extend to general M > 1.

3.2 Some Results on K(1) = Sp(4,Z)

Our goal of this section is to prove some structural theorems involving K(1) = Sp(4,Z). We start

with a few technical lemmas.

Lemma 3.2.1. Let

u =

u1

u2

 and v =
[
v1 v2

]
with u1, u2, v1, v2 ∈ Z. Then there exists matrices g, h ∈ SL(2,Z) such that

gu =

δ1
0

 and vh =
[
δ2 0

]
where δ1 = gcd(u1, u2) and δ2 = gcd(v1, v2).

Proof. Let δ1 = gcd(u1, u2) and write δ1 = au1 + bu2. Then

1 = a
u1

δ1
+ b

u2

δ1

and hence  a b

−u2

δ1

u1

δ1

 ∈ SL(2,Z)
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and  a b

−u2

δ1

u1

δ1


u1

u2

 =

δ1
0

 .
The other case is proved similarly.

Lemma 3.2.2 (Smith normal form over SL(2,Z)). Let A be a 2 × 2 integer matrix. There exists

g, h ∈ SL(2,Z) such that

gAh =

m1 0

0 m2


with m1,m2 ∈ Z and m1|m2.

Proof. Let

A =

a b

c d

 ∈M(2,Z).

and let δ1 = gcd(a, c). By Lemma 3.2.1, there exists α1 ∈ SL(2,Z) such that

α1A =

δ1 b2

0 d2

 .
Now let δ2 = gcd(δ1, b2). Again by Lemma 3.2.1, there exists α2 ∈ SL(2,Z) such that

α1Aα2 =

δ2 0

c3 d3

 .
We repeat this process and thus build a sequence {δn}∞n=1. It is clear that for all n ∈ N, δn+1 ≤ δn.

Let r be the minimal such r such that δr+1 = δr. We suppose for now that r is odd. Then, by

nature of the construction in Lemma 3.2.1, we end up at

αrαr−2 · · ·α1Aα2α4 · · ·αr+1 =

δr+1 0

0 dr+2

 .
If δr+1|dr+2 then we are done. If this is not the case then we add a few more steps. First multiply

on the right by

α =

1 0

1 1





22

to obtain

αrαr−2 · · ·α1Aα2α4 · · ·αr+1α =

δr+1 0

dr+2 dr+2

 .
Let δ = gcd(δr+1, dr+2) and let x, y ∈ Z be such that δ = xδr+1 + ydr+2. Then

β =

 x y

−dr+2

δ

δr+1

δ

 ∈ SL(2,Z)

and

βαrαr−1 · · ·α1Aα2α4 · · ·αr+1α =

δ ydr+2

0
δr+1

δ
dr+2

 .
Lastly, we multiply on the right by

γ =

1 −ydr+2

δ

0 1


to obtain

βαrαr−1 · · ·α1Aα2α4 · · ·αr+1αγ =

δ 0

0
δr+1

δ
dr+2


completing the proof in the case r is odd. The proof is similar in the case r is even

Lemma 3.2.3. Let

u =


u1

u2

u3

u4


with u1, u2, u3, u4 ∈ Z. Then there exists g ∈ Sp(4,Z) such that

gu =


δ

0

0

0


where δ = gcd(u1, u2, u3, u4)
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Proof. Note that Sp(4,Z) contains the elements
a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 ,


1 0 0 0

0 a 0 b

0 0 1 0

0 c 0 d

 , and


a b 0 0

c d 0 0

0 0 d −c

0 0 −b a


where a b

c d

 ∈ SL(2,Z).

The result now follows from three applications of Lemma 3.2.1.

The previous lemmas are pivotal in proving some extremely valuable results.

Proposition 3.2.4. Let g ∈ M(4,Q) be such that tgJg = qJ for some q ∈ Q \ {0}. Then there

exists α ∈ Sp(4,Z) such that αg has the form
a1 a2 b1 b2

0 a4 b3 b4

0 0 d1 0

0 0 d3 d4

 ∈M(4,Q).

Proof. Start by writing g in the form

g =


u1 u2 u3 u4

u5 u6 u7 u8

u9 u10 u11 u12

u13 u14 u15 u16


with ui ∈ Q for 1 ≤ i ≤ 16. Without loss of generality we may assume that ui ∈ Z for 1 ≤ i ≤ 16.

We then apply the Lemma 3.2.3 to the first column of g. So for some γ1 ∈ Sp(4,Z) we obtain

γ1g =


u′1 u′2 u′3 u′4

0 u′6 u′7 u′8

0 u′10 u′11 u′12

0 u′14 u′15 u′16


with u′1 = gcd(u1, u2, u3, u4). Sinceu′1 0

u′2 u′6

0 u′10

0 u′14

 =

 0 0

u′10 u′14

u′1 u′2

0 u′6
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we see that u′1u
′
10 = 0 and hence u′10 = 0. Moreover, since0 0

0 u′14

u′11 u′15

u′12 u′16

 =

u′11 u′12

u′15 u′16

0 0

0 u′14


we see that u′12u

′
14 = 0 and hence u′14 = 0 or u′12 = 0. If u′14 = 0 then the fact thatu′1 0

u′2 u′4

u′11 u′12

u′15 u′16

 =

λ(g) 0

0 λ(g)


yields u′1u

′
12 = 0. Hence u′12 = 0. If u′12 = 0 then we have a matrix of the form

γ1g =


u′1 u′2 u′3 u′4

0 u′6 u′7 u′8

0 0 u′11 0

0 u′14 u′15 u′16

 .

Considering the submatrix  u′6 u′8

u′14 u′16


we apply Lemma 3.2.1 to obtain a matrix β ∈ SL(2,Z) such that

β

 u′6 u′8

u′14 u′16

 =

u′′6 u′′8

0 u′′16


where u′′6 = gcd(u′6, u

′
14). But then the previous lemma allows us to construct a matrix γ2 ∈ Sp(4,Z)

using β to obtain a matrix of the form

γ2γ1g =


u′1 u′2 u′3 u′4

0 u′′6 u′′7 u′′8

0 0 u′11 0

0 0 u′′15 u′′16

 .

This completes the proof.

Putting everything together we obtain the following theorem.

Theorem 3.2.5. Every double coset Sp(4,Z)gSp(4,Z) with g ∈ GSp+(4,Q) contains an element

of the form

diag(d1, d2, e1, e2)

with d1, d2, e1, e2 > 0, d1|d2|e2|e1, and d1e1 = d2e2 = λ(g).
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Proof. We follow the proof given in [2] and [5]. Without loss of generality, we may assume that g is

an integer matrix. Furthermore, we may assume that g has relatively prime entries. Let δi denote

the greates common divisor of the ith column of g, and let δ = min{δi : 1 ≤ i ≤ 4}. We proceed by

induction on δ and prove that the double coset Sp(4,Z) contains a representative of the form
1 0 0 0

0 u6 0 u8

0 0 λ(g) 0

0 u14 0 u16

 .

First suppose that δ = 1. Let i be the index of the first column whose entries are relatively prime.

By replacing g by gJ we assume i = 1 or i = 2. If i = 2, we replace g by

g


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


allowing us to assume that i = 1. We now apply Lemma 3.2.3 to the first column of g obtaining a

matrix of the form 
1 u2 u3 u4

0 u6 u7 u8

0 u10 u11 u12

0 u14 u15 u16

 .

We now multiply on the right by the matrix
1 u2 0 0

0 1 0 0

0 0 1 0

0 0 −u2 0


to obtain a matrix of the form 

1 0 u′3 u4

0 u6 u′7 u8

0 u10 u′11 u12

0 u14 u′15 u16

 .
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We then multiply on the right by 
1 0 −u′3 −u4

0 1 −u4 0

0 0 1 0

0 0 0 1


to arrive at a matrix of the form 

1 0 0 0

0 u6 u′′7 u8

0 u10 u′′11 u12

0 u14 u′′15 u16

 .

It now follows from relations on GSp(4,R) that u′′7 = u10 = u12 = u′′15 = 0. We have thus arrived

at a matrix of the form 
1 0 0 0

0 u6 0 u8

0 0 λ(g) 0

0 u14 0 u16

 .

This proves the claim for δ = 1. We now assume the claim has been proven for all matrices with

relatively prime entries with δ < δ′. We prove the claim for matrices with relatively prime entries

and with δ = δ′. As before, we modify until we obtain a matrix of the form
δ′ u2 u3 u4

0 u6 u7 u8

0 u10 u11 u12

0 u14 u15 u16


with the property that u2, u3, and u4 lie between 1 and δ′ (with 1 and δ′ allowed). We then have a

matrix with δ ≤ δ′. If δ = δ′ then all entries of the matrix would be divisible by δ′, a contradiction.

Thus δ < δ′. By the induction hypothesis, we obtain a matrix of the desired form. Returning now

to the general case we have the ability to modify g to obtain a matrix of the form
d1 0 0 0

0 u6 0 u8

0 0 e1 0

0 u14 0 u16
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with d1, e1 > 0, d1|e1, and d1e1 = λ(g). Now we apply Lemma 3.2.2 to the block u6 u8

u14 u16


to obtain a matrix of the form 

d1 0 0 0

0 d2 0 0

0 0 e1 0

0 0 0 e2


with d2, e2 > 0, d2|e2, and d2e2 = λ(g). If necessary, we apply Lemma 3.2.2 to the blockd1 0

0 d2


to ensure that d1|d2. We thus can guarantee a matrix of the form

d1 0 0 0

0 d2 0 0

0 0 e1 0

0 0 0 e2


with d1, d2, e1, e2 > 0, d1|d2|e2|e1, and d1e1 = d2e2 = λ(g). The proof is complete.

3.3 Siegel Paramodular Forms

The Siegel upper half-space is the set

H2 = {Z ∈M(2,C) : tZ = Z, Im(Z) > 0}.

The group GSp+(4,R) acts on H2 by

g · Z = (AZ +B)(CZ +D)−1

for

g =

A B

C D

 ∈ GSp+(4,R)
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with A,B,C,D ∈M(2, R) and Z ∈ H2. We saw in Section 2.1 that this left action on H2 induces

a right action on H(H2). We have for k ≥ 0

(F ?k g)(Z) = λ(g)kdet(CZ +D)−kF (g · Z)

for g ∈ GSp+(4,R) as above and Z ∈ H2.

Definition 3.3.1. Let M ≥ 1 and k ≥ 0 be fixed integers. Let F : H2 → C be a holomorphic

function. We say F is a Siegel paramodular form of level M and weight k if for all g ∈ K(M)

we have

F ?k g = F.

By Proposition 3.1.6 we have E2 E2

02 E2

 ∈ K(M)

and hence for a Siegel paramodular form of level M and weight k we have

F ?k

E2 E2

02 E2

 = F.

This is to say

F (Z + E2) = F (Z),

i.e., F is periodic. The Koecher principle (see [5], pg. 62) implies that F has a Fourier expansion

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ)

where

A(1) =


 r t/2

t/2 s

 ∈M(2,Q) : r, t, s ∈ Z and rs− t2

4
≥ 0

 .

Proposition 3.3.2. Let M ≥ 1 and k ≥ 0 be integers. Let F : H2 → C be a Siegel paramodular

form of level M and weight k with Fourier expansion

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ).
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If M - r, then a(S) = 0 and for all

U ∈ Γ0(M) ∪

1 0

0 −1

Γ0(M)

we have

a(S) = a(tUSU).

Proof. Both of these claims follow easily by observing that K(M) contains the elements
1 0 M−1n 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,
U 02

02
tU−1



where n ∈ Z and

U ∈ Γ0(M) ∪

1 0

0 −1

Γ0(M)

by Proposition 3.1.6.

The previous proposition establishes that a Siegel paramodular form of level M and weight k

has a Fourier expansion of the form

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ)

where

A(M) =


Mr t/2

t/2 s

 ∈M(2,Q) : r, t, s ∈ Z and Mrs− t2

4
≥ 0

 .

For more information on Siegel paramodular forms one should see [33] and [35]. If one is inter-

ested in the Siegel paramodular forms in accordance with the paramodular conjecture of Brumer

and Kramer [6] then one should see [31] and [32].
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4 Construction of Paramodular Hecke Operators

In this chapter we will be developing the definition of the paramodular Hecke operators that are

used in the literature. We will be doing this by first looking at the Hecke operators of a specific

congruence subgroup of Sp(4,Z) and then extending in a natural way to the paramodular group

K(M).

4.1 Hecke Operators of a Certain Congruence Subgroup

In this section we will construct the Hecke operators of a certain congruence subgroup of Sp(4,Z)

following the construction appearing in [2]. Let

s(M) =


g =


∗ ∗ ∗ ∗

M∗ ∗ ∗ ∗

M∗ M∗ ∗ M∗

M∗ ∗ ∗ ∗

 ∈ GSp+(4,Q) ∩GL(4,Z(M)) : ∗ ∈ Z(M)


where Z(M) is the ring of rational numbers whose denominator is prime to M ∈ Z. It is clear that

s(M) is a subgroup of GSp+(4,Q). Define also the group

s∗(M) =

g ∈ GSp+(4,Q) ∩GL(4,Z(M)) : g ≡

E2 02

02 λ(g)E2

 (mod M)

 .

where

E2 =

1 0

0 1

 .
Each of these groups play an important role in building the operators we are interested in

studying. To build the Hecke operators of the paramodular group we begin with a study of a certain

congruence subgroup whose associated Hecke operators are related to those of the paramodular

group.

Definition 4.1.1. Let Γ be a congruence subgroup of Sp(4,Z). We say that Γ is M-symmetric

if

Γs∗(M) = s∗(M)Γ.
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In this case, we associate to Γ the set

sΓ(M) = Γs∗(M)Γ = Γs∗(M) = s∗(M)Γ

which is a subgroup of GSp+(4,Q). We call sΓ(M) the symmetrizer of Γ.

Recall now the definition of the Klingen parabolic subgroup, Kl(M), given in § 5. This congru-

ence subgroup will be the group that will help us bridge the gap to the definition of the paramodular

Hecke operators.

Lemma 4.1.2. Each of the right cosets Kl(M)g with g ∈ s(M) contains a representative of the

form 
a1 a2 b1 b2

0 a4 b3 b4

0 0 d1 0

0 0 d3 d4

 .

Proof. By Theorem 3.2.4, there exists α ∈ Sp(4,Z) such that αg = g′ is of the desired form. But

α = g′g−1 ∈ s(M) ∩ Sp(4,Z) = Kl(M).

This completes the proof.

Lemma 4.1.3. The congruence subgroup Kl(M) is an M -symmetric group. Moreover,

s(M) = sKl(M)(M).

Proof. Let g ∈ s(M). By Lemma 4.1.2, we may assume that g is of the form
a1 a2 b1 b2

0 a4 b3 b4

0 0 d1 0

0 0 d3 d4

 .

Consider the matrix

g′ =



− 1
a1

a2
a1a4

1
d1

(
b1
a1
− a2b3

a1a4

)
− d3

d1d4

(
b2
a1
− a2b4

a1a4

)
1
d4

(
b2
a1
− a2b4

a1a4

)
0 − 1

a4
1
d1

(
b3
a4
− b4d3

a4d4

)
b4
a4d4

0 0 a1 0

0 0 a2 a4


∈ s(M).
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Then g′ is an M -integral matrix and, modulo M , belongs to Sp(4,Z/MZ). Let α ∈ Sp(4,Z) such

that α ≡ g′ (mod M). Then clearly α ∈ Kl(M) and

αg ≡ g′g (mod M)

=


− 1
a1

a2
a1a4

1
d1

(
b1
a1
− a2b3
a1a4

)
− d3
d1d4

(
b2
a1
− a2b4
a1a4

)
1
d4

(
b2
a1
− a2b4
a1a4

)
0 − 1

a4

1
d1

(
b3
a4
− b4d3
a4d4

)
b4
a4d4

0 0 a1 0

0 0 a2 a4




a1 a2 b1 b2

0 a4 b3 b4

0 0 d1 0

0 0 d3 d4



=


1 0 0 0

0 1 0 0

0 0 a1d1 0

0 0 a2d1 + a4d3 a4d4

 =


1 0 0 0

0 1 0 0

0 0 λ(g) 0

0 0 0 λ(g)

 ,

where the last equality follows from the definitions of GSp+(4,R). Thus αg ∈ s∗(M) and therefore

g ∈ Kl(M)s∗(M). Consider now g−1. Since s(M) is a subgroup of GSp+(4,Q), g−1 ∈ s(M). By a

similar argument as above we have β ∈ Kl(M) such that

βg−1 ≡

I1 02

02 λ(g−1)I1

 (mod M).

Hence it follows that

g−1 ∈ Kl(M)s∗(M).

We then deduce that g ∈ s∗(M)Kl(M). This proves that s(M) ⊆ Kl(M)s∗(M) and s(M) ⊆

s∗(M)Kl(M). Since it is obvious that each of the reverse inclusions hold, we have that

Kl(M)s∗(M) = s∗(M)Kl(M).

Hence Kl(M) is M -symmetric. It follows immediately that

s(M) = sKl(M)(M).

The lemma is proved.

The main purpose of Lemma 4.1.3 will be apparent in a moment, but in the meantime let’s

state the following theorem from [2] which will also be of some significance.

Theorem 4.1.4. Let Γ and Γ′ be two congruence subgroups of Sp(4,Z) and suppose that both Γ

and Γ′ are both M -symmetric with Γ ⊂ Γ′. Then



33

(i) sΓ(M) = ΓsΓ′(M) = sΓ′(M)Γ,

(ii) Sp(4,Z) ∩ sΓ(M) = Γ,

(iii) if g, g′ ∈ sΓ(M) and g′ ∈ Γ′gΓ′, then g′ ∈ Γ(M)gΓ, where Γ(M) is the principal congruence

subgroup of level M .

Proof. As mentioned prior to the statement of the theorem, see [2], Theorem 3.3.3, for the proof of

these statements.

These results now come together to establish a very fundamental result about the diagonaliz-

ability of the double cosets of the form

Kl(M)gKl(M),

where g ∈ s(M).

Theorem 4.1.5. Let g ∈ s(M) where M ≥ 1. There exists d1, d2, e1, e2 ∈ Q with di, ei > 0 for

i ∈ {1, 2}, d1|d2|e2|e1, and diei = λ(g) for i ∈ {1, 2} such that

Kl(M)gKl(M) = Kl(M)diag(d1, d2, e1, e2)Kl(M).

Moreover, the numbers d1, d2, e1, e2 ∈ Q are unique.

Proof. The statement for M = 1 was proven in Theorem 3.2.5. For arbitrary M > 1 let γ1, γ2 ∈

Sp(4,Z) be such that γ1gγ2 is of the form diag(d1, d2, e1, e2) with d1, d2, e1, e2 satisfying the desired

conditions. Since diag(d1, d2, e1, e2) ∈ s(M), by Theorem 4.1.4(iii) we have

diag(d1, d2, e1, e2) ∈ Γ(M)gKl(M)

⊂ Kl(M)gKl(M).

We now prove uniqueness. Let diag(d1, d2, e1, e2) and diag(d′1, d
′
2, e
′
1, e
′
2) be two matrices that

satisfy the conclusions of the theorem. Then there exists matrices γ1, γ2 ∈ Kl(M) such that

γ1diag(d1, d2, e1, e2)γ2 = diag(d′1, d
′
2, e
′
1, e
′
2).

One can deduce from this relation that d1|d′1. Similarly we have d′1|d1. Hence d1 = d′1 and it follows

that

d1e1 = d′1e
′
1 = d1e

′
1
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and thus e1 = e′1. Next we compute the 2 × 2 principal minors and compare. It is apparent from

the computation that we must have d2|d′2. Similarly we have d′2|d2. Hence d2 = d′2 and it follows

that e2 = e′2. Thus uniqueness is proved.

Fix k ∈ N. Let us now consider the subsets of s(M)

sn(M) = {g ∈ s(M) ∩M(4,Z) : λ(g) = n}

for n ∈ N and gcd(n,M) = 1. We define the Hecke operators T (n) for n ∈ N with gcd(n,M) = 1

for the Klingen parabolic subgroup by

T (n) = nk−3
∑

[g]∈Kl(M)\sn(M)/Kl(M)

[Kl(M)gKl(M)]k

= nk−3
∑

d1,d2,e1,e2∈N
d1|d2|e2|e1
d1e1=d2e2=n

[Kl(M)diag(d1, d2, e1, e2)Kl(M)]k,

where [Kl(M)gKl(M)]k is defined as in Section 2.3 and the last equality follows from Theorem

4.1.5.

Theorem 4.1.6. Let n, n′ ∈ N with gcd(n, n′) = gcd(nn′,M) = 1. Then

T (n)T (n′) = T (nn′) = T (n′)T (n).

Proof. We prove the commutativity relation first. Consider the map σ : s(M)→ s(M) defined by

σ




a1 a2 b1 b2

Ma3 a4 b3 b4

Mc1 Mc2 d1 Md2

Mc3 c4 d3 d4



 =


a1 a3 c1 c3

Ma2 a4 c2 c4

Mb1 Mb3 d1 Md3

Mb2 b4 d2 d4

 .

A tedious yet straightforward computation establishes that σ(gh) = σ(h)σ(g), σ(σ(g)) = g,

σ(Kl(M) = Kl(M)), and Γσ(g)Γ = ΓgΓ for all g, h ∈ s(M). The result now follows by Theo-

rem 2.2.7. The multiplicativity of the Hecke operators follows from the fact that

sn(M)sn′(M) = snn′(M)

whenever gcd(n, n′) = 1.

We have that each double coset Kl(M)gKl(M) for g ∈ s(M) is a finite union of right cosets, i.e.,

Kl(M)gKl(M) =

m⋃
i=1

Kl(M)gi.
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Therefore, since |Kl(M) \ sn(M)/Kl(M)| is finite, we have that T (n) is defined in terms of a finite

collection of matrices. Ultimately, in lieu of the commutativity and multiplicativity relation in

Theorem 4.1.6, we are able consider just the operators T (pr0) for p prime with gcd(p,M) = 1 and

r0 ≥ 0,

T (pr0) = pr0(k−3)
∑

r1≤r2≤b r02 c

Kl(M)


pr1 0 0 0

0 pr2 0 0

0 0 pr0−r1 0

0 0 0 pr0−r2

Kl(M)


k

.

4.2 Hecke Operators over K(M), p -M

In this section we will look at the paramodular Hecke operators over K(M) . We will be using the

results from the previous section and so we will only be constructing operators for p - M at this

point in time. We’ll start by considering the group

s◦(M) =


g =


∗ ∗ M−1∗ ∗

M∗ ∗ ∗ ∗

M∗ M∗ ∗ M∗

M∗ ∗ ∗ ∗

 ∈ GSp+(4,Q) ∩GL(4,M−1Z(M)) : ∗ ∈ Z(M)


which is a subgroup of GSp+(4,Q). We will again be considering double cosets of the form

K(M)gK(M), g ∈ s◦(M).

It turns out that we actually won’t need to use the entirety of s◦(M).

Lemma 4.2.1. Let g ∈ s◦(M). Then there exists γ ∈ K(M) such that gγ ∈ s(M).

Proof. Let g ∈ s◦(M). Then g has the form
a1 a2 M−1b1 b2

Ma3 a4 b3 b4

Mc1 Mc2 d1 Md2

Mc3 c4 d3 d4

 .

As the denominators of the entries ai, bi, ci, di for i ∈ {1, 2, 3, 4} are relatively prime to M , we

may clear the denominators to obtain a matrix which is still in GL(4,M−1Z). Upon clearing
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denominators we may assume that ai, bi, ci, di ∈ Z for i ∈ {1, 2, 3, 4}. Now we note that the matrix

γ =


1 0 M−1y 0

0 1 0 0

Mx 0 xy + 1 0

0 0 0 1


is an element of K(M) for all x, y ∈ Z. Let d = gcd(a1, b1) and let d0 = gcd(a1, b1,M). Write

a1 = md and b1 = nd and note that gcd(m,n) = 1. By Dirichlet’s theorem on primes in arithmetic

progression we may choose x such that gcd(m+nx,M) = 1. It then follows that gcd(a1 +b1x,M) =

d0. Pick y, z ∈ Z such that −(a1 + b1x)y + zM = b1. Then
a1 a2 M−1b1 b2

Ma3 a4 b3 b4

Mc1 Mc2 d1 Md2

Mc3 c4 d3 d4




1 0 M−1y 0

0 1 0 0

Mx 0 xy + 1 0

0 0 0 1


is an integral matrix.

Since Kl(M) ⊂ K(M), by Theorem 4.1.5, we know that every double coset K(M)gK(M) with

g ∈ s(M) contains an element of the form diag(d1, d2, e1, e2) with d1|d2|e2|e1. Moreover, this

element is unique by a similar argument for the case of double cosets of the form Kl(M)gKl(M).

Let k ∈ N. We can now define the weight k paramodular Hecke operators in the same way as for

the case of the Klingen parabolic subgroup. The paramodular Hecke operators are given by

T (n) = nk−3
∑

g∈K(M)\sn(M)/K(M)

[K(M)gK(M)]k

= nk−3
∑

d1,d2,e1,e2∈N
d1|d2|e2|e1
d1e1=d2e2=n

[K(M)diag(d1, d2, e1, e2)K(M)]k, (n,M) = 1, n ∈ N.

The commutativity of these operators follows via a similar argument to that used with the Hecke

operators for the Klingen subgroup. This allows us to again restrict our attention to the operators

T (pr0) = pr0(k−3)
∑

r1≤r2≤b r02 c

K(M)


pr1 0 0 0

0 pr2 0 0

0 0 pr0−r1 0

0 0 0 pr0−r2

K(M)


k

. (4.1)

where p is a prime with gcd(p,M) = 1 and r0 ≥ 0.
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Like with the Klingen subgroup, the double cosets appearing above can be decomposed into a

finite number of right cosets. With such a decomposition we would be able to compute the explicit

action of these operators on a Siegel paramodular form. In order to do this we need a complete

system of representatives for the double cosets appearing in the formula for T (pr0). The following

proposition provides this system of representatives.

Definition 4.2.2. We let

Dα,β =

pα 0

0 pα+β


where p is a prime, α, β ≥ 0 and α+ β ≤ r0.

Definition 4.2.3. Let B,B′ ∈ M(2,Z) and D ∈ GL(2,Q) ∩M(2,Z). We say that B and B′ are

equivalent modulo D if

(B −B′)D−1 ∈M(2,Z).

We also define a special set of matrices.

Definition 4.2.4. Let M ≥ 1 be an integer and let p be a prime with p - M . For integers β ≥ 0

define the set R(pβ) to be a complete system of representatives of the set Γ0(M)/Γ0(Mpβ).

Note that R(pβ) has size

[Γ0(M) : Γ0(Mpβ)] =
[SL(2,Z) : Γ0(Mpβ)]

[SL(2,Z) : Γ0(M)]
=

Mpβ
∏

q|Mpβ

(
1 +

1

q

)

M
∏
q|M

(
1 +

1

q

) =


pβ
(

1 + 1
p

)
if β ≥ 1,

1 if β = 0.

We will construct an explicit representation of R(pβ) shortly. However we first prove a proposition

that is critical to computing the action of the Hecke operators on a Siegel paramodular form.

Proposition 4.2.5. Let M ≥ 1 and r0 ≥ 0 be integers and let p be a prime not dividing M . The

set

V (pr0) =
⊔

α,β≥0
α+β≤r0


A B

02 D

 ∈ spr0 (M) : D = Dα,β(tU), U ∈ R(pβ), A = pr0 · tD−1, BmodD


is a complete set of representatives of the right cosets contained in the double cosets appearing in

equation (4.1).
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Proof. Let g1, g2 ∈ V (pr0) such that K(M)g1 = K(M)g2. We will prove that g1 = g2. According

to Lemma 4.1.2 we assume that g1 and g2 are of the form

g1 =

A1 B1

02 D1

 and g2 =

A2 B2

02 D2

 ,
with

D1 = Dα1,β1

tU1 and D2 = Dα2,β2

tU2.

where U1, U2 ∈ R(pβ). By definition of the set V (pr0) we have αi, βi ≥ 0 and αi + βi ≤ r0 for

i ∈ {1, 2}. Further we have

A1 = pr0 · tD−1
1 and A2 = pr0 · tD−1

2

and B1, B2 ∈ M(2,Z). From the equality K(M)g1 = K(M)g2 we have g1g
−1
2 ∈ K(M). Therefore

g1g
−1
2 =

A1A
−1
2 −A1A

−1
2 B2D

−1
2 +B1D

−1
2

02 D1D
−1
2

 ∈ K(M).

Let V = A1A
−1
2 and T = −A1A

−1
2 B2D

−1
2 + B1D

−1
2 . Note that V ∈ GL(2,Z) and thus D1D

−1
2 ∈

GL(2,Z). However,

D1D
−1
2 = Dα1,β1

tU1
tU−1

2 D−1
α2,β2

= pα1−α2

 a p−β2b

pβ1c pβ1−β2d


where

tU1
tU−1

2 =

a b

c d

 ∈ tΓ0(M).

It follows that GL(2,Z)Dα1,β1GL(2,Z) = GL(2,Z)Dα2,β2GL(2,Z). By the uniqueness of the Smith

normal form (see Theorem 3.2.2) we must have α1 = α2 and β1 = β2. We write α = α1 = α2 and

β = β1 = β2. We now have

D1D
−1
2 =

 a p−βb

pβc d

 .
Since this matrix is in GL(2,Z) we must have pβ |b. Since p -M we have that

U−1
2 U1 ∈ Γ0(pβM).
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This implies that U1 = U2, D1 = D2, and A1 = A2. We write U = U1 = U2, A = A1 = A2, and

D = D1 = D2. We thus have

T = −B2D
−1 +B1D

−1 = (B1 −B2)D−1.

We know that

T ∈

M−1Z Z

Z Z

 .
Furthermore,

T = (B1 −B2)D−1

= (B1 −B2)tU−1D−1
α,β

=

p−αn ∗

∗ ∗


where n ∈ Z. Since p−αn = M−1m for some m ∈ Z we have Mn = pαm and thus pα|n. Thus

T ∈ M(2,Z) and B1 ≡ B2 (mod D). This implies that B1 = B2. Hence g1 = g2.

We now show that if K(M)g for g ∈ spr0 (M) is a left coset contained in one of the double cosets

appearing in equation (4.1) then there exists g′ ∈ V (pr0) such that K(M)g = K(M)g′. By Lemma

4.1.2 there exists a matrix in K(M)g of the form
a1 a2 b1 b2

0 a4 b3 b4

0 0 d1 0

0 0 d3 d4

 .

We may assume that the determinant of

D =

d1 0

d3 d4


is positive since K(M) contains the element

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 .
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Moreover, we have that the determinant of D is a power of p. We put D into Smith normal form

and we see that by Lemma 3.2.2

D ∈ SL(2,Z)Dα,βSL(2,Z)

for some α, β ≥ 0 with α+ β ≤ r0. We can actually say something more. In fact,

D ∈ tΓ0(M)Dα,β
tΓ0(M).

Since g ∈ spr0 (M) it follows that α+ β ≤ r0. The double coset

tΓ0(M)Dα,β
tΓ0(M)

can be decomposed into a disjoint union of right cosets

tΓ0(M)Dα,β
tΓ0(M) =

m⊔
i=1

tΓ0(M)γi.

We have that m = [tΓ0(M) : Dα,β
tΓ0(M)D−1

α,β ] = [tΓ0(M) : tΓ0(Mpβ)]. It is clear that for

U ∈ R(pβ) we have

tΓ0(M)Dα,β
tU ⊆ tΓ0(M)Dα,β

tΓ0(M).

We proved above that if tΓ0(M)Dα,β
tU1 = tΓ0(M)Dα,β

tU2 for U1, U2 ∈ R(pβ) then U1 = U2.

Therefore Dα,β
tR(pβ) can be taken as a complete set of representatives of

tΓ0(M)\tΓ0(M)Dα,β
tΓ0(M).

Now we have D = Dα,β
tU for some U ∈ R(pβ). It follows from properties of GSp(4,R) that

A = pr0 · tD−1. Lastly we multiply on the left by a matrix of the formE2 T

02 E2

 ∈ K(M)

with T ∈ M(2,Z) to get E2 T

02 E2

A B

02 D

 =

A B + TD

02 D


thereby allowing us to reduce B (mod D). This completes the proof.

The next result describes R(pβ) explicitly. Note first that R(p0) consists of just I1, the 2 × 2

identity matrix.
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Lemma 4.2.6. Let M ≥ 1 be an integer and let p be a prime not dividing M . For each β ≥ 1 fix

a matrix pβ −aβ

M bβ


where aβ , bβ ∈ Z are such that aβM + bβp

β = 1. For β ≥ 1, the following form a complete set of

representatives of Γ0(M)/Γ0(Mpβ) 1

Mu 1

 , u ∈ Z/pβZ,

Mup+ pβ upbβ − aβ

M bβ

 , u ∈ Z/pβ−1Z.

Proof. Let R be the set including the elements defined above. As #R = #R(pβ), it suffices to show

that each element defines a distinct left coset. First we note that two matricesv1 v2

v3 v4

 ,
v′1 v′2

v′3 v′4


define the same left coset if and only if there existsa b

c d

 ∈ Γ0(Mpβ)

such that v1 v2

v3 v4

a b

c d

 =

v′1 v′2

v′3 v′4

 .
Note that this last equality says

av1 + cv2 = v′1,

av3 + cv4 = v′3.

Hence there exists a ∈ (Z/pβZ)× such that

av1 ≡ v′1 (mod pβ),

av3 ≡ v′3 (mod pβ).

The existence of such an a is also a sufficient condition so we can conclude that the matricesv1 v2

v3 v4

 ,
v′1 v′2

v′3 v′4
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define the same left coset if and only if there exists a ∈ (Z/pβZ)× such that

av1 ≡ v′1 (mod pβ),

av3 ≡ v′3 (mod pβ).

We prove the claim bearing this in mind. If (1, u1M) and (1, u2M) are equivalent modulo pβ then

there exists a ∈ (Z/pβZ)× such that

a ≡ 1 (mod pβ) and au1M ≡ u2M (mod pβ).

This implies that u1M ≡ u2M (mod pβ) and therefore u1 ≡ u2 (mod pβ). If (Mu1p+ pβ ,M) and

(Mu2p+ pβ ,M) are equivalent modulo pβ then there exists a′ ∈ (Z/pβZ)× such that

a′(Mu1p+ pβ) ≡Mu2p+ pβ (mod pβ) and a′M ≡M (mod pβ).

This implies that a′ ≡ 1 (mod pβ) and therefore u1p ≡ u2p (mod pβ). Hence it follows that

u1 ≡ u2 (mod pβ−1). If (1, u1M) and (Mu2p+ pβ ,M) are equivalent modulo pβ then there exists

a′′ ∈ (Z/pβZ)× such that

a′′ ≡Mu2p+ pβ (mod pβ) and a′′u1M ≡M (mod pβ).

This implies that Mu1u2p ≡ 1 (mod pβ). This is of course a contradiction and thus (1, u1M) and

(Mu2p+ pβ ,M) are not equivalent modulo pβ . The proof is complete.

By Proposition 4.2.5, we can now easily apply the operator T (pr0), r0 ≥ 0, to a Siegel paramod-

ular form. We will not use the explicit representation of R(pβ) here but we will be returning to

that description later when we start our analysis of Fourier coefficients of paramodular forms.

4.3 Hecke Operators over K(M), p|M

For this section we assume that M ≥ 1 is a squarefree integer. In order to build the Hecke operators

for primes p|M we will utilize the constructions in [34] and modify them as in [39].

Definition 4.3.1. The local paramodular group of level pr0 , denoted by Kloc(pr0), consists of

elements

g ∈ GSp(4,Qp) ∩


Zp Zp p−r0Zp Zp

pr0Zp Zp Zp Zp

pr0Zp pr0Zp Zp pr0Zp

pr0Zp Zp Zp Zp


with λ(g) ∈ Z×p .
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We will only be studying the Hecke operators T (p) and

T1(p2) = K(M)


1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

K(M)

in the case p|M .

Proposition 4.3.2. We have the following double coset decompositions for r0 ≥ 1,

Kloc(pr0)


p 0 0 0

0 p 0 0

0 0 1 0

0 0 0 1

Kloc(pr0) =
⊔

x,y,z∈Z/pZ


1 0 zp−r0 y

0 1 y x

0 0 1 0

0 0 0 1




p 0 0 0

0 p 0 0

0 0 1 0

0 0 0 1

Kloc(pr0)

t
⊔

x,z∈Z/pZ


1 x zp−r0 0

0 1 0 0

0 0 1 0

0 0 −x 0




p 0 0 0

0 1 0 0

0 0 1 0

0 0 0 p

Kloc(pr0)

t
⊔

x,y∈Z/pZ

tpr0


1 0 0 y

0 1 y x

0 0 1 0

0 0 0 1




p 0 0 0

0 p 0 0

0 0 1 0

0 0 0 1

Kloc(pr0)

t
⊔

x∈Z/pZ

tpr0


1 x 0 0

0 1 0 0

0 0 1 0

0 0 −x 1




p 0 0 0

0 1 0 0

0 0 1 0

0 0 0 p

 ,

Kloc(pr0 )


p2 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p

Kloc(pr0 ) =
⊔

x,y∈Z/pZ
z∈Z/p2Z


1 x 0 0

0 1 0 0

0 0 1 0

0 0 −x 1




1 0 zp−r0 y

0 1 y 0

0 0 1 0

0 0 0 1




p2 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p

Kloc(pr0 )

t
⊔

x,y,z∈Z/pZ

tpr0


1 x 0 0

0 1 0 0

0 0 1 0

0 0 −x 1




1 0 zp−r0+1 y

0 1 y 0

0 0 1 0

0 0 0 1




p2 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p

Kloc(pr0 ).



44

Proof. The proof can be found in Chapter 6 of [34]. One just needs to apply the appropriate

involution on the paramodular group used therein to obtain appropriate decompositions.

The major difficulty in utilizing these double coset decompositions is the fact that the lower left

block of some of the representatives contain non-zero elements. The rest of this section is to rectify

this issue. We note that since M is assumed to be squarefree we have r0 = 1 and can appeal to the

following theorem.

Theorem 4.3.3 (Iwasawa Decomposition). Let p be a prime. For any g ∈ GSp(4,Qp) there exists

h ∈ Kloc(p) such that gh is of the form A B

02 D


where A,B,D ∈M(2,Qp).

Proof. This is Proposition 5.1.2 in [34].

With the previous theorem in mind we can put all the representatives appearing in Proposition

4.3.2 into block upper triangular form which will make them very easy to compute with later. In

addition, we will use the following theorem from [19] to globalize the coset representatives in the

case r0 = 1.

Theorem 4.3.4. Let M ≥ 1 be an integer, let p be a prime, and let pr0 ||M . There exists finite

disjoint decompositions

Kloc(pr0)


p 0 0 0

0 p 0 0

0 0 1 0

0 0 0 1

Kloc(pr0) =

N1⊔
i=1

giK
loc(pr0)

and

Kloc(pr0)


p2 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p

Kloc(pr0) =

N2⊔
j=1

hjK
loc(pr0)
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such that

K(M)


1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 p

K(M) =

N1⊔
i=1

K(M)pg−1
i

and

K(M)


1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

K(M) =

N2⊔
j=1

K(M)p2h−1
j .

The representatives {gi}N1
i=1 and {hj}N2

j=1 are constructed from Proposition 4.3.2.

The rest of this section is to prove the previous theorem in the case r0 = 1 while simultaneously

providing a set of coset representatives with a lower left block of zeroes. We provide a set of

lemmas which will give us a desirable set of representatives. Ultimately we need only fix those coset

representatives which have a tp appearing in them. We fix those by shifting the element tp to the

right and absorbing it into the local paramodular group. We have

tp


1 0 0 y

0 1 y x

0 0 1 0

0 0 0 1




p 0 0 0

0 p 0 0

0 0 1 0

0 0 0 1

Kloc(p) =


1 0 0 0

−yp 1 0 x

0 0 1 yp

0 0 0 1




1 0 0 0

0 p 0 0

0 0 p 0

0 0 0 1

Kloc(p),

tp


1 x 0 0

0 1 0 0

0 0 1 0

0 0 −x 1




p 0 0 0

0 1 0 0

0 0 1 0

0 0 0 p

Kloc(p) =


1 0 0 0

0 1 0 0

0 xp 1 0

xp 0 0 1




1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 p

Kloc(p),

and

tp


1 x 0 0

0 1 0 0

0 0 1 0

0 0 −x 1




1 0 z y

0 1 y 0

0 0 1 0

0 0 0 1




p2 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p

Kloc(p) = AKloc(p)
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with

A =


1 0 0 0

0 1 0 0

0 xp 1 0

xp 0 0 1




1 0 0 0

−yp 1 0 0

−zp2 0 1 yp

0 0 0 1




1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

 .

We further note that if x ∈ (Z/pZ)× we have


1 0 0 0

0 1 0 0

0 xp 1 0

xp 0 0 1




1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 p

 =


1 0 0 x−1p−1

0 1 x−1p−1 0

0 0 1 0

0 0 0 1




0 1 0 0

p 0 0 0

0 0 0 p

0 0 1 0




0 0 −x−1p−1 0

0 0 0 −x−1

xp 0 0 p

0 x 1 0



and


1 0 0 0

0 1 0 0

0 xp 1 0

xp 0 0 1




1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

 =


1 0 0 x−1p−1

0 1 x−1p−1 0

0 0 1 0

0 0 0 1




0 1 0 0

p2 0 0 0

0 0 0 p2

0 0 1 0




0 0 −x−1p−1 0

0 0 0 −x−1

xp 0 0 p

0 x 1 0



where the last matrix on the right of each formula is an element of Kloc(p). The proofs of the

following lemmas are all straightforward computations.

Lemma 4.3.5. Let n ≥ 1 and M ≥ 1 be integers. Let N be such that

MN

p
≡ 1 (mod p).

Then


0 1 0 0

pn 0 0 0

0 0 0 pn

0 0 1 0

 ∈

−1 0 0 0

0 pn 0 0

0 0 −pn 0

0 0 0 1




1 −1 0 0

0 1 0 0

0 0 1 0

0 0 1 1




1 0 0 0

MNp−1 1 0 0

0 0 1 −MNp−1

0 0 0 1

K
loc

(p).

Lemma 4.3.6. Let n ≥ 1 be an integer. Then


1 0 0 0

0 1 0 0

wpn+1 0 1 0

0 0 0 1




1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

 = p


1 0 w−1z−n+1 0

0 1 0 0

0 0 1 0

0 0 0 1

 tpn


1 0 wp−n+1 0

0 1 0 0

0 0 1 0

0 0 0 1




w 0 0 0

0 1 0 0

0 0 w−1 0

0 0 0 1

 .

Lemma 4.3.7. Let p be a prime dividing M ≥ 1. Let x, y ∈ Z/pZ and let N be such that

MN

p
≡ 1 (mod p).
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Then we have the following equivalence of cosets,
1 0 0 0

−yp 1 0 x

0 0 1 yp

0 0 0 1




1 0 0 0

0 p 0 0

0 0 p 0

0 0 0 1

Kloc(p) = A1Kloc(p).

with

A1 =


1 0 0 0

−yMN 1 0 x

0 0 1 yMN

0 0 0 1




1 0 0 0

0 p 0 0

0 0 p 0

0 0 0 1

 .

Lemma 4.3.8. Let p be a prime dividing M ≥ 1. Let x, y ∈ (Z/pZ)× be such that

xy ≡ 1 (mod p).

Let N be such that

MN

p
≡ 1 (mod p).

Then we have the following equivalence of cosets,
1 0 0 0

0 1 0 0

0 xp 1 0

xp 0 0 1




1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 p

Kloc(p) = A2Kloc(p).

with

A2 =


1 0 0 yp−1

0 1 yp−1 0

0 0 1 0

0 0 0 1




(MN − p)p−1 1 0 0

MN p 0 0

0 0 −p MN

0 0 1 (−MN + p)p−1


Lemma 4.3.9. Let p be a prime dividing M ≥ 1. Let x, y, z ∈ Z/pZ and let w ∈ Z/pZ be such that

w ≡ −(z + 2xy) (mod `).
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Then we have the following equivalence of cosets,
1

1

xp 1

xp 1




1

−yp 1

−zp2 1 yp

1




1

p

p2

p

Kloc(p) = A3Kloc(p).

with

A3 =


1

−yp 1

1 yp

1




1

1

wp2 xp 1

xp 1




1

p

p2

p


Lemma 4.3.10. Let p be a prime dividing M ≥ 1. Let y ∈ Z/pZ and let N be such that

MN

p
≡ 1 (mod p).

Then we have the following equivalence of cosets,
1 0 0 0

−yp 1 0 0

0 0 1 yp

0 0 0 1




1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

Kloc(p) =


1 0 0 0

−yMN 1 0 0

0 0 1 yMN

0 0 0 1




1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

Kloc(p).

Lemma 4.3.11. Let p be a prime dividing M ≥ 1. Let x ∈ (Z/pZ)×, y ∈ Z/pZ, and let w ∈

(Z/pZ)× be such that

xw ≡ 1 (mod p),

and let N be such that

MN

p
≡ 1 (mod p).

Then we have the following equivalence of cosets,
1 0 0 0

−yp 1 0 0

0 0 1 yp

0 0 0 1




1 0 0 0

0 1 0 0

0 xp 1 0

xp 0 0 1




1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

Kloc(p) = A4Kloc(p)
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where A4 is the matrix
1 0 0 0

−yMN 1 0 0

0 0 1 yMN

0 0 0 1




1 0 0 wp−1

0 1 wp−1 0

0 0 1 0

0 0 0 1




(MN − p)p−1 1 0 0

MNp p2 0 0

0 0 −p2 MNp

0 0 1 (−MN + p)p−1

 .

Lemma 4.3.12. Let p be a prime dividing M ≥ 1. Let x, y ∈ Z/pZ, let w ∈ (Z/pZ)×, and let N

be such that

MN

p
≡ 1 (mod p).

In addition, let s ∈ (Z/pZ)× be such that

ws ≡ 1 (mod p),

and let t ∈ Z/pZ be such that

t ≡ xs (mod p).

Then we have the following equivalence of cosets,
1 0 0 0

−yp 1 0 0

0 0 1 yp

0 0 0 1




1 0 0 0

0 1 0 0

wp2 xp 1 0

xp 0 0 1




1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

Kloc(p) = A5Kloc(p)

where

A5 =


1 0 0 0

−yMN 1 0 0

0 0 1 yMN

0 0 0 1




1 −tp−1 sp−2 0

0 1 0 0

0 0 1 0

0 0 tp−1 1




p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 .

Putting all the lemmas together we obtain the following theorem.

Theorem 4.3.13. Let p be a prime dividing M ≥ 1 exactly once, i.e., p||M . Let N be an inverse
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of M/p modulo p. We have the following double coset decompositions,

K(M)


1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 p

K(M) =
⊔

x,y,z∈Z/pZ

K(M)


1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 p




1 0 −zp−1 −y

0 1 −y −x

0 0 1 0

0 0 0 1



t
⊔

x,z∈Z/pZ

K(M)


1 0 0 0

0 p 0 0

0 0 p 0

0 0 0 1




1 −x −zp−1 0

0 1 0 0

0 0 1 0

0 0 x 1



t
⊔

x,y∈Z/pZ

K(M)


p 0 0 0

0 1 0 0

0 0 1 0

0 0 0 p




1 0 0 0

yMN 1 0 x

0 0 1 −yMN

0 0 0 1



t
⊔

x∈(Z/pZ)×
K(M)


−p 1 0 0

MN (−MN + p)p−1 0 0

0 0 (MN − p)p−1 MN

0 0 1 p




1 0 0 −xp−1

0 1 −xp−1 0

0 0 1 0

0 0 0 1



tK(M)


p 0 0 0

0 p 0 0

0 0 1 0

0 0 0 1



K(M)


1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

K(M) =
⊔

x,y∈Z/pZ

z∈Z/p2Z

K(M)


1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p




1 0 −zp−1 −y

0 1 −y 0

0 0 1 0

0 0 0 1




1 −x 0 0

0 1 0 0

0 0 1 0

0 0 x 1



t
⊔

y∈Z/pZ

K(M)


p2 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p




1 0 0 0

yMN 1 0 0

0 0 1 −yMN

0 0 0 1



t
⊔

y∈Z/pZ

x∈(Z/pZ)×

K(M)


−p2 1 −xp−1 xp

MNp (−MN + p)p−1 x(MN − p)p−2 −xMN

0 0 (MN − p)p−1 MNp

0 0 1 p2




1 0 0 0

yMN 1 0 0

0 0 1 −yMN

0 0 0 1



t
⊔

x,y∈Z/pZ

z∈(Z/pZ)×

K(M)


p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p




1 xp−1 −zp−2 0

0 1 0 0

0 0 1 0

0 0 −xp−1 1




1 0 0 0

yMN 1 0 0

0 0 1 −yMN

0 0 0 1



Proof. Starting with the decompositions in Proposition 4.3.2 and taking r0 = 1 we implement the
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previous lemmas to obtain a new set of representatives of the double cosets

Kloc(p)


p 0 0 0

0 p 0 0

0 0 1 0

0 0 0 1

Kloc(p)

and

Kloc(p)


p2 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p

Kloc(p).

The theorem now follows from Theorem 4.3.4.
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5 Full Modules in Quadratic Fields

In this section we discuss the theory of full modules in quadratic fields and their correspondence

with binary quadratic forms.

5.1 Full Modules

Let δ0 6= 0, 1 be a squarefree integer and let K = Q(
√
δ0). The discriminant of the field K coincides

with the discriminant of the ring of integers of K which we will denote by oK . This discriminant is

equal to δ0 if δ0 ≡ 1 (mod 4) and is equal to 4δ0 if δ0 ≡ 2, 3 (mod 4).

Definition 5.1.1. Let δ be an integer. We say δ is a fundamental discriminant if δ ≡

1 (mod 4) and δ squarefree or δ = 4δ0 with δ0 ≡ 2, 3 (mod 4) and δ0 squarefree.

Let K = Q(
√
δ) be a quadratic field with fundamental discriminant δ. By a module G in K

we mean a Z-submodule of K of rank 0, 1, or 2. We say a module of K is full if K = QG. Note

that this implies that G has rank 2. For the remainder of this work we will work strictly with full

modules.

Definition 5.1.2. A set of generators {ω1, ω2} of the module G is called a basis of G if

a1ω1 + a2ω2 = 0, a1, a2 ∈ Z

implies that a1 = a2 = 0.

Proposition 5.1.3. Let G be a full module in K and let {ω1, ω2} be a basis for G. Let {ω′1, ω′2}

be such that ω′1
ω′2

 = γ

ω1

ω2


for some γ ∈ GL(2,Z). Then {ω′1, ω′2} is also a basis for G.

Proof. Consider the equality ω′1
ω′2

 = γ

ω1

ω2


with γ ∈ GL(2,Z) and write

γ =

a b

c d

 .
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Then

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

Now assume that

a1ω
′
1 + a2ω

′
2 = 0.

for some a1, a2 ∈ Z. Then

a1(aω1 + bω) + a2(cω1 + dω2) = 0

and therefore

(a1a+ a2c)ω1 + (a1b+ a2d)ω2 = 0.

Since {ω1, ω2} is a basis for G we must have

a1a+ a2c = 0,

a1b+ a2d = 0.

Solving this system yields a1 = a2 = 0. As γ ∈ GL(2,Z), the elements ω′1 and ω′2 is a set of

generators of G. Thus {ω′1, ω′2} is a basis for G.

Any full module in K has a basis {ω1, ω2}. It is immediate that any element α ∈ G can be

written uniquely in the form

α = c1ω1 + c2ω2, c1, c2 ∈ Z.

Definition 5.1.4. Let G be a full module in K and let {ω1, ω2} be a basis of G. If we have

1

i(1−sgn(δ))/2
det

 ω1 ω2

ω1 ω2

 > 0 (5.1)

where ωi represents the Galois conjugate of ωi then we say that the basis is ordered.

It is clear that if {ω1, ω2} is basis of a full module G in K which is not ordered then exchanging

ω1 and ω2 creates an ordered basis. Note that Proposition 5.1.3 implies that if two ordered bases

differ by a matrix in GL(2,Z) then they actually differ by a matrix in SL(2,Z).
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Definition 5.1.5. A full module G in K which contains 1 and is a subring of oK is called an order

of K. The discriminant of an order, denoted by disc(G), is defined to be

disc(G) = disc(oK)[oK : G]2.

Proposition 5.1.6. Let G be an order of K = Q(
√
δ) where δ is a fundamental discriminant. Let

of ⊂ K be the full module with basis {1, fω} where f ∈ N and

ω =


1+
√
δ0

2 if δ ≡ 1 (mod 4),

√
δ0 if δ ≡ 0 (mod 4).

Note that oK = o1. Then

(i) G = o[oK :G],

(ii) and the discriminant of G is δf2.

Proof. Since G ⊂ oK we have for α ∈ G that there exists a, b ∈ Z such that

α = a+ bω.

Since 1 ∈ G we have that −a ∈ G and hence bω ∈ G. Let f be the smallest positive integer such

that fω ∈ G. Write

b = fq + r

for q, r ∈ N with 0 ≤ r < f . Then α − a − fqω = rω ∈ G. By the minimality of f we must have

r = 0. Hence f |b and therefore α ∈ of . Hence G ⊆ of . The other inclusion is obvious and so we

can conclude that G = of . This proves (i) since f = [oK : G]. We now prove (ii). We have

disc(G) = disc(oK)[oK : G]2

= δf2

This completes the proof.

For f ∈ N, we are going to need an ordered basis for of . We’ll take

{
1,
f − f

√
δ

2

}
if δ ≡ 1 (mod 4){

1,−f
√
δ

2

}
if δ ≡ 0 (mod 4)

to be our desired ordered basis.
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Definition 5.1.7. Let G be a full module in K. The ring

oG = {α ∈ K : αG ⊆ G}

is called the ring of coefficients of the module G.

Proposition 5.1.8. For a full module G in K, the ring oG is an order of K.

Proof. Let G be a full module in K and let oG be the ring of coefficients of G. For β ∈ G we have

βoG ⊆ G. As βoG is a group under addition we have that βoG is a module in K. It then follows

that oG is a module in K. We show that oG is a full module. To prove this we need to show that

oG is of rank 2. Let γ be an arbitrary element of K and let {ω1, ω2} be a basis of G. Write

γω1 = a1ω1 + a2ω2,

γω2 = b1ω1 + b2ω2,

where a1, a2, b1, b2 ∈ Q. Multiply each equation by the least common multiple l of the denominators

of a1, a2, b1,and b2. Then it follows that lγ ∈ oG. This is true for any element in K. Thus taking

any two linearly independent elements of K we obtain linearly independent elements in oG. Thus

oG must be of rank 2. This completes the proof of the claim.

Definition 5.1.9. Let G be a full module in K and let oG be the ring of coefficients of G. Leta b

c d


be the matrix which transforms a basis of oG to a basis of G. The norm of G is defined to be

|ad− bc| and will be denoted by N(G). For an element α ∈ G, we define the norm of α to be αα.

Definition 5.1.10. Let G be a full module in K with ring of coefficients oG. Then the discrimi-

nant of G is given as the discriminant of oG.

The following proposition allows us to express the norm of a full module in K in terms of the

basis of G.

Proposition 5.1.11. Let G be a full module in K with ring of coefficients of and ordered basis

{ω1, ω2}. Let a, b, c, d ∈ Q be such that a b

c d

 1

ω

 =

 ω1

ω2

 .
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where ω is given as in Proposition 5.1.6. Then

N(G)f = bc− ad,

Proof. Write ω1 = a+ bω and ω2 = c+ dω. The transition matrix from of to G is a b/f

c d/f

 .
Then, by definition,

N(G) =

∣∣∣∣∣∣ det

 a b/f

c d/f

∣∣∣∣∣∣ =
|ad− bc|

f
=
bc− ad
f

since bc− ad > 0 by equation (5.1). This completes the proof.

As a result of the previous proposition we now have a test to determine if two elements of G

actually form a basis of G.

Corollary 5.1.12. Let ω1, ω2 ∈ G satisfy (5.1). Then {ω1, ω2} forms an ordered basis for G if and

only if

1

f
√
δN(G)

det

 ω1 ω2

ω1 ω2

 = 1.

Proof. Assume that {ω1, ω2} forms an ordered basis of G and write ω1 = a+ bω and ω2 = c+ dω.

Thus, by proposition 6.3.3,

1

f
√
δN(G)

det

 ω1 ω2

ω1 ω2

 =
1

(bc− ad)
√
δ

det

 a+ bω c+ dω

a+ bω c+ dω


=

1

(bc− ad)
√
δ

((a+ bω)(c+ dω)− (a+ bω)(c+ dω))

=
1

(bc− ad)
√
δ

((ad− bc)(ω − ω))

= 1,

since ω − ω = −21−ε√δ0 = −
√
δ where δ ≡ ε (mod 4). Now assume that

1

f
√
δN(G)

det

 ω1 ω2

ω1 ω2

 = 1.
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Fix an ordered basis {ζ1, ζ2} of G and expand ω1 and ω2 in terms of this basis, a b

c d

 ζ1

ζ2

 =

 ω1

ω2


Thus

1 =
1

f
√
δN(G)

det

 aζ1 + bζ2 cζ1 + dζ2

aζ1 + bζ2 cζ1 + dζ2


=

1

f
√
δN(G)

det

 ζ1 ζ2

ζ1 ζ2

 det

 a c

b d


= det

 a b

c d


Where the last equality follows from the necessity of the condition proved above. Thus we have a b

c d

 ∈ SL(2,Z).

It now follows that {ω1, ω2} is an ordered basis for G by Proposition 5.1.3.

We note here that if we drop the ordered basis condition in the previous corollary then a

necessary and sufficient condition for {ω1, ω2} to be a basis of the full module G is

1

f
√
δN(G)

det

 ω1 ω2

ω1 ω2

 = ±1.

We will often identify a full module with a basis. We will write (G, ξ) when we would like to

emphasize the choice of basis of the module where

ξ =

ω1

ω2

 .
Definition 5.1.13. Let G and G′ be full modules in K. We say that G and G′ are similar if there

exists η ∈ K \ {0} such that G′ = ηG.

From the corollary above, if two full modules G and G′ are similar and ξ is a basis of G, then

ηξ is a basis of G′ where G′ = ηG. Note that if the basis ξ is ordered we do not necessarily have

that the basis ηξ is ordered. However, if the quadratic field K is imaginary then the ordering is

preserved. The following proposition indicates that the rings of coefficients of similar modules are

related.
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Proposition 5.1.14. Let G and G′ be similar full modules in K. Then oG = oG′ . In particular,

similar full modules have the same discriminant.

Proof. Since G and G′ are similar, there exists η ∈ K such that G′ = ηG. Thus we have that

oG′ = {α ∈ K : αG′ ⊆ G′}

= {α ∈ K : αηG ⊆ ηG}

= {α ∈ K : αG ⊆ G}

= oG.

This completes the proof.

Definition 5.1.15. Let γ ∈ K. The minimal polynomial for γ is the irreducible polynomial

ϕ(z) = rz2 + tz + s, r, t, s ∈ Z, r > 0

such that ϕ(γ) = 0.

Calculating the ring of coefficients for a given full module in K is rather simple.

Proposition 5.1.16. Let (G, ξ) be a full module in K with ordered basis

ξ =

ω1

ω2


and let

ϕ(z) = rz2 + tz + s, r > 0

be the minimal polynomial of γ = ω2/ω1. Then {1, rγ} is a basis for oG and

N(G) =
|N(ω1)|

r
.

Proof. Consider instead the full module G0 with basis {1, γ}. Let α = x+ yγ with x, y ∈ Q. Note

that the condition αG0 ⊆ G0 is equivalent to the conditions α ∈ G0 and αγ ∈ G0. We have

αγ = (x+ yγ)γ = xγ + y
−tγ − s

r
= −sy

r
+

(
x− ty

r

)
γ.

Thus α and αγ belong to G0 and hence oG0
if and only if x, y,

ty

r
, and

sy

r
are all integers. Since

the greatest common divisor of r, t, and s is 1, this occurs if and only if x and y are integers and y
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is divisible by r. Thus {1, rγ} spans oG0 . It follows that {1, rγ} is a basis for oG0 . Now the first

claim now follows from Proposition 5.1.14. By the definition for the norm of a full module we have

N(G0) =

∣∣∣∣∣∣det

1 0

0 1/r

∣∣∣∣∣∣ =
1

r
.

Thus,

N(G) = N(ω1G0) =
|N(ω1)|

r
.

We present an example to illustrate the last proposition.

Example 5.1.17. Consider the full moduleG,
3 + 3

√
−23

5 + 3
√
−23


in K = Q(

√
−23). We can compute the norm of G by considering the similar moduleG0,

 1

37−
√
−23

36


 =

G0,

1

γ


The minimal polynomial for γ is ϕ(t) = 54t2 − 111t+ 58. By Proposition 5.1.16,

N(G0) =
1

54
.

This implies that N(G) = N(3 + 3
√
−23)N(G0) = 4. Note that this in turn implies that

oG = o3.

This is due to the fact that δ = −23 implies ω = (1 +
√
δ)/2 and

3 + 3
√
−23 = 0 + 6ω

5 + 3
√
−23 = 2 + 6ω.

Hence we have

f =
12

4
= 3.

�
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We would now like to define the product of two full modules in K. Given two full modules G

and G′, the product GG′ is defined to be the full module

GG′ =

{
m∑
n=1

gng
′
n : gn ∈ G and g′n ∈ G′

}
.

It is clear from the definition of the ring of coefficients that GoG = G for any full module G in K.

Proposition 5.1.18. Let G and G′ be full modules in K such that oG = oG′ . Then the ring of

coefficients, oGG′ , for the product GG′ coincides with the ring of coefficients of G and G′. Moreover,

we have N(GG′) = N(G)N(G′).

Proof. We prove that oG = oGG′ . Let α ∈ oG. Then αG ⊆ G. Hence it follows that αGG′ ⊆ GG′.

Thus oG ⊆ oGG′ . To complete the proof of the proposition we will need the following lemma.

Lemma 5.1.19. Let G be a full module of K and let G denote the radical conjugate module of G.

Then GG = N(G)oG.

Proof. We may assume that G has a basis of the form

ξ =

1

γ


and let aγ2 + bγ + c = 0 with a, b, and c relatively prime integers. Then

GG = spanZ{1, γ, γ, γγ}

= spanZ

{
1, γ,−γ − b

a
,
c

a

}
=

1

a
spanZ{a, b, c, aγ}

=
1

a
spanZ{1, aγ}

= N(G)oG,

where the last equality follows from Proposition 5.1.16.

We now continue with the proof of Proposition 5.1.18. Let α ∈ oGG′ . Then αGG′ ⊆ GG′.

Multiplying on the right by G′ we have αN(G′)G ⊆ N(G′)G which implies that α ∈ oG′ = oG.

We now prove the last part of the proposition. We have GG = N(G)oG, G′G′ = N(G′)oG′ , and

GG′GG′ = N(GG′)oGG′ . Since oG = oG′ = oGG′ we immediately obtain N(GG′) = N(G)N(G′).
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In general, it can be rather difficult to calculate the product of two full modules. However,

the product of two full modules of a certain form can be easy to calculate. Before we look at this

however, we will look at a small lemma.

Lemma 5.1.20. Let (G, ξ) be a full module in K with ring of coefficients of . Then there exists a

unique α ∈ K \ {0} such that for (αG,αξ) is of the formG′,
 r

t− f
√
δ

2




with r, t ∈ Z and gcd

(
r, t,

t2 − δf2

4r

)
= 1.

Proof. We note first that by Proposition 5.1.14 we have that G and αG have the same ring of

coefficients for any choice of α ∈ K. We first prove the existence of such an α. Let

ξ =

ω1

ω2

 .
We first choose α =

ω1

N(G)
. With this choice we have

r =
ω1ω1

N(G)
=
N(ω1)

N(G)
∈ Z

and

ω2ω1

N(G)
∈ of .

This implies that

ω2ω1

N(G)
= a+ b

fε− f
√
δ

2
=
c− bf

√
δ

2

where δ ≡ ε (mod 4) with ε = 0 or 1 and c = 2a+ bfε. As r

c− bf
√
δ

2


is a basis for the full module (ω1/N(G))G we must have that

±1 =
1

f
√
δ |N(ω1)|
N(G)2 N(G)

det

r c− bf
√
δ

2

r
c+ bf

√
δ

2
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by the comment following Corollary 5.1.12 from which it follows that

±1 =
1

f
√
δ |N(ω1)|
N(G)2 N(G)

rbf
√
δ =

bN(ω1)

|N(ω1)|
.

Hence b = ±1. If b = −1 then we just try α = − ω1

N(G)
to obtain a full module of the desired form.

One should note that the element

ω2

ω1
=
t− f

√
δ

2r

is a root of the polynomial ϕ(z) = rz2 − tz + s where

s =
t2 − δf2

4r
.

Since |r| is the leading coefficient of the minimal polynomial for ω2/ω1 it follows that the coefficients

of ϕ must be relatively prime.

We now prove uniqueness. Let α and α′ be two elements of K \ {0} that satisfy the claim of

the lemma. Then it follows that there exists a nonzero rational number q such that

qα = α′.

It follows that

t′ − f
√
δ

2
= α′ω2 = qαω2 = q

t− f
√
δ

2

Hence

q = 1

and thus α = α′. The proof is complete.

Proposition 5.1.21. Let ϕ(z) = rz2 + tz+ s and ϕ′(z) = r′z2 + t′z+ s′ be irreducible polynomials

in Z[z] such that

t2 − 4rs = (t′)2 − 4r′s′ = δf2

where δ is a fundamental discriminant and f ∈ N. Assume that

gcd(r, t, s) = gcd(r′, t′, s′) = 1.

Consider the full modules G,
 r

t− f
√
δ

2


 and

G′,
 r′

t′ − f
√
δ

2
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in K = Q(
√
δ). Assume that

gcd

(
r, r′,

t+ t′

2

)
= m.

Then a basis of the product GG′ is

m

 r0

t0 − f
√
δ

2


where

r0 =
rr′

m2

and t0 ∈ Z with 0 ≤ t0 < 2r0. Moreover, t0 is unique modulo 2r0.

Proof. The proof is fairly straightforward. First note that since G and G′ have the same ring of

coefficients of we have by Proposition 5.1.18 that GG′ has the ring of coefficients of . It is clear

that the generators of GG′ are

rr′,

r(t′ − f
√
δ)

2
,

r′(t− f
√
δ)

2
,

(tt′ + δf2)/2− (t+ t′)f
√
δ/2

2
.

Thus every element α ∈ G is of the form

α = arr′ + b
r(t′ − f

√
δ)

2
+ c

r′(t− f
√
δ)

2
+ d

(
(tt′ + δf2)/2− (t+ t′)f

√
δ/2

2

)
which, after rearranging, becomes

α =
2arr′ + brt′ + cr′t+ d(tt′ + δf2)/2

2
− br + cr′ + d(t+ t′)/2

2
f
√
δ.

Since the greatest common divisor of r, r′, and (t+ t′)/2 is equal to m, the coefficient on f
√
δ is of

the form

mn

2

for some n ∈ Z. Let H = GG′ and take any basis

ξ =

ω1

ω2
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of H. We have that

ω1 =
y1

2
− mn1

2
f
√
δ,

ω2 =
y2

2
− mn2

2
f
√
δ.

Again, since the greatest common divisor of r, r′, and (t + t′)/2 is equal to m, it follows that n1

and n2 must be relatively prime. By Lemma 5.1.20 there exists a unique α ∈ K \ {0} such that

αω1 = r′′ ∈ Z

and

αω2 =
t′′ − f

√
δ

2

with t′′ ∈ Z. In particular, we have that α is one of the elements in the set{
ω1

N(H)
,− ω1

N(H)

}
.

As the two cases are similar, we assume that

α =
ω1

N(H)
.

This implies that

1

N(H)

(y1

2
+
mn1

2
f
√
δ
)(y2

2
− mn2

2
f
√
δ
)

=
1

N(H)

(
y1y2

4
− m2n1n2δf

2

4
+
(mn1y2 −mn2y1

4

)
f
√
δ

)
=
t′′ − f

√
δ

2

and hence

mn2y1 −mn1y2

2N(H)
= 1.

Upon multiplying ξ by the matrix n2 −n1

k1 k2

 ∈ SL(2,Z)

we obtain as a basis for Hn2 −n1

k1 k2

ω1

ω2

 =

 N(H)

m
(k1y1 + k2y2)−mf

√
δ

2



=

 rr′

m
(k1y1 + k2y2)−mf

√
δ

2
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By Lemma 5.1.20 we know that k1y1 + k2y2 is divisible by m and thus we know that

m

 rr′

m2

(k1y1 + k2y2)/m− f
√
δ

2


is a basis for H. We now set

r0 =
rr′

m2

and obtain a basis

ξ = m

 r0

(k1y1 + k2y2)/m− f
√
δ

2

 .
We now multiply on the left by a matrix of the form1 0

` 1

 ∈ SL(2,Z)

with ` ∈ Z to obtain a basis of the form

ξ = m

 r0

t0 − f
√
δ

2


with 0 ≤ t0 < 2r0. The uniqueness of t0 follows from the construction.

Note that by Lemma 5.1.20 and Proposition 5.1.21 we can define the product of two full modules

in more generality.

Definition 5.1.22. Let (G1, ξ1) and (G2, ξ2) be two full modules with the same ring of coefficients

of . Let α1, α2 ∈ K \ {0} be the quantities coming from Lemma 5.1.20 corresponding to (G1, ξ1)

and (G2, ξ2) respectively. We define the product of these two full modules to be

(G1, ξ1) · (G2, ξ2) = (G1G2, ξ3)

where

ξ3 = (α1α2)−1ξ0

and ξ0 is the basis of the module α1α2G1G2 obtained from Proposition 5.1.21.
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Example 5.1.23. Consider the full modulesG,
3 + 3

√
−23

5 + 3
√
−23

 and

G′,
−33 + 3

√
−23

1 +
√
−23

 .

Note that oG = oG′ = o3. Then it follows thatG,
3 + 3

√
−23

5 + 3
√
−23

 ·
G′,

−33 + 3
√
−23

1 +
√
−23

 =

GG′, (1 +
√
−23)(−11 +

√
−23)

324

 972

1845− 9
√
−23

2




=

GG′,
−102− 30

√
−23

−100− 28
√
−23

 .

So we conclude that the product of the above full modules isGG′,
−102− 30

√
−23

−100− 28
√
−23

 .

�

It follows that the collection of full modules in K which have ring of coefficients of forms an

abelian group under multiplication of modules with identity element of and inverses determined by

Lemma 5.1.19.

The quotient of the group of modules by the subgroup of full modules similar to of is called the

ring class group of modules and will be denoted by H(of ).

Lemma 5.1.24. The elements of H(of ) consist of similarity classes of full modules with ring of

coefficients of .

Proof. Let B denote the subgroup of full modules that are similar to of . Let G and G′ be full

modules in K with ring of coefficients of and suppose GB = G′B. Then ηGof = G′ for some

η ∈ K \ {0}. Hence ηG = G′ and thus G and G′ are similar.

Evidently, the group H(of ) is finite. This is a non-trivial result and one can see [36] for a proof

of this claim.

Definition 5.1.25. Let of be a fixed order in K. We say that a full module a in K

1. is an ideal of the order of if oa ⊂ of .

2. is regular if oa = of .

3. is integral if a ⊂ of .
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4. is principal if a = γof for some γ ∈ K.

Two regular, integral ideals a, b of the order of are said to be relatively prime if

a + b = of .

Fix a regular, integral ideal o of of and consider the following group, a particular subset of the

collection of fractional ideals of of ,

A(of , o) =
{
u =

a

b
: a, b are regular, integral ideals of the order of and are relatively prime to o

}
.

The quotient of the group A(of , o) by the subgroup of principal ideals of the form c = γof ,

where γ ∈ K and γ = a1/a2 with a1, a2 ≡ 1 (mod o), is called the ray class group of modules

modulo o in the order of (cf. [16], [26], and [36]). We denote this quotient by H(of , o). The group

H(of , o), like H(of ), is finite for any regular, integral ideal o of the order of . In fact, we have a

bigger connection between these two groups.

Proposition 5.1.26. Let of be an order of K. Then

H(of , of ) ∼= H(of ).

Proof. This follows immediately from the definition of the ray class group modulo o with o = of .

For M ≥ 1 we will denote A(of ,Mof ) by A(of ,M). Before we think about this group any

further we move into the connection between full modules and binary quadratic forms.

5.2 Full Modules and Binary Quadratic Forms

In this section we will discuss the connection between full modules and binary quadratic forms.

From this point on we will assume that K = Q(
√
δ) is an imaginary quadratic field of fundamental

discriminant δ. We will start with presenting some basic definitions about binary quadratic forms.

Definition 5.2.1. A binary quadratic form S(x, y) is a homogeneous polynomial of degree 2 in two

variables x and y.

Definition 5.2.2. Consider a binary quadratic form

S(x, y) = rx2 + txy + sy2.

(i) We say S is integral if the coefficients r, s, t are elements of Z.

(ii) We say S is primitive if S is integral and gcd(r, s, t) = 1.

(iii) We say S is positive definite if S(x, y) > 0 for all (x, y) 6= (0, 0).
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Let (G, ξ) be a full module in K with ordered basis ξ. Suppose further that oG = of for some

f ∈ N. Write

ξ =

ω1

ω2

 .
We then build a binary quadratic form corresponding to this full module

S(G,ξ)(x, y) =
(ω1x+ ω2y)(ω1x+ ω2y)

N(G)
.

Proposition 5.2.3. Given a full module (G, ξ) with ordered basis ξ and f ∈ N such that oG = of ,

the binary quadratic form S(G,ξ) is integral, primitive, and positive definite with discriminant δf2.

Proof. The integrality of S(G,ξ) follows from Lemma 5.1.19. We now show that S(G,ξ) is primitive.

Let ϕ(z) = rz2 +tz+s with r > 0 be the minimal polynomial for γ = −ω2/ω1. Then gcd(r, s, t) = 1

and

ϕ(z) = r

(
z +

ω2

ω1

)(
z +

ω2

ω1

)
.

Letting z = x/y we have

ϕ(x/y) = r

(
x

y
+
ω2

ω1

)(
x

y
+
ω2

ω1

)
=

r

y2N(ω1)
(ω1x+ ω2y)(ω1x+ ω2y)

=
1

y2N(G)
(ω1x+ ω2y)(ω1x+ ω2y)

=
1

y2
S(G,ξ)(x, y),

where the third equality uses Proposition 5.1.16. Hence

S(G,ξ)(x, y) = y2ϕ(x/y) = rx2 + txy + sy2.

Thus S(G,ξ)(x, y) is primitive. We then deduce that S(G,ξ)(x, y) is positive definite since the basis

ξ is ordered. Lastly, we show that the discriminant of S(G,ξ)(x, y) is δf2. The discriminant of

S(G,ξ)(x, y) is given by

t2 − 4rs =
1

(N(G))2
((ω1ω2 + ω1ω2)2 − 4ω1ω1ω2ω2)

=
1

(N(G))2
(ω1ω2 − ω1ω2)2

= δf2,

by Corollary 5.1.12. This completes the proof.
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Conversely, given an integral, primitive, positive definite binary quadratic form

S(x, y) = rx2 + txy + sy2

with discriminant δf2 with f ∈ N we associate the full module (GS , ξGS ) where

ξGS =

 r

t− f
√
δ

2

 .
Proposition 5.2.4. Let S(x, y) = rx2 + txy+ sy2 be an integral, primitive, positive definite binary

quadratic form with discriminant δf2 with f ∈ N. Then the full module (GS , ξGS ) has discriminant

δf2 and the basis ξGS satisfies equation (5.1), i.e., the basis ξ is ordered.

Proof. First note that oGS = of and hence the discriminant of GS is equal to δf2. Furthermore,

we have r > 0 since S(x, y) is positive definite and hence

1

i
det

r t− f
√
δ

2

r
t+ f

√
δ

2

 =
1

i
rf
√
δ > 0.

This completes the proof.

One can now check that for an integral, primitive, positive definite binary quadratic form S(x, y)

with discriminant δf2 with f ∈ N we have

S(GS ,ξGS ) = S

and for a full module (G, ξ) with ordered basis

ξ =

ω1

ω2


satisfying equation (5.1) we have

(GS(G,ξ)
, ξS(G,ξ)

) =

(
ω1

N(G)
G,

ω1

N(G)
ξ

)
.

In the next section we will use this to establish a one-to-one correspondence between classes of full

modules and classes of binary quadratic forms modulo congruence subgroups of SL(2,Z).

5.3 Correspondence between Full Modules and Binary Quadratic Forms

Again let K = Q(
√
δ) be an imaginary quadratic field of fundamental discriminant δ. Let Γ be a

congruence subgroup of SL(2,Z) of level M ≥ 1. We will say that two full modules (G1, ξ1) and
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(G2, ξ2) in K are equivalent modulo Γ if

G1 = ηG2 and tUξ1 = ηξ2

for some η ∈ K \ {0} and U ∈ Γ. We will say that two binary quadratic forms S1(x, y) and S2(x, y)

are equivalent modulo Γ if

S1(ax+ by, cx+ dy) = S2(x, y)

for some

U =

a b

c d

 ∈ Γ.

We can always associate a binary quadratic form S(x, y) = rx2 + txy + sy2 to a symmetric matrix

S =

 r t/2

t/2 s

 .
Thus the equivalence between binary quadratic forms S1(x, y) and S2(x, y) is equivalent to the

existence of a U ∈ Γ such that

tUS1U = S2.

It is clear that equivalent forms have the same discriminant.

Proposition 5.3.1. Let (G1, ξ1) and (G2, ξ2) be equivalent full modules in K modulo Γ with ξ1 and

ξ2 satisfying inequality (5.1). Then S(G1,ξ1)(x, y) and S(G2,ξ2)(x, y) are equivalent binary quadratic

forms modulo Γ.

Proof. Assume that (G1, ξ1) and (G2, ξ2) are equivalent full modules in K modulo Γ with ξ1 and

ξ2 satisfying equation (5.1). Then there exists η ∈ K \ {0} and U ∈ Γ such that

G1 = ηG2 and tUξ1 = ηξ2.

For simplicity of notation we’ll write S1(x, y) = S(G1,ξ1)(x, y) and S2(x, y) = S(G2,ξ2)(x, y). Write

U =

a b

c d

 , ξ1 =

ω1

ω2

 , ξ2 =

Ω1

Ω2


and note that

aω1 + cω2 = ηΩ1,

bω1 + dω2 = ηΩ2.
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We then have

S2(x, y) =
1

N(G2)
(Ω1x+ Ω2y)(Ω1x+ Ω2y)

=
ηη

N(G1)

((
a

η
ω1 +

c

η
ω2

)
x+

(
b

η
ω1 +

d

η
ω2

)
y

)((
a

η
ω1 +

c

η
ω2

)
x+

(
b

η
ω1 +

d

η
ω2

)
y

)
=

1

N(G1)
(ω1(ax+ by) + ω2(cx+ dy))(ω1(ax+ by) + ω2(cx+ dy))

= S1(ax+ by, cx+ dy).

Thus S1(x, y) and S2(x, y) are equivalent.

Proposition 5.3.2. Let S1(x, y) and S2(x, y) be binary quadratic forms. Assume that S1 and S2

are integral, primitive, and positive definite of discriminant δf2 with f ∈ N. Further assume that

S1 and S2 are equivalent modulo Γ. Then (GS1
, ξS1

) and (GS2
, ξS2

) are equivalent full modules

modulo Γ.

Proof. Write S1(x, y) = r1x
2 + t1xy + s1y

2 and S2(x, y) = r2x
2 + t2xy + s2y

2. Since S1(x, y) and

S2(x, y) are equivalent modulo Γ there exists

U =

a b

c d

 ∈ Γ

such that S1(ax+ by, cx+ dy) = S2(x, y). Thus we have that

r2 = r1a
2 + t1ac+ s1c

2,

t2 = 2r1ab+ t1(ad+ bc) + 2s1cd,

s2 = r1b
2 + t1bd+ s1d

2.

Let

η =
2r1a+ t1c− cf

√
δ

2r1a2 + 2t1ac+ 2s1c2
.

Then η ∈ K \ {0} and one can show

tU

 r1

t1 − f
√
δ

2

 = η

 r2

t2 − f
√
δ

2

 .
using the fact that ad− bc = 1 and t21− 4r1s1 = δf2. Thus (GS1

, ξS1
) and (GS2

, ξS2
) are equivalent

full modules modulo Γ.
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Definition 5.3.3. Let Γ be a congruence subgroup of SL(2,Z). Let M (δf2) denote the set of full

modules (G, ξ) in K with discriminant δf2. Also define M Γ(δf2) to be the set of of pairs [(G, ξ)]

where [(G, ξ)] = [(G′, ξ′)] if and only if the full modules (G, ξ) and (G′, ξ′) are equivalent modulo

Γ.

The previous two propositions prove the following important fact.

Theorem 5.3.4. Let

A(1, δf2) = {S ∈ A(1) : S is primitive and has discriminant δf2 < 0}.

Then

Γ \A(1, δf2) ∼= M Γ(δf2)

where Γ \A(1, δf2) denotes the set of equivalence classes of A(1, δf2) modulo Γ.

Recall that we defined multiplication of full modules. We would like to utilize this multiplication

in conjunction with the set M Γ(δf2). We show that this multiplication is well-defined.

Proposition 5.3.5. Let Γ = SL(2,Z). The multiplication given by

[(G1, ξ1)] · [(G2, ξ2)] = [(G1, ξ1) · (G2, ξ2)]

is a well-defined binary operation on M Γ(δf2).

Proof. Consider the full modules (G1, ξ1), (G′1, ξ
′
1), (G2, ξ2), and (G′2, ξ

′
2) and assume that

[(G1, ξ1)] = [(G′1, ξ
′
1)] and [(G2, ξ2)] = [(G′2, ξ

′
2)]

We now consider now the full modules G1G2 and G′1G
′
2 with basis determined by Definition 5.1.22.

We’ll label these bases ξ and ξ′. It is clear that these two full modules are similar, i.e., there exists

η ∈ K \ {0} such that G1G2 = ηG′1G
′
2. Therefore, multiplying the full module (G′1G

′
2, ξ
′) by η

takes us to the full module (G1G2, ηξ
′). Now ξ and ηξ′ are bases of the same full module G1G2

and thus differ by a matrix in SL(2,Z). This proves the claim.

The previous proposition implies that we have a group structure on M SL(2,Z)(δf
2) and hence

a group structure on SL(2,Z) \A(1, δf2). We call SL(2,Z) \A(1, δf2) the class group and we refer

to the group operation on SL(2,Z) \ A(1, δf2) as composition. We will denote the operation of

composition by ◦. The composition of two forms can be obtained using Proposition 5.1.21.
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Lemma 5.3.6. Let Γ = SL(2,Z). The map i : H(of )→M Γ(δf2) given by

i([G]) = [(G, ξ)]

where ξ is any ordered basis of G is a well-defined bijection such that

i([G] · [G′]) = i([G]) · i([G′])

Proof. This is clear from the previous proposition.

Let M ≥ 1 be an integer. We define A(M, δf2) to be the set of primitive, integral, positive

definite binary quadratic forms of discriminant δf2

S(x, y) = rx2 + txy + sy2

such that r is divisible by M .

We remark here that the set Γ0(M) acts on A(M, δf2). We also define A (M, δf2) to be the

subset of M (δf2) that consists of full modules (G, ξ) that satisfy S(G,ξ) ∈ A(M, δf2). We define

A (M, δf2) accordingly, i.e.,

Γ0(M) \A (M, δf2) = A (M, δf2).

This leads us to the following specialization of Theorem 5.3.4.

Theorem 5.3.7. Let M ≥ 1 be an integer. Then

Γ0(M) \A(M, δf2) ∼= A (M, δf2).

An important feature to note here is that there is not a group structure on A (M, δf2). Hence

there is not a group structure on Γ0(M) \A(M, δf2). For a discussion of this feature, see [10].

5.4 Action on M Γ0(M)(δf
2)

We return now to our discussion about the group A(of ,M) where for the entirety of this section

M ≥ 1 and f ≥ 1 are integers. Recall that A(of ,M) is the collection of fractional ideals consisting

of quotients of regular, integral ideals of of which are prime to Mof . It is thus also convenient here

to also consider the set

Aint(of ,M) = {a : a is a regular, integral ideal of the order of and is relatively prime to Mof}.



74

Our ultimate goal in this section is to prove that the group H(of ,M), the ray class group of modules

modulo Mof , acts on A (M, δf2) as a group of automorphisms. Before we get there however, we

need to establish a couple preliminary results that will be especially useful.

Lemma 5.4.1. Let u ∈ A(of ,M) an let a, b ∈ Aint(of ,M) be such that u = ab−1. Then there

exists xa,b ∈ u such that N(b)xa,b ≡ 1 (mod Mof ).

Proof. By definition of A(of ,M) we have that a + Mof = of and b + Mof = of . It follows that

b+Mof = of . Recall now that b−1 = N(b)−1b from which we compute that

of = (a +Mof )(b +Mof )

= (a +Mof )(N(b)b−1 +Mof )

= N(b)ab−1 +Ma +MN(b)b−1 +M2of

= N(b)u +M(a +Mof ) +MN(b)b−1

= N(b)u +Mof +MN(b)b−1

= N(b)u +M(N(b)b−1 + of )

= N(b)u +M(b + of )

= N(b)u +Mof .

It immediately follows that there exists x ∈ u and y ∈Mof such that N(b)x+My = 1. The claim

is proved.

Lemma 5.4.2. Let G be a full module in K with ring of coefficients of and let α, β ∈ G. There

exists an ordered basis

ξ =

ω1

ω2


of G such that ω1 ≡ α (mod MG) and ω2 ≡ β (mod MG) if and only if

1

f
√
δN(G)

det

α β

α β

 ≡ 1 (mod M).

Proof. First note that for α, β ∈ G, it follows from the relations αβ − αβ = −(αβ − αβ) and

αβ − αβ ∈ N(G)of that αβ − αβ ∈ f
√
δN(G)Z. Hence

1

f
√
δN(G)

det

α β

α β

 ∈ Z.
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We now proceed with the proof of the statement. Assume that G has an ordered basis

ξ =

ω1

ω2


such that ω1 ≡ α (mod MG) and ω2 ≡ β (mod MG). Then by Corollary 5.1.12, for some α′, β′ ∈

G,

1

f
√
δN(G)

det

α β

α β

 =
1

f
√
δN(G)

det

ω1 +Mα′ ω2 +Mβ′

ω1 +Mα′ ω2 +Mβ′


=

1

f
√
δN(G)

((ω1 +Mα′)(ω2 +Mβ′)− (ω1 +Mα′)(ω2 +Mβ′))

=
1

f
√
δN(G)

(ω1ω2 − ω1ω2 +Mω1β′ +Mω2α
′ +M2α′β′ −Mω1β

′ −Mω2α′ −M2α′β)

=
1

f
√
δN(G)

det

ω1 ω2

ω1 ω2

+Mdet

ω1 β′

ω1 β′

−Mdet

ω2 α′

ω2 α′

+Mdet

Mα′ β′

Mα′ β′


≡ 1 (mod M).

Now assume that

1

f
√
δN(G)

det

α β

α β

 ≡ 1 (mod M).

Fix an ordered basis

ξ0 =

α0

β0


of G and expand α and β in terms of this basis,p q

r s

α0

β0

 =

α
β

 .
Thus

1

f
√
δN(G)

det

α β

α β

 =
1

f
√
δN(G)

det

pα0 + qβ0 rα0 + sβ0

pα0 + qβ0 rα0 + sβ0


=

1

f
√
δN(G)

det

α0 β0

α0 β0

det

p r

q s


= det

p q

r s

 .
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Hence

det

p q

r s

 ≡ 1 (mod M).

Thus there exists U ∈ SL(2,Z) such that

U ≡

p q

r s

 (mod M).

Now let ω1

ω2

 = U

p q

r s

−1 α
β

 .
It then follows that we have that ω1 ≡ α (mod MG) and ω2 ≡ β (mod MG). This completes the

proof.

One should note that if two distinct bases are found using Lemma 5.4.2 then they necessarily

differ by a matrix in Γ0(M). Let a, b ∈ Z with gcd(b,M) = 1. Let(̃a
b

)
denote the least non-negative residue of ab∗ (mod M) where 0 < b∗ < M and bb∗ ≡ 1 (mod M).

We observe here that this definition is independent of how the fraction is written. For u = ab−1 ∈

A(of ,M) we interpret Ñ(u) as the integer (̃N(a)
N(b) ). We will first define a map φ from A (M, δf2)×

Aint(of ,M)×Aint(of ,M) to A (M, δf2). Let (G, ξ) ∈ A (M, δf2) with

ξ =

ω1

ω2

 ,
let a, b ∈ Aint(of ,M), and let u = ab−1. We set

φ((G, ξ), a, b) = [(Gu, ξa,b)]

where ξa,b is any ordered basis of Gu such that

ξa,b ≡

Ñ(u)

1

N(b)ω1xa,b

N(b)ω2xa,b

 (mod MGu)

where xa,b ∈ u is such that N(b)xa,b ≡ 1 (mod Mof ). Notice that

1

f
√
δN(Gu)

(Ñ(u)ω1ω2N(b)2|xa,b|2 − Ñ(u)ω1ω2N(b)2|xa,b|2) ≡ 1 (mod M)

and thus the existence of such a basis follows from the Lemma 5.4.2. The well-definedness of the

map φ also follows based on the remark immediately following the proof of Lemma 5.4.2.
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Proposition 5.4.3. Let (G, ξ) ∈ A (M, δf2), let a, b ∈ Aint(of ,M), and let u = ab−1. Then

[(Gu, ξa,b)] is an element of A (M, δf2) for any choice of ξa,b.

Proof. Let

ξ =

ω1

ω2


be an ordered basis of G. By the definition, we can write any ξa,b as

ξa,b =

Ñ(u)N(b)ω1xa,b +Mz1

N(b)ω2xa,b +Mz2


for some z1, z2 ∈ Gu. All we need to check is that

1

N(Gu)
(Ñ(u)N(b)ω1xa,b +Mz1)(Ñ(u)N(b)ω1xa,b +Mz1) ∈MZ.

Expanding we get

1

N(Gu)
(Ñ(u)

2
N(b)2|ω1|2|xa,b|2 +MÑ(u)N(b)(ω1xa,bz1 + ω1xa,bz1) +M2|z1|2).

Since

1

N(G)
|ω1|2 ∈MZ,

1

N(u)
|xa,b|2 ∈ Z, and GuGu = N(Gu)of

it follows that the above is an element of MZ.

The previous proposition establishes that we have a map

φ : A (M, δf2)×Aint(of ,M)×Aint(of ,M)→ A (M, δf2).

There is one important property of this map that we will need to address.

Proposition 5.4.4. Let (G, ξ) ∈ A (M, δf2) and let u ∈ A(of ,M). Suppose a, b, c, d ∈ Aint(of ,M)

are such that u = ab−1 = cd−1. Then

φ((G, ξ), a, b) = φ((G, ξ), c, d).

Proof. Let (G, ξ) ∈ A (M, δf2) with

ξ =

ω1

ω2
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and let u ∈ A(of ,M). Let xa,b and xc,d be such that

N(b)xa,b ≡ 1 (mod Mof ) and N(d)xc,d ≡ 1 (mod Mof ).

Hence N(b)xa,b ≡ N(d)xc,d (mod Mof ) and thus N(b)xa,b − N(d)xc,d ∈ u ∩Mof ⊆ Mu. Now

construct ξa,b and ξc,d such that

ξa,b ≡

Ñ(u)

1

N(b)ω1xa,b

N(b)ω2xa,b

 (mod MGu)

and

ξc,d ≡

Ñ(u)

1

N(d)ω1xc,d

N(d)ω2xc,d

 (mod MGu)

It follows that ξa,b ≡ ξc,d (mod MGu). Since ξa,b and ξc,d are ordered bases of Gu there exists a

matrix U ∈ SL(2,Z) such that ξa,b = tUξc,d. We write

ξa,b =

α
β

 and ξc,d =

α′
β′

 and U =

a b

c d

 .
We then have α

β

 = tU

α′
β′


=

a c

b d

α′
β′


=

aα′ + cβ′

bα′ + dβ′

 .
Thus we have that α = α′ +Mz = aα′ + cβ′ where z ∈ Gu. Since ξc,d is an ordered basis of Gu we

can write

z = a′α′ + c′β′

where a′, c′ ∈ Z. Hence α′ + a′Mα′ + c′Mβ′ = aα′ + cβ′. It follows that c must be divisible by M .

Hence U ∈ Γ0(M). It follows that

[(Gu, ξa,b)] = [(Gu, ξc,d)].
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The previous proposition allows us to unambiguously construct a pairing φ1 : A (M, δf2) ×

A(of ,M)→ A (M, δf2) given by

φ1((G, ξ), u) = [(Gu, ξu)]

where (G, ξ) ∈ A (M, δf2) with

ξ =

ω1

ω2

 ,
u ∈ A(of ,M) with u = ab−1 for a, b ∈ Aint(of ,M), and ξu is any ordered basis of Gu such that

ξu ≡

Ñ(u)

1

N(b)ω1xa,b

N(b)ω2xa,b

 (mod MGu) (5.2)

where xa,b ∈ u is such that N(b)xa,b ≡ 1 (mod Mof ).

Proposition 5.4.5. Let (G, ξ), (G′, ξ′) ∈ A (M, δf2) with [(G, ξ)] = [(G′, ξ′)] (this is Γ0(M)-

equivalence) and let u ∈ A(of ,M). Then

[(Gu, ξu)] = [(G′u, ξ′u)]

Proof. Let (G, ξ), (G′, ξ′) ∈ A (M, δf2) with

ξ =

ω1

ω2

 and ξ′ =

ω′1
ω′2


and such that [(G, ξ)] = [(G′, ξ′)]. Let u ∈ A(of ,M) and write u = ab−1 for some a, b ∈ Aint(of ,M).

Let η ∈ K \ {0} and U ∈ Γ0(M) be such that G′ = ηG and tUξ′ = ηξ. Write

U =

a b

c d

 .
Let

ξu =

α
β

 and ξ′u =

α′
β′


Then α

β

 =

Ñ(u)

1

N(b)ω1xa,b

N(b)ω2xa,b

+

Mz1

Mz2
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where z1, z2 ∈ Gu. Hence,

η

α
β

 =

Ñ(u)

1

N(b)ηω1xa,b

N(b)ηω2xa,b

+

Mηz1

Mηz2


=

Ñ(u)

1

N(b)(aω′1 + cω′2)xa,b

N(b)(bω′1 + dω′2)xa,b

+

Mηz1

Mηz2


=

Ñ(u)

1

a c

b d

N(b)ω′1xa,b

N(b)ω′2xa,b

+

Mηz1

Mηz2

 .
It then follows that

η

α
β

 ≡
 a Ñ(u)c

Ñ(u)−1b d

Ñ(u)

1

N(b)ω′1xa,b

N(b)ω′2xa,b

 (mod MG′u)

≡

p r

q s

Ñ(u)

1

N(b)ω′1xa,b

N(b)ω′2xa,b

 (mod MG′u)

≡

p r

q s

α′
β′

 (mod MG′u)

where p r

q s

 ≡
 a Ñ(u)c

Ñ(u)−1b d

 (modM)

is a lift to SL(2,Z). Since c is divisible by M we can thus conclude that r is divisible by M and

hence p q

r s

 ∈ Γ0(M).

Now we notice that

1

f
√
δN(G′u)

det

ηα ηβ

ηα ηβ

 =
1

f
√
δN(ηGu)

det

ηα ηβ

ηα ηβ


=

1

f
√
δ|η|2N(Gu)

|η|2det

α β

α β


= 1

where the last line uses Corollary 5.1.12. Invoking Corollary 5.1.12 one more time we conclude that
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ηξu is an ordered basis for G′u. Hence there exists V ∈ SL(2,Z) such that

tV

α′
β′

 = η

α
β

 .
We need to show that V ∈ Γ0(M). We know

η

α
β

 ≡
p r

q s

α′
β′

 (mod MG′u)

which implies that

tV

α′
β′

 ≡
p r

q s

α′
β′

 (mod MG′u).

Let

V =

w x

y z

 .
Then

wα′ + yβ′ ≡ pα′ + rβ′ (mod MG′u)

≡ pα′ (mod MG′u).

It is immediate that y is divisible by M and hence V ∈ Γ0(M). The proposition is proved.

The previous proposition implies that we have a well-defined pairing

φ2 : A (M, δf2)×A(of ,M)→ A (M, δf2).

This pairing then induces a pairing Φ : A (M, δf2) × H(of ,M) → A (M, δf2). Notice that for

[(G, ξ)] ∈ A (M, δf2) with

ξ =

ω1

ω2

 ,
for u ∈ A(of ,M), and for regular, integral ideals of the form γof where γ = a1/a2 with a1, a2 ≡

1 (mod Mof ) we have that

[(Gγofu, ξγofu)] = [(γGu, ξγu)]

= [(γGu, γξu)]

= [(Gu, ξu)]
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as

ξγu ≡

Ñ(γu)

1

N(a2b)ω1xa1a,a2b

N(a2b)ω2xa1a,a2b

 (mod MγGu)

≡

Ñ(γ)Ñ(u)

1


N(a2)N(b)ω1

a1

a2
xa,b

N(a2)N(b)ω2
a1

a2
xa,b

 (mod MγGu)

≡ γ

Ñ(u)

1

N(b)ω1xa,b

N(b)ω2xa,b

 (mod MγGu)

≡ γξu (mod MγGu).

This easily establishes the well-definedness of Φ.

Proposition 5.4.6. Let [(G, ξ)] ∈ A (M, δf2) and let [u], [v] ∈ H(of ,M). Then

Φ([(G, ξ)], [of ]) = [(G, ξ)]

and

Φ([(G, ξ)], [uv]) = Φ(Φ([(G, ξ)], [u]), [v]).

Proof. It is easy to see that the first equality is true. We will prove the second equality. Let

a, b, c, d ∈ Aint(of ,M) be such that u = ab−1 and v = cd−1. Let [(G, ξ)] ∈ A (M, δf2) with

ξ =

ω1

ω2

 .
Then

Φ(Φ([(G, ξ)], [u]), [v]) = Φ([(Gu, ξu)], [v])

= [(Guv, (ξu)v)].

Let

ξu =

α
β
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By definition, we have

(ξu)v ≡

Ñ(v)

1

N(d)αxc,d

N(d)βxc,d

 (mod MGuv)

≡

Ñ(v)

1

α
β

N(d)xc,d (mod MGuv)

≡

Ñ(v)

1

Ñ(u)

1

N(b)ω1xa,b

N(b)ω2xa,b

N(d)xc,d (mod MGuv)

≡

Ñ(uv)

1

N(bd)ω1xa,bxc,d

N(bd)ω2xa,bxc,d

 (mod MGuv)

≡

Ñ(uv)

1

N(bd)ω1xac,bd

N(bd)ω2xac,bd

 (mod MGuv)

≡ ξuv (mod MGuv).

Thus

Φ(Φ([(G, ξ)], [u]), [v]) = Φ([(G, ξ)], [uv])

and the proof is complete.

The previous theorem shows that Φ defines a right action of H(of ,M) on A (M, δf2). This is

an extremely valuable feature that we will exploit in results to come.

We will now extend the previous construction slightly. Let f0 be a divisor of f such that

gcd(f0,M) = 1. Then for [(G, ξ)] ∈ A (M, δf2) with

ξ =

ω1

ω2


and u = ab−1 ∈ A(of/f0 ,M) we define φf0([(G, ξ)], u) = [(Gu, ξu)] where ξu is any basis of Gu such

that

ξu =

 ˜f−1
0 N(u)

1

N(b)ω1xa,b

N(b)ω2xa,b

 (mod MGu)

where, again, xa,b ∈ u is such that N(b)xa,b ≡ 1 (mod Mof/f0). Notice, again, that

1

(f/f0)
√
δN(Gu)

( ˜f−1
0 N(u)ω1ω2|xa,b|2 − ˜f−1

0 N(u)ω1ω2|xa,b|2) ≡ 1 (mod M)
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Hence [(Gu, ξu)] ∈ A (M, δ(f/f0)2). Slight modifications to the previous propositions allow one to

show that φ∗f0 is a well-defined map, thus inducing a well-defined pairing

Φ∗f0 : A (M, δf2)×H(of/f0 ,M)→ A (M, δ(f/f0)2).

Proposition 5.4.6 also generalizes here and the proof is essentially identical.

Proposition 5.4.7. Let [(G, ξ)] ∈ A (M, δf2), let f0 be a divisor of f such that gcd(f0,M), and let

f1 be a divisor of f/f0 such that gcd(f1,M) = 1. For [u] ∈ H(of/f0 ,M) and [v] ∈ H(of/(f0f1),M)

we have

Φf1(Φf0([(G, ξ)], [u]), [v]) = Φf0f1([(G, ξ)], [uv]).

Proof. The argument is similar to that appearing in the proof of Proposition 5.4.6.

Putting everything together we obtain the following theorem.

Theorem 5.4.8. Let f0 be a divisor of f such that gcd(f0,M) = 1. The map Φf0 : A (M, δf2)×

H(of/f0 ,M) → A (M, δ(f/f0)2) establishes a well-defined pairing between the group H(of/f0 ,M)

and the set A (M, δf2). Moreover, for fixed [u] ∈ H(of/f0 ,M) the map

Φf0(·, [u]) : A (M, δf2)→ A (M, δ(f/f0)2)

is a surjection. Finally, all of the pairings are compatible in the sense that the diagram

A (M, δf2)×H(of/f0 ,M)×H(of/f1 ,M) A (M, δ(f/f1)2)×H(of/f0 ,M)

A (M, δ(f/f0)2)×H(of/f1 ,M) A (M, δ(f/(f0f1))2).

commutes for divisors f0 of f and f1 of f/f0 such that and gcd(f0f1,M) = 1. In particular, the

group H(of ,M) acts on A (M, δf2) as a group of automorphisms.

Proof. The first and third parts of the theorem have already been proved. We prove that for fixed

[u] ∈ H(of/f0 ,M) the map Φf0(·, [u]) is a surjection. First we will prove the claim with [u] = [of/f0 ].

Note that the map [v] 7→ [of/f0v] is a surjective map from H(of ,M) to H(of/f0 ,M) (see [13]). Let

[(G′, ξ′)] ∈ A (M, δ(f/f0)2) and write

ξ′ =

ω′1
ω′2

 .
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It is clear that

ξ′ ≡

f̃−1
0 (f0ω

′
1)

ω′2

 (mod MG′).

Consider the full module [(G, ξ)] with

ξ =

f0ω
′
1

ω′2

 .
Then [(G, ξ)] ∈ A (M, δf2) by Proposition 5.1.12 as N(G) = N(G′) and

1

f
√
δN(G)

det

f0ω
′
1 ω′2

f0ω′1 ω′2

 =
1

(f/f0)
√
δN(G′)

det

ω′1 ω′2

ω′1 ω′2

 = 1

Thus

Φf0([(G, ξ)], [of/f0 ]) = [(Gof/f0 , ξof/f0 )]

= [(G′, ξ′)]

proving the surjectivity of Φf0(·, [of/f0 ]). To prove the general statement we let [u0] ∈ H(of ,M)

such that [u−1] = [of/f0u0]. Then for some γ = a1/a2 ∈ K with a1, a2 ≡ 1 (mod Mof/f0) we have

of/f0u0 = γu−1. Hence

Φf0([(Gu0, ξu0
)], [u]) = [(Gu0u, (ξu0

)u)]

= [(Gof/f0u0u, (ξu0)of/f0u)]

= [(Gγu−1u, (ξγu−1)u)]

= [(γGof/f0 , γξof/f0 )]

= [(γG′, γξ′)]

= [(G′, ξ′)]

proving the surjectivity of Φf0(·, [u]) and completing the proof.

Corollary 5.4.9. The group H(of ,M) acts on the set Γ0(M) \A(M, δf2) as a group of automor-

phisms.

5.5 Some Useful Operators

Here we will introduce some operators that will become very involved in our analysis later of the

Fourier coefficients of Siegel paramodular forms. Let M ≥ 1 be an integer and let B(M) denote the
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vector space of complex-valued functions defined on the set A(M) which are constant on equivalence

classes modulo Γ0(M). For

S =

Mr t/2

t/2 s

 ∈ A(M)

we let e(S) = gcd(Mr, t, s). We consider also the subset

P (M) = {S ∈ A(M) : S > 0 and e(S)−1S ∈ A(M)}.

It is simple to check that P (M) is invariant under the action of Γ0(M). Let

g =

 a b

cM d

 ∈M(2,Z)

be such that gcd(det(g),M) = 1. Let

Γ0(M)gΓ0(M) =

N⊔
i=1

giΓ0(M),

and define for ρ ∈ B(M)

(T (Γ0(M)gΓ0(M))ρ)(S) =

N∑
i=1

ρ(tgiSgi).

The following proposition is immediately apparent.

Proposition 5.5.1. The operator T (Γ0(M)gΓ0(M)) does not depend on the choice of the repre-

sentatives in the double coset decomposition for Γ0(M)gΓ0(M). Furthermore, the operator maps

B(M) to itself.

Definition 5.5.2. Let m ∈ N with gcd(m,M) = 1 and let ρ ∈ B(M). We define the diagonal

down operator ∆−(m) : B(M)→ B(M) by

(∆−(m)ρ)(S) =


ρ(m−1S) if m−1S ∈ A(M),

0 if m−1S /∈ A(M).

We define the diagonal up operator ∆+(m) : B(M)→ B(M) by

(∆+(m)ρ)(S) = ρ(mS).

Lastly, we define the diagonal operator ∆(m) : B(M)→ B(M) by

(∆(m)ρ)(S) =

T
Γ0(M)

1 0

0 m

Γ0(M)

 (∆−(m)ρ)

 (S).
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We note that for a prime p not dividing M and for β ≥ 0, the set of matrices

R(pβ)

1 0

0 pβ


form a complete set of representatives of the right cosets contained in the double coset

Γ0(M)

1 0

0 pβ

Γ0(M).

It then follows that for ρ ∈ B(M),

(∆(pβ)ρ)(S) =
∑

U∈R(pβ)

(∆−(pβ)ρ)

1 0

0 pβ

 tUSU
1 0

0 pβ

 .

Let B′(M) denote the space of complex-valued functions defined on

N×
⋃

δ<0,f∈N
δ fund. disc.

A (M, δf2)

satisfying the condition

ρ′(m, (G1, ξ1)) = ρ′(m, (G2, ξ2))

if [(G1, ξ1)] = [(G2, ξ2)] and G1 and G2 are contained in the same field K. In light of the correspon-

dence between equivalence classes of positive-definite, primitive, integral binary quadratic forms of

discriminant δf2 modulo Γ0(M) and equivalence classes of full modules with ring of coefficients of

modulo Γ0(M), we can interpret functions in B′(M) as being obtained from functions in B(M). We

associate to ρ ∈ B(M) the function ρ′ ∈ B′(M) given by

ρ′(m0, (G, ξ)) = ρ(m0S(G,ξ)). (5.3)

It follows from Propositions 5.3.1 and 5.3.2 that this association is well-defined.

Proposition 5.5.3. Consider the map B(M)→ B′(M) given by ρ 7→ ρ′ if

ρ′(m0, (G, ξ)) = ρ(m0S(G,ξ))

for all m0 ∈ N and (G, ξ) ∈ A (M, δf2). Then θ defines a surjection from B(M) to B′(M).

Proof. Let ρ′ ∈ B′(M). We want to construct ρ ∈ B(M) such that ρ′ is the image of ρ under the

map from B(M)→ B′(M). For m0 ∈ N and (G, ξ) ∈ A (M, δf2) we have

m0S(G,ξ) ∈ P (M).
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Furthermore, for S ∈ P (M),

S = e(S)S′, S′ ∈ A(M, δf2),

we have (GS′ , ξS′) ∈ A (M, δf2). By Lemma 5.1.20 every full module in A (M, δf2) can be obtained

in this way. We thus define ρ : A(M)→ C by

ρ(S) =


ρ′(e(S), (GS′ , ξS′)) if S ∈ P (M),

0 if S /∈ P (M).

It is clear that ρ ∈ B(M) and it follows the ρ maps to ρ′.

We can now define how the diagonal down, diagonal up, and diagonal operators act on functions

in B′(M). We start with m,m0 ∈ N with gcd(m,M) = 1 and (G, ξ) ∈ A (M, δf2). The diagonal

up and diagonal down operators are defined for ρ′ ∈ B′(M) as

(∆−(m)ρ′)(m0, (G, ξ)) =


ρ′(m0/m, (G, ξ)) if m|m0,

0 if m - m0,

and

(∆+(m)ρ′)(m0, (G, ξ)) = ρ′(m0m, (G, ξ)).

We define for

Γ0(M)gΓ0(M) =

N⊔
i=1

giΓ0(M), g =

 a b

cM d

 ∈M(2,Z)

with gcd(det(g),M) = 1 and ρ′ ∈ B′(M),

(T (Γ0(M)gΓ0(M))ρ′)(m0, (G, ξ)) =

N∑
i=1

ρ′(m0e(
tgiS(G,ξ)gi), (GSi , ξSi))

where Si is the positive-definite, primitive, integral binary quadratic form

1

e(tgiS(G,ξ)gi)
tgiS(G,ξ)gi.

A computation shows that the above form is an element of A(M).

The next theorem establishes that the definitions of the above operators on ρ′ ∈ B′(M) are

compatible with the surjection from B(M) to B′(M).
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Theorem 5.5.4. Let M ≥ 1 be an integer. Let m,m0 ∈ N with gcd(m,M) = 1. Let

g =

 a b

cM d

 ∈M(2,Z)

with gcd(det(g),M) = 1. Let S = e(S)S′ ∈ P (M) and let (G, ξ) ∈ A (M, δf2) be the full module

associated to S′. Then we have the following equalities for ρ ∈ B(M):

(∆−(m)ρ)′ = ∆−(m)ρ′,

(∆+(m)ρ)′ = ∆+(m)ρ′,

(T (Γ0(M)gΓ0(M))ρ)′ = T (Γ0(M)gΓ0(M))ρ′

where

g =

 a b

cM d

 ∈M(2,Z)

with gcd(det(g),M) = 1.

Proof. We prove the first formula. We have for m0 ∈ N and (G, ξ) ∈ A (M, δf2)

(∆−(m)ρ)′(m0, (G, ξ)) = (∆−(m)ρ)(m0S(G,ξ))

=


ρ((m0/m)S(G,ξ)) if m|m0,

0 if m - m0,

=


ρ′(m0/m, (G, ξ)) if m|m0,

0 if m - m0,

= (∆−(m)ρ′)(m0, (G, ξ)).

The second formula is proved similarly. We now prove the third formula. Let

Γ0(M)gΓ0(M) =

N⊔
i=1

giΓ0(M)

We have for m0 ∈ N and (G, ξ) ∈ A (M, δf2)

(T (Γ0(M)gΓ0(M))ρ)′(m0, (G, ξ)) = (T (Γ0(M)gΓ0(M))ρ)(m0S(G,ξ))

=

N∑
i=1

ρ(m0
tgiS(G,ξ)gi)

=

N∑
i=1

ρ′(m0e(
tgiS(G,ξ)gi), (GSi , ξSi))

= (T (Γ0(M)gΓ0(M))ρ′)(m0, (G, ξ)).
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This completes the proof of the theorem.

We can then define the diagonal operator on elements ρ′ ∈ B′(M). We have for m ∈ N with

gcd(m,M) = 1, m0 ∈ N, and (G, ξ) ∈ A (M, δf2)

(∆(m)ρ′)(m0, (G, ξ)) =

T
Γ0(M)

1 0

0 m

Γ0(M)

 (∆−(m)ρ′)

 (m0, (G, ξ)).

In particular, for a prime p not dividing M and for β ≥ 0,

(∆(pβ)ρ′)(m0, (G, ξ)) =
∑

U∈R(pβ)

(∆−(pβ)ρ′)

m0e

1 0

0 pβ

 tUS(G,ξ)U

1 0

0 pβ

 , (GS(U), ξS(U))


where S(U) is the positive-definite, primitive, integral binary quadratic form

1

e

1 0

0 pβ

 tUS(G,ξ)U

1 0

0 pβ


1 0

0 pβ

 tUS(G,ξ)U

1 0

0 pβ

 .

Theorem 5.5.5. Let M ≥ 1 be an integer. Let (G, ξ) ∈ A (M, δf2) with

ξ =

ω1

ω2


and let p be a prime not dividing Mf . Then for all β ≥ 1, for all m0 ∈ N with gcd(m0, p) = 1, and

for all ρ′ ∈ B′(M) we have

(i) if pof = pp where p and p are the two distinct prime ideals of of of norm p, then

(∆(pβ)ρ′)(m0, (G, ξ)) = ρ′(m0, (Gp
β , ξpβ )) + ρ′(m0, (Gp

β , ξpβ )),

(ii) if pof = p2 where p is the unique prime ideal of of of norm p, then

(∆(pβ)ρ′)(m0, (G, ξ)) =


ρ′(m0, (Gp, ξp)) if β = 1,

0 if β > 1,

(iii) if pof = p is a prime ideal of of , then

(∆(pβ)ρ′)(m0, (G, ξ)) = 0,

where ξpβ is given by equation 5.2.



91

Proof. Let (G, ξ) ∈ A (M, δf2). Without loss of generality, we may assume that ξ is of the form Mr

t− f
√
δ

2

 .
Let

S = S(G,ξ) =

Mr t/2

t/2 s

 .
For U ∈ Γ0(M) we set

tUSU =

MrU tU/2

tU/2 sU

 = SU .

Before we prove the three statements we show that, for fixed β, there is a bijection between the

sets

T1(pβ) = {U ∈ R(pβ) : rU ≡ 0 (mod pβ)}

and

T2(pβ) = {u ∈ A(of ,M) : u ⊂ of and N(u) = pβ}.

Since regular, integral ideals of of with norm prime to f can be factored uniquely into a product of

prime ideals of of , T2(pβ) consists of elements of the form pipj , i+ j = β, where p and p are prime

ideals in of of norm p (it is possible p = p). Let’s assume that T1(pβ) is non-empty. Let U ∈ T1(pβ)

and consider the full module u(U) with basis pβ

tU − f
√
δ

2

 .
We show that the norm of u(U) is N(u(U)) = pβ and, more importantly, that u(U) ∈ T2(pβ). The

element

tU − f
√
δ

2pβ

is a root of the polynomial

ϕ(z) = pβz2 − tUz +Mp−βrUsU .

We then split into two cases, p|δ and p - δ. Assume that p - δ. Then p - tU , and it follows that the

coefficients of ϕ are relatively prime. Hence, by Proposition 5.1.16, we have that N(u(U)) = pβ .
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It follows that u(U) is an element of T2(pβ). Now assume that p|δ. Then p|tU . We prove that

p -Mp−βrUsU . Suppose p = 2. Then δ = 4δ0 with δ0 ≡ 2, 3 (mod 4). Let tU = 2t′U . Then

δf2 = 4δ0f
2 = 4((t′U )2 −MrUsU )

and hence

MrUsU = (t′U )2 − δ0f2 ≡ (t′U )2 − δ0 (mod 4).

Since (t′U )2 ≡ 0, 1 (mod 4) and δ0 ≡ 2, 3 (mod 4) it follows that MrUsU is not divisible by 4. This

implies that β = 1 and M2−1rUsU is odd. It then follows that the coefficients of ϕ are relatively

prime and the norm of u(U) is N(u(U)) = 2, implying that u(U) is an element of T2(2). Now

suppose p 6= 2. We have the congruence

δf2 ≡ 4MrUsU (mod p2).

Since δ is not divisible by p2, we conclude that MrUsU is not divisible by p2. This implies that β = 1

and Mp−1rUsU is not divisible by p. Hence, by Proposition 5.1.16, the norm of u(U) is N(u(U)) = p

and thus u ∈ T2(p). From what we have shown above, there is a map u : T1(pβ)→ T2(pβ).

We show that this map is an injection. Given U, V ∈ T1(pβ) with u(U) = u(V ), we have

rU ≡ rV ≡
tU − tV

2
≡ 0 (mod pβ).

We prove that U = V . Since tUSU = SU and tV SV = SV we have

SV = tV SV

= tV (tU−1SUU
−1)V

= t(U−1V )SU (U−1V ).

Write

U−1V =

a b

c d

 .
Then

MrV = MrUa
2 + tUac+ sUc

2 ≡ tUac+ sUc
2 ≡ 0 (mod pβ).

Moreover, we have that

tU − tV
2

=
tU − 2MrUab− 2sUcd− 2tUbc− tU

2
= −MrUab− sUcd− tUbc ≡ sUcd+ tUbc ≡ 0 (mod pβ).
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Manipulating the above system of congruences we can show that

ctU ≡ 0 (mod pβ) and csU ≡ 0 (mod pβ).

Hence c is divisible by pβ . It follows that U−1V ∈ Γ0(Mpβ) and thus U = V .

We now compute the image of u : T1(pβ)→ T2(pβ). Assume that U and V are distinct elements

of T1(pβ). We show that

u(U) + u(V ) = of .

It suffices to prove that

gcd

(
tU − tV

2
, p

)
= 1.

Assume that the greatest common divisor is p. We then have that the bases p

tU − f
√
δ

2

 and

 p

tV − f
√
δ

2


define the same module v. Since t2U ≡ δf2 (mod 4pβ) and t2V ≡ δf2 (mod 4pβ) we have that(

tU + tV
2

)(
tU − tV

2

)
≡ 0 (mod pβ).

Assume that p divides the first factor on the left in the above congruence. It follows that p|tU . If

β > 1, then this would imply p|f which is false. So β = 1. But this is a contradiction since, in this

case, we would have u(U) = u(V ) with U 6= V .

We then conclude that pβ |[(tU − tV )/2]. But then u(U) = u(V ) with U 6= V . This is also a

contradiction and thus the greatest common divisor of (tU − tV )/2 and p is 1. Our claim then

follows.

We now proceed with the proof of the theorem. We start by proving (i). In this case u(T1(pβ)) =

{pβ , pβ}. Suppose that U, V ∈ T1(pβ) correspond to pβ and pβ respectively. Then, upon applying

∆(pβ) to ρ′, we obtain

(∆(pβ)ρ′)(m0, (G, ξ)) = ρ′

m0,

GS(U),

MrUp
−β

tU − f
√
δ

2



+ ρ′

m0,

GS(V ),

MrV p
−β

tV − f
√
δ

2





where u(U) = pβ and u(V ) = pβ . We note that by what we have shown rUp
−β and rV p

−β are not

divisible p. It is now simple to check that
GS(U),

MrUp
−β

tU − f
√
δ

2



 = [(Gpβ , ξpβ )]
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and 
GS(V ),

MrV p
−β

tV − f
√
δ

2



 = [(Gpβ , ξpβ )]

thereby proving (i).

Case (ii) is dealt with similarly. In this case however u(T1(p)) = {p} and T1(pβ) = ∅ for β > 1.

In case (iii) we have T1(pβ) = ∅ for all β ≥ 1. The claim is proved.

Theorem 5.5.6. Let M ≥ 1 be an integer. Let (G, ξ) ∈ A (M, δf2) with

ξ =

ω1

ω2


and let p be a prime not dividing M and dividing f . Then for all m0 ∈ N with gcd(m0, p) = 1 and

for all ρ′ ∈ B′(M) we have

(∆(p)ρ′)(m0, (G, ξ)) = ρ′(m0p, (Gof/p, ξof/p))

and

((∆(p)2 −∆(p2)− 1)ρ′)(m0, (G, ξ)) = 0.

Proof. As in the proof of the previous theorem we start with (G, ξ) ∈ A (M, δf2) with ξ of the

form  Mr

t− f
√
δ

2


and let

S = S(G,ξ) =

Mr t/2

t/2 s

 .
Since p|f the congruence

z2 ≡ δf2 (mod 4p)

has a solution. According to a theorem in [7] (see Theorem 7, pg. 145), there exists U ∈ R(p)

such that rU ≡ 0 (mod p). In fact, such a U is unique. We prove this claim. Let V ∈ R(p) such

that rV ≡ 0 (mod p). We will prove U = V . Since p|f we have that p|tU and hence p - sU . With

tUSU = SU and tV SV = SV we have

SV = t(U−V )SU (U−1V ).
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We write

U−1V =

a b

c d

 .
We then have the congruence

MrV = MrUa
2 + tUac+ sUc

2 ≡ tUac+ sUc
2 ≡ sUc2 ≡ 0 (mod p).

Thus p|c and hence U = V .

We now prove that p|Mp−1rUsU . Suppose p = 2. Then the congruence δ ≡ 0, 1 (mod 4) implies

that

δf2 = t2U − 4MrUsU ≡ 0, 4 (mod 16).

Thus (tU/2)2−MrUsU ≡ 0, 1 (mod 4). Since MrUsU is even, it follows that MrUsU ≡ 0 (mod 4).

Hence M2−1rUsU ≡ 0 (mod 2). Now suppose that p 6= 2. We have the congruence

δf2 ≡ −4MrUsU (mod p2)

and it follows fairly readily that p|Mp−1rUsU .

We now consider the element

tU − f
√
δ

2p
.

This number is a root of the polynomial

ϕ(z) = z2 − (tU/p)z +Mp−2rUsU

and thus the full module generated by the basis p

tU − f
√
δ

2


has ring of coefficients of/p by Proposition 5.1.16. Write

1

p

1 0

0 p

SU
1 0

0 p

 = pS(U)′

where S(U)′ is a primitive and integral binary quadratic form. Then

(∆(p)ρ′)(m0, (G, ξ)) = ρ′

m0p,

GS(U)′ ,

 MrUp
−2

tU − f
√
δ

2p



 .
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It is then simple to check that
GS(U)′ ,

 MrUp
−2

tU − f
√
δ

2p



 = [(Gof/p, ξof/p)].

We now prove the second formula. We consider S(U)′ as computed above and use the explicit

representation of R(pβ) as given in Lemma 4.2.6. First we assume that U is of the form 1 0

Mu 1


for some u ∈ Z/pZ. We then have that

MrU = Mr +Mtu+M2su2 ≡ 0 (mod p).

As we also have

MrU = Mr +Mtu+M2su2 ≡ 0 (mod p2)

we further have that p|(t − 2Msu). By Hensel’s Lemma, we obtain p solutions modulo p2 to the

congruence

Mr +Mtv +M2sv2 ≡ 0 (mod p2)

where v = u + lp for l = 0, 1, . . . , p − 1. A direct computation now yields the desired result. A

similar argument is made in the case where U is of the form p −a1

M b1


where a1M + b1p = 1. This completes the proof.

5.6 The Structure of Γ0(M) \ A(M, δf 2)

In this section we break down some of the structures of Γ0(M) \ A(M, δf2). To this end, we look

briefly at the case M = 1 in which case we are considering the class group SL(2,Z) \ A(1, δf2).

Note that we will use the matrix representation of binary quadratic forms in our discussion here.

The following definition is from [11].

Definition 5.6.1. The identity element of the class group SL(2,Z)\A(1, δf2) is called the principal

form.
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If δf2 = −4D with D > 0 then the principal form is

I∗D,0 =

1 0

0 D


and if δf2 = −4D + 1 with D > 0 then the principal form is

I∗D,1 =

 1 1/2

1/2 D

 .
Fix M ≥ 1 an integer. We have a decomposition

SL(2,Z) =

m⊔
i=1

giΓ0(M)

where

m = [SL(2,Z) : Γ0(M)]

= M
∏
p|M

(
1 +

1

p

)
.

It then follows that each class in SL(2,Z) \ A(1, δf2) partitions into m orbits when considered

modulo Γ0(M). In particular, we are interested in those orbits that are contained in A(M, δf2).

Proposition 5.6.2. Let S ∈ A(1, δf2) and fix a decomposition

SL(2,Z) =

m⊔
i=1

giΓ0(M).

Suppose that there exists g ∈ SL(2,Z) such that tgSg ∈ A(M, δf2). Then there exists i with

1 ≤ i ≤ m such that tgiSgi ∈ A(M, δf2).

Proof. Suppose g ∈ SL(2,Z) is such that tgSg ∈ A(M, δf2). For some i with 1 ≤ i ≤ m we have

g ∈ giΓ0(M).

Hence g = gig0 for some g0 ∈ Γ0(M). It follows that

(tg−1
0 )tg0

tgiSgig0(g0)−1 = tgiSgi ∈ A(M, δf2).

This completes the proof.

We now ask the question as to when we can ensure there exists a matrix g in SL(2,Z) such that

tgSg ∈ A(M, δf2) for some fixed S ∈ A(1, δf2). In general, it is not always the case. However, for

certain discriminants, we can indeed identify when every class in SL(2,Z) \ A(1, δf2) does contain

an element in A(M, δf2). The following proposition addresses two such discriminants.
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Proposition 5.6.3. Let M ≥ 1 be a fixed positive integer and let f ∈ N be such that δf2 = −4M

or δf2 = −4M + 1. Then for every S ∈ A(1, δf2), there exists S′ ∈ A(M, δf2) such that S′ = tgSg

for some g ∈ SL(2,Z).

Proof. We only prove the claim when δf2 = −4M as the other case is similar. Consider the matrix

IM,0 =

M 0

0 1

 ∈ A(M, δf2).

If S is equivalent modulo SL(2,Z) to IM,0 then we are done. Assume that this is not the case.

Write

S =

 r t/2

t/2 s

 .
We may assume that gcd(r,M) = 1 (see Lemma 2.25, [11]). Now consider the matrix I∗M,0. The

binary quadratic forms IM,0 and I∗M,0 are clearly equivalent modulo SL(2,Z). As I∗M,0 is the

principal form we have

[S][I∗M,0] = [S].

Since [I∗M,0] = [IM,0], it follows that the product of the class of S and the class of IM,0 is equal to

the class of S. A direct computation of [S][IM,0] establishes that [S] contains an element S′ with

S′ ∈ A(M, δf2). This completes the proof.

It is possible to by more general here and not restrict to such a narrow set of discriminants. Fix

an integer M ≥ 1. We say a congruence

rx2 + txy + sy2 ≡ 0 (mod M)

with r, t, z ∈ Z and gcd(r, t, s) = 1 is solvable when there exists a pair (x, y) which satisfies the

congruence with x and y relatively prime. We say that two pairs (x1, y1), and (x2, y2) are equivalent

solutions if there exists a ∈ (Z/MZ)× such that

ax1 ≡ x2 (mod M) and ay1 ≡ y2 (mod M).

Proposition 5.6.4. Let M ≥ 1 be a positive integer and write

M =

l∏
k=1

pekk .
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Let S(x, y) = rx2 + txy + sy2 be a positive definite, integral, primitive binary quadratic form of

discriminant δf2 with the congruence

rx2 + txy + sy2 ≡ 0 (mod pekk )

solvable for each k with 1 ≤ k ≤ l. Then there exists g ∈ SL(2,Z) such that tgSg ∈ A(M, δf2).

Proof. By the Chinese remainder theorem, a solution to the system of congruences

rx2 + txy + sy2 ≡ 0 (mod pekk ), 1 ≤ k ≤ l,

lifts to a solution of

rx2 + txy + sy2 ≡ 0 (mod M).

Let (a, c) be such a solution. We can then construct a matrix

g =

a b

c d

 ∈ SL(2,Z).

A simple computation shows that tgSg ∈ A(M, δf2).

Let M ≥ 1 be an integer, and fix a decomposition

SL(2,Z) =

m⊔
i=1

giΓ0(M).

Let S ∈ A(1, δf2) and define the set JS = {i ∈ {1, . . . ,m} : tgiSgi ∈ A(M, δf2)}. The last result of

this section concerns the size of this set.

Theorem 5.6.5. Let M ≥ 1 be an integer, let S, S′ ∈ A(1, δf2), and fix a decomposition

SL(2,Z) =

m⊔
i=1

giΓ0(M).

Then |JS | = |JS′ |.

Proof. If M = 1 then the claim is obvious so we suppose M > 1. If S and S′ are equivalent modulo

SL(2,Z) then the claim follows trivially. We then suppose that S and S′ define distinct classes

modulo SL(2,Z). Write

S =

 r t/2

t/2 s

 and S′ =

 r′ t′/2

t′/2 s′
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with gcd(r,M) = gcd(r′,M) = 1. We have that |JS | is the number of pairs (x, y) ∈ P1(Z/MZ)

that satisfy

rx2 + txy + sy2 ≡ 0 (mod M).

Furthermore, we have that |JS′ | is the number of pairs (x, y) ∈ P1(Z/MZ) that satisfy

r′x2 + t′xy + s′y2 ≡ 0 (mod M).

If JS = ∅, then for some prime p dividing M we have

rx2 + txy + sy2 ≡ 0 (mod pn)

is not solvable (here n is the power of p which divides M). Thus z2 ≡ δf2 (mod 4pn) has no

solution and hence

r′x2 + t′xy + s′y2 ≡ 0 (mod pn)

is not solvable. Thus JS′ = ∅. This proves that JS 6= ∅ if and only if JS′ 6= ∅.

Assume that JS 6= ∅. We show that |JS | = |JS′ |. Let [T ] ∈ SL(2,Z) \A(1, δf2) be such that

[S′] = [S][T ].

Pick a prime p which does not divide M and is represented by the binary quadratic form T . Then

[pof ] is an element of both H(of , 1) and H(of ,M). By Corollary 5.4.9, it follows that |JS | = |JS′ |.

This completes the proof.
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6 Properties of Fourier Coefficients of Siegel Paramodular

Forms

In this chapter we will bring all the previous content together to establish relations on Fourier

coefficients for Siegel modular forms for the paramodular group. We will see that in some contexts

these relations are purely multiplicative and in other contexts these relations are simply arithmetic.

6.1 Action of Hecke Operators on Fourier Coefficients, p -M

Throughout this section we assume that p is a prime not dividing M ≥ 1. We start by computing

the action of the Hecke operators T (pr0) on a Siegel paramodular form of level M . The contructions

appearing in chapter 4 allows us to do this without too much difficulty.

Let F : H2 → C be a Siegel paramodular form of fixed level M ≥ 1 with weight k > 0 and

suppose that F has a Fourier expansion given by

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ).

For an integer r0 ≥ 0, let Λr0 = {(α, β, γ) ∈ Z3 : α, β, γ ≥ 0, α + β + γ = r0}. We use equation

(4.1) in conjunction with Proposition 4.2.5 and we obtain

(T (pr0)(F ))(Z) = pr0(k−3)
∑

g∈V (pr0 )

F ?k g

= pr0(k−3)
∑

[A B
0 D ]∈V (pr0 )

 ∑
S∈A(M)

a(S)pr0k(det(D))−ke2πitr(S(AZ+B)D−1)


= pr0(2k−3)

∑
S∈A(M)

∑
[A B

0 D ]∈V (pr0 )

a(S)(det(D))−ke2πitr(SAZD−1)e2πitr(SBD−1)

= pr0(2k−3)
∑

S∈A(M)

∑
(α,β,γ)∈Λr0

∑
D∈Dα,βtR(pβ)

A=pr0 tD−1

a(S)(det(D))−ke2πitr(SAZD−1)lD(S)

where

lD(S) =
∑

BmodD
tBD=tDB

e2πitr(SBD−1)

This sum for fixed D is called a Gauss sum and can be analyzed separately. The following

lemma addresses this sum.
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Lemma 6.1.1. Let

lD(S) =
∑

BmodD
tBD=tDB

e2πitr(SBD−1)

where D ∈ GL(2,Q) ∩M(2,Z), S ∈ A(M), and B mod D is defined as in 4.2.3.

(i) For any V ∈ SL(2,Z),

lDV (S) = lD(S).

(ii) For α, β ∈ N such that D = Dα,β
tU with U ∈ R(pβ),

lD(S) =


p3α+β if r ≡ t ≡ 0 (mod pα), s ≡ 0 (mod pα+β),

0 otherwise.

Proof. For V ∈ SL(2,Z) we have

lDV (S) =
∑

BmodDV
tBDV=tV tDB

e2πitr(SB(DV )−1)

=
∑

BV −1 modD
t(BV −1)D=tD(BV −1)

e2πitr(SBV −1D−1)

=
∑

B′modD
tB′D=tDB′

e2πitr(SB′D−1)

= lD(S).

This completes the proof of (i). Next we prove (ii). By (i) we need only prove the claim in the

case D = Dα,β . We need to construct a complete set of representatives modulo Dα,β . We have as

a complete set of representatives modulo Dα,β
b1 pβb2

b2 b3

 : 0 ≤ b1, b2 < pα, 0 ≤ b3 < pα+β

 .

Write

S =

Mr t/2

t/2 s

 .
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We then have

lDα,β (S) =
∑

BmodDα,β

e2πitr(SBD−1
α,β)

=
∑

0≤b1,b2<pα
0≤b3<pα+β

e

2πitr


Mr t/2

t/2 s


b1 pβb2

b2 b3


p
α 0

0 pα+β


−1

=
∑

0≤b1,b2<pα
0≤b3<pα+β

e
2πi

b1Mr

pα
+
b2t

pα
+
b3s

pα+β



=

pα−1∑
b1=0

e2πib1Mr/pα
pα−1∑
b2=0

e2πib2t/p
α
pα+β−1∑
b3=0

e2πib3s/p
α+β

.

Therefore

lD(S) = lDα,β (S) =


p3α+β if r ≡ t ≡ 0 (mod pα), s ≡ 0 (mod pα+β),

0 otherwise.

This completes the proof of (ii).

Define for arbitrary n ∈ Z the map dm : Zn → {0, 1} by

dm(x1, x2, . . . , xn) =


0 if m - xi for some i

1 if m|xi for all i

.

Going back to our computation we then have

(T (pr0 )(F ))(Z) =
∑

S∈A(M)

a(S)
∑

(α,β,γ)∈Λr0

∑
D∈Dα,βtR(pβ)

pβ(k−2)+γ(2k−3)dpα (r, t)dpα+β (s)e2πitr(p
r0StD−1ZD−1)

=
∑

S∈A(M)

a(S)
∑

(α,β,γ)∈Λr0

dpα (r, t)dpα+β (s)pβ(k−2)+γ(2k−3)
∑

D∈Dα,βtR(pβ)

e2πitr(p
r0D−1StD−1Z)

=
∑

S∈A(M)

∑
(α,β,γ)∈Λr0

∑
U∈R(pβ)

a(S)dpα (r, t)dpα+β (s)pβ(k−2)+γ(2k−3)e2πitr(f
(α,β,γ)
U

(S)Z)

where f
(α,β,γ)
U (S) = pr0D−1S(tD−1) and D = Dα,β

tU . Suppose S ∈ A(M) such that r ≡ t ≡

0 (mod pα) and s ≡ 0 (mod pα+β) and write

r = pαr′, t = pαt′, and s = pα+βs′.
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Then we have

f
(α,β,γ)
U (S) = pr0D−1S(tD−1)

= pr0 · tU−1D−1
α,βSD

−1
α,βU

−1

= tU−1

pγ
Mr′pβ t′/2

t′/2 s′

U−1 ∈ A(M).

It is clear that f
(α,β,γ)
U is an injective map. For notational simplicity, we denote for S ∈ A(M) and

U ∈ R(pβ)

tUSU =

MrU tU/2

tU/2 sU

 = SU .

It now follows that

(T (pr0)(F ))(Z) =
∑

S∈A(M)

a(pr0 ;S)e2πitr(SZ).

where

a(pr0 ;S) =
∑

(α,β,γ)∈Λr0

∑
U∈R(pβ)

dpβ+γ (rU )dpγ (tU , sU )pβ(k−2)+γ(2k−3)a((f
(α,β,γ)
U )−1(S)).

We also can make note here that

∑
U∈R(pβ)

d
pβ+γ

(rU )dpγ (tU , sU )a((f
(α,β,γ)
U )

−1
(S)) =

∑
U∈R(pβ)

d
pβ+γ

(rU )dpγ (tU , sU )a

pα−β−γ
1 0

0 pβ

SU
1 0

0 pβ


= (∆

−
(p
γ

)(∆(p
β

)(∆
+

(p
α

)a)))(S)

and thus

a(pr0 ;S) =
∑

(α,β,γ)∈Λr0

pβ(k−2)+γ(2k−3)(∆−(pγ)(∆(pβ)(∆+(pα)a)))(S).

We further note here that if S is primitive and m0 ∈ N with gcd(m0, p) = 1, then

a(pr0 ;m0S) =
∑

(α,β,0)∈Λr0

p(k−2)β(∆(pβ)(∆+(pα)a))(m0S).

Theorem 6.1.2. Let δ < 0 be a fundamental discriminant. Let

F (Z) =
∑

S∈A(M)

a(S)e2πitrSZ ∈Mk(K(M))

for k > 0. Let S ∈ A(M, δf2) and let (G, ξ) ∈ A (M, δf2) be associated to S. Let p be a prime not

dividing Mf .
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(i) If pof = pp in Q(
√
δ) then for m0 ∈ N with gcd(m0, p) = 1

a(pr0 ;m0S) = a(pr0m0S) +

r0∑
β=1

p(k−2)β [a(pr0−βm0S(Gpβ ,ξ
pβ

)) + a(pr0−βm0S(Gpβ ,ξ
pβ

))].

(ii) If pof = p2 in Q(
√
δ) then for m0 ∈ N with gcd(m0, p) = 1

a(pr0 ;m0S) = a(pr0m0S) + pk−2a(pr0−1m0S(Gp,ξp)).

(iii) If pof = p in Q(
√
δ) then for m0 ∈ N with gcd(m0, p) = 1

a(pr0 ,m0S) = a(pr0m0S).

Proof. The Fourier coefficients of a Siegel paramodular form can be viewed as the outputs of a

function in B(M), i.e., a ∈ B(M). We then consider a′ ∈ B′(M) (see equation 5.3). We first prove

(i). We have

a′(pr0 ;m0, (G, ξ)) =
∑

(α,β,0)∈Λr0

p(k−2)β(∆(pβ)(∆+(pα)a′))(m0, (G, ξ))

= a′(pr0m0, (G, ξ)) +

r0∑
β=1

p(k−2)β [a′(pr0−βm0, (Gpβ , ξpβ )) + a′(pr0−βm0, (Gpβ , ξpβ ))]

where we have used Theorem 5.5.5. The result now follows upon lifting a′ back to a. The proof of

(ii) and (iii) are similar.

Definition 6.1.3. Let F : H2 → C be a Siegel paramodular form. If for each prime p not dividing

M there exists constants {µ(pr0)}∞r0=0 such that

T (pr0)F = µ(pr0)F

then we say that F is a Siegel paramodular eigenform.

From this point onward, eigenforms will be the key objects we will focus on.

Definition 6.1.4. Let M ≥ 1 be an integer and let F : H2 → C be a Siegel paramodular eigenform.

Let p be a prime number that does not divide M . We define the Euler factor at p to be the

polynomial

Qp,F (t) = 1− µ(p)t+ (µ(p)2 − µ(p2)− p2k−4)t2 − µ(p)p2k−3t3 + p4k−6t4.

One can compare the above Euler factor to that appearing in [18]. The authors there use the

Hecke operator T1(p2) instead of T (p2). Another interesting feature to note is that the eigenvalues

µ(p) and µ(p2) appearing in the definition are, in general, not integral (see [17]). The following

theorem is a result due to Shimura [37]. For a proof of the claim, which requires quite a bit of

theory which we do not cover here, see [4].
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Theorem 6.1.5. Let M ≥ 1 be an integer and let F : H2 → C be a Siegel paramodular eigen-

form. Let p be a prime number that does not divide M and let {µ(pr0)}∞r0=0 be the corresponding

eigenvalues at p. Then

∞∑
r0=0

µ(pr0)tr0 = (1− p2k−4t2)Qp,F (t)−1.

Theorem 6.1.6. Let M ≥ 1 be an integer and let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

of weight k > 0. Let p be a prime number that does not divide M . Then for any S ∈ A(M) such

that gcd(p, e(S)) = 1 we have(
∞∑
r0=0

a(pr0S)tr0

)
Qp,F (t) = a(S)− pk−2(∆(p)a)(S)t+ (p2k−4(∆∗(p)a)(S) + p3k−5(∆(p)(∆−(p)a))(S))t2

where

∆∗(p) = ∆(p)2 −∆(p2)− 1.

Proof. We provide additional details to the proof found in [2]. Write( ∞∑
r0=1

a(pr0S)tr0

)
Qp,F (t) =

∞∑
n=0

cnt
n.

We will compute expressions for cn, n ≥ 0. Let {µ(pr0)}∞r0=0 be the eigenvalues of F at p. Using

the definition of Qp,F (t) we have on the left side after expanding,

∞∑
r0=0

a(pr0S)tr0 −
∞∑
r0=0

a(pr0S)µ(p)tr0+1 +

∞∑
r0=0

a(pr0S)(µ(p)2 − µ(p2)− p2k−4)tr0+2

−
∞∑
r0=0

a(pr0S)µ(p)p2k−3tr0+3 +

∞∑
r0=0

a(pr0S)p4k−6tr0+4

We now identify the cn for n ≥ 0. We have

cn =



a(S) if n = 0,

a(pS)− µ(p)a(S) if n = 1,

a(p2S)− µ(p)a(pS) + (µ(p)2 − µ(p2)− p2k−4)a(S) if n = 2,

a(p3S)− µ(p)a(p2S) + (µ(p)2 − µ(p2)− p2k−4)a(pS)− µ(p)p2k−3a(S) if n = 3,

a(pnS)− µ(p)a(pn−1S) + (µ(p)2 − µ(p2)− p2k−4)a(pn−2S)

−µ(p)p2k−3a(pn−3S) + p4k−6a(pn−4S) if n ≥ 4.

We also have for l ≥ 0,

µ(p)a(plS) =
∑

(α,β,γ)∈Λ1

p(k−2)β+(2k−3)γ(∆−(pγ)(∆(pβ)(∆+(pα)a)))(plS)

= (∆+(p)a)(plS) + pk−2(∆(p)a)(plS) + p2k−3(∆−(p)a)(plS)
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and

(µ(p)2 − µ(p2)− p2k−4)a(plS) = µ(p)2a(plS)− µ(p2)a(plS)− p2k−4a(plS)

= p2k−4((∆(p)2 −∆(p2) + p− 1)a)(plS) + pk−2(∆(p)(∆+(p)a))(plS)

+ p3k−5(∆(p)(∆−(p)a))(plS).

It now follows that

cn =



a(S) if n = 0,

−pk−2(∆(p)a)(S) if n = 1,

p2k−4((∆(p)2 −∆(p2)− 1)a)(S) + p3k−5(∆(p)(∆−(p)a))(S) if n = 2,

p2k−4(∆+(p)(∆(p)2 −∆(p2)− (p+ 1))a)(S) if n = 3,

p2k−4(∆+(pn−2)(∆(p)2 −∆(p2)− (p+ 1))a)(S) if n ≥ 4.

We now prove a lemma.

Lemma 6.1.7. Let M ≥ 1 be an integer. For every prime p not dividing M we have

∆+(p) ◦ (∆(p)2 −∆(p2)− (p+ 1)) = 0.

Proof. We have

∆+(p) ◦∆(p)2 = ∆+(p) ◦ T

Γ0(M)

1 0

0 p

Γ0(M)

 ◦∆−(p) ◦ T

Γ0(M)

1 0

0 p

Γ0(M)

 ◦∆−(p)

=

T
Γ0(M)

1 0

0 p

Γ0(M)

2

◦∆−(p).

By the identityT
Γ0(M)

1 0

0 p

Γ0(M)

2

= T

Γ0(M)

1 0

0 p2

Γ0(M)

+ (p+ 1)T

Γ0(M)

p 0

0 p

Γ0(M)

 ,

we have

∆+(p) ◦∆(p)2 = T

Γ0(M)

1 0

0 p2

Γ0(M)

 ◦∆−(p) + (p+ 1)T

Γ0(M)

p 0

0 p

Γ0(M)

 ◦∆−(p)

= ∆+(p) ◦∆(p2) + (p+ 1)∆+(p).

The lemma is proved.



108

Going back to the proof of the theorem we have

cn =



a(S) if n = 0,

−pk−2(∆(p)a)(S) if n = 1,

p2k−4((∆(p)2 −∆(p2)− 1)a)(S) + p3k−5(∆(p)(∆−(p)a))(S) if n = 2,

0 if n ≥ 3.

The desired formula not follows which completes the proof of the theorem.

6.2 An Euler Product for Siegel Paramodular Forms

This section will be focused on proving one of our main theorems. Let M ≥ 1 be an integer and

for a fixed integer δ < 0 where δ is a fundamental discriminant, we denote by

Lδf2(s) =
∏
p

(
1− 1

(N(p))s

)−1

(Re(s) > 1),

the L-series of the order of in K = Q(
√
δ), where the product ranges over all prime ideals of of

whose ring of coefficients is op = of and whose norms are relatively prime to Mf (see [22]).

Theorem 6.2.1. Let M ≥ 1 be an integer. Let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

with k > 0. Suppose that F is an eigenform of the Hecke operators {T (m)}m≥1, gcd(m,M)=1 with

eigenvalues {µ(m)}m≥1, gcd(m,M)=1. Let δ < 0 be a fundamental discriminant and let K = Q(
√
δ).

Fix an order of of K for some f ∈ N. Then for every S ∈ A(M, δf2), we have in some right

half-plane

Lδf2(s− k + 2)
∑

[u]∈H(of ,M)

∞∑
m=1

gcd(m,M)=1

a(mSu)

ms
= χS,F (s)

∏
p-M

Qp,F (p−s)−1

where Lδf2(s) is the L-series of of , the matrix Su is determined by the action of H(of ,M), and

χS,F (s) =
∑

[u]∈H(of ,M)

∏
p-M
p|f

[(
1− ∆(p)

ps−k+2

)(
1− ∆−(p)

ps−2k+3

)
a

]
(Su)

 .

Proof. Let S ∈ A(M, δf2) and let (G, ξ) ∈ A (M, δf2) be the full module associated to S. For

every prime p not dividing M and for every m0 ∈ N with gcd(m0, p) = 1 we compute the series ∞∑
r0=1

 ∑
[u]∈H(of ,M)

a′(m0p
r0 , (Gu, ξu))

 p−sr0

Qp,F (p−s).
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where a′ ∈ B′(M) is associated to a ∈ B(M).

We first suppose that p splits in K. Then by Theorem 5.5.5 we have

(∆(p)a′)(m0, (G, ξ)) = a′(m0, (Gp, ξp)) + a′(m0, (Gp, ξp))

and

((∆(p)2 −∆(p2)− 1)a′)(m0, (G, ξ)) = a′(m0, (G, ξ)).

Furthermore, we have

(∆(p)∆−(p)a′)(m0, (G, ξ)) = (∆−(p)a′)(m0, (Gp, ξp)) + (∆−(p)a′)(m0, (Gp, ξp)) = 0.

Thus, by Theorem 6.1.6, we have that ∞∑
r0=1

 ∑
[u]∈H(of ,M)

a′(m0p
r0 , (Gu, ξu))

 p−sr0

Qp,F (p−s)

is equal to

∑
[u]∈H(of ,M)

[a′(m0, (Gu, ξu)) + pk−2(a′(m0, (Gup, ξup)) + a′(m0, (Gup, ξup)))p−s

+ p2k−4a′(m0, (Gu, ξu))p−2s].

Observing that H(of ,M)[p] = H(of ,M) we find that the above expression is equal to

∑
[u]∈H(of ,M)

a′(m0, (Gu, ξu))

(
1− 1

N(p)s−k+2

)(
1− 1

N(p)s−k+2

)
.

We repeat the same analysis in the cases where p is ramified or inert in K and p - f and in the case

where p|f . In each case respectively we obtain the expressions

∑
[u]∈H(of ,M)

a′(m0, (Gu, ξu))

(
1− 1

N(p)s−k+2

)
,

∑
[u]∈H(of ,M)

a′(m0, (Gu, ξu))

(
1− 1

N(p)s−k+2

)
,

and

∑
[u]∈H(of ,M)

[(
1− ∆(p)

ps−k+2

)(
1− ∆−(p)

ps−2k+3

)
a′
]

(m0, (Gu, ξu)).
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We proceed with the proof of the claim. We note that we will prove the formula at first only

formally. Let p0 be a prime not dividing Mf which ramifies in Q(
√
δ). Then

∏
p-M

Qp,F (p−s)
∑

[u]∈H(of ,M)

∞∑
m=1

gcd(m,M)=1

a′(m, (Gu, ξu))

ms

=
∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf

Qp,F (p−s)

∞∑
m=1

gcd(m,M)=1

∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms

=
∏
p-M
p|f

Qp,F (p−s)Qp0,F (p−s0 )
∏
p-Mf
p 6=p0

Qp,F (p−s)

∞∑
m=1

gcd(m,Mp0)=1

1

ms

∞∑
r0=0

 ∑
[u]∈H(of ,M)

a′(mpr00 , (Gu, ξu))

psr00



=
∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf
p 6=p0

Qp,F (p−s)

∞∑
m=1

gcd(m,Mp0)=1

1

ms

∞∑
r0=0

 ∑
[u]∈H(of ,M)

a′(mpr00 , (Gu, ξu))

psr00

Qp0,F (p−s0 )

=
∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf
p 6=p0

Qp,F (p−s)

∞∑
m=1

gcd(m,Mp0)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms

(
1− 1

N(p0)s−k+2

)

=

(
1− 1

N(p0)s−k+2

)∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf
p 6=p0

Qp,F (p−s)

∞∑
m=1

gcd(m,Mp0)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms


where p0 is the unique prime ideal of norm p2

0.

Let p1, . . . , pd be the remaining ramified primes in Q(
√
δ) and let p1, . . . , pd be the corresponding

prime ideals of norm p2
1, . . . , p

2
d respectively. Then repeating the above argument for this finite set

of primes we obtain

∏
p-M

Qp,F (p−s)
∑

[u]∈H(of ,M)

∞∑
m=1

gcd(m,M)=1

a′(m, (Gu, ξu))

ms

=

d∏
i=0

(
1− 1

N(pi)s−k+2

)∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf

punramified

Qp,F (p−s)
∞∑
m=1

gcd(m,MPr)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms


where Pr is the product of all the ramified primes.

We consider now the remaining expression

∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf

punramified

Qp,F (p−s)

∞∑
m=1

gcd(m,MPr)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms

 .

Let q0 be a prime not dividing Mf which splits in Q(
√
δ) and let

C =
∏
p-M
p|f

Qp,F (p−s).
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Then

C
∏
p-Mf

punramified

Qp,F (p−s)

∞∑
m=1

gcd(m,MPr)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms



= CQq0,F (q−s0 )
∏
p-Mf

p 6=q0 unramified

Qp,F (p−s)

∞∑
m=1

gcd(m,MPr)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms



= C
∏
p-Mf

p6=q0 unramified

Qp,F (p−s)

∞∑
m=1

gcd(m,MPrq0)=1

1

ms

∞∑
r0=0

 ∑
[u]∈H(of ,M)

a′(mqr00 , (Gu, ξu))

qsr00

Qq0,F (q−s0 )

=

(
1− 1

N(q0)s−k+2

)(
1− 1

N(q0)s−k+2

)
C

∏
p-Mf

p6=q0 unramified

Qp,F (p−s)

∞∑
m=1

gcd(m,MPrq0)=1

a′(m, (Gu, ξu))

ms
.

Let {qi}∞i=1 be the remaining split primes in Q(
√
δ). We know that there are infinitely many by

the Čebotarev Density Theorem (see [11]). We prove that

C
∏
p-Mf

punramified

Qp,F (p−s)

∞∑
m=1

gcd(m,MPr)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms


=

∞∏
i=0

(
1− 1

N(qi)s−k+2

)(
1− 1

N(qi)
s−k+2

)
C

∏
p-Mf

punramified
pnon-split

Qp,F (p−s)

∞∑
m=1

gcd(m,MPr)=1
gcd(m,qi)=1 for all i

a′(m, (Gu, ξu))

ms
.

Indeed, based on the argument for q0 above, we have for d′ ∈ N

∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf

punramified

Qp,F (p−s)
∞∑
m=1

gcd(m,MPr)=1

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms



=

d′∏
i=0

(
1−

1

N(qi)

)(
1−

1

N(qi)

) ∏
p-M
p|f

Qp,F (p−s)
∏
p-Mf

punramified
p 6=qi for i≤d′

Qp,F (p−s)

∗
∞∑
m=1

gcd(m,MPr)=1

gcd(m,qi)=1 for all i≤d′

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms

 .

Taking the limit as d′ goes to infinity yields the desired result.

We then repeat the same argument for the inert primes. We then obtain

∏
p-M

Qp,F (p−s)
∑

[u]∈H(of ,M)

∞∑
m=1

gcd(m,M)=1

a′(m, (Gu, ξu))

ms

= Lδf2(s− k + 2)−1
∏
p-M
p|f

Qp,F (p−s)

∞∑
m=1

gcd(m,Mq)=1
for allqprime, q-Mf

 ∑
[u]∈H(of ,M)

a′(m, (Gu, ξu))

ms

 .
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We lastly apply the appropriate identity for the remaining set of primes which divide f but do

not divide M . We then obtain∏
p-M

Qp,F (p−s)
∑

[u]∈H(of ,M)

∞∑
m=1

gcd(m,M)=1

a′(m, (Gu, ξu))

ms

= Lδf2(s− k + 2)−1
∑

[u]∈H(of ,M)

∏
p-M
p|f

[(
1− ∆(p)

ps−k+2

)(
1− ∆−(p)

ps−2k+3

)
a′
]

(1, (Gu, ξu))

 .

The desired formula now follows. The convergence of the series follows from bounds on the Fourier

coefficients of F . In particular, the Fourier coefficients of F satisfy

|a(S)| ≤ C(det(S))k

for some constant C > 0 (see [13]). The theorem is proved.

6.3 Multiplicative Properties of Fourier Coefficients for Class Number

One

We begin with the case of class number one as it is the simpler case. A case for M = 1 was proved

by McCarthy and we state the results again here for the reader’s convenience.

Theorem 6.3.1 (McCarthy, 2016). Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

with k > 0. Suppose that F is an eigenform.

(i) If a(I1,0) = 0, then a(mI1,0) = 0 for all m ∈ N.

(ii) For m,n ∈ N with gcd(m,n) = 1 we have

a(I1,0)a(mnI1,0) = a(mI1,0)a(nI1,0).

The proof of Theorem 6.3.1 uses primarily an exercise from [29] (see Exercise 5, pg. 77 of this

reference). The proofs of our generalizations, however, take advantage of the theory developed in

Chapter 5. We note further that Theorem 6.3.1 uses the quadratic form

I1,0 =

1 0

0 1
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which has discriminant -4. This discriminant corresponds to a case where the class number is one.

We prove another case of this theorem using the quadratic form

I1,1 =

 1 1/2

1/2 1


which has discriminant -3. This is also a discriminant which corresponds to a case where the class

number happens to be one.

Theorem 6.3.2. Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

with k > 0. Suppose that F is an eigenform.

(i) If a(I1,1) = 0, then a(mI1,1) = 0 for all m ∈ N.

(ii) For m,n ∈ N with gcd(m,n) = 1 and we have

a(I1,1)a(mnI1,1) = a(mI1,1)a(nI1,1).

Proof. Let K = Q(
√
−3). The full module associated to I1,1 is o1 ⊆ K with basis

ξ =

 1

1−
√
−3

2

 .
We start by proving (i). We note that we are working in the case M = 1 here. We consider for

m ∈ N

a(pr0 ;mI1,1) = µ(pr0)a(mI1,1)

for various primes p with gcd(m, p) = 1. We assume that a(mI1,1) = 0.

We break the proof down based on the splitting behavior of p in K. Suppose first that p splits

in K. By Theorem 6.1.2 we have

µ(pr0)a(mI1,1) = a(mpr0I1,1) +

r0∑
β=1

p(k−2)β [a(mpr0−βS(o1pβ ,ξpβ )) + a(mpr0−βS(o1p
β ,ξ

pβ
))].

The binary quadratic forms S(o1pβ ,ξpβ ) and S(o1p
β ,ξ

pβ
) each have discriminant −3 and thus belong

to the same class as I1,1 modulo Γ0(1) = SL(2,Z). Thus we arrive at the formula

µ(pr0)a(mI1,1) = a(mpr0I1,1) +

r0∑
β=1

p(k−2)β [a(mpr0−βI1,1) + a(mpr0−βI1,1)].
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In particular, if r0 = 1, we have

µ(p)a(mI1,1) = a(mpI1,1) + pk−2[a(mI1,1) + a(mI1,1)].

Hence, if a(mI1,1) = 0 we then have a(mpI1,1) = 0. We now prove by induction that a(mpr0I1,1) = 0

for r0 ≥ 1. We just proved the case r0 = 1. Assume that the claim has been proven for all positive

integers less than r0. Since

µ(pr0)a(mI1,1) = a(mpr0I1,1) +

r0∑
β=1

p(k−2)β [a(mpr0−βI1,1) + a(mpr0−βI1,1)]

the induction hypothesis implies that a(mpr0−βI1,1) = 0 for all β with 1 ≤ β < r0. Therefore we

can conclude that a(mpr0I1,1) = 0. To prove the claim in the case that p splits we apply the above

argument to the specific case m = 1.

Suppose now that p is ramified in K. By Theorem 6.1.2 we have

µ(pr0)a(mI1,1) = a(mpr0I1,1) + pk−2a(mpr0−1S(Gp,ξp)).

The binary quadratic form S(Gp,ξp) has discriminant -3 and thus belongs to the same class as I1,1

modulo SL(2,Z). Thus we have the formula

µ(pr0)a(mI1,1) = a(mpr0I1,1) + pk−2a(mpr0−1I1,1).

In particular, if r0 = 1, we have

µ(p)a(mI1,1) = a(mpI1,1) + pk−2a(mI1,1).

Hence, if a(mI1,1) = 0 we then have a(mpI1,1) = 0. We now prove by a simple induction that if

a(mI1,1) = 0 then a(mpr0I1,1) = 0 for r0 ≥ 1. We just proved the case r0 = 1. Assume that the

claim has been proven for r0 − 1. Since

µ(pr0)a(mI1,1) = a(mpr0I1,1) + pk−2a(mpr0−1I1,1)

the induction hypothesis implies that a(mpr0−1I1,1) = 0. Therefore we can make the conclusion

that a(mpr0I1,1) = 0. To prove the claim for the case that p is ramified we apply the argument in

the case m = 1.

Now suppose that p is inert in K. By Theorem 6.1.2 we have

µ(pr0)a(mI1,1) = a(mpr0I1,1).



115

Thus if a(mI1,1) = 0 we have a(mpr0I1,1) = 0 for all r0 ≥ 1. To prove the claim for the case that p

is inert we just take m = 1. To prove the general claim we assume that a(I1,1) = 0 and let

m = p`11 p
`2
2 · · · p

`d
d .

Then using what we have proven, we have a(mI1,1) = 0. This proves (i).

We now prove (ii). Let m,n ∈ N with gcd(m,n) = 1. Let p be a prime with gcd(m, p) =

gcd(n, p) = 1. We prove that

a(mpr0I1,1)a(nI1,1) = a(mI1,1)a(npr0I1,1).

We first suppose that p splits in K. We use the formula appearing before in the split case

µ(pr0)a(mI1,1) = a(mpr0I1,1) +

r0∑
β=1

p(k−2)β [a(mpr0−βI1,1) + a(mpr0−βI1,1)].

We again proceed by induction on r0. First suppose that r0 = 1. Then we have

µ(p)a(mI1,1) = a(mpI1,1) + pk−2[a(mI1,1) + a(mI1,1)]

and

µ(p)a(nI1,1) = a(npI1,1) + pk−2[a(nI1,1) + a(nI1,1)].

We multiply the first of these equations by a(nI1,1) and the second by a(mI1,1). This yields

µ(p)a(mI1,1)a(nI1,1) = a(mpI1,1)a(nI1,1) + pk−2[a(mI1,1)a(nI1,1) + a(mI1,1)a(nI1,1)]

and

µ(p)a(nI1,1)a(mI1,1) = a(npI1,1)a(mI1,1) + pk−2[a(nI1,1)a(mI1,1) + a(nI1,1)a(mI1,1)].

Subtracting the two equations from one another we obtain

0 = a(mpI1,1)a(nI1,1)− a(npI1,1)a(mI1,1)

which is the desired result. We now assume that the claim has been proved for all positive integers

less than r0. That is

a(mp`I1,1)a(nI1,1) = a(mI1,1)a(np`I1,1)

for 1 ≤ ` < r0. We then consider

µ(pr0)a(mI1,1) = a(mpr0I1,1) +

r0∑
β=1

p(k−2)β [a(mpr0−βI1,1) + a(mpr0−βI1,1)]
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and

µ(pr0)a(nI1,1) = a(npr0I1,1) +

r0∑
β=1

p(k−2)β [a(npr0−βI1,1) + a(npr0−βI1,1)].

Multiplying the first equation by a(nI1,1) and the second equation by a(mI1,1) yields

µ(pr0 )a(mI1,1)a(nI1,1) = a(mpr0I1,1)a(nI1,1) +

r0∑
β=1

p(k−2)β [a(mpr0−βI1,1)a(nI1,1) + a(mpr0−βI1,1)a(nI1,1)]

and

µ(pr0 )a(nI1,1)a(mI1,1) = a(npr0I1,1)a(mI1,1) +

r0∑
β=1

p(k−2)β [a(npr0−βI1,1)a(mI1,1) + a(npr0−βI1,1)a(mI1,1)].

Subtracting the two equations from one another and implementing the induction hypothesis yields

0 = a(mpr0I1,1)a(nI1,1)− a(npr0I1,1)a(mI1,1)

which is the desired result.

We now prove the claim in the case where p ramifies in K. We use the formula appearing before

in the ramified case

µ(pr0)a(mI1,1) = a(mpr0I1,1) + pk−2a(mpr0−1I1,1).

We proceed by induction on r0. First suppose r0 = 1. Then we have

µ(p)a(mI1,1) = a(mpI1,1) + pk−2a(mI1,1)

and

µ(p)a(nI1,1) = a(npI1,1) + pk−2a(nI1,1).

We multiply the first equation by a(nI1,1) and the second equation by a(mI1,1) which yields

µ(p)a(mI1,1)a(nI1,1) = a(mpI1,1)a(nI1,1) + pk−2a(mI1,1)a(nI1,1)

and

µ(p)a(nI1,1)a(mI1,1) = a(npI1,1)a(mI1,1) + pk−2a(nI1,1)a(mI1,1).

Subtracting the two equations from each other gives

0 = a(mpI1,1)a(nI1,1)− a(npI1,1)a(mI1,1)

which is the desired result. Now assume the claim has been proven for r0 − 1, that is

a(mpr0−1I1,1)a(nI1,1) = a(mI1,1)a(npr0−1I1,1).
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We have

µ(pr0)a(mI1,1) = a(mpr0I1,1) + pk−2a(mpr0−1I1,1)

and

µ(pr0)a(nI1,1) = a(npr0I1,1) + pk−2a(npr0−1I1,1).

We multiply the first equation by a(nI1,1) and the second equation by a(mI1,1) yielding

µ(pr0)a(mI1,1)a(nI1,1) = a(mpr0I1,1)a(nI1,1) + pk−2a(mpr0−1I1,1)a(nI1,1)

and

µ(pr0)a(nI1,1)a(mI1,1) = a(npr0I1,1)a(mI1,1) + pk−2a(npr0−1I1,1)a(mI1,1).

Subtracting the two equations from one another and implementing the induction hypothesis yields

0 = a(mpr0I1,1)a(nI1,1)− a(npr0I1,1)a(mI1,1)

which is the desired result.

We now prove the claim in the case where p is inert in K. We use the formula appearing before

in the inert case

µ(pr0)a(mI1,1) = a(mpr0I1,1).

We also consider

µ(pr0)a(nI1,1) = a(npr0I1,1).

Multiplying the first equation by a(nI1,1) and the second by a(mI1,1) gives

0 = a(mpr0I1,1)a(nI1,1)− a(npr0I1,1)a(mI1,1)

which is the desired result.

To prove the general claim we let m,n ∈ N with gcd(m,n) = 1 and write

n = p`11 p
`2
2 · · · p

`d
d .

Then by what we have proved above

a(I1,1)a(mnI1,1) = a(I1,1)a(mp`11 p
`2
2 · · · p

`d
d I1,1)

= a(p`11 I1,1)a(mp`22 · · · p
`d
d I1,1)

= · · · = a(nI1,1)a(mI1,1).
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The proof of the previous theorem extends naturally to cover other cases where the class number

is one. For fundamental discriminant δ < 0 and for f ∈ N we will denote by h(δf2) the class number

of the imaginary quadratic field Q(
√
δ). We note that the class number is equal to the size of the

set SL(2,Z) \A(1, δf2). We will denote by hM (δf2) the size of the set Γ0(M) \A(M, δf2).

Theorem 6.3.3. Let M ≥ 1 be an integer. Let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

with k > 0. Suppose that F is an eigenform. Let IM,0 and IM,1 denote the matricesM 0

0 1

 and

M 1/2

1/2 1


respectively.

(i) If h(−4M) = 1, then for m,n ∈ N with n odd and gcd(mM,n) = 1 we have

a(mnIM,0)a(IM,0) = a(mIM,0)a(nIM,0).

(ii) If h(−4M + 1) = 1, then for m,n ∈ N with n 6≡ 0 (mod 3) and gcd(mM,n) = 1 we have

a(mnIM,1)a(IM,1) = a(mIM,1)a(nIM,1).

More generally, suppose δ < 0 is a fundamental discriminant and let f ∈ N. If hM (δf2) = 1 then

for m,n ∈ N with gcd(mMf, n) = 1 we have

a(mnS)a(S) = a(mS)a(nS)

where S ∈ A(M, δf2).

Proof. The structure of the proof is similar to the proof of the previous theorem.

We note here that h(−4M) = 1 for the values M = 1, 2, 3, 4, and 7 and h(−4M + 1) = 1 for the

values M = 1, 2, 3, 5, 7, 11, 17, and 41.

6.4 Arithmetic Properties of Fourier Coefficients for Arbitrary Class

Number

We now prove the main results of this particular work. Let’s start with a considerable extension of

the results for Siegel modular forms, i.e., Siegel paramodular forms of level 1.
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Theorem 6.4.1. Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

for k > 0. Suppose that F is an eigenform. Let S1, . . . , Sh be a complete set of representatives

of the classes of positive-definite, primitive, integral binary quadratic forms of discriminant δ with

δ < 0 a fundamental discriminant.

(i) If a(Si) = 0 for all i ∈ {1, . . . , h}, then a(mSi) = 0 for all m ∈ N and all i ∈ {1, . . . , h}.

(ii) For m,n ∈ N with gcd(m,n) = 1 we have

h∑
i=1

h∑
j=1

a(mnSi)a(Sj) =

h∑
i=1

h∑
j=1

a(mSi)a(nSj).

Proof. We start by proving (i). For each Si with 1 ≤ i ≤ h we associate the full module Gi with

ordered basis ξi. Suppose first that p splits in K = Q(
√
δ). By Theorem 6.1.2 we have

µ(p)a(mS1) = a(mpS1) + pk−2[a(mS(G1p,ξ1p)) + a(mS(G1p,ξ1p))]

µ(p)a(mS2) = a(mpS2) + pk−2[a(mS(G2p,ξ2p)) + a(mS(G2p,ξ2p))]

...

µ(p)a(mSh) = a(mpSh) + pk−2[a(mS(Ghp,ξhp)) + a(mS(Ghp,ξhp))]

Since S1, . . . , Sh is a complete set of representatives of the classes of positive-definite, primi-

tive, integral binary quadratic forms of discriminant δ we have that (G1, ξ1), (G2, ξ2), . . . , (Gh, ξh)

is a complete set of representatives of the classes in M SL(2,Z)(δ). Since the maps Φ(·, [p]) :

M SL(2,Z)(δ) → M SL(2,Z)(δ) and Φ(·, [p]) : M SL(2,Z)(δ) → M SL(2,Z)(δ) are surjections (hence bi-

jections), we have that S(G1p,ξ1p), S(G2p,ξ2p), . . . , S(Ghp,ξhp) and S(G1p,ξ1p), S(G2p,ξ2p), . . . , S(Ghp,ξhp)

are both complete sets of representatives of the classes of positive-definite, primitive, integral binary

quadratic forms of discriminant δ. Thus if a(mSi) = 0 for each i we have

a(mS(Gip,ξip)) = a(mS(Gip,ξip)) = 0

for each i. Thus a(mpSi) = 0 for all i.

We now prove by induction that if a(mSi) = 0 for all i, then a(mpr0Si) = 0 for all i and all

r0 ≥ 1. We proved the case r0 = 1 above. Assume now that the claim has been proven for all
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positive integers less than r0. Since

µ(pr0)a(mS1) = a(mpr0S1) +

r0∑
β=1

p(k−2)β [a(mpr0−βS(G1pβ ,ξ1pβ )) + a(mpr0−βS(G1p
β ,ξ

1pβ
))]

µ(pr0)a(mS2) = a(mpr0S2) +

r0∑
β=1

p(k−2)β [a(mpr0−βS(G2pβ ,ξ2pβ )) + a(mpr0−βS(G2p
β ,ξ

2pβ
))]

...

µ(pr0)a(mSh) = a(mpr0Sh) +

r0∑
β=1

p(k−2)β [a(mpr0−βS(Ghpβ ,ξhpβ )) + a(mpr0−βS(Ghp
β ,ξ

hpβ
))]

By the induction hypothesis we have that a(mpr0Si) = 0 for each i. The proof is similar when p is

ramified or inert in K.

To prove the general claim we assume that a(Si) = 0 for each i and let

m = p`11 p
`2
2 · · · p

`d
d .

Then using what we have proven, we have that a(mSi) = 0 for each i. This proves (i).

We now prove (ii). We prove only the case where p is split in K as the proof is similar in the

other cases. We consider

µ(p)a(mS1) = a(mpS1) + pk−2[a(mS(G1p,ξ1p)) + a(mS(G1p,ξ1p))]

µ(p)a(mS2) = a(mpS2) + pk−2[a(mS(G2p,ξ2p)) + a(mS(G2p,ξ2p))]

...

µ(p)a(mSh) = a(mpSh) + pk−2[a(mS(Ghp,ξhp)) + a(mS(Ghp,ξhp))]

Applying a similar argument as before we have that S(G1pβ ,ξ1pβ ), S(G2pβ ,ξ2pβ ), . . . , S(Ghpβ ,ξhpβ ) and

S(G1p
β ,ξ

1pβ
), S(G2p

β ,ξ
2pβ

), . . . , S(Ghp
β ,ξ

hpβ
) both form a complete set of representatives of the classes

of positive-definite, primitive, integral binary quadratic forms of discriminant δ. We also consider

the equations

µ(p)a(nS1) = a(npS1) + pk−2[a(nS(G1p,ξ1p)) + a(nS(G1p,ξ1p))]

µ(p)a(nS2) = a(npS2) + pk−2[a(nS(G2p,ξ2p)) + a(nS(G2p,ξ2p))]

...

µ(p)a(nSh) = a(npSh) + pk−2[a(nS(Ghp,ξhp)) + a(nS(Ghp,ξhp))]
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For some fixed j with 1 ≤ j ≤ h we multiply to the first set of equations by

h∑
j=1

a(nSj)

and the second set of equations by

h∑
j=1

a(mSj)

which gives

µ(p)a(mS1)

h∑
j=1

a(nSj) = a(mpS1)

h∑
j=1

a(nSj) + pk−2[a(mS(G1p,ξ1p))

h∑
j=1

a(nSj) + a(mS(G1p,ξ1p))

h∑
j=1

a(nSj)]

µ(p)a(mS2)
h∑
j=1

a(nSj) = a(mpS2)
h∑
j=1

a(nSj) + pk−2[a(mS(G2p,ξ2p))
h∑
j=1

a(nSj) + a(mS(G2p,ξ2p))
h∑
j=1

a(nSj)]

...

µ(p)a(mSh)
h∑
j=1

a(nSj) = a(mpSh)
h∑
j=1

a(nSj) + pk−2[a(mS(Ghp,ξhp))

h∑
j=1

a(nSj) + a(mS(Ghp,ξhp))
h∑
j=1

a(nSj)]

and

µ(p)a(nS1)
h∑
j=1

a(mSj) = a(npS1)
h∑
j=1

a(mSj) + pk−2[a(nS(G1p,ξ1p))

h∑
j=1

a(mSj) + a(nS(G1p,ξ1p))
h∑
j=1

a(mSj)]

µ(p)a(nS2)
h∑
j=1

a(mSj) = a(npS2)
h∑
j=1

a(mSj) + pk−2[a(nS(G2p,ξ2p))

h∑
j=1

a(mSj) + a(nS(G2p,ξ2p))
h∑
j=1

a(mSj)]

...

µ(p)a(nSh)

h∑
j=1

a(mSj) = a(npSh)

h∑
j=1

a(mSj) + pk−2[a(nS(Ghp,ξhp))

h∑
j=1

a(mSj) + a(nS(Ghp,ξhp))

h∑
j=1

a(mSj)]

Adding each system separately and then taking their cumulative difference we obtain

0 =

h∑
i=1

a(mpSi)

h∑
j=1

a(nSj)−
h∑
i=1

a(npSi)

h∑
j=1

a(mSj).

This proves that

h∑
i=1

h∑
j=1

a(mpSi)a(nSj) =

h∑
i=1

h∑
j=1

a(mSi)a(npSj)

We proceed by induction. We assume that the claim has been proved for all positive integers

less than r0. That is

h∑
i=1

h∑
j=1

a(mp`Si)a(nSj) =

h∑
i=1

h∑
j=1

a(mSi)a(np`Sj)
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We then consider

µ(pr0)a(mS1) = a(mpr0S1) +

r0∑
β=1

p(k−2)β [a(mpr0−βS(G1pβ ,ξ1pβ )) + a(mpr0−βS(G1p
β ,ξ

1pβ
))]

µ(pr0)a(mS2) = a(mpr0S2) +

r0∑
β=1

p(k−2)β [a(mpr0−βS(G2pβ ,ξ2pβ )) + a(mpr0−βS(G2p
β ,ξ

2pβ
))]

...

µ(pr0)a(mSh) = a(mpr0Sh) +

r0∑
β=1

p(k−2)β [a(mpr0−βS(Ghpβ ,ξhpβ )) + a(mpr0−βS(Ghp
β ,ξ

hpβ
))]

and

µ(pr0)a(nS1) = a(npr0S1) +

r0∑
β=1

p(k−2)β [a(npr0−βS(G1pβ ,ξ1pβ )) + a(npr0−βS(G1p
β ,ξ

1pβ
))]

µ(pr0)a(nS2) = a(npr0S2) +

r0∑
β=1

p(k−2)β [a(npr0−βS(G2pβ ,ξ2pβ )) + a(npr0−βS(G2p
β ,ξ

2pβ
))]

...

µ(pr0)a(nSh) = a(npr0Sh) +

r0∑
β=1

p(k−2)β [a(npr0−βS(Ghpβ ,ξhpβ )) + a(npr0−βS(Ghp
β ,ξ

hpβ
))]

As before, we multiply the first set of equations by

h∑
j=1

a(nSj)

and the second set of equations by

h∑
j=1

a(mSj).

We then obtain

µ(p
r0 )a(mS1)

h∑
j=1

a(nSj) = a(mp
r0S1)

h∑
j=1

a(nSj)

+

r0∑
β=1

p
(k−2)β

a(mp
r0−βS

(G1pβ,ξ
1pβ

)
)
h∑
j=1

a(nSj) + a(mp
r0−βS

(G1pβ,ξ
1pβ

)
)
h∑
j=1

a(nSj)


µ(p

r0 )a(mS2)
h∑
j=1

a(nSj) = a(mp
r0S2)

h∑
j=1

a(nSj)

+

r0∑
β=1

p
(k−2)β

a(mp
r0−βS

(G2pβ,ξ
2pβ

)
)

h∑
j=1

a(nSj) + a(mp
r0−βS

(G2pβ,ξ
2pβ

)
)

h∑
j=1

a(nSj)


.
.
.

µ(p
r0 )a(mSh)

h∑
j=1

a(nSj) = a(mp
r0Sh)

h∑
j=1

a(nSj)

+

r0∑
β=1

p
(k−2)β

a(mp
r0−βS

(Ghpβ,ξ
hpβ

)
)

h∑
j=1

a(nSj) + a(mp
r0−βS

(Ghpβ,ξ
hpβ

)
)

h∑
j=1

a(nSj)
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and

µ(p
r0 )a(nS1)

h∑
j=1

a(mSj) = a(np
r0S1)

h∑
j=1

a(mSj)

+

r0∑
β=1

p
(k−2)β

a(np
r0−βS

(G1pβ,ξ
1pβ

)
)
h∑
j=1

a(mSj) + a(np
r0−βS

(G1pβ,ξ
1pβ

)
)
h∑
j=1

a(mSj)


µ(p

r0 )a(nS2)

h∑
j=1

a(mSj) = a(np
r0S2)

h∑
j=1

a(mSj)

+

r0∑
β=1

p
(k−2)β

a(np
r0−βS

(G2pβ,ξ
2pβ

)
)
h∑
j=1

a(mSj) + a(np
r0−βS

(G2pβ,ξ
2pβ

)
)
h∑
j=1

a(mSj)


.
.
.

µ(p
r0 )a(nSh)

h∑
j=1

a(mSj) = a(np
r0Sh)

h∑
j=1

a(mSj)

+

r0∑
β=1

p
(k−2)β

a(np
r0−βS

(Ghpβ,ξ
hpβ

)
)

h∑
j=1

a(mSj) + a(np
r0−βS

(Ghpβ,ξ
hpβ

)
)

h∑
j=1

a(mSj)



Adding each set of equations together and taking their cumulative difference, keeping in mind

the induction hypothesis, we obtain

0 =

h∑
i=1

a(mpr0Si)

h∑
j=1

a(nSj)−
h∑
i=1

a(npr0Si)

h∑
j=1

a(mSj).

It then follows that

h∑
i=1

h∑
j=1

a(mpr0Si)a(nSj) =

h∑
i=1

h∑
j=1

a(mSi)a(npr0Sj).

This completes the proof of the claim.

We obtain the following theorem essentially as a corollary to the previous result.

Theorem 6.4.2. Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

for k > 0. Suppose that F is an eigenform. Let S1, . . . , Sh be a complete set of representatives of

the classes of positive-definite, primitive, integral binary quadratic forms of discriminant δf2 with

δ < 0 a fundamental discriminant and f ∈ N.

(i) If a(Si) = 0 for all i ∈ {1, . . . , h}, then a(mSi) = 0 for all m ∈ N with gcd(m, f) = 1 and all

i ∈ {1, . . . , h}.

(ii) For m,n ∈ N with gcd(m,n) = 1 and gcd(n, f) = 1 we have

h∑
i=1

h∑
j=1

a(mnSi)a(Sj) =

h∑
i=1

h∑
j=1

a(mSi)a(nSj).
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We have another modest extension of these theorems.

Theorem 6.4.3. Let

F (Z) =
∑

S∈A(1)

a(S)e2πitr(SZ) ∈Mk(Sp(4,Z))

for k > 0. Suppose that F is an eigenform. Let S1, . . . , Sh be a complete set of representatives of

the classes of positive-definite, primitive, integral binary quadratic forms of discriminant δf2 with

δ < 0 a fundamental discriminant and f ∈ N.

(i) If

h∑
i=1

a(Si) = 0

then

h∑
i=1

a(mSi) = 0

for all m ∈ N with gcd(m, f) = 1.

(ii) For m,n ∈ N with gcd(m,n) = 1 and gcd(n, f) = 1 we have

h∑
i=1

a(mnSi)a(Si) =

h∑
i=1

a(mSi)a(nSi).

We present here also the general result for Siegel paramodular forms.

Theorem 6.4.4. Let M ≥ 1 be an integer and let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

for k > 0. Suppose that F is an eigenform. Let δ < 0 be a fundamental discriminant and let f ∈ N.

Let S1, . . . , Sd be a complete set of representatives of the set Γ0(M) \A(M, δf2).

(i) If a(Si) = 0 for all i ∈ {1, . . . , d}, then a(mSi) = 0 for all m ∈ N with gcd(m,Mf) = 1 and all

i ∈ {1, . . . , h}. Moreover, if

d∑
i=1

a(Si) = 0

then

d∑
i=1

a(mSi) = 0
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for all m ∈ N with gcd(m,Mf) = 1.

(ii) For m,n ∈ N with gcd(mM,n) = 1 and gcd(n, f) = 1 we have

d∑
i=1

d∑
j=1

a(mnSi)a(Sj) =

d∑
i=1

d∑
j=1

a(mSi)a(nSj).

For paramodular level M > 1, we saw in section 5.6 that for a fixed discriminant δf2 with δ < 0

a fundamental discriminant and f ∈ N it is possible for A(M, δf2) to be empty. We saw however

that the sets A(M,−4M) and A(M,−4M + 1) are always nonempty. Fourier coefficients indexed

by elements in these sets exhibit relations involving all primes p not dividing M . In particular, we

have the following corollary.

Corollary 6.4.5. Let M ≥ 1 be an integer and let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

for k > 0. Suppose that F is an eigenform. Let −4M = δ1f
2
1 and −4M + 1 = δ2f

2
2 with f1, f2 ∈ N

and where δ1, δ2 < 0 are fundamental discriminants. Let S1, . . . , Sd1 and T1, . . . , Td2 be a complete

set of representatives of Γ0(M) \A(M,−4M) and Γ0(M) \A(M,−4M + 1) respectively. Let Ωfi be

the set of primes p with gcd(p,Mfi) = 1 for i = 1, 2.

(i) If a(Si) = 0 for all i ∈ {1, . . . , d1}, then a(mSi) = 0 for all m ∈ N with gcd(m,Mf) = 1 and all

i ∈ {1, . . . , d1}. Moreover, if

d1∑
i=1

a(Si) = 0

then

d1∑
i=1

a(mSi) = 0

for all m ∈ N with gcd(m,Mf) = 1.

(ii) For m,n ∈ N and p ∈ Ωf1 a prime with gcd(mn, p) = 1 we have for all ` ≥ 1

d1∑
i=1

d1∑
j=1

a(mp`Si)a(nSj) =

d1∑
i=1

d1∑
j=1

a(mSi)a(np`Sj).

(iii) For m,n ∈ N with p ∈ Ωf2 a prime with gcd(mn, p) = 1 we have for all ` ≥ 1

d2∑
i=1

d2∑
j=1

a(mp`Ti)a(nTj) =

d2∑
i=1

d2∑
j=1

a(mTi)a(np`Tj).

We also have the following general result which will conclude this section.
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Theorem 6.4.6. Let M ≥ 1 be an integer and let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

for k > 0. Suppose that F is an eigenform. Let δ < 0 be a fundamental discriminant and let

f ∈ N. Let S1, . . . , Sd be a complete set of representatives of the set Γ0(M) \ A(M, δf2). For

[u] ∈ H(of ,M), the matrix Su is determined by the action of H(of ,M) on A (M, δf2).

(i) If a(Su) = 0 for all [u] ∈ H(of ,M), then a(mSu) = 0 for all m ∈ N with gcd(m,Mf) = 1 and

all i ∈ {1, . . . , h}. Moreover, if

∑
[u]∈H(of ,M)

a(Su) = 0

then

∑
[u]∈H(of ,M)

a(mSu) = 0

for all m ∈ N with gcd(m,Mf) = 1.

(ii) For m,n ∈ N with gcd(mM,n) = 1 and gcd(n, f) = 1 we have

∑
[u]∈H(of ,M)

∑
[v]∈H(of ,M)

a(mnSu)a(Sv) =
∑

[u]∈H(of ,M)

∑
[v]∈H(of ,M)

a(mSu)a(nSv).

Proof. The proof is very similar to the proof of the other results. We only note here that we utilize

the fact that H(of ,M)[pβ ] = H(of ,M) for all β ≥ 1 where p is a given prime ideal in of of norm

p or p2 depending on whether p is split, ramified, or inert in K = Q(
√
δ).

One could check the validity of these results by accessing the L-functions and Modular Forms

Database [23] and utilize the calculated Fourier coefficients of the small number of Siegel paramod-

ular forms that are present there. For example, the Siegel paramodular form of weight 2 and level

277 has non-zero Fourier coefficients indexed by primitive binary quadratic forms in A(277) of

discriminant -4. In fact, there is exactly one coefficient attached the form3601 60

60 1


with value

a

3601 60

60 1

 = −2.
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We then check the following Fourier coefficients and find that

a

2

3601 60

60 1

 = 6,

a

3

3601 60

60 1

 = 2,

a

6

3601 60

60 1

 = −6,

from which it is easy to see that

a

3601 60

60 1

 a

6

3601 60

60 1

 = a

2

3601 60

60 1

 a

3

3601 60

60 1

 .

6.5 Action of Hecke Operators on Fourier Coefficients, p|M

We conclude this manuscript with a formula for the action of the paramodular Hecke operator T (p)

on a Siegel paramodular form of weight k > 0 and squarefree level M for bad primes p, i.e., those

primes p dividing M . In particular we provide a formula for

T (p) = pk−3


K(M)



1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 p


K(M)


k

.

The reader should see [24] for a version of the formula pertaining to this operator. One needs to

be especially careful regarding any change of index utilized in applying these operators to a Siegel

paramodular form.

Theorem 6.5.1. Let M ≥ 1 be an integer and let

F (Z) =
∑

S∈A(M)

a(S)e2πitr(SZ) ∈Mk(K(M))

with k > 0. Let

S =

Mr t/2

t/2 s


Let M ′ = M/p and let N be an inverse of M ′ modulo p. Then

(T (p))(F (Z)) =
∑

S∈A(M)

b(S)e2πitr(SZ)
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and

b(S) =a(pS) + pk−2
∑

x∈Z/pZ

dp(s+ tx)a

p−1

p 0

x 1

S
p x

0 1


+ pk−2

∑
y∈Z/pZ

dp(r −Nty)a

p−1

1 −yMN

0 p

S
 1 0

−yMN p


+ (−1)kpk−3(dp(t)p− 1)a

p−1

(MN − p)p−1 MN

1 p

S
(MN − p)p−1 1

MN p


+ p2k−3dp(r, t, s)a(p−1S)

Proof. This is a direct computation utilizing the decomposition appearing in Theorem 4.3.13.

One can carry out a similar computation for the second operator

T1(p2) = p2(k−3)

K(M)


1 0 0 0

0 p 0 0

0 0 p2 0

0 0 0 p

K(M)


k

using the double coset decompostion appearing in Theorem 4.3.13. However, in order to extend our

results from Chapter 6 in the case p|M one should really consider the operators T (pr0) for r0 ≥ 2.
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