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Abstract

This dissertation presents fundamental relations satisfied by the Fourier coefficients of a Siegel
paramodular form F' : Hy — C which is an eigenform for the paramodular Hecke operators at
primes which do not divide the level of the Siegel paramodular form. We exhibit relations between
coefficients indexed by positive-definite, primitive, integral binary quadratic forms of discriminant

df2 where 6 < 0 is a fundamental discriminant and f is a positive integer.
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1 Introduction

“Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy

so many internal symmetries that their mere existence seem like accidents. But they do exist”

-Barry Mazur, Nova’s “The Proof”, PBS

1.1 Background and Motivation
Elliptic modular forms are complex-valued holomorphic functions on the complex upper half-plane
H ={z€C:Im(z) > 0},

that are invariant under the action of SL(2,Z) and satisfy certain growth conditions [12] which,

together with the identity
fz2) = f(z+1),

ensure that they admit a Fourier expansion
o0
flz)= Z a(n)e i,
n=0

To each elliptic modular form we associate a positive integer called the weight, and we denote
the vector space of weight k elliptic modular forms by M (SL(2,Z)). The term modular form is
attributed to Hecke [14].

The theory of Hecke operators on the vector space of weight k elliptic modular forms estab-
lishes that Fourier coeflicients of eigenforms enjoy arithmetic relations. For example, the Fourier

coefficients of the discriminant function, often called the Ramanujan delta function,

A(Z) — g2miz H(l _ e27rinz)24

n=1
(oo}
— Z T(n)e2ﬂ-inz
n=1
satisfy multiple arithmetic relations including the multiplicative relation
7(mn) = 7(m)7(n)

for m and n relatively prime. This relation was conjectured by Ramanujan and proved by Mordell

[28]. Furthermore, the Dirichlet series formed by the Fourier coefficients,

L(S) — Z T(n)

ns ’

n=1



expands as an Euler product over all primes p [§],

> T(Z) =[[a—7@p +p"p )"

n
p

For a more thorough exposition on the theory of elliptic modular forms the reader should see [12],

[21], and [38].

1.2 Siegel Modular Forms

Siegel modular forms of genus 2 are complex-valued holomorphic functions defined on the Siegel

upper half-space
Ho={Z € M(4,C):'Z = Z and Im(Z) > 0}

that are invariant under the action of Sp(4,Z). We note here that the Koecher principle [2, 5]
implies that a Siegel modular form F': Ho — C has a Fourier expansion
F(Z) _ Z a(S)e%m(Sz),
SeA(1)

without any assumed boundary conditions. Here, for M > 1 an integer,

Mr /2 12
AM) = € M(4,Q):rt,seZ and Mrs—— >0
4
t/2 s
The work of Andrianov [1, 2, 3, 4] extended the theory of Hecke operators to Siegel modular
forms. As Siegel modular forms are more complicated than elliptic modular forms, it is natural
to expect that the Fourier coefficients exhibit more complex relations. Andrianov established the

existence of an Euler product attached to Siegel modular eigenforms. We state the result pertaining

to indices of fundamental discriminant [1] here.

Theorem 1.2.1 (Andrianov, 1971). Let
F(Z)= Y a(8)e*™™5%) e My(Sp(4,2))
SeA(1)
with k > 0. Suppose that F is an eigenform of the Hecke operators {T(m)}m,m>1 with eigenvalues
{p(m)}m>1. Let § < 0 be a fundamental discriminant and let K = Q(\/3). Let Sy,..., Sy be a
complete set of representatives from the classes of equivalent binary quadratic forms of discriminant
& which are positive-definite, integral, and primitive. For m > 1, set

a(m) = Z a(msS;).

=1



Then in some right half-plane

kls—k+2) Y am) _ W[ Lo

mS
P
where Ly is the L-series of the field K and

Ly(p™®) =1—pu(p)p~* + (u(p)® — u(p®) — p**~)p* — p(p)p**p=2* + p**Op~1s,

Theorem 1.2.1 was extended to indices of general discriminant in [3] and later was extended to

the principal congruence subgroup of Sp(4, Z) by Evdokimov [13]. We define for an integer M > 1
A(M,6f*) ={S € A(M) : S is primitive of discriminant & f?}.
Theorem 1.2.2 (Evdokimov, 1976). Let M > 1 be an integer. Let

F(Z)= Y a(8)e*™SAM ¢ My (T(M))
SeA(1)
with k > 0. Suppose that F' is an eigenform of the Hecke operators {T(m)}m>1, ged(m,Mm)=1 With
eigenvalues {p(m) }m>1, ged(m,m)=1- Let 6 <0 be a fundamental discriminant and let K = Q(W9).

Fiz an order oy of K for some f € N. Then for every S € A(1,6f?), we have in some right

half-plane
Lip(s—k+2) ) SO almS) _ ||Q
5f e = Xs,7(s p.F
[uJeH (of,M) m=1
ged(m,M)=1

where Qp r(t) is the Euler factor at p, Lsg2(s) is the L-series of oy, the matriz S, is determined

by the action of H(of, M), and xs,r(s) is a function depending on S and F.

Theorems 1.2.1 and 1.2.2 provide an amazing connection between the Fourier coefficients of
the Siegel modular eigenform and its eigenvalues. More recently, McCarthy [25] established from
Andrianov’s formulas that arithmetic relations exist for specific Fourier coefficients. We state this

result here.

Theorem 1.2.3 (McCarthy, 2016). Let
F(Z)= Y a(8)e*™"5%) e M,(Sp(4,2))
ScA(1)
with k > 0. Suppose that F' is an eigenform. Let I; o denote the 2 x 2 identity matriz.
(1) If a(I1,0) = 0, then a(mly ) =0 for all m € N.
(i) If m,n € N with gcd(m,n) =1, then

a(mn[l7o)a(1170) = a(mILg)a(nIl,o).



Theorem 1.2.3 has been generalized to Siegel modular forms with level by Walling [41] utilizing
an alternative formula for the action of the Hecke operators on a Siegel modular form [15].
If the reader has more interest in the theory of Siegel modular forms we recommend they see

[1] and [40].

1.3 Current Work and Summary of Results

The objects of study in this work are known as Siegel paramodular forms which are Siegel modular
forms for the paramodular group K(M). We will define these objects more carefully in Chapter 2.
The study of Siegel paramodular forms has gained a lot of traction recently due to a conjecture of
Brumer and Kramer [6] which roughly states that there is a correspondence between the collection
of isogeny classes of abelian surfaces over Q of conductor M € Z with trivial endomorphism ring
together with isogeny classes of abelian fourfolds over Q of conductor M? and certain weight 2
Siegel paramodular forms on K(M).

This work in particular presents extensions of Theorem 1.2.2 and Theorem 1.2.3. Our method of
proof is similar to that used by Andrianov and Evdokimov, however proofs are built with invariance
properties of Fourier coefficients of Siegel paramodular forms in mind.

The main results of Chapter 6 are extensions of Theorems 1.2.2 and 1.2.3. We start with

multiplicative relations exhibited in another collection of Fourier coefficients.

Theorem 1.3.1 (R., 2019). Let

F(Z)= Y a(8)e*™"5%) e My(Sp(4,2))
SEcA(1)

for k> 0. Suppose that F is an eigenform. Let I ; denote the matriz

1 1/2

1/2 1
(1) If a(I1,1) = 0, then a(mli1) =0 for all m € N.
(i) For m,n € N with gecd(m,n) =1 we have

a(mn[l,l)a(lm) = a(mILl)a(nlLl).

In addition, we see that other arithmetic relations hold for any S € A(1) whose discriminant is

a fundamental discriminant.



Theorem 1.3.2 (R., 2019). Let
F(Z)= Y a(8)e*™"5%) ¢ My(Sp(4,2))
SeA(1)
for k > 0. Suppose that F is an eigenform. Let Sy,...,Sr be a complete set of representatives of
the classes of positive-definite, primitive, integral binary quadratic forms of discriminant § with 0
a fundamental discriminant.
(i) If a(S;) = 0 for each i € {1,...,h}, then a(msS;) =0 for allm € N and all i € {1,...,h}.

(ii) For m,n € N with gcd(m,n) =1 we have

a(mnsS;)a(S;) = Z

1 i=1j

a(mS;)a(ns;).

h
= 1

h

i=1j —
To prove these results we rely heavily on the theory of full modules in imaginary quadratic
fields. We note here that McCarthy’s result and Theorems 1.3.1 and 1.3.2 provide relations between
Fourier coeflicients seen for paramodular level M = 1 associated to binary quadratic forms of fixed
discriminant given by a fundamental discriminant. To approach the general case where M > 1
we start by looking for relations between Fourier coefficients associated to binary quadratic forms

whose discriminant corresponds to a class group of size 1. We note the following theorem which is

due to Gauss.

Theorem 1.3.3 (Gauss). Suppose 6f2 = 0,1 (mod 4) with § < 0 a fundamental discriminant.
Then h(6f%) = 1 if and only if 6f% = —3,—4, -7, -8, —11,-12, —16, —19, —27, —28, —43, —67, or
—163.

The previous theorm provides an analog to Theorems 1.2.3 and 1.3.1 for Siegel paramodular
eigenforms of level M = 2,3,4,5,7,11,17, and 41 where we see strictly multiplicative relations in a

specific collection of Fourier coeflicients. More precisely, we have the following theorem.

Theorem 1.3.4 (R., 2019). Let M > 1 be an integer. Let
F(Z)= > a(9)e*™" 59 ¢ My (K (M))
SeA(M)

with k > 0. Suppose that F' is an eigenform. Let Ipro and Ipq denote the matrices

M 0 M 1/2
and

0 1 12 1

respectively. Let h(D) denote the size of the class group of forms of discriminant D < 0.



(i) If h(—4M) = 1, then for m,n € N with n odd and gcd(mM,n) =1 we have
a(mnlyo)a(Ino) = a(mIno)a(ndao).

(i1) If h(—4M + 1) = 1, then for m,n € N with n # 0 (mod 3) and ged(mM,n) =1 we have
a(mnly1)a(In) = a(mIy)a(nda ).

We then move to the main results of Chapter 6. The first result characterizes the arithmetic re-
lations seen between Fourier coefficients of Siegel paramodular forms associated to binary quadratic

forms of fixed discriminant D < 0. This result captures McCarthy’s result and much more.

Theorem 1.3.5 (R., 2019). Let M > 1 be an integer. Let
F(Z)= Y a(9)e* %) e My (K(M))
SeA(M)
with k > 0. Suppose that F is an eigenform. Let Sy,...,S4 be a complete set of representatives of
the set To(M) \ A(M,§f?) where § < 0 is a fundamental discriminant and f € N.
(i) If a(S;) =0 for each i € {1,...,d}, then a(mS;) = 0 for all m € N with gcd(m, f) =1 and for
alli e {1,...,d}.
(i) For m,n € N with gcd(mM,n) = ged(mn, f) = 1 we have
d d d d
ZZa (mnS;)a(S;) = ZZa(mSi)a(nSj).
=1 j=1 i=1j=1
The next theorem presents a modest generalization of Theorems 1.2.1 and 1.2.2. In particular,
we show that when viewing Theorems 1.2.1 and 1.2.2 in the context of Siegel paramodular forms,

the quantities contained in the formula are in general non-zero.

Theorem 1.3.6 (R., 2019). Let M > 1 be an integer. Let
F(Z)= > a(8)e*™" 5% € My(K(M))
SeA(M)
with k > 0. Suppose that F is an eigenform of the Hecke operators {T(m)}m>1, ged(m,m)=1 with
eigenvalues {p(m)}m>1, ged(m,my=1- Let 6 <0 be a fundamental discriminant and let K = Q(W9).
Fiz an order o5 of K for some f € N. Then for every S € A(M,5§f?%), we have in some right

half-plane

Lip(s—k+2) > > U)o (s HQ;L

ms
[u]eH (o5, M)
gc

where Q. r(t) is the Euler factor at p, Lss2(s) is the L-series of oy, the matriz S, is determined

by the action of H(oy, M), and xs(s) is a function depending on S and F.



Chapters 2-5 build up the necessary machinery required to prove our main results in Chapter
6. In Chapter 2, we address the abstract Hecke theory that is prominent throughout this work.
In Chapter 3, we present the definitions of the paramodular group and Siegel paramodular forms
and present some basic structural theory on the matrix groups GSp(4, R) and Sp(4,Z) that will be
utilized in later computations. In particular, we prove a theorem on the Smith normal form for
matrices in M (2,Z). In Chapter 4, we give a construction of the paramodular Hecke operators for
p t M following the construction of Andrianov [1] and for p|M with M squarefree following the
work of Johnson-Leung and Roberts [20] and the work of Roberts and Schmidt [34]. In Chapter 5,
we build the theory of full modules in imaginary quadratic fields following works such as [7] which
we will exploit in the proofs of the main results in Chapter 6. It is a topic of further research to
understand the action of the paramodular Hecke operators for p|M on the Fourier coefficients of a

Siegel paramodular form of squarefree level M.

1.4 Related Results

When discussing Siegel paramodular forms which are eigenforms of the paramodular Hecke opera-
tors we are often interested in determining how the eigenvalues relate to the Fourier coefficients of

the form. McCarthy proves the following theorem [25].

Theorem 1.4.1. Let

F(Z)= Y a(8)e*™™5%) e My(Sp(4,2))
SEA(1)

with k > 0. Suppose that F is an eigenform normalized such that a(I1 ) = 1. Let
(5)
p
denote the Legendre symbol where p is an odd prime. Set
. —4 _
2 lf (7) = 1,
hi(p) =41 if p=2,
0 lf (?) = —1,

and



Then for any prime p, the eigenvalues of index p and p? associated to F satisfy
p(p) = a(pli o) + h(p)p" >
and
w(p?) = a(p®Ir0) + hi(p)p"2a(pli o) + ha(p)p* 2.

Determining such a relation between Fourier coefficients of Siegel paramodular eigenforms and

its eigenvalues is still an open problem and is a topic of future research.



2 Abstract Hecke Rings

The structure of this chapter loosely follows [27]. For this chapter we let G be a topological group

and X a topological space.

2.1 Function Space

Suppose that G acts on X on the left. We will denote this action by g-z for g € G and z € X. Let
H(X) denote the set of all holomorphic functions from X to C, and let T be a subgroup of G. Let
{Cy}g4ec be a collection of constants such that Cy 4, = Cy, Cy, for g1,92 € G and Cy = 1 for all

gel.

Definition 2.1.1. Let j : G x X — C be a non-zero holomophic function. We say j is a factor

of automorphy if for all g1,90 € G and for all z € X,
3(9192,2) = j(91,92 - 2)j (92, 2).
This relation is known as the cocycle relation.

Let j be a factor of automorphy. Note that the cocycle relation implies that j(1g,2) = 1 for all
z € X where 15 denotes the identity in G. The left action of G on X induces a right action of G

on H(X). Let k be a nonnegative integer. For g € G, define f x; g : X — C to be

(f*k 9)(2z) =Chilg,2) " f(g- 2).

We call k the weight. We will show that this defines a right action. Let f € H(X). Then
(f xr1e)(2) = Cri(la, 2) " f(la - 2)
= f(2).
and for g1,902 € G
(f %k 9192)(2) = CF, .3 (9192, 2) " f(g192 - 2)
=CFCE j(g1,92-2) i (g2,2) " flg1- (g2 2))
= Cy j (g2, 2)(f %k 91)(g2 - 2)

= ((f *k g1) *& 92)(2)-

Hence G acts via x; on H(X).
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Definition 2.1.2. Let f € H(X). We say f is an automorphic form for T if for some integer
k>0,

(f %k 9)(2) = f(2)

for all g € T and for all z € X. If we want to emphasize the integer k then we call f a weight k

automorphic form for T.

For fixed k € Z>o we denote by M (I") the set of all weight k automorphic forms for I'. It is

clear that M(T") is a vector space over C. We emphasize a few important properties of My(T).

1. If T¥ and T are subgroups of T" such that TV C T then M (T"") C M (T").
2. If f € My(T') and g € G then f %, g € My(g~'Tg).

3. If f € Mg(T) and f' € M;(T) then ff' € My i1(D).
Define M(T") to be the module generated by all of the My(T). That is
M(T) =) My(I).
k=0
We will assume that this has the structure of a graded ring,

M(T) = émk(r).
k=0

2.2 Hecke Rings

Here we will describe briefly the necessary information on Hecke rings that we will need for the

material ahead.

Definition 2.2.1. Let T and TV be subgroups of G. We say that T' and T are commensurable if
the indices [[': T'NIY] and [I' : T NIV] are both finite.

If T and IV are commensurable subgroups of G, we shall write I" ~ I"V. For a fixed subgroup, T,

of G we let
Comg(T) ={g€G:g 'Tg~T}.

We prove some properties of the relation ~ and the set Comg(T).
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Proposition 2.2.2. The relation ~ is an equivalence relation.

Proof. The reflexivity and symmetry of ~ is obvious. We prove transitivity. Let T', T, and I be
subgroups of G such that I' ~ I and IV ~ T, Then

L:TNI'NI]=: NN :TNI'NT"
<[:TNnII:1"nr"

< 00.

Similarly, I : T NIV NI"] < co. Since I'NIY NI C T NI it follows that [I': T NT"] < oo and

[ :T'NI"] < co. Hence I' ~ I and transitivity is proved. O

Proposition 2.2.3. Let T’ and T be subgroups of G.
(i) The set Comg(T") is a subgroup of G.
(i) If T' ~ T, then Comg(T") = Comg(TV).

(111) Suppose T ~T". Then for any g € Comg (') we have
c d
Dol = | |Tgvi=| | 6,97
i=1 j=1

where {v;}5_; and {9, }?:1 are finite sets of representatives of (I'N g Tg)\T” and T/(TNgl’g™1)

respectively.

Proof. We start by proving (7). Let g1,92 € Comg(T'). We need to show that g1go € Comg(T).
Consider 7 : G — G given by 7(g) = g1gg; *. Then 7 is an inner automorphism of G' and hence
preserves the index of subgroups. Let I” = ¢;T'g;! and T = goT'g;*. Since I' ~ I'” we have
[7(T) : 7(T NT")] < oo and [r(T") : 7(T NT")] < co. We have 7(T') = TV, 7(I"") = ¢:T"g; ", and
(T NT") =T NngiTgy . Tt follows that 7(T") ~ T. By transitivity, 7(I'’) ~ T'. Thus gig2 €
Comg(T). Now let h € Comg(I'). Then I'" = h™'Th ~ I'. We want to show h[h™! ~ T. Let
o : G — G be the inner automorphism o(g) = hgh~!. Since I ~ T we have [o(T') : o(NI"")] < o0
and [o(T"") : o(PNT")] < oco. Tt is clear that o(T') = hTh™!, (") =T, and o(TNI""") = hTh~1NT.
Hence hTh™! ~ T and h=! € Comg(T'). Since 1¢ is clearly in Comg(I") this proves (i). We now

prove (ii). Suppose that I' ~ I”. Then, since g~ 'I"g ~ g~ 'T'g ~ T ~ I, we have that
Comg(l) ={g€G:g 'Tg~T}
={gel: g 'Tg~T"}

= Comg (F,) .
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Lastly, we prove (4i7). Suppose again that I' ~ IV. We prove only one decomposition as the other is
follows mutatis mutandis. Every right coset in I'gI" is of the form I'g~y for some v € T”. It is easy
to see that if ['gy = gy’ for v,~4" € I then v(7/)~! € I' N g 1Tg. Since g~ 'T'g is commensurable

with I" and hence with T the desired decomposition follows. O

Let I' be a subgroup of G and let s(I') be a subgroup of G such that I' C s(I') C Comg(I"). We
then call the pair (I',s(I")) a Hecke pair. We define the Hecke algebra, (T, s(I')), as the free

Z-module generated by the double cosets I'gI’ with g € s(T'),
H(,s(1)) = Z mygl'gl’ : myg € Z, my = 0 for all but finitely many g
ges(T)
Suppose further that s(I') acts on a Z-module N on the right via (n,g) + n9 and let N' be the

submodule consisting of I'-invariant elements of N.

Proposition 2.2.4. Let n € N' and let TgT' € (T, s(T)). Suppose we have two disjoint decom-

positions
(& c
Iyl =| |Tg:=| | Ty,
i=1 i=1
Then
C c
S =3
i=1 i=1
Furthermore,
c
Z n9% e N,
i=1
Proof. Let

Tyl =| |Tg; =| |Tg;

7

be disjoint decompositions of I'gl". If I'g; = I'g; then there exists v € I" such that g} = vg;. Then

for n € NT,

ndi — % — pg

which proves the first part of the proposition. To prove the second part of the proposition let v € T’

and notice that

Lgl' = qui = uF9¢7-



13

Then for n € NT,

establishing that n[['gl'] € NT. O

The previous proposition shows that a fixed element T'gI' € (T, s(T")) defines a map on
[[gl] : N¥ — NT given by

n[['gl] = ani.
i=1
where

Tgl'=| |Tg:
i=1
is a disjoint decomposition. Extending linearly, every element of .7 (I'gI") defines a map from NT

to NT'. We call the elements of 7 (T, s(I')) Hecke operators.

Proposition 2.2.5. Let T'gD',Thl' € (T, s(T")). Suppose we have disjoint decompositions

Tyl =| |Tg:
and
ThT' =| |Th;.
J
The multiplication
gD -ThT = ) ¢T9T

[V]eM\s(I)/T

where ¢y = #{(1,7) : Tg;h; =Ty} extends to a well-defined binary operation on (T, s(I')).

Proof. Consider the free Z-module Z[I" \ s(T")] generated by the right cosets I'g for g € s(T"). We
then have a map from J#(T',s(I")) into Z[I" \ s(I")] given by

Tgl'=| |Tgi = > Tgi.
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We then consider 7 (T",s(I')) as a Z-submodule of Z[I" \ s(I')]. It follows from the definitions that
A(L,5(I)) = Z[I\ s(I)]".
Let

Tyl =| |Tg; and ThI'=| |Th,
i J

be disjoint decompositions. It is clear that s(I') act on Z[I'\ s(I")] via

(ZF%> = (Tw)?! =D Tug.
k

k k

By the definition of the mapping [['hT : Z[T'\ 5(T')]" — Z[T'\ 5(I')]'] we have

(e ran-32 ()

J

SRR

J [
=2.> Taihy
g

= ) T

[v]eT\s(T)/T
with ¢, = #{(i, ) : Tgih; = I'y}. Thus the mapping for elements of #(I',s(I")) on Z[I" \ s(I)]" is
just the multiplication defined on (T, 5(I")). The result now follows from the previous proposition.

O

Proposition 2.2 endows (I, 5(I")) with the structure of a ring. Moreover, we have the following

corollary

Corollary 2.2.6. Let n € N'. Then for Tgl',Thl' € #(T',5(T)) we have
n[[gT][ChT] = n[CgT - ThT).

In particular, 7 (T',5(T)) acts on NT.

Proof. The proposition follows easily from the definitions and the fact that the product I'gl" - ThT'
is well-defined. O

We end this chapter by giving a sufficient condition for the Hecke ring 7 (T",s(I')) to be com-

mutative.



Theorem 2.2.7. Let o : s(I') — s(I') be a map that satisfies
(i) o(gh) = o(W)a(g) and o(o(g)) = g for all g, € 5(T),

(ii) o(T) =T,

(i1i) T'gl' =To(g)T" for all g € s(T").

Then the product of elements in H(T',s(T')) is commutative.

Proof. Let g € s(I') and let

Iyl = | |Tg;.
i=1
Then
gl =To(g)T
=o(T'gl")
= ]otg)T

We prove that g, No(g)T # @ for all k and . Assume that T'gy No(g;)T = 0. Then

Tgw C| |o(g)T
i#l

implying that

Tyl =Tgil' C | |o(g:)T C Tyl

il

15

which is, of course, a contradiction. Thus I'gx, N o(g;)T # 0. In particular, T'g; N o(g;)T # @ for all

i. For each i, let g; € T'g; N o(g;)T. Then

Iyl =| |Tg;=| |gr.

Now let T'gI', ThT € (T, s(T")). By the above argument we have sets of representatives {g;} and

{h;} such that

Lgl = | |Tgi =] |aT
% %

and

Thl = | |Th; =| |,T.
J J
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Moreover, we have

gl = ufa(gi) =| |olgT

K3 7

and

Thl = L|ra(hj) =| |o(hy)r.

J J
Now we compute the products I'gI" - ThI' and T'AI' - T'gI". By definition,

gD -ThT = ) ¢I9T
[Yler\s(r)/T
and
ThT-TgD = Y ¢TI
[MED\s(T)/T

We need to prove that ¢, = ¢/, for all v € 5(I"). To this end, we have that

¢y = #{(i,4) : Tgih; = Ty}
#{(i,J) : Tgih;I' =TI}

[T\
_ #{(6,4) : To(h;)o(g)l" = Ta(y)I'}
[T\ Lo (7)I|
=d,.
The claim is proved. O

2.3 Hecke Operators on the Space of Automorphic Forms

Recall that we showed previously that if the group G acts on X on the right then G acts on the
Z-module H(X) on the left via x;. Let I be a subgroup of G and let s(I') be a subgroup of G such
that ' C §(I") € Comg(T). By definition, H(X)I' = M(T) and hence #(T,s(T')) acts on My/(T)
by

FI0GT] = > f % gs
for f € My(I'), g € s(I'), and with

Tgl =| |Tg:

a disjoint decomposition into right cosets. By Proposition 2.2.4 we know that f[['gT]; € My(T).
It is often common to include a normalization factor in the definition of f[I'gI'], however we will

be sure to specify when this is included in our later definitions.
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3 The General Symplectic Group, the Paramodular Group

and Siegel Paramodular Forms

3.1 The General Symplectic Group and the Paramodular Group

The goal of this section is to define the key groups and objects that will play a big role in this
work. In addition, we will identify important elements and relations that these groups and objects
exhibit.

Let E, denote the n x n identity matrix, and let 0,, denote the n x n zero matrix. We put

J, = O E,
-E, 0,

We call J,, a symplectic form.

Definition 3.1.1. The general symplectic group is defined as
GSp(2n,R) = {g € GL(2n,R) : 'gJug = A\(9)Jn}
where X : GSp(2n,R) — R\ {0} is a group homomorphism called the multiplier homomorphism.

We denote by GSp™(2n,R) the subgroup of the general symplectic group consisting of elements
g with A(g) > 0. Let

A B
g= € GSp(2n,R)
C D

with A, B,C,D € M(2n,R). Then a computation establishes that ‘AC = {CA, 'BD = DB, and
tAD —'CB = \(g)E,. We further note here that if ’g.J,,g = A(g)J,, then

'9=XNg)Ing It = =Xg)ng " n
and
('9)Jn'g = (—=XN9)Jng ™" Jn) Jn(=A(9) Tng ™ i)
= (AN9)») Tl Indndng " Jn
= (\9)*) Tn(lg™ ") g™
= (A(g)z))‘(gil)tjnt]m]n

= \Ng)Jn
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which implies that g € GSp(2n,R). It is clear that if g € GSp™(2n,R) then g € GSp(2n,R). This

closure under transposition property implies that if

A B
g= € GSp(2n,R)
C D

with A, B,C, D € M(2n,R) we have the additional relations A'B = B'A, C'D = D'C, and A'D —
B'C = A(g)En.

Definition 3.1.2. The symplectic group is defined to be
Sp(2n,R) = {g € GSp(2n,R) : A(g9) = 1}.
From an arithmetic point of view we will be interested in some specific subgroups of Sp(2n,R).
Definition 3.1.3. The modular group is defined to be
Sp(2n,Z) = Sp(2n,R) N M (2n, Z).

Definition 3.1.4. Let M > 1 be an integer. The principal congruence subgroup of level M
18 defined to be

(M) ={g € Sp(2n,Z) : g = E5, (mod M)}.

We call T C Sp(2n,Z) a congruence subgroup of level M if T(M) CT and T'(M') Z T for all
M < M.

From this point on we fix n = 2 and we set J, = J. We mention some important congruence

subgroups. For an integer M > 1, the Siegel congruence subgroup is

zZ z zZ Z
zZ z z Z
Si(4, M) = Sp(4,Z) N ,
MZ MZ Z Z

MzZ MZ Z Z

i.e., those matrices in the modular group whose lower left 2 x 2 block is congruent to 0 modulo M.

The Klingen congruence subgroup is

z z z

MZ Z Z
KI(4, M) = Sp(4,Z) N

MZ MZ Z MZ

MZ zZ Z Z
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The Klingen congruence subgroup will play an important role in this work. We also define the

subgroup of GSp(4,R) that will be of the most importance to us.

Definition 3.1.5. Let M > 1 be an integer. We define the paramodular group of level M to

be
Z Z M~z Z

MzZ Z Z Z
K(M) = Sp(4,R) N M(4,Q) 1

MZ MZ Z MZ

MZ Z Z Z

We note that KI(M) = Kl(4, M) C K(M) and K(1) = Sp(4,Z). The paramodular group also

contains some important symmetry elements that we will abuse frequently.

Proposition 3.1.6. Let M > 1 be an integer. Let
Ve Fo(M) U s

and let

with 'T =T. Then
Vo 0 Ey, T
0, tv-t ’ 0, Es
Proof. 1t is clear that the elements are of the appropriate form. We need only show that they are

in GSp*(4,R). We have

ty 0o 0o FEs \%4 0o ty 02 02 ty -1
0o vl —FEy 09 0o ty -1 _02 Vet -V 09
02 E
_—Eg (1)
and
Es 09 02 FEs Ey T Es 09 02 )
‘T By —FEs 09 0 FEo T Es —Fy =T
(053 FEs
|—E2 02

The claim is proved. O
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The paramodular group also contains the following four symmetry elements which will be in-

valuable in many computations

0 0 —M1t o0 a 0 b 0 1 0 0 O
0 1 0 0 01 0 O 0 a« 0 ¥V
ty = , P1= , and py = ,
M 0 0 0 c 0 d 0 0 0 1 0
0 0 0 1 0 0 0 1 0 ¢ 0 d
where
a al /
€Tp(M) and € SL(2,Z2).
c d d d

For much of the matrix theory ahead, it is convenient to prove some claims for M = 1 and then

extend to general M > 1.

3.2 Some Results on K(1) = Sp(4,2)

Our goal of this section is to prove some structural theorems involving K (1) = Sp(4,Z). We start

with a few technical lemmas.

Lemma 3.2.1. Let

Uy
u = and v = [111 U2i|
U2

with w1, ug,v1,v2 € Z. Then there exists matrices g, h € SL(2,Z) such that

qu = (;1 and vh = [52 0]

where 61 = ged(ug, ug) and do = ged(v1, va).

Proof. Let §; = ged(u1, ue) and write 01 = aug + bus. Then

uy U2
1=at 4 p22
“5 T

and hence

U2 (75} € SL(2a2>
o 01



21

and
a bl |wm 01
uz Uy =
51 61 ('5) 0
The other case is proved similarly. O

Lemma 3.2.2 (Smith normal form over SL(2,Z)). Let A be a 2 x 2 integer matriz. There exists

g,h € SL(2,Z) such that

ms
gAh =
0 mo

with my, ma € Z and my|ma.
Proof. Let

a b

A= e M(2,2)
c d

and let 01 = ged(a, ¢). By Lemma 3.2.1, there exists ay € SL(2,Z) such that

01 bo
0 do

O[lA =

Now let 02 = ged(d1,b2). Again by Lemma 3.2.1, there exists as € SL(2,Z) such that

02 0
OélACKQ =

c3 ds

We repeat this process and thus build a sequence {3, }2 ;. It is clear that for all n € N, §,,41 < 0.
Let 7 be the minimal such r such that é,,1 = d§,. We suppose for now that r is odd. Then, by

nature of the construction in Lemma 3.2.1, we end up at

brpr O
QpOp_g a1 Aagoy - - - Qryp1 =

0 dr+2

If §,4+1|dr42 then we are done. If this is not the case then we add a few more steps. First multiply

on the right by



to obtain

Org1 0
QpQp_g -0 Aagay - Qppi =

dr+2 dr+2

Let § = ged(dy41,dr42) and let z,y € Z be such that § = 26,41 + ydr4+2. Then

T
8= _dr+2 5r+1 S SL(2,Z)
) )
and
d ydr 2
Baray_1 - a1Aazay - - o= 5 K
r+1
0 dr+2
1)
Lastly, we multiply on the right by
d;
1 _Ylrt2
v = )
0 1
to obtain
) 0
Baray_1 - a1Aagay - Qrpioy = Sy
w5 e

completing the proof in the case r is odd. The proof is similar in the case r is even

Lemma 3.2.3. Let

U1

U2
u =

us

Ug

with uy, ug, us,us € Z. Then there exists g € Sp(4,2Z) such that

5
0
gu =
0
0

where 6 = ged(ug, ug, ug, uq)

22



Proof. Note that Sp(4,Z) contains the elements

a 0 b O 1 0
01 0 O 0 a
c0d ol |00
00 0 1 0 c
where
C

0 0
0 b
, and
10
0 d
€ SL(2,Z).
d

The result now follows from three applications of Lemma 3.2.1.

The previous lemmas are pivotal in proving some extremely valuable results.

[ R S S
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Proposition 3.2.4. Let g € M(4,Q) be such that 'gJg = qJ for some q € Q\ {0}. Then there

exists a € Sp(4,Z) such that ag has the form

a1 as
0 au
0 0
0 0
Proof. Start by writing g in the form
u1
Us
g=
ug
u13

b
b3
dq
ds

by
by
6M(4,Q).

0

dy

U2 us Uy
Ue U7 U
uip U1 U2
U4 U5 Ule

with u; € Q for 1 <4 < 16. Without loss of generality we may assume that u; € Z for 1 < i < 16.

We then apply the Lemma 3.2.3 to the first column of g. So for some v, € Sp(4,Z) we obtain

up 0] |0 wly

uh ug| |0 why

li /
U5 U6

0

!
U10

0

i
Upy
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we see that uju}, = 0 and hence u}, = 0. Moreover, since

/ i / i
0 0 Uy Uis up uwp| (00
! A i / i /
0 wiy| |uip uig s ugg| |0 uiy

we see that uj,u}, = 0 and hence u}, = 0 or ujy = 0. If uj, = 0 then the fact that

0 ujy Uy Ag) 0

=~

u

uy g |uis e 0 Ag)

o~

yields uwjufy = 0. Hence u}, = 0. If v}, = 0 then we have a matrix of the form

! i /
0wy wujs ujg

Considering the submatrix

Uy Ui
we apply Lemma 3.2.1 to obtain a matrix 8 € SL(2,Z) such that

! 1" "
Ug  Ug Ug  Ug
/B !/ /! - 1
Uiy Ui 0 ujs
where uf = ged(ug, u},). But then the previous lemma allows us to construct a matrix vy € Sp(4,Z)

using [ to obtain a matrix of the form

0 wug uf ug
Y2719 = ,
0 0 u, O

0 0 wufs ufg
This completes the proof. O

Putting everything together we obtain the following theorem.

Theorem 3.2.5. Every double coset Sp(4,Z)gSp(4,Z) with g € GSp™(4,Q) contains an element
of the form

diag(dl, dQ7 €1, 62)

with dy,ds, e1,ea > 0, di|dalesler, and die; = daes = A(g).
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Proof. We follow the proof given in [2] and [5]. Without loss of generality, we may assume that g is
an integer matrix. Furthermore, we may assume that g has relatively prime entries. Let §; denote
the greates common divisor of the ith column of g, and let 6 = min{J; : 1 <1 < 4}. We proceed by

induction on ¢ and prove that the double coset Sp(4,Z) contains a representative of the form

1 0 0 0
0 Ug 0 us
0 0 Xg) O

0 U14 0 U1le

First suppose that § = 1. Let ¢ be the index of the first column whose entries are relatively prime.

By replacing g by gJ we assume i = 1 or i = 2. If ¢ = 2, we replace g by

01 0 0

1.0 0 0
g

0 0 01

0 01 0

allowing us to assume that ¢ = 1. We now apply Lemma 3.2.3 to the first column of g obtaining a

matrix of the form

1 (5 us U4
0 Ug Uy us
0 wip w11 w12
0 wig wis uie

We now multiply on the right by the matrix

1 wus 0 0
0 1 0 0
0 0 1 0
0 0 —u O

to obtain a matrix of the form

0 wus uh |us
/

0 U110 uu U192
/

0 wis w5 uie
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We then multiply on the right by

01 —us O
0 0 1 0
0 0 O 1

to arrive at a matrix of the form

1 0 0 0

ug uf  ug

1
uip Uy U2

o o o

ula U5 uie
It now follows from relations on GSp(4,R) that u! = w9 = w12 = uf5; = 0. We have thus arrived
at a matrix of the form
1 0 0 0
0 ug 0 us
0 0 Ag) ©0
0 ws 0 u
This proves the claim for § = 1. We now assume the claim has been proven for all matrices with

relatively prime entries with § < §’. We prove the claim for matrices with relatively prime entries

and with § = §’. As before, we modify until we obtain a matrix of the form

O us  uz  ug

0 we uy ug

0 wo wir w2

0 wis wis wie
with the property that ug, us, and ug lie between 1 and ¢" (with 1 and ¢’ allowed). We then have a
matrix with § < ¢’. If § = §’ then all entries of the matrix would be divisible by ¢, a contradiction.
Thus § < ¢’. By the induction hypothesis, we obtain a matrix of the desired form. Returning now

to the general case we have the ability to modify g to obtain a matrix of the form



with dy,e; > 0, dile1, and die; = A(g). Now we apply Lemma 3.2.2 to the block

Ug  Ug
Ui4  Uie
to obtain a matrix of the form
d 0 0 0
0 d 0 0
0 0 e O
0 0 0 e

with da, ea > 0, da|eq, and daea = A(g). If necessary, we apply Lemma 3.2.2 to the block

d 0
0 ds

to ensure that di|ds. We thus can guarantee a matrix of the form

d 0 0 0
0 do 0 O
0 0 e O
0 0 0 e

with dy,dy, e1,ea > 0, di|dz|eser, and die; = daes = A(g). The proof is complete.

3.3 Siegel Paramodular Forms
The Siegel upper half-space is the set
My ={Z € M(2,C):'Z = Z, Im(Z) > 0}.
The group GSp™(4,R) acts on Hs by
g-Z=(AZ+B)(CZ+D)*

for

A B
g= € GSp™(4,R)
C D

27
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with 4, B,C,D € M(2,R) and Z € H,. We saw in Section 2.1 that this left action on Hs induces
a right action on H(H2). We have for k > 0

(Fxk 9)(Z) = Mg)*det(CZ + D) " F(g - Z)
for g € GSp™(4,R) as above and Z € Ha.

Definition 3.3.1. Let M > 1 and k > 0 be fixed integers. Let F : Ho — C be a holomorphic
function. We say F' is a Siegel paramodular form of level M and weight k if for all g € K(M)

we have

F *Ek g = F.
By Proposition 3.1.6 we have
E, FE
27 ek
02 Es

and hence for a Siegel paramodular form of level M and weight k£ we have

FEy FE
P 2 Bz
02 E»

This is to say
F(Z + E») = F(Z),
i.e., I is periodic. The Koecher principle (see [5], pg. 62) implies that F has a Fourier expansion

F(Z): Z a(S)eQ-rritr(SZ)
SeA(1)

where

rot/2 t?
A(l) = eM(2,Q:rt,seZand rs—— >0
t/2 s 4

Proposition 3.3.2. Let M > 1 and k > 0 be integers. Let F : Ho — C be a Siegel paramodular

form of level M and weight k with Fourier expansion

F(Z): Z a(S)e%ritr(SZ).
S€eA(1)
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If M {r, then a(S) =0 and for all
UeTy(M)U To(M)
we have
a(S) = a('USU).

Proof. Both of these claims follow easily by observing that K(M) contains the elements

1 0 M'n 0

0 1 0 0 U 09
0 0 1 0 0, U
0 0 0 1
where n € Z and
1 0
UEF()(M)U Fo(M)
0 -1
by Proposition 3.1.6. O

The previous proposition establishes that a Siegel paramodular form of level M and weight &
has a Fourier expansion of the form
F(Z) _ Z a(S)eQm'tr(SZ)
SEA(M)

where

Mr t/2 12
A(M) = e M(2,Q):rt,seZ and Mrs—— >0
t/2 s 4
For more information on Siegel paramodular forms one should see [33] and [35]. If one is inter-

ested in the Siegel paramodular forms in accordance with the paramodular conjecture of Brumer

and Kramer [6] then one should see [31] and [32].



30

4 Construction of Paramodular Hecke Operators

In this chapter we will be developing the definition of the paramodular Hecke operators that are
used in the literature. We will be doing this by first looking at the Hecke operators of a specific
congruence subgroup of Sp(4,Z) and then extending in a natural way to the paramodular group

K(M).

4.1 Hecke Operators of a Certain Congruence Subgroup

In this section we will construct the Hecke operators of a certain congruence subgroup of Sp(4, Z)

following the construction appearing in [2]. Let

M« * * *
s(M)=<(g= € GSp™(4,Q) NGL(4, Z(a)) : * € Z(any
Mx Mx x Mx

Mx* * * *

where Z () is the ring of rational numbers whose denominator is prime to M € Z. It is clear that

s(M) is a subgroup of GSp™ (4, Q). Define also the group

s*(M)=149g€GSpt(4,Q NGL(4,Z) 1 g = (mod M)
02 Ag)E2
where
1 0
By =
0 1

Each of these groups play an important role in building the operators we are interested in
studying. To build the Hecke operators of the paramodular group we begin with a study of a certain

congruence subgroup whose associated Hecke operators are related to those of the paramodular
group.

Definition 4.1.1. Let T be a congruence subgroup of Sp(4,Z). We say that T' is M -symmetric
if

I's*(M) = s*(M)T.
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In this case, we associate to I' the set
st (M) =Ts*(M)T =Ts*(M) = s*(M)T'
which is a subgroup of GSp™(4,Q). We call s* (M) the symmetrizer of T.

Recall now the definition of the Klingen parabolic subgroup, K1(M), given in § 5. This congru-
ence subgroup will be the group that will help us bridge the gap to the definition of the paramodular

Hecke operators.

Lemma 4.1.2. Each of the right cosets KI(M)g with g € s(M) contains a representative of the

form

a1 az by by

0 ayq b3 b4
0 0 d O
0 0 d3 ds

Proof. By Theorem 3.2.4, there exists o € Sp(4,Z) such that ag = ¢’ is of the desired form. But
a=g'g ' €s(M)NSp(4,Z) = KI(M).
This completes the proof. O

Lemma 4.1.3. The congruence subgroup KI(M) is an M-symmetric group. Moreover,
s(M) = sKUM (pr).
Proof. Let g € s(M). By Lemma 4.1.2, we may assume that g is of the form

a1 az b1 by

O ay b3 b4
0 0 d 0
0 0 ds dg

Consider the matrix

1 _ax 1 (b1 _ asbs) _ _d3 (by _ aghs 1 (b _ agbs
a1 atas di \ a1 aiag dida \ a1 aiag dy \ ay aiag

0 _L 1 (bs _ bads bs
g/ _ a4 di \ a4 asdy asdy c 5(]\4')
0 0 a; 0

0 0 as a4
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Then ¢’ is an M-integral matrix and, modulo M, belongs to Sp(4,Z/MZ). Let o € Sp(4,Z) such
that & = ¢’ (mod M). Then clearly o € KI(M) and

ag=g'g (mod M)

-4 w2 F(h-sk) - (ko) (-2 [a e owon
B R vy N |
Lo o @ 0 0 0 d o0

| O 0 as a4 0 0 d3 ds

[1 o 0 0 10 0 0
o1 0 o o1 o o
oo ardy o| o o ag o]

10 0 a2di +asds aads 0 0 0 Ag)

where the last equality follows from the definitions of GSp™(4,R). Thus ag € s*(M) and therefore
g € KI(M)s*(M). Consider now g~!. Since s(M) is a subgroup of GSp™(4,Q), g~! € s(M). By a

similar argument as above we have 8 € KI(M) such that

I 0
o — ! 2 (mod M).

(05} )\(g_l)Il
Hence it follows that
g™t € KI(M)s*(M).

We then deduce that g € s*(M)KI(M). This proves that s(M) C KI(M)s*(M) and s(M) C

s*(M)KI(M). Since it is obvious that each of the reverse inclusions hold, we have that
KI(M)s*(M) = s*(M)KL(M).
Hence KI(M) is M-symmetric. It follows immediately that
s(M) = KD (A,
The lemma is proved. O

The main purpose of Lemma 4.1.3 will be apparent in a moment, but in the meantime let’s

state the following theorem from [2] which will also be of some significance.

Theorem 4.1.4. Let T’ and T” be two congruence subgroups of Sp(4,Z) and suppose that both T

and I are both M -symmetric with T C TV. Then
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(i) s (M) =Ts" (M) = " (M)T,

(ii) Sp(4,Z) Ns' (M) =T,

(iii) if g, g’ € s* (M) and g’ € T'gLl", then g’ € T'(M)gl', where T'(M) is the principal congruence
subgroup of level M.

Proof. As mentioned prior to the statement of the theorem, see [2], Theorem 3.3.3, for the proof of

these statements. O

These results now come together to establish a very fundamental result about the diagonaliz-

ability of the double cosets of the form
KI(M)gKI(M),
where g € s(M).

Theorem 4.1.5. Let g € s(M) where M > 1. There exists di,ds,e1,e2 € Q with d;,e; > 0 for
i € {1,2}, di|ds|esler, and die; = A(g) fori € {1,2} such that

KI(M)gKI(M) = KI(M)diag(dy, da, e1, e2) KI(M).
Moreover, the numbers dy,ds,e1,es € Q are unique.

Proof. The statement for M = 1 was proven in Theorem 3.2.5. For arbitrary M > 1 let 71,72 €
Sp(4, Z) be such that 1 g2 is of the form diag(d;, ds, e1, e2) with dy, ds, e1, e satisfying the desired
conditions. Since diag(dy,ds, €1, e2) € 5(M), by Theorem 4.1.4(iii) we have
diag(d, da, €1, e2) € I'(M)gKI(M)
C KI(M)gKI(M).
We now prove uniqueness. Let diag(di,da,e1,es) and diag(dy,d,, €}, e5) be two matrices that
satisfy the conclusions of the theorem. Then there exists matrices 1,y € KI(M) such that

!

vidiag(di, dz, e1, e2)ye = diag(dy, dy, €], €5).

One can deduce from this relation that d;|d]. Similarly we have df|d;. Hence dy = dj and it follows

that

N !/
d161 == dlel == dlel
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and thus e; = e}. Next we compute the 2 x 2 principal minors and compare. It is apparent from
the computation that we must have dg|d. Similarly we have dj|ds. Hence do = d) and it follows

that es = €. Thus uniqueness is proved. O
Fix k € N. Let us now consider the subsets of s(M)
sn(M) = {g € s(M)NM(4,Z) : A(g) = n}

for n € N and ged(n, M) = 1. We define the Hecke operators T'(n) for n € N with ged(n, M) =1
for the Klingen parabolic subgroup by
T(n) = n*3 > [K1(M)gK1(M)]
[9]€KL(M)\s5 (M) /KI(M)
=n*0 3" [KI(M)diag(dy, da, e1, e2)KI(M)]x,
d1,d2,e1,e2€N

d1 ‘d2|€2‘€1
dlel =d2€2=n

where [KI(M)gKI(M)]y is defined as in Section 2.3 and the last equality follows from Theorem
4.1.5.

Theorem 4.1.6. Let n,n’ € N with ged(n,n’) = ged(nn', M) = 1. Then
T(n)T(n') =T (nn') =T(n")T(n).

Proof. We prove the commutativity relation first. Consider the map o : s(M) — s(M) defined by

a1 as by bo ai as ¢ c3
Mas ag4 b3 by Mas a4 o Ca

’ Mcy Mcey di Mds - Mby Mbs dv Mds
Mcs ¢4 d3 dy Mby by do dy

A tedious yet straightforward computation establishes that o(gh) = o(h)o(g), o(o(g)) = g,
o(KI(M) = KI(M)), and T'o(g)I' = T'gTl" for all g,h € s(M). The result now follows by Theo-

rem 2.2.7. The multiplicativity of the Hecke operators follows from the fact that
Sy (M)Sp (M) = Sppr (M)
whenever ged(n,n’) = 1. O

We have that each double coset KI(M)gKI(M) for g € s(M) is a finite union of right cosets, i.e.,

KI(M)gK1(M) = 6 KI(M)g;.

=1
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Therefore, since |KI(M) \ s, (M)/KI(M)]| is finite, we have that T'(n) is defined in terms of a finite
collection of matrices. Ultimately, in lieu of the commutativity and multiplicativity relation in

Theorem 4.1.6, we are able consider just the operators T'(p™) for p prime with ged(p, M) =1 and

ro > 0,
PO 0 0
0 2 0 0
T =pt= S ki) | P KI(M)
ri<ro<|[22] 0 0 proT 0

k

4.2 Hecke Operators over K(M), pt M

In this section we will look at the paramodular Hecke operators over K(M) . We will be using the
results from the previous section and so we will only be constructing operators for p f M at this

point in time. We'll start by considering the group

*
s°(M)={g= € GSp™(4,Q)NGL(4, M ~"Z(ap) : * € Ziany

which is a subgroup of GSp™(4,Q). We will again be considering double cosets of the form
K(M)gK(M), g €s°(M).

It turns out that we actually won’t need to use the entirety of s°(M).

Lemma 4.2.1. Let g € s°(M). Then there exists v € K(M) such that gy € s(M).

Proof. Let g € s°(M). Then g has the form

a az M7'hy by
Mas  aq4 b3 by
Mey Mes dq Md,
Mes ey ds dy

As the denominators of the entries a;,b;,¢;,d; for i € {1,2,3,4} are relatively prime to M, we

may clear the denominators to obtain a matrix which is still in GL(4, M ~'Z). Upon clearing
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denominators we may assume that a;, b;, ¢;,d; € Z for i € {1,2,3,4}. Now we note that the matrix

1 0 My o

0 1 0 0
Mz 0 2zy+1 O

0 0 0 1
is an element of K(M) for all z,y € Z. Let d = ged(a1,b1) and let dy = ged(ay, by, M). Write
a1 = md and by = nd and note that ged(m,n) = 1. By Dirichlet’s theorem on primes in arithmetic

progression we may choose x such that ged(m-+nx, M) = 1. It then follows that ged(ay +bix, M) =
dp. Pick y,z € Z such that —(a; + byz)y + zM = by. Then

aq as M7 by 1 0 M 0
Mas a4 bs by 0 1 0 0
Mcy Meo dq Mds| |Mzxz 0 zy+1 0
Mces ¢y ds dy 0 O 0 1
is an integral matrix. O

Since K1(M) C K(M), by Theorem 4.1.5, we know that every double coset K(M)gK(M) with
g € s(M) contains an element of the form diag(dy,ds,e1,es) with dy|dalesle;. Moreover, this
element is unique by a similar argument for the case of double cosets of the form KI(M)gKIl(M).
Let £ € N. We can now define the weight k& paramodular Hecke operators in the same way as for
the case of the Klingen parabolic subgroup. The paramodular Hecke operators are given by
T(n) =n*"? > [K(M)gK (M)
gEK(M)\sn (M)/K(M)
=nF% N [K(M)diag(dy, da, €1, 2)K(M)i, (n,M)=1, neN.
dy,da,e1,e2EN

dl |d2|€2|€1
d161=d262=n

The commutativity of these operators follows via a similar argument to that used with the Hecke

operators for the Klingen subgroup. This allows us to again restrict our attention to the operators

P 0 0
0 2 0 0

Ty =pot= S ko |7 K(M)| (4.1)
r<ra< |0 | 0 0 pro 0

k

where p is a prime with ged(p, M) =1 and rq > 0.
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Like with the Klingen subgroup, the double cosets appearing above can be decomposed into a
finite number of right cosets. With such a decomposition we would be able to compute the explicit
action of these operators on a Siegel paramodular form. In order to do this we need a complete
system of representatives for the double cosets appearing in the formula for T'(p™). The following

proposition provides this system of representatives.
Definition 4.2.2. We let

p* 0

D =
o 0 pa+5

s

where p is a prime, o, 5 > 0 and o + B < rg.

Definition 4.2.3. Let B,B’ € M(2,Z) and D € GL(2,Q) N M(2,Z). We say that B and B’ are

equivalent modulo D if
(B—-B)D™ ' e M(2,2).
We also define a special set of matrices.

Definition 4.2.4. Let M > 1 be an integer and let p be a prime with p t M. For integers § > 0
define the set R(p”) to be a complete system of representatives of the set To(M)/To(Mp?).

Note that R(p®) has size

, o _ SL2.Z):To(Mp%)] _ aiaipe ) (1+ %) if B> 1,
[Co(M) : To(Mp?)] [SL(2,Z) : To(M)] M[ <1+1> . £ 5—0.
qlM q

We will construct an explicit representation of R(p?) shortly. However we first prove a proposition

that is critical to computing the action of the Hecke operators on a Siegel paramodular form.

Proposition 4.2.5. Let M > 1 and ro > 0 be integers and let p be a prime not dividing M. The

set

A B
V)= | b € 5p0(M): D = Dap(*U),U € R(p®), A=p™ D™, Bmod D

a,p>0 | |02
a+pB<rg

is a complete set of representatives of the right cosets contained in the double cosets appearing in

equation (4.1).
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Proof. Let g1,g2 € V(p™) such that K(M)g; = K(M)gs. We will prove that g; = go. According

to Lemma 4.1.2 we assume that g; and go are of the form

A1 Bl A2 B2
g1 = and go = ;
02 D1 02 D2

with

D1 = DahgltUl and D2 = Da2’52tU2.

where Uy, Us € R(p®). By definition of the set V(p™) we have a;,; > 0 and a; + 3; < 7o for
i € {1,2}. Further we have

Ay =p -thl and Ay = p™ -thl
and By, By € M(2,Z). From the equality K(M)g; = K(M)gy we have g1 g5 " € K(M). Therefore

~ AA7Y A A B DS + By DS
9195 = ) e K(M).
0o DDy

Let V = A1A;  and T = —A;A; ' BoDy ' 4 By Dy . Note that V € GL(2,Z) and thus D;D; ' €
GL(2,Z). However,

DDy = D, 5,U,U; D!

a2,z

-B
= palfaz a p 2b
pﬁlc p51—52d

where

a b
U\'Uyt = € To(M).
c d

It follows that GL(2,Z)Dq, g, GL(2,Z) = GL(2,Z)Dg, 3, GL(2,Z). By the uniqueness of the Smith
normal form (see Theorem 3.2.2) we must have ay = ag and 51 = f2. We write @ = a3 = a2 and

B = 1 = B2. We now have

DDyt =
pPe d

Since this matrix is in GL(2,Z) we must have p®|b. Since pt M we have that

Uy, 'UL € To(pP M).
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This implies that U; = Uy, D1 = Dy, and A1 = As. We write U = Uy = Uy, A = A} = Ay, and
D = Dy = Dy. We thus have

T=-ByD'+B, D' = (B, —By)D™".

‘We know that

Furthermore,

where n € Z. Since p~®n = M ~'m for some m € Z we have Mn = p®m and thus p*|n. Thus
T € M(2,Z) and B; = By (mod D). This implies that B; = By. Hence g1 = gs.

We now show that if K(M)g for g € s, (M) is a left coset contained in one of the double cosets
appearing in equation (4.1) then there exists ¢’ € V(p™) such that K(M)g = K(M)g'. By Lemma

4.1.2 there exists a matrix in K(M)g of the form

ar az by by

0 ayq b3 b4
0 0 d O
0 0 d3s ds

We may assume that the determinant of

D_ d 0
ds ds
is positive since K(M) contains the element
-1 0 0 O
01 0 O
0 0 -1 0

o
(an)
o
—
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Moreover, we have that the determinant of D is a power of p. We put D into Smith normal form

and we see that by Lemma 3.2.2
D e SL(2,Z)D, sSL(2,2)
for some «, 8 > 0 with a + 8 < rg. We can actually say something more. In fact,
D € 'To(M)Dqy g'To(M).
Since g € spro (M) it follows that oo+ 8 < ry. The double coset
To(M)Dy 5'To(M)
can be decomposed into a disjoint union of right cosets

To(M)Da,p'To(M) = |_| "To(M);.
i=1

We have that m = [{To(M) : Da’gtl"o(M)D;lﬁ] = [[To(M) : tTo(Mp?)]. It is clear that for
U € R(p®) we have

'To(M)Dy U C'To(M)Dqy s To(M).

We proved above that if ‘T'o(M)D, Uy = ‘To(M)DgagUs for Up,Us € R(p?) then Uy = Us.

Therefore Da,gtR(pB ) can be taken as a complete set of representatives of
"To(M)\'To(M)Da,5'To(M).

Now we have D = D, s'U for some U € R(p”). Tt follows from properties of GSp(4,R) that

A =p" D71 Lastly we multiply on the left by a matrix of the form

E, T
e K(M)
02 FEs
with T € M(2,2Z) to get
Ey, T A B A B+TD

02 E| |02 D 02 D

thereby allowing us to reduce B (mod D). This completes the proof. O

The next result describes R(p”) explicitly. Note first that R(p®) consists of just I;, the 2 x 2

identity matrix.
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Lemma 4.2.6. Let M > 1 be an integer and let p be a prime not dividing M. For each B > 1 fix

a matriz

P’ —ag
M bs

where ag,bg € Z are such that agM + bﬂpﬂ = 1. For B8 > 1, the following form a complete set of
representatives of To(M)/To(Mp?)

1
, ueZ/p’Z,
Mu 1

Mup + p° upbg — ag
M bgs

,uezZ/pPiz.

Proof. Let R be the set including the elements defined above. As #R = #R(p”), it suffices to show
that each element defines a distinct left coset. First we note that two matrices

V] Uy v) v

v3 Uy v v

define the same left coset if and only if there exists

€ Do(MpP)
c d
such that
vr vz| la b o] v
vy vgl| |c d N vh vy

Note that this last equality says
avy + cvg = vi,
avs + cvy = 5.
Hence there exists a € (Z/p?Z)* such that
— ./ B
avy = vy (mod p~),
avs = v} (mod p?).

The existence of such an a is also a sufficient condition so we can conclude that the matrices

V] Uy v) v

v3 Uy v v
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define the same left coset if and only if there exists a € (Z/p?Z)* such that
— ! 6]
avy = v; (mod p?),
avs = vy (mod p?).

We prove the claim bearing this in mind. If (1,u; M) and (1,usM) are equivalent modulo p” then
there exists a € (Z/p®Z)* such that

a=1 (mod pﬁ) and au; M = usM (mod pﬁ).

This implies that u; M = us M (mod p?) and therefore u; = up (mod p?). If (Muyp + p?, M) and

(Mugp + p?, M) are equivalent modulo p? then there exists a’ € (Z/p®Z)* such that
a (Muip+ p®) = Mugp + p? (mod p?) and o' M = M (mod p?).

This implies that @/ = 1 (mod p?) and therefore u;p = ugp (mod p?). Hence it follows that
up = up (mod pP~1). If (1,uy M) and (Mugp + p?, M) are equivalent modulo p® then there exists
a" € (Z/p”Z)* such that

a’ = Mugp + p? (mod p?) and a”uy M = M (mod p?).

This implies that Mujusp = 1 (mod p?). This is of course a contradiction and thus (1,u; M) and

(Mugp + p®, M) are not equivalent modulo p®. The proof is complete. O

By Proposition 4.2.5, we can now easily apply the operator T'(p™), ro > 0, to a Siegel paramod-
ular form. We will not use the explicit representation of R(p®) here but we will be returning to

that description later when we start our analysis of Fourier coefficients of paramodular forms.

4.3 Hecke Operators over K(M), p|M

For this section we assume that M > 1 is a squarefree integer. In order to build the Hecke operators

for primes p|M we will utilize the constructions in [34] and modify them as in [39).

Definition 4.3.1. The local paramodular group of level p™, denoted by K'°¢(p™), consists of
elements
Z, Z, p°Z, Z,
prozZ Zz z z
g€ GSp(4,Q,) N P g 8
pZ, pr°Z, Z, poZ,
pZy 2y Zy Zy

with \(g) € Z5.



We will only be studying the Hecke operators T'(p) and

10 0 0
, 0p 0 0
Ti(p*) = K(M) K(M)
00 p> 0
00 0 p

in the case p|M.

Proposition 4.3.2. We have the following double coset decompositions for rq > 1,
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» 0 0 0 10 2p™ y|[p 00 0
1o p 0 0 , 0 1 z| [0 p 0 0O ,
KIOC(pro) KIOC(pTO) _ Y Kloc(pm)
0010 ewecz/pz |0 01 0] |0 10
0 0 01 0 0 0 110 0 0 1
1 2 zp 0] [p 0 0 0
0 1 0 010 1 0 O
L |—| Kloc(pm)
x,2€Z/pZ 0 0 1 0 0 0 1
00 -z 0/[000p
1 00 yl|lp 000
01 y [ [0 p 0O O
oL e Kor (o)
o7 )pZ 00100010
0 0 0 1[0 0 0 1
1 2 0 0||p 00O
01 0 0][|01 0O
U L]t :
wezipz |00 1 0[]0 0 10
00 —z 1/]0 00 p
p2 0 0 0 1 = 0 0|1 0 zpm y| |p?2 O 0
Kloc(pro) 0 p 0 0 Kloc(pro): |—| 0 1 0 0 0 1 Y 0 0 p 0 Kloc(p'rg)
0O 0 1 O zyez/pz |0 0 1 0ol (0O O 1 0 0 O
z€z/p%z
0 0 0 »p 0 0 —x 1] 1]0 O 0 1 0 O p
1 = 0 0|1 0 zpmotl 4| [p2 0 0 0
0 1 0 o] (0 1 0 0 0 0
S B ! ’ K1 (p0).
x,y,2€2Z/pZ 0 O 1 0 0 0 0 0 0 1
0O 0 —z 1|10 O 0 1 0 0 0 »p
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Proof. The proof can be found in Chapter 6 of [34]. One just needs to apply the appropriate

involution on the paramodular group used therein to obtain appropriate decompositions. O

The major difficulty in utilizing these double coset decompositions is the fact that the lower left
block of some of the representatives contain non-zero elements. The rest of this section is to rectify
this issue. We note that since M is assumed to be squarefree we have rp = 1 and can appeal to the

following theorem.

Theorem 4.3.3 (Iwasawa Decomposition). Let p be a prime. For any g € GSp(4,Q,,) there exists
h € K'°¢(p) such that gh is of the form

A B
0, D

where A, B,D € M(2,Q,).
Proof. This is Proposition 5.1.2 in [34]. O

With the previous theorem in mind we can put all the representatives appearing in Proposition
4.3.2 into block upper triangular form which will make them very easy to compute with later. In
addition, we will use the following theorem from [19] to globalize the coset representatives in the

case rop = 1.

Theorem 4.3.4. Let M > 1 be an integer, let p be a prime, and let p™||M. There exists finite

disjoint decompositions

» 00 0
0 p 00 M
Kloc(pro) Kloc(pro) — I_l giKloc(pro)
00 1 0 i=1
0 0 0 1
and
»22 0 0 0
0 p O N2
Kloc(pro) Kloc(pro) — |_| thloc<pro)
0 1 0 j=1
0 00 p
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such that
1 000
0100 M .
K(M) K(M) = | | K(M)pg;
0 0 p O i=1
00 0 p
and
1 0 0 0
0 0 0 Na
K(M) P K(M) = | | K(M)p*h;*
00 p*> O j=1
00 0 p

The representatives {g;}~', and {h; };\21 are constructed from Proposition 4.3.2.

The rest of this section is to prove the previous theorem in the case rg = 1 while simultaneously
providing a set of coset representatives with a lower left block of zeroes. We provide a set of
lemmas which will give us a desirable set of representatives. Ultimately we need only fix those coset
representatives which have a ¢, appearing in them. We fix those by shifting the element ¢, to the

right and absorbing it into the local paramodular group. We have

100 yl[p oo o 1 00 o[t oo o0
01 2 10 p 0 0 —yp 1.0 x| |0 p 0 0
b ! ! Kee(p) = | ! K (p),
001 o0lloo 10 0 0 1 yp| |0 0 p 0
000 1/]]0 001 0 00 1[0 00 1
1 2 0 o]fp o0 o0 1 0 0 0][t o0 0
01 0 o/lo10 o 1 oofllo1o o]
tp K*“(p) = K*(p),
00 1 0/]loo 10 0 zp 1 0[]0 0 p 0O
00 -2 1] |0 0 0 p zp 0 0 1] [0 0 0 p
and
1x00102yp2000
01 0 ollo1 y ollo po N N
t K'°¢(p) = AK(p)
00 1 o0/loo 100 010
00 —z 1/]0 0 0 1/lo 0 0 p
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with
1 0 0 O 1 0 0 0 1 0 0 O
4 0 1 0 0 —yp 1 0 O 0O p 0 O
0 zp 1 0| |—2p> O 1 yp| |0 O p> O
zp 0 0 1 0 0 0 1 00 0 p
We further note that if z € (Z/pZ)* we have
1 0 0 o]t o o0 o 1 0 0 27 'p o 1 0 o]0 o0 —z7lp? 0
0 1 0 off{o 1 0 of |0 1 & 'pt 0 p 0 0 0|0 O 0 —z1
0 zp 1 O 0O 0 p O 0 O 1 0 0O 0 0 p xzp O 0
a2p 0 0 1] ]0 0 0 p 0 0 0 1 0 0 1 o]lo =z 1
and
1 o o o]t o o o 1 0 0 z pt 0 1 0 O 0 0 —z lpt 0
0 1 0o of|o p 0o of fo 1 alp! 0 p2 0 0 O 0 o0 0 —g?!
0 zp 1 0| |0 0 p2 o0 0 0 1 0 0 0 0 p*||lzp O 0 p
zp 0 0 1] [0 0 0 p 0 0 0 1 0 0 1 0 0 =z 1 0

where the last matrix on the right of each formula is an element of Kloc(p). The proofs of the

following lemmas are all straightforward computations.

Lemma 4.3.5. Letn > 1 and M > 1 be integers. Let N be such that

MN
— =1 (mod p).
p
Then
0 1 0 0 -1 0 0 ol ft -1 o0 o 1 0 0 0
p* 0 0 0 0o p" 0 ollo 1 o0 o |MNp™* 1 o0 0
’ c ) Kloc(p).
0 0 0 p° o o0 —p® ofl]lo o 1 o0 0 0 1 —MNp~
0 0 1 0 0 0 0 1] Lo 1 1 0 0 0 1
Lemma 4.3.6. Let n > 1 be an integer. Then
1 0 0o 0]t o o o 1 0 wltz "t oo 1 0 wp "t 0] [w O 0 0
0 1 0 0o[l0 p 0 O 0 1 0 0 0 1 0 of lo 1 0 0
nt1 2 =P tpn . .
wp 0 1 o|fo 0o p* o0 0 0 1 0 0 0 1 ol lo 0 w 0
0 0 0 1J]lo o 0 p 0 0 0 1 0 0 0 1] Lo o 0 1

Lemma 4.3.7. Let p be a prime dividing M > 1. Let x,y € Z/pZ and let N be such that

MN
. =1 (mod p).



Then we have the following equivalence of cosets,

1 0 0 O 1 0 0 O
—yp 1 0 = 0O p 00
0O 0 1 yp| |0 O p O
0 0 0 1 0 0 1
with
1 0 0 0 1 0
—yMN 1 0 T 0
A = Y p
0 01 yMN| |0 O
0 0 0 1 0 0

K'(p) = A1K'°(p).

o
o o O

Lemma 4.3.8. Let p be a prime dividing M > 1. Let x,y € (Z/pZ)* be such that

zy =1 (mod p).

Let N be such that

N
— =1 (mod p).
’ ( )

Then we have the following equivalence of cosets,

1 0 0 Ooff1 O 0 O
0 1 0 010 1 0
0O zp 1 O[]0 O p O
zp O 0 110 0O O p
with
L0 0 yp'| |(MN-pp ' 1
0 1 ! 0 MN
Ay — yp p
0 0 1 0 0 0
0 0 0 1 0 0

K'¢(p) = A.K"¢(p).

0 0
0 0
—p MN

1 (=MN +pp~!
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Lemma 4.3.9. Let p be a prime dividing M > 1. Let x,y,z € Z/pZ and let w € Z/pZ be such that

w = —(z+ 2zy) (mod ).



Then we have the following equivalence of cosets,

1 1 1
1 —yp 1 P
ap 1 —zp? 1 yp p
p 1 1
with
1 1
—yp 1 1
Ag= |7
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Kloc (p) _ A3Kloc (p) .

b

Lemma 4.3.10. Let p be a prime dividing M > 1. Lety € Z/pZ and let N be such that

MN

=1 (mod p).
) ( )

Then we have the following equivalence of cosets,

1 00 0L 0 0 O 1 0

—yp 1.0 0[]0 p O Of . —yMN 1
K'(p) =

0 0 1 yp| |0 p2 0 0 0

0 00 1[]|0 0 0 p 0 0

0 0 p 0
Kloc(p).
yMN| |0 0 p> 0
1 00 0 »p

Lemma 4.3.11. Let p be a prime dividing M > 1. Let x € (Z/pZ)*, y € Z/pZ, and let w €

(Z/pZ)* be such that
zw =1 (mod p),

and let N be such that

MN =1 (mod p).
p

Then we have the following equivalence of cosets,

10 0 0 1 0 0 0|1 0 O
-yp 1 0 O 0 1 0 00 p O
0 0 1 yp 0 ap 1 0|0 0 p?
0 0 0 1 zp 0 0 1] [0 O O

K'°(p) = A4K'°(p)
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where Ay is the matriz

1 0 0 0 1 0 0 wp™t| [(MN —p)p~t 1 0 0
—yMN 1 0 0 0 1 wp™t 0 MNp p> 0 0

0 0 1 yMN||0o 0 1 0 0 0 —p? MNp

0 00 1 00 0 1 0 0 1 (=MN+p)pt

Lemma 4.3.12. Let p be a prime dividing M > 1. Let x,y € Z/pZ, let w € (Z/pZ)*, and let N

be such that
N
—— =1 (mod p).
) ( )
In addition, let s € (Z/pZ)* be such that
ws =1 (mod p),
and let t € Z/pZ be such that

t =xs (mod p).

Then we have the following equivalence of cosets,

1 0 0 O 1 0 0 O 1 0 0 O
— 1 0 O 0 1 0 0f 10 0 O
" " K (p) = 45K (p)
0 0 1 yp| |wp? ap 1 0] |0 p> 0
0 00 1||lap 0 0 1]]0 0 0 p
where
1 0 0 0 1 —tp~' sp=2 0[[p 0 0 O
PO L2 B o ollop oo
5:
o o0 1 yMN||o 0 1 0|lloo p o
o 00 1 |lo o &t 1|looop

Putting all the lemmas together we obtain the following theorem.

Theorem 4.3.13. Let p be a prime dividing M > 1 exactly once, i.e., p||M. Let N be an inverse



of M/p modulo p. We have the following double coset decompositions,

1 0 0 O 1 0 0 O 1 0 —=zp —y
01 0 0 0 1 0 oflo 1 - —z
K(M) KMy = || KM Y
0 0 p O oy 2CZ/pZ 0 0 p ofllo o 1 0
0 0 0 »p 0 0 0 pllo o 1
[1 0o o o]t —2z —zp~' o0
0 o of]o 1 0 0
U Ko P
0,2€2)p7 0 0 p o|lfo o 1 0
lo o o 1] lo o x 1
[p 0o o o] [ 1 0 0 0
0 1 0 0 MN 1 0 z
UL k@ Y
o2 pZ 0 0 1 0 0 0 1 —yMN
lo o o pll O 0 0 1
—p 1 0 0 1 0
MN (—=MN +p)p~?! 0 0 0 1
L TR ( P)p 1
@€ (Z/pZ) X 0 (MN —p)p~t MN| |0 0
0 1 p 0 0
p 0 0 O
0 p 0 O
U K(M)
0 0 1 0
0 0 0 1
1 0 0 0] 1 0 0 o]t 0o —zp ' —y] 1
0 p O 0 p 0 o]0 1 —y o] |o
K(M) , KM)= || K©M) )
0 0 p e wCZ/pZ 0 0 p> o]0 o 1 o] |o
2
0 0 0 p =€z/p7z 0o 0 0 pllo o 0 1] lo
[p> 0 0 o0 1 0 0 0
0 0 0 MN 1 0 0
T %) P Y
veZ/pZ 0 0 1 0 0 0 1 —yMN
Lo 0 0 »p 0 0 0 1
_—pQ 1 —xp71 xp 1 0
MN —MN+pp~t z(MN —p)p~2 —zMN MN 1
L Ll o p ( p)p ( p)p1 y
vezZ/pZ 0 0 (MN —p)p~ MNp 0 0
5 X
©€(2/p2) ) 0 1 p? 0 0
(p 0 o 0] 1 ap~' —2p2 0 1 0 0 0
0 o o |o 1 0 0 MN 1 0 0
ULl k@ P Y
w2 /pZ 0 0 p o0f |0 0 1 0 0 0 1 —yMN
X
=€(2/p2) o 0 0o pllo o —azp ! 1 0 0 o 1

o = O o
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Proof. Starting with the decompositions in Proposition 4.3.2 and taking o = 1 we implement the



previous lemmas to obtain a new set of representatives of the double cosets

» 0 0 0
0 p 00
K"¢(p) K'¢(p)
00 1 0
000 1
and
2 00 0
0 p O
K'"¢(p) K"(p).
0 10
0 00 p

The theorem now follows from Theorem 4.3.4.
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5 Full Modules in Quadratic Fields

In this section we discuss the theory of full modules in quadratic fields and their correspondence

with binary quadratic forms.

5.1 Full Modules

Let 8 # 0,1 be a squarefree integer and let K = Q(v/8g). The discriminant of the field K coincides
with the discriminant of the ring of integers of K which we will denote by ox. This discriminant is

equal to &g if dp =1 (mod 4) and is equal to 49 if 6o = 2,3 (mod 4).

Definition 5.1.1. Let § be an integer. We say § is a fundamental discriminant if § =

1 (mod 4) and § squarefree or § = 40y with 6o = 2,3 (mod 4) and dy squarefree.

Let K = Q(ﬁ) be a quadratic field with fundamental discriminant 6. By a module G in K
we mean a Z-submodule of K of rank 0, 1, or 2. We say a module of K is full if K = QG. Note
that this implies that G has rank 2. For the remainder of this work we will work strictly with full

modules.

Definition 5.1.2. A set of generators {wi,wa} of the module G is called a basis of G if
a1wy + aswe =0, ay,a9 € Z

implies that a1 = as = 0.

Proposition 5.1.3. Let G be a full module in K and let {w1,wa2} be a basis for G. Let {w},wh}
be such that

w w1

=7
wh wo
for some v € GL(2,Z). Then {w},w5} is also a basis for G.

Proof. Consider the equality

w1 w1
=7
wh wo
with v € GL(2,Z) and write
a b
’y =
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Then

Wi = awy + bws

w/2 = cwy + dws
Now assume that
a1wy + agwh = 0.
for some a1,as € Z. Then
a1 (awy + bw) + ag(cwr + dwy) =0
and therefore
(ar1a + asc)wy + (a1b + asd)wy = 0.
Since {w1,ws} is a basis for G we must have

aia + asc =0,

alb + a2d =0.

Solving this system yields a1 = as = 0. As v € GL(2,Z), the elements w] and wj is a set of

generators of G. Thus {w],w}} is a basis for G. O

Any full module in K has a basis {w1,w2}. It is immediate that any element o € G can be

written uniquely in the form
a = ciwi + cows, €1,c0 € Z.
Definition 5.1.4. Let G be a full module in K and let {w1,w2} be a basis of G. If we have

1 w1 wa
Asgmnzdet| [ >0 (5.1)
w1 w2

where w; represents the Galois conjugate of w; then we say that the basis is ordered.
It is clear that if {wy,wa} is basis of a full module G in K which is not ordered then exchanging

w1 and wy creates an ordered basis. Note that Proposition 5.1.3 implies that if two ordered bases

differ by a matrix in GL(2,Z) then they actually differ by a matrix in SL(2,Z).
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Definition 5.1.5. A full module G in K which contains 1 and is a subring of 0 is called an order

of K. The discriminant of an order, denoted by disc(G), is defined to be
disc(G) = disc(ox)ox : GJ2.

Proposition 5.1.6. Let G be an order of K = Q(\/g) where § is a fundamental discriminant. Let
oy C K be the full module with basis {1, fw} where f € N and
L% if =1 (mod 4),

w =

Voo  if =0 (mod 4).
Note that o = 01. Then
(i) G =001
(ii) and the discriminant of G is & f2.
Proof. Since G C o we have for a € G that there exists a,b € Z such that
a=a+bw.

Since 1 € G we have that —a € G and hence bw € G. Let f be the smallest positive integer such
that fw € G. Write

b= fq+r

for ¢, € Nwith 0 <r < f. Then o — a — fqw = rw € G. By the minimality of f we must have
r = 0. Hence f|b and therefore o € o;. Hence G C oy. The other inclusion is obvious and so we

can conclude that G = oy. This proves (i) since f = [0k : G]. We now prove (ii). We have

disc(G) = disc(og)[ox : G]?

=§f2
This completes the proof. O
For f € N, we are going to need an ordered basis for o;. We’ll take
if 6 =1 (mod 4)

1,—f\/g} if 5§ =0 (mod 4)

L S-IVE
’ 2

2

to be our desired ordered basis.
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Definition 5.1.7. Let G be a full module in K. The ring
o ={a e K:aG CG}
is called the ring of coefficients of the module G.

Proposition 5.1.8. For a full module G in K, the ring og is an order of K.

Proof. Let G be a full module in K and let og be the ring of coefficients of G. For § € G we have
Boc C G. As PBog is a group under addition we have that fog is a module in K. It then follows
that og is a module in K. We show that og is a full module. To prove this we need to show that

o¢ is of rank 2. Let v be an arbitrary element of K and let {wy,ws} be a basis of G. Write

Yw1 = 01wy + agwa,

Ywe = biwi + bawa,
where a1, as, b1, by € Q. Multiply each equation by the least common multiple [ of the denominators
of a1, as,b1,and by. Then it follows that Iy € 0. This is true for any element in K. Thus taking

any two linearly independent elements of K we obtain linearly independent elements in 0g. Thus

o¢ must be of rank 2. This completes the proof of the claim. O

Definition 5.1.9. Let G be a full module in K and let oG be the ring of coefficients of G. Let

a b
c d

be the matriz which transforms a basis of og to a basis of G. The norm of G is defined to be

|ad — be| and will be denoted by N(G). For an element oo € G, we define the norm of o to be aa.

Definition 5.1.10. Let G be a full module in K with ring of coefficients 0. Then the discrimi-

nant of G is given as the discriminant of o¢g.

The following proposition allows us to express the norm of a full module in K in terms of the

basis of G.

Proposition 5.1.11. Let G be a full module in K with ring of coefficients oy and ordered basis
{wi,ws}. Let a,b,c,d € Q be such that

a b 1 w1

c d w wo
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where w s given as in Proposition 5.1.6. Then
N(G)f = bc— ad,

Proof. Write wy = a + bw and wy = ¢+ dw. The transition matrix from of to G is

a b/f
c dff
Then, by definition,
a b _ _
N(G) = | det /f _ lad — be| _ bc — ad
c dff f f
since be — ad > 0 by equation (5.1). This completes the proof. O

As a result of the previous proposition we now have a test to determine if two elements of G

actually form a basis of G.

Corollary 5.1.12. Let wy,ws € G satisfy (5.1). Then {w1,wa} forms an ordered basis for G if and

only if

L et | 4“2 1
———de =1.
FVON(G) o W

Proof. Assume that {w;,ws} forms an ordered basis of G and write w; = a + bw and ws = ¢+ dw.

Thus, by proposition 6.3.3,

¥det wiowe *;det a+bw c+dw
fVON(G) o W _(bc—ad)\/g T et dw
1 7 —
— m((G—Fbw)(c—kdw) — (a+ bw)(c + dw))
1 ga—
= m((ad —be)(w — w))
=1,

since @ — w = —217¢/5y = —V/§ where § = ¢ (mod 4). Now assume that

1 w1 w2
—————det =1.
fVEN(G) TR
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Fix an ordered basis {(1, (2} of G and expand w; and ws in terms of this basis,

a b G w1
c d G2 wo
Thus
[ aly +b c(1+d ]
L 1 det G +0G (i Ca

fVON(G) aly + bl o1 +dls

zédet i % det “ e
fVON(@) o G b d
a b
= det
c d

Where the last equality follows from the necessity of the condition proved above. Thus we have

€ SL(2,Z).
c d

It now follows that {wy,ws} is an ordered basis for G by Proposition 5.1.3. O

We note here that if we drop the ordered basis condition in the previous corollary then a

necessary and sufficient condition for {w;,ws} to be a basis of the full module G is

1 w1 Wz
—————det = +1.
SVON(G) o oy

We will often identify a full module with a basis. We will write (G, &) when we would like to

emphasize the choice of basis of the module where

Definition 5.1.13. Let G and G’ be full modules in K. We say that G and G’ are similar if there
exists n € K \ {0} such that G' = nG.

From the corollary above, if two full modules G and G’ are similar and £ is a basis of G, then
n€ is a basis of G’ where G’ = nG. Note that if the basis £ is ordered we do not necessarily have
that the basis n€ is ordered. However, if the quadratic field K is imaginary then the ordering is
preserved. The following proposition indicates that the rings of coefficients of similar modules are

related.
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Proposition 5.1.14. Let G and G’ be similar full modules in K. Then og = ogr. In particular,

similar full modules have the same discriminant.
Proof. Since G and G’ are similar, there exists n € K such that G’ = nG. Thus we have that
ogr ={a € K:aG CG'}

={a e K:anG CnG}

={a€e K:aG CG}

=0g.
This completes the proof. O
Definition 5.1.15. Let v € K. The minimal polynomial for ~y is the irreducible polynomial
o(z)=rz2+tz+s, rt,scZ r>0
such that o(y) = 0.
Calculating the ring of coefficients for a given full module in K is rather simple.
Proposition 5.1.16. Let (G, €) be a full module in K with ordered basis

e=|"

w2

and let
o(z)=rz*+tz+s, r>0

be the minimal polynomial of v = wa/wy. Then {1,rv} is a basis for og and

_ IN@l

N(G)

Proof. Consider instead the full module Gy with basis {1,~7}. Let a = x + yvy with x,y € Q. Note

that the condition aGy C Gy is equivalent to the conditions o € Gy and ay € Go. We have

—ty— s sy ty
O‘V(z+y7)7x7+yrr+($r)7.

t
Thus o« and ay belong to Go and hence o¢, if and only if z,y, —y, and 2 are all integers. Since
r r

the greatest common divisor of r,t, and s is 1, this occurs if and only if x and y are integers and y
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is divisible by r. Thus {1,7v} spans og,. It follows that {1,7v} is a basis for og,. Now the first

claim now follows from Proposition 5.1.14. By the definition for the norm of a full module we have

1 0 1
N(Go) = |det = -,
0 1/r "
Thus,
N
N(G) _ N(leO) — | (:}1)|

We present an example to illustrate the last proposition.
Example 5.1.17. Consider the full module

3+3vV-23
5+ 3v—23

in K = Q(v/—23). We can compute the norm of G' by considering the similar module

1 1
Go, | 37— y=a3| | = | G0
36 g

The minimal polynomial for v is ¢(t) = 54t> — 111t + 58. By Proposition 5.1.16,

1

This implies that N(G) = N(3 4+ 3v/—23)N(Gy) = 4. Note that this in turn implies that
0g = 03.

This is due to the fact that § = —23 implies w = (1 4 /§)/2 and

34+3vV—-23=0+ 6w

5+ 3vV—-23 =2+ 6bw.

Hence we have
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We would now like to define the product of two full modules in K. Given two full modules G

and G’, the product GG’ is defined to be the full module

GG = {Zgng; i gn € G and g, EG’}.

n=1

It is clear from the definition of the ring of coefficients that Gog = G for any full module G in K.

Proposition 5.1.18. Let G and G’ be full modules in K such that og = og. Then the ring of
coefficients, oggr, for the product GG’ coincides with the ring of coefficients of G and G'. Moreover,

we have N(GG') = N(G)N(G@).

Proof. We prove that og = ogg/. Let a € og. Then oG C G. Hence it follows that «GG’' C GG'.
Thus o¢ C 0ggs. To complete the proof of the proposition we will need the following lemma.
Lemma 5.1.19. Let G be a full module of K and let G denote the radical conjugate module of G.

Then GG = N(G)og.

Proof. We may assume that G has a basis of the form

and let ay? + by + ¢ = 0 with a, b, and c relatively prime integers. Then

GG = spang{1,7,7,77}

b c
= Spangz 1a’7a_ _Eaa

1
= —spang{a,b,c,ay}
a
1
= —spanz{l,avy}
a

= N(G)og,
where the last equality follows from Proposition 5.1.16. O

We now continue with the proof of Proposition 5.1.18. Let o € ogg,. Then GG’ C GG'.
Multiplying on the right by G’ we have aN(G')G C N(G')G which implies that o € 0/ = 0g.
We now prove the last part of the proposition. We have GG = N(G)og, G'G' = N(G")ogr, and
GG'GG" = N(GG")ogg:. Since 0g = 0 = 0ger we immediately obtain N(GG') = N(G)N(G").

O
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In general, it can be rather difficult to calculate the product of two full modules. However,
the product of two full modules of a certain form can be easy to calculate. Before we look at this

however, we will look at a small lemma.

Lemma 5.1.20. Let (G,§) be a full module in K with ring of coefficients oy. Then there exists a
unique o € K \ {0} such that for (aG,a€) is of the form

r
!/
G, t— V6
2

t2 _ 2
with r,t € Z and ged (r,t, 4;”) =1.

Proof. We note first that by Proposition 5.1.14 we have that G and aG have the same ring of

coefficients for any choice of a € K. We first prove the existence of such an a. Let

e= |

w2

We first choose o = % With this choice we have

and

This implies that

wi@i _ o fe= fV3 _c=bfV3
NG) 2 2

where 6 =€ (mod 4) with e=0or 1 and ¢ = 2a + bfe. As

,
c—bfve
2

is a basis for the full module (w7/N(G))G we must have that

. c—bfVs

*1=
IVEERN(G)

det

2
c+bfveo
2



62

by the comment following Corollary 5.1.12 from which it follows that

1 bN(wl)
+1= rhfVe = ——1
VRN G) [N (w1)]
Hence b = +1. If b = —1 then we just try a = —% to obtain a full module of the desired form.
One should note that the element
wy  t— Vo
w 2r

is a root of the polynomial ¢(z) = rz? — tz + s where

12— §5f?

5= 4r

Since |r| is the leading coefficient of the minimal polynomial for wy/wy it follows that the coefficients
of ¢ must be relatively prime.
We now prove uniqueness. Let oo and o’ be two elements of K \ {0} that satisfy the claim of

the lemma. Then it follows that there exists a nonzero rational number ¢ such that
ga =o',
It follows that

= d'wy = qawy = ¢

' — fV6 t— Vo
2 2

Hence

and thus a = /. The proof is complete. O

Proposition 5.1.21. Let p(z) =122 +tz+s and @' (2) = r'2? +t'2+ s’ be irreducible polynomials
in Z[z] such that

t2 —drs = ()2 —4r's' = 6 f?
where § is a fundamental discriminant and f € N. Assume that
ged(r,t,s) = ged(r’,t',s") = 1.

Consider the full modules

!

r r
/
G, t— Vo and | G, = o
2 2
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in K = Q(v/0d). Assume that

t+t
ged <r, r’, 7; > =m

Then a basis of the product GG’ is

7o
Mty — fVo
2
where
. !
07 m2

and tg € Z with 0 < tg < 2rg. Moreover, tg is unique modulo 2rg.

Proof. The proof is fairly straightforward. First note that since G and G’ have the same ring of
coefficients oy we have by Proposition 5.1.18 that GG’ has the ring of coefficients of. It is clear

that the generators of GG’ are

!
rr,

r(t' — fV/5)
2 b
r'(t — fV5)
2 b
(t' +62))2 — (t+ ') f/5)2
5 .

Thus every element o € G is of the form

(= 1Vo) | = IVD) ((tt' +0f7)/2— (t+ t’)f\/5/2>

a—arr’—kbr +c
N 2 2 2

which, after rearranging, becomes

/ / / / 2 / !
., 2arr +brt +cr2t+d(tt +6f%)/2 brter +2d(t+t)/2f\/g.

Since the greatest common divisor of 7,7/, and (t 4 t')/2 is equal to m, the coefficient on fv/§ is of

the form

mn

2

for some n € Z. Let H = GG’ and take any basis

w1

w2
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of H. We have that

NG

2 2
Y2 mna
=2 2fVs
w2 9 9 ff

Again, since the greatest common divisor of 7,7/, and (¢ + t')/2 is equal to m, it follows that n4

and ny must be relatively prime. By Lemma 5.1.20 there exists a unique o € K \ {0} such that
oy =r"€eZ

and

_ = fVe

(67095
2

with ¢ € Z. In particular, we have that « is one of the elements in the set

i xn |

As the two cases are similar, we assume that

This implies that

1 (y1 N anIf\/S) (%2 3 mnzf\/g) _ b (yy m2ningd f2 . (mn1y2 fmn2y1) f\/5>

N(H) \ 2 2 N(H) \ 4 4 4
B t// _ \/g
N 2
and hence
mnayi — Mmniyz2 -1
2N(H) ’
Upon multiplying € by the matrix
no —
€ SL(2,Z)
ki ko
we obtain as a basis for H
_ N(H) -
no —MNn1 w1 . T
ki ko | |ws | Ry + k22122) —mfvo
i rr’ T

m
(k1y1 + koy2) — mfVs
L 2 |




By Lemma 5.1.20 we know that k1y; + koys is divisible by m and thus we know that

rr’

m2
(ki1 + kaya)/m — fV§

2
is a basis for H. We now set
rr’
=
and obtain a basis
To
E=m (k1y1 + kayo)/m — fV0
2

We now multiply on the left by a matrix of the form

€ SL(2,2)
/1
with ¢ € Z to obtain a basis of the form
70
E=m to — fVo
2

with 0 < tg < 2rg. The uniqueness of ¢y follows from the construction.
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O

Note that by Lemma 5.1.20 and Proposition 5.1.21 we can define the product of two full modules

in more generality.

Definition 5.1.22. Let (G1,&1) and (Ga,&2) be two full modules with the same ring of coefficients

o7. Let i, 0 € K\ {0} be the quantities coming from Lemma 5.1.20 corresponding to (G1,&1)

and (G2, &2) respectively. We define the product of these two full modules to be

(G1,&1) - (G2,&2) = (G1G2,€3)

where

&3 = (a1a) "'

and &y is the basis of the module a;asG1Go obtained from Proposition 5.1.21.
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Example 5.1.23. Consider the full modules

3+3v-23 , | —33+3v-23
and | G,
5+3v—-23 14++v-23

Note that 0og = 0» = 03. Then it follows that
1+/=23)(—=11 + v/—23) 972
324 1845 — 9/—23

o [3H3VEBY [ |
"|5+3v=23 |14V 5
e |02 30v=23| |
—100 — 28,/—23

So we conclude that the product of the above full modules is

eled (

o | 102 30v23
12100 — 28./=73

It follows that the collection of full modules in K which have ring of coefficients oy forms an
abelian group under multiplication of modules with identity element oy and inverses determined by
Lemma 5.1.19.

The quotient of the group of modules by the subgroup of full modules similar to o is called the

ring class group of modules and will be denoted by H(oy).

Lemma 5.1.24. The elements of H(oy) consist of similarity classes of full modules with ring of

coefficients 0.

Proof. Let B denote the subgroup of full modules that are similar to oy. Let G and G’ be full
modules in K with ring of coefficients oy and suppose GB = G'B. Then nGoy = G’ for some
n € K\ {0}. Hence nG = G’ and thus G and G’ are similar. O

Evidently, the group H(oy) is finite. This is a non-trivial result and one can see [36] for a proof

of this claim.

Definition 5.1.25. Let oy be a fized order in K. We say that a full module a in K
1. is an ideal of the order oy if 0, C 0f.
2. is reqular if 0, = 0y.

3. is integral if a C oy.
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4. 1is principal if a = oy for some v € K.
Two regular, integral ideals a,b of the order o¢ are said to be relatively prime if
a+b= Or.

Fix a regular, integral ideal o of 0, and consider the following group, a particular subset of the

collection of fractional ideals of o,
Aog,0) = {u = % :a,b are regular, integral ideals of the order oy and are relatively prime to o} .

The quotient of the group A(os,0) by the subgroup of principal ideals of the form ¢ = ~oy,
where v € K and v = a3/ay with aj,as = 1 (mod o), is called the ray class group of modules
modulo o in the order oy (cf. [16], [26], and [36]). We denote this quotient by H(of,0). The group
H(oy,0), like H(oy), is finite for any regular, integral ideal o of the order os. In fact, we have a

bigger connection between these two groups.
Proposition 5.1.26. Let oy be an order of K. Then
H(og,05) = H(oy).
Proof. This follows immediately from the definition of the ray class group modulo o with o = 0y. [

For M > 1 we will denote A(oy, Moy) by Aoy, M). Before we think about this group any

further we move into the connection between full modules and binary quadratic forms.

5.2 Full Modules and Binary Quadratic Forms

In this section we will discuss the connection between full modules and binary quadratic forms.
From this point on we will assume that K = Q(v/4) is an imaginary quadratic field of fundamental

discriminant 6. We will start with presenting some basic definitions about binary quadratic forms.

Definition 5.2.1. A binary quadratic form S(z,y) is a homogeneous polynomial of degree 2 in two

variables x and y.
Definition 5.2.2. Consider a binary quadratic form
S(x,y) = ra? + try + sy

(i) We say S is integral if the coefficients r,s,t are elements of Z.
(i) We say S is primitive if S is integral and ged(r, s, t) = 1.
(i1i) We say S is positive definite if S(x,y) > 0 for all (z,y) # (0,0).



68

Let (G, §) be a full module in K with ordered basis §. Suppose further that o = oy for some
f € N. Write

e= "

w2

We then build a binary quadratic form corresponding to this full module

(wiz + way) @iz + Way)

Proposition 5.2.3. Given a full module (G, &) with ordered basis & and f € N such that og = oy,

the binary quadratic form S(g ¢ is integral, primitive, and positive definite with discriminant 6 f2.

Proof. The integrality of S(g,¢) follows from Lemma 5.1.19. We now show that S ¢) is primitive.
Let p(2) = rz?+tz+s with 7 > 0 be the minimal polynomial for v = —ws/w;. Then ged(r, s,t) = 1

and

Letting z = z/y we have

plafy) =r (z N Z) (Z . Z)

T __ __
= m(wﬂ + way) (@i + w2y)

1 . _
= W(wlx + woy) (Wi + Way)
1
= ?S(G,E) (z,y),

where the third equality uses Proposition 5.1.16. Hence

Sic.e)(@,y) = yPp(x/y) = ra® + tzy + sy.

Thus S(g,¢)(z,y) is primitive. We then deduce that Sig ¢)(2,y) is positive definite since the basis

€ is ordered. Lastly, we show that the discriminant of S(g ¢)(z,y) is ¢ f2. The discriminant of

S(a.e)(w,y) is given by

t? —drs = W((m@ + Wiws)? — 4w Wiwow3)
1 2
" N e e

=df?,

by Corollary 5.1.12. This completes the proof. O
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Conversely, given an integral, primitive, positive definite binary quadratic form
S(z,y) = ra® + txy + sy?

with discriminant § f2 with f € N we associate the full module (G, &g,) where

EGS: t—f\/g
2

Proposition 5.2.4. Let S(z,y) = ra? +tzy + sy? be an integral, primitive, positive definite binary
quadratic form with discriminant §f? with f € N. Then the full module (Gs, &) has discriminant

5f? and the basis £G4 satisfies equation (5.1), i.e., the basis € is ordered.

Proof. First note that og, = 0 and hence the discriminant of Gg is equal to § 2. Furthermore,

we have r > 0 since S(x,y) is positive definite and hence

t—fVo
1det ' 2 = 17“]“\/5 >0
i t+ Vo '
2
This completes the proof. O

One can now check that for an integral, primitive, positive definite binary quadratic form S(x,y)

with discriminant 6 f2 with f € N we have

S(Gs.kas) =5
and for a full module (G, &) with ordered basis

w1

w2

satisfying equation (5.1) we have

(G602 €500.0)) = (N“(”G)G N“(“G)e) .

In the next section we will use this to establish a one-to-one correspondence between classes of full

modules and classes of binary quadratic forms modulo congruence subgroups of SL(2,Z).

5.3 Correspondence between Full Modules and Binary Quadratic Forms

Again let K = Q(v/9) be an imaginary quadratic field of fundamental discriminant 6. Let T' be a
congruence subgroup of SL(2,Z) of level M > 1. We will say that two full modules (Gy,&1) and
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(G2,&2) in K are equivalent modulo T if
G1 = UGQ and tU€1 = 7752

for some nn € K\ {0} and U € I'. We will say that two binary quadratic forms S1(z,y) and S2(z,y)

are equivalent modulo I if
S1(ax + by, cx + dy) = Sa(z,y)

for some

a b
U= erl.
c d

We can always associate a binary quadratic form S(x,y) = r2? + tzy + sy? to a symmetric matrix

r  t/2
g /

t/2 s

Thus the equivalence between binary quadratic forms Si(z,y) and Sa(x,y) is equivalent to the

existence of a U € I" such that
tUslU = SQ.
It is clear that equivalent forms have the same discriminant.

Proposition 5.3.1. Let (G1,&1) and (G2, &2) be equivalent full modules in K modulo T" with &, and
& satisfying inequality (5.1). Then S, ¢,)(x,y) and S, ¢,)(2,y) are equivalent binary quadratic

forms modulo T'.

Proof. Assume that (G1,&1) and (Ga,&2) are equivalent full modules in K modulo I with &; and
&, satisfying equation (5.1). Then there exists n € K \ {0} and U € T such that

G1 = T]G2 and tUé'l = ’I7£Q.
For simplicity of notation we’ll write Sy(x,y) = S(g, ¢&,)(z,y) and Sa(z,y) = S, ¢,) (2, y). Write

a b w1 Ql
U= ) £l = ) 52 =
¢ d wo Q

and note that

aw1 + cwy = Ny,

bwi + dwy = 7792.
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‘We then have

Sa(0.) = 777 (e + Qo) (T + o)

G (ot )+ (o) o) (G 52) o+ (G5 )
= Wt —wr | T | W+ —wa | Y Wt W T+ | W+ W2 )Y
N(G1) \\n n n n n 7 n n

(wi(az +by) + wa(cx + dy))(@i(az + by) + Wa(cx + dy))

=

1
~ N(GY)

= S1(az + by, cx + dy).
Thus S (z,y) and So(x,y) are equivalent. O

Proposition 5.3.2. Let Si(z,y) and Sa(z,y) be binary quadratic forms. Assume that S1 and S
are integral, primitive, and positive definite of discriminant &% with f € N. Further assume that
Sy and Sy are equivalent modulo I'. Then (Gg,,&s,) and (Gs,,&s,) are equivalent full modules

modulo T'.

Proof. Write S1(x,y) = ria? + tiwy + s1y? and Sa(x,y) = rox? + taxy + s2y?. Since Sy (x,y) and

Sa(x,y) are equivalent modulo T there exists

such that S;(az + by, cx + dy) = Sa(z,y). Thus we have that

ro = r1a2 + tiac + 5162,
to = 2riab + t1(ad + be) + 2s1¢d,

So = ’/’1b2 + t1bd + 81d2.

Let

_ 2ria+tic— cf\/g
= 2ria2 + 2tiac + 2s1¢2”

Then n € K \ {0} and one can show

r r

1 2
v t1— fV6 =7 to— fV3 |-

2 2
using the fact that ad —bc = 1 and t — 4r1s1 = §f2. Thus (Gs,,&s,) and (Gs,,&s,) are equivalent

full modules modulo T'. O
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Definition 5.3.3. Let I' be a congruence subgroup of SL(2,2Z). Let .#(5f?%) denote the set of full
modules (G, &) in K with discriminant 6f2. Also define M1 (5f?) to be the set of of pairs [(G,€)]
where [(G,€)] = [(G',&)] if and only if the full modules (G, &) and (G',&') are equivalent modulo
T.

The previous two propositions prove the following important fact.

Theorem 5.3.4. Let
A(1,6f%) = {S € A1) : S is primitive and has discriminant 5 f* < 0}.
Then
T\ A(1,6f%) = Ar(5f?)
where T'\ A(1,6f?) denotes the set of equivalence classes of A(1,5f?) modulo T.

Recall that we defined multiplication of full modules. We would like to utilize this multiplication

in conjunction with the set .#Z(5f?). We show that this multiplication is well-defined.

Proposition 5.3.5. Let I' = SL(2,Z). The multiplication given by

[(G1,€1)] - [(G2,&2)] = [(G1,&1) - (G2,&2)]
is a well-defined binary operation on M r(5f2).

Proof. Consider the full modules (G1,&1), (G1,&1), (Ga2,&2), and (G4, €5) and assume that

[(G1,€1)] = [(G',&1)] and [(G2,&2)] = [(G3, &5)]

We now consider now the full modules GGy and G} G} with basis determined by Definition 5.1.22.
We'll label these bases € and £’. It is clear that these two full modules are similar, i.e., there exists
n € K\ {0} such that G1Gy = nG|G4. Therefore, multiplying the full module (G}G5,€&’) by n
takes us to the full module (G1G2,n€’). Now &€ and n€’ are bases of the same full module G1G5
and thus differ by a matrix in SL(2,2Z). This proves the claim. O

The previous proposition implies that we have a group structure on ]SL(Q,Z) (6f?) and hence
a group structure on SL(2,Z)\ A(1,5f%). We call SL(2,Z)\ A(1,f?) the class group and we refer
to the group operation on SL(2,Z) \ A(1,5f?) as composition. We will denote the operation of

composition by o. The composition of two forms can be obtained using Proposition 5.1.21.
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Lemma 5.3.6. Let I' = SL(2,Z). The map i: H(oy) — M (5f*) given by
i(1G) = (G, 8]
where & is any ordered basis of G is a well-defined bijection such that
iG] &) =i((&) - i([G")
Proof. This is clear from the previous proposition. O

Let M > 1 be an integer. We define A(M,5f?) to be the set of primitive, integral, positive

definite binary quadratic forms of discriminant &f2
S(z,y) = ra® + tey + sy?

such that r is divisible by M.

We remark here that the set T'g(M) acts on A(M,5f?). We also define ./ (M, 5f?) to be the
subset of .# (5f%) that consists of full modules (G, &) that satisfy S € A(M, 5f?). We define
o (M,5f?) accordingly, i.e.,

Lo(M)\ o/ (M,6f%) = o/ (M,5f?).
This leads us to the following specialization of Theorem 5.3.4.
Theorem 5.3.7. Let M > 1 be an integer. Then

Lo(M)\ A(M,5f%) = o/ (M,5f?).

An important feature to note here is that there is not a group structure on < (M, §f?). Hence

there is not a group structure on I'g(M) \ A(M,d5f?). For a discussion of this feature, see [10].

5.4 Action on %FO(M)(CS]‘Q)

We return now to our discussion about the group A(os, M) where for the entirety of this section
M > 1 and f > 1 are integers. Recall that A(oy, M) is the collection of fractional ideals consisting
of quotients of regular, integral ideals of 0 which are prime to Moy. It is thus also convenient here

to also consider the set

Aing(0p, M) = {a: a is a regular, integral ideal of the order oy and is relatively prime to Moy}.
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Our ultimate goal in this section is to prove that the group H (o, M), the ray class group of modules
modulo Moy, acts on </ (M, §f?) as a group of automorphisms. Before we get there however, we

need to establish a couple preliminary results that will be especially useful.

Lemma 5.4.1. Let u € A(of, M) an let a,b € Ay(op, M) be such that w = ab~'. Then there
exists xqp € U such that N(b)zq s =1 (mod Moy).

Proof. By definition of A(os, M) we have that a + Moy = oy and b+ Moy = oy. It follows that
b+ Moy = os. Recall now that b=! = N(b)~'b from which we compute that

oy = (a+ Moy)(b+ Moy)
= (a+ Mos)(N(b)b™" + Moy)
= N(b)ab~' + Ma+ MN(b)b~" + M3y
= N(b)u+ M(a+ Moy) + MN(b)b™!
= N(b)u+ Moy + MN(b)b™"
= N(b)u+ M(N(b)b™" +oy)
= N(b)u+ M(b+oy)
— N(b)u+ Moy.

It immediately follows that there exists € u and y € Moy such that N(b)z + My = 1. The claim

is proved. O

Lemma 5.4.2. Let G be a full module in K with ring of coefficients o¢ and let a, 3 € G. There

exists an ordered basis

w2

of G such that wy = a (mod MG) and wy = B (mod MG) if and only if

1 a B
———det | =1 (mod M).
VEN(G) a B
Proof. First note that for a, 3 € G, it follows from the relations af —aB = —(afB — af) and

afB —ap € N(G)oy that af —apB € fVON(G)Z. Hence

éde‘c @ f e”Z
fVEN(G) a B '
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We now proceed with the proof of the statement. Assume that G has an ordered basis
w1
5 =
wo
such that w1 = a (mod MG) and ws = B (mod MG). Then by Corollary 5.1.12, for some o, 3’ €
G,

1 {a B] 1 {w1+Ma’ W2+MB’}

—— det ¢
fVON(G) ¢ @ B fVON(G) ¢ Wi+ Mo wz+ MAB

(w1 + Ma') @5+ MF) — @ + M) (ws + M)

fVIN(G)
= W(W1@7HWQ +MW1F+ Muwza' +M2QIF* Mwilﬁl — Mwaa’ — MQ?&)
:é det vz + Mdet @i B — Mdet “2 Ci + Mdet M(i [i
FVEN(G) @ @ i A @ o Mo B
=1 (mod M).
Now assume that
«
¥det f =1 (mod M)
fVON(G) a B

Fix an ordered basis

go="
B

of G and expand « and /3 in terms of this basis,
b q| || |«
rs| [Bo B

a f 1 -pao +qBo rag+ s
IVON(G) | pas + By oo+ 5Bo

Thus

zédet o o det b
fVON(G) @ Bo q s
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Hence

U= b (mod M).
r s
Now let
—1
w p q «
=u
wa r s 153

It then follows that we have that w; = a (mod MG) and ws = S (mod MG). This completes the

proof. O

One should note that if two distinct bases are found using Lemma 5.4.2 then they necessarily

differ by a matrix in I'o(M). Let a,b € Z with ged(b, M) = 1. Let

(3)
b
denote the least non-negative residue of ab* (mod M) where 0 < b* < M and bb* =1 (mod M).

We observe here that this definition is independent of how the fraction is written. For u = ab™! €

—_~—
e~

A(oy, M) we interpret N(u) as the integer (%Ezg) We will first define a map ¢ from & (M, f?) x

Aing(0f, M) % Aine(0y, M) to o/ (M,5f?). Let (G, &) € o/ (M,5f?) with

w1
w2

let a,b € Ay (of, M), and let u = ab~'. We set

¢((Ga E)a a, b) = [(Gu7 £a,b)]
where &, is any ordered basis of Gu such that

N(w) N(b)wizq
Eap = ) (P)nap (mod MGu)
1| | N(b)wazqp

where 45 € u is such that N(b)zqs =1 (mod Moy). Notice that

m<mwmw<b>%uw = N{@ieaN(0)%zef?) = 1 (mod M)

and thus the existence of such a basis follows from the Lemma 5.4.2. The well-definedness of the

map ¢ also follows based on the remark immediately following the proof of Lemma 5.4.2.



Proposition 5.4.3. Let (G,&) € o/(M,5f?), let a,b € Ain(op, M), and let u = ab~ .

[(Gu, &ap)] is an element of o/ (M,5f?) for any choice of €q.p-
Proof. Let

w1

wo
be an ordered basis of G. By the definition, we can write any &, as

¢ mN(b)wlxu,h + Mz
a,b —
N(b)wazqp + Mzy

for some 21, 29 € Gu. All we need to check is that

1 — —

N(Gu)

Expanding we get

1 —2 —

N(Gu)

Since

1
N(G)

1
N(u)

|wi|? € MZ,
it follows that the above is an element of MZ.

The previous proposition establishes that we have a map

¢ (M,5f%) x Aing (05, M) X Aing (05, M) — o/ (M, 5f?).

There is one important property of this map that we will need to address.

(Nu)N(b)wizap + Mz1)(N(u)N(b)wrZq, + Mz1) € MZ.

(N(u) N(0)?|wi]?|zap* + MN(u)N(b)(wi17q,671 + @1Ta021) + M?|21]?).

|Zap]? € Z, and GuGu = N(Gu)o;

7

Then

Proposition 5.4.4. Let (G, &) € o/ (M,5f?) and letu € Aoy, M). Suppose a,b,¢,0 € Aine(0f, M)

are such that u = ab™! = @~ 1. Then
¢((G» 5)7 a, b) = ¢((Gv 5)7 C, D)
Proof. Let (G,&) € o/ (M, f?) with

w1

w2
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and let u € A(og, M). Let x4 and z, be such that
N(b)zqp =1 (mod Moy) and N@@)z.o =1 (mod Moy).

Hence N(b)zqp = N(d)zp (mod Moy) and thus N(b)z,p — N@)zco € un Moy C Mu. Now

construct £, p and & such that

N(u N(b)wizg
€ap = ) (Benzae (mod MGu)
i 1_ _N(b)ngmb
and
_ﬂ ] _N Vwiz
£co = ) (Ontes (mod MGu)

1 _N(D)ngc)a

It follows that €45 = &co (mod MGu). Since &, and & are ordered bases of Gu there exists a
matrix U € SL(2,Z) such that &qp = U&: 5. We write

o _o/_ a
oo = and & = and U =
B _B’_ c d
‘We then have
o o
=1
B s
a cl| |o
b d| |5
aa’ + cf’
ba! + dp’

Thus we have that & = o/ + Mz = aa’ + ¢f’ where z € Gu. Since &, , is an ordered basis of Gu we

can write
s=da + C/ﬂ/

where o', ¢’ € Z. Hence o' + o’ Mo’ + M’ = aa’ + ¢f’. It follows that ¢ must be divisible by M.
Hence U € T'g(M). It follows that

[(Gu, &a0)] = [(Gu, &c0)]-
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The previous proposition allows us to unambiguously construct a pairing ¢; : @7 (M, §f?) x
Ao, M) — o/ (M,5f?) given by

o1 ((Gv £>7 u) = [(Gu, Su)]

where (G, €) € o/ (M, f?) with

ue A(og, M) with u=ab™? for a,b € Ajn (0, M), and &, is any ordered basis of Gu such that

e

N(u)
1

N(b)wlxu,b

&u

(mod MGu) (5.2)
N(b)wgfba}b

where 45 € u is such that N(b)zqs =1 (mod Moy).

Proposition 5.4.5. Let (G,¢),(G',¢') € o/ (M,5f?) with [(G,€)] = [(G',&")] (this is To(M)-
equivalence) and let uw € Aoy, M). Then

[(Gu,&)] = [(G'u, &)

Proof. Let (G,¢),(G",¢") € o/ (M,5f?) with

wo wh

and such that [(G, €)] = [(G’,€')]. Letu € A(os, M) and write u = ab™! for some a,b € Ay (05, M).
Let n € K\ {0} and U € T'o(M) be such that G’ = nG and 'UE’' = n&. Write

a b
U=
c d
Let
o o
&u= and &, =
H L’]
Then
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where 21, zo € Gu. Hence,

! N(u) N(b)nwizq,e N Mnz
’[7 =
8 i 1] [N (b)nwaza,e Mnz,
m N(b)(aw] + cwh)xqp N Mnz

i 1] [ N(b)(bw] + dw))zap Mnzo

N(u) a c| |N(b)wizqe N Mnz
11 |6 d| | N(b)whzae Mnzo

It then follows that

« [ a ]v\_u/c JTf\_u/ N(b)w)z
" = ) ) (b)erzae (mod MG'v)
B _N(u)—lb d 1| | N(b)whzqp
I 7"_ _Jv\_u/ N(b)w)z
_ P ) (bunas (mod MG'u)
¢ s| | 1| | N(b)whzap
-p 7"_ _a'_
= (mod MG'u)
la 5] ]
where
I T_ a N(u)e
P = (u) (modM)
q s Nw)~1b d

is a lift to SL(2,Z). Since c is divisible by M we can thus conclude that r is divisible by M and

hence

Now we notice that

1 e 1 a
na np dot | nB

t,
WaN@w | 33| VNG | 7
_ 1 2
= FamEN " |

=1

where the last line uses Corollary 5.1.12. Invoking Corollary 5.1.12 one more time we conclude that
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n€, is an ordered basis for G'u. Hence there exists V' € SL(2,Z) such that

/

e Q@
v ® =
B B
We need to show that V' € T'o(M). We know
a DT !
7 = (mod MG'u)
B qa s| |F
which implies that
_a/ p r !/
v = (mod MG'u)
Iz q s| |#
Let
w x
V =
y oz
Then
wa’ +yp' =pa’ + 1" (mod MG'u)
= pa’ (mod MG'u).
It is immediate that y is divisible by M and hence V' € I'g(M). The proposition is proved. O

The previous proposition implies that we have a well-defined pairing
b2+ 7 (M, 3f2) x A(og, M) — (M, 3f2).

This pairing then induces a pairing ® : &/ (M,df?) x H(op, M) — (M, 5f?). Notice that for
(G, 8)] € o/ (M,5f?) with

for u € Aoy, M), and for regular, integral ideals of the form oy where v = a1/a2 with a1,a2 =

1 (mod Moy) we have that

[(G’quv éfyofu)] = [('YGua E’yu)}
= [(vGu,v&)]
= [(Gu, éu)]
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as
N(~yu N(azb)wiZq,a.a,
€'Yu = (7 ) ( ? ) ' 20 (mOd M"YGu)
1 N(agb)u&l'al a,azb
o a
NN ) N(a2) N (B)wr s
_ o2 (mod M~Gu)
1] | N(a2)N(b)ws—map
az
N (u) N(b)wz
=~ (u) (O)orzae (mod M~Gu)
1| | N(b)wazq,p

=&, (mod M~yGu).
This easily establishes the well-definedness of ®.
Proposition 5.4.6. Let [(G,€)] € o/ (M,5f?) and let [u],[v] € H(os, M). Then
([(G, &) [os]) = (G, 8)]
and
O([(G,8)], [uvo]) = ©(2([(G, &)]; [u)), [0]).

Proof. 1t is easy to see that the first equality is true. We will prove the second equality. Let
a,b,¢,0 € Ajn(0, M) be such that u=ab~! and v = @~ 1. Let [(G,&)] € &/ (M, 5f?) with

ot

(2([(G €)]; [w), [v]) = @([(Gu, &u)], [0])
= [(Guo, (&u)v)]-

Then

Let



By definition, we have

(Eu)o =

Thus

1

N®)az.

(mod M Guv)
_N(D)B%,a
“| N(@)2co (mod MGuv)
B
_m N(b)wlxmb

N@®)z.» (mod MGuv)

1| | N(b)wazqp

_N bO)wi g p

(b0)wrap20 (mod MGuv)
_N(bb)wgma,bxcﬁa
_N bo)wix

(b0)raceo (mod MGuv)
_N(bb)wgmacyba

&y (mod MGuv).

(2([(G, 8], [u]), [v]) = @([(G, £)], [uv])

and the proof is complete.
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O

The previous theorem shows that ® defines a right action of H(os, M) on o/ (M,d5f?). This is

an extremely valuable feature that we will exploit in results to come.

We will now extend the previous construction slightly. Let fy be a divisor of f such that

ged(fo, M) = 1. Then for [(G,€)] € & (M, f?) with

e= |

w2

and u=ab~" € A(og/s,, M) we define ¢y, ([(G,€)],u) = [(Gu, &,)] where &, is any basis of Gu such

that

gu:

—~—

fo 'N(u)

N(b)wizqg
(O)erza (mod MGu)
1| | N(b)wazqap

where, again, 245 € u is such that N(b)za, =1 (mod Moy, ). Notice, again, that

1
(f/fo)VSN(Gu)

(fole(u)wlngkL'a}bP — fole(u)chwﬂxa’bF) =1 (mod M)
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Hence [(Gu, &,)] € o/ (M, 5(f/fo)?). Slight modifications to the previous propositions allow one to

show that ¢}, isa well-defined map, thus inducing a well-defined pairing
P, (M, 5f%) x H(og/5,, M) = (M, 6(f/ fo)?)-
Proposition 5.4.6 also generalizes here and the proof is essentially identical.

Proposition 5.4.7. Let [(G,&)] € &/ (M, 5f?), let fo be a divisor of f such that ged(fo, M), and let
f1 be a divisor of f/fo such that ged(f1, M) = 1. For [u] € H(os/5,, M) and [o] € H(0¢/(s,4,), M)

we have

(I)fl ((I’fo([(Gag)]v [u])’ [UD = (I)fofl([(G7€)]’ [ub]).

Proof. The argument is similar to that appearing in the proof of Proposition 5.4.6. O
Putting everything together we obtain the following theorem.

Theorem 5.4.8. Let fo be a divisor of f such that ged(fo, M) = 1. The map ®, : o/ (M,5f?) x
H(os/sy, M) — o (M,5(f/f0)?) establishes a well-defined pairing between the group Hogs/sy, M)
and the set o/ (M, 0 f?). Moreover, for fized [u] € H(oys,, M) the map

Oy, (- [u]) : (M, 5f%) — o/ (M, 6(f/ fo)?)

is a surjection. Finally, all of the pairings are compatible in the sense that the diagram

E(M,(sz) X H(Uf/fO,M) X H(Of/fl,M) —_— E(M,(S(f/fl)Q) X H(Uf/fo,M)

| l

A (M,5(f/f0)*) x H(oyyp,, M) ———————— (M, 5(f/(fof1))?)-

commutes for divisors fo of f and f1 of f/fo such that and ged(fofi, M) = 1. In particular, the

group H(op, M) acts on o/ (M,5f?%) as a group of automorphisms.

Proof. The first and third parts of the theorem have already been proved. We prove that for fixed
[u] € H(og,g,, M) the map @y, (-, [u]) is a surjection. First we will prove the claim with [u] = [0/, ].
Note that the map [v] — [0}/, 0] is a surjective map from H(oy, M) to H(oy,y,, M) (see [13]). Let
[(G",€)] € o/ (M,5(f/fo)?) and write
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It is clear that

wy

PESvr
¢ = [ 0 (fowl)] (mod MG").

Consider the full module [(G, £)] with

wy

. [fowi

Then [(G, €)] € &/ (M,5f?) by Proposition 5.1.12 as N(G) = N(G’) and

1
————det

FVON(G)

fow]  ws 1
! 2 det

- o |
foal | GIRVANG) o |

Thus

D5, ([(G, )]s [og/10)) = [(Gogyg05 €y 5, )]
=[(G", &)
proving the surjectivity of ®,(-,[04/f,]). To prove the general statement we let [ug] € H(oy, M)
such that [u™*] = [0/, uo]. Then for some v = a1 /a; € K with a1,a2 =1 (mod Moy, 4, ) we have
0f/fuo =~u"'. Hence
@, ([(Guo, &uo )]s [u]) = [(Guott; (§up)u)]

= [(Gof/fouom (Ello)of/fou)]

= [(G’Yu_luy (é}/u71)u)]

= [(’)/Gof/f(H ,ygﬂf/fo )}

=[(vG"1€)]

= [(G/7 51)]
proving the surjectivity of @y, (-, [u]) and completing the proof. O

Corollary 5.4.9. The group H(os, M) acts on the set To(M)\ A(M,5f?) as a group of automor-

phisms.

5.5 Some Useful Operators

Here we will introduce some operators that will become very involved in our analysis later of the

Fourier coefficients of Siegel paramodular forms. Let M > 1 be an integer and let B(M) denote the
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vector space of complex-valued functions defined on the set A(M) which are constant on equivalence

classes modulo T'g(M). For

Mr t/2
S = € A(M)
t/2 s

we let e(S) = ged(Mr,t,s). We consider also the subset
P(M)={S € AM):S>0and e(S)"'S € A(M)}.
It is simple to check that P(M) is invariant under the action of T'o(M). Let

a b
g= € M(2,2)
cM d

be such that ged(det(g), M) = 1. Let

N
Lo(M)glo(M) = |_| gil'o(M),
i=1

and define for p € B(M)

(T(To(M)gLo(M))p)(S)
The following proposition is immediately apparent.

Proposition 5.5.1. The operator T(To(M)gTo(M)) does not depend on the choice of the repre-
sentatives in the double coset decomposition for To(M)gTo(M). Furthermore, the operator maps

B(M) to itself.
Definition 5.5.2. Let m € N with gcd(m, M) =1 and let p € B(M). We define the diagonal

down operator A~ (m) : B(M) — B(M) by

m~18) if m~1S € A(M),
ISRICES =
0 if m™1S ¢ A(M).
We define the diagonal up operator At (m) : B(M) — B(M) by
(AT (m)p)(S) = p(mS).

Lastly, we define the diagonal operator A(m) : B(M) — B(M) by

10
(A(m)p)(S) = | T | To(M) . Lo(M) | (A7 (m)p) | (5)-
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We note that for a prime p not dividing M and for 8 > 0, the set of matrices

8 1 0
R(p”)
0 p°
form a complete set of representatives of the right cosets contained in the double coset

1 0
Lo(M) Lo (M).
0 pf

It then follows that for p € B(M),

@)= S @ e (| | vsy

UER(p?) 0 p? 0 pf

Let B/(M) denote the space of complex-valued functions defined on

Nx | (M)

6<0,feN
4 fund. disc.

satisfying the condition

p'(m, (G1,€1)) = p'(m, (G2,&2))

if [(G1,&1)] = [(G2,&2)] and Gy and G5 are contained in the same field K. In light of the correspon-
dence between equivalence classes of positive-definite, primitive, integral binary quadratic forms of
discriminant § f2 modulo I'g(M) and equivalence classes of full modules with ring of coefficients o
modulo I'g (M), we can interpret functions in B'(M) as being obtained from functions in B(M). We

associate to p € B(M) the function p’ € B'(M) given by
p'(mo, (G, €)) = p(moS(a.e))- (5.3)
It follows from Propositions 5.3.1 and 5.3.2 that this association is well-defined.
Proposition 5.5.3. Consider the map B(M) — B'(M) given by p — p’ if
p'(mo, (G, €)) = p(moS(c.¢))
for all mg € N and (G, &) € o/ (M,5f?). Then 6 defines a surjection from B(M) to B'(M).

Proof. Let p’ € B'(M). We want to construct p € B(M) such that p’ is the image of p under the
map from B(M) — B'(M). For mg € N and (G, &) € o/ (M, f?) we have

mos(G,g) S P(M)
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Furthermore, for S € P(M),
S =e(S)S', S € A(M,5f?),

we have (Gg/,€s/) € o/ (M,5f?). By Lemma 5.1.20 every full module in &/ (M, § f?) can be obtained
in this way. We thus define p : A(M) — C by

p'(e(S),(Gs,Es)) if Se P(M),

0 if S¢ P(M).

p(S) =

It is clear that p € B(M) and it follows the p maps to p'. O

We can now define how the diagonal down, diagonal up, and diagonal operators act on functions
in B'(M). We start with m, mg € N with ged(m, M) = 1 and (G, &) € &/ (M,5f?). The diagonal
up and diagonal down operators are defined for p’ € B'(M) as

"(mo/m, (G,€)) if m|mo,
(A~ (m)p)(mo. (G, = | e/ () mima

0 if m { my,

and

(AT (m)p")(mo, (G, €)) = p(mom, (G, €)).

We define for

N a b
To(M)gTo(M) = | | g:To(M), g = € M(2,2)
i=1 cM d
with ged(det(g), M) =1 and p’ € B'(M),

N
(T(FO (M)gFO (M))pl)(mo, (G’ 5)) = Z pl(moe(tgiS(G,ﬁ)gi)’ (GS'L ) €Si ))

i=1
where S; is the positive-definite, primitive, integral binary quadratic form

1 t
— %Sc.eg
c(lg:S@em) T
A computation shows that the above form is an element of A(M).
The next theorem establishes that the definitions of the above operators on p' € B'(M) are

compatible with the surjection from B(M) to B'(M).
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Theorem 5.5.4. Let M > 1 be an integer. Let m,mo € N with gcd(m, M) =1. Let

9= [a b] € M(2,2)
cM d

with ged(det(g), M) = 1. Let S = e(S)S’ € P(M) and let (G,€) € o/ (M,5f?%) be the full module

associated to S'. Then we have the following equalities for p € B(M):

where

with ged(det(g), M) = 1.
Proof. We prove the first formula. We have for mo € N and (G, &) € o7 (M, 5 f?)
(A7 (m)p) (mo, (G, §)) = (A™(m)p)(moS(c.e))

mo/m S(G 5)) if ’I’TL|’ITL()7

if m {mo,
p'(mo/m, (G,€)) if m|mo,
if m tmy,
= (A7 (m)p")(mo, (G, §)).
The second formula is proved similarly. We now prove the third formula. Let
Lo(M)gLo(M |_| gil'o(M
We have for mg € N and (G, &) € o (M,f?)

(T(Co(M)gTo(M))p) (mo, (G,€)) = (T(To(M)glo(M))p)(moS(c.e))

I
.MZ

s
Il
-

p(mo'giS(c.¢)9:)

I
] =

p/ (moe(tgi S(G@)gi ) y (G& ) £Si ))
1

= (T(To(M)gLo(M))p")(mo, (G, §)).

.
Il
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This completes the proof of the theorem. O
We can then define the diagonal operator on elements p’ € B'(M). We have for m € N with

ged(m, M) =1, mg € N, and (G, §) € & (M, 5f?)

(A(m)p")(mo, (G, €)) = | T | To(M) ' Lo(M) | (A7 (m)p") | (mo, (G.§)).

0 m
, o 1 o], 10
(A®*)p)(mo, (G, €)) = Z (A~ (")p') [ moe USa,eU (Gswy,Esw))
0 pﬁ 0 pB

UEeR(pP)

In particular, for a prime p not dividing M and for 8 > 0,

where S(U) is the positive-definite, primitive, integral binary quadratic form
1 L of, 10
USa,e)U

1 0 1 0 0 p° 0 pf
(&
0 pB 0 pﬂ

Theorem 5.5.5. Let M > 1 be an integer. Let (G,€) € o/ (M,§f?) with

USq,eU

and let p be a prime not dividing M f. Then for all 8 > 1, for all mg € N with ged(mo,p) = 1, and
for all p € B'(M) we have

(1) if poy = pp where p and p are the two distinct prime ideals of oy of norm p, then
(A(PB)P/)(moy (G7£)) = pl(m07 (Gp67 Spﬁ)) + p/(m07 (Gﬁﬁv Sﬁﬁ)%
(ii) if poy = p? where p is the unique prime ideal of oy of norm p, then

pl(mOa (Gpaép)) if B = 17

0 if B> 1,

(AP (mo, (G.€)) =

(iii) if pog = p is a prime ideal of oy, then

(A@7)p")(mo, (G,€)) =0,

where &y is given by equation 5.2.
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Proof. Let (G,¢&) € o/ (M,§f?%). Without loss of generality, we may assume that £ is of the form

Mr
t—fVo
2
Let
Mr t/2
S=5ce =
t/2 s
For U € Ty(M) we set
" M’I“U tU/Z
USU = = Sy.
tv/2 sy

Before we prove the three statements we show that, for fixed 3, there is a bijection between the

sets
Ti(p?) ={U € Rp®) : ry =0 (mod p?)}
and
To(p®) = {u € A(op, M) :u C of and N(u) = p”}.

Since regular, integral ideals of 0y with norm prime to f can be factored uniquely into a product of
prime ideals of oy, T (p?) consists of elements of the form piﬁj , 1+ j = B, where p and p are prime
ideals in o of norm p (it is possible p = p). Let’s assume that T3 (p”) is non-empty. Let U € Ty (p”)
and consider the full module u(U) with basis

pﬁ

ty — fVo |-
2

We show that the norm of u(U) is N(u(U)) = p” and, more importantly, that u(U) € To(p®). The

element

ty — fV0
2pP

is a root of the polynomial
p(2) = 2% —tyz + Mp~Prysy.

We then split into two cases, p|é and p{ . Assume that ptd. Then ptty, and it follows that the

coefficients of ¢ are relatively prime. Hence, by Proposition 5.1.16, we have that N(u(U)) = p°.
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It follows that u(U) is an element of Ty(p”). Now assume that p|d. Then p|ty. We prove that
p{ Mp~=Prysy. Suppose p = 2. Then § = 46y with dp = 2,3 (mod 4). Let t;y = 2t};. Then

6f2 = 450f2 = 4((t/(])2 — M’I"USU)
and hence
Mrysy = (tj;)? — dof? = (t};)? — 5 (mod 4).

Since (t;)?2 = 0,1 (mod 4) and Jy = 2,3 (mod 4) it follows that Mry sy is not divisible by 4. This
implies that 8 = 1 and M2 'rysy is odd. It then follows that the coefficients of ¢ are relatively
prime and the norm of w(U) is N(uw(U)) = 2, implying that u(U) is an element of T2(2). Now

suppose p # 2. We have the congruence
§f? =4Mrysy (mod p?).

Since 6 is not divisible by p?, we conclude that M sy is not divisible by p?. This implies that 3 = 1
and Mp~lrysy is not divisible by p. Hence, by Proposition 5.1.16, the norm of u(U) is N (uw(U)) = p
and thus u € Ty(p). From what we have shown above, there is a map u : 71 (p?) — Ta(p?).

We show that this map is an injection. Given U,V € T} (p?) with u(U) = u(V), we have

_tu—ty

ru =Ty == =0 (mod p?).

We prove that U = V. Since USU = Sy and WSV = Sy we have

Sy ="VSV
=V(U'SyU )V

=UV)Sy(UV).

Write
Ulv =

Then
Mry = Mrya® + tyac+ syc® = tyac + syc =0 (mod pﬁ).

Moreover, we have that

tU — tv o tU — 2MrUab — QSUCd — QtUbC — tU

3 3 = —Mryab — sycd — tybe = syed + tybe = 0 (mod pﬁ).




93

Manipulating the above system of congruences we can show that
cty =0 (mod p”) and esy =0 (mod pP).

Hence c is divisible by p®. It follows that U~V € I'o(Mp”) and thus U = V.
We now compute the image of u : 71 (p?) — To(p?). Assume that U and V are distinct elements
of Ty (p”). We show that

w(lU) +u(V) =oy.

ty —t
oed (UQv,p> _1

Assume that the greatest common divisor is p. We then have that the bases

It suffices to prove that

p p
ty — fVo and ty — fV§
2 2
define the same module v. Since %, = §f? (mod 4p”) and t? = Jf? (mod 4p”) we have that

(545 (555) v

Assume that p divides the first factor on the left in the above congruence. It follows that p|ty. If

B > 1, then this would imply p|f which is false. So 8 = 1. But this is a contradiction since, in this
case, we would have u(U) = u(V) with U £ V.

We then conclude that p?|[(ty — ty)/2]. But then w(U) = w(V) with U # V. This is also a
contradiction and thus the greatest common divisor of (tyy — ¢y)/2 and p is 1. Our claim then
follows.

We now proceed with the proof of the theorem. We start by proving (i). In this case u(Ty(p?)) =
{pﬁ,ﬁﬁ}. Suppose that U,V € T;(p®) correspond to p? and Eﬁ respectively. Then, upon applying

A(p®) to p, we obtain

5 ) Mryp=" , Mryp=?
(A(p )p )(moa (Gaﬁ)) =p | Mo, GS(U)7 ty — f\/g +p mo, GS(V)7 ty — f\/g

2 2
where u(U) = p? and u(V) = p°. We note that by what we have shown ryp~? and ryp=? are not

divisible p. It is now simple to check that
Mryp~? 5
Gswy, ty — f\/5 = [(Gp afﬁﬁ)]
2
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and

Mryp=#
GS(V)a ty — f\/g = [(Gpﬁagpﬁ)]

2
thereby proving (7).

Case (7i) is dealt with similarly. In this case however u(T}(p)) = {p} and Ty (p?) = 0 for 8 > 1.
In case (i4i) we have T;(p®) = () for all 3 > 1. The claim is proved. O

Theorem 5.5.6. Let M > 1 be an integer. Let (G,&) € o/ (M, f?) with

e= "

wa
and let p be a prime not dividing M and dividing f. Then for all mg € N with ged(mg,p) = 1 and
for all p € B'(M) we have

(A(p)p")(mo, (G, €)) = p'(mop, (Gog/p, &y ,)

and

(A(p)* = A@?) = 1)p')(mo, (G, £)) = 0.

Proof. As in the proof of the previous theorem we start with (G, &) € </ (M, f?) with & of the

form
Mr
t— Vo
2
and let
Mr t/2
S=5ce =
t/2 s

Since p|f the congruence
2> =§f% (mod 4p)

has a solution. According to a theorem in [7] (see Theorem 7, pg. 145), there exists U € R(p)
such that 7y = 0 (mod p). In fact, such a U is unique. We prove this claim. Let V' € R(p) such
that v = 0 (mod p). We will prove U = V. Since p|f we have that p|ty and hence p { syy. With
USU = Sy and VSV = Sy we have

Sy =" U~ V)Sy(UV).
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We write
U~'v =

We then have the congruence
Mry = Mrya® + tyac + syc® = tyac+ spc® = sy =0 (mod p).

Thus p|c and hence U = V.

1

We now prove that p|Mp~trysy. Suppose p = 2. Then the congruence § = 0,1 (mod 4) implies

that
§f2 =13 —4Mrysy = 0,4 (mod 16).

Thus (ty/2)>— Mrysy = 0,1 (mod 4). Since Mry sy is even, it follows that Mrysy =0 (mod 4).

Hence M2~ rysy =0 (mod 2). Now suppose that p # 2. We have the congruence

§f* = —4Mrysy (mod p?)

and it follows fairly readily that p|Mp~lrysy.

We now consider the element
ty — fV6
2p '

This number is a root of the polynomial
p(z) = 2° = (tu/p)z + Mp~*rysy
and thus the full module generated by the basis

p
ty — fV§
2

has ring of coefficients oy ,, by Proposition 5.1.16. Write

111 0 1 0 ,
- SU :pS(U)
Plo p 0 p

where S(U)’ is a primitive and integral binary quadratic form. Then

Mryp~?
(A(p)p/)(m(h (G7£)) - P/ mop, GS(U)’? ty — f\/g

2p
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It is then simple to check that

M?"Up’2

Gswy, ty — fV6o = [(Go.f/P7£°f/p)]'
2p
We now prove the second formula. We consider S(U)" as computed above and use the explicit

representation of R(p”) as given in Lemma 4.2.6. First we assume that U is of the form

1 0
Mu 1

for some u € Z/pZ. We then have that

Mry = Mr + Mtu+ M?su® =0 (mod p).
As we also have

Mry = Mr + Mtu+ M?su? =0 (mod p?)

we further have that p|(t — 2Msu). By Hensel’s Lemma, we obtain p solutions modulo p? to the

congruence
Mr + Mty + M?*sv*> =0 (mod p?)

where v = v+ Ip for I = 0,1,...,p — 1. A direct computation now yields the desired result. A

similar argument is made in the case where U is of the form

p —a
M b
where a1 M + byp = 1. This completes the proof. O

5.6 The Structure of I'o(M)\ A(M,df?)

In this section we break down some of the structures of I'o(M) \ A(M,5f?). To this end, we look
briefly at the case M = 1 in which case we are considering the class group SL(2,Z) \ A(1,4df?).
Note that we will use the matrix representation of binary quadratic forms in our discussion here.

The following definition is from [11].

Definition 5.6.1. The identity element of the class group SL(2,Z)\ A(1, 6 f?) is called the principal

form.
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If §f2 = —4D with D > 0 then the principal form is

y 1 0
ID,O =
0 D

and if 6 f2 = —4D + 1 with D > 0 then the principal form is

1 1/2
ID,l =
1/2 D

Fix M > 1 an integer. We have a decomposition

SL(2,Z) = |_| gil'o(M)

where

It then follows that each class in SL(2,Z) \ A(1,6f?) partitions into m orbits when considered

modulo T'g(M). In particular, we are interested in those orbits that are contained in A(M,Jf?).

Proposition 5.6.2. Let S € A(1,6f?) and fix a decomposition
SL(2,Z) = |_| g:To(M).
i=1

Suppose that there exists g € SL(2,Z) such that 'gSg € A(M,5f?). Then there eists i with
1 <i < m such that 'g;Sg; € A(M,5f?).

Proof. Suppose g € SL(2,Z) is such that ‘gSg € A(M,§f?). For some i with 1 < i < m we have
g € gil'o(M).
Hence g = g;g0 for some gg € T'o(M). It follows that
(‘90 1)'90"9i59i90(90) = '9iSgi € A(M,5?).
This completes the proof. O

We now ask the question as to when we can ensure there exists a matrix g in SL(2, Z) such that
t9Sg € A(M,5f?) for some fixed S € A(1,5f2). In general, it is not always the case. However, for
certain discriminants, we can indeed identify when every class in SL(2,Z) \ A(1,46f?) does contain

an element in A(M,§f?). The following proposition addresses two such discriminants.
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Proposition 5.6.3. Let M > 1 be a fized positive integer and let f € N be such that 6 f* = —4M
or 0f? = —AM + 1. Then for every S € A(1,86f?), there exists S € A(M,§f?) such that S’ = gSg
for some g € SL(2,2).

Proof. We only prove the claim when 6 f2 = —4M as the other case is similar. Consider the matrix
M 0 9
Ino = € A(M,6f?).
0 1

If S is equivalent modulo SL(2,Z) to Ipro then we are done. Assume that this is not the case.

Write

t/2 s

We may assume that ged(r, M) = 1 (see Lemma 2.25, [11]). Now consider the matrix I}, ,. The
binary quadratic forms Iy and I}, are clearly equivalent modulo SL(2,Z). As Iy, is the

principal form we have

(ST 0) = [S]:
Since [I}; o] = [In,0], it follows that the product of the class of S and the class of I/ is equal to

the class of S. A direct computation of [S][Ips,0] establishes that [S] contains an element S’ with

S" € A(M,§f?%). This completes the proof. O

It is possible to by more general here and not restrict to such a narrow set of discriminants. Fix

an integer M > 1. We say a congruence
ra?® 4 try + sy> = 0 (mod M)

with r,¢,z € Z and ged(r,t,s) = 1 is solvable when there exists a pair (z,y) which satisfies the
congruence with z and y relatively prime. We say that two pairs (x1,y1), and (22, y2) are equivalent

solutions if there exists a € (Z/MZ)* such that
ary =y (mod M) and ay; =y (mod M).

Proposition 5.6.4. Let M > 1 be a positive integer and write

l
M= Hpik
k=1
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Let S(z,y) = ra® + twy + sy? be a positive definite, integral, primitive binary quadratic form of

discriminant § f? with the congruence
rz® +twy + sy> = 0 (mod pj*)
solvable for each k with 1 < k < 1. Then there exists g € SL(2,Z) such that 'gSg € A(M,5f?).
Proof. By the Chinese remainder theorem, a solution to the system of congruences
ra? 4+ tey 4+ sy> =0 (mod p§*), 1 <k <,
lifts to a solution of
ra® 4 txy + sy?> =0 (mod M).

Let (a,c¢) be such a solution. We can then construct a matrix

a b
g= € SL(2,2).
c d

A simple computation shows that 'gSg € A(M, 5 f?). O

Let M > 1 be an integer, and fix a decomposition
SL(2,Z) = | | g:To(M).
i=1

Let S € A(1,5f?) and define the set Jg = {i € {1,...,m} : '9;Sg; € A(M,5f?)}. The last result of

this section concerns the size of this set.

Theorem 5.6.5. Let M > 1 be an integer, let S, S’ € A(1,5f?), and fix a decomposition
m
SL(2,Z) = |_| giTo(M).
i=1
Then ‘JS| = |JS/|,

Proof. If M = 1 then the claim is obvious so we suppose M > 1. If S and S’ are equivalent modulo
SL(2,Z) then the claim follows trivially. We then suppose that S and S’ define distinct classes
modulo SL(2,Z). Write

rot/2 v )2

S = and S =
t/2 s t'/2 ¢
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with ged(r, M) = ged(r’, M) = 1. We have that |Js| is the number of pairs (z,y) € P1(Z/MZ)
that satisfy

ra® +toy + sy> =0 (mod M).
Furthermore, we have that |Js/| is the number of pairs (z,y) € P1(Z/MZ) that satisfy
ra? +t'zy + 5’y =0 (mod M).
If Js = 0, then for some prime p dividing M we have
ra? 4 txy + sy* = 0 (mod p")

is not solvable (here n is the power of p which divides M). Thus 22 = §f? (mod 4p™) has no
solution and hence
rx? +try + s’y =0 (mod p")

is not solvable. Thus Jg- = 0. This proves that Jg # 0 if and only if Jg/ # 0.
Assume that Jg # 0. We show that |Js| = |Js/|. Let [T] € SL(2,2Z) \ A(1,8f2) be such that

Pick a prime p which does not divide M and is represented by the binary quadratic form 7T'. Then
[poy] is an element of both H(of,1) and H (o, M). By Corollary 5.4.9, it follows that |Jg| = |Jg|.

This completes the proof. O
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6 Properties of Fourier Coefficients of Siegel Paramodular

Forms

In this chapter we will bring all the previous content together to establish relations on Fourier
coefficients for Siegel modular forms for the paramodular group. We will see that in some contexts

these relations are purely multiplicative and in other contexts these relations are simply arithmetic.

6.1 Action of Hecke Operators on Fourier Coefficients, p{ M

Throughout this section we assume that p is a prime not dividing M > 1. We start by computing
the action of the Hecke operators T'(p") on a Siegel paramodular form of level M. The contructions
appearing in chapter 4 allows us to do this without too much difficulty.
Let F' : Ho — C be a Siegel paramodular form of fixed level M > 1 with weight £ > 0 and
suppose that F' has a Fourier expansion given by
F(Z)= Y a(S)e 52,
SEA(M)

For an integer ro > 0, let A,, = {(a,8,7) € Z% : o, 8,7 > 0,a+ B+ = r9}. We use equation

(4.1) in conjunction with Proposition 4.2.5 and we obtain

(TE)EFNZ) =p™ " 3" Fag

geV(pTo)
=t ( > a(S)PTOk(det(D))ke%m(s<Az+B)Dl>>
[.g g}GV(pTO) SeA(M)
:pm(2k73) Z Z a(S)(det(D))—ke27ritr(SAZD*1)e2ﬂitr(SBD*1)

SeAD[4 Blevero)

=pP T Y Yo a(S)(det(D)) AT (g)

S€A(M) (a,8,7)€Arg DED,, 5'R(p?)
A=protp—1

where
Ip(S) = Z 627m'tr(SBD_1)
Bmod D
‘BD='DRB
This sum for fixed D is called a Gauss sum and can be analyzed separately. The following

lemma addresses this sum.



Lemma 6.1.1. Let

In(S) = Z 627ritr(SBD_1)

Bmod D
‘BD='DB

where D € GL(2,Q) N M(2,2), S € A(M), and B mod D s defined as in 4.2.3.

(i) For any V € SL(2,Z),
lpv (S) = Ip(S).
(ii) For a, 3 € N such that D = D, g'U with U € R(p”),

p3tB ifr =t =0 (mod p*), s =0 (mod p**+7F),
Ip(S) =

0 otherwise.

Proof. For V' € SL(2,Z) we have

. -1
lDV(S) _ 2 esztr(SB(DV) )
Bmod DV
‘BDV='"V'DB
_ Z e2m‘tr(SBV*1D*1)
BV ~'modD

BV -YHD=D(BV™!)

_ Z e2mitr(SB'D™Y)

B’ mod D
t,B/D:tDB/

= 1p(5).
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This completes the proof of (i). Next we prove (ii). By (i) we need only prove the claim in the

case D = D, g. We need to construct a complete set of representatives modulo D, g. We have as

a complete set of representatives modulo D,

by p°bs
by b3

:0 < by,by <p®, 0<bg<p*t?

Write
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‘We then have

lDOéVB (S) — Z 627ritr(SBD;lﬁ)
BmodDg, s
—1
Mr t/2||by pPbol|p® 0
2mitr

Z t/2 s ||by b3 || O potB
= e
0<b1,b2<p®
O§b3<p”+B

blM’I“ @ b38 >

27 + +
+8
- Y . (p"‘ pe o p

0<by,b2<p®
0<bg<p™t?
pe—1 p*—1 PPl
— Z eZﬂiber/po‘ Z eQﬂibgt/po‘ Z eQﬂ'ib;;s/po‘Jrﬁ.
b1=0 ba=0 b3=0
Therefore
p3tB if r=¢t =0 (mod p%), s =0 (mod p**+7),
lD(S) = lDa,/s(S) =
0 otherwise.
This completes the proof of (i7). O

Define for arbitrary n € Z the map d,,, : Z" — {0,1} by

0 if m{x; for some i
dm(xlax% cee 7'Tn) -
1 if m|z; for all ¢

Going back to our computation we then have

. ( ty—1 -1
(TEO)F))Z2)= > as) > 3 pPE=DHICR=3) g o (1 4)d oy 5 (s)e 2T EOSDTZDTY)
SeA(M) (,8,7)€Arg DED,, tR(pP)
= Z a(S) Z dpa(r,t)dpaw(s)pf’("*2>+7<2’“*3) Z G2mitr(pTo DS 2)
SeA(M) (@,8,7)€Arg DeD,, g'R(p?)
= YT Y alS)e(r)dpass(s)p? BT 2T (9)2)

SEA(M) (a,8,7)EAry UER(pF)
where f((f‘ﬁ”)(S) = pD7'S(*D!) and D = D, 3U. Suppose S € A(M) such that r =t =

0 (mod p®) and s = 0 (mod p®*#) and write

r=p, t=p*, and s =p* TPy
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Then we have

f[(]oéﬁﬁ)(s) _ me—ls(tD—l)
T —1n—1 —1 -1
=p 0.y LLLBSIDaﬁ[]

Mr'p? )2

=t p U~te A(M).

v s

It is clear that fL(,a’ﬂ ) is an injective map. For notational simplicity, we denote for S € A(M) and

U € R(p®)

Mr tr/2
wey = | Mo W/ — 5.

tU/2 Sy
It now follows that
CEENE) = Y alp™: )7,
SeA(M)
where
a@i8) = Do D2 dyren (o) (b, sp)p ETI B a((f77)(S)).
(a,8,7)€EAry UER(P?)

We also can make note here that

1 0 1 0
ST dypin (ru)dpy (bus s0)al(F5P)THS)) = YD dysiy (ro)dpr (o su)a (100“57 {0 B} Su { ])

UeR(ph) UeR(ph) P

= (AT E)AE) AT (B™)a)(S)

and thus
a(p;S) = Y IR AT () (AR (AT (p™)a)))(S)-
(()‘7577)6/\7‘0
We further note here that if S is primitive and mo € N with ged(mg,p) = 1, then
a(psmeS) = Y pEPPART) (AT (pY)a))(moS).
(e,B,0)€Arg
Theorem 6.1.2. Let 6 < 0 be a fundamental discriminant. Let
F(Z)= > a(8)e*™"57 € My(K(M))
SEA(M)
fork>0. Let S € A(M,5f?%) and let (G, &) € o/ (M,5f?) be associated to S. Let p be a prime not
dividing M f .
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(i) If poy = pp in Q(V/3) then for mg € N with ged(mg,p) = 1
a(p";moS) = a(p*moS) + Y p* P a(p" PmoS(apa g, 0) + ap™  moSigpe e )
B=1
(i) If poy = p? in Q(V/3) then for mg € N with ged(mg,p) = 1

a(p";moS) = a(p™®moS) + p* 2a(p™ ' moS(ayp.e,))-
(111) If poy =p in Q(+/9) then for my € N with ged(mg,p) = 1
a(p™,moS) = a(p™moS).
Proof. The Fourier coefficients of a Siegel paramodular form can be viewed as the outputs of a

function in B(M), i.e., a € B(M). We then consider o’ € B'(M) (see equation 5.3). We first prove
(7). We have

ad(p0imo, (G,€) = Y pFTPNAR) AT (p)d))(mo, (G, £))

(e,8,0)€Arg

=d' (p"mo, (G,€) + > _ p* VP [d (0 mo, (Gp”,€,0)) + a' (0 mo, (GF’, &50))]
B=1

where we have used Theorem 5.5.5. The result now follows upon lifting a’ back to a. The proof of

(#4) and (4i7) are similar. O

Definition 6.1.3. Let F': Hy — C be a Siegel paramodular form. If for each prime p not dividing

M there exists constants {j(p")}oc_y such that
T(p™)F = pp")F
then we say that F is a Siegel paramodular eigenform.
From this point onward, eigenforms will be the key objects we will focus on.

Definition 6.1.4. Let M > 1 be an integer and let F' : Ho — C be a Siegel paramodular eigenform.
Let p be a prime number that does not divide M. We define the Euler factor at p to be the

polynomaial
Qp,r(t) = 1= p(p)t + (u(p)? — p(p®) = p** 1)t — p(p)p™ 1% + p*™*= 011,

One can compare the above Euler factor to that appearing in [18]. The authors there use the
Hecke operator T} (p?) instead of T'(p?). Another interesting feature to note is that the eigenvalues
w(p) and u(p?) appearing in the definition are, in general, not integral (see [17]). The following
theorem is a result due to Shimura [37]. For a proof of the claim, which requires quite a bit of

theory which we do not cover here, see [4].
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Theorem 6.1.5. Let M > 1 be an integer and let F : Ho — C be a Siegel paramodular eigen-
form. Let p be a prime number that does not divide M and let {u(p™)}ro_o be the corresponding

eigenvalues at p. Then

oo

> upr)te = (1 - p* M) Qpr(t) !

T0 =0

Theorem 6.1.6. Let M > 1 be an integer and let
F(Z)= > a(9)e*™" 5% € My(K(M))
SeA(M)
of weight k > 0. Let p be a prime number that does not divide M. Then for any S € A(M) such
that ged(p, e(S)) = 1 we have
(Z a(p”)S)tr") Qp.r(t) = a(S) — P (A(p)a)(S)t + (P** (A" (p)a) () + p*" TP (A(P) (AT (p)a))(5))t?

ro=0

where

Proof. We provide additional details to the proof found in [2]. Write

(Z a(pTOS)tr()) Qp, Z ent”.

T0:1

We will compute expressions for ¢,, n > 0. Let {,u(pro)}ﬁgzo be the eigenvalues of F' at p. Using

the definition of @), r(t) we have on the left side after expanding,

oo 0
Z a(pros)tm _ Z ( T()S tm—i—l + Z 705 _ M(pQ) _p2k—4)tro+2
ro=0 r0=0 r0=0
_ Z T‘()S 2k Str0+3 + Z roS 4k—6tr0+4
rTo= =0 o= =0

We now identify the ¢, for n > 0. We have

a(s) if n =0,
a(pS) — p(p)a(S) if n=1,
a(p®S) — p(p)a(pS) + (u(p)® — u(@®) — p**~Ha(s) if n=2,

Cn =

a(P®S) — u(P)a®®S) + (u(p)® — u(®*) — p** " Ha(pS) — uP)p**~3a(S) if n =3,
a(p™S) — p(p)a(p™ ™ S) + (u(p)® — u(@*) — p**~Ha(p"359)

—u(P)p**2a(p"738) + p**Ca(p"1S) if n > 4.

We also have for [ > 0,

p(plap's) = Y p*TIAFEEEIAT () (AR (AT (pY)a))) (p'S)

(a,8,7)€M

= (A*(p)a)(p'S) + P* 2 (A(p)a) (p'S) + p** (A~ (p)a) (' S)
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a(s) if n=0,
—p"2(A(p)a)(S) ifn =1,
e =4 P TH(AP)? = AP?) = 1)a)(S) + p* T (A(p) (A (p)a))(S) if n =2,
PP AT (p)(A(p)? — A@?) — (p+1))a)(5) if n=3,

PPHAT (M) (A ) - Ap?) — (p+1))a)(S) if n > 4.

We now prove a lemma.

Lemma 6.1.7. Let M > 1 be an integer. For every prime p not dividing M we have

AT(p)o (A(p)® — A(p®) — (p+ 1)) =0.

Proof. We have

, 10 . 1o -
A (p) 0 Ap) —A*@)oT(ro(M) L ]rouw)) 0 A (p)oT(rouw) L ]row)) o A (p)
p p

[ealy 3Jres)
T | To(M) To(M)
0 p

rfrwf o) e (o o)
=T | I'o(M) Lo(M) | + (p+ 1)T | To(M) Lo(M) ),
0 p? 0 p

, 1 0 _ p 0 _
AT(p)oA(p)* =T (Fo(M) ] Fo(M)> o AT(p)+ (p+ 1T (Fo(M) [0 ] Fo(M)> o A™(p)
P

_O p2

2

o A™ (p).

By the identity

ol Jme)
T | To(M) To(M)
0 p |

we have

=AY (p) o A(?) + (p+ DA™ ().

The lemma is proved. O
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Going back to the proof of the theorem we have

a(S) if n =0,
| amas) if n=1,
T e m? - a0 - D) + AR Ga)S) it =2

0 if n > 3.

The desired formula not follows which completes the proof of the theorem.

6.2 An Euler Product for Siegel Paramodular Forms

This section will be focused on proving one of our main theorems. Let M > 1 be an integer and
for a fixed integer § < 0 where ¢ is a fundamental discriminant, we denote by

L6f2 (S) = H (1 — (]V(lp))s>_ (R@(S) > 1)7

p

the L-series of the order oy in K = Q(\/g), where the product ranges over all prime ideals of oy

whose ring of coefficients is 0, = 04 and whose norms are relatively prime to M f (see [22]).

Theorem 6.2.1. Let M > 1 be an integer. Let
F(Z)= ) a(S)e*™" ) e My (K(M))
SEA(M)
with k > 0. Suppose that F' is an eigenform of the Hecke operators {T(m)}m>1, ged(m,Mm)=1 With
eigenvalues {p(m) }m>1, ged(m,m)=1- Let 6 <0 be a fundamental discriminant and let K = Q(V9).
Fiz an order oy of K for some f € N. Then for every S € A(M,5f?), we have in some right

half-plane

> a(msS, Cen—
Lip(s—k+2) 3 3 (msu> — xs,0(5) [] Qoor )"
[WeH (of,M)  m=l ptM
ged(m,M)=1

where Lgy2(s) is the L-series of oy, the matriz Sy is determined by the action of H(op, M), and

o= B (O (i) e

Proof. Let S € A(M,5f?) and let (G, &) € &/ (M,5f?) be the full module associated to S. For

every prime p not dividing M and for every mg € N with ged(mg,p) = 1 we compute the series

o0

Nl X dmor (Gug) | 7 | Q)

ro=1 \[u]€eH(os,M)
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where o’ € B'(M) is associated to a € B(M).

We first suppose that p splits in K. Then by Theorem 5.5.5 we have

(A(p)a’)(mo, (G, €)) = a’(mo, (Gp, &) + a’(mo, (G, &5))

and

(A(p)?* = A@P*) — 1)a’)(mo, (G, §)) = d(mo, (G, §)).

Furthermore, we have

(A(p)A™(p)a’)(mo, (G, €)) = (A (p)a’)(mo, (Gp, &) + (A™ (p)a) (o, (GP, &5)) = 0.

Thus, by Theorem 6.1.6, we have that

(Z ( > a’(mopru,au))) p) Q™)
[u]

ro=1 €H(oy,M)
is equal to
Z [a/(mOa (GU, £u)) + pk_2(a/(m07 (Gup> Eup)) + a/(m()) (GUE, guﬁ)))p_g
[u]eH (oy,M)

+p*t T (mo, (Gu, &4))p ™).

Observing that H(oy, M)[p] = H(oy, M) we find that the above expression is equal to
[ul€H (o, M)
We repeat the same analysis in the cases where p is ramified or inert in K and p{ f and in the case

where p|f. In each case respectively we obtain the expressions

> o (&) (1- )

[u]EH(Of,M)

, 1
Z a'(mo, (Gu, &) (1 — N(WSM) ,

[uleH (of,M)

and

S (-5 (1 ) o oo

[uleH (of,M
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We proceed with the proof of the claim. We note that we will prove the formula at first only
formally. Let po be a prime not dividing M f which ramifies in Q(v/9). Then

[T 32 T Cm(Gug)

ptM [u]EH(U-f’M)gcd(%jvl!):l
o0 !
s —s a'(m, (Gu, &)
= H Qp,r(p~") H Qp,r(p™") Z Z ms .
;:(‘1? ptM f gcd(:yrlx,:l\}l)zl [u]l€eH (o f,M)
s s s > 1 — a’ (mpy?, (Gu, €4))
=[1Qnr )Qore™) [T Qe > — > y e
ptM pIM f m=1 ro=0 \[u]€H (o, M) Po
plf p£po ged(m,Mpp)=1
—38 —S = 1 > a/(mpT07(Gu7£ )) —38
[l [[ e > LY ( > 0D ) o L)
m=1 ro=0 0
1:(‘];1 1;);1&\14)({ acd(m Vpo)=1 0 [u]eH (o f,M)
s s = a’(m, (Gu, &) 1
et [ares 3 | 3 wmOuel (oL
ptM M f m=1 (WeH (op, M) 0
plf P#PO ged(m,Mpg)=1

_(q_ 1 —s —s — a'(m, (Gu, &)
a (1 N(po)sfkvLQ) HQP’F(p ) H QP’F(p ) Z (M Z ms )

ptM ptM f m=1 €H(os,M)
i P£po ged(m. Mpo)=1 d

where pg is the unique prime ideal of norm pZ.

Let py,...,pq be the remaining ramified primes in Q(\/g) and let pq,...,pg be the corresponding
prime ideals of norm p3, ..., p3 respectively. Then repeating the above argument for this finite set
of primes we obtain

Moo S 3 wmns)

ptM [WeH (o5, M) m=1
gc

d(m,M)=1
1 —s —Ss - (l/ m7 Gua Eu
“T1(1- gy ) [TQr™ T Q™ % ( > (fn))>
=0 Iz{f\fl purf’rg\r/fn{ﬁed ng('f’Tﬁ%)r)Zl [u]EH(U'fyM)
where P, is the product of all the ramified primes.
We consider now the remaining expression
0 l
— —s a'(m, (Gu, &u))
Mo II Qe Y s i (Gut)
ptM ptM f m=1 [uleH (o5, M)
p|f punramified ged(m, M Pr)=1

Let g be a prime not dividing M f which splits in Q(v/8) and let

C= H Qp.r(p™°).

ptM
plf
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Then
s = a’(m, (Gu, &)
DS > dmGue)
puﬁﬁ]{ﬁed ged(maipy=1 \UEH A0
s s > a'(m, (Gu, &
= CQur@ [l Qe Y y,  dmGn)
M =1
p#‘lozjnrafmiﬁed ng(mTtL A Pr)=1 L eH (og M)
s - 1 & a'(mgy°, (Gu, &) —s
I ) BT B DR ol (R S TR PO
ptMf m=1 r0=0 \[u]€H(o,M) o

p#qo unramified

ptM f 1
p#qo unramified ged(m, M Prqo)=1

Let {g;}32, be the remaining split primes in Q(v/8). We know that there are infinitely many by
the Cebotarev Density Theorem (see [11]). We prove that

DS AT D)
C H Qp.r(p™®) aim, (& &u))
mS
purﬁﬁfﬁed gcd(mnfﬁ}‘%):l [uleH (o5, M)

:ﬁ(l_JW)(l‘zW)C 1 @re ij W

pIMf m=1
punramified ged(m,M Pr)=1

pnon-split ged(m,q;)=1for alli

Indeed, based on the argument for gy above, we have for d’ € N

Moves I awes £ [ p s

M M m=1 H(o,M
I;j‘f Purf)rj[am{ﬁed ged(m, M Pp)=1 e (Uf )
< 1 1
= H (1 - N( )) (1 - N(,)) H Qp,r(P™°) H Qp,r(p™ ")
i=0 % 9) 7 piaa ptM f
plf punramified

p#q; fori<d’

= a’'(m, (Gu, &y
) S ( > <Ensus>>)

=1 H(os,M
ged(m, M Pr)=1 (W€ H (o f, M)

ged(m,q;)=1for alli<d’

Taking the limit as d’ goes to infinity yields the desired result.

We then repeat the same argument for the inert primes. We then obtain

Moo Y Yy s

ptM [ueH(os,M) ng(%fl -
_ _s e a m, Gu,
=Lsp2(s —k+2) 1HQP7F(p ) Z w
12‘1;1 gcd(r?ﬁ/flq)ﬂ [uleH (o5, M)

for all g prime, gtM f
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We lastly apply the appropriate identity for the remaining set of primes which divide f but do
not divide M. We then obtain

oo

[Tore™ X y, mGug)

ptM [u]€H (o, M) gcd(m):]\}[)zl

=Lsp(s—k+2)7" Y ,)1;»[1 Kl - psA_(le) (1 - pf_;i%) a’] (1,(Gu, &)

[u]€H (of,M)

plf
The desired formula now follows. The convergence of the series follows from bounds on the Fourier

coefficients of F'. In particular, the Fourier coefficients of F' satisfy
la(S)] < C(det(S))"

for some constant C > 0 (see [13]). The theorem is proved.

6.3 Multiplicative Properties of Fourier Coefficients for Class Number

One

We begin with the case of class number one as it is the simpler case. A case for M = 1 was proved

by McCarthy and we state the results again here for the reader’s convenience.

Theorem 6.3.1 (McCarthy, 2016). Let
F(Z)= Y a(8)e*™"5%) € My(Sp(4,2))
SeA(1)
with k > 0. Suppose that F is an eigenform.
(i) If a(I1,0) = 0, then a(mli,0) =0 for all m € N.

(i) For m,n € N with ged(m,n) =1 we have
a(lp)a(mnly o) = a(mlyo)a(nl o).

The proof of Theorem 6.3.1 uses primarily an exercise from [29] (see Exercise 5, pg. 77 of this
reference). The proofs of our generalizations, however, take advantage of the theory developed in

Chapter 5. We note further that Theorem 6.3.1 uses the quadratic form

1 0
L=
0 1
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which has discriminant -4. This discriminant corresponds to a case where the class number is one.

We prove another case of this theorem using the quadratic form

1 1/2
I =
12 1

which has discriminant -3. This is also a discriminant which corresponds to a case where the class

number happens to be one.

Theorem 6.3.2. Let
F(Z)= Y a(8)e*™™5%) ¢ My(Sp(4,2))
SeA(1)
with k > 0. Suppose that F is an eigenform.
(i) If a(I1,1) =0, then a(mli1) =0 for all m € N.

(i) For m,n € N with ged(m,n) =1 and we have
a(Il,l)a(mnIM) = CL(mILl)CL(TLlLl).
Proof. Let K = Q(+/—3). The full module associated to I7 1 is 01 C K with basis

1
€= 11-v=3
2

We start by proving (7). We note that we are working in the case M = 1 here. We consider for

m e N

a(p™;miy ) = p(p™)a(mly 1)

for various primes p with ged(m,p) = 1. We assume that a(ml; 1) = 0.
We break the proof down based on the splitting behavior of p in K. Suppose first that p splits
in K. By Theorem 6.1.2 we have

ro
p(p™)a(myy) = a(mp™ L) + ) p* 2P la(mp™ P80 p g, ) + almp™ 7S 5 e )]
B=1

The binary quadratic forms S(olpﬁ,gp 5) and S(mEB £4) each have discriminant —3 and thus belong
P

to the same class as I; ; modulo I'g(1) = SL(2,Z). Thus we arrive at the formula

o
plp")a(mli) = a(mp™la) + Y p* 2 a(mp™ = 11) + a(mp’™ P 1 1))
B=1
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In particular, if 7o = 1, we have
w(p)a(mly 1) = a(mpli 1) +Pk72[a(m11,1) +a(mly 1))

Hence, if a(ml; 1) = 0 we then have a(mpl;,1) = 0. We now prove by induction that a(mp™I; 1) =0
for rg > 1. We just proved the case ryp = 1. Assume that the claim has been proven for all positive
integers less than ry. Since

ro

p(p)a(mly ) = a(mp™Iy ) + > p*=2Pla(mp™ 11 1) + a(mp™ "I 1)]

=1
the induction hypothesis implies that a(mp™ "I 1,1) = 0 for all g with 1 < 8 < rg. Therefore we
can conclude that a(mp™1I; ;) = 0. To prove the claim in the case that p splits we apply the above
argument to the specific case m = 1.

Suppose now that p is ramified in K. By Theorem 6.1.2 we have

w(p)a(mly ) = a(mp™I 1) + p*2a(mp™ " Sape,))-

The binary quadratic form S(gy ¢,) has discriminant -3 and thus belongs to the same class as I11

modulo SL(2,Z). Thus we have the formula

p(p™)a(ml 1) = a(mp™Iy 1) +pk_2a(mpm_1[1’1).

In particular, if rop = 1, we have
p(p)a(mly ) = a(mply1) + p* *a(mly ).

Hence, if a(ml11) = 0 we then have a(mpl;1) = 0. We now prove by a simple induction that if
a(mli 1) = 0 then a(mp™I 1) = 0 for 79 > 1. We just proved the case ro = 1. Assume that the

claim has been proven for g — 1. Since
p(p™)a(mlyy) = a(mp™I1) +p*2a(mp™ 1 1)

the induction hypothesis implies that a(mp™~'I; 1) = 0. Therefore we can make the conclusion
that a(mp™I; 1) = 0. To prove the claim for the case that p is ramified we apply the argument in
the case m = 1.

Now suppose that p is inert in K. By Theorem 6.1.2 we have

p(p™)a(mly 1) = a(mp™Iy 1).
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Thus if a(ml; 1) = 0 we have a(mp™I; 1) =0 for all ro > 1. To prove the claim for the case that p

is inert we just take m = 1. To prove the general claim we assume that a(l,1) = 0 and let
0y 0 ¢
m = p11p22 . .pdd.
Then using what we have proven, we have a(mly 1) = 0. This proves (i).

We now prove (ii). Let m,n € N with ged(m,n) = 1. Let p be a prime with ged(m,p) =

ged(n, p) = 1. We prove that
a(mp™Ii1)a(nl 1) = a(mli1)a(np™I1).
We first suppose that p splits in K. We use the formula appearing before in the split case

70
w(p™)a(ml 1) = a(mp™I 1) + Zp(k%)'g[a(mpm*ﬂfl,l) +a(mp™ A1, 1))
g=1

We again proceed by induction on ry. First suppose that rp = 1. Then we have
w(p)a(mli i) = a(mpl 1) —&—pk_Q[a(mIm) +a(mlyq)]
and
w(p)a(nly 1) = a(npl 1) +p"2la(nly ) + a(nly )]
We multiply the first of these equations by a(nly,1) and the second by a(mly ). This yields
u(p)a(mIiq)a(nli 1) = a(mpli 1)a(nl 1) —&—pk_Q[a(mIl,l)a(th) +a(ml1)a(nly 1))
and
w(p)a(nly 1)a(mIy ) = a(nply)a(mly 1) + p**la(nly 1 )a(mly 1) + a(nly1)a(mly 1))
Subtracting the two equations from one another we obtain
0 = a(mpli1)a(nly 1) — a(npli1)a(miy 1)

which is the desired result. We now assume that the claim has been proved for all positive integers

less than ry. That is
a(mp’I1)a(nly 1) = a(ml 1)a(np‘ )
for 1 < /¢ < rg. We then consider

ro
p(p™)a(mly 1) = a(mp™Iy 1) + Zp(k_m’g[a(mpm_ﬁhg) + a(mp™ "Iy )]
p=1
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and

0

p(@™)a(nl 1) = alnp™Il 1) + Zp(k_z)ﬁ[a(npro_ﬂlLQ +a(np™ =PI 41)].
B=1

Multiplying the first equation by a(nly,1) and the second equation by a(ml; 1) yields

0
p(p)a(mly1)a(nly1) = a(mp™ I )a(nlig) + Y p*F 2P [a(mp© =P 1 1)a(nli 1) + a(mp™ P11 a(nly )]
B=1

and

0
p(p"0)a(nli)a(mi1) = a(np™ h)a(mln) + Y p* =2 Pla(np™ =P I 1)a(mI ) + a(np™ =PI 1)a(mIy ).
B=1

Subtracting the two equations from one another and implementing the induction hypothesis yields
0=a(mp™Ii)a(nli 1) —a(np™li)a(mii )

which is the desired result.
We now prove the claim in the case where p ramifies in K. We use the formula appearing before

in the ramified case
p(p™)a(mly 1) = a(mp™Iy 1) +pk72a(mpr°711171).
We proceed by induction on ry. First suppose rg = 1. Then we have
p(p)a(mly i) = a(mpli 1) + p* 2a(mlIy 1)
and
u(p)a(nli 1) = a(npli 1) —|—pk72a(n11,1).
We multiply the first equation by a(nl;,1) and the second equation by a(ml; 1) which yields
p(p)a(milyy)a(nly 1) = a(mplyi)a(ndy) + p*~2a(mly1)a(nly 1)
and
w(p)a(nly 1)a(mIy ) = a(nply 1 )a(mly 1) + p*2a(nly 1)a(mlIy ;).
Subtracting the two equations from each other gives
0 = a(mply1)a(nli 1) — a(npli)a(mly 1)
which is the desired result. Now assume the claim has been proven for ry — 1, that is

a(mpm*lll,l)a(nlm) = a(mILl)a(np’”“*lILl).
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We have
p(p™®)a(mlii) = a(mp™ 1) + p*~2a(mp™ 1 1)
and
n(p™)a(nly 1) = a(np™Ii 1) + p"2a(np™ ' ).
We multiply the first equation by a(nfy,1) and the second equation by a(mli 1) yielding
u(p™)a(mIy 1)a(ndy 1) = a(mp™ Iy 1)a(nly ) + p* 2a(mp™ 1y 1)a(nly )
and
p(p™)a(nly 1)a(mly 1) = a(np™I 1)a(mlIy 1) + p*~2a(np™ 11 1)a(mly 1).
Subtracting the two equations from one another and implementing the induction hypothesis yields
0=a(mp™Iii)a(nli1) —a(np™Il)a(mly 1)

which is the desired result.
We now prove the claim in the case where p is inert in K. We use the formula appearing before

in the inert case
p(p™)a(mly 1) = a(mp™Iy 7).
We also consider
u(@™)a(nl 1) = a(np™I 1).
Multiplying the first equation by a(nf 1) and the second by a(mly 1) gives
0=a(mp™Iii)a(nli1) —a(np™l)a(mly 1)

which is the desired result.

To prove the general claim we let m,n € N with ged(m,n) = 1 and write

0y, 0 ¢
n :p11p22 .ded'

Then by what we have proved above
a(lia)a(mnly,y) = a(l,1)a(mpy' py* - pgli1)
— el 62 ed
=a(p;' I1,1)a(mpy’ -+ pg'1i1)

== a(nILl)a(mILl).
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The proof of the previous theorem extends naturally to cover other cases where the class number
is one. For fundamental discriminant § < 0 and for f € N we will denote by h(§f?) the class number
of the imaginary quadratic field Q(\/S) We note that the class number is equal to the size of the
set SL(2,Z) \ A(1,35f?). We will denote by hps(6f?) the size of the set To(M) \ A(M,d5f?).

Theorem 6.3.3. Let M > 1 be an integer. Let

F(Z)= > a(9)e*™" 59 € My (K (M))
SeA(M)

with k > 0. Suppose that F' is an eigenform. Let Ipro and Ipsq denote the matrices

M 0 M 1/2
and

0 1 1/2 1

respectively.

(i) If h(—4M) = 1, then for m,n € N with n odd and gcd(mM,n) =1 we have
a(mnlpro)a(Ino) = a(mino)a(nlyo).

(i) If h(—4M + 1) =1, then for m,n € N with n # 0 (mod 3) and gcd(mM,n) =1 we have
a(mnly1)a(Inn) = a(mIy)a(ndy ).

More generally, suppose § < 0 is a fundamental discriminant and let f € N. If hps(5f?) = 1 then
for m,n € N with gcd(mM f,n) = 1 we have

a(mnS)a(S) = a(mS)a(nS)
where S € A(M,df?).
Proof. The structure of the proof is similar to the proof of the previous theorem. O
We note here that h(—4M) = 1 for the values M =1,2,3,4, and 7 and h(—4M + 1) = 1 for the

values M = 1,2,3,5,7,11,17, and 41.

6.4 Arithmetic Properties of Fourier Coefficients for Arbitrary Class

Number

We now prove the main results of this particular work. Let’s start with a considerable extension of

the results for Siegel modular forms, i.e., Siegel paramodular forms of level 1.
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Theorem 6.4.1. Let
F(Z)= Y a(8)e*™"5%) e M,(Sp(4,2))
SeA(1)
for k > 0. Suppose that F is an eigenform. Let Si,...,Sy be a complete set of representatives
of the classes of positive-definite, primitive, integral binary quadratic forms of discriminant & with
0 < 0 a fundamental discriminant.
(i) If a(S;) =0 for alli € {1,...,h}, then a(msS;) =0 for allm € N and all i € {1,...,h}.
(i) For m,n € N with gcd(m,n) =1 we have
h

h h
a(mnS;)a(S;) = Z Z a(msS;)a(ns;).

=1 j=1
Proof. We start by proving (i). For each S; with 1 < i < h we associate the full module G; with

ordered basis &;. Suppose first that p splits in K = Q(\/g) By Theorem 6.1.2 we have

p(p)a(mSy) = a(mpS1) + p"*[a(mSc,p.er)) + A(mSip.e1))]

p(p)a(msSs) = a(mpSs) + p**[a(mS cyp.£2y)) + U(MS(Gup.ern))]

p(p)a(msSy) = a(mpSy) + p**[a(mS G, p.e.y)) + A(MS G, 5.605))]

Since Si,...,S, is a complete set of representatives of the classes of positive-definite, primi-
tive, integral binary quadratic forms of discriminant § we have that (G1,&1),(G2,&2), ..., (Gh,&n)
is a complete set of representatives of the classes in .#gy(2,7)(6). Since the maps ®(-,[p]) :
Ms1,2,2)(0) = Ms12,2)(8) and (-, [p]) : Ms1,2,2)(6) = Ms1(2,2)(8) are surjections (hence bi-
jections), we have that S, p.¢,,) S(Gop.tap)s -+ s S(Gnp.n,) a0 S(C1F.615)r S(CaFoan)r - - -+ O(CrFbry)
are both complete sets of representatives of the classes of positive-definite, primitive, integral binary

quadratic forms of discriminant §. Thus if a(mS;) = 0 for each i we have

a(mS(G,p.e.)) = a(mS(pe)) =0

for each 4. Thus a(mpsS;) = 0 for all i.
We now prove by induction that if a(msS;) = 0 for all 4, then a(mp™S;) = 0 for all 4 and all

ro > 1. We proved the case rg = 1 above. Assume now that the claim has been proven for all
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positive integers less than ry. Since
T0
p(p™)a(msSy) = a(mp’™ 1) + Y p* D a(mp " S G pae, )+ a(mp S g g e )]
B=1

o
p(p™)a(mSy) = a(mp™Sy) + Y p* P la(mp™ ™ S aypne, o) +almp™ S g e )]
B=1

ro
(@ )a(mSy) = a(mp™Sp) + Y p* " la(mp P S pn e, )+ almp S g0 e )]
B=1

By the induction hypothesis we have that a(mp™S;) = 0 for each i. The proof is similar when p is
ramified or inert in K.

To prove the general claim we assume that a(S;) = 0 for each ¢ and let
2 ¢
m = p11p22 . .pdd.

Then using what we have proven, we have that a(mS;) = 0 for each . This proves (7).
We now prove (ii). We prove only the case where p is split in K as the proof is similar in the

other cases. We consider

p(p)a(mSy) = a(mpS1) + p"*[a(mSc,p.er,)) + a(mS(cip.e,y))]

p(p)a(mSz) = a(mpSs) + p**[a(mS cyp.e0n)) + A(MS(Gopis))]

p(p)a(mSy) = a(mpSy) + p**la(mSc,p.e.,)) + A(mSc,5.65)]

Applying a similar argument as before we have that S(Glpﬁ,glpﬁ), S(Gzpﬁ,gmjﬁ), ceey S(thgéhpﬁ) and
S(Glﬁﬂ’slgﬁ)’ S(GZEB7£2F[3)’ cee S(thg’shw) both form a complete set of representatives of the classes
of positive-definite, primitive, integral binary quadratic forms of discriminant §. We also consider

the equations

p(p)a(nSy) = a(npSy) + p**[a(nS(cp.e.y)) + a(nS(cper))]

p(p)a(nSz) = a(npSs) + p**[a(nS(Gap ean)) + A(NS(Gp £1))]

N(p)a(nsh) = a(npSh) —+ pk_g[a(nS(GhPéhp)) + a(nS(GhEﬁhE))}
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For some fixed j with 1 < j < h we multiply to the first set of equations by

M-

a(nsS;)

<
Il
—_

and the second set of equations by

=
8
3

Jj=1
which gives
h h h h
wu(p)a(mS1) Za = a(mpS1)Za(nSj) +pk*2[a(mS(Glp’£lp))Za(nS ) +a(mS 7, &15) Za
j=1 j= j=1 j=1
h h h h
u(p)a(msSz) Y a(nS;) = a(mpS2) Y a(nS;) +p*~2[a(mS(G,p.e5,)) D a(nS)) + a(mS(Gyp,e,5)) D_ aln
j=1 Jj=1 Jj=1 j=1
h h h h
p)a(msSh) Za nS;) = a(mpSy) Za(nSj) + pF~2[a( mS(Gp,enp) Za (nS5) + a(mSa, 7, €hp> a(nS;)]
j=1 j=1 =1 =
and
h h h h
p(p)a(nS1) Y a(ms;) = a(npS1) Y a(msS;) + p* 2la(nSc,p.er,)) D a(mS;) + a(nSig,5, ) ) D a(m
j=1 j=1 j=1 j=1
h h h h
HDa(nSe) S a(ms;) = a(npSa) Y a(ms;) + 0 2a(nS(azp.e0) D almS)) + a(nS(cp.en) S alm
Jj=1 Jj=1 Jj=1 Jj=1
h h h h
p)a(nSy) Y a(ms;) = a(npSy) Y a(msS;) +p* 2a(nS(g,p.e,,)) D a(mS)) + a(nS(g,p.e,:)) D_ alm
j=1 j=1 Jj=1 Jj=1

Adding each system separately and then taking their cumulative difference we obtain

This proves that

We proceed by induction. We assume that the claim has been proved for all positive integers

less than rg. That is

h hoh
ZZa mp*S;)a(nS;) zzz:a(mSi)a(npsz)

i=1 j=1 i=1j=1
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‘We then consider

T0
u(p")a(msy) = a(mp™S1) + Y p* P la(mp S (g pu e, )+ a(mp™ ™’ S gyym)]
B=1

ro
p(p")a(mSs) = a(mpS2) + Y p* P lalmp™ S (Gups g, ) + almp P S g pm e, )]
B=1

o
(™ )a(mSh) = a(mp™Sp) + Y p* D a(mp™ S, pn e, ) + almp PS50 e, )]
f=1

and

T0
p(p")a(nSy) = a(np™S1) + 52,:1p(k_m[a(np’""_ﬁS(Glpﬁ,st>> +a(np™ S o e )]

70
u(p™)a(nS2) = a(np’Sz) + 3 p* P la(np P S(Gpn,e,, ) + TS e, )
ps=1

70
u(p™)a(nSh) = almp" 1) + S PO amp P St 6, )+ Al IS g )]
B=1

As before, we multiply the first set of equations by
h

Za(nSj)

j=1

and the second set of equations by

a(msSj).

h
=1

J
We then obtain

h

h
p(p")a(mS1) Yy a(nS;) = a(mp™S1) Y a(nS;)

j=1 j=1

o h h
+ Z P(k_Q)ﬁ a(mPTO_ﬁS(G1 PP ;3)) Z a(nSj) + a(mpro_ﬁs(clﬁﬁys 7B)) Z a(nS;)
=1 R = B =
h h
1(p"0)a(mSs) Z a(nS;) = a(mp™ Ss) Z a(nS;)
=1

j=1 =

0 h h
k—2 ro— ro—
+ﬂzp< " {a(mp ’ BS(Gng,ezpm)Zla(nSj)+a(m” ’ ﬂS(Gwﬂ,ezpw)Zla(nsj)]
=1 = —

=

h h

p(p")a(msSy) Y a(ns;) = a(mp’®Sk) Y _ a(ns;)

j=1 j=1

"0 h h
' ﬁzl e |:a(mp7‘OBS<th5,£h,nﬁ ) 21 a(nS;) + a(mPTrBS(GhFﬂ,&h,ﬁﬁ ) Zl a(nsj)]
= Jj= =
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and

h h
p(p™)a(nS1) Y a(msS;) = a(np™51) 3 a(ms;)

j=1 i=1

0 h h
k—2)3 ro—B -
’ Bz: 7 {a(np " 86 pf’,&lpﬁ)) zjl a(msS;) + a(np™® BS(G1F5,§1Fﬂ)) z:l a(mSj)]
—1 j= j=

h h
p(p")a(nS2) Y a(mS;) = a(np’®S2) Z

Jj=1

h h
+Z (k— 2>/f|: pro—F# S(eanh e, E))Za(ms)+a(npro [S(G2pﬁg 6))Za(m5j)]

h h

w(p)a(nSy) Z a(mS;) = a(np™Sy) Z (mS;)

j=1

h h
(k—2)B B
' Zp { (GhFB £hp ﬁ))z a(mS;) + a(np™®™ S<th5 &5 B))Za(ms )]

Adding each set of equations together and taking their cumulative difference, keeping in mind

the induction hypothesis, we obtain

h h h h
= Za(mp“’S Za Za(npmS ) Za(mSj).

It then follows that

h h R h
ZZ@ (mp"©S;)a(nsS;) = ZZa(mSi)a(npmSj).
i=1 j=1 i=1 j=1
This completes the proof of the claim. O

We obtain the following theorem essentially as a corollary to the previous result.

Theorem 6.4.2. Let

F(Z)= Y a(8)e*™™5%) ¢ My(Sp(4,2))

SeA(1)

for k > 0. Suppose that F is an eigenform. Let Sy,...,Sr be a complete set of representatives of
the classes of positive-definite, primitive, integral binary quadratic forms of discriminant 6 f2 with
0 < 0 a fundamental discriminant and f € N.
(1) If a(S;) = 0 for alli € {1,...,h}, then a(msS;) = 0 for all m € N with ged(m, f) =1 and all
ie{l,...,h}.
(it) For m,n € N with gcd(m,n) =1 and ged(n, f) =1 we have

h o h A h
ZZCL (mnS;)a(S;) = ZZa(mSi)a(nSj).

=1 j=1 i=1j=1

—
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We have another modest extension of these theorems.

Theorem 6.4.3. Let

F(Z)= Y a(8)e*™"5%) e M,(Sp(4,2))

SEA(1)
for k > 0. Suppose that F is an eigenform. Let Sy,...,Sn be a complete set of representatives of
the classes of positive-definite, primitive, integral binary quadratic forms of discriminant 6 f2 with

0 < 0 a fundamental discriminant and f € N.

(1) If

Z a(SZ) =0

i=1
then
Z a(mS;) =0
i=1
for all m € N with ged(m, f) = 1.
(ii) For m,n € N with gcd(m,n) =1 and ged(n, f) =1 we have

Z a(mnS;)a(S;) = Z a(mS;)a(nsS;).

i=1 1=1

We present here also the general result for Siegel paramodular forms.

Theorem 6.4.4. Let M > 1 be an integer and let

F(Z)

Z a(S)e27ritr(SZ) c Mk(K(M))

SeA(M)
for k > 0. Suppose that F is an eigenform. Let § < 0 be a fundamental discriminant and let f € N.
Let S1,...,84 be a complete set of representatives of the set To(M)\ A(M,df?).
(i) If a(S;) =0 for alli € {1,...,d}, then a(msS;) =0 for all m € N with ged(m, M f) =1 and all
i €{l,...,h}. Moreover, if

i=1

then

a(mS;) =0
i=1
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for all m € N with ged(m, M f) = 1.
(i) For m,n € N with gcd(mM,n) =1 and ged(n, f) = 1 we have

iia mnS;)a Z

i=1 j=1 i=1j

M&

a(msS;)a(nsS;).
1

For paramodular level M > 1, we saw in section 5.6 that for a fixed discriminant & f2 with 6 < 0
a fundamental discriminant and f € N it is possible for A(M,§f?) to be empty. We saw however
that the sets A(M,—4M) and A(M,—4M + 1) are always nonempty. Fourier coefficients indexed
by elements in these sets exhibit relations involving all primes p not dividing M. In particular, we

have the following corollary.

Corollary 6.4.5. Let M > 1 be an integer and let

F(Z)= > a(9)e*™" 5% € My(K(M))

SeA(M)

for k > 0. Suppose that F is an eigenform. Let —4M = §, f2 and —4M + 1 = §of2 with f1, fo €N
and where d1,92 < 0 are fundamental discriminants. Let S1,...,Sq, and Ty, ..., T4, be a complete
set of representatives of To(M)\ A(M,—4M) and T'o(M)\ A(M, —4M + 1) respectively. Let Sy, be
the set of primes p with ged(p, M f;) =1 fori=1,2.
(i) If a(S;) =0 for alli € {1,...,d1}, then a(msS;) = 0 for all m € N with gcd(m, M f) =1 and all
i€{l,...,d1}. Moreover, if

dy
Z a(S;) =0
i=1
then
dy
Z a(mS;) =0
=1

for all m € N with ged(m, M f) = 1.
(it) For m,n € N and p € Qy, a prime with ged(mn,p) =1 we have for all ¢ > 1

d1 d1 dl dl

S S atmptsa(ns) = 355 atmSatun')

i=1 j=1 i=1 j=1
(iii) For m,n € N with p € Qy, a prime with gcd(mn,p) =1 we have for all £ > 1

d2 d2 d2 d2

D almp'T, =22 a(mTa(np'Ty).

=1 j=1 i=1 j=1

We also have the following general result which will conclude this section.
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Theorem 6.4.6. Let M > 1 be an integer and let
F(Z)= > a(8)e*™" 5% € My(K(M))
SEA(M)
for k > 0. Suppose that F is an eigenform. Let § < 0 be a fundamental discriminant and let
f € N. Let Syi,...,Sq be a complete set of representatives of the set To(M) \ A(M,5f?). For
[u] € H(oy, M), the matriz Sy is determined by the action of H(os, M) on </ (M,5f?).
(1) If a(Sy) = 0 for all u] € H(oy, M), then a(mSy) =0 for all m € N with ged(m, M f) =1 and
alli € {1,...,h}. Moreover, if
Z a(Sy) =0
[u]eH (o, M)
then
Z a(mSy) =0
[ul€H (o5, M)
for all m € N with ged(m, M f) = 1.
(ii) For m,n € N with gcd(mM,n) =1 and ged(n, f) = 1 we have
> > a(mnSa(S) = Y > a(mSya(nS,).
[ul€H (o5, M) [0]€H (05,M) [uleH (o5, M) [0]€H (0f,M)
Proof. The proof is very similar to the proof of the other results. We only note here that we utilize
the fact that H(os, M)[p®] = H(os, M) for all 3 > 1 where p is a given prime ideal in 0o of norm

p or p? depending on whether p is split, ramified, or inert in K = Q(\ﬁ) O

One could check the validity of these results by accessing the L-functions and Modular Forms
Database [23] and utilize the calculated Fourier coefficients of the small number of Siegel paramod-
ular forms that are present there. For example, the Siegel paramodular form of weight 2 and level
277 has non-zero Fourier coefficients indexed by primitive binary quadratic forms in A(277) of

discriminant -4. In fact, there is exactly one coefficient attached the form

3601 60
60 1
with value
3601 60

60 1
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We then check the following Fourier coefficients and find that

3601 60
al?2 =6,
| 60 L]
3601 60
al3 =2,
| 60 L]
3601 60
al6 = —6,
| 60 L]
from which it is easy to see that
3601 60 3601 60 3601 60 3601 60
a al6 =a|2 al3d
60 1 60 1 60 1 60 1

6.5 Action of Hecke Operators on Fourier Coefficients, p|M

We conclude this manuscript with a formula for the action of the paramodular Hecke operator T'(p)
on a Siegel paramodular form of weight £ > 0 and squarefree level M for bad primes p, i.e., those

primes p dividing M. In particular we provide a formula for
1 0 0 O
0 1 0 O
00 p 0
0
k

The reader should see [24] for a version of the formula pertaining to this operator. One needs to

be especially careful regarding any change of index utilized in applying these operators to a Siegel

paramodular form.

Theorem 6.5.1. Let M > 1 be an integer and let
F(Z)= > a(9)e*™" 59 € My (K (M))
SeA(M)

with k > 0. Let
Mr t/2
g /
t/2 s

Let M = M/p and let N be an inverse of M' modulo p. Then

(TE)(F(2)= Y b(S)e™52)

SEA(M)
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and

zez/pzZ z 1 1

1 —yMN 1 0
+p°7% > dy(r— Nty)a [ p* Y S
yez/pz 0 P —-yMN p

D 0p — (p1 [(MN—p)pl MN] S[(MN—mpl 1])
1 P MN P

b(S) =a(pS) +p" % D dp(s+tx)a <p-1 [p 0] s[p ‘”D
0

+ ka_Sdp(Tv t, s)a(p_IS)
Proof. This is a direct computation utilizing the decomposition appearing in Theorem 4.3.13. [

One can carry out a similar computation for the second operator

—_
o
o O

hS]

T (p?) = p** | K (M)

o (an) [an)}
[

o
s}

using the double coset decompostion appearing in Theorem 4.3.13. However, in order to extend our

results from Chapter 6 in the case p|M one should really consider the operators T'(p™) for rg > 2.
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