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Abstract 

 

Methylobacterium extorquens is a facultative methylotrophic bacterium that lives on plant leaves. As 

part of the natural oxidation pathway of methanol secreted from the leaves, formaldehyde is generated. 

Experiments have shown there is phenotypic heterogeneity in tolerance to formaldehyde, and this 

heterogeneity varies continuously. Exposing M. extorquens to a high concentration (4 mM) of 

formaldehyde changed the distribution of tolerance to formaldehyde. In the second chapter of this 

dissertation, I introduced a mathematical model to investigate the processes involved in the change of 

the tolerance distribution. The model suggests there is an absolute threshold between survival and 

death in face of the stress from formaldehyde. In addition, I showed growth and death are not sufficient 

to explain the change of distribution of tolerance, and in fact, there is also a suggestion for phenotypic 

movements that permit the cells to change their phenotypic states. Moreover, the model showed that 

the phenotypic movements that occur depend upon the environmental conditions. In the third chapter, 

I investigated the genes involved in response to formaldehyde stress using RNA-seq analysis. In order 

to find specific mechanisms involved in formaldehyde-mediated translation inhibition, cultures of 

bacteria treated with either formaldehyde and kanamycin was investigated. To assess the role of the 

EfgA protein – which has a role in translation inhibition by formaldehyde – WT and ΔefgA strains 

were investigated in the mentioned treatments. I showed that a great portion of the response to 

formaldehyde is shared with the kanamycin response, and that having EfgA protein is crucial to the 

formaldehyde stress response. Analysis of functional gene groups showed that cytochromes, 

chaperones, DNA damage repair system, ABC transporters and flagellar proteins are among the highly 

affected genes in response to the formaldehyde. This analysis of RNA-seq data provides a set of 

candidate genes that potentially have role in the phenotypic heterogeneity in tolerance to 

formaldehyde.   
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1 Introduction  

Not all genetically identical cells behave similarly. Phenotypic heterogeneity is defined as variation 

between isogenic individuals within a population. There are various mechanisms that can lead to 

phenotypic heterogeneity, such as the known phenomena of epigenetic modifications, like DNA 

methylation and histone modification, and post translation modifications that modulate protein 

activities; a number of other mechanisms have also been proposed such as cellular age, periodic 

oscillations and cell-to-cell interactions (Ackermann, 2015). The best characterized source of 

phenotypic heterogeneity is associated with noise in gene expression (Elowitz et al., 2002). In most 

cases, noise derived from bursts in transcription is negligible as the noise is averaged within multiple 

genes involved in a function (Kiviet et al., 2014). However, there are some cases where the noise in 

gene expression can make a demonstrable difference, especially in genes involved in stress response 

and metabolism, which are shown to have high variability in gene expression (Ackermann, 2015). The 

effect of noise in a system could be magnified in the presence of a feedback loop and result in a bistable 

system (Hasty et al., 2000; Thomas, 1981). Well-known examples of bimodal phenotypic 

heterogeneity in stress response and central carbon metabolism are bacterial persistence (Balaban et 

al., 2004), sporulation (Veening et al., 2008), and lactose utilization in E. coli (Choi et al., 2008).  

Heterogeneity can help populations survive stressful conditions by providing variable outcomes in the 

face of a stressor. For example, if a phenotypically homogenous population (a population with small 

variations among individuals) encounters a lethal stressor in its environment, then presumably there is 

a uniform outcome: death of the entire population (Figure 1.1, panel A). But there are cases where the 

heterogeneity could be advantageous for a population. If variation among individuals is relatively 

broad and the stress is not strong enough to kill all the individuals, part of the population can survive 

the stressful condition. In a bimodal distribution of phenotypes (Figure 1.1, panel B), we observe 

heterogeneity as two discrete states, even though not all sensitive cells have the same gene regulation 

profile (e.g. persistence). In a wider distribution of phenotypes across a population, we can observe 

multiple subpopulations surviving the stress (Figure 1.1, panel C).  
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Figure 1.1 - Relationship between different types of heterogeneity and the outcome of exposure to a 

stress. A) If the stress level is beyond the tolerance level of all individuals or in cases where variations 

across individuals is not broad enough to overcome the stress, we observe all individuals as one 

phenotype. B) If the distribution of phenotypes has two peaks, like in the case of persistence, two 

phenotypes are observable. C) In case of broad variations of tolerance level across a population, we 

see different phenotypes survive the stress. 

Bacterial persistence is one of the best-studied examples of discrete phenotypic heterogeneity. 

Bacterial persistence refers to a physiological state where, in an isogenic population, a rare 

subpopulation of cells enters dormancy. Dormancy allows these cells to escape the action of an 

antibiotic and thus leads to resistance (Bigger, 1944). Cancer cells have also been shown to have 

phenotypic resistance to drugs. Leukemic cells have variable resistance against vincristine (Pisco et 

al., 2013). Gene expression of the MDR1 protein, which is responsible for exporting the drug out of 

the cells, showed a continuous distribution across the population. This heterogeneity in gene 

expression leads to a continuous distribution of phenotypes.  

In a simplified model, we can establish a relationship between the expression of genes and a phenotype 

in response to a stressor. In the simplest scenario, there is a one gene to one phenotype relationship 

and phenotypic variations across individuals could be mapped onto their gene expression profile 

(Figure 1.2, panel B). However, the picture is often much more complicated. Phenotype could be an 

outcome of the expression of multiple genes that encode subunits of a single protein or a number of 

different proteins expressed by a complicated regulatory network. To relate the expression of one gene 

(or a set of genes) to one tolerance phenotype, one must find gene(s) that contribute to the tolerance, 

quantify gene expression variation within a population and map them to the distribution of phenotypes.  
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Figure 1.2 - Different gene expression profile between subpopulation is one of the possible 

mechanisms to observe heterogeneity. A) A broad continuous variation of phenotypes in facing a 

stress. B) Differences between phenotypes can emerge from different expression levels of a gene (or 

genes). C) Such genes may be up-regulated (or down-regulated) when facing the stressor. 

Here we investigate the phenotypic heterogeneity and the gene expression profiles in response to a 

stressor in a model system where the stressor is generated intracellularly. Methylobacterium 

extorquens is a bacterium that naturally lives on plant leaves and consumes methanol secreted from 

the leaves. Methanol is oxidized to formaldehyde through the action of the methanol dehydrogenase 

(MDH) enzyme with a rate of 2 mM/s (Vorholt et al., 2000). At low concentrations, formaldehyde is 

non-toxic for the cell, but at higher concentrations it can be lethal.   

In this study, we show that a population of M. extorquens exhibits a distribution of formaldehyde 

tolerant phenotypes. By tracking death and survival at different formaldehyde concentrations we 

demonstrate that, as in the case of resistance to cancer drugs, this distribution is continuous. Here, I 

use a PDE framework to model phenotypic heterogeneity to the toxicity of formaldehyde. With this 

model, I showed that formaldehyde-induced death is binary; there is an absolute threshold between 

survival and death, even though the distribution of tolerance to formaldehyde is continuous. In 

addition, this work showed that growth and selection by death are not able to explain the observed 

changes in phenotypic distributions through the timecourse of the experiment. Therefore, other 

mechanisms that enable cells to change their phenotypic state must exist. To understand the genes 

potentially involved in formaldehyde tolerance, we need to first identify genes that show changes in 

expression upon exposure to the stressor (Figure 1.2, panel C). Formaldehyde stress has two layers of 
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action. First, formaldehyde is a highly reactive agent with a potential to broadly damage proteins and 

DNA. Second, formaldehyde interacts with the EfgA protein, a formaldehyde sensor, and peptide-

deformylase to stop translation (Nayak et al. in prep.). Therefore, the mechanisms of action of 

formaldehyde in M. extorquens are two-fold: it is comparable to general stress response inducers (like 

heat) and one-target translation inhibitors such as the antibiotic kanamycin. To characterize and 

differentiate the genes involved in each of the mechanisms of formaldehyde action (translation 

inhibition and general tolerance to the stress), I performed an extensive transcriptomic analysis of M. 

extorquens across an array of genotypes (wild-type and EfgA-deficient mutants), treatments 

(formaldehyde or kanamycin) and timepoints. I showed that almost half of the response between 

kanamycin and formaldehyde response is shared, thereby identifying common ground between the 

translational inhibitors and stark differences. In addition, I found that the EfgA specific response is a 

key factor in the total cellular response to formaldehyde. Further, I showed the response to 

formaldehyde involves some general stress response proteins such as chaperones, DNA repair system 

as well as cytochromes, ABC transporters and flagellar proteins. My analyses reflected the general and 

specific actions of formaldehyde, has begun to parse apart the cellular consequences of formaldehyde 

and EfgA, and generated a number of testable hypotheses.  

As a student in Bioinformatics and Computational Biology program, this project has been a great 

opportunity for me to learn two different aspects of computational biology to explore two facets of the 

physiological response that M. extorquens has to a metabolic stressor. In the second chapter I did 

mathematical modeling to understand change in distribution of tolerance in face of the formaldehyde 

stress. In the third chapter I used a bioinformatics/statistics approach to analyze RNA-seq data and 

found genes involved in response to formaldehyde toxicity.  
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2 Mathematical Modeling of Response to Formaldehyde in 

Methylobacterium extorquens 

2.1 Introduction 

Stochastic processes play a vital role in a single cell. Many reactions depend on a small number of 

molecules, and are thus left sensitive to random fluctuations in their number. Depending upon how 

molecular details lead to higher-level phenotypes, this has the potential to generate significant “noise” 

in biological outcomes. Often, at the population scale this noise can be ignored, and the assumption 

that the whole population can be well described by the average behavior is sufficient. In other cases, 

the effect of noise can be extreme and can lead to two or more distinct phenotypes within the 

population, a phenomenon known as bistability or multistabiltiy.  

Although, in principle, any differences between genetically identical cells are fairly described as 

phenotypic heterogeneity, the majority of studies of heterogeneity have been when there are large 

differences in phenotypes, and there is an assumed advantage for the genotype that can produce their 

phenotypes (Ackermann, 2015). Consider the examples of growth versus genetic resistance, or which 

substrate to utilize, where phenotypic heterogeneity has the potential to allow for survival in stressful 

conditions or allows cells to efficiently switch between nutrients. If a growing population at least 

occasionally produces cells that have increased resistance or distinct substrate use, even if these cells 

grow slowly or not at all, the heterogeneous genotype could survive a stressor or switch to a new 

substrate that a homogeneous one may not. This is the presumed ecological significance for 

competence in Bacillus subtilis. Stochastic variation in expression of ComK (Maamar et al., 2007) or 

phosphorylation of sporulation protein A (Spo0A) determines which cells become competent for DNA 

uptake (Chastanet et al., 2010), which in turn brings up the potential to use DNA as a nutrient and/or 

obtain an allelic variant that allows that genotype to survive. Similarly, yeast cells grown on a medium 

with low glucose and high galactose stochastically use either glucose or galactose. (Biggar and 

Crabtree, 2001).  

One of the most famous examples of bistable heterogeneity in bacterial populations – and amongst the 

most relevant comparisons to the empirical system that I have modeled in this chapter – is bacterial 

persistence in the face of antibiotics. Bacterial persistence refers to a state where, in an isogenic 

population, a rare subpopulation of cells enters dormancy, and because of this dormancy they escape 

the action of an antibiotic (Bigger, 1944). Persister cells are thus physiologically different from the 

rest of the population despite having no genetic mutations (which would be termed “resistance”). This 

phenomenon often involves a toxin/anti toxin system (Korch et al., 2003)  ,  although other mechanisms 



6 

 

 

have been discovered (Van den Bergh et al., 2017). Mathematically, bistable persistence to antibiotics 

has been represented by a simple ODE model that describes the dynamics of sensitive cells and 

persisters (Figure 2.1) (Balaban et al., 2004). 

 

Figure 2.1 - Dynamics of persisters and sensitive cells (Balaban et al., 2004). Persisters are represented 

by p and natural (sensitive) cells by n. The per capita rate of switching the natural cells to persisters is 

denoted by a, and the per capita rate of reverse process is denoted by b. The per capita growth rates of 

natural cells and persisters are denoted by µ𝑛 and µ𝑝, respectively. 

Each of the cell types is assumed to grow at its own rate, and switch between cell types at two different 

rates. Once formulated in this manner, it is possible to explore the potential for a given strategy – a 

genotype with a particular set of parameters – to be selectively favored over another genotype, thereby 

illuminating the ecological regimes that could have selected for the emergence and maintenance of 

heterogeneity (Kussell et al., 2005). Although phenotypic heterogeneity for traits like persistence has 

been studied most extensively in bacteria, there are numerous eukaryotic examples, such as in Candida 

albicans (LaFleur et al., 2006) and Saccharomyces cerevisiae (Bojsen et al., 2016).  

Although most examples of heterogeneity that have been studied involve discrete phenotypes, it is also 

possible that heterogeneity within a population is continuous (Chang et al., 2008; Pisco et al., 2013). 

Phenotypic resistance of HL60 leukemic cancer cells to anti-cancer drugs is one such example. MDR1, 

or multidrug resistance protein, is part of the ABC transporter protein family. Expression of this protein 

has a role in resistance to multiple drugs, which is known as the MDR phenotype in cancer cells (Gillet 

and Gottesman, 2010; Pisco et al., 2013). The expression pattern of MDR1 shows a continuous 

distribution, so phenotypic resistance to anti-cancer drugs could be expressed as a continuous trait 

(Pisco et al., 2013). 

For phenotypic heterogeneity that is continuous, it is more appropriate to use a PDE model, rather than 

an ODE model between discrete categories (Lorenzi et al., 2016). In their model of leukemia, Lorenzi 

et al track the expression level of the drug resistance gene (such as MDR1) in each cell. 

Numerous mechanisms have been proposed to generate significant phenotypic heterogeneity in 

populations (Ackermann, 2015). Perhaps the most common mechanism proposed is stochastic gene 

expression (Elowitz et al., 2002). A promoter in a single cell is often only rarely transcribed from, 
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producing a burst of transcripts, and a corresponding pulse of proteins. This generates variability in 

expression in a single cell with time, as well as between cells at any given moment of time. Simulation 

of gene expression events in a regulatory network showed that the time for accumulation of a 

regulatory protein is stochastic, and thus the level of gene expression within a population with the 

same genetic background is variable (McAdams and Arkin, 1997). In many cases, positive feedback 

loops exist that amplify the effect of stochastic gene expression, thereby leading to expression 

thresholds that, once crossed, generate discretely different cell fates (bistability or multistabiltiy) 

within a genetically homogeneous population (Acar et al., 2005; Hasty et al., 2000; Maamar and 

Dubnau, 2005; Maamar et al., 2007; Raj and van Oudenaarden, 2008; Smits et al., 2005; Süel et al., 

2006; Süel et al., 2007; Weinberger et al., 2005). In addition to positive feedback loops, a double 

negative feedback loop can also lead to bistable or multistable behavior (Ferrell Jr, 2012; Plahte et al., 

1995; Snoussi, 1998; Thomas, 1981). In addition to the effect of noise in gene expression on 

heterogeneity, a theoretical study shows that stochastic portioning of macromolecules in cell division 

could mimic the effect of noise in gene expression (Huh and Paulsson, 2011). Asymmetric segregation 

of protein aggregates have been shown to play a role in ageing of cells and thus phenotypic variability 

within populations (Lindner et al., 2008). Pole age of a cell also has an effect on its size and division 

time. As an example, in Methylobacterium extorquens AM1, cells size increase and division time 

decrease with increasing pole age (Bergmiller and Ackermann, 2011).  

In this project, I have investigated phenotypic heterogeneity in response to an internal metabolic toxin. 

Like the case of cancer, and unlike in bacterial persistence, this heterogeneity is continuous rather than 

discrete. In this chapter, I use dynamic mathematical models in conjunction with experimental data to 

determine how cell death depends on the formaldehyde concentration and the tolerance state of cells. 

Furthermore, I also demonstrated that growth and selection are not sufficient to explain the 

experimental data, and there appears to be different active mechanisms changing the tolerance 

phenotypes under different environmental conditions. The models provide support that there are 

mechanisms such as gene expression or other regulatory events that could play a role in phenotypic 

changes.  

2.2 Empirical model system and background data 

Our model system where we have discovered a novel type of phenotypic heterogeneity involves 

Methylobacterium extorquens PA1, and its response to varying concentrations of a toxin, 

formaldehyde. M. extorquens is an aerobic, facultatively methylotrophic Alphaproteobacterium and 

lives on plants as an epiphyte (Vorholt, 2012). It has been the premier model system to study single-C 

(C1) metabolism for over 60 years. M. extorquens can grow upon C1 substrates, such as methanol and 
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formaldehyde, as well as some multi-carbon substrates, such as succinate. Methanol enters the 

periplasm and it is oxidized by methanol dehydrogenase to formaldehyde. The central carbon and 

energy metabolic pathways of M. extorquens are responsible for the oxidation of formaldehyde in the 

cytoplasm to formate, and for the subsequent fork that allocates formate either to further oxidation to 

carbon dioxide, or incorporation into biomass (Crowther et al., 2008; Marx et al., 2003; Marx et al., 

2005). 

This project began with an experimental quantitative analysis by Dr. Jessica Lee of how formaldehyde 

affects the population dynamics of M. extorquens. An inoculum of M. extorquens PA1 – strain 

CM2730, which is wild-type other than a deletion of the cellulose production locus to prevent 

clumping; (Delaney et al., 2013b) – was taken from a stationary-phase culture, and then cultured in 

media with methanol (15 mM) and different concentrations of externally added formaldehyde. 

Viability was tracked via cfu/ml on plates with just methanol. At low concentrations of formaldehyde 

(<2 mM) no death was observed, whereas at a concentration of 4 mM there was a decline in cell 

viability before growth. At levels of formaldehyde higher than this, the viable cell counts showed a 

log-linear relationship with time, with a slope that increased with elevated concentrations of 

formaldehyde (Figure 2.2). The simple exponential decay of viability matches the kinetics seen for 

antibiotics (e.g. Udekwu et al., 2009). 

 

Figure 2.2 - Dynamics of cells grown on different concentrations of formaldehyde. Left: growing on 

low to medium concentrations of formaldehyde. Right: death dynamics on high concentrations of 

formaldehyde.  

Four hypotheses were proposed to explain this phenomenon. First, cells may have consumed 

formaldehyde as they die, and when the concentration reached a tolerable level, they regrew. This kind 

of phenomenon has been observed for killing with β-lactams, due to the release of β-lactamase into 

the media leading to a decreased level of stressor (Artemova et al., 2015). Second, the regrowth could 

represent cells bearing a genetic mutation making them resistant to this level of formaldehyde. Third, 

cells may have lost the ability to make colonies, but were not completely inviable, a state known in 
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environmental microbiology as viable but not culturable VBNC (Pinto et al., 2015). The subsequent 

increase in cfu/ml could have been due to the return of cells out of the VBNC state to a growing state. 

Fourth, there could have been phenotypic heterogeneity in the population for the ability to grow in the 

presence of formaldehyde. Under this scenario, most of the cells would have died during the first 20 

hours, but a minority of cells could have already been present that were growing during this time, 

ultimately taking over the population.   

The first experiment to distinguish between these possibilities was to track the formaldehyde 

concentration in growth on methanol treated with 4 mM formaldehyde (Figure 2.3). This revealed that 

there was no change in formaldehyde concentration until ~70 h, long after the change in the trajectory 

of cells. This ruled out the first hypothesis that the environment of the cells had improved.  

 

Figure 2.3 - Viability and measured formaldehyde data for growth on 4 mM formaldehyde. Top: 

viability of cells show an initial decline and then regrowth. Bottom: measured formaldehyde shows no 

change in concentration during the course of growth. 

Next, gDNA from the population at the end of 80 hours was prepared and submitted for whole genome 

sequencing. This revealed that no mutations or gene amplification (e.g., (Reams et al., 2012)) occurred 

over this timespan, ruling out the second hypothesis. Furthermore, the ability of the culture to grow on 

4 mM formaldehyde was retested. Using cells taken immediately from 80 hours, these cells could grow 

immediately in the presence of 4 mM formaldehyde. In contrast, if the cells were inoculated into the 
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succinate medium for a full growth cycle and then retested, this ability was lost. These data ruled out 

mutations as an explanation, suggesting that some type of phenotypic change was occurring. 

Two complementary experiments were performed to determine whether all cells slowly recovered 

(hypothesis 3), or if a subpopulation was already growing throughout the experiment (hypothesis 4). 

First, to track the proliferation of cells in liquid media, the culture was treated with fluorescent linker 

dye that stains membranes, and trajectories of cell number and per cell fluorescence were observed by 

flow cytometry. In each generation, the number of cells would double and every cell would become 

half as labeled due to dilution by newly synthesized membrane components. When cells were grown 

on methanol with no formaldehyde (Figure 2.4, 0 mM panel), there was a smooth, unimodal increase 

in cell number and decrease in fluorescence. In contrast, when the culture grew with 4 mM 

formaldehyde, the distribution of cells initially neither increased in number nor exhibited a decrease 

in per cell fluorescent membrane dye. By 37 hours there was, however, a clear subpopulation that 

emerged that was already much less bright than the initial distribution. This subpopulation increased 

in number until it ultimately dominated the distribution.   

 

Figure 2.4 - Fluorescent membrane dye showed presence of a subpopulation in growth on 

formaldehyde. Cell proliferation assay showed that a M. extorquens population exposed to moderate 

levels of formaldehyde (4 mM) has both growing and non-growing subpopulations. Cells were stained 

with fluorescent membrane dye then allowed to grow in the presence of 0, 4, or 20 mM formaldehyde. 

Histograms show per-cell fluorescence of the cells present at each time point. Top, left: media with no 

formaldehyde, all cells undergo doubling, diluting their membrane. Bottom, left: at high concentrations 

of formaldehyde, no cells grow, leaving per-cell fluorescence unchanged. Right: in the presence of 4 

mM formaldehyde, most cells do not grow, but a few do; so a small population with lower per-cell 

fluorescence becomes detectable at 37 hours and grows afterward. 
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The second approach was to follow the growth of single cells using time-lapse video microscopy of 

populations grown on agar pads. This work, performed by Shahla Nemati in the laboratory of Dr. 

Andreas Vasdekis, allowed the morphology and division time of individual cells and their progenies 

to be observed. Cells were treated with either 0 or 2.5 mM of formaldehyde (and 15 mM methanol) 

and trajectories were observed. Nearly every cell grown on methanol without formaldehyde formed a 

colony, with relatively little spread in times of initiation. In contrast, in the population that experienced 

2.5 mM, only 1.97% were able to grow at all (Figure 2.5). For those cells that did grow in the presence 

of 2.5 mM formaldehyde, their doubling times were indistinguishable from the cells grown without 

formaldehyde. Remarkably, no partial growth phenotype was observed. The majority of cells that did 

not form a colony did not elongate, nor show any detectable change in cell morphology.  

 

Figure 2.5 - Time-lapse microscopy showed bimodal (i.e., growth or non-growth) phenotypes in 

response to formaldehyde. Cells were embedded in agar medium with methanol and either 0 mM (top) 

or 2.5 mM (bottom) formaldehyde and monitored for 9 hours (~3 generations). At 0 mM, 256 cells 

were observed and all underwent at least one doubling; at 2.5 mM, 546 cells were observed and 11 

(1.97%) underwent at least one doubling. 

These experiments provide solid evidence for phenotypic heterogeneity in the ability to grow in the 

presence of formaldehyde at levels sufficiently high to cause the majority to die. We call this 

phenomenon phenotypic heterogeneity of tolerance, and emphasize that it is distinct from persistence, 

for the latter describes resistance due to being in a non-growing phenotype, whereas the tolerant cells 

that we have observed grow equivalently to non-tolerant cells in the absence of the stressor. 

Is formaldehyde tolerance in M. extorquens a discrete trait, or continuous? In order to determine the 

shape of the distribution of formaldehyde tolerance, cells were plated onto agar plates with methanol 

(15 mM) and different concentrations of formaldehyde between 1 and 10 mM, at 1 mM increments. 

Observing a colony at a given level of formaldehyde reveals that a subset of cells is tolerant to at least 
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that level of formaldehyde. As such, the measured distribution is cumulative. If the distribution were 

discrete, two (or more) plateaus would be observed across the range of concentrations (Figure 2.6, 

left). In contrast, the data obtained reveal tolerance is continuous, unimodal and approximately 

exponentially decreasing (Figure 2.6, right). This distribution has been assayed many times, and the 

overall shape is highly consistent for a particular condition, but does show subtle differences between 

pre-growth conditions (i.e., methanol vs. succinate, or exponential vs. stationary-phase cells; data not 

shown). 

 

Figure 2.6 - Continuous distribution of tolerance to formaldehyde. Left: in the case of a bimodal 

discrete distribution, two distinct peaks would be observed. Right: observed distribution on agar plates 

containing different concentrations of formaldehyde show a cumulative, continuous and exponentially 

decreasing distribution, confirming tolerance to formaldehyde is continuous rather than discrete.   

Returning to the above experiment of net death transitioning to growth with 4 mM formaldehyde, the 

full spectrum of tolerances was now assessed, rather than just cells that could grow with 0 or 4 mM 

formaldehyde (Figure 2.7). All subpopulations with tolerance level below 4 mM decreased in 

frequency, whereas those above 4 mM increased in frequency. Furthermore, cells with tolerance 

between 5 to 8 mM became detectable over this timescale. Thus, the tolerance distribution is not only 

continuous but also changes shape over the time scale of this experiment.  



13 

 

 

 

Figure 2.7 - Dynamic of tolerance distribution in growth on methanol with 4 mM formaldehyde. 

Subpopulations with tolerance levels below 4 mM decrease in frequency and those with higher 

tolerance levels increase frequency. The data are cumulative; each tolerance level gives the number of 

cells that are able to tolerate at least that concentration of formaldehyde. 

Once the population has achieved high tolerance due to exposure to 4 mM formaldehyde, what occurs 

during the loss of tolerance? An inoculum from the culture at 96 hours was cultured in a medium with 

either methanol or succinate, but no formaldehyde. In the succinate medium, cells in higher tolerance 

levels were rapidly lost, and within 24 hours (~6 doublings) the population returned close to the 

original distribution of tolerance. In contrast, same experiment in the methanol medium revealed that 

tolerance was maintained in all subpopulations (Figure 2.8). Maintaining tolerance in regrowth of the 

selected population on methanol shows that there is hysteresis, where the behavior of a population 

depends on its previous condition (Deris et al., 2013; Igoshin et al., 2008; Savageau, 1999). These 

changes in tolerance could be due to either regulatory or epigenetic changes that shift tolerance levels, 

and/or from demographic changes in the population due to differential death and growth of cells at 

different tolerance levels. 
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Figure 2.8 - Change in tolerance distribution in regrowth on methanol or succinate. The top row shows 

that a selected population grown with formaldehyde preserves its tolerance level in the methanol media 

whereas in succinate media (bottom row) the tolerant subpopulations decline. The data are cumulative, 

such that each tolerance level shows the cells that are able to tolerate at least the given concentration 

of formaldehyde. 

2.3 Model development 

We have already seen that exposing a population of M. extorquens to high concentrations of 

formaldehyde caused death, with an increasing exponential decay rate as the concentration of 

formaldehyde increased. There are subpopulations of bacteria with different tolerance levels to toxicity 

of formaldehyde; tracking the growth in a culture treated with formaldehyde showed a change in the 

distribution of tolerance. In addition, re-growing an already selected population in formaldehyde had 

different consequences in different media. In a methanol environment the cells kept their tolerance to 

formaldehyde, whereas in succinate, cells with high tolerance levels lost their tolerance. I have 

developed a mathematical model to determine how growth, death, and changes in tolerance of 

individual cells affect the distribution of phenotypic tolerance in a population. Using this mathematical 

model, I sought to address two basic questions. First, what is the relationship between the concentration 

of formaldehyde, the phenotypic state of cells, and death rate? Second, is there evidence for movement 

between phenotypic states on the time-scale of any of these experiments? (Figure 2.9) 
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Figure 2.9 - Schematic diagram of growth and phenotypic changes over time (from Dr. Jessica Lee). 

The vertical axis is the time variable in the model. The horizontal axis is the spatial variable x in the 

model that shows the tolerance level. Formaldehyde concentration is shown by dashed line in the top 

panel. In a spike of formaldehyde, cells at the lower concentrations of formaldehyde are not able to 

survive and only those having higher tolerance levels keep growing. When the formaldehyde is gone 

there are two processes that change phenotypic state of cells: diffusion move cells bi-directionally in 

phenotypic space, and advection brings cells to the lower tolerance levels. 

The model tracks concentration of cells (𝑁), methanol (𝑀), succinate (𝑆) and formaldehyde (𝐹) as 

they are utilized by growing cells with Michalis-Menten kinetics in a well-mixed homogeneous 

environment. To capture the continuous phenotypic tolerance, I developed a system of partial 

differential equations (PDEs) with a time variable and a continuous, ‘spatial’ variable 𝑥 corresponding 

to a cell’s phenotypic state. The variable 𝑥 represents the highest concentration of formaldehyde in 

which a cell can grow without death. Boundary conditions for 𝑁(𝑥, 𝑡) are given by: 
𝜕𝑁(0,𝑡)

𝜕𝑥
= 0 and 

𝜕𝑁(𝐿,𝑡)

𝜕𝑥
= 0. The upper boundary (𝐿) was set at 𝐿 =10 as no cell was observed in any experiment with 

tolerance level higher than 10 mM. Cells die at a rate that depends upon their phenotype 𝑥 and the 

formaldehyde concentration. In contrast, the fact that after an initial decline, the population of cells 
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grows at or near typical rates argues that the growth rate does not need to be expressed as a function 

of either 𝐹 or 𝑥. These assumptions lead to the following mathematical model: 

 𝑑𝑆(𝑡)

𝑑𝑡
=  −𝑉𝑚𝑎𝑥𝑠 (

𝑆(𝑡)

𝑆(𝑡) + 𝐾𝑠
) ∫ 𝑁(𝑥, 𝑡)

L

0

𝑑𝑥 
(1) 

 

 𝑑𝑀(𝑡)

𝑑𝑡
=  −𝑉𝑚𝑎𝑥𝑚 (

𝑀(𝑡)

𝑀(𝑡) + 𝐾𝑚
) ∫ 𝑁(𝑥, 𝑡)

L

0

𝑑𝑥 
(2) 

 

 𝑑𝐹(𝑡)

𝑑𝑡
=  −𝑉𝑚𝑎𝑥𝑓 (

𝐹(𝑡)

𝐹(𝑡) + 𝐾𝑓
) ∫ 𝑁(𝑥, 𝑡)𝑑𝑥

L

0

 
(3) 

 

 𝜕𝑁(𝑥, 𝑡)

𝜕𝑡
= 𝑟𝑚

𝑀(𝑡)

𝑀(𝑡) + 𝐾𝑚
𝑁(𝑥, 𝑡) − 𝐻(𝑥, 𝐹)𝑁(𝑥, 𝑡) + 𝐷

𝜕2𝑁(𝑥, 𝑡)

𝜕𝑥2
+ 𝜈

𝜕𝑁(𝑥, 𝑡)

𝜕𝑥
 

(4) 

 

State variables and their units are shown in Table 2.1 and parameters in the model are given in Table 

2.3. Equations 1-3 show changes in concentrations of the substrates: succinate, methanol and 

formaldehyde. Equation 4 shows change in the number of cells when they grow on methanol; in the 

case of growth on succinate, 𝑀 could be replaced by 𝑆 and 𝑟𝑚 by 𝑟𝑠. The function 𝐻(𝑥, 𝐹) describes 

the per capita death rate as a function of tolerance level and concentration of formaldehyde. 

Table 2.1 - Description of state variables and their units in the model.  

State 

variables 

Description Units 

𝑆 Concentration of succinate  𝑚𝑀 

𝑀 Concentrations of methanol  𝑚𝑀 

𝐹 Concentration of formaldehyde  𝑚𝑀 

𝑁 Number of cells per ml of liquid culture  𝑐𝑒𝑙𝑙 𝑚𝑙−1
 

 

To investigate the relationship between concentration of formaldehyde and death rate, I studied two 

extreme hypotheses for how the per capita death rate depends upon tolerance. The first hypothesis is 

that the death rate can be expressed as an absolute threshold, whereby all cells with a value of 𝑥 less 

than the external formaldehyde concentration die at an equal rate, whereas those equal to or greater 
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than this threshold do not die. The second hypothesis is that death can be expressed as gradually 

increasing the farther a cell’s tolerance 𝑥 is below the external formaldehyde concentration. Again, 

cells with values of 𝑥 above the formaldehyde concentration do not die (Figure 2.10). 

 
𝐻1(𝑥, 𝐹) = {

∝ 𝐹     𝑖𝑓 (𝑥 < 𝐹)
0          𝑖𝑓 (𝑥 ≥ 𝐹)

 
(5) 

 

 
𝐻2(𝑥, 𝐹) = {

∝ (𝐹 − 𝑥)    𝑖𝑓 (𝑥 < 𝐹)
0                     𝑖𝑓 (𝑥 ≥ 𝐹)

 
(6) 

 

 

Figure 2.10 - Death function and how it affects the population’s distribution. Left column: the 

horizontal axis shows the tolerance level of cells, and the vertical axis shows the death rate. F1 and F2 

represent two different concentrations of formaldehyde. Right column: simulation of two different 

death functions and how they affect an exponential distribution of cells. Top row: death could be 

expressed as an absolute rate given the concentration of formaldehyde (Equation 5). Bottom row: the 

alternative hypothesis expresses death rate as a difference between a tolerance state and a concentration 

of formaldehyde (Equation 6).  

To investigate how changes in phenotypic state affect the population dynamics, I included two types 

of movement in phenotypic space: diffusion and advection. Random, bidirectional changes in the 

phenotypic state of cells can be expressed with a diffusion operator with 𝐷 as the diffusion coefficient. 

Diffusion spreads cells in both directions (gaining and losing tolerance) in phenotypic space. 



18 

 

 

Advection with advection coefficient 𝜈 moves cells’ tolerance in a single direction; a positive 𝜈 leads 

to lower tolerance while a negative 𝜈 increases tolerance.  

To simplify the model, I make further assumptions regarding the methanol and formaldehyde 

concentration during the growth phase. Data on consumption of formaldehyde shows that the 

formaldehyde concentration is effectively unchanged until ~70 h, whereas the critical change from net 

death to growth occurs at 20 h. As the 𝐾𝑚 for methanol and succinate is small, the methanol 

dehydrogenase (MDH) enzyme and succinate transporter are always effectively saturated during 

growth. With all of the external concentrations effectively unchanged during the key phenomena I seek 

to address, I set S, F and M to be constant in Equations 1, 2 and 3 yielding Equation 7. Throughout the 

rest of the chapter, all results correspond to the simplified model, Equation 7. 

 𝜕𝑁(𝑥, 𝑡)

𝜕𝑡
= 𝑟𝑚𝑁(𝑥, 𝑡) − 𝐻(𝑥, 𝐹)𝑁(𝑥, 𝑡) + 𝐷

𝜕2𝑁(𝑥, 𝑡)

𝜕𝑥2
+ 𝜈

𝜕𝑁(𝑥, 𝑡)

𝜕𝑥
 

(7) 

2.4 Methods 

2.4.1 Converting cumulative data to densities 

As previously discussed, tolerance distributions were generated by plating M. extorquens on different 

concentrations of formaldehyde. Each category gives the number of cells with a given maximum 

tolerance level as observed by plating. These categories are cumulative in the sense that each contains 

the number of cells with that tolerance level and above (i.e., a cell that survives at 4 mM may have 

been able to survive a higher concentration). To calculate the non-cumulative densities at each 

category, differences between the bins in tolerance distribution were calculated as: 

  𝑁(𝑥) = �̂�(𝑥) −  �̂�(𝑥 + ℎ)   (8) 

where 𝑁(𝑥) is the number of cells in calculated densities (i.e., the number of cells that uniquely have 

a given tolerance level, (𝑥). �̂�(𝑥) is the number of cells in the experimental cumulative distribution, 

and ℎ is the step size between the categories in the data.  

Experimental cumulative densities (Figure 2.7 and Figure 2.8) were converted to non-cumulative 

densities (Figure 2.11) using Equation 8.  When grown on moderate concentrations of formaldehyde 

and methanol media, cells transiently lose tolerance from time 2 hours to time 0 and then progressively 

gain tolerance (Figure 2.11, top). The mechanism of this small transient shift is unclear for now, and 

thus we are not modeling this part of the phenomena. Because of this, all of the initial distributions in 

the model refer to time 2 (hours).  
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Figure 2.11 - Non-cumulative densities calculated from taking differences of cumulative densities. 

Top: densities calculated from tolerance change in growth on methanol with 4 mM formaldehyde. 

Bottom: calculated densities from the regrowth on methanol or succinate data with no formaldehyde. 

2.4.2 Initial conditions 

The initial condition for the number of cells with a given tolerance comes from the measured data at 

time 2 hours; (see previous section) however, the limit of detection must be considered. In the 

experiment each spot of liquid culture in the plate is 10 µl. There were 3 spots of per dilution per 

sample. The lowest detectable abundance of cells per sample would be 1 cell in 30 µl, which is 

approximately 33 cells ml-1. I investigated the effect of extending the initial distribution below the 

limit of detection using an exponential distribution (Figure 2.12). The minimum allowed number in 

the exponential fit was set to 0.05 cells ml-1; in the model the volume of the culture is 1 ml and in the 

experiment volume of a flask is 20 ml, so the minimum possible number in extending the distribution 

is 1 cell in 20 ml which equals 0.05 cells ml-1 in the model. As the model tracks a continuous tolerance 

distribution, I interpolated the measured initial tolerance data using cubic interpolation (i.e., low degree 

polynomials in each interval of interpolation to smoothly interpolate the data) with the splinefun() 
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function in R. This results in an initial distribution with a finer resolution set to 0.01 mM differences 

in concentration, resulting in 1001 bins rather than the 11 that were measured (Figure 2.13).  

 

Figure 2.12 - Extending the initial condition beyond the limit of detection. As there is a limit of 

detection in the observations, the actual distribution likely has bins that are below the level of detection 

(horizontal dashed line showing 33 cells). The red bins were added using an exponential fit of the data. 

  

Figure 2.13 - Original distribution and extended distribution. Left: continuous distribution generated 

from the discrete data using cubic interpolation. Right: continuous distribution generated from discrete 

data with added bins from the exponential fit. 

2.4.3 Parameter estimation 

Growth rates and standard errors were estimated by fitting the exponential part of the growth curves 

on either succinate or methanol media. The lmer() function in the lme4 library (Bates et al., 2014) was 

used to account for 3 replicates of each data point. Each data point is a cell number in log scale as the 

response variable, and time as the explanatory variable. The 𝑉𝑚𝑎𝑥 values were calculated to set the time 

for consumption of substrates. The diffusion and advection parameters were estimated using tolerance 

distribution data over time (see supplementary for details on parameter estimation). The optimization 

algorithm for estimating the advection and diffusion parameters maximizes the log likelihood under a 
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linear model using the lm() function in R. Under this model I assumed the error is distributed normally 

between the data and model: 

𝑃(𝑥) =
1

√2𝜋𝜎
𝑒

−(𝑥−𝜇)2

2𝜎2  

The function 𝑃(𝑥) gives the likelihood of the model value 𝑥 given data 𝜇, and the parameter 𝜎 is the 

standard deviation. The log likelihood can be written as: 

𝐿𝑃(𝑥) = − ln(𝜎) − 𝑙𝑛√2𝜋 −
(𝑥 − 𝜇)2

2𝜎2
 

The term 𝑙𝑛√2𝜋 is constant, so for maximization the log likelihood can be rewritten as: 

𝐿𝐿 = − ln(𝜎) −
(𝑥 − 𝜇)2

2𝜎2
 

The above log likelihood is for one observation. The best-fit model values 𝑥�̂� are those that maximize 

the log likelihood of all of the observed data: 

𝑥�̂�  =  argmax𝑥𝑖
(∑ 𝐿𝐿(𝑥𝑖│𝜇𝑖 , 𝜎𝑖)

𝑁

𝑖=𝑖

) 

Here 𝑥𝑖 is the model value and 𝜇𝑖 is the data value. The standard deviation 𝜎𝑖 can be calculated with 

the following equation: 

𝜎𝑖 = 𝑆𝑦√
1

𝑛
+

(𝑥𝑖 − �̅�)2

(𝑛 − 1)𝑆𝑥
2 

where 𝑆𝑦 is the standard error of the data, 𝑛 is the number of categories in data, 𝑥𝑖 is the model value, 

�̅� is the mean of all model values and 𝑆𝑥
2 is the standard error of all model values.  

The hyperbolic arcsin (asinh) transformation was used to reduce skew; this transformation is similar 

to the log transformation, but can accommodate zero values in the data (Johnson, 1949): 

𝑎𝑠𝑖𝑛ℎ(𝑦) = 𝑙𝑜𝑔(𝑦 + (𝑦2 + 1)1/2). 

The log likelihood function was maximized in R using the optim() function in R with the “Nelder-

Mead” method (Nelder and Mead, 1965). Standard errors for the advection and diffusion parameters 

were calculated using the Hessian matrix obtained from the numerical optimization. The Hessian 
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matrix contains the second order partial derivatives of the log likelihood function evaluated at the 

maximum likelihood estimate. See Table 2.3 for parameters estimates.  

2.4.4 Death functions 

To investigate the relationship between the concentration of formaldehyde and viability, populations 

of M. extorquens were cultured in methanol liquid media with different concentrations of 

formaldehyde and viability was tracked on agar plates with no formaldehyde. The death curves show 

an exponential decline of viability with increasing concentrations of formaldehyde (Figure 2.14). 

  

Figure 2.14 - Death curves show an exponential decline in viability with increasing concentrations of 

formaldehyde. Left: viability over time in low concentrations of formaldehyde, dots are the data points 

and dashed lines are the fits. Right: viability in high concentrations of formaldehyde. 

As previously mentioned, I modeled death in two ways (Equations 5 and 6). The first way I modeled 

death assumes that the death rate of all cells with tolerance below the formaldehyde concentration is 

proportional to the formaldehyde concentration, and does not depend on tolerance (Equation 5). Death 

rates in Figure 2.14 were fit to Equation 5 using linear regression with the lm() function in R. I assumed 

that the death rate of cells when there is no formaldehyde (𝐹 = 0 ) is zero (Figure 2.15). This resulted 

in an estimated α=0.189 ± 0.010. 

 

Figure 2.15 - Death rates fitted using the absolute death function. Death rate shows a linear relationship 

with growing concentration of formaldehyde. 
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The second way I modeled death assumes that the death rate of cells depends on both the formaldehyde 

concentration and the cells’ tolerance level (Equation 6). For fitting this equation to death rates, I 

calculated the mean x value of cells from the initial tolerance measurement data. This value was 

obtained using a weighted mean of the continuous distribution (Figure 2.13). Specifically, �̅� =

∫ 𝑓(𝑥)𝑥𝑑𝑥
∞

0
, where 𝑓(𝑥) is the frequency of each tolerance level and 𝑥 is the tolerance level. This 

yielded an estimate �̅� ≈ 0.271 mM. Using linear regression with the lm() function in R, I estimated α 

as: 0.193 ± 0.010.  

2.4.5 Numerical solution of the PDE 

The PDE was solved numerically by vectorized ODEs, where each ODE corresponded to a discrete 

bin within tolerance level of 0.01 mM formaldehyde. A finite difference grid was created using the 

setup.grid.1D() function, and advection and diffusion were calculated using the tran.1D() function, in 

the Reactran package v. 1.4.3.1for R (Soetaert and Meysman, 2012). The vectorized ODEs were solved 

using the ode.1D() function from the package deSolve (Soetaert et al., 2010) in R, with the lsoda 

method (Hindmarsh, 1983). 

2.4.6 Aggregating results of the continuous model to discrete bins 

The numerical results of the PDE give continuous distributions, but the experimental data are only 

measured at discrete tolerance values. To compare the data with the model output, I aggregated the 

modeled tolerance distribution of cells to 10 bins (Figure 2.16 and Figure 2.17). For example, the 

model results corresponding to the subpopulations with tolerance levels of 0 mM to 0.99 mM would 

be aggregated into the 0 mM bin, and the subpopulations with tolerance levels from 1 mM to 1.99 mM 

would be aggregated to the 1 mM bin. 
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Figure 2.16 - Model result of change of tolerance distribution in growth with 4 mM formaldehyde, 

results from the absolute death version. Top: continuous results from numerical solving of PDE. 

Bottom: aggregated results of the continuous solution. 

 

Figure 2.17 - Model result of change of tolerance distribution in growth with 4 mM formaldehyde, 

results from relative death version. Top: continuous results from numerical solving of PDE. Bottom: 

aggregated results of the continuous solution. 
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2.4.7 Likelihood ratio test and model selection 

To determine whether there is an evidence for movement between phenotypic states, I asked whether 

growth and death were sufficient to explain the dynamics of the tolerance distribution, and if not, 

whether there was a support for either random, bidirectional movement (represented by a diffusion 

operator), or a directional movement (represented as advection). Different types of phenotypic 

movements are shown in Table 2.2. 

Table 2.2 - Different phenotypic movements and corresponding mathematical implementation. 

 Advection Diffusion 

Directional movement + - 

Random movement - + 

Both directional and random movement + + 

 

Likelihood ratio test was performed to evaluate models. For likelihood ratio tests, models have to be 

nested; so models with one phenotypic parameter (either advection or diffusion) were compared with 

the null model (no phenotypic movement) and in each scenario (combination of initial conditions and 

death versions) any model that had significant p-value over the null model was compared with a model 

that has both diffusion and advection. The likelihood ratio is given by: 

𝐿𝑅 = −2(𝐿𝐿0 − 𝐿𝐿1) 

where 𝐿𝑅 is the likelihood ratio,  𝐿𝐿0 is the log likelihood from the reduced model and 𝐿𝐿1is the log 

likelihood from a model with additional parameters (full model). Chi-squared tests were preformed to 

evaluate the significance of LR with degrees of freedom given by the difference between the number 

of parameters in the full model and the reduced model. 

2.4.8 AIC calculation  

Likelihood ratio tests were used to determine the best combination of phenotypic movement 

parameters for each death function and initial condition combination. AIC values were used to 

compare the models with different death functions. Specifically, I compared the models with the best 

combination of phenotypic movements obtained from the likelihood ratio tests using AIC. AIC values 

were obtained from the log likelihood values (see 2.4.3):  

𝐴𝐼𝐶 = 2(𝑘 − 𝐿𝐿)  
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where 𝑘 is the number of estimated parameters (Akaike, 1974). In each scenario, the AIC value for the 

null model (no phenotypic movement), a model with advection, a model with diffusion or a 

combination of both advection and diffusion was calculated. The best fit parameters are shown in 

Table 2.3. 

Table 2.3 - Parameters and their values. Value shown by * shows the estimate for diffusion in the 

regrowth on succinate media. 

Parameters Description Value Units Reference  

 𝐾𝑚 Half concentration of methanol where 

𝑘𝑐𝑎𝑡  of MDH is half maximum 

0.02 𝑚𝑀 (Anthony 

and 

Zatman, 

1964) 

 𝐾𝑠 Half concentration of succinate where 

𝑘𝑐𝑎𝑡  of succinate transporter is half 

maximum 

0.003 𝑚𝑀 (McALLIS

TER and 

Lepo, 

1983) 

𝐾𝑓 Concentration of formaldehyde where 

𝑘𝑐𝑎𝑡 of FAE is half maximum 

0.2 𝑚𝑀 (Vorholt et 

al., 2000) 

𝛼 Formaldehyde dependent death rate 0.189 𝑚𝑀−1ℎ−1
 This study 

𝑟𝑚 Growth rate in methanol media  0.195 ℎ−1
 This study 

𝑟𝑠  Growth rate in succinate media 0.267 ℎ−1
 This study 

𝑉𝑚𝑎𝑥𝑚 Combined parameter of MDH 

concentration and its specific activity 

2.59×10-8 𝑚𝑀𝑚𝑙ℎ−1𝑐𝑒𝑙𝑙−1
 This study 

𝑉𝑚𝑎𝑥𝑠 Combined parameter of succinate 

transporter concentration and its 

specific activity 

9.09×10-9
 𝑚𝑀𝑚𝑙ℎ−1𝑐𝑒𝑙𝑙−1

 This study 

𝑉𝑚𝑎𝑥𝑓 Combined parameter of FAE 

concentration and its specific activity 

1.32×10-8
 𝑚𝑀𝑚𝑙ℎ−1𝑐𝑒𝑙𝑙−1

 This study 

𝜈 Advection coefficient 0.269 𝑚𝑀ℎ−1
 This study 

(estimated) 

𝐷 Diffusion coefficient 0.0278-

0.0233*
 

𝑚𝑀2ℎ−1
 This study 

(estimated) 
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2.5 Results 

2.5.1 Bimodality of tolerance distribution during transition from net death to net growth 

suggests death is an absolute cutoff with tolerance level 

The model was assessed to understand the role of death (Figure 2.10) in predicting changes in the 

tolerance distribution during growth on methanol with formaldehyde (Figure 2.7). Results from the 

PDE model for both absolute and relative death versions with estimated parameters from death curves 

and no phenotypic movement (advection or diffusion) were simulated and compared with the data. 

The absolute death version qualitatively better captured the disruptive distribution seen in the data; 

cell number in tolerance levels below 4 mM showed a rapid decline and 4 mM subpopulation increased 

in number that resulted in a bimodal distribution. In contrast, the relative death function maintained a 

single-peaked distribution that only gently declined below 4 mM. Because a cell's death rate is 

proportional to the difference between its tolerance level and the external concentration of 

formaldehyde, cells with tolerance just below 4 mM grew only slightly slower than those with 

tolerance above 4mM (Figure 2.18). Although the absolute death version captured the qualitative 

features of the data, without advection or diffusion, the bins at moderate tolerance levels (bins 1, 2, 

and 3 mM) were lower than seen in the data. This is particularly evident by looking to the 16 hours 

time-point (Figure 2.19).  
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Figure 2.18 - Model results are aggregated into discrete bins to be compared with the data. Top: 

absolute death version. Bottom: relative death version. Absolute death version captures bi-modal peaks 

of the distribution (i.e. time-points 12 hours and 16 hours). Relative death version captures the spread 

between the bins. 

 

Figure 2.19 - Comparison between the result of the model and the data at time 16 hours in linear scale. 

Left: result of the absolute death version, the model is able to capture two peaks but not the spread 

between those. Right: result of the relative death version, the model is not able to capture two peaks, 

but in contrast to the absolute version, it is able to produce the spread between the bins. 
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2.5.2 Diffusion is sufficient to explain the tolerance shift in growth with formaldehyde 

Data in growth on methanol with formaldehyde (Figure 2.7) suggest that in addition to growth and 

selection by death, there is a mechanism to spread the cells between different tolerance levels. To 

investigate the effect of adding phenotypic movements to different death functions, diffusion and 

advection parameters were estimated from the growth data in both death versions and two versions of 

initial conditions (without extension and with extension beyond the limit of detection). In all cases, the 

estimate for advection was very small. Estimation of parameters and model statistics are shown in 

Table 2.5. The absolute death model with added diffusion had the highest R2 values. In case of the 

initial condition without extension, adding advection had a significant advantage (p-value: 0.0167); 

but in case of the initial condition with extension, adding advection did not make the model better (p-

value: 0.194). The model with added diffusion and extended initial condition had the lowest AIC 

(223.82). The selected model for the growth on methanol with 4 mM formaldehyde is shown below 

(Equation 9): 

 𝜕𝑁(𝑥, 𝑡)

𝜕𝑡
= 𝑟𝑚𝑁(𝑥, 𝑡) − 𝐻(𝑥, 𝐹)𝑁(𝑥, 𝑡) + 𝐷

𝜕2𝑁(𝑥, 𝑡)

𝜕𝑥2
 

(9) 

As it was shown in the results with no phenotypic movement, the relative death function lacked the 

bimodal distribution in tolerance, and the inclusion of diffusion did not change this result. In contrast, 

adding diffusion to the model with the absolute death function maintained the bimodal distribution and 

captured much of the spread in the middle tolerance bins (1, 2, 3 mM) seen in the data (Figure 2.20). 
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Figure 2.20 - Results of different death functions with diffusion included in the model. Top: the 

tolerance distribution of viable cells from the absolute death version of the model with diffusion. The 

distribution shows bimodality at 16 hours. Bottom: the tolerance distribution of viable cells from the 

relative death version of the model with diffusion. The distribution lacks bimodality at 16 hours and 

has too few highly tolerant cells at 16 and 20 hours. 

2.5.3 Advection is necessary to explain the shifting back of tolerance in regrowth on 

succinate medium, but not methanol medium 

Data on regrowth of selected tolerant subpopulation in succinate media (Figure 2.8) suggests there 

should be a mechanism for cells with high tolerance levels to lose their tolerance. In this section, I 

investigate the ability of the model without any phenotypic movement to explain the regrowth data on 
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methanol and succinate. Simulating regrowth in methanol (Figure 2.21, top, methanol/model) showed 

that growth is sufficient to match the data (Figure 2.21, top, methanol/data). Using the model to 

simulate the regrowth on succinate failed to capture the cells losing tolerance (Figure 2.21, top).  

The diffusion and advection parameters were estimated separately using data from each condition (i.e., 

regrowth on methanol or succinate). Estimation of parameters and model statistics are shown in Table 

2.6. In the methanol environment, the null model had the lowest AIC (98.38) and phenotypic 

movement was not significant. In the succinate environment, the model with both advection and 

diffusion had the lowest AIC (115.68). Equations 10 and 11 show the regrowth in methanol and 

succinate media respectively, since there is no formaldehyde and consequently no death in the 

regrowth experiment, the death terms are not included in the equations. The tolerance distribution for 

the best-fit models are shown in Figure 2.21. 

 𝜕𝑁(𝑥, 𝑡)

𝜕𝑡
= 𝑟𝑚𝑁(𝑥, 𝑡) 

 

(10) 

 𝜕𝑁(𝑥, 𝑡)

𝜕𝑡
= 𝑟𝑠𝑁(𝑥, 𝑡) + 𝜈

𝜕𝑁(𝑥, 𝑡)

𝜕𝑥
+ 𝐷

𝜕2𝑁(𝑥, 𝑡)

𝜕𝑥2
 

 

(11) 
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Figure 2.21 - Advection is necessary to capture the regrowth on succinate. Top: result of the model 

with no phenotypic movement; model lacks the losing tolerance in succinate media. Bottom: model 

results with added advection in the succinate media. 

2.6 Discussion 

The mathematical model developed in this project elucidates the effect of different death functions on 

shaping the tolerance distribution in growth on methanol treated with formaldehyde, the presence of a 

random bidirectional phenotypic movement (diffusion) in spreading cells to different tolerance levels, 

and the necessity for a mechanism to lose the tolerance in regrowth on the succinate media (advection). 

One of the key points from our model is that death rate shows a sharp threshold between tolerant and 
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sensitive cells. Here, I have considered two extreme versions of death functions, but many other 

mathematical forms could be proposed to relate a toxin’s concentration to death rate. For example, a 

saturation version of death is common in modeling antibiotic death curves, also known as Zhi models 

(Zhi et al., 1986).  As we have seen already, relative death rate looks similar to the effect of diffusion 

in spreading the tolerance, but it fails to generate a sharp bimodal curve.  

The finding that the data are best approximated with an absolute death function, suggesting that there 

should be a sharp threshold between survival and death (Figure 2.3). This border between death and 

viability is discrete, although the threshold of formaldehyde that a given cell can withstand is 

continuous. This threshold may be due to the nature of formaldehyde toxicity. Formaldehyde is a 

potent damaging agent which, in contrast to antibiotics, does not have specific targets, and damages 

all macromolecules, including proteins. The other difference is that formaldehyde serves as a carbon 

source for cells. If a cell’s tolerance level is high enough to overcome formaldehyde toxicity, they can 

grow. But if formaldehyde’s consumption machinery is not able to overcome toxicity, formaldehyde 

damages macromolecules including enzymes that are necessary for its consumption. This situation 

generates a positive feedback loop, where cells that begin to fail to deal with formaldehyde toxicity 

will only become less able to manage this potent stressor (similar to work in antibiotic resistance, Deris 

et al., 2013).  

In my model, I simply used 𝑥 as the tolerance level as it manifests as a cellular phenotype, but it 

remains unclear what intracellular differences lead to 𝑥. Tolerance could be a simple function of the 

concentration of a single type of macromolecule in the cell or could depend upon many components 

in a more complex manner. Formaldehyde consumption involves more than one component (Marx et 

al., 2003), so tolerance level could be the joint effect of two or more macromolecules that we observe 

as one dimension of cellular phenotype in the data. One of the fundamental aspects of the model is the 

assumption of a continuous distribution of phenotypes. In this model, transitions between phenotypic 

states occur only locally; no jumps in phenotypes are permitted. This assumption is not necessarily 

true. If we assume a phenotypic state is the result of a regulatory event, the stochastic nature of gene 

regulation could lead to jumps in phenotype. Other model formulations such as integral projection 

models could account for more general transitions including jumps (Merow et al., 2014).  

For changing the phenotypic state, I used simple and convenient (Perthame, 2015) mathematical 

forms: advection and diffusion. These processes have different interpretations, depending upon what 

the variable x represents (e.g., tolerance). If we consider the tolerance state to be the result of a 

macromolecule or a combination of macromolecules, diffusion could be seen as unequal inheritance 

of macromolecules by cells in a population. Advection could be the result of degradation or generation 
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of a macromolecule, or down-regulation or up-regulation of genes encoding macromolecules 

production. 

In different environmental conditions, we saw different processes dominate (Table 2.4). Without 

formaldehyde, like regrowth on succinate, advection dominates diffusion. It is important to note that 

there should be always a baseline level of diffusion, as advection only would collapse the distribution 

in the lower end of tolerance space. In the medium formaldehyde case, like regrowth on methanol, 

cells maintain their tolerance level even after recovering from formaldehyde stress. This means that, 

although methanol alone is not shifting the distribution to higher levels, it is able to keep the 

distribution at high levels of tolerance. This is an example of hysteresis, where behavior of a population 

depends on its previous condition (Deris et al., 2013; Igoshin et al., 2008; Savageau, 1999). In the high 

formaldehyde scenario, diffusion dominates advection and cells bi-directionally move in tolerance 

space.  

Table 2.4 - Different environmental conditions and corresponding population’s response. 

No formaldehyde Medium formaldehyde High formaldehyde 

ν>> D Maintaining tolerance level D >> ν 

 

2.7 Supplementary materials 

2.7.1 Estimating parameters 

2.7.1.1 Estimating growth rate on succinate media 

The growth rate on succinate has been calculated from growth curves using simple linear regression. 

Figure 2.22 shows the experimental growth curves on 3.75 mM of succinate with the fitted growth 

rate. Figure 2.23 shows the residuals of the fit. Estimated growth rate 𝑟𝑠 from time 7.5 to 16 is 0.267 ±

 0.005 . 



35 

 

 

 

Figure 2.22 - Fitting growth rate on 3.75 mM succinate with three replicates. The distance between the 

two vertical lines was used to fit the growth rate; the dashed line shows the fitted line from the 

estimated growth rate. 

 

Figure 2.23 - Residuals of succinate growth fit.  

2.7.1.2 Estimating growth rate in methanol media 

As above for succinate media, the growth rate in methanol media can be calculated from growth 

curves. Figure 2.24 shows the experimental growth curves on 15 mM methanol and the fitted growth 

rate. Figure 2.25 shows the residuals of fitting. Estimated growth rate 𝑟𝑚 is 0.195 ± 0.001. 
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Figure 2.24 - Fitting the growth rate on 15mM methanol. The distance between the two vertical lines 

was chosen to fit the exponential growth rate. The dashed line shows the fit. 

 

Figure 2.25 - Residuals of the methanol fit.  

2.7.1.3 Calculation of 𝑉𝑚𝑎𝑥𝑠 

In order to analytically solve for the succinate utilization rate as a function of the growth rate, I 

simplified the two equations of 
𝑑𝑆(𝑡)

𝑑𝑡
 and 

𝑑𝑁(𝑡)

𝑑𝑡
 to find 𝑉𝑚𝑎𝑥𝑠. For the exponential part of the growth, 

the succinate concentration is very high, thus we can approximate the 
𝑑𝑆(𝑡)

𝑑𝑡
 and 

𝑑𝑁(𝑡)

𝑑𝑡
 equations: 

𝑆(𝑡)

𝑆(𝑡) + 𝐾𝑠
≈ 1 

So I can rewrite the 
𝑑𝑆(𝑡)

𝑑𝑡
 and 

𝑑𝑁(𝑡)

𝑑𝑡
 as follows: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝑉𝑚𝑎𝑥𝑠

𝑆(𝑡)

𝑆(𝑡) + 𝐾𝑠
𝑁(𝑡) ≈ −𝑉𝑚𝑎𝑥𝑠𝑁(𝑡) 
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𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟𝑠

𝑆(𝑡)

𝑆(𝑡) + 𝐾𝑠
𝑁(𝑡) ≈ 𝑟𝑠𝑁(𝑡) 

The solution of 𝑁(𝑡) could be written as: 

𝑁(𝑡) = 𝑁0𝑒𝑟𝑠𝑡 

Plugging the solution above for 𝑁(𝑡) into the 
𝑑𝑆(𝑡)

𝑑𝑡
 equation and integrating yields: 

∫ 𝑑𝑆(𝑡) = ∫ −𝑉𝑚𝑎𝑥𝑠 𝑁0𝑒𝑟𝑠𝑡𝑑𝑡 

𝑆(𝑡) = 𝑆0 −
𝑉𝑚𝑎𝑥𝑠𝑁0𝑒𝑟𝑠𝑡

𝑟𝑠
 

𝑉𝑚𝑎𝑥𝑠 =
𝑒−𝑟𝑠𝑡𝑟𝑠(𝑆0 − 𝑆(𝑡))

𝑁0
 

In the equation above 𝑆(𝑡) = 𝐾𝑠 = 0.003, 𝑆0 = 3.75, 𝑟𝑠 = 0.267. To calculate 𝑁0, the initial OD600 

measurement was converted to viability by utilizing a linear relationship between OD600 and viability. 

The relationship between OD600 and viability is shown in Figure 2.26. From linear regression between 

the viability and OD600 we have: 𝐶𝐹𝑈 = (5.17 ± 0.10)108 × 𝑂𝐷600. 

 

Figure 2.26 - OD600 and number of viable cells show a linear relationship. 

For calculating 𝑉𝑚𝑎𝑥𝑠 we need to know the time that the culture reaches stationary phase (𝜏𝑠). This 

time interval was selected as when the OD600 emerges above the noisy background levels to the point 

when the culture saturates (Figure 2.27). The time from the beginning of the culture to the stationary 

phase is 𝜏𝑠. The initial noisy part of the growth was not considered as part of 𝜏𝑠. The first vertical line 

is at 5.316 hours and the second line is at 18.371 hours. The difference between these two lines is 𝜏𝑠 =

18.371 − 5.316 = 13.055 ± 0.567. 
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Figure 2.27 - Growth on 3.75 mM succinate. The time from the end of the noisy initial period of growth 

to the stationary phase is 𝜏𝑠. The distance between the two vertical lines is 𝜏𝑠 

The initial OD600 is the mean of replicates 1 and 3 at the beginning of 𝜏𝑠 which is 6.527 × 10−3. The 

initial population in terms of 𝐶𝐹𝑈 = 6.527 × 10−3 × 5.17 × 108 ≈ 3.37 × 106. In our equation, 

𝑡 = 𝜏𝑠.  Solving the equation for 𝑉𝑚𝑎𝑥𝑠 yields: 

𝑉𝑚𝑎𝑥𝑠 =
𝑒−𝑟𝑠𝑡𝑟𝑠(𝑆0 − 𝑆(𝑡))

𝑁0
 

𝑉𝑚𝑎𝑥𝑠 =
𝑒−0.267×13.055 × 0.267(3.75 − 0.003)

3.37 × 106
≈ 9.09 × 10−9 

Simulation of growth on 3.75 mM succinate, using the calculated value for 𝑉𝑚𝑎𝑥𝑠, is shown in Figure 

2.28. 

 

Figure 2.28 - Simulated growth on 3.75mM succinate. The dashed line shows the fit from the model  
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2.7.1.4 Calculation of 𝑉𝑚𝑎𝑥𝑚 

Similar to the succinate equation, we can simplify and write the general solution of 𝑀(𝑡) as follows: 

𝑀(𝑡)

𝑀(𝑡) + 𝐾𝑚
≈ 1 

𝑑𝑀(𝑡)

𝑑𝑡
= −𝑉𝑚𝑎𝑥𝑚

𝑀(𝑡)

𝑀(𝑡) + 𝐾𝑚
𝑁(𝑡) ≈ −𝑉𝑚𝑎𝑥𝑚𝑁(𝑡) 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟𝑚

𝑀(𝑡)

𝑀(𝑡) + 𝐾𝑚
𝑁(𝑡) ≈ 𝑟𝑚𝑁(𝑡) 

which has solution 

𝑁(𝑡) = 𝑁0𝑒𝑟𝑚𝑡 

Plugging the solution for 𝑁(𝑡) into the 
𝑑𝑀(𝑡)

𝑑𝑡
 equation and integrating yields: 

∫ 𝑑𝑀(𝑡) = ∫ −𝑉𝑚𝑎𝑥𝑚 𝑁0𝑒𝑟𝑚𝑡𝑑𝑡 

𝑀(𝑡) = 𝑀0 −
𝑉𝑚𝑎𝑥𝑚𝑁0𝑒𝑟𝑚𝑡

𝑟𝑚
 

𝑉𝑚𝑎𝑥𝑚 =
𝑒−𝑟𝑚𝑡𝑟𝑚(𝑀0 − 𝑀(𝑡))

𝑁0
 

To calculate 𝜏𝑚 or time for consumption of methanol from the beginning of the experiment, this 

quantity equals to the 𝑡 in the equation above. The issue with methanol growth data, however, is that 

methanol is volatile, and thus both depletes some wells, and allows others to continue to grow due to 

cross-well gas transfer. This prevents direct use of the time of consumption.  

I also calculated 𝜏𝑚 using an alternative approach. If OD600 at the beginning of the succinate and 

methanol growth is the same, then the time for consumption of a substrate has an inverse relationship 

with the growth rate. Thus, I can write:  

𝜏𝑚 = 𝜏𝑠

𝑟𝑠

𝑟𝑚
 

This implies: 

𝜏𝑚 = 13.057
0.267

0.195
= 17.878 
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Thus, in the 𝑀(𝑡) equation above, 𝑀(𝑡) = 𝐾𝑚 = 0.02, and 𝑀0 = 15. The mean of replicates 1 and 3 

at time 9.646 hours is 6.681 × 10−3, which is the nearest OD600 to the initial OD600 of the succinate 

culture. With these values, the 𝑁0 in terms of the CFU is 6.681 × 10−3 × 5.17 × 108 ≈ 3.45 ×

106, 𝑡 = 𝜏𝑚 = 17.878 and 𝑟𝑚 = 0.195. 

𝑉𝑚𝑎𝑥𝑚 =
𝑒−𝑟𝑚𝑡𝑟𝑚(𝑀0 − 𝑀(𝑡))

𝑁0
 

𝑉𝑚𝑎𝑥𝑚 =
𝑒−0.195×17.878 × 0.195(15 − 0.02)

3.45 × 106
= 2.59 × 10−8 

Simulating growth on 15 mM succinate using the calculated value for 𝑉𝑚𝑎𝑥𝑚 is shown in Figure 2.29. 

 

Figure 2.29 - Simulated growth on 15mM methanol. The dashed line shows the fit. In the data, cells 

grow for a longer period of time than in the model, as there is some residual methanol transferred 

between wells. The simulation result is consistent with a previous study (Delaney et al., 2013a).  

2.7.1.5 Calculation of 𝑉𝑚𝑎𝑥𝑓 

Since in all of the experiments involving formaldehyde, growth happens using methanol as a substrate, 

I use the 
𝑑𝑁(𝑡)

𝑑𝑡
 equation for the methanol case as it was shown earlier: 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟𝑚

𝑀(𝑡)

𝑀(𝑡) + 𝐾𝑚
𝑁(𝑡) 

Since 𝑀(𝑡) and 𝐹(𝑡) are not changing during most of the growth, I re-write the 
𝑑𝐹(𝑡)

𝑑𝑡
 equation as: 

𝑑𝐹(𝑡)

𝑑𝑡
≈ −𝑉𝑚𝑎𝑥𝑓𝑁(𝑡) 

Plugging the 𝑁(𝑡) solution in the equation above yields: 
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∫ 𝑑𝐹(𝑡) = ∫ −𝑉𝑚𝑎𝑥𝑓𝑁0𝑒𝑟𝑚𝑡𝑑𝑡 

𝐹(𝑡) = 𝐹0 −
𝑉𝑚𝑎𝑥𝑓𝑁0𝑒𝑟𝑚𝑡

𝑟𝑚
 

𝑉𝑚𝑎𝑥𝑓 =
𝑒−𝑟𝑚𝑡𝑟𝑚(𝐹0 − 𝐹(𝑡))

𝑁0
 

In this equation, 𝐹(𝑡) = 𝐾𝑓 = 0.2, 𝐹0 = 1, I need 𝑁0 and the first positive OD600 number is 0.002 at 

time 3.5 hours in the OD600 plot (Figure 2.30). 

 

Figure 2.30 - Growth on 15 mM methanol treated with 1 mM formaldehyde. The first positive OD600 

number is at time 3.5 hours. 

According to the formaldehyde assay (via Nash), it takes 16 hours for a culture to consume 

formaldehyde. The parameters were calculated as 𝑁0 = 0.002 × 5.17 × 108 = 1.034 × 106, 𝑡 =

16 − 3.5 = 12.5, 𝑟𝑚 = 0.195, and  𝑉𝑚𝑎𝑥𝑓 =
𝑒−0.195×12.50.195(1−0.2)

1.034×106 = 1.32 × 10−8. 

Using these parameter values, simulation of consumption of formaldehyde and experimental data are 

shown in Figure 2.31. 
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Figure 2.31 - Formaldehyde measurement data and fit. 

2.7.1.6 Alternative way of calculating 𝑉𝑚𝑎𝑥𝑓 

According to the experimental data (Figure 2.32) it takes 84 hours for formaldehyde to decrease from 

4 mM (𝐹0) to 0.12 mM.  

 

Figure 2.32 - Viability and Nash assay data for growth on 4mM formaldehyde. Top: viability over 

time for different tolerant populations. Bottom: Nash assay data for consumption of formaldehyde  

After 24 hours, all of the cells are tolerant to 4 mM formaldehyde. The mean of the three replicates for 

all cells at time 24.5 is 6626.263. The time for consumption of formaldehyde, starting from this point 

is: 84 − 24.5 = 59.5. Thus, 𝑉𝑚𝑎𝑥𝑓 can be written as: 
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𝑉𝑚𝑎𝑥𝑓 =
𝑒−𝑟𝑚𝑡𝑟𝑚(𝐹0 − 𝐹(𝑡))

𝑁0
=

𝑒−0.195×59.5 × 0.195(4 − 0.12)

 6626.263
≈ 1.04 × 10−9 

The modeled formaldehyde concentration using the calculated  𝑉𝑚𝑎𝑥𝑓(1.04 × 10−9) is shown in 

Figure 2.33. 

 

Figure 2.33 - Formaldehyde measurement data (red) and simulated result using estimated 𝑉𝑚𝑎𝑥𝑓  

(dashed line). Left: 4 mM formaldehyde measurement data. Right: 1 mM formaldehyde measurement 

data.  

Comparison of the result with 𝑉𝑚𝑎𝑥𝑓 calculated from the 1 mM formaldehyde measurement (1.32 ×

10−8) is shown in Figure 2.34.  

 

Figure 2.34 - Formaldehyde measurement (red) and simulated result using estimated 𝑉𝑚𝑎𝑥𝑓  (dashed 

line). Left: 4 mM formaldehyde measurement data. Right: 1 mM formaldehyde measurement data. 

2.7.1.7 Estimation of diffusion and advection forward on growth data 

The diffusion and advection parameters for the growth experiment, separately or in combination, were 

estimated, and log likelihood, R2 and p-values were calculated for different death functions and initial 

conditions. Values are shown in Table 2.5.  
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Table 2.5 - Estimation of phenotypic movement parameters (diffusion and advection) for the growth 

in 4 mM formaldehyde scenario. Estimates of the parameters and their standard errors, log likelihood 

(LL), AIC, R2 values, and p-values calculated from the likelihood ratio test are shown in the table 

below. The filled cell with blue color shows the best model.  

Initial 

condition  

Parameter 

choice  

Absolute death rate  Relative death rate  

IC without 

extension  

Null model  LL= -140.68, AIC=281.36, 

R2=0.820 

LL= -140.97, AIC=281.93, 

R2=0.819 

Estimating ν 

only  

ν=3.31E-3±3.24E-3, D=0, LL= 

-137.15, AIC=276.29, 

R2=0.840, p-value vs null = 

7.84E-3 

ν=4.22E-2±1.33E-2, D=0, LL= -

139.28, AIC=280.56, R2=0.829 

p-value vs null = 6.63E-2 

Estimating D 

only  

ν=0, D=3.15E-2±5.38E-3, LL=-

112.80, AIC=227.61, R2=0.929, 

p-value vs null = 8.22E-14 

ν=0, D=5.71E-3±2.11E-3, LL= -

130.41, AIC=262.82, R2=0.872, 

p-value vs null = 4.33E-6 

Estimating ν 

and D 

ν=8.35E-2±3.57E-2, D=6.36E-

2±1.80E-2, LL=-109.94, 

AIC=223.88, R2=0.936, p-value 

vs D = 1.67E-2 

ν=2.06E-1±5.97E-2, D=8.45E-

2±3.31E-2, LL= -122.60, 

AIC=249.20, R2=0.902, p-value 

vs D = 7.76E-5 

IC with 

extension  

Null model  LL= -128.74,  AIC=257.49, 

R2=0.879 

LL= -129.32,  AIC=258.63, 

R2=0.877 

Estimating ν 

only 

ν=2.91E-3±2.09E-3, D=0, LL= 

-123.40, AIC=248.81, 

R2=0.899, p-value vs null = 

1.08E-3 

ν=2.44E-2±1.89E-2, D=0, LL= -

128.58, AIC=259.16, R2=0.880, 

p-value vs null = 2.25E-1 

Estimating D 

only 

ν=0, D=2.78E-2±6.40E-3, LL=-

110.91, AIC=223.82, R2=0.933, 

p-value vs null = 2.34E-9 

ν=0, D=4.25E-3±3.60E-3, LL= -

128.07, AIC=258.13, R2=0.882, 

p-value vs null = 1.14E-1 

Estimating ν 

and D 

ν=5.20E-2±3.83E-2, D=5.00E-

2±1.85E-2, LL=-110.07, 

AIC=224.14, R2=0.935, p-value 

vs D = 1.94E-1 

ν=1.90E-1±6.30E-2, D=7.77E-

2±3.42E-2, LL= -123.09, 

AIC=250.19, R2=0.900, p-value 

vs D = 1.61E-3 
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2.7.1.8 Estimation of diffusion and advection backward on regrowth data 

For the re-growth experiment, diffusion and advection parameters were estimated separately or in 

combination, and log likelihood, R2 and p-values were calculated for either the methanol or the 

succinate case. Values are shown in Table 2.6.  

Table 2.6 - Estimation of phenotypic movement parameters (diffusion and advection) for the re-growth 

scenario. Estimates of the parameters and their standard errors, log likelihood (LL), AIC, R2 values, 

and p-values calculated from the likelihood ratio test are shown in the table below. The filled cells 

with blue color show the best models. 

Parameter choice  Methanol  Succinate   

Null model  LL= -49.19, AIC=98.38, 

R2=0.996 

LL= -110.06, AIC=220.13, 

R2=0.81 

Estimating ν only   ν= 1.31E-3±5.60E-4, D=0, 

LL= -49.11, AIC=100.23, 

R2=0.996, p-value vs null = 

1.00 

ν= 1.63E-1±3.80E-3, D=0, 

LL= -68.44, AIC=138.88, 

R2=0.981, p-value vs null = 

0.00 

Estimating D only  ν= 0, D=5.18E-6±3.00E-4, 

LL= -49.19, AIC=100.38, 

R2=0.996, p-value vs null = 

9.69E-1 

ν= 0, D=4.34E-19±8.18E-4, 

LL= -110.06, AIC=222.13, 

R2=0.812, p-value vs null = 

1.00 

Estimating ν and D ν= 5.17E-4±6.26E-4, 

D=1.97E-10±2.97E-4, LL= -

49.16, AIC=100.32, R2=0.996, 

p-value vs ν = 1.00 

ν= 2.69E-1±2.61E-2, 

D=2.33E-2±7.96E-3, LL= -

56.84, AIC=115.68, R2=0.990, 

p-value vs ν = 1.47E-6 
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3 Analyzing Gene Expression to Understand the Response of M. 

extorquens to the Toxicity of Formaldehyde 

3.1 Introduction 

Stressors in biological systems can have multiple layers of action. They can have single or numerous 

molecular targets, each of which may affect different cellular processes, and ultimately the 

consequences can radiate throughout the whole cell. Antibiotics, for example, inhibit particular 

proteins, which themselves are involved in the synthesis of protein, DNA or cell walls (Kohanski et 

al., 2010). Ultimately, this leads to a slowing or cessation of growth. On the other hand, stressors such 

as heat, osmotic pressure, radioactive radiation, pH change, metals, or aldehydes do not have specific 

targets; all of these examples cause proteins to misfold. Although there are still layers to the response 

– the proteins that are misfolded, and the processes affected by them – both levels are broad, with 

many proteins and processes being affected simultaneously.  

In Methylobacterium extorquens, an internal stressor – formaldehyde – is generated during the growth 

on single-carbon compounds such as methanol. Formaldehyde is generated and consumed as a central 

intermediate at a rate of  ~2 mM/s (Vorholt et al., 2000). M. extorquens is able to tolerate formaldehyde 

in low concentrations, but at high concentrations formaldehyde is toxic to the cell (Marx et al., 2003). 

Furthermore, growth of wild-type M. extorquens PA1 on formaldehyde is only possible at 

concentrations of ~1 mM.  

Experimental evolution of M. extorquens PA1 on ever-increasing concentrations of formaldehyde 

uncovered a novel protein, EfgA, which appears to be critical to the stress-response system for 

formaldehyde (Nayak et al., in prep). All three replicate populations ultimately grew on 20 mM 

formaldehyde, and from genome sequencing and subsequent targeted sequencing, it became clear that 

the first mutation in all cases occurred in the DUF336 domain of a gene with an unknown function. 

DUF336 domains mainly occur in genes of unknown function, but there is one characterized homolog 

(HbpS) that is a sensor of oxidative damage (Bogel et al., 2009; de Orué Lucana et al., 2009; Ortiz de 

Orué Lucana et al., 2016). This gene was named efgA for enhanced formaldehyde growth. It was 

immediately noted that close homologs to efgA are exclusively found in methylotrophic bacteria, 

cementing the idea that this gene is ecologically relevant to their specific metabolism. Genetic analyses 

revealed that the evolved efgA alleles were all loss-of-function mutations, and thus even deleting efgA 

permitted growth on formaldehyde. On the other hand, evidence for a physiological benefit of EfgA 

was found when methanol grown cells were shocked with high concentrations of formaldehyde (30 
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mM); here, the ΔefgA strain had decreased survival when compared to the WT, demonstrating it was 

beneficial during acute formaldehyde stress. 

Subsequent analysis of EfgA revealed that it acts by directly binding formaldehyde, which causes it to 

interact with peptide deformylase and inhibit translation. A second round of experimental evolution to 

formaldehyde growth, with a larger number of populations, provided clues that EfgA may interact with 

the ribosome. While the majority of these populations happened upon additional efgA alleles, genome 

sequencing revealed that three isolates had beneficial mutations in def, which encodes peptide 

deformylase (PDF). PDF is an essential gene and is required for the processing of the majority of 

peptides produced by the ribosome (Adams, 1968). Pull-down assays with FLAG-PDF with His6-EfgA 

confirmed that EfgA binds formaldehyde and directly interacts with PDF in a formaldehyde-dependent 

manner.  

The interaction between formaldehyde and EfgA results in translation inhibition, thus its action has 

similarity to translation-inhibiting antibiotics, such as kanamycin (Figure 3.1, top). How then can EfgA 

be beneficial to cells? To investigate the translation-inhibiting role of EfgA, we used RNA sequencing 

(RNA-seq) analysis to compare the changes in global expression patterns between WT and ΔefgA 

mutant when treated with formaldehyde or, in parallel, kanamycin. Because the combination of EfgA 

and formaldehyde, or kanamycin alone, have a common function (i.e., translation inhibition), many 

downstream consequences of translation inhibition may be in common. These two processes also have 

notable differences: they each involve different specific players and in addition, formaldehyde also 

acts as a general, multi-target stressor and a potential carbon source.  

In an experiment led by Dr. Jannell Bazurto, three replicate populations of WT M. extorquens and the 

ΔefgA mutant were treated independently with formaldehyde, kanamycin and no-stressor, as a control. 

Over an 18 hour timecourse, various parameters (viability, cell density and external formaldehyde 

concentration) were tracked and samples were collected for further analyses (Figure 3.1, bottom). Our 

collaborators in the laboratory of Dr. Jeffrey Barrick at the University of Texas, Austin performed 

rRNA depletion and RNA-seq on selected samples from the earlier time points, which included pre-

treatment (45 minutes before adding the treatment) and 5, 20, 40, 180 and 360 minutes post-treatment. 

For mapping the RNA reads to specific genes, the Bowtie2 2.2.6 alignment tool was used with the 

Methylobacterium extorquens PA1 genome (GenBank: CP000908.1) as the reference sequence. 

Counting of reads was carried out using HTSeq 0.6.1p1 (Anders et al., 2015).  
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Figure 3.1 - Common role of kanamycin and formaldehyde in translation inhibition and design of the 

stress exposure experiment. Top: like kanamycin, the combination of the EfgA protein with 

formaldehyde inhibits translation by interacting with the ribosome. Bottom: isogenic populations of 

WT and ΔefgA were grown in succinate (15 mM) minimal medium in biological triplicates. During 

early exponential phase of growth, cultures were treated with formaldehyde (Form, 5 mM), kanamycin 

(Kan, 50 µg/mL) or left untreated (None). The untreated cultures served as the no-stressor control for 

comparison. Cells were monitored for up to 18 hours; RNA sequencing was performed on samples 

taken from the indicated time points. 

 

Figure 3.2 - Comparison of the growth response of WT (green) and ΔefgA mutant (red) in three 

different conditions: no-stressor, kanamycin and formaldehyde. When present, stressors (kanamycin 

and formaldehyde) were introduced into growth media at time = 0 minute. The top row shows optical 

density measured at 600 nm (OD600) and bottom row shows cell viability measured in colony forming 

units per milliliter (CFU/mL).  
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Critical for interpreting the changes in global gene expression is the fact that formaldehyde (with EfgA) 

and kanamycin exhibited very different effects upon growth and viability over the timecourse of this 

experiment. In the no-stressor treatment, viability and OD measurements showed an equivalent 

increase for both genotypes, suggesting that, in the absence of formaldehyde, the absence of EfgA 

does not alter cell growth. For both genotypes, the addition of kanamycin did not impact the OD until 

180 minutes (Table 3.4). By contrast kanamycin treatment quickly resulted in the loss of viability, 

which dropped for both genotypes by an order of magnitude in the first 40 minutes, and continued to 

fall rapidly until 180 minutes. Despite the introduction of formaldehyde to the media, the ∆efgA strain 

grew nearly as well as the no-stressor control, as measured by OD and viability. On the other hand, by 

40 minutes, the OD of WT showed a significant difference in OD from the control by 40 minutes 

(Table 3.4), and had not increased by 180 minutes (Figure 3.2). In summary, the response to kanamycin 

showed a similar behavior in OD of both genotypes, only slowing long after viability had fallen, 

whereas in the formaldehyde treatment, WT showed an immediate delay in OD without a loss in 

viability increment versus ΔefgA OD behaving nearly like the no-stressor condition.  

In this chapter, I investigate changes in gene expression using RNA-seq data to understand how the 

cells responded to different forms of translation inhibition. First, I describe the overall patterns in 

global expression for the WT or ΔefgA strains that are differentially stressed (no-stressor, kanamycin, 

or formaldehyde). Next, I investigate the degree of overlap or uniqueness between conditions or 

genotypes. Finally, I narrow my analysis to assess the roles of specific genes in the formaldehyde 

response. Specifically, these genes were either candidate genes previously identified as having a role 

in the formaldehyde response or they were identified in overrepresented categories of functional genes 

that showed significant changes in expression in this experiment. 

3.2 Methods 

3.2.1 Normalization of the data  

All data manipulation and statistical analysis was done in R. The matrix of raw count data was 

converted to normalized counts using DESeq2 package under a negative binomial model (Love et al., 

2014). The package does the normalization using the method of “median of ratios” (Anders and Huber, 

2010). 

3.2.2 Principal Component Analysis and heatmaps 

For Principal Component Analysis, the plotPCA() function in DESeq2 was used. For heatmap plots, 

normalized counts were calculated across all replicates and then the means of replicates were 
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calculated. Heatmaps were generated using the heatmap.2() function in the gplots package. For the 

heatmaps, rows representing genes were clustered using the hclust() default function. All of the 

treatments were compared to WT pre-treatment (the control pre-treatment with no stressor at the 45 

minutes before adding any treatment). To calculate the normalized counts for the heatmap plots, I used 

this formula to avoid problems encountered with zero counts: 

𝑐𝑜𝑢𝑛𝑡𝑠∗ = 𝑙𝑜𝑔2 (
𝑐𝑜𝑢𝑛𝑡𝑠 + 1

𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑊𝑇 𝑝𝑟𝑒_𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 1
) 

3.2.3 Venn diagrams 

For the Venn diagrams, all of the treatments for WT and ΔefgA genotypes were compared with their 

own pre-treatment (WT pre-treatment and ΔefgA pre-treatment, respectively) to indicate whether a 

significant change had occurred. The Wald test was used to calculate the significance. To reduce the 

number of false positive genes across the ~5000 genes in the genome, I used a very conservative 

criterion: subsets of genes with False Discovery Rate (FDR) adjusted p-values less than 0.001 were 

selected, and based on sign of fold change, genes were divided into up or down-regulated categories.  

3.2.4 Analysis of significance in candidate genes 

For the modest number of candidate genes examined, the Wald test was used to calculate the 

significance. Genes with FDR adjusted p-values less than 0.05 were classified as significantly changed 

genes. Furthermore, for the formaldehyde metabolism genes, I used a one-tailed test because we had 

a specific direction for our a priori hypothesis. Genes with both positive fold changes and positive 

Wald-statistics were classified as up-regulated and those with negative fold changes and negative 

Wald-statistics were classified as down-regulated. 

3.3 Results 

3.3.1 Overall pattern of gene expression changes revealed via Principal Component 

Analysis (PCA) 

As an initial step to assess the consistency between replicates and the overall trends in the data, I used 

principal components analysis (PCA). First, it was clear from the analysis that the replicates for each 

treatment were very well-clustered (Figure 3.3). Second, the pre-treatment timepoints, all of the no-

stressor treatments, and the 40 minute timepoints for kanamycin treatment all clustered on top of each 

other. Even the later timepoints for the formaldehyde treatments (∆efgA at 180, 360 minutes; WT at 

720 minutes) fell into this cluster. Third, PC1 appears to have captured the strength of the shared 
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response seen for both kanamycin and formaldehyde as stressors. Fourth, PC2 appears to separate the 

formaldehyde treatment from the kanamycin one. 

 

 

Figure 3.3 - PCA plot of all treatments in all timepoints in both WT and ΔefgA. Control samples are 

in turquoise and orange for WT and ΔefgA, formaldehyde treatments are in blue and gold, and 

kanamycin treatments are in pink and green. The labels indicate the genotype (w = WT; e = ΔefgA), 

stressor (none for control; k = kanamycin; f = formaldehyde), and timepoint in minutes. All of the 

kanamycin late timepoints are close together (lower right). In WT treated with formaldehyde, cells 

show a high perturbation from early timepoints; at 360 minutes, the cluster is close to the pre-treatment. 

In ΔefgA, like WT, we see a deviation from and coming back to the pre-treatment, but the perturbation 

is smaller compared to the WT.   

3.3.2 Growth of WT and ΔefgA are similar to each other in the no-stressor condition  

Beyond differences that may emerge due to the addition of stressors, formaldehyde and kanamycin, it 

was first critical to assess how much difference there was in gene expression profile between WT and 

ΔefgA. In comparing the pre-treatment timepoint for each genotype, there was little indication of large-

scale differences in fold-change of transcripts (Figure 3.4). There were only 8 (0.2%) genes that have 

significantly changed expression in ΔefgA pre-treatment compared to the WT pre-treatment. These 

data suggested that, in the absence of formaldehyde, the presence of EfgA has a minimal impact on 

global gene expression. 

To determine if the no-stressor gene expression profiles of each strain were comparable for the duration 

of the experiment, I compared the RNA-seq of the two genotypes in no-stressor condition. Over the 

timecourse of the no-stressor treatment, only 0.4% of genes in WT and 0.2% of genes for ΔefgA 

showed a significant change at any time from 5 minutes to 180 minutes (Figure 3.5, left). Most of the 
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changes observed occurred at 360 minutes for both genotypes. There were 3.9% up-regulated and 

1.3% down-regulated genes in WT at 360 minutes. In ΔefgA, 5.3% and 3.8% of genes were up-

regulated and down-regulated, respectively. From all the up-regulated genes at 360 minutes, 48.7% of 

up-regulated genes and 49.2% of down-regulated genes were in common between the two genotypes 

at 360 minutes (Figure 3.5, right). These data imply that growth with no stressor had a relatively 

constant expression pattern through time. Furthermore, this indicates that, during these conditions, 

there is relatively little impact of the absence of EfgA on global gene expression. These findings allow 

us to simplify the analyses with stressors described below by simply comparing expression profiles to 

the pre-treatment version of each genotype. 

 

Figure 3.4 - Temporal heatmap plot of average fold change of gene expression data in the growth on 

succinate with no-stressor, for WT and ΔefgA strains. Rows represent genes and columns show 

timepoints for the two different genotypes. The data are log2 of normalized counts divided by 

normalized counts in WT pre-treatment (see methods). Blue shows up-regulated genes and red 

indicates down-regulated genes. 
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Figure 3.5 - Venn diagrams of differentially expressed genes in WT and ΔefgA with no-stressor over 

time. Left: “up” categories show all genes that have been up-regulated at any timepoint from 5-180 

minutes with no-stressor and “down” categories show down-regulated genes from that time interval 

based on the sign of log2 fold change. Blue and purple show up-regulated genes in WT and ΔefgA. 

Red and brown show down-regulated genes. Overall there are very few genes in both genotypes that 

show change in expression compared to the pre-treatments. Right: up and down-regulated genes in 

360 minutes between WT and ΔefgA. ΔefgA shows more up and down-regulated genes compared to 

the WT. 

3.3.3 Treatment with kanamycin showed a delay in expression response compared to loss 

of viability 

In order to assess the gene expression profile generated by the addition of a classical translational 

inhibiting antibiotic, kanamycin, both genotypes were analyzed at 40, 180, and 360 minutes after the 

addition of kanamycin. Although there had already been an order of magnitude drop in viability for 

each genotype by 40 minutes (Figure 3.2), the gene expression profiles each exhibited relatively 

modest changes at that time. It was only by 180 and 360 minutes that major changes in expression 

were observed (Figure 3.6). In WT, 30.1% and 40.6% of genes were differentially expressed at 180 

minutes and 360 minutes, respectively (Figure 3.7). Similarly, in the ΔefgA strain 27.5% and 37.5% 

of genes showed significant changes in expression at 180 minutes and 360 minutes, respectively. For 

both strains the response at 180 minutes timepoint was largely a subset of the response that is amplified 

by 360 minutes. From all the up and down-regulated genes in both time points, only 10.7% of up-

regulated genes and 7.2% of down-regulated genes were specific to 180 minutes in the WT strain. In 

ΔefgA 10.8% of up-regulated genes and 7.6% of down-regulated genes are only specific to 180 

minutes. 
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Figure 3.6 - Temporal heatmap of both genotypes in treatment with kanamycin. The heatmap shows 

intense responses to kanamycin happen at 180 minutes and continues to 360 minutes, while many 

genes are involved in this time interval when viability of cells are declining (Figure 3.2) 

 

Figure 3.7 - Venn diagrams of differentially expressed genes at 180 and 360 minutes post kanamycin 

treatment. Left: WT and right: ΔefgA mutant. Genes that are up-regulated (up) and down-regulated 

(down) at 180 minutes are a subset of those at 360 minutes.  

Since the response of cells in both genotypes at 360 minutes involved more genes, the overlap of 

differentially expressed genes at this timepoint was investigated (Figure 3.8). Of all the up-regulated 

genes, 80.8% of them were shared between the two genotypes and in the down-regulated set, 81.8% 

of all genes were shared between the two genotypes at 360 minutes. Additionally, not a single gene 

that went up in one genotype went down in the other (or vice versa). These data suggest that the 

presence of EfgA does not have a substantial impact on the response of cells to kanamycin-induced 

stress. As mentioned, the action of kanamycin is independent from formaldehyde and its interaction 

with EfgA; the presence of EfgA may not inhibit kanamycin from its translation inhibition function. 
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Figure 3.8 - Venn diagram of up and down-regulated genes in the kanamycin treatment at 360 minutes. 

Most of the genes are common between the two genotypes and there is no gene that is up-regulated in 

one genotype and down-regulated in the other genotype.  

3.3.4 EfgA is the key component in response to formaldehyde 

To investigate the role of EfgA in response to formaldehyde, temporal data from both genotypes 

treated with formaldehyde were analyzed. For WT, expression of 43.0% of genes were affected at 5 

minutes, and changes continued to 360 minutes where 18.6% of genes showed significant changes. 

Overall, the response tended to increase up to 180 minutes, and then relaxed by 360 minutes (Figure 

3.9), which was when external formaldehyde was below 1 mM (data not shown) and the OD had begun 

to increase. For ΔefgA, 13.5% of genes changed expression at 5 minutes and 20.6% of genes showed 

significant change at 20 minutes. Even though more genes were involved at 20 minutes compared to 

the 5 minutes, the response became weaker; the average log2FC of up-regulated genes at 5 minutes 

was 2.37 and at 20 minutes was 1.90. For down-regulated genes the average at 5 minutes was -1.77 

and at 20 minutes was -1.39. In both genotypes the genes showed a response at 5 minutes were a subset 

of the genes at 20 minutes (Figure 3.10).  

Compared to kanamycin, which showed little response at 40 minutes and an increasing response by 

360 minutes, with formaldehyde the pattern was quite different. The strongest response was seen 

immediately after the stress, and rapidly faded with later timepoints. It was also quite clear that the 

response in WT – with an active EfgA – was substantially greater than that in the ΔefgA mutant. The 

key feature in the response to formaldehyde was that, for WT, the response got stronger from 5 minutes 

to 180 minutes, and the response in each timepoint is a super-set of its previous time. The ΔefgA 

response, on the other hand, got weaker from 5 minutes to 180 minutes, but again each time point was 

largely a sub-set of its previous time point in terms of intensity (Figure 3.10). This pattern is in contrast 
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to examples of biological systems that exhibit waves of distinct gene expression with time, such as 

those seen for various classes of genes involved in either sporulation or flagellar synthesis (Keijser et 

al., 2007; Kim et al., 2016). 

Even though the temporal dynamics and magnitude of response to formaldehyde differed between WT 

and ΔefgA, we wished to determine how many of the genes involved were shared between the two 

genotypes. As an example, for the 5 minutes timepoint, 62.8% of the up-regulated genes and 75.9% 

of the down-regulated genes were only observed for the WT strain. Only 4.6% of the genes up-

regulated in ΔefgA and 0.6% of the down-regulated ones were unique to ΔefgA, the rest were shared 

with the WT strain (Figure 3.11). These data suggest that formaldehyde by itself is not the main 

component for this response, and that EfgA has a primary role. It also appears that the effect of 

formaldehyde in the absence of EfgA largely occurs in WT, too. 

 

Figure 3.9 - Temporal heatmap plot of the two genotypes treated with formaldehyde. The data show 

an increasing response from 5 minutes to 180 minutes in WT, ΔefgA shows a response at 5 minutes in 

similar set of genes as WT but the response attenuates short after this timepoint.   
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Figure 3.10 - Comparisons between 5 minutes and 20 minutes in treatment with formaldehyde. Left: 

WT and right: ΔefgA. In both genotypes the response at 5 minutes is a subset of the response at 20 

minutes timepoint. 

 

 

Figure 3.11 - Venn diagram of up/down regulated genes at 5 minutes with formaldehyde. Venn 

diagram shows majority of genes are specific to WT. 

3.3.5 Response to kanamycin and formaldehyde involve shared pathways 

Although EfgA+F and kanamycin both lead to translational arrest, the distinct differences in viability 

versus OD increase suggested that there may be very different responses involved. To assess the 

similarities and differences between these responses, we chose to compare the timepoints for WT with 

the strongest overall responses to each stress: formaldehyde at 5 minutes, and kanamycin at 360 

minutes. Remarkably, 46.3% of the total up-regulated genes and 51.9% of down-regulated ones were 

in common between these two treatments (Figure 3.12). Since the outcomes of viability are so 

different, it is likely that many of these common genes represent the consequences of inhibited 
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translation. If this is the case, the key differences that are causal to how EfgA interacts with 

formaldehyde has an immediate, but non-lethal pause of translation are likely in the unique genes, or 

those that experienced opposite directions of change between the two stressors. 

 

Figure 3.12 - Comparison between up/down-regulated genes in formaldehyde at 5 minutes and 

kanamycin at 360 minutes in WT. Even though there are many treatment-specific genes, majority of 

genes are shared between the two treatments, implying that responses to formaldehyde and kanamycin 

share many commonalities. 

3.3.6 Formaldehyde oxidation genes showed down-regulation in treatment with 

formaldehyde 

Formaldehyde is a central intermediate during metabolism of methanol (or other reduced C1 

compounds) as a carbon source, so changes in expression of genes involved in formaldehyde 

production and oxidation were expected when cells were exposed to formaldehyde stress. Specifically, 

I hypothesized that formaldehyde production (i.e., methanol oxidation) would be turned down, 

whereas formaldehyde oxidation (and perhaps utilization) would be turned up. To assess these 

changes, I compared genes involved in formaldehyde metabolism in both WT and ΔefgA treated with 

formaldehyde for 5 minutes compared to WT pre-treatment or ΔefgA pre-treatment, respectively. 

Genes involved in methanol oxidation, formaldehyde oxidation and formate oxidation are listed in 

Table 3.1. The mxa operon, which encodes methanol dehydrogenase and is responsible for production 

of formaldehyde from methanol, was down-regulated. In contrast, most of the downstream enzymes 

showed up-regulation. The pattern was consistent between the two genotypes for most of the genes, 

as expected, since the EfgA mechanism of action does not involve formaldehyde metabolism. The 

genes fhc and fdh3 showed down-regulation in WT but not ΔefgA. The expression pattern showed that 
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cells up-regulated genes for consumption of formaldehyde, which should result in decreasing the cells’ 

internal formaldehyde concentration (Figure 3.13).  

Table 3.1 - Expression changes for genes involved in formaldehyde metabolism in both WT and ΔefgA 

at 5 minutes after exposure to formaldehyde. For each genotype, the first column shows the 

log2FoldChange (log2FC) compared to its pre-treatment condition, the second column shows the Wald 

test statistics (stat) and the third column shows the FDR-adjusted p-values (padj). Genes with 

significant change in expression are highlighted with color. Significantly up-regulated genes are shown 

in blue and down-regulated genes in orange. These data showed that most of the genes encoding 

enzymes involved for consumption of formaldehyde were up regulated, whereas the methanol 

dehydrogenase responsible for production of formaldehyde is down-regulated in both genotypes.  

 
WT ΔefgA 

Function  Gene log2FC stat padj log2FC stat padj 

Methanol oxidation  mxaB -2.5 -14.27 1.13E-44 -2.49 -9.14 2.73E-18 

mxaH -3.27 -15.77 2.66E-54 -2.55 -7.67 5.23E-13 

mxaE -2.1 -8.74 1.90E-17 -2.02 -5.59 3.03E-07 

mxaD -1.46 -7.03 1.09E-11 -1.78 -6.79 2.44E-10 

mxaL -3.49 -16.92 2.22E-62 -2.38 -6.9 1.13E-10 

mxaK -2.52 -8.03 6.87E-15 -1.38 -3.46 3.23E-03 

mxaC -2.97 -12.13 1.47E-32 -1.79 -6 3.01E-08 

mxaA -3.02 -14 5.14E-43 -1.63 -5.36 1.01E-06 

mxaS -2.64 -14.74 1.46E-47 -1.65 -5.48 5.38E-07 

mxaR -2.42 -12.99 3.41E-37 -1.43 -5.39 8.87E-07 

mxaI -0.86 -3.67 5.87E-04 -1 -3.76 1.17E-03 

mxaG -2.68 -6.24 1.91E-09 -2.18 -5.09 3.99E-06 

mxaJ -1.83 -10.3 8.94E-24 -0.96 -4.85 1.29E-05 

mxaF -0.54 -2.12 5.61E-02 -0.28 -1 5.36E-01 

mxaW 0.04 0.16 9.01E-01 0.26 0.78 6.52E-01 

Formaldehyde 

oxidation 

fae -0.17 -0.68 5.79E-01 0.52 2.34 6.77E-02 

mtdB 1.09 6.71 9.57E-11 1.45 5.75 1.28E-07 

mch -0.07 -0.28 8.25E-01 0.47 1.96 1.44E-01 

fhcC -0.88 -3.56 8.64E-04 0.32 1.03 5.20E-01 

fhcD -1.23 -6.55 2.72E-10 -0.08 -0.31 8.76E-01 

fhcA -0.99 -5.34 3.40E-07 -0.03 -0.13 9.51E-01 

fhcB 0.2 1.29 2.64E-01 0.4 1.65 2.43E-01 

fdh1B -0.2 -1.03 3.81E-01 -0.88 -3.1 9.72E-03 
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Formaldehyde 

dehydrogenase 

fdh1A -1.07 -6.7 1.06E-10 -0.83 -3.61 1.96E-03 

fdh2C 6.21 20.3 2.45E-89 5.72 15.52 5.29E-52 

fdh2B 4.82 18.98 2.34E-78 5.15 16.29 2.71E-57 

fdh2A 2.26 12.1 2.14E-32 3.63 15.09 3.74E-49 

fdh3A -0.18 -1 3.93E-01 0.25 1.18 4.52E-01 

fdh3B -0.65 -3.96 1.97E-04 -0.08 -0.33 8.67E-01 

fdh3C -0.5 -3.4 1.53E-03 -0.08 -0.39 8.43E-01 

fdh4B 1.9 6.61 1.90E-10 3.34 11.46 1.75E-28 

fdh4A 2.71 14.57 1.62E-46 3.45 13.96 4.13E-42 

Formate assimilation  ftfL 2.15 14.56 1.97E-46 2.91 11.37 4.61E-28 

fch 1.16 5.74 3.78E-08 2.92 11.46 1.73E-28 

mtdA 1.89 9.72 2.56E-21 3.32 13.4 6.87E-39 

 

 

Figure 3.13 - Expression changes in genes encoding enzymes involved in formaldehyde metabolism. 

Up-regulated genes are shown in blue and down-regulated genes are shown in orange according to the 

Table 3.1. Most of the genes encoding enzymes involved in consumption of formaldehyde show up-

regulation. The mxa gene cluster, encoding MDH responsible for production of formaldehyde showed 

down-regulation.  
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3.3.7 Few loci with beneficial mutations during formaldehyde evolution showed a 

significant change in expression upon formaldehyde exposure 

I next examined whether loci where beneficial mutations occurred during the experimental evolution 

on increasing concentration of formaldehyde exhibited either increased or decreased expression upon 

formaldehyde exposure in either genotype. These genes were: efgA (as well as an efgA homolog), efgB 

(a predicted adenylyl cyclase), def (encodes peptide deformylase), another def-like homolog, and a 

marR-like gene (homolog of multi-antibiotic resistance regulator) were all investigated (Table 3.2). 

All of these genes were compared to the pre-treatment and ΔefgA pre-treatment respectively. In WT, 

there was a 3.7-fold increase in efgA (p-value = 1.04×10-7). Additionally, there was a marginally 

significant 1.5-fold and 1.3-fold up-regulation in the efgA homolog (p-value=5.01×10-2) and the def 

homolog (p-value=5.38×10-2), respectively. In the ∆efgA strain, there was a 2.6-fold and 2.2-fold 

increase in efgB (p-value = 9.77×10-9) and the efgA homolog (p-value=1.03×10-2). Additionally, there 

was a 1.5-fold increase in the marR-like gene (p-value=7.65×10-2). 

Table 3.2 - Changes in expression upon formaldehyde exposure in genes that harbored beneficial 

mutations during formaldehyde evolution. For each genotype, the first column shows the 

log2FoldChange (at 5 minutes) compared to its pre-treatment condition, the second column shows the 

Wald test statistics and the third column shows the FDR-adjusted p-values. Close homologs to efgA 

and def were included due to their uncertain biological role. Only efgA in WT and efgB and the efgA 

homolog in ΔefgA showed significant changes compared to their pre-treatments. 

 WT ΔefgA 

Gene 
log2FC stat padj log2FC stat padj 

efgA 
1.89 5.56 1.04E-07 - - - 

efgA 

homolog 
0.6 2.17 5.01E-02 1.11 3.08 1.03E-02 

efgB 
0.17 1.02 3.81E-01 1.5 6.2 9.77E-09 

def (pdf) 
0.21 0.86 4.70E-01 0.25 0.69 6.97E-01 

def 

homolog 
0.42 2.14 5.38E-02 -0.11 -0.36 8.56E-01 

marR 
0.3 1 3.92E-01 0.62 2.28 7.65E-02 

 

3.3.8 Formaldehyde-induced genes involved in response to other common stresses 

In addition to our a priori hypotheses regarding formaldehyde metabolism and beneficial loci in the 

experimental evolution, it is important to know what other functional genes have been affected the 
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most by treatment with formaldehyde. Looking at all of the annotated genes (excluding hypothetical 

proteins) in WT treated with formaldehyde at 5 minutes compared to WT pre-treatment, there were 

four classes of genes for which each constitutes at least 0.9% of all the annotated genes. Among the 

up-regulated genes, two groups that were seen repeatedly were chaperones and ABC transporters 

(Table 3.3). For down-regulated genes, there were again ABC transporters, as well as flagellar proteins 

and cytochromes. DNA damage proteins were both up and down-regulated. Given the overall pattern 

of partial overlap between formaldehyde and kanamycin responses, this list can be trimmed down to 

the exclusively formaldehyde-responsive genes by excluding those which changed during the 

kanamycin treatment. Finally, to assess the impact of EfgA activity, we can further remove those genes 

seen in the ΔefgA strain.  

Looking at the subset of genes which are not in common with the kanamycin response at 360 minutes 

showed that part of the response in these frequent up/down-regulated groups were shared in response 

to kanamycin as well. In addition, excluding annotated genes that were in common with ΔefgA treated 

with formaldehyde showed part of these frequent up/down-regulated genes showed change in 

expression in ΔefgA as well, suggesting the response to formaldehyde is not dependent on only the 

EfgA protein and there should be other factors involved in sensing and responding to formaldehyde 

and its effects on physiology besides EfgA.  
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Table 3.3 - Total number of annotated genes in functional gene groupings that were differentially 

expressed in WT treated with formaldehyde (5 minutes). Column F shows total genes changed and 

directionality of changes is indicated by “Up” and “Down”. Column F(-kan) shows the subset of 

changed genes which is specific to formaldehyde translation inhibition (i.e., excludes genes common 

to kanamycin response at 360 minutes). Right side of the table shows number of genes that are only 

exclusive to WT and not in common with ΔefgA. Chaperones were up-regulated. Flagellar proteins 

and cytochromes were mostly down-regulated. ABC transporters and DNA damage repair proteins 

were both up and down-regulated. 

 WT Exclusive to WT (not in ΔefgA) 

Up Down Up Down 

F F(-kan) F F(-kan) F  F(-kan) F F(-kan) 

Total  687 315 888 232 432 218 666 183 

Chaperones 13 4 1 0 2 0 0 0 

DNA 

damage 

proteins 

6 1 6 3 4 0 4 3 

ABC 

transporter 

24 15 22 5 10 5 18 5 

Flagellar 

proteins 

1 1 45 7 1 1 4 0 

Cytochromes  5 3 17 3 4 2 11 3 

 

3.3.9 The response of ΔefgA compared to WT involved general stress response proteins 

Assessing the changes in beneficial loci (efgA, efgB, def and a marR-like gene) showed that efgB had 

higher expression in the ΔefgA mutant than WT in formaldehyde treatment; in order to find other genes 

that showed stronger response in formaldehyde relative to WT, I compared significant up/down-

regulated genes in ΔefgA treated with formaldehyde at 5 minutes compared to WT treated with 

formaldehyde at 5 minutes. In order to limit this gene set to only those which responded more strongly 

in formaldehyde and remove the genotype effect, these set of genes were also compared with ΔefgA 

pre-treatment and only subset of those were selected that are both up-regulated compared to the pre-

treatment condition in ΔefgA and compared to WT with formaldehyde (or down-regulated in both 

conditions). The analysis showed 64 annotated genes were up-regulated (Table 3.7). 10.9% of these 

genes belonged to chaperones and 4.69% of genes were related to DNA damage. There were 5 down-

regulated genes in this category and 4 of them were involved with C2, C3 and C4 compounds 

metabolism.  
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3.4 Discussion 

Given the distinct patterns of OD increase despite viability loss for kanamycin stress, compared to a 

halt in OD but maintained viability for WT treated with formaldehyde, we can now relate whether 

gene expression tracks with OD or with viability. Cells treated with kanamycin showed exponential 

growth in terms of OD at 40 minutes despite the fact that cells had lost viability by 10-fold in terms of 

cell number. In terms of transcriptional changes, by 40 minutes cells showed nearly no response to 

kanamycin treatment. In contrast to kanamycin, formaldehyde showed a halt in viability at 40 minutes 

and at this time, the expression of many genes had already changed, with many as early as 5 minutes. 

In summary, cells appear to be unable to sense translation inhibition from kanamycin until they have 

already lost substantial viability. On the other hand, both gene expression and translation changed 

immediately when WT cells that have EfgA were treated with formaldehyde.  

Although the temporal patterns of gene expression associated with translational inhibition were starkly 

different for kanamycin and formaldehyde, there was a large overlap in the effected genes. Almost 

half of the effected genes were common between the two treatments and the other half was specific to 

each (Figure 3.12). In addition, comparisons between specific functional groups (Table 3.3) showed 

most of these genes have been affected in both the formaldehyde and kanamycin responses. It is likely 

that most of these common expression changes represent the generic cellular consequences of 

translational arrest. 

EfgA is clearly central to the cellular response to formaldehyde. This is seen in the timing and intensity 

of the gene expression change, where the WT response is stronger, and lasts longer than that seen for 

ΔefgA. Despite this, and the fact that growth of ΔefgA appears barely affected by formaldehyde, this 

strain still mounts a substantial gene expression response. Many genes are involved that provide hints 

as to the physiological problems directly caused by formaldehyde. Increased expression of genes such 

as chaperones suggests that protein misfolding was one of the key stresses encountered. Interestingly, 

comparison between the number of affected genes (Figure 3.10) and the specific functional groups 

(Table 3.3) both showed that this response to formaldehyde in ΔefgA is a subset of response to WT. 

This suggests that there are common physiological challenges faced, even in the absence of EfgA. 

Genes encoding enzymes for formaldehyde metabolism showed changes upon the addition of 

exogenous formaldehyde, suggesting the cells actively regulate these activities to attempt to diminish 

the intracellular formaldehyde concentration. From the four fdh (formate dehydrogenase) gene 

clusters, two were up-regulated in both genotypes (fdh2 and fdh4). For the other two clusters, fdh1 was 

down-regulated in both genotypes, whereas fdh3 was down-regulated in WT but the changes were not 
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significant in ΔefgA. The fhc gene (formyltransferase/hydrolase complex) was also down-regulated in 

WT. The mxa genes (Ca-dependent methanol dehydrogenase) responsible for production of 

formaldehyde from methanol showed a significant down-regulation in both genotypes. This suggests 

that, although methanol oxidation was not the source of formaldehyde in this experiment, in the natural 

environment cells have the ability to sense intracellular formaldehyde and turn down expression of the 

enzymes that would be the typical source of this toxic intermediate. 

Only a few of the beneficial loci observed during experimental evolution on elevated formaldehyde 

showed significant changes in expression upon exposure to formaldehyde. The efgA gene showed an 

up-regulation in WT, suggesting cells increase their ability to sense toxic formaldehyde. The efgB gene 

was significantly up-regulated in ΔefgA but not in WT. This finding showed that in the absence of 

EfgA, EfgB can sense formaldehyde or its consequences upon cellular physiology in a manner that 

does not occur in WT. The expression of neither the marR-like protein nor def (encoding PDF) changed 

significantly in any of the genotypes. In addition to efgA and def, there is one efgA homolog and one 

def homolog found in the M. extorquens PA1 genome. The efgA homolog showed a significant up-

regulation in ΔefgA and a marginally significant (p-value=5.01×10-2) up-regulation in WT, the def 

homolog showed a mild up-regulation in WT (p-value=5.38×10-2) but there was no significant change 

observed in ΔefgA. These data suggest that these uncharacterized homologs of efgA and def may play 

a role in formaldehyde stress, but further work is needed to test whether these apparent gene expression 

changes occur, and whether mutants lacking either gene have a formaldehyde-sensitivity phenotype. 

The concerted decrease in cytochrome gene expression in response to the formaldehyde stress may be 

due to a similar response as is seen in the attenuation of respiration due to bacteriostatic antibiotics. 

The majority of bacteriostatic antibiotics have a role in translational inhibition, like kanamycin 

(Wilson, 2014), and these have been shown to decelerate respiration. On the other hand, bactericidal 

antibiotics accelerate respiration (Lobritz et al., 2015). Studies have shown that the effect of 

bactericidal antibiotics could be diminished when combined with bacteriostatic antibiotics (Brown and 

Alford, 1984; Crumplin and Smith, 1975; Deitz et al., 1966; Rocco and Overturf, 1982; 

Watanakunakorn and Guerriero, 1981; Weeks et al., 1981; Winslow et al., 1983). Translation 

inhibition may counteract the effect of stresses that accelerate respiration. The fact that bacteriostatic 

antibiotics could counteract the action of bactericidal antibiotics may suggest formaldehyde toxicity 

may work like bactericidal antibiotics. Given that the ΔefgA strain also showed some decrease in 

expression of respiratory proteins suggests this effect does not require EfgA; however, the strength of 

this response is stronger in WT.  
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One initially surprising response to formaldehyde stress was the down-regulation of flagellar 

components. Decreased synthesis of flagellar proteins has been studied in other examples of stresses, 

however. For example, in Salmonella enterica, a ridA mutant shows immotile phenotype despite being 

a metabolic gene. RidA has imine/enamine deaminase activity on 2-aminoacrylate, such that a ridA 

mutant accumulates toxic levels of 2-aminoacrylate. Consequently, transcriptomic analysis show 

genes involved in synthesis of flagellar assembly components were down-regulated (Borchert and 

Downs, 2017). S. enterica has shown to down-regulate flagellar components in nutritional stress. 

FlhD4C2 is an important regulator of flagellar synthesis. In poor media, Rflp protein (formerly Ydiv) 

showed up-regulation. In vitro observation showed Rflp binds FlhD4C2 and as a result inhibits 

FlhD4C2-denpendet transcription of flagellar proteins (Wada et al., 2011). Moreover, biosynthesis of 

flagellar proteins could respond to cell envelope damage. RpoE and Rcs proteins can sense 

modification to cell envelope, and this process results in expression of Rflp. Rflp’s action leads to 

degradation of FlhD4C2 via ClpXP protease and so down-regulation of flagella synthesis (Spöring et 

al., 2018).  

ABC transporters were unique as a functional category with a substantial number of both up and down-

regulated genes in response to formaldehyde. This family of transporters can have very different roles 

in eukaryotes and prokaryotes from importing nutrients, to exporting drugs and toxins (Davidson et 

al., 2008; Glavinas et al., 2004). The up-regulation of ABC transporters could indicate the cells 

attempting to export formaldehyde (or other adducts), or to decrease expression of transporters that 

allow the toxin into the cell.  

Finally, perhaps the clearest link between cellular damage due to formaldehyde and its response to it 

is seen in the up-regulation of chaperones in both genotypes. As chaperones have role in response to 

misfolded proteins, up-regulation of chaperones indicates that cells are dealing with misfolded proteins 

caused by formaldehyde stress. Formaldehyde has been previously shown to have role in misfolding 

of proteins (He et al., 2010). This effect is incredibly wide-spread, even occurring in neuronal cells. 

Tau proteins stabilize microtubules, and formaldehyde stress leads to misfolding and amyloid-like 

aggregation of tau proteins (Nie et al., 2007). Correspondingly, formaldehyde stress has shown to 

induce up-regulation of heatshock proteins. Inhibition of hsp90 chaperone decreased human cell 

viability in otherwise non-toxic formaldehyde concentrations (Ortega-Atienza et al., 2016). 

The results from this analysis emphasize how critical it was to have knowledge of the response to 

kanamycin in order to interpret the formaldehyde response. Almost half of the response observed for 

formaldehyde is actually shared between these two stressors. Although the shared response is quite 

interesting, this allowed focus upon the formaldehyde-specific aspects. Furthermore, comparing 
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responses between the two genotypes opens the window to the EfgA-independent responses. This 

analysis showed even though in ΔefgA mutant the response is attenuated compared to WT; but still the 

trend had similarities with the WT strain. According to the OD plots (Figure 3.2) ΔefgA still had growth 

in treatment with formaldehyde but expressing chaperones showed cells were dealing with 

consequences from formaldehyde toxicity and damaged proteins.  

The fact that efgB showed an up-regulation in ΔefgA but not WT suggests EfgB could also be involved 

in sensing formaldehyde directly, or in sensing damages caused by formaldehyde. Moving forward, 

looking at ΔefgB and ΔefgAΔefgB could be the next step of the work. Part of the response in WT was 

shared with ΔefgA mutant, but given the fact that only ΔefgA showed up-regulation of efgB, assessing 

changes in ΔefgB could reveal the potential role of this protein in response to formaldehyde.  

Investigating changes in frequent functional groups showed chaperones, cytochromes and ABC 

transporters were dominant. As we saw, down-regulation of cytochromes have been studied in 

translation inhibition response. This group and chaperones are likely to be upstream of translation 

inhibition, whereas flagellar proteins are likely to be the consequence of translation inhibition as there 

is not a clear link between motility and response to translation inhibition.  

In addition to chaperones, DNA damage related proteins showed up-regulation and down-regulation. 

Formaldehyde is known as a potent agent to damage DNA (Grafstrom et al., 1983; Kawanishi et al., 

2014) the fact that DNA damage related proteins were up-regulated suggests the cells activity to 

overcome the stress to DNA from formaldehyde toxicity. 

Comparing significant up/down-regulated genes in ΔefgA treated with formaldehyde with WT in the 

same condition showed that, even though ΔefgA lacks the mechanism for translation inhibition, there 

were chaperones and DNA damage related proteins with relatively higher expressions compared to 

WT. This finding suggests in lack of EfgA (in ΔefgA mutant), where translation continues unabated, 

there were more damaged proteins and DNA. In addition, genes involved in metabolism of C2, C3 and 

C4 compounds were down-regulated compared to WT. Why so much change in expression for genes 

encoding this particular part of metabolism? One hypothesis is that formaldehyde can interact directly 

with intermediate metabolites, creating damaged metabolites with adducts. These damaged 

metabolites could be harmful for the cells, or remove needed metabolites from the cell. Down-

regulation of genes producing these metabolites could be a strategy to overcome the stress from 

metabolite damage. Alternatively, it could be that one or more enzymes in this part of metabolism are 

particularly sensitive to formaldehyde damage, and these gene expression changes are attempting to 

overcome these challenges. 
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Ultimately, it is important to note that all of the results here are based on RNA levels. Moving forward, 

mapping proteomic data (in progress) to current expression data brings another level to our 

understanding, as many of the reported genes in RNA-seq data are hypothetical proteins and knowing 

the protein profile will provide vital information about this translation inhibition system. In order to 

make the connection to functionality, transposon sequencing (Tn-seq) data could also add very 

important information to the current picture. Expression data provided information regarding candidate 

genes that have a role in translation inhibition, assessing the phenotype of mutant in these candidate 

genes could provide more information about the specific role of discussed candidate genes. 

3.5 Supplementary material 

Table 3.4 - P-values from t-tests of OD600 in WT and ΔefgA in kanamycin (left) and formaldehyde 

(right) compared to the no-stressor in different timepoint, significant timepoints are shown in blue. 

 Kanamycin  Formaldehyde  

Time 

(minutes) 

WT ΔefgA WT ΔefgA 

-45 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

5 5.03E-01 4.77E-01 7.70E-01 7.83E-01 

20 3.21E-01 9.42E-02 1.42E-01 7.67E-01 

40 3.41E-01 5.61E-01 7.48E-03 2.49E-01 

60 1.36E-01 5.55E-01 2.35E-03 2.87E-02 

90 8.43E-01 8.21E-01 6.58E-02 1.94E-01 

180 2.25E-01 1.11E-01 1.22E-03 4.49E-02 

360 2.01E-03 1.67E-03 1.44E-04 9.07E-03 

540 1.51E-04 2.43E-03 7.36E-04 1.10E-02 

 

  



69 

 

 

Table 3.5 - Up and down-regulated genes in WT with no-stressor compared to WT pre-treatment from 

5 minutes to 180 minutes.   

 
Gene Description  

Up-regulated Mext_0564 Secretion protein HlyD family protein  

Mext_0565 ABC transporter related  

Mext_0740 Chaperonin Cpn10  

Mext_1359 ABC transporter related  

Mext_1360 Cytochrome bd ubiquinol oxidase subunit I  

Mext_1361 Cytochrome d ubiquinol oxidase, subunit II  

Mext_2199 Hypothetical protein  

Mext_3120 Hypothetical protein  

Mext_3499 Putative transcriptional regulatory protein, Crp/Fnr family  

Mext_3500 UspA domain protein  

Mext_3502 Transport-associated  

Mext_3504 UspA domain protein  

Mext_3508 UspA domain protein  

Mext_3509 Metal-dependent phosphohydrolase HD sub domain  

Down-

regulated 

Mext_0565 ABC transporter related  

Mext_0566 ABC-2 type transporter  

Mext_0567 Phosphoketolase  

Mext_1355 UspA domain protein  

Mext_1356 Cytochrome c class I  

Mext_1357 Cyclic nucleotide-binding  

Mext_1358 ABC transporter related  

Mext_1360 Cytochrome bd ubiquinol oxidase subunit I  

Mext_1361 Cytochrome d ubiquinol oxidase, subunit II  

Mext_1362 Cyd operon protein YbgT  

Mext_3498 Heat shock protein Hsp20  

Mext_3499 Putative transcriptional regulatory protein, Crp/Fnr family  

Mext_3500 UspA domain protein  

Mext_3502 Transport-associated  

Mext_3504 UspA domain protein  

Mext_3509 Metal-dependent phosphohydrolase HD sub domain  
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Table 3.6 - Up and down-regulated genes in ΔefgA with no-stressor compared to ΔefgA pre-treatment 

from 5 minutes to 180 minutes.   
 

Gene Description  

Up-regulated Mext_0740 Chaperonin Cpn10  

Mext_2198 Hypothetical protein  

Mext_4782 Chaperonin GroEL  

Mext_4783 Chaperonin Cpn10  

Down-

regulated 

Mext_0566 ABC-2 type transporter  

Mext_0567 Phosphoketolase  

Mext_1355 UspA domain protein  

Mext_1358 ABC transporter related  

Mext_1361 Cytochrome d ubiquinol oxidase, subunit II  

Mext_1362 Cyd operon protein YbgT  

 

Table 3.7 - Genes that were up-regulated in ΔefgA at 5 minutes with formaldehyde compared to WT 

with formaldehyde at 5 minutes. The first column for each genotype shows the log2FoldChange and 

the second column indicates the FDR adjusted p-value. These genes were also up-regulated compared 

to ΔefgA pre-treatment. Chaperones and heat shock proteins are colored in gray and DNA damage 

related proteins are colored in blue. 

 ΔefgA WT 

Gene Description  log2FC  padj log2FC  padj   

Mext_1801 Phosphoenolpyruvate 

carboxylase  

3.081387 5.05E-49 0.997728 0.000356 

Mext_1058 4-Diphosphocytidyl-2C-

methyl-D-erythritol synthase  

2.94557 4.51E-06 -1.21385 0.033793 

Mext_3495 ABC transporter related  2.895307 2.43E-09 0.554093 0.352226 

Mext_3819 Esterase, PHB depolymerase 

family  

2.637244 5.38E-34 1.85177 1.27E-15 

Mext_4556 Heat shock protein Hsp20  2.549191 3.61E-28 3.766948 1.23E-32 

Mext_0646 Protein of unknown function 

DUF6 transmembrane  

2.467646 1.04E-14 -0.61988 0.027858 

Mext_3496 Acyl-CoA dehydrogenase 

type 2 domain  

2.415107 5.64E-08 0.487878 0.248391 

Mext_1802 Citrate (pro-3S)-lyase  2.39795 2.31E-24 0.306829 0.189875 
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Mext_2646 Nicotinate-nucleotide 

pyrophosphorylase  

2.09155 1.44E-14 -0.11514 0.734087 

Mext_2346 ATP-dependent chaperone 

ClpB  

2.081596 4.73E-24 1.862724 3.94E-08 

Mext_3411 Pyridine nucleotide-disulfide 

oxidoreductase family  

2.067144 3.34E-08 0.389551 0.276443 

Mext_2140 AMP-dependent synthetase 

and ligase 

1.952313 1.63E-20 2.072552 7.37E-26 

Mext_1798 Formiminotransferase-

cyclodeaminase  

1.914691 1.83E-15 1.157358 3.78E-08 

Mext_2018 Protein of unknown function 

DUF477  

1.888622 7.92E-09 -0.39952 0.180779 

Mext_1800 Succinyl-CoA synthetase, 

alpha subunit  

1.85894 4.13E-18 3.135273 3.24E-47 

Mext_2252 Peptidase S16 lon domain 

protein  

1.837365 1.90E-13 -0.70524 0.000183 

Mext_4055 Excinuclease ABC, B subunit  1.816206 3.66E-15 0.19622 0.336486 

Mext_4335 Cytochrome o ubiquinol 

oxidase, subunit III  

1.699063 8.57E-16 -0.39653 0.128314 

Mext_1796 D-isomer specific 2-

hydroxyacid dehydrogenase 

NAD-binding  

1.607575 1.43E-10 1.843014 1.50E-14 

Mext_2019 Protein of unknown function 

DUF477  

1.598352 1.04E-09 0.459044 0.055295 

Mext_2418 ATP-dependent protease La  1.593469 3.40E-15 0.215091 0.61458 

Mext_3410 Aliphatic sulfonates family 

ABC transporter, periplasmic 

ligand-binding protein  

1.58769 2.90E-06 0.750335 0.010808 

Mext_3931 Short-chain 

dehydrogenase/reductase 

SDR  

1.55766 1.14E-09 -0.40911 0.078071 

Mext_4352 Protein of unknown function 

DUF81  

1.520888 4.60E-06 1.951716 4.73E-07 
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Mext_2380 Ribonuclease R  1.51174 3.69E-11 0.313949 0.146181 

Mext_3979 FeS assembly protein SufD  1.510331 6.06E-08 -0.25744 0.257566 

Mext_1797 Methylenetetrahydrofolate 

dehydrogenase (NADP(+))  

1.502314 1.20E-12 1.893034 2.56E-21 

Mext_1763 Bacterioferritin  1.450104 2.63E-07 0.643257 0.013747 

Mext_1566 Integral membrane protein 

TerC  

1.437209 2.03E-07 0.807545 0.00127 

Mext_2961 Chaperone protein DnaJ  1.429271 2.96E-12 0.00959 0.965296 

Mext_0645 Heat shock protein HslVU, 

ATPase subunit HslU  

1.428986 5.65E-11 0.251611 0.201205 

Mext_4508 Transporter, 

hydrophobe/amphiphile 

efflux-1 (HAE1) family  

1.411288 3.47E-13 0.183119 0.323478 

Mext_1178 Cysteine desulfurase, SufS 

subfamily  

1.402077 1.49E-09 1.001465 1.35E-07 

Mext_4406 Formate dehydrogenase, 

alpha subunit  

1.377074 5.23E-11 2.255245 2.14E-32 

Mext_2347 Metallophosphoesterase  1.359863 7.90E-08 -0.23669 0.3902 

Mext_3978 FeS assembly ATPase SufC  1.309413 2.52E-09 -0.02909 0.920377 

Mext_3670 Luciferase family protein  1.270375 1.63E-06 1.86665 4.76E-15 

Mext_2960 Chaperone protein DnaK  1.249301 1.48E-08 1.586782 1.54E-14 

Mext_3409 Aliphatic sulfonates family 

ABC transporter, periplasmic 

ligand-binding protein  

1.22812 6.70E-06 1.699354 7.19E-13 

Mext_3119 DNA topoisomerase IV, B 

subunit  

1.204924 1.53E-08 -0.29243 0.144598 

Mext_4336 Cytochrome o ubiquinol 

oxidase, subunit I  

1.195474 6.86E-09 -0.19913 0.302381 

Mext_2645 L-aspartate oxidase  1.188335 6.11E-07 1.127834 4.60E-05 

Mext_1621 Protein of unknown function 

DUF1150  

1.179329 4.67E-07 3.677721 2.74E-44 

Mext_0606 Adenylyl cyclase class-

3/4/guanylyl cyclase  

1.169627 6.85E-07 0.168274 0.381391 
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Mext_3493 Inner-membrane translocator  1.121913 0.000766 1.509406 1.14E-07 

Mext_2071 Coenzyme A transferase  1.113319 1.71E-08 1.685516 1.24E-26 

Mext_1620 Heat shock protein Hsp20  1.090111 6.03E-06 2.651707 2.39E-30 

Mext_4439 Double-strand break repair 

protein AddB  

1.076873 2.49E-05 0.193613 0.44662 

Mext_3977 FeS assembly protein SufB  1.057129 1.55E-06 0.746387 8.37E-05 

Mext_3768 Putative transcriptional 

regulator, TetR family  

1.033054 0.000288 0.86561 8.61E-06 

Mext_1052 DNA topoisomerase IV, A 

subunit  

1.025229 1.90E-06 0.203547 0.307411 

Mext_2388 Methylmalonyl-CoA mutase  1.00834 5.27E-06 1.142207 2.39E-11 

Mext_2515 Binding-protein-dependent 

transport systems inner 

membrane component  

0.978845 4.25E-05 0.458072 0.007673 

Mext_4782 Chaperonin GroEL  0.975936 0.000244 1.35235 0.001212 

Mext_2254 Import inner membrane 

translocase subunit Tim44  

0.956253 0.000269 1.825984 9.18E-08 

Mext_1799 Succinyl-CoA synthetase, 

beta subunit  

0.940191 4.34E-06 4.04627 7.73E-

146 

Mext_0660 D-3-phosphoglycerate 

dehydrogenase  

0.929755 1.26E-05 1.141419 5.55E-12 

Mext_0414 Formate--tetrahydrofolate 

ligase  

0.902436 0.000305 2.149151 1.97E-46 

Mext_3891 Excinuclease ABC, A subunit  0.891241 5.23E-05 0.620747 0.000217 

Mext_0914 Aldehyde oxidase and 

xanthine dehydrogenase 

molybdopterin binding  

0.828596 0.000107 2.221593 1.06E-35 

Mext_2139 2-Dehydropantoate 2-

reductase  

0.815672 0.000133 3.21688 1.31E-68 

Mext_2138 Fumarylacetoacetate (FAA) 

hydrolase  

0.765552 0.000361 3.771497 4.66E-80 

Mext_2105 Oxidoreductase alpha 

(molybdopterin) subunit  

0.747819 0.000896 2.708724 1.62E-46 
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Table 3.8 - Genes that were down-regulated in ΔefgA at 5 minutes with formaldehyde, compared to 

WT with formaldehyde at 5 minutes. The first column for each genotype shows the log2FoldChange 

and the second column indicates the FDR adjusted p-value. These genes were also down-regulated 

compared to the ΔefgA pre-treatment. 

  ΔefgA WT 

Gene Description  log2FC padj log2FCWT padjWT 

Mext_0854 Glycine cleavage system H protein  -1.34741 5.86E-

05 

-1.25403 1.51E-

07 

Mext_1509 Malate--quinone oxidoreductase  -1.11214 9.43E-

06 

-0.78313 9.76E-

06 

Mext_0853 Glycine dehydrogenase  -1.07712 4.86E-

07 

-1.17646 5.36E-

14 

Mext_1639 Phosphoenolpyruvate carboxykinase 

(ATP)  

-1.06989 5.18E-

05 

-1.47383 7.22E-

15 

Mext_2790 Dihydrolipoamide dehydrogenase -0.8917 7.80E-

05 

-0.79134 1.26E-

05 
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4 Conclusion  

Computational methods can inform biology by reducing complex dynamics to simple processes, 

testing mechanistic hypotheses, analyzing high-throughput data and finding patterns that are not 

obvious at first glance. In my thesis, I used two computational approaches to investigate the microbial 

stress response in a bacterial system where the stressor is normally produced intracellularly. By pairing 

empirical data with mathematical modeling and statistical analyses, I described phenotypic changes in 

a population, and then moved on to identify cellular components that may contribute to stress tolerance. 

Herein I presented my computational contributions toward understanding the physiological response 

of the model bacterium M. extorquens toward formaldehyde, a potentially lethal stress generated as an 

obligate intermediate of its own central metabolism. In the second chapter, I described how I used 

mathematical modeling to understand the mechanisms underlying the dynamics of tolerance 

distribution of an isogenic population. We saw growth and selection by death are not the only factors 

that shape changes in tolerance distribution of a population and that cells are able to change their 

phenotypic state (i.e., there is phenotypic movement between tolerance levels on the timescale of the 

experiment). Moreover, we saw that phenotypic movement depends on environmental conditions. This 

raises the possibility that cells might sense signals from their environment or their internal state, change 

their physiology in response to these signals, and consequently, their tolerance levels. To further 

understand mechanisms involved in the cellular response to a stressful environmental conditions, I 

used transcriptomic analysis in the second chapter. By exposing the wild-type and mutant strains to 

multiple stressors and tracking the gene expression profiles over time, I obtained a global picture of 

how cells respond to formaldehyde, found new patterns of specific stress response genes, and identified 

genes that potentially contribute to the tolerance distributions that I characterized in Chapter 2. This 

work provides significant groundwork for future work discovering and characterizing mechanisms 

underlying tolerance to formaldehyde. 

Single-cell phenotypic heterogeneity in a performance trait like formaldehyde tolerance might emerge 

from expression heterogeneity in the gene expression level of a single gene, or perhaps requires 

heterogeneity in the expression of several genes. We therefore sought to identify the genes that may 

be involved in tolerance to formaldehyde with a transcriptomic analysis. We first needed to identify 

what sets of genes respond to the formaldehyde stress (Figure 4.1). My RNA-seq analysis showed a 

number of general stress response proteins such as chaperones, heatshock proteins and proteins 

involved in electron transport chain, like cytochromes, were differentially expressed when upon 

formaldehyde exposure. These genes could potentially have a role in tolerance at the subpopulation 

level. For example, having low cytochrome expression could confer high tolerance. Cytochromes have 
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a role in generating reactive oxygen (Liu et al., 2002) and down-regulation of these proteins could 

potentially decrease the chance of interaction between formaldehyde and reactive oxygen. 

Alternatively, the picture could be more complicated, such that tolerance might be the net effect of 

multiple upstream factors each with their own distribution of expression. For example, simultaneously 

having both high expression level of chaperones and low expression of cytochromes might be 

necessary in order to result in the high tolerance sub-population characterized in Chapter 2.  

In the future, we can assess the expression of candidate genes responsible in tolerance at the single cell 

level. Unlike the eukaryotic systems, where single cell RNA-seq is trivial, bacterial systems face 

technical limitations for direct assays of RNA in single cells. This is due to their small volume, low 

mRNA amounts and short mRNA half lives (Gao et al., 2011; Wang et al., 2015). In bacterial systems, 

expression of genes at the single-cell level can be assessed through generation of transcriptional 

fusions to fluorescent proteins. Thus, investigating single-cell gene expression needs candidate genes, 

posing another limitation in relating gene expression to phenotype (e.g., tolerance). My RNA-seq 

results provided such candidate genes for these future studies aimed at describing how gene expression 

contributes to formaldehyde tolerance and phenotypic heterogeneity. For example, a fluorescent 

protein could be put under control of a cytochrome promoter, and fluorescence observed from this 

gene should generate an expression profile that matches RNA-seq data from bulk population 

experiments (i.e., expression should be lower upon formaldehyde exposure). If this were validated, 

then we could determine if the observed tolerant cells were biased toward a low expression level at the 

time of formaldehyde exposure. Using pairs of compatible fluorescent proteins, heterogeneity in 

multiple genes (e.g., a cytochrome and a chaperone) could be assessed simultaneously. Such an 

approach provides a framework to find the mechanisms underlying tolerance to formaldehyde.  
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Figure 4.1- A phenotypic distribution of tolerance could be correlated with different gene expression 

profiles in each subpopulation. For example, different tolerance levels in M. extorquens may come 

from the combination of different expression levels of chaperones and cytochromes. 

The fact that functional gene groups that responded to formaldehyde are not specific to 

Methylobacterium suggests that other bacteria might use similar mechanisms to tolerate formaldehyde 

stress. Formaldehyde is not used as a carbon source by most bacteria, but it is a by-product produced 

through various biochemical reactions in prokaryotes and eukaryotes (Roca et al., 2008). Accordingly, 

bacteria have a variety of mechanisms to detoxify formaldehyde at modest rates (Chen et al., 2016). 

Distributions of tolerance in other bacteria have shown that even non-methylotrophs such as E. coli 

are able to tolerate formaldehyde in low concentrations (Figure 4.2). My analyses showed that 

chaperones, heatshock proteins, cytochromes and ABC transporters are likely involved in managing 

formaldehyde stress in M. extorquens. It has been already shown that exposing formaldehyde to 

Pseudomonas putida induces expression of chaperones and DNA damage repair system (Roca et al., 

2008). Performing RNA-seq analysis on other species of bacteria exposed to formaldehyde and 

comparing the results with our finding from M. extorquens, would be a straightforward way to find 

common mechanisms of tolerance to formaldehyde. Further, by knowing expression profile of genes 

involved in tolerance at the single-cell level (as discussed previously) we can potentially change 

tolerance level of other bacteria. Given that formaldehyde is considered to be an environmental hazard 

as well as a by-product of the manufacturing industries (Chen et al., 2016; Heck et al., 1990; Tang et 

al., 2009), there is great interest in finding ways to detoxify formaldehyde. Bacteria like P. putida can 
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consume environmental pollutant such as thiols (Marqués and Ramos, 1993). This bacterium is used 

in bioremediation of polluted environments and therefore could be a candidate organism to detoxify 

environments with formaldehyde pollution as well. For example, if further experimentation confirms 

that down-regulation of cytochromes has a demonstrable role in tolerance to formaldehyde in M. 

extorquens, down-regulation of cytochromes in P. putida might also increase its tolerance to 

formaldehyde.  

 

Figure 4.2 - Different tolerance distributions to formaldehyde for Cellulomonas fimi, Escherichia coli, 

Pseudomonas putida, or Methylobacterium extorquens. 

Since the cellular response to formaldehyde suggests that generalized stress responses can contribute 

to tolerance, it raises the question: can tolerance level to the formaldehyde be indicative of the tolerance 

level to other stressors as well? It has been shown that tolerance to one stress can make cells more 

tolerant to other stressors, a phenomenon known as cross-stress protection (Dragosits et al., 2013). 

Chaperones, DNA repair system and ABC transporters all have roles in response to other stressors as 

well, so it is very likely that a cell tolerant to formaldehyde has already gained tolerance to at least 

some other stressors.  

My model can provide a framework to investigate changes in potential distributions of other stressors. 

Growth and phenotypic movement terms could be applied to various bacteria or environmental 

stressors. My work has raised an interesting question regarding the behavior of death: does death from 

other stressors appear to be a sharp threshold between survival and loss of viability or are other types 

of death possible and dependent on the type of stressor? A threshold-based relationship of death as a 

function of tolerance could suggest there is a positive feedback loop in terms of protection and damage. 

For example, in formaldehyde treated cells, enzymes involved in formaldehyde oxidation that were 



79 

 

 

up-regulated are responsible for the detoxification of cells from excess formaldehyde. At lethal 

concentrations of formaldehyde, these enzymes may experience damage, which would result in a 

lowered capacity to overcome formaldehyde toxicity, thereby exacerbating loss of viability. A relative 

(non-threshold) relationship of death to tolerance levels would be expected it the system lacks such a 

positive feedback loop. In this case, formaldehyde toxicity would not directly damage the cell’s 

machinery used to overcome toxicity, such that individuals with a tolerance level close to 

concentration of formaldehyde present do not experience a runaway loss of viability, and thus may 

exhibit an intermediate level of death. 

As an extension to modeling only a single stressor, we could model a situation where bacteria face two 

stressors simultaneously in an environment. In this situation the number of cells with a given tolerance 

profile could be represented as 𝑁(𝑥1, 𝑥2, 𝑡) where 𝑥1 represents the tolerance state of a cell for the first 

stressor and 𝑥2 shows the tolerance state of the cell to the second stressor. This concept could be 

extended to 𝑁(𝑥1, … , 𝑥𝑛, 𝑡) for any given number of stressors. To understand the response of cells in 

facing multiple stressors it is crucial to establish a relationship between different tolerance levels. Are 

tolerance levels linearly correlated with each other? Does tolerance to one stressor positively correlate 

with some stressors and negatively with some other stressors?  

Phenotypic heterogeneity could be seen as an evolutionary capacity. Phenotypic heterogeneity may 

allow survival in stressful environment that would otherwise kill the average cell present, giving the 

population the ability to grow and have mutations arise that are selectively advantageous (Levin-

Reisman et al., 2017). This phenomenon could be seen as a connection between Lamarckian and 

Darwinian evolution (Pisco et al., 2013). The fact that different bacterial species showed heterogeneity 

in tolerance to formaldehyde, including those that do not consume formaldehyde as a primary carbon 

source, suggests there could be an evolutionary advantage for a population to have a distribution of 

tolerance to a stressor.  

This work described the response of M. extorquens to formaldehyde at the phenotypic level and 

investigated the transcriptome-phenotype relationship. Formaldehyde tolerance was found to involve 

genes that are part of the general stress response systems. This finding suggests that mechanisms in 

tolerance to formaldehyde could be common to other bacteria and to other stressors. Establishing the 

computational model of heterogeneity allowed for the investigation of processes involved in changing 

phenotype, helped us to understand the tolerance to formaldehyde in M. extorquens and provided a 

framework to study other stressors, as well as other bacterial species. Such investigations may have 

great importance in understanding the basic strategies used by organisms to overcome stress.   
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6 Appendix  

The following data files for chapter 3 can be found online in the “Supplemental files” section of 

ProQuest website. In each data file, the first and second columns show genes and their descriptions, 

the third and fourth columns show the log2FoldChange and the FDR adjusted p-values respectively.  

efgA_formaldehyde_5.csv: Up and down-regulated genes in ΔefgA with formaldehyde treatment at 5 

minutes. 

efgA_formaldehyde_20.csv: Up and down-regulated genes in ΔefgA with formaldehyde treatment at 

20 minutes. 

efgA_kanamycin_180.csv: Up and down-regulated genes in ΔefgA with kanamycin treatment at 180 

minutes. 

efgA_kanamycin_360.csv: Up and down-regulated genes in ΔefgA with kanamycin treatment at 360 

minutes. 

efgA_noStressor_360.csv: Up and down-regulated genes in ΔefgA with no-stressor treatment at 360 

minutes. 

WT_formaldehyde_5.csv: Up and down-regulated genes in WT with formaldehyde treatment at 5 

minutes. 

WT_formaldehyde_20.csv: Up and down-regulated genes in WT with formaldehyde treatment at 20 

minutes. 

WT_kanamycin_180.csv: Up and down-regulated genes in WT with kanamycin treatment at 180 

minutes. 

WT_kanamycin_360.csv: Up and down-regulated genes in WT with kanamycin treatment at 360 

minutes. 

WT_noStressor_360.csv: Up and down-regulated genes in WT with no-stressor treatment at 180 

minutes. 
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