Using nutritional-landscape models to predict pregnancy rates of elk across broad

spatial scales

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Natural Resources

in the

College of Graduate Studies

University of Idaho

By

Sierra L. Robatcek

Major Professor: Ryan A. Long, Ph.D.

Committee Members: Craig White, Ph.D.; Eva K. Strand, Ph.D.

Department Administrator: Lisette P. Waits, Ph.D.

Authorization to Submit Thesis

This thesis of Sierra L. Robatcek, submitted for the degree of Master of Science with a Major in Natural Resources and titled "Using nutritional-landscape models to predict pregnancy rates of elk across broad spatial scales," has been reviewed in final form. Permission, as indicated by the signatures and dates below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor:		Date:
	Ryan A. Long, Ph.D.	
Committee Members:	Craig G. White, Ph.D.	Date:
	Eva K. Strand, Ph.D.	Date:
Department Administrator	Lisette P. Waits, PhD.	Date:

Abstract

Understanding how the choices made by individal herbivores as they navigate heterogeneous landscapes scale up to influence population performance is critical for accurately forecasting population trajectories. Elk (*Cervus canadensis*) populations in Idaho have exhibited considerable variation in multiple vital rates, including pregnancy. Because elk populations that are not resource limited typically display high pregnancy rates (>80%), and several populations in Idaho regularly fall below this threshold, there is concern that habitat quality may be limiting the productivity of those populations. Nutritional condition is a primary driver of reproductive success in female herbivores, and thus poor habitat quality, suboptimal use of the nutritional landscape by elk, or a combination of both could cause depressed pregnancy rates. The goal of our research was to develop a series of linked dynamic models for predicting a) spatiotemporal variation in the nutritional landscapes available to elk in seven distinct populations in Idaho and b) interannual variation in pregnancy rates of those populations as a function of the overall quality and abundance of forage resources available to them and/or how they used those resources. Regression models for explaining spatiotemporal variation in usable forage biomass (biomass of forage that met or exceeded requirements for a female elk at peak lactation) generally performed well in each of our three study areas, with adjusted R^2 values ranging from 0.26 to 0.61. High-quality foraging habitat was most abundant during summer in the Teton and Diamond Creek elk zones, and was least abundant in the Beaverhead and Sawtooth elk zones. This trend was similar during the fall, with the Teton and South Fork of the Clearwater elk zones supporting the most high-quality habitat, and the Beaverhead and Sawtooth zones supporting the least high-quality habitat. Differing patterns of habitat use were observed among the four elk

iii

populations for which we had simultaneous GPS-collar and pregnancy data. Elk in the Diamond Creek and Sawtooth zones appeared to utilize the nutritional landscape suboptimally (i.e., locations used by elk had less high-quality forage than random locations on the landscape), particularly during summer (June 1 – July 31), whereas elk in the South Fork of the Clearwater used high-quality foraging habitat in greater proportion than it was available. Our top model for relating pregnancy rates of elk to the nutritional landscape explained 60% of the variation in pregnancy rates among 18 elk-population-years. Our top model for relating pregnancy rates among 18 elk-population in pregnancy rates was positively related to both the maximum value of usable forage biomass and the degree of heterogeneity in the nutritional landscape across elk management zones in Idaho. This supports our hypothesis that pregnancy is mediated by habitat quality, and provides additional empirical evidence of a fundamental link between the nutritional landscape in summer and fall and population performance of elk.

Acknowledgments

The number of people to whom I owe the success of this project could be a chapter in and of itself. First, the support and collaboration between the University of Idaho, the Idaho Department of Fish and Game, and the Clearwater Basin Collaborative, was instrumental in the success of this study. I was extremely fortunate to have Dr. Ryan Long as my major professor who not only kept my morale high through moments of frustration, but whose passion for teaching, wildlife science, and the art of fly fishing is inspiring. His genuine enthusiasm for seeing his students succeed is admirable. I am forever grateful to my committee member Dr. Craig White, who not only possesses a tremendous sense of humor, but who granted my every request when it came to field equipment needs and logistical assistance. He is an example of the type of person people want to work hard for, and I am lucky to have had, and continue to have, the opportunity to learn from him. Special thanks to my other committee member, Dr. Eva Strand, who was readily available for any GIS-related questions I had and whose supportive and upbeat personality was much appreciated. I would also like to thank Dr. Lisa Shipley, who took the time to walk me through the operational intricacies of the FRESH model and for allowing me the use of her lab equipment for vegetation sample processing. A special thank you to Janet Rachlow, whose determination that I should go to grad school played a large role in me having the privilege to work on this project. I would like to thank John and Rachel Cook for developing the rigorous vegetation protocol that caused me and my technicians some dismay, but that ended up forming the basis for the entire project. Their expertise on elk nutrition and diet selection was paramount for the success of this project. Sincere thanks to Rachel for also facilitating the sharing of data from the CBC and providing moral support throughout my research. I would also like to

v

thank Dr. Jon Horne, who gave up a large amount of his virtually non-existent free time to write R code and assist me with data analysis. And when Jon began to screen my phone calls, I would like to thank Dr. Timothy Johnson for responding to sporadic, late-night emails about R code hangups. Thank you also to Dr. Mark Hurley who provided advice and creative solutions throughout the project. Whether I had planned a visit to his office or showed up unannounced, Mark would make the time to talk about how the study was progressing, and more often than not, send me out the door with a "drawing" describing a concept that I had failed to consider.

This project would not have been possible without the funding and support provided by the Idaho Department of Fish and Game. Within IDFG, I would like to thank Curtis Hendricks, Paul Atwood, and Daryl Meints for hiring me as a technician five years ago, which inevitably led to the opportunties I've had since. Thank you to Michelle Kemner for sharing her knowledge of plants and the Sawtooth elk zone, Eric Freeman for helping me coordinate the collection of samples from hunters, and Zach Lockyer for giving me the idea to do so in the first place. I would also like to thank Stacey Duwalter and Mike Elmer for responding to my repeated and frantic requests for lab and collar data. Finally, I would like to thank Mike McDonald for taking the first chance on me as a biologist and for being so patient while I finished this project.

I was blessed with a truly phenomenal group of field technicians whose dedication to the work and sky-high levels of enthusiasm even under the worst of conditions has resulted in some of my fondest memories of grad school. I am lucky to still call each and every one of them friends: Emily Moberg, Jaron Kolek, Matthew Strauch, Avery Corondi, Nick Maag, Katie Anderson, Nevin Klein, Lara Antonello, and Trevor Johannes. A special thanks to Emily, Jaron, and Matt who shouldered more responsibility than they bargained for, and to Deborah Monzingo who went above and beyond to make sure that I had all of the forage quality samples I needed. A warm thank you to Sydney Yuncevich, who allowed me free run of her home while I was collecting fecal samples on the South Fork of the Clearwater in rainy February. Not only was the woodstove a tremendous treat at the end of the day, but the conversation and company was equally enjoyable.

I would like to acknowledge the Shikar Safari Club International for their generous scholarship which allowed for additional field work and sample collection. Thanks also to Dorah Mtui for coordinating lab-related logistics and to Janine Brown, Nicole Boisseau, and Jennifer Adams for their help and expertise on hormone testing of fecal samples for pregnancy and sex identification. To the helicopter pilots that made safe and successful captures possible, I commend your skill and your role in wildlife research and management. To my fellow grad students and friends Nicole Bilodeau, John Guthrie, Kayte Groth, Brett Panting, Jennifer Merems and Laura McMahon – thank you for the support and camaraderie.

Lastly, I would like to thank my family, whose faith in me and loving support puts into perspective the important things in life. My mother, Stacey, for joining me on every field technician job I've ever had, including my graduate work, and to my grandmother, Sharon, who has been an anchor for me throughout my life. To my trail companion and sleeping bag warmer, Flora, for putting on thousands of miles with me over the past 6 years and bringing positivity and the undying youthful happiness only a dog can find in some of the most miserable of conditions. And finally, to my husband Nick who shares my passion for natural resources and continues to amaze me with his unwavering patience and support of me in all that I do. Dedication

To the wild things of Idaho

Never does nature say one thing and wisdom another. - Juvenal

Table of Contents

Authorization to Submit Thesis	11
Abstract	iii
Acknowledgments	v
Dedication	viiii
Table of Contents	ix
List of Tables	X
List of Figures	xiii
Using nutritional-landscape models to predict pregnancy rates of	elk across broad
spatial scales	
spatial scales 1: Introduction	1
spatial scales Introduction Methods 	1
spatial scales Introduction Methods Results 	
spatial scales Introduction Methods Results 4: Discussion	
<pre>spatial scales 1: Introduction 2: Methods 3: Results 4: Discussion Literature Cited</pre>	
<pre>spatial scales 1: Introduction 2: Methods 3: Results 4: Discussion Literature Cited Tables</pre>	
<pre>spatial scales 1: Introduction 2: Methods 3: Results 4: Discussion Literature Cited Tables Figures.</pre>	

List of Tables

 Table 1: Pregnancy rates of elk in each of seven elk management zones in Idaho, USA,

 estimated from blood samples, fecal samples, or both between 2013 and 2018......40

 Table 2: Potential vegetation types (PVT) sampled in each of three elk management zones in

 Idaho, USA, and the percentage of each zone comprised by each PVT......41

 Table 6: Candidate models for explaining interannual variation in pregnancy rates of elk in seven elk-management zones in Idaho, USA (n = 18 population-years; see Table 1 for detailed data on sampling units) as a function of elk use of the nutritional landscape. Descriptive statistics used to represent the nutritional landscape included the mean, max, and coefficient of variation (CV) in usable forage biomass available to elk in each population-year during summer (May 25 – July 31) and fall (August 1 – September 15); details on the calculation of those statistics are provided in the main text). We report relative (AIC_c) and absolute (adjusted R²) measures of fit for each model, as well as the Akaike weight (w_i)....45

List of Figures

Figure 6: Boxplots of predicted usable biomass of forage for elk at random locations (R; 1,000 locations per potential vegetation type) and locations used by elk (U; derived from GPS-collar data) in each of four elk management zones in Idaho, USA for which we obtained GPS collar data during summer (June 1 – July 31) and fall (August 1 – September 15)......51

1: Introduction

Spatiotemporal heterogeneity in resource availability governs ecological processes at all levels of organization, from the individual to the ecosystem (Wiens 1989, Holling 1992, With and Crist 1995, Mueller and Fagan 2008). In terrestrial environments, heterogeneity at the landscape scale often is driven by vegetation communities that are "patchy" across time and space due to underlying variation in soil characteristics, topography, disturbance regimes, annual phenological cycles, or other factors. In patchy landscapes, the distribution and relative availability of high-quality foraging habitats plays a fundamental role in determining the potential of the landscape to support robust animal populations (Bjorneraas et al. 2012, Borowik et al. 2013, van Beest et al. 2010). Accordingly, understanding the mechanisms that underpin relationships among landscape heterogeneity, animal nutrition and individual fitness is critical for predicting variation in population performance (Parker et al. 2009, Cook et al. 2013, Long et al. 2016).

Abundance of high-quality forage is positively related to body condition, pregnancy and survival of adult herbivores (Merrill and Boyce 1991, Cook et al. 2004a Stewart et al. 2005, Bender et al. 2008), and to body mass and overwinter survival of offspring (Crête and Huot 1993, Parker et al. 2009). Conversely, forage of insufficient abundance or quality can amplify the negative effects of predation (FitzGibbon and Fanshawe 1988, Wirsing et al. 2002), environmental stochasticity (Saether 1997), and density dependence (Gaillard et al. 1998) on population performance. As habitat fragmentation and climate change increasingly result in shifting vegetation communities, loss of migration corridors, and unpredictable environmental conditions, dynamic models built on mechanistic relationships between nutrition and population performance will be invaluable for managing and monitoring wildlife population and their habitats.

The annual life cycles of temperate large herbivores closely parallel vegetation phenology, ostensibly to facilitate reproductive success by increasing access to high-quality forage when the energetic demands of reproduction are high (e.g., during late gestation and lactation; Albon and Langvatn 1992; Bischof et al. 2012). At northern latitudes, seasonal variation in resource availability imposes strong selective pressure on large herbivores to maximize energy and protein intake from foraging (Cook et al. 2004b; Monteith et al. 2013; Long et al. 2014, 2016). For example, during summer and fall, reproductive females must meet the demands of lactation while also replenishing reserves lost over winter (Therrien et al. 2007, Bårdsen 2009, Bårdsen and Tveraa 2012). A variety of behavioral strategies have been reported for accomplishing this objective in heterogeneous landscapes. For example, migration has been shown to improve fitness in some circumstances by reducing densitydependent feedbacks on life-history traits and improving vital rates, because mobile herbivores are able to exploit shifting patches of high-quality forage over a longer period of time (Gaillard 2013, Jesmer et al. 2018). "Surfing the green wave" (Merkle et al. 2016, Aikens et al. 2017) not only enhances current fitness, but also creates favorable foraging conditions later in the year by ensuring that some biomass is left on the landscape (in the absence of high herbivore densities). These residual resources can help to reduce mortality during episodic resource shortages in stochastic environments (Owen-Smith 2004).

In temperate environments forage quality typically peaks early in the growing season when cell soluble content is high (van Soest 1982). Capitalizing on this period is critical for ungulates, because even small increases in forage quality can have multiplier effects on condition and reproductive success (White 1983, Cook et al. 2004b). Accordingly, the behavioral strategies exhibited by ungulates often are driven by the need to increase access to high-quality forage. For example, female mule deer (*Odocoileus hemonius*) in poor condition (i.e., low levels of stored body fat) displayed a greater tendency to migrate than females in good condition occupying the same ranges in the Sierra Nevada of California (Monteith et al. 2011). Similarly, Hebbelwhite et al. (2008) reported that migratory elk in British Columbia enjoyed extended access to high-quality forage relative to resident elk, which translated into higher pregnancy rates and heavier calves.

Individual herbivores often exhibit diverse foraging and movement strategies as they attempt to maximize fitness in heterogeneous landscapes (Morales et al. 2005, van Beest and Milner 2013, Long et al. 2014). Such behavioral plasticity can sometimes serve to buffer individuals against negative affects of environmental variation (Huey et al. 2003, Kearney et al. 2009, Long et al. 2014). Nevertheless, the mechanisms by which individual behavior and resource heterogeneity interact to influence population performance are not fully understood. Wang et al. (2006) reported that spatial heterogeneity in vegetation greenness diluted the negative impacts of density dependence on elk and bison populations in Yellowstone, relative to more homogeneous landscapes. Similarly, Post et al. (2007, 2008) found that survival of caribou (*Rangifer tarandus*) calves was positively correlated with spatial variation in plant phenology, but negatively correlated with the magnitude of asynchrony between the timing of births and peak green-up of plants. These results suggest that resource heterogeneity can improve reproductive success of herbivores, but that spatial and temporal variation can influence populations in different ways. Thus, understanding how herbivores

respond behaviorally to variation in resources across time and space is critical for establishing links between the nutritional landscape and population performance.

Although multiple vital rates and life-history traits can be affected by behavioral responses of herbivores to the nutritional landscape, pregnancy rates are a particularly useful metric for establishing links with population performance. Pregnancy rates closely reflect the overall nutritional status of a population (McCullough 1979). For example, female deer (*Odocoileus* spp.) that consume higher-quality diets produce twins more frequently, rarely fail to conceive, and reach sexual maturity sooner (McCullough 1979). Similarly, pregnancy rates in elk populations that are not nutritionally limited generally are high, with rates $\leq 80\%$ indicative of resource limitation (Raedeke et al. 2002). Indeed, Cook et al. (2004b) reported that pregnancy rates of captive adult female elk fed diets low in digestible energy (DE) declined to <70%, and overwinter survival became unlikely when body fat levels dropped below 8%.

Females of long-lived iteroparous mammals typically favor their own survival and the expectation of future reproduction over current reproductive success (Therrien et al. 2007). In accordance with that strategy, abatement of reproductive effort can be exhibited by ungulates at various stages of the reproductive cycle. Cook et al. (2001) reported that inadequate nutrition during summer and autumn prevented estrus and ovulation in elk. In contrast, Milner et al. (2012) found evidence that female moose (*Alces alces*) adjusted investment levels during gestation or lactation in response to environmental variation.

Although pregnancy rates are useful for assessing the consequences of variation in the nutritional landscape and how that landscape is used by herbivores, data on pregnancy are difficult to obtain. Typically, assessing pregnancy rates requires capturing animals and

drawing blood (for subsequent assay of pregnancy specific protein B) or using ultrasonography to detect a fetus. Helicopter captures are dangerous and costly, and inevitably cause stress to animals. Pregnancy status can also be determined through fecal sampling; however, this method is time consuming, and fecal assays are prone to error in the absence of validation data for the population being sampled. For these reasons, a dynamic model capable of predicting variation in pregnancy rates at broad spatial scales as a function of 1) spatiotemporal variation in the nutritional landscape, and/or 2) patterns of habitat use by herbivores would be of great value to wildlife managers.

The goals of our research were to develop a series of linked dynamic models for predicting: 1) spatiotemporal variation in the nutritional landscapes available to elk in seven distinct populations in Idaho; and 2) interannual variation in pregnancy rates of those populations as a function of the overall quality and abundance of forage resources available to them and/or how they used those resources. To accomplish this goal we intensively sampled forage quality and abundance in three study areas that spanned a wide range of variation in habitat, topography, and pregnancy rates of elk. We then upscaled those data to model nutritional landscapes in those and four additional study areas as a function of remotely sensed variables, quantified use of those landscapes by GPS-collared female elk, and modeled variation in pregnancy rates of elk populations across space and time based on differences in the respective nutritional landscapes and how they were utilized by elk (Fig. 1). We hypothesized that pregnancy rates of adult female elk would be influenced by variation (i.e., differences in overall quality and heterogeneity) in the nutritional landscapes available to them, in combination with how elk utilized those landscapes (herbivores may exhibit suboptimal patterns of use from a nutritional standpoint in the face of tradeoffs

between forage and other factors such as predation risk [Middleton et al. 2013], anthropogenic disturbance, or thermoregulatory stressors [Long et al. 2014]). We predicted that pregnancy rates would be higher in populations where females had greater access to high-quality forage, and in populations where female elk consistently utilized high-quality foraging habitats.

2: Methods

Study areas

We conducted the field-based portion of our study in three elk management zones in Idaho that spanned a wide range of variation in habitat, topography, and pregnancy rates of elk (Fig. 2). The Diamond Creek elk zone was located in southeastern Idaho, the Sawtooth elk zone was located in central Idaho, and our third study area was located in northern Idaho (the South Fork of the Clearwater). Elevations in the Diamond Creek elk zone (42° 33' N; 111°12'W) range from 1,710 to 3,000 m. Average annual precipitation is 404 mm, most of which falls as snow between November and March. Diamond Creek is characterized by long, narrow mountain ranges separated by flat valley floors. The zone is bordered by Wyoming to the east and Utah to the south. The varied topography that characterizes the Diamond Creek zone creates a mosaic of habitat types including aspen (Populus tremuloides), sagebrush (Artemisia spp.), montane riparian, and mixed-conifer forests. Agricultural lands are concentrated along highway corridors around Grays Lake, along the Bear River, and in the Thomas Fork Valley. The large herbivore community includes moose, mule deer, white-tailed deer (Odocoileus virginianus), pronghorn (Antilocapra americana), and elk. Mountain lions (*Puma concolor*) are the primary predator of adult elk, but black bears (Ursus americanus), coyotes (Canis latrans), and bobcats (Lynx rufus) are also present. There are no known established wolf (*Canis lupus*) packs within the zone, although individuals are occasionally documented traveling through the area. Pregnancy rates in this zone are some of the highest in the state. In 2016 and 2018 all adult animals tested were pregnant (n = 29 and 21, respectively). This is above the state-wide average of 84.7%.

Elevations in the Sawtooth elk zone (44°, 15'N; 115°, 17'W) range from 856 to 3,400 m. Average annual precipitation is 724 mm, falling mostly as snow between November and

March. The western side of the zone is typically warmer and drier, and is characterized by ponderosa pine (*Pinus ponderosa*), montane grassland, and dry mixed conifer forests. The central and eastern portions of the zone are characterized by sagebrush and riparian valleys, Douglas fir (*Pseudotsuga menziesii*) intermediate zones, and alpine habitats above 2,500 m. Fire is a frequent form of disturbance in the Sawtooth zone, with fire return intervals ranging from 7-250 years depending on habitat type. Fires that occur in wilderness areas generally are allowed to burn, resulting in a mosaic of successional stages. This diverse landscape supports a rich herbivore community, including moose, mule and white-tailed deer, elk, pronghorn, bighorn sheep (*Ovis canadensis*), and mountain goats (*Oreamnos americanus*). Primary predators of adult elk include mountain lions and wolves, with black bear, coyotes, and bobcats also present. Pregnancy rates in this zone are typically around 74%, which is below the statewide average.

Our third study area was the South Fork of the Clearwater River (hereafter South Fork) in northern Idaho (45°, 53'N; 115° 47'W). Steep drainages and long ridgelines striate the South Fork basin, with elevations ranging from 467 to 2,200 m. Average annual precipitation is 610 mm, most of which accumulates as snow from January to March. Ponderosa pine forests and dry rangelands are found at lower elevations and along south-facing aspects, whereas western red cedar (*Thuja plicata*) and grand fir (*Abies grandis*) occupy cooler, moister aspects. Pockets of Douglas fir are scattered throughout the study area. White-tailed deer, elk, and moose inhabit the area, and mountain lions and wolves are the primary predators of adult elk. The South Fork elk herd is part of a larger population management unit (PMU); however, most of the animals within this herd summer in the same area and display highly variable pregnancy rates (52.9% in 2014 compared to 74.1% in 2017)

that have consistently been below the statewide average since intensive pregnancy sampling began in 2013.

We used detailed data on forage quality and abundance from the Diamond Creek, Sawtooth, and South Fork elk zones to develop models of the nutritional landscape. We then applied those models to four additional zones that fell within the range of variation in habitat and topography encompassed by the three intensively sampled zones, and for which we had data on pregnancy rates of elk. The Beaverhead, Lemhi, and Salmon elk zones are comprised of vegetation types similar to the Sawtooth elk zone, with sagebrush and Ponderosa pine dominating at lower elevations and subalpine and Douglas fir occurring at higher elevations. The Teton elk zone is most similar to the Diamond Creek elk zone, with aspen communities interspersed with riparian areas and sagebrush steppe. Pregnancy rates in all four of these study areas are consistently near or above the statewide average (Table 1).

Modeling the nutritional landscape

During summer (June 1 – July 31) and fall (August 1 – September 15) 2016-2017, we conducted vegetation surveys to quantify quality and abundance of forage available to elk within each of our three primary study areas. We used the 30-m USDA Landfire biophysical settings Potential Vegetation Type (PVT) layer to stratify each study area into similar vegetation associations for sampling (LANDFIRE 2008; Table 2). In the Diamond Creek elk zone we sampled the following 7 PVTs, which made up 91.2% of the zone: 1) intermountain basins montane sagebrush steppe; 2) aspen forest and woodland; 3) montane Douglas-fir forest and woodland; 4) subalpine upper montane riparian; 5) subalpine dry-mesic spruce-fir forest and woodland; 6) subalpine mesic-wet spruce-fir forest and woodland; and 7) montane

riparian. In the Sawtooth elk zone we sampled 9 PVTs that made up 98.9% of the zone: 1) subalpine fir woodland and parkland; 2) subalpine dry-mesic spruce-fir forest and woodland; 3) subalpine mesic-wet spruce-fir forest and woodland; 4) ponderosa pine woodland and savanna; 5) intermountain basins montane sagebrush steppe; 6) montane riparian; 7) lower montane foothill-valley-grassland; 8) dry-mesic mixed conifer ponderosa pine-Douglas-fir forest; and 9) dry-mesic montane mixed conifer-grand fir forest. In the South Fork we sampled 4 PVT zones that made up 94% of the study area: 1) Grand fir (*Abies grandis*); 2) western red cedar (*Thuja plicata*); 3) Douglas-fir; and 4) ponderosa pine. Sampling intensity within each PVT was proportional to the relative area of the PVT within each respective zone. To increase sampling efficiency over large areas we grouped sampling units (hereafter referred to as macroplots) into clusters of 3 to 6 macroplots each. We used a generalized random tessellation stratified (GRTS) survey design (Stevens and Olsen 2004) to distribute macroplots within clusters across the landscape subject to the following constraints: 1) to ensure spatial independence macroplots within a cluster were located ≥ 1.5 km apart in the same PVT and seral stage; 2) macroplots that were located in inaccessible terrain (private land with no access, >60% slope, or >12 km from the nearest road) or the wrong seral stage were either moved to the closest acceptable location or were removed and replaced with a new macroplot; and 3) all macroplots were \geq 50 m from a neighboring PVT and 250 m from any road or designated motorized trail.

Each macroplot consisted of two 30-m transects placed 20 m apart, with five 0.75-m² quadrats positioned at even intervals along the transect line. We estimated percent tree canopy cover at each macroplot by calculating the proportion of total sampling points

(sampling points were placed at 2-m intervals along each transect) at which live canopy intersected the crosshairs of a densitometer.

We used detailed data published by Cook (2002) on elk diets and foraging behavior in a diversity of habitats to identify key understory species to sample, and to group those species into "accepted" and "avoided" categories based on their level of preference by elk (Appendix A). We estimated biomass of key forage species at each macroplot using a double-sampling scheme (Bonham 1989). First, we visually estimated percent horizontal cover of each plant species within each of the 0.75-m^2 quadrats to the nearest 1%. We then selected the most species-rich quadrat in the macroplot for clipping. We clipped all plant species from 2 cm to 2.5 m in height (the approximate maximum foraging height of elk) and separated accepted species by plant part (leaves and inflorescences for forbs and graminoids, leaves and stems for shrubs, and current annual and last years' growth for conifers); avoided species were not separated. Clipped samples were placed into paper bags and dried in a forced-air convection oven at 100° C for 24 hrs, typically within 2 d of collection. When samples could not be processed within this time frame we stored them loosely in a wellventilated space until they could be dried. We weighed all dried samples using an Insten jewelry scale (0.1g). Any samples weighing < 0.1 g were assigned a "trace" value of 0.01 g. Near the end of each season we inventoried the number of clipped biomass samples obtained for each plant species and conducted additional supplementary sampling when necessary to achieve adequate $(n \ge 10)$ species-specific sample sizes for developing predictive equations to estimate biomass in unclipped quadrats.

We used multiple linear regression (Neter et al. 1996) to fit species-specific equations for estimating biomass in all unclipped quadrats (Appendix B). Candidate predictor

variables included plant cover, tree canopy cover, and sample date, as well as interactions between plant cover and tree canopy cover, and plant cover and sample date. We log- and square-transformed each variable to test for non-linear relationships between the variable(s) and plant biomass. Log-transforming all variables consistently improved predictive power of regression models (based on adjusted R²); therefore, we used log-transformed versions of all variables (and associated interactions) in subsequent model selection. We fit 7 models (Appendix B) for each plant species for which we had obtained ≥ 10 paired biomass and cover measurements (78 species in the Sawtooth and Diamond Creek zones, and 76 species in the South Fork zone). Species with <10 paired biomass and cover measurements were assigned to a life-form group (basal forbs, tall forbs, low shrubs, mid-tall shrubs, evergreen shrubs, graminoids, spruce-firs, or pines). We then fit the same 7 candidate models evaluated for individual species to the combined data for each life-form group. Similarly, when the intercept-only model was the best-fitting model for an individual species with $n \ge 10$, or the adjusted R^2 of the best model for a species was <0.2, we assigned the species to the appropriate life-form group. If inclusion of that species in the life-form model set dramatically reduced adjusted R^2 of the best model (>0.05 reduction in R^2), the species was kept separate. If inclusion of the species in the life-form model either improved or did not significantly reduce R² of the best model, it was retained, and the life-form model was used to predict biomass of that species in unclipped plots. We also developed separate regression models for plant parts whenever sample size was sufficient. Tall forbs, graminoids, low shrubs, and mid-tall shrubs were split into "high" and "low" quality parts. We classified upper stems and flowers of tall forbs, inflorescences of graminoids, and shrub leaves as highquality parts, and lower stalks and stems of forbs and graminoids, and shrub stems as lowquality parts. We fit the same 7 models with log-transformed predictor variables to data that were partitioned by plant part.

To link forage biomass with forage quality across time, space, and species, we collected forage quality samples at each macroplot and pooled those samples within clusters based on life form (forbs, graminoids, or shrubs), plant part, and level of selection (accepted or avoided). We summed cover estimates for each plant species across all macroplots within a cluster and identified the 5 most prevalent forb and shrub species and the 3 most prevalent grass species; those species were then sampled (clipped) for subsequent assays of nutritional quality. Remaining species were grouped into the following composite samples: 1) accepted forbs, shrub leaves, shrub stems, and grasses; 2) avoided forbs, shrub leaves, shrub stems, grasses; and 3) evergreens. Species that were partitioned into separate parts for biomass estimation also were divided similarly for forage quality analyses (flowers vs. stalks, stems vs. inflorescences, and leaves vs. stems for forbs, graminoids, and shrubs, respectively). Clipped forage quality samples were frozen within 6 hrs of clipping until they could be transferred to paper bags and dried at 40°C in a forced-air convection oven for 24 hrs. Dried samples were ground in a Wiley Mill (1-mm screen) and analyzed for neutral detergent fiber (NDF), acid detergent lignins (ADL) and ash (AIA; Dairy One Forage Lab, Ithaca, New York). We also obtained information on tannin content and gross energy of forage species common to our study areas from published (Wagoner 2011) and unpublished (R. Cook, personal communication) sources.

We estimated digestible energy (DE) content of each forage sample using the summative equations of Robbins et al. (1987), which integrated our data on NDF, ADL, AIA, gross energy, and tannins. We then combined species-specific data on forage biomass

and forage quality to estimate usable forage biomass (i.e., biomass of forage that met or exceeded requirements for a female elk at peak lactation; Cook et al. 2002) at each macroplot using the FRESH-Deer model of Hanley et al. (2012). The FRESH-Deer model allowed us to integrate detailed information on both abundance and quality of forage into a single measurement of usable forage biomass at each sampled macroplot. Those spatiotemporally explicit estimates of usable biomass then served as the response variable in subsequent regression models of the nutritional landscape available to elk in each study area and season.

We modeled variation in usable biomass within study areas and seasons as a function of remotely sensed covariates known to influence or reflect vegetation dynamics at broad scales. Candidate predictor variables included the enhanced vegetation index (EVI, an index of vegetation greenness; U.S. Geological Survey, Earthdata), percent canopy cover (National Land Cover Database), PVT, monthly precipitation (PRISM Climate Group), snow water equivalent, snowmelt date, average temperature (Snowpack Telemetry Network), elevation, slope, aspect, soil depth, solar irradiance, and Julian day (Table 3). We extracted values of each of these variables to our macroplot locations using ArcGIS Spatial Analyst Tools. Temporally explicit variables were also matched to the macroplot sample date.

We used multiple linear regression to develop predictive models of usable biomass for each elk zone and season (Table 4). We began by checking for correlations between all pairs of our predictor variables; highly correlated (|r| > 0.6) variables were not included together in the same models. We then fit a series of univariate models, each of which included either the untransformed, log-transformed, or squared version of each of our predictor variables. We used those models to determine which version of each variable to bring forward to the next stage of the analysis (based on which version of the variable produced the lowest *p*-value). We also included interactions between canopy cover and PVT, and between EVI and PVT in the model-fitting process based on the premise that the influence of canopy cover and EVI on forage biomass might differ among PVTs. Next, we performed stepwise selection (Zuur et al. 2009) to identify variables and interactions with potential utility for predicting variation in usable forage biomass; variables with *p* < 0.15 were retained. We recorded the adjusted R^2 value as a measure of the predictive strength of the final model for each zone and season.

Our modeling analyses revealed that the riparian PVT in the Diamond Creek elk zone had a high degree of leverage, and the inclusion of that PVT resulted in inflated estimates of usable biomass. Although riparian habitats often are highly productive, riparian habitat in the Diamond Creek elk zone falls almost entirely within the Grays Lake National Wildlife Refuge, which is the largest hardstem bulrush (*Schnoenoplectus acutus*) nursery in North America. Elk rarely use this unpalatable species, and no GPS locations from collared elk in Diamond Creek occurred in the riparian PVT. Therefore, we chose to exclude this PVT from our analyses of the nutritional landscape in the Diamond Creek elk zone.

Animal capture and handling

To evaluate relationships between habitat use and pregnancy rates of elk, we collected data on space-use behavior of females during summer and fall, and population-level pregnancy rates during mid- to late-winter. From mid-December to early February, adult female elk (n = 15 to 28 per year in each zone) were captured either by net-gunning or chemical immobilization (3.5 mg of Carfentanil; Wildlife Pharmaceuticals, Fort Collins, CO) from a helicopter. Net-gunned animals were hobbled for safe handling and all animals were

blindfolded to reduce stress. Chemically immobilized elk were reversed with an intramuscular injection of 350 mg Naltrexone HCL. At the time of capture, we fitted individuals with GPS radio collars (Lotek Lifecycle Pro500; Vectronic SURVEY Globalstar; Vectronic SURVEY Iridium) that were programmed to record locations every 13 or 23 hours. We extracted a blood sample from the jugular vein that was subsequently assayed for concentrations of pregnancy-specific protein B (PSPB) to determine pregnancy status, and we used tooth wear and gumline recession to assign animals to age classes (yearling, 2-9 years, 10-14 years, and >14 years).

Modeling spatiotemporal variation in pregnancy rates

The ultimate goal of our study was to relate interannual variation in pregnancy rates among elk populations to variation in the nutritional landscapes available to those populations and how they were utilized by elk. Thus, the effective sampling unit for analyses of pregnancy rates was the population-year. We obtained a minimum of 15 pregnancy samples (mean = 26, range = 15 to 47) within each population-year included in our analyses using several different methods. Blood samples obtained at the time of capture were the primary means of gathering data on pregnancy. However, capture efforts are expensive and time consuming, and obtaining an adequate sample across all study areas and years was challenging. Therefore, we also used blood samples collected from hunter-harvested cows (n=19), opportunistic mortalities (n = 1), and fecal samples (n = 184) to estimate pregnancy rates. Fecal samples were collected from February 20 – April 1, 2017-2018 in the South Fork, Sawtooth, Salmon, Beaverhead, and Diamond Creek elk zones, and were analyzed for concentrations of progesterone (P4) and pregnanediol-glucuronide (PdG; Smithsonian Conservation Biology Institute; 1500 Remount Road, Front Royal, VA). Analysis of paired samples (i.e., female elk from which we obtained both blood and fecal samples) indicated that a progesterone threshold of 0.44 ug/g of dry weight resulted in assignment accuracy of 79%. Whenever possible, fecal samples were obtained from individuals known to be adult females (based on visual observation). When opportunistic fecal samples were collected without observation, samples were tested for sex identification to remove males (Laboratory for Ecological, Evolutionary and Conservation Genetics; University of Idaho, Moscow, ID). We avoided collecting blind samples as much as possible because we did not want to inadvertently include yearlings in our sample. When samples were obtained from unobserved animals, we collected only pellets that were most likely to come from an adult animal (based on pile, pellet, and bed size).

The Idaho Department of Fish and Game has collected data on pregnancy status of elk in several other populations over the past 4-5 years that fall within the range of variation in habitat and topography encompassed by our primary study areas. This provided an opportunity to extrapolate our nutritional landscape models beyond our three primary study areas and increase the number of population-years included in our analyses of variation in pregnancy rates. The Beaverhead elk population summers in both Idaho and Montana and crosses the Beaverhead mountain range during their annual migrations. We obtained annual pregnancy data for this population during 2014-2016 (n = 47, 23, and 16, respectively), and GPS collar data during 2015-2016 (n = 23 and 28, respectively). We also were able to obtain pregnancy data from the Lemhi elk population in 2017 (n = 29), the Salmon elk population in 2014 and 2017 (n = 15 and 28, respectively), and the Teton elk population in 2017 (n = 26). The Lemhi and Salmon elk populations occupy similar habitats and overlap at the northern

extent of their ranges. Based on the level of similarity in habitat we used seasonal models developed for the Sawtooth zone to predict variation in the nutritional landscapes available to elk in the Beaverhead, Lemhi, and Salmon populations. The Teton elk population occupies habitats similar to the Diamond Creek zone; therefore, we chose to use models developed for Diamond Creek to predict usable biomass within the Teton elk zone.

We used all available GPS collar data to delineate a Minimum Convex Polygon (MCP) boundary for each elk population. We then cast 1,000 random locations per PVT within each population MCP to quantify spatiotemporal variation in usable forage biomass and to facilitate a direct comparison of the nutritional landscapes available to elk across population-years. At each random location we used the appropriate zone- and season-specific model to estimate usable forage biomass at that location as a function of the environmental covariates identified as important predictors in the model-selection process. Because our models were both spatially and temporally explicit, the predicted values of usable biomass at random locations were calculated using the seasonal midpoints (June 28 and August 28 of each year) for time-dependent variables. We then calculated the mean, maximum, median, upper and lower quartiles, and the coefficient of variation (CV; used as a metric of heterogeneity in the nutritional landscape) of usable biomass at random locations within each PVT, zone, and year. Following this analysis we used the same approach to estimate usable biomass at each elk GPS location and each sample macroplot location, and to calculate the same set of descriptive statistics. Individual elk with <40 locations, or with three gaps of ≥ 3 days between fixes within a season, were excluded from our analyses. Additionally, locations that occurred in un-sampled PVTs (<13% of all locations) were removed.

We considered the mean, max, and CV of predicted usable biomass in summer and fall as candidate predictor variables in regression models of pregnancy rates. Because we had data on pregnancy rates of elk for more population-years (n = 18) than we had summer-fall GPS data (n = 10), we chose to construct two separate *a priori* model sets that represented: 1) effects of the nutritional landscape in general on pregnancy rates; and 2) effects of elk use of the nutritional landscape on pregnancy rates. Prior to modeling we used a correlation matrix to identify collinearity between variables (|r| > 0.6 considered to be correlated). In the first model set, max and CV of usable biomass in fall were positively correlated (r = 0.77); in the second model set, summer mean and max, summer mean and fall mean, and summer max and fall mean of usable biomass were positively correlated (r = 0.95, 0.77, and 0.81, respectively). Correlated variables were not included together in the same model. We standardized all variables to facilitate direct comparison of model coefficients. We ranked models using AIC corrected for small sample size (AIC_c) and calculated AIC model weights. We then used model averaging to produce parameter estimates for each variable within the 90% confidence set of models (Burnham and Anderson 2002). Model-averaged parameter estimates were weighted based on the Akaike weights (wi) associated with each model (Burnham and Anderson 2002; Gillies et al. 2006; Long et al. 2014). Positive parameter estimates indicated that pregnancy rates increased with increasing values of the variable, whereas negative parameter estimates indicated the opposite. Finally, we recorded the adjusted R^2 value of the best model in each set as a measure of the predictive power of that model.

3: Results

Usable forage biomass varied considerably among elk management zones, PVTs, and seasons (Fig. 3). Overall, usable biomass tended to be higher during summer and in more mesic PVTs across all three zones. Regression models for explaining spatiotemporal variation in usable biomass generally performed well in each of our three primary study areas (Fig. 4), with adjusted \mathbb{R}^2 values ranging from 0.26 (Sawtooth summer model), to 0.61 (Diamond Creek fall model; Table 4). Top models for fall had greater predictive power than top models for summer in the Diamond Creek and Sawtooth zones, whereas seasonal models for the South Fork of the Clearwater zone performed similarly (Table 4). The relative availability of high-quality forage in each of our three intensively sampled elk management zones changed seasonally. In summer, the estimated proportion of each zone categorized as high-quality foraging habitat (i.e., the proportion of random locations within the zone that fell into the top 25% of the range of predicted usable biomass values across all zones and years) was highest in the Teton (90.7%) and Diamond Creek (31.47%) zones, lowest in the Beaverhead (8.8%), Salmon (13%), and Sawtooth (13.5%) zones, and intermediate in the South Fork zone (26.5%;) and the Lemhi zones (28.3% Fig. 5). The opposite trend was observed for the proportion of each zone categorized as low-quality foraging habitat (i.e., the lowest 25% of the range of predicted usable biomass values across all zones and years; Fig. 5). Similarly, during fall the greatest proportion of high-quality foraging habitat was observed in the Teton zone, followed by the South Fork, Lemhi, Diamond Creek, Salmon, Beaverhead, and Sawtooth zones (Fig. 5). In some zones, the majority of the landscape was classified as either high- or low-quality, with habitat of intermediate quality being relatively rare [e.g., Lemhi (summer) and Diamond Creek and Teton zones (fall)].

Use of the nutritional landscape by elk also differed markedly among populations in our three primary study areas. During summer, usable biomass of forage was lower at locations used by elk than at random locations in the Diamond Creek and Sawtooth zones (Fig. 6), suggesting that elk in those populations were not optimizing their use of the nutritional landscapes available to them during summer. In contrast, usable biomass was higher, on average, at locations used by elk than at random locations during summer in the South Fork of the Clearwater, suggesting that elk in that population selected habitats that increased their access to high-quality forage (Fig. 6). Moreover, the difference in usable biomass between used and random locations was most pronounced (i.e., evidence of selection for high-quality forage was strongest) in the South Fork population during 2017, when mean usable biomass at random locations reached the lowest point observed during our study (Fig. 6). During fall, mean usable biomass at locations used by elk tended to track usable biomass at random locations across study areas and years, suggesting that elk were not strongly selective of the nutritional landscape during that season (Fig. 6).

Our top model relating pregnancy of elk to the nutritional landscape explained 60% of the variation in pregnancy rates among 18 elk population-years in Idaho (adjusted $R^2 = 0.60$; Table 5), and included maximum usable biomass available to elk in summer and fall (Summer_max and Fall_max), as well as the coefficient of variation of usable biomass during summer (Summer_CV). Model-averaged parameter estimates were positive for all three predictor variables, indicating that pregnancy rates increased in population-years where the maximum usable biomass available was higher in summer and fall, and when there was more variation (heterogeneity) in the nutritional landscape during summer (Fig. 7).

Our top model for relating pregnancy of elk to how they used the nutrtional landscape explained 75% of the variation in pregnancy rates among 10 elk population-years in Idaho (adjusted $R^2 = 0.75$; Table 6), and included the coefficient of variation of usable biomass during summer and fall (Summer_CV and Fall_CV). Model-averaged parameter estimates were negative for Summer_CV and positive for the Fall_CV, indicating that greater consistency in use of the nutritional landscape by elk during summer was positively related to pregnancy rates, whereas the opposite was true during fall.

4: Discussion

Variation in pregnancy rates was positively related to both the maximum value of usable forage biomass and the degree of heterogeneity in the nutritional landscape across elk management zones in Idaho. This supports our hypothesis that pregnancy is mediated by habitat quality, and provides additional empirical evidence of a fundamental link between the nutritional landscape in summer and fall and population performance of elk. Our results also suggest, however, that the relationship between habitat quality and pregnancy rates of elk may be more nuanced than we anticipated. Mean usable biomass of available forage was not included in any of the top models for explaining variation in pregnancy rates. Instead, the combination of heteroegeneity and maximum quality of available forage was most influential. This suggests that elk need access to at least some patches of high-quality forage to achieve a sufficient level of condition to ensure conception, but that habitat diversity is also important. Previous research indicates that large herbivores like elk commonly face tradeoffs between forage and other factors such as risk of predation (Hebblewhite and Merrill 2009, Pierce et al. 2010), competition (Stewart et al. 2005), or costs of thermoregulation (Long et al. 2014). The influence of such tradeoffs on fitness, however, may attenuate in heterogeneous landscapes where herbivores have a greater array of choices available for simultaneously meeting demands for forage, security, and thermal cover.

The negative relationship between variation in usable forage biomass at locations used by elk during summer and pregnancy rates suggests that more consistent use of the nutritional landscape increases the probability of becoming pregnant. Variation in behavior among individuals can result from a variety of factors, and whether such variation is positively or negatively related to metrics of performance such as pregnancy rates depends
on context. For example, animals often exhibit state-dependent responses to tradeoffs between factors that influence fitness (McNamara and Houston 1996, Long et al. 2014), and state dependence can produce a wide variety of foraging and movement strategies among individuals in a population (Morales et al. 2005, Forester et al. 2007, van Beest and Milner 2013). State-dependent strategies are adaptive (i.e., increases fitness) at the individual level, however, the variation they produce is unlikely to be negatively related to metrics of population performance. In contrast, even in the absence of complex tradeoffs, variation in behavior among individuals may still emerge when animals are unable to consistently optimize their foraging and movement patterns due to the complexity of the landscape (Belovsky 1984, Kie 1999). In such scenarios increased variation among individuals may reflect an increase in the prevalence of suboptimal patterns of behavior, thereby producing a negative relationship between variation in behavior and population performance.

Our results indicate that inconsistent use of the nutritional landscape by elk during summer negatively impacted the probability of becoming pregnant, even while variation in the nutritional landscape itself had a positive effect on pregnancy. This suggests that 1) within the ranges of variation included in our study, habitat complexity did not limit the ability of elk to optimize their use of the nutritional landscape, and 2) other factors such as predation risk or anthropogenic disturbance likely resulted in suboptimal use of the nutritional landscape and greater variation among individuals in some populations. We caution, however, that small sample size in our analysis of locations used by elk limits our ability to draw strong conclusions from those data. Moreover, it is difficult to explain why the effect of individual variation in behavior (i.e., use of the nutritional landscape) on

pregnancy of elk changed direction between summer and fall. Thus, we suggest that this effect be considered a hypothesis worthy of additional testing.

Regardless of the cause, our results clearly demonstrate that elk in some management zones used locations where high-quality forage was less abundant than what was generally available in the landscape. In other words, elk in some populations appeared to avoid highquality foraging habitats, especially during summer (e.g., the Diamond Creek and Sawtooth populations; Fig. 6), whereas the opposite was true in other populations (e.g., the South Fork population; Fig. 6). One potential explanation for this pattern is the need to avoid risky habitats, especially when offspring are young and vulnerable. Bjorneraas et al. (2012) reported that female moose in Norway with a calf at heel selected for both food and concealment cover when both were available, but tended to select more strongly for concealment cover when forced to make a tradeoff between the two. Similarly, Atkins et al. (in press) reported that bushbuck (a medium-sized browsing antelope) abandoned highquality foraging habitats and entered dense cover when exposed to auditory or olfactory cues of predation risk. Dilution of this pattern of behavior in the fall during our study is consistent with an indirect effect of predators; by August, calves are larger and more mobile, potentially allowing females to utilize higher-quality habitats without posing undue risk to their offspring.

Similar to predation risk, human disturbance can impact habitat use by herbivores. Previous studies have documented displacement of elk (Paton et al. 2017), mule deer (Wisdom et al. 2004), and moose (Lykkja et al. 2009) from high-quality habitats by human activity. Although hunting pressure is typically the focus of such studies, increasing participation in non-consumptive use of the backcountry (e.g., hiking, camping, etc.) and a recent surge in off-road vehicle use in many areas could be altering habitat use by elk in the spring and summer months. For example, the Sawtooth elk herd is likely exposed to more recreational activity by humans than many elk population in the state, with extensive motorized and non-motorized trail systems radiating out from arterial roads. The Diamond Creek elk zone also is heavily roaded, and off-road vehicle use is increasing each year. Additionally, domestic livestock operations, particularly for sheep, are common in Diamond Creek. In contrast, the South Fork of the Clearwater is not as popular with recreationists outside of the hunting season, and although logging is still a common practice in the area, grazing is minimal, as is the existing trail system. Such variable levels of human disturbance could help to explain the differences we observed among seasons and populations in how elk used the nutritional landscape available to them.

Elk also expend large amounts of energy on thermoregulation during summer (Long et al. 2014), and thus optimal use of the nutritional landscape may sometimes be hindered by the need to reduce costs of thermoregulation and activity (Long et al. 2014, 2016). Those costs, especially in combination with the significant energetic demands and heat production associated with lactation (Loudon et al. 1987, Król and Speakman 2003, Monteith et al. 2014) could force female elk with calves to select habitats with greater thermal cover (i.e., more canopy cover). Canopy cover was negatively correlated with usable biomass (r = -0.43, -0.26, and -0.63 in Diamond Creek, the Sawtooths, and the South Fork respectively during summer, and r = -0.28 and -0.57 in the Sawtooths and South Fork during fall [canopy cover was not a significant predictor of usable biomass in Diamond Creek during fall]) in our study areas, suggesting that there was indeed a tradeoff between forage and thermal cover.

It is also important to note that selection of higher-quality foraging habitat did not necessarily translate directly into higher pregnancy rates. For example, the South Fork elk population consistently used sites that provided more usable forage biomass than occurred at random in the landscape (Fig. 6), suggesting a high degree of selection. Yet, that population exhibited some of the lowest pregnancy rates observed in our study (Table 1). Strength of selection for a high-quality resource often varies as a function of its availability (Wam and Hjelhord 2010, Anderson et al. 2012), and thus in some instances measures of use alone (as opposed to selection, defined as used relative to availability) may provide a more direct link between animal behavior and fitness.

One caveat in interpreting our results is that we did not have data on lactation status for any of our collared elk, and we were therefore unable to account for the influence of lactation status on probability of pregnancy. Several studies have demonstrated the increased energy demands imposed on female herbivoes by lactation (e.g., Hamel and Côté 2007). Lactation can affect a female's ability to garner sufficient energy reserves to facilitate conception in the fall (Festa-Bianchet et al. 1998) even when high-quality forage is available. As a result, variation in lactation status among females could decouple relationships between the nutritional landscape and pregnancy rates to some degree. Nevertheless, female herbivores can adjust their behavior to compensate for the additional demands of lactation (e.g., increase time spent foraging, bite rate, or habitat selection: Rachlow & Bowyer 1998; Ruckstuhl & Bianchet 1998; Hamel and Cote 2009). Moreover, we suggest that our inability to account for lactation status in models of pregnancy rates would, if anything, reduce our ability to detect relationships between the nutritional landscape and pregnancy, thus making our results conservative. The ability to model variation in pregnancy rates as a function of landscape characteristics derived from remotely sensed data could be of great value to wildlife management agencies. Such models could reduce the cost and risks associated with capturing animals, which has become a high priority for management agencies throughout the country. Models such as those developed in our study provide a means of estimating a population parameter that is difficult to aquire, but that is important for larger populationlevel models (e.g., integrated population models; Arnold et al. 2017, Horne et al. 2018). Perhaps most importantly, using models that are grounded in principles of nutritional ecology to estimate pregnancy rates holds potential to shed light on the mechanisms underlying variation in this important vital rate. The modeling approach used in our study can be used by wildlife and land management agencies to assess habitat quality at a relatively fine spatial and temporal scale, as well as to map variation in the nutritional landscape across larger areas.

Spatiotemporally dynamic models are increasingly being used to track environmental changes and enable managers to take more proactive approaches to management of wildlife and their habitat. To ensure maximum accuracy of such models, however, it will continue to be important to update them frequently with ground-truthed data and updated GIS layers. Furthermore, predictive models should not be used as a standalone method for quantifying population parameters, but should be used in combination with other available datasets in order to achieve maximum accuracy.

Literature Cited

- Aikens, E.O., M.J. Kauffman, J.A. Merkle, S.P.H. Dwinnell, G.L. Fralick, and K.L. Monteith. 2017. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecology Letters 20:741-750.
- Albon, S.D and R.D. Langvatn. 1992. Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65:502-513.
- Anderson, E.D. R.A. Long, P.M. Atwood, J.G. Kie, T.R. Thomas, P. Zager, and R.T.
 Bowyer. 2012. Winter resource selection by female mule deer *Odocoileus hemonius*:
 functional response to spatio-temporal changes in habitat. Wildlife Biology 18:153-163.
- Arnold, T.W., R.G.Clark, D.N. Koons, and M.Shaub. 2017. Integrated population models facilitate ecological understanding and improved management decisions. Journal of Wildlife Management 82:266-274.
- Atkins J.L., R.A. Long, J. Pansu, J.H. Daskin, A.B. Potter, M.E. Stalmans, C.E. Tarnita, and R.M. Pringle. 2009. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364:173-177.)
- Bårdsen, B.J. 2009. Risk sensitive reproductive strategies: the effect of environmental upredictability. Thesis, University of Tromsø, Tromsø, Norway.
- Bårdsen, B.J. and T. Tveraa. 2012. Density-dependence vs. density-independence linking reproductive allocation to population abundance and vegetation greenness. Journal of Animal Ecology 81:364-376.
- Belovsky, G.E. 1984. Herbivore optimal foraging: a comparative test of three models. American Naturalist 124:97-115.

- Bender, L.C., J.G. Cook, R.C. Cook, P.B. Hall. 2008. Relations between nutritional condition and survival of North American elk (*Cervus elaphus*). Wildlife Biology 1:70-80.
- Bischof, R., L.E. Loe, E.L. Meisingset, B. Zimmermann, B. Van Moorter, and A. Mysterud. 2012. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? The American Naturalist 180:407-24.
- Bjørneraas, K., I.Herfindal, E.J. Soldberg, B. Saether; B. van Moorter, and C.M. Rolandsen.2012. Habitat quality influences population distribution, individual space use andfunctional responses in habitat selection by a large herbivore. Oecologia 168:231-243.
- Bonham, C.D. 1989. Measurements for Terrestrial Vegetation. Second edition. Wiley-Blackwell, Hoboken, New Jersey, USA.
- Borowik, T., T. Cornulier, and B. Jedrzejewska. 2013. Environmental factors shaping ungulate abundances in Poland. Acta Theriol 4:403-413.
- Burnham, K.P. and D.R. Anderson. 2002. Model selection and multimodal inference: a practical information-theoretic approach. Second edition. Springer-Verlag, New York, USA.
- Cook, R.C., D.L. Murray, J.G. Cook, P. Zager, and S.L. Monfort. 2001. Nutritional influences on breeding dynamics in elk. Canadian Journal of Zoology 79:845-853.
- Cook, J.G. 2002. Nutrition and food. Pages 259-349 *in* D.E. Toweill and J.W. Thomas, editors. North American elk: ecology and management. Smithsonian Press, Washington, D.C., USA.

- Cook, R.C., J.G. Cook, and L.D. Mech. 2004a. Nutritional condition of northern Yellowstone elk. Journal of Mammalogy 85:714-722.
- Cook, J.G., B.K. Johnson, R.C. Cook, R.A. Riggs, T. Delcurto, L.D. Bryant, and L.L. Irwin.
 2004b. Effects of summer-autumn nutrition and parturition date on reproduction and survival of elk. Wildlife Monographs 155:1-61.
- Cook, R.C., J.G. Cook, D.J. Vales, B.K. Johnson, S.M. Mccorquodale, L.A. Shipley, R.A.
 Riggs, L.L. Irwin, S.L. Murphie, B.L. Murphie, K.A. Schoenecker, F. Geyer, P.B. Hall,
 R.D. Spencer, D.A. Immell, D.H. Jackson, B.L. Tiller, P.J. Miller, L. Schmitz. 2013.
 Regional and seasonal patterns of nutritional condition and reproduction in elk. Wildlife
 Monographs 1:1-45.
- Crête, M. and J. Huot. 1993. Regulation of a large herd of migratory caribou: summer nutrition affects calf growth and body reserves of dams. Canadian Journal of Zoology 11:2291-2296.
- Festa-Bianchet, M., J.M. Gaillard, and J.T. Jorgenson. 1998. Mass and density-dependent reproductive success and reproductive costs in a capital breeder. The American Naturalist 152:367-379.
- FitzGibbon, C.D., and J.H. Fanshawe. 1988. The condition and age of Thomson's gazelles killed by cheetahs and wild dogs. Journal of Zoology 218:99-107.
- Forester, J.D., A.R. Ives, M.G. Turner, D.P. Anderson, D. Fortin, H.L. Beyer, D.W. Smith,
 M.S. Boyce. 2007. State-space models link elk movement patterns to landscape
 characteristics in Yellowstone National Park. Ecological Monographs 77:285-299.

- Gaillard, J.M., M.Festa-Bianchet, and N.G. Yoccoz. 1998. Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology 13:58-63.
- Gaillard, J.M. 2013. Assessing fitness consequences of migratory tactics requires long-term individually based monitoring. Ecology 94:1261-1264.
- Gillies, C.S., M. Hebblewhite, S.E. Nielson, M.A. Krawchuk, C.L. Aldridge, J.L. Frair, D.J. Saher, C.E. Stevens, and C.L. Jerdu. 2006. Application of random effects to the study of resource selection by animals. Journal of Animal Ecology 75:887-898.
- Hamel, S. and S.D. Cote. 2009. Foraging decisions in a capital breeder: trade-offs between mass gain and lactation. Oecologia 161:421-432.
- Hanley, T.A., Spalinger, D.E., Mock, K.J., Weaver, O.L., and Harris, G.M. 2012. Forage resource evaluation system for habitat deer: An interactive deer-habitat model. General Technical Report PNW-GRT. U.S. Department of Agriculture Forest Service, Pacific Northwest Research Station, Portland, Oregon, USA.
- Hebblewhite, M., E.H. Merrill, and G. McDermid. 2008. A multi-scale test of the forage maturation hypothesis in a partially migratory ungulate population. Ecological Monographs 78:141-166.
- Hebblewhite, M., and E.H. Merrill. 2009. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90:3445-3454.
- Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 4:447-502.

- Horne, J.S., D.E. Ausband, M.A. Hurley, J. Struthers, J.E. Berg, K. Groth. 2018. Integrated population model to improve knowledge and management of Idaho wolves. Journal of Wildlife Management 83:32-42.
- Huey, R.B., P.E. Hertz, and B. Sinervo. 2003. Behavioral drive versus behavioral inertia in evolution: a null model approach. The American Naturalist 161:357-366.
- Jesmer, B.R., J.A. Merkle, J.R. Goheen, E.O. Aikens, J.L. Beck, A.B. Courtemanch, M.A. Hurley, D.E. McWhirter, H.M. Miyasaki, K.L. Monteith, and M.J. Kauffman. 2018. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361:1023-1025.
- Kearney, M., R. Shine, and W.P. Porter. 2009. The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming. Proceedings of the National Academy of Sciences 106:
- Kie, J.M. 1999. Optimal foraging and risk of predation: effects on behavior and social structure in ungulates. Journal of Mammalogy 80:1114-1129.
- Król, E. & Speakman, J.R. 2003. Limits to sustained energy intake VI. Energetics of lactation in laboratory mice at thermoneutrality. Journal of Experimental Biology 206:4255–4266.
- LANDFIRE. 2008. Biophysical Settings Layer, LANDFIRE 1.1.0, U.S. Department of the Interior, Geological Survey. Accessed 14 April 2016 at http://landfire.cr.usgs.gov/viewer/.

- Long, R.A., R.T. Bowyer, W.P. Porter, P. Mathewson, K.L. Monteith, and J.G. Kie. 2014. Behavior and nutritional condition buffer a large-bodied endotherm against direct and indirect effects of climate. Ecological Monographs 84:513-532.
- Long, R.A., R.T. Bowyer, W.P. Porter, P. Matthewson, K.L. Monteith, S.L. Findholt, B.L. Dick, and J.G. Kie. 2016. Linking habitat selection to fitness-related traits in herbivores: the role of the energy landscape. Oecologia 3:709-720.
- Loudon A.S.I and P.A. Racey. 1987. Reproductive energetics in mammals. Symposium of the Zoological Society of London 57. Oxford University Press, Oxford.
- Lykkja, O.N., E.J. Solberg, I. Herfindal, J. Wright, C.M. Rolandsen, and M.G. Hanssen. 2009. The effects of human activity on summer habitat use by moose. Alces 45:109-124.
- McCullough D.R. 1979. The George Reserve Deer Herd: population ecology of a K-selected species. University of Michigan, Ann Arbor, USA.
- McNamara, J.M., and A.I. Houston. 1996. State-dependent life histories. Nature 380:215-221.
- Merkle, J.A., K.L. Monteith, M. Hayes, K.R. Hersey, A.D. Middleton, B.A. Oates, H. Sawyer, B.M. Scurlock, and M.J. Kauffman. 2016. Large herbivores surf waves of greenup in spring. Proceedings of the Royal Society B:Biological Sciences 283:1-8.
- Merrill, E.H, and M.S. Boyce. 1991. Summer range and elk population dynamics in Yellowstone National Park. Pages 263-274 *in* The greater Yellowstone ecosystem: redefining America's wilderness heritage R.B. Keiter and M.S. Boyce, editors. Yale University Press, New Haven, Connecticut.

- Middleton, A.D., M.J. Kauffman, D.E. McWhirter, J.G. Cook, R.C. Cook, A.A. Nelson,M.D. Jimenez, and R.W. Klaver. 2013. Animal migration amid shifting patterns ofphenology and predation: lessons from a Yellowstone elk herd. Ecology 94:1245-1256.
- Milner, J.M., F.M. van Beest, E.J. Solberg, and T. Storaas. 2012. Reproductive success and failure: the role of winter body mass in reproductive allocation in Norwegian moose. Oecologia 172:995-1005.
- Monteith, K.L, T.R. Stephenson, V.C. Bleich, M.M. Conner, B.M. Pierce, and R.T. Bowyer.
 2013. Risk-sensitive allocation in seasonal dynamics of fat and protein reserves in a long-lived mammal. Journal of Animal Ecology 82:377-388.
- Monteith, K.L., T.R. Stephenson, V.C. Bleich, M.M. Connor, B.M. Pierce, J.G. Kie, and R.T. Bowyer. 2014. Life-history characteristics of mule deer: effects of nutrition in a variable environment. Wildlife Monographs 186:1-62.
- Morales, J.M., D. Fortin, J.L. Frair, and E.H. Merrill. 2005. Adaptive models for large herbivore movements in heterogeneous landscapes. Landscape Ecology 20:301-316.
- Mueller, T. and W.F. Fagan. 2008. Search and navigation in dynamic environments from individual behaviors to population dynamics. Oikos 117:654-664.
- NASA LP DAAC, 2015, MOD13Q1 MODIS/Terra Vegetation Indices 16-DAY 13 Global 250m SIN Grid V005. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (<u>https://lpdaac.usgs.gov</u>), accessed January 1, 2016, at <u>http://dx.doi.org/10.5067/ASTER/AST_L1T.003</u>.

National Water and Climate Center, Snowpack Telemetry Network, https://www.wcc.nrcs.usda.gov/snow/, created 15 June 2016.

- Neter, J., M. Kutner, W.Wasserman, and C. Nachsheim. 1996. Applied Linear Statistical Models. Fourth edition. McGraw-Hill, Boston.
- Owen-Smith, N. 2004. Functional heterogeneity in resources within landscapes and herbivore population dynamics. Ecology 19:761-771.
- Parker, K.L, P.S. Barboza, and M.P. Gillingham. 2009. Nutrition integrates environmental responses of ungulates. Functional Ecology 23:57-69.
- Paton, D.G., S.Ciuti, M.Quinn, and M.S. Boyce. 2017. Hunting exacerbates the response to human disturbance in herbivores while migrating through a road network. Ecosphere 8:1-18.
- Pierce, B.M., R.T. Bowyer, and V.C. Bleich. 2010. Habitat selection by mule deer: forage benefits or risk of predation? Journal of Wildlife Management 68:533-541.
- Post, E. and M.C. Forchhammer. 2007. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society B: Biological Sciences 363:2369-2375.
- Post, E., C. Pedersen, C.C. Wilmers, and M.C. Forchhammer. 2008. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores.Proceedings of the Royal Society B 275:2005-2013.
- PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 15 June 2016.

- Rachlow, J.L., and R.T. Bowyer. 1998. Habitat selection by Dall's sheep (Ovis dalli): maternal trade-offs. Journal of Zoology 245:457-465.
- Raedeke K.J., J.J. Millspaugh, and P.E. Clark. 2002. Population characteristics. Pages 449-513 in Toweill D.E. and J.W. Thomas, editors. North American elk: ecology and management. Smithsonian Institute Press, Washington D.C.
- Robbins, C.T., Hanley, T.A., Hagerman, A.E., Hjeljord, O., Baker, D.L., Schwartz, C.C., and Mautz, W.W. 1987. Role of tannins in defending plants against ruminants: Reduction in protein availability. Ecology 68: 98-107.
- Ruckstuhl, K.E. and M. Festa-Bianchet. 1998. Do reproductive status and lamb gender affect the foraging behavior of bighorn ewes. Ethology 104:941-954.
- Saether, B.E. 1997. Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution 12:143-149.
- Stewart, K.M., R.T. Bowyer, B.L. Dick, B.K. Johnson, and J.G. Kie. 2005. Densitydependent effects on physical condition and reproduction in North American elk: an experimental test. Oecologia 143:85-93.
- Stevens, D.L, and A.R. Olsen. 2004. Spatially balanced sampling of natural resources. Journal of the American Statistical Association 99: 262-278.
- Therrien, J.F., S.D. Côté, M. Festa-Bianchet, J.P. Ouellet. 2007. Maternal care in white-tailed deer: trade-off between maintenance and reproduction under food restriction. Animal Behaviour 75:235-243.

- van Beest, F.M., A. Mysterud, L.E. Loe, and J.M. Milner. 2010. Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore. Journal of Animal Ecology 79:910-922.
- van Beest, F.M. and J.M. Milner. 2013. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate. PLOS ONE 8:1-10.

van Soest, P.J. 1994. Nutritional ecology of the ruminant. Cornell University Press, Ithaca, New York, USA.

- Wam, H.K., and O. Hjeljord. 2010. Moose summer and winter diets along a large scale gradient of forage availability in southern Norway. European Journal of Wildlife Research 56:745-755.
- Wang, G., N.T. Hobbs, R.B. Boone, A.W. Illius, I.J. Gordon, J.E. Gross, and K.L. Hamlin.
 2006. Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87:95-102.
- Wagoner, S.J. 2011. The effects of spring cattle grazing on the nutritional ecology of mule deer (*Odocoileus hemionus*). Thesis, Washington State University, Pullman, USA.
- White, R.G. 1983. Foraging patterns and their multiplier effects on productivity of northern ungulates. Oikos 40:377-384.
- Wiens, J.A. 1989. Spatial scaling in ecology. Functional Ecology 4:385-397.
- Wirsing, A.J, T.D. Steury, and D.L. Murray. 2002. Relationship between body condition and vulnerability to predation in red squirrels and snowshoe hares. Journal of Mammalogy 3:707-715.

- Wisdom, M.J., A.A. Ager, H.K. Preisler, N.J. Cimon, B.K. Johnson. Effects of off-road recreation on mule deer and elk. Transactions of the 69th North American Wildlife and Natural Resources Conference. Wildlife Management Institute, 16-20 March 2004, Spokane, WA, USA.
- With, K.A. and T.O. Crist. 1995. Critical thresholds in species' responses to landscape structure. Ecology 8:2446-2459.
- Zuur, A.F., Ieno, E.N., Walker, N.J. Saveliev, A.A., and Smith, G.H. 2009. Mixed effects models and extensions in ecology with R. Springer-Verlag, New York, New York, USA.

Tables

Zone	Year	Pregnancy rate	Sample size (blood)	Sample size (fecal)
Diamond Creek	2015-16	1.00	n = 24	
	2016-17	0.84	n = 26	n = 30
	2017-18	1.00	n = 20	
Sawtooth	2014-15	0.86	n = 21	
	2015-16	0.67	n = 12	
	2016-17	0.68	n = 2	n = 25
	2017-18	0.75	n = 11	n = 19
South Fork	2013-14	0.53	n = 17	
	2014-15	0.80	n = 15	
	2015-16	0.73	n = 11	
	2016-17	0.75	n = 0	n = 28
	2017-18	0.66	n = 0	n = 32
Beaverhead	2014-15	0.87	n = 23	
	2015-16	0.93	n = 14	
	2016-17	0.89	n = 4	n = 43
	2017-18	0.85	n = 13	
Salmon	2014-15	0.93	n = 15	
	2017-18	0.82	n = 28	
Lemhi	2017-18	0.93	n = 27	
Teton	2017-18	0.90	n = 21	
Statewide Average	2014 -18	0.88	n = 598	n = 177

Table 1: Pregnancy rates of elk (*Cervus canadensis*) in each of seven elk management zones in Idaho, USA, estimated from blood samples, fecal samples, or both between 2013 and 2018.

Table 2: Potential vegetation types (PVT) sampled in each of three elk management zones in Idaho, USA, and the percentage of each zone comprised by each PVT.

Zone	Potential vegetation type	PVT code	Percent of zone
Diamond Creek	Intermountain Basins Montane Sagebrush Steppe	ARTRW	34.8
	Rocky Mountain Aspen Forest and Woodland	POTR	18.3
	Middle Rocky Mountain Montane Douglas-fir Forest and Woodland	PSME	12.5
	Rocky Mountain Subalpine Upper Montane Riparian Systems	Riparian	4.8
	Rocky Mountain Subalpine Dry-Mesic Spruce-fir Forest and Woodland	ABLA_dry	5.5
	Rocky Mountain Montane Riparian Systems	Riparian	5.6
	Rocky Mountain Subalpine Mesic-Wet Spruce-fir Forest and Woodland	ABLA_wet	9.7
Sawtooths	Northern Rocky Mountain Subalpine Woodland and Parkland	ABLA_parkland	18.6
	Rocky Mountain Subalpine Dry-Mesic Spruce-fir Forest and Woodland	ABLA_dry	22.8
	Rocky Mountain Subalpine Mesic-Wet Spruce-fir Forest and Woodland	ABLA_wet	7.3
	Northern Rocky Mountain Ponderosa Pine Woodland and Savanna	PIPO	12.9
	Intermountain Basins Montane Sagebrush Steppe	ARTRW	8.6
	Northern Rocky Mountain Riparian Systems	Riparian	2.1
	Northern Rocky Mountain Lower-Montane Foothill-Valley Grassland	FVG	1.6
	Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest - Ponderosa pine-Douglas-fir	Mixed_PIPO-PSME	8.0
	Middle Rocky Mountain Montane Douglas-fir Forest and Woodland	PSME	10.2
	Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest - Grand fir	Mixed_ABGR	7.8
South Fork	Grand fir	ABGR	77.5
	Douglas-fir	PSME	8.8
	Western Red Cedar	THPL	5.6
	Ponderosa pine	PIPO	2.4

Table 3:	Sources	of can	didate	predictor	variables	for mo	odeling	usable biomass.
				1			0	

Predictor variable layer	Source
April snow water equivalent (mm)	National Water and Climate Center, Snowpack Telemetry Network,
Sample month snow water equivalent (mm)	https://www.wcc.nrcs.usda.gov/snow/
Previous month snow water equivalent (mm)	
Snow melt date	
Average sample month temperature (C°)	
Sample month precipitation (mm)	PRISM Climate Group, Oregon State University,
Previous month precipitation (mm)	http://prism.oregonstate.edu
Potential Vegetation Type	LANDFIRE. 2008. Biophysical Settings Layer, LANDFIRE 1.1.0, U.S. Department of the Interior, Geological Survey. <u>http://landfire.cr.usgs.gov/viewer/.</u>
Enhanced Vegetation Index	NASA LP DAAC MOD13Q1 MODIS/Terra Vegetation Indices 16-DAY 13 Global 250m SIN Grid V005. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov)
Percent canopy cover	National Land Cover Database, <u>https://catalog.data.gov/dataset/national-land-cover-database-nlcd-percent-tree-canopy-collection</u>
Elevation (m)	Inside Idaho, <u>http://insideidaho.org/popular_data.html</u>
Soil Depth (mm)	Natural Resources Conservation Service,
	https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/

Table 4: Top models (based on adjusted R^2) for predicting spatial variation in usable forage biomass in the Diamond Creek (DC), Sawtooth (SAW), and South Fork of the Clearwater (FORK) elk management zones in Idaho, USA, during summer (June 1 – July 31) and fall (August 1 – September 15), 2016-2017. Predictor variables are defined as follows: 1) CanCov = percent canopy cover; 2) MnPrecip = average precipitation (mm) during the month in which forage sampling occurred; 3) AprilSWE = snow water equivalent in April (mm); 4) EVI = Enhanced Vegetation Index; 5) PVT = potential vegetation type; 6) SampleSWE = snow water equivalent (mm) during the month in which forage sampling occurred; 7) AvgTemp = average temperature (C°) during the month in which forage sampling occurred; 8) MeltDate = the first day snow levels equaled 0 cm and snow remained absent for the remainder of the sampling season; 9) PrevMnPrecip = average precipitation (mm) during the month prior to forage sampling; 10) Elevation = elevation (m); and 11) Slope = slope (degrees).

Zone_Season	Nutritional model	Adjusted R ²
DC_Summer	Usable Biomass = CanCov + AprilSWE + Elevation + MnPrecip + EVI + PVT	0.44
DC_Fall	Usable Biomass = $EVI^2 + PVT + EVI^2$: PVT	0.61
SAW_Summer	Usable Biomass = CanCov + Elevation + log(Slope) + PVT + SampleSWE	0.26
SAW_Fall	Usable Biomass = PVT + log(CanCov) + AprilSWE + EVI	0.56
FORK_Summer	Usable Biomass = CanCov + EVI + AvgTemp + MeltDate + Elevation	0.47
FORK_Fall	Usable Biomass = CanCov + EVI + log(PrevMnPrecip)	0.44

Table 5: Candidate models for explaining interannual variation in pregnancy rates of elk (*Cervus canadensis*) in seven elkmanagement zones in Idaho, USA (n = 18 population-years; see Table 1 for detailed data on sampling units) as a function of the nutritional landscape. Descriptive statistics used to represent the nutritional landscape included the mean, max, and coefficient of variation (CV) in usable forage biomass available to elk in each population-year during summer (June 1 – July 31) and fall (August 1 – September 15); details on the calculation of those statistics are provided in the main text. We report relative (AIC_c) and absolute (adjusted R^2) measures of fit for each model, as well as the Akaike weight (w_i).

				Adjusted
Model	AICc	AAICc	Wi	R ²
Pregnancy = Summer_max + Summer_CV + Fall_max	137.61	0.00	0.36	0.60
Pregnancy = Summer_CV + Fall_CV	137.79	0.18	0.33	0.53
Pregnancy = Summer_max + Fall_max	139.34	1.73	0.15	0.49
Pregnancy = Summer_max + Summer_CV + Fall_CV	140.01	2.40	0.11	0.54
Pregnancy = Summer_Max	144.33	6.72	0.01	0.24
Pregnancy = Fall_max	145.21	7.60	0.01	0.20
Pregnancy = Fall_CV	145.93	8.32	0.01	0.17
Pregnancy = Summer_max + Summer_CV	146.96	9.35	0.00	0.22
Pregnancy = Summer_CV	147.05	9.44	0.00	0.11
Pregnancy = Summer_mean + Summer_max	147.58	9.97	0.00	0.19
Pregnancy = Fall_mean + Fall_max	148.19	10.58	0.00	0.16
Pregnancy = Fall_mean + Fall_CV	149.29	11.68	0.00	0.11
Pregnancy = Summer_mean + Summer_CV	149.45	11.84	0.00	0.10
Pregnancy = Fall_mean	150.01	12.40	0.00	-0.04
Pregnancy = Summer_mean + Summer_max + Summer_CV	150.13	12.52	0.00	0.20
Pregnancy = Summer_mean	150.32	12.71	0.00	-0.06

Table 6: Candidate models for explaining interannual variation in pregnancy rates of elk (*Cervus canadensis*) in seven elk-management zones in Idaho, USA (n = 10 population-years; see Table 1 for detailed data on sampling units) as a function of how elk used the nutritional landscape (i.e., estimates of usable forage biomass at locations used by GPS-collared elk). Descriptive statistics used to represent the nutritional landscape included the mean, max, and coefficient of variation (CV) in usable forage biomass available to elk in each population-year during summer (June 1 – July 31) and fall (August 1 – September 15); details on the calculation of those statistics are provided in the main text). We report relative (AIC_c) and absolute (adjusted R²) measures of fit for each model, as well as the Akaike weight (w_i)

Madal				Adjusted
Model	AICC	AAICC	Wi	ĸ
$Pregnancy = Summer_CV + Fall_CV$	76.23	0.00	0.57	0.75
Pregnancy = Fall_CV	78.10	1.88	0.22	0.52
Pregnancy = Summer_max + Fall_max	80.35	4.12	0.07	0.62
Pregnancy = Summer_max	82.54	6.31	0.02	0.25
Pregnancy = Summer_max + Summer_CV + Fall_CV	82.68	6.45	0.02	0.77
Pregnancy = Summer_mean	82.69	6.46	0.02	0.24
Pregnancy = Fall_max	83.56	7.33	0.01	0.17
Pregnancy = Summer_max + Summer_CV + Fall_max	83.60	7.37	0.01	0.75
Pregnancy = Fall_mean + Fall_max	83.89	7.66	0.01	0.46
Pregnancy = Fall_mean + Fall_CV	84.10	7.88	0.01	0.45
Pregnancy = Summer_CV	84.44	8.21	0.01	0.09
Pregnancy = Fall_mean	86.08	9.85	0.00	-0.07
Pregnancy = Summer_max + Summer_CV	86.26	10.03	0.00	0.32
Pregnancy = Summer mean + Summer CV	87.75	11.52	0.00	0.21

Figures

Figure 1: Conceptual model illustrating our approach to relating pregnancy rates of elk (*Cervus canadensis*) to spatiotemporal variation in the nutritional landscape and how that landscape is used by elk. We first combined detailed data on biomass and quality of forage plants consumed by elk with data on nutritional requirements for supporting lactation to estimate "usable" forage biomass at each sampled location. We then used regression models to explain spatiotemporal variation in usable biomass as a function of key environmental covariates, and used the resulting models to map the nutritional landscape available to elk in each population-year included in our study. Finally, we related metrics of the nutritional landscape and how it was used by elk to pregnancy rates in a second regression analysis.

Figure 2: Study area locations in Idaho, USA. Intensive vegetation sampling was conducted in the South Fork of the Clearwater River drainage and the Sawtooth and Diamond Creek elk zones.

Figure 3: Mean (±90% CI) usable biomass of forage (kg/ha) in potential vegetation types comprising >90% of each of three elk management zones in Idaho, USA during summer (May 25–July 1) and fall (August 1–September 15) of 2016 and 2017. Acronyms for each potential vegetation type are described in Table 2.

Figure 4: Relationship between measured and model-predicted (models presented in Table 4) values of usable forage biomass at macroplot locations sampled in three elk management zones in Idaho, USA during summer (June 1 - July 31) and fall (August 1- September 15) of 2016 and 2017.

Figure 5: Percent of randomly sampled locations in each zone during summer (June 1 – July 31) and fall (August 1 – September 15) that fell into each of four quartiles of usable forage biomass (low = <245 kg/ha, mid-low = 245-423 kg/ha, mid-high = 423-705 kg/ha, and high = >705 kg/ha).

Figure 6: Boxplots of predicted usable biomass of forage at random locations (R; 1,000 locations per potential vegetation type) and locations used by elk (*Cervus canadensis*: U; derived from GPS-collar data)in each of four elk management zones in Idaho, USA for which we obtained GPS-collar data during summer (June 1 – July 31) and fall (August 1 – September 15).

Figure 7: Model-averaged, standardized parameter estimates (with 90% confidence intervals) obtained from multiple regression models of elk (*Cervus canadensis*) pregnancy rates in Idaho, USA. Predictor variables were descriptive statistics (mean, max, and coefficient of variation) derived from model-predicted estimates of usable forage biomass at (a) random locations (n = 1,000 locations per PVT) that served as an index of the available nutritional landscape in each of seven elk management zones, and (b) locations used by elk in each managmenet zone (determined from GPS-collared females).

Appendices

Appendix A: List of plant species sampled during our study and the associated level of selection by elk. Level of selection by elk (*Cervus canadensis*) was based on published and unpublished data provided by R. Cook. Taxonomy: The PLANTS Database, USDA, NRCS, 2016 (<u>http://plants.usda.gov</u>, accessed 4/1/2016).

Plant code	Family	Scientific name	Common name	Level of selection
ABCO	Pinaceae	Abies concolor	White fir	Avoided
ABGR	Pinaceae	Abies grandis	Grand fir	Avoided
ABLA	Pinaceae	Abies lasiocarpa	Subalpine fir	Avoided
ACCO4	Ranunculaceae	Aconitum columbianum	Columbian monkshood	Avoided
ACGL	Aceraceae	Acer glabrum	Rocky mountain maple	Selected
ACHY	Poaceae	Achnatherum hymenoides	Indian ricegrass	Selected
ACMI2	Asteraceae	Achillea millefolium	Common yarrow	Selected
ACNEN2	Poaceae	Achnatherum nelsonii	Columbia needlegrass	Avoided
АСРН	Polygonaceae	Aconogonon phytolaccifolium	Poke knotweed	Avoided
ACRUA8	Ranunculaceae	Actaea rubra arguta	Red baneberry	Selected
ADBI	Asteraceae	Adenocaulon bicolor	Pathfinder	Selected
AGCR	Poaceae	Agropyron cristatum	Crested wheatgrass	Selected
AGGL	Asteraceae	Agoseris glauca	False dandelion	Selected
AGOC	Asteraceae	Ageratina occidentalis	Western snakeroot	Avoided
AGOS	Asteraceae	Agoseris spp.	Dandelion spp.	Selected
AGROP	Poaceae	Agropyron spp.	Wheatgrass spp.	Selected
AGROS	Poaceae	Agrostis spp.	Bentgrass spp.	Selected
AGSC5	Poaceae	Agrostis scabra	Rough bentgrass	Selected
AGUR	Lamiaceae	Agastache urticifolia	Horsemint	Avoided
ALBR	Liliaceae	Allium brandegeei	Brandegee's onion	Avoided
ALGE2	Poaceae	Alopecurus geniculatus	Water foxtail	Avoided
ALLI	Liliaceae	Allium spp.	Onion spp.	Avoided
ALNUS	Betulaceae	Alnus spp.	Alder spp.	Selected
ALRO3	Malvaceae	Alcea rosea	Hollyhock	Avoided
ALRU2	Betulaceae	Alnus rubra	Red alder	Selected
ALSI	Betulaceae	Alnus sinuata	Sitka alder	Selected
ALVIC	Betulaceae	Alnus viridis	Green alder	Selected
AMAL2	Rosaceae	Amelanchier alnifolia	Saskatoon serviceberry	Selected
AMSIN	Boraginaceae	Amsinckia spp.	Fiddleneck	Avoided
ANAL4	Asteraceae	Antennaria alpina	Alpine pussytoes	Avoided
ANAN2	Asteraceae	Antennaria anaphaloides	Pearly pussytoes	Avoided

ANAPHspp	Asteraceae	Anaphalis spp.	Pearly everlasting spp.	Avoided
ANCA14	Apiaceae	Anthriscus caucalis	Bur chervil	Selected
ANDRO3	Primulaceae	Androsace spp.	Rock jasmine	Avoided
ANEN	Ranunculaceae	Anemone spp.	Anemone spp.	Avoided
ANGEL	Apiaceae	Angelica spp.	White angelica	Avoided
ANMA	Asteraceae	Anaphalis margaritacea	Western pearly everlasting	Avoided
ANNE	Asteraceae	Antennaria neglecta	Field pussytoes	Avoided
ANPA	Ranunculaceae	Anemone parviflora	Smallflowered anemone	Avoided
ANPI	Ranunculaceae	Anemone piperi	Piper's anemone	Avoided
ANPU	Asteraceae	Antennaria pulcherrima	Showy pussytoes	Avoided
ANRA	Asteraceae	Antennaria racemosa	Raceme pussytoes	Avoided
ANRO2	Asteraceae	Antennaria rosea	Rosy pussytoes	Avoided
ANTE	Asteraceae	Antennaria spp.	Pussytoes spp.	Avoided
APAN2	Apocynaceae	Apocynum androsaemifolium	Spreading dogbane	Selected
APIA	Apiaceae	Apiaceae spp.	Parsley spp.	Avoided
AQCA	Ranunculaceae	Aquilegia canadensis	Red columbine	Selected
AQCO	Ranunculaceae	Aquilegia coerulea	Colorado blue columbine	Selected
AQFL	Ranunculaceae	Aquilegia flavescens	Yellow columbine	Selected
AQFO	Ranunculaceae	Aquilegia formosa	Western columbine	Selected
ARAB	Brassicaceae	Arabidopsis spp.	Rockcress spp.	Avoided
ARAC2	Caryophyllaceae	Arenaria aculeata	Prickly sandwort	Avoided
ARAL	Arecaceae	Arnica angustifolia	Alpine arnica	Selected
ARAL2	Ericaceae	Arctostaphylos uva-ursi	Bearberry	Selected
ARAN7	Rosaceae	Argentina anserina	Silverweed cinquefoil	Selected
ARAR8	Asteraceae	Artemisia arbuscula	Little sagebrush	Avoided
ARCA13	Asteraceae	Artemisia cana	Silver sagebrush	Avoided
ARCAA	Caryophyllaceae	Arenaria capillaris americana	Fescue sandwort	Avoided
ARCH3	Asteraceae	Arnica chamissonis	Leafy arnica	Selected
ARCO5	Caryophyllaceae	Arenaria congesta	Ballhead sandwort	Avoided
ARCO9	Asteraceae	Arnica cordifolia	Heart-leaved arnica	Selected
ARCTI	Asteraceae	Arctium spp.	Burdock	Selected
ARDI2	Brassicaceae	Arabis divaricarpa	Spreading-pod rockcress	Avoided
ARDR	Brassicaceae	Arabis drummondii	Drummond's rockcress	Avoided
AREN	Caryophyllaceae	Arenaria spp.	Sandwort spp.	Avoided
ARFE3	Caryophyllaceae	Arenaria fendleri	Fendler's sandwort	Avoided
ARFR4	Asteraceae	Artemisia frigida	Prairie sage	Avoided
ARHO	Brassicaceae	Arabis hoffmannii	Reflexed rockcress	Avoided
ARLA8	Asteraceae	Arnica latifolia	Broadleaf arnica	Selected
ARLU	Asteraceae	Artemisia ludoviciana	White sagebrush	Selected
ARMA	Caryophyllaceae	Arenaria macrophylla	Largeleaf sandwort	Avoided
ARMO	Brassicaceae	Arabis modesta	Rocky mountain sandwort	Avoided

ARMO4	Asteraceae	Arnica mollis	Hairy arnica	Selected
ARMO8	Asteraceae	Arnica montana	Meadow arnica	Selected
ARNICA	Asteraceae	Arnica spp.	Arnica spp.	Selected
ARNO4	Asteraceae	Artemisia nova	Black sagebrush	Avoided
ARRI	Asteraceae	Artemisia rigida	Scabland sagebrush	Avoided
ARSC	Asteraceae	Artemisia scopulorum	Alpine sage	Selected
ARSE2	Caryophyllaceae	Arenaria serpyllifolia	Thymeleaf sandwort	Avoided
ARSO	Asteraceae	Arnica sororia	Twin arnica	Selected
ARTR4	Asteraceae	Artemisia tripartita	Three-tip sagebrush	Avoided
ARTRW8	Asteraceae	Artemisia tridentata wyomingensis	Wyoming big sagebrush	Avoided
ASAT1	Fabaceae	Astragalus atratus	Field milkvetch	Selected
ASCAN	Fabaceae	Astragalus canadensis	Canadian milkvetch	Selected
ASCAU	Aristolochiaceae	Asarum caudatum	British Columbia wildginger	Avoided
ASCO	Asteraceae	Eurybia conspicua	Western showy aster	Selected
ASFO	Asteraceae	Argyroxiphium forbesii	Leafy aster	Selected
ASTER	Asteraceae	Aster spp.	Aster spp.	Selected
ASTRAG	Fabaceae	Astragalus spp.	Vetch spp.	Selected
ATFI	Dryopteridaceae	Athyrium filix-femina	Common ladyfern	Avoided
ATRIP	Chenopodiaceae	Atriplex spp.	Saltbush	Avoided
BAMA4	Asteraceae	Balsamorhiza macrophylla	Cutleaf balsamroot	Selected
BASA3	Asteraceae	Balsamorhiza sagittata	Arrowleaf balsamroot	Selected
BERU	Scrophulariaceae	Besseya rubra	Red besseya	Selected
BOGR2	Poaceae	Bouteloua gracilis	Blue grama grass	Selected
BOMA	Saxifragaceae	Boykinia major	Mountain boykinia	Selected
BORA	Boraginaceae	Myosotis spp.	Forget-Me-Not spp.	Selected
BOTRY	Ophioglossaceae	Botrychium spp.	Grape fern	Avoided
BRAN	Poaceae	Bromus anomalus	Nodding brome	Selected
BRCA	Poaceae	Bromus carinatus	California brome	Selected
BRCI2	Poaceae	Bromus ciliatus	Fringed brome	Selected
BRIN2	Poaceae	Bromus inermis	Smooth brome	Selected
BRINP5	Poaceae	Bromus inermis pumpellianus	Northern brome	Selected
BRMA4	Poaceae	Bromus marginatus	Mountain brome	Selected
BROMUS	Poaceae	Bromus spp.	Bromus spp.	Selected
BRTE	Poaceae	Bromus tectorum	Cheatgrass	Avoided
BRVU	Poaceae	Bromus vulgaris	Columbia brome	Selected
CAAQ	Cyperaceae	Carex aquatilis	Water sedge	Selected
CABRB	Brassicaceae	Carbamine breweri breweri	Brewer's bittercress	Avoided
CABU	Orchidaceae	Calypso bulbosa	Fairy slipper	Selected
CACA4	Poaceae	Calamagrostis canadensis	Marsh reedgrass	Selected
CACO36	Scrophulariaceae	Castilleja covilleana	Rocky mountain paintbrush	Selected
CAGE	Cyperaceae	Carex geyeri	Geyer's sedge	Selected

CALE4	Ranunculaceae	Caltha leptosepala	White marsh marigold	Selected
CALI4	Scrophulariaceae	Castillega linariifolia	Narrow-leaf paintbrush	Selected
CAMI12	Scrophulariaceae	Castillega miniata	Giant red paintbrush	Selected
CANU3	Liliaceae	Calochortus nuttallii	Sego lily	Avoided
CANU4	Asteraceae	Carduus nutans	Musk thistle	Avoided
CAOC4	Scrophulariaceae	Castilleja occidentalis	Yellow paintbrush	Selected
CAPA5	Ranunculaceae	Caltha palustris	Marsh marigold	Selected
CAQUB2	Liliaceae	Camassia quamash breviflora	Small camas	Selected
CAREX	Cyperaceae	Carex spp.	Carex spp.	Selected
CARO2	Campanulaceae	Campanula rotundifolia	Bluebell of Scotland	Selected
CARU	Poaceae	Calamagrostis rubescens	Pinegrass	Selected
CARY	Caryophyllaceae	Dianthus spp.	Carnation spp.	Avoided
CAST	Scrophulariaceae	Castilleja spp.	Paintbrush spp.	Selected
CATA2	Onagraceae	Camissonia tanacetifolia	Tansy-leaf suncup	Selected
CEAL12	Caryophyllaceae	Cerastium alpinum	Alpine chickweed	Selected
CEAR4	Caryophyllaceae	Cerastium arvense	Field chickweed	Selected
CEGL2	Caryophyllaceae	Cerastium glomeratum	Sticky chickweed	Selected
CERA	Caryophyllaceae	Cerastium spp.	Chickweed spp.	Selected
CESA	Rhamnaceae	Ceanothus sanguineus	Redstem ceanothus	Selected
CESO	Asteraceae	Centauria solstitialis	Yellow starthistle	Avoided
CEST	Asteraceae	Centauria stoebe	Spotted knapweed	Avoided
CEVE	Rhamnaceae	Ceanothus velutinus	Ceanothus	Avoided
CHEV	Asteraceae	Chaenactis evermannii	Evermann's chaenactis	Selected
CHJU	Asteraceae	Chondrilla juncea	Rush skeletonweed	Avoided
CHLA13	Onagraceae	Chamerion latifolium	Dwarf fireweed	Selected
CHLE	Asteraceae	Chrysanthemum leucanthemum	Oxeye daisy	Selected
CHME	Pyrolaceae	Chimaphila menziesii	Menzie's pipsessewa	Avoided
CHRY	Asteraceae	Chrysothamnus spp.	Rabbitbrush spp.	Avoided
CHTW	Scrophulariaceae	Chionophila tweedyi	Tweedy's snowlover	Selected
CHUM	Pyrolaceae	Chimaphila umbellata	Prince's pine	Avoided
CHVI8	Asteraceae	Chrysothamnus viscidiflorus	Yellow rabbitbrush	Avoided
CIAL	Onagraceae	Circaea alpina	Small enchanter's nightshade	Selected
CIAR4	Asteraceae	Cirsium arvense	Canada thistle	Avoided
CIFO	Asteraceae	Cirsium foliosum	Elk thistle	Selected
CIIN	Asteraceae	Cichorium intybus	Chicory	Selected
CIRS	Asteraceae	Cirsium spp.	Thistle spp.	Avoided
CLAYT	Portulacaceae	Claytonia spp.	Springbeauty	Selected
CLCO	Ranunculaceae	Clematis columbiana	Rock clematis	Selected
CLCOR	Portulacaceae	Claytonia cordifolia	Heartleaf springbeauty	Selected
CLFL3	Portulacaceae	Claytonia lanceolata	Lanceleaf springbeauty	Selected
CLHI	Ranunculaceae	Clematis hirsutissima	Hairy clematis	Selected

CLLI	Ranunculaceae	Clematis ligusticifolia	Western white clematis	Selected
CLME	Portulacaceae	Claytonia megarhiza	Alpine springbeauty	Selected
CLOC2	Ranunculaceae	Clematis occidentalis	Blue clematis	Selected
CLPE	Portulacaceae	Claytonia perfoliata	Miner's lettuce	Selected
CLPU	Onagraceae	Clarkia pulchella	Pink fairies	Selected
CLRU2	Portulacaceae	Claytonia rubra	Redstem springbeauty	Selected
CLSI	Portulacaceae	Claytonia sibirica	Siberian springbeauty	Selected
CLUN	Liliaceae	Clintonia uniflora	Bride's bonnet	Avoided
COAR	Convolvulaceae	Convolvulus arvensis	Field bindweed	Avoided
COCA	Cornaceae	Cornus canadensis	Bunchberry dogwood	Selected
COGR4	Polemoniaceae	Collomia grandiflora	Grand collomia	Avoided
COLI2	Polemoniaceae	Collomia linearis	Narrow-leaved collomia	Avoided
COLL	Polemoniaceae	Collomia spp.	Collomia spp.	Avoided
COMA25	Orchidaceae	Corallorhiza maculata	Coralroot	Avoided
CONU	Cornaceae	Cornus nuttalii	Pacific dogwood	Selected
COOC	Ranunculaceae	Coptis occidentalis	Idaho goldthread	Selected
COPA28	Rosaceae	Comarum palustre	Marsh cinquefoil	Selected
COPA3	Scrophulariaceae	Collinsia parviflora	Blue-eyed Mary	Avoided
COSE16	Cornaceae	Cornus sericea	Redosier dogwood	Selected
COSE5	Fumariaceae	Corydalis sempervirens	Pink corydalis	Selected
COST	Cornaceae	Cornus stolonifera	Red stem dogwood	Selected
COUM	Santalaceae	Comandra umbellata	Bastard toadflax	Avoided
CRAC2	Asteraceae	Crepis acuminata	Longleaf hawksbeard	Selected
CRAT	Asteraceae	Crepis atribarba	Slender hawksbeard	Selected
CRDO2	Rosaceae	Crataegus douglasii	Black hawthorn	Selected
CREPIS	Asteraceae	Crepis spp.	Hawksbeard spp.	Selected
CROC	Asteraceae	Crepis occidentalis	Gray hawksbeard	Selected
CRTO4	Boraginaceae	Cryptantha torreyana	Torrey's cryptantha	Avoided
CRYP	Boraginaceae	Cryptantha spp.	Cryptanthia spp.	Avoided
CYFR	Dryopteridaceae	Crystopteris fragilis	Brittle bladderfern	Avoided
CYOF	Boraginaceae	Cynoglossum officinale	Houndstongue	Avoided
DACA3	Poaceae	Danthonia californica	California oatgrass	Selected
DACT	Poaceae	Dactylis spp.	Orchardgrass spp	Selected
DAFR6	Rosaceae	Dasiphora fruticosa	Shrubby cinquefoil	Selected
DAGL	Poaceae	Dactylis glomerata	Orchardgrass	Selected
DAIN	Poaceae	Danthonia intermedia	Timber oatgrass	Selected
DANT	Poaceae	Danthonia spp.	Danthonia spp.	Selected
DANTspp	Poaceae	Danthonian spp.	Oatgrass spp	Selected
DAPA2	Poaceae	Danthonia parryi	Parry's oatgrass	Selected
DAUN	Poaceae	Danthonia unispicata	Onespike danthonia	Selected
DECEA5	Poaceae	Deschampsia alpina	Tufted hairgrass	Avoided

DELPH	Ranunculaceae	Delphinium spp.	Larkspur spp.	Avoided
DENU2	Ranunculaceae	Delphinium nuttallianum	Nelson's larkspur	Avoided
DEPI	Brassicaceae	Descurainia pinnata	Western tanseymustard	Avoided
DEPIN	Brassicaceae	Descurainia pinnata nelsonii	Nelson's tanseymustard	Avoided
DESCH	Poaceae	Deschampsia spp.	Hairgrass spp	Avoided
DIDE	Caryophyllaceae	Dianthus deltoides	Maiden pink	Avoided
DIHO	Liliaceae	Disporum hookeri	Drops-of-gold	Avoided
DOPU	Primulaceae	Dodecatheon pulchellum	Pretty shootingstar	Selected
DRYOP	Dryopteridaceae	Dryopteris spp.	Woodfern spp.	Avoided
ELCA4	Poaceae	Elymus canadensis	Canada wildrye	Selected
ELCO4	Poaceae	Leymus condensatus	Giant wildrye	Selected
ELEL5	Poaceae	Elymus elymoides	Squirreltail	Avoided
ELGL	Poaceae	Elymus glaucus	Smooth wildrye	Selected
ELLA3	Poaceae	Elymus lanceolatus	Thickspike wheatgrass	Selected
ELRE4	Poaceae	Elymus repens	Quackgrass	Avoided
ELTR7	Poaceae	Elymus trachycaulus	Slender wheatgrass	Selected
ELYLE	Poaceae	Elymus spp.	Rye spp.	Selected
EPAN2	Onagraceae	Epilobium angustifolium	Fireweed	Selected
EPBR3	Onagraceae	Epilobium brachycarpum	Tall Annual willowherb	Avoided
EPCI	Onagraceae	Epilobium cilatum	Purple-leaved willowherb	Avoided
EPIL	Onagraceae	Epilobium spp.	Willowherb spp.	Avoided
EPLA3	Onagraceae	Epilobium lactiflorum	Milkflower willowherb	Avoided
EQHY	Equisetaceae	Equisetum hyemale	Horsetail	Avoided
ERAN	Asteraceae	Erigeron annuus	Eastern daisy fleabane	Selected
ERAN5	Polygonaceae	Eriogonum androsaceum	Rockjasmine buckwheat	Selected
ERBL	Asteraceae	Erigeron bloomeri	Scabland fleabane	Selected
ERCI6	Geraniaceae	Erodium cicutarium	Redstem stork's bill	Avoided
ERGL	Poaceae	Eragrostis glomerata	Smooth fleabane	Selected
ERGR9	Liliaceae	Erythronium grandiflorum	Yellow avalanche lily	Selected
ERHE2	Polygonaceae	Eriogonum heracleoides	Parsnipflower buckwheat	Selected
ERIC	Ericaceae	Pyrola spp.	Wintergreen spp.	Avoided
ERIG	Asteraceae	Erigeron spp.	Fleabane spp.	Selected
ERIO	Polygonaceae	Erigonum spp.	Buckwheat spp.	Selected
ERLA6	Asteraceae	Eriophyllum lanatum	Oregon sunshine	Selected
ERNA10	Asteraceae	Ericameria nauseosa	Rubber rabbitbrush	Avoided
EROV	Polygonaceae	Eriogonum ovalifolium	Cushion buckwheat	Selected
ERPA30	Asteraceae	Ericameria parryi	Parry's rabbitbrush	Avoided
ERPE3	Asteraceae	Erigeron peregrinus	Subalpine fleabane	Selected
ERSP4	Asteraceae	Erigeron speciosus	Aspen fleabane	Selected
ERST3	Asteraceae	Erigeron strigosus	Fleabane daisy	Selected
ERST4	Polygonaceae	Eriogonum strictum	Strict desert buckwehat	Selected

ERUM	Polygonaceae	Eriogonum umbellatum	Sulfur buckwheat	Selected
EUCO36	Asteraceae	Eurybia conspicua	Showy aster	Selected
EUEN	Asteraceae	Eucephalus engelmannii	Engelmann's aster	Selected
EUES	Euphorbiaceae	Euphorbia esula	Leafy spurge	Avoided
EUGL18	Asteraceae	Eucephalus glabratus	Smooth aster	Selected
EUIN9	Asteraceae	Eurybia integrifolia	Thickstem aster	Selected
FECA4	Poaceae	Festuca campestris	Mountain rough fescue	Selected
FEID	Poaceae	Festuca idahoensis	Idaho fescue	Selected
FEOV	Poaceae	Festuca ovina	Sheep fescue	Selected
FESCUE	Poaceae	Festuca spp.	Fescue spp.	Selected
FRFA	Gentianaceae	Frasera fastigiata	Clustered green gentian	Selected
FRSP	Gentianaceae	Frasera speciosa	Monument plant	Selected
FRVE	Rosaceae	Fragaria vesca	Woodland strawberry	Selected
FRVI	Rosaceae	Fragaria virginiana	Wild strawberry	Selected
GAAR	Asteraceae	Gaillardia aristata	Blanketflower	Avoided
GABO2	Rubiaceae	Galium boreale	Northern bedstraw	Avoided
GADE2	Orchidaceae	Galeandra bicarinata	Deceptive groundsmoke	Avoided
GAHU	Ericaceae	Gaultheria humifusa	Alpine spicywintergreen	Avoided
GAHU2	Onagraceae	Gayophytum humile	Dwarf groundsmoke	Avoided
GALLI	Rubiaceae	Galium spp.	Bedstraw spp.	Selected
GAOV	Ericaceae	Gaultheria ovatifolia	Western teaberry	Selected
GATR3	Rubiaceae	Galium triflorum	Sweet-scented bedstraw	Selected
GEAF	Gentianaceae	Gentiana affinis	Pleated gentian	Selected
GEMA4	Rosaceae	Geum macrophyllum	Large-leaved avens	Selected
GERA	Geraniaceae	Geranium spp.	Geranium spp.	Selected
GETR	Rosaceae	Geum triflorum	Prairie smoke	Selected
GEVI	Gentianaceae	Geranium viscosissimum	Sticky purple geranium	Selected
GEVI2	Gentianaceae	Gentiana newberryi tiogana	Sticky geranium	Selected
GLLE3	Fabaceae	Glycyrrhiza lepidota	Wild licorice	Selected
GLMA	Primulaceae	Glaux maritima	Sea milkwort	Selected
GOOB2	Orchidaceae	Goodyera oblongifolia	Rattlesnake plantain	Selected
GOOD	Orchidaceae	Goodyera spp.	Plantain spp.	Selected
GROU	Asteraceae	Packera spp.	Groundsel spp.	Selected
GRSQ	Asteraceae	Grindelia squarrosa	Curlycip gumweed	Avoided
GYDR	Dryopteridaceae	Gymnocarpium dryopteris	Western oakfern	Avoided
HAFL2	Boraginaceae	Hackelia floribunda	Many-flowered stickseed	Avoided
HECO26	Poaceae	Hesperostipa comata	Needle-&-thread	Avoided
HECY2	Saxifragaceae	Heuchera cylindrica	Roundleaf alumroot	Selected
HEDY	Fabaceae	Hedysarum	Sweetvetch	Selected
HEGR8	Saxifragaceae	Heuchera grossulariifolia	Currantleaf alumroot	Selected
HEMA80	Apiaceae	Heracleum maximum	Common cowparsnip	Avoided
HEMU3	Asteraceae	Heliomeris multiflora	Showy goldeneye	Selected
--------	-----------------	--------------------------	------------------------	----------
HENU	Asteraceae	Helianthus nuttallii	Nuttall's sunflower	Selected
HEPA	Asteraceae	Helianthella parryi	Common alumroot	Selected
HEUC	Saxifragaceae	Heuchera spp.	Alumroot spp.	Selected
HEUN	Asteraceae	Helianthella uniflora	Oneflower helianthella	Selected
HIAL2	Asteraceae	Hieracium albiflorum	White hawkweed	Selected
HIAU	Asteraceae	Hieracium aurantiacum	Orange hawkweed	Selected
HICA10	Asteraceae	Hieracium caespitosum	Meadow hawkweed	Selected
HICY	Asteraceae	Hieracium cynoglossoides	Houndstongue hawkweed	Selected
HIER	Asteraceae	Hieracium spp.	Hawkweed spp.	Selected
HIERO	Poaceae	Hierochloe spp.	Bison grass	Selected
HIGR	Asteraceae	Hieracium gracile	Slender hawkweed	Selected
HISC2	Asteraceae	Hieracium scouleri	Scouler's woollyweed	Selected
HIUM	Asteraceae	Hieracium umbellatum	Narrow-leaved hawkweed	Selected
HODI	Rosaceae	Holodiscus discolor	Oceanspray	Selected
HOJU	Poaceae	Hordeum jubatum	Foxtail barley	Selected
HYAN2	Clusiaceae	Hypericum anagalloides	Bog St. John's wort	Avoided
HYCA4	Hydrophyllaceae	Hydrophyllum capitatum	Ballhead waterleaf	Selected
НҮНО	Asteraceae	Hymenoxys hoopesii	Owl's claws	Selected
ILRI	Malvaceae	Iliamna rivularis	Streambank globemallow	Selected
IOAL	Asteraceae	Ionactis alpina	Lava aster	Selected
IOST	Asteraceae	Ionactis stenomeres	Rocky mountain aster	Selected
IPAG	Polemoniaceae	Ipomopsis aggregata	Scarlet gilia	Selected
IRMI	Iridaceae	Iris missouriensis	Western blue flag iris	Avoided
ISAR	Cleomaceae	Isomeris arborea	Bladderpod	Avoided
JUCO	Juncaceae	Juncus compressus	Common juniper	Avoided
JUNC	Juncaceae	Juncus spp.	Rush spp.	Selected
JUOC	Juncaceae	Juniperus occidentalis	Western juniper	Avoided
JUSC2	Cupressaceae	Juniperus scopulorum	Rocky mountain juniper	Avoided
KOCR	Poaceae	Koleria cristata	Prairie junegrass	Selected
KRLA2	Chenopodiaceae	Krascheninnikovia lanata	Winterfat	Selected
LACTU	Asteraceae	Lactuca spp.	Lettuce spp.	Selected
LAOC	Pinaceae	Larix occidentalis	Western larch	Avoided
LAPU2	Lamiaceae	Lamium purpureum	Purple nettle	Avoided
LASE	Asteraceae	Lactuca serriola	Prickly lettuce	Selected
LATA	Asteraceae	Lactuca tatarica	Blue lettuce	Selected
LATH	Fabaceae	Lathyrus spp.	Pea spp.	Selected
LEDE	Brassicaceae	Lepidium densiflorum	Common pepperweed	Avoided
LENU8	Polemoniaceae	Leptosiphon nuttallii	Nuttall's liananthus	Avoided
LEVI3	Brassicaceae	Lepidium virginicum	Peppergrass	Avoided
LIBO3	Caprifoliaceae	Linnaea borealis	Twinflower	Avoided

LICA2	Apiaceae	Ligusticum canbyi	Canaby's licoriceroot	Avoided
LICO6	Orchidaceae	Listera cordata	Heart-leaved twayblade	Selected
LIGL2	Saxifragaceae	Lithophragma glabrum	Bulbous woodland-star	Selected
LIGUST	Apiaceae	Ligusticum spp.	Licorice-root	Selected
LILE3	Linaceae	Linum lewisii	Western blue flax	Selected
LILI	Asteraceae	Liatris ligulistylis	Rocky mountain blazing star	Selected
LILIA	Liliales	Liliaceae spp.	Liliaceae spp.	Avoided
LIPA5	Saxifragaceae	Lithophragma parviflorum	Smallflower woodland-star	Selected
LIPE2	Linaceae	Linum perenne	Western blue flax	Selected
LIRU4	Boraginaceae	Lithospermum ruderale	Yellow puccoon	Selected
LOAM	Apiaceae	Lomatium ambiguum	Wyeth's biscuitroot	Selected
LOCA4	Apiaceae	Lomatium canbyi	Canby's biscuitroot	Selected
LOCI	Caprifoliaceae	Lonicera ciliosa	Orange honeysuckle	Selected
LOCU	Apiaceae	Lomatium cusickii	Cusick's biscuitroot	Selected
LODI	Apiaceae	Lomatium dissectum	Fern-leaved biscuitroot	Selected
LOMA	Apiaceae	Lomatium spp.	Lomatium spp.	Selected
LONI	Caprifoliaceae	Lonicera spp.	Honeysuckle spp.	Selected
LOTR2	Apiaceae	Lomatium triternatum	9-leaved desert parsley	Avoided
LOUT2	Caprifoliaceae	Lonicera utahensis	Utah honeysuckle	Selected
LULE	Fabaceae	Lupinus lemmonii	Prairie lupine	Selected
LUPA4	Juncaceae	Luzula parviflora	Small-flowered woodrush	Selected
LUPI	Fabaceae	Lupinus spp.	Lupine spp.	Selected
LUSEM3	Fabaceae	Lupinus sericeus marianus	Silky lupine	Selected
LUWY	Fabaceae	Lupinus wyethii	Wyethii larkspur	Avoided
LUZU	Juncaceae	Luzula spp.	Woodrush	Selected
MACA2	Asteraceae	Machaeranthera canescens	Hoary tanseyaster	Selected
MAGL2	Asteraceae	Madia glomerata	Mountain tarweed	Avoided
MARA7	Liliaceae	Maianthemum racemosum	Feathery false lily of the valley	Avoided
MARE11	Berberidaceae	Mahonia repens	Oregon grape	Selected
MAST4	Lilaceae	Maianthemum stellatum	False Solomon's seal	Avoided
MEAR4	Lamiaceae	Mentha arvensis	Wild mint	Avoided
MEBU	Poaceae	Melica bulbosa	Oniongrass	Selected
MEFE	Ericaceae	Menziesii ferruginae	Rusty menziesia	Avoided
MELO4	Boraginaceae	Mertensia longiflora	Long-flowered bluebells	Selected
MEOB	Boraginaceae	Mertensia oblongifolia	Oblongleaf bluebells	Selected
MERT	Boraginaceae	Mertensia spp.	Bluebells spp.	Selected
MESA	Fabaceae	Medicago sativa	Alfalfa	Selected
MICR	Asteraceae	Microseris spp.	Microseris spp.	Selected
MIGR	Polemoniaceae	Microsteris gracilis	Slender phlox	Avoided
MIGU	Scorphulariaceae	Mimulus guttatus	Yellow monkeyflower	Avoided
MINU	Asteraceae	Microseris nutans	Nodding microceris	Selected

MIOB2	Caryophyllaceae	Minuartia obtusiloba	Alpine sandwort	Avoided
MITELLA	Saxifragaceae	Mitella spp.	Miterwort	Avoided
MIVI2	Scorphulariaceae	Mimulus viscidus	Sticky monkeyflower	Avoided
MOLA6	Caryophyllaceae	Moehringia lateriflora	Blunt-leaved sandwort	Avoided
MUMO	Poaceae	Muhlenbergia montana	Mountain muhly	Selected
MYSY	Boraginaceae	Myosotis sylvatica	Woodland forget-me-not	Selected
NEBR	Hydrophyllaceae	Nemophila breviflora	Great Basin nemophile	Avoided
NOFEG	Brassicaceae	Noccaea fendleri glauca	Alpine pennycress	Avoided
OPHO	Araliaceae	Oplopanax horridus	Club leaf	Avoided
OPPO	Cactaceae	Opuntia polyacantha	Plains pricklypear	Selected
ORAL4	Asteraceae	Oreostemma alpigenum	Tundra aster White-grained mountain	Selected
ORAS	Poaceae	Oryzopsis asperifolia	ricegrass	Selected
ORLU2	Scorphulariaceae	Orthocarpus luteus	Yellow owl's clover	Selected
ORSE	Pyrolaceae	Orthilia secunda	Sidebells wintergreen	Avoided
OSBE	Apiaceae	Osmorhiza berteroi	Mountain sweetcicily	Selected
OSMO	Apiaceae	Osmorhiza spp.	Sweetcicily spp.	Selected
OSOC	Apiaceae	Osmorhiza occidentalis	Western sweetcicily	Selected
OXDI	Oxalidaceae	Oxalis dichondrifolia	Mountain sorrel	Selected
OXVI	Oxalidaceae	Oxalis violacea	Sticky locoweed	Avoided
PACA15	Asteraceae	Packera cana	Woolly groundsel	Selected
PAMU11	Asteraceae	Packera multilobata	Lobeleaf groundsel	Selected
PAMY	Celastraceae	Paxistima myrsinites	Falsebox	Selected
PAPA19	Asteraceae	Packera pauciflora	Rayless alpine groundsel	Selected
PASA2	Apiaceae	Pastinaca sativa	Wild parsnip	Selected
PASM	Poaceae	Pascopyrum smithii	Western wheatgrass	Selected
PAST10	Asteraceae	Packera streptanthifolia	Rocky mountain groundsel	Selected
PAWE4	Asteraceae	Packera werneriifolia	Hoary groundsel	Selected
PEAL11	Scorphulariaceae	Penstemon albertinus	Alberta penstemon	Selected
PEBR	Scorphulariaceae	Pedicularis bracteosa	Bracted lousewort	Avoided
PEDE4	Scorphulariaceae	Penstemon deustus	Hotrock penstemon	Selected
PEDIC	Scorphulariaceae	Pedicularis spp.	Lousewort spp.	Selected
PEFR	Asteraceae	Petasites frigidus	Arctic sweet coltsfoot	Selected
PEFR3	Scorphulariaceae	Penstemon fruticosus	Shrubby penstemon	Selected
PEGA3	Apiaceae	Perideridia gairdneri	Yampa	Selected
PEGL5	Scorphulariaceae	Penstemon globosus	Globe penstemon	Selected
PEGR2	Scorphulariaceae	Pedicularis groenlandica	Elephanthead	Selected
PENS	Scorphulariaceae	Penstemon spp.	Penstemon spp.	Selected
PEPR2	Scorphulariaceae	Penstemon procerus	Slender blue penstemon	Selected
PERA	Scorphulariaceae	Pedicularis racemosa	Parrot's beak	Selected
PERY	Scorphulariaceae	Penstemon rydbergii	Rydberg's penstemon	Selected

PESE11	Scorphulariaceae	Penstemon secundiflorus	Sidebells penstemon	Selected
PEVI3	Scorphulariaceae	Penstemon virens	Blue Mist penstemon	Selected
PHAL2	Poaceae	Phleum alpinum	Alpine timothy	Selected
PHAR3	Poaceae	Phalaris arundinacea	Reed canarygrass	Selected
PHAU3	Polemoniaceae	Phlox austromontana	Mountain phlox	Avoided
PHEM	Ericaceae	Phyllodoce empetriformis	Pink mountain heather	Avoided
PHGL	Ericaceae	Phyllodoce glanduliflora	Yellow mountainheath	Avoided
РННА	Hydrophyllaceae	Phacelia hastata	Silverleaf scorpionweed	Selected
PHHE	Hydrophyllaceae	Phacelia heterophylla	Varileaf phacelia	Avoided
РННО	Polemoniaceae	Phlox hoodii	Spiny phlox	Avoided
PHLE4	Hydrangeaceae	Philadelphus lewisii	Syringa	Selected
PHLI	Hydrophyllaceae	Phacelia linearis	Thread-leaved phacelia	Avoided
PHLO2	Polemoniaceae	Phlox longifolia	Longleaf phlox	Avoided
PHLOX	Polemoniaceae	Phlox spp.	Phlox spp.	Avoided
PHMA5	Rosaceae	Physocarpus malvaceus	Mallow ninebark	Selected
PHMUD	Polemoniaceae	Phlox multiflora depressa	Rocky mountain phlox	Avoided
PHPR3	Poaceae	Phleum pratensis	Timothy	Selected
PHPU5	Polemoniaceae	Phlox pulvinata	Cushion phlox	Avoided
PHSU3	Polemoniaceae	Phlox subulata	Moss phlox	Avoided
PIAL	Pinaceae	Pinus albicaulis	Whitebark pine	Avoided
PICEA	Pinaceae	Picea spp.	Spruce spp.	Avoided
PICO	Pinaceae	Pinus contorta	Lodgepole pine	Avoided
PIEN	Pinaceae	Picea engelmannii	Engelmann spruce	Avoided
PIFL	Ericaceae	Pieris floribunda	Limber pine	Avoided
PIMO	Pinaceae	Pinus monticola	Western white pine	Avoided
PIPO	Pinaceae	Pinus ponderosa	Ponderosa pine	Avoided
PIPU	Pinaceae	Picea pungens	Colorado blue spruce	Avoided
PLAN	Plantaginaceae	Plantago spp.	Plantain spp.	Avoided
PLAT	Orchidaceae	Platanthera spp.	Fringed orchid	Avoided
PLMA2	Plantaginaceae	Plantago major	Common plantain	Avoided
PLOR4	Orchidaceae	Platanthera orbiculata	Round-leaved orchid	Avoided
POAC	Poaceae	Poa spp.	Poa spp.	Selected
POAL2	Poaceae	Poa alpina	Alpine bluegrass	Selected
POAL26	Rosaceae	Potentilla alba	White cinquefoil	Selected
POARC	Rosaceae	Potentilla arguta convallaria	Cream cinquefoil	Selected
POAVA	Polygonaceae	Polygonum aviculare arenastrum	Prostrate knotweed	Selected
POBI6	Polygonaceae	Polygonum bistortoides	American bistort	Selected
POBU	Poaceae	Poa bulbosa	Bulbous bluegrass	Selected
PODI2	Rosaceae	Potentilla diversifolia	Diverse-leaved cinquefoil	Selected
PODO4	Polygonaceae	Polygonum douglasii	Douglas' knotweed	Avoided
POFL3	Rosaceae	Potentilla flabellifolia	Fanleaf cinquefoil	Selected

POGL9	Rosaceae	Potentilla glandulosa	Sticky cinquefoil	Selected
POGLR2	Poaceae	Poa glauca rupicola	Timberline bluegrass	Selected
POGR9	Rosaceae	Potentilla gracilis	Graceful cinquefoil	Selected
POMU	Dryopteridaceae	Polystichum munitum	Western swordfern	Avoided
PONEI2	Poaceae	Poa nemoralis interior	Inland bluegrass	Selected
PONO	Poaceae	Poa norbergii	Rough cinquefoil	Selected
POPR	Poaceae	Poa pratensis	Kentucky bluegrass	Selected
POPU3	Polemoniaceae	Polemonium pulcherrimum	Jacob's ladder	Avoided
PORE5	Rosaceae	Potentilla recta	Sulfur cinquefoil	Selected
POSE	Poaceae	Poa secunda	Steppe bluegrass	Selected
POTE	Rosaceae	Potentilla spp.	Cinquefoil spp.	Selected
POTR5	Salicaceae	Populus tremuloides	Quaking aspen	Selected
POVI3	Polygonaceae	Polygonum viviparum	Alpine bistort	Selected
POWH	Poaceae	Poa wheeleri/nervosa	Wheeler's bluegrass	Selected
PREM	Rosaceae	Prunus emarginata	Bitter cherry	Selected
PRHO2	Liliaceae	Prosartes hookeri	Hooker's fairybell	Avoided
PRTR4	Liliaceae	Prosartes trachycarpa	Roughfruited fairybells	Avoided
PRUNUS	Rosaceae	Prunus spp.	Cherry spp.	Selected
PRVI	Rosaceae	Prunus virginiana	Chokecherry	Selected
PRVU	Lamiaceae	Prunella vulgaris	Common selfheal	Selected
PSME	Pinaceae	Pseudostuga menziesii	Douglas-fir	Avoided
PSSP6	Poaceae	Pseudoroegneria spicata	Bluebunch wheatgrass	Selected
PTAN	Monotropaceae	Pterospora andromedea	Woodland pinedrops	Avoided
PTAQ	Dennstaedtiaceae	Pteridium aquilinum	Bracken fern	Avoided
PUTR2	Rosaceae	Purshia tridentata	Antelope bitterbrush	Selected
РҮСН	Pyrolaceae	Pyrola chlorantha	Greenish-flower wintergreen	Avoided
PYROLA	Pyrolaceae	Pyrola spp.	Wintergreen spp.	Avoided
PYUN2	Asteraceae	Pyrrocoma uniflora	Plantain goldenweed	Selected
RAAC2	Ranunculaceae	Ranunculus acriformis	Sharpleaf buttercup	Avoided
RACO3	Asteraceae	Ratibida columnifera	Prairie coneflower	Selected
RANU	Ranunculaceae	Ranunculus spp.	Buttercup spp.	Avoided
RHAL	Ericaceae	Rhododendron albiflorum	Cascade azalea	Avoided
RHGL	Anacardiaceae	Rhus glabra	Smooth sumac	Avoided
RHPU	Rhamnaceae	Rhamnus purshiana	Cascara buckthorn	Avoided
RIAU	Grossulariaceae	Ribes aureum	Golden currant	Selected
RIBES	Grossulariaceae	Ribes spp.	Currant spp.	Selected
RICE	Grossulariaceae	Ribes cereum	Squaw currant	Selected
RIHU	Grossulariaceae	Ribes hudsonianum	Northern black currant	Selected
RILA	Grossulariaceae	Ribes lacustre	Prickly currant	Selected
RIVI3	Grossulariaceae	Ribes viscosissium	Sticky currant	Selected
ROAC	Rosaceae	Rosa acicularis	Prickly rose	Selected

RONU	Rosaceae	Rosa nutkana	Nootka rose	Selected
ROSA	Rosaceae	Rosa spp.	Rose spp.	Selected
ROSI	Hydrophyllaceae	Romanzoffia sitchensis	Mistmaiden	Selected
ROWO	Rosaceae	Rosa woodsii	Wood's rose	Selected
RUAC3	Polygonaceae	Rumex acetosella	Common sheep sorrel	Avoided
RUARA2	Rosaceae	Rubus arcticus acaulis	Dwarf Raspberry	Selected
RUBUS	Rosaceae	Rubus spp.	Blackberry spp.	Selected
RUDB	Asteraceae	Rudbeckia spp.	Coneflower	Selected
RUHI2	Asteraceae	Rudbeckia hirta	Black-eyed susan	Selected
RUID	Rosaceae	Rubus idaeus	American red raspberry	Selected
RULA	Rosaceae	Rubus laciniatus	Cutleaf blackberry	Selected
RULE	Rosaceae	Rubus leucodermis	Whitebark raspberry	Selected
RUMEX	Polygonaceae	Rumex spp.	Sorrel spp.	Selected
RUNI	Rosaceae	Rubus nivalis	Snow raspberry	Selected
RUOC2	Asteraceae	Rudbeckia occidentalis	Western coneflower	Selected
RUOCA	Asteraceae	Rudbeckia alpicola	Western rayless coneflower	Selected
RUPA	Rosaceae	Rubus parviflorus	Thimbleberry	Selected
RUPA6	Polygonaceae	Rumex paucifolius	Alpine sorrel	Selected
RUPU	Rosaceae	Rubus pubescens	Dwarf red blackberry	Selected
RUUR	Rosaceae	Rubus ursinus	California blackberry	Selected
SABA4	Salicaceae	Salix barrattiana	Barrett's willow	Selected
SABE2	Salicaceae	Salix bebbiana	Bebb willow	Selected
SADO	Lamiaceae	Satureja douglassii	Yerba buena	Selected
SAGE2	Salicaceae	Salix geyeriana	Geyer willow	Selected
SALIX	Salicaceae	Salix spp.	Salix spp.	Selected
SAMB	Caprifoliaceae	Sambucus sp	Elderberry spp.	Selected
SAOR2	Saxifragaceae	Saxifraga oregana	Bog saxifrage	Selected
SAPL2	Salicaceae	Salix planifolia	Flat-leaved willow	Selected
SASC	Salicaceae	Salix scouleriana	Scouler's willow	Selected
SAXI	Saxifragaceae	Saxifraga spp.	Saxifrage spp.	Avoided
SCAL	Scrophulariaceae	Scrophularia lanceolata	Lanceleaf figwort	Avoided
SCRO	Scrophulariaceae	Scrophularia spp.	Figwort spp.	Avoided
SCUTE	Lamiaceae	Scutellaria spp.	Skullcap	Avoided
SECR	Asteraceae	Senecio crassulus	Thick-leaved groundsel	Selected
SEHY2	Asteraceae	Senecio hydrophilus	Water ragwort	Selected
SEIN2	Asteraceae	Senecio integerrimus	Lambstongue ragwort	Selected
SELA	Crassulaceae	Sedum lanceolatum	Lanceleaf stonecrop	Selected
SENE	Asteraceae	Senecio spp.	Ragwort spp.	Selected
SESE2	Asteraceae	Senecio serra	Tall ragwort	Selected
SESP4	Asteraceae	Senecio sphaerocephalus	Marsh groundsel	Selected
SETR	Asteraceae	Senecio trangularis	Arrowleaf groundsel	Selected

SEVU	Asteraceae	Senecio vulgaris	Canada groundsel	Selected
SHCA	Elaeagnaceae	Shepherdia canadensis	Buffaloberry	Selected
SIHY	Poaceae	Sitanion hystrix	Squirreltail	Avoided
SILE	Caryophyllaceae	Silene spp.	Campion spp.	Avoided
SIME	Caryophyllaceae	Silene menziesii	Menzie's campion	Avoided
SIMO2	Indaceae	Sisyrinchium montanum	Rocky mountain blue-eyed grass	Avoided
SIPA4	Caryophyllaceae	Silene parryi	Parry's catchfly	Avoided
SMST	Liliaceae	Smilicina stellata	Starry false lily of the valley	Selected
SOCA6	Asteraceae	Solidago canadensis	Canada goldenrod	Selected
SOLI	Asteraceae	Solidago spp.	Goldenrod spp.	Selected
SOMU	Asteraceae	Solidago multiradiata	Rocky mountain goldenrod	Selected
SOOL	Asteraceae	Sonchus oleraceus	Sow thistle	Selected
SOSC	Rosaceae	Sorbus scopulina	Green's mountain ash	Selected
SOSI2	Rosaceae	Sorbus sitchensis	Western mountain ash	Selected
SPBE2	Rosaceae	Spiraea betulifolia	Birch-leaved spirea	Selected
SPCR	Rosaceae	Sporobolus cryptandrus	Sand dropseed	Selected
SPPL	Rosaceae	Spiraea splendens	Rose meadowsweet	Selected
STAM2	Liliaceae	Streptopus amplexifolius	Claspleaf twisted stalk	Selected
STCA	Caryophyllaceae	Stellaria calycantha	Northern starwort	Avoided
STELL	Caryophyllaceae	Stellaria spp.	Starwort spp.	Avoided
STIPA	Poaceae	Stipa spp	Ricegrass spp.	Selected
STLA7	Asteraceae	Stenotus lanuginosus	Woolly mock goldenweed	Selected
STLO	Caryophyllaceae	Stellaria longifolia	Long-leaved starwort	Avoided
STLO2	Caryophyllaceae	Stellaria longipes	Long-stalked starwort	Avoided
STPA	Lamiaceae	Stachys palustris	Swamp nettle	Avoided
SYAL	Caprifoliaceae	Symphoricarpos albus	Common snowberry	Selected
SYAS3	Asteraceae	Symphyotrichum ascendens	Western aster	Selected
SYEA2	Asteraceae	Symphyotrichum eatonii	Eaton's aster	Selected
SYOC	Asteraceae	Symphoricarpos occidentalis	Snowberry	Selected
SYPL	Scrophulariaceae	Syntheris platycarpa	Idaho kittentails	Avoided
SYRO3	Asteraceae	Symphoricarpos robynsianum	Longleaf aster	Selected
TABR	Taxaceae	Taxus brevifolia	Pacific yew	Avoided
TAOF	Asteraceae	Taraxacum officinale	Common dandelion	Selected
TAVU	Asteraceae	Tanacetum vulgare	Common tansey	Selected
TETR	Asteraceae	Tetradymia spp.	Tetradymia spp.	Avoided
THALI2	Ranunculaceae	Thalictrum spp.	Meadow-rue	Avoided
THAR5	Brassicaceae	Thalaspi arvense	Field pennycress	Avoided
THIN6	Poaceae	Thinopyrum intermedium	Intermediate wheatgrass	Selected
THMO6	Fabaceae	Thermopsis montana	Mountain goldenbean	Avoided
THOC	Ranunculaceae	Thalictrum occidentale	Western meadow-rue	Avoided
THPL	Cupressaceae	Thuja plicata	Western redcedar	Avoided

THSP	Ranunculaceae	Thalictrum sparsiflorum	Fewflower meadow-rue	Avoided
TITR	Saxifragaceae	Tiarella trifoliate	Threeleaf foamflower	Avoided
TOAR	Apiaceae	Torilis arvensis	Spreading hedgeparsley	Selected
TOLY	Asteraceae	Tonestus lyallii	Lyall's goldenweed	Selected
TRAC	Sapindaceae	Tristiropsis acutangula	Northern fleabane	Selected
TRCA	Poaceae	Trisetum canescens	Tall trisetum	Selected
TRCAR	Ranunculaceae	Trautvetteria caroliniensis	Carolina bugbane	Avoided
TRDU	Asteraceae	Tragopogon dubius	Yellow salsify	Selected
TRGR4	Liliaceae	Trillium grandiflorum	Large-flowered trillium	Avoided
TRGR7	Liliaceae	Triteleia grandiflora	Wild hyacinth	Avoided
TRIF	Fabaceae	Trifolium spp.	Clover spp.	Selected
TRIL	Liliaceae	Trillium spp.	Trillium spp.	Avoided
TRLA	Primulaceae	Trientalis latifolia	Broadleaf starflower	Avoided
TROV	Liliaceae	Trillium ovatum	Pacific trillium	Selected
TRRE3	Fabaceae	Trifolium repens	White clover	Selected
TRSP2	Poaceae	Trisetum spicatum	Spike trisedum	Selected
TRTE	Zygophyllaceae	Tribulus terrestris	Puncturevine	Avoided
TSME	Pinaceae	Tsuga mertensiana	Mountain hemlock	Avoided
TYLA	Typhaceae	Typha latifolia	Broad-leaf cattail	Avoided
URDI	Urticaceae	Urtica dioica	Stinging nettle	Avoided
URTIC	Urticaceae	Urtica spp.	Bladderwort	Avoided
VACA	Ericaceae	Vaccinium caespitosum	Dwarf bilberry	Selected
VACC	Ericaceae	Vaccinium spp.	Vaccinium spp.	Selected
VACE	Ericaceae	Vaccinium cespitosum	Dwarf blueberry	Selected
VAED	Valerianaceae	Valeriana edulis	Edible valerian	Selected
VALER	Valerianaceae	Valeriana spp.	Valerian spp.	Selected
VAME	Ericaceae	Vaccinium membranaceum	Huckleberry	Selected
VAOC2	Valerianaceae	Valeriana occidentalis	Western valerian	Selected
VASC	Ericaceae	Vaccinium scoparium	Grouse whortleberry	Avoided
VASI	Valerianaceae	Valeriana sitchensis	Sitka valerian	Selected
VAVI	Ericaceae	Vaccinium vitis-idaea	Ligonberry	Avoided
VEAL80	Scorphulariaceae	Veronica alpina	Alpine speedwell	Avoided
VEBI2	Scorphulariaceae	Veronica biloba	Bilobed speedwell	Avoided
VECAC2	Liliaceae	Veratrum californicum	False hellebore	Avoided
VEDU	Poaceae	Ventenata dubia	North Africa grass	Avoided
VEHA2	Verbenaceae	Verbena hastata	Vervain	Selected
VERON	Scrophulariaceae	Veronica spp.	Speedwell spp.	Avoided
VESE	Scorphulariaceae	Veronica serpyllifolia	Thymeleaf speedwell	Avoided
VEST	Verbenaceae	Verbena stricta	Hoary verbena	Selected
VETH	Scorphulariaceae	Verbascum thapsus	Common mullein	Avoided
VIAM	Fabaceae	Vicia americana	American vetch	Selected

VICA4	Violaceae	Viola canadensis	Canadian violet	Selected
VINU2	Violaceae	Viola nuttalli	Nuttall's violet	Selected
VIOL	Violaceae	Viola spp.	Violet spp.	Selected
VIPU4	Violaceae	Viola purpurea	Goosefoot violet	Selected
VISO	Violaceae	Viola novae-angliae	Blue violet	Selected
VITR	Violaceae	Viola arvensis	Sage violet	Selected
WYAM	Asteraceae	Wyethia amplexicaulis	Yellow mule's ear	Selected
WYHE2	Asteraceae	Wyethia helianthoides	White mule's ear	Selected
XETE	Liliaceae	Xerophyllum tenax	Common beargrass	Selected
XYGL	Asteraceae	Xylorhiza glabriuscula	Woody aster	Selected
ZIVE	Liliaceae	Zigadenus venenosus	Deathcamus	Avoided

Appendix B: Species-specific linear regressions of plant biomass against plant cover (%), tree canopy cover (%), sample date, and interactions between plant cover and tree canopy cover and/or plant cover and sample date. Coefficients are shown for variables included in the best model for each species or lifeform group, along with the adjusted R² value of the model. We used these models to estimate biomass of forage in all unclipped quadrats in the Sawtooth and Dimaond Creek elk zones (Central), and the South Fork of the Clearwater drainage (Fork), Idaho, USA.

Study area	Plant code	No. of samples	Adj. R ²	Intercept	Plant cover	Canopy cover	Sample date	Plant cover: Canopy cover	Plant cover: Sample date
Central	ABLA	31	0.80	0.24	2.60	-0.02		-0.38	
Central	ACGL	10	0.66	-1.30	2.45	-0.79			
Central	ACMI2	94	0.60	-1.73	1.90	-0.33		0.36	
Central	AMAL2 Leaves	47	0.62	-1.51	1.34				
Central	AMAL2 Stems	47	0.45	-2.77	1.35				
Central	AMAL2	47	0.60	-1.10	1.33				
Central	ANAL	15	0.40	-2.09	1.92	-0.29		-0.60	
Central	ANMA	10	0.87	-3.77	3.25	0.76		-0.51	
Central	ANRO2	13	0.48	-9.92	36.38		3.94		-17.75
Central	ANTENRIA	11	0.79	24.93	-13.65		-13.48		7.60
Central	ARCO9	69	0.55	-1.33	1.64	-0.23			
Central	ARTR Leaves	38	0.86	0.67	0.91				
Central	ARTR Stems	38	0.67	2.61	0.90		-1.57		
Central	ARTRW8	38	0.85	0.94	0.93				
Central	ASTER Flowers	28	0.63	-1.01	1.62	-0.71		0.25	
Central	ASTER Stalks	28	0.15	-4.95	1.07				
Central	ASTER	28	0.67	-0.98	1.75	-0.74		0.29	
Central	ASTRA Flowers	12	0.82	-0.14	-0.64	-0.59		0.62	
Central	ASTRA	12	0.82	-0.14	-0.64	-0.59		0.62	
Central	BASA3	17	0.97	0.61	-1.74		-0.52		1.69
Central	BROMUS Flowers	65	0.59	-1.46	2.19	-0.12			

Central	BROMUS Stalks	65	0.28	-1.23	-23.13		-1.58		12.25
Central	BROMUS	65	0.61	-3.95	-5.20		1.08		4.00
Central	BRTE	12	0.61	31.16	1.89	0.36	-18.18		
Central	CANU3	12	0.64	-1.75	2.33	-0.43			
Central	CAREX Flowers	166	0.57	-9.66	6.45		4.21		-2.33
Central	CAREX	166	0.57	-9.66	6.45		4.21		-2.33
Central	CARU Flowers	83	0.54	-7.01	1.76		2.76		
Central	CARU Stalks	83	0.22	-5.03	1.02	0.10		-0.25	
Central	CARU	83	0.57	-7.92	1.82		3.18		
Central	CASTspp. Flowers	20	0.40	9.08	1.72		-5.34		
Central	CASTspp. Stalks	20	0.22	-21.10	0.38		8.78		
Central	CAST	20	0.48	9.04	1.48	0.29	-5.39		
Central	CERA spp.	14	0.28	-2.07	1.83				
Central	CEVE	20	0.77	-21.46	9.16		9.85		-3.56
Central	CHVI8 Leaves	15	0.33	5.95	1.06		-2.91		
Central	CHVI8 Stems	15	0.33	9.04	1.03		-4.61		
Central	CHVI8	15	0.49	9.59	1.05		-4.38		
Central	COPA3	26	0.45	-1.67	1.97	-0.32			
Central	DOPU	10	0.67	-0.89	1.22				
Central	EPAN2 Flowers	57	0.59	-1.65	1.73				
Central	EPAN2 Stalks	57	0.39	-3.36	-11.04		-0.91		6.44
Central	EPAN2	57	0.70	-6.33	2.10		2.27		
Central	ERHE2	14	0.85	-20.03	12.63		9.52		-5.51
Central	ERUM	12	0.81	45.27	-15.83		-22.45		8.36
Central	FEID Flowers	11	0.92	-4.57	5.98		1.67		-2.19
Central	FEID	11	0.82	-6.21	6.61		2.61		-2.56
Central	FRVI	59	0.61	-2.42	1.82				
Central	GABO2 Flowers	16	0.73	-11.30	14.91		4.24		-6.22
Central	GABO2 Stalks	16	0.21	-4.66	-14.46		0.06		7.89
Central	GABO2	16	0.79	-2.96	2.96				

GATR3 Flowers	15	0.67	-3.11	1.62				
GATR3	15	0.67	-3.11	1.62				
GEVI2 Flowers	77	0.62	-6.42	1.88		1.99		
GEVI2 Stalks	77	0.21	-4.52	2.59	-0.07		-0.50	
GEVI2	77	0.65	-6.14	2.00		1.83		
HECO26 Flowers	20	0.47	-0.23	1.45	-0.25			
HECO26 Stalks	20	0.78	-4.62	-0.01	-0.04		0.79	
HECO26	20	0.71	-16.77	14.25		7.47		-5.69
HIAL2	10	0.70	12.25	1.31		-6.64		
HIERACIUM	16	0.19	-1.88	1.26				
HISC2	12	0.90	-11.60	22.17		5.21		-10.18
HYCA4	11	0.73	-1.03	-4.42	-0.75		1.79	
JUNC Flowers	23	0.55	-8.71	1.26		4.05		
JUNC	23	0.62	-7.66	1.29		3.66		
LENU8	19	0.71	-12.47	2.23		4.97		
LILIA	17	0.77	-0.74	0.49	-0.81		0.87	
LOUT2 Leaves	11	0.85	-36.80	14.47		17.57		-6.55
LOUT2 Stems	11	0.59	-4.24	1.83				
LOUT2	11	0.83	-35.22	14.13		16.88		-6.37
LUPINE Flowers	37	0.53	-1.75	1.43				
LUPINE Stalks	37	0.43	-5.49	2.04				
LUPINE	37	0.70	-1.88	1.84				
LUSEM3 Flowers	45	0.62	-6.13	1.51		2.36		
LUSEM3 Stalks	45	0.17	-4.61	1.21				
LUSEM3	45	0.81	-0.71	1.47	-0.31		0.13	
MARE11 Leaves	32	0.52	-0.95	1.29				
MARE11 Stems	32	0.53	-29.75	13.68		12.74		-5.83
MARE11	32	0.51	-0.86	1.32				
MOLA6	12	0.69	-4.87	5.41	0.28		-0.66	
MidSH Leaves	371	0.66	-1.30	1.51	-0.17			
	GATR3 FlowersGATR3GEV12 FlowersGEV12 StalksGEV12 StalksGEV12 StalksHECO26 FlowersHECO26 StalksHECO26HIAL2HIERACIUMHISC2HYCA4JUNC FlowersJUNCLENU8LILIALOUT2 LeavesLOUT2 StemsLUPINE FlowersLUPINE StalksLUPINE StalksLUSEM3 FlowersLUSEM3 StalksLUSEM3MARE11 LeavesMARE11<	GATR3 Flowers 15 GATR3 15 GEV12 Flowers 77 GEV12 Stalks 77 GEV12 Stalks 77 GEV12 Stalks 20 HECO26 Flowers 20 HECO26 Stalks 20 HECO26 Stalks 20 HECO26 20 HIAL2 10 HIERACIUM 16 HISC2 12 HYCA4 11 JUNC Flowers 23 JUNC 23 LENU8 19 LILIA 17 LOUT2 Leaves 11 LOUT2 Stems 11 LOUT2 11 LUPINE Flowers 37 LUPINE Stalks 37 LUSEM3 Flowers 45 LUSEM3 Stalks 45 LUSEM3 32 MARE11 Stems 32 MARE11 32 MOLA6 12 MidSH Leaves 371	GATR3 Flowers 15 0.67 GATR3 15 0.67 GEVI2 Flowers 77 0.62 GEVI2 Stalks 77 0.21 GEV12 Stalks 77 0.65 HECO26 Flowers 20 0.47 HECO26 Stalks 20 0.78 HECO26 Stalks 20 0.71 HIAL2 10 0.70 HIERACIUM 16 0.19 HISC2 12 0.90 HYCA4 11 0.73 JUNC Flowers 23 0.62 LENU8 19 0.71 LILIA 17 0.77 LOUT2 Leaves 11 0.85 LOUT2 Leaves 11 0.85 LOUT2 Stems 11 0.83 LUPINE Flowers 37 0.53 LUPINE Stalks 37 0.43 LUPINE Stalks 45 0.17 LUSEM3 Flowers 45 0.81 MARE11 Leaves 32 0.52 MARE11 Stems 32 0.53 MARE11 </td <td>GATR3 Flowers150.67-3.11GATR3150.67-3.11GEVI2 Flowers770.62-6.42GEVI2 Stalks770.21-4.52GEVI2770.65-6.14HECO26 Flowers200.47-0.23HECO26 Stalks200.78-4.62HECO26200.71-16.77HIAL2100.7012.25HIERACIUM160.19-1.88HISC2120.90-11.60HYCA4110.73-1.03JUNC Flowers230.62-7.66LENU8190.71-12.47LILIA170.77-0.74LOUT2 Leaves110.83-35.22LUPINE Flowers370.53-1.75LUPINE Flowers370.70-1.88LUSEM3 Flowers450.62-6.13LUSEM3 Flowers450.62-6.13LUSEM3 Flowers320.52-0.95MARE11 Leaves320.51-0.86MOLA6120.69-4.87MidSH Leaves3710.66-1.30</td> <td>GATR3 Flowers150.67-3.111.62GATR3150.67-3.111.62GEV12 Flowers770.62-6.421.88GEV12 Stalks770.21-4.522.59GEV12770.65-6.142.00HECO26 Flowers200.47-0.231.45HECO26 Stalks200.78-4.62-0.01HECO26200.71-16.7714.25HIAL2100.7012.251.31HIERACIUM160.19-1.881.26HISC2120.90-11.6022.17HYCA4110.73-1.03-4.42JUNC230.62-7.661.29LENU8190.71-12.472.23LILIA170.77-0.740.49LOUT2 Leaves110.85-36.8014.47LOUT2 Stems110.83-35.2214.13LUPINE Flowers370.70-1.881.84LUSEM3 Stalks450.17-4.611.21LUSEM3 Stalks450.62-6.131.51LUSEM3 Stalks450.62-6.131.51LUSEM3320.53-29.7513.68MARE11320.51-0.861.32MOLA6120.69-4.875.41MidSH Leaves3710.66-1.301.51</td> <td>GATR3 Flowers 15 0.67 -3.11 1.62 GATR3 15 0.67 -3.11 1.62 GEV12 Flowers 77 0.62 -6.42 1.88 GEV12 Stalks 77 0.21 -4.52 2.59 -0.07 GEV12 Stalks 77 0.65 -6.14 2.00 -0.25 HECO26 Flowers 20 0.47 -0.23 1.45 -0.25 HECO26 Stalks 20 0.78 -4.62 -0.01 -0.04 HECO26 20 0.71 -16.77 14.25 - HIAL2 10 0.70 12.25 1.31 - HECO26 20 0.71 -1.677 14.25 - HIAL2 10 0.70 12.25 1.31 - HYCA4 11 0.73 -1.03 -4.42 -0.75 JUNC 23 0.62 -7.66 1.29 - LENU8 19 0.71 -12.47 2.23 - LOUT2 Leaves 11 0.85 -36.80 <td< td=""><td>GATR3 Flowers 15 0.67 -3.11 1.62 GATR3 15 0.67 -3.11 1.62 GEV12 Flowers 77 0.62 -6.42 1.88 1.99 GEV12 Stalks 77 0.65 -6.14 2.00 1.83 HEC026 Flowers 20 0.47 -0.23 1.45 -0.25 HEC026 Stalks 20 0.78 -4.62 -0.01 -0.04 HEC026 Stalks 20 0.71 -16.77 14.25 7.47 HAL2 10 0.70 12.25 1.31 -6.64 HISC2 12 0.90 -11.60 22.17 5.21 HYCA4 11 0.73 -1.03 -4.42 -0.75 JUNC Flowers 23 0.62 -7.66 1.29 3.66 LENU8 19 0.71 -12.47 2.23 4.97 LILIA 17 0.77 -0.74 0.49 -0.81 LOUT2 Leaves 11 0.85 -36.80 14.47 17.57 LOUT2 Leaves 11<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td<></td>	GATR3 Flowers150.67-3.11GATR3150.67-3.11GEVI2 Flowers770.62-6.42GEVI2 Stalks770.21-4.52GEVI2770.65-6.14HECO26 Flowers200.47-0.23HECO26 Stalks200.78-4.62HECO26200.71-16.77HIAL2100.7012.25HIERACIUM160.19-1.88HISC2120.90-11.60HYCA4110.73-1.03JUNC Flowers230.62-7.66LENU8190.71-12.47LILIA170.77-0.74LOUT2 Leaves110.83-35.22LUPINE Flowers370.53-1.75LUPINE Flowers370.70-1.88LUSEM3 Flowers450.62-6.13LUSEM3 Flowers450.62-6.13LUSEM3 Flowers320.52-0.95MARE11 Leaves320.51-0.86MOLA6120.69-4.87MidSH Leaves3710.66-1.30	GATR3 Flowers150.67-3.111.62GATR3150.67-3.111.62GEV12 Flowers770.62-6.421.88GEV12 Stalks770.21-4.522.59GEV12770.65-6.142.00HECO26 Flowers200.47-0.231.45HECO26 Stalks200.78-4.62-0.01HECO26200.71-16.7714.25HIAL2100.7012.251.31HIERACIUM160.19-1.881.26HISC2120.90-11.6022.17HYCA4110.73-1.03-4.42JUNC230.62-7.661.29LENU8190.71-12.472.23LILIA170.77-0.740.49LOUT2 Leaves110.85-36.8014.47LOUT2 Stems110.83-35.2214.13LUPINE Flowers370.70-1.881.84LUSEM3 Stalks450.17-4.611.21LUSEM3 Stalks450.62-6.131.51LUSEM3 Stalks450.62-6.131.51LUSEM3320.53-29.7513.68MARE11320.51-0.861.32MOLA6120.69-4.875.41MidSH Leaves3710.66-1.301.51	GATR3 Flowers 15 0.67 -3.11 1.62 GATR3 15 0.67 -3.11 1.62 GEV12 Flowers 77 0.62 -6.42 1.88 GEV12 Stalks 77 0.21 -4.52 2.59 -0.07 GEV12 Stalks 77 0.65 -6.14 2.00 -0.25 HECO26 Flowers 20 0.47 -0.23 1.45 -0.25 HECO26 Stalks 20 0.78 -4.62 -0.01 -0.04 HECO26 20 0.71 -16.77 14.25 - HIAL2 10 0.70 12.25 1.31 - HECO26 20 0.71 -1.677 14.25 - HIAL2 10 0.70 12.25 1.31 - HYCA4 11 0.73 -1.03 -4.42 -0.75 JUNC 23 0.62 -7.66 1.29 - LENU8 19 0.71 -12.47 2.23 - LOUT2 Leaves 11 0.85 -36.80 <td< td=""><td>GATR3 Flowers 15 0.67 -3.11 1.62 GATR3 15 0.67 -3.11 1.62 GEV12 Flowers 77 0.62 -6.42 1.88 1.99 GEV12 Stalks 77 0.65 -6.14 2.00 1.83 HEC026 Flowers 20 0.47 -0.23 1.45 -0.25 HEC026 Stalks 20 0.78 -4.62 -0.01 -0.04 HEC026 Stalks 20 0.71 -16.77 14.25 7.47 HAL2 10 0.70 12.25 1.31 -6.64 HISC2 12 0.90 -11.60 22.17 5.21 HYCA4 11 0.73 -1.03 -4.42 -0.75 JUNC Flowers 23 0.62 -7.66 1.29 3.66 LENU8 19 0.71 -12.47 2.23 4.97 LILIA 17 0.77 -0.74 0.49 -0.81 LOUT2 Leaves 11 0.85 -36.80 14.47 17.57 LOUT2 Leaves 11<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td<>	GATR3 Flowers 15 0.67 -3.11 1.62 GATR3 15 0.67 -3.11 1.62 GEV12 Flowers 77 0.62 -6.42 1.88 1.99 GEV12 Stalks 77 0.65 -6.14 2.00 1.83 HEC026 Flowers 20 0.47 -0.23 1.45 -0.25 HEC026 Stalks 20 0.78 -4.62 -0.01 -0.04 HEC026 Stalks 20 0.71 -16.77 14.25 7.47 HAL2 10 0.70 12.25 1.31 -6.64 HISC2 12 0.90 -11.60 22.17 5.21 HYCA4 11 0.73 -1.03 -4.42 -0.75 JUNC Flowers 23 0.62 -7.66 1.29 3.66 LENU8 19 0.71 -12.47 2.23 4.97 LILIA 17 0.77 -0.74 0.49 -0.81 LOUT2 Leaves 11 0.85 -36.80 14.47 17.57 LOUT2 Leaves 11 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Central	TFORB Flowers	798	0.55	-4.37	1.69	-0.12	1.29		
Central	RHIZO Flowers	298	0.49	-1.30	1.57				
Central	BUNCH Flowers	312	0.52	-3.61	1.71		1.16		
Central	LowSH Leaves	93	0.33	-1.53	1.23				
Central	SAGE Leaves	53	0.81	0.60	0.92	-0.21			
Central	MidSH Stems	371	0.51	-3.66	1.36	-0.17	0.79		
Central	TFORB Stalks	798	0.18	-7.81	1.03	-0.13	1.73		
Central	RHIZO Stalks	298	0.12	-1.84	-5.53		-1.32		3.04
Central	LowSH Stems	93	0.43	-20.93	7.88		8.68		-3.07
Central	SAGE Stems	53	0.66	-0.81	1.02	0.04		-1.64	
Central	BASAL	1055	0.56	-4.41	2.01	-0.12	1.15		
Central	MidSHRUB	371	0.66	-0.77	1.44	-0.17			
Central	TFORB	849	0.62	-4.44	1.90	-0.16	1.39		
Central	RHIZO	311	0.56	1.18	-1.97		-1.20		1.84
Central	BUNCH	312	0.53	-3.73	1.73		1.23		
Central	LowSHRUB	93	0.61	-0.77	1.47	-0.14			
Central	SAGE	53	0.83	0.85	0.95	0.09		-0.85	
Central	SPRUCE-FIR	52	0.67	1.13	1.46	-0.47			
Central	PINE	43	0.74	4.10	1.63		-2.29		
Central	EVERGREEN	24	0.77	-8.61	1.90		3.44		
Central	ORAS Flowers	12	0.55	-3.36	3.01				
Central	ORAS	12	0.55	-3.36	3.01				
Central	OSBE Flowers	36	0.52	0.10	-6.87	-0.56		1.91	
Central	OSBE Stalks	36	0.21	-4.66	-6.34		-0.12		3.51
Central	OSBE	36	0.57	2.24	-8.67		-2.24		5.12
Central	OSOC Flowers	35	0.59	-3.89	2.48				
Central	OSOC	35	0.59	-3.89	2.48				
Central	PAPA19	11	0.65	19.22	-34.49		-10.59		18.17
Central	PENS spp. Flowers	45	0.13	-0.88	0.73				
Central	PENS spp. Stalks	45	0.15	-4.56	1.40				

Central	PENS spp.	45	0.47	-0.73	1.17				
Central	PHPR3 Flowers	17	0.38	0.18	0.61				
Central	PHPR3 Stalks	17	0.54	-52.47	2.01		23.77		
Central	PHPR3	17	0.93	0.04	1.17	0.17			
Central	PICO	28	0.72	5.70	1.60		-3.05		
Central	POA Flowers	70	0.44	-1.96	2.15				
Central	POA spp.	70	0.44	-1.85	2.17				
Central	POAL26	12	0.87	8.14	2.94	-0.62	-4.67		
Central	POARC	12	0.52	-2.33	2.28				
Central	PODI2	10	0.82	-1.46	1.66				
Central	POPR Flowers	18	0.47	-4.18	0.90		2.15		
Central	POPR	18	0.49	-4.03	0.91		2.07		
Central	POSE Flowers	25	0.45	20.39	-10.00		-10.57		5.60
Central	POSE Stalks	25	0.27	-4.56	-0.06	-0.27		0.36	
Central	POSE	25	0.52	19.42	-8.93		-10.13		5.13
Central	POTR5 Leaves	26	0.92	-19.80	12.14		9.09		-5.18
Central	POTR5 Stems	26	0.36	-2.53	1.20				
Central	POTR5	26	0.89	-21.36	13.39		10.10		-5.84
Central	PRVI Leaves	18	0.83	-1.30	1.86	-0.27			
Central	PRVI Stems	18	0.67	-2.23	1.66	-0.28			
Central	PRVI	18	0.83	-0.89	1.80	-0.27			
Central	PSME	13	0.71	-29.08	14.75		13.96		-6.53
Central	PSSP6 Flowers	14	0.56	-8.97	1.43		4.38		
Central	PSSP6 Stalks	14	0.72	-4.77	0.06	0.80		0.42	
Central	PSSP6	14	0.52	-8.40	1.38	0.28	4.12		
Central	PUTR2	10	0.79	0.32	1.00				
Central	ROAC Leaves	15	0.72	-0.96	1.77	-0.42			
Central	ROAC Stems	15	0.88	0.12	0.01	-1.05		0.53	
Central	ROAC	15	0.84	1.00	0.36	-0.84		0.37	
Central	ROSAspp. Leaves	16	0.81	-19.29	2.78	0.39	7.11		

Central	ROSAspp. Stems	16	0.25	-3.31	1.35			
Central	ROSAspp.	16	0.90	-14.87	2.69	0.42	5.13	
Central	SENECIO Flowers	15	0.37	-0.60	1.31			
Central	SENECIO	15	0.37	-0.60	1.31			
Central	SPBE2 Leaves	24	0.41	-0.59	1.04			
Central	SPBE2 Stems	24	0.35	-2.12	1.25			
Central	SPBE2	24	0.47	-0.28	1.09			
Central	STCA	19	0.59	-3.45	3.51			
Central	STLO	11	0.79	-4.20	5.78			
Central	SYOC Leaves	75	0.69	-3.45	2.43	0.41		-0.28
Central	SYOC Stems	75	0.60	-4.05	2.16	0.48		-0.26
Central	SYOC	75	0.77	-2.85	2.31	0.48		-0.29
Central	TAOF	49	0.48	-2.34	1.39	-0.22		0.37
Central	THOC Flowers	46	0.71	0.20	1.74	-0.67		
Central	THOC Stems	46	0.03	-4.76	0.20			
Central	THOC	46	0.71	0.20	1.75	-0.67		
Central	TRDU	10	0.73	-3.45	4.01	0.79		-0.81
Central	VAME Leaves	13	0.68	0.47	0.85	-0.17		
Central	VAME Stems	13	0.62	3.30	0.73		-1.96	
Central	VAME	13	0.68	0.84	0.83	-0.15		
Central	VAOC2 Flowers	23	0.72	-2.84	1.84			
Central	VAOC2 Stalks	23	0.10	-4.73	0.86			
Central	VAOC2	23	0.87	0.63	0.88	-0.87		0.31
Central	VASC Leaves	26	0.51	10.75	0.93		-5.88	
Central	VASC Stems	26	0.37	-3.16	3.09	0.66		-0.56
Central	VASC	26	0.70	4.01	1.02		-2.03	
Central	VINU2	17	0.82	-1.22	1.43	-0.37		0.23
Central	VIOL spp.	45	0.28	-4.71	1.86	0.29		
Fork	ABGR	53	0.77	0.20	2.13	-0.82		
Fork	ABLA	22	0.83	2.48	0.34	-1.10		0.35

Fork	ACGL	24	0.74	-2.33	1.90	-0.32			
Fork	ACGL Leaves	24	0.73	-2.45	1.83	-0.35			
Fork	ACGL Stems	24	0.66	-10.77	1.60		3.08		
Fork	ACMI	39	0.70	-13.88	7.93		5.97		-2.96
Fork	ADBI	35	0.59	-2.75	1.71				
Fork	AMAL	20	0.85	-6.24	1.18	-0.61	3.70		
Fork	AMAL Leaves	20	0.87	-5.51	1.24	-0.65	3.26		
Fork	AMAL Stems	20	0.38	-17.75	0.77	-1.39	9.83		
Fork	ANMA	11	0.78	44.13	1.84	0.34	-21.83		
Fork	ANMA Flowers	11	0.74	47.93	1.74	0.31	-23.59		
Fork	ANNUAL	79	0.47	-6.15	1.60	-0.20	2.30		
Fork	ANPI	116	0.27	-3.01	1.72				
Fork	ARLA	22	0.81	-1.62	1.10				
Fork	ARMA	67	0.44	-5.46	1.48	-0.26	2.14		
Fork	ARNCO	33	0.68	-1.18	1.00				
Fork	ASCAU	21	0.82	-1.16	1.99	-0.37			
Fork	BERE	20	0.66	5.90	1.54		-3.30		
Fork	BERE Leaves	20	0.48	-1.16	1.38				
Fork	BERE Stems	20	0.69	-2.77	2.70	-0.58			
Fork	BROMUS	14	0.25	-1.42	1.31				
Fork	BROMUS	14	0.42	-2.38	1.76				
Fork	BRVU Flowers	47	0.12	-2.78	1.39				
Fork	BRVU Stalks	47	0.13	-8.76	-13.09		2.68		7.24
Fork	CAGE Flowers	40	0.71	-0.77	1.31				
Fork	CAGE Stalks	40	0.55	-0.89	1.27				
Fork	CAGE	40	0.48	-4.75	1.26	0.34			
Fork	CARE	98	0.53	-1.30	1.71	-0.15			
Fork	CARE Flowers	98	0.51	-1.71	1.73				
Fork	CARE Stalks	98	0.43	-4.79	1.75	0.05		-0.31	
Fork	CARU	38	0.44	0.79	-6.38		-1.12		3.85

Fork	CARU Flowers	38	0.39	-2.97	-6.24		0.42		3.82
Fork	CARU Stems	38	0.42	-2.86	-6.56		-0.01		3.93
Fork	CESA	14	0.44	-7.83	1.35		3.40		
Fork	CHUM	37	0.56	-1.36	1.86				
Fork	CIRS-AC	24	0.79	-9.91	2.01	-0.50	4.28		
Fork	CLUN	66	0.62	-3.66	1.86	-0.51	1.37		
Fork	COCA	29	0.49	-1.11	1.48	-0.27			
Fork	COOC	83	0.57	-0.76	1.42	-0.31			
Fork	DAGL	19	0.56	-0.44	1.43				
Fork	DAGL Flowers	19	0.56	-0.80	1.39				
Fork	DAGL Stems	19	0.44	-2.58	1.76				
Fork	DIHO	34	0.61	-1.13	1.37	-0.32			
Fork	DIHO Flowers	34	0.51	-2.83	1.27				
Fork	DIHO Stems	34	0.56	-3.91	1.40				
Fork	ELYM	44	0.45	-0.74	1.42				
Fork	ELYM Flowers	44	0.26	-2.30	0.65	0.10		0.28	
Fork	ELYM Stalks	44	0.37	-6.55	1.50		2.51		
Fork	EPAN	60	0.79	-5.80	1.47	-0.25	2.59		
Fork	EPAN Flowers	60	0.64	-5.50	1.46	-0.18	1.90		
Fork	EPAN Stalks	60	0.75	-7.51	1.62	-0.31	3.06		
Fork	ERIG spp.	18	0.60	-8.03	1.81		2.86		
Fork	ERIGspp. Flowers	18	0.64	-7.11	1.79		2.33		
Fork	ERIGspp. Stalks	18	0.46	-16.24	1.93		5.56		
Fork	FEID	12	0.85	-1.91	1.72				
Fork	FEID Flowers	12	0.81	-2.29	1.81				
Fork	FEID Stalks	12	0.45	24.00	-21.49		-12.93		10.48
Fork	FEOC	11	0.53	-2.24	2.56				
Fork	FEOC Flowers	11	0.49	-2.45	2.48				
Fork	FEOC Stalks	11	0.65	-3.68	2.47				
Fork	FESTU	17	0.58	-2.04	2.15				

2	.02	
3	93	

Fork	FESTU Flowers	17	0.60	-2.74	2.32				
Fork	FESTU Stalks	17	0.46	24.95	-31.73		-13.39		16.14
Fork	FRVE	76	0.60	3.88	-3.95		-2.80		2.68
Fork	GATR	43	0.25	-3.10	1.88				
Fork	HIERsp	42	0.68	-8.62	2.28	-0.28	3.15		
Fork	HODI	19	0.80	-2.35	2.16	0.42		-0.31	
Fork	HODI Leaves	19	0.77	-2.48	2.13	0.38		-0.29	
Fork	HODI Stems	19	0.53	-3.45	1.22				
Fork	HYPE	20	0.78	-12.52	2.53		5.49		
Fork	LIBO	45	0.73	-2.15	2.94	0.07		-0.41	
Fork	LOUT	25	0.81	-1.23	1.23				
Fork	LOUT Leaves	25	0.29	-1.26	0.92				
Fork	LOUT Stems	25	0.78	-11.40	1.47		3.74		
Fork	LUPI	13	0.80	16.51	-5.78		-8.60		3.58
Fork	LUZU	26	0.48	-14.09	1.27		6.02		
Fork	LUZU Flowers	26	0.48	-13.87	1.30		5.85		
Fork	LUZU Stalks	26	0.04	-15.08	11.57		5.60		-5.64
Fork	MEFE	27	0.70	-0.72	0.82				
Fork	MITELLA	39	0.58	-7.95	1.71	-0.20	3.21		
Fork	OSCH	24	0.55	-3.83	2.57				
Fork	OSCH Flowers	24	0.55	-3.83	2.57				
Fork	PAMY	21	0.57	-0.85	2.22	-0.47			
Fork	PAMY Leaves	21	0.46	-1.50	2.10	-0.52			
Fork	PAMY Stems	21	0.33	-2.91	1.97				
Fork	PENS	41	0.70	-0.21	1.52	-0.55			
Fork	PENS Flowers	41	0.72	-0.73	1.59	-0.44			
Fork	PENS Stalks	41	0.21	-2.25	0.65	-0.65			
Fork	PHMA	29	0.80	1.49	0.53	-0.50		0.15	
Fork	PHMA Leaves	29	0.82	0.55	0.71	-0.37		0.11	
Fork	PHMA Stems	29	0.25	-1.63	0.93				

Fork	PHPR	17	0.44	-20.12	26.39		9.28		-11.57
Fork	PHPR Flowers	17	0.77	-34.55	45.71		15.44		-20.67
Fork	PHPR Stems	17	0.36	-1.53	2.26	0.43			
Fork	PICO	20	0.61	2.83	0.11	-1.02		0.42	
Fork	POA	23	0.43	-0.55	1.37				
Fork	POA Flowers	23	0.29	-1.62	1.41	0.27		-0.76	
Fork	POA Stalks	23	0.35	-2.92	1.75	0.41			
Fork	POGR	10	0.92	-8.75	5.19		3.98		-1.90
Fork	POMU	11	0.71	-20.84	1.38	4.37			
Fork	PSME	19	0.78	-14.45	1.99		5.60		
Fork	PTAQ	24	0.55	0.54	1.08	-0.31			
Fork	PYROLA	24	0.46	-8.02	1.34		2.93		
Fork	RIVI	12	0.68	-1.20	1.58				
Fork	RIVI Flowers	12	0.65	-1.44	1.58				
Fork	RIVI Stems	12	0.47	-3.98	1.58	0.60			
Fork	ROSA	45	0.66	-3.37	1.31	-0.40	1.39		
Fork	ROSA Flowers	45	0.51	-1.29	1.38	-0.33			
Fork	ROSA Stems	45	0.50	-8.11	1.49	-0.46	2.79		
Fork	RUPA	41	0.56	-0.35	1.08	-0.24			
Fork	RUPA Leaves	41	0.51	-0.35	0.99	-0.25			
Fork	RUPA Stems	41	0.41	-10.62	1.58		3.07		
Fork	SASC	10	0.92	-0.98	1.36				
Fork	SMST	72	0.58	-0.88	1.38	-0.36			
Fork	SMST Flowers	72	0.48	-1.44	1.47	-0.36			
Fork	SMST Stems	72	0.15	-0.29	-7.92		-1.98		4.39
Fork	SOLID spp.	15	0.59	-12.88	2.02		5.68		
Fork	SOLIDspp. Flowers	15	0.46	-18.31	2.02		7.64		
Fork	SOLIDspp. Stalks	15	0.53	-1.69	2.10				
Fork	SPBE	62	0.45	-0.32	1.21	-0.30			
Fork	SPBE Leaves	62	0.43	-0.89	1.27	-0.24			

Fork	SPBE Stems	62	0.38	-7.00	1.28	-0.33	2.41		
Fork	SYAL	105	0.68	0.51	0.92	-0.61		0.13	
Fork	SYAL Leaves	105	0.65	0.21	0.90	-0.68		0.15	
Fork	SYAL Stems	105	0.50	-5.36	1.32	-0.32	1.70		
Fork	THMO	15	0.40	1.16	0.68	-0.18			
Fork	THOC	29	0.40	-7.46	1.58	-0.70	3.45		
Fork	THPL	14	0.69	-17.36	10.17		7.89		-4.27
Fork	TITR	29	0.48	-0.48	1.72	-0.62			
Fork	TRIF	33	0.67	-1.33	1.10	-0.49		0.22	
Fork	TROV	21	0.42	-4.43	2.37				
Fork	TSHE	12	0.82	-2.69	2.40	-0.39			
Fork	TSME	14	0.60	-1.13	1.37				
Fork	VAME spp.	121	0.77	-0.38	1.40	-0.37			
Fork	VAMEspp. Leaves	121	0.73	-0.82	1.42	-0.34			
Fork	VAMEspp. Stems	121	0.71	-8.31	1.42	-0.38	3.09		
Fork	VASC	56	0.72	-0.96	1.61	-0.38			
Fork	VIOL	116	0.33	-2.83	1.53				
Fork	XETE	89	0.71	10.22	-1.94		-4.93		1.61
Fork	MidSHRUB	559	0.72	-1.96	1.36	-0.30	0.65		
Fork	BUNCH	382	0.53	-3.52	1.51	-0.16	1.27		
Fork	LowSHRUB	190	0.61	-0.70	1.43	-0.24			
Fork	TFORB	810	0.68	-5.71	1.88	-0.35	2.21		
Fork	BASAL	929	0.56	-4.21	1.62	-0.29	1.41		
Fork	RHIZO	86	0.48	-8.05	1.50		3.10		
Fork	EVERGREEN	70	0.71	-0.52	1.49	-0.36			
Fork	FERN	49	0.63	-0.98	1.59	-0.19			
Fork	SPRUCE-FIR	89	0.79	1.45	1.04	-1.04		0.23	
Fork	PINE	72	0.72	-8.15	1.70	-0.61	3.87		
Fork	MidSHRUB Leaves	559	0.36	-1.22	1.46	-0.17		-0.12	
Fork	MidSHRUB Stems	559	0.40	-6.97	1.20	-0.35	2.35		

Earl- D	IDICIL C. 11			4.10	1.01		1.06	
FORK B	BUNCH Stalks	382	0.21	-2.46	-4.36		-0.23	2.59
Fork L	owSHRUB Leaves	190	0.08	4.31	0.43	-0.33	-3.10	
Fork L	owSRHUB Stems	190	0.08	1.65	0.37	-0.25	-2.28	
Fork T	FORB Flowers	810	0.09	-6.07	3.42		1.15	-1.34
Fork T	FORB Stalks	810	0.10	-3.57	0.49	-0.21		
Fork R	CHIZO Flowers	86	0.38	-5.38	-5.98		1.49	3.67
Fork R	CHIZO Stalks	86	0.18	-3.47	0.99			