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Abstract 

The research presented here lies at the intersection of phylogeography, phylogenetics, 

and community ecology and aims to understand how evolutionary processes have contributed 

to the diversity seen around the world. This diversity is investigated at the population, 

species, and community level in order to understand the various evolutionary processes that 

impact these levels. At the population and species level, phylogeographic inference is used to 

understand when and how populations diverge, maybe due to geographic barriers, and 

whether they experience gene-flow after said divergence. For this, we specifically investigate 

plant species in the Pacific Northwest temperate rainforest to understand how geologic and 

climatic history of the region has influenced the genetic structure of the populations 

throughout their range. While this is done at the population and species level, inferences 

across species can be aggregated to make inferences about the community and ecosystem as 

a whole. To more specifically understand the processes influencing community structure at 

the community level, we also model the process of many species assembling into a 

community at once, sometimes experiencing habitat pressure or interspecific competition for 

resources. We can then use these models to make inferences about the pressures influencing 

diversity patterns across communities. By investigating evolutionary and ecological 

processes at the population, species, and community level, we are able to interpret the effect 

of many different processes impacting diversity at various scales. With the myriad of threats 

facing all life on earth, being able to use what we know about the impacts of climatic, 

geographic, and historical processes on evolutionary trajectories will make for better 

predictions of future sustainability and ecosystem survival. 
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Chapter 1: Combining Allele Frequency and Tree-Based Approaches 

Improves Phylogeographic Inference from Natural History Collections 
 

“Combining allele frequency and tree‐based approaches improves phylogeographic inference 

from natural history collections” Ruffley, M, Smith, ML, Espíndola, A, Carstens, 

BC, Sullivan, J, Tank, DC.  Molecular Ecology. Vol. 27, 2018, 

pp 1012– 1024. https://doi.org/10.1111/mec.14491 

 

 

Abstract 

Model selection approaches in phylogeography have allowed researchers to evaluate 

the support for competing demographic histories, which provides a mode of inference and a 

measure of uncertainty in understanding climatic and spatial influences on intraspecific 

diversity. Here, to rank all models in the comparison set, and determine what proportion of 

the total support the top-ranked model garners, we conduct model selection using two 

analytical approaches –allele frequency-based, implemented in fastsimcoal2, and gene tree-

based, implemented in PHRAPL. We then expand this model-selection framework by 

including an assessment of absolute fit of the models to the data. For this, we utilize DNA 

isolated from existing natural history collections that span the distribution of red alder (Alnus 

rubra) in the Pacific Northwest of North America to generate genomic data for the evaluation 

of 13 demographic scenarios. The quality of DNA recovered from herbarium specimen leaf 

tissue was assessed for its utility and effectiveness in demographic model selection, 

specifically in the two approaches mentioned. We present strong support for the use of 

herbarium tissue in the generation of genomic DNA, albeit with the inclusion of additional 

quality control checks prior to library preparation and analyses with multiple approaches that 

incorporate various data. Analyses with allele frequency spectra and gene trees 

predominantly support A. rubra having experienced an ancient vicariance event with 

intermittent and frequent gene flow between the disjunct populations. Additionally, the data 

consistently fit the most frequently selected model, corroborating the model selection 

techniques. Finally, these results suggest that the A. rubra disjunct populations do not 

represent separate species. 
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Introduction 

Understanding how conspecific populations evolve is central for identifying and 

quantifying diversity. Phylogeography aims to increase our understanding of these historical 

processes (e.g., Avise et al. 1987), and as the field has expanded, several approaches have been 

used. While the earliest investigations derived their inferences from qualitative interpretations 

of patterns evident in the genetic and geographic data, later studies began to more explicitly 

test hypotheses (e.g., Sullivan et al. 2000; Knowles 2001) and estimate parameters under 

explicit analytical models, such as isolation with migration in IMa2 (Hey 2010) and Migrate-

n (Beerli & Felsenstein 2001). In hypothesis testing and model selection studies, models 

representing historical demographic scenarios are evaluated in a statistical framework, and the 

inferences are drawn from the results of the test (Knowles & Maddison 2002). Early examples 

used parametric simulation and frequentist statistics (e.g., DeChaine & Martin 2005), whereas 

later examples utilized Bayesian (e.g., Fagundes et al. 2007) or information theoretic (Carstens 

et al. 2009) approaches to consider and rank multiple models. Such approaches allow historical 

knowledge of the species or complex of study to be incorporated into the models that are 

assessed (Gutenkunst et al. 2009a). Phylogeographic model selection can be implemented 

through a variety of approaches and software, such as Approximate Bayesian Computation 

(ABC; Csilléry et al. 2012), ∂a∂I (Gutenkunst et al. 2009b), fastsimcoal2 (Excoffier & Foll 

2011; Excoffier et al. 2013), and  PHRAPL (Jackson et al. 2015). All incorporate coalescent 

theory (Kingman 1982) to model evolutionary processes that occur at the population level, 

such as genetic drift, migration, and population expansion and/or contraction over time. As 

opposed to hypothesis testing approaches that reject or fail to reject individual models (and 

thus experience difficulties with multiple comparisons), model selection frameworks can be 

designed to rank all models in the comparison set, and thus provide one measure of confidence 

in the form of what proportion of the total support is garnered by the top-ranked model. 

However, a potential shortcoming of such a framework is that there is no guarantee that a 

model that represents the true evolutionary history is included in the comparison set 

(Templeton 2008). 

Phylogeographic inference is ideally drawn from multiple sources, including 

geographic information (e.g., Hugall et al. 2002) and descriptive summaries of the data (e.g,. 
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Petit & Grivet 2002). Analytical models that incorporate the coalescent process are valuable, 

particularly when they have a demonstrably good fit to the empirical data. While assessments 

of model adequacy and model fit have generally been lacking in phylogeographic research, 

they are vital components of inferences that are derived from statistical analysis (Gelman & 

Shalizi 2013). Here, we expand a model-selection framework such that it includes an 

assessment of model fit. We first conduct model selection using two analytical approaches – 

allele frequency-based, implemented in fastsimcoal2 (Excoffier et al. 2013), and gene tree-

based, implemented in PHRAPL (Jackson et al. 2015) – and then assess the absolute fit of the 

models to the data. 

Phylogeographic analysis depends on comprehensive sampling across the geographic 

range of a species or complex (Knowles & Maddison 2002; Pinceel et al. 2005). Herbarium 

and other natural history museum specimens are important sources for such sampling when 

specimens are available for DNA extraction. Plant tissue dried and preserved in silica gel can 

be used to recover high quality genomic data (Varma et al. 2007), even several years after 

collection (e.g. Eaton & Ree 2013). However, there still remain a large number of herbarium 

specimens without associated silica dried tissue, which results in one having to use tissue 

directly from the herbarium specimen sheet that was not dried strategically for DNA 

preservation. The use of genomic data in phylogeography has increased the resolution at which 

we can discern competing hypotheses, and thus improved our overall understanding of 

phylogeographic processes (Carstens et al. 2012). However, it is unclear if the DNA that can 

be extracted from herbarium specimens is sufficiently intact to serve as the source material for 

generating genome-scale datasets, particularly when systematically distributed missing data 

can result in implicitly biased inferences (Andrews et al. 2016). 

In this work, in addition to extending model-based phylogeographic inference to 

incorporate model fit, we also aim to understand the quality of DNA needed to recover useful 

genomic data from herbarium-sampled leaf tissue. We further ask whether such genomic data 

are plagued with biased, or non-uniform, missing data. Finally, using genomic data from 

herbarium specimens, descriptive analyses, and two model selection approaches, we aim to 

understand the phylogeographic history of Alnus rubra (Bong) in the disjunct mesic forests of 

the Pacific Northwest of North America. 
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Methods and Materials 

Study System 

The Pacific Northwest (PNW) temperate rainforests form a disjunct ecosystem that 

ranges from the Cascade Mountain Range to the Pacific coast, extending from northern 

California to southern Alaska, and exists along the northern Rocky Mountains (NRM) in 

central to northern Idaho. The range of mesic forests in the region was likely continuous prior 

to the uplift of the Cascades (ca. 5 MYA, Waring & Franklin 1979; Priest 1990), which 

generated a rain shadow cast across the Columbia Basin and forced inland forests to retreat to 

suitable, wet habitat along the NRM. Because of this, the coastal and inland NRM forests 

became isolated by ~ 300 km of unsuitable habitat. The later onset of Pleistocene glaciations 

(ca. 1.5 MYA) led to the expansion of Cordilleran ice sheets, which covered much of the inland 

rainforests, further reducing the available habitat for rainforest species. As a consequence of 

these events, at least some rainforest species were unable to persist in the inland NRM forest 

throughout the Pleistocene (reviewed in Brunsfeld et al. 2001). 

Due to its disjunct nature, the PNW rainforest has been the focus of several 

phylogeographic studies (Nielson et al. 2001; Carstens et al. 2004; Steele et al. 2005; Brunsfeld 

et al. 2007; Metzger et al. 2015), indicating that the history of the species was tightly associated 

to that of the biome. Studies showed that while some species harbor cryptic diversity (i.e., pre-

Pleistocene divergences) across the disjunction, others do not. This led to the definition of two 

principal phylogeographic hypotheses for the biome, which explain the presence or absence of 

cryptic diversity along the disjunction. The first hypothesis explains the presence of cryptic 

diversity in a lineage, and is known as pre-Pleistocene vicariance or Ancient Vicariance (AV) 

(Brunsfeld et al. 2001). The uplift of the Cascade Mountain Range has been implicated as 

causing the disjunction. The AV hypothesis posits that conspecific populations were 

continuously present along the coast and in the inland NRM forests, but that the two areas were 

genetically isolated from each other. Following the end of the Pleistocene glacial cycles (~ 13 

KYA), conspecific populations locally recolonized newly freed suitable areas. Because this 

hypothesis posits that there has been no gene flow between the inland and coastal populations 

since the initial vicariance event, the lineages would have been evolving independently for ca. 

2 MY, leading to the presence of cryptic diversity. 
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The alternative hypothesis, post-Pleistocene dispersal or Recent Dispersal (RD) 

explains the absence of cryptic diversity in some taxa (Brunsfeld et al. 2001) . This hypothesis 

posits local Pleistocene extinction in the NRM. The current species presence in the inland 

NRM forest is thus due to dispersal from coastal populations to the inland following glacial 

retreat, though there is also evidence of dispersal occurring from the inland NRM to the coast 

(e.g Carstens et al. 2013). Ultimately, the RD hypothesis suggests absence of significant 

genetic differentiation between inland and coastal populations because dispersal to the inland 

happened after 13 KYA. However, RD is not the only phylogeographic scenario that could 

result in an absence of significant genetic differentiation between the inland and coastal 

populations. Due to the regions being exposed to cyclical glacial periods, there could also have 

been episodic, repeated migration since the Ancient Vicariance event. In this case, there were 

still inland populations throughout the Pleistocene, as in the AV hypothesis, but persistent gene 

flow prohibited any deep divergence between the coastal and inland populations. Likewise, 

secondary contact, where the inland and coastal lineages underwent AV and only since the end 

of the Pleistocene came back in contact, could also result in the lack of cryptic diversity. 

The primary distribution of A. rubra is west of the Cascades in the coastal temperate 

rainforest from southeastern Alaska to central California, with disjunct populations in the 

inland NRM temperate rainforest of Idaho. Two studies have investigated the history of A. 

rubra using genetic data (Strenge 1994; Brumble 2008) and suggested recent dispersal to the 

inland rainforest. Strenge (1994; also see Soltis et al. 1997) characterized two cpDNA 

genotypes, a coastal southern type and a coastal northern type, and the inland individuals 

included were of the southern coastal genotype. Brumble (2008) identified a 17 bp indel in the 

chloroplast psbA-trnH spacer that was also present in some, but not all, closely related Alnus 

sp. Thus, the genetic data in these two studies were limited, and the inferences were perhaps 

driven by a single ancestral polymorphism. Recently, a predictive framework was developed 

to detect the presence of cryptic diversity from locality data by assessing geo-referenced 

climatic data and taxonomic ranks (Espíndola et al. 2016). This predictive framework also 

predicts that A. rubra should not contain cryptic diversity. 
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ddRAD Sequencing 

Leaf tissue from 49 A. rubra herbarium specimens (18 localities, Table 1.1) were 

sampled from the Stillinger Herbarium at the University of Idaho. The sampled specimens 

were collected from the coastal and inland PNW rainforest between the years of 2000 and 2007 

by various collectors (Table 1.1) and cover the complete range of the species. DNA was 

extracted using a modified CTAB protocol (Doyle & Doyle 1987), purified using Sera-Mag 

SpeedBeads (Thermo Fisher Scientific; Faircloth & Glenn 2012; Rohland & Reich 2012), and 

quantified using a Qubit 1.0 Fluorometer (Life Technologies). Genomic data were generated 

using double digest restriction site associated DNA sequencing (ddRADseq) (Peterson et al. 

2012), with the restriction enzymes EcoRI and SbfI (New England Biolabs, USA), and size 

selection at a 650 (50) bp window on a BluePippin (Sage Science). All digestion, ligation and 

PCR products were purified using Agencourt AMPure XP purification system (Beckman 

Coulter). Sequences were generated as 300 bp paired-end reads using an Illumina MiSeq in 

the Institute for Bioinformatics and Evolutionary Studies (IBEST) Genomics Resource Core 

at the University of Idaho. Raw sequences were processed using PyRad (Eaton 2014) under a 

minimum coverage of 7 and clustering threshold of 85% (see Dryad link for complete 

parameter file). PyRad includes Vsearch (Rognes et al. 2016) and Muscle (Edgar 2004) for 

sequence clustering. To merge overlapping reads, Paired-End AssembleR (PEAR) (Zhang et 

al. 2014) was used, and only sequences that merged with their paired end were used in 

subsequent analyses. 

Data quality and effect on missing data 

Before ddRADseq library preparation, DNA extracts from 13 of the 49 individuals 

were quantified using a Fragment Analyzer (Advanced Analytical), which describes the 

distribution of fragment sizes in a particular sample (Fig. 1.6). The mode of the fragment size 

distribution, concentration of the fragments in the distribution, year of collection, and each 

variable’s potential interactions (Table 1.2) were used for linear regression to predict the total 

number of raw reads for the 13 samples. This allowed us to evaluate our ability to predict data 

quality based on DNA quality and/or quantity descriptors. 

To confirm the presence of unbiased missing data across sampled localities, missing 

data were quantified across all 49 samples, and organized by relatedness using population 
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assignment probabilities from STRUCTURE (see below) at K=3 (Fig. 1.7a). This ordered 

distribution was compared to a uniform distribution of the same size using a two-sided 

Kolmogorov-Smirnov (KS) test (Panchenko 2006). The uniform distribution was simulated in 

R using the runif function to generate 49 random variables from a uniform distribution with a 

maximum and minimum bound corresponding to the maximum and minimum missing data 

value observed across all individuals (Fig. 1.7b). 

Population Structure 

STRUCTURE 1.3.4 (Pritchard 2010) was used to estimate population structure 

across all sampled localities. All unlinked SNPs from all samples were used in the analyses. 

Following Pritchard (2010), all parameters were kept as default, aside from the burn-in (set to 

200,000 generations) and the MCMC length (set to 1,000,000 generations). The data were 

modeled assuming admixture and correlated allele frequencies between populations (Falush et 

al. 2003). We tested a range of K values from 1 to 10 and repeated each run 10 times to capture 

variation in the likelihood estimate of each K value. The individual and population level 

probabilities of belonging to a particular cluster K were visualized using STRUCTURE PLOT 

(Ramasamy et al. 2014). 

Species Distribution Models 

To gather more information about the potential range extent of the species during the 

Last Glacial Maximum (LGM; ~18Kya), we used a species distribution modeling (SDM) 

approach (Peterson et al. 2011). To do this, we gathered 772 unique observations of A. rubra 

from the Global Biodiversity Information Facility (GBIF) and the Consortium of Pacific 

Northwest Herbaria. We selected eight of the least correlated bioclimatic variables from the 19 

total Worldclim bioclimatic variables (r2<0.7; i.e., bio1, bio2, bio3, bio5, bio7, bio12, bio15, 

and bio17) at a 30 seconds resolution (Hijmans et al. 2005), and used them to adjust SDMs. 

To do this, we used the package biomod2 (Thuiller et al. 2009) and applied an ensemble 

approach in R. For this, we adjusted the final ensemble model by using the AUCs (area under 

the curve) of nine modeling methods, including generalized linear model (GLM), generalized 

additive model (GAM), classification tree analysis (CTA), artificial neural network (ANN), 

surface range envelop (SRE), flexible discriminant analysis (FDA), multiple adaptive 

regression splines (MARS), random forest (RF), and Maxent as weighting units, and we 
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selected 10,000 pseudo-absences from the background area (a polygon encompassing the 

entire range of the species and the totality of the PNW region). We then projected the ensemble 

model into geographic space, using both current and paleo-climatic data obtained from 

Worldclim corresponding to current and LGM climatic conditions. 

Demographic Inference from Allele Frequency Spectra 

Alleles were grouped based on geography into two populations: a coastal population 

and an inland population. Folded joint allele frequency spectra (jAFS) were then constructed 

to summarize bi-allelic frequencies across both populations. AFS is a commonly used statistic 

for population genetic inference (Wakeley 2008; Nielsen et al. 2009), and because of this, 

jAFS, as well as multi-dimensional AFS, have been increasingly used for demographic 

inference (Keinan et al. 2007; Gutenkunst et al. 2009a; Smith et al. 2017). An AFS cannot 

accommodate any missing data, and RADseq data is commonly plagued with missing data due 

to allelic dropout. Therefore, we constructed two sets of jAFS by subsampling SNPs at two 

different missing data thresholds: 20% and 30%. The threshold value indicates the percentage 

of individuals from each population that must contain a given SNP for it to be included in the 

jAFS. To account for variation in the subsampling technique, we constructed 20 jAFS in each 

subsampling category, for a total of 40 observed jAFS. All jAFS were made using custom 

Python scripts developed by J. Satler (https://github.com/jordansatler/SNPtoAFS). The first 

dataset, subsampled at a 20% threshold, included jAFS from ten inland and nine coastal alleles 

ranging in 65 – 73 SNPs. The second dataset, subsampled at a 30% threshold, included jAFS 

from 15 inland alleles and 14 coastal alleles ranging in 26 – 34 SNPs. 

Model selection was performed on each observed jAFS using fastsimcoal2 

(Excoffier & Foll 2011; Excoffier et al. 2013). Under this approach, we estimated the 

composite likelihood of a jAFS between two populations, given a particular demographic 

model, and for each model parameter. The optimization of each parameter and the composite 

likelihood was done using the Expectation-Conditional Maximization (ECM) algorithm (Meng 

& Rubin 1993). In ECM, the E-step consisted of 100,000 coalescent simulations to estimate 

the expected jAFS under the current demographic parameters to approximate the composite 

likelihood, as in Excoffier et. al (2013). The CM-step consisted of a series of conditional 

maximizations (Brent 1974) corresponding to the number of parameters included in the model 
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being investigated. The minimum and maximum number of ECM cycles was set to 10 and 30. 

The optimization process ended when the maximum number of cycles was complete, or when 

the difference in the composite likelihood under the current parameters compared to the 

likelihood under the proposed parameters was less than 0.001. Thirteen different demographic 

models were evaluated (Figure 1) with 20 independent optimizations from different starting 

parameters (Excoffier et al. 2013), and the maximum likelihood parameter estimates resulting 

from each independent optimization were used as the starting parameters in a final 

maximization of the composite likelihood. We then calculated Akaike Information Criterion 

(AIC) values (Akaike 1974) using the maximum composite likelihood estimated from this run, 

and compared the models using Akaike weights, wAIC (Johnson & Omland 2004). First, we 

compared just the four principal demographic models (AV, RD, AVwM, AVtS; Figure 1) 

using wAIC, then we compared all 13 models using wAIC. We assume that because the 

collection of unlinked SNPs are randomly distributed across the genome (Excoffier et al. 

2013), the composite likelihood is a good approximation of the true maximum likelihood and 

can thus be used in AIC calculations for model comparison.  

For each model, we estimated div  as divergence time in generations, SC as time of 

secondary contact in generations, m as various probabilities of migration to and from coastal 

and inland populations, 0 and 1 as =4Ne where Ne is the number of genes in each deme, 

and the mutation rate  (only parameter not shown in model design; Figure 1) in 

substitutions/site/generation. The initial values for parameters 0 and 1 were drawn from a 

log uniform distribution between 0.01 and 10, and the parameter space explored was 

constrained only by the minimum bound of the prior distribution. The mutation rate, , was 

estimated from a minimum bounded log uniform distribution between 1e-9 and 1e-7. 

Divergence time, div, was drawn from a minimum bounded uniform prior distribution with a 

minimum of 50,000 and maximum of 1,000,000 generations for all models involving an AV 

event, whereas DIV from recent dispersal models was drawn from a fully bounded, uniform 

distribution with a minimum of 500 and a maximum 50,000 generations. Divergence time 

estimates were converted from generations to years using a generation length of 6-8 years per 

generation (Orwa et al. 2009). The secondary contact models included the time of the gene 

exchange event (SC) as a parameter. The prior distribution for SC was uniform with a 
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minimum in 500 and maximum in 50,000 generations. Migration was defined as the probability 

of a given lineage to move from one population to the other and was drawn from a log uniform 

prior distribution with min 1e-10 and max 0.1. Migration was considered as either unidirectional 

(only from the inland, or only from the coast), bidirectional (a separate migration rate 

parameter was estimated for each direction), or symmetrically bidirectional (only one 

migration rate parameter is estimated; Figure 1). 

To investigate model adequacy, we performed a goodness-of-fit test, which evaluates 

whether the observed data fit a particular model. The goodness-of-fit test is done using a 

likelihood ratio G-statistic, CLR = log10(CL0/ClE), where CL0 is the observed maximum 

composite likelihood and CLE is the estimated maximum composite likelihood (Excoffier et 

al. 2013). To represent the expected distribution of data given the best model, we performed 

parametric bootstrapping with the Maximum Likelihood (ML) parameter estimates of the 

selected model to generate 100 simulated jAFS that had an equal number of alleles per 

population as the empirical data. We then optimized the likelihood of each of these datasets 

given the model and used these maximum likelihoods to calculate the null distribution for the 

G-statistic. This process of parametric bootstrapping using the ML parameter estimates was 

done in fastsimcoal2 and repeated for the three best models in each of the subsampling 

threshold categories, 20% and 30%. The p-value for each goodness-of-fit test was calculated 

as the proportion of simulated G-values that were greater than the observed test-statistic over 

all the total number of G-values, in this case 100. This simulated data also permitted calculating 

95% confidence intervals for parameters of interest under a model of interest. 

Demographic Inference from Gene Trees 

Phylogeographic inference using approximate likelihoods, or PHRAPL (Jackson et al. 

2015), is conducted using gene tree topologies without branch lengths as input. While the gene 

trees can be constructed using either linked or unlinked SNPs, we opted for the former because 

we were unable to use linked SNPs in the analysis with allele frequency spectra. For this, all 

loci that were present in at least four individuals from the coast and four individuals from the 

inland were used to construct a total of 63 gene trees in PAUP* (Swofford 2003). Before 

constructing trees, we used DT-ModSel (Minin et al. 2003) to select an appropriate model of 

sequence evolution for each locus. A total of 42 models were evaluated, and the best model 
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was selected using decision theory. The model and corresponding parameter values were used 

to construct a maximum likelihood tree in PAUP*. A heuristic search started with a neighbor 

joining tree and performed tree bisection and reconnection (TBR) as the branch swapping 

mechanism for a maximum time limit of five minutes, at which time only the most optimal 

tree was saved. Two datasets were assembled; in the first dataset, only gene trees produced 

with 20 or more SNPs were included, which resulted in seven trees total. In the second dataset, 

only gene trees made with two or more SNPs were included, which resulted in 46 trees total. 

We performed the same model selection procedure that is described below, on both datasets. 

All thirteen models that were designed in fastsimcoal2 were also designed and 

evaluated in PHRAPL. All the PHRAPL models have one less parameter than the models in 

fastsimcoal2, because PHRAPL does not estimate mutation rate. PHRAPL uses a grid search 

to investigate parameter space and optimize approximate likelihoods under user-specified 

“grid values.” Runs began with a broad range of grid values for all parameters and move toward 

specific values once likelihood peaks are identified. We ran a total of four grid searches on 

each dataset of trees, with 6-8 grid values investigated for the coalescent time parameter and 

the migration parameter(s) each, on every grid search. The first two grid searches investigated 

broad ranges in the coalescent time parameter, while the final two grid searches narrowed these 

values considerably (Table 1.3). All secondary contact models included an additional 

parameter representing the timing of the secondary contact, this event time was set to occur 

prior to the coalescent event, at a relative time of 0.25 for all runs. We first compared only the 

four core models (Figure 1.1) using wAIC, and then compared all thirteen models at once using 

wAIC. All computational analyses were done using servers at the IBEST Computational 

Resources Core at the University of Idaho.  

Power Analysis 

 Data were simulated under the Ancient Vicariance with Asymmetrical Migration 

(AVwM) in fastsimcoal2 using parameters drawn from a prior distribution. The parameters 

of the AVwM model that were drawn from a prior are 0 and 1, as =4Ne where Ne is 

the number of genes in each deme, m12 as the migration rate to the coast, m21 as the migration 

rate to the inland, div, as the divergence time for inland and coastal populations, and the 

mutation rate  in substitutions/site/generation. The prior distributions for all of the 



12 

 

parameters are the same distributions that are used to draw the starting parameter values for 

optimization of the likelihood (see main text Methods, Demographic Model Selection, Allele 

Frequency Approach). 100 sets of parameters were drawn to simulate 100 different jAFS. 

The jAFS were simulated to emulate the empirical dataset constructed from a 20% missing 

data threshold. We used the same number of individuals per population, 10 inland and 9 

coastal, and mirrored the range of unlinked SNPs. In the empirical data, for the 20% jAFS 

dataset, the range of SNPs is between 65-73, in the simulated data the range is between 62-

80.  

 For each dataset, we optimized the likelihood of the data given the four main models; 

Ancient Vicariance (AV), Recent Dispersal (RD), AVwM, and Ancient Vicariance with 

Secondary Contact (AVwSC). We did not perform multiple, independent optimizations per 

model due to computational constraints. For each dataset, we compared the maximum 

likelihoods for the four models using AIC, and the model with the highest AICw was 

classified as the model selected.  

Results 

ddRAD sequencing, data quality, and effect on missing data 

We recovered 648 loci with 614 unlinked biallelic SNPs, 5,494 total variable sites, 

and 79% missing data. We expected to recover ca. 6,000 loci, following approximate 

calculations (Peterson et al. 2012) given a genome size of roughly 5Mbp (MD & IJ 2012), 8-

cutter and 6-cutter restriction enzymes, 70% of a half MiSeq lane (approx. 6 million reads), 

and expected coverage of 20x. Recovery of fewer loci could be due to many reasons, a few of 

which include protocol modifications, restriction enzyme selection, suboptimal size selection 

window, or not enough sequencing power (Peterson et al. 2012). Here, the quality of the 

genomic DNA, or average fragment size, is a primary factor in explaining the variation in the 

number of reads recovered (Figure 1.2). Our linear regression analysis showed that the only 

significant predictor variable was the mode of the fragment size distribution (Figure 1.2), 

explaining around 60% of the variation observed in the total number of raw sequence reads.  

The KS test reported a p-value of 0.465 at α = 0.05, indicating there is not a significant 

difference between the simulated uniform distribution and the observed distribution of missing 
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data (Figure 1.7). Thus we can conclude that the missing data are uniformly distributed across 

all individuals, that is, there are no individuals that have an extremely high amount of missing 

data relative to any other individuals, which indicates the data can be subsampled (i.e., missing 

data discarded) without biasing estimates (Wiuf 2006). 

Population Structure 

 Because the analyses of data with missing data can be suspected to involve an 

overestimation of K (Pritchard 2010), we visualized all STUCTURE results for K = 2 to 8. 

When K = 2 (Figure 1.3), there was apparent spatial genetic structure separating coastal from 

inland populations. This result agrees with the expectations under an AV scenario. When K = 

3 (Figure 1.3), two of the clusters were restricted to either inland or coastal populations, and 

the third included individuals from both areas, suggesting gene flow between the disjunct 

populations. Results for K = 4, 5, and 8 showed no geographic population structure (Figure 

1.8, 1.9), additionally suggesting the presence of gene flow between coastal and inland 

populations. 

Species Distribution Models 

Our ensemble SDM could successfully recover the current range of the species 

(Figure 1.3c). Part of the projected range of the species at the LGM (Figure 1.3d) is 

substantially different from the current range. Specifically, the coastal area appeared to display 

high habitat suitability, while the suitable inland areas are more restricted than the current 

inland range. This suggests that during the LGM, the coastal area may have harbored large 

extents of continuous habitat for the species, whereas inland populations were likely more 

restricted. 

Demographic Model Selection 

When the four core models were compared, AVwM always had the highest wAIC, 

on average, regardless of the downsampling technique or whether fastsimcoal2 or PHRAPL 

was used (Figure 1.4). AVwM was consistently selected using fastimcoal2, with fairly high 

average AIC values (Figure 1.4). In PHRAPL, with seven trees produced from loci with 20 or 

more SNPs, the AVwM model was selected 75% of the time (Table 1.4) with an average wAIC 

of 0.389, and the RD model was selected 25% of the time with an average wAIC also of 0.362 
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(Figure 1.4). In PHRAPL, with 46 trees produced from loci with 2 or more SNPs, AVwM and 

RD were both selected 50% of the time (Table 1.4) with an average wAIC of 0.484 and 0.414, 

respectively (Figure 1.4). 

When all 13 models were compared using wAIC from fastsimcoal2 estimated 

likelihoods, two models were selected consistently, AVwCM and AVwIM. In the first dataset 

(20% subsample threshold), AVwCM was selected around 50% of the time, while AVwIM 

was selected 43% of the time (Table 1.5). The remainder of selected models includes AVwM, 

AVtSC, and AVtSI, all of which were selected approximately 1.5% of the time. In the second 

fastimcoal2 dataset (30% subsample threshold), AVwIM was selected 56% of the time, and 

AVwCM was selected 42% of the time. Only two other models (AVwMsym and AVtSI) were 

selected, each at very low rates (1% of the time). In both datasets, the three models with the 

highest average wAIC were AVwIM, AVwCM, and AVwM (Figure 1.5a-b) and for all three 

models, the mode divergence time estimate was between 5.8 and 6.9 MYA (mean 6.3 MYA) 

(Table 1.6). 

Model adequacy was evaluated for the three best models for both datasets assessed 

in fastsimcoal2 (Figure 1.5c-d). In both datasets, the p-values were non-significant, indicating 

that the data fit all three models. In the first dataset, the p-values for AV with asymmetrical 

migration, AV with Coastal Migration, and AV with Inland Migration were 0.69, 0.77, and 

0.79, respectively (Figure 1.5c). In the second dataset, the p-values for AV with asymmetrical 

migration, AV with Coastal Migration, and AV with Inland Migration were 0.93 for each 

(Figure 1.5d). 

In PHRAPL, there were a handful of models amongst the 13 compared that carried a 

majority of wAIC support in any particular run. In all of the runs, the average wAIC for the 

best model was 0.16 – 0.26 (Table 1.7, 1.8), indicating not particularly strong support for any 

one model. In the dataset with seven trees, the AVwIM model was selected 100% of the time, 

however the average wAIC for the AVwIM model was only 0.167. In all four runs with the 

seven-tree dataset, there were at least five models that carried more than 10% of the model 

weight (i.e. wAIC > 0.10) (Table 1.7). In the dataset with 46 trees, AVwMsym and RDsym 

were both selected 50% of time with an average wAIC of 0.22 and 0.214 (Table 1.8). In all 

four runs with the 46-tree dataset, there were at least four models with more than 10% of the 
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model weight. In both PHRAPL datasets, the RD models collectively occupied over a third of 

the model weight in any given grid search. 

Power Analysis 

 Out of the 100 datasets, 86 of them were correctly classified as AVwM with an 

average AIC of 0.703. The remaining 14 datasets were classified as AVwSC with an average 

AIC of 0.296 (Table 1.15). 

Discussion 

Allele Frequency and Gene Tree Approaches 

fastsimcoal2 and PHRAPL each have unique properties that make them useful in 

performing model selection. While fastsimcoal2 is appealing because it summarizes unlinked 

SNPs in an allele frequency spectrum, PHRAPL uses topologies that can be generated from 

SNP data or entire loci. In this study, the number of unlinked SNPs that could be used in 

fastimcoal2 was limited because AFS does not accommodate missing data, and therefore the 

unlinked SNPs must be downsampled. Alternatively, PHRAPL accommodates missing data 

because not all individuals need be present in each gene tree, only a minimum total number of 

individuals from each population need be present. Depending on the missing data and number 

of linked and unlinked SNPs present in one’s dataset, either approach could be viable.  

fastsimcoal2 results were more consistent than PHRAPL results in selecting the same 

model with high support, especially when only comparing the four core models AVwM (Fig. 

1.4). However, even when comparing all 13 models in fastsimcoal2, AVwCM and AVwIM 

maintained a majority of the wAIC support. Additionally, model adequacy in fastsimcoal2 

supported that the data fit these three best models, all of which support an ancient vicariance 

event with some intermittent gene flow. When comparing the four core models in PHRAPL, 

there was consistency in selecting the AVwM model, but with relatively low support from 

wAIC. Because no single model had an overwhelming majority of the model weight, there was 

overall less support in which model was selected when comparing all 13 models in PHRAPL. 

As for the performance of each analytical approach, it is unreasonable to conclude on 

which is more accurate given this study, because each approach performs model selection 
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differently, i.e. uses a different approximate likelihood to evaluate model parameters. 

Specifically, fastimcoal2 uses an observed AFS to optimize an approximate likelihood based 

on an expected AFS under coalescent simulations (Excoffier et al. 2013), while PRHAPL uses 

gene tree topologies to optimize an approximate likelihood that is based on concordant gene 

tree topologies under coalescent simulations (Jackson et al. 2015). Both incorporate coalescent 

theory and whether one approach is more accurate than the other may depend on whether 

information in the available data is better captured in an AFS or gene trees. 

Genomic data from herbarium specimens 

While ddRADseq can be successful in recovering thousands of loci and SNPs 

(Peterson et al. 2012), this was not the case in our study. Our analyses (Figure 1.2) show that 

this is mostly due to lower quality (fragment size) DNA used in the protocol. No other variable, 

or interaction of variables, including year collected or concentration, recovered any significant 

relationship with the number of reads recovered. The ~10-year-old herbarium specimens used 

in this study, were presumably dried and stored in various ways that resulted in some specimens 

having better quality DNA. Our results indicate that as long as high quality DNA can be 

identified (e.g., with a fragment analyzer or bio-analyzer), the method used here is a cost-

effective approach for generating genomic data. Specifically, our results strongly suggest that 

the mean of the distribution of fragment sizes is a strong predictor of the number of reads that 

will be recovered in the ddRADseq approach. Examining the fragment length as an additional 

step for standardization can identify degraded samples, i.e. samples with an average fragment 

length < 5000 bp, when concentration alone cannot. Practically, we recommend verifying the 

quality of individual samples with fragment length identification to ensure that no highly 

degraded samples are used in library preparation. In addition, characterizing missing data as 

uniformly missing was crucial for implementing our subsampling strategies. If the distribution 

of missing data were systematically structured, subsampling could have drastically biased our 

likelihood estimates. Taken together, these results suggest that generating genomic data using 

DNAs obtained from herbarium specimens is possible, but the average fragment size of 

resulting DNAs, and the distribution of missing data should be considered for both the 

experimental and analytical approaches employed here. 
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Phylogeographic history of red alder 

Overall, the Ancient Vicariance with Migration (AVwM) model was the strongest and 

most consistently supported model across datasets and approaches. Although this model 

selection approach was not intended to make inferences from the parameter estimates, but 

rather from the overall model selected, the divergence times estimated seem to indicate 

congruence with the PNW history of Pre-Pleistocene divergence. The divergence time 

estimates ranged 5.8 – 6.9 MYA and are older than the Pacific Northwest rainforest disjunction 

(~ 3-5 MYA; but see the 95% CI in Table 1.9, 1.10, 1.11, 1.12, 1.13, 1.14). Though we cannot 

precisely determine divergence times, we can characterize the timing of divergence as Pre-

Pleistocene.  

The AVwM model involves four possible migration scenarios. Two of these four 

scenarios are highly supported with allele frequency data and include migration in only one 

direction, AVwIM and AVwCM. When comparing all models, gene trees supported AVwIM 

as the best model. These results suggest that migration has been predominantly unidirectional, 

although the actual direction still remains unclear in light of these results. Disentangling which 

direction is the most likely requires investigating recolonization and/or specific migration route 

models, potentially, with the inclusion of more genetic data. Due to the lack of genetic structure 

within the coast or the inland, we do not think that expanding the geographic breadth of our 

samples is necessary (Figures 1.8 & 1.9). That said, model adequacy results suggest that more 

genetic data is required to distinguish between the three best migration scenarios for the 

AVwM model. These results also highlight the limit to the phylogeographic inference that we 

are able to make given these data, which is something that we feel should always be identified. 

The SDMs and population structure results provide further evidence for the Ancient 

Vicariance with Migration scenario. The climatic niche projections using LGM conditions 

(Figure 1.3d) indicate that the expected inland range of A. rubra shifted into southern Idaho. 

This is consistent with the hypothesis that species ranges in this area were displaced south 

during the Pleistocene (Sullivan et al. 2000). Although not apparent in the SDM because of its 

later occurrence, pollen records indicate the presence of Alnus in the NRM of Canada 

throughout the Holocene (Gavin et al. 2009). This could indicate surviving populations of A. 

rubra in nunatak refugia as far north as Canada, or a rapid colonization of the area following 
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glacial retreat. During the Holocene, the climate was considerably warmer than today (Wagner 

et al. 2000), which could explain why the inland forest extended much farther North than it 

does currently. Ultimately, the persistence of A. rubra in the inland during the Pleistocene is 

supported by our results, though whether southern inland populations, or migrants from the 

northern Cascades, or both, colonized the inland forest remains unclear. The strong genetic 

divide between the inland and coastal populations (Figure 1.3a-b) also corroborate that inland 

populations of A. rubra likely persisted through the Pleistocene. 

Given the prominent role that gene flow has played in the phylogeographic history of 

A. rubra, we conclude, in agreement with Espíndola et al.’s (2016) prediction, that coastal and 

inland populations of red alder do not harbor cryptic diversity, and thus do not represent 

incipient sister species. Previously, in this system, non-cryptic taxa were often considered to 

be the result of recent dispersal. However, we show here that an alternative phylogeographic 

hypothesis – specifically, ancient vicariance with periods of gene flow – can also explain why 

some lineages in the disjunct mesic forests of the PNW may not harbor cryptic diversity, 

despite evidence of ancient population structure. We also show that the inclusion of more 

intraspecific data, genetic and geographic, does in fact increase our phylogeographic 

understanding of Alnus rubra, specifically because the Ancient Vicariance with Migration and 

Recent Dispersal models could not have been distinguished using the cpDNA from Strenge 

(1994; Soltis et al. 1997) or Brumble (2008). Finally, we acknowledge that the inclusion of 

more data would allow for the evaluation of more complex models, therefore, if in the future 

more Alnus rubra data is generated, we recommend the evaluation of more complex models 

that include population expansion and contraction.  

Conclusions 

In this study, we compared two approaches in phylogeographic model selection, allele 

frequency-based (Excoffier et al. 2013) and gene tree-based (Jackson et al. 2015), and used 

the results from both to draw phylogeographic inference in an emerging model system in 

comparative phylogeography. Importantly, both approaches resulted in a ranking of models 

that was useful in gauging relative support for all competing models. The most overwhelming 

indicator of successful model selection comes from the review of model adequacy, where we 

see the data consistently fit the models that were most frequently selected. Because assessing 
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model fit is a critical component of any statistical inference, we feel that future 

phylogeographic studies should include explicit tests of model adequacy, as performed here. 

Further, we also conclude that mean fragment length is an effective measure of sample quality 

that will help in identifying samples that may be problematic for RAD-based genomic 

reduction sequencing strategies – samples where the concentration alone is not enough to 

indicate levels of degradation – early on in library preparation. We also demonstrate that 

genomic data obtained from DNA isolated from herbarium specimens do not necessarily result 

in systematically missing amounts of data, which allows for downsampling without the fear of 

drastically biasing the data. Finally, we were successful in using DNA from herbarium 

specimens to gather the genomic data necessary to make inferences regarding the 

phylogeographic history of A. rubra, where the combination of descriptive and model selection 

based tools was invaluable in recovering a meaningful phylogeographic inference that is 

supported by multiple, independent lines of evidence. 
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Tables 

 
Table 1.1 Alnus rubra collections information. From the left: DNA extraction number, collector and collection 

number, latitude, longitude, locality description. All herbarium specimens are located in the Stillinger 

Herbarium at the University of Idaho and can be found online (http://pnwherbaria.org). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample ID           

(DNA number) 

Collector and Collection 

Number 
Lat Long Locality 

2015-411 AJ Brumble 06-86 46.13943 -115.667216 Idaho Co., ID. Along Hwy12 on Lochsa River 

2015-412 AJ Brumble 05-39 48.18773 -116.435 Bonner Co., Id. Garfield Bay Rd. 

2015-413 AJ Brumble 05-37 48.18788 -116.44015 Bonner Co., Id. Garfield Bay Rd. 

2015-414 AJ Brumble 05-30 48.20281 -116.4503 Bonner Co., Id. Garfield Bay Rd. 

2015-415 AJ Brumble 05-38 48.18773 -116.435 Bonner Co., Id. Garfield Bay Rd. 

2015-416 AJ Brumble 05-71 47.1746948 -115.9104676 Shoshone Co., ID, Banks of St. Joe River 

2015-417 AJ Brumble 06-94 46.226316 -115.49328 Idaho Co., ID. Along Hwy12 on Lochsa River 

2015-418 AJ Brumble 06-106 45.98981 -118.06008 Umatilla Co., OR. Mill Crk. Rd. 

2015-419 AJ Brumble 06-105 45.98786 -118.071 Umatilla Co., OR. Mill Crk. Rd. 

2015-420 AJ Brumble 06-103 45.992183 -118.105216 Umatilla Co., OR. Mill Crk. Rd. 

2015-421 Bradtke 1556 45.33166 -118.71666 Umatilla Co., OR. Umatilla National Forest, FR 54 

2015-422 F.D. Johnson 0120 46.0645809 -118.3430209 Walla walla Co., Wa. Mill Creek 

2015-423 AC Zack 0612 47.592128 -117.286658 Iller Creek, Spokane Co., Wa. 

2015-424 AJ Brumble 05-57 45.90695 -123.961066 Cannon Beach, Clatsop Co., Oregon 

2015-425 Gage 6816 44.43566 -120.34933 Forest Road 22, Crook Co., Or 

2015-426 AJ Brumble 06-81 38.44933 -123.114616 Jenner, Sonoma Co., Ca 

2015-427 AJ Brumble 06-68 41.491516 -124.0468 Hwy 101, Del Norte Co., Ca 

2015-428 AJ Brumble 06-76 39.488316 -123.78815 Hwy 1, Mendocino Co., Ca 

2015-429 AJ Brumble 06-15 54.30228 -130.339316 1600 Park Avenue, BC, Canada 

2015-430 AJ Brumble 06-12 54.29583 -130.351583 Prince Rupert, BC, Canada 

2015-431 AJ Brumble 06-16 54.30583 -130.335616 Prince Rupert, BC, Canada 

2015-432 AJ Brumble 06-14 54.30228 -130.339316 1600 Park Avenue, BC, Canada 

2015-433 AJ Brumble 06-71 41.37286 -124.013783 Newton Drury Scenic Parkway, Humbolt Co., Ca 

2015-434 AJ Brumble 06-67 41.5137 -124.029016 Hwy 101, Del Norte Co., Ca 

2015-435 AJ Brumble 06-17 54.305833 -130.33561 Prince Rupert, BC, Canada 

2015-436 AJ Brumble 06-80 54.30583 -130.335616 Hwy 1, Sonoma Co., Ca 

2015-437 AJ Brumble 05-21 47.771666 -122.29472 Lake Forest park, King Co., Washington 

2015-438 AJ Brumble 05-25 47.771666 -122.29472 Lake Forest park, King Co., Washington 

2015-439 AJ Brumble 05-13 47.94995 -124.392883 Forks, Clallam Co., wa 

2015-440 AJ Brumble 05-43 46.54271 -124.03023 Long Beach Peninsula, Pacific Co., wa 

2015-441 AJ Brumble  05-47 46.302183 -124.062616 Long Beach Peninsula, Pacific Co., wa 

2015-442 AJ Brumble 05-52 45.8956 -123.9599 Cannon Beach, Clatsop Co., Oregon 

2015-443 AJ Brumble 05-12 47.94995 -124.392883 Forks, Clallam Co., wa 

2015-444 AJ Brumble 06-78 39.392516 -123.809383 Off Hwy 1, Mendocino Co., Ca 

2015-445 AJ Brumble 06-11 54.295833 -130.351583 Prince Rupert, BC, Canada 

2015-446 AJ Brumble 05-51 45.8956 -123.9599 Cannon Beach, Clatsop Co., Oregon 

2015-447 AJ Brumble 05-50 45.8956 -123.9599 Cannon Beach, Clatsop Co., Oregon 

2015-448 AJ Brumble 05-41 46.6071 -124.043116 Long Beach Peninsula, Pacific Co., wa 

2015-379 AJ Brumble 06-97 46.332074 -115.076678 Hwy 12 along Lochsa River, Idaho Co., ID 

2015-380 AJ Brumble 06-93 46.22815 -115.495716 Idaho Co., ID. Along Hwy12 on Lochsa River 

2015-381 AJ Brumble 06-95 46.226316 -115.49326 Idaho Co., ID. Along Hwy12 on Lochsa River 

2015-382 AJ Brumble 16-91 46.22815 -115.445716 Idaho Co., ID. Along Hwy12 on Lochsa River 

2015-383 P.Brunsfeld 5800-2 48.248116 -116.293766 Storm Creek, Bonner Co., Id 

2015-384 F.D. Johnson, S.J. Brunsfeld 7211 47.258751 -115.93699 3.6 mi downstream from avery, St. Joe River, Shoshone Co., Id 

2015-385 F.D. Johnson, S.J. Brunsfeld 7212 47.529108 -116.546488 Killarny Lake, Kootenai Co, Idaho 

2015-386 F.D. Johnson, S.J. Brunsfeld 7213 47.64289 -116.648197 Beauty Crk Rd., Kootenai Co, ID 

2015-387 F.D. Johnson, S.J. Brunsfeld 7210 47.252097 -116.037179 Marble Creek, Shoshone Co., Id 

2015-388 F.D. Johnson 0510 48.261184 -116.280881 Strong Creek, Bonner Co., Id 

2015-389 P. Brunsfeld 5106-1 48.45996 -116.323483 Kanisku National Forest, Bonner Co., ID 

2015-390 AJ Bumble 05-70 47.252578 -115.79239 Banks of St. Joe River, Shoshone Co., ID 

!

http://pnwherbaria.org)/
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  Sample 

ID 

Raw 

Reads 

Median 

Fragment 

Length (bp) 

Concentration of 

Fragment Length 

Distribution 

(ng/ L) 

Year 

Collected 

411 323,341 7914 8.5239 2006 

415 407,328 5847 11.7729 2005 

417 182,615 8175 7.1783 2006 

418 417,292 7718 6.0023 2006 

420 485,504 7653 7.0889 2006 

436 110,015 5539 14.8469 2006 

437 25,489 2943 3.0378 2005 

441 2,637 2058 1.9202 2005 

442 101,437 5000 7.1077 2005 

443 11,429 2229 2.4967 2005 

422 73,001 2390 4.0885 2001 

425 59,637 2362 4.6983 2000 

439 82,828 4000 4.5448 2005 

Mode

Table 1.2 Variables (mode fragment length, concentration of fragment length distribution, and year collected) 

examined for a relationship with the number of raw reads produced by a given sample. 
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Model Family Collapse Time (Coalescent Units) Migration Rate (4Nm) 

1 

AV 1.55, 2.7, 4.07, 6.7, 8.5, 10.1, 12.5 N/A 

RD 0.005, 0.01, 0.10, 0.362, 0.76 0.10,0.46,1.00,2.15,3.4, 4.5 

AVwM 1.55, 2.7, 4.07, 6.7, 8.5, 10.1, 12.5 0.10,1.00,2.15,3.4, 4.5, 6.3, 7.6 

AVtS 1.55, 2.7, 4.07, 6.7, 8.5, 10.1, 12.5 0.10,0.46,1.00,2.15,3.4, 4.5 

2 

AV 8.0, 9.4, 11.0, 13.6, 15.0, 16.3, 18.0 N/A 

RD 0.3, 0.5, 0.6, 1.0, 1.4, 1.8, 2.1 2.15, 4.0, 5.4, 6.7, 8.2, 10.0 

AVwM 8.0, 9.4, 11.0, 13.6, 15.0, 16.3, 18.0 2.15, 4.0, 5.4, 6.7, 8.2, 10.0 

AVtS 8.0, 9.4, 11.0, 13.6, 15.0, 16.3, 18.0 2.15, 4.0, 5.4, 6.7, 8.2, 10.0 

3 

AV 5.5, 6.2, 6.8, 12.8, 13.4, 13.9 N/A 

RD 0.01, 0.2, 0.362, 0.67, 0.92 5.5, 6.7, 7.6, 8.2, 8.6, 9.0 

AVwM 5.5, 6.2, 6.8, 12.8, 13.4, 13.9 5.5, 6.7, 7.6, 8.2, 8.6, 9.0 

AVtS 5.5, 6.2, 6.8, 12.8, 13.4, 13.9 5.5, 6.7, 7.6, 8.2, 8.6, 9.0 

4 

AV 5.5, 5.9, 6.2, 6.8, 7.1, 7.4 N/A 

RD 0.01, 0.2, 0.362, 0.67, 0.92 7.0, 7.2, 7.5, 7.8, 8.2, 8.5, 8.7 

AVwM 5.5, 5.9, 6.2, 6.8, 7.1, 7.4 7.0, 7.2, 7.5, 7.8, 8.2, 8.5, 8.7 

AVtS 5.5, 5.9, 6.2, 6.8, 7.1, 7.4 7.0, 7.2 ,7.5, 7.8, 8.2, 8.5, 8.7 

Table 1.3 Grid search values for each of the four PHRAPL runs (applied to both datasets; 7 and 46 trees) for the 

collapse time and migration rate parameters. The first two runs are broad, while the final two runs narrow the 

grid search. 
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    1 2 3 4 

7 

trees 

AV 0.000 0.000 0.000 0.000 

AVwM 0.416 0.389 0.380 0.370 

RD 0.346 0.357 0.366 0.380 

AVtS 0.239 0.254 0.255 0.250 

      

46 
trees 

AV 0.002 0.001 0.001 0.001 

AVwM 0.567 0.417 0.428 0.524 

RD 0.313 0.427 0.518 0.397 

AVtS 0.119 0.155 0.053 0.078 

Table 1.4 The average wAIC scores for the four core models evaluated in PHRAPL under 

both sets of trees, for all four runs (see Table S3 for grid search values). 
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  20% Missing Data Threshold 30% Missing Data Threshold 

Model 
Average 

wAIC 
Selection 

Frequency 
Average 
wAIC 

Selection 
Frequency 

AV 0.000 0.0 0.000 0.0 
RD 0.000 0.0 0.000 0.0 

RDsym 0.000 0.0 0.000 0.0 

RDfC 0.000 0.0 0.000 0.0 

RDfI 0.000 0.0 0.000 0.0 

AVwM 0.113 2.8 0.118 0.8 
AVwMsym 0.000 0.0 0.000 0.0 

AVwCM 0.345 49.8 0.327 42.0 

AVwIM 0.330 43.0 0.389 56.3 

AVtS 0.035 0.0 0.029 0.0 

AVtSsym 0.000 0.0 0.000 0.0 
AVtSC 0.087 2.3 0.051 0.0 

AVtSI 0.092 2.3 0.084 1.0 

Table 1.5 The wAIC scores for all models averaged across fastsimcoal2 runs, along the selection 

frequency, within each downsampled dataset. 
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    6 years / generation   8 years / generation 

  Model 
Original MLE 

Estimate 
Median 
Estimate 

95% CI 
Original MLE 

Estimate 
Median 
Estimate 

95% CI 

20% 

AVwM 7.6E+06 6.5E+06 9.6E+05 1.3E+07 1.0E+07 8.7E+06 1.3E+06 1.7E+07 

AVwCM 1.1E+07 6.2E+06 4.1E+05 1.1E+07 1.5E+07 8.3E+06 5.5E+05 1.5E+07 

AVwIM 6.7E+06 6.9E+06 5.8E+05 1.3E+07 9.0E+06 9.3E+06 7.8E+05 1.7E+07 

30% 
AVwM 6.6E+06 6.5E+06 1.1E+06 1.3E+07 8.8E+06 8.6E+06 1.5E+06 1.7E+07 

AVwCM 1.1E+07 5.8E+06 4.4E+05 1.3E+07 1.4E+07 7.7E+06 5.9E+05 1.7E+07 

AVwIM 7.4E+06 6.0E+06 4.0E+05 1.3E+07 9.9E+06 8.1E+06 5.3E+05 1.7E+07 

  mean   6.3E+06 6.5E+05 1.3E+07  8.4E+06 8.6E+05 1.7E+07 

Table 1.6 Divergence times and their 95% Confidence Intervals estimated in fastsimcoal2 for the three highest 

ranked models, Ancient Vicariance (AV) with Migration, AV with Coastal Migration, and AV with Inland 

Migration, under two generation lengths, 6 and 8 years per generation. 
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1 2 3 4 

AV 0.000 0.000 0.000 0.000 

AVwCM 0.011 0.020 0.017 0.015 

AVwIM 0.162 0.170 0.177 0.160 

AVwMsym 0.109 0.101 0.106 0.101 

AVwM 0.063 0.067 0.050 0.042 

RDfC 0.140 0.020 0.017 0.106 

RDfI 0.133 0.170 0.179 0.150 

RDsym 0.133 0.101 0.107 0.112 

RD 0.052 0.062 0.048 0.043 

AVtSI 0.002 0.018 0.016 0.015 

AVtSC 0.100 0.145 0.163 0.151 

AVtSsym 0.059 0.083 0.086 0.077 

AVtS 0.036 0.044 0.033 0.028 

Table 1.7. The average wAIC scores for all thirteen models evaluated in PHRAPL 

under 7 trees, for all four runs (see Table S3 for grid search values). 
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1 2 3 4 

AV 0.000 0.000 0.000 0.000 

AVwCM 0.000 0.005 0.003 0.003 

AVwIM 0.023 0.081 0.067 0.061 

AVwMsym 0.218 0.197 0.240 0.228 

AVwM 0.100 0.117 0.128 0.118 

RDfC 0.156 0.006 0.003 0.107 

RDfI 0.153 0.079 0.059 0.090 

RDsym 0.168 0.258 0.241 0.192 

RD 0.055 0.120 0.155 0.089 

AVtSI 0.000 0.000 0.002 0.002 

AVtSC 0.016 0.024 0.041 0.034 

AVtSsym 0.089 0.068 0.044 0.059 

AVtS 0.021 0.044 0.016 0.018 

Table 1.8. The average wAIC scores for all thirteen models evaluated in PHRAPL 

under 46 trees, for all four runs (see Table S3 for grid search values). 
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Table 1.9. From the left; parameters for the Ancient Vicariance with Coastal Migration model, the ML 

parameter estimate used in constructing the 100 parametric bootstraps, the Median ML estimate from the 

parametric bootstraps, and the 95% Confidence Interval for the ML parameter estimates from the 

parametric bootstraps. Migration is the migration probability for a lineage from the coastal population to 

migrate to the inland. Inland and Coastal Ne are the effective population size estimates for the Inland and 

Coastal populations. The mutation rate is in substitutions/site/generation. 

 
  

jAFS20: Ancient Vicariance with Coastal Migration 

Parameters  MLE  
Median 

Estimate 
95% CI 

Migration C  I 1.5E-02 1.1E-03 8.8E-09 4.1E-02 

Inland Ne 2.6E+05 2.6E+05 1.1E+05 2.9E+06 

Coastal Ne 7.8E+05 2.5E+06 1.2E+05 2.9E+07 

Mutation Rate 1.0E-07 9.9E-08 3.9E-09 2.0E-07 
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Table 1.10. From the left; parameters for the Ancient Vicariance with Inland Migration model, the ML 

parameter estimate used in constructing the 100 parametric bootstraps, the Median ML estimate from the 

parametric bootstraps, and the 95% Confidence Interval for the ML parameter estimates from the parametric 

bootstraps. Migration is the migration probability for a lineage from the inland population to migrate to the 

coast. Inland and Coastal Ne are the effective population size estimates for the Inland and Coastal populations. 

The mutation rate is in substitutions/site/generation. 

 
  

jAFS20: Ancient Vicariance with Inland Migration 

Parameters  MLE 
Median 

Estimate 
95% CI 

Migration I  C 1.3E-02 5.0E-03 4.1E-08 4.5E-02 

Inland Ne 1.7E+05 4.7E+05 1.1E+05 9.9E+06 

Coastal Ne 1.4E+05 2.3E+05 1.2E+05 2.4E+06 

Mutation Rate 1.8E-07 1.1E-07 3.7E-09 1.9E-07 
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Table 1.11. From the left; parameters for the Ancient Vicariance with Asymmetrical Migration model, the ML 

parameter estimate used in constructing the 100 parametric bootstraps, the Median ML estimate from the 

parametric bootstraps, and the 95% Confidence Interval for the ML parameter estimates from the parametric 

bootstraps. The migration parameters are the migration probability for a lineage from one population to migrate 

to the other. Inland and Coastal Ne are the effective population size estimates for the Inland and Coastal 

populations. The mutation rate is in substitutions/site/generation. 

 
  

jAFS20: Ancient Vicariance with Asymmetrical Migration 

Parameters  MLE  
Median 

Estimate 
95% CI 

Migration I  C 1.1E-06 2.6E-05 2.2E-09 3.6E-02 

Migration C  I 5.1E-02 1.4E-06 1.6E-09 1.8E-02 

Inland Ne 1.7E+05 3.2E+05 1.1E+05 3.6E+06 

Coastal Ne 1.5E+05 3.8E+05 1.1E+05 2.8E+07 

Mutation Rate 1.7E-07 9.9E-08 1.2E-08 2.0E-07 
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Table 1.12. From the left; parameters for the Ancient Vicariance with Coastal Migration model, the ML 

parameter estimate used in constructing the 100 parametric bootstraps, the Median ML estimate from the 

parametric bootstraps, and the 95% Confidence Interval for the ML parameter estimates from the parametric 

bootstraps. Migration is the migration probability for a lineage from the coastal population to migrate to the 

inland. Inland and Coastal Ne are the effective population size estimates for the Inland and Coastal populations. 

The mutation rate is in substitutions/site/generation. 

 
  

jAFS30: Ancient Vicariance with Coastal Migration 

Parameters MLE  
Median 

Estimate 
95% CI 

Migration C  I 1.5E-02 8.7E-04 4.4E-06 3.8E-02 

Inland Ne 2.6E+05 2.7E+05 1.5E+05 6.9E+06 

Coastal Ne 7.8E+05 2.3E+06 1.5E+05 5.2E+07 

Mutation Rate 1.0E-07 9.5E-08 1.5E-09 1.7E-07 
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Table 1.13. From the left; parameters for the Ancient Vicariance with Inland Migration model, the ML 

parameter estimate used in constructing the 100 parametric bootstraps, the Median ML estimate from the 

parametric bootstraps, and the 95% Confidence Interval for the ML parameter estimates from the parametric 

bootstraps. Migration is the migration probability for a lineage from the inland population to migrate to the 

coast. Inland and Coastal Ne are the effective population size estimates for the Inland and Coastal populations. 

The mutation rate is in substitutions/site/generation. 

 
  

jAFS30: Ancient Vicariance with Inland Migration 

Parameters MLE  
Median 

Estimate 
95% CI 

Migration I  C 1.3E-02 1.3E-03 1.2E-08 4.1E-02 

Inland Ne 1.7E+05 5.3E+05 1.3E+05 5.8E+06 

Coastal Ne 1.4E+05 2.5E+05 1.1E+05 3.2E+06 

Mutation Rate 1.8E-07 1.0E-07 5.7E-09 1.8E-07 
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Table 1.14. From the left; parameters for the Ancient Vicariance with Asymmetrical Migration model, the ML 

parameter estimate used in constructing the 100 parametric bootstraps, the Median ML estimate from the 

parametric bootstraps, and the 95% Confidence Interval for the ML parameter estimates from the parametric 

bootstraps. The migration parameters are the migration probability for a lineage from one population to migrate 

to the other. Inland and Coastal Ne are the effective population size estimates for the Inland and Coastal 

populations. The mutation rate is in substitutions/site/generation. 

 
  

jAFS30: Ancient Vicariance with Asymmetrical Migration 

Parameters  MLE  
Median 

Estimate 
95% CI 

Migration I  C 2.1E-03 9.0E-05 1.3E-09 4.4E-02 

Migration C  I  3.9E-08 1.9E-06 9.2E-10 3.2E-02 

Inland Ne 1.9E+05 3.0E+05 1.2E+05 4.0E+06 

Coastal Ne 7.6E+05 4.5E+05 1.2E+05 1.0E+07 

Mutation Rate 1.4E-07 1.0E-07 2.0E-08 2.0E-07 
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Table 1.15. Power analysis results, showing the selection frequency for the four main models, and the average 

AICw across all 100 optimizations. 

 
  

  
AV RD AVwM AVwSC 

Selection Frequency - - 86% 14% 

Average AICw - - 0.703 0.296 
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Figure 1. Four major demographic models representing the hypothesized phylogeographic history of Alnus rubra in 

the PNW temperate rainforest. In total, 13 demographic models were designed and evaluated for both datasets. 

Names and abbreviations of all models are listed in the left panel. Parameters estimated include population size, C 

and I, migration rate, , divergence time, div, and time of secondary contact, s. The only additional parameter 

estimated but not included in the model design was mutation rate. 
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Figure 1.1. Number of raw reads recovered from ddRADseq experiments in relation to the mode 

fragment length found in the DNA extracts from 13 Alnus rubra individuals. 
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Figure 1.2. STRUCTURE results for K = 2 (a) and K = 3 (b) for 18 populations of Alnus rubra. Species 

distribution models for A. rubra in the PNW rainforest under current (c) and last glacial maximum (LGM; d) 

conditions. The stippled area in the bottom right panel shows the extent of the Cordilleran ice sheet at the LGM. 
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Figure 1.3 a) Model selection results between the four major 

demographic models. b) Averaged way values across runs in both 

fastsimcoal2 (FSC) and PRHAPL datasets. White: Recent Dispersal, 

dark grey: Ancient Vicariance (AV) with Migration, light grey: AV 

then Secondary Contact. Notes: AV not shown; average wAIC of 0. 

Because these are averaged wAIC values, they do not sum to one. 
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Figure 1.4. Model Selection results from fastsimcoal2 (FSC2) show three models with the highest 

wAIC densities out of all 13 demographic models evaluated across 400 independent 

optimizations of the likelihood for each model (20 subsampled datasets at a subsampling 

threshold of 20% (a) and 30% (b), each optimized 20 times). The three best models represent 

continuous migration after the ancient vicariance event with varying migration patterns. (c, d) 

Model adequacy results for the three best models in both FSC2 datasets. Note that in each 

dataset, the test statistic for all three models are very similar making it appear as if there is only 

one test statistic (black dashed line), however they are actually three overlapping values. In (d) 

the three test statistics are more variable, hence the appearance of a thicker line. All six 

evolutions of model adequacy were non-significant. 



47 

 

Sample ID = 420 

Raw Reads = 485,504 

Sample ID = 441 

Raw Reads = 2,637 

a) 

b) 

Figure 1.5. a) Distribution of DNA fragment lengths, with a mode fragment length of 7,853 bp, 

present in Sample 420. b) Distribution of DNA fragment lengths, with a mode fragment length of 

2,058 bp, present in Sample 441. Results from a Fragment Analyzer (Advanced Analytical). 
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Figure 1.6. A) Missing data quantified across all 49 samples and organized by relatedness using population 

assignment probabilities from STRUCTURE at K=3. B) Uniform distribution simulated in R using the runif 

function to generate 49 random variables from a uniform distribution with a maximum and minimum bound 

corresponding to the maximum and minimum missing data value observed across all individuals. 
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Figure 1.7. STRUCTURE results for K = 8 for 18 populations of Alnus rubra; no clear spatial genetic structure 

present. 
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Figure 1.8. STRUCTURE results for K = 4 (left) and K = 5 (right) for 18 populations of Alnus rubra; no clear 

spatial genetic structure present.
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Chapter 2: Identifying Models of Trait-Mediated Community Assembly 

Using Random Forests and Approximate Bayesian Computation 
 

“Identifying models of trait‐mediated community assembly using random forests and 

approximate Bayesian computation” Ruffley, M, Peterson, K, Week, B, Tank, DC, Harmon, 

LJ. Ecology and Evolution, vol. 9, 2019, pp 13218– 13230. https://doi.org/10.1002/ece3.5773 

 

 

Abstract 

Ecologists often use dispersion metrics and statistical hypothesis testing to infer processes of 

community formation such as environmental filtering, competitive exclusion, and neutral species 

assembly. These metrics have limited power in inferring assembly models because they rely on often-

violated assumptions. We adapt a model of phenotypic similarity and repulsion to simulate the process 

of community assembly via environmental filtering and competitive exclusion, all while parameterizing 

the strength of the respective ecological processes. We then use random forests and approximate 

Bayesian computation to distinguish between these models. We find that our approach is more accurate 

than using dispersion metrics and accounts for uncertainty. We also demonstrate that the parameter 

determining the strength of the assembly processes can be accurately estimated. This approach is 

available in the R package CAMI; Community Assembly Model Inference. We demonstrate the 

effectiveness of CAMI using an example of plant communities living on lava flow islands. 

Introduction 

Though methods to infer community assembly vary, many approaches share a central idea 

based on phylogenetics: the pattern of shared evolutionary history between species that coexist provides 

insight into the historical processes that assembled the community (Brooks and McLennan 1991; Losos 

1996; Grandcolas 1998; Webb 2000; Thompson et al. 2001; Webb et al. 2002). To gain insight into the 

assembly process, a collection of metrics have been used to characterize the patterns of diversity in a 

community using species/genus ratios and other higher taxonomic diversity metrics (Magurran 1988; 

Faith 1992; Weiher & Keddy 1995; Gotelli & Colwell 2001). Though informative, these patterns often 

provide little information about the processes that generated them (Peters 1991). Functional traits 

provide information about diversity and niche space within a community (Macarthur & Levins 1967; 

Weiher et al. 1999; McGill et al. 2006), and have long been used to understand resource partitioning 

between species, as well as coexistence (Cornwell et al. 2006; Kraft et al. 2007, 2015; de Bello et al. 

2009). Though the collection and dimensionality of trait data is at times insurmountable, turning to 
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phylogenetic information as a proxy for functional traits was, and is, a viable alternative. Measures of 

phylogenetic diversity and dispersion, which carry more information than higher taxonomic categories 

and hopefully, encompass trait information, have become widely used in community ecology to infer 

community assembly processes (Webb 2000; Webb et al. 2002a, 2008; Cavender-Bares et al. 2006; 

Kembel et al. 2010; Miller et al. 2017). These metrics focus on identifying alternative models of 

community assembly, environmental filtering and competitive exclusion. Environmental filtering 

occurs when the abiotic properties of an environment physically keep a species from existing there 

(Bazzaz 1991). Competitive exclusion describes when species that share the same or similar niche space 

compete for resources resulting in some species being excluded from the community altogether, also 

referred to as limiting similarity (Macarthur & Levins 1967). To determine whether non-neutral 

processes have predominantly influenced assembly patterns, phylogenetic dispersion metrics, such as 

mean pairwise distance (MPD) and mean nearest-taxon distance (MNTD) – which can be calculated 

using phylogenetic branch lengths, number of nodal distances, and phenotypic distances – are used to 

compare observed community dispersion to null expectations (Webb 2000; Gotelli & Colwell 2001; 

Webb et al. 2002a, 2008; Kembel et al. 2010). 

More specifically, inferences of the assembly process using dispersion metrics are determined 

in a statistical hypothesis testing framework using several randomly generated null models (Conner & 

Simberloff 1979; Gotelli & Graves 1996). Commonly, the standard effect size of dispersion metrics, 

known as net relatedness index (NRI) for MPD and nearest taxon index (NTI) for MNTD (Webb 2000), 

are used as the test statistic to measure significance of the observed community dispersion compared 

to null expectations of community dispersion if the community were assembled randomly. However, 

inference is conditional on the assumption that the relevant phenotypes for the environment or 

competition are phylogenetically conserved amongst the species in the community, or harbor strong 

phylogenetic signal within the community of focus. If this assumption is true, and environmental 

filtering has predominately impacted the assembly process, the phylogenetic data are expected to be 

significantly clustered, or under-dispersed, in the local community. Likewise, when considering a 

community assembled by competitive exclusion, we expect to see significantly less shared evolutionary 

history as compared to null expectations, or significant phylogenetic over-dispersion (Weiher & Keddy 

1995; Webb 2000; Cavender-Bares et al. 2006). 

The dubious assumption of strong phylogenetic signal between the phylogeny and phenotypes 

is a main critique of these approaches. Kraft et al. (2007) showed via simulations that when the 

assumption of phylogenetically conserved traits was even mildly violated, phylogenetic dispersion 

metrics were inadequate to infer community assembly processes. Furthermore, this violation of 
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assumptions can, in fact, lead to patterns contrary to those expected for a given assembly process 

(Weiher & Keddy 1995; Cavender-Bares et al. 2009; Mayfield & Levine 2010; HilleRisLambers et al. 

2012; Gerhold et al. 2015). To circumvent this issue, one can assess whether or not functional traits of 

interest for the community are phylogenetically conserved, and then use that information to guide the 

inference procedure (Kraft 2007, Kembel et al. 2010). Though, if functional trait information is 

available, it is typically used in consort with phylogenetic information because using phenotypic 

information alone relies on expectations for how the phenotypes should be distributed in the community 

to infer non-neutral processes (de Bello et al. 2009; Graham et al. 2012). While in many instances both 

phylogenetic dispersion and phenotypic dispersion are measured and analyzed in a similar framework 

(HilleRisLambers et al. 2012), an approach that integrates both to simultaneously estimate support for 

alternative assembly models is lacking. 

Finally, the inference procedure using dispersion metrics relies on statistical hypothesis testing, 

and therefore, on how well the null model represents neutral expectations. Currently, there exists an 

extensive number of null models that can be used to infer assembly processes, ranging from simple null 

models based on random shuffling of taxon labels (Gotelli & Graves 1996; Webb et al. 2002; Cornwell 

et al. 2006; Kembel et al. 2010), to incredibly dynamic null models (Pigot & Etienne 2015) and 

analytical frameworks (Stegen et al. 2013) that incorporate macroevolutionary processes such as 

speciation, dispersal, and extinction. There also exist simulation software (Münkemüller & Gallien 

2015) to simulate the process of assembly with trait information mediating which species enter the 

community. However, even with more dynamic null models and simulation power, relying on statistical 

hypothesis testing and passing a significance threshold to infer an assembly processes is problematic. 

In part due to the sensitivity between p-values and sample size and how we interpret “significance”, 

but also because each analysis of a particular data type and test statistic result in a measure of 

significance. Researchers are then responsible for integrating across a suit of hypothesis tests, some 

that may be significant while others are not, in order to draw an inference. Arguably, a model-based 

inference procedure is necessary to incorporate all data at once, rank models of community assembly 

by their relative support, and importantly, incorporate uncertainty in model inference. In this model-

based inference procedure, we can simultaneously weigh the support for each community assembly 

model while also considering both phylogenetic and phenotypic data in the regional and local 

community. When each model garners a portion of support given the data, we are able to understand 

when a dominant signal of non-neutral or neutral assembly is present in the data (i.e. strong support for 

one model), when two process are acting simultaneously (i.e. strong support for two models), and when 

the data lack signal to identify a dominant process (i.e. equal support across all models). 
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 Several approaches have implemented model-based inference procedures for community 

assembly already (Van Der Plas et al. 2015; Munoz et al. 2018; Pontarp et al. 2019), paving the way 

to measuring the relative impact of different processes on community assembly. However, we still lack 

a method that integrates both phylogenetic and phenotypic information in a species-based model where 

the strength of the non-neutral processes can be estimated. Here, we develop a stochastic algorithm to 

simulate communities assembled under environmental filtering and competitive exclusion processes by 

adapting coevolutionary phenotypic matching and repulsion models. In doing this, we avoid having to 

make any assumptions about how the traits have evolved along the phylogeny. Our approach 

simultaneously considers the phylogenetic and phenotypic information from species in the local and 

regional communities and parameterizes the relative strength of the assembly processes realizing strong 

to mild non-neutral assembly. Finally, we implement a model-selection inference procedure by using 

two approximate approaches, random forests (RF; Breiman 2001; Breiman & Cutler 2007) and 

approximate Bayesian computation (ABC; Csilléry et al. 2010). We acknowledge that while these 

assembly processes are often happening simultaneously in nature, when investigating a targeted trait 

hypothesized to play a role in the non-neutral assembly of a particular community, the model selection 

inference procedure holds power to detect the most conspicuous process, if applicable. We are using 

both model selection approaches because, though RF has been used for model selection in other 

contexts, it has not been used to distinguish between community assembly models like ABC has (Van 

Der Plas et al. 2015; Munoz et al. 2018; Pontarp et al. 2019); thus we document a comparison and 

collaboration of the two approaches here. 

We make our approach available as an R package, CAMI, Community Assembly Model 

Inference (github.com/ruffleymr/CAMI). To demonstrate the effectiveness of CAMI, we use power 

analyses to show that our approach more accurately infers models of community assembly compared 

to hypothesis testing using dispersion metrics. We also show that the parameter governing the strength 

of the assembly processes can be accurately estimated using ABC. Finally, we demonstrate community 

assembly model inference and parameter estimation using CAMI, with an empirical example from the 

plant communities that exist on lava flow islands in Craters of the Moon National Monument and 

Preserve. 

Methods and Materials 

Community Assembly Models 

We focus on three community assembly models: neutral, environmental filtering, and competitive 

exclusion. For all models, we assume communities are assembled from a regional pool of species where 
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each species in the regional pool is equally likely to colonize the local community. We also assume the 

phylogenetic relationship between all species is known and that there is continuous trait information 

for all species. We simulate the assembly of a local community from the regional species pool under 

one of the three models. Under the neutral model of assembly, all species in the regional community 

have an equal probability of persisting in the local community (Hubbell 2001; Rosindell et al. 2012). 

The probability that a given species survives, or persists, in a non-neutrally assembled community is 

not equal for all species, and these varying probabilities of persistence drive the alternative models of 

community assembly. 

 To model environmental filtering, we adapt an approach from coevolutionary models (Nuismer 

et al. 2013; Nuismer & Harmon 2015) to relate trait interactions between species and their environment 

with the probability of surviving in a community. For interactions between species and their 

environment, we implement a phenotypic matching mechanism where the probability, 𝑃(𝑧𝑖 , 𝑧𝐸) of a 

species persisting in the local community increases when the phenotype of the species 𝑧𝑖 and the 

optimal phenotype of the environment 𝑧𝐸  are more similar: 

𝑃(𝑧𝑖 , 𝑧𝐸)  = 𝐸𝑥𝑝 [−
1

𝑡𝐸
(𝑧𝑖 −  𝑧𝐸)2]        (1) 

The probability a species with phenotype, 𝑧𝑖, persists in an environment with a phenotypic optimum, 

𝑧𝐸 , also depends on the strength of the environmental filtering, 𝑡𝐸 . When  𝑡𝐸  is large, filtering has a 

mild effect in that species are less penalized for having phenotypes dissimilar to the environmental 

optimum; whereas when  𝑡𝐸  is small, the filtering effect is stronger because species are heavily 

penalized for phenotypes dissimilar to the optimum. 

To model competitive exclusion, the probability, 𝑃(𝑧𝑖 , 𝑧̅), of a species persisting in the local 

community increases as the phenotype of the species 𝑧𝑖 and the mean phenotype of the local community 

𝑧̅ are more dissimilar. 

𝑃(𝑧𝑖 , 𝑧̅) = 1 − 𝐸𝑥𝑝 [−
1

𝑡𝐶
(𝑧𝑖 − 𝑧̅)2]        (2) 

Here, the probability a species with phenotype, 𝑧𝑖, persists in a community with mean phenotypic, 𝑧̅, 

depends on the strength of competition between species, 𝑡𝐶 . When 𝑡𝐶  is large, competition has a strong 

effect in that species are heavily penalized for having phenotypes similar to the mean phenotype of the 

local community. When 𝑡𝐶  is small, competition is weaker in that species are less penalized for having 

a phenotype similar to the mean phenotype of the community. 
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2.0 Data Simulation 

For a single simulation of community assembly, first, a regional community phylogeny is 

simulated under a constant birth-death process with speciation, , and extinction, , parameters, until 

the desired number of regional species, 𝑁, is reached (Figure 2.1; Stadler 2011). Traits are evolved on 

the regional phylogeny, one for each species, (Revell 2012) under either a Brownian Motion (BM; 

Felsenstein 1985) or Ornstein-Uhlenbeck (OU) model of trait evolution (Hansen 1997; Butler & King 

2004) characterized by the rate of character change, 𝜎2, and, for OU models, the “strength of pull” to 

the trait optimum,  (Figure 2.1). Traits evolve under BM in a way that mimics drift over 

macroevolutionary timescales and OU does the same only it includes a selective regime in which traits 

are “pulled” toward a phenotypic optimum. We simulate under these different models of trait evolution 

because they do not enforce the assumption that trait differences are correlated to phylogenic 

differences and create more variability in how the data behave under the assembly models. Once the 

regional community exists with phylogenetic relationships and trait information, the assembly of the 

local community can begin. 

The assembly process uses the probabilities of species persisting in local communities, 

𝑃(𝑧𝑖 , 𝑧𝐸) for environmental filtering and 𝑃(𝑧𝑖 , 𝑧̅) for competitive exclusion, and a rejection algorithm 

to stochastically assemble the local community. When simulating under a competition model, the 

strength of competition between species, 𝑡𝐶 , parameterizes the assembly process. Likewise, under an 

environmental filtering model, the strength of the environmental filter, 𝑡𝐸 , along with the environmental 

phenotypic optimum, 𝑧𝐸 , parameterizes the assembly process. For the investigative simulations, the 

phenotypic optimum is determined by a random draw from the simulated trait distribution of the 

regional community, and it remains constant throughout an entire simulation.  

When a species colonizes the community, the probability of persistence is calculated, and the 

species is included in the local community if that probability is greater than a uniform random number 

between 0 and 1 (Figure 2.1). Otherwise, the species is rejected from being in the local community. 

This stochasticity included in the algorithm is more apparent in the emergent data when the ecological 

strength parameter is imposing weak non-neutral assembly. When a species is rejected from entering 

the community, it remains in the regional pool and is still able to colonize the local community again. 

In this case, the probability of persistence is recalculated, and the species has another chance to pass 

the rejection algorithm. As in the neutral model, the assembly process ends when the local community 

has reached species richness capacity, 𝑛. 
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All parameters mentioned are either fixed or drawn from a prior distribution. Information 

regarding the default prior distributions and fixed values for each parameter can be found in Table 2.3 

or in the help documentation for the R package ‘CAMI’ (github.com/ruffleymr/CAMI). Any parameter 

mentioned, along with prior distributions, can also be set by the user. In simulations described here, the 

default prior distributions were used unless otherwise stated. 

3.0 Inference Procedure 

For a single simulation of community assembly, a regional and local phylogeny and a regional 

and local distribution of trait values is returned. This information is summarized in 30 different 

summary statistics that capture information about the phylogeny, trait distributions, and phylogenetic 

signal within the traits of the local community (Komsta & Novomestky 2015, Janzen et al. 2015; 

Pennell et al. 2015; Deevi et al. 2016, Kendall et al. 2018, Paradis & Schliep 2018; Table 2.4). These 

summary statistics are then used for model selection and parameter estimation. 

To predict model probabilities from empirical data, we used two model selection approaches. 

The first approach uses a machine learning classification algorithm, random forests (RF; Breiman 1999; 

Liaw & Wiener 2002), to build a ‘forest’ of classification trees using the simulated summary statistics 

as predictor variables and the community assembly models as response variables. As a classifier is 

being built, RF is simultaneously measuring the ‘Out of Bag’ (OoB) error rates of the classifier by cross 

validating each classification tree with a subset of the original data that was not used to make the tree 

in question. The OoB error rates measure how often the data are incorrectly classified. Additionally, 

RF quantifies the effect of including each summary statistic on the accuracy of the classifier through 

two variable importance measures, Mean Decrease in Accuracy (MDA) and Mean decrease in Gini 

Index (GINI) (Breiman 2002).  

RF is generally robust to noisy and/or overpowering predictor variables because each tree in 

the forest is constructed with a random subset of the data and predictor variables (Breiman & Cutler 

2007), which reduces the correlation amongst the trees while still improving the overall predictive 

power of the forest. The second approach, ABC, when using the rejection algorithm, relies on the 

Euclidean distance between observed and simulated summary statistics to accept simulations into the 

posterior probability distribution of the models given the data (Csilléry et al. 2010). The support for 

each model then comes from the proportion of simulations from each model accepted into the posterior 

probability distribution. If there are summary statistics included that add a lot of noise to the 

classification process, ABC will lose power in distinguishing support between models. As mentioned, 

RF is able to measure which summary statistics are the most influential in distinguishing between the 
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models, through importance measures such as MDA and GINI. We used this information to select a 

subset of 10 summary statistics to be used in ABC model selection, along with a tolerance of 0.001 

(Csilléry et al. 2012). The performance of ABC in classifying the data can be measured using a cross 

validation approach for model selection which results in model misclassification rates for each model. 

4.0 Power Analyses 

We compared the accuracy of three approaches in identifying community assembly models 

from the data simulated under the three community assembly models in CAMI. The first approach 

follows previous work and uses dispersion metrics, such as MPD and MNTD (standardized as NRI and 

NTI), in statistical hypothesis testing to infer the community assembly process from phylogenetic and 

phenotypic information, separately (Webb 2000; Cornwell et al. 2006; Kembel et al. 2010; Kraft & 

Ackerly 2010). For MNTD calculated using phenotypic information, the nearest neighbor is the species 

closest in trait space (Ricklefs & Travis 1980; Graham et al. 2012; Swenson et al. 2012).  

The second and third inference approaches are the approximate model selection techniques 

used in CAMI, RF (Breiman 1999; Liaw & Wiener 2002) and ABC (Toni et al. 2009; Csilléry et al. 

2010, 2012). We measured the power of each approach in correctly classifying community assembly 

data (see sections 1.0 and 1.0) through the OoB error rates for RF and model cross validation for ABC. 

We performed these power analyses for a range of community sizes to assess whether the power of any 

of the approaches increased with sample size of the regional/local community, which in this case is 

species richness. For data to classify, we simulated 1,000 datasets in CAMI under each community 

assembly model for 20 different regional community sample sizes ranging from 50 to 1000, increasing 

by increments of 50, with the local community always half the size of the regional. For more details on 

each of the model identification techniques, refer to supplemental methods section 1. 

We also investigated whether RF and ABC can be used to accurately infer the model of 

community and trait evolution simultaneously. For this, we performed the power analysis as described 

above, only here we classified six models (neutral, filtering, and competition models under both BM 

and OU models of trait evolution) rather than just the three community assembly models. 

5.0 Parameter Estimation 

We measured the ability of the ABC approach to estimate the strength of the assembly process, 

𝑡𝐸  and 𝑡𝐶 , under non-neutral models of community assembly, environmental filtering and competitive 

exclusion. For both models, we attempted parameter estimation when the traits were simulated under a 

BM and an OU model of trait evolution. We also attempted parameter estimation for two sizes of 
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regional communities, 200 and 800, with corresponding local community sizes of 100 and 400. We 

simulated 50,000 community assembly datasets under each condition to serve as the reference dataset 

for parameter estimation. For details on these simulations, reference the supplemental methods section 

2. 

We simulated 100 datasets each for 13 different values of 𝑡𝐸  and 𝑡𝐶 , ranging from 1 to 60 in 

increasing increments of 5 (see supplemental methods section 3 for other parameter details). These 

simulated datasets would serve as the “observed” datasets to use for parameter estimation, in which 

case we know what the true value of 𝑡𝐸  and 𝑡𝐶  are. To measure not only how accurately 𝑡𝐸  and 𝑡𝐶  are 

estimated, but whether all values can be estimated accurately, we performed parameter estimation in 

ABC for each of the simulated datasets with a rejection algorithm and a tolerance of 0.001. For this, 

we assumed that data simulated under environmental filtering and competitive exclusion models were 

correctly classified as those models. We repeated this procedure increasing the sample size of the 

regional and local community to measure whether 𝑡𝐸  and 𝑡𝐶  estimates improved with increased sample 

size. 

6.0 Empirical System 

 Craters of the Moon National Monument and Preserve (CRMO) is a volcanic landscape in 

southern Idaho. The overlapping basalt lava flows formed along vents in the Great Rift between 2 – 15 

KYA (Kuntz et al. 1982, 1986). Within the lava flows are kipukas – islands of vegetation that are 

completely surrounded by uninhabitable lava (Vandergast & Gillespie 2004). Given their isolated 

nature and recent colonization, the plants on kipukas are an ideal system for studying community 

assembly. We opted to use maximum vegetative height as our functional trait of interest because it is 

known to be an important proxy for resource partitioning and competitive ability in plants (Westoby 

1998; Weiher et al. 1999; Cornwell et al. 2014). 

The regional phylogeny was constructed for 113 species that occur in the CRMO by dropping 

non-CRMO species (79,768) from a Spermatophyta phylogeny (Smith & Brown 2017). Likewise, the 

local community phylogeny was constructed by dropping non-kipuka community species from the 

regional phylogeny, resulting in 63 local species (Table 2.10). If a particular species needed was not in 

the Spermatophyta phylogeny, we used a random relative in the same genus as a replacement (Qian & 

Jin 2016). In addition to the total local species pool on the kipukas, we also investigated eight kipukas 

individually, kipukas that consisted of 18-20 species from the local community (Table 2.10). Maximum 

vegetative height data for all species in the regional and local community were gathered using a 

combination of herbarium records, species descriptions, and floras (e.g. Hitchcock & Cronquist 2018). 
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To assess whether an assembly process has structured the plant community on kipukas, we 

used NRI and NTI calculated from both phylogenetic and phenotypic (maximum vegetative height) 

information, separately, and CAMI using RF and ABC to perform model selection. We also performed 

parameter estimation using ABC to understand what the influence of 𝑡𝐸  or 𝑡𝐶  was on the assembly 

processes in either the filtering or competition models, should they be highly supported. For more 

details regarding the empirical data analysis, including plant collections and data simulated for the 

analysis, refer to the supplemental methods sections 3. 

Results 

4.0 Power Analysis  

The average proportion of misclassified simulations using the standard approach of 

phylogenetic dispersion metrics for all regional/local community sizes was 56 % (Table 2.1), 

decreasing from 63.3 to 52.9 % with increasing sample size (Figure 2.2, Table 2.5). For each of the 

community assembly models, the average misclassification rate for each model was consistent between 

MPD and MNTD (Table 2.1) when using phylogenetic information. When calculating these metrics 

from phenotypic information, the average misclassification rate varied depending on whether MPD or 

MNTD was being used, with MPD having a very low error rate, 3.9 %, and MNTD a high error rate, 

48 % (Table 2.6). 

Average error rates for both of our model selection approaches were substantially lower. The 

average random forests OoB error rate when classifying community assembly models was 2.6 %, 

ranging from 16.7% for small communities to 1.5 % for large communities (Figure 2.2). The average 

OoB error rates for each community assembly model with RF were 3.8%, 2.0 %, and 1.9 % for neutral, 

filtering, and competition models, respectively (Table 2.1). The average ABC model misclassification 

rate was 8.47 % (Table 2.1), ranging from 20.9 % for small communities to 5.9 % at large communities 

(Figure 2.2). The average ABC error rates for each community assembly model were 5.4%, 13.6%, and 

6.32 % for neutral, filtering, and competition models, respectively (Table 2.1). 

Using RF and ABC to classify models of community assembly and trait evolution 

simultaneously resulted in overall higher error rates compared to inferring community assembly alone 

(Fig. 2.5). On average, the average OoB error rate for RF was 23.2%, ranging between 45.7% and 

16.2% from small to large communities (Table 2.7), and the overall error rate for ABC was 30.7 %, 

ranging between 50.8 % and 23.5 % from small and large communities (Table 2.8). 
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5.0 Parameter Estimation 

For all models, the simulations with larger community sizes better estimated the true value of 

𝑡𝐸  and 𝑡𝐶  compared to communities of smaller size (Figure 2.3). Regardless of sample size,  𝑡𝐶  was 

overestimated when of smaller value. In both filtering and competition models, 𝑡𝐸  and 𝑡𝐶  are slightly 

underestimated when of larger value – though this is due to the true value of 𝑡𝐸  and 𝑡𝐶  being at the 

upper bound of the prior distribution, which if extended would not be apparent. 

6.0 Empirical System 

Several dispersion metrics used from phylogenetic and phenotypic information identified 

significant under-dispersion, or clustering, amongst plant species in the kipukas, suggesting a 

community assembly pattern of environmental filtering. When calculating NRI and NTI using 

phylogenetic information from all plants in the kipukas, the resulting p-value was 0.02 for MPD and 

0.29 for MNTD. When calculating the same metrics from phenotypes, the resulting p-value for each 

test statistic was 0.03 and 0.01, respectively (Table 2.9). For the eight separate kipuka communities, 

only MPD using phylogenetic information identified two other community as significantly under-

dispersed (Table 2.9). 

We constructed two RF classifiers to make predictions about empirical data. One classifier was 

built with simulations from both trait models and the other classifier was built with data simulated only 

under an OU trait model. This OU models-only RF classifier was built because the trait data for the 

kipuka plants better fit an OU model of trait evolution compared to a BM model (see supplemental 

methods 4). The OoB error rates for these two classifiers were 25.50 and 23.61 %, respectively. We 

also estimated the error rate when using ABC in the same way as with RF. For these, the error rate for 

each cross-validation was 33.20 and 30.40 %. Using these data and approaches, we predicted the model 

of community assembly for the empirical data with RF and ABC, and saw a majority of support for 

environmental filtering, with the second highest support for the neutral model (Table 2.2 OU model-

only prediction, Table 2.13 for OU and BM model predictions).  

 We performed parameter estimation of 𝑡𝐸  for the environmental filtering model for each dataset 

under an OU model of trait evolution (Table 2.14). Each time 100 simulations were accepted as from 

the posterior distribution of 𝑡𝐸 (Figure 2.4). We also compared the amount of model support for the 

environmental filtering models with the median estimate of 𝑡𝐸 (Figure 2.6, Table 2.14) to show the 

relationship between the strength of the filtering process and the model support received. 
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Discussion 

Performance of CAMI 

Using CAMI, we can correctly classify models of community assembly and importantly, 

quantify the uncertainty associated with community assembly model inference. This approach 

improves upon current methods in community phylogenetics by harnessing the critical information 

present in the phenotypic and phylogenetic data that directly relate observed patterns to processes. Our 

approach is successful, in part, because over and under-dispersion in the phylogenetic and trait data are 

emergent properties of the community assembly models described. Through our method, we can control 

the processes that directly impact the amount of over and under-dispersion in the phenotypic data, along 

with their degree of association with the phylogenetic information. Furthermore, our inference pipeline 

is unique in allowing users to gauge or rank evidence for both neutral and non-neutral assembly 

processes. 

The performance of RF and ABC are comparable in that they both accurately classify the 

community assembly models. A benefit to using RF is that all of the summary statistics from the 

simulated data can be used without compromising the power or computational speed of the method. 

Additionally, RF measures how important each summary statistic is for classifying the data accurately. 

While we don’t use this information for any additional community assembly inferences here, there is 

potential to ask which summary statistics play an important role in these assembly processes, and 

further, whether there are any biological implications to gain from that information. The main 

advantage of using ABC is that parameter estimation is straight forward using simulated data, and this 

is particularly relevant for estimating the strength of non-neutral assembly via 𝑡𝐸  and 𝑡𝐶 , though 

parameter estimation using RF is increasingly common. 

The predictive approaches outlined here are not meant to replace dispersion metrics, but rather 

to be used as an additional tool in making inferences about community assembly. We have shown here, 

as others have (Kraft et al. 2007), that dispersion metrics are not reliable in determining models of 

community assembly with phylogenetic information alone. When using phenotypic data though, MPD 

proved to be comparable in accuracy at distinguishing community assembly models to RF and ABC; 

MNTD still had very high error rates (Table 2.1). 

Though CAMI is currently implemented using one trait, the analyses do not necessarily need 

to be limited to one trait. If there are several traits of interest in a particular community, data dimension 

reduction techniques could be used, such as principle components or linear discriminate analysis, to 

associate each species with a singular value representing where they fall in trait space with respect to 
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other species in the community. Though we do not explore the power of inferring models of community 

assembly from several traits defined in one composite dimension through simulations, we expect, to 

some degree, that the method will behave as presented above in the single-trait case. Using multiple 

traits in a true multivariate framework, which we have not implemented, could make for an even more 

powerful inference, as many factors influencing community structure could be measured at once 

(Weiher et al. 1998; Herben & Goldberg 2014; Kraft et al. 2015). However, if multiple traits are being 

considered, there also need be the consideration that there could be multiple phenotypic optima or 

complex routes of competition between species, and here we consider the presence of only a single 

optimum and equal competition amongst species (Weiher et al. 1998).  

While we feel CAMI will continue to make progress in advancing our understand of 

community ecological patterns globally, there are still many aspects of community ecological theory 

yet to be incorporated (Belyea & Lancaster 1999; Weiher et al. 2011). The assembly models defined 

here could be made more powerful by considering other community dynamics such speciation, 

colonization, and extinction during the assembly process (Rosindell & Harmon 2013), as well as co-

occurring and structured non-neutral processes (Keddy & Shipley 1989) where the relative importance 

of these processes can be measured (as in Van Der Plas et al. 2015; Munoz et al. 2018). These aspects 

may be more or less relevant depending on the taxonomic scale of the community being investigated 

(Weiher et al. 2011). Furthermore, the inference power could expand by making CAMI an individual-

based model of community assembly (Rosindell et al. 2015; Pontarp et al. 2019), where individuals 

can diverge to speciate and harbor intraspecific diversity amongst phenotypes (Jung et al. 2010, 2014), 

all while abundance distributions and population demographics are being tracked (HilleRisLambers et 

al. 2012; Overcast et al. 2019). A spatially explicit model (see Pontarp et al. 2019) could allow for the 

exploration of how geography, or even local topography, impacts the assembly process. Ultimately, we 

believe this approach has the capability of being extended to incorporate many more complexities 

known to influence and emerge from the assembly process. 

Inferring the Strength of the Assembly Process 

Parameterizing the strength of the assembly process provides an additional mode of inference 

for the relative strength of the non-neutral community assembly processes, environmental filtering, 𝑡𝐸 , 

and competitive exclusion, 𝑡𝐶 . We have shown that ABC can be an appropriate tool to estimate both 𝑡𝐸  

and 𝑡𝐶  accurately (Figure 2.3) for their respective community assembly models. We have also shown 

that empirical data, from different communities, do indeed bear some signal to indicate different 

magnitudes of 𝑡𝐸  (Figure 2.4). Additionally, we show that the estimate of 𝑡𝐸  has a relationship with the 

amount of support the corresponding non-neutral model receives, in this case, the environmental 
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filtering model. We know that for filtering models, the smaller the value of 𝑡𝐸 , the stronger the effects 

of filtering, thus the smaller the estimate of 𝑡𝐸  , the greater the model support for environmental filtering 

(Figure 2.6). Having this measure that can quantify the influence of the assembly process at play opens 

the door for comparisons of communities globally that have been assembled by the same mechanism 

(Götzenberger et al. 2012). Prior to now, if multiple communities were inferred to be assembled via 

environmental filtering, there was no way to ask whether one environment’s pressure was stronger 

relative to the other, while 𝑡𝐸   and 𝑡𝐶  now permits these questions.  

Models of Trait Evolution 

 Identifying models of community assembly alone was much more successful than when trying 

to simultaneously identify models of trait evolution, as shown by the increase in error rates (Figure 2.5). 

When the model of trait evolution is identifiable, as in many BM and OU cases, simulating under both 

models is not necessary as it drastically increases the amount of simulations needed. Information about 

the best fit trait model, including parameter estimates, can be used to directly inform parameters used 

to simulate community assembly data in CAMI (as in the empirical study here). However, we do show 

that considering both models of trait evolution simultaneously versus only one at a time does not 

drastically change the community assembly inference (Table 2.13). Thus, should one be unable to 

properly, or with confidence, estimate the true model of trait evolution, the combined inference 

procedure in CAMI is appropriate, and this may be especially useful for early-burst or multi-optima 

OU models of trait evolution (Slater & Pennell 2013; Uyeda & Harmon 2014). We should note here 

that a model of trait evolution fit to community data, phylogenetic and phenotypic, involves excluding 

many taxa from the tree and trait distributions that would otherwise be included in phylogenetic 

comparative methods. This means the parameter estimates cannot be tied to the entire evolution of a 

particular trait, but rather its evolution amongst a certain set of species within a community. 

Empirical Inference 

When using CAMI to distinguish models of community assembly, a majority of support 

reliably goes to the environmental filtering model when considering the entire local kipuka community, 

with some support garnered by the neutral model (Table 2.2). When looking at the eight separate kipuka 

communities, the environmental filtering model still receives a majority of the support, but there is 

quite a lot of support garnered for the neutral model as well, and sometimes even for the competitive 

exclusion model (Table 2.2). Conveniently though, when comparing the model probability estimates 

with the 𝑡𝐸  estimates, we get a better understanding of why the model support is where it is for a 

particular kipuka and that the 𝑡𝐸  parameter is being estimated appropriately (Figure 2.6). Essentially, 



65 

 

when 𝑡𝐸  is representing weaker filtering effects, which corresponds to higher values of 𝑡𝐸 , we see lower 

support for the filtering models.  

 When using dispersion metrics to distinguish models of community assembly, the reliability 

is less apparent. Many of the observed dispersion metrics fall at the lower ends of the random 

distribution of dispersion indices, and subsequently result in low p-values. However, one of the caveats 

of hypothesis testing is that there is a sort of arbitrary cutoff between when something is significant and 

when it is not that is predetermined by the user. In this case, technically the cutoff is 0.025 and so only 

four out of 36 metrics were significant. These issues are generally overcome with intuition because it 

is obvious some of the p-values are still very low, but they do highlight problems with hypothesis 

testing and relying on p-values for marks of biological significance.  

For each kipuka species pool, the strength of the filtering process was estimated quite 

differently. For the entire species pool of the kipukas, the 𝑡𝐸  estimate was a relatively moderate value, 

15.4, given the prior range of 1 to 60, where values near 1 imply strong filtering, and values closer to 

60 imply weak filtering. For other kipuka communities though, 𝑡𝐸  was often a moderate estimate, 

falling somewhere in the middle of the prior distribution, though sometimes the estimate was very low 

(Figure 2.4D-E) and other times, quite high (Figure 2.4I). We recognize though that any interpretation 

of 𝑡𝐸  is challenging because the parameter has never before been measured using any community or 

trait before. Thus, we expect with continued investigations of community data using CAMI we will 

decipher a sharper picture on how 𝑡𝐸  behaves across many natural communities. These estimates are a 

start to that investigation given their correspondence with the model probabilities (Figure 2.6). We 

should note that in the case of these 𝑡𝐸  estimates, the rate of character change is so low that a strong 

effect of filtering with that little phenotypic variation may be harder to detect than if more variation 

were present. Similarly, the estimates of 𝑡𝐸  are less reliable when the community size is small (Figure 

2.3), which is true in the case of these kipukas. 

 One anecdotal explanation for the support for the environmental filtering assembly model lies 

in the structure of the kipukas. Lava flow builds up on the edges of the habitable land on the kipuka 

forming a sort of “bowl,” with the plant community inside the bowl. Species that generally grow taller 

than the bowl edges are less protected from heavy wind speeds common in the area and are more likely 

to be filtered from the environment. Likewise, with high wind speed comes a likely increase in dispersal 

ability for some species in the regional pool, which may explain the support of the neutral model. 

However, even though we can speculate on the cause for the support of an environmental filtering 

model acting on height in the kipukas, we still lack evidence of the true cause of the support, or 

mechanism of filtering. 
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While vegetative height has been hypothesized to play an important role in community 

structure, as a functional phenotype and a proxy for other important traits (Cornwell et al. 2014), 

because we only take into account a single functional trait, we recognize the potential limitations to 

these inferences. The CAMI framework permits testing multiple traits independently and comparing 

the evidence across how each trait influenced community assembly to better understand the historical 

and contemporary assembly processes (Herben & Goldberg 2014). Additionally, each trait, if 

influencing community assembly in a non-neutral way, will be associated with an estimate of 𝑡𝐸  or 𝑡𝐶 , 

which will also provide insight into the degree that each trait influences the assembly process for a 

particular community. 

Conclusion 

 CAMI is a new approach able to estimate the probability of neutral and non-neutral 

community assembly models given observed phylogenetic and phenotypic information. By 

harnessing the power of simulations and approximate approaches for model selection, such as RF and 

ABC, we can quantify uncertainty in community assembly inferences. Additionally, new parameters 

described here, 𝑡𝐸  and 𝑡𝐶 , govern the strength of environmental filtering and competition models, 

respectively, and are estimable with empirical data. Defining the non-neutral assembly models and 

parametrizing the processes to mimic strong to mild assembly dynamics will add to what we know 

about communities that have been assembled via the same mechanisms. While there are other 

approaches that infer community assembly in a model-based framework (Van Der Plas et al. 2015; 

Munoz et al. 2018; Pontarp et al. 2019), CAMI offers a unique opportunity to use information that is 

readily available in phylogenetic community ecology. Given these data are common for community 

assembly studies, this framework could be readily applied to many existing systems and ultimately 

provide information about the patterns of community  

Supplemental Information 

Supplemental Methods 

1.0 Prior Ranges for Data Simulation  

For the data used in each model classification approach, for the power analyses, we simulated 

1,000 datasets under each community assembly model and trait evolution model (6 models), for 20 

different regional community sample sizes ranging from 50 to 1000, increasing by increments of 50, 

for a total of 120,000 simulations. In each of these simulations, the local community size, n, was 

exactly half the size of the regional community, N. The speciation, λ, extinction fraction (equal to 

μ/λ), rate of character change, σ2, and, for OU models, strength of phenotypic pull, α, parameters 
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were all drawn from a default prior distribution that was consistent for all simulations (Table 2.3). 

Default priors were selected because we believed they were reasonable representations of where 

community phylogenetic and functional trait data exist currently. Simulations of non-neutral models 

included the strength of assembly, t, parameter that is drawn from a uniform prior distribution 

between 1 and 60. This distribution roughly bounds the probability of persistence, Pzi,zE
 for 

environmental filtering and Pzi,z̅ for competitive exclusion, at a minimum of 0.001 and a maximum of 

0.99. These minimum and maximum bounds will vary slightly for each simulation depending on σ2 

and, in the case of OU models, α. 

2.0 Power Analyses: model identification techniques 

2.2 Dispersion Metrics – For the first model identification technique, NRI and NTI (Webb et al. 

2002, 2008; Kembel et al. 2010) were used to measure phylogenetic dispersion. Null distributions for 

each test statistic were generated by shuffling the taxon labels of the phylogenetic distance matrix 

(Webb et al. 2008; Kembel et al. 2010). We assumed the traits were phylogenetically conserved, thus 

if either test statistic were significantly greater than expected, i.e. p-value ≥ 0.975 and phylogenetic 

over-dispersion, competitive exclusion was inferred. If either test statistic were significantly lower than 

expected, i.e. p-value ≤ 0.025 and phylogenetic under-dispersion, environmental filtering was inferred. 

If both test statistics were non-significant, a neutral community assembly model was inferred. We 

totaled the number of correctly classified simulations to calculate the proportion of misclassified 

simulations and report the overall error rate of the approach.  

We also calculated the standard effect size of MPD and MNND (in the same way NRI and NTI are 

calculated) to measure phenotypic dispersion. For this, instead of using phylogenetic distances, 

distances in phenotypic space were used to calculate MPD and MNND, along with the null distributions 

(Cornwell et al. 2006; Kraft & Ackerly 2010). We made the same assumptions about the traits being 

phylogenetically conserved and therefore followed the same inference procedure as with phylogenetic 

information. 

2.3 Random Forests 

When performing model selecting using RF, all 30 summary statistics (Table 2.4) we used in 

constructing a ‘forest’ of 1000 decision trees. Each tree classifies the simulated data as from either a 

neutral, environmental filtering, or competitive exclusion model of community assembly, essentially 

each tree casts a “vote” for a model. The proportion of votes a model receives is considered the 

probability of that model, meaning the model with the most votes, or highest probability, is the model 

selected. Each decision tree is constructed using the summary statistics from a random 2/3 of the data, 
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while the remaining 1/3 of data, or out-of-bag (OOB) data, is used to cross-validate the accuracy of 

each decision tree.  Through this, the error rate of each model is estimated and summarized in the OOB 

error rates. These error rates indicate the overall accuracy of the forest in distinguishing between the 

models. 

2.4 Approximate Bayesian Computation – To determine the overall model misclassification rate 

when using ABC for model selection, we performed 500 cross-validation attempts for each community 

assembly model for each of the 20 regional community sample sizes. For each cross-validation, the 

rejection algorithm was used with a tolerance of 0.01. The total proportion of simulations that were 

incorrectly classified for each model were averaged as an overall error rate for each regional community 

sample size. Mean posterior probabilities were calculated amongst the correctly classified models as an 

additional measure of how much support the correct model received. 

3.0 Reference Data Simulation for Parameter Estimation 

We simulated 50,000 community assembly datasets under each condition to serve as the reference 

dataset for parameter estimation. In these simulations, the regional and local community sizes were 

fixed using the values stated above. A uniform prior was set on σ2 to be between 2 and 4, which is 

narrower than the default uniform prior between 1 and 10. This was done because if one has the 

empirical phenotypic data, they are typically able to estimate a rate of trait evolution under BM or OU 

models of trait evolution, and would thus have more information for this parameter and not need to rely 

on the default uniform distribution. The remaining parameters t, λ, μ, and α were drawn from their 

default uniform prior distributions.  

4.0 Empirical System 

Voucher plant specimens were collected during the summer of 2016 and 2017 across 25 kipukas 

throughout the CRMO. In total, 63 unique plant species were documented as occurring in these CRMO 

kipukas, and these species represented the total local plant community. To assemble the regional 

community species list, we referenced a checklist of the vascular plants that occur in the CRMO 

(Popovich 2006). We selected an additional 50 species on the basis of their abundance and whether 

they had phylogenetic representation (see below) from this checklist to be included as species in the 

regional community. In addition to analyzing the total local species pool as a community, we also 

investigated eight kipuka communities separately that had a subset of 18-20 species from the local 

species pool. 
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To assess whether an assembly process has structured the plant community on kipukas, we used 

the standardized effect size of MPD and MNTD using phylogenetic information, MPD and MNND 

using phenotypic (maximum vegetative height) information, and CAMI using RF and ABC to make 

model predictions. We also performed parameter estimation using ABC to understand what the 

influence of tE or tC was on the assembly processes in either the filtering or competition models that 

were supported. Again, this was done on the total local species pool in the kipukas, as well as the 

separate eight kipuka plant communities (Table 2.12).  

When using trait information, the maximum vegetative plant heights were log transformed 

because the data were strongly right skewed, which did not coincide with the simulated data. For 

analysis using dispersion metrics, we performed 1000 iterations of a random community to include in 

the null distribution and each random community was constructed by shuffling the taxon labels of either 

the phylogenetic or phenotypic distance. 

Before simulating data for RF and ABC model selection, we determined the best fit model of 

trait evolution for the empirical data, given we have the regional phylogeny and all phenotypic 

(maximum vegetative height) information for each individual. This information was used to constrain 

the model of trait evolution and σ2, and potentially α, that we simulated community assembly data 

under. The OU model of trait evolution was always selected over a BM model (Table 2.11), though the 

estimation of precise values for σ2and α proved challenging because we could only estimate the 

quotient of σ2and α (Hansen 1997; Butler & King 2004) (Table 2.11).  

For analysis using CAMI, we simulated 60,000 community assembly datasets under all models 

of community assembly and trait evolution, 10,000 per model, to use for model selection. The number 

of regional and local species in each simulation was fixed to 113 and 63, respectively, to mimic the 

empirical data. We opted to use the combination of σ2and α, where α was a reasonably estimate at 0.02 

and σ2, 0.77; both parameters were fixed to these values. The other parameters t, λ, and μ were drawn 

from their default uniform prior distributions (Table 2.3).  

These data and the empirical data, from the total kipuka community and the eight separate 

kipukas, were summarized into 30 summary statistics (Table 2.4) to be used for RF and ABC. For RF, 

we constructed a classification forest, or classifier, of 5000 decision trees using all 60,000 simulations 

and 30 summary statistics. We then used this classifier to predict which model of community assembly 

structured the kipuka plant community through vegetative height. For ABC, we used the top 10 

summary statistics from the RF classifier (as in sections 2.4 and 2.5) and all 60,000 simulations to 

estimate the posterior probability of each model given the data. For both RF and ABC, we predicted 
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the model probabilities while only considering the community assembly models (neutral, filtering, 

competition), but then also while the model of trait evolution (BM and OU). 

We performed parameter estimation using ABC to understand what the influence of tE or tC 

was on the assembly processes in either the filtering or competition models that were supported for 

each kipuka dataset. For the supported models, we simulated 50,000 community assembly datasets 

under the default uniform priors for parameters t, λ, μ, and α, with a narrower prior distribution on σ2, 

centering the empirically estimated σ2. We always accepted 100 simulations as from the posterior for 

parameter estimation. 

Supplemental Results 

1.0 Importance of Summary Statistics 

The summary statistics that RF determined to be most informative were the difference in variance of 

trait values between the local and regional communities, the variance of the local traits, the kurtosis of 

the local traits, the variance of the regional traits, the bimodal coefficient calculated from the local 

traits, the difference in the mean of the trait values between the local and regional community, the 

difference between the normalized Lineage-Through-Time statistic (Janzen et al. 2015) calculated for 

both the local community phylogeny and regional community phylogeny, the slope of a linear model 

fitted to the absolute value of the phylogenetic independent contrasts against their expected variances 

(following Garland et al. 1992), mode length from the local trait distribution, and finally, the slope of 

a linear model fitted to the absolute value of the contrasts against node depth (after Purvis & Rambaut 

1995). 
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Tables 

Table 2.1. Average error rates for model classification approaches in classifying each of the three community 

assembly models, as well as overall classification error. 

 

  

    Neutral Filtering Competition Mean 

Phylogenetic 
MPD 4.810 72.590 90.845 56.082 

MNTD 4.930 66.000 99.390 56.773 

Phenotypic 
MPD 4.741 7.940 2.130 4.937 

MNTD 4.911 39.855 99.465 48.077 

RF 4.845 3.013 2.855 3.571 

ABC 5.440 13.640 6.320 8.467 
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Table 2.2. Community assembly model predictions from RF and model posterior probabilities from ABC for all 

local kipuka plant species and eight individual kipuka communities. All predictions were made with simulations 

using an OU model of trait evolution. 

 
RF ABC 

  Competition Filtering Neutral Competition Filtering Neutral 

ALL - 0.64 0.36 - 0.82 0.18 

B 0.06 0.54 0.4 - 0.35 0.65 

C 0.06 0.6 0.34 - 0.5 0.5 

D 0.07 0.61 0.32 - 0.92 0.08 

E 0.06 0.58 0.36 - 0.67 0.33 

F 0.02 0.46 0.52 - 0.47 0.53 

G 0.05 0.52 0.43 - 0.6 0.4 

H 0.04 0.52 0.44 0.02 0.47 0.52 

I 0.08 0.48 0.45 0.32 0.25 0.43 
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Table 2.3. Default parameter prior distributions used for simulating data in 

CAMI. 
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Table 2.4. Summary statistics calculated in CAMI and used for model selection in RF.  

 
 

 

  

Summary 

Statistics 
Information Citation/Package in R 

Mean BL mean of community phylogeny branch lengths 

base r package 

Var BL variance of community phylogeny branch lengths 

Mean Reg 
BL mean of regional phylogeny branch lengths 

var reg bl variance of regional phylogeny branch lengths 

mean bl dif 

difference between regional and community mean 

branch lengths 

var bl dif 
difference between regional and community variance of 
branch lengths 

Mean tr mean of community traits 

Var tr variance of community traits 

Mean Reg tr mean of regional traits 

var reg tr variance of regional traits 

mean tr dif 
difference between regional and community mean of 
traits 

var tr dif 

difference between regional and community variance of 

traits 

Moran I Moran's I 
Paradis E., Claude J. & Strimmer K. 2004. APE: analyses of 
phylogenetics and evolution in R language. Bioinformatics 20: 289-

290. 
Age age of community tree 

Colless Colless' index of a tree 
 Michelle Kendall, Michael Boyd and Caroline Colijn (2018). 

phyloTop: Calculating Topological Properties of Phylogenies. R 
package version 2.1.1.https://CRAN.R-

project.org/package=phyloTop 
Sackin 

The Sackin's index is computed as the sum of the 

number of ancestors for each tips of the tree. 

nLTT 

This function takes two ultrametric phylogenetic trees, 

calculates the normalized Lineage-Through-Time 

statistic for both trees and then calculates the exact 
difference between the two statistics. 

Janzen,T. Hoehna,S., Etienne,R.S. (2015) Approximate Bayesian 
Computation of diversification rates from molecular phylogenies: 

introducing a new efficient summary statistic, the nLTT. Methods in 
Ecology and Evolution. doi: 10.1111/2041-210X.12350  

Msig mean of squared contrasts 

Pennell MW, FitsJohn RG, Cornwell WK, Harmon LJ. 2015. Model 

Adequacy and the macroevolution of Angiosperm functional traits. 
The American Naturalist.  

Cvar 
The coefficient of variation (standard deviation/mean) 
of the absolute value of the contrasts. 

Svar 

The slope of a linear model fitted to the absolute value 
of the contrasts against their expected variances 

(following Garland et al. 1992). 

Shgt 

The slope of a linear model fitted to the absolute value 

of the contrasts against node depth (after Purvis and 
Rambaut 1995).  

Dcdf 

The D statistic obtained from a Kolmolgorov-Smirnov 
test from comparing the distribution of contrasts to that 

of a normal distribution with mean 0 and standard 
deviation equal to the root of the mean of squared 

contrasts 
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 MPD  MNTD   

Local 

Community 

Size 

Neutral Filtering Competition 

 

Neutral Filtering Competition 

 

Mean 

25 0.036 0.864 0.941  0.046 0.936 0.976  0.633 

50 0.050 0.833 0.934  0.046 0.876 0.984  0.621 

75 0.048 0.797 0.924  0.049 0.841 0.987  0.608 

100 0.055 0.770 0.929  0.046 0.801 0.989  0.598 

125 0.051 0.755 0.907  0.050 0.759 0.997  0.587 

150 0.051 0.731 0.903  0.045 0.755 0.992  0.580 

175 0.047 0.732 0.907  0.059 0.700 0.996  0.574 

200 0.067 0.713 0.908  0.051 0.690 0.992  0.570 

225 0.052 0.705 0.917  0.036 0.667 0.995  0.562 

250 0.042 0.697 0.912  0.057 0.651 0.994  0.559 

275 0.042 0.713 0.908  0.050 0.635 0.994  0.557 

300 0.040 0.695 0.900  0.060 0.604 1.000  0.550 

325 0.053 0.692 0.898  0.059 0.565 0.996  0.544 

350 0.060 0.685 0.901  0.057 0.589 0.998  0.548 

375 0.047 0.680 0.890  0.042 0.562 0.997  0.536 

400 0.044 0.699 0.907  0.052 0.541 0.999  0.540 

425 0.035 0.696 0.902  0.043 0.506 0.997  0.530 

450 0.048 0.690 0.882  0.043 0.514 0.999  0.529 

475 0.049 0.685 0.894  0.053 0.512 0.999  0.532 

500 0.045 0.686 0.905  0.042 0.496 0.997  0.529 

Table 2.5. The average proportion of misclassified simulations using the standard approach of phylogenetic 

dispersion metrics for all regional/local community sizes tested and for each model of community assembly. 
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 MPD  MNTD   

Local 

Community 

Size 

Neutral Filtering Competition 

 

Neutral Filtering Competition 

 

Mean 

25 0.053 0.474 0.150  0.034 0.747 0.988  0.408 

50 0.042 0.229 0.099  0.051 0.618 0.992  0.339 

75 0.042 0.156 0.043  0.055 0.539 0.998  0.306 

100 0.039 0.130 0.018  0.054 0.515 0.993  0.292 

125 0.059 0.102 0.021  0.045 0.453 0.998  0.280 

150 0.053 0.082 0.015  0.050 0.449 0.996  0.274 

175 0.041 0.071 0.016  0.054 0.429 0.989  0.267 

200 0.045 0.055 0.009  0.042 0.407 0.993  0.259 

225 0.048 0.048 0.010  0.042 0.369 0.993  0.252 

250 0.050 0.035 0.006  0.054 0.338 0.996  0.247 

275 0.060 0.040 0.004  0.051 0.385 0.995  0.256 

300 0.047 0.020 0.005  0.040 0.356 0.999  0.245 

325 0.053 0.031 0.010  0.040 0.322 0.994  0.242 

350 0.048 0.025 0.005  0.056 0.323 0.993  0.242 

375 0.057 0.023 0.003  0.059 0.315 0.997  0.242 

400 0.041 0.016 0.002  0.053 0.318 0.994  0.237 

425 0.053 0.014 0.002  0.050 0.286 0.995  0.233 

450 0.036 0.012 0.003  0.047 0.262 0.997  0.226 

475 0.043 0.011 0.003  0.047 0.277 0.997  0.230 

500 0.038 0.014 0.002  0.058 0.263 0.996  0.229 

Table 2.6. The average proportion of misclassified simulations using phenotypic dispersion metrics for all 

regional/local community sizes tested and for each model of community assembly. 
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Local 

Community 

Size 

BM        

Neutral 

BM     

Filtering 

BM 

Competition 

OU       

Neutral 

OU   

Filtering 

OU 

Competition 

Out-of-Bag 

Error Rate 

25 50.00 44.53 45.10 49.90 48.60 36.10 45.70 

50 39.40 34.40 37.90 38.50 40.64 31.20 37.01 

75 33.00 28.16 31.50 33.20 33.00 31.70 31.76 

100 29.80 26.70 25.40 29.70 34.00 27.00 28.77 

125 28.50 23.40 23.80 27.40 31.50 27.20 26.97 

150 22.20 24.30 24.50 23.00 29.70 24.60 24.72 

175 22.50 21.32 19.00 24.90 28.50 26.00 23.70 

200 22.50 21.50 20.30 23.90 25.03 22.50 22.62 

225 19.40 20.20 20.50 23.30 25.00 21.20 21.60 

250 18.20 18.90 17.10 22.10 23.90 24.80 20.83 

275 18.70 17.80 17.80 20.20 22.90 25.10 20.42 

300 17.70 16.50 16.20 17.80 21.50 21.20 18.48 

325 15.40 16.30 18.70 17.70 22.90 22.90 18.98 

350 15.90 15.90 16.30 19.30 23.80 21.10 18.72 

375 15.90 15.30 17.40 18.40 23.60 20.10 18.45 

400 14.70 15.80 16.10 19.50 22.80 22.50 18.57 

425 14.80 14.50 14.80 16.70 22.90 19.20 17.15 

450 13.30 14.10 13.70 15.70 21.30 21.30 16.57 

475 11.80 15.80 13.40 14.50 22.40 19.00 16.15 

500 12.90 14.50 12.50 16.00 22.90 18.60 16.23 

Table 2.7. Average error rates, or proportion of incorrectly classified simulations, when classifying community 

assembly and trait evolution models using random forest for all sizes of the local community used. 
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Local 

Community 

Size 

BM        

Neutral 

BM     

Filtering 

BM 

Competition 

OU       

Neutral 

OU   

Filtering 

OU 

Competition 
Mean 

25 59.20 56.20 60.80 38.40 53.80 36.40 50.80 

50 57.80 57.80 48.80 30.60 39.80 29.80 44.10 

75 48.00 52.00 40.40 23.80 41.80 33.20 39.87 

100 43.60 50.00 38.80 28.60 38.60 24.00 37.27 

125 41.80 51.60 33.80 17.80 37.00 26.00 34.67 

150 40.00 48.60 29.20 19.40 37.40 25.40 33.33 

175 31.00 44.40 26.20 20.40 32.80 26.00 30.13 

200 33.40 42.40 24.00 20.00 34.00 27.20 30.17 

225 28.20 45.00 25.20 19.80 33.60 20.00 28.63 

250 28.60 40.40 24.60 17.80 32.80 26.00 28.37 

275 26.60 43.60 25.80 20.00 31.60 23.40 28.50 

300 24.60 40.80 22.80 14.60 34.00 21.40 26.37 

325 22.60 36.40 24.60 15.20 37.00 25.20 26.83 

350 22.80 36.80 23.80 20.00 33.40 24.40 26.87 

375 22.00 35.60 25.40 18.00 32.00 21.40 25.73 

400 23.80 41.00 21.20 15.60 35.20 21.00 26.30 

425 21.80 34.20 19.00 15.40 32.80 22.80 24.33 

450 22.80 34.40 19.80 17.80 34.80 19.20 24.80 

475 19.00 36.80 17.60 17.00 37.20 22.00 24.93 

500 14.60 33.80 20.00 14.80 36.00 21.60 23.47 

Table 2.8. Average error rates, or proportion of incorrectly classified simulations, when classifying community 

assembly and trait evolution models using ABC for all sizes of the local community used. 
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Table 2.9. Results for empirical data when using dispersion metrics MPD and MNTD with phylogenetic and 

phenotypic information for the total kipuka plant community and the eight individual kipuka plant communities. 

The mean and standard deviation of the null distribution are included, as well as the p-value for the  for the observed 

value’s position in the null distribution. Significant p-values are indicated with **.observed value’s position in the 

null distribution. Significant p-values are indicated with **. 
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Table 2.10. All species included in the regional and local community phylogeny for the kipukas od CRMO. 

Species that were present in the community but not in the Spermatophyta phylogeny were replaced in the 

phylogeny with a close relative, denoted in the table. The minimum, maximum, and range of vegetative height 

for each species is also denoted in cm. 

Genera specific epithet 
Species from Smith Tree 

(if replacement is needed) 

species min 

height (cm)  

species 

max height 

(cm) 

species 

range 

height (cm) 

Achnatherum lemmonii Achnatherum richardsonii 20 70 20-70 

Achnatherum thurberianum Achnaterum nelsonii 30.5 70 30.5-70 

Acnatherum occidentale   25 45 25-45 

Agoseris aurantiaca   10 60 10-60 

Agoseris glauca Agoseris grandiflora 10 70 10-70 

Allium acuminatum   10 30 10-30 

Alyssum desertorum   10 25 10-25 

Artemisia tridentata   40 200 40-200 

Artemisia tripartita   20 60 20-60 

Astragalus filipes Astragalus calycosus 30 90 30-90 

Astragalus lentiginosus Astragalus canadensis 10 40 10-40 

Astragalus purshii Astragalus newberryi 5 10 5-10 

Balsamorhiza sagittata   15 80 15-80 

Boechera divaricarpa   25 80 25-80 

Calochortus macrocarpus   20 70 20-70 

Carex filifolia Carex geyeri 5 35 5-35 

Chaenactis douglasii   10 60 10-60 

Chamaebatiaria millefolium   100 200 100-200 

Chenopodium leptophyllum   20 60 20-60 

Chrysothamnus viscidiflorus   20 100 20-100 

Cordylanthus ramosus   10 90 10-90 

Crepis acuminata   20 70 20-70 

Delphinium andersonii   30 60 30-60 

Descurainia incana   15 120 15-120 

Descurainia pinnata   10 70 10-70 

Diplacus nanus   1.3 10 1.3-10 

Elymus elymoides   10 60 10-60 

Eriastrum sparsiflorum   5 30.5 5-30.5 

Ericameria nauseosa   20 280 20-280 

Erigeron pumilus   5 50 5-50 

Erigeron subtrinervis   15 80 15-80 

Eriogonum caespitosum   3 10 3-10 

Erythranthe suksdorfii   3 10 3-10 
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Festuca viridula Festuca idahoensis 40 80 40-80 

Galium bifolium   5 20 5-20 

Gayophytum ramosissimum Gayophytum heterozygum 15 40 15-40 

Hackelia floribunda   30 100 30-100 

Lappula redowskii   5 40 5-40 

Lathrocasis tenerrima   3 35 3-35 

Leymus cinereus   100 200 100-200 

Lithophragma tenellum   10 25 10-25 

Lithospermum ruderale   20 60 20-60 

Lomatium ambiguum   10 80 10-80 

Lomatium foeniculaceum   3 40 3-40 

Lomatium multifidum Lomatium dissectum 50 150 50-150 

Lomatium simplex Lomatium idahoense 20 80 20-80 

Mentzelia albicaulis   10 40 10-40 

Penstemon cyananthus   30 70 30-70 

Penstemon procerus   5 40 5-40 

Phacelia heterophylla   20 120 20-120 

Phlox aculeata   61 122 61-122 

Phlox hoodii   3 6 3-6 

Phlox longifolia   10 50 10-50 

Purshia tridentata   100 200 100-200 

Ranunculus glaberrimus   5 20 5-20 

Ribes aureum   100 300 100-300 

Senecio sphaerocephalus Senecio trinagularis 30 80 30-80 

Sisymbrium altissimum   30 150 30-150 

Stephanomeria tenuifolia   20 70 20-70 

Thinopyrum intermedium Thinopyrum junceum 91.5 122 91.5-122 

Thlaspi arvense   10 50 10-50 

Toxicoscordion paniculatum   30 50 30-50 

Viola nuttallii Viola glabella 3 12 3-12 

            

Achillea millefolium   20 40.5 20-40.5 

Agastache urticifolia   40 150 40-150 

Agropyron cristatum   30.5 91.5 30.5-91.5 

Alnus incana   460 2500 460-2500 

Amsinckia tessellata   15 60 15-60 

Antennaria microphylla   5 40 5-40 

Arnica cordifolia   10 60 10-60 

Artemisia arbuscula   10 40 10-40 



89 

 

Calochortus eurycarpus   10 50 10-50 

Carex douglasii Carex backii 15 46 15-46 

Castilleja chromosa   30.5 90 30.5-90 

Castilleja miniata   30.5 80 30.5-80 

Chrysothamnus viscidiflorus   20 100 20-100 

Collinsia parviflora   5 50 5-50 

Collomia linearis   10 40.5 10-40.5 

Cornus sericea   20 60 20-60 

Cymopterus glaucus   2 15 2-15 

Delphinium nuttallianum   15 40 15-40 

Draba verna Draba alpina 5 20 5-20 

Elymus glaucus   50 100 50-100 

Elymus lanceolatus   30.5 91.5 30.5-91.5 

Epilobium ciliatum   30 100 30-100 

Erigeron speciosus   15 80 15-80 

Fritillaria pudica   10 30 10-30 

Galium bifolium   5 20 5-20 

Gilia inconspicua   8 32 8-32 

Heuchera parvifolia   23 30.5 23-30.5 

Hydrophyllum capitatum Hydrophyllum canadense 10 46 10-46 

Juniperus scopulorum   100 1000 100-1000 

Koeleria macrantha Koeleria macrantha 30 60 30-60 

Lepidium perfoliatum   20 60 20-60 

Lomatium grayi   15 50 15-50 

Lomatium nudicaule   20 90 20-90 

Lupinus argenteus   10 40.5 10-40.5 

Mimulus nanus Mimulus ringens 1.25 10 1.25-10 

Montia chamissoi   5 20 5-20 

Oenothera caespitosa Oenothera nuttallii 7.5 23 7.5-23 

Opuntia polyacantha   10 30.5 10-30.5 

Orobanche fasciculata   3 15 3-15 

Penstemon deustus Penstemon attenuatus 20 60 20-60 

Phacelia hastata   25.5 76 25.5-76 

Philadelphus lewisii   150 250 150-250 

Pinus flexilis   396 1524 396-1524 

Polygonum douglasii Polygonum aviculare 10 40 10-40 

Potentilla gracilis Potentilla newberryi 40 80 40-80 

Prunus virginiana   100 500 100-500 

Pseudotsuga menziesii   2133.5 9144 2133.5-9144 
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Ribes cereum   50 150 50-150 

Symphoricarpos oreophilus   50 150 50-150 

Thalictrum occidentale   40 100 40-100 

Trifolium variegatum   10 60 10-60 

Viola purpurea   0.5 1.5 .5-1.5 
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Table 2.11. Supplement. Parameter estimates, log-likelihoods and AIC scores for BM and OU models of trait 

evolution. The BM model of trait evolution was optimized one time, with the resulting log-likelihood and AIC. 

For the OU model, we struggled to estimate the parameter values absolutely. However, we could estimate the 

quotient of 𝜎2and 𝛼 and did so for 21 parameter combinations. Regardless of the 𝜎2and 𝛼 though, OU was always 

a better fit model. 

 
  

 
alpha sig.sq Lik AIC AICc 

BM - 0.33 -280.43 564.87 564.98 

OU 

0.01 0.34 -256.45 518.90 519.12 

0.05 0.43 -216.53 439.07 439.29 

0.10 0.54 -199.37 404.75 404.97 

0.15 0.65 -191.13 388.26 388.48 

0.20 0.77 -186.32 378.65 378.87 

0.25 0.88 -183.21 372.41 372.63 

0.30 1.00 -181.04 368.07 368.29 

0.35 1.12 -179.45 364.90 365.12 

0.40 1.24 -178.24 362.49 362.71 

0.45 1.37 -177.29 360.59 360.81 

0.50 1.49 -176.53 359.06 359.28 

0.55 1.61 -175.90 357.81 358.03 

0.60 1.73 -175.38 356.76 356.98 

0.65 1.85 -174.93 355.86 356.08 

0.70 1.97 -174.55 355.10 355.32 

0.75 2.10 -174.22 354.43 354.65 

0.80 2.22 -173.92 353.85 354.07 

0.85 2.34 -173.67 353.33 353.55 

0.90 2.46 -173.44 352.87 353.10 

0.95 2.58 -173.23 352.47 352.69 

1.00 2.71 -173.05 352.10 352.32 
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Table 2.12. Supplement. Parameter Presence/Absence matrix indicating which kipuka species is present on one 

of the eight specific kipukas investigated. The table contains all of the species that occur in the local kipuka 

community. 

Species (Smith Tree 
Replacements Included) 

Kipu
ka 16 

Kipu
ka 11 

Kipuk
a 671 

Kipuk
a 425 

Kipu
ka 3 

Kipuk
a 620 

Kipuka 
Pratt1 

Kipu
ka 18 

Figure Reference B C D E F H I J 

Achnatherum_richardsonii 1 1 0 0 0 0 0 0 

Achnatherum_nelsonii 0 0 1 1 0 0 0 0 

Achnatherum_occidentale 0 0 0 0 0 0 0 0 

Agoseris_aurantiaca 0 0 0 0 0 0 0 0 

Agoseris_grandiflora 1 1 1 1 0 0 0 0 

Allium_acuminatum 0 0 1 1 1 0 0 0 

Alyssum_desertorum 0 0 0 0 0 1 0 0 

Artemisia_tridentata 1 0 1 1 1 1 1 1 

Artemisia_tripartita 1 1 0 0 0 0 1 1 

Astragalus_calycosus 1 1 0 0 0 0 0 0 

Astragalus_canadensis 0 0 0 1 0 0 0 0 

Astragalus_newberryi 0 0 0 0 0 1 1 0 

Balsamorhiza_sagittata 1 1 0 1 1 0 0 0 

Boechera_divaricarpa 1 0 0 0 1 1 1 1 

Calochortus_macrocarpus 0 0 0 1 0 0 0 0 

Carex_geyeri 0 0 0 0 0 0 1 0 

Chaenactis_douglasii 0 0 0 0 1 0 0 0 

Chamaebatiaria_millefolium 0 0 0 0 1 0 0 1 

Chenopodium_leptophyllum 0 0 0 0 0 0 0 0 

Chrysothamnus_viscidiflorus 0 0 1 1 1 1 1 0 

Cordylanthus_ramosus 1 0 1 0 1 0 0 0 

Crepis_acuminata 0 0 1 1 0 0 0 0 

Delphinium_andersonii 1 1 1 1 0 0 0 0 

Descurainia_incana 0 0 0 0 1 1 1 0 

Descurainia_pinnata 0 0 1 0 0 0 0 0 

Diplacus_nanus 1 1 0 0 0 0 0 0 

Elymus_elymoides 0 0 1 0 0 0 0 0 

Eriastrum_sparsiflorum 0 0 0 0 1 0 0 0 

Ericameria_nauseosa 0 1 1 1 1 0 0 1 

Erigeron_pumilus 0 0 0 1 0 0 0 0 

Erigeron_subtrinervis 0 0 0 1 0 0 0 0 

Eriogonum_caespitosum 0 0 0 1 0 0 0 0 

Erythranthe_suksdorfii 0 0 0 0 0 0 0 1 

Festuca_baffinensis 0 0 0 0 0 0 0 0 
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Galium_bifolium 0 0 0 0 0 0 0 1 

Gayophytum_heterozygum 1 0 0 0 0 0 0 0 

Hackelia_floribunda 0 0 0 0 0 0 0 0 

Lappula_redowskii 0 1 0 0 1 1 1 1 

Lathrocasis_tenerrima 0 0 0 0 0 1 1 1 

Leymus_cinereus 0 0 1 0 0 0 0 0 

Lithophragma_tenellum 0 0 0 0 0 1 1 1 

Lithospermum_ruderale 0 0 0 0 0 0 0 1 

Lomatium_ambiguum 0 1 0 0 0 0 0 0 

Lomatium_foeniculaceum 0 1 0 0 1 1 1 1 

Lomatium_dissectum 1 0 0 0 1 0 0 1 

Lomatium_idahoense 1 0 0 0 0 1 1 1 

Mentzelia_albicaulis 1 1 0 0 0 0 0 0 

Penstemon_cyananthus 0 0 1 1 0 0 0 0 

Penstemon_procerus 0 0 0 0 0 0 1 0 

Phacelia_heterophylla 1 0 0 0 0 0 0 0 

Phlox_aculeata 0 1 0 0 0 0 0 0 

Phlox_hoodii 0 0 0 0 1 1 1 1 

Phlox_longifolia 1 0 0 1 0 1 1 0 

Purshia_tridentata 0 1 1 1 0 1 1 1 

Ranunculus_glaberrimus 0 0 0 0 0 0 0 0 

Ribes_aureum 0 0 0 0 0 1 1 0 

Senecio_triangularis 1 1 0 0 1 1 1 1 

Sisymbrium_altissimum 0 0 1 1 0 0 0 0 

Stephanomeria_tenuifolia 1 1 0 0 0 0 0 0 

Thinopyrum_junceum 0 0 0 0 0 0 0 0 

Thlaspi_arvense 0 0 0 0 0 0 0 0 

Toxicoscordion_paniculatum 0 1 1 0 0 0 0 0 

Viola_glabella 1 1 0 0 1 1 1 1 
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Table 2.13. Model probabilities for the total kipuka plant community and eight separate kipukas using RF and 

ABC. For this, the reference data was made up of data simulated under OU models of trait evolution and data 

simulated under BM models of trait evolution. 

 

 

 

  

BM OU 

  Competition Filtering Neutral Competition Filtering Neutral 

R
F

 

ALL - 0.02 0.01 - 0.62 0.35 

B 0.02 0.19 0.16 0.06 0.33 0.23 

C 0.01 0.10 0.07 0.06 0.53 0.23 

D 0.01 0.14 0.05 0.07 0.46 0.27 

E 0.01 0.11 0.07 0.05 0.54 0.23 

F 0.01 0.06 0.05 0.06 0.41 0.42 

G 0.01 0.07 0.05 0.06 0.44 0.36 

H 0.02 0.14 0.17 0.05 0.33 0.30 

I 0.03 0.12 0.12 0.09 0.32 

 !

A
B

C
 

ALL - 0.03 0.02 - 0.57 0.38 

B - 0.28 0.52 - 0.07 0.13 

C - - - - 0.63 0.37 

D - - - - 0.80 0.20 

E - - - - 0.72 0.28 

F - - - - 0.50 0.50 

G - - - - 0.58 0.42 

H 0.02 0.33 0.28 0.03 0.13 0.20 

I 0.15 0.20 0.17 0.25 0.12 0.12 
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  kipuka RF prob ABC prob 
Median 

Tau 

Kipuka_671 D 0.61 0.92 7.52 

Kipuka_425 E 0.58 0.67 15.99 

Kipuka_11 C 0.60 0.50 21.00 

Kipuka_16 B 0.54 0.35 23.89 

Kipuka_3 F 0.46 0.47 26.72 

Kipuka_620 I 0.52 0.60 32.77 

Kipuka_Pratt1 G 0.52 0.47 36.15 

Kipuka_18 H 0.48 0.25 37.78 

Table 2.14. Model probabilities for environmental filtering for the eight kipuka plant 

communities using RF and ABC, as well as the median 𝑡𝐸  estimates using ABC. 
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Figures 

 

 

 

 
Figure 2.1. Outline of data simulation process. (1.1) Simulate the regional phylogeny. (1.2) Simulate trait 

evolution along the regional phylogeny. (1.3) Simulate the assembly of the local community by sampling 

species at random from the regional species pool and calculating the probability of persistence for each sampled 

species. These probabilities are calculated differently depending on the model of assembly being simulated, and 

if a species’ probability of persistence is greater than a randomly generated probability, then that species 

survives in the local community. 
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Figure 2.2. Error rates, or proportion of incorrectly classified simulations, when classifying community 

assembly models compared to the size of the local community used. Four model identification approaches are 

summarized here. The first is the average error rate when using dispersion metrics (MPD and MNTD) from 

phylogenetic information (dotted). The second is the average error rate when using dispersion metrics from 

functional trait information (big dashed). The final two are model selection approaches employed in CAMI, 

ABC (gray), and RF (small dashed). 
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Figure 2.3. Estimation of 𝑡𝐸  and 𝑡𝐶  under their respective non-neutral models of community assembly, coupled 

with one of two models of trait evolution. In each graph, the individual boxplots represent the median values of 

either 𝑡𝐸  or 𝑡𝐶   from 100 independent attempts at parameter estimation, thus they are not posterior distributions, 

but rather a distribution of median parameter estimates. The x-axis denotes the true value of 𝑡𝐸  or 𝑡𝐶 simulated 

under. The light gray boxes represent datasets with regional/local community sizes of 200/100 and the dark gray 

boxes represent regional/local community sizes of 800/400. The dotted line in each plot represents a 1:1 

correlation between estimated and true values of either 𝑡𝐸  or 𝑡𝐶. A. Environmental filtering community 

assembly with a BM model of trait evolution. B. Competitive exclusion community assembly with a BM model 

of trait evolution. C. Environmental filtering community assembly with an OU model of trait evolution. D. 

Competitive exclusion community assembly with an OU model of trait evolution. 
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Figure 2.4. left) Regional phylogeny of species in the Craters of the Moon National Monument and Preserve, 

coupled with each species’ maximum vegetative height in meters represented by the filled bar plots by each 

species. Species only present in the regional community have their trait bars colored white, while species that 

are also present in the local community have their trait bars colored black. The bars are truncated at 6 meters, as 

only the four trees in this study are larger than 6 meters, and those species and their heights are available in 

supplemental table 8. right) Nine panels displaying the prior (light gray) and posterior (dark gray) probability 

distributions of 𝑡𝐸  under an environmental filtering model and OU model trait evolution. The dotted line 

represents the median estimate of 𝑡𝐸 . A) Estimate from the entire local kipuka plant species pool. B-I) Estimates 

from the separate eight kipuka communities. 
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Figure 2.5. Supplement. Error rates, or proportion of incorrectly classified simulations, when classifying 

community assembly and trait evolution models compared to the size of the local community used. Square 

symbols indicate RF was used to classify data and circle symbols indicate ABC was used to classify data. 
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Figure 2.6. Supplement. Linear regression models between the model support for environmental filtering, as 

predicted from RF and ABC) and the 𝑡𝐸  median estimates from ABC. The correlation coefficient when 

comparing RF model support values and 𝑡𝐸  estimates was 0.65, and when comparing with ABC the coefficient 

was 0.89. 
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Chapter 3: Genomic Evidence of an Ancient Inland Temperate Rainforest 
 

Abstract 
The disjunct temperate rainforests of the Pacific Northwest are characterized by their 

dominant tree species Western Red Cedar (Thuja plicata) and Western Hemlock (Tsuga 

heterophylla). The demographics of these species, and thus the PNW rainforest, has been heavily 

impacted by the geological and climatic changes the PNW has experienced over the last 5 million 

years. The changes have ultimately shaped the history of these species, with the Pleistocene glaciation 

having a huge impact on our understanding of how long the inland temperate rainforest has be 

persisting in the inland. Paleontological records indicate a recent expansion of the coastal and inland 

temperate rainforest mid-Holocene, albeit the inland forest sometime after the coast. Here, we collect 

genomic data for both species across their range using reduced representation sequencing – a low cost 

approach to generating a large amount of genomic data that spans the entire genome. With this 

genomic data, we are able to design and assess the support for competing demographic scenarios. 

These scenarios alter in the divergence times between inland and coastal population, as well as 

migration and population size changing parameters, and are based off of the coalescent process that 

models alleles in a population backward in time. In these models, we can include these various 

demographic processes. We find support for the best demographic scenario using the genomic data 

and a machine learning inference procedure using the randomForests algorithm. We then optimized 

the parameters for the best models for both species. We show strong support that both species’ inland 

and coastal populations diverged ~250,000 generations ago, followed by a decrease in population 

size, followed by population expansion and migration between populations coinciding with the mid-

Holocene. These results suggest the populations of these species did expand in the ITR in the last 

3,500 years, but also that populations were present in the inland throughout the Pleistocene. Through 

the use of genomic data and sophisticated inference procedures involving machine learning, we can 

unlock the history of the PNW temperate rainforest. 

Introduction 

The disjunct old-growth cedar-hemlock forests of the Pacific Northwest characterize one of 

the most diverse temperate rainforests in the world (Newmaster et al. 2003). The inland temperate 

rainforest (ITR) is approximately 200 km disjunct from the much larger ranging coastal rainforest. 

The Pacific Northwest region as a whole has been widely impacted by the Pleistocene’s continuous 

glacial/interglacial cycles (Waitt & Thorson 1983), with flora and fauna being massively shaped by 

these climatic changes. The ITR has been of particular interest because of the dramatic implications 
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of the alternative hypothesis proposed to explain the history of the ITR throughout and after the 

Pleistocene. While Recent Dispersal (RD) hypothesis posits the recent existence of the ITR (<5000 

ka), having only colonized the inland from the coastal populations recently. The Ancient Vicariance 

(AV) hypothesis posits an ancient disjunction between the inland and coastal forest (Brunsfeld et al. 

2001) that occurred Pre-Pleistocene ( > 1.5 mya), and while the onset of the glaciers caused massive 

devastation to the ITR, refugia persisted and recolonized the ITR post-Pleistocene. These two 

hypotheses broadly encapsulate the dominant modes of the formation of the disjunction and are 

critical to understanding biogeographic processes. 

The range of the PNW temperate rainforest is defined by the range of the two most prominent 

species that make up the forest habitat, Tsuga heterophylla Raf. (Sarg.) (western hemlock) and Thuja 

plicata Donn ex. D. Don. (western red cedar). According to pollen records from the central and 

southern ITR, these forests have only been present in the area for < 3500 ya (Mehringer 1996, 

Rosenburg et al. 2003, Chase et al. 2008, Gavin et al. 2009). Studies of Tsuga heterophylla have 

shown that suitable habitat in the inland has not been completely exhausted by western hemlock yet, 

suggesting the species could still be expanding post-glaciation (Gavin & Hu 2006). Rosenburg et al. 

(2003) only found record of western hemlock pollen in southeastern BC at ~ 3500 ya. Most pollen 

records concur that western hemlock pre-dates evidence of western red cedar (Mehringer 1996, 

Whitlock 1992). This coincides with molecular evidence for Thuja plicata samples across the 

disjunction (O’connel et al. 2008) that supports one southern coastal refugia throughout the 

Pleistocene, with no evidence for ancient, disjunct inland refugia or northern coastal refugia, such as 

one proposed on Haida Gwaii. It is also inferred that given the lack of hierarchical structure in these 

three clusters, the divergence between them has been recent and rapid, which is congruent with post-

glacial recolonization of the northern coast and ITR (O’connel et al. 2008). While this inference was 

based on eight microsatellite loci, recent genetic advances with reduced representation sequencing 

(Peterson et al. 2012, Andrews et al. 2016) provide enhanced power to infer population genetic and 

phylogeographic processes amongst the disjunct populations (Carstens et al. 2012, Garrick et al. 

2015). 

Though most of the evidence supports the recent, post-glacial existence of the ITR, that has 

not prevented phylogeographers from studying the history and impact of the disjunction on other 

species in the PNW temperate rainforest (Soltis et al. 1997, Brunsfeld et al. 2001, Gavin et al. 2006). 

To date, eleven species complexes with disjunct ranges in the PNW have been investigated in a 

phylogeographic framework (Avise et al. 1987); Ascaphus truei / A. montanus (Nielson et al. 2001, 

Metzger et al. 2015),  Plethodon idahoensis / P. vandykei (Carstens et al. 2004), Prohphysaon 
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coeruleum (Wilke & Duncan 2004), Microtus richardsoni (Carstens et al. 2005), Dicamptodon 

aterrimus and complex, including D. copei, D. ensatus, D. tenebrosus (Steele et al. 2005), Salix 

melanopsis  (Brunsfeld et al. 2006; Carstens et al. 2013), Conaphe armata (Espíndola et al. 2016), 

Haplotrema vancouverense (Smith et al. 2017), Alnus rubra (Ruffley et al. 2018), Prophysaon 

dubium/andersoni (Smith et al. 2019), Hemphillia sp. complex (Rankin et al. 2019). These species 

span the tree of life and, according to their genetic variation, they also span the possible 

phylogeographic histories for the PNW temperate rainforest. Some species, such as the tailed frogs 

(Neilson et al. 2001) and Plethodon salamanders (Carstens et al. 2004) show evidence of an ancient 

divergence between the ITR and coastal populations, indicating Pre-Pleistocene divergence, while 

other species such as Salix melanopsis (Carstens et al. 2013) and Microtus richardsoni (Carstens et 

al. 2005) show evidence of post-glacial recolonization of the inland from the coast. Other 

phylogeographic scenarios such as pre-Pleistocene divergence with migration have also been 

supported with genomic evidence (Alnus rubra; Ruffley et al. 2018). The history of the entire 

ecosystem is complex and has thus garnered appropriate attention from biologists curious about the 

impact of the distribution on all of the species in the ecosystem, especially the plants (Soltis et al. 

1997). Inferring the phylogeographic history of the species that established the boundaries of the 

PNW temperate rainforest will provide a critical insight for the availability of suitable habitat for 

refugia populations in the ITR.  

The idea of the ITR having an ancient, or pre-Pleistocene, divergence from the coastal 

rainforest and persisting throughout glaciation in refugia in the interior Northwest is compelling 

because it would support the habitat requirement of other species that show evidence of ancient 

vicariance. Additionally, paleontologists have even questioned the plausibility of the old-growth ITR 

becoming so established in less that 3500 years (Mehringer 1996).  However, this idea that the ITR 

persisted through the Pleistocene remains unsupported by paleontological data, specifically the pollen 

record in the ITR (Mehringer 1996, Chase et al. 2008, Gavin et al. 2009). Whether or not the ITR 

persisted throughout the Pleistocene has other implications for whether the PNW disjunct community 

as a whole has adapted to the dramatic climatic changes in concert or individualistically (Davis 1981, 

Habeck 1987, Sullivan et al. 2000, Flessa and Jackson 2005). Common insight from paleoecology 

suggests that modern communities of PNW forest have assembled over a long history of individual 

responses to climate change (David 1981, Flessa and Jackson 2005), and the theory of a recently 

assembled, rapidly diverse ITR poses a challenge to this insight.  

This idea is not necessarily novel to the PNW temperate rainforest, as the idea of the species 

responding individualistically, instead of in-concert, in response to climatic changes is an ecological 
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theory dating back to the early 20th century (Gleason 1926) and has been shown empirically (Burbrink 

et al. 2016). Though J. E. Kirkwood (1922), one of the first to characterize the ecology of species in 

the northern Rocky Mountains in general, emphasized how the understanding of the ITR would be 

dramatically improved when “the individualities of the constituent species were understood”. 

Alternatively, there is evidence in other communities that species do, in fact, respond to climatic 

changes in concert (Chen et al. 2014, Gehera et al. 2017. For plant communities specifically, this idea 

of community-wide concerted response to climatic change can be traced back to early 20th century 

plant ecologist, Clements (1918) and his idea that communities are “super-organisms” whose 

interactions are interwoven and dependent on one another. Regardless of the organism or ecosystem 

though, researchers have long been fascinated with the question of whether or not species in the same 

environment respond asynchronously or synchronously to climatic changes (Sullivan et al. 2000, 

Carstens et al. 2005, Hickerson et al. 2006). 

In this study, we first made predictions about the phylogeographic history for these two 

species, specifically with respect to whether or not they harbor cryptic diversity across the 

disjunction, i.e. show evidence of pre-Pleistocene divergence and no subsequent migration. These 

predictions serve as a test to the predictive framework that was originally developed by Espindola et 

al. (2016) and recently updated with life history traits by Sullivan et al. (2019). We then validate 

these predictions, and ultimately test whether the ITR persisted throughout the Pleistocene (Brunsfeld 

et al. 2001) by generating genomic data for individuals from these species throughout their ranges. 

After assessing population structure amongst the data, we construct eleven demographic scenarios to 

test using a machine-learning model selection framework (Smith & Carstens 2020). These alternative 

demographic hypotheses include divergence between the coastal and inland populations of western 

red cedar and western hemlock that occur either before or after the Pleistocene glaciations. The pre-

Pleistocene divergence scenarios are meant to model the populations diverging at the time of the 

forest disjunction (Waring & Franklin 1979), which follows the uplift in the cascade mountain range 

(Priest 1990). The recent, post-Pleistocene divergence between the populations is meant to model the 

ITR diverging from the coastal populations only after the ITR was recolonized by coastal migrants, 

meaning the time of divergence between the populations would be very recent, as the coastal migrants 

could only have recolonized the inland, at the very earliest, after last glacial retreat, ~ 10 ka (Waitt 

and Thorson 1983). The varying migration scenarios include divergence with migration, where 

migration eventually ends between the coast and ITR populations a significant time after divergence. 

Divergence with secondary contact indicated migration begins again between the coast and ITR 

populations, at the very earliest, after the retreat of the Cordilleran ice sheet, ~ 10 ka (Waitt and 

Thorson 1983). The bottleneck events that are model are those that in theory occurred in the 
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populations at the onset and for the duration of the Pleistocene and the following population 

expansion events occur after the retreat of the glaciers, more likely as recent as 3500 ya (Whitlock 

1992, Mehringer 1996). 

 To test these models, we simulate genomic data under them, data that is similar to the 

genomic data we have generated for Thuja plicata and Tsuga heterophylla, and then use that 

simulated data to train a randomForest (Breiman 2001, Liaw & Weirner 2002, Pudlo et al. 2018) 

classifier to distinguish between the models, as in delimitR (Smith et al. 2020). The benefit to using 

delimitR is that the simulated data are in the form of a folded site frequency spectrum (SFS), or in the 

case of two populations, a joint folded site frequency spectrum (jSFS), and even in the case of 

multiple populations, a multidimensional folded site frequency spectrum (mSFS). For demographic 

model selection with genomic data, the jSFS is beneficial because it summarizes much of the 

genomic data into one statistic that can be used for inference (Gutenkunst et al. 2009, Xu & 

Hickerson 2015). Following the constructing of a demographic model RF classifier, we make 

predictions for the demographic histories of Thuja plicata and Tsuga heterophylla. Given the model 

with the highest prediction probability, we then estimate the parameters of the model, with confidence 

intervals and a focus on the divergence time between the coast and ITR populations, followed by an 

assessment of model fit. We specifically assess whether the divergence times indicate pre- or post-

Pleistocene divergence between the ITR and the coastal forest, and whether the confidence intervals 

of the divergence times overlap between Tsuga heterophylla and Thuja plicata indicating a 

synchronous divergence between ITR and the coast.  

 Ultimately, we’ve generated genomic data for Thuja plicata and Tsuga heterophylla species 

across their coastal and inland populations’ disjunction and used that genomic data to investigate 

whether the ITR is a result of pre-Pleistocene divergence from the coast, or a result of post-glacial 

recolonization from the coast. For this, we rely on coalescent simulations, the jSFS, and machine 

learning inference procedures to develop and test our phylogeographic hypotheses. We also validate 

the power of predictive phylogeography in detecting the presence and absence of cryptic diversity. 

Additionally, we explore the role of genomic data in uncovering the history of the past and how our 

inferences can be influenced by various datatypes and perspectives in genomics and paleontology. 

Methods and Materials 

Field Sampling and Sequencing 

 Field collections were made throughout the coastal and inland PNW temperate rainforest for 

western red cedar, Thuja plicata, and western hemlock, Tsuga heterophylla, between April and June 
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of both 2016 and 2018. Fresh tissue for specimens were dried and stored in silica gel. Voucher 

specimens of collections were preserved in the Stillinger herbarium and can be located on the PNW 

consortium (http://pnwherbaria.org). Leaf tissue from 137 Thuja plicata individuals (Figure 3.1) and 

50 Tsuga heterophylla (Figure 3.1) individuals were extracted using a modified CTAB protocol 

(Doyle & Doyle 1987), purified using Sera-Mag SpeedBeads (Thermo Fisher Scientific; Rohland & 

Reich 2012), and quantified using a Qubit 1.0 Fluorometer (Life Technologies).  

Three double digest restriction site associated DNA sequencing (ddRADseq) libraries 

(Peterson et al. 2012) were prepared: two for Thuja plicata, splitting the total number of samples 

between them, and one for Tsuga heterophylla. For both Thuja plicata libraries, the restriction 

enzymes used were EcoRI and SbfI (New England Biolabs, USA), along with a size selection window 

of 200-500 bp For Tsuga, the restriction enzymes used were SbfI and MspI (New England Biolabs, 

USA) with a size selection window of 200-500 bp. All digestion, ligation and PCR products were 

purified using Agencourt AMPure XP purification system (Beckman Coulter). For Thuja plicata, 

sequences were generated as 50 bp single end reads using an Illumina HiSeq 2500 at the Berkeley 

sequencing facility. For Tsgua heterophylla, sequences were generated as 150 bp paired-end reads 

using an Illumina HiSeq 4000 at The Ohio State University Wexner Medical Center. Raw sequences 

were processed using Ipyrad (Eaton 2014, Eaton & Overcast 2020) with a minimum coverage of 10, 

though the average coverage was and clustering threshold of 0.80. Ipyrad includes Vsearch (Rognes 

et al. 2016) and Muscle (Edgar 2004) for sequence clustering. Though we had overlapping reads for 

Tsuga heterophylla, we opted to not merge them and only use single end reads. Complete assembly 

procedures were performed and documented in Jupyter notebooks and can be accessed at 

github.com/ruffleymr/ThujaTsugaAnalysis/IpyradNotebooks.  

Predictive Phylogeography 

 To make predictions about whether or not Thuja plicata and Tsuga heterophylla harbor 

cryptic diversity we constructed a random forest classifier. For the predictor variables, we gathered 

occurrence data previously used for predictive phylogeography of species in the PNW (Espindoal et 

al. 2016, Sullivan et al. 2019) and occurrence data from recently investigated species (Smith et al. 

2017, Smith et al. 2018, Ruffley et al. 2018). This occurrence data is a combination of GBiF records 

and field collections, and it was used to gather bioclimatic variables from WOLRDCLIM version 2 

(Fick & Hijmans, 2017). Along with these bioclimatic variables, taxonomic rank and discrete trait 

variables, such as life stage at dispersal, outcrosser or selfer, dispersal mechanism, and trophic level 

(Sullivan et al. 2019), were used as the predictor variables in the RF classifier. The response 

variables, i.e. what we want to predict, was the index of “cryptic” or “non-cryptic”. We build four 

https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15029#mec15029-bib-0015
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different classifiers using different combinations of the predictor variables we had available: 

bioclimatic variables only, bioclimatic variables and taxonomy, bioclimatic variable and life history 

traits, bioclimatic variables and taxonomy and life history traits. We reported the overall error rates 

for these classifiers. 

With each of these classifiers, we predicted the presence of cryptic diversity for Thuja plicata 

and Tsuga heterophylla, separately. We gathered occurrence records for the species in question, 

Thuja plicata (791; 569 GBIF records, 222 field collections) and Tsuga heterophylla (468; 346 GBIF 

records, 111 field collections), also compiled from both GBiF records and field collections. We 

excluded all occurrence records from GBiF that fell outside of the PNW temperate rainforest (35° to 

65° latitude, −160° to −100° longitude). We used these locality coordinates to download 19 

bioclimatic variables from WOLRDCLIM version 2 on 5 Feb 2019  (Fick & Hijmans, 2017) at a 

resolution of ~1 km2. We also assembled trait data to coincide with the trait data collected for PNW 

taxa for predictive phylogeography with life history information (Sullivan et al. 2018).  Using this 

data, we followed the procedure of Sullivan et al. (2019) to predict the presence and absence of 

cryptic diversity using the four RF classifiers we constructed with different combinations of predictor 

variables. Finally, we included the new data gathered here for both species to assess how well each 

classifier improved in overall accuracy with the addition of two plant species. 

Population Structure 

 To identify possible population structure, we explored the ddRADseq data from both species 

using STRUCTURE v2.3.4 (Pritchard et al. 2000). We ran STRUCTURE for K values 1 to 10 with 5 

replicates per K, where each replicate is a different sample of unlinked SNPs, subsampled from the 

same linked SNP dataset. We ran STRUCTURE for 500,000 generations with the first 10% discarded 

as burn-in. The data were modeled assuming admixture and correlated allele frequencies between 

populations (Falush et al. 2003), while all other parameters were kept as their default. Structure 

Harvester (Earl & vonHoldt 2012) was then used to evaluate the best K using the Evanno method 

(Evanno et al. 2005). 

joint Site Frequency Spectra 

 A single SFS represents the distribution of the number of sites that are present at each of the 

N allele frequencies in the population, where N is equal to the number of chromosomes in the 

population. For a diploid organism, this is twice the number of individuals. A jSFS is then the 

combination of two SFS as a matrix that is (Npop1 + 1) by (Npop2 + 1) cells. Each row is one of the 

https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15029#mec15029-bib-0015
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allele frequencies in the first population, beginning with 0 and then ranging from 1 𝑁𝑝𝑜𝑝1
⁄  to Npop1 and 

each column is the allele frequencies in the second population, again beginning with 0 and ranging 

from 1 𝑁𝑝𝑜𝑝2
⁄  to Npop2. Each cell then indicates the number of sites at that corresponding allele 

frequency in both populations. If the entire jSFS is standardized by the total number of sites, each cell 

indicates the proportion of sites at the corresponding population allele frequencies. The first row and 

column correspond to the sites that are at given frequencies in one population while not present at all 

in the other population, referred to hereafter as the “0” rows and columns. Again, these indicate the 

variants present in one population and not the other, thus the cell at row “0” and column “0”, 

indicates the sites that do not vary in either population. With SNP data and for demographic model 

selection, this cell is not typically considered because it is only relevant for scaling the proportion of 

invariant sites for parameter estimated. Thus, when estimating demographic parameters from these 

models though, the monomorphic cell along with linked SNPs is needed to inform the composite 

likelihood of the models (Excoffier et al. 2013). 

 There is a trade-off between the number of chromosomes that can be included from each 

population and the number of unlinked SNPs included in the jSFS because the jSFS cannot 

accommodate missing data. The missing data is due to the common problem of allelic dropout from 

reduced representation sequencing (Andrews et al. 2016), where loci are not represented across all or 

even a majority of individuals in the population. Thus, the more samples per population included, the 

fewer SNPs there are to sample from to construct the jSFS. For this reason, we downsampled the 

number of SNPs and alleles (chromosomes in the population) to construct three different jSFS data 

sets for each species. We enforced a different number of alleles to be included per population which 

resulted in a different number of unlinked SNPs being sampled in each data set (Table 3.2). These 

data sets thus represent a spectrum of genomic information ranging from more individuals in the 

population but less SNPs and fewer individuals represented from the populations, but a lot more 

SNPs included. We used unlinked SNPs for model selection to satisfy the assumption that each SNP 

is independent of each other. We subsampled 100 different observed jSFS for each of the sample 

sizes for each of the species (600 observed jSFS in total) and masked monomorphic sites in all jSFS. 

For parameter estimation using the jSFS, we use the full SNP dataset, meaning we included linked 

SNPs in the construction of the jSFS. We also considered the monomorphic cell in the jSFS when 

estimating parameters because this cell provides information important to scale the invariant sites in 

the genome. To calculate the monomorphic cell, we measured the ratio of monomorphic sites and 

polymorphic sites in our entire data sets for each species and then used those ratios, multiplied by the 

total number of biallelic SNPs used in the empirical jSFS. 
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Demographic Modelling 

 For demographic inference, we used the R package delimitR (Smith & Carstens 2020) which 

relies on used jSFS and machine learning algorithm, abc-randomForests (Pudlo et al. 2015) for model 

selection. For this, we simulate jAFS under eleven demographic scenarios we deem plausible for both 

species (Figure 3.2) using fastsimcoal2 (Excoffier 2011, Excoffier et al. 2013). In delimitR, the 

simulated jSFS is summarized by flattening the matrix and binning the cells into a more-course 

representation of the jSFS. Using this array of binned, joint site frequencies as the predictor variables, 

we construct a randomForest classifier to delimit between the eleven demographic models, or the 

response variables. The classifier will simultaneously cross-validate itself by testing the accuracy of 

the decision trees being constructed. For this, data that are not used to construct specific decision trees 

are then used to make predictions on using those trees. Thus, the data being tested is not included in 

the construction of the decision tree classifying it. This results in overall error rates for the classifier, 

as well as specific model misclassification rates. This is an error rate specific to the classifier and 

represents how often a model class is incorrectly identified, and as which model. 

 We constructed six different classifiers to mimic the six empirical jSFS, with differing coastal 

and inland sample sizes and unlinked SNPs (Table 3.2). We then used the appropriate classifier to 

make predictions for the 100 corresponding subsampled jSFS. We summarized the support for each 

dataset in the number of votes for the best model and the estimated posterior probability for the best 

model. 

Parameter Estimation 

 Once the best model was identified for each species, we used Fastsimcaol2 to estimate the 

demographic parameters of the model and their 95% confidence intervals. For this, we considered 

full, linked SNP datasets for each species and the monomorphic cell of the jSFS. We also estimated 

an additional parameter not included in the prior modeling, the mutation rate (𝜇) in 

substitutions/site/million years. Fastsimcoal2 uses a modified expectation maximization, known as a 

conditional expectation maximization (ECM; Brent 1974, Meng and Rubin 1993) algorithm for 

maximum likelihood optimization, which is considered an algorithm that can get stuck in local optima 

of the likelihood surface with not-optimal parameter estimates. Therefore, we performed 100 

independent parameter optimizations with different initial values, 100000 simulations to estimate the 

expected folded jSFS, and 40 conditional EM cycles per optimization. Following the first 

optimization, we identified the global maximum likelihood and parameter estimates and performed an 
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additional 100 independent optimizations using these maximum likelihood parameter estimates as the 

starting values.  

 To estimate confidence intervals, we simulated 100 parametric bootstrap simulations using 

the maximum likelihood parameter estimates from the final optimizations of the empirical datasets. 

We then re-optimized parameters of the simulated datasets, initiating the parameters at the maximum 

likelihood estimates from the original optimization. We used these parameter estimates to generated 

95% high density confidence intervals for all parameters (Kruschke 2011).  

We also used maximum likelihood estimates from the parametric bootstrap simulation to 

perform an assessment of model adequacy. For this we perform a hypothesis test using the likelihood 

ratio G-statistic, which is calculated as CLR = log10(CL0/ClE), where CL0 is the relative observed 

maximum composite likelihood and CLE is the estimated maximum composite likelihood (Excoffier 

et al. 2013). We calculated this test statistic for all of the parametric bootstrap simulations, and this 

served as the null distribution for the hypothesis test. We calculated the p-value as the number of test 

statistics in the null distribution that were greater than the observed G-statistics.  

All computational analyses were done using servers at the IBEST Computational Resources Core at 

the University of Idaho. 

Results 

Sequencing & jSFS 

 Following assembly of the ddRADseq data we had a total of 124,4484 loci with 214,183 

SNPs for Thuja plicata and 142,804 loci with 893,487 SNPs for Tsuga heterophylla, all of which 

were shared across a minimum of 4 individuals per species. When constructing the jSFS for these 

species from this data, the data was downsampled considerably such that each SNP was represented 

in all individuals included in the jSFS (Table 3.2). From this, we see the number of inland and coastal 

chromosomes we include in the jSFS is, at a maximum, half of the total samples in each population. 

In using the jSFS to make our inference about demographic histories, we are excluding a considerable 

amount of sequence data that we have generated. Albeit the models are distinguishable with the data 

used (Figure 3.4), but what does this mean about the amount of data we are collecting to ask 

phylogeographic questions.   

Predictive Phylogeography 

Before assessing whether these species truly harbor cryptic diversity, we made 

phylogeographic predictions of cryptic and non-cryptic for both species following the procedure 
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introduced by Espindola et al (2016) using randomForest with bioclimatic variables associated with 

sample localities and taxonomic ranks. Following Sullivan et al. (2019), we also included trait values 

along with the bioclimatic and taxonomic variables. We assessed how well the classifiers worked 

with each combination of the input data (bioclimatic, trait, and taxonomy variables). The error rates 

we recovered were congruent with those found by Sullivan et al. (2019) and thus these classifiers 

were used to make predictions about Thuja plicata and Tsuga heterophylla. Each classifier predicted 

that both species do not harbor cryptic diversity (Table 3.1), with the only variation in the prediction 

being with the classifier that only used bioclimatic data, which also happens to be the classifier with 

the highest error rate. Whether or not this means both species are in fact non-cryptic still needs to be 

verified using genomic data as these classifiers, however accurate, are still only based on a handful of 

taxa, 12 total species/complexes, of which only two are plants (Alnus rubra and Salix melanopsis). 

Population Structure 

 We investigated the population structure for both species using STRUCTURE (Pritchard et 

al. 2000) for possible K’s of 1 through 10. For Thuja plicata, we found that best K value, according 

to Evanno’s delta K method (Evanno et al. 2005), was K = 3, indicating a model of three distinct 

genetic clusters best fit the data. When we visualize which samples belong to each of the three 

clusters (Figure 3.3), we see no geographic association with the samples that belong to that third 

cluster. We do see that the other two clusters appear to be associated with the coast and inland. When 

we look at the sampling localities colored by K = 2 clusters (Figure 3.3C), we see this same pattern 

between the two clusters being associated to the coast and inland, albeit the quite a bit of the coastal 

samples associating more with the inland samples.  

 For Tsuga heterophylla, we found that best K value, according to Evanno’s delta K method 

was K = 2, indicating two genetic clusters fit the data the best. Visualizing where those two clusters 

occur for the Tsuga samples (Figure 3.3), we do not see a geographic association between the coastal 

and inland samples with the two clusters. However, when we investigate K = 3, or three genetic 

clusters, we do see a heavy association with one cluster in the inland and one cluster along coast, 

albeit with some mixing amongst the cluster. Of course, there is much speculation with respect to the 

power of the Evanno method in truly determining the best “K” (Janes et al. 2017).  

Demographic Modelling 

 The population structure results provided a good basis for deciding how many populations to 

model in the demographic models investigated. Ultimately, we decide to model two populations, 

where we group the samples based on whether they were sampled in either the inland or coastal 
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forest. The potential third cluster contained samples that were not clustered geographically with one 

another and as such these could not be considered or treated as a third population in any demographic 

model. (Figure 3.3). 

 We developed eleven demographic models (Figure 3.2) to explain the phylogeographic 

history of each species. In these models, we considered both ancient and recent divergence events, 

altering migration scenarios, including divergence with and without migration and secondary contact. 

We also model possible bottleneck events associated with when the Pleistocene began, ~2.5 mya. We 

modeled population expansion as well, to be associated with population regrowth at the very earliest, 

after glacial retreat ~10 ka (Figure 3.2). We used fastsimcoal2 to simulate DNA sequence data, using 

the number of loci and variable sites to match the empirical data, and then summarize that data using 

jSFS. We simulated 100 datasets for three different data set sizes for each species. When using jSFS, 

no missing data can be included, therefore, to use a particular locus, it must be present in all 

individuals. Thus, the more individuals you include, the fewer SNPs are typically shared across all of 

them. The three data set sizes had roughly 10,000, 3,000, and 1,000 unlinked SNPs (Table 3.2) and 

we did not consider the monomorphic cell for the jSFS for demographic model selection. 

 To distinguish the simulated jSFS data based on the model they were simulated under, we 

used delimitR (Smith et al. 2019), which uses the flattened jSFS matrix binned into a fewer number 

of cells as the predictor variables in a randomForest classifier, with the model identifier as the 

response. We used 10,000 simulated jSFS for each model when building the classifiers. A different 

classifier was constructed for each data set size, meaning we repeated all simulations per model for 

each data set size. This first resulted in the error rates of the classifiers for classifying each of the 

eleven models (Table 3.2). Most models were classified correctly a majority of the time, with all of 

them have a classification accuracy above 0.72, except for the models with a recent divergence event. 

These models with the lower classification rates were all of the models with a recent divergence 

between the coast and the inland populations. We collapsed these recent dispersal models, which all 

varied in the presence/absence of migration and bottleneck and expansion events, into a single recent 

dispersal model (Figure 3.4). When we do this, the overall error rate decreases dramatically (Table 

3.2) and the accuracy of the recent dispersal model is 0.90.  

 The first classifier, with all eleven models, was used to make predictions using the observed 

jSFS for each species (Figure 3.5). For each data set size, we use 100 different jSFS that were 

constructed by subsampling unlinked SNPs randomly. For Thuja plicata, all data sets had the highest 

prediction probability for the same model, a model with an ancient divergence event between the 

coast and inland population, followed by a bottleneck in both populations, and then population 



114 

 

expansion happening at the same time as secondary contact between populations (“AV + sc + 

bot/exp”, Figure 3.5). On average each Thuja dataset received 552 votes for that model and had an 

average posterior probability of 0.72 (Figure 3.5).   

 The results were different for Tsuga heterophylla in that each data set did not receive the 

same prediction probability. Those with more SNPs supported the same model as Thuja plicata 

(Figure 3.5), one with ancient vicariance between the coastal and inland population, followed by a 

bottleneck in both populations and then population expansion with secondary contact at the time of 

the glacial retreat (model G, Figure 3.2). On average, this model received 564 votes in the classifier 

for each observed jSFS and had an average estimated posterior probability of 0.83 (Figure 3.5).  With 

fewer SNPs included in the jSFS, but more samples represented in the population, the model that has 

the highest prediction probability is model C (Figure 3.2), which is a very similar model to model G, 

only the population bottleneck and expansion are not included in the model, rather there is just an 

ancient vicariance event followed by secondary contact, “AV + sc”. On average, this model received 

532 votes in the classifier for each observed jSFS and had an average estimated posterior probability 

of 0.78. We expect this model support could be because there are less SNPs to inform the parameters 

associated with the additional process, bottleneck and expansion, as well as less individuals from the 

population than Thuja plicata.  

Parameter Estimation 

 The parameter estimates for western hemlock and western red cedar generally fit with most 

of our expectations for the history of the bioregion. For both species, the population sizes estimated 

for the coastal population are slightly larger than those of the ITR (Table 3.3), as we know is 

generally true given their current distributions. All of the events that were dated are in units of 

coalescent generations. The first event data was the divergence between the ITR and the coastal 

rainforest. For both species, the median divergence time estimates were approximately 252,000 

generations ago (Table 3.3). The time of the population bottleneck event for both species was 

between 50 and 90 ka (Table 3.3). The time of the population expansion for Thuja plicata was ~1050 

generations ago, while the time of population expansion for Tsuga heterophylla was nearly twice that 

at 2020 generations ago. The magnitude of the bottleneck on the coast was apparently slightly more 

sever for Thuja plicata, than the inland bottleneck. The opposite was true for Tsuga heterophylla, 

where the bottleneck in the ITR is more severe than that of the one on the coast (Table 3.3). Not 

surprisingly, the populations with the more sever bottleneck also had the larger population expansion 

rate (Table 3.3). Note that this expansion rate is modeled backward in time, meaning a negative rate 

indicates the population is getting smaller as it goes backward in time, thus expanding forward in 
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time. In both species, migration rates from the coast to the ITR were larger than migration rates from 

the ITR to the coast (Table 3.3). 

 In order to convert the units of the timed events, which were in units of generations, we 

needed to consider the generation length of each species. The generation length is essentially the 

average amount of time between consecutive generations in a population. For western red cedar, 

estimates of trees reaching maturity typically range from 20-30 years (Turner 1985), however trees 

have reached maturity as early as 10 years in some open grown areas (Minore 1990). The same is 

roughly true for western hemlock, where most estimates suggest maturity is reached between 25-30 

years (Owen et al. 1984) but trees have reach maturity much quicker in some cases (Tesky 1992). To 

be conservative, we assume a generation length of 10 years per generation for both species. In doing 

this, we can convert our estimates of the time events into years (Table 3.4). Following this, the 

divergence event between the ITR and coastal population, for both species, is estimated as ~2.5 mya 

(Table 3.4).  

Discussion 

History of the ITR 

 The implication of the demographic modeling suggests that the ITR represents and ancient 

relic of the PNW temperate rainforest pre-Pleistocene. Genomic evidence from both western red 

cedar and western hemlock support this ancient divergence between the ITR and the coastal 

rainforest, with the evidence apparent in the model predictions and the observed allele frequencies. 

While many studies agree, the identification of refugia or an anciently diverged populations is an 

abundance of rare alleles not shared with the disjunct population. In previous genetic evidence for 

western red cedar (O’Connel et al. 2008), while they acknowledge some differentiation between 

interior and coastal populations, it was shallow enough to suggest recent divergence with an absence 

of subsequent migration. Here though, we’ve collected thousands of loci across individuals in both 

ITR and coastal populations. With these data, we’ve been able to appropriately model coalescent 

processes, that account for stochasticity and varying demographic events, and ultimately lead us to 

the inference that there have been refugia ITR populations of western red cedar and western hemlock 

throughout the Pleistocene that contributed to the genetics of the current ITR populations. Using the 

jSFS, we can observe the high frequency of rare alleles harbored by the coastal and ITR populations 

separately, that indicates their ancient divergence. 

 This has implications for how the paleontological record of pollen informs our understanding 

on the history of the PNW (Whitlock 1992). In the ITR, these species are not been abundant in the 
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pollen record until < 3500 years ago (Mehringer 1996, Chase et al. 2008, Gavin et al. 2009). Given 

the genomic evidence of an abundance of rare alleles in the ITR populations, we propose populations 

of Thuja plicata and Tsuga heterophylla in the ITR during the Pleistocene were at low population 

sizes (Table 3.4), that were potentially spread out in patchy refugia within the interior. Could it be 

simple enough to suggest the location of these refugia did not produce a significant amount of pollen 

to be detected? Or maybe the populations were just not where subsequent pollen cores were taken? 

The former is more probable than the later given the fact that all cores in the PNW, including coastal 

core samples, indicate that only recently, < 5,000 years ago, did the southern coastal temperate forest 

begin to recolonize the coast and become more abundant, with the northern coastal expansion 

following in the coming millennia (Hebda & Mathewes 1984, Whitlock 1992, Meheringer 1996). 

Similar evidence suggests a very recent, < 2000, northern ITR recolonization as well (Gavin et al. 

2009). Some have questioned the validity of the pollen identification, given the difficulty of 

identifying cedar pollen (Faegri & Iverson 1992) and its suggested unreliability in indicating presence 

of cedars nearby (Gavin et al. 2005), but this cannot explain the lack of western hemlock in the pollen 

record until these recent times.  

 One of the most compelling pieces of evidence for a southern coastal refugia for western red 

cedar during the Pleistocene is a macrofossil of Thuja plicata identified from the late Pleistocene (~ 

35 ka) from the western Cascade Mountains south of the glacial extent in Oregon (Gottesfeld et al. 

1981). This suggests the location of a western red cedar refugia that potentially existed for some time 

during the Pleistocene and could be extended as a hypothesized refugium for western hemlock was 

well. No such fossil evidence exists for the ITR to locate potential refugia, though many locations 

have been hypothesized as potential refugia. The lack of evidence, however, does not preclude the 

possibility that these refugia populations did exist in the ITR. Specifically, since the pollen record 

does not detect the ancient populations that persisted along the coast, we also do not expect them to 

identify the ancient populations in the inland. The paleontological record of the area has provided 

insight into the recolonization of the ITR suitable habitat following glacial retreat, and the timing of 

population expansion. The role now of our genomic data could be to identify the possible location of 

refugia in the inland in order to guide our research toward areas of paleontological research.  

Modern demographic inference 

 Here, we have gathered thousands of loci from Thuja plicata and Tsuga heterophylla 

individuals throughout their disjunct range in order to assess the demographic histories of these 

species. By using the jSFS, we are able to summarize all of these loci into a single statistic to infer the 

history from our data with, a feat that is constantly changing with new data acquisition methods and 
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statistical analyses (Carstens et al. 2012, Garrick et al. 2015). The benefit to using the jSFS is that this 

statistic can capture information about shared, and not shared, allele frequencies across the 

populations, which is exactly what we are interested in interpreting given our question of ancient or 

recent divergence between the coastal and ITR populations. When we visualize the jSFS of our 

empirical systems, we see the rare alleles harbored by the inland and coastal populations in the high 

proportion of loci location in the first row and column of the jSFS (Figure 3.5).  

Visualizations aside, our model selection procedure has produced consistent results that both 

western red cedar and western hemlock support a pre-Pleistocene divergence event, albeit with some 

secondary contact amongst the populations. The approach used here for model selection using 

randomForests and the jSFS (Smith et al. 2017, Smith & Carsten 2020), has yet to be tested using 

plant species or demographic models of this complexity.  This approach is a likelihood-free approach 

based on simulating allelic data under coalescent stochasticity and demographic processes. The model 

selection with machine learning is only as accurate as your data are distinct in model space. This 

means that should the data be insufficient to distinguish between these models; you would see this in 

the error rates of your classifier. Our data show that the error rates in all of our classifiers are 

extremely low, indicating high confidence in our classifier and our data’s ability to distinguish 

between the eleven demographic scenarios we propose. This approach provides flexibility to the 

demographic model designs and simulation of data, as well as computational efficiency.  

The use of the jSFS to summarize genomic data does have its limitations. As mentioned, 

when we summarize our data into a single jSFS, we have to downsample data so that every SNP is 

included in each individual in the jSFS. We note that doing this requires us to forfeit a considerable 

amount of the data we have generated (Table 3.2). We performed a sensitivity analysis on the use of 

the jSFS by constructing three different data set sizes, of 100 jSFS each, for each species, Thuja 

plicata and Tsuga heterophylla (Table 3.2), which resulted in 100 model predictions per species, per 

data set (Figure 3.5). The biggest discrepancy in the entire inference is within the Tsuga heterophylla 

prediction where a different demographic history is support by the jSFS that included more 

individuals from the population and less SNPs and the jSFS with the most SNPs and fewest 

individuals (Figure 3.5). While the two models supported are generally consistent with our overall 

inference of pre-Pleistocene divergence followed by secondary contact, they differ in the presence of 

a population bottleneck during the Pleistocene and subsequent population expansion after the last 

glacial retreat. While the difference in the model support could come down to the data set with more 

SNPs being able to estimate the bottleneck and expansion parameters more effectively, and therefore 

show strong support for the model. Whereas the data with fewer SNPs may have just been lacking 
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data for those processes. This does produce a larger question though about the consistency of our 

results given the level of courses, or resolution, we allow in the construction of jSFS. 

Predictive Phylogeography 

 Prior to the addition of Thuja plicata and Tsuga heterophylla into the predictive framework 

for identifying cryptic diversity (Espindola et al. 2016, Sullivan et al. 2019), the error rates for the 

classifier were already extremely low. Thus, adding these species does not necessarily drastically 

improve our ability to make accurate predictions, though it does not decrease them either (Table 3.1). 

We made the predictions of non-cryptic for both species, prior to assessing their true phylogeographic 

history with genomic data, and for both species we see that the predictions were correct. While 

western hemlock and western red cedar do show evidence for a pre-Pleistocene divergence, they also 

show evidence of post-Pleistocene gene flow through the non-zero estimation of migration rates 

between the populations (Table 3.3). While adding these species to the predictive framework does not 

change the accuracy in the prediction, we are still adding information to the classifier about plant 

species specifically that will contribute to the accuracy in other predictions for plant species with 

disjunct ranges in the ITR. 

Conclusion 

 Using genomic evidence and modern demographic inference procedures with machine 

learning, we are able to show evidence of ancient ITR populations for Thuja plicata (western red 

cedar) and Tsuga heterophylla (western hemlock) that persisted throughout the Pleistocene. The 

recent expansion of ITR populations in these species and colonization of newly suitable habitat within 

the past 3500 years, does not contradict this finding. The refugia populations in the ITR were likely of 

small population sizes, as we show support here for Pleistocene-related population bottleneck events 

in both species. Likewise, we show support for the recent population expansion of these species in the 

ITR within the last 10000 years. This evidence does coincide with the paleontological record that the 

temperate rainforest did not dominate the PNW landscape until the last 5000 years, and only in the 

last 3500 years did the ITR begin recolonization. Coupled with the recent population expansion, we 

also show evidence for secondary contact at this time between the coastal and ITR populations for 

both species. This recent gene flow has likely muddled other genetic inferences made about western 

red cedar previously, suggesting the ITR populations are a result of coastal recolonization. While we 

agree coastal migrants contributed to the genetic architecture of the current ITR populations, we also 

argue that ancient refugia contributed to that architecture as well. This is supported by the high 
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proportion of rare alleles observed in the ITR populations for Tsuga heterophylla and Thuja plicata, 

rare alleles that could only be the result of an ancient vicariant event with the coastal population. 
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    Thuja plicata Tsuga heterophylla   

Predictor variables  Error Rate 
Non-cryptic 

PP 

Cryptic 

PP 

Non-cryptic 

PP 
Cryptic PP 

Updated Error 

Rate 

Bioclim 0.205 0.713 0.287 0.669 0.331 0.155 

Bioclim,Taxonomy 0.0 1.0 0.0 1.0 0.0 0.0 

Bioclim,Traits 0.0 1.0 0.0 1.0 0.0 0.0 

Bioclim, Taxonomy, Traits   0.0 1.0 0.0 1.0 0.0 0.0 

Table 3.1. Phylogeographic predictions of cryptic and non-cryptic for Thuja plicata and Tsuga heterophylla using 

random forest with specified predictor variables. Error rate indicates the error rate of the RF classifier used to make the 

predictions. PP indication prediction probability. The updated error rate is the error rate of the new classifier 

constructed with the new data from Thuja plicata and Tsuga heterophylla. 
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Table 3.2. The average number of unlinked SNPs used in the 100 empirical data sets, with the corresponding 

number of samples from the coastal and inland populations, where each sample represents an allele for an 

individual, most often both allele areas included, but in some cases only one allele from an individual is 

included in the construction of the jSFS. The error rate for all models represents the average error rate for all 

model classifications for the classifier constructed with the corresponding data size. The error rate with RD 

collapsed corresponds to the overall error rate for the classifier when the four Recent Dispersal models are 

collapsed into a single model, RD. 

 
 

  

    SNPs coastal inland 
Error Rate 
All Models 

Error Rate 
RD collapsed 

Thuja plicata 

1 9036 11 10 27.90 12.93 

2 2484 26 24 30.89 15.83 

3 1041 42 42 33.87 19.23 
 

Tsuga heterophylla 

1 7929 13 8 27.10 12.26 

2 2698 19 12 31.21 15.94 

3 1195 27 16 34.78 19.88 
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 Thuja plicata Tsuga heterophylla 

  

MaxL 

Estimate 

min 95% 

CI 
max 95% CI 

MaxL 

Estimate 

min 95% 

CI 

max 95% 

CI 

N inland 1317431 1118973 1611659 1574048 1165534 1938174 

N coast 1514468 1301011 1673645 3361225 2865576 3708440 

Tdiv 252814 231341 295009 252285 223890 295967 

Tbot 53436 50545 62430 59417 51439 92440 

Texp 1043 1010 1095 2021 1592 2290 

BtnMag inland 0.5930 0.5391 0.6706 0.4792 0.4403 0.4992 

BtnMag coast 0.4791 0.4336 0.4982 0.5888 0.5230 0.7201 

Gro inland -1.7E-04 -3.1E-04 1.9E-05 -4.4E-04 -5.0E-04 -3.9E-04 

Gro2 coast -6.8E-04 -8.0E-04 -5.9E-04 -1.7E-04 -2.1E-04 -1.1E-04 

MIG inland -> coast 1.4E-05 1.0E-05 1.9E-05 1.2E-05 6.2E-06 2.0E-05 

MIG coast -> inland 1.1E-04 9.5E-05 1.2E-04 4.5E-05 3.4E-05 5.7E-05 

mutation rate 5.7E-09 5.0E-09 6.1E-09 4.6E-09 4.2E-09 5.1E-09 

Table 3.3. Parameter estimates for Thuja plicata and Tsuga heterophylla for the model selected most often for the 

data, “AV + sc + bot/exp”. The population sizes, N inland and N coast, are in units of the number of alleles in the 

population. All of the events, Tdiv, Tbot and Texp, are in units of coalescent generations. The magnitude of the 

bottleneck, btnmag, indicates the instantaneous shrinkage of the population by that proportion. The growth rates 

indicate population size change, backward in time, as the number of alleles removed from the population per 

generation. Thus, a negative rate indicates population expansion forward in time. The migration rates indicate the 

proportion of alleles moving to the other population per generation. The mutation rate is in substitutions per site per 

generation. 
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  MaxL Estimate min 95% CI max 95% CI 

Thuja plicata 

 Tdiv 2,528,140 2,313,410 2,950,090 

 Texp 10,430 10,100 10,950 

 
Tsuga heterophylla 

 Tdiv 2,522,850 2,238,900 2,959,670 

 Texp 20,210 15,920 22,900 

Table 3.3. Divergence time estimates and time of population expansion 

and secondary contact estimates for both species. Estimates are in years 

that were calculated from multiplying the divergence time in generations 

by an estimate generation length of 10 for both species. 
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Figures 

 
Figure 3.1. Localities sampled for western Red Cedar and western Hemlock. Locality information for each 

collection can be found in Supplemental Table 1. 

  

Thuja plicata

Tsuga heterophylla
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Figure 3.2. (A-K) Summarized folded jSFS (43 by 43 cells) for 10,000 simulations under each associated 

demographic model. Scale indications the proportion of loci in each cell, with 0.001 being the maximum, 

meaning if the proportion is higher than this value, the color is that same as the maximum. Dashed lines 

represent all events that can occur in a given model, including divergence (div), bottleneck (bot), and expansion 

(exp), and migration initiation (mig) events. Migrations arrows indicate asymmetrical migration between 

populations, b is the magnitude of a bottleneck and r is the population growth rate during expansion for a given 

population. 
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Figure 3.3. left panels: STRUCTURE results for Thuja plicata and Tsuga heterophylla where each bar indicates 

an individual in the population and the color indicates the proportion of genetic variation associated to a 

particular cluster. Clusters indicated by K values in the top right corner. Coastal samples are denoted with a C in 

the label and inland samples with an I. right panels: Sampling localities plotted according to the proportion of 

genomic variation attributed to each cluster, with clusters at K = 2 and K = 2. 
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Figure 3.4. Confusion matrix depicting the prediction accuracies and inaccuracies for 11 demographic models 

using delimitR for model selection, which involves the simulated and binned jSFS and ‘abcrf’.  The rows 

indicate the model the data were simulated under and the columns indicate the model that was predicted, each 

cell then indicates the proportion of simulated data under the true model that is classified as the predicted 

model. Thus, the diagonal cells of the matrix depict the proportion of correct model classifications, as the 

predicted model aligns with the true model, whereas the off-diagonal cells depict the proportion of model 

simulations that are incorrectly classified, and specifically which model the simulations are incorrectly 

classified as. 
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Figure 3.5. A. Barplots represent the proportion of observed jSFS, at the corresponding average number of 

SNPs in the jSFS, that are classified as a given model, which is indicated by the color of the barplot. Solid 

barplots (left side) represent Tsuga heterophylla predictions and diagonal stripped barplots (right side) represent 

predictions for Thuja plicata. B. Table indicating the average number of model votes for the most selected 

model, ‘AV + sc + bot/exp’, for both species, along with the average estimated posterior probability (PP) for the 

same model. C. Corresponding observed jSFS at each SNP count (10000, 3000, and 1000) for Tsuga 

heterophylla (top row) and Thuja plicata (bottom row). 
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