
Procedural Content Generation via Diversity Engines

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Paden Rumsey

Major Professor: Terence Soule, Ph.D.

Committee Members: Robert B. Heckendorn, Ph.D.; Barrie Robison, Ph.D.

Department Administrator: Terence Soule, Ph.D.

May 2020

ii

Authorization to Submit Thesis

This thesis of Paden Rumsey, submitted for the degree of Master of Science with a Major in Computer

Science and titled “Procedural Content Generation via Diversity Engines,” has been reviewed in final

form. Permission, as indicated by the signatures and dates below is now granted to submit final copies

for the College of Graduate Studies for approval.

Major Professor:
Terence Soule, Ph.D. Date

Committee Members:
Robert B. Heckendorn, Ph.D. Date

Barrie Robison, Ph.D. Date

Department Chair:
Terence Soule, Ph.D. Date

iii

Abstract

Asset generation in video games and simulations is an expensive process that takes considerable

resources to do well. Procedural Content Generation (PCG) is a technique that can be used to generate

this content for video games and simulations. Although, there are certain flaws related to content quality

and diversity that need to be addressed in order to utilize this technique generally. The Innovation Engine

is a relatively new theoretical framework that is incrementally attempting to encapsulate human creativity

by computational means. Optimizing techniques such as Genetic Algorithms (GAs) are inadequate when

trying to accomplish goals related to creativity. A new software framework presented in this work, the

Diversity Engine, acts as a practical application of the ideas found in Innovation Engines and shows

procedurally generated flowers can be created, with mixed results, using a new Quality Diversity (QD)

algorithm Centroidal Voronoi Tessalation MAP-Elites (CVT-MAP-Elites).

iv

Acknowledgements

This work was the compilation of several years of research and investigation. I would first and foremost

like to thank my major professor, Terry Soule, Ph.D. Without his guidance and support, this would not

have been possible. I would also like to thank my committee, Robert B. Heckendorn, Ph.D. and Barrie

Robison, Ph.D., for their unending patience and involvement. Credit also goes to Homaja Pydi Kumar

for performing the initial investigation that led to this work. Others who have had an influence on the

work herein include:

Robert Hiromoto, Ph.D., Min Xiang, Ph.D., and Don Scoffield

v

Dedication

To my friends: Zach, Mason, Ryan, and Chance.

A smooth sea never made a skilled sailor, but it was nice not to sail alone.

vi

Table of Contents

Authorization to Submit Thesis . ii

Abstract . iii

Acknowledgements . iv

Dedication . v

Table of Contents . vi

List of Tables . viii

List of Figures . x

List of Acronyms . xii

Chapter 1: Introduction . 1

Objectives . 1

Organization of Thesis . 1

Chapter 2: Background . 3

Procedural Content Generation . 3

Evolutionary Computation . 6

Deep Learning . 16

Image Hashing Using Perceptual Hashes . 21

Innovation Engines . 22

Other Related Work . 27

Chapter 3: The Diversity Engine . 29

High Level Tool Architecture . 29

Implementation . 31

Chapter 4: Experimental Configurations and Results 34

Generators . 34

DNN Training Parameters and Test Performance 36

Image Hashing Software and Comparison Images 36

Experimental Equipment . 39

A Note on Reproducibility . 39

Standard Genetic Algorithm . 39

CVT-MAP-Elites . 46

vii

Chapter 5: Conclusions and Future Work . 100

References . 105

Appendix A: Experimental Parameters and Seeds . 113

DNN Training Parameters and Accuracy . 113

Standard GA Experimental Parameters and Seeds 114

CVT-MAP-Elites Experimental Parameters and Seeds 114

Appendix B: Subjectively Good CVT-MAP-Elites Generated Images 117

Appendix C: Subjectively Bad CVT-MAP-Elites Generated Images 128

viii

List of Tables

2.1 Inception Architecture . 20

4.1 Hashing Comparison Images . 38

4.2 Best 2D Flowers - Standard GA . 42

4.3 Best 3D Flowers - Standarad GA . 45

4.4 Best scored 2D Flowers - Daisies and Dandelions (No Hash Composite Score) 50

4.5 Best scored 2D Flowers - Daisies and Dandelions (No Hash Composite Score) 51

4.6 Best scored 2D Flowers - Roses and Sunflowers (No Hash Composite Score) 52

4.7 Best scored 2D Flowers - Roses and Sunflowers (No Hash Composite Score) 53

4.8 Best scored 3D Flowers - Daisies and Dandelions (No Hash Composite Score) 56

4.9 Best scored 3D Flowers - Daisies and Dandelions (No Hash Composite Score) 57

4.10 Best scored 3D Flowers - Roses and Sunflowers (No Hash Composite Score) 58

4.11 Best scored 3D Flowers - Roses and Sunflowers (No Hash Composite Score) 59

4.12 Best scored 2D Flowers - Daisies and Dandelions (Ahash Composite Score) 62

4.13 Best scored 2D Flowers - Daisies and Dandelions (Ahash Composite Score) 63

4.14 Best scored 2D Flowers - Roses and Sunflowers (Ahash Composite Score) 64

4.15 Best scored 2D Flowers - Roses and Sunflowers (Ahash Composite Score) 65

4.16 Best scored 2D Flowers - Daisies and Dandelions (Dhash Composite Score) 68

4.17 Best scored 2D Flowers - Daisies and Dandelions (Dhash Composite Score) 69

4.18 Best scored 2D Flowers - Roses and Sunflowers (Dhash Composite Score) 70

4.19 Best scored 2D Flowers - Roses and Sunflowers (Dhash Composite Score) 71

4.20 Best scored 2D Flowers - Daisies and Dandelions (Phash Composite Score) 74

4.21 Best scored 2D Flowers - Daisies and Dandelions (Phash Composite Score) 75

4.22 Best scored 2D Flowers - Roses and Sunflowers (Phash Composite Score) 76

4.23 Best scored 2D Flowers - Roses and Sunflowers (Phash Composite Score) 77

4.24 Best scored 2D Flowers - Daisies and Dandelions (Whash-haar Composite Score) 80

4.25 Best scored 2D Flowers - Daisies and Dandelions (Whash-haar Composite Score) 81

4.26 Best scored 2D Flowers - Roses and Sunflowers (Whash-haar Composite Score) 82

4.27 Best scored 2D Flowers - Roses and Sunflowers (Whash-haar Composite Score) 83

4.28 Best scored 3D Flowers - Daisies and Dandelions (Ahash Composite Score) 86

4.29 Best scored 3D Flowers - Roses and Sunflowers (Ahash Composite Score) 87

ix

4.30 Best scored 3D Flowers - Daisies and Dandelions (Dhash Composite Score) 90

4.31 Best scored 3D Flowers - Roses and Sunflowers (Dhash Composite Score) 91

4.32 Best scored 3D Flowers - Daisies and Dandelions (Phash Composite Score) 94

4.33 Best scored 3D Flowers - Roses and Sunflowers (Phash Composite Score) 95

4.34 Best scored 3D Flowers - Daisies and Dandelions (Whash-haar Composite Score) 98

4.35 Best scored 3D Flowers - Roses and Sunflowers (Whash-haar Composite Score) 99

B.1 Sample of Subjectively Best 2D Flowers (No Hash Composite Score) 118

B.2 Sample of Subjectively Best 3D Flowers (No Hash Composite Score) 119

B.3 Sample of Subjectively Best 2D Flowers (Ahash Composite Score) 120

B.4 Sample of Subjectively Best 2D Flowers (Dhash Composite Score) 121

B.5 Sample of Subjectively Best 2D Flowers (Phash Composite Score) 122

B.6 Sample of Subjectively Best 2D Flowers (Whash-haar Composite Score) 123

B.7 Sample of Subjectively Best 3D Flowers (Ahash Composite Score) 124

B.8 Sample of Subjectively Best 3D Flowers (Dhash Composite Score) 125

B.9 Sample of Subjectively Best 3D Flowers (Phash Composite Score) 126

B.10 Sample of Subjectively Best 3D Flowers (Whash-haar Composite Score) 127

C.1 Sample of Subjectively Bad 2D Flowers (No Hash Composite Score) 129

C.2 Sample of Subjectively Bad 3D Flowers (No Hash Composite Score) 130

C.3 Sample of Subjectively Bad 2D Flowers (Ahash Composite Score) 131

C.4 Sample of Subjectively Bad 2D Flowers (Dhash Composite Score) 132

C.5 Sample of Subjectively Bad 2D Flowers (Phash Composite Score) 133

C.6 Sample of Subjectively Bad 2D Flowers (Whash-haar Composite Score) 134

C.7 Sample of Subjectively Bad 3D Flowers (Ahash Composite Score) 135

C.8 Sample of Subjectively Bad 3D Flowers (Dhash Composite Score) 136

C.9 Sample of Subjectively Bad 3D Flowers (Phash Composite Score) 137

C.10 Sample of Subjectively Bad 3D Flowers (Whash-haar Composite Score) 138

x

List of Figures

2.1 MAP-Elites versus CVT-MAP-Elites . 13

2.2 Inception V3 Module A . 18

2.3 Inception V3 Module B . 18

2.4 Inception V3 Module C . 19

2.5 Inception V3 Module Grid Reduction . 19

2.6 Inception V3 Module Auxiliary Classifier . 20

2.7 Innovation Engine - 2D Results . 25

2.8 Innovation Engine - 3D Results . 26

3.1 High Level Architecture of the Diversity Engine . 30

4.1 Example - 2D Generator . 34

4.2 Example - 3D Generator . 35

4.3 Average Population Fitness 2D Flowers - Standard GA . 41

4.4 Best Individual Fitness 2D Flowers - Standard GA . 41

4.5 Average Population Fitness for 3D Flowers - Standard GA 44

4.6 Best Individual Fitness 3D Flowers - Standard GA . 44

4.7 Class Distribution - 2D Flowers (No Hash Composite Score) 49

4.8 Normalized Fitness Frequencies by Class - 2D Flowers (No Hash Composite Score) 49

4.9 Class Distribution - 3D Flowers (No Hash Composite Score) 55

4.10 Normalized Fitness Frequencies by Class - 3D Flowers (No Hash Composite Score) 55

4.11 Class Distribution - 2D Flowers (Ahash Composite Score) . 61

4.12 Normalized Fitness Frequencies by Class - 2D Flowers (Ahash Composite Score) 61

4.13 Class Distribution - 2D Flowers (Dhash Composite Score) . 67

4.14 Normalized Fitness Frequencies by Class - 2D Flowers (Dhash Composite Score) 67

4.15 Class Distribution - 2D Flowers (Phash Composite Score) . 73

4.16 Normalized Fitness Frequencies by Class - 2D Flowers (Phash Composite Score) 73

4.17 Class Distribution - 2D Flowers (Whash-haar Composite Score) 79

4.18 Normalized Fitness Frequencies by Class - 2D Flowers (Whash-haar Composite Score) 79

4.19 Class Distribution - 3D Flowers (Ahash Composite Score) . 85

4.20 Normalized Fitness Frequencies by Class - 3D Flowers (Ahash Composite Score) 85

xi

4.21 Class Distribution - 3D Flowers (Dhash Composite Score) . 89

4.22 Normalized Fitness Frequencies by Class - 3D Flowers (Dhash Composite Score) 89

4.23 Class Distribution - 3D Flowers (Phash Composite Score) . 93

4.24 Normalized Fitness Frequencies by Class - 3D Flowers (Phash Composite Score) 93

4.25 Class Distribution - 3D Flowers (Whash-haar Composite Score) 97

4.26 Normalized Fitness Frequencies by Class - 3D Flowers (Whash-haar Composite Score) 97

xii

List of Acronyms

AE Autoencoders

ANN Artificial Neural Network

CNN Convolutional Neural Network

CPPN Compositional Pattern Producing Networks

CRC Computational Resources Core

CVT Centroidal Voronoi Tessalations

CVT-MAP-Elites Centroidal Voronoi Tessalation MAP-Elites

DeLeNoX Deep Learning Novelty Explorer

DNN Deep Neural Network

EA Evolutionary Algorithm

EC Evolutionary Computation

FINS Feasible-Infeasible Novelty Search

GA Genetic Algorithm

GAN Generative Adversarial Network

ILSVRC Imagenet Large Scale Visual Recognition Challenge

KD-tree K-Dimensional tree

LSTM Long-Short Term Memory

MAP-Elites Multi-Dimensional Archive of Phenotypic Elites

MCTS Monte Carlo Tree Search

ML Machine Learning

MOO Multi-Objective Optimization

MMFO Multi-Modal Function Optimization

NEAT NeuroEvolution of Augmenting Topologies

NSLC Novelty-Search with Local Competition

PCG Procedural Content Generation

PCGML Procedural Content Generation via Machine Learning

xiii

QD Quality Diversity

ReLU Rectified Linear Units

RNN Recurrent Neural Network

TRNG Tina’s Random Number Generator

YOLO You Only Look Once

1

Chapter 1: Introduction

On October 26, 2018, Red Dead Redemption II, a video game developed by Rockstar Games was

released to the public. The game was lauded by critics and players alike as one of the largest, most

realistic worlds that has ever been developed in a video game [40]. However, this extraordinary game

world is speculated to have come at huge monetary and labor costs. Conservative estimates state that

the game cost $170 million over 8 years with some employees working 60-80 hour weeks [52][78]. While

these estimates are pure speculation on the part of media analysts, it is no secret that crunch and poor

work-life balance are commonplace in the video game industry. The expectations posed by modern AAA

gaming have become so extreme that employees are suffering from burnout and mental health issues as a

result of frequency and duration of hours worked [65][67][68]. Discussions of industry reform aside, there

is clearly a financial and medical need for the development of tools that could provide a reduction in

labor demands during the development of large-scale AAA games. These tools could also be of potential

use to smaller “indie” developers that may not currently have the resources to create a product that is

comparable to the AAA experience.

1.1 Objectives

There are two main objectives of this thesis. The first is to develop a lightweight, parallel framework

derived from the ideas found in the Innovation Engine research project [35][48]. This new framework,

called the Diversity Engine, is intended to be a pragmatic application of Innovation Engines that will

help solve challenges related specifically to diversity in search-based PCG. The term Diversity Engine is

derivative and intended to distinguish its narrower scope from the grander vision of Innovation Engines

proper. The Diversity Engine will enable rapid prototyping and research in the domain of PCG, specif-

ically creating assets using PCG. The goal of the framework is to primarily allow users to test various

evaluation and generation methods with ease. The second objective of this thesis is to test the efficacy of

generating PCG assets using a new QD technique, called CVT-MAP-Elites, that enables the generation

of many high-performing solutions that possess a high number of feature, or behavior, descriptors [46].

These objectives are intended to help overcome a significant challenge in the PCG domain, the automatic

generation of diverse, high-quality digital content.

1.2 Organization of Thesis

This thesis is organized into four parts, which are divided into their own respective subsections.

Chapter 2 presents the basic backgrounds of all the fields that are utilized in the Diversity Engine or its

2

subsequent experiments. Section 2.1 covers the basics of PCG, including search-based PCG, contemporary

techniques, as well as challenges currently faced in the field. Section 2.2 covers the basics of Evolutionary

Algorithms (EAs), Machine Learning (ML) as it relates to the field, and Quality Diversity (QD) algorithms

including a core algorithm of this work, CVT-MAP-Elites. Section 2.3 addresses the very basics of

Artificial Neural Networks (ANNs), popular deep learning techniques and architectures, and includes a

discussion on the architecture of the model used in this work, Inception V3. Section 2.4 discusses the

specifics of the perceptual hashing algorithms found in this work. Section 2.5 discusses the foundational

work that lead to the creation of Innovation Engines as well as the techniques used in Innovation Engines

proper. Section 2.6 covers alternative research being performed in the domains of computational creativity

and PCG. Chapter 3 has two sections. The first, section 3.1, covers the high level design of the whole

system and how it is intended to be used, and the second, section 3.2, covers more of the technical

details for those interested in performance. Chapter 4 contains the experimental setup, results, and

discussion when using the Diversity Engine, via CVT-MAP-Elites, to generate diverse populations of 2D

and 3D flowers. Chapter 5 addresses the results of the experiments performed and the significance of the

work performed here. It also elaborates on future challenges for the Diversity Engine and computational

creativity.

3

Chapter 2: Background

2.1 Procedural Content Generation

Procedural Content Generation (PCG) is defined as the automatic creation of content (usually gaming

related) by automatic, algorithmic techniques [81]. The usage of PCG in video games is by no means

a recent phenomenon. In 1980, the ASCII-text, dungeon-crawling game Rogue was released. Instead

of the game world being crafted by hand, the rooms were created with PCG. The room layout, which

monsters resided in what room, as well as the treasures within were all decided algorithmically [82]. In

the forty years since Rogue was released, PCG has made great leaps in the video game industry. Two

contemporary titles to use the technique are Minecraft and No Man’s Sky. In both titles, the worlds are

procedurally generated. However, there is an extreme difference in scope. While the worlds in Minecraft

are exceptionally large, the game has a limited number of biomes, flora, and fauna that exist in the game.

Taking a step beyond these simple procedural worlds of Minecraft, No Man’s Sky generates the dialogue,

non-player characters, and even the music via PCG [19][44]. PCG is a popular technique in games like

these for many reasons. The first being it’s a form of data compression. The worlds in Minecraft and

No Man’s Sky are much too large to be stored directly on disk. Instead, their worlds are generated

through algorithms via stored numerical seeds. When a player approaches a section of the game world,

that section is rendered using the seed specified. Another typical use case for PCG is to generate varied

experiences over multiple play throughs or to extend the play time of the game. In the case of Rogue

and Minecraft, no play through will be the same, because the game world is generated differently every

time a new world is created. In No Man’s Sky the practical combination of all the assets means that

every planet should have some unique combination of game assets, meaning two planets are extremely

unlikely to be the exact same. Finally, and perhaps most importantly to this work, is that PCG can be

a generative shortcut for developers. Developing assets takes time, and PCG is a method by which large

amounts of assets can be generated quickly. For example, Perlin noise and graphical L-systems are typical

ways developers deploy PCG to generate vegetation and terrain. The fractal nature of the algorithms is

well suited to generating assets that have repeating sub-patterns or seemingly random textures [50][53].

These types of PCG are called constructive in that they “run in a fixed time, without iteration, and does

not perform any search” [58].

There are several terms related to PCG that will be discussed. They are closely related, so some

clarifications of their respective hierarchy will be made here. Search-based PCG is a type of PCG that

utilizes search algorithms, such as Genetic Algorithms (GAs) to find optimal PCG content. Procedural

4

Content Generation via Machine Learning (PCGML) is a broad class of PCG that occurs when Machine

Learning (ML) algorithms are used to generate the actual content that is desired. This differs from PCG

that uses ML as an evaluatory component. If ML is merely used to evaluate solutions, then it is not

PCGML. PCGML and PCG with an ML evaluatory component can both be used in a search-based PCG

algorithm, as the ”search” in ”search-based” PCG relates to how optimal content can be found, not how

it is generated or evaluated. Likewise, PCGML and PCG with an evaluatory component do not have to

be performed during the course of search-based PCG. They could be used in constructive PCG.

PCGML is an extremely popular approach amongst contemporary PCG researchers. There are many

examples of this. Generative Adversarial Networks (GANs) have created unique opportunities in PCG

due to their role as machine learning generators, but they are not the only technique that is viable.

Markov chains, Monte Carlo Tree Search (MCTS), and Long-Short Term Memory (LSTM) Recurrent

Neural Networks (RNNs) have all been utilized to generate Super Mario Bros. levels with varying degrees

of success [13][14][73][74][75]. In addition, LSTM RNNs have been used to generate cards in the popular

card game Magic: The Gathering [59]. In this work, although deep learning is deployed, it is not officially

recognized as PCGML. Since it only uses ML as the evaluative component, it does not qualify as PCGML,

only PCG. Regardless of how it is used, machine learning is a popular area of research in PCG.

While ML can be an important tool when performing PCG, it is merely a way of creating or evaluating

content. Search-based PCG is a method by which good content is selected. Search-based PCG is com-

monly implemented via Evolutionary Computation (EC). As such, much of the taxonomy found in the

field of EC is also present in the field of search-based PCG [88]. This work implements search-based PCG

with EC, and describing the EAs is analogous to describing the search-based PCG. It should be noted

that, although EC is used as the basis of search-based PCG in this work, it is not the sole mechanism by

which it can be accomplished. Local search algorithms, such as simulated annealing and hill climbing,

are also common [30].

Search-based PCG is a sub-type of PCG known as generate-and-test. First, the content that is to be

generated is defined via some form of encoding that establishes the bounds of a search space. Typically,

these encodings are represented in a vector of real numbers called a genotype. This genotype acts like

a blueprint for the generation of a corresponding phenotype, the “physical” expression of the genotype

vector. For example, in this work, flowers are generated based on a vector of real numbers that determine

various traits found in the generated corresponding flower image. These traits include: number of rings,

color of petals, the height of the flower stalk, and color, among others. A search space is inherently created

by the numerical bounds in such encodings and creates an N-dimensional plane that can be searched

through by a variety of methods. The selection of this encoding is extremely important. Genotypes that

5

are too small cannot wholly represent potentially complex solutions. Certain individuals may never be

generated if the genotype size is insufficient. On the other end of the spectrum, there is the “curse of

dimensionality.” As the genotype vector grows, the search space itself also grows at an exponential rate.

If the search space is too large, then finding optimal solutions could become an impossibility. This work

seeks to limit the effects of such dimensionality explosion by employing techniques such as Centroidal

Voronoi Tessalation MAP-Elites (CVT-MAP-Elites), which is discussed in section 2.2.2. These encodings

are referred to as the individual’s representation [30][62].

Once representations are selected for the problem, individuals are then randomly generated within

the search space, and genotype values are tweaked, through a variety of methods, to generate different

individuals throughout the search space over the course of many iterations. Individuals are then judged

based on an evaluation, or fitness, function which assigns a real number, or a vector of real numbers,

to be the individual’s fitness. This evaluation could be performed in a variety of ways. One popular

research problem for PCG researchers is the generation of Super Mario Bro. levels. In one such study,

researchers performed a dual experiment testing the generation of Super Mario Bro. levels via a Genera-

tive Adversarial Network (GAN) [22]. In their first experiment, they measured the fitness of their levels

by measuring the fraction of ground tiles to total number of tiles generated. In the second experiment,

they measured the amount of ground tiles generated as a fraction of total ground tiles but also factored

in the number of enemy tiles that were generated. In order to prevent levels that created uncross-able

“gaps”, the researchers also included a negative offset for levels that were incomplete [85]. This example

highlights the importance of nuance when deciding on a fitness function. Although the fitness may be

correspondingly high given a certain set of parameters, if those parameters can generate poor individuals,

then the fitness function function itself may be poor. Individuals’ genotypes are then passed on to the

next generation based on the evaluation function’s reported score [81].

Search-based PCG has been successful at generating a breadth of different content within the research

community. Aside from the Super Mario Bro. example mentioned previously, search-based PCG has been

able to generate puzzles for various puzzle games [1][49], maps for RTS strategy games such as Starcraft

[6][79][80], and in-game weapons [24]. Despite its successes, search-based PCG is still faced with many

challenges. Some of this can be explained by the underlying mechanisms used during PCG. Many

techniques within EC are optimization techniques, specializing in producing a single solution, or a small

set of optimal solutions. It is possible that a solution may never be found, or the solution could be poor.

Even when a solution(s) is found, it tends to saturate (or converge) the population in the final iterations of

the algorithm. One genome (or a similar genome) will come to dominate all the individuals in a population

[30]. One of the large problems within PCG that this work seeks to address is the identical, or similar,

6

nature amongst the content that is generated. Constructive fractal techniques are good at generating

structures with “branching” patterns like trees and bushes, but when generating entire forests based on

such techniques, there is a degree of similarity that can affect the quality of the content that is generated.

This problem is not unique to constructive techniques and is present within search-based techniques as

well. To counter this problem, there is growing trend within the search-based PCG community to prefer

a different subset of algorithms known as Quality Diversity (QD), or illumination algorithms [54]. QD

algorithms focus on creating a variety of different solutions. One popular algorithm that is utilized heavily

in this work is Multi-Dimensional Archive of Phenotypic Elites (MAP-Elites) [11][46]. It is an algorithm

that specializes in creating and retaining a set of high performing individuals over the course of the entire

search. This algorithm is explained in section 2.2.2, but it forms the basis of much of the research that

the Diversity Engine was derived from.

2.2 Evolutionary Computation

Evolutionary computation is a sub-field of computer science that uses the principles of Darwinian

evolution in algorithms. A Darwinian evolutionary system can be defined by four principles:

• a population or group of populations comprised of individuals competing against one another for

resources.

• population change in the form of birth or death of individuals within the population.

• a metric, or general concept, of fitness judging the individual on its efficacy, survivability, and ability

to reproduce.

• a variation mechanic operating on the population enabling change from generation to generation.

These four ideas form the basis of all the Evolutionary Algorithms (EAs) present in this work. From

them a common framework is identified and can be applied to any algorithm used in this work:

• populations of size m are evolved over time through selection, variation operators, and reproduction.

• previous individuals in the population are used as the starting point for any selection or variation.

Thus, all parents must have existed in previous populations.

• newly generated individuals have the potential to take over for previous individuals in the popula-

tion, but the population will always be constrained by some limit m.

7

The benefit of using EAs over other optimization methods, such as Artificial Neural Networks (ANNs),

are many. EAs can perform on both discrete and continuous problems. In addition, since they are less

concerned with exact solutions, rather generating an optimal estimate, they are less susceptible to noisy

domains. Finally, their focus on generating individual solutions to form a population make them available

to aggressive parallel computing strategies [30]. Because of their flexibility, EAs have been used to address

a wide variety of problems outside of PCG such as robot locomotion, scheduling problems, and evolving

neural network architectures [30][46][71].

2.2.1 Standard Genetic Algorithm

A Genetic Algorithm (GA) is the most basic algorithm that exists within the EA family. They contain

almost the same elements as an algorithm for search-based PCG discussed in section 2.1. Algorithms 1

and 2 specify the basic outline of a GA. First, a population is established with a list of corresponding

fitnesses. Random individual genotypes are then generated within the bounds of the representation

chosen for the particular problem. Phenotypes are then expressed, and the fitness function assigns a

fitness to the phenotype of each individual in the population. These individuals are then placed into the

population until S individuals have been generated. Then, for I iterations, the process of generating new

individuals takes place. In this process, two individuals are chosen from the population. Usually, a subset

of individuals are stochastically chosen from the population, and the two highest fitness individuals from

that subset are “bred” together to produce a new child. This reproduction usually happens via two

mechanisms called crossover and mutation. Crossover is the exchange of genetic material between the

two different individuals. Random amounts of the parent genomes are swapped between individuals

producing a new genome, or sometimes several genomes if multiple; new individuals are being produced

simultaneously. After crossover, the new genome is subject to mutation where each gene has a low

probability to change via some, typically, small value. Mutation is the only mechanism for introducing

new genes into the population as crossover only swaps genome values that exists between individuals in

the population. These two processes are the variation operators. After this variation has taken place,

the individual(s) is placed in the population. This can happen one of two ways. A steady-state GA

replaces the individuals into the existing population if the new individuals outperform the old ones. In a

generational GA, all the individuals are spawned from the generation that directly preceded it. After all

the new individuals have been generated, the new generation replaces the old generation.

The difference between standard and generational GAs is in their selective pressure. Selective pressure

is an aspect of a solution that causes certain individuals to be preferred over others. In a steady-state

GA, the parents in the population will become more fit as time progresses. This forces the children

8

Algorithm 1 Standard Generational Genetic Algorithm (from [30])

1: procedure GeneticAlgorithm(S)
2: (X ,P)← create empty population() . Create: X empty population, P their fitnesses
3: for s = 1→ S do . Initialize: population of S individuals
4: x← random solution()
5: p← evaluate(x)
6: P(s)← p, X (s)← x

7: for i = 1→ I do . Main loop: For I iterations update the population
8: for s = 1→ S do
9: x1, x2 = selection(X)

10: x′ = variation(x1, x2)
11: p← evaluate(x

′
)

12: P ′(s) ← p, X ′(s) ← x′ . Store Temporary: X ′ individuals, P ′ their fitnesses

13: P ← P ′, X ← X ′ . Update whole population

Algorithm 2 Standard Steady-State Genetic Algorithm (from [30])

1: procedure GeneticAlgorithm(S)
2: (X ,P)← create empty population() . Create: X empty population, P their fitnesses
3: for s = 1→ S do . Initialize: population of S individuals
4: x← random solution()
5: p← evaluate(x)
6: P(s)← p, X (s)← x

7: for i = 1→ I do . Main loop: For I iterations update the population
8: x1, x2 = selection(X)
9: x′ = variation(x1, x2)

10: p← evaluate(x
′
)

11: s← select lowest fitness(x
′
)

12: if P(s) < p then
13: P(s) ← p, X (s) ← x′ . Update: new replaces lowest performing if p is more fit

to be high in fitness if they are to replace the parent, which places more selective pressure to be of a

higher fitness. It should be noted in Algorithm 2 that the lowest fitness individual is replaced with the

highest performing child. This is only one way to select a potential individual for replacement. Stochastic

methods are also a valid way of selecting this individual. In a generational GA, there is smaller selective

pressure to be better than parents from the previous generation. Poor individuals generated from the

variation operators will be transferred over to the new population regardless of their fitness. The only

selective pressure comes from the initial selection of individuals in the prior population. This generation

of new individuals is an EAs way of traversing through the search space, or fitness landscape, as it is

known in EC. By continually generating new individuals throughout the search space, a GA attempts to

discover an optimum [30][62].

9

2.2.2 Quality Diversity Algorithms

These standard GAs solve a problem known as objective optimization. As stated previously, they are

designed to return a single optimal solution, or a set of optimal solutions [31]. An idea, growing greatly

in popularity in the last decade, has been to utilize algorithms that, instead of returning a converged,

optimal solution, return a group of diverse, high-performing solutions. These are collectively known

as Quality Diversity (QD) algorithms, or illumination algorithms in some domains [54]. This interest

is driven by the idea that natural evolution is not necessarily an optimizer. Natural evolution has a

tendency to display a wide variety of solutions that operate in a variety of niches. Research suggests

an explanation of this observation. High-performing structures found in organisms can sometimes only

arise through simpler structures that were rewarded through evolution [38]. Using QD, EAs can become

more than just an alternative to optimizing techniques but, instead, can act in entirely new problem

domains where the goals are to generate diverse or creative solutions [55]. QD algorithms are ideological

descendants of several ideas such as Island Models, Multi-Modal Function Optimization (MMFO), and

Multi-Objective Optimization (MOO).

In an Island Model, many populations, each performing a different instance of an identical GA, are

run in parallel. Members from the different populations migrate to each other intermittently throughout

the run-time of the algorithm. Results suggest that, although each algorithm is identical, starting the

search from a different point in the search space on each island yields different overall results [87].

MMFO techniques are designed to discover multiple optima of the search space simultaneously, re-

sulting in diversity. Unlike Island Models, this diversity of solutions is one of the goals of MMFO. One of

the first instances of this was in 1975 [29]. The goals of MMFO and QD algorithms are almost identical,

but in literature, they are not seen as identical fields. Literature describes the difference between QD

and MMFO as, ”a later shift in interest toward behavioral diversity ... where the relationship between

genome and behavior is complex” [54]. Genotypes may not always correspond in a one-to-one behavior

with their phenotypes. This interest in the expression of the genotype in the form of its phenotype, as

opposed to the genotype itself, marks the difference between MMFO and its later change into QD [54].

This is discussed further on in this section.

Multi-Objective Optimization (MOO), while ideologically further from QD algorithms than MMFO,

can also be considered as a precursor to QD algorithms. MOO algorithms are trying to optimize towards

a set of different criterion (multiple fitnesses), instead of a single fitness. The algorithm attempts to

discover a trade off of different objectives, called a Pareto front, when trying to find out what the ”best”

solution is [15][54]. While convergence is mainly the goal of MOO, considerable effort has been made to

10

generate diversity along the Pareto front. This emphasis of diversity along the Pareto front is an idea

that can be considered a precursor to QD [8][33].

Although the ideological history of QD algorithms goes back many decades, one of the first defining

algorithms in the field, Novelty-Search with Local Competition (NSLC), wouldn’t be published until 2011.

NSLC is an algorithm that rewards individuals for unique behavior but also rewards competition amongst

individuals within similar morphological niches. Instead of rewarding only exploration of the best niches,

the exploration of a variety of different niches was emphasized [36]. This idea of optimizing for a set of

high-performing, diverse solutions would grow within the community and result in new algorithms. One

of these was an algorithm known as MAP-Elites [11][23][46].

Multi-Dimensional Archive of Phenotypic Elites

Algorithm 3 gives a description of default MAP-Elites. First, the search space is divided into a N -

dimensional grid by splitting each of the different traits in a phenotype into N sections. These traits

could be number of petals, number of leaves, choice of color, etc. This results in an archive made up of

PN different cells, or niches, where each cell is a different permutation of the number of phenotypes, P,

and number of discretizations N. Each cell represents a unique permutation of phenotype combinations.

For example, one cell could represent any flower that has three to five petals, four to six leaves, and is

blue. Another cell could represent a flower with six to nine petals, two to four leaves, and is red. A

key part of the algorithm is that only one individual can be placed in a cell at a time. Individuals with

phenotype ranges that correspond to a particular cell must compete with each other to be that cell’s

chosen elite. Individuals with the same phenotype ranges can only compete with each other, and there

can only be one elite in each cell. From this, the name arises. The algorithm creates an archive with cells

based on permutations of different phenotype ranges and individuals with phenotype values inside those

ranges compete to be the elite individual in each cell.

This discretization of phenotypes, and inter-niche competition, also naturally creates discretizations

in the search space. Suppose there were six colors for a flower and the number of discretizations for each

trait in the phenotype was three. This would mean that flowers of two colors would be competing for the

same cells. If the number of discretizations were six, then flowers of a specific color would be guaranteed

to compete against flowers of the same color. In the first case, the archive would have the best individuals

from either color be present. If red and blue flowers were competing for the same cell and red flowers were

always superior to blue flowers, then blue flowers would never be present in the archive. In the second

case, this does not hold true. Blue flowers do not have to compete against red flowers. They are in their

own cells and have a possibility of showing up in the final archive. This is an example of how splitting

11

Algorithm 3 MAP-Elites algorithm (from [46])

1: procedure MAP-Elites([n1, ..., nd])
2: (X ,P)← create empty archive([n1, ..., nd]) . Create: X empty archive, P their fitnesses
3: for i = 1→ G do . Initialize: create G individuals
4: x← random solution()
5: ADD TO ARCHIVE(x, X , P)

6: for i = 1→ I do . Main loop: For I iterations
7: x = selection(X)
8: x′ = variation
9: ADD TO ARCHIVE(x, X , P)

10: procedure ADD TO ARCHIVE(x,X ,P)
11: (p,b)← evaluate(x) . Evaluate: get fitness p, calculate archive index b
12: c← get cell index(b)
13: if P(c) = null or P(c) < p then
14: P(c) ← p, X (c) ← x

the phenotype traits also splits the search space.

To initialize the archive, a number of individuals are generated to create a base population from

which more individuals can be generated. In the main loop of the algorithm, a single individual is chosen

at random from the archive and its genome manipulated by some variation operators. Afterwards, the

archive cell corresponding to the individual’s new phenotype ranges is calculated. If the cell accessed

with the index is empty, the individual is stored at that index. If an elite currently resides at that index,

a comparison of fitnesses occurs and the individual with the highest fitness is the one that is placed at

the current index. Variation and fitness assignment can be identical to the techniques found in regular

GAs. In algorithm 3, b (behavior or phenotype), is used to calculate the cell’s index, but the genome

can be used as well. In some experiments, the genome does not have a one to one correlation to features

in the behavior space. For example, in the robot locomotion experiments used in the original paper

unveiling MAP-Elites, the amount of fuel consumed by the robot is calculated from the genome, but

there is no gene that directly corresponds to fuel usage. These are known as indirect encodings. Some

of the encodings used in this work are direct encodings. Each part of the genome directly corresponds

to some part of the phenotype generated [18][72]. Thus, the genome can be used as b in this instance

as well as used to index cells in the archive. That is for 3D flowers. For 2D flowers, the the rules of

QD algorithms are violated slightly. The genotypes of 2D flowers can be similar but produce distinctly

different flowers. Attempting to simplify the technical process, the genotype is still used as the behavior

metric in this instance, since to do anything different would require us to be able to recognize flowers of

different dimensionality. To be consistent with prior literature, the term behavior will be used in place

of genome when discussing how archives are structured (for both types of flowers) and how individuals

12

map to archives, but they are synonymous. This applies to both MAP-Elites and CVT-MAP-Elites.

MAP-Elites has a few distinct advantages. First, the user of the algorithm can determine the granu-

larity of the behavior space. This allows for more control when navigating the search space. This is shown

in the example with red and blue flowers. The selective pressure for flowers was higher in the first instance

because flowers were competing with more individuals. The more individuals competing in a single niche

(equivalent to the niche being larger), the more likely a superior behavior exists within that niche. In

addition, much like the different populations in Island Models, each cell is simultaneously navigating the

search space. Unlike Island Models, different areas of the search space are (almost) guaranteed to be

explored, because each cell in the grid strictly corresponds to a different permutation of behavior ranges.

This is beneficial because a cell might be generating a morphology or mechanism that could be useful to

another cell in a different part of the grid. This idea of “goal switching” is further explored in section

2.5 [48]. Finally, this technique reduces the effect of local optima, areas in the search space that appear

as the optimal solution, but are only optimal in that localized area of the space [62]. Local optima, also

known as local minima in some problems, have less of an effect on MAP-Elites because more of the search

space is guaranteed to be explored. A local optima may impede a particular cell, but this won’t prevent

optimum in other cells from being discovered. Unlike NSLC, the complexity of lookup for evaluation in

the MAP-Elites algorithm is O(1). Novelty-Search with Local Competition (NSLC) has to calculate the

feature distance to all other individuals in each generation The nearest-neighbor calculations required for

this make the complexity O(n(log(n)). Although the algorithm specializes in exploring the search space,

a result for each cell is not guaranteed. It is possible that the algorithm will never search any number

of cells, either because the opportunity did not arise or that the combination of phenotypes required for

the cell simply cannot be made [46].

MAP-Elites has a few major disadvantages that have to be considered when evaluating the algorithm.

The first is that its bounds are fixed. Techniques that seek to use EA as a form of endless creativity, such

as Innovation Engines, are bound by this constraint as no new niches can be discovered during the course

of the algorithm’s run time. The second, is a problem of dimensionality. The size of the grid is PN ,

which can become prohibitively expensive as dimensions increase. This is seen in prior literature, during

an experiment performed on hexapod locomotion where it would have cost 4096TB of RAM just to store

the pointers for a 50-dimensional discretized genome in a grid [84]. This is of particular consequence

to the problems found in this work, as the dimensions of some of the genomes in the Diversity Engine

can be over 50 features. In the case of this work, it is required that another form of MAP-Elites called

Centroidal Voronoi Tessalation MAP-Elites (CVT-MAP-Elites) is used [84].

13

Algorithm 4 CVT approximation (adapted from [12] in [84])

1: procedure CVT(k)
2: C ← sample points(k) . k random centroids
3: S ← sample points(k) . K random samples
4: for i = 0→ max iter do
5: I ← get closest centroid indices(S, C)
6: C ← update centroids(I)

7: return centroids C

Centroidal Voronoi Tessalation MAP-Elites

Centroidal Voronoi Tessalation MAP-Elites (CVT-MAP-Elites) was created to allow the MAP-Elites

algorithm to scale to genomes of large dimensionality, where a uniform discretization amongst all the cells

is intractable. The same basic principles of niching that hold in MAP-Elites are applied to CVT-MAP-Elites

as well. Discretionary boundaries are drawn in the N -dimensional search space to promote competition

within morphological niches. An empty archive is created and filled using the same principles of EC previ-

ously discussed with no modifications. The only difference between the algorithms is how the boundaries

are created in the search space. Instead of splitting each gene in the genome into equal ranges, a technique

known as Centroidal Voronoi Tessalations (CVT) is used [17].

Figure 2.1: Conceptual Image of MAP-Elites versus CVT-MAP-Elites (from [46])

CVT can be thought of as splitting the search space into unequal tiles, or tessalations. Each grid

cell in CVT-MAP-Elites is determined by a centroid, which is chosen from a set of randomly generated

individuals at the start of the algorithm. These centroids act as distance markers in k-dimensional space.

14

Algorithm 5 CVT-MAP-Elites algorithm (from [84])

1: procedure MAP-Elites(k)
2: C ← CVT(k) . Run CVT and get the centroids
3: (X ,P)← create empty archive(k) . Create: X empty archive, P their fitnesses
4: for i = 1→ G do . Initialize: create G individuals
5: x← random solution()
6: ADD TO ARCHIVE(x, X , P)

7: for i = 1→ I do . Main loop: For I iterations
8: x = selection(X)
9: x′ = variation

10: ADD TO ARCHIVE(x, X , P)

11: procedure ADD TO ARCHIVE(x,X ,P)
12: (p,b)← evaluate(x) . Evaluate: get fitness p, calculate archive index b
13: c← get index of closest centroid(b, C) . Access: using b, CVT retrieve centroid c
14: if P(c) = null or P(c) < p then
15: P(c) ← p, X (c) ← x

As new individuals are generated throughout the course of the algorithm’s run-time, they are compared

to genomes of the centroids. Whichever centroid’s genome they are closest to becomes that individual’s

new cell. The centroids are determined through a process analogous to using clustering algorithms to

classify points in k -dimensional space. This work uses K-means as the clustering algorithm of choice

[42]. When the centroids are finalized, areas within the search space form morphological niches based

on layout of the centroids in k -dimensional space. The centroids can be indexed in either a list or a

K-Dimensional tree (KD-tree) [5]. This has an obvious time complexity disadvantage when compared

to default MAP-Elites. The time complexity for a grid lookup in the default algorithm is O(1) whereas

CVT-MAP-Elites has a lookup of O(n) on average for a list. For a KD-tree, the lookup is better on

average at O(log(n)) but still performs at O(n) at worst. In addition, the creation of the CVT is O(ndki)

where n is the number of samples in d -dimensional space that are going to be clustered, k is the number

of clusters, and i is the number of iterations.

The clear advantage of using CVT-MAP-Elites over default MAP-Elites is it allows for the utilization

of the MAP-Elites algorithm for solution representations of extremely high feature dimensions, as it

allows for a more flexible choice in the number of niches. As is present in default MAP-Elites, this choice

of niching allows the user to directly affect the amount of selective pressure when choosing new elites. In

a CVT of fewer niches, there will be higher selective pressure for fitness because more potentially elite

genomes exist in the same niche. Whereas in a CVT with a large number of niches, the selective pressure

decreases because the number of different genomes that could potentially compete is lessened. It should

be clear that using CVT-MAP-Elites puts a heavy reliance on the type of distribution used to generate

the initial centroids. If the initial centroids are not generated uniformly across the search space, then the

15

centroids in the CVT will not represent a uniform distribution of solutions. Instead, the centroids will

form a dense concentration in k -dimensional space.[84].

The paper proposing CVT-MAP-Elites as an algorithm had several metrics that were measured against

the original MAP-Elites algorithm. As such, they used the same experiments as the paper unveling

MAP-Elites, maze navigation and robot locomotion. During the maze navigation experiment, robots

were evaluated on their ability to traverse a maze based on varying length of feature descriptors (D) [45].

The algorithms were compared in the number of niches filled as well as the spread of solutions. The

spread of solutions was calculated using:

s =

1
|A| Σb∈A dnn(b, A)

maxb∈A dnn(b, A)
(2.1)

where b is the behavioral descriptor of the solution (in this work the genome), and A is the archive.

dnn(b, A) is the Euclidean distance of of the individual’s descriptor to its nearest centroid in the archive.

Features were compared between the two algorithms for 2D, 10D, and 50D descriptor lengths. 50D,

250D, and 1000D were used for CVT-MAP-Elites but could not be used in default MAP-Elites due to

memory requirements. The discretization of MAP-Elites was 71, 3 and 2 per dimension, which resulted

in 5041, 59049, and 1048576 cells for each respective descriptor length of MAP-Elites. The number of

centroids for CVT-MAP-Elites was 5000. The median percentage of niches filled for MAP-Elites was

0.72 (2D), 0.09 (10D), and 0.0005(20D). For CVT-MAP-Elites the median percentages were 0.73 (2D),

0.46(10D), 0.40 (20D), 0.38 (50D), 0.36 (250D), and 0.36 (1000D). The median spread of MAP-Elites

was shown to be 0.34 (2D), 0.37 (20D), and 0.29 (20D). In CVT-MAP-Elites the median spreads were

0.34 (2D), 0.41 (10D), 0.40 (20D), 0.43 (50D), 0.44 (250D), and 0.45 (1000D). The fitness quality of the

archives were extremely similar for each algorithm and CVT-MAP-Elites retained similar fitness quality at

higher dimensions. When the original authors compared CVT-MAP-Elites and MAP-Elites for hexapod

locomotion tasks, the fitness quality was shown to have similar results to those of the maze navigation

tasks, although at higher feature descriptor lengths (12D+) the results of MAP-Elites were much poorer

than that of CVT-MAP-Elites [11]. These results seem to suggest that CVT-MAP-Elites can perform at

similar levels to MAP-Elites for problems of low-dimensionality and can scale to problems that default

MAP-Elites cannot. It is for these reasons that CVT-MAP-Elites was selected as the algorithm of choice

for the problems in this work [84].

16

2.3 Deep Learning

2.3.1 Deep Learning Overview

A main component of the currently established Innovation Engine, the predecessor to this work, is a

machine learning technique known as an Artificial Neural Networks (ANNs), or, more specifically, Deep

Neural Networks (DNNs). The literature behind DNNs is vast, so a terse explanation will be given here.

For more information, consult [21]. DNNs are based loosely on the biology of the human brain. They

are composed of many atomic units called nodes that, like biological neurons, are designed to fire when

an input signal meets a given threshold. The threshold of a node is dictated by the chosen activation

function. Historically S-shaped activation functions, such as the sigmoid function, have been used, but

more recently linear activation functions, such as Rectified Linear Units (ReLU), are more popular due

to their consistent distribution of error throughout the whole network. The output of this threshold is

called an activation. A network is comprised of many of these nodes in layers. One or more layers are

comprised of one or more nodes, and these layers produce activated output vectors that are used as input

to the next layer. A vector of features is used as input to the first layer, and each feature is connected

to each of the hidden nodes via a connection called a weight. The weights dictate how much of an effect

an input will have during the calculation of the activation of a node. The output of each layer is a value,

or a vector of values, that is the activations of the sum of all the weighted inputs plus a bias node. The

bias node is an extra weighted value that is used to adjust the threshold function in each of the nodes.

The output of a node is used as input to a subsequent layer where the same process is used to generate

another output vector. The final layer is used to compute the output of the network. This process is

collectively known as the feed forward phase. The output of the network is then compared with the real

desired, or ground truth, values.

A network learns by adjusting its weights. One method of adjusting these weights is by distributing

the error signal, generated by comparing the ground truth (real values) to the network’s output, which is

distributed throughout all the layers in the network. This error signal adjusts the weight values through a

process called backpropagation [26]. By adjusting these weights, the network generalizes the distribution

of the given input, or training, values. This entire process is known as the training phase. Once training

is complete, the model can be used to predict values when given new data [21].

Many advances in contemporary technology have given rise to networks that are drastically larger

than the first ANNs. These large networks with many layers are collectively known as Deep Neural

Networks (DNNs). The number of weights in a network are generally referred to as the number of

17

parameters. A typical pedagogical neural network (XOR solver) has 6 parameters. The network used in

this work, Inception V3, has close to 25 million [77]. As the problems in this work are based in the image

recognition domain, the type of DNN used is one that specializes in image recognition, a Convolutional

Neural Network (CNN). CNNs are special DNNs that use the layers in their networks to extract high-level

features from images, or any data that can be broken down into a grid-like structure, via an operator

called convolution. Convolution operators are used similarly to activation functions in regular neural

networks, although in CNN what they work over is a subsection, or filter, of the data that iteratively

moves over the entire grid. This filter can be thought of as a flashlight that focuses on one section of an

image. The flashlight moves from section to section of the image until the whole image has been scanned.

The result of these convolutional operators is the generated feature maps that highlight important areas

of the grid or image, which are used as input to subsequent layers. When applying convolution to the

outer edges of a grid, it is common to apply padding (in the form of extra rows and columns of zeroes)

around the external grid values to preserve dimensionality. CNNs also use a pooling operator, which

is analogous to reducing the dimensionality of an image [21]. These pooling operators are applied in

grid-like filters analogous to convolutional filters, but instead of activating functions in a grid, they are

responsible for condensing groups of values into a singular value.

CNNs have been shown to excel in image recognition challenges. The first popular network used

to perform image recognition was LeNet-5 in the late 90’s. LeNet-5 was used to classify 32x32 images

of numbers, now commonly known as the MNIST problem [34]. The next popular CNN model to be

unveiled was not until 2012, when AlexNet, a revolutionary DNN architecture, was used during the 2012

Imagenet Large Scale Visual Recognition Challenge (ILSVRC). AlexNet had 8 layers and 60 million

parameters in the network. AlexNet’s error rate on the ImageNet challenge was significantly lower than

the error rates from other techniques [32]. A few years later, another significant model, GoogleLeNet used

a form of architecture called Inception, to perform in the 2014 ILSVRC challenge set, achieving similar

performance to AlexNet [76]. GoogleLeNet is most relevant to this work, since it uses a very specific

architecture called the Inception architecture. GoogleLeNet was build using Inception V1. This work

uses Inception V3 for its image recognition component. A discussion of the Inception V3 architecture is

given here.

2.3.2 Inception V3 Network

Inception V3 is comprised of a variety of Inception modules. There are four types of modules that are

present in the network. All four are used during the training phase of the network, but only three modules

(A, B, and C) are used during the actual prediction phase of the network. Each module is comprised of

18

Figure 2.2: Inception V3 Module A Architecture. (from [77])

Figure 2.3: Inception V3 Module B Architecture (from [77]). In the proposed architecture n=7.

a different combination of layers of convolutional operations and pooling operations. Convolutions are

represented as m x n operations meaning, the that features in the grid have an m x n convolutional

filter applied iteratively over the whole grid. The stride represents how many columns of cells the filter

adjusts every time it moves to a new section of the image. If a layer has a stride of 1, then the edge

of the filter will begin in the next corresponding cell. If the layer has a stride of 2 then the filter will

skip the next cell and its starting edge will be the one directly after the skipped cell [21]. After all the

19

convolution has taken place, the resulting values are concatenated to create a single output vector that

can be used as input to the next module or layer.

Figure 2.4: Inception V3 Module C Architecture. (from [77])

Figure 2.5: Inception V3 Grid Reduction. (from [77]) The figure on the right indicates a high level view
of the grid reduction being performed, while the figure on the left indicates the specific operations being
applied. It can be seen that dimensionality of each feature map is reduced while overall feature map
number (representational expressiveness) increases.

Modules A, B, and C (figures 2.2-2.4) are all various combinations of convolution and pooling. Grid

reduction (figure 2.5) is used whenever possible during the training process to reduce the dimensionality

of future feature maps without reducing the overall representational quality of the current feature map,

thus losing expressiveness in the network. The auxiliary classifier module (figure 2.6) is a way of retaining

the loss signal in the middle of the network. Due to the depth of the network, the loss signal propagation

20

Figure 2.6: Inception V3 Module Auxiliary Classifier. (from [77])

becomes very weak when approaching the start of the network (as backpropagation starts at the end

of the network and works its way to the starting layers). To strengthen the loss distribution so that it

adequately reaches the first layers of the network, the auxiliary classifier predicts the values of all the

training samples in the middle of the network. This intermediate loss is then added to the loss calculated

at the very end of the network. This creates a stronger loss signal that is distributed throughout the

CNN. The total network architecture is shown in table 2.1 [77].

Inception V3, as well as many of the models shown previously, are known to outperform humans

when tasked to the same image recognition challenges, such as ILSVRC [25][32]. While their excellent

performance is noted, it has been shown that DNNs can produce images that are graded in high confidence

type patch size/stride input size
or remarks

conv 3 x 3/2 299 x 299 x 3
conv 3 x 3/1 149 x 149 x32

conv padded 3 x 3/1 147 x 147 x32
pool 3 x 3/2 147 x 147 x 64
conv 3 x 3/1 73 x 73 x 64
conv 3 x 3/2 71 x 71 x 80
conv 3 x 3/1 35 x 35 x 192

3 x Inception As in figure 2.2 35 x 35 x 288
5 x Inception As in figure 2.3 17 x 17 x 768
2 x Inception As in figure 2.4 8 x 8 x 1280

pool 8 x 8 8 x 8 x 2048
linear logits 1 x 1 x 2048

softmax classifier 1 x 1 x 1000

Table 2.1: Outline of the inception architecture. 0 padding is explicitly stated and is also applied in
Inception Modules that do not change the grid size (successive modules of the same type).

21

by the network but look nothing like the class in which the network places them. In fact, many times the

images are not discernible to the human eye [47]. It is theorized that this occurs due to the classification

regions that are created in N dimensional space by DNNs. The space that is created is theorized to

encompass much more than the examples shown during a network’s training, and bad examples can fall

into these regions.

2.4 Image Hashing Using Perceptual Hashes

Hashing algorithms are transformative algorithms that can map one value into another. This mapped

value can act as a form of compression or encryption of the original value. More recently, hashing has

been used to do reverse look-ups of images on the web. Cryptographic hashes such as md5 or sha-1

are ill-suited to this task as small changes in the original data can produce extremely large changes in

the resulting hash. This is useful in security applications but is undesirable when trying to compare

similar, but not identical, images. In contrast, a perceptual hash is a family of hashing algorithms used

to transform data, usually images, into a compressed format specifically for comparison. It does this

by converting the image into a string of bits. This bit string can then be tested for similarity to other

images by taking the difference in bits, or Hamming distance, of the two image hashes. The more similar

the string, the more similar the image. Perceptual hashes are able to do this because, unlike encryption

hashing algorithms, they are designed to be extremely resilient to changes in the original data [60]. They

can be used to find images that have been subject to digital image processing techniques such as cropping,

brightening, scaling, and Gaussian smoothing [7]. There are four perceptual hashing algorithms that used

in this work.

• Average Hash (ahash)

• Difference Hash (dhash)

• Perceptive Hash (phash)

• Wavelet Hash (whash)

In an average hash, the image is converted to grayscale and then scaled down. The average grayscale

value of the image is calculated and then compared with all the grayscale pixels in the image. If the

grayscale pixel exceeds the average value, then a 1 bit is added to the hash string, else a 0 bit. In a

difference hash the images are again converted to grayscale and scaled down. From left to right, the pixels

are compared with their neighbor in the same process that is described in ahash. Perceptive and wavelet

hashing are slightly different from these previous hashing algorithms as they operate in the frequency

22

domain, but they both follow the original pattern of being converted to grayscale and scaled down. In a

perceptive hashing, a discrete cosine transform is applied to the newly scaled image. This causes all the

high frequency areas of the image (the useful parts with the most information) to be located in the upper

left corner of the newly transformed image. The image is then cropped to those high frequency pixels,

and the median of those pixels is calculated. All the pixels in this cropped image are then compared

to this median and the bit string is formulated analogously to difference and average hashing. Wavelet

hashing is very similar to perceptive hashing, but uses a different frequency transform algorithm. There

are several different forms of the wavelet algorithm that can be used (the wavelet function can be shifted

and scaled but it is still wavelet). In this work the haar-wavelet is used. The wavelet algorithm is applied

to the image three times. After this, the median is calculated and compared as in perceptive hashing.

The difference is the image is not cropped to the upper left corner as in perceptive hashing. The whole

image is used. For more information on image hashing consult [7], [20], and [60]. For more information

on transforming images into the frequency domain using discrete transforms and wavelets consult [51].

2.5 Innovation Engines

Diversity Engines are derivative of a research project known as Innovation Engines [35][48]. While

the term “Innovation Engine” was officially announced in the official paper in 2016, primal ideas of the

research project exist in several prior works. In 1994, researchers used an interactive session between a

user and the computer to select between two parent images, where the goal was to select the image that

the user found most aesthetically pleasing. An ANN was then used to generalize the the user’s preferences

and automatically evolve images, using EC, that would conform to the user’s prior selections [2]. With

the research advancements in ANN technology, researchers have been able to vastly improve upon this

idea in the research discussed in this section, but the central idea of Innovation Engines (V1) has not

changed. A DNN is still used to learn a distribution, and this DNN is then used to guide EC to some

desired state. It should be noted that creativity, not image generation, is the overall goal of Innovation

Engines, and further iterations intend to address challenges of creativity not related to image recognition.

2.5.1 Schmidhuber’s Creativity Theory

Schmidhuber’s theory of creativity is the framework from which the Innovation Engine, and its pre-

decessor Deep Learning Novelty Explorer (DeLeNoX) derives some of its philosophical and theoretical

ideas about creativity. In the theory, the potential origin and utility of creativity, discovery, and beauty

are expounded on. It posits that appreciation of art, music, culture, and beauty are determined by how

easily they can be compressed into a form that the human mind can understand. The example given

23

was the ubiquitous appreciation of pop music over classical music. Pop music is generally created using

basic, easy to compress chords and harmonies, while classical music is comprised of much more nuanced

musical techniques. Appreciation of harder to compress data can be realized through the process of

learning, which is synonymous with increasing data compression capabilities, according to this theory.

A musical aficionado is much more likely to appreciate classical music than a pedestrian consumer of

music due to their ability to understand, or compress, that which they are listening to. Logically, this

follows that beauty is on a continuum which is determined by how easily something can be compressed.

Furthermore, the theory states that something retains peak beauty only for the short amount of time

that it is new, as learning, or in this case data compression enhancement, is limited when re-treading

already compressed concepts. A tenet of this theory is that beauty, art, and creativity are all by-products

of the mind attempting to increase its ability to compress data. This can extend to scientists as well.

The discovery of new scientific principles, and understanding them, helps to quickly compress future

observations in the world around us. It does this by introducing simple heuristics or formulas that can

be used to compress potentially complex ideas into a simpler, easier-to-use explanation. To summarize,

learning new, more complex subjects, whether they be art or science, is the brain’s attempt to better its

compression techniques. [63][64].

2.5.2 Delenox

Deep Learning Novelty Explorer (DeLeNoX) is a precursor to the Innovation Engines [39]. It is a

more basic example of Schmidhuber’s creative agent. As in Schmidhuber’s theory, the creative agent

attempts to find new types of information to compress. It operates through subsequent iterations of

transformation and exploration. In the DeLeNoX experiment, the goal was to produce sprites of pixelated

space ships for video games. The way the ships were generated was by Compositional Pattern Producing

Networks (CPPN) [70]. A CPPN uses the composition of different activation functions (see section

2.3) to create different patterns in its output. A CPPN can be comprised of a variety of different

node sequences, and the path the data takes through the network can change. Through the various

combinations of nodes and activation functions, many different types of patterns can be created. This

applies well to pixelated space ships, as CPPNs can produce many different types of ships. The generation

of the space ships is through CPPN, but there has to be a mechanism to search for new archetypes. The

transformation phase, or compression, of the sprites is done via Autoencoders (AEs) [26]. AEs are

a Machine Learning (ML) technique used to transform the input data, P, into a new feature space,

Q. Encoders (Q = fw(P)) are used to transform the data into the new feature space, while decoders

(P ′ = gw(Q)) are used to transform them back into the original distribution P. In DeLeNoX, AEs are

24

used to transform the sprites produced by the CPPN into a low dimensional feature vector encoding,

this encoding is used to calculate the novelty heuristic used in Novelty Search. DeLeNoX utilizes a

type of EA called Novelty Search [36][37]. More specifically, it uses a form of novelty search called

Feasible-Infeasible Novelty Search (FINS). Novelty Search is a precursor to Novelty-Search with Local

Competition (NSLC) mentioned in section 2.2.2. It operates by searching for behaviors different than

those that exist in its current population. It technically does not qualify as a Quality Diversity (QD)

algorithm because it does not search for quality at all. Its only concern is with the novelty of solutions.

Furthermore, it does not retain any memory and can cycle back to old solutions. The type of novelty

search used in DeLeNoX, FINS, keeps two populations of solutions. The feasible population contains

individuals who fit within the constraints specific to the problem. For example, a ship must fit inside a

certain boundary to be considered. The infeasible population contains individuals that fall outside the

constraints, making them unusable solutions. In DeLeNoX, FINS optimizes for the Euclidean distance

between the AEs representation of each of the sprites produced by the CPPN. Evolution is performed

via the NeuroEvolution of Augmenting Topologies (NEAT) algorithm [71]. DeLeNoX showed the early

capabilities of combining an EA with an ANN. An idea that was developed further in Innovation Engines.

2.5.3 Innovation Engines

Innovation Engines greatly expand upon the ideas first proposed in DeLeNoX [35][48]. Like DeLeNoX,

the goal of Innovation Engines is to encapsulate Schmidhuber’s work in a technological agent enabling it

to make creative decisions, or works, comparable to that of a human agent. Creative decision making is

noted not only through the discovery of the new, but by the discovery of the interestingly new. Obviously,

the creation of such a creative agent is a vast undertaking, so researchers are developing a series of

iterative approaches toward the development of such an agent. The first experiments designed to test

the idea of deploying such an agent, the ones this work derive from, were to test the automatic creation

of recognizable images from the real world. These experiments were labeled as version 1.0. A major

reason image generation was chosen was due to the efficiency and accuracy DNNs have in recognizing

entities from images [21]. It is a domain where computers can mimic, or rival, the capabilities of human

recognition [25][32]. Although excelling at recognition tasks, DNNs do not perform as well when used in

creative tasks. As DNNs are a supervised technique, their optimization (during training) is based on a

loss function that reports an error signal, which creativity inherently lacks. Creative functions also do

not necessarily follow a differentiable curve, a key component used in the gradient descent methods when

training DNNs. To make up for this weakness, the Innovation Engine uses EC as the creative component

for the reasons discussed in section 2.2. A CPPN was used to generate 2D images in a style found on

25

Figure 2.7: Results from the 2D Innovation Engine Generation. (from [48]). The image on the left
represents the generated image when compared with it’s real-life equivalent

PicBreeder, a website where users can breed evolutionary art [66]. The generated images were classified

by a DNN (see section 2.3 AlexNet) into the 1000 different classes found in the ImageNet database

[16][32]. The CPPN is then optimized based on the confidence that the DNN has in that image. The

algorithms that made up the search for new solutions were Novelty Search and MAP-Elites (see section

2.2.2) [11][46]. For MAP-Elites, each class in the ImageNet set was a corresponding cell in the MAP-Elites

grid. For Novelty Search, the final set of images were associated with their highest corresponding class in

the ImageNet database. The CPPN was evolved using NEAT [71]. Images generated by this Innovation

Engine are shown in figure 2.7.

The motivation behind using these specific search algorithms, as mentioned before, is the problem

with single objective optimization. The morphologies in some class may only present themselves when

they are rewarded in other classes that are also being evolved [36][37][38]. The results of the experiment

supported this conclusion. The initial work coined this phenomenon goal switching, when a member of

one class passes its genes to form an elite member of another class. For each class, there was a mean

of 8.7 goal switches. For context, each class had a mean of 48.6 new champions arise during the course

of the algorithm. This means 17.9% of the new members generated for each class arose out of goal

switching. The experiment also tested the effect that the number of objectives, in this case classes, had

on the overall performance. N classes were randomly selected from the ImageNet categories in amounts

of 1, 50, 100, 500, and 1000. The median performance of the Innovation Engine improved monotonically

as the number of classes increased. The researchers hypothesized that this happened because a larger

number of classes enabled goal switching to occur more frequently. This was supported by the observation

that the number of goal switches also increased monotonically with the number of objectives. A noted

secondary explanation for increased performance is the increased diversity from a varied number of classes.

Poor diversity means fewer varied genes in the pool. A lack of simpler building blocks could mean that

26

Figure 2.8: Results from the 3D Innovation Engine Generation. (from [35])

more complex structures that require those blocks will never arise [38]. This concept of more efficient

evolvability via more objectives was tested using the Innovation Engine through a variety of methods.

The results are not conclusive, but the experiments suggest that more objectives tend to increase the

median performance of offspring of high-performing classes over all the classes as a whole. That is, the

performance of offspring in their parent niche is poorer in relation to the parent, but their performance

as it relates to the entire set of classes is higher [48].

Another application of Innovation Engines was published not long after the release of the initial

paper. 3D images were created using encodings generated by EndlessForms.com, a web site similar

to PicBreeder, but specializing in 3D constructs [9]. The forms are created, again, via CPPN. The

MAP-Elites algorithm is used to create a grid of the 1000 classes in the ImageNet database. The DNN

that is utilized is GoogLeNet [76]. The paper acts as a proof of concept in combining an Innovation

Engine with a DNN that can produce recognizable 3D images of the various classes in ImageNet. EAs

offer a mechanism by which 3D artefacts can be generated using a neural network. In the Innovation

Engine, 3D artefacts were generated using the EndlessForms.com encoding and then images were taken

at different angles of the 3D artefact. The confidences of these images, obtained from the DNN, were

then multiplied together to create an overall score of the artefact. Different rendering improvements,

such as lighting, were also evolved alongside the encoding as some artefacts, such as fish, might not be

recognized by the network unless a blue background was included. Search improvements, such as adding

more general objective (class) categories and biasing selection towards niches that innovated more often,

were also included. Images generated by this Innovation Engine are shown in figure 2.8. The requirements

of the algorithm were computationally expensive, so only two full runs were performed. 18.2% of classes

27

achieved confidence greater than 0.85 (on a scale of [0,1]) where search and rendering improvements were

included. Alternatively, only 15.1% of classes achieved confidence greater than 0.85 when only rendering

improvements were added. The classes that performed the worst had multiple classes that were extremely

similar to themselves. These classes usually were breeds of animals like cats and dogs. This is of particular

relevance to this work, as the optimization of different types of flowers is attempted [35].

The overall driving force behind Innovation Engines is to generate an agent that can perform all

sorts of tasks related to creativity and do so autonomously. The researchers stated goals are to keep

applying the Innovation Engine to different domains in order to advance the work in a more a general

way. Ultimately, the Innovation Engine should be able to innovate in all sorts of domains, addressing

challenges found in the physical, scientific, and artistic realms. Although grand, these goals are beyond

the scope of this work, and Diversity Engines attempt to apply themselves to a much more narrow set of

problems.

2.6 Other Related Work

Innovation Engines are by no means the first technology to employ image generation technology.

There are a number of other works that have attempted to apply EC to image generation tasks. This

early work includes the generation of human faces and evolutionary art [10][41]. Other researchers have

attempted to encapsulate the ideas of creativity by generating vases based on the abstract qualities of

the environments around them as well as generating novel sculptures based on ML techniques [27].

More specific to this work is a subject of research known as Petalz. Petalz was a game that was

designed to run on Adobe Flash systems and the Facebook platform. The goal of the game was to breed

flowers on a virtual balcony. These flowers could be sold to other players of the games so that the buyer

could breed that flower with flowers that the already own. Flowers could be classified into differing types

and 3D models could be printed using the appropriate software. The flowers were encoded via a CPPN

which was evolved using the NEAT [71][70]. It should be noted that the goal of Petalz was not to generate

any specific flower, but more as a proof of concept for PCG as a core game mechanic.

Another game to utilize EC heavily is Darwin’s Demons [69]. Darwin’s Demons is a game where the

player, who pilots a space ship, is tasked with defeating waves of enemies that progressively get closer

while firing at the player’s ship. Between each wave, the enemies are evolved using a GA. Although,

the GA has some special modifications to the variation operators. Enemies are evaluated based on their

lifetime over the course of the wave, their aggression, and their accuracy. Genetic anomalies in the form of

“migrants” can appear over the course of play and represent difficult enemy archetypes. These archetypes

were selected manually prior to play. The results from this work showed that evolution, and player choices

28

throughout the evolutionary process, can have a significant effect on the difficulty level and the types of

individuals that arise throughout the game.

29

Chapter 3: The Diversity Engine

Innovation Engines provide a solid foundation for automatic, asset-driven PCG. However, the results

are somewhat abstract (refer to figures 2.7 and 2.8), and there is a lot more work to be performed for the

quality of the generative solutions to be up to the standards of even a simple video game. As Machine

Learning (ML) techniques improve, the potential quality of generative solutions may improve as well.

There is a research-driven mandate for a lightweight and adaptable framework that can generate many

different kinds of objects that can be evaluated by many different methods, all done quickly and with

relative ease. The Diversity Engine is a response to those requirements. It is intended to be a pragmatic

application of the image-based theoretical work of Innovation Engines. To be clear, the Diversity Engine is

intended to be derivative of Innovation Engines proper and exists within their domain, albeit in a narrower

scope. Designed via object oriented principles, the Diversity Engine is intended to be a modular, easily-

extendable framework that allows for rapid prototyping of different PCG class types (flowers, trees, rocks,

etc.) and evaluation of those classes via different methods, whether those be based on ML or not.

3.1 High Level Tool Architecture

This section is intended to be a high level overview of the Diversity Engine’s architecture. For more

specific software implementation, consult section 3.2. Figure 3.1 shows the high level design of the

Diversity Engine. Generative objects get encapsulated in the Evolving Object class. Evolving Objects

form the atomic unit of the entire framework. They represent, in C++, a solution that exists (or will

exist) on disk in the form of an image. The Evolving Object is in a form that can be manipulated by the

evolutionary facilities and carry the evaluation of their corresponding images. They are also responsible

for writing relevant information to trait files when it comes time to execute PCG class generators. PCG

classes can be hard coded as a C++ child class of Evolving Object, stored as Evolving Objects themselves

with their specifics determined via a configuration file that specifies gene ranges and types. These Evolving

Objects (and their children classes) are wrapped in another class, the Evolving Object Factory. This

class serves as the Evolving Object class factory (not to be confused with PCG class generators) for the

Evolutionary Algorithm classes, which allows them to create any user-defined C++ class. After being

generated by the factories, the Evolving Objects are stored in populations or archives in the Evolutionary

Algorithm classes and provide a mechanism to generate PCG class images and write them to disk. The

internal Evolutionary Algorithm classes are currently limited to CVT-MAP-Elites and a standard GA.

A Python wrapper is placed around their Pybind interfaces. For CVT-MAP-Elites, this wrapper allows

for the creation of the centroid clusters that will act as archive cells, as well as allowing for hashing

30

Figure 3.1: High Level Architecture of the Diversity Engine

genomes (via Python tuple) for archive cell placement. For both GAs and CVT-MAP-Elites, it allows

for more sophisticated printing facilities. For more information about extending these facilities consult

section 3.2. These classes are written in C++ to utilize the language’s well-known speed and parallel

frameworks, but they are wrapped in a Python3 interface to allow for Python’s ease of use. This C++

to Python interface is implemented via Pybind11 and is written to a Python library which can be called

from Python as a module [86]. The generator and evaluation mechanisms exist independently of this

interface. The evaluation mechanisms could exist outside the Python environment with use of Python

Pickling and sub-process calls, but this work utilizes mechanisms written in entirely in Python. The

PCG class image generator is platform agnostic. The user specifies a sub-process system call prior to run

time which, when activated during the PCG creation of an Evolving Object, calls an executable which

31

generates the actual PCG class image. There are three requirements of any generator that is going to be

used in the Diversity Engine. The first is that is should take a trait file as an argument. The second is

that it must be able to read from this traits file that should contain the list of genes required to build the

object as well as the image location (or any other relevant information). Finally, it must be able to save

the image to disk in the same location provided in the traits file. As long as the generator follows those

rules, it can act as a generator for the Diversity Engine. This enables the usage of generators written in

any language, on any software platform, providing true decoupling of the generator from the interfaces.

For example, this work utilizes two generators. One is written in the gaming software engine Unity (C#)

[83]. The other is written using a platform called Processing and is written in Java [56].

3.2 Implementation

This section is intended to be a technical reference for the Diversity Engine. For a high level overview

consult section 3.1. The Evolving Object class acts as the parent class for more specific object classes,

although it can be used on its own. It retains all the important characteristics of the object images it

corresponds to, such as genome length, file location, class type, and, obviously, the genome. Polymorphism

is used to access user defined classes inside the Diversity Engine’s evolutionary facilities and also in

evaluation mechanisms. Through inheritance, all Evolving Object children classes receive the methods

and members necessary to operate within the Evolutionary Algorithm classes and operate from inside

an Evolving Object parent container. This enables users to define their own classes through one of two

ways, creating their own C++ child class (and factory wrapper) or using Evolving Objects themselves

and specifying PCG class traits via a configuration file. If the genome can be represented as a simple

ordered list, it is not necessary for users to create their own C++ classes to represent their objects when

using the Diversity Engine. Users can create the configuration files mentioned previously that can be

passed to the Evolving Object Factory’s constructor. All genes in the genome are normalized between

0 and 1 when created, and this configuration file specifies each gene’s range so that each gene can be

restored correctly when writing the genome to a traits file. The configuration file also specifies whether

these genes should be floats or integers. If the genome required by a generator is more complex than an

ordered list, users will be required to create their own C++ classes derived from the Evolving Object

class. For example, the 2D flowers used in the upcoming Diversity Engine experiments have a variable

length genome. A static configuration file is inappropriate in this case, and methods were created so that

genomes of arbitrary length could be written to a traits file.

Since the Evolving Object type is used as a container for all Evolving Object children inside the

Evolutionary Algorithm classes, it is necessary to initially generate the objects from factory classes that

32

can be passed to the Evolutionary Algorithm classes and generate objects of the appropriate Evolving

Object child class. The Evolving Object Factory, or its children classes, are created prior to the initial

construction of the Evolutionary Algorithm classes. They are then passed as objects to the constructor

of the Evolutionary Algorithm classes inside an Evolving Object Factory parent class container and

used whenever new objects need to be generated. This polymorphism allows the framework to reference

the Evolving Object container throughout the Evolutionary Algorithm classes while also generating the

correct objects at run time.

Currently the Diversity Engine only offers two different Evolutionary Algorithm classes, a standard GA

and CVT-MAP-Elites. These are children classes that derive from the parent Evolutionary Algorithm

class. The parent class offers many of the different members you would find in a typical EA such as

crossover and mutation, and some print facilities. Selection, population structure, population insertion

maintenance, and some more algorithm specific print facilities are all the responsibility of the children

classes. These operators can take vastly different forms across different algorithms and must be relegated

to the children classes. A Python wrapper class has been placed around the Evolutionary Algorithm

Pybind interfaces (which includes the factory and object classes by extension). A large portion of the

Python wrapper for CVT-MAP-Elites was written in Python for [46]. It has been adapted to fit the

Diversity Engine’s framework. For the CVT-MAP-Elites, this allows access to Python’s sci-kit learn

package with its clustering facilities as well as the KD-tree facilities. The centroid map (archive) is

handled by this Python wrapper where the centroids are initially generated using sci-kit learn’s k-means

clustering. After these centroids are found, they are stored in a in a KD-tree for O(log(n)) lookup.

This wrapper allows for the hashing of an object’s genome (via tuple) in the Python layer, which allows

tuple-to-archive index mapping. The retrieved archive index and the object are then passed to the C++

layer, where the new object could be placed in the C++ map (archive). Due to the optimization and ease

of use of sci-kit learn’s packages it was determined that splitting CVT-MAP-Elites functionality between

layers was the optimal choice at present. A wrapper is also placed around the GA class but is much

less important to its core functionality. Like the CVT-MAP-Elites, it contributes to printing some of the

algorithm’s more important metrics. These wrapper classes are, at present, the interfaces that should be

used when utilizing the system in Python. Due to the way that memory is managed between the C++

and Python layers, the C++ classes should not be used as standalone C++ libraries, but as source for

the Pybind libraries.

OpenMP is used to generate PCG class images simultaneously via multi-threading. To clarify, it is only

initial object generation, the writing to trait files, and actual generation via process calls and execution

that is done in parallel, not the variation of the C++ Evolving Objects themselves. The number of

33

threads can be specified upon compilation of the Pybind11 libraries. To ensure that pseudo-random

number generation is still valid during parallel execution, this work utilizes Tina’s Random Number

Generator (TRNG) for all random number generation [3][4]. TRNG is specifically designed to generate

numbers in parallel environments. Typically it is used in Monte Carlo simulations, but it translates

quite well to EAs. TRNG allows for the “leap-frogging” of sequences of random numbers in the specified

generator during parallel execution. This allows each thread to leap to a unique sequence of numbers for

each Evolving Object generated. Reproduce-ability is an important design consideration for the Diversity

Engine. So both the factory and EA classes are designed to accept a seed in their constructors that is

used to initialize their TRNG generators. During run time, this seed is shifted every time a generator is

used during the course of the EA, so a different sequence of numbers is used for the variation operators

each time they are called. This seed shifting provides decent pseudo-randomness while also ensuring

reproduce-ability via deterministic seed specification.

34

Chapter 4: Experimental Configurations and

Results

Due to the comparative nature of the experiments, all experimental commentary will be left to chapter

5 to provide a more detailed, holistic overview of the experimental results. This chapter will merely

provide the refined data collected from the experiments.

4.1 Generators

Generators exist independently of the Diversity Engine. They are responsible for the actual generation

of object images. As they are not intrinsic to the overall schema of the framework, they will be discussed

here. Flowers were the object being generated in the experiments, and there are two types, 3D and 2D.

They are written in two different platforms and will be discussed independently.

4.1.1 2D Flowers

Figure 4.1: Example of a generated 2D flower.

35

Figure 4.2: Example of a generated 3D flower.

The 2D flowers are written in a program called Processing [56]. Processing is a Java-based platform

that specializes in the programmatic generation of artwork, or sketches. The flowers are generated by

creating overlapping rings of petals that are varying elliptical shapes. These shapes can be thin enough

to form lines, or round enough to form circles. Each ring has a separate list of traits that determines its

size, shape, and color. The number of rings a flower can have is variable but its maximum is statically

determined prior to run time. The number of maximum rings a flower can have in the trials is 5. That is,

each flower can have up to a maximum of 5 rings of petals. There are a total of 52 genes in each flower’s

genome (52D). There are 10 different traits that vary with each ring, meaning there are 50 traits that

correspond to the rings of petals. Two of the traits correspond to the whole flower, the number of rings,

and the type of shading inside the petals. It should be noted that it is possible to generate objects that

look nothing like flowers inside this program. An example flower is shown in Figure 4.1.

4.1.2 3D Flowers

The 3D flowers are written in Unity using the C# language. The software used to generate the flowers

was originally written by GitHub user mattatz and is being used under the GitHub open source license

[43]. Some small modifications have been made to procedurally generate flowers based on trait files, but

aside from these modifications the code has not been changed. The software is specifically designed to

create flowers and, because of this, generates procedural objects that tend to look more like flowers, on

average, than the 2D flowers. Each flower has 13 genes that account for traits that would typically be

seen in flowers such as petal number, flower stalk height, flower size, and petal color (all stalks are green).

The image of the flower is derived from taking a screenshot of the flower above the flower itself and at

36

an angle. An example flower is shown in Figure 4.2.

4.2 DNN Training Parameters and Test Performance

A DNN known as Inception V3 is used as an evaluation component for the Diversity Engine for

the experiments shown here [76][77]. It is discussed at length in section 2.3.2 and network architecture

specifics should be looked for there. Transfer learning was used to train the initial network on the 1000

classes of found in the ImageNet data base [61]. Transfer learning involves training a network on classes

of images and then freezing all but the last few layers of the network and retraining these layers on

new classes of data. This is typically done when there isn’t enough data for a class to train the whole

network. The network trains most of its weight layers to recognize general characteristics using the

original training classes with plentiful data. Then, it learns the specifics of the new classes by retraining

the last few layers on the set with less data [21]. Daisies, dandelions, roses, and sunflowers were the newly

trained classes. Tulips were originally included, but they were eventually excluded due to the perceived

difficulty of generating a 2D tulip - the 2D generator focused on creating topdown images of flowers,

whereas almost all images of tulips from the database are side views. Prior to data augmentation, there

were 633 daisy images, 898 dandelion images, 641 rose images, and 699 sunflower images. The images

were augmented using flips, a 10% random crop, a 10% random scale, and a 20% random brightness

alteration. After augmentation, there were roughly 1360 daisy images, 1660 dandelion images, 1240 rose

images, and 1780 sunflower images. 10% of these were used as test images to benchmark the networks

training performance. 300 epochs were used to train the model, and the mini-batches were in sizes of 100.

After training, the network was able to identify images from the test set with a 91% accuracy on daisy,

an 89% accuracy for dandelions, a 96% accuracy for roses, and a 93% accuracy for sunflowers. When

used for prediction, the CNN gives a score from 0 to 1 that can be interpreted as a percentage.

4.3 Image Hashing Software and Comparison Images

This work uses the four perceptual hashing algorithms described in section 2.4. The algorithms are

written from Python3 and are based on ImageHash library written by Johannes Buchner [28]. This

repository can be downloaded using the Python Pip tool. Each hashing algorithm creates a 64-bit long

string of the image being hashed. Different strings for different images are compared against one another.

The total score is the percent, from 0 to 1, of bits that are identical in both strings. The hashing algorithms

are used to extract individuals from the final populations generated by the EAs by comparing generated

images with pre-made “accurate” images in the corresponding generators. In some experiments, they are

used as part of the fitness score. When used as a fitness score, the percent correct is added to the total

37

confidence from the DNN. For each of the generators, different comparison images are required. These

are listed in table 4.1. Real images are supplied for references but are not used as hash images during

the course of any experimental run.

38

D
ai

sy
D

an
de

lio
n

R
os

e
S

un
fl

ow
er

R
ea

l

P
ro

ce
ss

in
g

m
at

ta
tz

-U
ni

ty

T
ab

le
4.

1:
Im

a
g
es

u
se

d
fo

r
co

m
p

a
ri

so
n

w
h

en
u

si
n

g
h

a
sh

in
g

a
lg

o
ri

th
m

s

39

4.4 Experimental Equipment

The 2D flower experiments were ran on the Computational Resources Core (CRC) located at the

University of Idaho. Four different nodes were used. All the nodes were comprised of 2 Nvidia GTX

1080Ti graphics cards, 128GB of system RAM, and 2 Xeon 35-2623 v4 processors each with 8 cores.

Eight threads were used to run the experiments. Due to rendering limitations, the 3D flowers could not

be generated on the CRC. Instead, the 3D flower experiments were ran on a desktop home computer

with an NVIDIA RTX 2070 graphics card, 64GB of system of RAM, and an i5 Intel processor with 4

cores. Only two threads were used during the course of these experiments.

4.5 A Note on Reproducibility

Appendices A.2 and A.3 contain the seeds necessary to reproduce each of these trial runs. Identical

seeds are used in the 2D and 3D flower trials. This is made possible by the fact that the genomes and

traits between 2D and 3D flowers vary wildly, so psuedo-randomness is still preserved. During each of

the trials, due to lack of computational resources, there was a potential for a flower to get “corrupted”

and not be produced. This had the potential to happen 0-5 times during the course of each run. While

this does hamper the ability to do exact reproductions, keep in mind these are 0-5 flowers out of the

production of many thousands. The overall predicted effect of these corruptions on any run is minimal.

4.6 Standard Genetic Algorithm

For the standard GA, uniform crossover and mutation were utilized. Crossover was performed at a

rate of 30%. Mutation was performed at a rate of 5% for the 2D flowers and 10% for the 3D flowers.

Tournament selection was used to select the individuals from the population with a tournament size of

3. The reproduction model was generational so all newly generated individuals were passed to the new

population. The population size for both 2D and 3D flowers was 250. Due to hardware limitations, the

3D flowers were only generated for 100 generations, resulting in 25,000 flowers over the algorithm’s life-

cycle. The 2D flowers were generated for 200 generations, resulting in 50,000 flowers over the algorithm’s

life-cycle. Only the DNN confidence value was considered as a fitness. Therefore, the fitness is expressed

as a confidence percentage from the DNN. Five trials were performed for both 2D and 3D flowers, with

the metrics being averaged over those five trials.

40

4.6.1 2D Flower Generator

Out of the five trials, a rose was the best DNN-scored individual four out of five times. For the one

other trial it was a daisy. In the final generation, the fitness, on average, of the best individual in the

population was 99.4%. The average fitness of the final population was 99.0%. The average number of

goal switches (changes from one class to another during reproduction) was 0.2. At approximately 40

generations, the algorithm converged on a single value. This image came to dominate the population and

only it, along with slight variations, existed in the population. That means that in four out of five trials,

only roses existed in the final population, and in one trial it was daisies. When filtering the population

with whash-haar 95% threshold, only the fourth trial, which converged on daisies, was able to extract a

single image. Figures 4.3 and 4.4 show the best and average fitnesses as generations increase, averaged

over the five trials. Table 4.2 shows the best DNN-scored image (basically the only image) from the final

populations, as well as hash-filtered sub-populations, from each trial, if any exist.

41

Figure 4.3: Average generational fitness for 2D flowers created using a standard GA

Figure 4.4: Best individual fitness for 2D flowers created using a standard GA

42

B
es

t
In

T
ri

al
1

(R
os

e)
T

ri
al

2
(R

os
e)

T
ri

al
3

(R
os

e)
T

ri
al

4
(D

ai
sy

)
T

ri
al

5
(R

os
e)

T
ot

al
P

op
ul

at
io

n

H
as

h-
F

ilt
er

ed
N
A

N
A

N
A

N
A

T
ab

le
4.

2:
B

es
t

2
D

F
lo

w
er

in
fi

n
a
l/

h
a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s
o
f

st
a
n

d
a
rd

G
A

43

4.6.2 3D Image Generator

A rose was the best generated individual out of all five GA trials. In the final generation, the fitness,

on average, of the best individual in the population was 99.9%. The average fitness of the final population

was 99.5%. The average number of goal switches (changes from one class to another during reproduction)

was approximately 0. At approximately 20 generations, the algorithm converged on a single value. Like

the 2D flowers, a single rose, and its slight variations, came to dominate the whole population. When

filtering the population with whash-haar 95% threshold, no images were extracted. Figures 4.5 and 4.6

show the best and average fitnesses as generations increase, averaged over the five trials. Table C.10

shows the best DNN-scored image (basically the only image) from the final populations. There are no

hash filtered images as none were selected.

44

Figure 4.5: Average generational fitness for 3D flowers using a standard GA

Figure 4.6: Best individual fitness for 3D flowers created using a standard GA

45

B
es

t
In

T
ri

al
1

(R
os

e)
T

ri
al

2
(R

os
e)

T
ri

al
3

(R
os

e)
T

ri
al

4
(R

os
e)

T
ri

al
5

(R
os

e)

T
ot

al
P

op
ul

at
io

n

T
ab

le
4.

3:
B

es
t

3D
F

lo
w

er
in

fi
n

a
l

p
o
p

u
la

ti
o
n

s
o
f

st
a
n

d
a
rd

G
A

(n
o

h
a
sh

-fi
lt

er
ed

re
su

lt
s)

46

4.7 CVT-MAP-Elites

There are several metrics used to define the diversity amongst solutions found in the CVT-MAP-Elites

archives. The first is spread, s, as defined in equation 2.1 found in section 2.2.2. The diversity of an

archive is defined as:

d =
1

|A|
∑
i=1

bn−1

bi∈A

∑
j=i+1

bn

bj∈A dnn(bi, bj) (4.1)

In equation 4.2 b is a behavior (in this case the genome) for any given solutions, A is the archive, n is

the max number of solutions in the archive, and dnn(bi, bj) is the Euclidean distance between behavior

bi and bj . Centroidal diversity, Cd is defined analogously as:

Cd =
1

|C|
∑
i=1

cn−1

ci∈C

∑
j=i+1

cn

cj∈C dnn(ci, cj) (4.2)

c is a randomly generated real-number vector where |c| is equivalent to the length of behaviors to

be generated in the problem set. C is the set of centroidal clusters generated by the CVT-MAP-Elites

algorithm.

The Solution-Centroid Diversity Ratio SCdr, can be defined as

SCdr =
d

Cd
(4.3)

If it is assumed that the centroid clusters are uniformly distributed throughout the solution space (as

they should be), then we can tell how diverse the solutions are by this score. Scores greater than 1 imply

solution clustering in the search space.

This work defines another spread term, Niche Inhabitation Spread (NIs), defined as:

NIs =

1
|A| Σb∈A dnn(b, A)

d
(4.4)

The top half of the equation calculates the average Euclidean distance from the behaviors of solutions

in the archive to their centroid clusters, identically to numeration in equation 2.1. Instead of dividing

by the max Euclidean distance of a solution’s behavior to its centroid, the numerator is divided by the

diversity of the archive. Similar to equation 4.3, this can be an indication of how well spread solutions

are in space. Higher values indicate solution clustering in the search space.

Instead of the archive being transformed in generations, CVT-MAP-Elites is changed using batches.

47

The batch number is different for 2D flowers and 3D flowers. In a standard GA, individuals are pulled from

previous generations to take part in the new generation. Generations do not really exist in MAP-Elites

and CVT-MAP-Elites. Instead, batches of individuals are chosen and added to archive throughout the

algorithm’s run-time. Due to hardware limitations, for 3D flowers, the batch size is 50, and 500 different

batches are created for a total of 25,000 different flowers generated over the algorithm’s life-cycle. For

2D flowers, the batch size is 50, and 1000 different batches are generated for a total of 50,000 flowers over

the algorithm’s life-cycle. Selection is performed randomly from the archive as dictated by the original

algorithm. Crossover is performed at rate of 30%. Mutation is performed at a rate of 10% for the 3D

flowers, and 5% for the 2D flowers, with a 10% change to the gene when it is mutated.

4.7.1 2D Flower Generator Without Hashing Fitness

During this experiment, hashing was only used as a final filter after evolution had already taken place.

Only the DNN score from 0 to 1, in this case interpreted as a percentage, is used. Based on preliminary

experiments, the whash-haar perceptual hash algorithm appeared to perform better than its counterparts

(ahash, dhash, whash-haar) when it came to filtering. When testing a filter was applied at thresholds

of 85%, 90%, and 95% similarity, only the whash-haar algorithm allowed enough images to pass through

the filter to be analyzed as a population. As such, the filtered hashing photos shown are the ones filtered

from that algorithm. Five trials were performed. The metrics shown have been averaged over the five

trials.

An average of 80.0% of the 5000 niches are filled over the five trials. When analyzing the whole

population, the best individual is a rose three out of five times. Two out of five times it is a daisy. As this

metric keeps getting reported, remember that although the best flowers are roses and daisies, this does

not mean there are no good sunflowers or dandelions. Consult the class distribution histogram and the

class fitness figures, such as figures 4.7 and 4.8, to get a better understanding of the distribution makeup

and fitness. These are available for all the experiments. The average fitness of the best flower is 98.2%.

Average fitness, for the whole archive, over five trials, is 76%. Breaking down the class distributions,

10.6% of the archive is daisies, 19.4% is dandelions, 68.0% is roses, and 2.0% is sunflowers. Daisies have

an average fitness (confidence value) of 82%, dandelions an average of 81%, roses an average of 74%, and

sunflowers an average of 61%. The average number of goal switches is 0.67. SCdr is 1.04. s is equal to

0.83 and NIs is approximately 0.

The top 5% of all solutions are also analyzed as a sub-population. The average fitness of the top

5% of all solutions is 93%. The average number of goal switches is 0.8. Daisies make up approximately

50.8% of the population, dandelions make up approximately 6.3%, roses make up approximately 42.6%,

48

and sunflowers make up approximately 3%. The average fitness of daisies is 93.5%, dandelions is 91.3%,

roses is 93%, and sunflowers is 92%. SCdr is 0.05. s is equal to 0.86 and NIs is approximately 0.

Images that were 95% similar, and above, to their appropriate class comparison image in table 4.1,

when using a whash-haar filter, were isolated and analyzed independently as a whole population. On

average, 399.6 images were extracted from the archive population when using the whash-haar hash as a

filter. The average fitness of the best individual is 97.4%. The average number of goal switches is 1.1. In

this extricated population, 34.5% are daisies, 64.9% are dandelions, 0% are roses, and 53% are sunflowers.

Daisies have an average fitness of 82.5%, dandelions an average fitness of 81.6%, and sunflowers an average

of 53%. SCdr is 0.1. s is equal to 0.86 and NIs is approximately 0.

Figure 4.7 shows the percentile class distributions from the different sub-populations. Figure 4.8

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the five trials. Tables 4.4 - 4.7 contain the the best scored (from the DNN) images from the

overall population and the sub-population filtered with a whash-haar 95% filter threshold. Flower class

types not found in the population, or sub-population, after filtering using the hash values, are indicated

with an “NA.”

49

Figure 4.7: The distribution (in %) of different class types in different 2D flower sub-populations (what
percentage of the sub-population is flower type x?)

Figure 4.8: Normalized frequencies of fitness values for 2D flowers in each class type (all flowers over five
trials)

50

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

T
ri

al
2

T
ri

al
3

T
ab

le
4.

4:
B

es
t

D
N

N
sc

or
ed

2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

51

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
4

T
ri

al
5

T
ab

le
4.

5:
B

es
t

D
N

N
sc

or
ed

2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

52

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

N
A

T
ri

al
2

N
A

T
ri

al
3

N
A

T
ab

le
4.

6:
B

es
t

D
N

N
sc

or
ed

2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

53

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
4

N
A

T
ri

al
5

N
A

T
ab

le
4.

7:
B

es
t

D
N

N
sc

or
ed

2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

54

4.7.2 3D Flower Generator Without Hashing Fitness

Hashing was utilized in exactly the same way as section 4.7.1. In addition, the same sub-populations

types were analyzed using the same metrics. Five trials were performed with metrics being averaged over

those five trials.

An average of 96.8% of 5000 niches were filled over each of the different trials. When analyzing the

whole population, the fitness of the best individual is, on average, 99.3%. All five times that individual

is a rose. The average fitness for the whole population is 75.8%. The average number of goal switches

is 0.96. The archive is comprised of 0.2% daisies, 42.1% dandelions, 52.3% roses, and 5.3% sunflowers.

Daisies have an average fitness of 50.9%, dandelions an average of 76.4%, roses an average of 76.6%, and

sunflowers an average of 64.9%. SCdr is 1.03. s is equal to 0.67 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 96.7%. An average of 0.85 goal switches occur. Of

the top 5% of solutions, 26.7% are dandelions and 73.3% are roses. There are no daisies or sunflowers.

Roses have an average fitness of 96.7%, and dandelions have an average fitness of 96.1%. SCdr is 0.05, s

is equal to 0.72, and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 6.6 images were extracted from the

archive. The average fitness, over five trials, is 74.3%. The average number of goal switches is 0.93.

Dandelions make up 92.1% of all these hashed images. Roses make up the other 7.9%. The average

fitness value for a dandelion in this extract is 75%, and for roses the fitness is 67.6%. SCdr is 0.001. s is

equal to 0.87 and NIs is approximately 0.

Figure 4.9 shows the percentile class distributions from the different sub-populations. Figure 4.10

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the five trials. Tables 4.8 - 4.11 contain the the best scored (from the DNN) images from

the overall population and the sub-population filtered with a whash-haar 95% filter threshold. Flower

class types not found in the population or sub-population are indicated with an “NA.”

55

Figure 4.9: The distribution (in %) of different class types in different 3D flower sub-populations (what
percentage of the sub-population is flower type x?)

Figure 4.10: Normalized frequencies of fitness values for 3D flowers in each class type (all flowers over
five trials)

56

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ri

al
3

N
A

T
ab

le
4.

8:
B

es
t

D
N

N
sc

or
ed

3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

57

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
4

N
A

T
ri

al
5

N
A

T
ab

le
4.

9:
B

es
t

D
N

N
sc

or
ed

3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

58

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

N
A

T
ri

al
2

N
A

T
ri

al
3

N
A

N
A

T
ab

le
4.

10
:

B
es

t
D

N
N

sc
or

ed
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n
s

59

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
4

N
A

T
ri

al
5

N
A

N
A

T
ab

le
4.

11
:

B
es

t
D

N
N

sc
or

ed
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n
s

60

4.7.3 2D Flower Generator With Composite Hashing Score

In the next four experiments, the four hashing algorithms from section 2.4 were added to the fitness

value produced by the DNN. The added hashing score is the percentage of identical bits when comparing

two different 64-bit image hash strings. This score is from 0 to 1. The total fitness, no longer a percentage

but a composition of percentages, can be from 0 to 2.0. The DNN score is from 0 to 1.0 and the hashing

score can also be from 0 to 1.0, resulting in the range stated previously. Aside from this hashing score, all

the same parameters are used from section 4.7.1. Whash-haar is still used to filter images from the final

archive. Five trials were implemented with experimental metrics being averaged over those five trials.

Ahash Similarity Score Added

An average of 80% of 5000 niches were filled over each of the different trials. When analyzing the

whole population, the fitness of the best individual is, on average, 1.93. Four out of five times, the best

individual is a rose. One out of the five it is a dandelion. The average fitness for the whole population

is 1.40. The average number of goal switches is 1.16. The archive is comprised of 3.2% daisies, 41.4%

dandelions, 46.7% roses, and 8.7% sunflowers. Daisies have an average fitness of 1.16, dandelions an

average of 1.54, roses an average of 1.30, and sunflowers an average of 1.33. SCdr is 1.06. s is equal to

0.83 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.82. An average of 1.12 goal switches occur. Of

the top 5% of solutions, 0.1% are daisies, 62.2% are dandelions, 32.8% are roses, and 4.9% are sunflowers.

Daisies have an average fitness of 1.78, dandelions an average fitness of 1.81, roses an average of 1.83,

and sunflowers an average of 1.82. SCdr is 0.05. s is equal to 0.86 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 1356.4 images were extracted from

the archive. The average fitness of the best individual is 1.91. The average number of goal switches is

1.46. In this extricated population, 3.0% are daisies, 96.5% are dandelions, 0.01% are roses, and 0.4% are

sunflowers. Daisies have an average fitness of 1.11, dandelions an average fitness of 1.59, roses an average

of 1.47, and sunflowers an average of 1.18. SCdr is 0.35. s is equal to 0.85 and NIs is approximately 0.

Figure 4.11 shows the percentile class distributions from the different sub-populations. Figure 4.12

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the five trials. Tables 4.12 - 4.15 contain the images with the best composite score from

both the DNN and the ahash algorithm. Images are filtered into a sub-population with a whash-haar

95% threshold. Flower class types not found in the population or sub-population are indicated with an

“NA.”

61

Figure 4.11: The distribution (in %) of different class types in different DNN-ahash composite scored 2D
flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.12: Normalized frequencies of fitness values for DNN-ahash composite-scored 2D flowers in each
class type (all flowers over five trials)

62

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

T
ri

al
2

T
ri

al
3

T
ab

le
4.

12
:

B
es

t
D

N
N

-a
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

63

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
4

T
ri

al
5

T
ab

le
4.

13
:

B
es

t
D

N
N

-a
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

64

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ri

al
3

N
A

T
ab

le
4.

14
:

B
es

t
D

N
N

-a
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

65

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
4

T
ri

al
5

N
A

T
ab

le
4.

15
:

B
es

t
D

N
N

-a
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

66

Dhash Similarity Score Added

An average of 80% of 5000 niches were filled over each of the different trials. When analyzing the

whole population, the fitness of the best individual is, on average, 1.58. Two of of five times the best

flower is a daisy, two out of five times it is dandelion, and the final time it is a sunflower. The average

fitness for the whole population is 0.99. The average number of goal switches is 1.25. The archive is

comprised of 12.3% daisies, 46.8% dandelions, 28.4% roses, and 12.4% sunflowers. Daisies have an average

fitness of 1.06, dandelions an average of 1.09, roses an average of 0.79, and sunflowers an average of 0.99.

SCdr is 1.06. s is equal to 0.82 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.34. An average of 1.33 goal switches occur. Of

the top 5% of solutions, 37.6% are daisies, 40.8% are dandelions, 7.7% are roses, and 13.9% are sunflowers.

Daisies have an average fitness of 1.36, dandelions an average fitness of 1.33, roses an average of 1.33,

and sunflowers an average of 1.34. SCdr is 0.05. s is equal to 0.86 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 1270.4 images were extracted from

the archive. The average fitness of the best individual is 1.10. The average number of goal switches is 1.4.

In this extricated population, 20.0% are daisies, 76.7% are dandelions, and 3.4% are sunflowers. There

are no roses. Daisies have an average fitness of 1.10, dandelions an average fitness of 1.10, and sunflowers

an average of 1.01. SCdr is 0.33. s is equal to 0.84 and NIs is approximately 0.

Figure 4.13 shows the percentile class distributions from the different sub-populations. Figure 4.14

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the five trials. Tables 4.16 - 4.19 contain the images with the best composite score from

both the DNN and the dhash algorithm. Images are filtered into a sub-population with a whash-haar

95% threshold. Flower class types not found in the population or sub-population are indicated with an

“NA.”

67

Figure 4.13: The distribution (in %) of different class types in different DNN-dhash composite scored 2D
flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.14: Normalized frequencies of fitness values for DNN-dhash composite-scored 2D flowers in each
class type (all flowers over five trials)

68

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

T
ri

al
2

T
ri

al
3

T
ab

le
4.

16
:

B
es

t
D

N
N

-d
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

69

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
4

T
ri

al
5

T
ab

le
4.

17
:

B
es

t
D

N
N

-d
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

70

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ri

al
3

N
A

T
ab

le
4.

18
:

B
es

t
D

N
N

-d
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

71

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
4

N
A

T
ri

al
5

N
A

T
ab

le
4.

19
:

B
es

t
D

N
N

-d
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

72

Phash Similarity Score Added

An average of 80% of 5000 niches were filled over each of the different trials. When analyzing the

whole population, the fitness of the best individual is, on average, 1.48. All five times, that individual is

a rose. The average fitness for the whole population is 0.94. The average number of goal switches is 0.58.

The archive is comprised of 3.4% daisies, 9.7% dandelions, 84.9% roses, and 2.0% sunflowers. Daisies

have an average fitness of 0.91, dandelions an average of 0.95, roses an average of 0.94, and sunflowers an

average of 0.78. SCdr is 1.04. s is equal to 0.83 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.23. An average of 0.48 goal switches occur. Of

the top 5% of solutions, 1.9% are daisies, 6.7% are dandelions, 91.2% are roses, and 0.2% are sunflowers.

Daisies have an average fitness of 1.19, dandelions an average fitness of 1.21, roses an average of 1.23,

and sunflowers an average of 1.23. SCdr is 0.05. s is equal to 0.87 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 235.8 images were extracted from the

archive. The average fitness of the best individual is 0.94. The average number of goal switches is 1.23.

In this extricated population, 20.5% were daisies, 77.6% are dandelions, and 1.8% are sunflowers. There

are no roses. Daisies have an average fitness of 0.9, dandelions an average fitness of 0.96, and sunflowers

an average of 0.75. SCdr is 0.06. s is equal to 0.87 and NIs is approximately 0.

Figure 4.15 shows the percentile class distributions from the different sub-populations. Figure 4.16

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the five trials. Tables 4.20 - 4.23 contain the images with the best composite score from

both the DNN and the phash algorithm. Images are filtered into a sub-population with a whash-haar

95% threshold. Flower class types not found in the population or sub-population are indicated with an

“NA.”

73

Figure 4.15: The distribution (in %) of different class types in different DNN-phash composite scored 2D
flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.16: Normalized frequencies of fitness values for DNN-phash composite-scored 2D flowers in each
class type (all flowers over five trials)

74

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

T
ri

al
2

T
ri

al
3

T
ab

le
4.

20
:

B
es

t
D

N
N

-p
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

75

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
4

T
ri

al
5

T
ab

le
4.

21
:

B
es

t
D

N
N

-p
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

76

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ri

al
3

N
A

T
ab

le
4.

22
:

B
es

t
D

N
N

-p
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

77

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
4

N
A

T
ri

al
5

N
A

T
ab

le
4.

23
:

B
es

t
D

N
N

-p
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

78

Whash-haar Similarity Score Added

An average of 80% of 5000 niches were filled over each of the different trials. When analyzing the

whole population, the fitness of the best individual is, on average, 1.98. The average fitness for the whole

population is 1.50. The average number of goal switches is 1.36. The archive is comprised of 20.0%

daisies, 61.1% dandelions, 15.9% roses, and 2.9% sunflowers. Daisies have an average fitness of 1.64,

dandelions an average of 1.68, roses an average of 0.70, and sunflowers an average of 0.94. SCdr is 1.06.

s is equal to 0.83 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.92. An average of 1.34 goal switches occur. Of

the top 5% of solutions, 54.6% are daisies and 45.4% are dandelions. There are no sunflowers or roses.

Daisies have an average fitness of 1.93 and dandelions an average fitness of 1.91. SCdr is 0.05. s is equal

to 0.86 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 2778.8 images were extracted from

the archive. The average fitness of the best individual is 1.98. The average number of goal switches is

1.43. In this extricated population, 23.9% are daisies, 75.0% are dandelions, and 1.1% are sunflowers.

There are no roses. Daisies have an average fitness of 1.73, dandelions an average fitness of 1.73, and

sunflowers an average of 1.50. SCdr is 0.07. s is equal to 0.84 and NIs is approximately 0.

Figure 4.17 shows the percentile class distributions from the different sub-populations. Figure 4.18

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the five trials. Tables 4.24 - 4.27 contain the images with the best composite score from

both the DNN and the whash-haar algorithm. Images are filtered into a sub-population with a whash-

haar 95% threshold. Flower class types not found in the population or sub-population are indicated with

an “NA.”

79

Figure 4.17: The distribution (in %) of different class types in different DNN-whash-haar composite
scored 2D flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.18: Normalized frequencies of fitness values for DNN-whash-haar composite-scored 2D flowers
in each class type (all flowers over five trials)

80

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

T
ri

al
2

T
ri

al
3

T
ab

le
4.

24
:

B
es

t
D

N
N

-w
h

as
h

-h
aa

r
sc

o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

81

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
4

T
ri

al
5

T
ab

le
4.

25
:

B
es

t
D

N
N

-w
h

as
h

-h
aa

r
sc

o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

82

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ri

al
3

N
A

T
ab

le
4.

26
:

B
es

t
D

N
N

-w
h

as
h

-h
aa

r
sc

o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

83

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
4

N
A

T
ri

al
5

N
A

T
ab

le
4.

27
:

B
es

t
D

N
N

-w
h

as
h

sc
o
re

d
2
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n
s

84

4.7.4 3D Flower Generator With Composite Hashing Score

In the next four experiments, the hash scoring is analogous to section 4.7.3. Aside from this hashing

score, all the same parameters are used from section 4.7.2. Whash-haar is still used to filter images from

the final archive. Due to hardware and time constraints, only two trials were conducted for each of the

different hashing algorithms.

Ahash Similarity Score Added

An average of 96.7% of 5000 niches were filled over each of the two trials. When analyzing the

whole population, the fitness of the best individual is, on average, 1.84. Both times, that individual is a

dandelion. The average fitness for the whole population is 1.23. The average number of goal switches is

1.19. The archive is comprised of 0.06% daisies, 56.9% dandelions, 20.3% roses, and 22.7% sunflowers.

Daisies have an average fitness of 0.58, dandelions an average of 1.30, roses an average of 0.99, and

sunflowers an average of 1.26. SCdr is 1.04. s is equal to 0.65 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.63. An average of 0.98 goal switches occur. Of

the top 5% of solutions, 90% are dandelions, and 9.9% are sunflowers. There are no daisies or roses.

Dandelions have an average fitness of 1.63 and sunflowers an average of 1.61. SCdr is 0.05. s is equal to

0.77 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 13 images were extracted from the

archive. The average fitness of the best individual is 1.60. The average number of goal switches is 1.33. In

this extricated population, 73.2% are dandelions and 26.8% are roses. There are no daisies or sunflowers.

Dandelions had an average fitness of 1.39, and roses an average fitness of 1.16. SCdr is approximately 0.

s is equal to 0.81 and NIs is approximately 0.

Figure 4.19 shows the percentile class distributions from the different sub-populations. Figure 4.20

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the two trials. Tables 4.28 - 4.29 contain the images with the best composite score from

both the DNN and the ahash algorithm. Images are filtered into a sub-population with a whash-haar

95% threshold. Flower class types not found in the population or sub-population are indicated with an

“NA.”

85

Figure 4.19: The distribution (in %) of different class types in different DNN-ahash composite scored 3D
flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.20: Normalized frequencies of fitness values for DNN-ahash composite-scored 3D flowers in each
class type (all flowers over two trials)

86

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

28
:

B
es

t
D

N
N

-a
h

as
h

sc
o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

87

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

29
:

B
es

t
D

N
N

-a
h

as
h

sc
o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

88

Dhash Similarity Score Added

An average of 96.9% of 5000 niches were filled over each of the two trials. When analyzing the

whole population, the fitness of the best individual is, on average, 1.79. Both times that individual is a

dandelion. The average fitness for the whole population is 1.17. The average number of goal switches

is 1.03. The archive is comprised of 0.1% daisies, 53.8% dandelions, 35.3% roses, and 10.8% sunflowers.

Daisies have an average fitness of 0.77, dandelions an average of 1.24, roses an average of 1.09, and

sunflowers an average of 1.10. SCdr is 1.05. s is equal to 0.63 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.55. An average of 0.95 goal switches occur. Of

the top 5% of solutions, 98.8% are dandelions, 0.8% are roses, and 0.4% are sunflowers. There are no

daisies. Dandelions have an average fitness of 1.55, roses an average of 1.51, and sunflowers an average

of 1.50. SCdr is 0.05. s is equal to 0.70 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 18 images were extracted from the

archive. The average fitness of the best individual is 1.66. The average number of goal switches is 1.03. In

this extricated population, 63.6% are dandelions and 36.4% are roses. There are no daisies or sunflowers.

Dandelions have an average fitness of 1.42, and roses an average fitness of 1.20. SCdr is approximately 0.

s is equal to 0.82 and NIs is approximately 0.

Figure 4.21 shows the percentile class distributions from the different sub-populations. Figure 4.22

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the two trials. Tables 4.30 - 4.31 contain the images with the best composite score from

both the DNN and the dhash algorithm. Images are filtered into a sub-population with a whash-haar

95% threshold. Flower class types not found in the population or sub-population are indicated with an

“NA.”

89

Figure 4.21: The distribution (in %) of different class types in different DNN-dhash composite scored 3D
flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.22: Normalized frequencies of fitness values for DNN-dhash composite-scored 3D flowers in each
class type (all flowers over two trials)

90

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

30
:

B
es

t
D

N
N

-d
h

as
h

sc
o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

91

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

31
:

B
es

t
D

N
N

-d
h

as
h

sc
o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

92

Phash Similarity Score Added

An average of 96.8% of niches were filled over each of the two trials. When analyzing the whole

population, the fitness of the best individual is, on average, 1.67. One time that individual is a rose; the

other is a dandelion. The average fitness for the whole population is 1.03. The average number of goal

switches is 1.09. The archive is comprised of 36.2% daisies, 22.0% dandelions, 52.6% roses, and 25.0%

sunflowers. Daisies have an average fitness of 0.87, dandelions an average of 0.93, roses an average of

1.04, and sunflowers an average of 1.09. SCdr is 1.03. s is equal to 0.64 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.38. An average of 1.05 goal switches occur. Of

the top 5% of solutions, 0.2% are daisies, 9.7% are dandelions, 52.9% are roses, and 37.2% are sunflowers.

Daisies have an average fitness of 1.33, dandelions an average of 1.41, roses an average of 1.36, and

sunflowers an average of 1.39. SCdr is 0.05. s is equal to 0.67 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 10 images were extracted from the

archive. The average fitness of the best individual is 1.12. The average number of goal switches is 1.17. In

this extricated population, 59.9% are dandelions and 40.1% are roses. There are no daisies or sunflowers.

Dandelions have an average fitness of 1.12, and roses an average fitness of 1.16. SCdr is approximately 0.

s is equal to 0.84 and NIs is approximately 0.

Figure 4.23 shows the percentile class distributions from the different sub-populations. Figure 4.24

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the two trials. Tables 4.32 - 4.33 contain the images with the best composite score from

both the DNN and the phash algorithm. Images are filtered into a sub-population with a whash-haar

95% threshold. Flower class types not found in the population or sub-population are indicated with an

“NA.”

93

Figure 4.23: The distribution (in %) of different class types in different DNN-phash composite scored 3D
flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.24: Normalized frequencies of fitness values for DNN-phash composite-scored 3D flowers in each
class type (all flowers over two trials)

94

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

32
:

B
es

t
D

N
N

-p
h

as
h

sc
o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

95

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

33
:

B
es

t
D

N
N

-p
h

as
h

sc
o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

96

Whash Similarity Score Added

An average of 96.9% of 5000 niches were filled over each of the two trials. When analyzing the

whole population, the fitness of the best individual is, on average, 1.92. Both times, that individual is

a dandelion. The average fitness for the whole population is 1.38. The average number of goal switches

is 1.09. The archive is comprised of 0.08% daisies, 51.6% dandelions, 38.6% roses, and 9.7% sunflowers.

Daisies have an average fitness of 0.76, dandelions an average of 1.44, roses an average of 1.33, and

sunflowers an average of 1.32. SCdr is 1.04. s is equal to 0.67 and NIs is approximately 0.

The average fitness for the top 5% of individuals is 1.73. An average of 0.90 goal switches occur. Of

the top 5% of solutions, 89.3% are dandelions, 9.3% are roses, and 1.4% are sunflowers. There are no

daisies. Dandelions have an average fitness of 1.73, roses an average of 1.71, and sunflowers an average

of 1.72. SCdr is 0.05. s is equal to 0.74 and NIs is approximately 0.

When filtered using a 95% whash-haar threshold, an average of 51 images were extracted from the

archive. The average fitness of the best individual is 1.70. The average number of goal switches is 0.96. In

this extricated population, 84.3% are dandelions and 15.7% are roses. There are no daisies or sunflowers.

Dandelions have an average fitness of 1.72, and roses an average fitness of 1.59. SCdr is approximately 0.

s is equal to 0.76 and NIs is approximately 0.

Figure 4.25 shows the percentile class distributions from the different sub-populations. Figure 4.26

shows the normalized frequencies of the different ranges of fitness values from all the solutions in the final

archives across the two trials. Tables 4.34 - 4.35 contain the images with the best composite score from

both the DNN and the whash-haar algorithm. Images are filtered into a sub-population with a whash-

haar 95% threshold. Flower class types not found in the population or sub-population are indicated with

an “NA.”

97

Figure 4.25: The distribution (in %) of different class types in different DNN-whash-haar composite
scored 3D flower sub-populations (what fraction of the sub-population is flower type x?)

Figure 4.26: Normalized frequencies of fitness values for DNN-whash composite-scored 3D flowers in each
class type (all flowers over two trials)

98

D
ai

sy
H

as
h-

F
ilt

er
ed

D
ai

sy
D

an
de

lio
n

H
as

h-
F

ilt
er

ed
D

an
de

lio
n

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

34
:

B
es

t
D

N
N

-w
h

as
h

-h
aa

r
sc

o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

99

R
os

e
H

as
h-

F
ilt

er
ed

R
os

e
S

un
fl

ow
er

H
as

h-
F

ilt
er

ed
S

un
fl

ow
er

T
ri

al
1

N
A

T
ri

al
2

N
A

T
ab

le
4.

35
:

B
es

t
D

N
N

-w
h

as
h

-h
aa

r
sc

o
re

d
3
D

fl
ow

er
o
f

ea
ch

cl
a
ss

ty
p

e
fr

o
m

th
e

to
ta

l
a
n

d
h

a
sh

-fi
lt

er
ed

p
o
p

u
la

ti
o
n

s

100

Chapter 5: Conclusions and Future Work

For the state of the art techniques in PCG, generating multiple classes of objects with close visual

similarity to representative target objects is still a difficult problem [35][48]. This is extremely relevant

to asset generation, since many assets in simulation can share basic overall characteristics but be distinct

visually. Being able to generate them diversely, and accurately, is extremely important. The goal of this

work was to investigate whether, when utilizing generators more specific to the classes themselves, better

results could be produced. To reduce the effects of dimensionality explosion encountered when creating

objects that have lots of available parameters, CVT-MAP-Elites was used. The developed approach was

tested on both 2 and 3 dimensional objects, specifically several types of flowers. The results are mixed

with some promising outcomes, but clearly there are additional hurdles to overcome.

When using a standard GA, for both 2D and 3D flowers, the population converged very early relative

to the algorithm’s run-time, as shown by figures 4.3, 4.4, 4.5, and 4.6. As expected, it also converged

to a population of identical, or extremely similar, solutions, and it did so only within one or two of the

possible classes of flowers. The 3D flowers are remarkable in the sense that every trial produced almost

the exact same rose (as shown in table C.10). This seems to indicate that this flower is an easily found,

locally optimal solution that the network deems to be superior to most other generated solutions, as the

same amount of flowers are generated, totally over the algorithm’s life-cycle, as the CVT-MAP-Elites

experiments. These solutions had an average fitness of 99% for 2D flowers and 99.5% for 3D flowers.

Although high-performing, the solutions are not diverse (tables 4.2 and C.10). These results confirm the

results in prior literature, that standard GAs are not the technique to use when trying to produce a large,

diverse set of solutions. It should not be discounted that the results from the 3D rose in table C.10 are,

subjectively, quite good - they look like roses. They just are not diverse.

CVT-MAP-Elites, as reported in other work, shows promise for producing a diverse set of high

performing solutions. When generating 2D flowers with the DNN score alone, the average fitness of an

individual in the top 5% of solutions was 93%. For 3D flowers, it was 96.7%. This is consistent with prior

work in Innovation Engines, where many high-performing solutions were generated. CVT-MAP-Elites

is also extremely consistent when it comes to filling the niches in the archive. For 2D flowers, 80%

of 5000 niches are filled in all cases. 96.8% or 96.9% are filled in the case of 3D flowers. This is

remarkably consistent, and it seems to suggest that the search space of the generator is being consistently

explored with the current algorithm parameters, such as crossover and mutation rate. This suggests high

reproducibility. It also shows the CVT-MAP-Elites algorithm is exploring a broad number of classes,

resulting in the generation of many different high-fitness individuals across all classes. Contrasting this

101

to the standard GA where (essentially) only a single individual of a single class was produced (tables 4.2

and C.10). When the hashing score was excluded in the fitness during CVT-MAP-Elites experiments, the

top individual nearly reached peak fitness in all cases. When the hashing score was included, the average

score of the best individual could fall, such as the case for 2D flower generation with the added phash

score (see figures 4.16 and 4.16). So CVT-MAP-Elites can generate “good” solutions, but this notion of

good is relative.

The fitnesses of the best individuals tend to be at maximum for many trials, with some exceptions

that will be explored later. However, when looking at the images produced across all the trials, some of

them are, subjectively, poor. They do not conform to what the human eye would consider to be a “good”

dandelion or rose. Roses tend to dominate populations throughout many of the experiments (figures 4.7,

4.9, 4.11, 4.15, 4.23). Although they dominate the populations, in 2D flowers the results are poor. While

clearly attempting to generate layered individuals of pink, purple, or reddish hues, the defined shape of

a rose is never present. Sunflowers, as a class, are underrepresented in quantity and quality in all the

experiments. None of the trial runs produced a sunflower that, subjectively, can be considered good.

Many times, the sunflower is the reverse of its real life equivalent, a dark outer ring with a yellow interior.

2D dandelions are poor in general, resulting in images with long, thin tendrils as petals instead of the

rounder shape of a typical dandelion. The 3D generator struggles to generate daisies or sunflowers that

are easily distinguishable to the human eye. Some of the elements are there, like petal shape or color, but

overall, the entire pattern doesn’t get produced. While there are many poor results, there are other, more

positive results. While 2D models fail to embody the color of a daisy, the models accurately generate the

structure of a daisy. This is logical, as they tend to represent themselves in 2D populations prominently.

Dandelions, of all scoring types, represent very well in structure in the 3D trials. The roses produced by

the 3D generator experiments, shown in tables 4.10 and 4.11, are subjectively quite good. They are also,

subjectively, much better than their 2D counterparts.

Adding a hashing score to the fitness, much like the results across all experiments, tends to produce

mixed results. Whash-haar might have some implicit bias against 2D roses, as they rarely get selected

in the hashing populations. However, considering 2D roses are quite poor, this might be by design. This

is also suggested by tables 4.4-4.27. Roses are rarely filtered into the hashing sub-populations, if ever.

Hashing algorithms seem to make 3D daisies better in some cases, such as dhash and phash (figures 4.30

4.31, 4.32, and 4.32), but they show no marked improvement for the other two hashing algorithms, ahash

and whash-haar (figures 4.28 4.29, 4.34, and 4.34). For the other flowers, this is a lot less clear. For 2D

flowers, there seems to be almost no improvement to any of the classes. For roses, it seems to make them

worse. Dandelions and sunflowers do not appear to have any marked changes. The hashing algorithm

102

and the DNN seem to have different criteria for what it takes to be a within a certain class, shown in the

class distributions of different experiments like in figures 4.7 and 4.15. Within the hashing algorithms,

there are different criteria for what it means to be close to a given image. This idea is supported by the

varied results between hashing experiments.

Overall, 3D flowers without the hashing score added (tables 4.8-4.11) tend to perform, subjectively,

the best for dandelions and roses. Moreover, the 2D generator performs consistently well for daisies

(tables 4.4 and 4.7). The 3D generator is better at creating the multi-dimensional shapes required in

a rose or a dandelion, but it lacks a way to generate the “circular center” that is present in the 2D

generator. This would make the 3D generator naturally better at creating roses and dandelions and

much less suited to generating daisies or sunflowers. It is more difficult to explain the 2D generator’s

bias. The images in figure 4.1 suggest that the 2D generator is capable of generating images that look

very much like daisies, dandelions, roses, and sunflowers. Yet these images never present themselves in

the main population. Daises are, structurally, made very well. However, a similar flower, the sunflower,

doesn’t make a similar appearance. The “circular center” is definitely capable of being generated, so this

lack of sunflowers seems to be caused by the selection bias of the DNN rather than a limitation of the

generator.

Color is also a uniquely problematic facet of all flowers generated. It seems that in most cases, but

not all, color is disregarded as an important feature in flower generation. There are no purple dandelions.

Yet, they continue to exist in experimental populations. On the other hand, sunflowers tend to bias far

more to yellow, their natural color, than other classes. Pinkish hues are also common in roses, and the

generated roses had pink or red flowers exclusively. Likewise, yellow, sometimes more orange, is the only

color a sunflower can have.

A majority of the flowers generated exhibit a high fitness value, at least for the pure DNN scores.

Although, subjectively they do not represent the class of flowers to which they belong. This might be

because the DNN is being fooled, prior work has shown that DNN can be ‘fooled’ fairly easily [47]. It

could also be a lack of data samples. While the data was augmented via cropping, scaling, and brightness

changes, the amount of training data is limited, which could be detrimental to accurate classification.

Lack of class diversity might also be a problem. The average goal switches for the CVT-MAP-Elites

experiments range somewhere between 0.6 and 1.2. Consider the results in chapter 2.5, where the average

goal switches for a particular experiment was 8.7. Prior literature suggests that large class diversity is

helpful in generating better individuals. Four classes may not be enough to generate the subjectively good

results for reasons related to morphology, or phenotype structure. More classes means more opportunities

for unique morphologies that might be required in specific classes but are difficult to generate directly in

103

that class. This idea is expanded upon when discussing goal switching (or lack of) for the standard GA.

Additionally, the number of goal switches for standard GAs are significantly lower than for CVT-MAP-Elites.

In the two GA experiments, the average goal switches was 0.2 for 2D flowers and 0 for 3D flowers. The

lack of goal switches could indicate that the algorithm converges faster, giving flowers less of an opportu-

nity for goal switching. Important morphologies for generating good individuals may present themselves

first in poorer, easier-to-find solutions. However, if these morphologies are not rewarded in some capacity

(as they are not in a standard GA) then they may not be used in future generations [35][38][48].

Clearly, there are many different avenues future research could take. The Diversity Engine is designed

to make the implementation of research for these questions much easier. The modularity of the framework

allows for the usage of many different types of evaluation mechanisms as well as generation mechanisms.

Some of these questions include:

• The reproduction of this experiment with different rendering techniques. Prior work suggests that

the addition of different rendering/lighting techniques, and the addition of multiple evaluation

angles of 3D objects has significant effect on performance. It was attempted for the 3D flowers seen

here, but due to technical limitations, it was dismissed in favor of a single angle.

• A comparison of different evaluation mechanisms, such as real-time object detection networks like

You Only Look Once (YOLO) [57]. These would enable the discovery of what the parts of the

image that the DNN considers relevant. There are many flowers in the populations that seem to

contain flowers inside black rings. Is the network recognizing these “interior flowers” and, somehow,

the black backdrop acts as backdrop for the network?

• The comparison of CVT-MAP-Elites with other QD algorithms, such as NSLC or regular MAP-Elites.

This would clarify how much CVT-MAP-Elites contributes to generating objects with a higher num-

ber of features, such as 2D flowers.

• The addition of many more PCG classes such as rocks, trees, and terrain. Does building all the

assets for a digital world all at once actually create better PCG assets?

• It is possible that color is more integral to sunflowers and roses than it is to daisies and dandelions.

The dandelion data set contained images of yellow dandelions and its corresponding seedling, gray

form. And the data set also contained many daisies that were multi-colored. Color could be a far

more important facet of image detection for roses and sunflowers than daises and dandelions for

these reasons. Dandelions can be yellow or grey, so it is possible that this lack of color consistency

104

drives down the importance of color in pattern recognition in the DNN. Training a network to test

this hypothesis could be valuable for both DNN and PCG research.

As image recognition continues to improve, more opportunities for automatically generating diverse,

quality PCG will continue to present themselves. As with previous Innovation Engine research, the results

here are mixed. Some genuinely good solutions were generated, but they are intermixed with many more,

subjectively, poor solutions. A more consistent generation of objects is the goal. This is absolutely

necessary to achieve one of the original goals of this work, which is to generate interestingly diverse, high-

fidelity assets for games and simulation. The Diversity Engine, built on a modular framework, can serve

as a launch point for the rapid prototyping of experiments in pursuit of that goal. This framework will

hopefully act as one of the first practical applications existing under the intellectual domain of Innovation

Engines.

In conclusion, results show that:

• Diversity Engines that utilize Quality Diversity (QD) algorithms provide a better pathway to high-

fidelity, diverse object generation than typical optimization methods such as standard GAs.

• The results themselves, while not subjectively good in all cases, contain some extremely good

examples of diverse class generation. Especially when compared to the standard GA.

• As QD algorithms, and DNN, continue to improve, the opportunity for diverse, high-fidelity PCG

generation will expand. With those expanding opportunities, the utility of this framework as

demand for a modular, easily-customizable tool will also increase.

105

References

[1] D. Ashlock. Automatic generation of game elements via evolution. In Proceedings of the 2010 IEEE

Conference on Computational Intelligence and Games, CIG2010, pages 289–296, 09 2010.

[2] S. Baluja, D. Pomerleau, and T. Jochem. Towards automated artificial evolution for computer-

generated images. Connection Science, 6(2-3):325–354, 1994.

[3] H. Bauke. Tina’s random number generator library, 2014. https://www.numbercrunch.de/trng.

[4] H. Bauke and S. Mertens. Random numbers for large-scale distributed monte carlo simulations.

Physical Review E, 75:1–14, June 2007.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM,

18(9):509–517, September 1975.

[6] Blizzard. Starcraft, 1998.

[7] Content Blockchain. Testing different image hash functions. https://content-

blockchain.org/research/testing-different-image-hash-functions.

[8] O. Ciftcioglu and M. S. Bittermann. Solution diversity in multi-objective optimization: A study

in virtual reality. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on

Computational Intelligence), pages 1019–1026, 2008.

[9] J. Clune and H. Lipson. Evolving 3d objects with a generative encoding inspired by developmental

biology. SIGEVOlution, 5(4):2–12, November 2011.

[10] J. Correia, P. Machado, J. Romero, and A. Carballal. Evolving figurative images using expression-

based evolutionary art. In ICCC, pages 24–31, 2013.

[11] A. Cully, J. Clune, D. Tarapore, and J.B. Mouret. Robots that can adapt like animals. Nature,

521(7553):503–507, May 2015.

[12] A. Cully and Y. Demiris. Quality and diversity optimization: A unifying modular framework. IEEE

Transactions on Evolutionary Computation, 22:245–259, 2017.

[13] S. Dahlskog and J. Togelius. In EvoApplications, 2014.

[14] S. Dahlskog, J. Togelius, and M. J. Nelson. Linear levels through n-grams. In Proceedings of the 18th

International Academic MindTrek Conference: Media Business, Management, Content Services,

106

AcademicMindTrek ’14, pages 200–206, New York, NY, USA, 2014. Association for Computing

Machinery.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:

Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[16] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages

248–255, June 2009.

[17] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: Applications and algorithms.

SIAM Rev., 41(4):637–676, December 1999.

[18] D. Floreano and C. Mattiussi. Bio-Inspired Artificial Intelligence: Theories, Methods, and Tech-

nologies. The MIT Press, 2008.

[19] Hello Games. No man’s sky, 2016.

[20] R. C. Gonzalez and R. E Woods. Digital Image Processing (Fourth Edition). Pearson, 2018.

[21] I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.

[22] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, and S. Ozair. Generative

adversarial networks. In Proceedings of the 27th International Conference on Neural Information

Processing Systems - Volume 2, NIPS ’14, pages 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

[23] D. Gravina, A. Khalifa, A. Liapiss, J. Togelius, and G. Yannakakis. Procedural content generation

through quality diversity. In Proceedings of the IEEE Conference on Games 2019, pages 1–8, August

2019.

[24] E. J. Hastings, R. K. Guha, and K. O. Stanley. Automatic content generation in the galactic arms

race video game. IEEE Transactions on Computational Intelligence and AI in Games, 1(4):245–263,

December 2009.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-

formance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on

Computer Vision (ICCV), ICCV ’15, pages 1026–1034, USA, 2015. IEEE Computer Society.

[26] G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and helmholtz free energy.

In Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS

’93, pages 3–10, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

107

[27] B. Horn, G. Smith, R. Masri, and J. Stone. Visual information vases: Towards a framework for trans-

media creative inspiration. In Proceedings of the Sixth International Conference on Computational

Creativity, pages 182–188, July 2015.

[28] J. Buchner. Imagehash. https://pypi.org/project/ImageHash/2.2/.

[29] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis,

USA, 1975. AAI7609381.

[30] K. A. De Jong. Evolutionary Computation - A Unified Approach. January 2006.

[31] L. Ju, Q. Du, and M. Gunzburger. Probabilistic methods for centroidal voronoi tessellations and

their parallel implementations. Parallel Comput., 28(10):1477–1500, October 2002.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In Proceedings of the 25th International Conference on Neural Information Processing

Systems - Volume 1, NIPS ’12, pages 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.

[33] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity in evolutionary

multiobjective optimization. Evol. Comput., 10(3):263â282, September 2002.

[34] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with gradient-based learning.

In Shape, Contour and Grouping in Computer Vision, page 319, Berlin, Heidelberg, 1999. Springer-

Verlag.

[35] J. Lehman, S. Risi, and J. Clune. Creative generation of 3d objects with deep learning and innovation

engines. In Proceedings of the Seventh International Conference on Computational Creativity, pages

180–187, Paris, France, 2016. UPMC.

[36] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for novelty

alone. Evolutionary computation, 19:189–223, June 2011.

[37] J. Lehman and K. O. Stanley. Novelty search and the problem with objectives. In Genetic Program-

ming Theory and Practice IX, pages 37–56. Springer New York, New York, NY, 2011.

[38] R. Lenski, C. Ofria, R. Pennock, and C. Adami. The evolutionary origin of complex features. Nature,

423:139–144, June 2003.

[39] A. Liapis, H. P. Mart́ınez, J. Togelius, and G. N. Yannakakis. Transforming exploratory creativity

with delenox,. In Proceedings of the Fourth International Conference on Computational Creativity,

pages 56–63, Sydney, Australia, June 2013.

108

[40] K. MacDonald. Get real! behind the scenes of red dead redemption 2 - the most realistic video game

ever made, October 2018. https://www.theguardian.com/games/2018/oct/24/get-real-behind-the-

scenes-of-red-dead-redemption-2-the-most-realistic-video-game-ever-made.

[41] P. Machado, J. Correia, and J. Romero. Expression-based evolution of faces. In International

Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design, pages 187–

198, April 2012.

[42] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages 281–

297, 1967.

[43] mattatz. unity-procedural-flower. https://github.com/mattatz/unity-procedural-flower.

[44] Mojang. Minecraft, 2009.

[45] J. B. Mouret. Novelty-based multiobjectivization. In Stéphane Doncieux, Nicolas Bredèche, and

Jean-Baptiste Mouret, editors, New Horizons in Evolutionary Robotics, pages 139–154, Berlin, Hei-

delberg, 2011. Springer Berlin Heidelberg.

[46] J.B. Mouret and J. Clune. Illuminating search spaces by mapping elites. ArXiv, 2015.

[47] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence

predictions for unrecognizable images. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 427–436, 2015.

[48] A. Nguyen, J. Yosinski, and J. Clune. Understanding innovation engines: Automated creativity

and improved stochastic optimization via deep learning. Evolutionary Computation, 24(3):545–572,

September 2016.

[49] D. Oranchak. Evolutionary algorithm for generation of entertaining shinro logic puzzles. In Ap-

plications of Evolutionary Computation, pages 181–190, Berlin, Heidelberg, 2010. Springer Berlin

Heidelberg.

[50] K. Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296, July 1985.

[51] D. Petrov. Wavelet image hash in python, July 2016. https://fullstackml.com/wavelet-image-hash-

in-python-3504fdd282b5.

[52] T. Phillips. The human cost of red dead redemption 2, May 2019.

https://www.eurogamer.net/articles/2018-10-25-the-human-cost-of-red-dead-redemption-2.

109

[53] P. Prusinkiewicz. Graphical applications of l-systems. In Proceedings on Graphics Interface ’86/Vi-

sion Interface ’86, pages 247–253, CAN, 1986. Canadian Information Processing Society.

[54] J. K. Pugh, L. Soros, and K. O. Stanley. Quality diversity: A new frontier for evolutionary compu-

tation. Frontiers in Robotics and AI, 3:40, July 2016.

[55] J. K. Pugh, L. B. Soros, P. A Szerlip, and K. O. Kenneth. Confronting the challenge of quality

diversity. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation,

GECCO ’15, pages 967–974, New York, NY, USA, 2015. Association for Computing Machinery.

[56] C. Reas and B Fry. Processing: Programming for the media arts. AI Soc., 20(4):526–538, August

2006.

[57] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object

detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

779–788, 2016.

[58] S. Risi and J. Togelius. Procedural content generation: From automatically generating game levels

to increasing generality in machine learning. ArXiv, November 2019.

[59] RoboRosewater. Roborosewater (@roborosewater), July 2015.

https://twitter.com/roborosewater?lang=en.

[60] Adrian Rosebrock. Image hashing with opencv and python, November 2017.

https://www.pyimagesearch.com/2017/11/27/image-hashing-opencv-python/.

[61] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. Inter-

national Journal of Computer Vision, 115:211–252, October 2015.

[62] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, USA, 3rd

edition, 2009.

[63] J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the fine

arts. Connect. Sci., 18:173–187, June 2006.

[64] J. Schmidhuber. Simple algorithmic principles of discovery, subjective beauty, selective attention,

curiosity creativity. In Discovery Science, pages 26–38, Berlin, Heidelberg, 2007. Springer Berlin

Heidelberg.

110

[65] J. Schreier. The horrible world of video game crunch, September 2016. https://kotaku.com/crunch-

time-why-game-developers-work-such-insane-hours-1704744577.

[66] J. Secretan, N. Beato, D. D’Ambrosio, A. Rodriguez, A Campbell, and K. O. Stanley. Picbreeder:

Evolving pictures collaboratively online. In Proceedings of Computer Human Interaction Conference,

pages 1759–1768, April 2008.

[67] A. Semuels. Video game creators are burned out and desperate for change, June 2019.

https://time.com/5603329/e3-video-game-creators-union/.

[68] M. Snider. Video game makers must manage crunch time, increase diversity to improve mental

health, July 2019. https://www.usatoday.com/story/tech/gaming/2019/07/09/layoffs-crunch-time-

hurting-video-game-workers-mental-health/1681531001/.

[69] T. Soule, S. Heck, T. Haynes, N. Wood, and B. Robison. Darwin’s demons: Does evolution improve

the game? In Applications of Evolutionary Computation, pages 435–451. Springer International

Publishing, 2017.

[70] K. O. Stanley. Compositional pattern producing networks: A novel abstraction of development.

Genetic Programming and Evolvable Machines, 8:131–162, June 2007.

[71] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evol.

Comput., 10(2):99–127, June 2002.

[72] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial life, 9:93–130,

February 2003.

[73] A. J. Summerville, M. Guzdial, M. Mateas, and M. Riedl. Learning player tailored content from

observation: Platformer level generation from video traces using lstms. In AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, 2016.

[74] A. J. Summerville, S. Philip, and M. Mateas. Mcmcts pcg 4 smb : Monte carlo tree search to guide

platformer level generation. In AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 2015.

[75] A. J. Summerville, S. Snodgrass, M. Guzdial, C. HolmgÃrd, A. K. Hoover, A Isaksen, A. Nealen,

and J. Togelius. Procedural content generation via machine learning (pcgml). IEEE Transactions

on Games, 10(3):257–270, 2018.

111

[76] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1–9, 2015.

[77] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and ZB. Wojna. Rethinking the inception architec-

ture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2818–2826, 2016.

[78] D. Takahashi. The deanbeat: How much did red dead redemption 2 cost to make? (updated),

Oct 2019. https://venturebeat.com/2018/10/26/the-deanbeat-how-much-did-red-dead-redemption-

2-cost-to-make/.

[79] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N. Yannakakis. Multiobjective

exploration of the starcraft map space. In Proceedings of the 2010 IEEE Conference on Computa-

tional Intelligence and Games, pages 265–272, Aug 2010.

[80] J. Togelius, M. Preuss, and G. Yannakakis. Towards multiobjective procedural map generation. In

Proceedings of the 2010 Workshop on Procedural Content Generation in Games, PCGames ’10, New

York, NY, USA, June 2010. Association for Computing Machinery.

[81] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne. Search-based procedural content

generation: A taxonomy and survey. IEEE Transactions on Computational Intelligence and AI in

Games, 3(3):172–186, September 2011.

[82] M. Toy, G. Wichmann, and Ken Arnold. Rogue, 1980.

[83] Unity Technologies. Unity. https://unity.com.

[84] V. Vassiliades, K. Chatzilygeroudis, and J. Mouret. Using centroidal voronoi tessellations to scale

up the multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary

Computation, 22(4):623–630, August 2018.

[85] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi. Evolving mario levels in the latent

space of a deep convolutional generative adversarial network. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO ’18, pages 221–228, New York, NY, USA, 2018.

Association for Computing Machinery.

[86] J. Wenzel, J. Rhinelander, and D. Moldovan. pybind11 - seamless operability between c++11 and

python, 2016. https://github.com/pybind/pybind11.

112

[87] D. Whitley, S Rana, and R. B. Heckendorn. The island model genetic algorithm: On separability,

population size and convergence. Journal of Computing and Information Technology, 7(1):33–47,

1999.

[88] G.N. Yannakakis and J. Togelius. Experience-driven procedural content generation. IEEE Transac-

tions on Affective Computing, 2:147–161, 2011.

113

Appendix A: Experimental Parameters and Seeds

A.1 DNN Training Parameters and Accuracy

Network: Inception V3 [77]

Classes: Daisies, Dandelions, Roses, Sunflowers

Training Epochs: 300 - Training Batches: 100

Random Crop: 10% - Random Scale - 10% - Random brightness: 20%

Test Percentage After Data Augmentation: 10%

Data Samples Prior to Data Augmentation:

• Daisies: 633

• Dandelions: 898

• Roses: 641

• Sunflowers: 699

Approximate Data Samples After Data Augmentation:

• Daisies: 1360

• Dandelions: 1660

• Roses: 1240

• Sunflowers: 1780

Class Accuracy After Training:

• Daisies: 91%

• Dandelions: 89%

• Roses: 96%

• Sunflowers: 93%

114

A.2 Standard GA Experimental Parameters and Seeds

A.2.1 2D Flowers

Population Size: 250 - Number of Generations - 200

Crossover Rate: 30% - Mutation Rate - 5% - Mutation Change Interval [-10%/10%]

A.2.2 3D Flowers

Population Size: 250 - Number of Generations - 100

Crossover Rate: 30% - Mutation Rate - 10% - Mutation Change Interval [-10%/10%]

A.2.3 No Hashing Fitness

• Trial 1 (2D and 3D Flowers): Factory Seed: 275 - CVT-MAP-Elites Seed: 275

• Trial 2 (2D and 3D Flowers): Factory Seed: 250 - CVT-MAP-Elites Seed: 250

• Trial 3 (2D Flowers): Factory Seed: 92 - CVT-MAP-Elites Seed: 92

• Trial 3 (3D Flowers): Factory Seed: 292 - CVT-MAP-Elites Seed: 292

• Trial 4 (2D and 3D Flowers): Factory Seed: 1011 - CVT-MAP-Elites Seed: 1011

• Trial 5 (2D and 3D Flowers): Factory Seed: 6033 - CVT-MAP-Elites Seed: 6033

A.3 CVT-MAP-Elites Experimental Parameters and Seeds

A.3.1 2D Flowers

Archive Max Size: 5000

Batch Size: 50 - Number of Batches - 1000

Crossover Rate: 30% - Mutation Rate - 5% - Mutation Change Interval [-10%/10%]

A.3.2 3D Flowers

Archive Max Size: 5000

Batch Size: 50 - Number of Batches - 50

115

Crossover Rate: 30% - Mutation Rate - 10% - Mutation Change Interval [-10%/10%]

A.3.3 No Hashing Fitness

• Trial 1 (2D and 3D Flowers): Factory Seed: 3 - CVT-MAP-Elites Seed: 1

• Trial 2 (2D and 3D Flowers): Factory Seed: 6 - CVT-MAP-Elites Seed: 6

• Trial 3 (2D and 3D Flowers): Factory Seed: 124 - CVT-MAP-Elites Seed: 124

• Trial 4 (2D and 3D Flowers): Factory Seed: 623 - CVT-MAP-Elites Seed: 623

• Trial 5 (2D and 3D Flowers): Factory Seed: 555 - CVT-MAP-Elites Seed: 555

A.3.4 ahash Fitness Added

• Trial 1 (2D and 3D Flowers): Factory Seed: 663 - CVT-MAP-Elites Seed: 663

• Trial 2 (2D and 3D Flowers): Factory Seed: 547 - CVT-MAP-Elites Seed: 547

• Trial 3 (2D Flowers Only): Factory Seed: 915 - CVT-MAP-Elites Seed: 915

• Trial 4 (2D Flowers Only): Factory Seed: 877 - CVT-MAP-Elites Seed: 877

• Trial 5 (2D Flowers Only): Factory Seed: 499 - CVT-MAP-Elites Seed: 499

A.3.5 dhash Fitness Added

• Trial 1 (2D and 3D Flowers): Factory Seed: 743 - CVT-MAP-Elites Seed: 743

• Trial 2 (2D and 3D Flowers): Factory Seed: 599 - CVT-MAP-Elites Seed: 599

• Trial 3 (2D Flowers Only): Factory Seed: 213 - CVT-MAP-Elites Seed: 213

• Trial 4 (2D Flowers Only): Factory Seed: 719 - CVT-MAP-Elites Seed: 719

• Trial 5 (2D Flowers Only): Factory Seed: 269 - CVT-MAP-Elites Seed: 269

A.3.6 phash Fitness Added

• Trial 1 (2D and 3D Flowers): Factory Seed: 201 - CVT-MAP-Elites Seed: 201

• Trial 2 (2D and 3D Flowers): Factory Seed: 700 - CVT-MAP-Elites Seed: 700

116

• Trial 3 (2D Flowers Only): Factory Seed: 353 - CVT-MAP-Elites Seed: 353

• Trial 4 (2D Flowers Only): Factory Seed: 467 - CVT-MAP-Elites Seed: 467

• Trial 5 (2D Flowers Only): Factory Seed: 163 - CVT-MAP-Elites Seed: 163

A.3.7 whash-haar Fitness Added

• Trial 1 (2D and 3D Flowers): Factory Seed: 33 - CVT-MAP-Elites Seed: 33

• Trial 2 (2D and 3D Flowers): Factory Seed: 72 - CVT-MAP-Elites Seed: 72

• Trial 3 (2D Flowers Only): Factory Seed: 301 - CVT-MAP-Elites Seed: 301

• Trial 4 (2D Flowers Only): Factory Seed: 67 - CVT-MAP-Elites Seed: 67

• Trial 5 (2D Flowers Only): Factory Seed: 223 - CVT-MAP-Elites Seed: 223

117

Appendix B: Subjectively Good CVT-MAP-Elites

Generated Images

118

T
ab

le
B

.1
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

2D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

n
o
-h

a
sh

sc
o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
a
ll

a
re

d
a
is

ie
s

119

T
ab

le
B

.2
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

3D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

n
o
-h

a
sh

sc
o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
T

o
p

ro
w

:
su

n
fl

ow
er

,
ro

se
,

d
an

d
el

io
n

,
d
a
n
d

el
io

n
,

ro
se

-
M

id
d

le
ro

w
:

su
n

fl
ow

er
,

d
a
is

y,
ro

se
,

su
n

fl
ow

er
,

d
a
is

y
-

B
o
tt

o
m

ro
w

:
d

a
is

y,
ro

se
,

d
a
is

y,
d

a
n

d
el

io
n

,
d

a
n

d
el

io
n

120

T
ab

le
B

.3
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

2D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-a

h
a
sh

sc
o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
a
ll

a
re

d
a
is

ie
s

121

T
ab

le
B

.4
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

2D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-d

h
a
sh

sc
o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
T

o
p

ro
w

:
d

a
is

y,
d

ai
sy

,
d

ai
sy

,
d

ai
sy

,
d

ai
sy

-
M

id
d

le
ro

w
:

d
ai

sy
,

d
a
is

y,
d

a
is

y,
su

n
fl

ow
er

,
d

a
is

y
-

B
o
tt

o
m

ro
w

:
su

n
fl

ow
er

,
su

n
fl

ow
er

,
d

a
is

y,
d

a
is

y,
d

a
is

y

122

T
ab

le
B

.5
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

2D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li
te

s
D

N
N

-p
h

a
sh

sc
o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
a
ll

a
re

d
a
is

ie
s

123

T
ab

le
B

.6
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

2D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-w

h
a
sh

sc
o
re

ex
p

er
im

en
ts

(a
ll

fi
v
e

tr
ia

ls
)

-
a
ll

a
re

d
a
is

ie
s

124

T
ab

le
B

.7
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

3D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-a

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

o
p

ro
w

:
d

an
d

el
io

n
,

ro
se

,
d

an
d

el
io

n
,

d
ai

sy
,

su
n

fl
ow

er
-

M
id

d
le

ro
w

:
d

a
n

d
el

io
n

,
ro

se
,

su
n

fl
ow

er
,

d
a
n

d
el

io
n

,
d

a
n

d
el

io
n

-
B

ot
to

m
ro

w
:

d
a
n

d
el

io
n

,
d

a
n

d
el

io
n

,
ro

se
,

d
an

d
el

io
n

,
d
a
n
d

el
io

n

125

T
ab

le
B

.8
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

3D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-a

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

o
p

ro
w

:
su

n
fl

ow
er

,
d

an
d

el
io

n
,

ro
se

,
d

an
d

el
io

n
,

su
n

fl
ow

er
-

M
id

d
le

ro
w

:
d

a
n

d
el

io
n

,
su

n
fl

ow
er

,
su

n
fl

ow
er

,
d

a
is

y,
d

a
n

d
el

io
n

-
B

o
tt

o
m

ro
w

:
d

a
n

d
el

io
n

,
ro

se
,

d
an

d
el

io
n

,
d

an
d

el
io

n
,

d
ai

sy

126

T
ab

le
B

.9
:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

3D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-p

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

o
p

ro
w

:
ro

se
,

d
an

d
el

io
n

,
d
a
is

y,
ro

se
,

ro
se

-
M

id
d
le

ro
w

:
d
a
n

d
el

io
n

,
ro

se
,

d
a
is

y,
d

a
n

d
el

io
n

,
d

a
is

y
-

B
o
tt

o
m

ro
w

:
ro

se
,

d
a
is

y,
ro

se
,

d
a
n
d

el
io

n
,

ro
se

127

T
ab

le
B

.1
0:

S
om

e
of

th
e

su
b

je
ct

iv
el

y
b

es
t

3D
fl

ow
er

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-w

h
a
sh

-h
a
a
r

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

op
ro

w
:

d
an

d
el

io
n

,
d

an
d

el
io

n
,

ro
se

,
d

ai
sy

,
su

n
fl

ow
er

-
M

id
d

le
ro

w
:

d
a
n

d
el

io
n

,
d

a
n

d
el

io
n

,
ro

se
,

ro
se

,
ro

se
-

B
o
tt

o
m

ro
w

:
su

n
fl

ow
er

,
ro

se
,

d
an

d
el

io
n

,
ro

se
,

d
a
n
d

el
io

n

128

Appendix C: Subjectively Bad CVT-MAP-Elites

Generated Images

129

T
ab

le
C

.1
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

2D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li
te

s
n

o
-h

a
sh

sc
o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
T

op
ro

w
:

d
ai

sy
,

ro
se

,
d

an
d

el
io

n
,

su
n

fl
ow

er
,

d
ai

sy
-

M
id

d
le

R
ow

-
su

n
fl

ow
er

,
d

a
n

d
el

io
n

,
su

n
fl

ow
er

,
d
a
n

d
el

io
n

,
d
a
is

y
-

B
o
tt

o
m

ro
w

:
d

a
is

y,
ro

se
,

ro
se

,
d

an
d

el
io

n
,

ro
se

130

T
ab

le
C

.2
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

3D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n
s

in
th

e
C

V
T

-M
A

P
-E

li
te

s
n
o
-h

a
sh

sc
or

e
ex

p
er

im
en

ts
(a

ll
fi

ve
tr

ia
ls

)
-

T
op

ro
w

:
d
an

d
el

io
n

,
d

an
d

el
io

n
,

ro
se

,
ro

se
,

d
an

d
el

io
n

-
M

id
d

le
R

ow
-

d
a
n

d
el

io
n

,
d

a
n

d
el

io
n

,
ro

se
,

ro
se

,
ro

se
-

B
ot

to
m

ro
w

:
d

a
n

d
el

io
n

,
ro

se
,

ro
se

,
ro

se
,

ro
se

131

T
ab

le
C

.3
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

2D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-a

h
as

h
co

m
p

o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

fi
v
e

tr
ia

ls
)

-
T

op
ro

w
:

d
an

d
el

io
n

,
su

n
fl

ow
er

,
ro

se
,

ro
se

,
d

a
n

d
el

io
n

-
M

id
d

le
R

ow
-

ro
se

,
ro

se
,

ro
se

,
ro

se
,

d
a
n

d
el

io
n

-
B

o
tt

o
m

ro
w

:
d

a
n
d

el
io

n
,

su
n

fl
ow

er
,

su
n

fl
ow

er
,

ro
se

,
ro

se

132

T
ab

le
C

.4
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

2D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-d

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
T

op
ro

w
:

d
ai

sy
,

ro
se

,
d

an
d

el
io

n
,

ro
se

,
d

a
is

y
-

M
id

d
le

R
ow

-
ro

se
,

d
a
n

d
el

io
n

,
ro

se
,

d
a
n

d
el

io
n

,
d

a
n

d
el

io
n

-
B

o
tt

o
m

ro
w

:
d

a
n

d
el

io
n

,
su

n
fl

ow
er

,
su

n
fl

ow
er

,
d

ai
sy

,
d

an
d

el
io

n

133

T
ab

le
C

.5
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

2D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-p

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
T

op
ro

w
:

d
ai

sy
,

ro
se

,
d

an
d

el
io

n
,

ro
se

,
d

a
n

d
el

io
n

-
M

id
d

le
R

ow
-

su
n

fl
ow

er
,

ro
se

,
ro

se
,

d
a
n

d
el

io
n

,
d

a
is

y
-

B
o
tt

o
m

ro
w

:
d

a
is

y,
ro

se
,

su
n

fl
ow

er
,

d
an

d
el

io
n

,
ro

se

134

T
ab

le
C

.6
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

2D
fl

ow
er

s
fr

om
th

e
to

p
5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-w

h
a
sh

-h
a
a
r

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

fi
ve

tr
ia

ls
)

-
T

op
ro

w
:

d
ai

sy
,

d
ai

sy
,

d
an

d
el

io
n

,
d

a
is

y,
d

a
n

d
el

io
n

-
M

id
d

le
R

ow
-

d
a
is

y,
d

a
is

y,
d

a
is

y,
d

a
n

d
el

io
n

,
d

a
n

d
el

io
n

-
B

o
tt

o
m

ro
w

:
d

an
d

el
io

n
,

d
ai

sy
,

d
an

d
el

io
n

,
d

ai
sy

,
d

ai
sy

135

T
ab

le
C

.7
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

3D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-a

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

op
ro

w
:

d
an

d
el

io
n

,
d

an
d

el
io

n
,

d
an

d
el

io
n

,
su

n
fl

ow
er

,
su

n
fl

ow
er

-
M

id
d

le
R

ow
-

d
a
n

d
el

io
n

,
su

n
fl

ow
er

,
su

n
fl

ow
er

,
d

a
n

d
el

io
n

,
d

a
n

d
el

io
n

-
B

ot
to

m
ro

w
:

su
n

fl
ow

er
,

d
an

d
el

io
n

,
su

n
fl

ow
er

,
d

a
n

d
el

io
n

,
su

n
fl

ow
er

136

T
ab

le
C

.8
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

3D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-d

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

op
ro

w
:

d
an

d
el

io
n

,
d

an
d

el
io

n
,

d
an

d
el

io
n

,
d

a
n

d
el

io
n

,
d

a
n

d
el

io
n

-
M

id
d

le
R

ow
-

d
a
n

d
el

io
n

,
ro

se
,

d
a
n

d
el

io
n

,
d

a
n

d
el

io
n
,

d
a
n

d
el

io
n

-
B

ot
to

m
ro

w
:

d
an

d
el

io
n

,
d

an
d

el
io

n
,

su
n

fl
ow

er
,

d
a
n

d
el

io
n

,
ro

se

137

T
ab

le
C

.9
:

S
om

e
su

b
je

ct
iv

el
y

b
ad

3D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f

so
lu

ti
o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-p

h
a
sh

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

op
ro

w
:

ro
se

,
ro

se
,

ro
se

,
ro

se
,

su
n

fl
ow

er
-

M
id

d
le

R
ow

-
ro

se
,

su
n

fl
ow

er
,

ro
se

,
ro

se
,

ro
se

-
B

o
tt

o
m

ro
w

:
su

n
fl

ow
er

,
ro

se
,

su
n

fl
ow

er
,

ro
se

,
su

n
fl

ow
er

138

T
ab

le
C

.1
0:

S
om

e
su

b
je

ct
iv

el
y

b
ad

3D
fl

ow
er

s
fr

o
m

th
e

to
p

5
%

o
f
so

lu
ti

o
n

s
in

th
e

C
V

T
-M

A
P

-E
li

te
s

D
N

N
-w

h
a
sh

-h
a
a
r

co
m

p
o
si

te
sc

o
re

ex
p

er
im

en
ts

(a
ll

tw
o

tr
ia

ls
)

-
T

op
ro

w
:

d
an

d
el

io
n

,
d

an
d

el
io

n
,

d
a
n

d
el

io
n

,
ro

se
,

ro
se

-
M

id
d

le
R

ow
-

d
a
n

d
el

io
n

,
ro

se
,

ro
se

,
d

a
n

d
el

io
n

,
ro

se
-

B
o
tt

o
m

ro
w

:
ro

se
,

ro
se

,
su

n
fl

ow
er

,
ro

se
,

su
n

fl
ow

er

	Authorization to Submit Thesis
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Objectives
	Organization of Thesis

	Background
	Procedural Content Generation
	Evolutionary Computation
	Deep Learning
	Image Hashing Using Perceptual Hashes
	Innovation Engines
	Other Related Work

	The Diversity Engine
	High Level Tool Architecture
	Implementation

	Experimental Configurations and Results
	Generators
	dnn Training Parameters and Test Performance
	Image Hashing Software and Comparison Images
	Experimental Equipment
	A Note on Reproducibility
	Standard Genetic Algorithm
	cvtmap

	Conclusions and Future Work
	References
	Experimental Parameters and Seeds
	dnn Training Parameters and Accuracy
	Standard ga Experimental Parameters and Seeds
	cvtmap Experimental Parameters and Seeds

	Subjectively Good cvtmap Generated Images
	Subjectively Bad cvtmap Generated Images

