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ABSTRACT

Let E/L be a real quadratic extension of number fields. This dissertation contains the construction of an
explicit map from an irreducible cuspidal automorphic representation of GL(2, E) which contains a Hilbert
modular form with Iy level to an irreducible automorphic representation of GSp(4, L) which contains a
Siegel paramodular form. We discuss how to construct representations of GSO(4) and GO(4) from a
character and a representation of the units of a quaternion algebra, in some generality, over a local field.
There is a well known global theta correspondence for the pair (GO(4), GSp(4)). We discuss a realization
of the local theta correspondence. Finally, we exhibit local data which produces a paramodular invariant

vector for the local theta lift at every finite place, except when the local extension has wild ramification.
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INTRODUCTION

The main goal of this project is to discover an explicit theta lift from GO(X) to GSp(4,L) in order to
make it possible to compute Fourier coefficients of paramodular forms attached to Hilbert modular forms
over real quadratic number fields. In Johnson-Leung and Roberts (2012) it was shown that for every
Hilbert cusp form of level H(91) there exists a Siegel paramodular newform with weight, level, Hecke
eigenvalues, epsilon factor and L-function determined explicitly by the data of the Hilbert modular form.

We let GSp(4, Q) be the subgroup of g € GL(4,Q) such that there exists A(g) € Q* such that

1
‘gJg = A(g)], wherel—[1 1 ‘]- (0.0.1)

Let the Siegel upper half plane # be the space of elements of M(2,C) whose imaginary part is positive

definite and let the paramodular group of level N be

Z 7Z N7 7

NZ 7Z 7 A
K(N) = NSp(Q).
NZ NZ 7 NZ

NZ Z VA Z

Let p be a rational prime, for n > 0 we define the local paramodular group of level p™ to be

Zp Zp pinZP ZP

P Ly Ly Ly Ly
K(p™) = NGSp(Qyp). (0.0.2)
P2y P Zp  ZLp Py

Py Ly Ly Zyp

A Siegel paramodular form is an analytic function F: H — C such that F(y(Z)) = j(y, Z)"*F(Z) for all
v € K(N) and Z € H, where y(Z) is the action by fractional linear transformation. It was conjectured,
in Brumer and Kramer (2014), that an abelian surface A with Endg(A) = Z has an associated Siegel
paramodular form. Poor and Yuen (2015), and later Berger et al. (2015), provided additional evidence

for this conjecture by finding some examples of rational abelian surfaces, which are not the restriction of



scalars of elliptic curves by looking for them precisely where the paramodular conjecture predicts. The
paramodular conjecture is a precise and falsifiable generalization of the Taniyama-Shimura conjecture,
to degree 2. This work gives the first method for explicit computation of a large class of paramodular
forms, which hopefully will shed some light on the structure of paramodular forms and the paramodular
conjecture.

In general, a theta lift is a tool for relating representations of certain pairs of of subgroups (S1,S;) of
a symplectic group Sp(X) defined over a number field. The global theta lift from S; to S, takes as input
a cusp form f on the adeles of S; and defines an automorphic form on the adeles of S, by integrating f
against a theta kernel; this theta kernel depends on a choice of a certain Schwartz function ¢. In the
archimedean case Schwartz functions are rapidly decreasing away from 0, and the in non-archimedean case
Schwartz functions are locally constant and compactly supported. Determining a choice for ¢, which gives
automorphic forms with desirable qualities, requires a theory of local theta lifts that are commensurable
with the global theory. While the global theta lift has a natural construction as an integral operator,
there is nothing so ubiquitous in the local theory. In Waldspurger (1980), the author studies the local
and global theta lift when W is a 2-dimensional symplectic space, V is a rank 3 quadratic space, and
X=W®YV. In Waldspurger (1981), the author investigated the correspondence between modular forms
of half integral weight and those with integral weight and computed special values of [-functions in
terms of Fourier coefficients of half integral weight modular forms. In this document, we consider the
case when W is a 4-dimensional symplectic space, V is a rank 4 quadratic space, and X = W ® V. with
this setting, the local theta correspondence was studied by Roberts in a series of papers, culminating
in Roberts (2001). An integral map for the local theta lift was studied in Johnson-Leung and Roberts
(2012). This theory gives a correspondence between Hilbert modular forms over real quadratic fields
and Siegel paramodular forms. In particular, in this document we study an integral realization for the
local theta lifts which allows for explicit construction of the Siegel paramodular forms appearing in this
correspondence including calculating their Fourier coefficients. It is generally not practical to calculate
Fourier coefficients of Siegel modular forms by brute force methods, and some kind of lift, for example a
Gritsenko lift, is required to get traction. Our theta lift method will be able to add genuine new examples
of explicitly calculated Siegel paramodular forms.

The following is an outline of the lift from Hilbert to Siegel paramodular forms. Let L be a number

field, let E be a real quadratic extension of [, and let 7t be a cuspidal automorphic representation of



GL(2, Ag) that has trivial central character and is not Galois invariant. The theta lift method developed
in this document uses three main bridges. The first bridge is the Jacquet-Langlands correspondence
which produces a cuspidal automorphic representation 1’ of a quaternion algebra B> (Ag), from the data
of . Let X(A) be a certain symmetric bilinear 4-dimensional A-subspace of B*(Ag). For x,y € X, the
symmetric product on X is given by (x,y) = %Tr(xy*). The second bridge is the following exact sequence
(Knus (1991)):

T2 AF = A x B(Ag)* —2— GSO(X(Ag)) — 1. (0.0.3)

So, from the data of 7/, it is simple to produce a cuspidal automorphic representation of GSO(X(A)),
also denotes by 7’. let o be a cuspidal automorphic representation of GO(X), as in Theorem 7 of
Roberts (2001). Since GO(X) and GSp(4) form a dual reductive pair, we have the existence of the
WEeil representation w on the group R = {(g,h) € GSp(4,A) x GO(X(A)) | A(g) = A(h)} and hence the
existence of the theta lift, which will be our third and final bridge. The space of w is the space of
Schwartz functions on X(A)?, which we denote by S(X(A)?). The key to determining an explicit theta
lift is choosing a @ € S(X(A)?) wisely, but we can define the theta lift for any choice of ¢. Let f be a
cusp form on GO(X,Ar) and @ € S(X(A)?). Let GSp(4,A)* be the subgroup of g € GSp(4, A) such that

Alg) € A(GO(X(A))). For g € GSp(4,A)™ define:

emwumzj 9(g, hu; @)f(hyh)dh
O(X,Q)\0O(X,A)

where h € GO(X, AL) is any element such that (g,h) € R(AL) and ¥ is the global theta kernel given by

dghe)= )Y (w(gh)-9)x).

xeX(L)2

Then O(f, @) can be extended uniquely to all of GSp(4, A) which is left invariant under GSp(4,L) and is,
in fact, an automorphic form of GSp(4,A).

In order to make a good choice for ¢ € S(X(A)?) we need to examine the problem locally. Now let L,
be a local field and let E,, be a quadratic extension of L,. Using the path outlined in the global case one
may determine a GO(X, L, ) representation (o,,W) from the data of an infinite-dimensional irreducible
admissible representation 7, of GL(2,E,,). Let R be the subspace of GSp(4,L,) x GO(X,L,) where the

similitude factor of each coordinate matches and let S(X(L,)?) be the Schwartz functions of X(L,)%. We



prove that the local theta correspondence can be explicitly realized by the following formula

B(g, o, W,s) = J' (w(g,hh") @) (x1,%x2)Z(s,(hh )W) dh (0.0.4)

H\SO(X)
where g € GSp(4,L,), @ € S(X(L,)?),W € W,R(s) > 0 and x7,x2 € X are certain specified elements
and H is their stabilizer in SO(X). Indeed, the space of functions {B(-, @, W,s) | ¢ € S(X?),W € V}is an
irreducible admissible representation ©(7) =TT, of GSp(4,L,). The representation IT, has a canonical
paramodular level plN. Furthermore, by Roberts (2001) the intertwining map is unique. The main result

of this thesis is as follows.

Main Theorem. Let L be a non-archimedean local field of characteristic O and let E be either a
real quadratic field extension of L or let E =L x L. If E s a field let P be the unique mazimal tdeal
of the ring of integers of E, og, and let ®g be the uniformizer of P. Assume that if the residual
characteristic of L is even then E/L is unramified. If E s a field let Ty be an infinite-dimensional,
irreductble, admissible representation of GL(2,E) with trivial central character. If E = L x L let
T1 and T, be infinite-dimensional, 1rreducible, admaissible representations of GL(2,L) with trivial
central character. For i € {1,2,3}, we assume that the space of T; is its unique Whittaker model
W(ti). If E =L x L let (n(t1,72),V), where V= W(11) X W(T2), be the representation of GSO(X)
as in Section 2.3. If E s a field let (7t(1,79), V), where V = W(1o) be the representation of GSO(X)
as wn Section 2.4. If E is a field, let W € V be a local GL(2,E)-newform wath Ty(p™)-tnvariance.
IfE =L x L then let W; € V be local GL(2,L)-newforms with Ty(p™t)-tnvariance, for i € {1,2} and
set W = (W7,W;). For any set Y let fy be the characteristic function of Y. If E =L x L then set

N =n; +n, and let ¢ € S(X?) be given by

N

(P(X»y) :f[p“Z oL }(X) fM(Z,oL](y)-
po op™

If E/L is inert then set N = 2n and let ¢ € S(X?) be given by
e(x,y) = f[pn "L}nx(x) frm(2,00)nx (Y)-

If E/L is tamely ramaified then set N = n+ 2, let X be the non-trivial quadratic character of E/L,



and let @ € S(X?) be given by

=0+ 4B 4 o@

where

(PU)(X,U) = q%X(X3y3)fpn+2(<X>X>)f pn+! oY X(X) for (Y, y)) (Y)f gt op? X(U)
[ménJrlaé qsn+l:|m [a)?ué q371:|m
(p(z)(x)y) = qLX(X3y2)fpn+z ({x, X>)f gt Y X(X) f[uE ;o }ﬂx(y)
[ménﬁ»l oX gt }ﬁ T oor
@6, y) = axxays)fpgnez g1 (X) for QYT 1 goig (W)
|:q32n+3 mn+2:| |:®€10E< ‘11371 :|ﬂX

@(4)(7(»9) :X(Xzyz)f[ P2 Dol ] (X)f[UE op el

B oe }ﬂX

m2n+3 mn+2

Additionally, let s € C be such that R(s) > 0. Let B be as in (0.0.4). Then B(-, o, W,s): GSp(4,L) —
C 1is non-zero and is invariant under right translation by elements of K(p™).

The proof of the main theorem is in Chapter 6 and is split into three sections. In particular, the Main
Theorem is proved in Theorems 6.2.4, 6.3.4, and 6.4.9.

In Chapter 1, we study quaternion algebras over global and local fields. We construct a natural
symmetric bilinear space X determined by a quaternion algebra D over a number field L and a real
quadratic field extension E/L. We study E, D, and X locally and determine the local Witt decomposition
of X based on the local behavior of E and D. We introduce the exact sequence (0.0.3) in order to create
local models for X. There are two essential models for X based on the splitting behavior of E/L. We
finish the chapter with an example in the case that L = Q, E = Q(v/5), and D = H is the classical
Hamiltonians.

Let 71 be an infinite-dimensional irreducible admissible representation of GL(2,E) and let x be a
character of L*. In Chapter 2, we discuss Whittaker models for 7w and determine a canonical irreducible
representation of GO(X) from the data of 7t and . After introducing some of the basic definitions,
we use the exact sequence (0.0.3) to create an irreducible admissible representation of GSO(X) from a
character L* — C and an irreducible admissible representation of B*. After we prove some basic facts
about these representations, we make a natural choice of an irreducible subrepresentation of the induced

representation to GO(X), based on the splitting behavior of E/L. This representation of GO(X) will be



our input data for the theta lift discussed in the following chapters.

In Chapter 3, we introduce the Weil representation of R = {(g,h) € GSp(4,L) x GO(X) | A(h) = A(g)}
and study the action of the maximal compact group. We use this structure along with a choice of
local Schwartz functions to define the global theta kernel. Integrating a GO(X)-cusp form against this
kernel over O(X,Q)\O(X,A) gives us an automorphic from on GSp(4,A). Assuming certain invariance
properties coming from the I}y level of a Hilbert modular form, we are guaranteed by Johnson-Leung and
Roberts (2012), that there is a choice of Schwartz function for which this form is paramodular and not
Zero.

In Chapter 4, we introduce Bessel models for GSp(4, L)-representations, in general, and then develop
the local theta lift and demonstrate that it has a Bessel model. We must develop some background in
order to define the local theta lift, with an integral formula (0.0.4), and the bulk of the chapter is spent
demonstrating the invariance properties of the symplectic group action on these local lifts. The two main
ingredients in the local theta lift are the GL(2)-zeta integrals and the Weil representation.

In Chapter 6, we make local choices for Schwartz functions ¢ and demonstrate that the local lifts that
they produce are paramodular invariant vectors. It turns out that choosing ¢ to be a certain character-
istic function is usually enough to guarantee that the lift is non-zero and has the desired paramodular
invariance. When E/L is tamely ramified this is not enough. First, the ramification of E/L introduces
an additional character into the defining formulas of the Weil representation, so that one cannot hope to
choose @ to be a characteristic function. Luckily, it is possible to introduce a character into the choice of
@ which produces a lift which is invariant on a large subgroup of the paramodular group. We can sum

over cosets to get a Schwartz function which is totally paramodular invariant and is, in fact, not zero.



CHAPTER 1 | QUATERNION ALGEBRAS AND SYMMETRIC BI-

LINEAR SPACES

In this chapter we introduce the construction and properties of a 4-dimensional symmetric bilinear space
X over a field L. This construction is based on a choice of field extension E and a quaternion algebra D
over L. We can extend the quaternion algebra to E; Define B = D ® E. Of central importance in this

chapter is the existence of the exact sequence

1 5 EX - L* x B* = GSO(X).

This is a bridge which is vital in relating automorphic representations over a quaternion algebra and au-
tomorphic representations over orthogonal groups over X. In Chapters 3, 4, 5, 6 we connect these orthog-
onal automorphic representations to symplectic automorphic representations, and to Siegel paramodular
forms.

In the case where L is a local field we can fully classify the Witt decomposition of X, based on the
datum of the field extension and the quaternion algebra. Furthermore, we discuss the connection between
this construction of X over a global number field and the construction over all of the completions of this

number field.

Section 1.1  Quaternion Algebras

Let L be a division ring. A quaternion algebra over L is a 4-dimensional central simple algebra over L. If
a,b € L*, then we let (%b) denote the quaternion algebra with the basis {1,1, j, k} where i* = a,j2 =b
and k = 1j = —ji. Either L is a division algebra or it is isomorphic to the space of 2 x 2 matrices
over L. We let * be the canonical involution of D. Concretely, let x; € L for i € {1,2,3,4} and set

X = X1 + %21+ x3j + x4k. Then

(%7 +x2i +x3) + x4k)* =x7 —x21 — x3j — x4k.

We define the norm N : D — L by N(x) = xx* and trace Tr: D — L by Tr(x) = x + x*.



Suppose that L is a field not of characteristic 2. The quaternion algebra over L given by D = (%b) is
non-division if and only if ax? 4+ by? = 1 for some values of x,y € L if and only if b € NL(\/E)/L(L(\/E) X).

Let R be a Noetherian integral domain with field of fractions L, and let V be a finite dimensional
vector space over L. An R-lattice of V is a finitely generated R-submodule I such that I C V. I is called
full if FI = V. An order of a finite dimensional R-algebra is an R-lattice of B which is also a subring of
B. A mazimal R-order of B is not properly contained in any other orders. An Eichler Order is the
intersection of two maximal orders.

Suppose that L is a number field and let v be a place of L. We say that D is dwvision at v so
long as D,, = L, ® D is isomorphic to the 4-dimensional division algebra over L,. Otherwise, when
D, = M(2,L,) we say that D is non-diwvision at v. We let the discriminant of D be the integral ideal

that is the product of the primes at which D is division. This is well defined since the number of places

where D is division is finite and, in fact, even (Vignéras (1980)).

Section 1.2 ~ The Symmetric Bilinear Space

In the remainder this chapter L is a field not of characteristic two. Further assumptions on L will be
made in some sections. Let 6 € L*. If 6 ¢ L*? then we fix a square root A of § and define E = L(A).
If 5 € L* then we define E = L x L and fix a square root of 5, denoted by v/ € L*. In the later case
we set A = (v/5,—V0) € E so that E =L(A) =L(1,1) + LA. In either case, we define the Galois action
«x:E — E by a(a + bA) = a—DbA, for a,b € L. A calculation shows that if E is not a field, then
a(a,b) = (b,a) for (a,b) € E=L x L. If § € L*?, then we say that E = L x L is split, if 5 ¢ L** then
we say that E is non-split.

Let D = (%b) be a quaternion algebra over L. Let {1,1i,j,k} be a quaternion algebra basis for D, so
that i = a and j> =b. Set B = E ® D. Then B is an associative unital E-algebra. We embed D into
B via the map determined by x — 1 ® x, for x € D. We extend * to B via (a ® x)* = a ® x*, for all
a € Eand x € D. If E is a field, then B is a quaternion algebra with B = (QE@) If E is not a field, then
D x D is isomorphic to B as an E-algebra via the map defined by (dy,d;) — (1,0) ® d; + (0,1) ® d>, for
all dy,d; € D. Equivalently, (d;,dz) — (1/2)(1 + \/LEA) ®dy+(1/2)(1 — %A) ®dy. Let «: B — B be

the map determined by the condition a(a ® x) = a(a) ® x for a € E and x € D. We refer to « as the



Galois action on B. Concretely,

a(a+bi+cj+ dk) = a(a) + x(b)i+ «(c)j + x(d)k

for a,b,c,d € E. We have a(xy) = a(x)x(y) and a(x +y) = «(x) + «(y) for x,y € B. Also, x(ax) =
o(a)a(x) for a € E and x € B. Evidently, > = 1. The set of fixed points of x is D C B. We have
o(x*) = a(x)* for x € B.

Next, we associate to o a symmetric bilinear space X over L. Define

X={xeB:alx)=x"} (1.2.1)

Evidently,

X ={a+bAi+cAj+dAk:a,b,c,d € L}

Thus, X is a 4-dimensional [-vector space contained in B. We endow X with the symmetric bilinear form

defined by

(%, y) =Tr(xy")/2 = (N(x +y) — N(x) — N(y))/2

for x,y € X. The space X is non-degenerate, indeed in Section 1.5 we see that X is isometric to a diagonal

form.

Section 1.3  Orthogonal Groups

Again, let L be a field not of characteristic two. For any even-dimensional non-degenerate symmetric
bilinear space X over L we let GO(X) be the group of h € GL(X) such that there exists a A € L* such
that (hx,hy) = A{x,y) for all x,y € X. The scalar A is unique, and will be denoted by A(h). We let O(X)
be the subgroup of h € GO(X) such that A(h) =1, and we let SO(X) be the subgroup of h € O(X) such
that det(h) = 1. We see that for h € GO(X) we have det(h)? = A(h)4™X, We set GSO(X) to be the
subgroup of h € GO(X) such that det(h) = A(h)d™X/2 and SO(X) = O(X) N GSO(X).

Let n: EX — L™ x B* be the injection defined by

n(e) = (NE(e),e). (1.3.1)
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for e € E*. For X as defined in (1.2.1) we define an action p of L* x B* on X by

p(t,b) - x =t "bxa(b)* (1.3.2)

for t € LX,b € B* and x € X. A calculation shows that (p(t,b)x,p(t,b)y) = t2NE(N(b))(x,y). It

follows that p(t,b) € GO(X) and x,y € X.

Lemma 1.3.1. Ift€ 1> and b € B*, then p(t,b) € GSO(X).
Proof. A routine calculation in Magma confirms that this is the case. O

Lemma 1.3.2. The following sequence is exact

TS5 EX 151X xB* —2 5 GSO(X) = 1.

Proof. See V (4.6.1) of Knus (1991), p. 273. O

Section 1.4  Natural Examples of X

In some contexts, it will be useful to work with symmetric bilinear spaces isomorphic to those defined in
Section 1.2.
The Split Case

Let the notation be as in Section 1.2 and assume that 5 € L** so that E =L x L and B = D x D. We
call this the split case. Let d1,d, € D. The Galois action o« on E extends to B by «(dq,d;) = (d2, dq).
The natural involution of D extends to B by (di,d>)* = (dj, d}). Therefore the space X, as defined in

(1.2.1), is the subset {(d,d*) | d € D} so is naturally identified by D via the isometry

:D—o X de(d,d).

Lemma 1.4.1. Assume that § € L*?, so that E = L x L. Define an action of D* x D* on D by

p(dy,d2)x = dixd5. Then p(di,d;) € GSO(D) for di,d2 € DX, and the sequence

151X > D*xD* — GSO(Xp) — 1 (1.4.1)
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1s ezact.
Proof. This is a special case of Lemma 1.3.2, in the case that E is not a field. O

Note: To distinguish between the symmetric bilinear space and the quaternion algebra we define
(Xp, {-,-)p) to be the symmetric bilinear space where Xp = D and (x,y)p = Tr(xy*)/2. We call the
exact sequence in (1.4.1) the natural ezact sequence for Xp. When D = M(2,L) we will often use the

shorthand notation Xp = Xp.

The Non-Split Case

Assume that & is not a square, so that E = L(v/0) is a field. Let D = M(2,L) so that B = M(2,E) We
call this the non-split case. Let a,b,c,d € E. The quaternion algebra M(2, E) has the natural involution
given by matrix adjoint and the Galois action, x. is component-wise. That is,

*

Therefore,

a bVs
Xns = la€ekE, (byc)e LxL (1.4.2)

Vs «fa)
is the 4-dimensional symmetric bilinear space over L, with the paring (x,y)ns = Tr(xy*)/2, defined in

(1.2.1).

Lemma 1.4.2. The following sequence is exact

15 EX 5 L% x GL(2,E) —2— GSO(Xns) — 1. (1.4.3)

Proof. This is a special case of Lemma 1.3.2 in the case when E/L is a field extension and D = M (2, L).

O

Note: We call the exact sequence in (1.4.3) the natural ezact sequence for X,s. In this notation the

‘ns’ is in reference to the fact that E/L is non-split.
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Section 1.5 Classification of X Over a Local Field

For the remainder of this chapter §,A,D,B and (X, (-, -)) will be as in Section 1.2. Let S be the defining

matrix of X, with respect to the basis {1, Ai, Aj, Ak}, in the sense that (x,y) = *xSy for x,y € X. Then,

Lo Ay 0,a) a,ak | [ ]
o @b @A) A (abak) || s

(AL 1) (A),A1) (A),A)) (A, AK) —5b

(A1) (Ak,AQ) (AK,Aj) (Ak,AK)| | sab|

and (x,y) = (x1 + x21 + x3j + x4k, y1 + y2i + y3j + yak) = x1x2 — daxyy, — 8bx3ys + dabxgys. Thus,

X is isometric to the diagonal form (1,—8a,—&b, dab). Let det(X) = det(S) € L*/L*? so that

. 2
§£1 ifd¢Fx
det(X) = 53 a?b’L*? =

1 if 5 € F¥2

Assume that L is a local field of characteristic zero. To complete a classification of X in this case we
need to calculate the different possibilities for the Hasse invariant. Define the Hilbert symbol of L as the

pairing (-,-) : L* x L* — {+£1} given by

1 if there is a non-trivial solution, over L, to zZ2 = ax? + by?
(Cl, b) =
—1 if not.
We let V be a non-degenerate symmetric bilinear space over L and let (vq,...,v,) be a diagonalization

of V. Then define the Hasse tnvariant of V to be €(V) = HKJ. (vi,vj). The value of the Hasse invariant
of V does not depend on the diagonalization of V that we choose. Recall that a and b are the elements

of L* that define D. For the symmetric bilinear space X we calculate that

e(X) = (1,—-da)(1,—da)(1,0ab)(—da,—bb) - (—da, dab) - (—bb, dab)
= (—b6a,—b4b) - (—da, dab) - (—bb, dab)
= (6a,—b6b)(—1,—06b)(—da, da)(—bda,b)(—dbb, a)(—bb, db)

= (6a,—8b)(—1,—5b)(—56a, b)(—8b, a)
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= (§,—0db)(a,—0b)(—1,—0b)(—da,b)(—0b, a)
= (5,—0b)(—1,—0b)(—ba,b)

= (5,—9)(8,b)(—1,—06b)(—a,b)(s,b)

= (—1,-6b)(—a,b)

= (—=1,-8)(—1,b)(—a,b)

= (*])*5)((13}))-

According to Theorem 7, pg. 39 of Serre (1973), a symmetric bilinear space is uniquely determined by
its dimension, determinant, and Hasse invariant. We now have a handle on all of these quantities. As we
have seen the dimension of X is always 4, and the determinant depends on the square class of 6 € L*.
For every value of 6 € LX/I_XZ we have one or two distinct possibilities for the value of e¢(X) based on
the choice D, since a choice of D is equivalent to a choice of two elements a,b € L*. For example,
calculations show that e(Xp) = —(—1,—1),e(Xum,) = (—1,—1), and €(Xns) = (—1,—8) (Section 1.4).

If L is a local field of characteristic zero, and E is a quadratic extension of L, then we fix a representative
ag,; for the non-trivial coset of L*/NF(E*). Let (E,N) denote the symmetric bilinear space of L
determined by the norm form on E. That is (x,y) = Trf (xy*)/2. Let (E, ag 1 -NF) denote the symmetric
bilinear space of L with the form (x,y) = aE/LTrE(xy*)/Z. Let the hyperbolic plane H be the two

dimensional totally isotropic symmetric bilinear L-space with diagonal form (1,—1).

Proposition 1.5.1. Let L be a local field of characteristic zero. Given § € LX/LXZ we have the

following possibilities for the isometry class of X. If E is a field then

H L (E,NE) if D 1s non-division & (a,b) =1,
X~

H L (E,ag/ - NE) 4 D is division & (a,b) = —1.

If E 1s not a field then

(Xm, () #f D is non-division & (a,b) =1,
X~

(Xp, () if D is division & (a,b) = —1.

We make the distinction because in the Witt group Xm s equivalent to the trivial space, i.e.,
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M(2,L) = H L H, while Xp when D s division is anisotropic.

Proof. In all of the above cases we see that the dimension of the space is 4. First suppose that & ¢ Lx?

so that E = L(v/5). We have H L (E,NE) ~ (1,—1,1,—8) so that det(H L (E,NE)) =0 and

which matches the case when D is non-division. Similarly we calculate that H L (E,ag, - NE) ~

(1,~1, a1, —ag,8) so that det(H L (E,ag, - Nf)) =af, 8 =5¢€L*/L** and

e(H L (Eyag, -Np)) = (=T,ag1) - (—=1,—ag,18) - (ag,1,—ag,18)
= (—1>(1E/L) (=T, ClE/L) (=1,-9) - (aE/L>—(1E/L5)
= (=1,-8) - (ag 1, —ag ) - (ag, 1,9)

=—(-1,-9)

since z? = aE/]_xz — 8y? has no non-trivial solution over L since ag,L € L* — NE(EX).
Now consider when § is a square so that the determinant of D = (“Tb) isle LX/LXZ. If D is division
then (a,b) = —1 so that e(Xp) = —(—1,—8) = —(—1,—1). If D is non division then €(Xy2) = (—1,—1)

while H | H ~ (1,—1,1,—1) has determinant 1 and e(H L H) = (—1,—1) = (—1,-9). O

We summarize the possibilities for X in the case that L is a local field of characteristic zero. When

we refer to the case of X we refer to this table.

Table 1.1: Witt decompositions for X

D

non-division division

Case I Case 11
split
X=HLH X = (Xp, ()
E
Case III Case IV
non-split
X=H L (E,NE) X=H L (E,ag, NF)
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Remark. If L =R and E = C then E/L is non-split. If L =R and E =R x R then E/L is split. With
these in mind the above table holds for the archimedean cases.
For now the distinction between E/L being ramified and unramified are unimportant. When we begin

to do arithmetic we will need to distinguish between these two cases.

Section 1.6 Models

Let L, §, E, D, B and X be as in Section 1.2, furthermore assume that L is a local field of characteristic
zero. Let X’ be a 4-dimensional non-degenerate symmetric bilinear space over L, and assume that H and

K are groups such that there is an exact sequence

1 —K-—H-—GSO(X') — 1. (1.6.1)

Assume further there is a similitude s : X — X’ and injections K < E* and H < L* x B* such that the

following diagram commutes

1 B~ L*xB* —— GSO(X) —— 1
| I [
1 K H — GSO(X') —— 1.

Then, we call (X’,H,K,s) a model for X. In the remainder of this section we will define a model for X
in each of the Cases I - IV. We will refer to this model as the standard model.
Cases I and 11

Assume that X is as in Case I or Case II, so that E/L is split. Then the standard model for X is defined

as follows. In this case we saw that B ~ D x D so the following diagrams commute

DxD —— B DxD —— B
Lok I
DxD —— B DxD —— B

Therefore (d,dz)* = (d},d};) and «(dq,dz) = (d2,dq) for di,d; € D. In this case, X ={(d,d*) | d €
D} C D x D can be identified with D by the isometry and group isomorphism t: D — X which sends

d i (d, d*).
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Lemma 1.6.1. Assume that 5 € L*?, so that E = L x L. Define an action of D* x D* on D by

p(dy,d2)x = dixd5. Then the following diagram commutes:

1 E* L*xB* —— GSO(X) —— 1
1 L* DX xD* —— GSO(D) —— 1.

Here, the first vertical map is defined by £ — ({,{~1), the second vertical map is given by (d;,d>) —
(1,(1,0) ® d1 + (0,1) ® d), and the third vertical map is conjugation by « : D —— X. Thus,

(D,D* x D*,L*,1) is a model for X.

Proof. Let { € L*. For the first square we calculate the path L* — E* — L* x B* to be
0= (L) = (LYo ) =01,01,00@0+(1,002¢ ") (1.6.2)
and the path [* — D* x D* — L* x B* to be
0= () = (LML) @+ 0,1)@e). (1.6.3)

Moving on to the second square, let di,d; € D*. We calculate that the path D* xD* — L* xB* —

GSO(X) yields
(di,dz2) — (1,(d1,d2)) — p(1,((1,0) ® di + (0,1) ® d2)),
while following the path D* x D* — GSO(D) — GSO(X) gives
(d1,d2) — p(d1,d2) = top(di,da)or . (1.6.4)

To finish the proof, we need to show that to p(dy,d;) = p(], (dq, dz)) o t. The right hand side acts on

x € D by

p(1,((1,0) @ dy + (0,1) ®d2)) - ((1,0) ® x + (0,1) ® x*)
=((Lo)®di + (0,1 ®@d2) - (1,00 @x+ (0, 1) @x*) - a((1,0) @ dy + (0, 1) ® da)”

=((1,0)®di +(0,1)®dz) - ((1,0) @x+ (0,1) ®x*) - ((0,1) @ dj + (1,0) ® d})
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=(1,0) ® dyxdz + (0,1) ® dax*dj.

On the other hand, the left side acts on x € D by

top(dr,dz) - x =u(dixd5) = t(dyxd3, d2x"d}) = (1,0) ® dixd; + (0,1) ® dax*dj.

Thus, the second square is commutative. O

We define the standard model for Case I and II to be (D,D* x D*,L*, ).

Case 111

Assume that X is as in Case III, so that E is a field, and D is non-division. We say that an automorphism
o' : M(2,E) — M(2,E) of the L-algebra M(2,E) is a Galois action if o’(ax) = a(a)a’(x) for a € E
and x € M(2,E). Recall that «: M(2,E) — M(2,E) denotes the matrix adjoint. Let &, € Aut (M(Z, E))
denote component-wise Galois action. Fix an isomorphism and isometry t: D — M(2,L), such as one
calculated in Algorithm 4.3 of Voight (2013). Then ( naturally extends to an isomorphism and isometry

B — M(2,E) and so the following diagrams commute:

B —— M(2,E) B — M(2,E)
Lol .
B —— M(2,E) B — M(2,E)

Lemma 1.6.2. Let X, be as in (1.4.2) and let . : B — M(2,E) be the above isomorphism and

isometry. Let @ : GSO(Xns) — GSO(X) be given by @(h) = v "hi. Then the following diagram

commutes:
1 EX L* x B* — GSO(X) — 1
idT ZT cpT
1 EX L* x GL(E) —— GSO(Xus) —— 1.

Then (Xns, L* x B*,E*,1) s a model for X.

Proof. This is evident. O

We call (Xps, L* x B*,E*, ) the standard model for Case III.



18

Case IV

Finally, assume that X is as in Case IV. In this case, E is a field and D is division. Assume that L is a local
field so that B is not division Vignéras (1980). Fix an isomorphism ¢ : B — M(2,E). By the Skolem-
Noether theorem we have that every automorphism of a quaternion algebra is an inner automorphism
(Skolem (1927)). Therefore, it must be case that there is some u € GL(2, E) so that the following diagram

commutes
B —— M(2,E)

l“ l"‘? ) (1.6.5)
B —— M(2,E)
where o*(x) = u~"a(x)u, for all x4 € M(2, E).
Lemma 1.6.3. Let «’ : M(2,E) — M(2,E) be a Galois action. There exists u € GL(2,E) such
that o/(x) = uw 'ae(x)u for x € M(2,E) and N(u) = ux/(u) = «’(W)u = uxc(u) = xc(u)u € L*.

Moreover, u s unique up to scaling by L*.

Proof. By Skolem (1927) we have that every automorphism of a quaternion algebra is an inner auto-
morphism which gives the existence of a w € GL(2, E) so that «/(x) = W'« (x)w; clearly any E*-scalar
multiple of w will also have this property. We first establish that wa/(w) € L. Let x € B and, since

e (e (x)) = x, we see that

wa’ (e (x)) = xw
wa’ (ee (x)) &’ (W) = xwar’ (w)
wa’ (et (x)w) = xwar' (w)
wa’ (wat’ (x)) = xwar’ (w)

wa’ (w)x = xwa’ (w).

So, wa/(w) is in the center of B, which is equal to E. Taking x = w, we also have that o’ (w)w = wa'(w).
Therefore, o’ (wa’(w)) = wa/(w); this implies that wo’/(w) € L. Similarly, we have wo (W) = . (w)w.

Also, wa/(w) = o (W)w, so that wa'/(w) = o/ (W)w = wa (W) = o (w)w € L*. In particular, w and

*

o' (W) = o (W) commute; this implies that w, &’ (w) = o (W), w*, and o' (W)* = o (W)

*

all commute
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with each other. Lastly we calculate

NE(N(w)) = ww*a/(w)a’ (w)*
=wa'(w) (woc’(w))*

= (wcx'(w))z.
This implies that
N ((woc’(w))le(w)) =1.

Therefore (woc’(w))qN(w) is a norm one element in E. By Hilbert’s Theorem 90 there exists y € E*

such that ya(y)™' = (wcx’(w))4 N(w). Now define u =y~'

w. The element u has the properties in the
statement of the lemma.

To prove uniqueness, up to scaling by L*, assume that u; and u, both have all the properties listed
in the statement of the lemma. Then, for every x € M(2,E) we have that uf1 e (x)uy = u;] o (x)uz
and uzuf1 ac(c) = occ(x)uzuf]. Therefore, uzuf1 isin Z(M(2,E)) N GL(2,E) = EX. Furthermore, we

1

have that u,uy = u, ¢ (uz) and uﬂ *uT = X, (uf1 )u]’1 so that,

1 1

wwiy " uy! = upae (un)ee (!, and

(wur ") = ac(upuy ).

1

Since uzuf1 € EX, we know that (uzuf1 J* =upu;’, so we conclude that uzu{1 eLx. O

Lemma 1.6.4. Let X5 be as in (1.4.2). By the tsomorphism : B — M(2,E), the Galois action
o on B induces a Galois action o' on M(2,E). Choose u € GL(2,E) as in Lemma 1.6.3 so that
o =u'aeu. Set u=N(u) € LX. The map s : X — Xns given by s(x) = ((x)u"" is a well defined
similitude with similitude factor A(s) = u~'. Let @ : GSO(Xns) — GSO(X) be given by @(h) =s 'hs.

Then the following diagram commutes:

1 EX [*xB* —— GSOX) —— 1

q 0

1 EX L x GLy(E) — GSO(Xns) — 1.
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Proof. Let x € X. Then,

Hence t(x) € Xps-

To see that s is a similitude recall that the natural involution on B corresponds to the adjoint on
M(2,E) so that the norm on B corresponds to the determinant of M(2, E). Therefore, s is a similitude with
similitude factor A(s) = N(u™") = u~'. Let (t,b) € L* x BX and x € X. For the path [* x GL(2,E) —

GSO(Xys) — GSO(X) of the last square see that

@(par(t, b)) - x = (57 par(t, b)s)(x) =t~ 'bxa(b)*,

This the same as given by the path L* x GL(2,E) —» L* x B* — GSO(X). O

We call (Xys,L* x B*, E*,s) the standard model for Case IV. We collect our choices for the standard

models in the following table.
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Table 1.2: The Standard Model for X

D
non-division division
Case I Case II
split

; (M(L), GLo (L)%, L%, d — (d,d")) | (D,D*?,L*,d — (d,d"))

Case III Case IV

non-split

(X‘nS)L>< X GLZ(E)aEX)L) (XTLS)LX X GLz(E),EX,B)

Section 1.7 The Global Case

Let the notation be as in Section 1.2, and assume that L is a number field. We will assume that E = L(1/5)
is a field. For every place v of L let L, denote the completion of L with respect to v. Let or, denote the
ring of integers of L,. The adeles of L are the restricted direct product of the L, with respect to o,
denoted by Ap; we will write A = A;. Then L embeds diagonally into A; by £ +— (...,{ ¢, ...). The
1deles of L are the restricted direct product of the L' with respect to ofv, denoted by A[*. In this work,
we will use the following realization of Ag and Af. If v does not split over E then there is a unique
place, w, of E that lies above v and so E,, = L, (v/3). If v does split over E into w; and w, then, we set

Ew, =Ew, =L,. We embed E into E,,, and E,,, via the homomorphisms determined by

€1:E—E,, and e€:E—=E,,

e1 (Vo) =38 e2(V8) = Vo

(1.7.1)

respectively. We will write E,, = E,, if there is a unique place, w of E that lies over v, and we will write
E, =Eu, X Ey, =L, x L, if there are two places of E that lie over v.

Let R be an order of D. For v a place of L define D,, = L, ® D and let disc(D) denote the discriminant
of D. For all v disc(D) fix an isomorphism t, : D, — M(2,L,). Define D(A) to be the restricted

direct product of the D, as v ranges over all places v of L, with respect to R, = o1, ®,, R for v finite. We



22

similarly define D(A)* to be the restricted direct product of RY. The definitions of D(A) and D(A)* do
not depend on the choice of R. We similarly define B(Ag) and B(Ag)*. Note that the embedding of B
into B(Ag) is determined by the embeddings of E into Ag as in (1.7.1).

Let {x1,x2,%x3,x4} be a vector space basis for X over L. For each place v of L we set X, =L, ® X.
We let X(A) be the restricted direct product of the X, as v ranges over the places v of L with respect to
oL, X1 +---+o0p, x4 where v is a finite place of L. This definition does not depend on the choice of basis
{x1,x2,x3,%4}.

For each place, v of L determine the standard model of X, as in Table 1.2. If E, /L, is split then the
standard model is (D, (D)%, LY, ). If E,/L, is non-split then, let « , be the component-wise Galois
action on M(2,E,). If D, is non-division then fix an isomorphism and isometry t, : D, — M(2,L) so
that o, is compatible with the galois action o, on B,. Set o) = &, and set Y, = X;;s € M(2,E). In
this case, the standard model is given by (Y,, Ly x BY,ES,,). Finally, assume that E, /L, is non-split

and D, is division. Choose u, € GL(2,E,) as in Lemma 1.6.3 and set « = ol

¢.v» Which is compatible

with the Galois action on B,. Let Y, ={x € M(2,E,) | ] (x) = x*}. Let s, be the similitude defined in
Lemma 1.6.4. In this case, the standard model is given by (Y,,L x B, E),s,). Now have the tools to

create a global model for X(A) by means of stitching together local models. Define

YA) = [T Dovx J] W

v split v non-split

to be the restricted direct product with respect to R, when v is split and to Y, "M(2, 0, ) otherwise. For
the global model we will have X(A) = Y(A) but we need to construct the other elements of the model.

Define

H:(HDjxDj)x( 11 ijBj), and

v split v non-split
K= | | L™ x | | EX
v split v non-split

to be restricted direct products with respect to Ry x R}, 0{ x of ,,0[, and of , as respectively. The
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commutativity of the following diagram follows from the commutativity of all the local diagrams:

1 — 5 E(A)* —— L(A)* x B(A)X —— GSO(X(A)) —— 1

I I [

1 — K — H — 5 GSO(Y(A)) — 1.

Section 1.8 A Global Example

This example explores Section 1.7 in the specific case that 8 =5 and D = (%Q;]) Let E = Q(+/5).
We have the algebraic information that Og(v3) = Z[w] where w = (14 +/5)/2 and the splitting behavior

of a rational prime p is as follows

p?  ifp=5

(P) =< prps if p ==+l (mod 5) (1.8.1)

p if p =42 (mod 5).

The discriminant of 00 (v5) is D = (5). The class number of 0Q(v3) is 1.
Let L, = Qp for some finite prime p. Assume that p # 2 so that 5 ¢ Q% exactly when 5 € ]F;z.
Moreover 5 is not a square in Q, because 5 ¢ 1+ 8- Z,, see Gouvéa (1997) Chapter 3, Section 4. Hence,

5 is a square in Q}, if and only if p # 5,2 and (%) = 1. We have:

Qp(\/g) if 5 is not a square in Q,(& p =2,5 or (%) =-1)
Ep, =

Qp x Qp if 5 is a square in Q, (& p # 2,5 and (g) =1orp=o).

In the latter case fix v/5 a square root of 5 in Qp and set A = (v/5,—V/5) € Ep. Let Dy = (;1%;1), let

B, = E, ®q, Dy, and let X, be the associated symmetric bilinear space as defined in (1.2.1). We have

1 if p#200
(=1,-1)p = (1.8.2)

-1 ifp=200

because the quaternion algebra (iQf—]) is a division algebra exactly at 2 and at the infinite prime. So

for every prime p # 2, co there is some x,y € Q, so that —1 = x? +y?. With such information we can
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construct an explicit isometry and Qp-algebra isomorphism t, : D — M(2,Qy,) given by

1 X -y
i , j— (1.8.3)

—1 -y —x

and extended linearly. Clearly this map will extend to an isomorphism t, : B, — M(2,E,) so that

when E,, is a field the following diagrams commute:

BP - M(Z,Ep) Bp — M(Z,Ep)
l* l ch lcxc
B, —— M(2,E,) B, —— M(2,E,)

Therefore we get the standard model for X, as described in Case III of Table 1.2.

When E, is not a field we have that

D, x Dp ~E, ®g, Dy = By

1 1 1 1
di,do) = (14 —=A)edi+= (1-—A) ®d
(di,dz) 2( ﬁ) 1 2( ﬁ) 2

is an E-algebra isomorphism. Therefore, for finite primes, we have B, ~ D, xD,, ~ M(2,Q,)xM(2,Q,),
and B, ~ (%Ri) X (%Ri) In this case we get the standard model for X, as in Cases I or II Table
1.2.

When p = 2 we have that D, is (;J@;—]), the unique quaternion division algebra over Q. Of note
is that B, is not division. Make a choice of x,y € E; so that —1 = x? + y?. This solution gives us a
similitude and isomorphism t, : B — M(2,Q2(+/5)) in a fashion similar to (1.8.3). We find that

L uraly) x-al) L5

—x+a(x) y+ ay)

satisfies the conditions of Lemma 1.6.3. Let b = £ + mi + nj + ok. The computation verifying that o is

compatible with o’ follows

12 0 x(b) = 1 o (€ + mi + nj + ok)
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= 2 ((0) + x(m)i + «(n)j + «(o)k)

a(l) + xa(n) —yx(o)  a(m)—yax(n)—xa(o)
—a(m) —ya(n) —xa(o) () —xx(n)+ya(o)

and

&e 0 12(b) = ¢ o 12 (£ + mi+ nj+ ok)

x(m) — x(y)x(n) — «(x)efo)  x(€) — ar(x)x(n) + x(y)x(0)

{MO+MMMM&@M@) amwaMMaumw1

Using the fact that x,y are chosen so that x?> + y?> = —1, we want to verify that
(ote 0 12(b))w =w(12 0 at(b)). (1.8.5)

We only need to verify this for the generators {1,1,j}. For b = 1 (1.8.5) is obviously true. To verify

(1.8.5) for b =1 we have the calculation

(o 1] [y+aw) x—aw
_—1 0 —x+ a(x) y+ aly)
B _—x +a(x)  y+ aly) ]

Y~ x(y) —x+ (x)
B _y-f—oc(y) x — a(x) 0 1
| x+alx) y+afy)] |1 0

Lastly, to verify (1.8.5) for b =j we have the calculation

alx)  —a(y)| | ytaly) x—alx)
—x+ «(x) y-+ «xy)

7_ xeu(y) +ya(x) yzxzyaw)+xaw1

__XZ —y? 4+ xa(x) —yx(y) —ya(x) —xoe(x)
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y+oaly) x—ax) 0y

—x+alx) y+aly)| [~y —x

With this we can produce a model for X, given by

b d -—
xs = [M SO, [(a,b,¢,d) € Qa(V5)*
a(c) «fd) —c a
[ b
= |b€@2(\/g)) a)dEQZ
_oc(b) d

Which is the standard model described in Case IV of Table 1.2.
Since (—1,—1)p, =1 for all p # 2,00 and (1. —1); = (—1,—1) = —1, calculated using page 20 of
Serre (1973). We also calculate that €, (X) = (—1,5), =1 for all primes. By Lemma 1.5.1 we deduce the

Witt decomposition of X, for all places v of Q. This data appears in the following table.

Table 1.3: Rational places and Witt decomposition. Here 5 = /5 and D = (iQi)

D
non-division division
Case I Case II
split X=H _LH X = (Xp, ()
(8) =1,p#2,5 p=o0
E Case III Case IV
non-split X =H L (E,NE) X = H L (E,ag, NE)
B)=-l,p#20rp=5 p=2
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Section 1.9  The Quadratic Form Over Q,(v/5)

In Section 1.8 we used the fact that there is a solution to x? + y2 = —1 in Q,(v/5) without explicitly
constructing such a solution. At all other places we can approximate solutions to x> +y? = —1 over Qp
for all p # 2 with a straightforward application of Hensel’s lemma, but at p = 2 we have slightly more
work to do. First let us cite the version of Hensel’s lemma that we will be using, which appears on page

14 of Serre (1973).

Lemma 1.9.1 (Hensel’s Lemma). Let f € Zy[X1,..., Xl and (xi) € Z* and suppose that n,k € Z

and 0 <j <m are such that 0 < 2k <n and that

f(x) =0 (mod p™) and v, (a/a;) =k.
j

Then there exists y € Z, such that
fly) =0 (mod p™*'),  vu(f'(y) =k, and y=x (modp™ ")

Proof. See Serre (1973), for example. O
We will actually be able to find a solution to x? +y? + 1 = 0 in the ring of integers, Z,[w], of Q2[v/5],
where w = % We may write the variables x = x¢ + wx; and y = yo + wy; so that:
X +y?+1
=(xo + wx1)? + (yo + w)? +1

=x3 +x3 + Y35 +y7 + w(2xox1 +xF 4+ 2yoy1 +y3).

Therefore, to find a solution to x? +y? + 1 = 0 in Z;[w] we need to simultaneously solve the following

two equations in Z;:
Ax§+xi+yi+yt+1=0 B : 2xox1 + X3 + 2yoy1 +yi =0.

To solve A and B simultaneously we start with the simultaneous solution (2,1,1,1) (mod 8) and devise

a strategy to lift the solution simultaneously and inductively. Suppose that we have a simultaneous
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solution (ao, as,bo,by) (mod 2™) for n > 3 and we look at the possible lifts to solutions (mod 2"+1);
let € = (ei)_, € Z/2Z* so that the possible lifts to solutions (mod 2™*') are of the form (ag + € -
2%V a4+ e -2 N bg+er-2" 1 by 4+ e3-2™ 1), for all possible values of €. If we evaluate A and B

at these possible lifts we arrive at

A:ad+ai+bj+b7+1+2"(eoao +e1ar + €2bo + €3b7) =0 (mod 2™

B:2apa; +(1% +2b0b1b% +2n(€o(1] +e1(ap +ay) + exby + e3(bg +b])) = (mod 2n+1)_

Hence, we can always find a simultaneous solution because we may always choose € so that the parities
of the coefficients of 2™ are as needed. Indeed, if we start with the original solution (2,1,1,1) (mod 8)

then

€000 + €107 + €2bg + €3b1 = €7 + €2 + €3 (mod 2)

eoar +€1(ap+ay) +eaby +ez(bo+b1) =€ep+ €1 + €2 (mod 2)

s0, in fact, we only have to manipulate €y and €7 to find a simultaneous lift. Applying this strategy we

find an approximate simultaneous solution given by (ap, ai,1,1) where

ao=2+23 427428 427 42" 4212 4218 1 220 L 0(2?"), and

ap =1+22420+42"+28 42042 4277 42" 4 0(2*°).

So that a solution to x? + y? + 1 = 0 over Q,(+/5) has solution (ag + w - ar, 1+ w).
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CHAPTER 2 | REPRESENTATIONS OF GO(X)

Throughout this chapter, unless explicitly stated, L is a non-archimedean local field of characteristic zero
and §,E,D, B, and X are as in Section 1.2. We let o be the ring of integers of L and p; be the maximal

ideal of or. In this chapter we leverage the exact sequence from Lemma 1.3.2,

1T— B 251X xB* —25 GSOX) — 1,

to construct a representation 7t of GSO(X) from a representation T of B* and a character x of L*, in the
case that T has a central character that factors through x. The next step is to induce the representation
of GSO(X) to a representation of GO(X). Assuming that the representation of B> is irreducible then we
characterize the decomposition of the induced representation and make a canonical choice of irreducible
subrepresentations. We will go through these calculations in Cases I-IV of Table 1.2 after we prove some

facts about the general situation. We note the map p is open by the open mapping theorem.

Section 2.1  Relating Representations of L*, B* and GSO(X)

We say a topological group G is of td-type if every neighborhood of 1 contains a compact open subgroup
(Cartier (1979)). We say that G has a countable basis if for some compact open subgroup K of G,
the set G/K is countable. If G has a countable basis then for any compact open subgroup K’ the
set G/K’ is also countable. A representation of G is a pair (7, V) where V is a C-vector space and
7: G — Aut(V) is a group homomorphism. The dimension of the representation (71, V) is the dimension
of V, if V is infinite-dimensional then we also call (7, V) infinite-dimensional. We call a one-dimensional
representation (x, C*) a character of G. A representation (7, V) is smooth if for every v € V there exists
an open compact K C G such that v is fixed by K. A representation of G is irreducible if the only two
G-subspaces of V are 0 and V. A smooth representation (7, V) of G is admussible if for every compact
subgroup K C G the dimension of VX, the space of vectors fixed by K, is finite. It can be shown that
(71, V) is admissible if and only if for every open compact subgroup K C G each isomorphism class of
irreducible representations of K occurs at most finitely many times in the decomposition of 7t/x into

irreducibles.
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Let (T, V) be a representation of B> with central character w. and assume that ¥ is a character of L*
such that w, =y o NE. Let 1 be as in and let p be as in (1.3.2). Define nt(x,T) = 7: GSO(X) — aut(V)
by 7t(p({,b))v =x() " "1t(b)v for £ € L*,b € BX and v € V. The following calculation shows that 7t is a

well defined GSO(X)-representation:

for every e € EX and v € V.

Lemma 2.1.1. Let the setting be as in the preceding paragraph. Then,
(a) T is wrreductble if and only if 7 s irreducible,
(b) T s smooth if and only f 7 s smooth, and
(¢) T 1s admissible if and only if 7w 1s admassible.

Proof. First suppose that T is reducible, so that there exists some B*-subspace W C V with W # 0 and
W # V. Then, for all w € W, € L*, and b € B* we have that 7(p(¢,b))w € x~ ' ({)W. Since W C V is
a linear subspace it follows that W is a GSO(X)-subspace of V and so 7t is reducible.

Assume that 71 is reducible so that there exists some subspace W C V such that t(p(£, b))w € W for
all { € L* and b € B*. Then t(b)w = 7mt(p(1,b))w € W for all b € B* and w € W. Therefore W is a
B*-subspace of V and T is reducible.

Assume that 7 is smooth and for each v € V there is a compact open K, C GSO(X) such that
7(g) - v =v for all g € K,. Since p~'(K,) is compact and open, it follows that T is smooth.

Assume that T is smooth so that for each v € V there is a compact open subgroup K,, C B* for which
1(g) -v =, for all g € K,.. Let n be a positive integer such that x(1+ p[') = 1. Since p is an open and
continuous map, p(1+p[, K,) C GSO(X) is compact and open. It is clear that p(1+p[, K,) also fixes v.
Therefore, 7 is smooth.

Assume that 7t is admissible, so that for every compact open subgroup K ¢ GSO(X) the space VX of
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vectors fixed by K is finite dimensional. If ] € B* is a compact open subgroup then

Vi=veVi|tbv=v, Vbe]}

={veV|n(p(l,b))v=v, Ybe],tel+p"}

— Vp(1+pnvl)'

Since p(1 +p™,]) € GSO(X) is compact and open we have that V/ is finite dimensional. Since ] was an
arbitrary compact open subgroup of B* it follows that T is admissible.
Assume that T is admissible and let ] ¢ GSO(X) be a compact open subgroup. Set J; = p~' (J) N (1+

p™, B*). Evidently, J; is a compact open subgroup of L* x B*. Furthermore

Vii=veVi|tbv=v, Vbe ]}
={veVin(pl,b))v=v, V({,b) €], (1+p")}

> V.

Since V' is finite dimensional by assumption, it follows that V/ is as well. Since ] was an arbitrary

compact open subgroup of GSO(X), it follows that 7t is admissible. O

Section 2.2  Induced Representations from Subgroups of Index 2

Let G be a group of td-type with a countable basis. Let H C G be a closed subgroup of index 2. We
assume that there exists an s € G so that G = HLIHs and s> = 1. Let (7, V) be a smooth representation
of H. We define the induced representation Indﬁ(n) to be the C-vector space of all functions f: G —» V
such that there exists a compact, open subgroup K¢ C G such that f(gk) = f(g) for g € G and k € Ky,
and f(hg) = n(h)f(g) for h € H and g € G. The group G acts by right translation on Indﬁ(n), and
defines a smooth representation of G. The induced representation indﬁ(ﬂ) may be modeled as follows.

Define a G-action c on V x V by

o(h) - (vi,v2) = ((h) - vi,7(shs ) - va), (2.2.1)

o(hs) - (vi,v2) = (n(h) - va, m(shs ') - vy)
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for all h € H and all vq,v, € V. Define m : Indfj (1) — V x V by f — (f(1),(s)) for f € Ind§j().

Lemma 2.2.1. With the notation as in the previous paragraph, o defines a smooth representation

of G. The map m s an tsomorphism of representations of G.

Proof. First we show that (o,V x V) is a G-representation. Let vy,v, € V. Suppose that h;,h; € H

and recall that s = s~'. Then, we calculate

o(hihy) - (vi,v2) = (n(hihy) - vy, m(shihas™') - v))
= (nt(hy) - m(ha) - v, mi(shys ™ 'shas ™) - va)
= () - e(ha) - vi, mi(shys 1) - m(shas ™) - v2)
= o(hy) - o(h2) - (v1,v2),
o(hy has) - (vi,v2) = (m(hiha) - va, m(shyhas ') - vp)
= () - (ha) - vz, mi(shys ™) - m(shas ™) - vr)
= o(h1) - (m(h2) - va,7i(s, has™') - v1)
= o(hy) - o(has) - (vi,v2),
o(hishy) - (vi,va) = o(hysha ss) - (vi,v2)
= (7(hyshas) - va, (shyshoss™') - vq)
= (m(hy) - mt(shas) - v, mi(shys) - m(ha) - vi)
= o(hys) - (m(h2) - v, 7i(shas) - v2)
= o(hys) - o(hz) - (vi,v2), and
o(hishas) - (vi,v2) = (n(hyshas) - vy, mt(shyshass™') - v))
= (n(h1) - mt(shas) - vi, mi(shys) - m(ha) - v2)
= o(hys) - (m(h2) - v, 7i(shys) - vi)

= o(hss) - o(has) - (vi,v2).

We now show that the two actions are compatible. Let f € Indﬁ(ﬂ) and h € H. Then,

m(h-f) = (f(h), f(sh))

= (f(h), f(shs~'s))
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and

We now show that m is surjective. Let (a,b) € V x V and let f( ) : G — V be the function

f(a’b)(h) = 7T(h) - a, and f(a,b](hs) = ﬂ(h) -b

for all h € H. It is evident that (4 v)(hg) = 7(h)f(4v)(g) forallh € H and g € G. Since 7 is smooth, we
may choose some compact subgroup K(4,,) C G which fixes both a and b. Then f(4 p)(gk) = f(q,)(9)
for all g € G and all k € K. Therefore f(, p) € indﬁ(ﬂ) so we can conclude that m is surjective.

We now show that m is injective. Let f € indﬁ(ﬂ) and suppose that m(f) = (a,b) € V x V. Then,

f(1) = a, f(s) = b, and f(hg) = n(h)f(g) so clearly f = f(q v). O

Let G, H and (7, V) be as defined in the beginning of this section. The subgroup H is normal in G. If
g € G, then we define the H-representation (g7, V) by (gm)(h)v = (g~ "hg)v for h € H and v € V. For
g € G, (gm, V) is a smooth representation of H, (g7, V) is irreducible if and only if (7, V) is irreducible.

Lemma 2.2.2. Let G, H and (7, V) be as above. Let ¢ be as in Lemma 2.2.1. Assume that 7 1s

irreducible.
(a) If sm# 1 then o is an irreducible representation of V x V.

(b) Assume T : sm — 7 is an isomorphism. By Shur’s Lemma we can further assume that
T2 =id. Define actions ') and ') of G on V by ' H)(h) = n(h) and n"*H) (hs) = n(h)T for

allh e H and ") (h) = (h) and n" ) (hs) = —n(h)T for allh € H. Then ') and n™(~) define
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smooth representations of G on V that extend the action of H. Define

VI = {(w,T) [veV} and V') ={(v,~T(v))|ve V.

Then VT(4) and VT(=) are G-subspaces of (0,V x V). Moreover VI (+) = nT(+) VvT(=) = xT(=)  gnd

VxV=VIH gVT) so that o= ) @al (),

Note that the choice of T is not canomnical as we could just have easily chosen its negative. We
will address this issue in Section 2.6 where we will choose a canonical subrepresentation of the induced

representation in the setting of Section 1.2.

Proof. We begin the proof with a preliminary assertion. Suppose that W C V x V is a proper, non-
zero G-subspace of (o,V x V). We claim that W is the graph of some H-map R : (7, V) — (sm, V).
First, we show that W is the graph of a function R : (71, V) — (s7,V) and then we provide a quick
argument for why that function must be an H-map. For every v € V, there exists v/ € V such that
(v,v') € W. To see this, let (vi,v2) € W be non-zero. Because W is a G-subspace, it follows that
o(s)(vi,v2) = (v2,v1) € W. Therefore, without loss of generality, we can assume that v; # 0. Because
h- (vi,v2) = (mt(h) - vi,m(shs™') - v,) and (7, V) is an irreducible representation of H we know that for
every v € V there exists some v/ € V so that (v,v') € W. Assume that v/,v” € V are chosen so that
(v,v') € W and (v,v”) € W. We will show by contradiction that it can only be the case that v/ =v”.
Let u =v’'—v” and assume that u # 0. Since (0,u) € W and u # 0 it follows that (0, V) C W, but then
also s- (0,V) = (V,0) € W. We arrive at the contradiction that W =V x V. Hence, we conclude that W
is the graph of some function R: (71, V) — (s - 71, V). We next show that R is an H-map; this is easy. We

know that

(7(h) - v,R(7(h) - v)) € W

for ve V and h € H. On the other hand, we know that

o(h) - (v,R)) = (m(h) - v, t(shs™') - R(v)) € W

since W is a G-space. Since W is the graph of R it can only be the case mr(shs~') - R(v) = R(mt(h) - v).

That is, R is an H-map.
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Proof of (a). By the preliminary assertion, if there is no non-zero H-map from (7, V) to (s - m, V)
then (0,V x V) is irreducible.

Proof of (b). First we show that 7t' (+) are indeed smooth G-representations, by checking G-linearity.
That is, we want to show that ' (¥)(g1g,) = 7' ) (g7)n' () (g,) for all g1,9> € G. If 7,92 € H then

it is clear. If g7 € H and g2 = hys € Hs then,

7'CT(+)(91 g2) = 7rT(+)(91h23)
=m(gr1ha)T
= 7t(g1)m(h2)T
:ﬂT(“(g])nT(”(hzs)

=" F(g)n" ) (ga).

If gy =hys € Hs and g, € H then,

T (hysga)

n'(gigy) =m
=" (hysgas's)
=m(hysgas™ )T
=n(hy)m(sgas )T
= 7t(h1)Tm(g2)

=" (g (g2).

If gi = his € Hs for i = 1,2 then,

') (g1g2) = ') (hyshys)
=" ) (hyshasss™)
= 7t(hy)7(shas™')
= 7t(h1)Tm(h2) T

=" (g)n" ) (g2).
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The calculation for 7' (~) is similar. Because 7t and s7t are smooth H-representations it easily follows
that 7t"(+) are smooth as well.

As we saw in the preliminary assertion, each proper, non-trivial G-subspace of (o, V x V) is the graph
of an H-map T: (7, V) — (sm, V). o can have, at most, two proper, non-trivial G-subspaces, they must
be the graphs of the maps T and —T.

To verify that VT(*) ¢ V x V is G-subspace of (0, V x V) the following calculations suffice:

o(h)(v, T(v)) = (n(h)v, (shs~ )T (v))

= (n(h)v, T(n(h)v)) € VT ()

and

o(hs)(v, T(v)) = (R(R)T(v), m(shs™")v)

= () T(V), T(n(W)T(v))) € VTH)

for h € H and v € V. The calculations to verify that VT(~) is a G-subspace are similar.

Lastly we verify that the diagonal embedding

d:V—-VxV

v (v TV)

is an intertwining map of G-representations so that w'(*) = VT(+) Let h € H and v € V. Then:
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and

The calculations to verify that the map

d:V-oVxV

v (v, —T(v))

is an intertwining map of G-representations are similar. O

Section 2.3  Representations for the Standard Model in Case I and Case II

We will now apply the results from Sections 2.1 and 2.2 to Case [ and Case II of Table 1.2. Recall that
in Case I E/L is split and D is non-division and in Case II E/L is split and D is division. Let X = Xp as

in Section 1.4 and considering the exact sequence

11— 1 —25D*xD* 25 GSO(X) — 1.

Let (t1,V7) and (12, V2) be admissible representations of D* that admit the same central character w-.
By way of p we get a smooth representation 7t(tq,7T2) of GSO(X) on V = V; ® V, which is trivial on

p(n(L*)) given by

ni(t1,72)(p(b1,b2)) =11 (b1) @ T2(b2)

for by, b2 e D*.

Lemma 2.3.1. Let (t1,V7) and (12,V2) be admissible representations of D> admitting central

characters w., and w.,, respectively, and assume that w., = wr = w.,. Then n(T1,T2) s an
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wrreductble representation of GSO(X) if and only if T1 and T2 are irreducible. Furthermore 7t(T1,7T2)
is an admassible representation of GSO(X).

Proof. From 2.16 of Bernstein and Zelevinskii (1976) we have that 7; and 7, are irreducible if and only
if T1 ® T2 is irreducible. The result follows from Lemma 2.1.1 and the models given for Case I and Case

IT in Section 1.6. O

Define s : X — X by s(x) = x* for x € X. Then s is a non-trivial coset representative of O(X)/SO(X)
(and hence of GO(X)/GSO(X)) with the property that s> = 1. Let vi,v] € Vi, v2,v, € V, and
b1,bs, € B* with h = p(by,b2). Let (0,V x V) be the GO(X)-representation as defined in (2.2.1).

Explicitly, we have

o(h) - (vi ® vz, vi ®v3) = p(b1,b2) - (vi @ vz, vi @V3)
= (p(b1,b2) -v1 ®va, s~ 'p(b1,ba)s - vi @V))
= (p(b1,b2) - vi @ vz, p(bz,b1) - vi @ V))

= (m(b1) - vi ® m2(b2) - v, 71 (b2) - Vi @ T2(by) - v5)
and

o(s) - (vi ®@Vv2,v] ®V3) = (V] @ V3,v1 ®V2).
Applying the results from Section 2.2 we find that

Indggo ) (T(T1,T2)) = (0, (V1 @ Va) x (Vi @ V2)).

Using Lemma 2.2.2, we now find criteria on 77 and T, for when o is irreducible.

Lemma 2.3.2. Let (11,V;) and (12, V2) be wrreducible admissible representations of D* and assume

that wy, = w+,. The following are equivalent
(a) T = T2,
(b) s-m(t1,T2) = m(T1,72), and

(c) o is reducible.
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Assume that T : s - nt(T1,T2) — 7(T1,7T2) %5 an isomorphism of GSO(X)-representations. Then,

(0, V x V) has two GO(X)-subrepresentations given by

{(V,T(v)) lvev, ®V2} and {(v, —TWV) IveVi® Vz};
these subrepresentations are isomorphic to 7' (t) and n' (=), respectively, where ' *) and 7' (-)
are defined in Lemma 2.2.2. Furthermore o = ' (*) @' (),

Proof. The equivalence of (b) and (c) follows directly from Lemma 2.2.2. Next, we want to prove that

(a) is equivalent to (b). Let by, by € D* and set h = p(by,by). We calculate that the twist of 7t(tq,T2)

by s is given by

(s (r(t1,72))) () = (s - (m(T1,72))) (p(b1, b2))
=nt(t1,72) (sp(b1,b2)s™ ")

=(t1,72) (P(bz)b”)'

We start by proving that (a) implies (b). Assume that T : (17,V;) — (T2, V2) is an isomorphism. So,
for all b € D* we have that

Toti(b)=12(b)oT. (2.3.1)

Now consider the map determined by

T:(s-m(t1,72), Vi ® Va) — (mt(11,72), V1 @ V2)

Vi ®@vy — T (v2) ®@ T(vq)

for vi € Vi and v, € V5. We claim that T is an isomorphism of GSO(X)-representations. To prove this

claim we must show that
To (s-m(t1,12))(p(b1,b2)) = m(t1,T2)(p(b1,b2)) o T (2.3.2)
for all by, b, € B*. First, we calculate the left hand side of (2.3.2) for an arbitrary vi ® v, € V4 @ V3:

(To (s m(t1,72)) (p(b1,b2))) (v1 ®@Vv2) = (T o m(T1,72) (p(b2, b1))) (V1 @ v2)
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=T(t1(b2) - vi ® T2(b7) - v2)

= (T ota(b1))(v2) ® (T o 11 (b2)) (1)
On the other hand, we calculate that right side of (2.3.2):

(e(t1,72)(p(b1,b2)) 0 T) (vi ®v2) = 711, 72) (p(b1,b2)) (T~ (v2) @ T(v1))

= (11(b1) o T (v2) ® (T2(b2) 0 T)(v1).

Thus, T is a GSO(X)-map. Since T is non-zero and both s - 7(t1,7T2) and 7t(T7,7T2) are irreducible, it
follows that T is an isomorphism.

Now we prove that (b) implies (a). Let
T:(s m(t1,72), V1 ® V2) = ((11,72), Vi ® V2)

be a GSO(X)-isomorphism. Fix vi; € V7 and let v, € V, be nonzero. Then ‘r(w ®v2) # 0 and there exists
some linear functional A : V> — C so that (id®@A)(T(v; @v2)) # 0. Consider themap T:V, — V7 = V;®C

defined by
T(w) = (i[d @A) (T(vi @ w))
for w € V,. We claim that T is a D*-map. To confirm this, let b € D* and let w € V, and see that

T(t2(b)w) = (id @ A)(T(vi @ T2(b)w))
= (id @ N(T((71 (1) @ 12(b) v @ )
= (i[d @A) (11 (b) @ 12(1))(T(vi @ W))
= (1 (b) @id)(id@NT(vi @w)

= (11(b) ®id)T(w).

Since T is non-zero and T; and T, are irreducible it also follows that T is an isomorphism. Therefore, (a)
and (b) are equivalent.

Applying part 2 of Lemma 2.2.2, in this setting, gives the decomposition of Indgg(g)&)ﬂ(’t],’cz) into
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the direct sum of irreducible representations. O

Section 2.4  Representations for the Standard Model in Cases III and VI

Recall that Case III is the case for which E/L is non-split and D is non-division and Case [V is the case
for which E/L is non-split and D is division. We have B = M(2, E). Assume that X = X, as in Section

1.4. Then we are considering the following exact sequence

1 — B 5 X x GL(2,E) —2— GSO(X) — 1. (2.4.1)

Here n(t) = (NE(t),t) and p({,b) - x =t "bxa(b)* for all x € X,t € EX, £ € L*, and b € GL(2,E). Let
(T, V) be an admissible GL(2, E)-representation that admits central character w.. Assume that there
exists a character x : L* — C* such that w. = x o NE. For t € L* and b € GL(2,E) we define a

GSO(X)-representation (71, V) by

7(x,7)(p(t, b)) = x(t)T(b) (2.4.2)

for { € L* and b € GL(2,E) Again we choose s € O(X) determined by s(x) = x* as our non-trivial coset

representative of O(X)/SO(X).

Lemma 2.4.1. Let T be an admaissible representation of GL(2,E) which admats a central character
W<, and assume that w. factors through NE via x : LX — C. Consider the GSO(X)-representation
(X, T) given in (2.4.2). Then, the twist s - 7t(x,T) ts tsomorphic to (T o a,x) where o € Aut(E) s

the non-trivial Galois tnvolution.

Proof. The twist of 7t(x,T) by s is calculated to be

s7(x, ) (p(t, b)) = 7t(x, T) (s 'p(t, b)s)
= 7t(x, T)(p(t, x(b)))
= x(t)t(e(b))

= ﬂ(T o &, X) (p(t’ b)) .

Indeed X was chosen to be the space of b € GL(2, E) where b* = «(b). O
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Lemma 2.2.1 gives us that Indggé?;() (1t(x, 7)) = (0,V x V) with the action of the later determined by

o(h) - (vi,v2) = p(t,a) - (vi,v2)
:n(X)T)(p(tab*))
= (p(t,a) - vi,sp(t,a)s™ ' -v7)

= (p(t,a) - v1,p(t,x(a)) - v2)
and

o(s) - (v1,v2) = (v2,Vv1)

where h € GSO(X), s € O(X) given by s(x) = x*, and vy,v, € V.

Lemma 2.4.2. Let T be an irreducible admissible representation of GL(2,E), and assume that w.
factors through NY via x : L — C. Consider the representation 7t(x,T) from Lemma 2.4.1. Then

the following are equivalent:
(a) T= 1o,
(b) sm(x,T) = n(x, 1), and
(¢) o is reducible.

Assume that T : s - m(x,T) — 7(x,T) 25 a GSO(X)-isomorphism, then there are two GO(X)-

subrepresentations of ¢ given by

{(V,T(v)) |ve V} and {(v, —Tv)) Ive V}

These subrepresentations are isomorphic to ') and ') respectively, where n'*) and n'(~)

are defined in Lemma 2.2.2. Furthermore Indg(s)(gﬁ)ﬂ(x, ea gl

Proof. We have proven the equivalence of (b) and (c) and the decomposition into irreducible represen-

tations in Lemma 2.2.2. Lemma 2.4.1 proves the equivalence of (a) and (b). O
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Section 2.5 Whittaker Models

Let { be a non-trivial additive character of L. If L is non-archimedean we let W(GL(2,L),{) be the

C-vector space of functions W : GL(2,L) — C such that

W( g9) =b(x)W(g) (2.5.1)

for x € L and g € GL(2,L), and there exists a compact, open subgroup K of GL(2,L) such that W(gk) =
W(g) for g € GL(2,1) and k € K. If L = R we let W(GL(2,L),{) be the space of smooth functions
with rapid decay away from O that satisfy (2.5.1). Evidently, W(GL(2,L),¥) is a smooth GL(2,L)-
representation under right translation. We say that a representation (T, V) of GL(2, L) admits a Whittaker

model, denoted by W(t, 1), if it is isomorphic to a subrepresentation of W(GL(2,L), V).

Theorem 2.5.1. Let L be a non-archimedean local field and let b be a non-trivial additive char-
acter of L. Let (1,V) be an irreducible admissible representation of GL(2,L). Then T is infinite-

dimenstional 1f and only if T admits a unique Whattaker model.
Proof. See Theorem 3.5.3 of Bump (1997), for example. O

We note that if (T,V) is a finite-dimensional irreducible admissible representation of GL(2,1L), then

T = 3 o det for some character 3 : L* — C*. In the case that L = R we have a similar result.

Theorem 2.5.2. Let (7, V) be an irreducible admissible (g,K)-module for GL(2,R). Then there
ezists at most one space W(m,\p) C W(GL(2,R), ) that s invariant under the actions of U(g) and

K on C*®(GL(2,R)) such that W(m,\b) is isomorphic to (m, V) as a (g,K)-module.
Proof. See Theorem 2.8.1 of Bump (1997), for example. O

This result is also true if we replace R with C, but we do not need this result. For more information

on the complex case see Theorem 6.3 of Jacquet and Langlands (1970).

Section 2.6 The Choice of "

Let X be as in Section 2.3 or Section 2.4. Let (71, V) be an irreducible admissible representation of GSO(X).

. . . . . . . GO(X) GO(X) _ .
In this section we will define a canonical irreducible constituent 7™ of IndGso(X]ﬂ. If IndGSO(X)n is
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GO(X)
GSO(X)

GO(X)

Gso(x)7 is reducible we will

irreducible, then set m" = Ind 7. To define " in the case that Ind
use Lemma 2.3.2 and Lemma 2.4.2; more precisely in the case that the involved representations t; admit

Whitaker models, we specify a choice of " based on the value of w-(—1).

Case I and 11

Assume first that X = Xp is as in Section 2.3 and that D = M(2, L) is a non-division quaternion algebra.
Let Ty, T, be an infinite-dimensional, irreducible, admissible representations of GL(2,L) with the same
central character w., = w; = w,, and with Whittaker models W(t1,{) and W(t2,1), respectively.
For the following we will be using the construction of the GSO(X)-representation 7t(T7,T,) from Section

2.3. We will use the specified s € O(X) given by s(x) = x*.

Lemma 2.6.1. Let the notation be as in the preceding paragraph. Assume that 11 = 1. Let
Vi = W(t1,¥) and Vo = W(t2,WV), so that Vi = V,. Then the linear map T: Vi, @ V2 - Vi @V,

determined by vi ® v2 — Vo ® vi 1s an isomorphism of GSO(X)-representations.

Proof. It is clear that T is linear and bijective so all that is left to show is that T is a GSO(X)-map. Let

bi,b € D and set h = p(by,b;). Let vi € V; and v, € V5 and set v =v; ® v,. We determine that

T((s - (h)v) = T((s - 7)(p(b2, b2))v)

T(m(p(b2,b1))Vv)

=T(11(b2)vi @ T2(b1)v2)

=1,(b1)v2 @ T1(b2)v1.

On the other hand,

t(h)T(v) = 7t(p(b1,b2))(v2 @ V1)

=T1(b1)v2 @ T2(b2)v1.

These are equal since T; = T, and they have the same Whittaker model. O

Let the notation be as in Lemma 2.6.1. We now define

and 7 =n'C@(=1),
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T($) are defined in Lemma 2.3.2

where 7
Note: We can handle Case II, when D is a division algebra, in a similar way if we make the assumption

that V; = V5.

Cases III and IV

Next assume that X = X, 5 is as in Section 2.4. Let T be an infinite-dimensional, irreducible, admissible
representation of GL(2,E), and suppose that its central character factors through NE via ¥, so that
Wy = XONE. Suppose that the Whittaker model of T is W(t, V), where g = oTrE. For the following
we will be using the construction of the GSO(X)-representation 7t(x, T) from Section 2.4. We will also be
using the specified s € O(X) given by s(x) = x*.

We can consider tox as a GL(2, E)-representation and so it has a Whitaker model (toa, W(to o), ).
Below we see how this representation is related to (T, W(t, V).
Lemma 2.6.2. Let 1) : L — C! be a non-trivial character and set g = 1 o ’I‘rE Let T be an
infinite-dimensional, irreducible, admaissible representation of GL(2,E). Let W(t,\g)* be the C-
vector space of all functions Wo a for all W € W(t, V). Then W(t,Ye)* C W(GL(2,E),Ye) and

is an wrreductble GL(2, E)-subspace under right translation. Moreover, the map

T:(too,W(too,he)) = W(T, he)*

defined by W — Wo « is a well defined isomorphism of GL(2, E)-representations. Consequently,

the Whattaker model W(t o o, pg) 28 W(T,pg)*.

Proof. Let W € W(t,\{g) and suppose that K is a compact subgroup of GL(2, E) such that W(gk) =
W(qg) for all k € K and g € GL(2,E). Then evidently for all k € x(K) and every g € GL(2,E) we have
(Woa)(gk) = (Wo)(g). With the topological condition satisfied, the following calculation shows that

W(t,pe)* € W(GL(Z,E), $e):
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Let b,g € GL(2,E) and W € W(t,\Pg). T is clearly linear, one-to-one, and onto. To determine that

T is a GL(2, E)-map we compute

To(t(s) - W(g)) =ToW(xl(s)g)

= Wi(sx(g))

and

T(W(g)) = (tox](s) - W(a(g))

= W(sx(g)).

The fact that To« is irreducible follows simply from the fact that tis. Indeed if V C W(rt, V¢ ) is a proper
subrepresentation of T o o then it is also a proper subpresentation of t. Therefore T is an isomorphism

and W(t,\Pg)* is irreducible. O

~

Lemma 2.6.3. Let the notation be as above. Assume that s -7 = 7 so that T = To «. Let
V = W(t,Ve). The map T : V — V, determined by T(W)(g) = W(al(g)) for g € GL(2,E) and

W e W(t,pe) is such that T((s-m)(h)v) = n(h)T(v).
Proof. The argument is similar to the proof of Lemma 2.6.1; we also use Lemma 2.6.2. O

Let the notation be as in Lemma 2.6.3. We finally define

P =ql@c=1) and o =m

T(+)

where 7 are defined in Lemma 2.4.2.

Remark 2.6.4. We remark that in the case that B = M(2,R) x M(2,R) then the results of this

section hold in a straight-forward way.
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CHAPTER 3 | THETA LIFTING

Let L be a local field or a number field of characteristic zero and let 4, E, D, B, and X be as in Section 1.2.
In this chapter we begin to describe the connection between automorphic representations of GO(X) and
automorphic representations of GSp(4). When L is a local field of characteristic zero there is a unique
Weil representation of GSp(4,L) x GO(X). If L is a number field, then we use the Weil representation,
defined over each completion of L, to construct a global theta lift. The global theta lift takes the data of
a cuspidal automorphic representation of GO(X), as well as some data from the Weil representation, to

produce an automorphic representation of GSp(4,L).

Section 3.1 The Weil representation

Let L, E, D, B and X be as in Section 1.2; assume further that L is a local field of characteristic zero and
that if L is archimedean then L = R. Let { : L — C* be a non-trivial continuous unitary character. For
¢ € L set the notation ¢(x) =(cx) for x € L. If L is a local field then the following formulas determine

a unique Weil representation w of Sp(4,L) x O(X) on £2(X?) = £L?(X x X) with respect to \:

(W, N)e)(x1,%2) = @(h™ 'x1,h " 'x2), (3.1.1)
aj az
as ag
(w( 1] 1e) (x1,%2) (3.1.2)
aj az
as Qs

=Xg/(aras —azaz)laras — azas\dlmx/z@(alxl + azxz, axxq + asxz),

T b b
1 b, bs
(w( Do) (x1,%x2) (3.1.3)
1
1

=1P(by(x1,%x1) + 2b2(x1,x2) + b3(x2,%2)) @(x1,%2),
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(w( @) (x1,%2) = Y(X)F(@)(x1,%2) (3.1.4)

—1

where g € GSp(4),h € SO(X),x1,x2 € X, and @ € L£*(X?). Here Xe/L o L* — C* is the quadratic
character associated to the discriminant of X. That is, x¢ 1 is the unique quadratic character on L that
is trivial on NE(EX). In particular if det(X) =1 € L*/L*? then Xe /L is trivial. Also, y(X) is a particular
fourth root of unity. In (3.1.4) the Fourier transform F(¢) is defined by

Flo)a,x2) =J

. © Y1, Y2)¥(2(x1,y1) + 2(x2,Y2)) dy1 dyaz,
X

where dy; dy, is the unique Haar measure so that F(F(¢))(x) = @(—x). Let R(L) be the subgroup of

GSp(4,L) x GO(X) given by
R(L) ={(g,h) € GSp(4,L) x GO(X) : A(g) = A(h)}L (3.1.5)

Then w extends to R(L) via the formula

_dimX

w(g, Mo =AM "7 w(g ,(eoh™) (3.1.6)

for @ € £L2(X?) and (g,h) € R.
Lemma 3.1.1. The Wezil representation ezists and is unique where the factor y(X) is given by the

following table.



49

Table 3.1: Values of y(X)

D
non-division division
Case I Case II
splat
y(X) =1 Y(X) =1
E
Case IIT Case IV
non-split
A(E/L,p)? A(E/L,p)?

where A(E/L, V) is defined in Jacquet and Langlands (1970) Lemma 1.2.
Proof. See Yoshida (1979) Section 1. Remark 1 of Yoshida (1979) gives the table. O

Consider the case when L is a non-archimedean local field with valuation v, ring of integers o; and
maximal ideal p = (@1 ). Assume that the conductor of 1 is o;. Define S(X?) as the subspace of £?(X?)
consisting of locally constant and compactly supported functions.

If L = R then we employ Harish-Chandra modules. Let K; = Sp(4,R) N O(4,R) be the designated
maximal compact subgroup of Sp(4,R). Let g7 = sp(4,R) denote the Lie algebra of Sp(4,R). Suppose
X has signature (p, q) and has corresponding positive and negative definite subspaces X and X, rep-
sectively, so that X = X* L X~. Set J; = O(X*,R) x O(X,R) be the maximal compact subgroup of
O(X,R) which fixes the X* and X~. Let h; = o(X,R) denote the Lie algebra of O(X,R). For x € X
suppose that x has column vectors x; = x{r +x; for some xi+ € Xt and x; € X for 1 <i<n. Set
xt = [(x{",x{)i,; and x= = [(x{",x; )]i,j. Let ¢ € R* be such that (t) = exp(ict) for all t € R. Let

) )

S(X?) be the subspace of £?(X?) of functions of the form
1 . _
p0x) expl—3cl(Tr(x") — Tx(x )]

with p : X2 — C a polynomial function. It is not hard to see that S(X?) is closed under the action of w

restricted to K; x J; and to g1 x by. Therefore, S(X?) is a (g1 x b1, Ky x J;)-module under the action of
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We can also extend w to R in the case that L = R. Let g = gsp(4,R) denote the Lie algebra of

GSp(4,R) and let F be the maximal compact subgroup generated by F; and

1
1

Let h = go(X,R) denote the Lie algebra of GO(X,R). Let ] be the maximal compact subgroup of
GO(X,R) containing J; as an index two subgroup. If i: X" — X7 is an isomorphism then jo = [¢ ig‘ ]
is a non-trivial coset representative of J;\J. Let v be the Lie algebra of R. Explicitly ¢ is the set of pairs
(g,h) € g X h such that g =z+ g7 and h = z+ hy for some z € R,g; € g1, and h; € ;. Let F be the
maximal compact subgroup of R which is generated by K; x J; and (ko,jo). The space S(X?) is closed

under the action of w restricted to F and t. Thus S(X?) extends to a (t, F)-module, which we also call w.

Lemma 3.1.2. Assume that L is non-archimedean. Then the Weil representation preserves S(X?)

and the action of w on S(X?) is smooth.

Proof. It is easy to see that w preserves S(X?). Let {u1,u,u3,14} be an ordered orthogonal basis for
X. For n € Z we will write X2(p™) = (p™u; + pus + p™us + puy) C X2. Let @ € S(X?). There there
is some integer v < 0 such that Supp(¢@) C X?(p") and supp(w(J,1)e) C X*(p7). Set N = —2r and let
Sym(2,p™) be the set of 2 x 2 symmetric matrices with entries in p™. Then we claim that ¢ is fixed by

the subgroup of Sp(4,L) given by

12

Indeed, if by, b, and bz is in p™ and (y7,y2) € X?(p"), then

1 b; by
1 by bs
w( y De(y1,y2) = w(bi(yr,y1) + 2ba(y1,y2) + b3 (y2,y2)) @(y1,y2).
1
1

We have by (y1,y1) + 2b2{y1,y2) + b3(y2,y2) € or. Since oy is the conductor of {p we have shown that
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@, and similarly w(J, 1), is fixed by (3.1.7). Furthermore we calculate that

1 1 —b; —ba
1 1 —b, —b;
=—1-7- 7.
b1 by 1 1
b, b3 1 1
Hence,
1
1
w( yJNe =9
b by 1
b, b3 1

and so we conclude that ¢ and w(], 1) are fixed by

12 1, Sym(2,p"N)
< y > C Sp(4, L).

Sym(2,p™) 12 12

There exist a finite set {U;}ic1 of disjoint compact open subsets of X2 and constants k; such that

(0] :ZkiXUi-

iel

Let i € I. Choose M; € N such that for each (y7,y2) € U; we have (p™Miyy + pMiys +yq,pMiys +

ap 1
pMiy, +y,) € Uy, Set M = max;e1{Mi, N,a(x)}. Let A = = (mod pM) and assume
az ag 1
A
that . Then, we find that
tAf1
A 2
w( yDe(y1,y2) = xe i (det A)ldet Al“@(a1yr + azyz, a2y + asyz)
tAfl

=(y1,y2).
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Therefore @ is fixed by elements of the form

A 1, B 1,
{ , ; }
AT 1, C 1,

1 0
where A = (mod pM) and B,C € S(2,p™). These elements generate the principal congruent

0 1
subgroup

F(pM) ={k € Sp(4,01) | k = 14 (mod p™)}.

This completes the proof. O

Let x be a non-trivial character of L*. Let a(x) be the smallest integer so that x(1 + peX)) =1,
while for every k < a(x) we have that x(1 + p®(X)) is non-trivial. We say that x is ramified if «(x) > 0.

Fix a Haar measure on L*. For ¢ € S(L*) and s € C, we define
Z(@,s,X) = J @ () xI%x(x) d*x. (3.1.8)
LX

There exists a right half plane fis > M for which Z(¢,s,x) converges. According to Proposition 1.2 of

Jacquet (1979) there exists a function y(s,x, ) such that

Z(]:((P),] _S)Xi]) :'Y(S,T[,’ll))Z((p,S,X). (319)
In general we set e(s,x,\P) = v(s,x, W)L(s,x)/L(1 —s,x'). Here we have

1 if x is ramified
Lis,x) =

'I . . .
@9~ if x is unramified.

Lemma 3.1.3. Let \ be a character of L* with conductor oy. Let dx be the Haar measure on L

so that the volume of oy 2s 1. Let c € L*. Then
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J' P(cx)do = —q ]

@nop X
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v(ic) >-—n-—1
vic)=—m—1

vic)<—m-—1.

Proof. The first equality is obvious. For the second see that @™o * = @™o; — @™oy so that

J P(ca) do = J P(co) doe — J P(ca) de

@nop X @MoL

which reduces to the first equality.

®n+1 oL

O

Lemma 3.1.4. Let\p be a character of L™ with conductor o. Let c € L* and let m € Z. Let dx be

the Haar measure on L so that the volume of or is 1.

(a) If x s a ramified character of L,

] 0 m £ —v(c) - alx)
J X () (a)dac = (3.1.10)
@mop lel~"x(c)e(0,x, )  m=—v(c) —alx).
(b) If x is an unramified character of L™, then
0 m< —v(c)—1
J X b (a)da={ _qm-ly(p)m m=—v(c)—1 (3.1.11)
(1—qg Ng™(@)™ m>—v(c)—1.

Proof. We start by proving part (a). In all cases we can simplify the integral with some changes of

variables. We calculate that

J " (@blear) da = @™ Jx-wcomoc)xp(mmca) do

@Mop X op %
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— g (@)™ J (@) (be) dex

op X

where b = @™c so that v(b) = m + v(c). Now assume that x is ramified, so that x(1 + p¥) = 1 for all

k > a(x) > 0 but x is non-trivial if k < a(x). When v(b) > 0 then {(bor) = 1 so that evidently

j 3 (@b(ba) doc = 0

op X

1

since x ' is a non-trivial multiplicative character on op *. Next examine the case when v(b) < —a(x).

Let y € o1 and see that

J x (o) WP(ba) da = " X (1T +y@™)) ) (ba) de
— [ X (b1 + yot™)a) da

= | x (@) (ba)d (by@*™)) dex.

J
op X

integrating over y € or we find that

| x Mo da= | x*(oc)w(boc)(jw(byw“(”) dy) do.

op % oL

If v(b) < —a(x) then P(b@2X)°L) is a non-trivial additive character so [ x"(e)W(be) dex = 0.
OLX

Pick k € N so that max{1,—v(b)} < k < a(x). Clearly, {(b@*o;) = 1 We calculate

| 3@t da= | x e (o014 yoH)a) da

X X

oL

— (x’ («(1 +ga)k)])>1b(boc) doc

oL

oL

= [ (x 0+ ueb) ) oo an

=x(1+y@") | x () (ber) dex.
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Since 0 < k < a(x), there exists a y such that (1 +y®"*) # 1. This implies that

J x (e P(ba) dax = 0.

X
o

We now come to the case when v(b) = —a(x), which requires some additional background. Let

®(x) =x '(x) - 1,, x (x) so that

Z(®,s,%) = J O ()P x(x) d*x = j X" Tdx=1—q".

Therefore

els,x, ) = (1—q )" Z(F(@),1—s,x7"). (3.1.12)

Next we calculate that
Z(F(@),5,x ") = | F@Nx ) dx

F(@)()l¥Tx 7 (x) dx

|
I\/I

m=—o0o

= > @™ J F(@)(@™x)@™x* x ' (@™x) dx
N e (e J F(O)(@™x " (x) dx

ULX

This gives us that

e(s,x, ¥) = q=s)(1 — g~ 1) Ty (@) J F(@) (@ *™x)x T (x) dx. (3.1.13)

Luckily, we can simplify the integral
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The equality e(s,x, V) = €(1/2,x,P)q*)(5=1/2) finishes the case when —a(x) = v(b).

Now we commence with proving part (b). With a change of variables we calculate that

j () (co)do = x(c) j " (o) de.

lc|
G.)"‘ULX wm+v(c)oL><

Therefore, when x is unramified it is sufficient to show that

X ()b (a) doc = 4 7 (= _1. (3.1.14)

0 €< -1

If { < —1 then x ! is trivial so we simply apply Lemma 3.1.3. If { > —1 then 1) is trivial and

since x ! is trivial on og *. O

Lemma 3.1.5. If E/L s splait, or non-archimedean and unramafied, then y(X) = 1. If E/L s non-

archimedean and ramified with conductor p®X) | then y(X) = s(]/Z,XE/L,lj))Z =xg,/L(=1) =(-1,9).

Proof. Lemma 3.1.1 verifies the claim for the split case. Assume that E/L is non-archimedean and
unramified, so that y(X) = A(E/L,{)?, by Lemma 3.1.1. We look to Jacquet and Langlands (1970)
Lemma 1.2 for the formula

Jorx Xg 1 (@)(a)dex

AE/L, .
) = T (@ b(a)dal

Evidently, this is 1 because the integrand is identically 1. Now assume that E/L is a non-archimedean

and ramified so that, by Jacquet and Langlands (1970)

f XE/L Plaw *X))da

— alx
AME/LY) = Xe/L(@*X | f X (@ blom <0 )dal (3.1.15)
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By Lemma 3.1.5 we calculate that

ME/L ) = xe 0 (@00) 12 Xe/L (@72 )el0 X1, )
lo=20I = Txe p (@=2))e(0, xE /1, W)
_e(0,xe/,0)
(0, xe /LW

The formula e(s,Xxg,/,)) = e(]/Z,XE/L,lb)q_a(X)(S_VZ) and the fact that |e(1/2,x,V¥)| = 1 gives us

that

A(E/L)lp) = €(1/2>XE/L)1I))-

Finally the equation (1 —s,xg,1,WV) - €(s,Xe,1, ) = Xe, 1 (—1) applied to s = 1/2 shows that

Y(X) =AE/L)? = e(1/2,xe /1, W) =Xe,(—1) = (—1,8).

Section 3.2  Action of the Maximal Compact Subgroup

Lemma 3.2.1. Let the notation be as in Section 3.1 and assume that L ts non-archimedean.
Assume further that E/L 1s split or unramaified and that the residual characteristic of L is odd. Let
Uy, Uz, U3, Uy be an ordered orthogonal basis for X, and set M = opu; +opuz +opuz+oruy. Assume
that (wy,w1), (uz,u2), (U3, u3), (W4, ug) are in op ¥, and let fq2 be the characteristic function of M2.
Then

w(g,h)fpmz = fme2 (3.2.1)
for the group K of elements (g,h) € R with g € GSp(4,01) and h € GO(X) with hM = M.

Proof. First we verify that A(K) C of. If (g,h) € K then M = hM = h™'M so that both A(h) and
A(h™') =A(h)~" are in o. It suffices to check that (3.2.1) holds for the generators of K. For (g,h) € R

we have
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It follows that K is generated by

where B € M(2,01), B is symmetric, A € GL(2,0r), and h € GO(X) is such that hM = M, so that

A(h) € or*. Let B=[p! 2] € M(2,01) and x1,xz € X. Then

1 B
w( y Dfmz (1, x2) = B by (x1,%1) + 2b2(x1,%2) + b3 (x2,%2))fpm2 (X1, %2).
0 1

Since that the conductor of \ is o, so that (o) = 1. Therefore the above is equal to 1 when
(x1,%2) € M? and is O otherwise.

Next let A = [§} &2] € GL(2,0.) and x1,x2 € X. Then

A 0
w( yDfmez (x1,%2) = xe/(aras — azaz)laras — azaz*faz (@1x1 + azxz, axxg + asxz)
0 tA™!

= fpme(aixg + azxz, azxy + asxz)

= fmz2(x1,%2)

because E/L is split or unramified, det(A) € or ¥, and (x7,x2) € M? if and only if (a;x; + azxz, arx; +

asx2) € M2. By Lemma 3.1.5 we have that

0 1
w( y Dfmz (x1,x2) = v(X)F(fmz) (x1,%2) = F(fmz) (x1,%2).
-1 0

where

F(famz)(x1,%2) J fam2 (Y1, y2) b (2(x1,y1) + 2(x2,Y2))dy1dyz
X

N

P(2{x1,Y1) + 2(x2,Y2))dy1dy2

Il
—

M2
4

=TT wi2asbituus w) doo)( [ (2esds sy w)) aa)
i=1 oL or

and X1 = ajuy+---+aquq,x2 = iU+ - -+calla, Y1 = byug+- - -+bsug and yo = dyug+- - -+dgug with
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ai,ci € Fand bi,d; € or. It follows that there exists some positive constant C so that F(fy2)(x1,%2) =
Cfmz(x1,%2). Since the Haar measure of X?> was chosen so that F(F(fpz))(x1,%2) = faz (—x1, —x2) =
famz (x1,%2), it must be that C = 1. Lastly, let h € GO(X) with hM = M, so that A(h) € o *. Then

1 1 1
w( s fpe = (W) w( : s D(fpmz o)

A(h)~! A(h)~! A(h)

= fMZ.

This completes the proof. O

Section 3.3 Global Theta Lifts

Let [, E, D, B and X be as in Section 1.2. Assume further that L is a number field with ring of integers oy
and adeles A; assume also that E is real. Let { : A — C* be a non-trivial continuous unitary character
that is trivial on L. Write{p = [ [, ., where, : L, — C* is a non-trivial unitary character for each place
v of L. For each infinite place of co; and co; of E fix the Lie algebras b, gy, t, of GO(X(L,)),GSp(4,L,),
and R(L, ), respectively, and maximal compact subgroups J,, ¢ GO(X(L,)), K, c GSp(4,L, ), and F, C R,,
as in Section 3.1. Let hoo = hoo; D hoo, and let Joo = Joo; P Joo,, and make similar definitions for
Fooy ooy Gooy and Fuo. In this section we are following Section 5 of Roberts (2001) applied to our special
case. Let w, denote the Weil representation of R(L,) or the (t,,K,)-module on S(X2) with respect to
1U,. For the global symmetric bilinear space X = X(E) pick an orthogonal basis {u,u;,us, us} for X as
a vector space over L. At each finite place, we set the notation for the characteristic function fy;2 of
M%, where M,, = o, u; + oL, u2 + o, u3 + o, u4. For each finite place v let K, be the subgroup of
(gv, hy) € R(L,) such that g, € GSp(4,0r) and h,M, = M,,. Then, by Lemma 3.2.1, for almost all finite
places v of L we have that w,(gy,h,) fixes fapr, for all (gy,h,) € KL. Define R(A) to be the restricted
direct product of the R(L,) with respect to K,. Let S(X(A)?) = ®L S(X2) be the algebraic restricted
tensor product over all the places of L of the C-vector space S(X2) with respect to the fmz. Suppose
that @, € S(X2) for all places v, @, = fmz for all but finitely many v, and that ¢ = ®.v ¢, € S(X?(A)).

Let (g,h) € R(A). Define the function

w(g,h)e: X(A)? = C by (w(g,h)e)x) =] J(wy(gv, hv)ev)(x)

v
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for x = (x,) € X(A)?. By Lemma 3.2.1, w(g, h)@ is well-defined.

Now we can define the global theta kernel. For ¢ € S(X(A)?) and (g,h) € R(A) define

g, o)=Y  w(gheX).

xeX(L)2

Lemma 3.3.1. For (g,h) € R(A) and ¢ € S(X(A)?) the series 9(g, h; @) converges absolutely and is

left R(L)-tnvariant.

Proof. We first prove left R(L)-invariance. Let (g,h) € R(A) and let (s, go) € R(L). Since 9(sg, hoh; @) =

9(s, ho; w(g, h) - @) it suffices to prove that d(s,ho, @) =3(1,1;¢). R(L) is generated by

where B € M(2,L) with 'B = B, and h € GO(X,L). We may also assume that ¢ is a pure tensor so that
we only need to check invariance for the three generators mentioned above. Let’s start with the following

calculation which uses formula (3.1.6) and the global product formula

1 0 1 0
a(( o) = Y ) 9) ()
0 A(h)-1 xeX(L)2 0 A(h)-1
0
= Z va v ) 04) (x)
xeX(L )\(h)]
— Z H |7\ | dlmX/Z (hfl (X))
xeX(L
= ) (Hn Iy d““m) (H(Pv(h](x))>
x€X(L)? v
= Z o(x
xeX(L
=9((1,1);9)

where the second to last line is true because h € GL(X), so just rearranges the terms in the sum. Similarly
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we use that =[],V and (L) =1 to prove that

Lastly we have to prove invariance by the Weyl element, which will use the Poisson summation formula

as in page 249 of Lang (1994). We calculate

1 1
9(( i) = > J](wl ])1)(Pv(x)

—1 x€X(L)2

-y Z(HY(XVQ (]jf(cpv)(x))
~(ITvx)) X (II7twa0)

v xeX(L)2
_<Hv(xv)) ox)
v xeX(L)2

So all that is left to prove is a global product formula for y(X,). For this we refer to page 407 of Yoshida

(1979) and to Lemma 1.2 of Jacquet and Langlands (1970). Referring back to table 1.5 we have that

1 for cases I, IV
Y(Xv) =
A(E/L,p)? for cases II, III, V, VI,
where A is defined in Lemma 1.2 of Jacquet and Langlands (1970).

We mention that [],y(X,) =1 can also be proven using the Weil representation. First see that for

each g € Sp(4,L) there exists a constant ¢(g) so that

(g, 1);0) =c(g)d((1,1); 9).

By the merit that w is a representation we see that c : Sp(4,L) — C* is a character. The normal

subgroups of Sp(4, L), when L is a local or global field not of characteristic 2 are {1, =1, Sp(4, L)}, according
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to Theorem 5.1 of Artin (1988). Because c is a character, we conclude that ker(c) = Sp(4,L).

It suffices to prove that erX(L]Z |@(x)| is absolutely convergent. For almost all places v it must
be that ¢, (x) = fmz. Let S be the set of infinite places and finite places where ¢, # fj12. For each
v € S there is an integer t, such that supp(¢@,) C @' - M2. Therefore, if x € X(A)? is such that
[[hoool@v(x)] # O then x € ([ ] g5 M2) x (IT,es @5 MZ). Since ¢, are all locally constant for finite

places, and ¢, decays rapidly we determine that

> Tllevi<c > |Poo (x| < o0,

xeX(L)2 (ITygs M2 X(IT,cs @V M2)
for some C € R. For the last inequality see Lang (1994). O

Let f be an cusp form on GO(X, A) of central character x and ¢ € S(X(A)?). Let GSp(4,A)" be the

subgroup of g € GSp(4, A) such that A(g) € A(GO(X,A)). For g € GSp(4,A)™" define:

o(f, ©)(g) :J 9(g, hih; @)f(hyh)dh, (3.3.1)
O(X,L)\O(X,A)

where h € GO(X, A) is any element such that (g,h) € R(A). Then 0 can be extended uniquely to all of
GSp(4, A) which is left invariant under GSp(4,L) and is, in fact, a cusp form of GSp(4, A).

Consider the compact quotient AXGO(X,L)\GO(X,A) and define £2

cusp to be the orthogonal com-

pliment to the space of constant functions in £? (AXGO(X, L)\GO(X,A)) so that f € £2

cusp

if and only
if
f(h)dh =0.
AXGO(X,L)\GO(X,A)

It is known that E%usp decomposes as @Wi where each Wi; is an irreducible representation of GO(X, A)
which each appear with multiplicity 1, in this decomposition. We say that o is an irreducible, cuspidal,
automorphic representation of GO(X, A ) if it is isomorphic to one of these W;. If W is a GO(X, A¢) x
(Boos Joo )-subspace of the space of cusp forms on GO(X,A), we define ©(W) to be the GSp(4,As) ®
(80, Foo)-space, of automorphic forms, generated by all of the d(f, ) for f € W and ¢ € S(X(A)?).

Assume that @’ ® w’ is not zero under 9 in (3.3.1). The following Theorem gives us a way to carefully

alter @’ ® w’ locally, at a finite number of places, and still have it not evaluate to zero under (3.3.1).

Theorem 3.3.2. Let 0 be an irreducible, cuspidal automorphic representation of GO(X,A) with

trivial central character. Let W be the realization of o in L2 (AXGO(X,L)\GO(X,A)). Assume

cusp
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that Y = O(W) s a non-zero, cuspidal, and irreducible representation of GSp(4,A); denote the

representation of GSp(4,A) on O(W) by T1. Let
T:SX(A))@W —O(W) =Y

be the R(A)-map determined by the condition T(p @ f) = 0(f, @) for ¢ € S(X(A)?) and f € W. Fiz
isomorphism ¢ = ®,0, and IT = ®,I1,, and let W,, and Y, be the spaces of o, and Tl,, respectively,
for v a place of L. Also, let S be a finite set of places of L, including the infinite places, such that
forv & S, oy, and Tl, are unramified, and WS and y$ are the unramified vectors in W, and Y,,
respectively, with respect to which the restricted tensor products ®,W, and ®,Y, are defined. Let
{ui}f:th, and fp2 be as wn Section 3.2. For each place v of L, let T, be a non-zero element of

the one-dimensional space

Homg 1, (S(X(Ly)?) @ W4, Yy)
(Roberts (2001)). For each place v of L, let @, € S(X(L,)?) and w, € W, be such that:
(a) for almost all v, @, = 2,
(b) for almost all v, w, = w9, and
(c) for allv, T,(@, @ w,) s non-zero.
Then T((®v@y) © (©ywy)) #0.

Proof. By assumption there exists & € S(X(A)?) @ W such that T(&) # 0. We may assume that is a pure
tensor, that is £ = @’ ® w' for some ¢’ € S(X(A)?) and w’ € W. Moreover, we may assume that for
each place v of L there exists @) € S(X(L,)?) and w} € W] so that ¢’ = @, @y, W' = @,W], @} = a2

for almost all places, and w;, = w9 for almost all places. Choose u, a place of L. Now, we may write

¢
Tl @w) =) (®ugs,y5) ® (®ve#so yy) @Yy (3.3.2)

i=1

for some finite set of places So. Set zi = ®ves,yy for 1 < i < ¢, which we may assume are linearly
v£u

independent; indeed otherwise we could take a basis {zi,} of the space spanned by the z; and expand in

terms of the basis. Clearly, we may also assume that the y!, are all non-zero. For v ¢ Sy choose functionals
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A 1Yy — C so that A, (y9) = 1. Also choose functional As, : ®yes, Yy — C so that As (z1) = 1 and
v#Ww
)\50(21) :Ofori:1,...,£.

Consider the map

n:S(X(Lw)?) @ Wy — S(X(A)?) @ W

O @Wy — (0 Ovru @) @ (W Dypy Wy)

which we know is nonzero because the image of ¢ ® w., is not zero by assumption. Next consider the

map

AY — Yy

vYy — ( H )\v(yv)) As, (®vesoYv) 'yg
veESo v£U

which by design is not zero on T(¢@’ ® w’). We claim that Ao T on is an R(L, )-equivariant map. Proving

this will show that the composition
AoTon € Homg(r,)(S(X(Ly)?) ® Wy, Vi)

is not zero. Therefore, up to a non-zero constant multiple, we have that T, =AoTon.
Before we prove equivariance, we should first review what the action of R(L,) is for the different
objects. For (gy,hy) € R(Ly) let (g’,h’) € R(A) be such that g, = gu,h/, =hy,g, =1 and hl, =1 for

every place v # u. The the actions of R(L,,) are as follows:

S(X(Lu)z) ® Wy & (gu, hu) - (@u @ Wy) = (w(gu, ha) - @, 0y (hy) - wy)
S(X(A)?) @ W : (guyhu) - (9 ®W) = (w(g’,h )@, o(h/)w)
Y (gu,h) -y =TI(g")y

Yv : (gu»hu) Yy = T[(gu) “Yu-

By inspection we see that 1 and A are R(L,, )-equivariant. For T, see that for (g’,h’) € R(A) we have that

T((g',h) - (e ®@w))(g) =T(w(g’',h)e ® o(h)w)(g)
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=0(o(h")w,w(g’,h)e)(g)

- J 8(g, s w(g’, ') @) (o(h)w)(hih) dh,

O(X, LN\ O(X,A)

= J 9(gg’,hihh’ : @)w(hihh') dhy

O(X,LINO(X,A)
=6(w, 0)(gg")
= (g/)hl) : e(W, (P)

=(g",h) - T(e @w).

We have proven that, up to a constant, T, = Ao T on. If we assume that T, (@] ® w]/) is not zero we

have that T (@ @y ©}) & (WL Dy W) #0. -
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CHAPTER 4 | HOM SPACES

Throughout the chapter assume L = R or L is a non-archimedean local field with valuation v. Let
or ={x € L|v(x) < 1} be the ring of integers of L, and let p = {x € L | v(x) < 1} be the maximal ideal
of o1, generated by ®. Set ¢ = |o/p|. Let P : L — C* be a non-trivial continuous unitary character.
Throughout this chapter (X, (-,-)) will be either (Xys, (-, )ns) or (Xm, (*,-)m) as defined in Section 1.4.

When X = Xy we will say that X s splet. In the split case we have the exact sequence

1—-L* = GL(2,L) x GL(2,L) — GSO(Xm) — 1.

When X = X, we say that X is non-split. We let og be the ring of integers of E and 8 be the unique
maximal ideal of og. Set qg = |og/PB|. Set Yg = P o TrE In the non-split case we have the exact
sequence

12 E* - L% xGL(2,E) —» GSO(X,s) — 1.

In the case that L = R we assume that we are in the split case so that E =R xR and X = Xj(. Thisis a

safe assumption in since in our global setting E/L is a real quadratic extension of number fields.

Section 4.1 Bessel Models

Let (TT,W) be an irreducible admissible representation, or a (g,K)-module, of GSp(4,L) with trivial

central character. Define the subgroups

1 b] bz t
1 by b3 t2
N ={ |b; € L} € GSp(4,L), and D ={ |t; € L*} C GSp(4,L).
1 1%
1 t
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Define the split Bessel subgroup S = DN C GSp(4,L). Let s € C. We define a character 5 : S — C*

by
. 172] b1 b2 -
Bs(r) = W(b2)lta/t11°72 = (Tx( ))It2/t11°" 7, where (4.1.1)
12 b, b3
t 1 b1 b2
t2 1 b2 b3

t 1

t 1

for by,by,b3 € L and ty,t, € L*. If L is non-archimedean Let B(GSp(4,L),1) be the space of functions

f:GSp(4,L) — C that satisfy

f(rg) = Bs(r)f(g)

for all r € S and g € GSp(4, L), and such that there exists a compact open subgroup K¢ of GSp(4, L) such
that f(gk) = f(g) for all k € K¢. If L =R then we let B(GSp(4,R), ) be the space of smooth functions

f:GSp(4,L) — C that satisfy

f(rg) = Bs(r)f(g)
for all r € S and g € GSp(4,R). We say that TT admits a 3s-Bessel model if TT is isomorphic to a
subspace, as either a GSp(4, L)-representation or as a (t, F)-module, B(TT,s) of B(GSp(4,L),).

Theorem 4.1.1. Let L be a non-archimedean local field of characteristic zero and let 1 be a non-
trivial additive character of L. Let (T, V) be a generic irreducible admissible representation of

GSp(4,L) with central character wr. Then TT admits a unique (3s—Bessel model.

Proof. See Roberts and Schmidt (2016), Proposition 3.4.2. O
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Section 4.2 The Stabilizer H

We specify the following elements of X

01 0 0

X split X split
00 -2 0

X1 =< - and, X2 =14 (4.2.1)

0 Ve 0 0

X non-split X non-split.

-2

0 0 =22 0

Let H be the stabilizer in SO(X) of (x1,x2) € X?. Recall that E' C E is the subgroup of norm 1 elements.

Lemma 4.2.1. Let H be as above. In the non-split case assume that L s non-archimedean. Then,
L 1
H={p(1, Jluet'}

and wn the split case

H = {p( , Jlael”).
1 1

Proof. In the non-split case assume that p(t,h) € H for some t € L* and h € GL;(E). Then

Pt ) (xi) =xi

t Thxia(h)* = x4.

a b
If we say h = , for some a,b,c,d € E, then the above tells us that

c d

: —ax(c) awx(a) 0 1
t = , and

—cax(c) coa(a) 0 0

bo(d) —ba(b) 0 0

da(d) —do(b) 10
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Therefore c = b = 0 and t = N (a) = NF(d). Hence, d = au for some u € E', and we can conclude that

H = {p(N{ (a),
au

aq
For the split case assume that p(hi,h;) € H where hy =
Cq d1
aj,az, by, ba,c1,c2,d1,d; € L. Then for i € {1,2},
p(hy, ha)xi =x¢
h] Xihz = Xi.
So that,
—Qajicy ajaz 0 1
= , and
—C1C2 ciaz 0 0
bid, —biby 0 0
dyd, —diby 1 0
—1
aq a,;
Therefore, hy; = and h, = . We conclude that
dq d;’
-1
a a “ a
H = {p( y )la,del”}={p ;
d da-! 1

This completes the proof.

Section 4.3  Zeta Integrals

)la€eE,ue k' ={p(1,

Jue E'L
az bz
and h; = for some
C2 dz
-1
JlaeL*}
1
O]

Assume that L is a non-archimedean local field of characteristic zero or that L = R. Let o, p, @1, be as

in the introduction of this chapter. First we assume that X = X, is split. If L is non-archimedean let T,

and T, be infinite-dimensional, irreducible, admissible representations of GL(2,L) with w., = w,, = 1.

If L =R let 17 and T, be infinite-dimensional, irreducible, admissible (g, K)-modules for GL(2,R). We



70

assume that the Whittaker models W(t7,1V) and W(t2,\) are the spaces of Ty and of 12, respectively.
As usual, we let (71, V) be the representation of GSO(X), or a similarly defined (b, J)-module (see Section
3.1), associated to 7 and T, as in Section 2.3. That is, m = 7t(77,7T2) and V = W(17,¥) @ W(12, V). In

particular 7t has trivial central character. Let W; € W(ty, 1) for 1 € {1,2}. Let s € C and set

a
Z(s,W;) = j Wil ol d*a.
1
LX

We define Z(s, W) by setting

Z(s,W) = Z(s,W;) - Z(s, W5) (4.3.1)

for W=W; W, € V.

Lemma 4.3.1. There ezists a positive real number M such that Z(s, W;) converges absolutely, for
all Wy € W(ti, ), for R(s) > M. If L s non-archimedean then Z(s,W,;) converges to a rational

function in q—°.
Proof. See Theorem 6.12 and Remark 6.13 of Gelbart (1975), for example. O

Assume that X = X;;5 is non-split, and that L is non-archimedean. In this case let Ty be an infinite-
dimensional, irreducible, admissible representation of GL(2,E) with central character w., = 1. Let
W(to,E) be the space of 1p. As usual, we let (7, V) be the representation of GSO(X) associated to
To as in Section 2.4. In particular 7t has trivial central character as well. That is, m = 7t(1,7T9) and

V= W(To,ll)g). We let

a 1
Z(s,W) = J wW( Jalp ? d*a (4.3.2)
EX 1

for W e V and s € C.
Lemma 4.3.2. There ezists a positive real number M such that Z(s,W) converges absolutely, for
all W € W(to,Vg), for Ri(s) > M to a rational function in q¢°.

Proof. See Theorem 6.12 and Remark 6.13 of Gelbart (1975), for example. O

Lemma 4.3.3. Let H be as in Section 4.2, let X = Xy or X = Xy5, and let 11,72, and 1o be as

above.
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(a) Let s € C with R(s) > M. Assume that X =Xm. If W eV and t1,t2 € L*, then

Z(s,7(p( VW) = [ta/t 572 Z(s, W).
1%

(b) Let s € C with R(s) > M. Assume that X =Xns. If W eV and t1,t, € EX, then

Z(s, m(p(1, DW) = lta/t 57 Z(s, W
1%)

(c) Let s € C with R(s) >M, W eV, and h € H. Then,

Z(s,t(h)W) = Z(s, W). (4.3.3)
Proof. (a) Let t1,t, € L™, let =1 for i € {1,2} and let W =W; @ W, € V. Then,

r t
Z(s,7a( Wa) = | Wy )la*"% d¥a
t) JLx 1 t,

[ a
= wy Jla/t;5"% d¥a
JLX tz

[ a
=| Wyt, Jal*~Z|ta/t1]° 7 d*a
JLX 1

[t2/t1]572 Z(s, W,).

Therefore,

t t
Z(S,T[(p( )”)W) :Z(S>W1)Z(S»T2( )WZ)

t2 1%)

= lta/t1]* 2 Z(s, W).

The result follows for a general W € V.

1
(b) The calculation is the same as the calculation in part (a), except the factor is [ta/t1]p 2.
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(c) The proof of (c) follows simply from part (a) and (b) and our calculations of H in Section 4.2. O

Corollary 4.3.4. Assume that L is non-archimedean and fic a W € V. The function H\SO(X) — C

defined by Hh — Z(s,t(h)W) 1s well defined and locally constant.

Proof. Part (b) of Lemma 4.3.3 proves the map is well defined. Evidently, the smoothness of 7t guarantees

that the map is locally constant. O

Section 4.4  Intertwining Maps; the Non-Archimedean Case

Let the notation be as in Section 4.3. For this section, make the further assumption that L is non-
archimedean, though we will occasionally note when results and their proofs are identical in the case that
L =R. Let R be as in (3.1.5). Let (w,S(X?)) be the Weil representation of R associated to X and 1 as
in Section 3.1. Let (71, V) be the representation of GSO(X) as in Section 4.3 so that V is either equal to
W(t1,¥) @ W(T2,0) or equal to W(1o,Pe). Let (0,V x V) be the representation of GO(X) as in Section

2.2 which is isomorphic to Indg(;(()?))()

7t and let " be the canonical irreducible subrepresentation of ¢ as
in Section 2.6.
The space S(X?)® Vis an R’ = RN (GSp(4,L) X GSO(X))—space with the action being determined

by
(g,h) - (9 ®@Vv) = (w(g,h) - @) ® (mt(h) - V)

for (g,h) € R’; @ € S(X?) and v € V. Similarly we find that S(X?) ® (V x V) is also an R-space with the

actions determined by

(9,1 - (@ ® (vi,v2)) = (w(g, ) @) @ (o(h) - (vi,V2))

with (g,h) € R, @ € S(X?) and v1,v, € V.
Let H,xq,x2 be as in 4.2. Let M be as in Lemma 4.3.1 or Lemma 4.3.2 and assume s € C be such
that 9(s) > M. Assume that X is split. Let g € GSp(4,L)* = GSp(4,L) and ¢ € S(X?). Let W € V

and let Z(s, W) be as in (4.3.1). We define

B(g, o, W,s) = J (w(g,hh)@)(x1,x2)Z(s,7(hh" )W) dh (4.4.1)
H\SO(X)
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where h' € GSO(X) is chosen so that the similitude factor A(h’) = A(g). We use the Haar measures on

SO(X) and H for which
SO(X) N p(GL(2,01) x GL(2,0r)) and HNp(GL(2,0r) x GL(2,0))

both have measure 1, and the integral in (4.4.1) uses their quotient measure.
Assume that X is non-split. Let W € V and let Z(s,W) be as in (4.3.2). For g € GSp(4,L)" and

@ € S(X?) we define

B(g, o, W,s) = J (w(g,hh) @) (x1,x2)Z(s, t(hh")W) dh (44.2)
H\SO(X)
where h = p(t,hp), b/ € GSO(X) is chosen so that similitude factor A(h’) = A(g). Furthermore we use

the Haar measures on SO(X) and H for which
SO(X) Nplof x GL(2,0g)) and HNplof x GL(2,0g))

both have measure 1 and the integral in (4.4.2) uses their quotient measure. We will occasionally refer

to B(g, @, W, s) as the Bessel integral.

Lemma 4.4.1. Let s € C be such that %i(s) > M. For g € GSp(4,L)*, @ € S(X?), and W € V the

integral defining B(g, @, W, s) s well defined and converges absolutely.

Proof. Fix a (g,h’/) € R, € S(X?), and s € C so that 9i(s) > M. We consider the function f :
H\ SO(X) — C defined by f(Hh) = (w(g, hh')@)(x1,x2) for h € SO(X). We claim that f is compactly
supported and locally constant. To see this, we note that f = f;of,, where f, : H\ SO(X) — SO(X)(x1,%2)
is defined by f,(Hh) = (h™'x;,h 'x;) for h € SO(X), and f; : SO(X)(x1,x2) — C is defined by
f1(x) = w(g,h')@(x) for x € SO(X)(x1,x2) C X2. The map f; is a homeomorphism by 5.14 of Bernstein
and Zelevinskii (1976). The map f; is compactly supported and locally constant because the map X?> — C

defined by x +— (w(g, h')@)(x) is compactly supported and SO(X)(x1,x2) is a closed subset of X?. Indeed,

) ) . 0 1/2 (z1,21)  (z1,22)
SO(X)(x1,x2) is the inverse image of under the map (z1,z2) — for

1/2 0 (z2,z1)  (22,22)
(z1,z2) € SO(X)(x1,%2). In particular the function |[f; o f2|: h — |w(g, hh')@(x1,x2)] is locally constant

and compactly supported on H\SO(X). From Lemma 4.3.4 we have that h — Z(9i(s),|t(h)W|) is also
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locally constant. Therefore, for (g,h’) € R,h € H, @ € S(X?),W € V and s € C so that %i(s) > M we
have that
| ewto,mn)0) iy xa)l- Z(93(6), Inthh W) an
H\SO(X)

is finite. By the triangle inequality we have that integral defining B(g, @, W, s) converges absolutely. [J

t

t2
Lemma 4.4.2. Let ¢ € S(X?),W € V and suppose that t = € GSp(4,L)". Let

1%

t
s € C such that R(s) > M and set B(-) = B(-, o, W,s). Then we have the following transformation

property for the Bessel integral

B(tg) = [t1/t2]Z°B(g)
for g e GSp(4,L)".

Proof. First let us handle the case when t = z- 1. Then A(t) = z?. Set

9(271 1)y X =Xns
h, =

9(2,1), X:XM)

which acts as multiplication by z and has similitude factor A(h,) = z?. Using the formulas in Section 3.1

we calculate that for (y7,y2) € X2,

1
' -2 1 1 1
w(z,hz)e (y1,y2) = A(h)| “w(z- e (;yn;yz)
-2
z
Zfz
z
B z 11
= A(h,)2w( Do’ (=y1,-y2)
-1 z z
z
Z—]

= A(h) X222 P9 (Y1, b2)
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=¢'(y1,y2)
for all @’ € S(X?). We have 7t(z)W = W, for all W € V, so that
B(zg) = (w(zg, hh h')@)(x1,%2)Z(s, (hh') (1(2)W) ) dh

H\ SO(X)

- J w(g,hh) (w(z, ) @) (x1, x2)Z(s, n(hh') (m(z)W)) dh

for all g € GSp(4)*. For g € GSp(4,L)" we have

t

t2

1%

t2

t

t2

t2

1%)

tity!

tity!

Thus, we may assume that t, = 1.
We determine how t acts on ¢ and Z(s, W), individually. We will need to treat the case when X is

split and when X is non-split separately. Assume that X is split. Let g € GSp(4,L) = GSp(4,L)" and

t
choose h/ € GSO(X) such that A(h') = A(g). Set hy = p( ,1). Then A(hy) = t; = A(t). Also,

1

t

(U(t,ht)(pl()(],Xz) :|t]|_2(U( )])(p/(*XHXZ)

ty!

= (PI(X],Xz),
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for any @’ € S(X?). By Lemma 4.3.3 we have that
Z(s,m(h)W') = [1/t1 2 Z(s,W").

for any W/ € V.

Assume that X is non-split. Let g € GSp(4,L)* and let h/ € GSO(X) with A(h’) = A(g). Suppose

t
1
that t = € GSp(4,L)*. Then there exists some a € E such that NF(a) = A(t) = ty. Set
1
t
a
he = p(1, ) and notice that A(h¢) = NE(a) = A(t). We calculate that
1
t ty
1 / -2 1 ! Er —1
CU( )ht)(p (X1)X2) :|t1| (U( ,1)([) (NL(a )X1)XZ)
1 t!
t 1

= xe/(t)t 11t 2@ (8 NE(a™ " )x1, x2)

= (PI(X],Xz)
for any @’ € S(X?). From Lemma 4.3.3 we know that
Z(s,m(h )W) = [1/t112 = Z(s,W")

for any W' € V.
We have determined that w(t,hy)@(x1,x2) = @(x1,%2) and that Z(s,t(h)W) = |1/t1|S*%Z(s,W)

when X is split or non-split. Hence, we find that for any X

B(tg) = j (w(tg, hh'he) @) (x1, x2) Z(s, m(hhh )W) dh

H\ SO(X)

- j w(t, 1) (w(g, hy ThVhe)@) (x1, x2)Z(s, n(hh'he )W) dh
H\ SO (X)



7

_ j w(t ) (w(g, by Thhehy hhe) @) (x1, x2) Z(s, m(hh/hy )W) dh
H\ SO (X)

- j (w(g, hhy "h'hy) @) (x1,x2)Z(s, n(hehhy Th/h)W) dh

H\ SO(X)

R J w(g, hhy Th'h) @ (x1,%2)Z(s, n(hhy Th/he)W) dh
H\ SO(X)

= 1/t1127B(g)

since A(h’) = A(h; "h’h,). Here we have used the fact that IH\SO(X) f(hy 'xhy) dx = f(x) dx,

IH\SO(X)

for all measurable function on H\ SO(X). This completes the proof. O

Corollary 4.4.3. Let X be non-split. Let @ € S(X?),W € V,g € GSp(4,L)" and let g1 be as in

(4.4.4). Let s € C be such that R(s) > M. Then B(g, o, W,s) = \)\(g)I_H%B(gh o, W,s).

We extend B(-) = B(+, ¢, W, s) to all of GSp(4, L) via the formula

B(g) = A(g)*"*B(g1) (4.4.3)

for

g1 = g (4.4.4)

and g € GSp(4,L). Clearly, Corollary 4.4.3 indicates that this extension is well defined.
Part (a) of the following lemma justifies the choice of the canonical GO(X)-representation 7 made

in Section 2.6, since w. are all trivial. Recall the choices of s and T made in Lemma 2.3.2 and Lemma

2.4.2.

Lemma 4.4.4. Let (m,V) be the infinite-dimensional, irreducible, admissible representation of
GSO(X) obtained from either Ty or the pair 11,72, as in Section 4.3. Assume that the space V of
7 25 either W(to,be) or W(t1,{) @ W(T2,U), respectively. Let s : X — X be defined by s(x) = x*,
assume that s-m=m, and let T:V xV be as in Lemma 2.6.1 or Lemma 2.6.3. Let z € C be such

that R(z) > M. Then, for all g € GSp(4,L)e’ € S(X?),W' € V we have



(a)

(b) if b=

(c) ift=

t

—_

t2

t2

B

t

B(gv w(])s)(p/)T(W/))Z) = B(g) (p/)WI»Z)>

b1 by

where B = € M(2,L) s symmetric we have

b, b3

(b9> (p/)W/)Z) Zﬂ)(bz)B(g,(Pl,W/,Z), and

where t1,t; € L™ we have

B(tga (p/)WI)Z) = |t2/t1 |27%B(9, (p/)WI)Z)'
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(4.4.5)

Remark 4.4.5. In Section 4.5 we will define a similar intertwining map in the case that L = R.

In order to refrain from reproducing the same work multiple times we note that Lemma 4.4.4 will

have an identical proof to the analogous result.

Proof. Proof of (a). Let @’ € S(X?),W’ € V. First see that Z(z, (s - 7t)(h),W’) = Z(z,t(h)T(W'))

for all h € GSO(X) and W’ € V. This is because in the split case 7t(s)p(hi,h2) = p(hz,hy), for

hy,h, € GL(2,L) and in the non-split case 7t(s)p(t,h) = p(t,h*) for t € L* and h € GL(2,E). Suppose

that g € GSp(4,L)". We calculate that

B(g,w(],s)q)’,W’,z) =

(w(g,hh")w(1,s)e")(x1,%2)Z(z, m(hh")W') dh
H\SO(X)

= J (w(g,ss "Thss "h's)@’)(x1,x2)Z(z, m(hh')W') dh

H\SO(X)

_ j (w(1,s)w(g, s Thss~Th's)@") (x1,x2)Z(z, m(hh)W') dh

HA\SO(X)

= J (w(g,s Thss~"h's)@’)(sx1, sx2)Z(z, t(hh/)W') dh

H\SO(X)

= J (w(g,s "hss "h's)’)(—x1, —x2)Z(z, t(hh/)W') dh.

H\SO(X)
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As in the proof of Lemma 4.4.2 we change variables h — shs™'. Also, we replace h/ with h” = sh’/s™!.

We may write that the above is

- J (w(g, hh") @' (—x1, ~x2)Z(z,s - m(hh )W) dh.
H\SO(X)

Denote by —1 € SO(X) the action which sends x to —x so that we have —1 = p(—1,1). Therefore the

above is

- J (w(g, hh” (1))@’ (x1,x2)Z(z, s - n(hh")W") dh

H\SO(X)

_ j (w(g, hh") @’ (x1,%2)Z(z, s - M(—hh")W') dh

H\SO(X)

= | wlo e 0, )2 mthn W) dn
HA\SO(X)

= B(g) (P/, T(W/))Z)-
Hence we have shown that

B(g) (,U(],S)(P/,W/,Z) = B(g) @/)T(W/))Z)

so that

B(g,w(],s)(p/,T(W’),z) = B(Q) (P,,W,,Z).

Now for all g € GSp(4,L), @' € S(X?), and W’ € V we use (4.4.4) to see that

B(g,w(1,5)@’, T(W),z) = A(g)|Z *B(g1, w(1,s)e’, T(W),2)

= \(g)I2*B(g1, 9", W', 2)

= B(g) (P/,W/,Z)
which proves (a).
1 B by bz
Proof of (b). Set b = where B = € M(2,1) is symmetric. First notice that
1 b, bs

A(b) =1 so that B(bg, ¢’, W', z) only differs from B(g, ¢’, W’ z) in the Weil representation factor of the
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integrand. Recall formula (3.1.3) to see that

(Wb, e ) (x1,%x2) = W(by(x1,%71)) + 2b2{x1,%2) + b3{x2,%2)) @' (x1,%2)

=P(b2)e (x1,x2)

for all @’ € S(X?). Therefore it is evident that if g € GSp(4,L)" then by (4.4.4)

B(bg) (pl)W/)Z) = l])(bZ)B(g) (P/,W/,Z).

If g € GSp(4,L) then

B(bg) = IA(g)|Z *B(bgs)
= [A(g)I2~*W(b2)B(g1)

=1 (b2)B(g).

This finishes the proof of (b).
Proof of (c) The case when g € GSp(4,L)" is proved in Lemma 4.4.2. Assume that g € GSp(4,L)

and set

t
1%)
1%)

t

Then A(t) = tyt;. Similar to (4.4.4) set

Atg)~! ty

Atg)™! ty

Therefore,

1_

B(tg) =[A(tg)|>*B((tg)1)
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ty!
1 14 t2
=[A(g)IZ " It1t2]Z°B( g1).
t2
ty !
t!
t2
Since g1 € Sp(4,L) we get that the above is
t2
t; !

= [t1 /22 *I\(g)Z*B(g1)

= [t1/t217B(g)
which completes the proof. O

Proposition 4.4.6. Assume that L 1s non-archimedean. Let s € C be such that R(s) > M. Assume
that X is split. Suppose that W; € W(t;,\) are such that Z(s,W;) are not zero for i € {1,2}. Set
W =W, ®@W,. Then there exists ¢ € S(X?) such that B(1, @, W,s) # 0. Assume that X is non-split.
Suppose that W € W(to,g) is such that Z(s, W) is not zero, then there exists @ € S(X?) such that

B(1, ¢, W;s) #0.

Proof. Assume that X is non-split. Denote h = p(t,hg) € GSO(X), for t € L™ and hy € GL(2,E).
By Lemma 4.3.4 the function h — Z(s,t(h)W) is locally constant on H\SO(X) and, furthermore, is
nonzero at the point H - 1. Recall that f, : H\SO(X) — SO(X)(x1,x2), defined by f,(Hh) = h~"(x1,%x2),
is a homeomorphism and SO(X)(x1,x2) is closed. Let A € H\SO(X) be a compact open neighborhood
of H -1 so that function h — Z(s,7t(h)W) is constant on A. Now, f(A) is a compact open subset of
SO(X)(x1,x2) and there exists some open U C X? such that f,(A) = UNSO(X)(x7,%2). For each u e U
choose an open compact neighborhood Y,, of u such that Y,, € U. Clearly {Y, N SO(X)(x1,x2)} ueu is
an open cover of f;(A) so there exists a finite subset I C U such that {Y,, N SO(X)(x1,%2)}uer is a finite

cover of f,(A). Therefore f2(A) = Uyer(Yu NSO(X)(x1,x2)). Set Y =J,, -1 Yu. Then the characteristic

uel 'u
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function ¢ = 1y is in S(X?) and fulfills the requirements. Indeed, we calculate that

B(1, 1y, W,s) = j w(1, W)Ly (x1,x2)Z(s, To (ho)W) dh

H\SO(X)

=vol(A)Z(s, W).

Assume that X is split. The argument is similar. Let h = p(h,h;) for hy,h, € GL(2,L). Choose
compact neighborhood A, of 1 so that the functions h — Z(s,t;(h;)W;) and h — Z(s, T (h)W>) are

both constant on A, so that h — Z(s,7t(h)W is also constant on A, and the argument runs verbatim. [

Now that we have proved that B(-, @, W,s) is a well defined and non-zero map, for some choices of
@, W and s we define ©(V) to be the space generated by all such functions for all choices of ¢ € S(X?)

and W € V. Fix s € C such that 3(s) > M. We define the map

9:8(XH) eV -0 (4.4.6)

@@WH B(',(D,VV,S).

It is easy to verify that if B € ©(V), then by Lemma 4.4.4

t
1 t2
B(tg) = [t1/t2]27°B(g) fort= for t1,t; € L* and (4.4.7)
1%
t
1 B by by
B(bg) =Y(b2)B(g) for b= where B = e M(2,L1). (4.4.8)
1 by b3

Theorem 4.4.7. Let s € C with R(s) > M. Let V= W(11,¥) @ W(Tt2,¥) or V = W(10,E) tn the

split case or non-split case, respectively. Then
(a) the map ¥ from (4.4.6) is a non-zero R'-map,

(b) for each f € O(V) there s an open and compact K C GSp(4,L) such that, for each k € K we

have f(g) = f(gk) for all g € GSp(4,L), and

(c) the image of ¥ lies inside B(GSp(4,L), V).
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It then follows that O(V) 1s a smooth representation of GSp(4,L) sitting inside B(GSp(4,L),).

Proof. Proof of (a). Let (go,ho) € R, let g € GSp(4,L)", and let h' € GO(X) so that (g,h’) € R. We

see that

B(g, w(go, ho)@,m(ho)W,s) = J w(ggo, h(h'ho))@(x1,x2)Z(s, t(h(h'ho) )W) dh
H\ SO(X)

= B(ggo) (p,VV, S)

since (ggo,h'ho) € R. Now suppose that g € GSp(4,L) and let g7 € GSp(4,L)* be as in (4.4.4). Then

using the above result, we find that

B(g, w(go, o) @, (ho)W, s) = IA(g)I 5" 2B (g1, w(go, ho) @, T(ho) W, s)
= \(g)"5"2B(g1 g0, @, W, s)

= B(ggo, (p,\/\/,s).

By Lemma 4.4.6 we have that B(-) is nonzero as long as there is some W € V such that Z(s, W) is not
zero for s > M. Since 1o, T1, T2 have Whittaker models it is clear that Z(s, W) is not zero.
Proof of (b). Let @ @ W € S(X?) ® V. It suffices to prove (b) for B = B(-, @, W,s). Given the

following exact sequence
1 — 1% -Sp(4,L) — GSp(4,L) —2 1*/L*% — 1

it suffices to find a compact open subgroup of Sp(4,L) which stabilizes B(-).By Lemma 3.1.2 we have

that there exists some N € Z~( so that the open and compact full congruence subgroup
F(p™) = {k € Sp(4,01) | k =14 (mod p™)}

fixes @ under the action of the Weil representation. Since I'(p™) is also contained in Sp(4, L) we determine

that for all k € T(p™) and all g € GSp(4, L) that

B(gk) = A(g)|*** j w(grk, k)@ (x1,x2)Z(s, i(hh/)W) dh

H\ SO(X)
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= A(g)| "= J w(gr, hh') (w(k, 1)@ (x1,x2))Z(s,t(hh" )W) dh
H\ SO(X)

— \(g)[ j w(g1,hh')@(x1,x2)Z(s, m(hh')W) dh

H\ SO(X)

Proof of (c) This follows from part (b) of this lemma and from (4.4.7) and (4.4.8). O

Lemma 4.4.8. Assume that the residual characteristic of L 1s odd. Let h € SO(X). If X = X5 18
non-split and E/L is unramified then, h € p(o] x GL(2,0¢))H if and only if h(x1,x2) € [M(2,0g) N

Xns)?. If X =X is split then, h € p(GL(2,01),GL(2,01))H if and only if h(x1,x2) € M(2,01)?.

Proof. In both the split and non-split case the forward direction is clear. Assume that X = X5 is

a
non-split and that E/L is unramified. For the converse notice that for any € GL(2,E) we can
c d
a’ b’ X y
find € GL(2,0g) and € GL(2,E) so that
¢/ d 0 z

a b a b
Set h = p(t, ), for some t € L and € GL(2,E) for which h(x;) € Xns N M(2,0g) for

c d c d

z
i€{1,2}. Since p(NE(z), ) =1 for any z € EX we have that

z
a’” bl [x vy
h = p(tN{ (2)~', 1)p(1, )
¢/ d'f |0 1
a’ b’ Xy
:p(u» )p(a)k» )
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X
for some u € o; and k € Z. Therefore, p(@¥, Y J(xi) € Xns N M(2,0g) for i = 1,2. It suffices to
0 1

show that k = 0,x € of and y € og. Since h € SO(Xys) we have that 1 = [A(h)| = \@*ZkNE(XH so that

NE(x) = |@|?*. Since E/L is unramified, we know Vo e o¢ . Furthermore, we have that

0 NE
p(@X, * Y Jx) = * NE()Vs
0 1 0 0
and
— 6 NE 6
p(@¥, * Y V(x2) =2%/8 yvs  NE(y)ve
01 B au)/i8)

are both matrices with integral entries. Therefore ® %, @ *NE(x),® *NE(y),®@ %y € og. Clearly
k < 0. Furthermore, since [® *NE(x)| = |@"| it follows that k > 0, so in fact k = 0. It follows that
x € of and y € og.
aq b] ap bz aq b] az bz
Assume that X = X is split and set h = p( , ) for some and
Cq d] C2 dz C1 d] C2 dz
for which h(xi) € M(2,0r) for i € {1,2}. For i € {1, 2} we can write

/ !
ai bi a; bi Wi Yi
! !
Ci di Ci. di 0 Zi
/ /
a; bl| |wi/zi yi/zi| |z
I !
ci df 1 Zi

: zfj} € GL(2,01) and ['y' ¥!] € GL(2,L). Therefore for some, possibly different, wi, yi,z; € L

i i

a
for some [ .

we have that

a; byl |a; b3 wi Y| |w2 Y2 z1 2
h = p( ) ) . p( ) ) . p( ) )
C{ d{ Cé dé 1 1 Z1 Z2
aj by a, b5 w1 Ys w2 Yz
=Z1Z2 - p( ) ) . p( ) )

c; dj c; dj 1 1
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= p( ) )h/
¢ di] |e2 4
for an appropriate choice of h’ € GSO(X). Set z1z; = u@} for some u € 0 and k € Z. Since h € SO(X)

we calculate that that 1 = A(h)| = [wyw,@?¥|. Furthermore we have that

, " 0 Wiwy
h'(x1) = u@

0 0

and

—2y1 2y1y2
h'(x2) = u@®

-2 2y2
are both matrices with integral entries. Since —2u®m* € og, we know k > 0. We also have jwiw,@*| =
|@~¥|, and since wiw,@¥ € og, we conclude that k = 0. It follows that wyw, € o;. By Lemma 4.2.1,

the observation that

a; by a, b} 1 w wowi Uy w1 w]’1
h = p( ; Jo(z1z1 ; Jo( . )
¢y df ¢, d4 1 1 1 1
completes the proof. O

Our stated goal is to determine a choice for ¢ € S(X?) so that when W € V has invariance of I,
level the local theta lift B(-, @, W, s) is paramodular invariant. The following theorem achieves this goal
at almost all rational places. Unfortunately, this theorem falls short at the finite set of places where the
theta lift will have paramodular level N > 0. Even so, since we have the opportunity to verify the choice

of @ at all but a finite set of places, we take the opportunity to prove the following.

Theorem 4.4.9. If X = X,,5 ts non-split then assume that E/1, 7y, and Vg are all unramified, and
set Z =M(2,0e) N X(E). If X = Xpm ts split then assume that 11,72, and ) are all unramified and
set Z =M(2,01).

Let @ = fz2 be the characteristic function of Z> C X*. Let Wy, € V be the standard unramified

vector as in Theorem 11 of Godement (1970). Then B(-,fz2,Wyn,s) satisfies B(gk,fz2,Wyn,s) =
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B(g,fz2, Wyn,s) for g € GSp(4,L,) and k € GSp(4,0r,). Also

L(s,To) X 1s non-split,
B(1,fz2, Wun, s) = (4.4.9)

L(s,t1)-L(syT2) X 15 splat.

Proof. Let g € GSp(4,L,), and k € GSp(4,01,). Suppose that g; is as in (4.4.4). Assume that X = Xy
is non-split. Because E, /L, is unramified, NE: (Oé,v) = of)v. This allows one to choose j € GSO(X,L,)

such that A(j) =A(k) and jM = M, using Lemma 4.4.8. We calculate

Agh)™m 00 0

e o 10 0
B(gk,(p,Wun,s) = |)\(gk)| T2 B( gk,(p,Wun,s)

0 0 1 0

0 0 0 Algk)’

= ()" 2)B(g1k, @, Wan, 8)

= |7\(9)|7(57%) (w(g1k» h))(P) (Xl )XZ)Z(S)T[(hj)Wun) dh
H\SJO(X)

= \(g) =) (w(gr, Mw(k,i)@) (x1,%2)Z(s, T(M)7(j) Wyun ) dh
H\SB(X)

= A (g)I" 52 (w(g1, M) @) (x1,x2)Z(s, (") Wy, ) dh
H\SJO(X)

= B(g) (pywun) S)'

Here we use Lemma 3.2.1 to understand w(k,j) in the above string of equalities.
Let h € SO(X). By Lemma 4.4.8, h(x;,x2) € Z? if and only if h € p(of’v x GL(2, 0 v))H. By Lemma

4.3.3 we have that the map H — C given by h — Z(s,7t(h)Wy..) is constant. Therefore,

B(1, @, W,s) = J 2 (W (x1,%2)) Z(5, 7(N)Wagn) dh
H\SO(X)
- J Z(s, () Wy ) dh

HA\[SO(X)NHp(o |, xGL(2,0¢,v))]

v

= Z(S) Wun))

since the Haar measure was chosen so that vol(H\(SO(X) NHp(or,v x GL(2, oE)))) = 1. It is observed in
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Theorem 11 of Godement (1970) that Z(s, Wyn) = L(s,To), which completes the proof in the non-split

case.

This proof of the split case is similar. O

Lemma 4.4.10. Let (7, V) be a representation of GSO(X), let (0,V x V) be the induced represen-
tation of GO(X) obtained from 1 as in Section 2.2. Let (T, W) be a representation of GSp(4,L).

Then we have the following C-linear tsomorphism
M : Homg/ (S(X?) ® V, W) — Homg (S(X?) @ (V x V), W)

determined by M(f)(@®(v1,v2)) = f(@@vi)+f(w(1,s)-@v2) for @ € S(X?),f € Homg. (S(X*)@V, W),
and v1,v € V, and eztended linearly. Here (1,s) is a non-trivial coset representative of R/R’. For

ezample we could take s the map that takes x to x*. Additionally the tnverse map
N : Homg (S(X?) @ (V x V),W) — Homg/(S(X?) ® V, W)

15 given by N(f)(@ ®@v) = f(@ ® (v,0)) for f € Homg(S(X?) ® (V x V),W), @ € S(X?), andv € V.

Proof. Let us start with proving that M is well defined. Let f € Homg/(S(X?) ® V, W), (g,h) € R, @ €

S(X?), and vq,v, € V. We see that

M(f)((g,h) - (@ @ (v1,v2))) = M(f)(w(g, 1) - @ @ (7e(h) - vi,m(shs ™) - v2))
= f(w(g,h) - @ @ mt(h) -v1) + fw(T,s)w(g,h) @ @ m(shs™1) - v2)
= f(w(g,h) - @ @ 7t(h) - vi) + f(w(g, shs w(1,s) @ m(shs ') - v,)
=g -fle@vi)+g-flw(lys) ¢ @vy)

=g -M({f)(¢ ® (v1,v2)).
Hence, we see that M(f) € Homg/(S(X?) ® (V x V), W) so it only remains to show that

(Tys) - M(f) (@ @ (v1,v2)) = M(f)(w(T,s) - @ @ 0(s) - (vi,V2)).
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We calculate

M(f)((1,8) - (@ ® (vi,v2))) = M(f) (w(1,8) - @ @ (v2,v1))
=f(w(l,s)- e®@vi)+fle @Vvz)
=M(f)(@ @ (v2,Vv1))

= (1,s) - M(f) (o ® (v1,V2)).

Now we have to prove that M is one-to-one and onto. Let f,f’ € Homg/(S(X?) ® V, W) and assume that

M(f) = M(f'). For all ¢ € S(X?) and for all v; € V we have that

M) (e @ (v1,0)) = M(f") (e ® (v1,0)), so that
flop@v))=f(p®v), and

f=f.

Now we show that N is well defined and one-to-one. Let f € Homg(S(X?) ® (V x V),W),(g,h) €

R/, € S(X?) and v € V. Then N(f) € Homg/(S(X?) ® V, W) since

N(f)((g,h) - (@ ®@V)) = N(f)((g, ") - ¢ @ 7t(h)v)
=f((g,h)¢ ® (n(h)v,0))
=f((g,h)e ® o(h)(v,0))
=g fle®(v,0))

=g -N(f)(e®@v).

Let f,f’ € Homg(S(X?) ® (V x V), W) and assume that N(f) = N(f’). Then for all ¢ € S(X?) andv € V

N(f) = N(f'), so that
flo® (v,0)) =f'(@ ® (v,0)),
(1,5)-f((p®(v,0)):(1,3)-f’((p®(v,0)), and

flo ® (0,v)) = f'(¢ ® (0,)).
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We conclude that f = f’, so that N is one-to-one.

Next we verify that N = M~'.

[(MoN)(f)] (¢ ® (vi,v2)) =N(f) (@ @v1) + N(f)(w(1,s) - ¢ @ Vv3)
=f(e ®v1,0) + flw(1,s) - @ ® (v2,0))
=1l ®vy,0) + (o ® (0,v2))

=f(o ® (v1,v2)).

So we have that M o N =Id. On the other hand,

[((NoM)(f)] (¢ ®@v) = M(f) (e @ (v,0))
=fle@v)+flw(l,s) @ ®0)

=Tf(p ®@v).

Since M is an isomorphism, so is N. [

From Theorem 4.4.7 and Lemma 4.4.10 we can easily establish the following result.

Corollary 4.4.11. Let (7, V) be the representation of GSO(X) as in Section 4.3 so that V is either
equal to W(t1,¥) @ W(t2,V¥) or equal to W(to,Ve). Let (0,V x V) be the representation of GO(X)

X)

as wn Section 2.2 which is isomorphic to Indgg(()(x)rc and let ™" be the canonical 1rreducible sub-

representation of o as in Section 2.6. Let 9 be as in (4.4.6) and let M be the map in 4.4.10. The

composition
M(®): S(X*) @ (V x V) = 8(V)

is a non-zero R-map. Furthermore, the restriction of M(9) to " is a non-zero R-map.

Proof. By part (a) of Theorem 4.4.7 we have that ® € Homg/ (S(X?) ® V,0(V)) so that M(9) €

Homg (S(X?) ® (V x V),0(V)). Furthermore M(9) is non-zero by Lemma 4.4.4. Indeed, for ¢ € S(X?)
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and W, W’ € V we have that

M) (@ ® (W, W) =d(@ @ W) +dw(l,s) - @ @ W)
= B('» (P)WS) + B(',(U(],S)(P,T(W/),S)

= B(» (p»\/V» S) + B() (P,T(W/), S)-

Since T; has trivial central character we have that t" has space V+ ={(v, T(v)) | v € V}, where T is as

in Lemma 2.6.1. Using (4.4.5) we calculate that M(9)(S(X?) ® Vie+) # O since for ¢ € S(X?) and W € V
M) (e ® (W,nt(s)W)) = 2B(-, 9, W, 5),

which is not zero by Theorem 4.4.7. O

Section 4.5  Intertwining Maps, the Archimedean Case

In this section we make the assumption that L = R and that X = X, is split, so that E =R x R. Let
(w,S(X?)) be the (t, F)-module discussed in Section 3.1. Let 77,7, be infinite-dimensional, irreducible,
admissible (g,K)-modules for GL(2,R) that have the same central character, but are not isomorphic.
Let W(ti, ) be the Whittaker model for T;, as in Section 2.5. Set V = W(1y,¥) ® W(t2,1¥). Let
W=W; @W, €V and let Z(s, W) be defined as in (4.3.1).

The primary purpose of this section is to define the intertwining map analogous to (4.4.1), in the
archimedean case, and to verify some necessary results. In particular we want to establish that integral
that defines the intertwining map is absolutely convergent, non-zero, and corresponds to an intertwining
map in the theta correspondence. Let g € GSp(4,R)* = GSp(4,R) and ¢ € S(X?). Let W € V. We
define

Blg, o, W;s) = J (w(g, kh) @) (x1,%2)Z(s, (hh/)W) dh (45.1)
H\ SO (X)

where h' € GSO(X) is chosen so that A(h') = A(g).

Lemma 4.5.1. For g € GSp(4,R), @ € S(X?),W =W; @ W, € V such that Z(s,W) # 0, and s > %
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the wntegral in (4.5.1), defining B(g, @, W,s), converges absolutely. In fact

[(w(g, hh/)@) (x1,%2)| - Z(R(s), [t(hh)W]) dh (4.5.2)

H(R)\ 8O (X,R)
s finite.

Proof. This proof appears in the unpublished manuscript Roberts (2003). Since we are in the split case

we have that the integral (4.5.2) is

j (w(1,h)e") (x1, x2)]
H(R)\ SO(X,R)

X
ho)l d*x J X Wy ha)l d*x dh

X
J X~
1 o 1

RX

where h = p(hy,hy) and @’ = w(g,h’')e. Let T be the group

, yeRX

971

and let AT ={(t,t') |t € T}. Then p produces the following homeomorphism
p: AT\(SL(2,R) x SL(2,R)) — H(R)\ SO(X,R).

We have AC T x T C SL(2,R) x SL(2,R). Moreover, AT and T x T are closed unimodular subgroups of

SL(2,R) and SL(2,R) is unimodular. Therefore, we can write (4.5.2)

- j j (w(1, p(thr, ha))e") (x1, x2)I-
T\SL(2,R)xT\SL(2,R) T

X X
J X7 Wy thy)l d*x J X~ W

hy)| dXX) dt dh dh,.
RX 1 RX 1

Let N be the group
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Then, a standard integration formula gives us that the above is

- | (l(w(hp(tn1k1,nzkz))@')(X1,Xz)|~ (453)
SO(2,R)xSO(2,R) NXN T
X X
J X~ w k) d¥x j X7 Wy
o 1 2 ]

nyks)| dXX> dtdn; dn, dk; dk,.

This is an improvement since N and T are explicitly defined. Since W(ti,V) is SO(2,R)-finite, the
subspace spanned by SO(2, R)-translates of W;, for 1 € {1, 2}, is finite dimensional vector space. Therefore

we can choose a positive integer n and functions W ;, W, ; € W(m, ), for 1 <1,j <n, so that
n n
Wy=) Wi; and Wy=) Wa
i=1 j=1

where each Wy ; and W, ; transforms according to a character of SO(2,R). Let the functions F;; :
SO(X,R) — C be the inner integrals of (4.5.3) but with W; ; and W, ; replacing W; and W,, respectively.

With this (4.5.2) is

I\/I

JFi’j (p(tnikq,nyk;z)) dt dng dn, dkq dk;.

:SO(Z,R) xSO(2,R) NXN T

IAIN
IAIA

i
)

For any pair (i,j), with 1 <i<mand 1 <j <n, we have

J' J JFi,j(p(tn1 k1,m2k2)) dt dn; dn; dkq dk,
SO(2,R)xSO(2,R) NxN T
t 1 z; 1 z dt
= J J Fi,j(p( k]) kz) m dZ] de dk] dkz
SO(2,R)xSO(2,R) RXRR* t! 1 1
, t! 1t z1z
- | (T, plkn,ka)) @) -2 ) dky dks:
RxRR* SO(2,R)xSO(2,R) | t tz,
; X t 1 z;
(] e o )| d*x)
RX 1 t71 1
X 1 z dt
( J |X|m(s)7%|Wz,j( ) d*x) i dz; dz;.
1 1
RX
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Since each Wy, ; is in W(m, ) and transforms according to a character of SO(2,R), it can be show that

there are positive constants C; i, C2 ; so that the above is

, 11 21t z1z2, dt
<ciicy | | ] e, ke 2 1 a2 az2 av s
SO(2,R)xSO(2,R) RXRR* t tz,
Define C =} ;; <, C1,iCa,5 so that (4.5.2) is
, ! 21t z1z22 dt
<c J J j (w1, p(kr, k)0 ( 2 1 2y s i
SO(2,R)xSO(2,R) RxRRX t tzy

Let [, M, and N be positive integers which we will determine momentarily. Define a polynomial on

X by
X1ox2| X7 X; 1, 1 1
Q , )= (1 (2N 30+ (3xi)?t + (3x0))
X3 X4 X5 Xy

where x; and x{ in L for i € {1,2}. Let ||-|/q be the semi-norm corresponding to Q, on the space of S(X?),
given explicitly by

llellq = sup [Q(x)e(x]].

xeX?2
Then we have that (4.5.2) is
, |t|729%(sf%)71
<c | lwetakelle || dt dzy dz; dkr i
SO(2,R)2 RXRRX 1 —z1t —z12
,—
t tz,
, 1 |t‘2M—2m(s—%]—1
=C 1,p(ky,k dz; d dt dk; dk,.
[ twtpake)ole | e 421422 | o g Atk dke

SO(2,R)2 RxR RX

We choose L to be large enough so that the above integral over R x R converges. Also, we choose M to

be large enough so that 2M — 2(R(s — %)) — 1 is positive and then choose N large enough so that the

above integral over R* converges. Therefore, there is a constant C’ € R so that the above is

gc’j lao(1, p(kr, k2)) @'l dky dks.
SO(2,R)2

Define an action of SO(2,R)? on polynomials on Xp1 by (k1,k2)P(y) = R(p(k1,k2)""y). There exist an
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integer m and polynomials {Q;}™; which all transform according to a character of SO(2,R)? such that

Furthermore, for all (k1,k,) € SO(2,R)? we have
m
lw(1, p(ki, k2))@'llg < Z lo'llg,-
i=1
Therefore we conclude that (4.5.1) is
m
< C'vol(SO(X,R)) Y llw(g,h)ellg, (4.5.4)
i=1

which is finite. O

Lemma 4.5.2. Suppose that W € V such that Z(s,W) # 0 and for s > M. There ezists ¢ € S(X?)

such that B(1, @, W,s) # 0.

Proof. There certainly exists a smooth rapidly decreasing function @ : X> — C so that B(1, @, W, s) # 0.
Since S(X?) is dense in the Schwartz space on X? there exists a sequence {¢i}i>1 C S(X?) so that @; — @.

As in the proof of Lemma 4.5.1 we have that
m
B(1,®,W,s) —B(1,0n, W;5)| < CC'vol(2,R)* Y [l — @nllq,.-
i=1
Since B(1, @, W, s) # 0 there is some integer n so that B(1, o, W,s) # 0. O
Now we are sure that B(-, ¢, W, s) is well defined and non-zero, for some choice of @ € S(X?), W €V,

and s € C. We define ©O(V) to be the (g,K)-module, for GSp(4,L), of smooth functions generated by

B(-, @, W,s) for all choices of @ € S(X?),W €V, and R(s) > % We define the map

¥:S(XH eV -0e(V) (4.5.5)

@®WHB(')¢))WS)-
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If B € ©(V) then by Remark 4.4.5 we are justified in using Lemma 4.4.4 to verify that

t
1 t2
B(tg) = [t1/t2|Z7°B(g) for t= for t1,t, € L™, and (4.5.6)
t2
t
1 B by b2
B(bg) =¥ (by)B(g) for b= where B = e M(2,1). (4.5.7)
1 b, bs

With this is place we can extend the results of Theorem 4.4.7 to the archimedean case.

Theorem 1. Let s € C with R(s) > % Let V=W(11,¥)  W(T2,V). Then
(a) The map ¥ from (4.5.5) is a non-zero (t,F’)-map.
(b) The vmage of @ lies inside B(GSp(4,R), V).
It follows that ©(V) is a (v,F')-module sitting inside B(GSp(4,R), V).
Proof. Since GSp(4,R)"™ = GSp(4,R) it follows that ¥ is an R-map from the simple calculation: if

(go,ho) € R',(g,h') €R, @ € S(X?),W €V, and R(S) > 3 then

B(g, w(go, ho) @, (ho)W, s) — J (ggo, h(h'he))@(x1,x2)Z (s, w(h(h'ho))W) dh
H\ SO(X)

= B(QQO) (p,\/V, S)

since (ggo,h'ho) € R. It follows that & induces a (v , F’)-equivariant map.

Part (b) follows from the definition of @(V) and from (4.5.6) and (4.5.7). O

Lastly, we need to extend the results of Corollary 4.4.11 to the case when L = R.

Lemma 4.5.3. Let (m, V) be a (h,]1)-module, let (o,V x V) be the induced (h,])-module obtained
from 7 as in Section 2.2. Let (TI,W) be a (g,K)-module. Then we have the following C-linear

isomorphism

M : Hom(, ;1 (S(X?) ® V, W) —— Hom ) (S(X?) @ (V x V), W)
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determined by M(f)(@ @ (v1,v2)) = fle®@v1)+f(w(1,s)- @ @Vv2) for @ € S(X?),f € Hom, k) (S(X*) @
V,W), and vi,v2 € V, and extended linearly. Here (1,s) is a non-triwvial coset representative of

R/R’. For example we could take s the map that takes x to x*. Additionally the inverse map
N : Hom (. 5) (S(X?) @ (V x V), W) — Hom(, ;) (S(X?) ® V, W)

is giwen by N(f)(@ @ v) =f(p @ (v,0)) for f € Hom(tyK)(S(Xz) ®(VxV),W),p cS(X?), andv e V.
Proof. This is similar to the proof of 4.4.10. O

Corollary 4.5.4. Let (7, V) be the (h,]’)-module associated to the representation of GSO(X) as in
Section 4.3 so that V s equal to W(t1,Y) @ W(T2,V). Let (0,V x V) be the (h,])-module, associated
to the representation of GO(X) as in Section 2.2, that is isomorphic to Indggg&)n. By Remark
2.6.4 we are justified in applying this result to the real case. Let " be the canonical irreducible

subrepresentation of ¢ as in Section 2.6. Letd be as in (4.5.5) and let M be the map win 4.5.3. The

composition
M(D):S(X*) @ (V x V) = 8(V)

is a non-zero (v,F)-map. Furthermore, the restriction of M(d) to m" 1s a non-zero (r,F)-map.

Proof. It is clear, from what is presented in Corollary 4.4.11, that M (9)|+ is a non-zero (t, F)-equivariant

map. O
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CHAPTER 5 | THE GLOBAL ARGUMENT

In this section we will provide a global argument proving that the intertwining map in Section 4.4 is
commensurable with the global theta lift in Section 3.3. As a consequence the local Bessel integrals in
4.4.1 produce irreducible GSp(4, L, )-representations.

Recall the global setting. Let 19 = ®,T, be a tempered cuspidal automorphic representation of
GL(2,Ag) which is not Galois invariant. Assume that Ty has trivial central character. As in Section
2.1, x = 1 and 7¢ induce a cuspidal automorphic representation 7t(1,to) of GSO(X, A). Let m,(1,7,) be
representations of GSO(X, L) or (b, J1)-modules. Then, = ®,7,. Let 7] be as in Section 2.6 and let
= @mn. Let Vi, be a realization of 7o in the space of cusp forms of GL(2,Ag). Each element of
V., induces a cusp form F of GSO(X, A); the space of all such F gives a tempered cuspidal automorphic
representation 7t of GSO(X), denoted by (7'[(1,1), Vﬂ). There is an isomorphism 7t(1,71) = ®n(1,T,) and
we let V., denote the space of n(1,1,).

Recall the definition of H and the choices of (x7,x,) € X? as in Section 4.2. Let S(A),N(A) and
D(A) be as in Section 4.1 and recall B from 4.1.1. For a generic element r € S(A) there are b €

N(A), by, by, b3 € A;t € D(A), and ty,t; € A* so that

1 b] bz t
T=bt= [ 102 b3} [ 2y } (5.0.1)
1 t

Then we let Bs : S(A) — C be the character defined by Bs(r) = Pp(b2)[ta/t; IS_%, with r as in (5.0.1).

Let g € GSp(4,A) and let f be a GSp(4, A)-cusp form. Define B(g, f) to be the Bessel coefficient of f by
B(g,f) = J f(rg)Bs(r)~" dr. (5.0.2)
AXS(L)\S(A)
Similarly, define the Fourier coefficient of f by
FC(g,f) = J f(bg)(bz) "' db. (5.0.3)
N(LAN(A)

The integral defining the Fourier coefficient and the integral defining the Bessel coefficient are absolutely

convergent for any g € GSp(4,A) and any cusp form f. For f € V,; and @ € S(X?) we define 0(f, @) as
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in (3.3.1) but with SO(X) in place of O(X).

Lemma 5.0.1. Let f € V, and ¢ € S(X?). Let g € GSp(4,A)" and let h' € GO(X,A) so that

(g,h') € R(A). Then
FC(g,0(f¢)) =valll\AP [ wlgmh)ebaxa) | flhohin)dhodhy.  (5.0.4)
H(A)\ SO(X,A) H(L)\H(A)

Proof. First we unpack the definitions and switch the order of integration with Fubini’s Theorem, which

is justified by the following observation. For g € GSp(4,A), ¢ € S(X?),f € V,; we have that

1 by by
| ( | 1z (w({ b b-%}g,h]h’)cp)(y) f(h1h')|dh1>db1 db, dbs
(L\A)}  SO(X,LI\SO(X,A) YEX(L)? !
<vlAF [ 1Y (wlghin)e)y) fih)ldny

SO(X,L)\ 80(X,A) YEX(L)?

which is convergent since the integral defining the theta lift 0(f, @) is absolutely convergent.

Now we can safely switch the order of integration, and we see that

1 b] bz
FC(0(f, ¢),9) = J e(f,cp)({ p ‘"} 9)\ ' (b2) dby db, dbs
(1NA)3 1
b1 by

1
= J ( J > (w([ llﬂzbS}g,hlh’)@)(y) f(mh')dh])w‘(bz)db] db; dbs
(LVA)3 SO(X,L)\ 80(X,4) YEX(L)? !

= > (b1 (Y1, Y1) +2b2(y1,Y2) +b3(y2,y2))d ' (b2) dby db dbs)
SO(X,L)\ SO(X,4) YEX(L)? (1\a)3

- (w(g,ih)@)(y)f(hyh') dhy
- > ] wortunyn)don [ lbal=1+20,20) db)

SO(X, L)\ SO(X,A) YEX(L)? 134 L\A

N j W(b3{y2,y2)) dbs)(w(g, hih')e) (y)f(hih) dhy.
L\A
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We can restrict the sum over X(L)? to the case when none of the above character sums vanish. Therefore

the above is

—vlar S (wlghih)e)y) flhh) dhy.

SO(X,L)\ SO(X,A) yeX(L)?
woo—| 0 1/2
Yubi)=1q,5 0o

The group SO(X) acts transitively on the subset of X? determined by (Ui, y5) = [1(/)2 1{)2] More-

over there is a bijection H(L)\SO(X,L) — {((yi,y;) € X(L)?) | (yi,y;) = [132 15}}, defined by

h— (h™'x7,h™"x;). Therefore for the specified (x;,x>) we can write the above as

= vol(L\A)? < J (w(g,hohth') @) (x1,x2) dho)f(hlh/) dhy
SO(X,LI\SO(X,A) H(L)\SO(X,L)

_ vol(L\APj (w(g, h1h')e) (x1,x2) F(hih') dhi.
H(L)\ SO(X,A)

We now expand to get a purely adelic integral. That is, the above is

— vol(L\A)? j J (g, hohth')e(x1, x2)f(hohyh’) dho dhy

H(A)N\SO(X,A) H(L)\H(A)

—wlLaP [ elemmekx) [ flhohh!) dnodhy
H(A)\ SO(X,A) H(L)\H(A)

as claimed. ]

Lemma 5.0.2. Let v be a place of L, let a; € E, and set t; = NE:(ai) for i € {1,2}. Then for

@ € S(X(L,)?) we have

(wv([ e ],pu,[m W 1)@) b, x2) = @lxn,x2). (5.0.5)

t

Proof. Let a; € E, and t; = NE:(ai), for i € {1,2}. Set h = p(1,[*" 4,]). Then, h™'(x;) = tfxi for

i e€{1,2}. Therefore,

t
(Uv(|: 2 ty
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—1

t
_ ta
= [t1t2] zwv([ t) ]
ts

1 Doty 'x1, 15 'x2)

= Xe, /L, (t1t2)@(x1,x%2)

= @(x1,x2).

This last step follows because the t; € NE: (EX). O

Define, for g € GSp(4,L,), @, € S(X(L,))%, W, € Vv and s > 0,

Byl(g, @y, Way s) = J lw(g, hh')@(x1, x2)|Z(R(s), |(hh')W]) dh.

H(Ly)\SO(X,Ly)

Lemma 5.0.3. Let ®,¢, € S(X?),®,W, € @, W(m,,Pg,) and g € GSp(4,A). Then the product

[L, Bv(gv, ®v, W\, s) converges absolutely for R(s) > 3/2.

Proof. There is a finite set of places S such that if v ¢ S then g € GSp(4,0,,) and B, (g, @y, W,,s) =
By (gv, fz2, Wyn,v, s) is the standard unramified vector, used in Theorem 4.4.9. A calculation shows that
for allv ¢ S that [B|(g, fz2, Win,v, s) < L($R(s), ITi]). Therefore it suffices to prove that vas L(R(s), |Til)
converges for JR(s) > 3/2. We can see that this converges in this range because it is a product of factors

of the form (1 — q~%(s)+9)~1 for some —1/2 < 0 < 1/2 and the local factors converge in R(s) > 1. [

In the proof of the following lemma we will use the isomorphism ®,W(m,, Ve, ) — V, determined by

W, = Y W(p(l, Y, (5.0.6)

yeex 1

with W(h) =[], Wy (h,), see (5.7) of Gelbart (1975).

Lemma 5.0.4. Fuiz s € C so that R(s) > 3/2.

(a) For f € ©(V,),g € GSp(4,A),b € N(A) and t € D(A),

B(bg, f) =(b2)B(g, f)

B(tg, f) = It2/t:11°'/?B(g, f).

(b) Letf e Vy and ¢ € S(X(A)?). Assume that ¢ = ®, @, and that @W,, corresponds to f under
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the isomorphism &, W(m,,Ve,) = Vr. For (g,) =g € GSp(4,4A),
B(g,0(f, @)) = H By (gvy @vy Wi, ).
v

Proof. The statement of (a) follows from the right invariance of the Haar measure and the definition of

Bs. Let a € S(A) and see that

B(ag) f) =
AXS(L)\S(A)

f(rag)By ' (v) dr
= f(rg)ps ' (ra” ") dr
AXS(L)\S(A)

= Bs(a)B(g, ).

Proving (b) is harder. By (a) we may assume that r € S(A) is of the form

for appropriate by, by,b3 € L and t € L*. Let g, @, W be as in the statement of part (b) of this Lemma.

By part (a) of this lemma we may assume that g € Sp(4,A) and that h’ = 1. Then

B(g,0(f, ) = 0(f, @)(rg)Bs(r) ' dr
AXS(L\S(A)

LX\AX (L\A)3

j 0(f, )

by
b2

1

b2

b3

g)b " (b2)[t5~ /2 db; db, dbz d*t.
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Recognizing the Fourier coefficient of 8(f, ¢) we see that the above is

- | 0,0(f, @))t}*1/2 d*t.

LX\AX

By definition of the extension of the theta lift to all of GSp(4,A),0(f, ¢) has support in GSp(4,A)".
The Hasse Norm Theorem states that the norm map is the isomorphism of topological groups (i.e. a

homeomorphism and isomorphism of groups) EXAE\AE — LX\LXNE(AE ). Therefore, we see that the

above is

t
1
_ j FC( g, 0(f, @)t /2 d*t
LX\LXNE(AE) 1
t
NE(a)
1
_ j FC( g,0(f, @))INF () /2 d¥a.
EXAL\AX !
NF(a)

By Lemma 5.0.1 and Lemma 5.0.2 we have that

B(g,0(f, 9)) = J J w(g,h1)e(x1,x2): (5.0.7)
EXAL\AZ H(ANSO(X,A)

a 1
j f(hop(T, Ju)INE (@)~ # dho dhy d¥ a.

H(L\H(A) 1

For this, we note that p(1,[“ ;]) normalizes H(A) and H(L) for all a € A{. Applying Fubini’s Theorem

to the two outer integrals we find that

B(g,0(f, ¢)) = J w(g,h1)@(x1,x2)-
H(A)\SO(X,A)
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a
j j f(hop(T, J)INE ()5 dho d* a dh.

Exal\AX H(L\H(4) 1

By Lemma 4.2.1 we have an explicit description of H which we can use to see that the above is

= J w(g,h1)e(x1,x2)-

H(A)\SO(X,A)
u a ;
j Jf(pm, (1, T )INE(a)~ d*wd” @ dhy
EXAL\AX E'\AL 1 1
- J (g, M) (xr, xa)-
H(A)\SO(X,A)
ua T
J J f(p(1, )h1)INE(a)[¥72 d*ud*adhy
1

EXALNAY EX\EXAL

a
- J (g, )e(x1,x2) J (o1, Jhy)INE(@)sF d*a dhy.
H\SO(X,A) EX\AY 1

Next we will show that the inner integral converges to the product of local zeta integrals. We may write

f in terms of its Fourier coefficients

=Y W, |” ),

yekx 1

Where W is as in (5.0.6). This gives us that

Therefore, since w is defined locally, we have that

Bo.0(fe) = | wlohielxixa) [ 20m ()W) dn
H(AN\SO(X,A) M
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:H J' wv(gvahl,v)@v(xl)XZ)Z(nv(hl,v)WV)s) dh],v
Y H(Ly)\SO(X,Ly)

= H B(gv, @v, Wi, s).

To formally complete the proof, we must show that the integral in (5.0.7) is absolutely convergent.
Informally, we can follow the same arguments that were just presented, but include absolute value signs,

to verify that

a
J j (g, h1)e(x1,x2)l j If(hop(1, T )INE (@))% dho dhy d¥a

EXAT\AX H\SO(X,A) H(L)\H(A) !

< H IBI(gv, @v, Wy, s)
v

which converges by Lemma 5.0.3. O

Theorem 5.0.5. Fiz s € C with R(s) > 3/2. Let B(O(Vy,),s) be the space of all Bessel coefficients
of the elements of O(V,); this is a GSp(4,As) X (goo, Koo)-module under right translation. Let
®vO(Vr,y) be the restricted tensor product with respect to Bo, = B(-, @0, Wov,s) where By, ts the

standard unramified vector in Theorem 4.4.9. Define

A @,0(Viy) = B(O(Vy), s), (5.0.8)

A(®va)(gv) = va(gv);

This s well defined by (b) of Lemma 5.0.4. Then A s an isomorphism of GSp(4,A¢) X (goo, Koo)
modules. Moreover B(©(Vy),s), and hence O(Vy), are non-zero and B(O(Vyx),s) = ®,0(Vxy) is

wrreductble. In particular, all the ©(Vy,) are irreducible and O(Vy,) = O(m}).

Proof. Lemma 5.0.4 demonstrates that A is well defined for pure tensors. Since every element of
®vO(Vr,y) is a finite sum of translates of pure tensors we have that A is well defined on its domain. Let
f € ®,0(Vx,»). There exists a finte set of places S such that f = f,,, ® fs, where fin = ®,¢sBo,v and

fs € @vesO(Vn,s). Suppose that A(f) = 0. For a set Y, let C(Y) be the space of C valued functions on
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Y. The map

®vesC(GSp(4, L)) = C(] [ GSp(4, L))
veSs

®vestv = Faocstyy where

F®V€sf({xv}ves) = H fy(xy)

ves

is injective. Since fs is in the kernel of this map we conclude that fs = 0, so also f = 0. In the
light of Lemma 5.0.4 we can also conclude that A is surjective. Indeed the codomain of A is spanned
by B(-,0(f, @)) for f and ¢ pure tensors. Since A is an isomorphism the non-vanishing of B(O(Vy),s)
follows from Theorem 4.4.7 and Lemma 4.5.2.

Finally, we prove that B(©(V,),s) is irreducible. Since ©(V,) is non-zero and ©(V,;) is contained in

the space of cusp forms on GSp(4, A) with trivial central character, we may write

OVx) =PV

ie]
where each Vj is an irreducible GSp(4,Af) ® (gooy Koo )-subspace of ©(Vy). Furthermore the V; are

mutually non-isomorphic. For each j € | write
Vi =@V

where Vj ,, is an irreducible GSp(4, L, )-representation if v < oo and Vj ,, is an irreducible (g, K, )-module

if v is infinite. For every j € | and every finite place v, the space
Homg /(1,1 (S(X(Ly)?) ® Vv, Vjv)
is non-zero, and for every infinite place v the space
Hom(: xr, ) (S(X(Ly)?) @ Vi, Vi )
is non-zero. By Corollary 4.4.11 for every finite place v the space

. GO L,
Homgr,) (S(X(Ly)?) ® indGei a1 Ve Vi)
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is non-zero. By Corollary 4.5.4 for every infinite place

. 1GO(X(L,
Hom,,, XFV)(S(X(LV)Z) by 1ndGS(g()(((L1))Vn,v> Vj,v)

is non-zero. It follows that Vj , € T1(1,1,). By Theorem 8.6 of Roberts (2001) V; occurs with multiplicity

one in the space of cusp forms on GSp(4,A) with trivial central character. Thus, we may assume that

the Vj are mutually non-isomorphic, for j € J.

We have that

where I C ], and I is non-empty. For a given i € I we have the projection B(©O(V,),s) — V; which leads

to a surjective homomorphism
S(X(A)?) ® Var = V;

by way of the map described in Corollary 4.4.11 and the map A in (5.0.8). By Theorem 8.3 of Roberts
(2001) we have that there can only exist such a homomorphism if V; = ©(V+). This implies, because the

V; are mutually non-isomorphic, that I is a singleton. We conclude that B(©(V,.), s) is irreducible. [
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CHAPTER 6 | A CHOICE OF SCHWARTZ FUNCTION

Let the notation be as in Section 4.3. In the split case, assume that W € V is I5(p™') X Iy (p™2)-invariant
for some non-negative integers ni,n,. In the nonsplit case assume that W € V is I (f™)-invariant for
some non-negative integers n. For any ¢ € S(X?), let B(-, @, W, s) be as in Section 4.4. Our goal for this
chapter is to find explicit Schwartz functions, @ € S(X?), which produce a nonzero paramodular invariant
vector. We will work separately in the case that E/L is split, inert, and tamely ramified. Unfortunately,
when E/L is wildly ramified we do not find any such Schwartz functions. Globally, this is not hugely
significant since the only real quadratic number field for which we do not attain a full explanation of the
local lifts is Q(v/2).

To accomplish our goal there are three important considerations. First, we want the support of ¢ to
be simple, with regard to Z(s, W). To be specific, if h € H\ SO(X) so that (h~"x;,h™'x2) € supp(¢p)
then we want Z(s,t(h)W) to be simple to compute. When [ has odd residual characteristic we are able
to make choices so that Z(s, @(h)W) = Z(s, W), for all such h. Our second consideration is invariance
under the Weil representation for (g, h) € RN (K(p™N) x GSO(X)). When E/L is unramified these first two
goals have almost perfect overlap, while if E/L is tamely ramified there is still enough overlap to create
good candidate Schwartz functions. If we make a natural choice of Schwartz function in the ramified case
we do not get full paramodular invariance in the Weil representation, but we do get invariance under a
rather large subgroup of K(p™). We can sum over coset representatives of this subgroup to produce a
fully paramodular invariant Schwartz function. Of course, we must verify that our choice of ¢ does not
make B(-, ¢, W, s) = 0. More specifically, we are able to verify that B(1, ¢, W,s) is a nonzero multiple of

Z(s,W). We start the body of this chapter with some results which we will find useful.

Section 6.1 Additional Results

The formulas for the Weil representation w; of GL(2,L) x O(X) with respect to 1\ are

(wi(1,h)e)(x) = o(h"x),

|a|dim X/2

(wil Do) (x) = xe/1(a) @(ax),
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Here v (X) is the fourth root of unity discussed in Jacquet and Langlands (1970) and F; () is the Fourier

transform of ¢ given by

File)(x) = JX o(Y)1h(2(x, ) dy, (6.1.1)

where the Haar measure on X is the unique Haar measure such that 77 (F7(@))(x) = @(—x) for x € X
and all ¢ € §(X). We now demonstrate a more user friendly, but equivalent, Haar measure in the split
and non-split cases. In this we will need the following simple observations

X1 X2 Yr Y2
2 ) ) =Y1X4 —Y2X3 —Y3x2 + Yax1. (6.1.2)

X3 X4 Y3 Ya

X1 +Xz\/g X3 Y1 +yz\/5 Y3

s > =2X1y1 —2X2y25—X3y4—X4y3. (6.1.3)
X4 X1 —Xz\/g Ya Y1 —92\/3

Lemma 6.1.1. Assume that X = Xm as in Section 1.4. Ify = [J} 2] € Xm = M(2,L) then
dy1 dyz dys dys4 s a Haar measure on Xm. Since Xm s locally compact there must exist a non-
zero constant ¢ such that dy = c - dy; dy dys dys. The claim s that c = 1.
Assume that E = L(V/5) where 5 € L* is squarfree and let X = X, as in Section 1.4. We
denote the mazimal ideal of or by P. Ify = [H”Lyz‘/g s then dy; dyz dys dy4 is a Haar
Ya y1fyz\/5
measure on Xns. Since Xns s locally compact there must exist a positive constant ¢ such that

dy = ¢ dyy dy, dys dys. The clasm is that ¢ = 8], = q """,

Proof. Assume that the residual characteristic of L is odd.

To align with some future notation chose @, € S(X) to be

fM(2,00) E/L is split

P2
f[g;r ‘nfr]mx’ E/L is non-split, and v{ (8) = ve (V) = 1.
oL
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We choose dy so that F7(F7(@2))(x) = @1(—x) = @2(x). On the other hand, we can compute this

directly using Lemma 3.1.3 and (6.1.2) or (6.1.3):

Fi(2) =Jcpz(y)¢(2<x,y>) ay
X

= J ¥(2(x,y)) dy
[

[

=c J P(yi1x4) dys J P(y2x3) dyz J P(ysxz) dys J P(yax1) dys

yi€cor ya€or yseor Ya€or

=c@a(x)

and,

X
= J ¥(2(x,y)) dy
O q37r
NnX
B oe
=c J P(2x1y1) dys J P(—=2x2y2)d dyz J P(—x4y3) dys J P(—x3y4) dya
oF P BT pr
= cqg - 92(x).

Therefore @2(x) = F1(F192)(x) = c2q2"¢2(x) and so ¢ = q¢ ", in particular c is equal to 1 when E/L is

unramified. O

We can extend w; to all of R={(g,h) € GL(2,L) ® GO(X) | det(g) = A(h)} via the formula

1
wi(g,N)e = A(M) " wi(g ,1)(@oh™). (6.1.4)

Lemma 6.1.2. the map
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determaned by the formula

T(e1 ® @2)(x1,%x2) = @1(x1)@2(x2)

for @1 and @2 1n S(X) and x1 and x; n X, is a well defined complez linear isomorphism such that

aq b]
a; by a by az b2
To (wi( Jh) @ wq ( ) = w( Jh)oT (6.1.5)
¢ d c; dy Cq dy
C2 dz
ar by az by
for g1 = and g, = i GL(2,L) and h € GO(X) such that
c; dg c; dp

det(g1) = det(g2) = A(h).

Proof. It is not hard to demonstrate that T is an isomorphism. It suffices to prove (6.1.5) holds for
(g1,92) = (g,9) € SL(2,L) x SL(2,L1), (g1,92) = (1,g) € SL(2,L) x SL(2,L) for g is a generator for

SL(2,L), and (g1,92) = ([",],[",]) and h € GO(X) with A(h) =A. O

a b
Let To(p™) ={ € GL(2,0r) [c € p™}
c d

Lemma 6.1.3. Let N be a non-negative integer. Then K(pN) is generated by the following:

A 0
(a) for all A € To(pN) and A € o],

0 AtA-T

1 0 G)iNb] b,

0 1 b, b3
(b) fO’f‘ b])bZ)bS € oL,

0 0 1 0

1 0 00
0O 0 01
(c) s2 = , an element of the Weyl group, and
0O 0 1 0
0 -1 0 0
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(d) tn =

0 0 0 1

Proof. This follows from the Iwahori factorization and the decomposition of K(p™)/K1(p). These results
can be found in Roberts and Schmidt (2007) in (2.7) and Lemma 3.3.1, respectively. We reproduce the

later in this text for easy reference.

1 uo N 1 ue—N+T
N 1 N 1 N
KpM) = || KipMu [t Ki(pN)  (6.1.6)
ucor/pN 1 o€or /pN—1 1
1 1
for N a positive integer. Notice that if N = 0 that both sides are equal to GSp(4,0). O

Section 6.2  The Split Case

Suppose that X = Xy as in Section 1.4. Let Ty and T, be irreducible admissible representations of
GL(2,L) with trivial central character. Suppose the space of 1 is its Whittaker model W, and further
suppose that there are non-negative integers n; such that W; € W, that is invariant under Ip(p™t)
for i € {1,2]. Set W = W; ® W,. Let ¢@; and ¢, be in S(X) and let ¢ = T(@ ® @2) € S(X?). Set
N =nj + n,, which we will show is the correct paramodular level. Using the Lemma 6.1.2 and Lemma
6.1.3 we can easily calculate the action of the generators of K(p™) on ¢. With these calculations in mind

we can specify ¢ and @7 so that B(-, ¢, W, s) is paramodular invariant and non-zero. Choose

N

01 :f[pnz oL } and ©2 :fM(Z,oL)- (6.2.1)
poopmt

Lemma 6.2.1. Let @ be as in (6.2.1). For every (k,h) € R such that k € K(p™) we have that

w(k,h)p = o@.

Proof. Let us go through the generators listed in Lemma 6.1.3.
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a az
(a) Let A = € To(pN) € GL(2,0y) so that a;, a4 € o,a3 € pN and a, € or. Note that
az ag

Al = det‘(m [ % 722 ] e To(p™). If (x,y) € supp(¢) then

n2 UL
a;x+azy € and axx+ asqy € M(2,0r)

pN pﬂ.]
so that (a1x+ asy, azx + aqy) € supp(@). On the other hand, if (a;x+ azy, azx+ asy) € supp(@) then

A7 (a1x 4 azy, azx + aqy)

1
= 3et(A) (as(arx + azy) + —az(axx + aqy), —az(arx + azy) + as(azx + asy))

:(X»y)-

Since A" € Iy(p™N) we conclude that (x,y) € supp(¢). So, we have just proved that (x,y) € supp(¢) if

and only if (a1x + azy, axx + azy) € supp(¢). Since det(A) = ajas —azasz € o] and xgq is trivial in

the split case we see that

A
w( ,De(x,y) =xe,1(det A)|det Al*@(ar1x + azy, axx + asy)
‘tAf]
:(\O(X>U)-
Let u € o] and set
1 u 1
9u=[ L ] and hy = p( , )
u 1 1

so that (gu,hy) € R. Since u € o] we have (hy'x,hy'y) € supp(¢) & (x,y) € supp(¢). Hence,

W(gu, hu)@(x,y) = W 2w (1, 1) o(hy %, hy'y)

= @(x,y).

b1 by p N op
(b) Let B = €

- If (x,y) € supp(e) then (x,x) € p" and (x,y), (y,y) € or.
b, b3 oL oL
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Hence,

w( yDe(x,y) = (bi(x,x) +2b2(x,y) + b3 (y,y))@(x,y)

= @(x,y).

(c) In the proof of Lemma 6.1.1 we verified that 77 (@2) = ¢2. Now, using Lemma 6.1.2 we find that

w(sz, Ne(x,y) = wi (1, 1)1 (x)wi( y De2(y)
—1

= @1(x)F1(92)(y)

= (P(X>y)-

(d) To determine w(tn, 1) we need the following preliminary calculation. Let @$(x) = @1(ax). We
claim that that F; ((p?’N)(x) = q*N1(x). The simpliest way to do this is to use (6.1.2) along with
the corresponding considerations for the Haar measure made in Lemma 6.1.1. With these in mind we

calculate that

Il
‘%
<=
)
—~
X
<
o
«

o
oL p 2
= J P(xay1) dys J ﬂ)(—xsyz)dyzjll)(—xzys)dys J P(x1yY4) dys.

p7n1 pr oL pfnz

By Lemma 3.1.3, we conclude that the above is F; ((p?’N )(x) = q*?N @1 (x). Now, again using the seesaw

embedding in Lemma 6.1.2 we have

w(tn, Do(x,y) = wi( yDe1(x)e2(y)
f@N

— g N A (eP") (X))

= (P(Xay)-
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This completes the proof. O
Corollary 6.2.2. For allk € K(pN) and all g € GSp(4,L) we have that B(gk, @, W,s) = B(g, o, W,s).

Proof. When A(k) =1 the result follows from Lemma 6.2.1, the definition of B(:, ¢, W,s), and the fact
that for every u € o there is some b € I(p™) such that det(b) = u. For a general k € K(p") we have
to do a bit more work. Suppose that A(k) =u € o and let g € GSp(4,L) and let g; € GSp(4,L) be as

in (4.4.4) then

B(gk) = A(g)I~** 2B(gak1)

= \(g) 5" 7B(g2)

where

k1

k and g2 = g1

u! u! u

If we can verify that B(g,) = B(g;) then we will be satisfied. To do this we only need to check that
w(gr, e = w(gz2, 1) for the @ chosen in (6.2.1) and for each of the generators with similitude factor
equal to 1, namely the the elements of GSp(4,L) found in (3.1.2), (3.1.3), and (3.1.4). We shall go

through each calculation presently.

(a) Suppose that

a; az aq au

az ag asu Qg
so that g, = 1

-
|
-

91 =
a; az [eR] au

as ag asu ay

With ¢ chosen as in (6.2.1) it is clear that w(g7, 1)@ = w(g2, 1)@ by examining (3.1.2).
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(b) Suppose that

1 b, b 1 biu! b,
1 bz b3 1 bz b3u
g1 = so that g = . (6.2.2)
1 1
1 1

With ¢ chosen as in (6.2.1) it is clear that w(g1,1)@ = w(gz2,1)¢ by examining (3.1.3)

(c) Suppose that g7 =] so that

|
~—

g2

1

For ¢ as chosen in (6.2.1) we have that ¢ (u='x,uy) = @(x,y) so we conclude that

u
u!
w(g2)e(x,y) = w(], Hw( Jo(x,y)
u!
L u_
— w(], Do "% wy)
= w(],U@(X,U)-
This completes the proof. [

Lemma 6.2.3. Let x1,x> and H be as in Section 4.2. Let h = p(hy,hy) € SO(X) then h™'(x1,x;) €
supp(@) f and only if there 1s some h/ = p(h{,h)) € H such that hihy € Th(p™') and hih, €

[27" ] To(p™2).

Proof. Let m € Z>( be such that 20y = p™. First, suppose that h = p(hy,h,) where h; € IH(p™') and

. a; by a/2 by/2
h, € [2 1] I'o(p™2) where hy = ,and hy = , for some a;, by, ci,d; € L, for

c1 dg C2 da
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i1 €{1,2}. Then we have

1 d]Cz d1d2 1 b]Clz b]bz
h™'(x1) = €supp(e1) and h™'(x2) = € supp(¢2).
—C1C2 *C]dz —ajaz *(l]bz
On the other hand, assume that h™='(x7,x;) € supp(¢). Then we have the following congruences cic, €
pN,c1 d, e p™',dycy € p™2,ddy € 01,a1a2 € 0r,a1b2 € 0r,b1as € 01, and byby € or. Choose 11 € Z
maximally so that ¢; € p™' and d; € p"' " ™'. Since at least one of ¢y and d; is not equal to 0 we know
that c; € pN~"1 = pn2=(m=m1) and d, € pm T = pO (=" Similarly, choose r; € Z maximally

so that a;,b; € p™2. Since at least one of a; and by is not equal to 0 we know that a,,b, € p~727™,

Therefore

p‘r‘z pTZ 2—1p—1‘2 2—1p—'r2

hy € and, h; € )N SO(X).

pT] pT1—TL] pN—T] pTL1—T1

We choose
(IR "
hi = and, h})= so that h’=p(h{,h}) €H
o™ - [ R

and easily see that that hjhy € To(p™') and that hih, € [27] J To(p™2) O

Theorem 6.2.4 (Main Theorem 1 — split case). Suppose that E/L s split and that W € Wy, @ Wy,
s To(p™') X To(p™2)-tnvariant. Let @ be as in (6.2.1) and assume that s > M with M as in Lemma
4.8.1, then the intertwining map B defined in (4.4.1) is non-zero and K(p™)-invariant. In particular

B(1, @, W;s) #0.

Proof. By Corollary 6.2.2 We have already show that B(-, ¢, W,s) is paramodular invariant. Lemma

6.2.3 can be used determine the support of B(1, ¢, W,s). Indeed, we see that

B(1, @, W,s) = J (1, )@ (x1,x2)Z(s, i(h)W)
H\ SO(X)

- J Z(s, t(h)W)

H\p(To(pm1)x [27 | [To(pn2))
= vol[H\p(To(p™) x [2" ] To(p™2))] - 215~ % - Z(s, W)

£0.
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Note that the additional constant |2~ % comes from an application of Lemma 4.3.3 part (a). O

Section 6.3 The Inert Case

In this subsection we will apply the same method to prove that if E/L is inert that there exists a ¢ € S(X?)
such that B(-, @, W,s) # 0, in particular we will show that that B(1) # 0. Suppose that 1 # & € o is
square-free and that the field extensions E = L(1/3) is inert. In particular this means that & € of. Let
To be an irreducible admissible representation of GL(2, E) with trivial central character. We assume that
the space of Ty is its Whittaker model W, and that there is some W € W, that is Iy (p™)-invariant, for
some non-negative integer n. Set N = 2n which we will prove is the paramodular level of B(-, ¢, W;s).

With this information we choose Schwartz function ¢ = T(@1 ® @2) where

o1 ="f and @2 = fum(2,0 )nx- (6.3.1)

Evidently we see that we can also write the support of the ¢; as

X1 +x2V0 X3 n n N
supp(@1) ={ [x1 €p™yx2 €pTyx3 €0, xq €} (6.3.2)

X4 X1 —Xz\/g

and

x1 +x2V/8 X3
supp(@2) ={ | X1,%2,X3,X4 € OL}. (6.3.3)

X4 X1 *Xz\/g

Lemma 6.3.1. Let ¢ be as chosen above. Then, for every (k,h) € R such that k € K(p™) we have

that w(k,h)o = @.

Proof. Just as in the split case it suffices to check this for each of the of the generators of K(p™), as

listed in Lemma 6.1.3.

aq az
(a) Let A = € To(pN) € GL(2,01) for some choices of a; € o;. Note that A= =

as Qg
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a0 [y ] € To(pM). If (x,y) € supp(¢p) then

pt oL
ajx+azy € and axx+ aszy € M(2,0r)

pN pn

so that (a1x+ asy, azx + asy) € supp(@). On the other hand, if (a;x+ azy, azx+ asy) € supp(@) then

AT (a1x + azy, axx + asy)

1
~ det(A)

(as(arx + azy) + —az(axx + aay), —az(arx + azy) + aj(azx + asy))
= (X»y)-
Since A" € Iy(p™N) we conclude that (x,y) € supp(¢). So, we have just proved that (x,y) € supp(¢) if

and only if (a;x + azy, azx + asy) € supp(¢). Recall that when E/L is unramified that NF : 0f — 0/ is

surjective. Since det(A) € of we see that

A
w( yDe(x,y) = xe,1(det(A)) det(A)P@(arx + azy, axx + asy)
tA—l
= @(X)U)~
1
1
Let u € o such that g, = € GSp(4)". Choose ug € of such that Nf(ug) = u and
u
u
Ug
set h, = p(1, ). Then (g, hy) € R. Since ug is a unit in og we can conclude that

1

W(gu, hu) (%, y) = W2 @(hy 'x,hy'y)

= o(x,y)

for all (x,y) € X2.
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by b2 p N or
(b) Suppose that B = € . Then for all (x,y) € supp(@) we can easily calculate

bz b3 (U oL
that

b1 (x,x) +2b2(x,y) + b3(y,y) € or, so that

(1)( ) 1)@(’%9) = ll)(b1 <X>X> + 2b2<x,y> + b3<y)y>)(p(x)y)
= o(xy).
(c) Asin part (c) in the proof of the the split case (Lemme 6.2.1) it suffices to show that F;(@2) = @2,

which we did in the proof of Lemma 6.1.1.

(d) Again, similar to the split case it suffices to show that }'ﬂ(p?N) = q*N@;. For a generic

element y € X we write y = {y”:“‘/gy y; \/S} with y; € L for 1 € {1,2,3,4}. Using (6.1.3) and the
4 1—Y2

corresponding considerations for the Haar measure in Lemma 6.1.1 we can calculate this as follows:

(FroP™ )0 = J 01 (@M (2(x, ) dy

= J P(2x1y1) dyy J P(—=2x2y20) dy2 J ¢(*X4y3)dy3jll)(*x3y45) dya.

pm pN oL

Using Lemma 3.1.3 we can conclude that the above is (F; (p?N)(x) =q*Ns(x) O
Corollary 6.3.2. For allk € K(pN) and all g € GSp(4,L) we have that B(gk, @, W,s) = B(g, @, W,s).
Proof. The proof is very similar to the proof of Corollary 6.2.2. O

Lemma 6.3.3. Let x1,x2 and H be as in Section 4.2 and let m € Z be such that 20 = p™ and set
m = |F]. Let t € L* and ho € GL(2,E) and set h = p(t,ho) € SO(X). Then, h~'(x1,x2) € supp(@)
if and only if there is some t’ € L* and hy € GL(2,E) such that h' = p(t/,h}) € H, t't =1, and

hiho = [a)fﬁ‘ 1]A, for some A € To(p™).
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Proof. First suppose that there is such an h’ and an A = [a’ cﬁla @® dr"b} € [@ " J To(p™) such that

h'h = p(1,A). We calculate

h™'x; =h "(h'""x9)
= (h'h) " "x
= Axjx(A)*

da(c) da(d)
=5 (6.3.4)

—ca(c) —coa(d)

and,

h "% =h '(h' 'x2)
= (h'h) "x,
= szoc(A)*

_ Ve @™ 2Mha(a) @™ 2Mba(b) ‘ (6.3.5)

—om2Max(a) —@™ 2Max(b)

Since m — 2m > 0 we conclude that h~'(x1,x,) € supp(¢).

On the other hand, let h = p(1,A) with A = [a’fﬁla a’:iﬁb] € GL(2,E) and assume that h™' (x1,x2) €

C

supp(¢@). From (6.3.4) and (6.3.5), we immediately find the following congruences

da(c) € p™, da(d) € o, cx(c) € pN

_ or; Mmis even
ba(a), ax(a),ba(b) € p?™m ™ =

p~'; mis odd.

Since |o(x)| = |x| for all x € E we conclude that a,b,d € op and ¢ € p™. Let t € L* and let A be as above.

Set h = p(t,A) and suppose that h~'(x7,%x2) € supp(@). If v(t) is odd then v(cx(c)) is odd, which

ok
is impossible. Then t = ®2*u for some k € Z and some u € of. Set h' = p(t™ T, ) € H.
o*u

A priori, h'h € p(1,GL(2,E)) and (h'h)~'(x1,x2) = h™'(x1,x2) € supp(¢). By the above calculation

when t = 1 we can conclude that h'h € p(1,[® ™ ] To(p™)). O
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Theorem 6.3.4 (Main Theorem 1 — inert case). Suppose that E/L is inert and that W € W, has
To(p™)-tnvariance. Let @ be as in (6.3.1) and assume that s > M with M as in Lemma 4.5.2,

then the intertwining map B defined in (4.4.2) is non-zero and K(pN)-invariant. In particular

B(1,9,W,s) #0.

Proof. By Corollary 6.3.2 We have already show that B(-, ¢, W,s) is paramodular invariant. Lemma

6.3.3 can be used to determine the support of B(1, @, W,s). Indeed, we see that

B(1, @, W,s) = j w(1, W) (x1,x2)Z(s, ()W) dh

H\ SO (X)
- J Z(s, m(h)W) dh

Hue(,[@ ™ Jro(pm))
= vol[H\p(1, [® ™ | T Fo(p™))] - [@|™(+72) - Z(s, W)

£0.

Note that the additional constant \a>|ﬁ‘(s_%) comes from an application of Lemma 4.3.3 part (a). O

Section 6.4 The Ramified Case

Suppose that 5 € o; is square-free and that the field extensions E = L(1/3) is ramified, so that & € p.
Let To be an irreducible admissible representation of GL(2, E) with trivial central character. We assume
that the space of Tp is its Whittaker model W, and that there is some W € W, that is invariant
under [ (P™) for some non-negative integer n. Set N = n + 2, which we will prove is the paramodular
level of B(-, o, W,s). In the previous two sections we were able to find Schwartz functions for which
B(g, @, W,s) # 0 is paramodular invariant by inspection. In the ramified case we take a more systematic

approach. Define
®(x,y) =Tle1(x) ® 92(y)) (6.4.1)

where

@1(x) =x(x3)f pntl DY

2n+1 X n—+1
() o ‘B

}QX(X) = X(x3)fqgnr (1) for (x2)f g (x3),
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@z(y):x(ys)f[ e ] (W) =x(ys) g (Y f— (y2)fg o« (ys),

nX
@y P! ]

X1 Xz\/g _ Y1 yz\/g
x3V8 oc(m)] and y = [y3\/5 o(yr)

Let T be the subgroup of GSp(4, L) generated by

with x = [

[ LB R ] TA €@, Be [P0 o | nsym(2),Ce [ &7, %) | nsym(2).

We will shortly address the fact that ¢ is invariant under T in the Weil representation, but to do this we

need some Fourier transform calculations which will also show up in various other places.

Lemma 6.4.1. Let @1 and @, be as above. Then

Frlon) (@ Nx) = qeN A (0P ) () = qe VX2 gniz gy (X)
|:q3211+3 mn+2 nx

where @§(x) = ¢1(ax), and

File2)(x) = X(Xz)f[oE wrtor ] (%)

]mx
B oe

—1
Proof. First note that, since E/L is ramified, 11)? t  has conductor og. Evaluations of character sums
and Gauss sums in this proof rely on the relevant formulas proven in Section 3.1. We begin with the

easier calculation:

Frle2)(x) = J 02(y1b(2(%, ) dy
X

=k j P (x10(y1)) dys J P(—=dx3y3) dy2 J X(yz )b (—=ox2y3) dys

—1 —1 .
B p @ op

—1

- j 3% (@exalyr) dy; J D(—5x3y2) dy; J X3 b(—5x2y3) dys
Pt p—! @ 'of
= K'x(x2)fop (1) f g 1 o2 (x2)foy (x3)

= k/X(XZ)f[OE @EIUX (X)

E]mx
B ooe
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We know that (k/)* = 1 since Fj(F1¢92)(x) = @2(—x) = x(=1)@2(x). For @; we see that the first

equality is true because

o N 1| o™ N —1
—oN —1 oM o V|
For the second equality we calculate that
Filon( = | o1(vb2x ) dy
X
—1
—k [ 9P @ealy))dyr [ Wby dys | x(va)b(-dxaua) dys
‘43““ oL (DEU{(

= qEN k/X(XZ)f‘B*“*Z (xq )fmf“’zof (xz)qu (x3).

Therefore we have that

Filon (@ ™x) = g Nk x(x2) fapnrz (x1)fox (x2) Fnn (x3).

= qENx(Xz)f[ q3|’1.+2 QEUE (X).

m2n+3 qgﬂJrZ :| nx

So, both equalities are verified. O

Lemma 6.4.2. Let ® be as defined in (6.4.1). For every g € T we have that w(g,1)p = §.

Proof. (a) Let A=1[g! 821 €To(p"N). Then (x,y) € supp() if and only if (a1x+ a3y, arxx + asy) €

supp(®). Furthermore, Assuming that (x,y) € supp(®), we have that

x((a1x3 + azys)(azx3 + asys))
=x(ay a2x§ +2aza3x3ys + a3a4g§ +x3ysz(det A))
=X [x3y3 det A) (1 + (x3y3 det A) "' (a1 a%3 + 2a2a3%3y3 + azasy3))]

=x(x3y3 det A)



since (x3y3 det A)~'(aja2x3 +2aza3x3ys3 + azasyj) € p. Therefore

w( y @ (x,y) = x(det A)@(ar1x + azy, azx + asy)
tA—l
= @(x,y).

o 1. If (x,y)supp(@) then we get the following congruences
<X»X> € anr] = PNA» <y»y> € P71, and <X»y> €oL
so that,

b1 (x,x) +2ba2(x,y) + b3(y,y) € or.

Therefore it is now clear that for all (x,y) € X? we have
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1 B
(1)( »”@(X»U) :¢(<b1 <X,X> +2b2<x,y> +b3<y)y>)¢)(x)y)
1
:(f)(X)U)
N N—1 —2N —N .
(c) Let C=1[g &3lelhy P Jandset C'=["% "7 "L If (x,y) € supp(w(tns2, 1)§) =

supp(Fi(¢1) (@ N) ® F1($2)(-)) then we have the congruences

n+2

<X)X> ep ) <y)y> € oL, and <X»y> €p

so that,

—ci 2N (xyX) — Zczw_N<x,y> —c3(y,y) € or.
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Therefore for all (x,y) € X? we find that

tnsz, 1)@ (x,y)
1

w((tns2) " Db (—cr@ 2N (x,x) — 2co0 N (%, y) — c3(y, y))lw(tnsz, 1Pl (x,y)

“HDlw(tnsz, Nlx,y)

We have verified the claim for all the generators of T, which means that we are done. O

Lemma 6.4.3. The following is an exact list of coset representatives of K1(p™N)/[K1(pN) N T]:

{SZ> |'LL,V € UL/F'}

Proof. Let k € Kl(p"N). Then, there exists a,b,c,a’,b’,c’ € or,u € 0 and s = [} 32] € SL(2,01)

such that ) o o )
1T a ¢ bl |uy 1
1 b S so| |oNa’ 1
k= (6.4.2)
1 u! oNe! Vb’ 1 —Na’
—a S3 sa| |@ND’ 1

by the Iwahori factorization (Roberts and Schmidt (2007), for example). Clearly the matrix on the right

is in TNKI(pN). First, assume that s4 € 0. In that case we find that

w1

$1

$3

$2

S4

(TNKI(p™N))
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c b 1 u
b 1 s;'sy $1 —5715253
! ! (TNKI(pN))
1 1 u!
—a 1 1 S3 S4
c bl |1
b 1 sy s2
P ke
1 1
—a 1 1
c+ab b 1 a 1
b 1 1 s;'s2
P rakipM)
1 1 1
1 —a 1 1
c+ab b 1 a?s;'sy asy'sa| |1 a
b 1 as;'sy s;i'sy 1
! ! (TNKLpN))
1 1 1
1 1 —a 1
ct+ab+a?s;'sy; b+as;'sy
b+ asqsz s”sz
! ! (TNKI(pN))
1
1
sfsz
(TN KIL(pN)).




Now assume that s4 € p so that s, € of. In this case we find that

—1

_u1
$1
u!
L $3
_1
1
1
i —1
_1
1
1
|
_1 -b ¢ a
1 a
1
i b 1
_1 c—ba
1 a
1
(TNKI(pMN)).

T nKipN)

Sq

(TNKI(pMN))

Which gives us exactly the cosets we described.

—S3 + 8518184

$1

(TNKI(pMN))

$2

128

(TNKI(pMN))
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Lemma 6.4.4. The following is an ezact list of coset representatives of K(p)/[K(p™N) N T]:

1 o Nu 1 o Nu 1

{ yS2 y IN )tN52|u)V€UL/P}

Proof. Use the Lemma 6.4.3 and the decomposition of K(p™N)/K1(p™N) found in Roberts and Schmidt

(2007), Lemma 3.3.1. The later is reproduced in (6.1.6). O

Define the Schwartz function

(P(X,U) = Z w(g)1)®(x)y) (643)
geK(pN)/TNK(pN)

It is clear from the above discussion that ¢ is invariant under all of K;(p™N). In addition, we will
demonstrate that ¢ is not zero by producing a formula.

Lemma 6.4.5. The following an explicit formula for @:
=0+ + B +o® (6.4.4)

where

0 (x,y) = qifpne2 (%, X)) @1 (%) for (YY) (W) @2(y),

@' (% y) = qux(y2)fpn 2 (X)) @1 (x) f[aE octor] (W)

E}mx
B oe

0 (x,y) = qx(Xz)f[mwz @Eug}(X) for (4, y))@2(y), and

m2n+3 ;pnvLZ

o'V (6 y) = x0ay)f P2 @po) L1y P @ of
|:;I;2n+3 q}n+2i| |:

Moreover, the supports of the four summands in this formula are pairwise disjoint.

Proof. The formula required four calculations involving the ;. We calculate two now and collect two
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from Lemma 6.4.1 for convenience:

Z ¢(®_NU<X»X>)<P1 (x) = qrfpw ((x, %)) @1(x),

ucor/p
D by y)ea(y) = qife, (Y, y))@2(y),
vEoL/p
File2)(y) = x(Y2)frop oo - (y), and
[‘]3 oE ]
Frle1) (@ Nx) =x(x2)f N weox1(X)
|:§I;ZN71 mN :|
Therefore,
_1 o Nu ]
1
o) = wl 100, y) = G (%)) 01 (%o, (4,1)) 02 (1)
u,ve (o /p)? 1
L 1_
_1 o Nu ]
1
e =3 wls )0 (%, Y) = qux(y2)fn (%, X)) @1(x) f[oE @7105]“(9)
u€or/p 1 B OE
L ]_
- }
1 v
e = > wltn Jo(x,y) = ax(2)fr g opox 1 (0 for ((Y,y))@2(y)
vEoL/p 1 [;1321\171 pN ]
1
oY = w(tns2)e(x,y) = x(x2y2)f N @rox 1o @10 mx(y)'
|:q32N71 pN ] [gp 0F }

Since the cosets of K(p™)/(K(pN) N T) are represented exactly once in the above sums we have proven

that 6.4.4 is valid. ]

Recall the choice of x1,x; and H from Section 4.2. We will now determine for which h € H\SO(X)

we have (h™'x;,h™"'x,) € supp(¢). This will help us evaluate the value of the intertwining map, as in
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(4.4.1), evaluated at .

Lemma 6.4.6. Let h € SO(X). Then

(a) (h""x1,h"'x2) € supp(@'")) if and only if there exists some h/ € H such that h'h = p(t,A)

O

O
for some t € o and A € [wnaé 0;] such that NE(det A) = t2,

(b) (h""x1,h"x;) € supp(@?)) if and only if n = 0 and there exists some h' € H such that
h'h = p(t,A) for some t € o/ and A € [:E l;g] such that NE(det A) = t2,
E
(c) (h"x1,h™"x;) € supp(@®)) if and only if there exists some h' € H such that h'h = p(t,A)

X
UE OE

for some t € o] and A € [‘13"“ o
E

] such that NE(det A) = t2, and
(d) (h~Tx1,h""x2) € supp(@?)) for no h € SO(X).
In particular we can assume that t is one of the two representatives of L*/NE(EX).

Proof. Let’s start with a preliminary observation. Let A = [¢ §] and suppose that there is some h’ € H

so that h’h = p(1,A~'). Then we calculate that

h ' =h '"(h 'x1)
=(h'h) " 'x;
=t TAx x(A)*
ax(c)Vs  ao(a)Vd

=t (6.4.5)
—ca(c)Vs —cafa)Vd

and,
h 'x; =h (W "x,)

= (h'h) 'x,

=t "Ax,(A)*

g —ba(d)¥2  ba(b)2 (5.4.6)
—da(d)¥2  da(b)

Also notice that for i = 1,2 and g € GSO(X) we have that 0 = (xi,%;) = (g~ 'xi, g~ 'x;). Considering
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the current application, in (6.4.4) we can ignore the restriction of the domain that (x,x) € p™ and that

(y,y) € or.

Suppose that h = p(s,A’) for some s € L* and some A’ € GL(2,E). We distinguish an element

ve(s)
—Ve(s) [G)EE

of the stabilizer h’ = p(®@ , mvgs)” € H. So that, h'h = p(t,A) for some t € o and

E

A € GL(2,E). In particular we may assume that t is a coset representative of the L/L'. Since (h'h)~'x; =

h~'x4, in the following arguments we can restrict our attention to h = p(t, A).

(a) Suppose that (h~"x7,h~"x;) € supp(¢@'")). By (6.4.4) we have that (h~"x7,h~"x;) € supp(e")
if and only if h™'x; € supp(¢;) and h™'x; € supp(@2). These two conditions imply that
0O 0O

A e . (6.4.7)

n X X
@Mof  of

On the other hand, assume that A is as (6.4.7), then by (6.4.5) and (6.4.6) we can see that h™'x; €

supp(¢1) and h™'x, € supp(¢2). We conclude that (h~"x;,h " "x;) € ).

(b) Suppose that (h~"x;,h™"x,) € supp(¢'?)). By (6.4.4) we have that (h~'x7,h~"x,) € supp(p"))

if and only if h~'x; € supp(@;) and h™'x; € [‘ZBE @ of ]. These two conditions imply that

O

A€ : (6.4.8)
@pog P

Since p(t,A) € SO(X), this can only happen when n = 0. On the other hand, assume that A is as (6.4.8),
then by (6.4.5) and (6.4.6) we can see that h™'x; € supp(@) and h™"x; € [?,E wi"é INX. We conclude

that (h~"x;,h~"xz) € @?).

(c) Suppose that (h™'x;,h~"x;) € supp(@(®)). By (6.4.4), this can happen if and only if h~'x; €

[‘Bn+2 @Eoé
;132714»3 mn+2

] and h~'x, € supp(¢;). These two conditions imply that

o7 o
Ae| °© (6.4.9)
ganr] UE

On the other hand, assume that A is as (6.4.9), then by (6.4.5) and (6.4.6) we can see that h™'x; €

[anrZ wEoé
m2n+3 513“+2

] and h™'x, € supp(@;). We conclude that (h~'x;,h " "x;) € 3.
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+2 X
R U @EUE]

(d) Suppose that (h~"x;,h~"x,) € supp(¢*)). This can happen if and only if h~'x; € [q32n+3 qn2

and h—'x; € [‘; f‘z? ]. These two conditions imply that
E

aAe| oo
anr] fp ’
which is impossible since p(t,A) € SO(X). O

Corollary 6.4.7. Let h € SO(X). Then (h™'x7,h"'x;) € supp(@) if and only if there exists some
h' € H such that h'h = p(t,A) for t a representative of L*/NE(E*) and some A € IH(P™) such that

NE(det A) = t2.

Proof. If n =0 then

of o P o DU of op of op
lo(oe) = GL(2,0e) = ( U U L ( NGL(2,0¢)) U ).
of | of of| |of w| | o P of
If n > 0 then
U>E< 0 Oé O
To(B™) = ( L ).
opoy of| | o
Examining Lemma 6.4.6 gives the result. O

To explicitly calculate the B(1, ¢, W,s) it is important that we calculate the volumes of the subsets
of GL(2,0g) that appear in the proof of Corollary 6.4.7, in terms of the volume of some subgroups of

SO(X). When n =0 set I' = p(0;,To()) N SO(X). When n > 0 set ' = p(o;, To(P™)) N SO(X).

Lemma 6.4.8. The following table summarizes volumes of certain subsets of

H\(p(of, GL(Z) UE)) n SO(X)))

up to a positive constant.
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Table 6.1: Volumes of subsets of p(o;, GL(2,0¢))

p(of,-) NSO(X) Volume in p(o0;",GL(2,0¢)) N SO(X) Support in @'V

LE ‘5} (1—&)vol(T) 2

Lo o] (1= Lvol(r) .

ng ) Gvol(T) 2

{OE Oj NGL(2, 0¢) 1— (3= 1yvol(r) 1
% ] vol(T) ,
[mo*fo; 55] (1= g)vol(T) 1
[mﬁ o} %vol(l“) 3

Proof. Recall the Haar measures of SO(X) and H which were chosen in Section 4.4. Suppose that S is

a subgroup of SO(X) and fs(x) is the characteristic function of S. We have that

st(g)dgz j (st(thdh)dg

SO(X) HASO(X) H

= J voly (HN S)fs(G) dh
H\SO(X)

= voly (H N S)vol\so(x) (H\HS)
Therefore, we have the formula for the quotient measure:

volgo(x)(S)

VOlH\G (H\HS) = Vo]_H(H n S) . (6410)

We begin with the case that n > 0. First, note that the following is an exact list of coset representa-

tives:

(p(o], To(B™ 1)) NSOX)\I ={p(1,[1 ;1) | x € og/P}.
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Therefore, the volume of p(o°, To(P™+1)) NSO(X) is %vol(r). By (6.4.10) we have that

vol(H\p (0}, To(B™)) = vol(H\Hp(o}, To (B™))
__vol(p(og, To(P™))
vol(p(o{, To(Pn+1) N H)

_vol(p(of, To(P™))
vol(H)

= —vol(T).

Since H\p(o", [@E’é ZEE 1) N'SO(X) is the complement of H\p(o;, To(P"+1)) N'SO(X) inside of H\T, we

find that that
vol(H\p(of,[ %%, °51)NSO(X)) = vol(H\T) — vol(H\p(of, To (B 1)) NSO(X)) = (1 — ;)volm.

n
@DEgog 0g

Now assume that n = 0. See that the following is a complete list of coset representatives
plof', 1% 21 NSOMXNI = {I" }] | x € oc /.
So, similarly to the above case we find that

vol(H\p(of', [ % 1) 1SO(X)) = vol(H\Hp(of', [% 21)NSO(X))

Since H\p(o[", [ q§ °¢ £1)NSO(X)) is the complement of H\p(o{, [0§ aqi 1) NSO(X)) inside of H\T', we find

that that

-]

vol(H\p(of*, [ *%1) NSO(X)) = vol(H\F) — vol(H\p(o}", % %1)NSO(X)) = (1 - ;)vol(r).



Lastly we have that H\p(o;", [ZE Zi INGL(2,0¢))NSO(X) is the complement of H\p(o;*, [O;E Zi }u[ji oqg U
E E E E
(% 201015 251 NSO(X)) inside of H\p(o], GL(2,0¢)) N SO(X). Therefore
E E E

X X X X
¥ o og B O O

vol(H\p(of', [75 751) NSO(X)) =1 —vol(H\p(of', [ % *1ULE S TULE 1L 7 1) NSOX))

¥ 1) Nso(X))

X
OF
B of

=1 —vol(H\I") — vol(H\p(o}, [

— 2vol(H\p(of', [%5 751 NSO(X))

O

=1—(3— ;)vol(r).

This completes the proof. O

Theorem 6.4.9 (Main Theorem 1 — ramified, odd characteristic case). Suppose that L has odd residual
characteristic, that E/L s ramified, and that W € Wy, has Io(p™)-invariance. Let ¢ be chosen as
in (6.4.3) and assume that s > M with M as in Lemma 4.3.2. Then, the function B(-, ¢, W,s) as

defined in (4.4.2) is non-zero and K(PN)-invariant, where N = n+2. In particular B(1, @, W,s) # 0.

Proof. By construction we have that ¢ is paramodular invariant under the action of the Weil represen-
tation. It follows that B(-, , W, s) is also paramodular invariant. We write a generic element of H\SO(X)

as h=p(1,[¢Y]). Using Lemma 6.4.6 to determine the support of the intertwining map we write

B(1, 01, W,s) = j w1, W) (x1,x2)Z(s, {(W)W) dh

H\SO(X)

w(1,h) e (x1,x2)Z(s, (h)W) dh

Il
m
—

H\ (o7 [ opax ox ]INSO(X)
=qf J x(2ca(c)da(d)s™ 1) Z(s, m(h)W) dh
H\p(of,[m?oé Zg])ﬂSO(X)
= qivol(H\p(0)', [ oyox o ]) NSO(X))X(28)Z(s, W)
also,
BL@H W)= [ w1, ke (xr,xa)Zs,wlh)W) dh

H\SO(X)



_ J w(1,h)e® (x1,x2)Z(s, ()W) dh

= quvol(H\p(of', [ 751 2% ]) NSOX)X(2)Z(s, W).

If n =0 then we also have a contribution from

B(1, 0, W,s) = j w(1,h)e?) (x1,%2)Z(s, t(h)W) dh
H\SO(X)

- J (1,19 (x1,x2)Z(s, ()W) dh
Hlof [ 2 °F irsox)
=qL J x(—2da(d)ba(b)6~ M) Z(s, m(h)W) dh

Hyeto,[ % 78 Jinsorx)
E

= quvol(H\p(of', [ % 7 ] NSO(X)))x(2)Z(s, W).
Therefore, from Lemma 6.4.6, we find that

B(],(p,VV,S) = BU,(P“) + (p(Z) + (p(3)>\/v>s)

= X(2)Z(s,W) |x(8)quvol(H\p(1, [ or'ox ox ]) N SO(X))

+ givol(H\p(1, [ °F ot 1) NsO(X))

n—+1 X
B of

+em)quvl(H\p(1, [ % 27 ]) nSO(X))

where €(0) = 1 and is equal to zero elsewhere.

When n > 0 we can use the volumes in Table 6.4.8 to calculate that

B(T, 0, W;s) = X(2)Z(s, W) [x(8)auval(H\p(T, [ %% . *]) NSO(X))

@DEg0g Og

+ qtvol(H\p(1, | %, ot 1) ns0(X))

n—+1 X
B of

137
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since q # 2. When n = 0 we have the more complex calculation

B(1,0,W;s) =x(2)Z(s,W) [x(é)quol(H\pu, [oF o5 1)SO(X))

0

mx

"2 )s0Xx))

O¢

1)n SO(X))}

o
OF

+ qivol(H\p(1, [

+ quvol(H\p(1, |

B B

— x(2)Z(s, W) [x(é)qo 3 %)vol(r) . &)vour)) + g (vol(M) + q(vol(T))
—x(2)Z(s,W) [x(é)q 4 vol(T) (x(8)(4q — 2) + 4% + q)]

£0

since vol(T") = (]1?. O
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