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Abstract 

Seasonal and ephemeral surface water resources are essential to human consumptive uses and the 

nourishment of aquatic habitats, but they are increasingly threatened by climate-change related 

impacts. Western North America, for example, has already experienced significant declines in 

seasonal snow cover, which will have a range of effects on both human communities and aquatic 

ecosystems like wetlands.  The swift rate of change requires consistent monitoring at scales that 

support adaptive management, but seasonal-ephemeral water resources are often distributed across 

vast areas that are poorly instrumented.  As such, remote sensing is increasingly employed to monitor 

freshwater resources and understand hydrological processes. This dissertation investigates the 

application of novel remote sensing approaches to important questions involving the monitoring of 

seasonal snow supplies and snow-dependent, ephemeral wetlands. Also included is a study examining 

the socio-ecological context for climate change research and adaptation in the headwaters regions of a 

large watershed. The first research chapter explores the potential of using terrestrial laser scanning 

(TLS) for the estimation of intercepted snow masses on trees. The findings indicate good agreement 

(R2 = 0.69, RMSE = 0.91 kg) between TLS estimates of snow mass and measurements made on trees 

suspended from load cells. With further refinement, this approach may prove to be a useful tool in 

calibrating snow interception models to different forest types. The second research chapter utilizes 

this new technique to fit a Random Forest model that predicts snow interception volume from a suite 

of canopy metrics derived from aerial laser scanning (ALS). The findings demonstrate good 

agreement (R2 = 0.65, RMSE = 0.52 m3) between observations and model predictions and identified 

the best suite of predictors.  This suggests that metrics capturing the intrinsic, three-dimensional 

variability of tree canopies may be useful as new parameters in hydrological or snow interception 

models.  The third research chapter analyzes a thirty-year time series of satellite imagery to identify 

trends in ephemeral wetland (playa) inundation, with the goal of informing land management 

practices and wetland restoration planning.  The findings indicate that localized weather conditions 

and hydrologic modification history are important drivers of playa inundation, that reductions in 

habitat availability and inundation duration should be expected with intensifying droughts, and that a 

small number of playa have the potential to function as hydrologic refugia during drought years. The 

fourth research chapter analyzed the spatial and topical distribution of climate change research in the 

headwaters of the Columbia River Basin.  The findings identify broad patterns in a large body of 

research, such as gaps in interdisciplinary and geographic collaboration, and suggest future directions 

for understanding climate change across the region.   All told, this set of studies adds to the body of 

knowledge on remote sensing for seasonal-ephemeral water resources, as well as applications for 

water resources research and management. 
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Chapter 1: Introduction  

Seasonal and ephemeral surface water resources are essential to human consumption and the 

nourishment of aquatic habitats.  Roughly 1/6 of the world’s population relies on water supplies 

derived from seasonal snow cover for agricultural, industrial and municipal use (Barnett et al., 2005).  

These uses are frequently in competition with water needed to sustain aquatic habitats like wetlands, 

which themselves supply a host of ecosystem services – everything from flood control to groundwater 

replenishment to conservation of biodiversity (Turner et al., 2008).  Ephemeral and/or geographically 

isolated wetlands (GIWs) are particularly threatened, as they sometimes receive less protections and 

study (Golden et al., 2017).  In addition, both the water supply (snow) and the snow-dependent 

systems (many GIWs) may be threatened by climate-change related impacts (Golden et al., 2017; 

Viviroli et al., 2011).  Western North America, for example, has already experienced a 15-30% 

decline in snowpack since the middle of the 20th century, which will have a range of effects on both 

human uses and aquatic ecosystems (Mote et al., 2018).   

These concerns, and the swift rate of change, necessitate vigilant monitoring of water resources and 

aquatic ecosystems at appropriate scales so as to inform adaptive management (Georgakakos et al., 

2012).  Seasonal-ephemeral water resources are often distributed across vast areas that are poorly 

instrumented with ground-based sensors.  In response to this challenge, remote sensing approaches 

that employ aerial or space-based sensors are increasingly utilized to monitor freshwater resources 

and understand hydrological processes (e.g., Casenave et al., 2016; Pekel et al., 2017).  Chapters 2-4 

of this dissertation explore the application of remote sensing techniques to important questions 

surrounding seasonal-ephemeral water resources. 

More specifically, Chapters 2 and 3 address novel methods for estimating canopy-intercepted snow, 

an ephemeral phenomenon that influences a seasonal resource.  The structural characteristics and 

spatial arrangement of forests exert a significant control on the variability of accumulated snow 

(Varhola et al., 2009). Intercepted snow, for example, can account for up to 60% of total annual 

snowfall (Montesi et al., 2003; Storck et al, 2002), with subsequent wind-driven sublimation rates as 

high as 50% (Essery and Pomeroy, 2001; Hedstrom and Pomeroy, 1998).  Partitioning snow 

interception from snow fall in hydrological models is therefore important, but most models rely on 

two, indirect metrics of forest character called Leaf Area Index (LAI) and Canopy Closure (CC) 

(Essery et al., 2009; Rutter et al., 2009). This is due, in part, to the fact that actual measurements of 

snow interception have only been produced by intensive, plot-scale experiments (e.g., Hedstrom and 

Pomeroy, 1998; Martin et al., 2013; Storck et al., 2002).  Metrics like LAI and CC, however, do not 

capture the three-dimensional complexity of forests that influences snow interception potential and 
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efficiency (Kobayashi 1987; Pfister and Schneebeli 1999).  Chapter 2 details an alternative approach 

to plot-scale experiments in which I experimentally assess the potential of using terrestrial laser 

scanning (TLS) for the direct, visual estimation of intercepted snow masses on trees.  In Chapter 3, 

we utilize this new technique to fit a Random Forest model that predicts snow interception from a 

suite of canopy metrics derived from aerial laser scanning (ALS).  The results from this work provide 

novel avenues for improving snow interception estimates across larger areas.   

Chapter 4 shifts from seasonal water supplies to a seasonal-ephemeral wetland ecosystem.  Playas of 

the northern Great Basin, USA, fill with snowmelt in the spring, providing critical habitat to local and 

migrating wildlife, before drying out in summer and fall (Rosen, 1994).  The hydro-ecological 

integrity of playas, however, may be degraded by drought intensification brought on by regional 

climate change (Ahmadalipour et al. 2017), as well as previous land use practices that prioritized 

livestock watering (Moffitt et al. 2019).  To inform playa restoration planning, I used a thirty-year 

time series of satellite imagery to do the following: identify the drivers of playa inundation, project 

how intensifying droughts will affect habitat availability, identify any playas that act as hydrologic 

refugia during droughts, and determine the role of historical alterations to playa in the distribution of 

potential refugia.  The results from this work can help to inform efforts to restore wetland functions 

and conserve habitats as climate conditions change.   

Finally, monitoring and managing water resources requires collaboration across disciplines, 

institutions, and geopolitical boundaries.  Such collaborations benefit from interdisciplinary science 

that synthesizes knowledge of the hydrological and socioecological impacts of climate change 

(Hulme 2010; Petticrew and McCartney, 2011). In the interdisciplinary Chapter 5, I was a coauthor 

on a project to characterize the spatial and topical distributions of climate change research in the 

headwaters of the Columbia River Basin (CRB).  The CRB is an example of a large, transboundary 

river basin with complex human histories, and a dependency on seasonal snowmelt to maintain water 

supplies and ecosystem function (Mankin et al., 2015). We sought to map what science has been 

done, and where, in the CRB headwaters, and to what degree this science examines climate change 

impacts versus adaptation/mitigation.  Our ultimate goal was to identify potential research gaps and 

suggest future directions for understanding climate change across the region.    

Chapters 2-4 address utilizing new remote sensing approaches to meet the challenges of monitoring 

specific seasonal and ephemeral water resources, resources that are expected to be affected by climate 

change, while Chapter 5 examines the broader academic and socioecological context of climate 

change-related research across the region.  All told, these studies will contribute knowledge and 

approaches to better manage and conserve seasonal and ephemeral surface water resources. 
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Chapter 2: 

Toward a novel laser-based approach for estimating 

snow interception  

 

Authors: Micah Russell, Jan U.H. Eitel, Andrew J. Maguire, and Timothy E. Link 

 

Russell, M., Eitel, J. U. H., Maguire, A. J., and Link, T. E. (2020). Toward a Novel Laser-Based 

Approach for Estimating Snow Interception. Remote Sensing, 12, 1146. 

https://doi.org/10.3390/rs12071146 

 

Abstract 

 Forests reduce snow accumulation on the ground through canopy interception and subsequent 

evaporative losses. To understand snow interception and associated hydrological processes, studies 

have typically relied on resource-intensive point scale measurements derived from weighed trees or 

indirect measurements that compared snow accumulation between forested sites and nearby clearings. 

Weighed trees are limited to small or medium sized trees and indirect comparisons can be confounded 

by wind redistribution of snow, branch unloading, and clearing size. A potential alternative method 

could use terrestrial lidar (light detection and ranging) because three-dimensional lidar point clouds 

can be generated for any size tree and can be utilized to calculate volume of the intercepted snow. The 

primary objective of this study was to provide a feasibility assessment for estimating snow 

interception volume with terrestrial laser scanning (TLS), providing information on challenges and 

opportunities for future research. During the winters of 2017 and 2018, intercepted snow masses were 

continuously measured for two model trees suspended from load-cells. Simultaneously, autonomous 

terrestrial lidar scanning (ATLS) was used to develop volumetric estimates of intercepted snow. 

Multiplying ATLS volume estimates by snow density estimates (derived from empirical models 

based on air temperature) enabled comparison of predicted vs. measured snow mass. Results indicate 

agreement between predicted and measured values (R2 ≥ 0.69, RMSE ≥ 0.91 kg, slope ≥ 0.97, 

intercept ≥ -1.39) when multiplying TLS snow interception volume with a constant snow density 

estimate. These results suggest that TLS might be a viable alternative to traditional approaches for 

mapping snow interception, potentially useful for estimating snow loads on large trees, collecting data 

in difficult to access terrain, and calibrating snow interception models to new forest types around the 

globe.   
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Introduction 

The hydrology of snow dominated forests is controlled by interactions of mass and energy fluxes 

between snow and forest structural elements. As forest cover increases, snow accumulation on the 

ground is typically reduced because of canopy snowfall interception and subsequent sublimation, 

which can account for as much as 60% of the cumulative snowfall depending on forest type, duration 

of snow storage in the canopy, and seasonal hydrometeorological conditions (Hedstrom and Pomeroy, 

1998; Molotch et al., 2007). The sensitive connection between forest structure and snow interception 

therefore has important implications for the hydrology in any region around the globe where the 

major proportion of total water input comes from snow. Understanding this relationship is 

increasingly important with widespread observed and projected shifts from snow to rain (Klos et al., 

2014), changes in the frequency of winter rain-on-snow events (Floyd and Weiler, 2008; Musselman 

et al., 2018), and changes in forest vegetation due to fire (Westerling, 2016), drought (Allen et al., 

2010), insects (Bent et al., 2010; Frank et al., 2019) and other disturbance processes that might be 

altered by a changing climate and/or forest management.  

While the importance of snow interception has long been acknowledged, it is also difficult to 

measure, map, and model. Direct measurement has typically been limited to resource-intensive point 

measurements derived from weighed trees, which are generally limited to small or medium trees 

(Hedstrom and Pomeroy, 1998; Knowles et al., 2006; Storck et al., 2002; Suzuki and Nakai, 2008) or 

tree branches (Brundl et al., 1999; Schmidt and Gluns, 1991). Indirect measurements have compared 

snow accumulation between forested sites and nearby clearings. Although indirect measurements 

have advantages (e.g. estimating spatial variance), the accuracy has long been questioned (e.g., 

Miller, 1964) and the measurements can be confounded by wind redistribution of snow, branch 

unloading, and reference site size (Moeser et al., 2015).  

A potential novel method could use terrestrial lidar (TLS) because three-dimensional lidar point 

clouds, based on the laser return-time/distance relationship, can be generated for any size tree. The 

point clouds can be transformed into a convex hull with a polyhedral surface approximating the shape 

of the tree, from which volumes can be calculated (Edelsbrunner and Mucke, 1994; Lafarge et al., 

2014; Pateiro-Lopez and Rodriguez-Casal, 2010). Intercepted snow volume can be estimated by 

subtracting snow-free tree volume from snow-on tree volume. This volume can be converted to snow 

mass by multiplying by fresh snow density, an important variable in snow interception processes 

[Hedstrom and Pomeroy, 1998; Judson and Doesken, 2000; Ryan et al., 2008a, 2008b]. Furthermore, 

novel autonomous terrestrial laser scanning (ATLS) systems (Eitel et al., 2013) could enable time-

series characterization of seasonal dynamics associated with snow interception with minimal 
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fieldwork and maintenance, as well as the flexibility to relocate the experiment to different forest 

types -- thereby overcoming some of the limitations of previous studies. Ultimately, TLS based snow 

interception may have a number of advantages over traditional methods, including: spatially explicit 

estimation of snow interception for different aspects or portions of tree canopies, data collection in 

difficult to access terrain (Adams et al., 2014) known to be important contributors to water budgets 

(Buhler et al., 2016; Hood and Hayashi, 2010) and providing time-efficient data for calibration of 

emerging aerial lidar (ALS)-based snow interception models to specific forest types (Deems et al., 

2013; Moeser et al., 2016; Painter et al., 2016).  

The objective of this study was to test the feasibility of using ATLS to estimate intercepted snow 

volume. In doing so, this study provides a preliminary feasibility assessment for estimating snow 

interception volume solely using terrestrial laser scanning, providing information on challenges and 

opportunities for future research. 

Methods and Materials 

Study site  

Two artificial model hanging trees measuring 1.83 meters (m) in height and weighing 1.65 kg each 

(hereafter referred to “left tree” and “right tree” - see Figure 2.1) were installed prior to winter 2017 

following established approaches outlined in Hedstrom and Pomeroy, 1998. The trees were off-the-

shelf, bilaterally-symmetrical Christmas trees. The trees had 25 flexible limbs, multiple needle-types, 

and did not represent a specific species. The trees had an approximate leaf area index (LAI) of 5.15. 

LAI was estimated from ATLS point clouds using the LeafR R package (Almeida et al., 2019). 

Artificial trees were utilized to avoid desiccation and interception estimates that may be affected by 

progressive needle drop, in addition to minimizing field work and maintenance. The limbs (metal and 

plastic) were not analyzed for comparability to live wood elasticity. The trees were installed at the 

University of Idaho McCall Field Campus (44.9353472°, -116.0820167°) in the mountains of west-

central Idaho, which receives an average of 3.4 m total snow fall (maximum 1.9 m snowpack depth) 

and 0.7 m total precipitation per year at 1528 m elevation (Western Regional Climate Center, 2016). 

Field measurements  

Load cells measured strain gauge output (mV/V), an electrical signal which is proportional to the 

applied excitation voltage, from the hanging trees in one-minute intervals. The load cells were 

designed to maintain accuracy (within 0.03 mV/V) with temperatures as cold as -18°C and were 

shielded to prevent accumulation of snow and ice. Mean temperature during an ATLS scan was only 

below -18°C on one occasion (-20.6°C), which would have affected the maximum deviation of the 
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calibration curve (a straight line drawn between minimum and maximum output) by no more than 

0.0054% according to product specifications. Known masses were hung from the load cells to verify 

measurement accuracy and to develop a calibration equation (mass = 30.18 * mV/V – 4.6917) which 

converted strain gauge output to kg. The originating mass of a snow-free tree at the beginning of each 

winter was subtracted from subsequent measurements to calculate snow masses for each scan.  

An ATLS scanned one side of the trees at a distance of 6.2 m and produced two high resolution point 

clouds per day (1.12 cm spot size and 0.20 cm point spacing at 10 m) (Figure 2.1b). The ATLS 

employs a rugged time-of-flight laser rangefinder (optoNCDT ILR 1191 with 905 nm near infrared 

laser and 1.7 mrad beam divergence; Micro-Epsilon Messtechnik GmbH & Co. KG, Ortenburg, 

Germany) designed for harsh environments (see Eitel et al., 2013 for more detail). The ATLS 

completed one scan in 13 hours.  

Assuming each tree canopy to be bilaterally symmetrical and circular in shape, and given a known 

canopy diameter, distance from scanner to canopy perimeter, and location of the ATLS, trigonometric 

calculations yielded 47.7% of the tree canopy perimeter viewable by the ATLS. Rounded to 50% for 

the analyses, snow masses obtained from the load cells were therefore divided by two and averaged 

across each ATLS scan duration to allow for comparison with ATLS data. 

Lidar volume estimates  

The ATLS point clouds were transformed into convex hull structures approximating the shape and 

volume of the scanned trees using the “ashape3d” function in the alphashape3d R package (Lafarge et 

al., 2014). The convex hull is fitted with Delauney Triangulation (drawing triangles between points so 

that there is no overlap between triangles). The convexity parameter (α) is selected by the user, 

corresponding to data resolution and units of the input data (Edelsbrunner and Mucke, 1994; Lafarge 

et al., 2014). A convexity parameter of 1 corresponds to the convex hull; as α approaches zero, 

triangle borders are deleted to yield a better fitting, flexible, and concave hull that captures more 

structural detail. In this case, the TLS data resolution (2.44 cm) is the sum of the spot size (1.12 cm x 

2 points) and the point spacing (0.2 cm). This value was rounded to 2.5 cm (i.e., α = 0.025 m) for 

construction of all “snow-on” convex hulls. The “volume_ashape3d” function was then used to 

calculate volumes (m3) of the convex hulls. The originating volume of a snow-free tree at the 

beginning of each winter (α = 0.010 m to capture fine-scale detail of branch structures) was 

subtracted from subsequent snow-on measurements to calculate snow volumes for each scan in the 

time series. 

Snow density estimates  
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Hourly fresh snow density (kg/m3) was estimated using hourly air temperatures (𝑇𝑎; 0.1° C 

resolution) from a meteorological monitoring sensor equipped with a radiation shield (VP-4, METER, 

Pullman, WA) positioned on a pole directly above the ATLS. Ta ranged from -20.6 to 6.9°C during 

the entire study period, with a mean of -2.3°C and standard deviation of 4.9°C. Several methods of 

estimating fresh snow density from air temperature were tested, including:  

1. ρ (constant) = constant density of 100 kg/m3  

2. ρ (Diamond-Lowry) = 119 + (6.48*𝑇𝑎) (Diamond and Lowry, 1953) 

3. ρ (LaChapelle) =) 50 +1.7(Ta+15)1.5 (Lachapelle, 1962) 

4. ρ (Hedstrom-Pomeroy) = 67.92+51.25𝑒(𝑇𝑎/2.59) (Hedstrom and Pomeroy, 1998) 

Mean fresh snow density was calculated for each ATLS scan time interval (13 hours). Estimates of 

intercepted snow mass were calculated by multiplying the ATLS derived snow volumes (m3) by fresh 

snow densities derived from equations 1-4 (kg/m3). 

Statistical analysis  

The precision and accuracy of ATLS derived estimates of intercepted snow mass was determined by 

fitting a simple linear regression model in R (R Core Development Team, 2013) between ATLS 

derived intercepted snow mass in kg (independent variable) and load cell derived intercepted snow 

mass in kg (dependent variable) (Pineiro et al., 2008). Estimates of R2 (goodness-of-fit), root mean 

square error (RMSE) in kg, and regression intercept and slope (indicative of model bias) were 

determined for models utilizing each density estimation method (see section 2.4). The optimal model 

was determined by selecting the best performing snow density estimation method that yielded the 

least under/over estimation in ATLS derived mass predictions (i.e. closest to 1:1 line) and lowest 

RMSE.  

Results 

Discounting days without snow, a total of 115 complete ATLS scans were recorded for the left tree in 

the first winter between January and April; a total of 69 complete ATLS scans were recorded for the 

left tree in the second winter between November and March. A total of 83 and 69 scans, respectively, 

were recorded for the right tree over the same time periods. Discrepancies in sample size between the 

left and right tree were related to incomplete ATLS scans in which scanner malfunction truncated a 

portion of the scene (e.g., see Figure 2.1b).  
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Data exploration using results from the left tree revealed that measured snow interception (averaged 

across multiple complete scans) in the first winter averaged 3.19 kg (1.0% of season total), with a 

standard deviation of 4.59 kg and a maximum of 16.95 kg (4.8% of season total). During the second 

winter, measured snow interception for the left tree averaged 3.31 kg (2.3% of season total), with a 

standard deviation of 2.76 kg and a maximum of 10.19 kg (4.5% of season total). Estimated mean 

fresh snow densities using equations 1-4 for the left tree in both winters are summarized in Table 2.1.  

Density values are similar to Mair et al. (2016) in which estimates produced by equation 2 

approximated the constant of 100 kg/m3, estimates produced by equation 3 were higher than the 

constant, and estimates produced by equation 4 displayed a wider range.  

Analyses (Table 2.2) using data spanning both winters for both trees demonstrated that the fresh snow 

density constant consistently produced higher R2 (model fit) and lower RMSE (unexplained variance) 

than empirical variable-density equations 2 (Diamond and Lowry, 1953), 3 (Lachapelle, 1962), and 4 

(Hedstrom and Pomeroy, 1998), in that order. Simple linear regression utilizing the density constant 

yielded R2 = 0.71 / RMSE = 1.06 kg for the left tree and R2 = 0.69 / RMSE = 0.91 kg for the right 

tree. Simple linear regression using the density constant also produced slopes closest to a 1:1 

calibration between ATLS and load cell masses (slope = 0.97 for the left tree and slope = 1.07 for the 

right tree) (see Table 2.2 and Figure 2.2). Intercepts of -1.39 for the left tree and -1.34 for the right 

tree further illustrate model bias and overestimation in TLS based mass estimates.  

Discussion 

The effect of snow density and scan duration on model performance  

To our knowledge, this is the first study that explores the suitability of high resolution, automated 

terrestrial lidar to estimate canopy snow interception, with direct comparison to the established 

hanging tree method (Hedstrom and Pomeroy, 1998). The most precise proxies for measured snow 

interception mass (R2 ≥ 0.69), with the least variation in unexplained variance (RMSE ≥ 0.91 kg), 

were obtained by multiplying the ATLS derived snow interception volume estimates by a fresh snow 

density constant of 100 kg/m3. 

In contrast, ATLS derived snow interception volume estimates in conjunction with dynamic fresh 

snow density estimation equations based on air temperature reduced R2 and increased RMSE model 

estimates. It may be that because equations 2-4 are empirical, they represent relationships between 

fresh snow density and air temperature specific to their respective experimental locales: Sierra 

Nevada Mountains in California (Diamond and Lowry, 1953); mid-continental Canadian boreal forest 

(Hedstrom and Pomeroy, 1998); and, a variety of avalanche monitoring sites across the western 
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United States (Lachapelle, 1962). In addition, each snow density estimation method (1-4) was derived 

from ground-based samples and may not represent micro-climate conditions unique to tree canopies. 

Finally, it should be noted that equation 4 was derived from two sources of data (Diamond and 

Lowry, 1953; Schmidt and Gluns, 1991) with different collection methods and air temperature values 

mainly limited to –10°C and warmer (Fassnacht and Soulis, 2002). This may have contributed to poor 

model performance when incorporating equation 4 (Table 2.2). Experimental development of 

adjustment factors for these equations was not in the scope of this study.  

Unexplained model variance in ATLS derived mass predictions may also be partially explained by 

the long ATLS scan duration (13 hours). Increases in air temperature and subsequent changes to the 

density of freshly intercepted snow (i.e. metamorphism) during the course of one scan, or retention of 

metamorphosed snow between snow events, may have resulted in unexplained model variance. 

Furthermore, this study was not designed to account for losses of intercepted snow due to wind-

driven sublimation and/or unloading, or asymmetrical accumulation of snow on trees during periods 

of high wind and wet snow (Miller, 1964), processes that also may have resulted in unexplained 

model variance. Recent advances in lidar technology might help to address the slow scan duration 

time with the relatively new availability of rugged, relatively low-cost (< $10,000), fast scanning lidar 

instruments (Condliffe, 2018). Future experiments with faster scanning terrestrial lidar that more 

closely matches single load cell readings might allow estimating snow density (kg/m3) from the 

division of load cell-derived masses (kg) by ATLS-derived volumes (m3). This approach may offer a 

path to developing a new empirical snow density equation. Further, laser return intensity data 

obtainable from TLS might provide valuable insights on snow properties that affect density, such as 

changes in grain size/shape and overall wetness (Eitel et al., 2016; Kaasalainen et al., 2008). 

Although this study emphasized automated data collection, model performance could also have been 

improved with in situ density measurements of canopy intercepted snow; fresh snow density estimate 

equations 2-4 were derived from ground-based samples (Diamond and Lowry, 1953; Hedstrom and 

Pomeroy, 1998; Lachapelle, 1962). Further research is needed to devise a practical means of sampling 

snow density on trees. 

The effect of weather and snow properties on model performance  

TLS has been used to monitor changes in snowpack depth, but several factors were shown to decrease 

the number and intensity of received signals (Deems et al., 2013; Prokop, 2008). Atmospheric 

occlusion from heavy snow or fog can interfere with lidar returns, and wet snow surfaces can lead to 

adsorption of lidar pulses on the target itself (Deems et al., 2014; Kaasalainen et al., 2008; Prokop, 

2008). Snow is also strongly forward-scattering; the proportion of forward scattering of lidar pulses 
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increases with scan angle (Deems et al., 2013), potentially leading to missed returns on the edges of 

targets. Despite these issues, the short distance to target (6.2 m) and low scan angle (4.22°) should 

have minimized the variance between measured and ATLS derived snow mass due to atmospheric 

occlusion or forward scattering. Likewise, sampling during the coldest months should have 

minimized unexplained model variance due to lidar pulse adsorption by snow with high water 

content.  

 

The effect of changing tree geometry on model performance  

It may be that occlusions due to heavy snow loading, or reductions in occupied space resulting from 

branch deflection, affected ATLS derived volume estimates and led to unexplained model variance. 

On the other hand, the process of snow bridging may fill interstitial spaces between branches and 

accumulate in new space beyond the original canopy profile, thereby counteracting underestimation 

due to canopy occlusion or branch deflection. This study was not designed to specifically examine the 

relationship between branch deflection and changes to tree geometry, or to examine how plastic limb 

strength might compare with natural wood in its interaction with air temperature. A faster scanning 

ATLS could, in the future, be utilized in a similar experiment to assess variability in branch 

deflection, and physical laboratory testing could evaluate material elasticity. In addition, future 

research could explore the sensitivity of TLS to variable snow volumes within live trees of variable 

height, canopy density, and needle structure, as well as different air temperature conditions that affect 

tree geometry through branch deflection.  Alternative approaches that minimize occlusion could 

include reducing beam divergence with more accurate TLS equipment, scanning from different scan 

positions (Zande et al., 2008), using full-waveform lidar (Deems et al., 2013), or exploring emerging 

ray tracing approaches (Xie et al., 2018) to reconstruct occluded canopy components. 

Conclusions 

This study provides valuable insights into the use of TLS for estimating intercepted snow volume. 

Initial results indicate agreement between predicted and measured values of intercepted snow mass 

(R2 ≥ 0.69 and RMSE ≥ 0.91 kg) when utilizing a constant snow density estimate (100 kg/m3). To 

further improve TLS derived snow interception estimates, future research is needed to develop 

improved approaches to estimate density of canopy intercepted snow in situ, explore the sensitivity of 

TLS snow volume estimates to changing snow conditions and quantities within the canopies of a 

variety of live trees of different sizes and for a range of temperatures that affect branch flexibility, 

and/or reduce beam divergence and reconstruct occluded structural elements. Snow interception is 
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challenging to measure and model, but our findings highlight the potential of lidar technology to 

efficiently and accurately estimate intercepted snow mass. This is a potentially useful development 

for the collection of interception data in remote terrain, as well as the calibration of aerial lidar-based 

snow interception models to distinct forest types around the globe. 
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Tables 

 

Table 2.1. Mean snow density estimates for the left tree in both winter sampling periods utilizing 

each of the density estimation equations 1-4 (Diamond and Lowry, 1953; Lachapelle, 1962; 

Hedstrom and Pomeroy, 1998).  

Density Estimation 

Method 

mean fresh snow density (kg/m³): 

winter 2017 

mean fresh snow density (kg/m³): 

winter 2018 

1. Constant 100 100 

2. Diamond-Lowry 111.59 ± 29.46 99.58 ± 23.77 

3. LaChapelle  141.49 ± 39.52 123.20 ± 31.81 

4. Hedstrom-Pomeroy 142.58 ± 150.61 105.19 ± 53.30 
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Table 2.2. Simple linear regression results comparing predicted and measured snow interception 

mass for each of the density estimation equations 1-4 (Diamond and Lowry, 1953; Lachapelle, 

1962; Hedstrom and Pomeroy, 1998). Data spans winters 2017-2018.  Equation 1, the snow 

density constant, produced the best model fit and lowest error for both trees.  

 
Left Tree 

  

Density Method        R²  

 RMSE 

(kg)       slope 

1. Constant 0.71 1.06 0.97 

2. Diamond-Lowry 0.53 1.35 0.98 

3. LaChapelle 0.53 1.36 0.80 

4. Hedstrom-Pomeroy 0.05 1.93 0.17 

    

 

Right 

Tree 
  

Density Method        R²  

RMSE 

(kg)       slope 

1. Constant 0.69 0.91 1.07 

2. Diamond-Lowry 0.51 1.14 1.13 

3. LaChapelle 0.47 1.19 0.89 

4. Hedstrom-Pomeroy 0.01 1.63 0.03 
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Figure 2.1a (top). Study site showing duplicate model trees hanging from load cells, datalogger, and 

automated terrestrial laser scanner (ATLS; see Eitel et al., 2013). “Left tree” to left of image with 

snow removed for illustration; “right tree” to right of image. Figure 2.1b (bottom). Scan of the trees 

on the same day. 
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Figure 2.2. Simple linear regression results comparing predicted (TLS) and measured (load cell) 

snow interception mass for density estimation equations 1-4 (Diamond and Lowry, 1953; 

Lachapelle, 1962; Hedstrom and Pomeroy, 1998). Data spans winters 2017-2018. Black lines = 

regression lines; red lines = 1:1 lines. 
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Chapter 3:  

Important aerial lidar metrics of canopy structure  

for estimating snow interception 

 

Authors: Micah Russell, Jan U.H. Eitel, Carlos A. Silva, Timothy E. Link 

In preparation  

Abstract 

Forest canopies exert significant controls over the spatial distribution of snow cover.  Canopy snow 

interception efficiency is controlled by intrinsic processes (e.g., canopy structure), extrinsic processes 

(e.g. meteorological conditions), and the interaction of intrinsic-extrinsic factors (i.e., air temperature 

and branch stiffness).  In hydrological models, intrinsic processes governing snow interception are 

typically represented by two-dimensional metrics like Leaf Area Index (LAI). To improve snow 

interception estimates and their scalability, new approaches are needed for better characterizing the 

three-dimensional distribution of canopy elements.  Aerial laser scanning (ALS) provides a potential 

means of achieving this, with recent research focused on using ALS-derived metrics that describe 

forest spacing to predict interception storage.  A wide range of canopy structural metrics that describe 

individual trees can also be extracted from ALS, although relatively little is known about which of 

them, and in what combination, best describes intrinsic canopy properties known to affect snow 

interception.  The overarching goal of this study was to identify important ALS-derived canopy 

structural metrics that could help to further improve our ability to characterize intrinsic factors 

affecting snow interception.  Specifically, we sought to determine how much variance in canopy 

intercepted snow volume can be explained by ALS-derived crown metrics, and what suite of existing 

and novel crown metrics most strongly affects canopy intercepted snow volume. To achieve this, we 

first used terrestrial laser scanning (TLS) to estimate snow interception on fourteen trees.  We used 

these data to fit a Random Forest model with ALS-derived crown metrics as predictors.  Next, we 

bootstrapped 1000 calculations of variable importance (percent increase in mean squared error when a 

given explanatory variable is removed), keeping nine canopy metrics for the final model that 

exceeded a variable importance threshold.  ALS-derived canopy metrics describing intrinsic, tree 

structure explained approximately two-thirds of snow interception variability (R2 ≥ 0.65, RMSE ≤ 

0.52 m3) in our study when extrinsic factors were kept as constant as possible.  The three most 

important predictor variables were canopy length, whole-tree volume, and unobstructed returns (a 

novel metric).  These results suggest that a suite of intrinsic variables may be used to map 
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interception potential across larger areas and provide an alternative to interception estimates based on 

LAI.   

Introduction 

Forests within the northern hemisphere are estimated to contain 20% of global winter snow cover and 

17% of global winter freshwater storage (Guntner et al., 2007; Rutter et al., 2009).  The structure and 

arrangement of the forest canopy is a significant control on the distribution of snow, as well as runoff 

rates and volumes (Varhola et al., 2009). Canopy intercepted snow can account for up to 60% of the 

total annual snowfall, depending on forest type, forest structural properties, and meteorological 

conditions (Montesi et al., 2003; Storck et al, 2002) with subsequent sublimation as high as 25-50% 

in cold, dry environments (Essery and Pomeroy, 2001; Hedstrom and Pomeroy, 1998).  Canopy-

interception processes are thus important to consider when modeling the hydrology of snow-

dependent regions and their water supplies (Mussellmen et al., 2008). 

Despite its importance as a variable in hydrological models (Essery et al., 2009; Pomeroy et al., 2007; 

Rutter et al., 2009), accurately estimating snow interception remains challenging due to complex 

interactions between intrinsic and extrinsic factors (Fig. 3.1). Intrinsic, structural factors like 

branch/canopy arrangement and vegetation stiffness and their effect on snow storage dynamics have 

been studied at the branch-level with physical models (Kobayashi, 1987; Pfister and Schneebeli, 

1999), excised branches (Schmidt and Gluns, 1991), and time-lapse video (Brundl et al., 1999). These 

studies described how branch architecture influences micro-scale (sub-centimeter) mechanisms that 

control how and where snow accumulates, as well as the rate of accumulation.  For example, Pfister 

and Schneebeli (1999) found that snow interception efficiency increased with the width of the branch 

due to reduced snow crystal rebound near the edges, and irregularly shaped branch models with low 

inclination angles had significantly higher accumulations.  Schmidt and Gluns (1991) observed how 

differences in branch structure between conifer species affect mechanisms of snow interception 

efficiency (e.g., crystal rebound, snow bridging), although meteorological conditions produced 

greater differences in snow interception.  Indeed, snow interception is also partially controlled by 

extrinsic hydrometeorological factors (e.g. air temperature, snow water content, wind speed, etc.) that 

affect crystal type, snow adhesion to vegetation, and bridging of snow due to cohesion (Satterlund 

and Haupt, 1970). Furthermore, the interaction between extrinsic air temperature and intrinsic branch 

flexibility affects snow interception efficiency through the process of mass unloading (Schmidt and 

Pomeroy, 1990).   

To estimate snow interception, point-scale measurements (e.g. data from load cells, lysimeters, and 

pressure sensors) have been made (e.g., Hedstrom and Pomeroy, 1998; Martin et al., 2013; Storck et 
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al., 2002).  Scaling up measurements of whole-tree interception is problematic, however, because the 

methods are resource-intensive and not representative across complex terrain.  Alternatively, snow 

interception estimates obtained indirectly by comparing forested and non-forested sites are prone to 

error due to confounding processes (e.g. wind redistribution of snow and branch unloading) (Varhola 

et al., 2009). Due to these challenges, most hydrological models infer snow interception from two-

dimensional metrics of canopy architecture like Leaf Area Index (LAI) or Canopy Closure (CC) 

(Essery et al., 2009; Rutter et al., 2009), data that are relatively easy to obtain from in situ field 

observations or remote sensing (Breda, 2003; Song, 2013).  Interception is partitioned from total 

snowfall by estimating the maximum snow load that can be captured by a canopy as an empirical 

function of LAI (e.g., Hedstrom and Pomeroy, 1998).  Authors of the Snow Model Intercomparison 

Project 2 (SNOWMIP2) (Essery et al., 2009; Rutter et al., 2009) reported that most of the thirty-three 

models of forest-snow processes they examined rely on LAI to predict maximum interception. They 

cautioned that they found inconsistency in the methods used to calculate LAI.  In addition, although 

many of the models employ the empirical equation used in Hedstrom and Pomeroy (1998) that 

defines the LAI-interception relationship, there is inconsistency in how this scheme is implemented 

(Bartlett et al., 2006) and concern that it may underpredict snow interception in environments outside 

the boreal forest zone where it was developed (Martin et al., 2013).  Beyond the aforementioned 

issues, both LAI and CC also do not capture the fundamental, three-dimensional (3-D) spatial 

arrangement of canopy features that accounts for the intrinsic, baseline snow interception efficiency 

(Kobayashi, 1987; Pfister and Schneebeli, 1999).  Hence, to improve snow interception estimates and 

their scalability, approaches are needed that characterize the 3-D arrangement of canopy elements – a 

key intrinsic factor known to affect canopy interception (Friesen et al., 2015).   

Aerial laser scanning (ALS), commonly known as lidar (light detection and ranging) presents a 

potential means of meeting this need.  For each survey point that reflects an emitted laser beam back 

to the ALS sensor, a datalogger records spherical coordinates (distance from scanner, azimuth angle, 

polar angle) that are later converted to Cartesian x,y,z coordinates, as well as return intensity of the 

laser beam (Eitel et al., 2013).  A point cloud contains all of these spatial coordinates and is 

subsequently utilized for classifying and mapping the 3-D structural properties of earth surface 

features such as terrain, forests, and snow cover (Deems et al., 2016; Eitel et al., 2016; Timothy et al., 

2016; Wulder et al., 2012).  Moeser and colleagues (2015a) combined an underlying snow 

interception efficiency distribution with ALS-derived estimates of LAI, CC, tree size, and novel 

intrinsic metrics of canopy spacing (i.e., forest gap size and horizontal position) to model snow 

interception.  They found a 27% increase in model fit (R2 = 0.66) when compared to previous models 

at the point scale (e.g., Hedstrom and Pomeroy, 1988).  Furthermore, Moeser and colleagues (2015b) 
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found that ‘total gap area’ (average r = 0.78) was more highly correlated with interception than LAI 

(average r = 0.57), and that intrinsic, overhead canopy elements are more important than extrinsic, 

snowfall intensity in predicting maximum interception.  Roth and Nolin (2019) furthered this 

modeling approach by modifying the ALS-derived intrinsic variables (e.g., gap length) to integrate 

information on vertical position in space and focusing on two extrinsic variables (i.e., snowfall, air 

temperature).  They found that forest structure sets the baseline potential or likelihood of a given 

forest to intercept, with air temperature influencing the rate of interception.  Finally, Mazzotti and 

colleagues (2019) utilized ALS to extract a spatially continuous canopy metric (distance to canopy 

edge), finding that it performed better than CC and could be aggregated to the watershed scale.   

These studies demonstrate the potential for modeling snow interception based on ALS-derived 

information on intrinsic forest spacing (e.g., gaps), extrinsic meteorological data, and indirect 

validation data. In addition, intrinsic factors affecting snow interception could be characterized with 

canopy structural metrics of individual trees derived from ALS.  ALS-derived canopy structural 

metrics are widely employed for the efficient estimation of forest biomass across large areas (Lefsky 

et al., 2002; Means et al., 2000).  For example, Means and colleagues (2000) used ALS to estimate 

forest structural parameters (e.g., tree height percentiles, basal area, tree volume) over a Douglas-fir-

dominated temperate forest in western Oregon, finding good correspondence to field validation data 

(R2 = 0.93-0.98).  Other studies extracted metrics from canopy vertical profiles, including height and 

volume distributions (e.g., Coops et al., 2007; Hilker et al., 2010; Klauberg et al., 2019).  All these 

studies demonstrate the wide range of different canopy structural metrics that can be derived from 

ALS but relatively little is known about which of them, and in what combination, best describes 

intrinsic canopy properties known to affect snow interception.  This is due, in part, to the difficulty of 

efficiently obtaining validation data of interception variability across a range of trees.  Yet recent 

research advances suggest that terrestrial laser scanning (TLS) could be a valuable validation tool for 

directly mapping and quantifying snow interception in field plots (Russell et al., in review).   

The overarching goal of this study was to identify important ALS-derived canopy structural metrics 

that could help to further improve our ability to characterize intrinsic factors affecting snow 

interception.  Specifically, our objectives were as follows: 1) determine how much variance in canopy 

intercepted snow volume can be explained by ALS-derived crown metrics; and 2) identify a suite of 

existing and novel crown metrics that most strongly correlates with canopy intercepted snow volume. 

Outcomes of this study will provide insights on what canopy structural information from lidar remote 

sensing could best contribute to the effort to further improve the modeling and monitoring of snow 

interception processes across larger spatial scales. 
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Methods and Materials 

Field data  

Field data were collected at Bear Basin Meadows in the Payette National Forest (McCall Ranger 

District) near McCall, Idaho at 1640 m elevation (Fig. 3.2). Bear Basin Meadows is a large meadow 

complex surrounded by montane forest in the mountains of west-central Idaho.   

Fourteen snow-free trees of varying size classes (maximum height = 31.7 m; minimum height = 1.4 

m; mean height = 11.7 m; standard deviation = 9.6 m) and structural forms (e.g., maximum width = 

13.9  m; minimum width = 2.6 m; mean width = 8.1 m; standard deviation = 3.3 m) were scanned 

with a Leica Scan Station 2 (Leica Geosystems AG Heerbrugg, Switzerland) TLS (distance accuracy 

± 4 mm with 0.15 mrad beam divergence) on October 25, 2018.  Trees (Pseudotsuga menziesii (n = 

2), Pinus contorta (n = 10), Pinus ponderosa (n = 2)) were visually selected to represent variance in 

structure (e.g., canopy height, width, distribution of vegetation on stem, etc.) rather than species. The 

trees are all in open forest (i.e., minimal subcanopy) along the margins of a meadow.  To fully capture 

the structural complexity of each tree, two scans were made from opposing sides of each tree (0.005 

m horizontal/vertical scan resolution at 5 m) and included three TLS targets for co-registration of the 

scenes.  To maximize variance in structure, scans included individual trees or small clumps of trees 

that were processed as one tree.  Two subsequent snow-on data collections were performed on 

December 5, 2018 and January 1, 2019, during which the same methods were repeated (Fig. 3.3). The 

Bear Basin snow telemetry station (National Resource and Conservation Service SNOTEL Site #319) 

approximately 600 m from the study site reported mean air temperature during daylight hours was -

11.2°C on December 5th, with maximum air temperature of -6.4°C and snow depth on the ground 

surface measuring 13 cm. Mean air temperature during daylight hours was -9.0°C on January 1, with 

maximum air temperature of -6.2°C and snow depth on the ground surface measuring 71 cm. 

Snowfall prior to each snow-on data collection consisted of approximately 20 cm on December 2nd 

and 5 cm on December 31st.  We attempted to control for extrinsic factors affecting our results by 

scanning all trees during the same day under similar weather conditions (i.e., subfreezing, low wind) 

and in the same general area, thereby assuming that variability in interception between trees would 

primarily be caused by intrinsic factors. After field data collection, we followed the general workflow 

outlined in Figure 3.4 and described in detail in the following sections.  

TLS data preprocessing and canopy intercepted snow volume estimation 

Using the three TLS targets, point clouds acquired from two sides of a tree were registered with the 

‘three point picking’ tool in the open source software package CloudCompare (version 2.10.2) 
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(2017). After registration, each point cloud was subsampled to a 0.05 m minimal point spacing to 

allow for uniform comparability throughout the individual tree canopies and between different trees. 

The subsampling distance was selected to reflect point spacing in the crown of the tallest tree sampled 

(i.e., furthest distance from scanner to target).  To approximate a relative increase in volume with 

snow loading independent of confounding factors like occlusions due to laser absorption/scattering 

(Deems et al., 2013; Kaasalainen, Kaartinen, & Kukko, 2008; Prokop, 2008) and branch deflection 

(Schmidt and Pomeroy, 1990), “snow off” point clouds were added to their corresponding “snow on” 

point clouds using the automated registration within CloudCompare (2019).  The point clouds were 

then transformed into convex hulls in R (R Development Core Team, 2013) using the ‘alphashape3d’ 

R package (Lafarge et al., 2014), which approximates the shape and volume of the scanned structure. 

The convexity parameter (α) was set to 0.05 m to match the point spacing of the underlying data.  

Only the upper 75% of each point cloud was utilized to construct convex hulls, excluding canopy 

components that were occluded by the snowpack and ice attached to the lowest portion of the tree 

canopies.  Next, snow-free tree volumes were subtracted from snow-on tree volumes to calculate 

volumes of intercepted snow. This approach for approximating snow volume from TLS data was 

validated by integrating the methodology into data from Russell et al. (in press).  The resulting model 

regression demonstrated good agreement between estimated TLS-derived snow interception and snow 

interception quantified by a load cell (R2 = 0.68, RMSE = 1.66, slope = 1.55, intercept = -3.71).   

Finally, a Welch two sample t-test was utilized to test whether or not the means of the December and 

January samples were significantly different. 

Calculation of standard crown metrics from aerial laser scanning 

Aerial lidar data for the Bear Basin study site were downloaded from the “The National Map” 

(USGS, 2019).  Data were acquired on March 15, 2018 for the United States Geological Survey 

(USGS) 3DEP LiDAR Project using a Leica ALS80 system (Leica Geosystems AG Heerbrugg, 

Switzerland) at an altitude of 1800 m (22 mrad beam divergence, 30⁰ field of view, 39.6 cm laser 

pulse footprint diameter).  The average first-return point density was 18.00 points/m2, the average 

ground-return point density was 2.93 points/m2, and RMSE was 0.37 m when compared to a bare 

earth digital elevation model.   The aerial lidar tile encompassing the Bear Basin study site has a 

minimum elevation of 1587 m and a maximum elevation of 1952 m. CloudCompare was used to clip 

ALS-derived shapefiles corresponding to the 14 sampled trees. 
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The CrownMetrics function in the ‘rLiDAR’ package (Silva et al., 2015) was used to produce eleven 

structural canopy metrics (e.g. maximum height, mean height, etc.) for each sample tree.  The 

normalmixEM function from the ‘mixtools’ R package (Benaglia et al., 2009) was employed to 

calculate crown base height from the vertical profiles of heights within the crown polygon.  The 

chullLiDAR3D function in ‘rLiDAR’ (Silva et al., 2015) was used to produce convex hulls derived 

from ALS returns within the crown segments and calculate crown surface area/volume. The 

‘alphashape3D’ package (Lafarge et al., 2014) was utilized to calculate whole-tree volumes for three 

arbitrary α values (α = 0.25, 0.50, 0.75) spanning the α range (0 – 1).  Twenty-three total standard 

canopy metrics were included in subsequent modeling (see Table 3.1 for definitions).  Metrics based 

on laser return intensities were excluded as candidate variables because they have been thought to be 

mainly sensitive to intrinsic factors (e.g., Deems et al., 2013; Kaasalainen, Kaartinen, & Kukko, 

2008) of snow interception which is not the focus of this study. 

Calculation of novel canopy metrics from aerial laser scanning 

Original metrics that quantify the number of unobstructed (i.e., first return) and obstructed returns 

(height values less than the first return) (Table 3.1) were produced as a proxy for the amount of 

vegetative structure on the exterior surfaces of trees. These metrics follow the principle that the first 

surfaces snow crystals encounter are most likely to intercept and accumulate snow; snow 

accumulation in the interior of the canopy is limited to snow crystals that slide down steeply angled 

branches to accumulate at branch attachments to the trunk (Pfister and Schneebeli, 1999) or deposit in 

high wind / wet snow conditions (Miller, 1964).  The unobstructed returns (UNOB) metric is a count 

of first returns only.  The UNOBDK metric weights overlapping returns with an exponential decay 

function in which:  

subtract = 0.0498*exp(0.5 * n), where n is the number of overlapping returns within the laser 

footprint (39.6 cm in this study, see section 2.3).   

Subtract is the value to be subtracted from the total number of returns in the point cloud. If the 

number of overlapping returns exceeds six then a value of one is subtracted.  The exponential decay 

function accounts for the assumption that the likelihood of intercepting snow decreases exponentially 

with the number of canopy layers.  Percent unobstructed returns (UNOB%) and percent unobstructed 

returns with decay function (UNOBDK%) present UNOB and UNOBDK values as a ratio of the total 

returns.   
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Modeling 

To address our first objective of determining how much variance in canopy intercepted snow volume 

is explained by ALS-derived canopy metrics, we fit a Random Forest (RF) model between observed, 

TLS-derived snow volumes estimates and ALS-derived structural metrics.  This modeling approach 

was informed by Maguire et al. (2019).  RF is a non-parametric machine learning approach that 

makes no assumptions about the distribution/independence of variables (Cutler et al., 2007) and can 

accommodate many predictor variables relative to the number of observations, with each individual 

predictor providing limited information (Breiman, 2001). RF uses a random subset of predictors and 

observations to construct many regression trees.  This approach is therefore robust against overfitting 

and multicollinearity by distributing variable importance across all correlated predictors (Belgiu and 

Drăgu, 2016; Cutler et al., 2007; Dormann et al., 2013). Predictions from all the trees were combined 

for an estimate of model variance and error. All RF models were fit with the ‘randomForest’ R 

package (Liaw and Wiener, 2002) with the default settings for mtry (i.e., the number of predictors 

sampled at each node: 1/3 of total predictors) and ntree (i.e., the number of regression trees grown for 

each RF run) set to 1000.    

Because our second objective was identifying lidar structural metrics best suited to help predict 

intercepted snow volume, we did not reduce our model to include only predictor variables below a 

certain correlation threshold (e.g., R = 0.9 in Genuer et al., 2010). Instead, we relied on RF estimates 

of variable importance to determine the most parsimonious model.  Variable importance is a measure 

of the increase in mean squared error (MSE) when a given explanatory variable is removed (Stroble 

et al., 2007). To account for stochasticity in variable importance estimates (Liaw and Wiener, 2002; 

Millard and Richardson, 2015) we iterated the calculation 1000 times (bootstrapped without 

replacement). Variables that exceeded a 0.2 variable importance threshold, a default value in many 

RF modeling applications (e.g. Probst and Janitza, 2019), across all runs were retained for fitting the 

final RF model.  

Predicted values of snow interception volume were produced by the final RF model in predict mode.  

To determine how much variance in canopy intercepted snow volume can be explained by ALS 

derived crown metrics (objective 1), we regressed observed (i.e., TLS-derived) against predicted 

snow interception volume and evaluated the precision and accuracy of the model based on the 

coefficient of determination (R2) and root mean squared error (RMSE), respectively. Having 

identified the suite of existing and novel crown metrics that most strongly affects canopy intercepted 

snow volume (objective 2), we then ranked the final suite of variables by importance (i.e., % increase 

MSE if removed from the model).   



29 

 

Results 

Estimates of snow interception from December 5th ranged between 0.15 – 4.48 m3 per tree (mean 1.20 

m3; standard deviation 2.26 m3). Estimates of snow interception from January 1st ranged between 0.08 

– 2.64 m3 (mean 0.98 m3; standard deviation 1.30 m3).  Higher snow volume estimates were recorded 

for 12 of 14 trees on December 5th compared to January 1st.  A Welch two sample t-test showed that 

the means of each sample were not significantly different (t = 0.967, df = 27.634, p-value = 0.171 

with a 95% confidence interval). 

The RF model with all variables included produced the following estimates of model fit and error: R2 

= 0.65 and RMSE = 0.52 m3. After iteratively calculating variable importance 1000 times 

(bootstrapped without replacement), 11 out of 28 variables were removed from the model for not 

exceeding the 0.2 variable importance threshold across all runs.  The reduced model produced 

estimates of R² = 0.66 and RMSE = 0.52 m3.  Next, HMIN and the remaining height percentile 

metrics (e.g. HQR, H25TH, etc.) were removed because they did not add meaningfully to 

interpretation of modeling results in the context of snow interception processes and the TLS-derived 

snow volumes were limited to the upper 75% of the tree crowns.  HMAX was removed from the final 

model due to redundancy with a metric that produced a higher variable importance score, HRANGE; 

ASV0.75 was removed from the final model due to redundancy with a metric that produced a higher 

variable importance score, ASV0.5.  The final RF model consisted of nine predictor metrics in the 

following expression: 

Snow Volume ~ CL + ASV0.5 + UNOBDK + CBH + HSD + HRANGE + CSA + HMEAN + CV 

The final model yielded R2 = 0.65 and RMSE = 0.52 m3. A plot of predicted versus measured snow 

volumes (Fig. 3.5) demonstrated the final model approached a 1:1 relationship (slope = 1.05; 

intercept = -0.06) and revealed a possible outlier (tree #10 in December), the highest measured snow 

volume in the sample.   

Plots of variable importance with and without the inclusion of height percentile metrics (Fig. 3.6) 

indicate that crown length (CL) is consistently the most important variable. The five most important 

variables for the final model (Fig. 3.7, right) are ranked (from most to least important) as follows: CL, 

ASV0.5, UNOBDK, CBH, and HSD.   

Discussion 

We determined the amount of variance in canopy intercepted snow volume explained by ALS-derived 

canopy metrics in our study (R2 = 0.65, RMSE = 0.52 m3) that describe intrinsic, tree structure.  We 

developed an effective model to predict intercepted snow volume (Fig. 3.5) and identified the suite of 
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ALS canopy metrics that explained most of the variance in snow interception volumes (Fig. 3.6).  

These results suggest that while extrinsic variables may be necessary to model exponential 

interception efficiency (Satterlund and Haupt, 1970; Schmidt and Pomeroy, 1990), intrinsic variables 

alone may be used to map interception likelihood, or maximum interception potential, across larger 

areas.  Our findings are consistent with branch-level experimental studies (Pfister and Schneebeli, 

1999; Schmidt and Gluns, 1991) that found snow interception efficiency was due, at least in part, to 

branch width and other structural characteristics.  Furthermore, Roth and Nolin (2019) demonstrated 

in a larger-scale interception study that forest structure determines the baseline potential of a given 

forest to intercept.  Although we focused exclusively on canopy metrics for individual trees, our suite 

of predictors explained an equivalent amount of snow interception variability when compared to 

Moeser and colleagues’ full model (2015a) containing both intrinsic and extrinsic variables (R2 = 

0.66).  Researchers may want to consider future studies that integrate our ALS-derived canopy 

structure metrics model with extrinsic variables (e.g., air temperature, snowfall magnitude) to 

estimate how much intercepted snow exists in a forest at the stand-level.   

Given the effectiveness of our model, our approach may offer a viable alternative to utilizing 

maximum snow interception estimates based on LAI and CC.  These metrics have been shown to be 

both inconsistently obtained and applied in hydrological models (Essery et al., 2009; Rutter et al., 

2009), and do not represent the three-dimensional spatial arrangement of canopy features associated 

with intrinsic, baseline snow interception efficiency (Kobayashi 1987; Pfister and Schneebeli 1999).  

Our suggestion that predicting snow interception with canopy structural metrics may offer an 

alternative to LAI-based estimates of snow interception employed in many hydrological models is 

consistent with the findings of Moeser and colleagues (2015b).  They found that novel ALS-derived 

metrics of canopy spacing (e.g., total gap area) were more highly correlated with snow interception 

than LAI.  In future studies that utilize ALS data for estimating snow interception, we also suggest 

researchers should consider combining canopy structural metrics, highlighted here as important 

predictors of snow interception volume, with canopy spacing metrics. 

Variable selection 

Random Forest modeling revealed that the nine most important canopy metrics for predicting 

intercepted snow volume (Fig. 3.6) were measures of crown length and distribution on the stem (CL, 

CBH), tree and crown volume (ASV0.5, CV), unobstructed laser returns (UNOBDK), tree height 

(HRANGE, HSD, HMEAN), and crown surface area (CSA).  
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Crown length (CL) was ranked the most important variable, with greater than 13% percent increase in 

mean squared error when removed from the model (Fig. 3.6). CL characterizes the portion of 

vegetative structure located above the crown base height.  CBH was the fourth most important 

variable in our model, and is also an important biophysical parameter for many other applications in 

forest management, fuels treatment, wildfire modeling, etc. (Luo et al., 2018).  Our results suggest 

that variability in CBH, coupled with its correlation with other metrics (i.e., CL, CSA, CV), is an 

important factor in predicting variability of canopy intercepted snow.  Visual examination of our 

study trees reveals the relationship between CL, CBH, and the location of intercepted snow within 

each tree (Fig. 3.7). For example, the tallest tree in our sample (tree #3; 31.7 m) intercepted 1.25 m3 

of snow (averaged across December and January samples) with CBH = 18.7 m and CL = 13.0 m.  

Much of the canopy structure is in the upper 1/3 of the tree (Fig. 3.7 histogram of height returns) and 

visual inspection of the intercepted snow with unmanned aerial systems imagery (Fig. 3.7, top right) 

shows most of the snow was captured by the uppermost crown. A shorter tree in our sample (tree #4; 

17.3 m) averaged slightly higher intercepted snow (1.89 m3) with CBH = 3.3 m, CL = 14.0 m, and the 

canopy structure was more evenly distributed in the upper half of the tree.   

Whole-tree volume (ASV0.5) was ranked the second most important variable (Fig. 3.6). This metric 

is an indicator of the overall structural potential for a tree to intercept snow anywhere along its stem.  

Examining the model performance in the context of individual trees, whereas whole tree volume of 

tree #3 (ASVO.5 = 42.90 m3) was significantly higher than that of tree #4 (ASVO.5 = 13.03 m3), it 

intercepted 0.64 m3 less snow (Fig. 3.8). This suggests that different canopy structural metrics interact 

to affect snow interception, and that snow interception cannot be predicted by a simple linear 

regression model with an individual metric. Indeed, such models do not perform as well as our 

Random Forest approach. For example, simple linear regressions fit with the two most important 

variables, CL and ASV0.5, generated lower estimates of model fit (R2 ≤ 0.24) and higher estimates of 

model error (RMSE >= 0.60 m3) (Fig. 3.8).  It should be noted that these simple linear regression 

models were fit separately for each sampling date to avoid temporal autocorrelation.   

Finally, except under conditions of high wind and wet snow, snow crystals deposit from a more or 

less vertical direction (Miller, 1964).  Hence, our novel metrics of unobstructed aerial lidar returns 

were especially well suited to characterize vegetation structure that snow crystals first encounter 

when falling on to a tree.  These metrics follow the principle that the first surfaces snow crystals 

encounter are the surfaces most likely to intercept and accumulate snow.  While only one of our four 

novel metrics exceeded the 0.2 variable importance threshold, UNOBDK is the third most important 

metric (Fig. 3.6).  The importance of UNOBDK (versus UNOB) indicates that including an 
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exponential decay function to account for some passage of snow below the first of overlapping 

returns is appropriate.  This provides mechanistic evidence, given that some snow crystals may 

rebound and accumulate lower on the tree, or are later redistributed by wind and branch unloading 

(Schmidt and Pomeroy, 1990).   

Study assumptions and potential sources of error 

We used TLS for model fitting. This remote sensing approach has been proposed as a viable, direct 

sampling alternative (Russell et al., in press) to traditional indirect sampling (e.g. forest/clearing 

comparisons in Moeser et al., 2015) or intensive controlled experimentation (e.g. weighing lysimeters 

in Storck et al., 2002).  TLS-derived snow interception estimates have shown good agreement with 

snow interception estimates when compared against load cell measurements (Russell et al., in press). 

TLS-derived snow volumes, however, should be viewed as relative, rather than exact, measurements.  

In designing this study, we assumed that the processes of snow cohesion and bridging would fill 

interstitial spaces between branches and accumulate in new space beyond the original canopy profile, 

thereby counteracting potential TLS-based underestimation of snow volume due to branch deflection 

(Schmidt and Pomeroy, 1990), gap creation through snow bridging (Satterlund and Haupt 1970), or 

occlusions in point clouds due to laser adsorption by snow (Deems et al., 2013; Kaasalainen, 

Kaartinen, & Kukko, 2008; Prokop, 2008) or laser scattering along the edges of the target (Deems et 

al., 2013; Painter and Dozier, 2004).  Periodic reductions in tree volume with snow loading were 

observed, though, suggesting that (although out of scope for this study) further study is needed on: 1. 

how snow loading affects whole-tree geometry of different species, and 2. if, and to what magnitude, 

occlusions result from the interactions of laser energy and snow.   

Model performance may have also been affected by the inclusion of outlier values associated with 

tree #10.  Tree #10 is distinct from other individual-tree samples because it is a large, dense clump of 

multiple trees.  This tree recorded the highest measured snow volume in both the December and 

January samples.  Removal of these values from the final model increased model fit (R2 = 0.88; +0.22 

compared to final model) and reduced model error (RMSE = 0.19 m3; -0.33 m3 compared to final 

model) (Fig. 3.9).  These results imply that future research that applies our modeling approach to a 

larger area, particularly one with dense forest, may necessitate: 1. calibration of individual tree 

detection algorithms that allow detecting individual trees from ATLS data (e.g., FindTreesCHM 

function in ‘rLiDAR’ package; Silva et al., 2015), and 2. validation of how accurately these 

algorithms partition individual trees from clumps of trees (e.g., randomized visual inspection of ALS 

data or randomized field sampling).  If there are limitations applying our modeling approach in dense 

forests due to challenges related to individual tree classification, or reduced canopy penetration by the 
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laser beam (e.g., Broxton et al., 2015; Zheng et al., 2015), this may lend further credence to our 

suggestion that snow interception models include both canopy structural metrics and forest spacing 

metrics.  Combining the two suites of intrinsic predictors – one suite providing data on individual 

trees and one suite providing data on canopy spacing – may reduce unexplained model variance by 

virtue of not relying on a single data type and its respective limitations.   

Conclusions 

The findings from this work suggests that ALS-derived canopy metrics can explain at least two-thirds 

of the variance in snow interception volume when extrinsic factors are kept constant.  We also 

determined the specific suite of variables that generated the best fitting model, which included whole-

tree volume, crown length, and weighted unobstructed returns.  This study provides a potential 

alternative to parameterizing interception hydrological models based on metrics like Leaf Area Index 

or Canopy Closure. Researchers interested in extending this work may look to understand how well 

this approach performs across broader spatial extents encompassing a wider range of forest densities 

and may consider including both canopy metrics and forest spacing metrics in the intrinsic portion of 

snow interception models.   

References 

Bartlett, P. A., MacKay, M. D., and Verseghy, V. D. (2006). Modified snow algorithms in the 

Canadian Land Surface Scheme: Model runs and sensitivity analysis at three boreal forest stands. 

Atmos.–Ocean, 44, 207–222. 

Belgiu, M., and Drăgu, L. (2016). Random forest in remote sensing: a review of applications and 

future directions. ISPRS J. Photogramm. Remote Sens., 114, 24–31. 

Benaglia, T., Chauveau, D., Hunter, D., and Young, D. (2009). Mixtools: an R package for analyzing 

finite mixture models. J. Stat. Softw., 32, 1–29. 

Bréda, N. J. J. (2003). Ground-based measurements of leaf area index: a review of methods, 

instruments and current controversies. Journal of Experimental Botany, 54(392), 2403–2417. 

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. 

Broxton P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N. P., Brooks, P. D. (2015). 

Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer 

forests. Ecohydrology, 8(6): 1073–1094. 

Brundl, M., Bartelt, P., Schneebeli, M., and Fluhler, H. (1999). Measuring branch defection of spruce 

branches caused by intercepted snow load. Hydrological Processes, 13(14–15), 2357–2369.  

Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and Lawler, J. 

2007. Random forests for classification in ecology. Ecology, 88(11), 2783-2792. 

CloudCompare (version 2.10.2) [GPL software]. (2017). Retrieved from 

http://www.cloudcompare.org/ 

http://www.cloudcompare.org/


34 

 

Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A., and Trofymow, J. 

A. (2007). Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. 

Trees, 21, 295–310. 

Deems, J. S., Painter, T. H., and Finnegan, D. C. (2013). Lidar measurement of snow depth: a review. 

Journal of Glaciology, 59(215), 467-479.  

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, 

B., Lafourcade, B., Leitão, P.J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., 

Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S. (2013). Collinearity: a review of 

methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 027–046. 

Eitel, J. U., Vierling, L. A., and Magney, T. S. (2013). A lightweight, low cost autonomously 

operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics. 

Agricultural and Forest Meteorology, 180, 86-96. 

Eitel, Jan U. H., Höfle, B., Vierling, L. A., Abellán, A., Asner, G. P., Deems, … and Vierling, K T. 

(2016). Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. 

Remote Sensing of Environment, 186(C), 372-392.  

Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stahli, M., Gustafsson, D., … Elder, K. (2009). 

SNOWMIP2: An evaluation of forest snow process simulations. Bulletin of the American 

Meteorological Society, 90(8), 1120–1135.  

Friesen, J., Lundquist, J., and Van Stan, J. T., II. (2015). Evolution of forest precipitation water 

storage measurement methods. Hydrological Processes, 29(11), 2504–2520. 

Genuer, R., Poggi, J. M., and Tuleau-Malot, C. (2010). Variable selection using random forests. 

Pattern Recognit. Lett., 31, 2225–2236. 

Güntner, A., Stuck, J., Werth, S., Döll, P., Verzano, K., and Merz, B. (2007). A global analysis of 

temporal and spatial variations in continental water storage. Water Resources Research, 43(5). 

Hedstrom, N. R., and Pomeroy, J. W. (1998). Measurements and modelling of snow interception in 

the boreal forest. Hydrological Processes, 12(10‐11), 1611–1625.  

Hilker, T., Leeuwen, M.V., and Coops, N.C. (2010). Comparing canopy metrics derived from 

terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees, 24, 819–832.  

Kaasalainen, S., Kaartinen, H., and Kukko, A. (2008). Snow cover change detection with laser 

scanning range and brightness measurements. EARSeL eProc, 7(2), 133-141.  

Klauberg, C., Hudak, A. T., Silva, C. A., Lewis, S. A., Robichaud, P. R., and Jain, T. B. (2019). 

Characterizing fire effects on conifers at tree level from airborne laser scanning and high-resolution, 

multispectral satellite data. Ecological Modelling, 412.  

Klamerus-Iwan, A., Link, T. E., Keim, R. F., and Van Stan II, J. T. (2020). Storage and routing of 

precipitation through canopies. In: Precipitation Partitioning by Vegetation: A Global Synthesis. 

Springer Nature. 

Knowles, N., Dettinger, M. D., and Cayan, D. R. (2006). Trends in snowfall versus rainfall in the 

western United States. Journal of Climate, 19(18), 4545-4559.  

Kobayashi, D. (1987). Snow accumulation on a narrow board. Cold Regions Science and Technology, 

13(3), 239-245. 



35 

 

Lafarge, T., Pateiro-López, B., Possolo, A., and Dunkers, J. (2014). R Implementation of a Polyhedral 

Approximation to a 3D Set of Points Using the Alpha-Shape. Journal of Statistical Software, 56(1), 

1-19.  

Lefsky, M. A., Cohen, W. B., Parker, G. G., and Harding, D. J. (2002). Lidar remote sensing for 

ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-

dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and 

should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19-30. 

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 18-22. 

Martin, K. A., Stan, J. T., Dickerson‐Lange, S. E., Lutz, J. A., Berman, J. W., Gersonde, R., and 

Lundquist, J. D. (2013). Development and testing of a snow interceptometer to quantify canopy water 

storage and interception processes in the rain/snow transition zone of the North Cascades, 

Washington, USA. Water Resources Research, 49(6), 3243–3256. 

Luo, L., Zhai, Q., Su, Y., Ma, Q., Kelly, M., and Guo, Q. (2018). Simple method for direct crown 

base height estimation of individual conifer trees using airborne LiDAR data. Optics Express, 26(10), 

A562–A578. 

Maguire, A. J., Eitel, J. U., Vierling, L. A., Johnson, D. M., Griffin, K. L., Boelman, N. T., ... and 

Meddens, A. J. (2019). Terrestrial lidar scanning reveals fine-scale linkages between microstructure 

and photosynthetic functioning of small-stature spruce trees at the forest-tundra ecotone. Agricultural 

and Forest Meteorology, 269, 157-168. 

Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., Lundquist, J. D., and Jonas, T. (2019). 

Revisiting snow cover variability and canopy structure within forest stands: insights from airborne 

lidar data. Water Resources Research, 55(7), 6198–6216. 

Millard, K., and Richardson, M. (2015). On the importance of training data sample selection in 

Random Forest image classification: a case study in peatland ecosystem mapping. Remote Sens., 7, 

8489–8515. 

Miller, D. H. (1964). Interception processes during snowstorms. Berkeley, Calif.: Pacific Southwest 

Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture. 

Moeser, D., Stähli, M., and Jonas, T. (2015a). Improved snow interception modeling using canopy 

parameters derived from airborne LiDAR data. Water Resources Research, 51(7), 5041–5059.  

Moeser, D., Morsdorf, F., and Jonas, T. (2015b). Novel forest structure metrics from airborne LiDAR 

data for improved snow interception estimation. Agricultural and Forest Meteorology, 208, 40-49. 

Molotch, N. P., Blanken, P. D., Williams, M. W., Turnipseed, A., Monson, R. K., and Margulis, S. A. 

(2007). Estimating sublimation of intercepted and sub‐canopy snow using eddy covariance systems. 

Hydrological Processes: An International Journal, 21(12), 1567-1575.  

Montesi, E., Schmidt, D., and Montesi, J. (2004). Sublimation of Intercepted Snow within a 

Subalpine Forest Canopy at Two Elevations. Journal of Hydrometeorology, 5(5), 763–773. 

Musselman, K. N., Molotch, N. P., Brooks, P. D., Buttle, J. M., Klein, A. G., and Pomeroy, J. W. 

(2008). Effects of vegetation on snow accumulation and ablation in a mid‐latitude sub‐alpine forest. 

Hydrological Processes, 22(15), 2767–2776. 

 



36 

 

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., … and 

Winstral, A. (2016). The Airborne Snow Observatory: Fusion of scanning lidar, imaging 

spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. 

Remote Sensing of Environment, 184, 139-152.  

Painter, T. H. and Dozier J. (2004). Measurements of the hemispherical–directional reflectance of 

snow at fine spectral and angular resolution. Journal of Geophysical Research, 109(D18), D18115. 

Pfister, R., and Schneebeli, M. (1999). Snow accumulation on boards of different sizes and shapes. 

Hydrological Processes, 13(14-15), 2345-2355. 

Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quinton, W. L., Granger, R. J., and Carey, 

S. K. (2007). The cold regions hydrological model: a platform for basing process representation and 

model structure on physical evidence. Hydrological Processes, 21(19), 2650-2667. 

Probst, P., and Janitza, S. (2019).  Package ‘varImp’. Retrieved from 

https://cran.rproject.org/web/packages/varImp/varImp.pdf. 

Prokop, A. (2008). Assessing the applicability of terrestrial laser scanning for spatial snow depth 

measurements. Cold Regions Science and Technology, 54(3), 155-163.  

R Development Core Team. (2013). R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria.  

Roth, T. R., and Nolin, A. W. (2019). Characterizing maritime snow canopy interception in forested 

mountains. Water Resources Research, 55(6), 4564–4581. 

Roussel, J. R., Auty, D., De Boisseu, F., Meador, A. S., Bourdon, J. F. (2018). Package ‘LidR’. 

Retrieved from https://cran.r-project.org/web/packages/lidR/lidR.pdf. 

Russell, M., Eitel, J. H., Maguire, A. J., and Link, T. E. (in press). Toward a novel laser-based 

approach for validating snow interception estimates.  

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I., ... and Douville, H. (2009). 

Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research: 

Atmospheres, 114(D6). 

Satterlund, D. R., and Haupt, H. F. (1970). The disposition of snow caught by conifer crowns. Water 

Resources Research, 6(2), 649-652. 

Schmidt, R. A., and Gluns, D. R. (1991). Snowfall interception on branches of three conifer species. 

Canadian Journal of Forest Research, 21(8), 1262–1269.  

Schmidt, R., & Pomeroy, J. (1990). Bending of a conifer branch at subfreezing temperatures: 

implications for snow interception. Canadian Journal of Forest Research, 20, 1250-1253. 

Silva, C., Crookston, N., Hudak, A., Vierling, L., and Klauberg, C. (2015). Package ‘rLiDAR’. 

Retrieved from https://cran.rproject.org/web/packages/rLiDAR/rLiDAR.pdf. 

Silva, C. A., Klauberg, C., Hudak, A. T., Vierling, L. A., Liesenberg, V., Carvalho, S. P. C. E., and 

Rodriguez, L. C. E. (2016). A principal component approach for predicting the stem volume in 

Eucalyptus plantations in Brazil using airborne LiDAR data. Forestry, 89, 422–433. 

Song, C. (2013). Optical remote sensing of forest leaf area index and biomass. Progress in Physical 

Geography, 37(1), 98–113. 

https://cran.rproject.org/web/packages/varImp/varImp.pdf
https://cran.r-project.org/web/packages/lidR/lidR.pdf
https://cran.rproject.org/web/packages/rLiDAR/rLiDAR.pdf


37 

 

Storck, P., Lettenmaier, D. P., and Bolton, S. M. (2002). Measurement of snow interception and 

canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United 

States. Water Resources Research, 38(11), 5-1. 

Strobl, C., Boulesteix, A. L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest variable 

importance measures: illustrations, sources and a solution. BMC Bioinforma., 8, 25. 

Suzuki, K., and Nakai, Y. (2008). Canopy snow influence on water and energy balances in a 

coniferous forest plantation in northern Japan. Journal of Hydrology, 352(1), 126–138.  

Tesfamichael, S. G., and Beech, C. (2016). Combining Akaike’s Information Criterion and discrete 

return LiDAR data to estimate structural attributes of savanna woody vegetation. J. Arid Environ., 

129, 25–34. 

Timothy, D., Onisimo, M., Cletah, S., Adelabu, S., and Tsitsi, B. (2016). Remote sensing of 

aboveground forest biomass: a review. Tropical Ecology, 57(2), 125–132. 

USGS “The National Map”. 2019.  Retrieved from: https://viewer.nationalmap.gov/basic/. 

Varhola, A., Coops, N. C., Weiler, M., and Moore, R. D. (2010). Forest canopy effects on snow 

accumulation and ablation: An integrative review of empirical results. Journal of Hydrology, 392(3), 

219–233. 

Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., … Gobakken, T. 

(2012). Lidar sampling for large-area forest characterization: A review. Remote Sensing of 

Environment, 121(C), 196–209. 

Zheng, Z., Kirchner, P.B., and Bales, R.C. (2015). Orographic and vegetation effects on snow 

accumulation in the southern Sierra Nevada: A statistical summary from LiDAR data. The 

Cryosphere Discussions, 9(4): 4377–4405. 

 

 

 

 

 

 

 

 

 

 

 

https://viewer.nationalmap.gov/basic/


38 

 

Tables 

Table 3.1. ALS-derived tree crown metrics evaluated in this study. Metrics original to this study 

indicated with a ‘*’.  

Abbreviation Definition 

HMIN (m)               minimum crown height 

HMAX (m) maximum crown height 

HMEAN (m) mean crown height 

HSD (m) crown height standard deviation 

HSKE skewness of heights 

HKUR kurtosis of heights 

HRANGE HMAX - HMIN 

HQR interquartile range (H75TH - H25TH) 

H25TH (m) crown height 25th percentile 

H50TH (m) crown height 50th percentile 

H75TH (m) crown height 75th percentile 

H90TH (m) crown height 90th percentile 

H95TH (m) crown height 95th percentile 

H99TH (m) crown height 99th percentile 

CL (m) crown length (HMAX – CBH) 

CBH (m) crown base height (1.5 standard deviations below the height returns mean) 

CRATIO crown ratio (CL / HMAX) 

CPA (m2) crown area (π*CRAD2) 

CV (m3) crown volume as the convex hull 3D 

CSA (m2) crown surface area as the convex hull 3D 

CDENS percent crown density (returns ≥ CBH / total returns) 

ASV0.25  whole tree volume (α=0.25) 

ASV0.5 whole tree volume (α=0.50) 

ASV0.75 whole tree volume (α=0.75) 

UNOB number of unobstructed returns* 

UNOB% percent unobstructed returns* 

UNOBDK number of unobstructed returns with decay function for weighted returns* 

UNOBDK% percent unobstructed returns with decay function for weighted returns* 
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Figures 

 

Figure 3.1. Factors controlling snow interception efficiency (figure adapted from Klamerus-Iwan et 

al., 2020).   
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Figure 3.2. Study site location: Bear Basin Meadows, Payette National Forest, McCall Ranger 

District, Idaho.  
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Figure 3.3. Photo of lead-author conducting terrestrial laser scanning (TLS) at Bear Basin on 

December 5, 2018 (left). Raw TLS point cloud data of two trees (right).   
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Figure 3.4. Workflow for all analyses.   
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Figure 3.5. Predicted versus measured volume (m3) for the final Random Forest model.  Dashed black 

line is 1:1 line; solid red line is regression. 
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Figure 3.6.  Variable importance plots (with percentiles on the left; without percentiles on the right) 

indicating percent increase in mean squared error when each variable is removed from the model.  
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Figure 3.7. From left to right (31.7 m Tree #3 above and 17.3 m Tree #4 below): histogram of ALS 

height returns (z) with canopy base height (CBH) in dark blue; 2-dimensional tree plot of x and z 

coordinates with 25%, 50%, and 75% quartiles in orange and canopy length in light blue; unmanned 

aerial system image of tree from Dec. 5, 2018. Tree #3 averaged 1.25 m3 intercepted snow volume 

and Tree #4 averaged 1.89 m3 intercepted snow volume.   
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Figure 3.8. Scatterplot and simple regression models of canopy length (CL) in m and volume 

intercepted snow in m3 (left); scatterplot and simple regression models of whole-tree volume 

(ASV0.5) in m3 and volume intercepted snow in m3 (right);. December samples are indicated by blue 

points and blue fitted linear regression; January samples are indicated by red points and red fitted 

linear regression.    
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Figure 3.9. Predicted versus measured volume (m3) for the final Random Forest model without 

potential outlier values obtained from tree #10.  This tree recorded the highest measured snow 

volumes in each sample and is distinct from other individual-tree samples because it is a large, dense 

clump of trees with several stems. Dashed black line is 1:1 line; solid red line is regression line. 
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Chapter 4: 

Legacy effects of hydrologic alteration in playa wetland  

responses to droughts 

Authors: Micah Russell, Jennifer M. Cartwright, Gail H. Collins, Ryan A. Long, Jan H. Eitel  

In revision: Wetlands 

Abstract 

Wetland conservation increasingly must account for climate change and legacies of previous land-use 

practices. Playa wetlands provide critical wildlife habitat, but may be impacted by intensifying 

droughts and previous hydrologic alterations. To inform playa restoration planning, we asked: (1) 

what are the drivers of playa inundation and how might intensifying droughts affect habitat 

availability? (2) do certain playas provide hydrologic refugia during droughts, and if so, how are 

refugia patterns related to historical alterations? Using remotely sensed surface-water data, we 

evaluated a 30-year time series (1985-2015) of inundation for 153 playas of the Great Basin, USA. 

Inundation likelihood and duration increased with wetter weather conditions and were greater in 

developed (altered) playas. Inundation probability was projected to decrease from 22% under average 

conditions to 11% under extreme drought, with annual inundation decreasing from 1.7 to 0.9 months. 

Only 4% of playas were inundated for at least two months in each of the five driest years, suggesting 

their potential as drought refugia. Refugial playas were larger and more likely to be developed, 

possibly because previous land managers selected refugial playas for development. These inundation 

patterns can inform efforts to restore wetland functions and to conserve playa habitats as climate 

conditions change. 

Introduction 

Geographically isolated wetlands provide important ecosystems services—including wildlife 

habitat, water-quality maintenance, and biogeochemical cycling—but commonly lack legal 

protections and may be inadequately understood in terms of key drivers of wetland hydrology 

(Bolpagni et al., 2019; Leibowitz, 2003; Tiner, 2003). These issues may be especially acute for 

seasonal wetlands (i.e., temporary or ephemeral wetlands) which are typically inundated for only part 

of each year, with hydroperiods (i.e., durations of inundation) that can vary substantially from one 

wetland to another across small geographic scales (Calhoun et al., 2017; Davis et al., 2019). Climate-

change impacts on biodiversity in geographically isolated, seasonal wetlands will likely be driven 



49 

 

 

largely by changes in wetland hydroperiod and may be most readily discernible during periods of 

climatic extremes, such as droughts (Davis et al., 2019; Walls et al., 2013). In some cases, climate-

change effects on wetland inundation may interact with legacy effects from past land-management 

practices, ranging from unintentional effects (e.g., wetland soil compaction from livestock trampling) 

to direct, intentional hydrologic and geomorphic alteration (e.g., ditching, dredging, or filling). As 

climate conditions change, some localized areas may change more gradually and thus serve as 

climatic refugia (Morelli et al., 2016), while sites of persistent wetness despite climatic drying may 

provide hydrologic refugia (McLaughlin et al., 2017). However, few studies have sought to identify 

potential hydrologic refugia for geographically isolated, seasonal wetlands. Identification of such 

refugia could improve wetland management and climate adaptation, and potentially inform wetland 

restoration efforts. 

In the semi-arid sagebrush-steppe ecosystems of the northern Great Basin, USA, snowmelt 

and surface runoff from summer thunderstorms collect in terminal wetlands, salt lakes, and playas. 

Playas are seasonal (ephemeral) wetlands that form in closed basins with a negative annual water 

balance and remain dry throughout much of the year (Rosen ,1994). Playas are often associated with 

surface evaporites and concentrations of clay minerals that impede infiltration; thus, they may 

become flooded after small amounts of precipitation (Rosen, 1994). Playas in the northern Great 

Basin typically retain shallow water (from a thin film of water to tens of centimeters) from late winter 

through early summer, after which evaporation dries them out (Fig. 4.1). The degree of groundwater 

connectivity, if any, for most playas in the region is unknown, but a three-year study in which a playa 

was equipped with piezometers did not detect any subsurface soil saturation (Clausnitzer et al., 2003). 

Playas in the northern Great Basin exhibit considerable seasonal and inter-annual variability in 

inundation quantity and timing, and unlike more southern playas, they often support diverse 

vegetation and are not saline (Moffitt et al., 2019).   

When inundated, some of these seasonal wetlands teem with aquatic invertebrates that 

provide a rich food source for migrating birds (O’Neill, 2014). Cumulatively, hundreds of small 

playas throughout the northern Great Basin may be important spring migration habitats for 

shorebirds, providing resting and foraging opportunities as stepping-stones between large marsh 

complexes (Oring et al., 2000). Migratory spotted sandpiper (Actitis macularius) and killdeer 

(Charadrius vociferus) have been observed on central Oregon playas (Moffitt et al., 2019).  Later in 

the season, some moist playa soils support grasses, sedges, and forbs that provide forage for wildlife 

including pronghorn (Antilocapra Americana), mule deer (Odocoileus hemionus), and Greater sage 
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grouse (Centrocercus urophasianus). Greater sage grouse, a federally-listed species of concern, 

sometimes use playas as leks (strutting grounds) and depend on the diverse forage and associated 

insects that grow in some playas for brood-rearing when upland communities have already desiccated 

(Hagen, 2011).  In a survey of 70 central Oregon playas, Bureau of Land Management (BLM) 

technicians identified 159 vascular plants, 51 bird species, 13 non-bat mammal species, 12 bat 

species, and 62 species of aquatic macro-invertebrates (Moffitt et al., 2019).  Although little research 

has been conducted on playas in the northern Great Basin, studies from other regions suggest that 

playa wetlands are important to biodiversity across much larger areas than the playas themselves 

(Haukos and Smith, 2003). 

Because playa inundation is likely driven largely by precipitation, snowmelt, and 

evaporation, the water and food resources playas provide to wildlife may be vulnerable to droughts. 

Summer drought conditions in the northern Great Basin are projected to intensify under climate 

change (Ahmadalipour et al., 2017), which may exacerbate the ecological consequences of drought 

(Crausbay et al., 2017), including degradation of ecosystem services provisioned to wildlife from 

playas. In this context, variable inundation patterns among playas could imply that a small subset of 

playas might provide important localized refugia from droughts, i.e. isolated patches of viable habitat 

and resources during droughts that might help sustain wildlife populations under increasingly dry 

conditions (Dickman et al., 2011; Hermoso et al., 2013; McLaughlin et al., 2017; Selwood et al., 

2015).  If so, identifying which playas potentially function as drought refugia could help managers 

anticipate and potentially mitigate drought impacts on playa ecosystem services. 

Strategies for mitigating drought impacts on playa habitats may include addressing the 

ecological impacts of previous land-use practices.  In the northern Great Basin, many playas have 

been developed (hydrologically modified) by constructing berms and digging pits (referred to as 

“dugouts”) to retain water for livestock later into the summer and fall (Fig. 4.1b). Many playas on 

public and private lands with the potential for holding water were developed between 1950 and 1970, 

some with multiple dugouts, concentrating livestock impacts in sensitive playa habitats. This form of 

hydrologic alteration may concentrate water in a small area in and around the dugout, preventing the 

playa basin from filling to capacity and altering the playa hydroperiod, with possible consequences 

for wetland productivity (Moffitt et al., 2019).  Subsequent desiccation of portions of the playa may 

lead to encroachment of invasive exotic grasses and silver sage (Artemisia cana) (Bureau of Land 

Management, 2013), as well as a general reduction in water quality (Wyland, 2013).  Though dugouts 

allow for enhanced summertime water retention, their steep bathymetry and reduction of playa 
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inundated area may limit their functionality as habitat for all but a small number, and few species, of 

shorebirds (Moffitt et al., 2019). 

The BLM Prineville District in central Oregon has implemented an experimental playa 

restoration program that involves filling dugouts, fencing playas from livestock, mowing silver sage 

to create opportunities for native grass recolonization, and removing encroaching juniper (Bureau of 

Land Management, 2013).  BLM hydrological models suggest the resulting increases in wetted playa 

surface area will depend on the relationship between playa volumetric capacity and dugout volumetric 

capacity.  For example, restoring a 5.99-hectare (ha) playa with a 15.45% ratio of dugout-to-playa 

capacity was predicted to increase playa areal inundation by 20.98%, whereas restoring a 88.27 ha 

playa with a 0.45% ratio of dugout-to-playa capacity was predicted to increase playa area inundation 

by only 0.50% (Bureau of Land Management, 2013).  Restoration may also decrease water 

availability late in the season, potentially representing a trade-off between improved sage-grouse 

forage and overall playa conditions versus negative impacts to other species that may have extended 

their ranges with artificial late-season water sources (Moffitt et al., 2019).  Researchers using 

remotely sensed soil conductivity found preliminary evidence of successful rewetting of playa basins 

following restoration (Reuter et al., 2013), but long-term effectiveness monitoring data are not yet 

available.   

U.S. Fish and Wildlife Service (USFWS) land managers at the Sheldon-Hart Mountain 

National Wildlife Refuge Complex in southern Oregon and northern Nevada (hereafter ‘the Refuge’), 

which no longer supports livestock operations and manages the landscape for conservation of a 

variety of wildlife and habitats (U.S. Fish and Wildlife Service, 1994 and 2013), are similarly 

interested in restoring some playas to more natural hydrologic conditions.  Information is currently 

limited to help land managers understand where and why this highly intermittent water resource is 

available from year to year, such as drivers of playa inundation or spatial-temporal trends in playa 

inundation. Furthermore, land managers are tasked with conserving the key wildlife habitat features 

of playas despite projections of increasing summer drought severity across the northern Great Basin 

due to climate change (Ahmadalipour et al., 2017). Future projections of climate variables for the 

Refuge for the years 2055 and 2085 generally suggest drier summer climate conditions for the Great 

Basin, primarily due to increased evapotranspiration (Fig. 4.2). 

To better understand playa hydrology and inform Refuge restoration planning efforts, we 

addressed the following questions: (1) What are the drivers of playa inundation? (2) How is playa 

inundation affected by increasingly severe drought? (3) Are there particular playas that remain wet 
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under meteorologically dry conditions and thus could provide hydrologic refugia during droughts? 

and (4) How are these refugial patterns related to playa development?  In addition to contributing to 

the body of knowledge on geographically isolated wetlands in the region (Comer, 2005), addressing 

these questions may assist land managers in considering potential restoration options and in managing 

playas so they continue to provide critical habitat for animal and plant species in a drier climate.        

Methods and Materials 

Study area 

 The Sheldon-Hart Mountain National Wildlife Refuge Complex (Fig. 4.3) consists of two co-

managed National Wildlife Refuges (NWR): Hart Mountain NWR (1093 km2) in southeastern 

Oregon and Sheldon NWR in northern Nevada (2321 km2).  Hart Mountain NWR ranges in elevation 

from 1097 – 2458 m, consisting of a fault block ridge rising steeply from the Warner Basin to the 

west, with low hills and ridges descending gradually to the east.  Sheldon NWR consists of rimrock 

tablelands, rolling hills, and gorges ranging in elevation from 1250 – 2195 m.  Annual precipitation in 

the form of winter snow and spring rain averages 305 mm for Hart Mountain NWR, and is slightly 

less for Sheldon NWR, with surface water in both refuges limited to springs, intermittent streams, and 

shallow playas. Soils and plants are typical of a high desert sagebrush-steppe ecosystem, and the land 

is managed for conservation of over 340 species of wildlife (U.S. Fish and Wildlife Service, 1994 and 

2013).  

Modeling drivers of playa inundation and the effects of drought 

 We evaluated time series of inundation patterns for 153 playas on the Refuge, roughly half of 

which were developed (contained dugouts), using remotely sensed presence or absence of surface 

water. Monthly surface water data (30-m resolution) covering all areas within the refuge boundaries 

were obtained from the Global Surface Water Explorer (GSWE) API (Pekel et al., 2016), a tool for 

visualizing water occurrence, seasonality, and persistence based on calibrated Landsat 5, 7, and 8 

images acquired between March 1984 and October 2015. GSWE relies on an expert systems 

procedural decision tree to classify pixels as water, land, or non-valid observations using Landsat-

derived multispectral and multitemporal attributes. Equations in the decision tree were determined by 

visual analytics derived from a spectral library of the three classes across a wide variety of conditions, 

as well as images enriched by Normalized Difference Vegetation Index and Hue-Saturation-Value 

transformations. For pixels that could not be assigned to a class because of spectral overlap, evidential 

reasoning was used, taking into consideration geographic location and temporal trajectory in 
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establishing likelihood of water presence. Validation by Pekel et al. (2016) integrated visual 

confirmation of over 40,000 randomly selected points distributed geographically, temporally, and 

across sensors.  Overall errors of omission were reported as less than 5%, with overall errors of 

commission less than 1% (Pekel et al., 2016).   

 We hypothesized that playas would be responsive to local climatic conditions, and that 

inundation of an individual playa may also be related to its size and development history. We thus 

modeled playa inundation with the following covariates: playa size (m2), development status (dugout 

presence/absence), and Standardized Evapotranspiration Precipitation Index (SPEI). We obtained 

monthly SPEI data (4-km resolution) from the West Wide Drought Tracker (Abatzoglou et al., 2017). 

SPEI subtracts monthly evapotranspiration (based on average monthly air temperature) from monthly 

precipitation to create a simple water balance. SPEI ranges from -5 to 5 and is standardized such that 

a value of 0 represents the long-term average conditions for a site, negative values indicate conditions 

drier than the long-term average, and positive values indicate wetter-than-average conditions. We 

represented climatic moisture conditions for each year using October 12-month SPEI (SPEI-12), 

which integrates climate conditions from November of the previous year through October of the year 

in question. Shapefiles representing playa borders, area, and development status were provided by 

USFWS. 

 After re-projecting and stacking the data in R (R Core Team, 2018), we calculated the areal 

percentage of each playa that was wet at each monthly time step (February through October, 1985 

through 2015; an example is shown in Appendix A).  Data from November through January were 

commonly not available due to cloud cover and were not used. To examine annual wetted duration, 

we calculated the number of months (zero to nine) in each year that each playa held any amount of 

water.  Data exploration revealed high frequencies of zero values for both monthly percent wet and 

annual wetted duration.  We therefore fit Generalized Linear Mixed-Effects Models (GLMMs) to 

both datasets using the lme4 package (Bates et al., 2015) in R, with SPEI-12, playa area, and playa 

development status as covariates.  GLMM modeling was performed in the following sequence: 1. 

Determination of optimal random and fixed-effects structure based on computed Akaike Information 

Criterion (AIC) values, 2. model averaging to produce parameter estimates (necessary when no 

combination of fixed effects results in a model with substantially lower AIC), and 3. estimation of 

marginal and conditional R2 to quantify predictive power of the best model (lowest AIC) in each of 

the two model sets.   
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 Overdispersion, or variance larger than the mean, in the monthly percent wet data due to high 

frequencies of zero values was addressed by converting percentages to a binomial distribution (i.e., 

water presence/absence) (Zuur et al., 2009). We reasoned that this binomial representation of water 

availability was ecologically justified because even a small amount of observed inundation could 

potentially represent valuable habitat given the minimum surface-water detection size of 900 m2 (i.e., 

a single 30-m x 30-m Landsat pixel) and the general aridity of the landscape. We used a Poisson 

distribution to model annual wetted duration (measured as a count of total months wet); no 

modification was necessary to address overdispersion. We rescaled continuous predictor variables 

(SPEI-12 and playa area) by subtracting the mean and dividing by the standard deviation to facilitate 

direct comparison of model coefficients and to aid in model convergence. 

 GLMMs account for autocorrelation in time-series data by explicitly modeling correlation of 

subsamples within sampling units (i.e., groups) in the context of a user-specified random-effects 

structure. We used a unique identifier for each playa nested within Refuge units (i.e., Hart Mountain 

NWR or Sheldon NWR) as the grouping variable in our analyses.  Iterative inclusion of random 

slopes for each predictor variable to allow for heterogeneity among groups in the influence of fixed 

effects did not improve model fit based on AIC values, indicating that the “random intercept-only” 

model represented the optimal random-effects structure.  Accordingly, we fit random intercept-only 

models with all combinations of fixed effects to determine the optimal fixed-effects structure (Zuur et 

al., 2009). Because no combination of fixed effects resulted in substantially lower AIC for either 

model set, we then used model-averaged parameter estimates and associated 95% confidence 

intervals (estimated from weighted unconditional standard errors) as our basis for inference; if the 

95% confidence interval for a fixed effect overlapped zero, we concluded a non-significant effect.  

Next, we estimated values of marginal and conditional R2 to quantify predictive power of the best 

model (lowest AIC) in each of the two model sets (Nakagawa and Schielzeth, 2013).   

 To examine how playa inundation is affected by increasingly severe drought, the GLMM 

models for water presence (binomial) and water duration (Poisson) were fitted with the 12-month 

SPEI values representing historical average conditions (SPEI = 0), moderate drought (SPEI = -1.0), 

severe drought (12-month SPEI = -1.5), and extreme drought (12-month SPEI = -2.0), following 

thresholds on drought severity used by Yu et al. (2014) and Ahmadaliour et al. (2017).  The binomial 

model was used to determine the mean probability of predicted wetness in each scenario, and the 

Poisson model was used to determine the mean predicted months wet per year in each scenario.   
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Identification of hydrologic refugia during droughts 

 To identify playas that might serve as hydrologic refugia during droughts (i.e., a small subset 

of playas that might hold water even under the driest conditions in our dataset), we began by 

identifying the five years (from 1985 through 2015) that had the lowest observed playa inundation 

(fewest numbers of wet playas) in the study area. Although we selected these years based solely on 

observed playa inundation patterns, we also used October SPEI-12 to confirm that these years 

adequately represented meteorological drought conditions for the study area.  

 We reasoned that in the five years of scarcest playa inundation, the few playas that did retain 

water might serve as potential refugia (water and/or food sources) for wildlife during droughts. In 

particular, we sought to identify refugia that demonstrated temporal stability across multiple drought 

years. For each playa, we calculated the number of years wet (from zero to five) and the average 

number of months wet during each of the five driest years. We classified playas as potential drought 

refugia if they remained wet in all five of the driest years and held water for at least two months on 

average during the five driest years. After identifying playas that served as possible drought refugia, 

we asked whether these playas were generally represented by playas that consistently held water each 

year across a range of climate conditions, i.e. whether playas that were generally wet under average 

weather conditions could be used to identify refugial playas during droughts. To that end, we 

calculated the total number of years each playa was wet (defined as any amount of wetness for any 

length of time) from 1985 through 2015, excluding the five dry years. We then compared these 

patterns (“all other years”) to the playa inundation patterns for the 5 driest years. Finally, we 

examined relationships between drought-refugia metrics (number of years wet and average number of 

months wet during the five dry years) and playa size using Spearman correlations, and relationships 

of these metrics with development status using a one-way analysis of variance (ANOVA).   

Results 

 Playas on the refuge varied greatly in size, from approximately 0.5 ha to >1,000 ha, although 

the majority (roughly two-thirds) of playas were <20 ha. The number of wet playas across the Refuge 

varied by month and year (Fig. 4.4), ranging from zero to 95 out of a total of 153. Notably, even 

under the wettest conditions, more than a third of all playas (58 out of 153) were dry. Playa wetness 

across the Refuge generally peaked in spring (March through May) as a result of rainfall and 

snowmelt and declined over the course of the summer (Fig. 4.4). 
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Drivers of playa inundation 

 AIC values and associated AIC weights (wi) used for model averaging of both the water 

presence (binomial) and water duration (Poisson) model sets are presented in Table 4.1.  Model 

convergence was achieved for 79% of models.  In both models sets, model-averaged parameter 

estimates were statistically significant (i.e., confidence intervals did not overlap zero) for SPEI and 

development status, but not playa area (Fig. 4.5a).  SPEI was positively related to water presence 

(Fig. 4.5a) and water duration (Fig. 4.5b), indicating that wetter climate conditions increased the 

probability and seasonal length of playa inundation. Negative parameter estimates for development 

status indicated that the probability of a playa holding water and its duration of inundation were 

significantly lower if it was undeveloped. 

 The best models (lowest AIC values) for water presence and duration produced low marginal 

R2 (0.11 and 0.10, respectively) but higher conditional R2 (0.78 and 0.82, respectively), indicating 

that there was considerable variation among playas in the presence and duration of water, and that 

accounting for that variation through the inclusion of a random effect substantially improved model 

fit.  

 Using the water presence (binomial) model with drought scenarios (i.e., SPEI-12 values 

indicating various levels of drought severity), the mean probability of a playa being wet across the 

full range of all other predictor variables declined from 22% (historical average), to 15% (moderate 

drought), to 13% (severe drought), to 11% (extreme drought) (Fig. 4.6a).  Similarly, using the water 

duration (Poisson) model with drought scenarios, the predicted mean number of months wet per year 

for a playa across the full range of all other predictor variables declined from 1.69 (historical 

average), to 1.20 (moderate drought), to 1.01 (severe drought), to 0.85 (extreme drought) (Fig. 4.6b).   

Refugial playas during droughts 

 We selected the years 1987, 1992, 2012, 2014, and 2015 to represent drought conditions 

based on playa inundation patterns (Fig. 4.7, see dashed vertical lines in (a) and solid circles in (b)). 

Specifically, these were the years with the lowest average numbers of wet playas across the study 

area: from 9.1 to 13.1 playas were wet (averaged from February through October), compared to a 

mean value of 29.1 wet playas across all years, 1985-2015. These five years also had the lowest 

annual maximum number of wet playas (maximum in each year from February through October), 

ranging from 22 to 28, compared to a mean of 57.9 from 1985-2015. In general, playa inundation 

(represented both as mean annual and annual maximum number of wet playas) was positively 
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associated with October SPEI-12 (Fig. 4.7b). The five years that exhibited minimum playa wetness in 

the study area were characterized by moderate to severe drought conditions (all had October SPEI-12 

< -0.8). Indeed, one of the selected years (1992) had the lowest October SPEI-12 value between 1985 

and 2015 (-1.66, indicating severe drought), and three of the selected years (1992, 2012, and 2014) 

were among the four driest years in the study (all had October SPEI-12 < -1.4).  

 Nearly half of all playas (71 out of 153 playas; 46%) had no water in any of the five dry years 

selected for drought-refugia analysis. Of the remaining 54% that contained water in at least one dry 

year, 27% held water in at least three years, 15% held water in at least four years, and only 6% (nine 

playas total) held water in all five of the dry years. Notably, the nine playas that were wet in all five 

years were (by definition) wet in 1992, a year of severe drought in which the vast majority of playas 

on the refuge became dry (Fig. 4.7).  

 The average number of months wet during the five dry years varied among playas, ranging 

from 0 to 6.8 months (Fig. 4.8a). The majority of playas (105 out of 153; 69%) were wet in fewer 

than 3 of the 5 dry years and for less than one month per year on average during those years. Of the 

nine playas that held water during all five of the dry years, six of them (4% of all playas) also held 

water for at least two months on average during those years, meeting our criteria for drought refugia. 

These six playas appear exceptional in their history of providing water during drought conditions, and 

specifically during times when playa inundation is exceedingly scarce across the landscape.  

 Playas that were wet during most or all of the five driest years (i.e., with higher values on the 

horizontal axes of Fig. 4.8) also tended to be wet during most other years (note absence of points in 

the lower right quadrant of Fig. 4.8b). Thus, any playas identified as drought refugia based on dry-

year analysis were also likely to be wet in other (non-drought) years. However, the reverse was not 

necessarily true: consistent wetness in all other years (i.e., higher values on the vertical axis of Fig. 

4.8b) did not always imply consistent wetness during dry years (note presence of points in the upper 

left portion of Fig. 4.8b, representing playas that were generally wet in most years but often dried out 

during the 5 driest years). These results indicate that playas that were consistently inundated during 

non-drought years did not necessarily serve as drought refugia. 

 Based on Spearman correlation, larger playas were more likely to hold water during droughts: 

ρ(151) = 0.35, P<0.001 for the relationship between playa size and number of years wet during the 

five driest years and ρ(151) = 0.36, P<0.001 for the relationship between playa size and average 

months wet during those five years. In addition, developed playas held water for a greater number of 
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years during the 5 driest years (F=14.96, P<0.001) and for more months on average during those 

driest years (F=9.58, P<0.01) compared to undeveloped playas. Developed playas also were more 

likely to hold water during all years (1985 through 2015) across a range of climate conditions 

(F=10.4, P<0.01). Of the nine playas that held water in all five dry years, seven (78%) were 

developed. Of the 6 refugial playas (wet in all five dry years for at least two months on average), 5 

(83%) were developed. Notably, developed playas also tended to be larger in size than undeveloped 

playas (F=9.83, P<0.01). Collectively, these results suggest strong positive associations between 

playa size, development status, and functional status as drought refugia. 

Discussion 

 Interannual variation in weather conditions is a clear driver of playa inundation in this study 

area. Although groundwater connectivity of playas has not been rigorously studied in this region, we 

found that playa inundation is closely tied to local precipitation and evapotranspiration patterns, 

suggesting that most playas are likely not receiving large groundwater subsidies. Analysis of 

piezometer data from a playa roughly 100 km north of the study area similarly indicated lack of 

groundwater connectivity (Clausnitzer et al., 2003).    

 Our results confirm expectations that under drought conditions, managers can anticipate 

fewer playas to hold water and for those playas to be inundated for shorter seasonal periods. For 

example, during the dry years 2012 through 2015, in which October SPEI-12 ranged from -0.33 to -

1.45, the number of inundated playas in our study area in July ranged from 1 to 9, compared to a July 

average from 1985-2011 of 26 inundated playas. Playa responses to droughts may have important 

implications in the context of regional concerns about drought intensification under climate change, 

i.e. droughts that may become longer, more frequent, and/or more severe. For example, 

Ahmadalipour et al. (2017) projected long-term changes in summer 3-month SPEI in the northern 

Great Basin under an RCP8.5 emissions scenario averaging -0.02 units per year, equivalent to a 

decrease of 0.5 SPEI units over 25 years. In a future climate with drier summers and greater 

evaporative demand (see Fig. 4.2), periodic droughts will likely exacerbate loss of ecosystem services 

and aquatic habitat provided by playas and may highlight the importance of the few playas that can 

provide drought refugia to wildlife. The ability of playa wetlands that have historically functioned as 

drought refugia to continue doing so in a drier future climate is unknown. Thus, conservation of 

playa-dependent plant and animal species may necessitate further study of the hydrogeologic and 

hydrogeomorphic properties of playas identified as potential drought refugia, including improved 

understanding of the roles of basin bathymetry and possible shallow groundwater interactions.   
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 As managers plan for climate-change impacts to playa wetlands, they may simultaneously be 

considering hydrologic and ecological restoration efforts. Although we found that playas with 

dugouts were more likely to hold water, to retain water for longer periods, and to serve as drought 

refugia, we stress that correlation between development status and observed playa hydrology does not 

reveal the nature or direction of causation. Indeed, far from being a randomly assigned treatment, 

playa development may have been guided by natural variability in playa hydrology that was observed 

by previous generations of land managers. Although documentation of historical playa development 

decisions by land management agencies and individual ranchers is scarce, we speculate that in many 

cases land managers may have chosen to develop those playas that they noticed were consistently 

holding water from one year to another, and perhaps also playas that were observed to hold water in 

dry years. Such targeted development could have benefited livestock operations by optimizing water 

retention on the landscape for a given amount of investment. If so, the positive association we 

observed between development status and playa inundation may be due at least in part to the 

historical selection of drought refugia as sites for development. 

 Because water developments for livestock are no longer needed to support grazing 

operations, Refuge managers are considering hydrologic restoration of some playas, which could 

include leveling berms and filling dugouts to create a smoother playa surface that more closely 

approximates the geomorphology of undeveloped playas. Such restoration efforts would be aimed, in 

part, at increasing the geographic extent of playa surface inundation and lengthening playa 

hydroperiods by preventing water from draining into dugouts. Although we did not perform a 

comprehensive assessment of dugout locations relative to playa wetness patterns, we noticed that not 

all dugouts are located within the most-inundated zones of their respective playas. Examination of 

two playas that held water in all of the five driest years (Fig. 4.9) helps to illustrate several 

management considerations that are relevant to restoration planning. One playa (Fig. 9a and 9b) has a 

dugout located within the zone of greatest wetness in the lowest-elevation area of the playa. In such a 

case, filling the dugout might reduce drainage of water from the playa surface and enlarge the 

inundated extent within the playa. However, in another example (Fig. 9c and 9d), the dugout is 

located almost 3 m above the lowest area of the playa and is not within the most frequently inundated 

zone. In this case, it is unclear how dugout filling might affect playa hydroperiod and areal extent of 

inundation. This comparison underscores the importance of site-specific restoration planning and 

suggests how remote-sensing inundation analysis could help inform such planning efforts. 

Furthermore, restoration planners may need to consider playa area and the ratio of dugout-to-basin 

volumes. Large “lakebed playas” may provide more consistent water, emergent vegetation, and 
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aquatic invertebrates than small “ponded clay playas,” which often have encroaching sagebrush 

(Moffitt et al., 2019). However, relative gains in inundated area resulting from filling dugouts may be 

limited in large playas due to a low ratio of dugout volumetric capacity to playa volumetric capacity.  

 Because playa development was not a randomly assigned experimental treatment, our study 

was by nature observational, and hence it does not resolve the mechanisms by which development 

may increase or decrease the ecosystem services provided by playas as water and food sources within 

the landscape, or as potential drought refugia. One future approach to addressing this question could 

involve incorporating a randomized experimental design into future playa restoration efforts. For 

example, if a randomly chosen subset of developed playas was assigned to undergo restoration as an 

experimental treatment (withholding all other developed playas as a control), then the effects of 

restoration on playa hydrology and ecosystem services could be rigorously assessed. Such 

considerations in the design of ecological restoration programs can increase the knowledge and 

insights gained from subsequent monitoring programs (Block et al., 2001). In addition, pre- and post-

restoration field monitoring of ecosystem services provided by playas (e.g., migratory bird use, 

aquatic habitat and invertebrate food resources provided, late-season forage for terrestrial wildlife) 

could help ascertain the ecological consequences of attempts to restore playas to more natural 

hydrologic conditions.   

Refugial playas during droughts 

 Playa wetlands are an understudied but important seasonal water and food resource for 

migrating birds and other wildlife that may be negatively impacted by climate drying and drought 

intensification. This study identified drivers of playa inundation in the northern Great Basin, 

simulated the effects of intensifying droughts on playas, and identified a subset of playas that appear 

to function as hydrologic refugia during droughts. Historically, larger playas and playas with dugouts 

were more likely to provide drought refugia; however, the ability of these playas to function as 

refugia under climate change and in the context of hydrologic restoration efforts is unknown. To 

adequately prepare for climate-change impacts and assess possible implications of restoration, more 

research is needed on playa geomorphology and hydrogeology, potentially coupled with rigorously 

controlled experimental restoration studies and long-term monitoring of restoration effectiveness.   
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Tables 

Table 4.1. Akaike Information Criterion (AIC) values, Delta AIC (ΔAIC), and AIC weights (wi) used 

in Generalized Linear Mixed-Effects Model (GLMM) averaging.  

Water Presence Model AIC   ΔAIC   wi 

SPEI + status 26365.3  0  0.69833 

SPEI + status + area 26363.3  3  0.15582 

SPEI + area 26368.8  3.5  0.12135 

SPEI 26374.2  6.7  0.02450 

status + area 26463.4  2098.1  0 

status  28466.2  2098.7  0 

area 28466.7  2099.2  0 

      

Water Duration Model AIC   ΔAIC   wi 

SPEI + status 11276.2  0  0.74316 

SPEI + status + area 11274.8  3.6  0.12284 

SPEI + area 11280.4  4.2  0.09101 

SPEI 28463.4  5.7  0.04299 
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Figures 

 

 

Figure 4.1. Dry playa viewed (a) from the ground and (b) in aerial imagery. In (b), the playa to the 

north has not been developed, whereas the playa to the south has a berm and pit (“dugout”), indicated 

by the black arrow, that were constructed to provide water to livestock. 
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Figure 4.2. CanESM2, CNRM-CM5, and HadGEM2-ES climate model predictions for (a and b) 

Sheldon National Wildlife Refuge in 2055 and 2085, and (c and d) Hart Mountain National Wildlife 

Refuge in 2055 and 2085, represented as changes from 1971-2000 historical means. Climate variables 

represented are: mean summer precipitation (MSP), annual heat-moisture index (AHM), summer 

heat-moisture index (SHM), reference evaporation (Eref), and climatic moisture deficit (CMD) All 

climate variables were obtained from ClimateWNA (2019). 
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Figure 4.3. The study area contains 153 playas managed by the U.S. Fish and Wildlife Service on the 

two wildlife refuges that comprise Sheldon-Hart Mountain National Wildlife Refuge Complex, in 

southern Oregon and Northern Nevada, USA. 
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Figure 4.4. Mean (±SD) number of wet playas (out of a total of 153) between February and October, 

1985-2015. 
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Figure 4.5. GLMM model-averaged parameter estimates and 95% confidence intervals for water 

presence (a) and water duration (b). 
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Figure 4.6. Using drought scenarios (i.e., SPEI-12 values indicating various levels of drought 

severity), GLMM-derived mean and standard deviation for (a) percent probability of predicted 

wetness for a playa, and (b) predicted months wet per year for a playa (out of 9), across the full range 

of all other predictor variables. Drought scenarios include: long-term, historical average conditions 

(SPEI=0), moderate drought (SPEI=-1), severe drought (SPEI=-1.5), and extreme drought (SPEI=-2). 
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Figure 4.7. Selection of the five driest years of the study based on observed playa inundation. Time 

series plots in (a) depict the annual maximum (blue), annual mean (green), and annual minimum 

(brown) number of wet playas in the study area between February and October of each year. The five 

years with the lowest annual mean and lowest annual maximum number of wet playas are indicated 

by vertical dashed lines. These five years are depicted in (b) as closed, labelled circles; all other years 

are open circles. Relationships between numbers of wet playas and October SPEI-12 (Standardized 

Precipitation Evapotranspiration Index in October of each year using 12 months of antecedent climate 

conditions) are represented in (b), with annual maximum and annual mean numbers of wet playas in 

blue and green, respectively. Simple linear regression lines with R² values quantify relationships 

between October SPEI-12 and playa wetness from 1985-2015. 
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Figure 4.8. Distribution of playas in the Sheldon-Hart Mountain National Wildlife Refuge Complex 

based on (a) the number of years wet and average months wet during the five driest years, and (b) 

number of years wet in the five driest years and number of years wet in all other years from 1985-

2015. In (a), 71 playas (46%) had no observed inundation in any month during the five dry years. In 

(b), 49 playas (32%) had no observed inundation in any year from 1985-2015, including during the 

five driest years. 
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Figure 4.9. One example playa (a and b) showed inundation concentrated near the dugout location in 

(a) April and (b) July, averaged over 1985 through 2015. In this playa, the dugout is located near the 

lowest-elevation zone of the playa. By contrast, in another example (c and d), the dugout is not 

located in the areas of greatest wetness in (c) April or (d) July and is instead located almost 3 m 

higher than the lowest-elevation zone of the playa. 
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Abstract 

Climate change is altering mountainous headwaters and the biophysical and social systems that 

depend on them. While scientific knowledge on climate change abounds, literature syntheses are 

needed to understand the multidisciplinary impacts, identify critical knowledge gaps, and assess 

potential management and policy responses. In this study, we systematically map and analyze the 

topical and spatial distribution of climate change research in the mountainous headwaters of a major 

transboundary watershed, the Columbia River Basin (CRB). We find that climate change research in 

the CRB focuses on impacts much more frequently than adaptation, while mitigation is rarely a focus. 

Most studies assess trends at large spatial extents, use secondary data, and make projections of 

climate change impacts rather than observations. The spatial distribution and thematic content of 

research varies across an international border, with greater concentrations of research in the United 

States than Canada. A general scarcity of social science research and limited interaction between 

social and biophysical content reinforce the need for increased collaboration between disparate 

disciplines. Future research focus areas should include research related to climate change adaptation 

and mitigation, increased integration between social and biophysical sciences, and collaborations that 

bridge the international border for a more unified basin-wide focus. Focusing on these new directions 

for research will increase the potential for science and management communities to co-produce 

actionable science and effective responses to climate change.   

Introduction 

Study context 

Climate change in mountainous regions is projected to have serious consequences for social and 

ecological systems due to impacts on snowpack and hydrological dynamics, fire regimes, 
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biodiversity, and ecosystem function, many of which are already occurring (La Sorte and Jetz, 2010; 

Nogués-Bravo et al., 2007; Viviroli et al., 2011). These remote environments are critically important 

for many societies; for example, one-sixth of the global population resides in areas that depend on 

mountain meltwaters (Parry, 2007). Due to their importance and complexity, research on climate 

change in mountainous landscapes spans many disciplines, scales, and methodologies. The research 

that is conducted ultimately shapes the breadth and depth of the body of knowledge influencing 

governance and natural resource management (Jasanoff, 2004). Moreover, the spatial distribution of 

research activity is surprisingly difficult to elucidate, yet has important consequences for our 

understanding of natural systems (Karl et al., 2013; Wallis et al., 2011). It is therefore imperative to 

understand what research themes are (and are not) well studied, as well as the geographic distribution 

and disparities of these themes in order to gain a holistic understanding of these systems and develop 

effective strategies to adapt to change.  

The headwaters of the Columbia River Basin (CRB) are an important test case for understanding the 

state of knowledge about climate change in a mountainous region that is profoundly affected by non-

stationary climatology. It serves as an example of a large, transboundary river basin with diverse 

ecosystems, complex socio-political histories, and a dependency on seasonal snowmelt to maintain 

water supplies and ecosystem function (Mankin et al., 2015). The region’s water resources generate 

over half of the United States’ hydroelectric power production, position the CRB as the leading 

producer of 22 key agricultural commodities, and sustain a population growing at more than twice the 

rate of the national average (EIA, 2018; USDA, 2018; US Census Bureau, 2017). The region has the 

scientific and policy-making infrastructure to support a large volume of research and engages in 

relatively extensive climate change adaptation efforts through, for example, government-led 

vulnerability assessments (Muccione et al., 2016; Olson, 2017). Because of the broad scope of 

climate change-related science in the CRB, and the outsized impact of its mountainous natural 

resources on society at large, rigorous assessment of topical and spatial trends in research is needed to 

identify critical knowledge gaps.  

Motivation for knowledge synthesis 

Calls for approaches to systematically assess climate change research are ubiquitous (Hulme 2010; 

Petticrew and McCartney, 2011), yet conducting comprehensive reviews is challenging because the 

scope of climate change involves synthesis across multiple disciplines and large bodies of literature 

(Lenhard et al., 2006). Berrang-Ford et al. (2013) describe the diverse set of approaches used in 

modern research syntheses, ranging from narrative reviews to scientometrics. While traditional 
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narrative reviews typically provided detailed assessments of the findings of a particular field, science 

mapping (scientometrics) and systematic review approaches have gained popularity in recent years 

due to their utility in characterizing interdisciplinary fields and making sense of large, disparate 

bodies of literature. Specifically, scientometric approaches use data from citation indices to measure 

scientific activity on specific themes. Systematic reviews vary widely in their implementation but 

typically apply rule-based methods for document inclusion and emphasize quantitative analyses of a 

body of research (Berrang-Ford et al., 2013; Gough and Oliver, 2012). Several systematic reviews in 

recent years have assessed trends and gaps in climate change research, often with focuses on 

adaptation and impacts (e.g., Ford and Pearce, 2010; Ford et al., 2012; Sud et al., 2015; Tuihedur 

Rahman et al., 2018). 

Research questions and objectives 

In this study, we blend elements of scientometric approaches with a systematic review in order to 

identify the thematic content and spatial attributes of peer-reviewed research related to climate change 

in the mountainous regions of the CRB. The specific questions that we address are: (1) What are the 

common thematic foci and relative deficiencies in this body of research? (2) What are the spatial 

scales and distribution of climate change research in the headwater regions of the CRB? (3) Is the 

thematic content of research clustered spatially or conducted at specific scales in a way that suggests 

a need for further study of particular topics, specific places, or both?  

The primary outcome of this work is the elucidation of knowledge gaps in areas of scientific inquiry 

that are strategically beneficial to improving our understanding of changing mountain landscapes. 

These outcomes are accomplished with a systematic review of peer-refereed literature to improve the 

potential for identifying research needs and untapped opportunities of greatest potential benefit. By 

extension, this improves the potential for the co-production of actionable science and management-

relevant science, and facilitates a more tailored “call and response” relationship among science 

producers and science consumers or decision makers (DeCrappeo et al., 2018). We expect the results 

of this review methodology to be useful to scientists seeking opportunities to advance needed 

interdisciplinary research, and resource managers crafting management responses to climate change.  

 

 

 



77 

 

 

Methods and Materials 

Literature acquisition 

We identified studies that (1) are in the CRB, (2) specifically address climate change impacts, 

adaptation, or mitigation, and (3) address mountainous environments (Figure 5.1). We used a multi-

database search, incorporating literature from the Web of Science, Cabdirect, Proquest, and Crossref 

databases. We assessed each of the articles for inclusion in the corpus of literature based on their titles 

and abstracts, referring to full texts when necessary. Articles were included if they were peer-

reviewed and included a substantial focus on climate change impacts, mitigation, or adaptation in 

mountain regions of the CRB. Articles were excluded if they did not address climate change, studied 

paleoclimate, or were conducted at a spatial extent greater than the western United States (Figure 

5.1). 

Literature content analysis  

Each article was analyzed to determine its spatial extent, location, and thematic content. We used a 

Google-form electronic questionnaire and a detailed codebook to ensure consistency among 

reviewers. To record location, we selected the US Geological Survey six-digit hydrologic unit codes 

(HUC-6) to identify the watershed(s) where each study took place. If a study included data from 

fewer than six individual locations, the latitude(s) and longitude(s) were recorded. Spatial extent, 

which we defined as the largest area to which findings were extrapolated within the western United 

States and British Columbia, was selected from seven classifications. We also selected the biome(s) 

where each study took place from a list of global biomes from Woodward et al. (2004). Freshwater 

biomes were added to distinguish studies between aquatic and terrestrial biomes. 

We developed several categories to analyze the topical and disciplinary content of the research. Using 

definitions from the Intergovernmental Panel on Climate Change, studies were categorized based on 

whether the primary knowledge contribution of each article was related to climate change impacts, 

adaptations, or mitigation (Parry, 2007). If the article addressed impacts, we determined whether 

evidence was presented regarding observed historic impacts and/or modeled projected future impacts. 

Finally, we specified the primary discipline(s) and topics addressed in each article. Discipline was 

determined based on the article and journal titles, primary author’s discipline, and the primary 

knowledge contribution of the article, while topics were selected more inclusively and included any 
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important knowledge contribution. Topics that occurred extremely infrequently were binned into 

more inclusive categories when possible.  

Data analysis  

Summary statistics were calculated to summarize frequencies for each of the content categories. To 

assess potential interdisciplinarity, we calculated the frequency of disciplinary co-occurrence to 

derive a network map. To explore the relationships among topics we conducted a hierarchical cluster 

analysis (HCA), using topics that occurred in at least five articles. We used Ward’s least square error 

method of clustering because it is less susceptible to noise and outliers, and it yielded the highest 

agglomerative coefficient (Tan, 2007). This method groups topics into similar nested clusters and 

minimizes the similarity between clusters. Topics that co-occur more frequently are joined early in 

the clustering process. Inclusive clusters are joined together by branches in a dendrogram.  

The relationships between different coding categories were also assessed using correspondence 

analysis. This method calculates factor scores for two categorical variables and converts them to 

Euclidean distances, which can be mapped together to visualize relationships in two-dimensional 

space. The proximity in this space between variables indicates the frequency with which they are 

researched together (Abdi and Williams 2010). 

To compare studies that occurred only in Canada, the U.S., or spanning the international boundary, 

we used a Fisher’s exact test. This method identifies whether there are significant differences in the 

topical distributions of national and transboundary studies. The Fisher’s exact test was selected 

because we had small sample sizes. Results from a Chi-squared test were then used to determine 

which topics contributed to the differences.  

Article abstract analysis 

In order to test the strength of our findings regarding the frequency of disciplinary co-occurrence, we 

conducted a text mining analysis on the article abstracts. Direct analysis of abstract texts provides a 

data source that is independent from our coded analysis of the papers, and therefore serves as a check 

on the data collection process. Abstracts were available for 515 out of our total corpus of 558 studies. 

Common stop words (commonly used words, such as “and”, “also”, etc.) and words that occurred less 

than 20 times were removed, and Pearson correlation coefficients for each remaining pair of words 

were calculated based on the frequency of co-occurrence in each abstract. Correlations are only 

reported for cases where Pearson’s p < 0.05. For cases where other analyses suggested that topics 
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were particularly likely or not to co-occur, we used these correlation coefficients as an additional line 

of evidence to test our results. 

Results 

Research in the CRB includes an abundance of studies on physical and ecological disciplines and 

topics. 

Articles in the corpus generally focus on physical and ecological disciplines. The most commonly 

identified disciplines are ecology (204 articles), hydrology (160), climatology (120), and forestry 

(108), as shown in Figure 5.2. There are 156 (28%) articles with two or more disciplines and 402 

single-discipline articles (72%). The most common combinations of disciplines are hydrology and 

climatology (39), and ecology and forestry (24) (Figure 5.2a). 

There are an average of 6.12 (±2.5 s.d.) topics per article. The six most common topics are 

temperature (86% of articles), precipitation (76%), forest ecology (47%), snow (40%), management 

(40%), and streamflow (37%). The frequency of these topics suggests a dominance of forest ecology 

and water issues, with fairly frequent discussion of management. The prevalence of management as a 

topic is important to note, given the paucity of policy or management as a discipline (8%). This 

discrepancy arises because our methods were relatively exclusive when coding for discipline and 

inclusive when coding for topic, and suggests that few studies have management or policy as a 

primary focus, but many still address management to some extent. The paucity of climate change 

studies on social science aligns with the global distribution of competitive research funding for 

climate change, which tends not to support social science studies (Overland and Sovacool, 2020).  

The HCA illustrates the tendency for groups of topics to be researched together. Physical science 

topics related to physical hydrology, precipitation, water quantity, streamflow, and snow cluster 

together (cluster 1, Figure 5.3). The appearance of these topics in the first cluster demonstrates that 

hydrological topics are common in the corpus and confirms that they are consequential in relation to 

climate change in the mountainous regions of the CRB. The word correlation analysis of article 

abstract text provides supporting evidence for the HCA findings. Indeed, words associated with topics 

within cluster 1 (precipitation, streamflow, and snow) correlate positively. 
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Some disciplines and topics are infrequently researched together, suggesting an opportunity for 

further disciplinary integration.  

Several lines of evidence indicate that some disciplines and topics are relatively infrequently 

researched in conjunction with each other. These include the frequency of disciplinary co-occurrence 

(Figure 5.2), the HCA (Figure 5.3), and correlational analysis of abstract texts.  

One area of research where deeper disciplinary integration may be needed is the associations between 

terrestrial and aquatic processes. For example, the disciplines of hydrology and forestry show a fairly 

strong negative correlation. In the HCA, topics related to forest ecology and water resources form two 

distinct clusters in branches two and three, also suggesting separation between these topics. The text 

analysis of abstracts also supports the idea that forest and aquatic issues are not well integrated; for 

example, word pairs with negative correlations include forest/fish and fire/fish. Of the minority of 

articles that do integrate topics related to forests, fires, and fish, five out of seven model the additive 

effects of climate change, altered forest vegetation, wildfire, and/or other disturbances on aquatic 

habitat (Davis et al., 2013), stream temperatures (Holsinger et al., 2014; Isaak et al., 2010) or 

sediment delivery (Neupane and Yager, 2013; Rugenski et al., 2014). All five articles conclude that 

that combined effects of climate change and forest disturbances are detrimental to aquatic habitat. The 

other two articles focusing on fish, fire, and forests do not directly investigate these topics, but instead 

consider their confounding influence on stream diversions (Walters et al., 2013) or as determining 

indicators of climate change (Klos et al., 2015). These studies reinforce the interconnection of forests, 

fires, and stream habitat and highlight both the necessity and further opportunities to integrate forest 

disturbances into climate change research on aquatic habitat. 

Similarly, studies of fire and snow do not tend to be well integrated, as demonstrated by their distinct 

clusters in the HCA; these terms are also negatively correlated in the abstract text analysis. The topic 

of snow appears in 42% (236) of the corpus studies, while the topic of fire appears in 20% (113) of 

articles. However, articles including both snow and fire make up only 5% (27) of the total. Given that 

snowpack and summer moisture deficit have been described as leading causes of increases in large 

wildfire occurrence (Westerling, 2006; 2016), this may indicate an area where further thematic 

integration is needed to address potential fire-snow feedbacks.  

Our findings also suggest that biophysical disciplines are generally not studied in conjunction with 

social science disciplines, with a few exceptions. Community resilience and attitudes and beliefs are 

separated from all other clusters in the HCA, indicating that they are more frequently discussed 
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within the same publications than they are with other topics (Figure 5.3). This also appears to be true 

in the analysis of disciplinary co-occurrence. Of the five most commonly studied disciplines, none 

show positive correlations with social science disciplines, such as sociology, policy, or economics.  

The studies that do demonstrate deep integration of biophysical and social disciplines may provide 

models for future interdisciplinary research. Several studies link hydrology with policy; these include 

studies of water resources engineering and supply management issues (e.g., Lee et al., 2009; Hatcher 

and Jones, 2013). Only five studies address sociology or policy in conjunction with biophysical 

disciplines. These include agent-based modeling for planning around future watershed conditions 

(Nolin, 2012), a synthesis of biophysical climate change indicators and feedback from resource 

managers (Klos et al., 2015), and an analysis of forest managers’ responses to climate change (Blades 

et al., 2016). These findings are generally in agreement with Bjurström and Polk (2011), who 

analyzed interdisciplinarity within climate change research through a co-citation analysis of the IPCC 

Third Assessment report and found that closely related disciplines commonly co-occur, while more 

disparate disciplines are clearly separated.  

Studies on climate change impacts are much more common than those on adaptation or mitigation.  

Articles analyzing climate change impacts are much more common than those addressing adaptation 

or mitigation: 88% (489) primarily focus on climate impacts, while 10% (56) focus on adaptation and 

2% (13) are on climate change mitigation. Ford and Pearce (2010) observe an increasing “adaptation 

gap,” where the number of studies addressing climate change impacts is much larger than those 

addressing mitigation, and the gap between the two has grown over time, particularly as the number 

of studies on impacts has increased. The studies in our corpus similarly reflect an adaptation gap; 

comparing the 10-year periods from 1996-2005 and 2005-2015 shows that the gap between the 

number of adaptation and impacts papers has increased from 63 to 302, though adaptation papers 

represent a larger portion of the corpus in the later period than earlier, increasing from 3% to 11% of 

papers. A similar gap exists for mitigation studies; the gap increased from 64 to 334 papers, though 

the fraction of papers coded as mitigation increased from 1% to 3%. However, while these changes 

represent fairly small increases in the total number of papers, the three-to-fourfold increase in 

frequency indicates considerable growth in adaptation and mitigation research.  

Studies primarily assessing climate change impacts, adaptation, and mitigation have distinctly 

different patterns of disciplinary and topical distributions (Figure 5.4). Articles on climate change 

impacts tend to be associated with the disciplines of hydrology, climatology, and ecology. In contrast, 



82 

 

 

studies of climate change adaptation are most commonly associated with the disciplinary categories 

of policy, sociology, forestry, biology, ecology. The topics represented by adaptation articles are 

heavily skewed towards water quantity, silviculture, species range shifts, attitudes and beliefs, and 

pests and disease. A relatively small percentage of adaptation articles address groundwater (9%), 

climate oscillations (2%), or carbon cycling (4%); no adaptation articles studied glaciers. The relative 

lack of adaptation studies on these topics may suggest important knowledge gaps and therefore 

opportunities for adaptation research.  

Mitigation studies are disciplinarily concentrated in biology, ecology and forestry, and topically 

focused on carbon cycling, forest ecology, wildfire, silviculture, and management. These findings 

reflect established understanding that forest management and wildfire are large components of carbon 

budgets in mountainous regions (Schimel et al., 2002). However, this also suggests potential research 

needs related to, for example, freshwater carbon budgets, the carbon budget of recreational activities, 

and climate change mitigation policy in mountainous regions (though a few studies address policy 

related to mitigation; see Wiedinmeyer and Hurteau, 2010; Stockmann et al., 2012; Law et al., 2018).  

Research is predominantly focused at relatively large scales, makes projections of future rather than 

observed conditions, and uses existing rather than new data. 

Articles in the corpus range in spatial extent from point or plot scale to the western U.S. The Pacific 

Northwest (660,000 km2) and the Western U.S. extents are the most common and include 37% of 

articles (205). Another 22% of articles (121) span between 40,000 km2 and the Pacific Northwest 

(660,000 km2). The remaining 42% of articles (232) report on studies at spatial extents less than 

40,000 km2. Different disciplines generally associate with different spatial extents (Figure 5.5). For 

example, articles with climatology as a discipline tend to occur more frequently at larger extents. This 

is to be expected, given the nature of the discipline, though it may raise questions about whether 

microclimates and refugia are adequately studied from a climatological perspective (e.g. Curtis et al., 

2014; Daly et al., 2010).  

Projections of climate change impacts are more common than observations. Of the 507 articles that 

study climate change impacts, 35% (171) make formal projections of climate change impacts; 28% 

(139) focus on observed environmental trends and discuss their attribution to climate change, while 

42% (205) assess a climate change impact but do not explicitly discuss observed or projected trends. 

Reporting on new field data is also relatively uncommon; only 34% (188) of studies include new data. 

The frequency with which studies include observed or projected impacts vary by discipline (Figure 
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5.6). Articles with disciplines categorized as ecology, forestry, biology, policy, or geology tend to 

reference climate change implications, rather than explicitly making observations or projections of 

climate change. In contrast, hydrology and climatology have more studies of projected and observed 

climate change impacts. While trends vary by discipline, the relative preponderance of research based 

on simulated and/or remotely-sensed data at fairly coarse resolutions and large scales raises questions 

about whether these large-scale findings are adequately supported by observed data, which is usually 

collected at much smaller scales and may have important variations within simulation grid cells (e.g. 

McKelvey et al., 2011). 

The quantity of research conducted varies spatially, and is concentrated at long-term research sites.  

Research is unevenly spatially distributed across the CRB (Figure 5.7). The quantity of research we 

identified is much less in Canada (84) than in the U.S. (405). For studies conducted at smaller extents, 

research activities are concentrated at several locations that appear to be fairly well explained by 

geographical features, such as the location of long-term research sites. For example, notable 

concentrations of research appear to occur at the H.J. Andrews Experimental Forest in Oregon, Mount 

Rainier National Park in Washington, and in the Reynolds Creek Experimental Watershed in Idaho. 

Another relatively high concentration of studies occurs in the Okanagan Basin, Canada, though these 

are not clustered at a particular research site. 

Biophysical context influences the spatial distribution of research themes.  

The thematic content of research is unevenly distributed across HUC-6 watersheds (Figure 5.8). 

Correspondence analysis reveals groupings of watersheds and disciplines. Research in the Upper 

Snake and Snake Headwaters tends to encompass the same disciplines and is closely associated with 

policy and ecology. Sociology is frequently coupled with the Okanagan (Canada), Columbia 

(Canada), and Spokane watersheds, with sociology studies in Canada commonly focused on social 

issues shaping forest management (Goemans and Ballamingie, 2013; Furness and Nelson, 2015; 

Carolan and Stuart, 2016). Hydrology is also associated with Okanagan (Canada), Columbia 

(Canada), Spokane, Yakima, and John Day watersheds. Forestry is closely coupled with the 

Willamette, Kootenai, and Upper Columbia River watersheds, though the topic’s central location 

within the correspondence analysis graph indicates that it is researched frequently within most 

watersheds. Maps of the spatial distribution of selected topics support the correspondence analysis 

and demonstrate that the topical distribution of research varies in space (Figure 5.8). For many topics, 

the variability between the U.S. and Canada is much larger than within-country differences; however, 
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we focus our discussion here on within-country differences followed by discussion of transboundary 

differences in section 3.7.  

Disturbance history influences the topical distribution of research. For example, the preponderance of 

forest ecology and wildfire studies in the Greater Yellowstone Ecosystem may be due to the 1988 

Yellowstone Fires, as evident in the many studies that reference these fires (e.g., Romme et al., 2011; 

Donato et al., 2016; Seidl et al., 2016; Zhao et al., 2016). Studies of pests and disease are also 

relatively common in the Greater Yellowstone Ecosystem, as well as the Salmon River watershed 

(Figure 5.9). Many of these studies are focused on bark beetle outbreaks (e.g. Buotte et al., 2016; 

Logan et al., 2010; Seidl et al., 2016; Simard et al., 2012). 

A relatively large portion of the research conducted in the Upper Snake and Snake River Headwaters 

addresses management implications. Articles addressing management in this area predominantly 

focus on interactions between water resources management and biophysical conditions under climate 

change (Loinaz et al., 2014; Qualls et al., 2013; Ryu et al., 2012; Sridhar and Anderson, 2017); forest 

and terrestrial ecosystem management, often specific to unique species such as whitebark pine (Logan 

et al., 2010; Macfarlane et al., 2013); or sagebrush steppe communities (West and Yorks, 2006). 

Interestingly, despite the relative prevalence of management topics in these two watersheds, 

adaptation studies are about as common (10% of studies) as in the entire corpus. This finding suggests 

that a high proportion of impacts-focused studies in this region also address management 

implications, which may be a result of the long history of conservation planning efforts in the Greater 

Yellowstone Ecosystem (Clark et al., 1991).  

Within Canada, management is frequently researched in the Upper Columbia watershed (85% of 

Canadian policy articles, n=18). Of these management articles, 67% (12) focused on forests (e.g., 

Nitschke and Innes, 2008; Goemans and Ballamingie, 2013; Seely et al 2015), 17% (3) on wildlife 

(Bunnell et al., 2011; Festa-Bianchet et al., 2011; McNay et al., 2011), 11% (2) on human dimensions 

(Turner and Clifton, 2009; Furness and Nelson, 2016), and less than 1% (1) on avalanches (Sinickas 

and Jamieson, 2016). Water management topics are not addressed in management-related articles in 

Canada, despite the fact that some research suggests that demand for irrigation water may frequently 

exceed supply in future climates in the Okanagan basin (Neilsen et al., 2006). 

Research themes vary among studies in Canada, the United States, and transboundary studies.  

We compared thematic content of articles exclusively in the U.S., in Canada, and those that are 

transboundary. The comparison suggests that the topical distributions of articles in these three 
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categories are significantly different from each other (Fisher’s exact test p < 0.001). The prevalence 

of articles addressing insects and disease and glaciers in Canada are the largest contributors to this 

difference, though topics related to human dimensions (policy, management, attitudes and beliefs, 

community resilience) are also more common in Canada than in the U.S. The extensive forested areas 

and recent pest outbreaks in the Canadian headwaters of the CRB may explain the greater research 

focus on forest insect and disease impacts. Climate change contributes to the rapid expansion of new 

bark beetle species at these latitudes, raising concerns for forest health in Canada (Anderegg et al., 

2015; Bentz et al., 2010). Concerns about forest health issues due to the close proximity of 

communities and forests in Canada may influence the more frequent occurrence of topics related to 

the human dimensions of climate change (e.g., Furness and Nelson, 2016; Parkins, 2008; Parkins and 

MacKendrick, 2007). The topical focus on glaciers in Canada within the corpus is likely due to the 

relatively high prevalence and hydrologic importance of glaciers in this area (Moore et al., 2009).  

Transboundary studies (n = 69) are distinguished by a relatively high frequency of studies addressing 

climate oscillations, streamflow, anadromous fish and restoration, and a relatively low frequency of 

studies on policy, forest disturbances, silviculture and carbon cycling. These include studies 

describing results of climate models across the entire CRB (e.g., Rupp et al., 2016); hydro-

climatological models representing downscaled impacts of climate change on hydrology (e.g., Hamlet 

et al., 2013); comparative streamflow and water temperature modeling (e.g., Ficklin et al., 2014); and 

models of declining snowpack (e.g., Abatzoglou, 2011). Reconstruction of historical flows or trends 

are also common across transboundary studies (e.g., Waples et al., 2008). Only five transboundary 

studies explicitly address policy and management issues (Sopinka and Pitt, 2014; Beechie et al., 2013; 

Schwandt et al., 2010; Lee et al., 2009; Bisson et al., 2009), and only one of these represents a 

collaboration between U.S. and Canadian authors (Schwandt et al, 2010). These studies focus on 

flood control, streamflow, and anadromous fish. A potential issue in interpreting the thematic content 

of these transboundary studies is that many transboundary studies tend to occur at relatively large 

scales (70% were larger than the Pacific Northwest, in contrast to only 37% in the full corpus). 

Therefore, there may be a confounding effect between topics that tend to be researched at large scales 

and those that are of particular interest across international borders.  

Assumptions and limitations  

Several assumptions and limitations should be considered when interpreting our findings. We used 

multiple rounds of coding and lines of evidence, but as in any such investigation, errors may occur. 

Our methods required that each article was categorized as either adaptation, mitigation, or impacts. 
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Therefore, while studies that address both mitigation and adaptation may exist, they would have been 

coded in only one category. Further, we identified several areas of thematic content, which we argue 

have two important, yet poorly integrated, topics or disciplines. To support these conclusions, we 

used multiple lines of evidence where possible, but these analytical methods can only identify 

research integration that is relatively infrequent. Importantly, the identification of geographic 

disparities or relatively under-studied research themes does not necessarily imply a need for more 

research. The findings presented here provide a basis to aid experts in the subjective evaluation of 

areas that may need more research.  

Moreover, while we used multiple databases to identify research, there are likely some relevant 

articles that were omitted. In particular, because our study was limited to peer-reviewed literature, 

grey literature such as legal reviews (e.g., Cosens and Fremier, 2014) is not represented. This may, in 

part, explain why we identified so few policy-related studies. It is also important to note that our 

literature search was conducted in December 2016; while there are undoubtedly many new studies 

available, we expect that the general patterns and trends characterizing the science conducted in this 

region have remained relatively constant.  

Discussion 

Science produced in mountainous headwaters of the CRB affects our understanding of climate change 

impacts on social and ecological systems, as well as our understanding of potential adaptation and 

mitigation strategies. While a number of trends in the thematic and spatial distribution of climate 

related research in the CRB can be discerned, the relative gaps in knowledge and effort are of the 

most concern. The following conclusions represent our evaluation of the most important gaps that 

present significant opportunities for further research:  

(1) Only 10% (56) of the articles in our corpus focus on the adaptation of human systems to actual or 

expected climate change. This may be emblematic of a disconnect between the practice and 

applications of science - especially applications that build adaptive capacity in social-ecological 

systems. 

(2) Only 2% (13) of the studies included in this review focused on improving knowledge of, or 

intervening in, carbon cycles to potentially reduce the effects of anthropogenic forcing on the climate 

system, despite large tracts of forested lands, a significant biomaterials industry, and increasing 

concerns about climate change feedbacks due to forest disturbance. More research may therefore be 
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needed on climate change mitigation in this region, and potentially in other mountainous regions 

around the globe.  

(3) There is also an opportunity for more climate-related social science research, and more integration 

of social science with biophysical disciplines. Only five of 558 studies included in this review 

represented sociology or policy in conjunction with biophysical disciplines, a glaring disparity given 

the feedbacks between a growing population, climate change, ecosystem services, and land 

management.   

(4) Finally, there is an important opportunity for further transboundary climate change research with 

an integrated, basin-wide focus.  For example, only five of 558 studies explicitly addressed policy and 

management issues on both sides of the US-Canada border, and only one of these five represents a 

collaboration between U.S. and Canadian authors. This is surprising, given the interconnectedness of 

ecological and social systems throughout the watershed and the pervasiveness of observed and 

predicted climate stressors. In addition to a need for more transboundary research, this suggests a role 

for further research on the role of international collaborations for understanding climate change 

impacts, adaptation, and mitigation in this region. 

This study quantified thematic and spatial knowledge and gaps in climate change related research for 

the mountainous headwaters of a large and complex watershed, allowing science and management 

communities to leverage resources more effectively and, in turn, increasing the potential for the co-

production of actionable science and effective responses to climate change. Implementing similar 

analyses elsewhere could expand understanding of gaps and knowledge structures in the larger body 

of climate change research for mountainous regions. Moreover, further work could provide important 

comparisons for models of how to conduct interdisciplinary reviews to advance the management of 

complex river basins in a changing climate. 
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Tables 

 

Table 5.1. Definitions used to assess area of primary knowledge contribution.  

* based on the 2007 Intergovernmental Panel on Climate Change definitions.   

Term Definition used in study 

Adaptation Adjustment in human systems in response to actual or expected climatic stimuli or 

their effects, which moderates harm or exploits beneficial opportunities.* 

Mitigation An anthropogenic intervention aimed at reducing the anthropogenic forcing of the 

climate system.* 
 

Impacts The effects of climate change on natural and human systems.*  We categorized 

impacts as observed, in which trends were noted in empirical data and attribution to 

climate change was discussed, projected, in which the impacts of climate change were 

quantitatively modeled for future scenarios, and implications, in which the climate 

sensitivity of a system was assessed.  
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Figures 

 

 

Figure 5.1. Flowchart for methods of literature acquisition, inclusion, exclusion, and content analysis. 
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Figure 5.2. Network map of co-occurring disciplines, showing (a) number of co-occurrences, 

indicated by edge width and color, and (b) correlation coefficients between disciplines. Size of points 

indicates number of times each discipline occurred.  
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Figure 5.3. Dendrogram of hierarchical cluster analysis (HCA) of topical co-occurrences. The HCA 

measures the dissimilarity between variables and represents them in nested clusters. The x-axis shows 

the dissimilarity between topics. Topics that are grouped together near the right (distance = 0) are 

frequently coupled in the literature. Cluster numbers in red are referenced in the text. Colors of topics 

indicate whether each topic was classified as primarily related to the social (yellow), life (green), or 

physical (blue) sciences.   
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Figure 5.4. Radar plots showing the distribution of adaptation, impacts, and mitigation paper by (a) 

discipline and (b) topic. Axis displays the percent of papers in the adaptation, mitigation, and impacts 

categories that address a particular topic or discipline.  
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Figure 5.5. Spatial extent of disciplines. Disciplines are arranged in ascending order of frequency 

within the dataset.   
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Figure 5.6. Studies of climate change impacts that identify climate change implications or observed or 

projected impacts, by discipline.  

 

 

 

 

 

 

 

 



102 

 

 

Figure 5.7. Spatial distribution of literature, displayed as (a) total number of papers per HUC-6 

watershed and (b) point locations for studies with spatial extents less than 1500 km2, with contours 

showing estimated density of studies. Rivers are displayed in cyan; points of interest with high 

concentrations of research are in red. MR = Mount Rainier; HJA = H.J. Andrews Experimental 

Forest; RCEW = Reynolds Creek Experimental Watershed.  
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Figure 5.8. Spatial distribution of selected topics by HUC. Each legend shows the percent of papers in 

a given HUC that addresses the topic.  
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Chapter 6: Conclusion 

This dissertation includes three disciplinary chapters that applied remote sensing approaches to the 

analysis of seasonal-ephemeral water resources, specifically canopy intercepted snow and snow-fed 

playa wetlands.  The fourth interdisciplinary chapter synthesized climate change research in the 

headwaters regions of the Columbia River Basin.  To further contribute to understanding climate 

change impacts on seasonal-ephemeral water resources and ecosystems, as well as the socio-

ecological context for climate change study and adaptation, suggestions to extend the analyses in each 

chapter are offered below.   

Chapter 2 examined the promising use of terrestrial laser scanning (TLS) for estimating snow 

interception. With further investigation, this approach has the potential to offer increased scalability 

and portability compared to previous methods, and may prove to be a useful tool in calibrating snow 

interception models to different forest types. Experimental findings indicated good agreement 

between TLS estimates of snow mass and measurements made on trees suspended from load cells.  

To further refine this methodology and explore larger-scale applications, a number of research 

extensions are proposed.  For instance, the experiment can be repeated with live trees of different 

species, with particular attention paid to the sensitivity of TLS-based estimates to changes in tree 

geometry with i) snow loading, and ii) the interaction between branch flexibility and air temperature 

(Schmidt and Pomeroy, 1990). The experiment could also be adapted to include laser return intensity 

data, which may provide information about snow properties (e.g., snow density) (Deems et al., 2013). 

Finally, research on an in situ means of measuring canopy-intercepted snow density is needed to 

reduce error in mass calculations that currently rely on empirical air temperature-snow density 

relationships (e.g., Lachapelle, 1962).   

Chapter 3 applied the knowledge gained from the previous chapter by utilizing TLS-based snow 

interception estimates obtained from a variety of live trees of different species.  I fit a model that 

predicted these estimates from aerial laser scanning (ALS)-derived metrics of canopy structure.   The 

research findings demonstrated good agreement between observations and model predictions and 

identified the best suite of predictors.  The results suggest that metrics capturing the intrinsic, three-

dimensional variability of tree canopies may be an appropriate alternative to the two-dimensional 

metrics currently utilized in hydrological models for estimating snow interception (e.g., leaf area 

index, canopy closure) (Essery et al., 2009; Rutter et al., 2009). Researchers looking to extend this 

work may be interested in testing our approach across different forests with a range of canopy 
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densities, as our findings are limited to a small sample of individual trees along the margins of a 

forest edge. It may also be beneficial to combine the canopy metrics we identified as important with 

forest spacing metrics used in a recent studies (e.g., Moeser et al., 2015; Roth and Nolin, 2019) to see 

if there is improvement in the performance of snow interception models that incorporate both 

structural (intrinsic) and hydrometeorological (extrinsic) variables.  Finally, extending this study 

would benefit from addressing the uncertainties regarding TLS as a tool for estimating interception 

that are outlined in the previous paragraph discussing extensions to Chapter 1.   

Chapter 4 identified drivers of hydrology for seasonal-ephemeral playa wetlands in the northern Great 

Basin.  Employing a 30-year time series of satellite imagery, this study also demonstrated how playas 

may respond to intensifying droughts, identified a subset of playas that may function as hydrologic 

refugia during droughts, and explored the role of past land uses in determining which playas may be 

refugia. While the results from my work could assist land managers in planning restoration of playa 

hydrology, the effectiveness of Great Basin playa restoration in the context of climate change is 

unknown.  Studies of playa restoration in other regions, however, do indicate the potential of 

extending the hydroperiod, regaining native species assemblages, and restoring ecosystem services 

like groundwater recharge (Smith et al., 2010).  To prepare for climate change-related impacts and 

assess the implications of restoration, this research may be extended with ground-level studies of 

playa geomorphology and hydrogeology, as well as controlled experimental restoration studies 

coupled with long-term monitoring.   

Chapter 5 analyzed the spatial and topical distribution of climate change research in the headwaters of 

the Columbia River Basin.  While the findings identified broad patterns in a large body of research, 

additional investigation of specific findings would extend the impact and applicability of this work.  

For example, future researchers may be interested in focusing on the apparent differences in research 

topics between the portions of watershed contained in the United States versus Canada.  In addition, 

implementation of social science methodologies – such as qualitative surveys – could illuminate the 

perceived relative importance of research gaps identified in this study (e.g. the small number of 

studies bridging aquatic and terrestrial disciplines).   

Each of these chapters adds to the body of knowledge on remote sensing for seasonal-ephemeral 

water resources, as well as applications for water resources management. By examining the processes 

affecting snow supplies and snow-fed ecosystems, as well as the state of climate change science 

across headwaters in a large watershed, I have had the opportunity to think about hydrological 

systems holistically.  I have also experienced tremendous growth, intellectually, from tackling a 
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diverse and challenging set of research questions.  In the manner of most scientific studies, however, 

each chapter offers but a small scientific contribution with the hope that future researchers will 

incorporate or extend this work, and this work will inform the sustainable management of our water 

resources.   
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