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Abstract

We present local, position-space chiral NN potentials through four orders of chiral EFT

ranging from leading order (LO) to next-to-next-to-next-to-leading order (N3LO, fourth or-

der) of the ∆-less version of the theory. The long-range parts of these potentials are fixed

by the very accurate πN LECs as determined in the Roy-Steiner equations analysis. At

the highest order (N3LO), the NN data below 190 MeV laboratory energy are reproduced

with the acceptable χ2/datum of 1.45. These NN potentials may serve as a solid basis for

systematic ab initio calculations of nuclear structure and reactions that allow for a compre-

hensive error analysis. In particular, the order by order development of the potentials will

make possible a reliable determination of the truncation error at each order. Our new family

of local position-space potentials differs from existing potentials of this kind by a weaker

tensor force as reflected in relatively low D-state probabilities of the deuteron (PD
<∼ 4.0 %

for our N3LO potentials) and predictions for the triton binding energy above 8.00 MeV (from

two-body forces alone). As a consequence, our potentials may lead to different predictions

when applied to light and intermediate-mass nuclei in ab initio calculations and, potentially,

help solving some of the outstanding problems in microscopic nuclear structure.
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CHAPTER 1

Introduction

The understanding of the nuclear force and the structure of nuclei has been a long-

standing desire for nuclear physicists. In principal, the derivation of the nuclear force should

be based upon quantum chromodynamics (QCD), since it is the fundamental theory of

strong interactions. However, in the low energy regime typical for nuclear physics, QCD is

non-perturbative, which makes it difficult to find analytic solutions. Breakthrough happened

when an effective field theory (EFT) concept was introduced and applied to low energy QCD.

As Weinberg proposed, one has to write down the most general Lagrangian consistent with

the assumed symmetry principles, particularly the (broken) chiral symmetry of QCD [1]. At

low energy, pions (the Goldstone bosons of the broken symmetry) and nucleons rather than

quarks and gluons are the effective degree of freedom. Broken chiral symmetry is a crucial

constraint that generates and controls the dynamics and establishes a clear connection with

QCD [2].

A primary goal of theoretical nuclear physics is to explain nuclear structure and reactions

in terms of the forces between nucleons—in present-day popular jargon dubbed the ab initio

approach. The current prevailing belief in the community is that chiral effective field theory

(EFT) is best suited to provide those forces, because it can be related to low-energy QCD in

a straight-forward way and produces abundant three-nucleon forces (3NFs) needed for any

quantitative nuclear structure prediction [2, 3, 4, 5].

Since chiral EFT is a low-momentum expansion, most chiral NN potentials of the past

have been developed in momentum space–and are non-local. However, this feature makes

them unsuitable for a large group of ab initio few- and many-body algorithms, particularly,

the ones known as quantum Monte Carlo (QMC) methods [6, 7]. Variational Monte Carlo

(VMC) and Green’s Function Monte Carlo (GFMC) techniques provide reliable solutions

of the many-body Schrődinger equation for, presently, up to 12 nucleons. Spectra, form

factors, transitions, low-energy scattering, and response functions for light nuclei have been
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successfully calculated using QMC methods [8]. A further extension, the Auxiliary Field

Diffusion Monte Carlo (AFDMC) [6, 7], additionally samples the spin-isospin degrees of

freedom, thus, making possible the study of neutron matter. In summary, QMC techniques

have substatially contributed to the progress in ab initio nuclear structure of the past 20+

years, and will continue to do so. Thus, it is important that high-quality nuclear interactions

are available for application by these promising many-body methods.

An important advantage of chiral EFT is that it allows for a systematic quantification

of the uncertainties of the predictions. For this it is necessary to conduct calculations at

different orders of the chiral expansion. However, so far, local chiral NN potentials have

been developed only at next-to-next-to-leading order (NNLO) [9] or in the hybrid format,

NNLO/N3LO [10, 11], where two-pion exchange (2PE) contributions are included up to

NNLO and contact terms up to next-to-next-to-next-to-leading order (N3LO). To make

proper uncertainty quantifications possible, local chiral NN potentials at all orders from

leading order (LO) to N3LO (and, if necessary, even beyond) are needed. It is the purpose of

this work to construct such local NN potentials of high quality and make them available for

QMC calculations as well as any other purposes where they can be of use. We will develope

these potentials within the ∆-less theory, since—in contrast to earlier claims—it has been

shown recently [12] that there is no advantage to the ∆-full theory.

This dissertation is organized as follows: In Chapter II, we present the expansion of the

NN potential through all orders from LO to N3LO. The reproduction of the NN scattering

data and the deuteron properties are given in Chapter III. Uncertainty quantification is

considered in Chapter IV. Chapter V concludes the thesis.
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CHAPTER 2

The chiral NN potential

2.1 Effective Langrangians

In the ∆-less version of chiral EFT, which is the one we are applying, the relevant degrees of

freedom are pions (Goldstone bosons) and nucleons. Consequently, the effective Lagrangian

is subdivided into the following pieces,

Leff = Lππ + LπN + LNN + . . . , (2.1)

where Lππ deals with the dynamics among pions, LπN describes the interaction between

pions and a nucleon, and LNN contains two-nucleon contact interactions which consist of

four nucleon-fields (four nucleon legs) and no meson fields. The ellipsis stands for terms that

involve two nucleons plus pions and three or more nucleons with or without pions, relevant

for nuclear many-body forces. Since the interactions of Goldstone bosons must vanish at

zero momentum transfer and in the chiral limit (mπ → 0), the low-energy expansion of

the effective Lagrangian is arranged in powers of derivatives and pion masses, implying to

following organization:

Lππ = L(2)
ππ + L(4)

ππ + . . . , (2.2)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + . . . , (2.3)

LNN = L(0)
NN + L(2)

NN + L(4)
NN + . . . , (2.4)

where the superscript refers to the number of derivatives or pion mass insertions (chiral

dimension) and the ellipses stand for terms of higher dimensions. We use the heavy-baryon

formulation of the Lagrangians, the explicit expressions of which can be found in Ref. [2].
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2.2 Power counting

Based upon the above Langrangians, an infinite number of diagrams contributing to the

interactions among nucleons can be drawn. Nuclear potentials are defined by the irreducible

types of these graphs. By definition, an irreducible graph is a diagram that cannot be

separated into two by cutting only nucleon lines. These graphs are then analyzed in terms

of powers of small external momenta over the breakdown scale: (p/Λb)
ν , where p is generic

for a momentum (nucleon three-momentum or pion four-momentum) or a pion mass and

Λb ∼ mρ ∼ 0.7 GeV is the breakdown scale [13]. Determining the power ν has become know

as power counting.

Following the Feynman rules of covariant perturbation theory, a nucleon propagator is

p−1, a pion propagator p−2, each derivative in any interaction is p, and each four-momentum

integration p4. This is also known as naive dimensional analysis or Weinberg counting.

Since we use the heavy-baryon formalism, we encounter terms which include factors of

p/MN , where MN denotes the nucleon mass. We count the order of such terms by the rule

p/MN ∼ (p/Λb)
2, for reasons explained in Ref. [1].

Applying some topological identities, one obtains for the power of a connected irreducible

diagram involving A nucleons [1, 2]

ν = −2 + 2A− 2C + 2L+
∑
i

∆i , (2.5)

with

∆i ≡ di +
ni
2
− 2 , (2.6)

where L denotes the number of loops in the diagram; di is the number of derivatives or

pion-mass insertions and ni the number of nucleon fields (nucleon legs) involved in vertex

i; the sum runs over all vertexes i contained in the connected diagram under consideration.

Note that ∆i ≥ 0 for all interactions allowed by chiral symmetry.
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An important observation from power counting is that the powers are bounded from

below and, specifically, ν ≥ 0. This fact is crucial for the convergence of the low-momentum

expansion.

For an irreducible NN diagram (A = 2, C = 1), the power formula collapses to the very

simple expression

ν = 2L+
∑
i

∆i , (2.7)

which is most relevant for our current work.

In summary, the chief point of the chiral perturbation theory (ChPT) expansion of the

potential is that, at a given order ν, there exists only a finite number of graphs. This is

what makes the theory calculable. The expression (p/Λχ)ν+1 provides an estimate of the

relative size of the contributions left out and, thus, of the relative uncertainty at order ν.

The ability to calculate observables (in principle) to any degree of accuracy gives the theory

its predictive power.

ChPT and power counting imply that nuclear forces evolve as a hierarchy controlled by

the power ν, see Fig. 2.1 for an overview. In what follows, we will focus on the two-nucleon

force (2NF).

2.3 The long-range NN potential

The long-range part of the NN potential is built up from pion exchanges, which are ruled by

chiral symmetry. The various pion-exchange contributions are best analyzed by the number

of pions being exchanged between the two nucleons:

Vπ = V1π + V2π + V3π + . . . , (2.8)
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Figure 2.1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed
lines pions. Small dots, large solid dots, solid squares, and solid diamonds denote vertexes
of index ∆i = 0, 1, 2, and 4, respectively. Further explanations are given in the text.

where the meaning of the subscripts is obvious and the ellipsis represents 4π and higher pion

exchanges. For each of the above terms, we have a low-momentum expansion:

V1π = V
(0)

1π + V
(2)

1π + V
(3)

1π + V
(4)

1π + . . . , (2.9)

V2π = V
(2)

2π + V
(3)

2π + V
(4)

2π + . . . , (2.10)

V3π = V
(4)

3π + . . . , (2.11)

where the superscript denotes the order ν of the expansion. Higher order corrections to the

one-pion exchange (1PE) are taken care of by mass and coupling constant renormalizations.

Note also that, on shell, there are no relativistic corrections. Thus, V1π = V
(0)

1π through all

orders. The leading 3π-exchange contribution that occurs at N3LO, V
(4)

3π , has been calculated

in Refs. [14, 15] and found to be negligible. We, therefore, omit it.
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Table 2.1: The πN LECs as determined in the Roy-Steiner-equation analysis of πN scattering
conducted in Ref. [21]. The given orders of the chiral expansion refer to the NN system.
The ci and d̄i are the LECs of the second and third order πN Lagrangian [2] and are in
units of GeV−1 and GeV−2, respectively. The uncertainties in the last digits are given in
parentheses after the values. We use the central values.

NNLO N3LO

c1 –0.74(2) –1.07(2)
c2 3.20(3)
c3 –3.61(5) –5.32(5)
c4 2.44(3) 3.56(3)

d̄1 + d̄2 1.04(6)
d̄3 –0.48(2)
d̄5 0.14(5)

d̄14 − d̄15 –1.90(6)

Order by order, the long-range NN potential then builds up as follows:

V LO
π = V

(0)
1π , (2.12)

V NLO
π = V LO

π + V
(2)

2π , (2.13)

V NNLO
π = V NLO

π + V
(3)

2π , (2.14)

V N3LO
π = V NNLO

π + V
(4)

2π . (2.15)

We note that we add to V N3LO
π the 1/MN corrections of the NNLO 2PE proportional to ci (cf.

Table 2.1). This correction is proportional to ci/MN (cf. Fig. A.3 and Appendix A.5, below)

and appears nominally at fifth order, but we include it at fourth order. As demonstrated in

Ref. [16], the 2PE football diagram proportional to c2
i that appears at N3LO (Fig. A.2(a)

and Appendix A.4.1) is unrealistically attractive, while the ci/MN correction is large and

repulsive. Therefore, it makes sense to group these diagrams together to arrive at a more

realistic intermediate-range attraction at N3LO. This is common practice and has been done

so in Refs. [17, 19, 20].

The explicit mathematical expressions for the pion-exchanges up to N3LO are very in-

volved. We have, therefore, moved them into the Appendix A.
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Table 2.2: Basic constants used throughout this work [22].

puantity Value

Axial-vector coupling constant gA 1.29
Pion-decay constant fπ 92.4 MeV
Charged-pion mass mπ± 139.5702 MeV
Neutral-pion mass mπ0 134.9766 MeV
Average pion-mass m̄π 138.0390 MeV
Proton mass Mp 938.2720 MeV
Neutron mass Mn 939.5654 MeV
Average nucleon-mass M̄N 938.9183 MeV

Chiral symmetry establishes a link between the dynamics in the πN -system and the NN -

system through common low-energy constants (LECs). Therefore, consistency requires that

we use the LECs for subleading πN -couplings as determined in the analysis of low-energy

πN -scattering. Currently, the most reliable πN analysis is the one by Hoferichter and Ruiz

de Elvira et al. [21], in which the Roy-Steiner equations are applied. These LECs carry

very small uncertainties (cf. Table 2.1); in fact, the uncertainties are so small that they are

negligible for our purposes. This makes the variation of the πN LECs in NN potential

construction obsolete and reduces the error budget in applications of these potentials. For

the potentials constructed in this thesis, the central values of Table 2.1 are applied. Other

constants involved in our potential construction are shown in Table 2.2.

2.4 The short-range NN potential

The short-range NN potential is described by contributions of the contact type, which are

constrained by parity, time-reversal, and the usual invariances, but not by chiral symmetry.

Because of parity and time-reversal only even powers of momentum are allowed. Thus, the

expansion of the contact potential is formally written as

Vct = V
(0)

ct + V
(2)

ct + V
(4)

ct + + . . . , (2.16)
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Figure 2.2: Left panel: 1P1 phase shifts for an order zero (i.e., LO) contact term with nonlocal
regulator (solid black line, “nonloc”) versus the same term multiplied with a local regulator
(dashed black line, “locLO”). Right panel: 3F3 phase shifts for contact terms at order LO,
NLO, and N3LO with nonlocal regulator (solid red line, “nonloc”) versus the same orders
multiplied with a local regulator (dashed lines at orders as denoted). The filled and open
circles represent the results from the Nijmegen multi-energy np phase-shift analysis [30] and
the GWU single-energy np analysis SP07 [34], respectively.

where the superscript denotes the power or order.

In principle, the most general set of contact terms at each order is provided by all com-

binations of spin, isospin, and momentum operators that are allowed by the usual symme-

tries [23] at the given order. Two momenta are available, namely, the final and initial nucleon

momenta in the center-of-mass system, ~p ′ and ~p. This can be reformulated in terms of two

alternative momenta, viz., the momentum transfer ~q = ~p ′ − ~p and the average momentum

~k = (~p ′ + ~p)/2. Functions of ~q lead to local interactions, that is, to functions of the relative

distance ~r between the two nucleons after Fourier transform. On the other hand, functions

of ~k lead to nonlocal interactions.

Since ChPT is a low-momentum expansion, it requires cutting off high momenta to avoid

divergencies. This is achieved by mutiplying the potential with a regulator function that

suppresses the large momenta (or, equivalently, the short distances). Depending on the type

of momenta used, the regulator can be local or nonlocal.

When chiral NN potentials are constructed in momentum-space and regulated by non-

local cutoff functions [2], then it is possible to reduce the number of contact operators (by a

factor of two) due to Fierz ambiguity [24, 25] which is a consequence of the fact that nucleons



10

are Fermions and obey the Pauli exclusion principle. However, for the reasons stated in the

Introduction, we wish to construct NN potentials which are strictly local, implying that we

have to use local regulators.

When a local (regulator) function is applied to the contact terms, then the Fierz ambi-

guity is violated. To provide a simple example of this, consider a contact operator of order

zero (∼ Q0, LO). After a partial-wave expansion, such operator produces no contributions

for states with orbital amgular momentum L > 0, i.e., P and higher partial waves. However,

this property is violated when the operator is multiplied with a local regulator function. We

demonstrate this fact in Fig. 2.2, where, in the left panel, we show phase shifts in the 1P1

state: The solid line (“nonloc”) shows the phase shifts when the LO contact term is multi-

plied with a nonlocal cutoff function, which does not violate Fierz reordering and, therefore

is zero for all energies. However, when multiplied by a local regulator, the dashed curve

(“locLO”) is obtained, which is almost as large as the empirical phase shifts. Thus, the

violation is almost 100% as compared to experiment.

This violation by nonlocal regulators continues through higher orders. As an example,

we show in the right panel of Fig. 2.2 the phase shifts in an F -wave, where polynomial terms

up to fourth order do not contribute which, as demonstrated in the figure, is, indeed, true for

nonlocal cutoffs (solid red curve, “nonloc”). However, when local functions are applied, then

at orders Q0, Q2, and Q4, respectively, the contributions are not zero as demonstrated by

the dashed curves denoted by “locLO”, “locNLO”, “locN3LO”, respectively. In this F -wave,

the final violation amounts to about 50% of experiment.

Thus, when applying local regulators, terms beyond the given order are affected, which

is the reason for the violation of Fierz rearrangement. As demonstrated in Fig. 2.2 by the

dashed lines, these violations are large. Since it does not make sense to apply a symmetry

that is invalid for the problem under consideration, we will not apply Fierz reordering to

the contact terms and, hence, use for the contacts all combinations of spin, isospin, and

momentum operators that are allowed by the usual symmetries. To enforce locality, we
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will use only the momentum operator ~q (except in the momentum-representation of the

angular-momentum operator, [−i(~q × ~k) ]).

We note that this is also the philosopy of the Argonne v18 potential (AV18) [26], which

includes 14 charge-independent operators. Not accidentally, we will also have 14 contact

operators at N3LO (see below) which are all equivalent to the 14 operators of the AV18

potential. Our contacts at LO and NLO are just the lower order contributions to those 14

operators (most of which vanish).

We will now present the explicit expressions for the contact operators, order by order.

2.4.1 Leading order

In momentum-space, the LO or zeroth order contact terms are given by

V
(0)

ct (q) = (Cc + Cτ τ1 · τ2 + Cσ ~σ1 · ~σ2 + Cστ ~σ1 · ~σ2 τ1 · τ2) fct(q) (2.17)

with regulator function

fct(q) = e−(q/Λ)2 (2.18)

and Λ a momentum cutoff. The operators ~σ1,2 and τ1,2 denote the spin and isospin of nucleon

1 and 2, respectively.

In position space, V
(0)

ct (q) translates into

Ṽ
(0)

ct (r) = (Cc + Cτ τ1 · τ2 + Cσ ~σ1 · ~σ2 + Cστ ~σ1 · ~σ2 τ1 · τ2) ctṼ
(0)
C (r) (2.19)

with

ctṼ
(0)
C (r) = f̃ct(r) =

1

π3/2R3
ct

e−(r/Rct)2 , (2.20)

the Fourier transform of fct(q) and Rct = 2/Λ. Note that we use units such that ~ = c = 1.



12

2.4.2 Next-to-leading order

In momentum-space, the NLO or second order contact contribution is

V
(2)

ct (~p ′, ~p) =
{

(C1 + C2 τ1 · τ2 + C3 ~σ1 · ~σ2 + C4 ~σ1 · ~σ2 τ1 · τ2) q2

+ (C5 + C6 τ1 · τ2 ) Ŝ12(~q)

+ (C7 + C8 τ1 · τ2 )
[
−i~S · (~q × ~k)

]}
fct(q) , (2.21)

where ~S = (~σ1 + ~σ2)/2 denotes the total spin and

Ŝ12(~q) = 3~σ1 · ~q ~σ2 · ~q − q2 ~σ1 · ~σ2 (2.22)

is the tensor operator in momentum-space.

Fourier transform of the above creates the second order contact contribution in position

space

Ṽ
(2)

ct (~r) = (C1 + C2 τ1 · τ2 + C3 ~σ1 · ~σ2 + C4 ~σ1 · ~σ2 τ1 · τ2) ctṼ
(2)
C (r)

+ (C5 + C6 τ1 · τ2 ) S12(r̂) ctṼ
(2)
T (r)

+ (C7 + C8 τ1 · τ2 ) (~L · ~S) ctṼ
(2)
LS (r) , (2.23)

where

S12(r̂) = 3~σ1 · r̂ ~σ2 · r̂ − ~σ1 · ~σ2 (2.24)

denotes the standard position-space tensor operator with r̂ = ~r/r, and ~L is the operator of
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total angular momentum. Furthermore,

ctṼ
(2)
C (r) = −f̃ (2)

ct (r)− 2

r
f̃

(1)
ct (r) , (2.25)

ctṼ
(2)
T (r) = −f̃ (2)

ct (r) +
1

r
f̃

(1)
ct (r) , (2.26)

ctṼ
(2)
LS (r) = −1

r
f̃

(1)
ct (r) , (2.27)

with

f̃
(n)
ct (r) =

dnf̃ct(r)

drn
. (2.28)

2.4.3 Next-to-next-to-next-to-leading order

In momentum-space, the N3LO or fourth order contact contribution is assumed to be

V
(4)

ct (~p ′, ~p) =
{

(D1 +D2 τ1 · τ2 + D3 ~σ1 · ~σ2 + D4 ~σ1 · ~σ2 τ1 · τ2) q4

+ (D5 +D6 τ1 · τ2 ) q2 Ŝ12(~q)

+ (D7 +D8 τ1 · τ2 ) q2
[
−i~S · (~q × ~k)

]
+ (D9 +D10 τ1 · τ2 )

[
−i~S · (~q × ~k)

]2

+ (D11 +D12 τ1 · τ2 + D13 ~σ1 · ~σ2 + D14 ~σ1 · ~σ2 τ1 · τ2)

×
[
−i(~q × ~k)

]2 }
fct(q) (2.29)
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In position-space, the N3LO or fourth order contact contribution then is

Ṽ
(4)

ct (~r) = (D1 +D2 τ1 · τ2 + D3 ~σ1 · ~σ2 + D4 ~σ1 · ~σ2 τ1 · τ2) ctṼ
(4)
C (r)

+ (D5 +D6 τ1 · τ2 ) S12(r̂) ctṼ
(4)
T (r)

+ (D7 +D8 τ1 · τ2 ) (~L · ~S) ctṼ
(4)
LS (r)

+ (D9 +D10 τ1 · τ2 ) (~L · ~S)2 ctṼ
(4)
LS2(r)

+ (D11 +D12 τ1 · τ2 + D13 ~σ1 · ~σ2 + D14 ~σ1 · ~σ2 τ1 · τ2)

×~L2 ctṼ
(4)
LL (r) , (2.30)

with

ctṼ
(4)
C (r) = f̃

(4)
ct (r) +

4

r
f̃

(3)
ct (r) , (2.31)

ctṼ
(4)
T (r) = f̃

(4)
ct (r) +

1

r
f̃

(3)
ct (r)− 6

r2
f̃

(2)
ct (r) +

6

r3
f̃

(1)
ct (r) , (2.32)

ctṼ
(4)
LS (r) =

1

r
f̃

(3)
ct (r) +

2

r2
f̃

(2)
ct (r)− 2

r3
f̃

(1)
ct (r) , (2.33)

ctṼ
(4)
LS2(r) =

1

r2
f̃

(2)
ct (r)− 1

r3
f̃

(1)
ct (r) , (2.34)

ctṼ
(4)
LL (r) =

1

r2
f̃

(2)
ct (r)− 1

r3
f̃

(1)
ct (r) , (2.35)

where from the Fourier transforms of Eqs. (2.29) and (2.29) we retained only the local

terms [10].

2.5 Charge dependence

This is to summarize what charge-dependence we include. Through all orders, we take the

charge-dependence of the 1PE due to pion-mass splitting into account, Eqs. (A.10) - (A.13).

Charge-dependence is seen most prominently in the 1S0 state at low energies, particularly,

in the 1S0 scattering lengths. Charge-dependent 1PE cannot explain it all. The remainder

is accounted for by treating the LO contact parameters in a charge-dependent way (see
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Table B.1, below). In all 2PE contributions, we apply the average pion mass, m̄π. For pp

scattering at any order, we include the relativistic Coulomb potential [27, 28]. We omit

irreducible π-γ exchange [29], which would affect the N3LO np potential. We take nucleon-

mass splitting into account by using Mp in pp scattering, Mn in nn scattering, and M̄N in

np scattering (see Table 2.2 for their precise values).

For a comprehensive discussion of all possible sources of charge-dependence of the NN

interaction, see Ref. [2].

2.6 The full potential

The full NN potential is the sum of the long- and the short-range potentials. Order by

order, this results into:

Ṽ LO = Ṽ
(0)

1π + Ṽ
(0)

ct , (2.36)

Ṽ NLO = Ṽ LO + Ṽ
(2)

2π + Ṽ
(2)

ct , (2.37)

Ṽ NNLO = Ṽ NLO + Ṽ
(3)

2π , (2.38)

Ṽ N3LO = Ṽ NNLO + Ṽ
(4)

2π + Ṽ
(4)

ct , (2.39)

where we note again that we add to Ṽ
(4)

2π the 1/MN corrections of Ṽ
(3)

2π . This correction

is proportional to ci/MN and appears nominally at fifth order, but we include it at fourth

order for the reasons discussed. The explicit mathematical expressions for Ṽ
(0)

1π are given

in Appendix A.1, for Ṽ
(2)

2π in Appendix A.2, for Ṽ
(3)

2π in Appendix A.3, and for Ṽ
(4)

2π in

Appendices A.4 and A.5.
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2.7 Regularization

All pion-exchange potentials, Ṽπ(r), are singular at the origin and, thus, need regularization.

For this purpose, we multiply the Ṽ
(0)

1π (r) potential with the regulator function

f̃1π(r) = 1− exp

[
−
(
r

Rπ

)2n
]

(2.40)

and all Ṽ
(ν)

2π (r) (ν = 2, 3, 4) with

f̃2π(r) =

[
1− exp

(
− r2

R2
π

)]n
(2.41)

using n = 5. Note that n = 4 is the minimum required for Ṽ
(4)

2π . As stated in Sec. 2.4, the

regulator of the contacts is

f̃ct(r) =
1

π3/2R3
ct

e−(r/Rct)2 . (2.42)
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CHAPTER 3

NN scattering and the deuteron

Based upon the formalism presented in the previous section, we have constructed NN

potentials at four different orders, namely, LO, NLO, NNLO, and N3LO, cf. Sec. 2.6. At each

order, we apply three different cutoff combinations (Rπ, Rct), see Sec. 2.7 for their definitions.

Specifically, we use the combinations (1.0, 0.70) fm, (1.1, 0.72) fm, and (1.2, 0.75) fm. Since

we take charge dependence into account, each NN potential comes in three versions: pp,

np, and nn. In this section, we will present the predictions from these potentials for NN

scattering and the deuteron.

3.1 NN scattering

The free (fit) parameters of our theory are the coefficients of the contact terms presented

in Sec. 2.4. The other set of parameters involved in NN potential construction are the πN

LECs. We apply the ones from the very accurate Roy-Steiner analysis of Ref. [21] given in

Table 2.1. We use the central values and, thus, the πN LECs are precisely fixed from the

outset and no fit parameters.

Fitting proceeds in two steps. First we fit phase shifts, where the adjustment is done

to the Nijmegen multi-energy analysis [30], which we perceive as the most reliable one. In

the second step, the potential predictions are confronted with the experimental NN data—

calculating the χ2 as follows.

The experimental data are broken up into groups (sets) of data, A, with NA data points

and an experimental over-all normalization uncertainty ∆nexpA . For datum i, xexpi is the ex-

perimental value, ∆xexpi the experimental uncertainty, and xmodi the model prediction. When

fitting the data of group A by a model (or a phase shift solution), the over-all normalization,

nmodA , is floated and finally chosen such as to minimize the χ2 for this group. The χ2 is then
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Figure 3.1: (Color online). Chiral expansion of neutron-proton scattering as represented by
the phase parameters for J ≤ 2. Four orders ranging from LO to N3LO are shown as denoted.
The cutoff combination (Rπ, Rct) = (1.0, 0.70) fm is applied in all cases. The filled and open
circles represent the results from the Nijmegen multi-energy np phase-shift analysis [30] and
the GWU single-energy np analysis SP07 [34], respectively.

calculated from [28]

χ2 =
∑
A

{
NA∑
i=1

[
nmodA xmodi − xexpi

∆xexpi

]2

+

[
nmodA − 1

∆nexpA

]2
}

; (3.1)

that is, the over-all normalization of a group is treated as an additional datum. For groups

of data without normalization uncertainty (∆nexpA = 0), nmodA = 1 is used and the second

term on the r.h.s. of Eq. (3.1) is dropped. The total number of data is

Ndat = Nobs +Nne (3.2)

where Nobs denotes the total number of measured data points (observables), i. e., Nobs =
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Table 3.1: χ2/datum for the fit of the 2016 NN database [20] by NN potentials at various
orders of chiral EFT applying the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm.

Tlab bin (MeV) No. of data LO NLO NNLO N3LO

proton-proton
0–100 795 433 1.85 2.64 1.32
0–190 1206 363 4.60 7.84 1.33

neutron-proton
0–100 1180 211 1.58 2.34 1.59
0–190 1697 157 15.03 10.19 1.53

pp plus np
0–100 1975 300 1.68 2.45 1.48
0–190 2903 243 10.74 9.23 1.45

∑
ANA; and Nne is the number of experimental normalization uncertainties. We state results

in terms of χ2/Ndat ≡ χ2/datum, where we use for the experimental NN data the “2016

database” defined in Ref. [20].

Each of the two steps described above, is done in two parts. In part one, we adjust the

pp potential, which fixes the T = 1 partial waves (where T denotes the total isospin of the

two-nucleon system). In part two, the charge-dependence described in Sec. 2.5 is applied to

obtain the np T = 1 phase shifts from the pp ones. The np T = 0 partial-waves are then

pinned down by first fitting phase shifts and, after that, minimizing the χ2 in regard to the

np data. During this last step, we allowed for minor changes of the T = 1 parameters (which

also modifies the pp potential) to obtain an even lower overall χ2. For more details on the

NN database and the fitting procedure, see Ref. [20].

The nn potential is obtained by starting from the pp version, replacing the proton mass

by the neutron mass, leaving out Coulomb, and adjusting the zeroth-order contacts such as

to reproduce the empirical nn 1S0 scattering length of –18.95 fm [31, 32].

The contact LECs that result from our best fits at N3LO are tabulated in Appendix B.

The χ2/datum for the reproduction of the NN data at various orders of chiral EFT are

shown in Table 3.1 for different energy intervals below 190 MeV laboratory energy (Tlab).

The bottom line of Table 3.1 summarizes the essential results in short form. For the close
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Table 3.2: Scattering lengths (a) and effective ranges (r) in units of fm as predicted by
NN potentials at various orders of chiral EFT applying the cutoff combination (Rπ, Rct) =
(1.0, 0.70) fm. (aCpp and rCpp refer to the pp parameters in the presence of the Coulomb
force. aN and rN denote parameters determined from the nuclear force only and with all
electromagnetic effects omitted.) aNnn, and anp are fitted, all other quantities are predictions.

LO NLO NNLO N3LO Empirical
1S0

aCpp –7.8161 –7.8134 –7.8147 –7.8135 –7.8196(26) [28]
–7.8149(29) [37]

rCpp 2.009 2.715 2.764 2.748 2.790(14) [28]
2.769(14) [37]

aNpp — –17.364 –17.466 –17.391 —
rNpp — 2.788 2.834 2.818 —
aNnn –18.950 –18.950 –18.950 –18.950 –18.95(40) [31, 32]
rNnn 1.985 2.761 2.807 2.790 2.75(11) [38]
anp –23.738 –23.738 –23.738 –23.738 –23.740(20) [36]
rnp 1.888 2.653 2.695 2.679 [2.77(5)] [36]

3S1

at 5.299 5.414 5.413 5.420 5.419(7) [36]
rt 1.586 1.750 1.747 1.756 1.753(8) [36]

to 3000 pp plus np data below 190 MeV, the χ2/datum is 10.7 at NLO and 9.2 at NNLO.

Note that the number of NN contact terms is the same for both orders. When moving on

to N3LO, 14 more contacts are added [Eq. (2.30)] that affect, in particular, the the 1D2 and

3D2 waves, which typically come out far too attractive at NLO and NNLO (Fig. 3.1). This

improves the χ2/datum to 1.45 at N3LO, a respectable value.

All np phase shifts up to J = 2 and Tlab = 200 MeV are displayed in Fig. 3.1, which

reflect what just has been discussed in the context of the the χ2.

For order N3LO and cutoff combination (Rπ, Rct) = (1.0, 0.70) fm, we provide the nu-

merical values for the phase shifts in Appendix C. Our pp phase shifts are the phase shifts

of the nuclear plus relativistic Coulomb interaction with respect to Coulomb wave functions.

Note, however, that for the calculation of observables (e.g., to obtain the χ2 in regard to

experimental data), we use electromagnetic phase shifts (as necessary), which we obtain by
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adding to the Coulomb phase shifts the effects from two-photon exchange, vacuum polariza-

tion, and magnetic moment interactions as calculated by the Nijmegen group [28, 35]. This

is important for 1S0 below 30 MeV and negligible otherwise. For nn and np scattering, our

phase shifts are the ones from the nuclear interaction with respect to Riccati-Bessel func-

tions. The technical details of our phase shift calculations can be found in Appendix A3 of

Ref. [36].

The low-energy scattering parameters, order by order for the cutoff combination (Rπ, Rct) =

(1.0, 0.70) fm, are shown in Table 3.2. For nn and np, the effective range expansion without

any electromagnetic interaction is used. In the case of pp scattering, the quantities aCpp and

rCpp are obtained by using the effective range expansion appropriate in the presence of the

Coulomb force (cf. Appendix A4 of Ref. [36]). Note that the empirical values for aCpp and

rCpp in Table 3.2 were obtained by subtracting from the corresponding electromagnetic values

the effects due to two-photon exchange and vacuum polarization. Thus, the comparison

between theory and experiment for these two quantities is conducted correctly. aNnn, and anp

are fitted, all other quantities are predictions. Note that the 3S1 effective range parameters

at and rt are not fitted. But the deuteron binding energy is fitted (cf. next subsection) and

that essentially fixes at and rt.

3.2 The deuteron and triton

The evolution of the deuteron properties from LO to N3LO of chiral EFT are shown in

Table 3.3. In all cases, we fit the deuteron binding energy to its empirical value of 2.224575

MeV using the LO contact parameters. All other deuteron properties are predictions. At

NLO, the empirical deuteron properties are already well reproduced.

At the bottom of Table 3.3, we also show the predictions for the triton binding as obtained

in 34-channel charge-dependent Faddeev calculations using only 2NFs. The result is around

8.1 MeV at N3LO. This contribution from the 2NF will require only a moderate 3NF. The

relatively low deuteron D-state probabilities (≈ 4% at N3LO) and the concomitant generous
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Table 3.3: Two- and three-nucleon bound-state properties as predicted by NN potentials
at various orders of chiral EFT applying the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm.
(Deuteron: Binding energy Bd, asymptotic S state AS, asymptotic D/S state η, quadrupole
moment Q, D-state probability PD; the prediction for Q is without meson-exchange current
contributions and relativistic corrections. Triton: Binding energy Bt.) Bd is fitted, all other
quantities are predictions.

LO NLO NNLO N3LO Empiricala

Deuteron
Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575(9)

AS (fm−1/2) 0.8613 0.8833 0.8836 0.8852 0.8846(9)
η 0.0254 0.0259 0.0252 0.0242 0.0256(4)
Q (fm2) 0.264 0.284 0.274 0.260 0.2859(3)
PD (%) 5.08 5.67 5.02 4.03 —

Triton
Bt (MeV) 11.92 7.87 7.98 8.09 8.48

aSee Table XVIII of Ref. [36] for references.

triton binding energy predictions are a reflection of the fact that our NN potentials have

a weaker tensor force than commonly used local position-space potentials. This can also

be seen in the predictions for the ε1 mixing parameter that is a measure for the strength

of the mixing of the 3S1 and 3D1 states due to the tensor force. Our predictions for ε1 at

NNLO and N3LO are on the lower side for lab. energies above 100 MeV (Fig. 3.1). However,

there is agreement with the GWU analysis [34] at 100 MeV. Note that the average relative

momentum in nuclear matter at normal density is equivalent to Tlab ≈ 50 MeV. Thus, the

properties of NN potentials for Tlab
<∼ 100 MeV are the most important ones for nuclear

structure applications. The discrepancies between the Nijmegen [30] and the GWU [34]

analyses for ε1 may be seen as an indication that this parameter is not as well determined

as the uncertainties quoted in the various analyses suggest. The χ2/datum of our N3LO

potential is 1.45, which is a typical value achieved in the GWU phase shift analysis. Thus,

our N3LO phase shift predictions, including the one for ε1, is consistent with the NN data

up to 190 MeV and may be viewed as an alternative phase shift analysis.
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Table 3.4: χ2/datum for the fit of the pp plus np data up to 100 MeV and two- and three-
nucleon bound-state properties as produced by NN potentials at NNLO and N3LO with
the cutoff combinations (Rπ, Rct) = (1.2, 0.75) fm, (1.1, 0.72) fm, and (1.0, 0.70) fm. In
the column headings, we use the Rπ value to identify the different cases. For some of the
notation, see Table 3.3, where also empirical information on the deuteron and triton can be
found.

NNLO N3LO
Rπ = 1.2 fm 1.1 fm 1.0 fm Rπ = 1.2 fm 1.1 fm 1.0 fm

χ2/datum pp & np
0–100 MeV (1975 data) 2.75 2.39 2.45 1.75 1.56 1.48

Deuteron
Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575

AS (fm−1/2) 0.8862 0.8835 0.8836 0.8842 0.8851 0.8852
η 0.0244 0.0246 0.0252 0.0234 0.0239 0.0242
Q (fm2) 0.263 0.265 0.274 0.248 0.255 0.260
PD (%) 3.98 4.27 5.02 3.22 3.65 4.03

Triton
Bt (MeV) 8.31 8.25 7.98 8.40 8.18 8.09

3.3 Cutoff variantions

As noted before, besides the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm, we have also

constructed potentials with the combinations (1.1, 0.72) fm, and (1.2, 0.75) fm, to allow

for systematic studies of the cutoff dependence. In Fig. 3.2, we display the variations of

the np phase shifts for different cutoffs at NNLO (left half of figure, green curves) and at

N3LO (right half of figure, red curves). Fig. 3.2 demonstrates nicely how cutoff dependence

diminishes with increasing order—a reasonable trend. Another point that is evident from

this figure is that (1.2, 0.75) fm should be considered as an upper limit for cutoffs, because

obviously cutoff artifacts start showing up.

In Table 3.4, we show the cutoff dependence for three selected aspects that are of great

interest: the χ2 for the fit of the NN data below 100 MeV, the deuteron properties, and the

triton binding energy. The χ2 does not change substantially as a function of cutoff. Thus, we

can make the interesting observation that the reproduction of NN observables is not much

affected by the cutoff variations. However, the D-state probability of the deuteron, PD,
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which is not an observable, changes substantially as a function of cutoff. As discussed, PD

is intimately related to the strength of the tensor force of a potential and so are the binding

energies of few-body systems. In particular, the cutoff combination (Rπ, Rct) = (1.1, 0.72) fm

and (1.2, 0.75) fm at NNLO as well as N3LO generate the substantial triton binding energies

between 8.20 and 8.40 MeV and, therefore, differ significantly from other local position-space

potentials that are commonly in use. On these grounds one can expect that results for light

and intermediate-mass nuclei may differ considerably when applying our potentials in ab

initio calculations. It will be interesting to see if this may solve some of the problems that

some ab initio calculations with local potentials are currently beset with.
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Figure 3.2: (Color online). Cutoff variations of the np phase shifts at NNLO (left side, green
lines) and N3LO (right side, red lines). Solid, dashed, and dotted lines represent the results
obtained with the cutoff combinations (Rπ, Rct) = (1.0, 0.70) fm, (1.1, 0.72) fm, and (1.2,
0.75) fm, respectively, as also indicated by the curve labels which state the Rπ value. Filled
and open circles as in Fig. 3.1.
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CHAPTER 4

Uncertainty quantifications

In ab initio calculations applying chiral two- and many-body forces, major sources of

uncertainties are [39]:

1. Experimental errors of the input NN data that the 2NFs are based upon and the input

few-nucleon data to which the 3NFs are adjusted.

2. Uncertainties in the Hamiltonian due to

(a) uncertainties in the determination of the NN and 3N contact LECs,

(b) uncertainties in the πN LECs,

(c) regulator dependence,

(d) EFT truncation error.

3. Uncertainties associated with the few- and many-body methods applied.

The experimental errors in the NN scattering and deuteron data propagate into the

NN potentials that are adjusted to reproduce those data. To systematically investigate

this error propagation, the Granada group has constructed smooth local potentials [40], the

parameters of which carry the uncertainties implied by the errors in the NN data. Applying

205 Monte Carlo samples of these potentials, they find an uncertainty of 15 keV for the

triton binding energy [41]. In a more recent study [42], in which only 33 Monte Carlo

samples were used, the Granada group reproduced the uncertainty of 15 keV for the triton

binding energy and, in addition, determined the uncertainty for the 4He binding energy

to be 55 keV. The conclusion is that the statistical error propagation from the NN input

data to the binding energies of light nuclei is negligible as compared to uncertainties from

other sources (discussed below). Thus, this source of error can be safely neglected at this

time. Furthermore, we need to consider the propagation of experimental errors from the

experimental few-nucleon data that the 3NF contact terms are fitted to. Also this will be
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negligible as long as the 3NFs are adjusted to data with very small experimental errors; for

example the empirical binding energy of the triton is 8.481795 ± 0.000002 MeV, which will

definitely lead to negligible propagation.

Now turning to the Hamiltoninan, we have to, first, account for uncertainties in the NN

and 3N LECs due to the way they are fixed. Based upon our experiences from Ref. [43] and

the fact that chiral EFT is a low-energy expansion, we have fitted the NN contact LECs to

the NN data below 100 MeV at LO and NLO and below 190 MeV at NNLO and N3LO. One

could think of choosing these fit-intervals slightly different and a systematic investigation of

the impact of such variation on the NN LECs is still outstanding. However, we do not

anticipate that large uncertainties would emerge from this source of error.

The story is different for the 3NF contact LECs, since several, very different procedures

are in use for how to fix them. The 3NF at NNLO has two free parameters (known as

the cD and cE parameters). To fix them, two data are needed. In most procedures, one

of them is the triton binding energy. For the second datum, the following choices have

been made: the nd doublet scattering length 2and [44], the binding energy of 4He [45],

the point charge radius radius of 4He [46], the Gamow-Teller matrix element of tritium β-

decay [47, 48, 49]. Alternatively, the cD and cE parameters have also been pinned down by

just an optimal over-all fit of the properties of light nuclei [50]. 3NF contact LECs determined

by different procedures will lead to different predictions for the observables that were not

involved in the fitting procedure. The differences in those results establish the uncertainty.

Specifically, it would be of interest to investigate the differences that occur for the properties

of intermediate-mass nuclei and nuclear matter when 3NF LECs fixed by different protocols

are applied.

The uncertainty in the πN LECs used to be a large source of uncertainty, in particular,

for predictions for many-body systems [51, 52, 53]. With the new, high-precision determi-

nation of the πN LECs in the Roy-Steiner equations analysis [21] (cf. Table 2.1) this large

uncertainty is essentially eliminated, which is great progress, since it substantially reduces



28

the error budget. We have varied the πN LECs within the errors given in Table 2.1 and find

that the changes caused by these variations can easily be compensated by small readjust-

ments of the NN LECs resulting in essentially identical phase shifts and χ2 for the fit of the

data. Thus, this source of error is essentially negligible. The πN LECs also appear in the

3NFs, which also include contacts that can be used for readjustment. Future calculations of

finite nuclei and nuclear matter should investigate what residual changes remain after such

readjustment (that would represent the uncertainty). We expect this to be small.

The choice of the regulator function and its cutoff parameter create uncertainty. Origi-

nally, cutoff variations were perceived as a demonstration of the uncertainty at a given order

(equivalent to the truncation error). However, in various investigations [18, 19] it has been

demonstrated that this is not correct and that cutoff variations, in general, underestimate

this uncertainty. Therefore, the truncation error is better determined by sticking literally

to what ‘truncation error’ means, namely, the error due to omitting the contributions from

orders beyond the given order ν. The largest such contribution is the one of order (ν + 1),

which one may, therefore, consider as representative for the magnitude of what is left out.

This suggests that the truncation error at order ν can reasonably be defined as

∆Xν(p) = |Xν(p)−Xν+1(p)| , (4.1)

where Xν(p) denotes the prediction for observable X at order ν and momentum p. If Xν+1

is not available, then one may use,

∆Xν(p) = |Xν−1(p)−Xν(p)|Q , (4.2)

with the expansion parameter Q chosen as

Q = max

{
mπ

Λb

,
p

Λb

}
, (4.3)
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where p is the characteristic center-of-mass (cms) momentum scale and Λb the breakdown

scale.

Alternatively, one may also apply the more elaborate scheme suggested in Ref. [19] where

the truncation error at, e.g., N3LO is calculated in the following way:

∆XN3LO(p) = max

{
Q5 ×

∣∣XLO(p)
∣∣, Q3 ×

∣∣XLO(p)−XNLO(p)
∣∣,

Q2 ×
∣∣XNLO(p)−XNNLO(p)

∣∣, Q×
∣∣XNNLO(p)−XN3LO(p)

∣∣} , (4.4)

with XN3LO(p) denoting the N3LO prediction for observable X(p), etc.

Note that one should not add up (in quadrature) the uncertainties due to regulator

dependence and the truncation error, because they are not independent. In fact, it is appro-

priate to leave out the uncertainty due to regulator dependence entirely and just focus on

the truncation error [19]. The latter should be estimated using the same cutoff in all orders

considered.

Finally, the last uncertainty to be taken into account is the uncertainty in the few- and

many-body methods applied in the ab initio calculation. This source of error has nothing

to do with EFT. Few-body problems are nowadays exactly solvable such that the error

is negligible in those cases. For heavier nuclei and nuclear matter, there are definitely

uncertainties no matter what method is used. These uncertainties need to be estimated by

the practitioners of those methods. But with the improvements of algoriths and the increase

of computing power these errors are decreasing.

The bottom line is that the most substantial uncertainty is the truncation error. This

is the dominant source of (systematic) error that should be carefully estimated for any

calculation applying chiral 2NFs and 3NFs up to a given order.
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CHAPTER 5

Summary and Conclusions

We have constructed local, position-space chiral NN potentials through four orders

of chiral EFT ranging from LO to N3LO. The construction may be perceived as consistent,

because the same power counting scheme as well as the same cutoff procedures are applied in

all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate

πN LECs as determined in the Roy-Steiner equations analysis of Ref. [21]. In fact, the

uncertainties of these LECs are so small that a variation within the errors leads to effects

that are essentially negligible at the current level of precision. Another aspect that has to

do with precision is that, at least at the highest order (N3LO), the NN data below 190 MeV

laboratory energy are reproduced with the respectable χ2/datum of 1.45.

The NN potentials presented in this thesis may serve as a solid basis for systematic ab

initio calculations of nuclear structure and reactions that allow for a comprehensive error

analysis. In particular, the order by order development of the potentials will make possible

a reliable determination of the truncation error at each order.

Our new family of local position-space potentials differs from the already available po-

tentials of this kind [9, 10, 11] by a weaker tensor force as reflected in relatively low D-state

probabilities of the deuteron (PD
<∼ 4.0 % for our N3LO potentials) and predictions for the

triton binding energy above 8.00 MeV (from two-body forces alone). As a consequence, our

potentials will also lead to different predictions when applied to light and intermediate-mass

nuclei in ab initio calculations. It will be interesting to see if this will help solving some of

the outstanding problems in microscopic nuclear structure.
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APPENDIX A

The long-range NN potential

For each order, we will state, first, the momentum-space functions and then the correspond-

ing position-space potentials as obtained by Fourier transform. Note that all long-range

potentials are local.

In momentum space, we use the following notation for the decomposition of the long-

range potential,

Vπ(~p ′, ~p) = VC(q) + τ1 · τ2WC(q)

+ [VS(q) + τ1 · τ2WS(q) ] ~σ1 · ~σ2

+ [VT (q) + τ1 · τ2WT (q) ] ~σ1 · ~q ~σ2 · ~q

+ [VLS(q) + τ1 · τ2WLS(q)]
(
−i~S · (~q × ~k)

)
. (A.1)

For notation, see Sec. 2.4. The position-space potential is represented as follows:

Ṽπ(~r) = ṼC(r) + τ1 · τ2 W̃C(r)

+
[
ṼS(r) + τ1 · τ2 W̃S(r)

]
~σ1 · ~σ2

+
[
ṼT (r) + τ1 · τ2 W̃T (r)

]
S12(r̂)

+
[
ṼLS(r) + τ1 · τ2 W̃LS(r)

]
~L · ~S , (A.2)

where the operator for total orbital angular momentum is denoted by ~L.

The 2PE potentials in spectral representation are given in momentum space by

VC,S(q) = −2q6

π

∫ ∞
2mπ

dµ
ImVC,S(iµ)

µ5(µ2 + q2)
,

VT,LS(q) =
2q4

π

∫ ∞
2mπ

dµ
ImVT,LS(iµ)

µ3(µ2 + q2)
, (A.3)
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LO
(Q/Λχ)0

NLO
(Q/Λχ)2

NNLO
(Q/Λχ)3

Figure A.1: LO, NLO, and NNLO pion-exchange contributions to the NN interaction.
Notation as in Fig. 2.1.

and similarly for WC,S,T,LS. Their Fourier transforms are

ṼC(r) =
1

2π2r

∫ ∞
2mπ

dµµe−µrImVC(iµ) ,

ṼS(r) = − 1

6π2r

∫ ∞
2mπ

dµµe−µr
[
µ2ImVT (iµ)− 3ImVS(iµ)

]
,

ṼT (r) = − 1

6π2r3

∫ ∞
2mπ

dµµe−µr(3 + 3µr + µ2r2)ImVT (iµ) ,

ṼLS(r) =
1

2π2r3

∫ ∞
2mπ

dµµe−µr(1 + µr)ImVLS(iµ) , (A.4)

and similarly for W̃C,S,T,LS.

A.1 Leading order

At leading order, only 1PE contributes to the long range, cf. Fig. A.1. The charge-independent

1PE is given in momentum space by

WT (q) = − g2
A

4f 2
π

1

q2 +m2
π

, (A.5)
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where gA, fπ, and mπ denote the axial-vector coupling constant, pion-decay constant, and

the pion mass, respectively. See Table 2.2 for their values. Fourier transform yields:

W̃S(r) =
g2
Am

2
π

48πf 2
π

e−x

r
, (A.6)

W̃T (r) =
g2
A

48πf 2
π

e−x

r3
(3 + 3x+ x2) , (A.7)

with x = mπr.

For the NN potentials constructed in this thesis, we take the charge-dependence of the

1PE due to pion-mass splitting into account. For this, we define:

ṼS(mπ) =
g2
Am

2
π

48πf 2
π

e−x

r
, (A.8)

ṼT (mπ) =
g2
A

48πf 2
π

e−x

r3
(3 + 3x+ x2) . (A.9)

The proton-proton (pp) and neutron-neutron (nn) potentials are then given by:

Ṽ
(pp)
S (r) = Ṽ

(nn)
S (r) = ṼS(mπ0) , (A.10)

Ṽ
(pp)
T (r) = Ṽ

(nn)
T (r) = ṼT (mπ0) , (A.11)

and the neutron-proton (np) potentials are:

Ṽ
(np)
S (r) = −ṼS(mπ0) + (−1)T+1 2 ṼS(mπ±) , (A.12)

Ṽ
(np)
T (r) = −ṼT (mπ0) + (−1)T+1 2 ṼT (mπ±) , (A.13)

where T = 0, 1 denotes the total isospin of the two-nucleon system. See Table 2.2 for the

precise values of the pion masses. Formally speaking, the charge-dependence of the 1PE

exchange is of order NLO [2], but we include it also at leading order to make the comparison

with the (charge-dependent) phase-shift analyses meaningful.
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A.2 Next-to-leading order

The 2PE NN diagrams that occur at NLO (cf. Fig. A.1) contribute—in momentum space—

in the following way [56]:

WC(q) =
L(q)

384π2f 4
π

[
4m2

π(1 + 4g2
A − 5g4

A) + q2(1 + 10g2
A − 23g4

A)− 48g4
Am

4
π

w2

]
,(A.14)

VT (q) = − 1

q2
VS(q) = − 3g4

A

64π2f 4
π

L(q) , (A.15)

with the logarithmic loop function

L(q) =
w

q
ln
w + q

2mπ

(A.16)

and w =
√

4m2
π + q2. Note that we apply dimensional renormalization for all loop diagrams.

Moreover, in all 2PE contributions, we use the average pion-mass, i. e., mπ = m̄π (cf.

Table 2.2).

These expressions imply the spectral functions

ImWC(iµ) = − 1

768πf 4
π

√
µ2 − 4m2

π

µ

[
4m2

π(1 + 4g2
A − 5g4

A)

−µ2(1 + 10g2
A − 23g4

A)− 48g4
Am

4
π

4m2
π − µ2

]
, (A.17)

ImVT (iµ) =
1

µ2
ImVS(iµ) =

3g4
A

128πf 4
π

√
µ2 − 4m2

π

µ
. (A.18)
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Via Fourier transform, Eq. (A.4), the equivalent position-space potentials are:

W̃C(r) =
mπ

128π3f 4
π

1

r4

{[
1 + 2g2

A(5 + 2x2)− g4
A(23 + 12x2)

]
K1(2x)

+x
[
1 + 10g2

A − g4
A(23 + 4x2)

]
K0(2x)

}
, (A.19)

ṼS(r) =
g4
Amπ

32π3f 4
π

1

r4

[
3xK0(2x) + (3 + 2x2)K1(2x)

]
, (A.20)

ṼT (r) = − g4
Amπ

128π3f 4
π

1

r4

[
12xK0(2x) + (15 + 4x2)K1(2x)

]
, (A.21)

where K0 and K1 denote the modified Bessel functions.

A.3 Next-to-next-to-leading order

The 2PE NNLO contribution (cf. Fig. A.1) is given by [56]:

VC =
3g2

A

16πf 4
π

[
2m2

π(c3 − 2c1) + c3q
2
]

(2m2
π + q2)A(q) , (A.22)

WT = − 1

q2
WS = − g2

A

32πf 4
π

c4w
2A(q) , (A.23)

with the loop function

A(q) =
1

2q
arctan

q

2mπ

. (A.24)

The associated spectral functions are

ImVC(iµ) =
3g2

A

64µf 4
π

[
2m2

π(c3 − 2c1)− c3µ
2
]

(2m2
π − µ2) , (A.25)

ImWT (iµ) =
1

µ2
ImWS(iµ) = − g2

A

128µf 4
π

c4(4m2
π − µ2) ; (A.26)
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which, by way of Eq. (A.4), yield the position-space expressions

ṼC(r) =
3g2

A

32π2f 4
π

e−2x

r6

[
2c1x

2(1 + x)2 + c3(6 + 12x+ 10x2 + 4x3 + x4)
]
, (A.27)

W̃S(r) =
g2
A

48π2f 4
π

e−2x

r6
c4(1 + x)(3 + 3x+ 2x2) , (A.28)

W̃T (r) = − g2
A

48π2f 4
π

e−2x

r6
c4(1 + x)(3 + 3x+ x2) . (A.29)
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(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

Figure A.2: Two-pion exchange contributions at N3LO with (a) the N3LO football diagram,
(b) the leading 2PE two-loop contributions, and (c) the leading relativistic corrections. Basic
notation as in Fig. 2.1. The shaded disc stands for all one-loop πN graphs as illustrated.
Open circles are relativistic 1/MN corrections.
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A.4 Next-to-next-to-next-to-leading order

A.4.1 Football diagram at N3LO

The N3LO football diagram, Fig. A.2(a), generates [57]:

Momentum-space potentials:

VC(q) =
3L(q)

16π2f 4
π

[(
c2

6
w2 + c3(2m2

π + q2)− 4c1m
2
π

)2

+
c2

2

45
w4

]
, (A.30)

WT (q) = − 1

q2
WS(q) =

c2
4w

2 L(q)

96 π2f 4
π

. (A.31)

Spectral functions:

ImVC(iµ) = − 3

32πf 4
π

√
µ2 − 4m2

π

µ

[(
c2

6
(4m2

π − µ2) + c3(2m2
π − µ2)

−4c1m
2
π

)2

+
c2

2

45
(4m2

π − µ2)2

]
, (A.32)

ImWT (iµ) =
1

µ2
ImWS(iµ) =

c2
4

192πf 4
π

(µ2 − 4m2
π)3/2

µ
. (A.33)

Position-space potentials:

ṼC(r) = − 3m7
π

32π3f 4
π

1

x5

[ (
3c2

2 + 20c2c3 + 60c2
3 + 4(2c1 + c3)2x2

)
xK1(2x)

+2

(
3c2

2 + 20c2c3 + 60c2
3 + 2(2c1 + c3)

×(c2 + 6c3)x2

)
K2(2x)

]
, (A.34)

W̃S(r) =
c2

4m
7
π

24π3f 4
π

1

x4

[
2xK2(2x) + 5K3(2x)

]
, (A.35)

W̃T (r) = − c2
4m

7
π

96π3f 4
π

1

x5

[
(3 + 4x2)K2(2x) + 16xK3(2x)

]
, (A.36)

where K2(z) = K0(z) + 2
z
K1(z) and K3(z) = K1(z) + 4

z
K2(z) = 4

z
K0(z) + ( 8

z2
+ 1)K1(z).
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A.4.2 Leading 2PE two-loop diagrams

The leading-order 2π-exchange two-loop diagrams are shown in Fig. A.2(b). The various

contributions are [57]:

Isoscalar central potential:

Spectral functions:

ImV
(a)
C (iµ) = −3g4

A(µ2 − 2m2
π)

πµ(4fπ)6

{
(m2

π − 2µ2)2mπ

+4g2
Amπ(2m2

π − µ2)

}
, (A.37)

ImV
(b)
C (iµ) = −3g4

A(µ2 − 2m2
π)

πµ(4fπ)6
(m2

π − 2µ2)
2m2

π − µ2

2µ
ln
µ+ 2mπ

µ− 2mπ

. (A.38)

Position-space potentials:

Ṽ
(a)
C (r) =

3m7
πg

4
A

2048π3f 6
π

e−2x

x6

{
24 + 48x+ 43x2 + 22x3 + 7x4

+4g2
A(6 + 12x+ 10x2 + 4x3 + x4)

}
, (A.39)

Ṽ
(b)
C (r) = − 3m7

πg
4
A

8192π3f 6
π

e−2x

x7

{
(120 + 240x+ 213x2

+106x3 + 32x4 + 8x5)(ln(4x) + γE)

−(120− 240x+ 213x2 − 106x3 + 32x4 − 8x5)e4xEi(−4x)

−4x(96 + 72x+ 38x2 + 7x3)

}
+

3m7
πg

4
A

4096π3f 6
π

Ī−1(2x)

x
, (A.40)

where Ei(−z) denotes the exponential integral function defined by

Ei(−z) = −
∫ ∞
z

dt
e−t

t
, (A.41)

and

Ī−1(z) =

∫ ∞
1

dt
e−zt

t
ln

(
t+ 1

t− 1

)
. (A.42)
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The double precision value for Euler’s constant is γE = 0.5772156649015329.

Isovector central potential:

Spectral functions:

ImW
(a)
C (iµ) = − 2κ

3µ(8πf 2
π)3

∫ 1

0

dz
[
g2
A(2m2

π − µ2) + 2(g2
A − 1)κ2z2

]
×
{[

4m2
π(1 + 2g2

A)− µ2(1 + 5g2
A)
] κ
µ

ln
µ+ 2κ

2mπ

+
µ2

12
(5 + 13g2

A)

−2m2
π(1 + 2g2

A) + 96π2f 2
π

[
(2m2

π − µ2)(d̄1 + d̄2)− 2κ2z2d̄3 + 4m2
πd̄5

]}
= − 2κ

3µ(8πf 2
π)3

[
g2
A(2m2

π − µ2) +
2

3
(g2
A − 1)κ2

]
×
{[

4m2
π(1 + 2g2

A)− µ2(1 + 5g2
A)
] κ
µ

ln
µ+ 2κ

2mπ

+
µ2

12
(5 + 13g2

A)

−2m2
π(1 + 2g2

A) + 96π2f 2
π

[
(2m2

π − µ2)(d̄1 + d̄2) + 4m2
πd̄5

]}
− κ3

µ4πf 4
π

[
1

3
g2
A(2m2

π − µ2) +
2

5
(g2
A − 1)κ2

]
d̄3 , (A.43)

ImW
(b)
C (iµ) = − 2κ

3µ(8πf 2
π)3

∫ 1

0

dz

[
g2
A(2m2

π − µ2) + 2(g2
A − 1)κ2z2

]
×
{
− 3κ2z2 + 6κz

√
m2
π + κ2z2 ln

κz +
√
m2
π + κ2z2

mπ

+

g4
A(µ2 − 2κ2z2 − 2m2

π)

[
5

6
+

m2
π

κ2z2
−
(

1 +
m2
π

κ2z2

)3/2

× ln
κz +

√
m2
π + κ2z2

mπ

]}
, (A.44)

with κ =
√
µ2/4−m2

π.

In Ref. [16] it was found that the contribution from W
(b)
C is negligible. Therefore, we
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include only W
(a)
C , which we divide it into three parts:

ImW
(a1)
C (iµ) = − 2κ

3µ(8πf 2
π)3

[
g2
A(2m2

π − µ2) +
2

3
(g2
A − 1)κ2

]
×
[
4m2

π(1 + 2g2
A)− µ2(1 + 5g2

A)
] κ
µ

ln
µ+ 2κ

2mπ

, (A.45)

ImW
(a2)
C (iµ) = − 2κ

3µ(8πf 2
π)3

[
g2
A(2m2

π − µ2) +
2

3
(g2
A − 1)κ2

]
×
{
µ2

12
(5 + 13g2

A)− 2m2
π(1 + 2g2

A) + 96π2f 2
π

[
(2m2

π − µ2)

×(d̄1 + d̄2) + 4m2
πd̄5

]}
, (A.46)

ImW
(a3)
C (iµ) =

κ3

µ4πf 4
π

[
1

3
g2
A(2m2

π − µ2) +
2

5
(g2
A − 1)κ2

]
d̄3 , (A.47)

Position-space potentials:

W̃
(a1)
C (r) = − m7

π

9216π5f 6
π

1

x7

{[
30 + 89x2 − 8x4 + g2

A(300 + 926x2 − 32x4)

+g4
A(750 + 2405x2 + 76x4)

]
K0(2x) +

[
137 + 8x2 + 8x4

+2g2
A(685 + 106x2 + 16x4) + g4

A(3425 + 860x2

+32x4)

]
xK1(2x)

}
+

m7
π

576π5f 6
π

(1 + 2g2
A)2 Ĩ−1(2x)

x
, (A.48)

W̃
(a2)
C (r) = − m7

π

8π3f 4
π

{
− 2g2

AxK1(2x) + (1 + 5g2
A)K2(2x)

x3
2d̄5

+
(5 + g2

A(25 + 2x2))xK1(2x) + (10 + x2 + g2
A(50 + 11x2))K2(2x)

x5

×(d̄1 + d̄2)

}
+

m7
π

9216π5f 6
π

1

x5

{
(25 + g2

A(190− 4x2)

+g4
A(325 + 4x2))xK1(2x) + 2(25− x2 + g2

A(190 + 11x2)

+g4
A(325 + 44x2))K2(2x)

}
, (A.49)

W̃
(a3)
C (r) = − m7

π

16π3f 4
π

2g2
AxK2(2x) + (3 + 7g2

A)K3(2x)

x4
d̄3 , (A.50)

with

Ĩ−1(z) =

∫ ∞
1

dt
e−zt

t
ln(t+

√
t2 − 1) (A.51)
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Isoscalar spin-spin and tensor potentials:

Spectral functions:

ImV
(a)
S (iµ) = µ2 ImV

(a)
T (iµ) = −g

2
Aκ

3µ

8πf 4
π

(d̄14 − d̄15) , (A.52)

ImV
(b)
S (iµ) = µ2 ImV

(b)
T (iµ)

= − 2g6
Aκ

3µ

(8πf 2
π)3

∫ 1

0

dz(1− z2)

[
− 1

6
+

m2
π

κ2z2

−
(

1 +
m2
π

κ2z2

)3/2

ln
κz +

√
m2
π + κ2z2

mπ

]
. (A.53)

In Ref. [16] it was found that the contribution from V
(b)
S and V

(b)
T are negligible. Therefore,

we include only V
(a)
S and V

(a)
T , which yield the position-space potentials:

Ṽ
(a)
S (r) = − g2

Am
7
π

8π3f 4
πx

4
(d̄14 − d̄15)(2xK2(2x) + 5K3(2x)) , (A.54)

Ṽ
(a)
T (r) =

g2
Am

7
π

32π3f 4
πx

5
(d̄14 − d̄15)

[
(3 + 4x2)K2(2x) + 16xK3(2x)

]
. (A.55)
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Isovector spin-spin and tensor potentials:

Spectral functions:

ImWS(iµ) = −g
4
A(µ2 − 4m2

π)

π(4fπ)6

{[
m2
π −

µ2

4

]
ln

(
µ+ 2mπ

µ− 2mπ

)
+(1 + 2g2

A)µmπ

}
, (A.56)

ImW
(a)
T (iµ) = − 1

µ2

g4
A(µ2 − 4m2

π)

π(4fπ)6
(1 + 2g2

A)µmπ , (A.57)

ImW
(b)
T (iµ) = − 1

µ2

g4
A(µ2 − 4m2

π)

π(4fπ)6

[
m2
π −

µ2

4

]
ln

(
µ+ 2mπ

µ− 2mπ

)
. (A.58)

Position-space potentials:

W̃S(r) =
g4
Am

7
π

6144π3f 6
π

e−2x

x7

{
(15 + 30x+ 24x2 + 8x3)(ln(4x) + γE)

+(−15 + 30x− 24x2 + 8x3)e4xEi(−4x)

−4x(15 + 15x+ 8x2 + 2x3)

−8g2
Ax(3 + 6x+ 5x2 + 2x3)

}
, (A.59)

W̃
(a)
T (r) =

g4
A(1 + 2g2

A)m7
π

1536π3f 6
π

e−2x

x6
(3 + 6x+ 4x2 + x3) , (A.60)

W̃
(b)
T (r) = − g4

Am
7
π

49152π3f 6
π

e−2x

x7

{
− 324x− 228x2 − 48x3

+5(21 + 42x+ 30x2 + 4x3)(ln(4x) + γE)

+5(−21 + 42x− 30x2 + 4x3)e4xEi(−4x)

}
− g4

Am
7
π

2048π3f 6
π

1

x3
Ī−1(2x) . (A.61)

A.4.3 Leading relativistic corrections

The leading relativistic corrections, which are shown in Fig. A.2(c), count as N3LO and are

given by [58]:
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Momentum-space potentials:

VC(q) =
3g4

A

128πf 4
πMN

[
m5
π

2w2
+ (2m2

π + q2)

×(q2 −m2
π)A(q)

]
, (A.62)

WC(q) =
g2
A

64πf 4
πMN

{
3g2

Am
5
π

2w2
+

[
(g2
A(3m2

π + 2q2)

−q2 − 2m2
π

]
(2m2

π + q2)A(q)

}
, (A.63)

VT (q) = − 1

q2
VS(q) =

3g4
A

256πf 4
πMN

(5m2
π + 2q2)A(q) , (A.64)

WT (q) = − 1

q2
WS(q) =

g2
A

128πf 4
πMN

[
g2
A(3m2

π

+q2)− w2

]
A(q) , (A.65)

VLS(q) =
3g4

A

32πf 4
πMN

(2m2
π + q2)A(q) , (A.66)

WLS(q) =
g2
A(1− g2

A)

32πf 4
πMN

w2A(q) . (A.67)

Spectral functions:

ImVC(iµ) =
3g4

A

512f 4
πMN

[
2m5

πδ(µ
2 − 4m2

π)− (2m2
π − µ2)(m2

π + µ2)

µ

]
,(A.68)

ImWC(iµ) =
g2
A

256f 4
πMN

{
6g2

Am
5
πδ(µ

2 − 4m2
π)

+
(2m2

π − µ2)
[
µ2 − 2m2

π + g2
A(3m2

π − 2µ2)
]

µ

}
, (A.69)

ImVS(iµ) = µ2 ImVT (iµ) =
3g4

Aµ

1024f 4
πMN

(5m2
π − 2µ2) , (A.70)

ImWS(iµ) = µ2 ImWT (iµ) =
g2
Aµ

512f 4
πMN

(g2
A(3m2

π − µ2) + µ2 − 4m2
π) ,(A.71)

ImVLS(iµ) =
3g4

A

128µf 4
πMN

(2m2
π − µ2) , (A.72)

ImWLS(iµ) =
g2
A(1− g2

A)

128µf 4
πMN

(4m2
π − µ2) . (A.73)
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(a)

(b)

(c)

= + + +

+ + + . . .

= + + +

+ + + +

+ + + + . . .

Figure A.3: Relativistic corrections of NNLO diagrams. Notation as in Fig. 2.1. Open circles
are relativistic 1/MN corrections.

Position-space potentials:

ṼC(r) =
3g4

Am
6
π

1024π2f 4
πMN

e−2x

x6
(24 + 48x+ 46x2

+28x3 + 10x4 + x5) , (A.74)

W̃C(r) =
g2
Am

6
π

512π2f 4
πMN

e−2x

x6
(24(2g2

A − 1)(1 + 2x)

+(82g2
A − 40)x2 + (36g2

A − 16)x3

+(10g2
A − 4)x4 + 3g2

Ax
5) , (A.75)

ṼS(r) = − g4
Am

6
π

512π2f 4
πMN

e−2x

x6
(24 + 48x+ 43x2

+22x3 + 6x4) , (A.76)

ṼT (r) =
g4
Am

6
π

1024π2f 4
πMN

e−2x

x6
(48 + 96x+ 76x2

+31x3 + 6x4) , (A.77)

W̃S(r) = − g2
Am

6
π

1536π2f 4
πMN

e−2x

x6
(24(g2

A − 1)(1 + 2x)

+2(21g2
A − 20)x2 + 4(5g2

A − 4)x3 + 4g2
Ax

4) , (A.78)

W̃T (r) =
g2
Am

6
π

3072π2f 4
πMN

e−2x

x6
(48(g2

A − 1)(1 + 2x)

+8(9g2
A − 8)x2 + 2(13g2

A − 8)x3 + 4g2
Ax

4) , (A.79)

ṼLS(r) = − 3g4
Am

6
π

64π2f 4
πMN

e−2x

x6
(1 + x)(2 + 2x+ x2) , (A.80)

W̃LS(r) =
g2
A(g2

A − 1)m6
π

32π2f 4
πMN

e−2x

x6
(1 + x)2 . (A.81)

A.5 Relativistic ci/MN corrections

At N3LO, we add the 1/MN correction of the NNLO 2PE proportional to ci. This correction

is proportional to ci/MN (Fig. A.3) and appears nominally at fifth order. As discussed,
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the 2PE bubble diagram proportional to c2
i that appears at N3LO is unrealistically attrac-

tive, while the ci/MN correction is large and repulsive. Therefore, it makes sense to group

these diagrams together to arrive at a more realistic intermediate attraction at N3LO. The

contribution is given by [57]:

Momentum-space potentials:

VC(q) = − g2
AL(q)

32π2MNf 4
π

[
(c2 − 6c3)q4 + 4(6c1 + c2 − 3c3)q2m2

π

+6(c2 − 2c3)m4
π + 24(2c1 + c3)m6

πw
−2

]
, (A.82)

WC(q) = − c4q
2L(q)

192π2MNf 4
π

[
g2
A(8m2

π + 5q2) + w2

]
, (A.83)

WT (q) = − 1

q2
WS(q) = − c4L(q)

192π2MNf 4
π

[
g2
A(16m2

π

+7q2)− w2

]
, (A.84)

VLS(q) =
c2g

2
A

8π2MNf 4
π

w2L(q) , (A.85)

WLS(q) = − c4L(q)

48π2MNf 4
π

[
g2
A(8m2

π + 5q2) + w2
]
. (A.86)

Spectral functions:

ImVC(iµ) =
g2
A

64πMNf 4
π

√
µ2 − 4m2

π

µ

[
(c2 − 6c3)µ4 − 4(6c1 + c2 − 3c3)µ2m2

π

+6(c2 − 2c3)m4
π − 24(2c1 + c3)

m6
π

µ2 − 4m2
π

]
, (A.87)

ImWC(iµ) = − c4

384πMNf 4
π

µ
√
µ2 − 4m2

π

[
g2
A(8m2

π − 5µ2)− µ2 + 4m2
π

]
, (A.88)

ImWT (iµ) =
1

µ2
ImWS(iµ) =

c4

384πMNf 4
π

√
µ2 − 4m2

π

µ

[
µ2 − 4m2

π

+g2
A(16m2

π − 7µ2)

]
, (A.89)

ImVLS(iµ) =
c2g

2
A

16πMNf 4
π

(µ2 − 4m2
π)3/2

µ
, (A.90)

ImWLS(iµ) =
c4

96πMNf 4
π

√
µ2 − 4m2

π

µ

[
g2
A(8m2

π − 5µ2) + 4m2
π − µ2

]
. (A.91)
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Position-space potentials:

ṼC(r) =
3g2

Am
7
π

32π3MNf 4
π

1

x6

[(
20(c2 − 6c3)− 4(6c1 − c2 + 9c3)x2

−2(2c1 + c3)x4

)
xK0(2x) +

(
20(c2 − 6c3)− 2(12c1

−7c2 + 48c3)x2 − (16c1 − c2 + 10c3)x4

)
K1(2x)

]
,(A.92)

W̃C(r) =
c4m

7
π

32π3MNf 4
π

1
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[(
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A + 4g2
Ax

2

)
xK1(2x)
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(
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A)x2

)
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]
, (A.93)

W̃S(r) =
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7
π

48π3MNf 4
π

1
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[(
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Ax
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)
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A)x2

)
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]
, (A.94)

W̃T (r) =
c4m

7
π

192π3MNf 4
π

1
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[
2
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− 8 + 59g2

A + 4g2
Ax
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)
xK1(2x)
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35(1− 7g2
A) + 4(1− 13g2
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)
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]
, (A.95)

ṼLS(r) =
3c2g

2
Am

7
π

8π3MNf 4
π

1

x5

[
K2(2x) + 2xK3(2x)

]
, (A.96)

W̃LS(r) = − c4m
7
π

16π3MNf 4
π

1
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[
(1 + 6g2

A)2xK1(2x)

+(5 + 25g2
A + 4g2

Ax
2)K2(2x)

]
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APPENDIX B

The LECs of the contact terms

In this Appendix, we show in Table B.1 the LECs of the contact terms defined in Sec. 2.4

for our N3LO potentials. The shown LECs are the coefficients of the various contact operators

displayed in Sec. 2.4.

For the fitting of the phase shifts of the different states, it is more convenient to fit

to states with well-defined total spin S and total isospin T , the LO coefficients of which

we denote by CST . From these CST , one obtains the coefficients for the operators used in

Eq. (2.19) via: 

Cc

Cτ

Cσ

Cστ


=

1

16



1 3 3 9

−1 1 −3 1

−1 −3 1 3

1 −1 −1 1





C00

C01

C10

C11


(B.1)

Similar relations apply to the central force LECs of higher order, like the C1 to C4 of

Eq. (2.23) and the D1 to D4 of Eq. (2.30); as well to the coefficients of the four ~L2 terms,

D11 to D14 [Eq. (2.30)].

Vice versa, the spin-isopin coefficients can be obtained from the operator LECs via:



C00

C01

C10

C11


=



1 −3 −3 9

1 1 −3 −3

1 −3 1 −3

1 1 1 1





Cc

Cτ

Cσ

Cστ


(B.2)

Tensor, spin-orbit, and quadratic spin-orbit terms exist only in S = 1 states, such that

one needs to distinguish only between a T = 0 and T = 1 channel. For the case of the NLO
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Table B.1: Values for the contact LECs of the N3LO potentials with cutoff combination
(Rπ, Rct) = (1.2, 0.75) fm, (1.1, 0.72) fm, and (1.0, 0.70) fm. In the column headings, we use
the Rπ value to identify the different cases. The notation (±n) stands for ×10±n.

LECs Rπ = 1.2 fm Rπ = 1.1 fm Rπ = 1.0 fm

Cnp
c (fm2) 0.28717299 (+1) 0.39490035 (+1) 0.68499330 (+1)

Cnp
τ (fm2) 0.26560171 0.36862166 0.84342750

Cnp
σ (fm2) 0.46462631 (-1) 0.14012451 0.46431300

Cnp
στ (fm2) 0.10005058 (+1) 0.87076834 0.90360050

Cpp
c (fm2) 0.28878741 (+1) 0.39655771 (+1) 0.68647468 (+1)

Cpp
τ (fm2) 0.27098312 0.37414619 0.84836544

Cpp
σ (fm2) 0.30318375 (-1) 0.12355094 0.44949919

Cpp
στ (fm2) 0.99512437 0.86524381 0.89866256

Cnn
c (fm2) 0.28830563 (+1) 0.39601604 (+1) 0.68602361 (+1)

Cnn
τ (fm2) 0.26937719 0.37234063 0.84686187

Cnn
σ (fm2) 0.35136188 (-1) 0.12896763 0.45400987

Cnn
στ (fm2) 0.99673031 0.86704937 0.90016612

C1 (fm4) 0.20339187 (-1) -0.69958000 (-1) -0.19849806
C2 (fm4) -0.26911188 (-1) -0.73932500 (-2) 0.27128125 (-2)
C3 (fm4) -0.78260937 (-1) -0.57466500 (-1) -0.26448938 (-1)
C4 (fm4) -0.35220625 (-2) -0.13702250 (-1) -0.89698125 (-2)
C5 (fm4) -0.10596750 (-1) -0.80355000 (-2) -0.54697500 (-2)
C6 (fm4) 0.31287500 (-2) 0.39985000 (-2) 0.48457500 (-2)
C7 (fm4) -0.84559075 -0.83002375 -0.82673000
C8 (fm4) -0.11612925 -0.10974825 -0.10887000

D1 (fm6) 0.27843312 (-1) 0.31251437 (-1) 0.35406750 (-1)
D2 (fm6) -0.11181250 (-3) 0.30660625 (-2) 0.64797500 (-2)
D3 (fm6) 0.17309375 (-2) 0.39478125 (-2) 0.28025000 (-2)
D4 (fm6) -0.25564375 (-2) -0.11373125 (-2) -0.84200000 (-3)
D5 (fm6) -0.22787500 (-2) -0.17605000 (-2) 0.13175000 (-3)
D6 (fm6) -0.76425000 (-3) -0.58650000 (-3) 0.44250000 (-4)
D7 (fm6) 0.40027500 (-2) 0.11374250 (-1) 0.70485000 (-2)
D8 (fm6) -0.26426750 (-1) -0.22689250 (-1) -0.29755500 (-1)
D9 (fm6) -0.42584000 (-1) -0.50699750 (-1) -0.57539750 (-1)
D10 (fm6) -0.14453000 (-1) -0.16889250 (-1) -0.19163250 (-1)
D11 (fm6) -0.18565375 (-1) -0.27816625 (-1) -0.63730625 (-2)
D12 (fm6) 0.16119625 (-1) 0.11181125 (-1) 0.20284813 (-1)
D13 (fm6) 0.54308750 (-2) 0.25901250 (-2) 0.77255625 (-2)
D14 (fm6) 0.92428750 (-2) 0.76783750 (-2) 0.10042688 (-1)
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tensor force, the relations are:

C5 =
1

4

(
C

(S12)
T=0 + 3C

(S12)
T=1

)
, (B.3)

C6 =
1

4

(
−C(S12)

T=0 + C
(S12)
T=1

)
, (B.4)

and vice versa

C
(S12)
T=0 = C5 − 3C6 , (B.5)

C
(S12)
T=1 = C5 + C6 , (B.6)

and similarly for the other cases that appear only at S = 1.
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APPENDIX C

Phase-shift tables

In this Appendix, we show the phase shifts as predicted by the pp, np, and nn N3LO

potentials with cutoff combination (Rπ, Rct) = (1.0, 0.70) fm in Tables C.1-C.4. Note that

our pp phase shifts are the phase shifts of the nuclear plus relativistic Coulomb interaction

with respect to Coulomb wave functions. For nn and np scattering, our phase shifts are the

ones from the nuclear interaction with respect to Riccati-Bessel functions. For more of the

technical details of our phase shift calculations, see Appendix A3 of Ref. [36].

Table C.1: pp phase shifts (in degrees) up to F waves at N3LO with cutoff combination
(Rπ, Rct) = (1.0, 0.70) fm.

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
1G4

3F4

1 32.82 0.14 -0.08 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 55.02 1.60 -0.89 0.04 0.22 0.00 -0.05 0.00 0.00 0.00
10 55.49 3.78 -2.03 0.17 0.67 0.01 -0.20 -0.03 0.00 0.00
25 49.15 8.68 -4.86 0.70 2.52 0.11 -0.82 -0.23 0.04 0.02
50 39.68 11.54 -8.25 1.70 5.84 0.35 -1.75 -0.69 0.16 0.12
100 26.12 9.19 -13.29 3.69 10.98 0.83 -2.82 -1.50 0.44 0.51
150 16.15 4.07 -17.51 5.46 13.98 1.13 -3.19 -2.10 0.73 1.05
200 8.12 -1.40 -21.24 6.88 15.49 1.16 -3.19 -2.55 1.03 1.66
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Table C.2: nn phase shifts (in degrees) up to F waves at N3LO with cutoff combination
(Rπ, Rct) = (1.0, 0.70) fm.

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
1G4

3F4

1 57.68 0.21 -0.12 0.00 0.02 0.00 0.00 0.00 0.00 0.00
5 61.18 1.87 -1.03 0.05 0.27 0.00 -0.06 -0.01 0.00 0.00
10 58.08 4.15 -2.22 0.18 0.77 0.01 -0.22 -0.04 0.00 0.00
25 49.58 9.02 -5.10 0.73 2.71 0.11 -0.85 -0.24 0.04 0.02
50 39.44 11.66 -8.50 1.75 6.12 0.36 -1.78 -0.70 0.16 0.13
100 25.60 9.04 -13.57 3.77 11.26 0.84 -2.83 -1.52 0.44 0.52
150 15.56 3.79 -17.81 5.56 14.20 1.14 -3.18 -2.12 0.74 1.07
200 7.49 -1.74 -21.56 6.99 15.64 1.15 -3.16 -2.57 1.04 1.69

Table C.3: T = 1 np phase shifts (in degrees) up to F waves at N3LO with cutoff combination
(Rπ, Rct) = (1.0, 0.70) fm.

Tlab (MeV) 1S0
3P0

3P1
1D2

3P2
3F2 ε2

3F3
1G4

3F4

1 62.07 0.18 -0.11 0.00 0.02 0.00 0.00 0.00 0.00 0.00
5 63.62 1.63 -0.92 0.04 0.26 0.00 -0.05 0.00 0.00 0.00
10 59.95 3.68 -2.03 0.16 0.73 0.01 -0.18 -0.03 0.00 0.00
25 50.87 8.22 -4.79 0.68 2.60 0.09 -0.76 -0.20 0.03 0.02
50 40.41 10.77 -8.17 1.71 5.91 0.31 -1.66 -0.61 0.14 0.11
100 26.34 8.25 -13.25 3.78 10.98 0.77 -2.73 -1.39 0.41 0.48
150 16.20 3.11 -17.52 5.62 13.92 1.05 -3.12 -1.96 0.71 1.01
200 8.07 -2.36 -21.29 7.08 15.39 1.06 -3.14 -2.40 1.02 1.62

Table C.4: T = 0 np phase shifts (in degrees) up to F waves at N3LO with cutoff combination
(Rπ, Rct) = (1.0, 0.70) fm.

Tlab (MeV) 1P1
3S1

3D1 ε1
3D2

1F3
3D3

3G3 ε3
3G4

1 -0.19 147.73 -0.01 0.10 0.01 0.00 0.00 0.00 0.00 0.00
5 -1.49 118.14 -0.18 0.59 0.22 -0.01 0.00 0.00 0.01 0.00
10 -3.03 102.55 -0.66 0.97 0.85 -0.07 0.01 0.00 0.08 0.01
25 -6.22 80.54 -2.73 1.27 3.74 -0.42 0.04 -0.05 0.56 0.17
50 -9.31 62.65 -6.32 1.01 9.02 -1.13 0.31 -0.26 1.63 0.73
100 -13.62 43.16 -12.26 0.09 17.23 -2.18 1.42 -0.98 3.58 2.23
150 -17.59 30.85 -17.00 -0.83 21.87 -2.79 2.70 -1.88 4.98 3.78
200 -21.50 21.71 -21.02 -1.72 24.00 -3.16 3.67 -2.86 5.92 5.23


