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Abstract 

Spatially explicit information on forest stand disturbance history is fundamental to 

understanding the global carbon cycle and enhancing the modelling of forest ecosystem processes. 

Forest disturbance records, defined in terms of Time Since Disturbance (TSD), are often incomplete 

for most forested areas, rarely extending before the Earth Observation satellite record. Although the 

spectral response of forest vegetation saturates under canopy closure, distinct horizontal and vertical 

forest structure features remain on the landscape for decades to centuries following a disturbance event. 

A stand-replacing disturbance is a mortality event (e.g., clearcut, fire, insect outbreak) that, in a short 

period of time, leads to complete replacement of the trees of an entire forest stand. Past stand-replacing 

disturbances thus result in even-aged stands, featuring only small age differences in their dominant 

cohort. They generally have homogenous forest canopies whose current structural development relates 

to TSD, as well as to the type of disturbance. In the several decades following a stand replacing 

disturbance, before maturity of the stand is reached and the age distribution becomes uneven, there is 

a strong linkage between forest structure and stand age which provides a pathway to characterize TSD 

from remotely sensed data. 

This dissertation, divided in three chapters, proposes a novel approach to reconstruct the long-

term disturbance history of a temperate coniferous forest from active remotely sensed data, that can 

potentially complement the more established methods based on time series analysis of passive optical 

remotely sensed data. The methodology uses Geographic Object-Based Image Analysis (GEOBIA) and 

remotely sensed data from LiDAR (Light Detection and Ranging) instruments to estimate the stand 

level TSD. GEOBIA enables the delineation of structurally homogenous forest stands, which are used 

as representative units of analysis; and LiDAR data, sensitive to the three-dimensional structure of the 

forest canopy, are used to estimate TSD. The study area is in the Nez-Perce Clearwater National Forest 

(Idaho, USA), where TSD reference maps for a period of more than 140 years, and airborne LiDAR 

data are available.  

Chapter 1 proposes a two-stage evaluation strategy to semi-automatically delineate even-aged 

forest stands using GEOBIA on airborne LiDAR-derived data. GEOBIA has replaced traditional visual 

photo interpretation for forest stand delineation, but user-defined evaluation protocols are still required 

to identify objectively optimal delineation outputs. The study demonstrates the ability of LiDAR to 

discriminate stands harvested more than 50 years ago and proposes an objective and straightforward 

workflow that can be adapted to other study needs.  

In chapter 2, airborne LiDAR canopy and topographic metrics are used to estimate TSD at the 

stand-level using Random Forest (RF) analysis. Results demonstrate that airborne LiDAR data have 
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enough explanatory power to categorize disturbance patterns through time. These data can be used to 

map disturbances that pre-date the beginning of the Earth Observation data record (up to 100 years). 

The integration of stand perimeters (derived from the workflow proposed in chapter 1) provides 

contextual information that reduces the amount of reference data required to train the RF and reduces 

the inherent variability of traditional cell-based analyses. 

Chapter 3 presents a feasibility study for the estimation of TSD from data acquired by the newly 

launched spaceborne LiDAR Global Ecosystem Dynamics Investigation (GEDI) instrument. GEDI is 

a sampling instrument, acquiring footprints of approximately 22 m diameter, each separated by ~600 

m across-track and ~60 m along-track. While GEDI will soon provide billions of forest canopy 

measurements for tropical and temperate forests around the globe, opening a new era in the use of 

LiDAR for forest mapping at large spatial scales, the sampling configuration imposes some challenges 

for continuous spatial analysis compared to the common discrete-return airborne LiDAR. The proposed 

approach overcomes these challenges through data fusion between optical (Landsat) and GEDI data. 

The approach is tested on the same study area of chapters 1 and 2, with simulated GEDI data generated 

from airborne LiDAR data. Landsat data are used to generate a wall-to-wall segmentation of the study 

area, identifying image-objects related to forest stands, and the GEDI footprints are used to generate 

single point estimates of TSD. The point estimates are subsequently upscaled at the Landsat image-

object scale, resulting in a wall-to-wall TSD map of the study area. The results show the potential of 

GEDI data for TSD estimation on even-aged forests, particularly on disturbed stands within the last 

100 years.  
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Introduction 

Forest disturbances shift forest age, altering the global carbon balance of the Earth. Forest 

regrowth, relating to both forest age and the Time Since the last Disturbance (TSD), is one of the main 

drivers of the terrestrial carbon sink that removes ~3 billion tons of anthropogenic CO2 each year 

(Canadell et al., 2007; Canadell and Raupach, 2008). Since carbon stocks and fluxes of old forests 

(>100 years) remain mostly constant (Bradford et al., 2008), spatially explicit information on the TSD 

of young and mature forests is critical to understanding the historic, current, and potential of forest 

carbon sequestration.   

Forest disturbances shape the forest landscape, altering forest structure, function, and 

composition (Dale et al., 2011; Franklin et al., 2002). Following a disturbance, especially after a stand-

replacing disturbance, forest stand development at specific geographic locations follows a predictable 

pattern, as distinct species compositions, and structural changes through time appear (Oliver, 1980; 

Oliver and Larson, 1996). The stand is a continuous community of trees uniform enough in class 

distribution, composition, and structure that also grows on a site of sufficiently uniform quality to be 

distinguishable from adjacent units (Helms, 1998). Stands recovering from past stand-replacing 

disturbances (i.e., even-aged stands) feature only small age differences in their dominant cohort. They 

tend to have homogenous forest canopies, which current development relates to the type of disturbance 

and TSD. A stand-replacing (major) disturbance is a mortality event (e.g., clearcut, fire, insect outbreak) 

that in a short period of time leads to complete replacement of the trees of an entire forest stand. 

Following a stand-replacing disturbance, regeneration is characterized by competition between a cohort 

of new trees (Oliver, 1980; Oliver and Larson, 1996). Examples of stand-replacing disturbances include 

those caused by anthropogenic agents, such as clearcuts, and natural agents, such as crown fires and 

high severity outbreaks. Wildfires and clearcuts are both major disturbance agents, and in Canada and 

the United States alone, they affect more than 50,000 km2 each year (Masek et al., 2013; White et al., 

2017). In such areas under a high disturbance pressure, the result is a landscape dominated by a patchy 

and heterogeneous mosaic of stands. These stands feature small age differences and structural 

differences in their dominant cohort, and have large differences between neighboring stands under 

different successional stages.  

Current techniques to map forest stand-replacing disturbances and stand age are based on field 

inventory and/or remote sensing datasets. Stand age in regenerated forests can be assessed, for instance, 

using inventory records of management activities (if available) and photo interpretation of forest stands 

with high-resolution imagery (Anttila, 2002); inferred from inventory data (e.g., using height-age, 

volume-age, biomass-age curves) (He et al., 2012; Poorter et al., 2016); or from tree cores of 
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representative trees (Speer, 2010). Data records of harvests and plantations are rare, and, where 

available, their use is extremely undependable for continuous spatial analysis at relatively large scales. 

Moreover, while dendrochronological analyses of tree rings and inventory data are suitable for 

estimating stand age and identifying past disturbances, they are time-consuming, expensive, and 

spatially constrained to sampled locations (Racine et al., 2014; Speer, 2010). Earth observation satellite 

data, on the other hand, have the spatial and temporal properties needed to track recent disturbances in 

a systematic way at a variety of spatial scales. This is done through change detection and temporal 

segmentation analysis, that automate the temporal comparison of image time series (Kennedy et al., 

2010). These approaches, often performed on widely available multispectral and moderate resolution 

data, such as those provided by Landsat, have shown notable results in the detection of recent 

disturbances. However, there are limitations (a) in the extension of the analysis to the past, before the 

start of the Earth Observation (EO) satellite record and (b) in the aggregation of pixel-level detections 

into stand-level results. 

Early approaches to mapping disturbances using optical remotely sensed data relied on the 

comparison of a pre- and post-change image to detect abrupt changes in the land cover, which 

progressively evolved into multiple two-date comparisons in sequences (Cohen et al., 2002; Lu et al., 

2004). More recently, improvements in computing power and availability of data, thanks to the opening 

of the Landsat archive in 2008 (Woodcock et al., 2008), have resulted in the onset of new approaches. 

These recent methods automate the analysis of historical image time series to detect discontinuities on 

the land cover caused by abrupt disturbances; and to detect changes in trends caused by slower change 

processes (Kennedy et al., 2010). Thus, the multi-temporal change detection field provides a wide range 

of methodologies and applications that can be applied to a variety of situations. However, these methods 

can only track disturbances that have happened since the beginning of the EO data record, which began 

in 1972 when Landsat-1 was placed in orbit. In theory, this would guarantee the availability of 

moderate-resolution global disturbance datasets of almost 50 years, but in practice, the EO repository 

is incomplete in most areas outside the U.S. before the launch of Landsat-7 in 1999. Before that, Landsat 

data were downlinked to specific international ground stations without duplication in the main archive 

of the U.S. Geological Survey, and many of these scenes were irrecoverable (Wulder et al., 2016). On 

the other hand, single image analyses and predictive modelling strategies using optical data have little 

potential to temporally complement TSD datasets obtained from time series analysis. These methods 

prove inadequate for two main reasons: first, because the spectral response of vegetation in optical 

wavelengths saturates in closed canopy forests (Spanner et al., 1990; Turner et al., 1999), and second, 

because the persistence of disturbance spectral signatures on the landscape is short (Healey et al., 2005; 

Lunetta et al., 2004).  
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However, the structure of mature and young stands remains distinct until the uneven-aged 

distribution of the forest canopy is reached, which might take 80+ years depending on the forest type. 

Active remotely sensed systems, specifically Light Detection and Ranging (LiDAR), have emerged in 

recent decades as one of the most powerful remote sensing methods to describe the structure of the 

forest canopy (Goetz and Dubayah, 2011). Dominated by airborne platforms, LiDAR systems acquire 

direct measurements of the canopy at high resolution, which is optimal to characterize forest attributes 

such as height, basal area, density, biomass, or leaf area index (LAI) (Andersen et al., 2005; Boudreau 

et al., 2008; Coops et al., 2007; Hudak et al., 2006; Lefsky et al., 1999; Naesset, 1997; Nelson et al., 

1988; Zhao and Popescu, 2009). Recent studies have also shown a strong relationship between LiDAR-

derived data and stand age (Racine et al., 2014; Zhang et al., 2014), and therefore, LiDAR may also be 

optimal for deriving outputs that complement stand-replacing disturbance datasets, expanding its 

temporal contextualization beyond the beginning of the EO satellite record.  

On the second limitation, traditional remote sensing approaches for mapping disturbances have 

conventionally relied on the pixel as the basic and independent spatial unit of analysis. The pixel by 

itself doesn’t represent a true geographical feature (Fisher, 1997), and its use as an independent 

mapping unit to characterize stand-replacing disturbances often results in noisy outputs caused by 

frequent commission and omission classification errors (Radke et al., 2005). While pixel-based 

techniques are computationally faster, they neglect the spatial relationship that pixels belonging to the 

same feature share (Blaschke et al., 2014). Geographic-Object Based Image Analysis (GEOBIA) 

techniques, alternatively, attempt to mimic the way humans interpret images by identifying the image 

object, instead of the pixel, as the basic spatial unit of analysis. The image object is a discrete region 

composed by a group of pixels that is internally coherent and different from the surroundings, and 

ideally, the image object represents a true geographic feature on the landscape (e.g., a tree or a forest 

stand). The linkage between the image object and the geographic feature of interest is the ultimate goal 

of GEOBIA, and it is achieved semi-automatically through a workflow that incorporates both image 

segmentation and classification procedures (Blaschke et al., 2014, 2008).  

GEOBIA’s ability to enhance stand-level research is demonstrated by recent studies designed 

to characterize forest stands (Chen et al., 2011; Hay and Castilla, 2008; Kim et al., 2009; Mallinis et 

al., 2008), to classify forest type and species (Förster and Kleinschmit, 2008; Ke et al., 2010), or to 

obtain forest inventory parameters (Chubey et al., 2006). GEOBIA strategies to delineate forest stands 

are often focused on stand definitions based on species composition rather than structure; they are 

sometimes local (over study areas smaller than 1000 ha); or they lack evaluation protocols (e.g., 

Dechesne et al., 2017; Koch et al., 2009; Leppänen et al., 2008; Sullivan et al., 2009; Tiede et al., 2004; 
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Varo-Martínez et al., 2017; Wu et al., 2014; Wulder et al., 2008). The semi-automatic delineation of 

forest stands is not a standardized and straightforward technique, requiring a user-defined evaluation to 

identify, inter alia the adequate input data, segmentation algorithm, and algorithm parameters (Costa et 

al., 2018). It is required, therefore, to establish and develop objective object-based approaches 

specifically designed to delineate and categorize forest stands under different ecological and 

management considerations. Such protocols could be easily replicated on other study sites. In this sense, 

a quantitative assessment of the performance of LiDAR-derived data to delineate stands in even-aged 

dominated forest is still required.  

Airborne LiDAR has the potential to complement current datasets of stand-replacing 

disturbances, being optimal for both image segmentation and TSD characterization. However, the 

deployment of airborne LiDAR for systematic monitoring of forest stand attributes doesn´t enable 

analyses at large spatial scales due to restrictions of data availability and high cost compared to satellite 

remote sensing instruments. A recent spaceborne LiDAR mission, the Global Ecosystem Dynamics 

Investigation (GEDI), has been designed to monitoring the forest structure of temperate and tropical 

forests (Dubayah et al., 2014). The GEDI instrument, a waveform large-footprint LiDAR, was 

successfully deployed in the International Space Station (ISS) in December 2018. Over its two-year 

programmed mission, it will record billions of waveform observations between 51.6° N to 51.6° S 

latitudes, from which ground elevation, canopy height, foliage profiles, density, and above-ground 

biomass datasets will be derived (Dubayah et al., 2014; Hancock et al., 2019; Stysley et al., 2015). 

These data products will offer higher resolution and accuracy measuring the structural parameters of 

forests than what has been possible with optical satellite data (Hancock et al., 2019). However, GEDI 

is a sampling instrument: it is composed of three laser transmitters that produce eight parallel ground 

tracks. GEDI acquires waveform data on footprints of approximately 22 m diameter that are separated 

about 600 m across each track, an about 60 m along each track (Qi et al., 2019). This sampling 

configuration makes it necessary to design methodologies that extend the discrete measurements 

collected at the footprint level across larger spatial scales to wall-to-wall mapping forest attributes such 

as TSD. A promising approach would consist on upscaling the GEDI spaceborne footprint observations 

to an image object that represents a forest patch (Lefsky, 2010; Montesano et al., 2013), for which data 

fusion strategies with data sources that have a complete horizontal coverage, as Landsat, should be 

prototyped. Landsat data have been used for image segmentation in studies related to the estimation of 

forest structural attributes such as biomass and TSD (Montesano et al., 2013; Wulder et al., 2004); and 

have an adequate resolution (30 m) for forest stand-level analysis. Therefore, the combination of GEDI 

data and Landsat data is promising to mapping TSD at the stand level. However, the feasibility of the 



5 

 

data fusion approach should be evaluated since it would depend on the combined effect of the GEDI 

sampling grid and the quality of the segmentation.  

This research proposes a new approach for historical stand-replacing disturbance mapping, 

integrating both GEOBIA and LiDAR data. This novel methodology could eventually complement 

available data records of the disturbance history of forests by reducing the temporal and spatial 

limitations of current, conventionally used mapping techniques. The dissertation is divided into three 

main chapters that further develop the three main goals of the research: (1) to develop an objective, 

straightforward and reproducible workflow to delineate even-aged forest stands using image 

segmentation and object-based evaluation techniques on LiDAR data; (2) to assess the predictive power 

of LiDAR-derived data to estimate stand-level TSD at the long-term (~100 years); and (3) to assess the 

feasibility of using GEDI data to estimate stand-level TSD through a data fusion strategy that applies 

object-based analysis on Landsat data.  
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Chapter 1: Semi-automated delineation of stands in an even-age dominated forest: a LiDAR-

GEOBIA two-stage evaluation strategy. 

Published in Remote Sensing as:  

Sanchez-Lopez, N., Boschetti, L. and Hudak, A., 2018. Semi-Automated Delineation of Stands in an 

Even-Age Dominated Forest: A LiDAR-GEOBIA Two-Stage Evaluation Strategy. Remote 

Sensing, 10(10), p.1622. 

Abstract 

Regional scale maps of homogeneous forest stands are valued by forest managers and are of 

interest for landscape and ecological modelling. Research focused on stand delineation has substantially 

increased in the last decade thanks to the development of Geographic Object-Based Image Analysis 

(GEOBIA). Nevertheless, studies focused on even-age dominated forests are still few and the proposed 

approaches are often heuristic, local, or lacking objective evaluation protocols. In this study, we present 

a two-stage evaluation strategy combining both unsupervised and supervised evaluation methods for 

semi-automatic delineation of forest stands at regional scales using Light Detection and Ranging 

(LiDAR) raster summary metrics. The methodology is demonstrated on two contiguous LiDAR 

datasets covering more than 54,000 ha in central Idaho, where clearcuts were a common harvesting 

method during the twentieth century. Results show good delineation of even-aged forests and 

demonstrate the ability of LiDAR to discriminate stands harvested more than 50 years ago, that are 

generally challenging to discriminate with optical data. The two-stage strategy reduces the reference 

data required within the supervised evaluation and increases the scope of a reliable semi-automatic 

delineation to larger areas. This is an objective and straightforward approach that could potentially be 

replicated and adapted to address other study needs. 

Introduction 

Forest stands maps are valued for traditional forest inventory, to take silvicultural decisions, 

and develop forest managements plans (Leckie et al., 2003; Sullivan et al., 2009). The “stand” has 

traditionally been and largely remains the basic unit in forest management. It is often defined as a 

continuous community of trees uniform enough in class distribution, composition and structure, 

growing on a site of sufficiently uniform quality to be distinguishable from adjacent units (Helms, 

1998). In the United States Pacific Northwest region, forests are dominated by coniferous species and 

structure (i.e., the horizontal and vertical distribution of components within the forest), rather than 

composition, is the main characteristic distinguishing stands with a history of silvicultural activities 

(e.g., clearcuts or thinnings) or natural disturbances (e.g., wildfires or insect outbreaks). On average, 

more than 50,000 km2 are disturbed each year by harvest and wildfires in Canada and the United States 
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(Masek et al., 2013; White et al., 2017). The legacy of these disturbances is a patchwork of largely 

even-aged stands characterized by small age differences in their dominant cohort that is obvious to a 

skilled photo interpreter. Explicit spatial information of the boundaries of these stands available at 

regional scales are needed by forest managers (Leckie et al., 2003; Leckie and Gillis, 1995; Sullivan et 

al., 2009), and by ecologists and landscape modelers, as a source of information to locate past stand-

replacing disturbances (Fisher et al., 2018). 

Forest stand delineation is a task traditionally performed by visual photo interpretation of aerial 

photographs (Burnett and Blaschke, 2003; Leckie and Gillis, 1995) and, more recently, by applying 

semi-automated Geographic Object-based Image analysis (GEOBIA) on remotely sensed data 

(Dechesne et al., 2017; Koch et al., 2009; Leckie et al., 2003; Pascual et al., 2008; Sullivan et al., 2009; 

Tiede et al., 2004; Wulder et al., 2008). GEOBIA automatically generates image objects and links them 

to geographic features (e.g., forest stands) through a processing chain that incorporates, in a simple or 

iterative workflow, segmentation, evaluation, and classification techniques (Blaschke et al., 2014, 

2008). The object-based strategy for semi-automatic delineation of geographic features is not a 

straightforward process, mainly because the selection of a suitable segmentation is not a standardized 

process. A user-defined evaluation is required to select among the vast number of possible outputs, 

considering the different set of input data, segmentation algorithms or algorithm parameters that can be 

selected within the GEOBIA process (Costa et al., 2018), and it should be carefully considered as the 

classification accuracy is highly influenced by segmentation quality (Liu and Xia, 2010; Walter, 2004). 

Object-based segmentation evaluation strategies are divided into supervised and unsupervised 

methods (Zhang, 1996). Supervised methods compare segmentation outputs with a reference set of 

digitized objects, by computing dissimilarity metrics that are mainly based on location, size, shape, or 

color differences (Belgiu and Drǎguţ, 2014; Clinton et al., 2010; Costa et al., 2018; Neubert et al., 2008; 

Zhang, 1997). These methods can be used to compare segmentation outputs obtained with different 

input datasets, but they rely on reference data that are not always available. In those cases, evaluation 

becomes an extremely time-consuming task, especially for large datasets. Additionally, the digitation 

of polygons as reference objects has some degree of subjectivity depending on how the samples are 

selected and who does the delineation (Johnson et al., 2015). Unsupervised methods, on the other hand, 

rank multiple image segmentations obtained from the same input dataset using a quality criterion that 

is usually related to some human perception of what a good segmentation should be (Espindola et al., 

2006; Johnson and Xie, 2011). They rely only on the input data statistics and are gaining attention to 

objectively and automatically calibrate the segmentation algorithm parameters (Drăguţ et al., 2014; 

Espindola et al., 2006; Gao et al., 2017; Georganos et al., 2018; Gonzalez et al., 2018; Johnson and Xie, 
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2011; Johnson et al., 2015), but they are limited to compared segmentation outputs obtained with the 

same input data. Therefore, a more complex user-defined evaluation workflow is required to address 

other choices within the processing workflow having an influence in the segmentation quality (e.g., the 

input data). 

Forest stand delineation using GEOBIA has been approached with different strategies and data 

sources depending often on the adopted definition of a forest stand that is generally based on species 

composition and age. In the last decades, Light Detection and Ranging (LiDAR) has been introduced 

for stand delineation as the main data source (e.g., Dechesne et al., 2016; Koch et al., 2009; Pascual et 

al., 2008; Sullivan et al., 2009; Varo-Martínez et al., 2017), or combined with optical remotely sensed 

data (e.g., Dechesne et al., 2017, 2016; Ke et al., 2010), especially when a structural component was 

considered to define the concept of the stand. Despite this effort, the number of publications focused 

on mapping forest stands mainly defined by different structural (e.g., canopy height and density) or 

age-related types is still relatively small, and the described strategies are often heuristic (e.g., Koch et 

al., 2009), local (covering areas smaller than 1000 ha) (e.g., Koch et al., 2009; Leppänen et al., 2008; 

Pascual et al., 2008; Sullivan et al., 2009; Varo-Martínez et al., 2017; Wu et al., 2014) or lacking 

objective evaluation protocols (e.g., Pascual et al., 2008; Sullivan et al., 2009). While these previous 

studies set the baseline to semi-automatically delineate forest stands of uniform age structure by 

coupling both GEOBIA and LiDAR-derived data, a generalized workflow to automate the delineation 

at larger scales is still not fully developed. Neither has a quantitative assessment on the performance of 

single LiDAR metrics (i.e., statistics summarizing the LiDAR point cloud) to delineate forest regardless 

of the time since the last disturbance yet been addressed, and it is of interest to understand if single-

date remotely sensed data could eventually be used to locate historical stand-replacing events. 

In this paper, we present a semi-automated and straightforward strategy for forest stand 

delineation using GEOBIA applied to single LiDAR-derived raster summary metrics in a study area 

covering more than 54,000 ha. Accordingly, the aim of this paper is twofold: (1) To integrate within 

the GEOBIA workflow a two-stage evaluation strategy to select objectively a suitable delineation of 

forest stands, defined in terms of structural and age homogeneity, when different segmentation 

algorithm parameters and input data layers are considered; and (2) to assess individually the 

performance of several LiDAR metrics to identify the boundaries of relatively old even-aged forest 

stands using ancillary reference data of historical stand-replacing disturbances. 
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Materials 

Study area  

The study area encompasses the Clear Creek, Selway River, and Elk Creek watersheds (~54,000 

ha; Figure 1.1), located within the Nez Perce-Clearwater National Forest (46°48′N, 115°41′W) in north-

central Idaho, USA. The study area covers mostly mountainous terrain, with slopes commonly higher 

than 50%; elevation is highly variable ranging from 415 to 2077 m. Average annual precipitation is 

around 740 mm; monthly mean temperature is −3.6 °C in winter and 14.2 °C in summer (Hijmans et 

al., 2005). The area is covered by a temperate mixed-conifer forest. Dominant tree species are Douglas-

fir (Pseudotsuga menziesii (Mirb.) Franco.) and grand fir (Abies grandis (Douglas ex D. Don) Lindl.), 

commonly accompanied by western redcedar (Thuja plicata Donn ex D. Don) and ponderosa pine 

(Pinus ponderosa C. Lawson). Other species are only sporadically present. 

Timber management in the study area initiated early in the twentieth century, but the total amount 

of timber harvested was relatively small until the 1940s (Cochrell, 1960); the area subsequently was 

intensively logged during the 1960s and 1970s, followed by a phased reduction in logging activity until 

present. Clearcuts and shelterwoods were the preferred management actions, resulting in a patchy 

landscape of even-aged forest stands (Space, 1964; USDA, Forest Service, 2016). 

Ancillary Reference Data and Pre-Processing 

The Forest Service ACtivity Tracking System (FACTs) harvest dataset was used as an independent 

source of information for the location and extent of timber harvest areas (USDA, Forest Service, 2016). 

The dataset is maintained by the U.S. Forest Service and consists of vector data (polygons) of the area 

treated as a part of the timber harvest program work, with an indication of the year in which the harvest 

was performed. The activities are self-reported by the Forest Service Units and consequently, reporting 

varies by National Forest administrative districts, and different information on planned management 

activities, historical records and other available data sources such as available cartography, aerial 

orthophotos, or remotely sensed data are used for its compilation. We selected clearcut harvest units 

larger than 2 ha present within the boundaries of our study area, resulting in a total of 360 polygons 

with 17.75 ha average size, logged between 1956 and 1996 (Figure 1.1). 

Figure 1.1 shows that in many cases adjacent polygons were harvested in consecutive years. 

Because of the relatively low growth rate of the vegetation in the study area, these stands would have 

a substantially similar structure. Consequently, adjacent polygons harvested within a short time interval 

(≤5 years) were merged as exemplified in Figure 1.2. 

LiDAR Datasets and Data Pre-Processing 
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Airborne LiDAR data were acquired in 2009 on the Clear Creek watershed (henceforth referred 

as the Clear Creek area) and in 2012 on the Selway River and Elk Creek watersheds (henceforth referred 

as the Selway area) (Figure 1.1). Both datasets were acquired using a Leica ALS60 sensor in multi-

pulse mode up to 4 returns per pulse, with a 69,400 Hz pulse rate in the Clear Creek area and at 88,000 

Hz in the Selway area. In both cases, the average point density was at least 4 points/m2. The LiDAR 

data were delivered by the provider in a standard binary format (.las) with points labeled as ground or 

non-ground returns. 

Because of the 3-year time difference between the two LiDAR collections, the two datasets were 

processed separately. The point cloud was normalized to obtain the height above ground of each LiDAR 

return using a digital terrain model (DTM) interpolated from the ground returns at 1-m spatial 

resolution. The FUSION toolkit (McGaughey, 2009) was used to compute gridded, summary LiDAR 

metrics at 30 m spatial resolution. The pixel size was selected at 30 m considering the extent of the 

study area and the average size of the reference forest stands. A total of 36 metrics was computed: 25 

measures of vegetation canopy height and 11 measures of canopy density (Table 1.1). Density strata 

metrics were computed based on all returns so as not to discard useful information related to canopy 

complexity contained in the higher order returns (non-first returns). Cover metrics generated from both 

first returns and all returns were tested, because of some evidence that the former can produce more 

stable height metrics (Bater et al., 2011; Næesset, 2009), which may be more appropriate when 

combining datasets. 

The number of metrics considered for further analysis was reduced based on their field significance 

and a user defined correlation threshold as many of them were spatially correlated. The 95th percentile 

of height (thereafter ‘H95′) was selected as it is highly correlated to stand height and biomass 

(González-Ferreiro et al., 2012; Heurich and Thoma, 2008; Hudak et al., 2008; Næsset, 2002), and it is 

less sensitive to outliers compared to other distributional metrics as the maximum height (MaxH) (Kane 

et al., 2010). On the other hand, the dominant cohort of trees to regenerate after a stand-replacing 

disturbance will grow tall only after a few decades (Bartels et al., 2016). A canopy density metric above 

a relatively high height would be sensitive to both younger stand regeneration patterns (showing 

clusters of low density of points) and older stands (showing clusters of high density of points). 

Accordingly, the percentage of points above 30 m (thereafter ‘Stratum above 30 m’) was also selected 

for analysis. Pairwise Pearson correlation coefficients (R) between these two metrics and all other 34 

metrics were computed; and only the metrics with average absolute value of R lower than 0.5 (i.e., |R| 

< 0.5) both with ‘H95′ and ‘Stratum above 30 m’ were retained for the following steps of the analysis. 

All selected metrics were normalized between 0 and 100. 
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Table 1.2 shows the selected metrics for segmentation (seven in total) and the obtained pairwise 

Pearson’s correlation coefficients; Figure 1.3 displays an example of each of these metrics for a 4 × 4 

km subset within the Clear Creek watershed. 

Methods 

The overall workflow of the proposed methodology is presented in Figure 1.4. The methodology 

involves: (1) The single-layer segmentation of several LiDAR metrics; (2) an object-based 

unsupervised evaluation to calibrate the segmentation algorithm parameters of each LiDAR metric; and 

(3) a supervised evaluation to select the optimal input LiDAR metric for the delineation of forest stands. 

An independent validation is performed to assess the accuracy of the optimal forest stand delineation. 

Segmentation  

Image segmentation of the seven LiDAR metrics was carried out using the multiresolution 

segmentation (MRS) algorithm (Baatz and Schape, 2000) implemented in eCognition 9.1 software. 

The MRS is a bottom-up segmentation algorithm which starts with a single selected pixel, and 

merges neighboring pixels into bigger objects in a step-wise iterative process. A detailed description of 

the algorithm, which is one of the most commonly used algorithms in image segmentation of remotely 

sensed data within the GEOBIA domain, is provided by Baatz and Schape (2000); the eCognition 

implementation requires three user-defined parameters: Scale, shape, and compactness. The scale 

parameter (unitless, unbounded, and defined positive) controls the maximum heterogeneity within the 

objects; higher scale parameter values hence result in bigger objects. The shape and compactness 

parameters (unitless, with values defined between 0 and 1) control the border smoothness and 

compactness of the objects. For each selected LiDAR metric, we generated a set of segmentations by 

systematically varying the values of the three parameters. The range of variation of the three parameters 

established to ensure a full range of outputs ranging from undersegmentation to oversegmentation: 91 

values of the scale parameter were used, ranging from 5 to 275 in increments of 3 units; three values 

(0.1, 0.5, and 0.9) were used for shape and compactness. 

All the possible combinations of the three sets of values were tested, thus for each LiDAR metric 

and LiDAR dataset, a total of 819 segmentations was obtained. 

Selection of the Optimal Segmentation of each LiDAR Metric 

An unsupervised evaluation method based on spatial autocorrelation statistics was used for 

selecting the optimal segmentation for each LiDAR metric, out of the 819 generated with the sets of 

parameters defined above. The method is an adaptation of the one introduced by Espindola et al. (2006) 
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and subsequently used for object-based image segmentation evaluation of land cover and stand 

mapping (Johnson and Xie, 2011; Kim et al., 2009; Varo-Martínez et al., 2017). 

Given a set of segmentations of the same image, the optimal segmentation is defined as the one 

that maximizes intra-segment homogeneity (i.e., the pixels belonging to the same segment are similar 

to each other) and inter-segment heterogeneity (i.e., neighboring segments are different from each 

other). 

The intra-segment homogeneity is measured by the weighted variance (𝑤𝑉𝑎𝑟): 

𝑤𝑉𝑎𝑟 =
∑ 𝑎𝑖×𝑣𝑖

𝑛
𝑖=1

∑ 𝑎𝑖
𝑛
𝑖=1

, (1) 

where 𝑣𝑖 and 𝑎𝑖 are respectively the variance and the area of segment i, and n is the total number 

of segments. The upper bound of 𝑤𝑉𝑎𝑟 is equal to the variance of the image when only one image 

object is part of the segmentation; conversely, the lower bound of 𝑤𝑉𝑎𝑟 is be equal to 0 when each 

pixel in the image constitutes one image object. 

The inter-segment heterogeneity is measured by Moran’s I (MI) index: 

𝑀𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗(𝑦𝑖−ӯ)(𝑦𝑗−ӯ)𝑛

𝑗=1
𝑛
𝑖=1

(∑ (𝑦𝑖−ӯ)2)(∑ ∑ 𝑤𝑖𝑗𝑖≠𝑗
𝑛
𝑖=1 )

, (2) 

where 𝑦𝑖 is the mean value of segment i, 𝑦𝑗 is the mean value of segment j, ӯ is the mean of the 

pixel values of the entire image, and 𝑤𝑖𝑗 is a neighbor-based matrix assuming value 𝑤𝑖𝑗 = 1 if objects 

i and j are adjacent otherwise 𝑤𝑖𝑗 = 0. 𝑀𝐼 can assume values between −1 and 1: Values close to 1 

represent clumped patterns with high spatial autocorrelation; values close to 0 represent random 

patterns; and values close to −1 represent dispersed patterns lacking spatial autocorrelation. 𝑀𝐼 was 

retrieved using the moran function on the R spdep package (Bivand et al., 2011). 

Once 𝑤𝑉𝑎𝑟 and 𝑀𝐼 are calculated for all the segmentations of the same LiDAR metric, the scores 

are normalized as proposed by Böck et al. (2017). The weighted variance 𝑤𝑉𝑎𝑟 was normalized 

respective to the variance 𝑦′ of the entire LiDAR metric image used as segmentation input: 

𝑤𝑉𝑎𝑟𝑛𝑜𝑟𝑚 =
𝑤𝑉𝑎𝑟

𝑦′ , (3) 

where 𝑤𝑉𝑎𝑟 is the weighted variance for the segmentation, and 𝑦′ is the variance of the entire 

image used as segmentation input. Because 𝑤𝑉𝑎𝑟 may vary between 0 and 𝑦′, 𝑤𝑉𝑎𝑟𝑛𝑜𝑟𝑚 assumes 

values between 0 and 1. 

𝑀𝐼 was rescaled to the same 0–1 interval as follows: 
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𝑀𝐼𝑛𝑜𝑟𝑚 =
𝑀𝐼+1

2
, (4) 

The two normalized measures are then combined in a single measure, termed Global Score (GS) 

by Johnson and Xie (2011), and proposed as an objective function to rank the set of segmentation 

outputs and select the one resulting in the lowest GS. The original formulation of GS is a simple linear 

combination of 𝑤𝑉𝐴𝑟𝑛𝑜𝑟𝑚 and 𝑀𝐼𝑛𝑜𝑟𝑚; in order to avoid cases where the lowest GS is attained by a 

segmentation that is clearly undersegmenting (high 𝑤𝑉𝐴𝑟𝑛𝑜𝑟𝑚 but very low 𝑀𝐼𝑛𝑜𝑟𝑚) or 

oversegmenting (high 𝑀𝐼𝑛𝑜𝑟𝑚but very low 𝑤𝑉𝐴𝑟𝑛𝑜𝑟𝑚), we propose the use of a quadratic cost function, 

that privileges segmentations with balanced intra-segment homogeneity and inter-segment 

heterogeneity: 

𝐺𝑆𝑚𝑜𝑑 = √
𝑤𝑉𝑎𝑟𝑛𝑜𝑟𝑚2+ 𝑀𝐼𝑛𝑜𝑟𝑚2

2
,  (5) 

𝐺𝑆𝑚𝑜𝑑 assumes values in the 0 to 1 range: values close to 0 being indicative of high intra-segment 

homogeneity and inter-segment heterogeneity; and values close to 1 being indicative of low intra-

segment homogeneity and inter-segment heterogeneity. 

For each of the seven LiDAR metrics considered, the segmentation with the lowest 𝐺𝑆𝑚𝑜𝑑 was 

selected as optimal. 

Selection of the Optimal LiDAR Metric 

The second stage of the proposed methodology is to identify, among the set of seven optimal 

segmentations, the one that most closely matches even-aged stands as they are in reality, i.e., selecting 

which LiDAR metric is mostly suitable for forest stand delineation. A supervised evaluation method 

was used, based on measures of area dissimilarity between the segments (henceforth, image objects) 

and the FACTs harvest dataset, used as a reference map of even-aged forest stands (henceforth, 

reference objects). 

Several metrics have been proposed in the literature as measures of area correspondence between 

image objects and reference objects (Clinton et al., 2010; Costa et al., 2018; Levine and Nazif, 1985; 

Liu et al., 2012; Lucieer and Stein, 2002; Möller et al., 2007; Monteiro and Campilho, 2006; Weidner, 

2008; Zhan et al., 2005); these methods generally quantify oversegmentation and undersegmentation 

of the image objects. Oversegmentation happens when an identified reference object results in too many 

smaller image objects after the segmentation process. Conversely, undersegmentation occurs when the 

image object spatially matches with more than one of the reference objects, the image object being 

larger in size compared to the target feature of interest. An ideal, error-free segmentation would have 

no oversegmentation and no undersegmentation. In reality, each classification have some 
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oversegmentation and some undersegmentation: The selection of the optimal segmentation is therefore 

based on a ranking strategy that balances the two types of error (Clinton et al., 2010). 

The adopted supervised evaluation method is based on measures of area dissimilarity proposed by 

Clinton et al. (2010). We define as 𝑌 = {𝑦𝑗: 𝑗 = 1 … . 𝑚} the set of all the image objects, and as 

𝑋 = {𝑥𝑖: 𝑖 = 1 … . 𝑛} the set of all the reference objects. For each reference object 𝑥𝑖, 𝑌𝑖
∗ is the set of 

corresponding image objects, defined as all image objects of 𝑌 whose area overlaps by more than 50% 

with the reference object (i.e., 𝑦𝑗 : 
area(𝑥𝑖⋂𝑦𝑗)

area(𝑦𝑗)
> 0.5); or conversely if the reference object overlaps 

more than half of the segmented object (i.e., 𝑦𝑗 : 
area(𝑥𝑖⋂𝑦𝑗)

area(𝑥𝑖)
> 0.5) (Zhan et al., 2005). This 50% 

overlapping area criterion has been consistently used as an appropriate threshold for object-based 

quality assessment (Clinton et al., 2010; Drăguţ et al., 2014; Liu et al., 2012). 

The measures of oversegmentation (OS) and undersegmentation (US) (Clinton et al., 2010) are 

calculated by starting with pair-wise comparisons between image objects and corresponding reference 

objects, which are then summarized for the entire image. 

For each image object 𝑦𝑗, (𝑦𝑗 ∈  𝑌𝑖
∗ ) and corresponding reference object 𝑥𝑖 the oversegmentation 

(𝑂𝑆𝑖𝑗) is calculated as the fraction of overlapping area relative to the area of the reference object:  

𝑂𝑆𝑖𝑗 = 1 −  
area(𝑥𝑖⋂𝑦𝑗)

area(𝑥𝑖)
, (6) 

Conversely, undersegmentation (𝑈𝑆𝑖𝑗) is calculated as the fraction of overlapping area, relative to 

the area of the image object: 

𝑈𝑆𝑖𝑗 = 1 −  
area(𝑥𝑖⋂𝑦𝑗)

area(𝑦𝑗)
, (7) 

𝑂𝑆𝑖𝑗 is then aggregated into the overall oversegmentation of object 𝑥𝑖: 

𝑂𝑆𝑖 =
∑ 𝑂𝑆𝑖𝑗𝑦𝑗∈ 𝑌𝑖

∗

#𝑦
𝑗

∈  𝑌𝑖
∗ , (8) 

and 𝑂𝑆𝑖 is aggregated as the total oversegmentation of the n reference objects: 

𝑂𝑆 =
∑ 𝑂𝑆𝑖  

𝑛
𝑖

𝑛
, (9) 

Likewise, 𝑈𝑆𝑖𝑗 is aggregated into the overall undersegmentation of object 𝑥𝑖: 

𝑈𝑆𝑖 =
∑ 𝑈𝑆𝑖𝑗𝑦𝑗∈ 𝑌𝑖

∗

#𝑦𝑗 ∈  𝑌𝑖
∗ , (10) 
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and 𝑈𝑆𝑖 is aggregated as the total undersegmentation of the n reference objects: 

𝑈𝑆 =
∑ 𝑈𝑆𝑖  

𝑛
𝑖

𝑛
, (11) 

To select the optimal metrics, OS and US were combined into a summary score (D): 

𝐷 = √
𝑂𝑆2 +  𝑈𝑆2

2
, (12) 

In the cases where no corresponding objects for a specific reference object were found according 

to the defined 50% overlapping area criterion (i.e., #𝑦𝑗 ∈  𝑌𝑖
∗ = 0), 𝑂𝑆𝑖 and 𝑈𝑆𝑖 were given a value of 

1. 

Once the optimal segmentations of each LiDAR metric were evaluated, the LiDAR metric whose 

segmentation results in the lowest D score was selected as optimal. 

In order to investigate whether the same metric results in the optimal segmentation regardless of 

time since disturbance, the metrics of area agreement were computed using as reference objects 

different subsets of the FACTS harvest polygons, resulting in four scenarios: 

1. All clearcuts (years from 1956 to 1996); 

2. clearcuts performed before the start of the Landsat MSS record (years from 1956 to 1972); 

3. clearcuts performed before the start of the Landsat TM record (years from 1956 to 1984); 

4. clearcuts performed after the start of the Landsat TM record (years from 1984 to 1996). 

The four scenarios are driven by the Landsat data archive since it is the longest available Earth 

Observation record, starting with the launch of Landsat-1 in 1972. 

Validation 

The segmentation selected through the two-stage semi-automatic procedure was validated by 

comparing it to a randomly selected set of reference objects, derived from visual interpretation. The 

accuracy of the segmentation was assessed using area-based dissimilarity measures. 

 Reference dataset  

The FACTS dataset is a valuable record of historical disturbances, but it is not intended to be a 

wall-to-wall map of stand boundaries. While the presence of a polygon indicates a documented, 

historical clearcut, the absence of a polygon might indicate the absence of historical data, rather than 

an undisturbed stand. For this reason, an independent reference dataset encompassing both even-aged 

(EAF) and undisturbed uneven-aged (UAF) forest stands was developed. Reference objects were 
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delineated through visual interpretation of the 1-m spatial resolution digital orthophotos acquired from 

the National Agricultural Imagery Program (NAIP). Tri-dimensional renderings of the normalized 

LiDAR point clouds, as well as the raster LiDAR metrics, were used as additional data sources in the 

interpretation. NAIP imagery acquired in 2009 was used for the Clear Creek dataset, and 2011 imagery 

(closer in time to the LiDAR flight) was used for the Selway dataset. 

The reference objects were generated as follows: 

1. Random selection of an image object of the optimal segmentation, to account for the large 

disparity in stand area, followed by random selection of a point within the object (Radoux 

and Bogaert, 2017); 

2. visual interpretation of the NAIP imagery to trace the forest stand that includes the point. 

Any physical barriers such as roads or watersheds were used to delineate the border of the 

stands when no other natural discontinuity related to vegetation type or structure was 

found; 

3. classification of the reference object as EAF or uneven-aged forest by the photo-

interpreter. 

A total of 100 reference objects were generated: 25 EAF and 25 UAF objects for each of the two 

study areas. 

 Validation Metrics 

The validation metrics used to characterize the agreement and disagreement between image 

objects and reference objects are: 

 Oversegmentation (OS), undersegmentation (US) and summary score (D), obtained with 

the procedure described in “Selection of the Optimal LiDAR Metric” section; 

 modified oversegmentation (𝑂𝑆∗), undersegmentation (𝑈𝑆∗), and summary score (𝐷∗), 

defined as follows. 

The modified area-based dissimilarity metrics (𝑂𝑆∗, 𝑈𝑆∗, 𝐷∗) are defined as the benchmark value 

of (OS, US, D), that could be achieved in the best case scenario when the image objects identified by 

the segmentation are post-processed and merged through object-based classification. The issue is 

illustrated in Figure 1.5, where two significantly different segmentations are compared to the same 

reference object. The top row shows a case of oversegmentation, where an almost perfect match could 

be achieved through classification, if all the corresponding image objects are merged. Conversely, the 

bottom row shows a case of where significant discrepancies could not be resolved through classification 
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of the image objects. This is reflected by the modified metrics (Figure 1.5, right column) where 

(𝑂𝑆∗, 𝑈𝑆∗, 𝐷∗) represent the areal disagreement between the reference object and the best possible 

aggregation of the image objects. The modified metrics are significant for the specific application of 

forest stand mapping, where the segmentation should not be seen as an end-product per se, but as an 

input dataset for further classification of forest characteristics. We expect the difference between (OS, 

US, D) and (OS*, US*, D*) to be particularly significant on UAF stands, that due to their larger size 

and heterogeneity compared to EAF are expected to show a high degree of oversegmentation, that 

might be however resolved through post-processing. 

The modified metrics are computed by considering, instead of the single image objects 𝑦𝑗 

corresponding to a reference object 𝑥𝑖, their union 𝑦𝑖
∗ defined as: 

𝑦𝑖
∗ =∪𝑦𝑗∈𝑌𝑖

∗ 𝑦𝑖 , (13) 

being 𝑌𝑖
∗ the subset set of corresponding image objects defined considering the 50% overlapping 

area criterion (see “Selection of the Optimal LiDAR Metric” section); by definition y* the best possible 

result of a post-processing of the segmentation. 

For each reference object 𝑥𝑖 the modified oversegmentation 𝑂𝑆𝑖
∗ is calculated as the fraction of 

overlapping area with 𝑦𝑖
∗ relative to the area of the reference object: 

𝑂𝑆𝑖
∗ = 1 −

𝑎𝑟𝑒𝑎 (𝑥𝑖 ∩ 𝑦
𝑖
∗)

𝑎𝑟𝑒𝑎 (𝑥𝑖)
, (14) 

𝑂𝑆𝑖
∗ (14) is then aggregated into an overall oversegmentation metric for the entire set of n reference 

objects: 

𝑂𝑆∗ =
∑ 𝑂𝑆𝑖

∗ 𝑛
𝑖

𝑛
, (15) 

Similarly, the modified undersegmentation 𝑈𝑆𝑖
∗ is calculated for each reference object as: 

𝑈𝑆𝑖
∗ = 1 −

𝑎𝑟𝑒𝑎 (𝑥𝑖 ∩ 𝑦
𝑖
∗)

𝑎𝑟𝑒𝑎 (𝑦
𝑖
∗)

, (16) 

and 𝑈𝑆𝑖
∗ (16) is aggregated into an overall undsersegmentation metric: 

𝑈𝑆∗ =
∑ 𝑈𝑆𝑖

∗ 𝑛
𝑖

𝑛
, (17) 

Finally, the modified summary 𝐷∗ score is calculated as the quadratic cost function of 𝑂𝑆∗ 
and 𝑈𝑆∗: 
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𝐷∗ = √𝑂𝑆∗2
+ 𝑈𝑆∗2

2
,  

(18) 

 

Results 

Selection of the Optimal Segmentation of each LiDAR Metric 

The procedure described in “Selection of the Optimal Segmentation of each LiDAR Metric” 

section, was used for the evaluation of the 819 segmentations obtained for each LiDAR metric using 

different sets of MRS algorithm parameters (scale, shape, and compactness). Figure 1.6 illustrates, 

using the ‘H95′ metric as an example, that different scale and shape parameters influence the number, 

shape, and size of the segments, as discussed in (Baatz and Schape, 2000). 

The measures of spatial autocorrelation (𝑤𝑉𝐴𝑟𝑛𝑜𝑟𝑚, 𝑀𝐼𝑛𝑜𝑟𝑚) were computed for each 

segmentation, and the summary score (𝐺𝑆𝑚𝑜𝑑) was used for ranking them. Figure 1.7 exemplifies the 

procedure for the selection of the optimal segmentation, showing the scatter-plot of the 𝑤𝑉𝐴𝑟𝑛𝑜𝑟𝑚 and 

𝑀𝐼𝑛𝑜𝑟𝑚 value of each segmentation of the ‘H95′ LiDAR metric of the Clear Creek dataset, as well as 

the isoline 𝐺𝑆𝑚𝑜𝑑 = 0.37 corresponding to the optimal segmentation. 

In general, for each LiDAR metric, the parameters that generate the optimal segmentation on both 

datasets are very similar (Table 1.3). For instance, the shape is always 0.1, and the scale parameter 

between both datasets never differ more than a scale increment of 3 units. A notable exception is the 

‘Stratum above 30 m’ metric, where the optimal scale parameter is 59 on the Clear Creek dataset and 

23 on the Selway dataset. This difference can be explained considering the low sensitivity of this metric 

to vegetation recovery: the percentage of returns above 30 m will remain negligible until the top of the 

trees is higher than 30 m, which might take several decades after a stand-replacing disturbance. In the 

Clear Creek area many clearcuts are adjacent or spatially close to each other (Figure 1.1); because of 

the low sensitivity of the metric, there is no clear distinction in the “Stratum above 30 m” metric 

between neighboring disturbed stands, and the optimal segmentation is the one identifying these very 

large image objects. Figure 1.1 shows that the clearcuts of the Selway area are instead surrounded by 

undisturbed stands, generating a more heterogenous patchy landscape that create recognizable stand 

boundaries despite the low sensitivity of the ‘Stratum above 30 m’ metric. 

Figure 1.8 illustrates that the optimal segmentation of different LiDAR metrics might show very 

different vegetation-related structural objects. While in general the image objects that can visually 

recognized in each of the LiDAR metrics are delineated by the optimal segmentation, not all metrics 

return image objects that match the historic disturbances reported by the FACTS dataset. Figure 1.8 
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shows that the ‘H95′ and ‘Stratum above 30 m’ visually match closely the FACT dataset, whereas the 

other metrics define image objects that do not immediately relate to the record of past clearcuts. 

Selection of the Optimal LiDAR Metric 

The optimal segmentation of each LiDAR metric was compared against the reference objects from 

the FACTs harvest dataset following the procedure described in “Selection of the Optimal LiDAR 

Metric” section; the results of the analysis, for the two study areas and for the four scenarios of time 

since disturbances, are summarized in Table 1.4. The ‘H95′ metric results in the lowest D value for 

both datasets in all but one case (Table 1.4), namely when considering only the most recent disturbances 

(1984–1996) on the Clear Creek dataset. In this case, the ‘Stratum 20–30 m’ metric results in the lowest 

score (D = 22), with the ‘H95′ metric having the second lowest score (D = 0.25). Conversely, the 

‘Stratum 20–30 m’ metric is the second-best metric of the remaining three scenarios in the Clear Creek 

area, and the ‘Stratum above 30 m’ is always the second-best metric in the Selway area. Additionally, 

the optimal segmentation of the ‘H95′ metric is the only one where all the reference objects have a non-

null set of matching image objects (i.e., 𝑌𝑖
∗ ≠ ∅ ∀ 𝑥𝑖) (Table 1.4). 

The ‘H95′ LiDAR metric was therefore selected as the optimal metric. Figure 1.9 shows the 

segmentation of the ‘H95′ LiDAR metric as the optimal delineation for even-aged forest stand mapping 

in the study area. 

Validation 

One hundred reference objects were manually delineated (Figures 1.10 and 1.11) to validate the 

optimal segmentation results, as described in “Validation” section. This sample size corresponds to 8% 

of the total number of image objects identified by the optimal segmentation (1182 objects in total, as 

reported in Table 1.3), and the resulting reference dataset covers 16% of the surface of the study area. 

The reference sample size is comparable with previous GEOBIA-based studies (Drăguţ et al., 2014; 

Heenkenda et al., 2015; Liu et al., 2012). 

The independent validation performed with the visually interpreted polygons representing both 

EAF and UAF stands confirmed the good match between image objects and forest stands. On EAF 

stands, in particular, in most cases there was a 1-to-1 correspondence between the EAF reference 

objects and the set of corresponding image objects; whereas UAF reference objects were generally 

undersegmented, and corresponded to several image objects (Figure 1.10). The validation also showed 

that, in a few isolated cases, the ‘H95′ metric has an abnormal behavior on very recent clearcuts, as in 

the example of Figure 1.11, third row, where a recently harvested stand is not visible in the LiDAR 

raster. This is due to the specific definition of the ‘H95′ metric (Table 1.1): In the absence of vegetation 
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regrowth the majority of returns are classified as ‘ground’, and the 95th percentile of the non-ground 

returns corresponds to the height of isolated trees left standing for seedling after the clearcut. 

The area based dissimilarity metrics, reported in Table 1.5, indicate that the overall performance 

(summarized by the D score) is very similar across the two datasets (𝐷𝐶𝑙𝑒𝑎𝑟 𝐶𝑟𝑒𝑒𝑘= 0.26 and 𝐷𝑆𝑒𝑙𝑤𝑎𝑦 =

0.27 when considering all objects), with consistently higher accuracy on EAF stands (𝐷𝐶𝑙𝑒𝑎𝑟 𝐶𝑟𝑒𝑒𝑘= 

0.15 and 𝐷𝑆𝑒𝑙𝑤𝑎𝑦= 0.16) than on UAF stands (𝐷𝐶𝑙𝑒𝑎𝑟 𝐶𝑟𝑒𝑒𝑘 = 0.37 and 𝐷𝑆𝑒𝑙𝑤𝑎𝑦 = 0.39). This 

difference is largely due to the high rates of oversegmentation on UAF stands in both datasets 

(𝑂𝑆𝐶𝑙𝑒𝑎𝑟 𝐶𝑟𝑒𝑒𝑘,𝑈𝐴𝐹 = 0.39 vs 𝑂𝑆𝐶𝑙𝑒𝑎𝑟 𝐶𝑟𝑒𝑒𝑘,𝐸𝐴𝐹 = 0.12; and 𝑂𝑆𝑆𝑒𝑙𝑤𝑎𝑦,𝑈𝐴𝐹 = 0.50 vs 𝑂𝑆𝑆𝑒𝑙𝑤𝑎𝑦,𝐸𝐴𝐹 =

0.22). 

As discussed in “Validation” section, the modified metrics (𝑂𝑆∗, 𝑈𝑆∗, 𝐷∗) represent the 

benchmark level of error that could be achieve through the best possible post-processing of the 

segmentation. The modified metrics indicate that post-processing has the potential to significantly 

reduce the areal disagreements due to oversegmentation, especially over UAF stands 

(𝐷𝐶𝑙𝑒𝑎𝑟 𝐶𝑟𝑒𝑒𝑘,𝑈𝐴𝐹
∗ = 0.31 vs 𝐷𝐶𝑙𝑒𝑎𝑟 𝐶𝑟𝑒𝑒𝑘,𝑈𝐴𝐹 = 0.37, 𝐷𝑆𝑒𝑙𝑤𝑎𝑦,𝑈𝐴𝐹

∗ = 0.21 vs 𝐷𝑆𝑒𝑙𝑤𝑎𝑦,𝑈𝐴𝐹 = 0.39). 

Discussion 

In the present paper we propose the integration in the same workflow of an object-based 

unsupervised evaluation (which allows for the selection of the optimal parameters to automatically 

segment an image) and an object-based supervised evaluation (which allows for the selection of the 

best match between a segmentation and independently derived reference objects) to identify objectively 

an optimal delineation output. Unsupervised methods favor automatic ranking of multiple 

segmentations obtained by changing the parameters of an algorithm on the same input data, without 

requiring any contribution from the operator, or any external datasets. They do not, however, allow for 

ranking segmentations obtained on the same area from different input data, as in the case of the LiDAR 

raster metrics examined in this paper, which reflect different structural characteristics of the vegetation, 

as evident in Figure 1.3. Supervised evaluation methods instead allow for ranking any segmentation—

whether it is generated from the same image or not—but rely entirely on reference data, whose 

generation is generally an expensive and time-consuming task (Zhang et al., 2008). As a consequence, 

supervised evaluation methods are generally employed only on relatively small datasets (Johnson and 

Xie, 2011). The combination of these two standard object-based evaluation strategies, as proposed in 

this paper, reduces considerably the amount of required reference data and increases the scope of a 

reliable semi-automatic delineation to larger areas. 
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The application of the proposed methodology to LiDAR data demonstrates that a single LiDAR 

raster metric, the ‘H95′ metric, can be used to delineate even-aged forest stands in a semi-automatic 

way. In particular, the results show that forest stands harvested in the 1950s and 1960s can still be 

accurately delineated (Table 1.4). This result is particularly significant, because it implies that LiDAR 

data can be potentially used to reconstruct the disturbance history of a forest extending beyond the 

optical satellite data record. 

The optimal segmentation was validated against a randomly selected reference dataset. The 

reference objects were manually delineated by a skilled photo-interpreter, based on imagery of higher 

resolution (1 m NAIP data) and richer thematic content (3D LiDAR point clouds) than the 30 m LiDAR 

raster. While there is a degree of subjectivity, visually interpreted reference data are commonly used 

for the validation of land cover and land cover disturbance satellite products (e.g., Boschetti et al., 2016; 

Strahler et al., 2006), and for the validation of GEOBIA outputs (e.g., Drăguţ et al., 2014; Heenkenda 

et al., 2015; Johnson and Xie, 2011; Leppänen et al., 2008; Liu et al., 2012; Varo-Martínez et al., 2017). 

The independent validation confirmed the good overall match between image objects and visually 

interpreted polygons, albeit with higher accuracy on EAF than on UAF forest stands. At least in part, 

the low accuracy on UAF stands might be attributed to the lack of objective UAF stand definition, and 

to the difficulty for the interpreter to consistently identify natural breaks between contiguous, mature, 

uneven-aged forest stands. The validation also highlighted some limitations of the ‘H95′ metric. The 

optimal segmentation showed undersegmentation errors (e.g., Figure 1.11, third row) on small stands 

recently (<10 year) harvested, where mature trees are left standing at regular intervals to spread seeds 

(e.g., shelterwood cutting). At time of the LiDAR acquisition the majority of the young regenerating 

seedlings have a height below 1.37 m (the cutoff used for the raster height metrics), and the ‘H95′ 

metric therefore reflects the height of the mature trees left standing. We hypothesize that the combined 

use of multiple LiDAR metrics (such as the ‘Stratum 20–30 m’ which ranked second in the supervised 

evaluation) might overcome this particular issue. 

Previous research to delineate structural or age-related forest stand types using object-based 

techniques and LiDAR data (e.g., Koch et al., 2009; Leppänen et al., 2008; Pascual et al., 2008; Sullivan 

et al., 2009; Varo-Martínez et al., 2017; Wu et al., 2014) did not propose methodologies that could be 

easily applied outside the original study areas, due to the complexity of the workflow (e.g., Koch et al., 

2009), to the exploitation of site-specific forest characteristics and to the small extent of the study areas 

(e.g., Leppänen et al., 2008; Pascual et al., 2008; Sullivan et al., 2009; Wu et al., 2014), and to the lack 

of objective evaluation protocols (e.g., Pascual et al., 2008; Sullivan et al., 2009). The proposed two-

stage evaluation strategy is a general objective workflow, that could be easily replicated and adapted to 
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other study sites, to other data sources, and to delineate different features of the landscape. Overall, we 

expect that the same ‘H95′ metric could be optimal, at the working resolution, in other areas with similar 

species composition and with similar disturbance dynamics (such as most of the Pacific Northwest of 

the United States), and that the optimal set of parameters of the MRS algorithm for each area could be 

identified through an unsupervised selection procedure, hence without the need for additional 

independent reference data. Additional validation would be required to verify whether the same LiDAR 

metric could be also used for delineating forest stands resulting from disturbances and management 

practices other than clearcuts. Future research will (1) evaluate a different set of single or combined 

LiDAR metrics for segmentation (e.g., texture metrics, rumple index, local maxima derived from the 

CHM); and (2) develop a rule-based fusion between segmentations generated from complementary 

metrics and different harvest treatments, as some limitations in the detection of recent disturbances has 

been observed after the independent validation was addressed. 

Conclusions  

This paper proposes a two-stage, semi-automatic evaluation strategy for object-based forest stand 

delineation and implements it on two contiguous LiDAR datasets covering more than 54,000 ha in the 

Clear Creek and Selway watersheds in Central Idaho. The paper was designed to address two main 

objectives: (1) To integrate a straightforward and objective workflow for forest stand delineation that 

can be easily replicated and adapted at regional scales; and (2) to evaluate the performance of 

commonly used rasterized LiDAR metrics, such as ‘H95′ in this study, to identify in a semi-automatic 

way the boundaries of relatively old even-aged forest stands. 

With regards to the first objective, the proposed strategy allows the user to automatically select 

the optimal set of MRS algorithm segmentation parameters to delineate image objects for each tested 

LiDAR metric, and to identify the LiDAR metric that ensures the best match between image objects 

(i.e., the segmentation) and a set of reference objects (i.e., the forest stands as independently delineated). 

With regards to the second objective, the application of the methodology to LiDAR data demonstrates 

that commonly used LiDAR raster metrics, namely distributional metrics of canopy height, can be used 

to accurately delineate even-aged forest stands (>2 ha) in a semi-automatic way and that forest stands 

older than 50 years can be identified at working resolution of 30 m. This is a particularly significant 

result, considering that stand maps conventionally generated from change detection using optical 

satellite data can only extend, in the best case, to the beginning of the Landsat MSS record in 1972. 

GEOBIA strategies to delineate forest stands at regional scales are promising to generate forest 

stands maps ready to use, but generalized protocols are still required. The most effective way to 

approach the delineation would depend on the adopted definition of a forest stand (e.g., based on species 
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composition, structure, etc.). In any case, robust evaluation strategies would be required to assure a 

minimum quality on the final selected output. We proposed here a straightforward and objective two-

stage evaluation workflow to delineate forest stands defined in terms of age and structural homogeneity. 

Our study shows that relatively old stands are accurately discriminated using one single-date LiDAR 

raster metric, which is promising result not only to produce even-aged forest stand maps but also to 

eventually characterize forest stands in terms of time since the last disturbance. Additionally, this 

methodology can be adapted to address future study needs, such as to improve stand delineation 

methods, or to map other geographic features of the landscape. 
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Table 1.1. Light Detection and Ranging (LiDAR) summary metrics gridded at 30 m resolution from LiDAR 

point clouds. Twenty-five metrics are related to vegetation canopy height, and eleven are related to canopy 

density. 

 LiDAR Metrics Description 

Canopy height 

‘H01′ 1th percentile of height above 1.37 m 

‘H05′ 5th percentile of height above 1.37 m 

‘H10′ 10th percentile of height above 1.37 m 

‘H20′ 20th percentile of height above 1.37 m 

‘H25′ 25th percentile of height above 1.37 m 

‘H30′ 30th percentile of height above 1.37 m 

‘H40′ 40th percentile of height above 1.37 m 

‘H50′ 50th percentile of height above 1.37 m 

‘H60′ 60th percentile of height above 1.37 m 

‘H70′ 70th percentile of height above 1.37 m 

‘H75′ 75th percentile of height above 1.37 m 

‘H80′ 80th percentile of height above 1.37 m 

‘H90′ 90th percentile of height above 1.37 m 

‘H95′ 95th percentile of height above 1.37 m 

‘H99′ 99th percentile of height above 1.37 m 

‘MaxH’ Maximum height value 

‘AveH’ Mean height value 

‘ModeH’ Modal height value 

‘VarH’ Variance of heights 

‘QMH’ Quadratic mean of heights 

‘SVH’ Standard deviation of heights 

‘CVH’ Coefficient of variation of heights 

‘Skew.H’ Height skewness 

‘IQH’ Interquartile coefficient of heights 

‘CRR’ Canopy relief ratio 

Canopy density 

‘First returns above mean’ 
Percentage of first returns above mean height over the total 

number of first returns 

‘First returns above 1.37 m’ 
Percentage of first returns above 1.37 m height (breast height) 

over the total number of first returns 

‘All returns above mean’ 
Percentage of all returns above the mean height over the total 

number of returns 

‘All returns above 1.37 m’ 
Percentage of all returns above 1.37 m (breast height) over the 

total number of returns 

‘Stratum below 0.15 m’ Percentage of returns below 0.15 m 

‘Stratum 0.15–1.37 m’ Percentage of returns between 0.15 and 1.37 m 

‘Stratum 1.37–5 m’ Percentage of returns between 1.37 and 5 m 

‘Stratum 5–10 m’ Percentage of returns between 5 and 10 m 

‘Stratum 10–20 m’ Percentage of returns between10 and 20 m 

‘Stratum 20–30 m’ Percentage of returns between 20 and 30 m 

‘Stratum above 30 m’ Percentage of returns above 30 m 

 

  



 

 

37 

 

Table 1.2. LiDAR metrics considered in the analysis. The ‘H95′ and ‘Stratum above 30 m’ metrics were selected 

based on literature review. From the remaining 34 metrics, the five metrics with absolute average value of the 

Pearson’s correlation coefficient of the two LiDAR datasets (i.e., Clear Creek and Selway) lower than 0.5 (i.e., 

|R| < 0.5) with both ‘H95′ and ‘Stratum above 30 m’ were selected. 

 Pearson’s Correlation Coefficient (R) 

 Clear Creek Selway Average 

LiDAR Metric R(‘HP95′) 
R(‘Stratum 

above 30 m’) 
R(‘HP95′) 

R(‘Stratum 

above 30 m’) 
R(‘HP95′) 

R(‘Stratum 

above 30 m’) 

‘HP95′ - 0.81 - 0.76 - 0.79 

‘Stratum above 30 m’ 0.81 - 0.76 - 0.79 - 

‘CVH’ 0.05 −0.37 −0.08 −0.54 −0.02 −0.45 

‘Stratum below 0.15 m’ −0.26 −0.37 −0.36 −0.43 −0.31 −0.4 

‘Stratum 0.15–1.37 m’ −0.28 −0.28 −0.27 −0.55 −0.28 −0.41 

‘Stratum 1.37–5 m’ −0.20 −0.23 −0.28 −0.50 −0.24 −0.36 

‘Stratum 20–30 m’ 0.02 −0.02 −0.05 −0.06 −0.01 −0.04 
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Table 1.3. Optimal segmentation of the seven considered LiDAR metrics. For each metric, the optimal set of 

multiresolution segmentation (MRS) algorithm parameters (scale, shape, compactness), the number of resulting 

image objects, and the unsupervised measures of spatial autocorrelation (normalized Moran’s I, normalized 

weighted Variance, modified Global score) are presented. The two LiDAR datasets were processed 

independently. 

 LiDAR Metric Scale Shape Comp. 
# Image 

Objects 
𝑀𝐼𝑛𝑜𝑟𝑚  𝑤𝑉𝐴𝑟𝑛𝑜𝑟𝑚 𝐺𝑆𝑚𝑜𝑑  

Clear Creek 

‘H95′ 29 0.1 0.1 347 0.47 0.23 0.37 

‘CVH’ 5 0.1 0.1 11,119 0.55 0.14 0.41 

‘Stratum below 0.15 m’ 17 0.1 0.5 1295 0.56 0.24 0.43 

‘Stratum 0.15–1.37 m’ 14 0.1 0.1 1131 0.57 0.24 0.43 

‘Stratum 1.37–5 m’ 8 0.1 0.9 1495 0.58 0.24 0.44 

‘Stratum 20–30 m’ 14 0.1 0.1 1439 0.55 0.25 0.43 

‘Stratum above 30 m’ 59 0.1 0.1 151 0.39 0.35 0.37 

Selway 

‘H95′ 26 0.1 0.5 835 0.49 0.22 0.38 

‘CVH’ 5 0.1 0.1 16,592 0.57 0.14 0.42 

‘Stratum below 0.15 m’ 20 0.1 0.1 994 0.59 0.25 0.46 

‘Stratum 0.15–1.37 m’ 14 0.1 0.5 2112 0.55 0.26 0.43 

‘Stratum 1.37–5 m’ 11 0.1 0.9 2585 0.54 0.26 0.42 

‘Stratum 20–30 m’ 17 0.1 0.1 1915 0.54 0.28 0.43 

‘Stratum above 30 m’ 23 0.1 0.1 1511 0.52 0.22 0.40 
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Table 1.4. Supervised selection of the optimal LiDAR metric. Area-based dissimilarity metrics of oversegmentation (OS), undersegmentation (US), and 

summary score (D) are presented for the optimal segmentation of the seven considered LiDAR metrics; the number of reference objects with no 

corresponding image objects is also reported (Nnull). Four scenarios, based on the age of clearcut of the Forest Service Activity Track System (FACTs) 

harvest reference polygons, are considered: All clearcuts (1956–1996), clearcuts performed before the start of the Landsat MSS record (1956–1972), 

clearcuts performed before the start of the Landsat TM record (1956–1984), and clearcuts performed after the start of the Landsat TM/ETM+ record 

(1984–1996). For each scenario, the D score value of the optimal metric is marked (bold and underlined). 

  All Clearcuts (1956–1996) Pre Landsat (1956- 1972) Pre Landsat TM (1956–1984) Landsat TM (1984–1996) 

 LiDAR Metric Nnull OS US D Nnull OS US D Nnull OS US D Nnull OS US D 

Clear Creek 

‘H95′ 0 0.21 0.37 0.30 0 0.15 0.55 0.40 0 0.15 0.52 0.38 0 0.28 0.20 0.25 

‘CVH’ 0 0.86 0.16 0.62 0 0.81 0.19 0.59 0 0.82 0.18 0.60 0 0.90 0.14 0.64 

‘Stratum below 0.15 m’ 12 0.53 0.47 0.50 4 0.55 0.52 0.53 5 0.55 0.51 0.53 7 0.52 0.43 0.48 

‘Stratum 0.15–1.37 m’ 11 0.53 0.49 0.51 5 0.52 0.56 0.54 8 0.54 0.57 0.55 3 0.51 0.41 0.46 

‘Stratum 1.37–5 m’ 8 0.44 0.52 0.48 4 0.46 0.56 0.51 6 0.47 0.56 0.52 2 0.40 0.47 0.43 

‘Stratum 20–30 m’ 7 0.44 0.27 0.36 4 0.61 0.32 0.49 6 0.62 0.33 0.50 1 0.24 0.20 0.22 

‘Stratum above 30 m’ 2 0.12 0.80 0.57 2 0.14 0.80 0.57 2 0.13 0.76 0.54 0 0.10 0.85 0.61 

Selway 

‘H95′ 0 0.22 0.21 0.22 0 0.13 0.32 0.24 0 0.16 0.29 0.24 0 0.28 0.14 0.22 

‘CVH’ 1 0.87 0.17 0.63 1 0.88 0.17 0.63 1 0.85 0.18 0.62 0 0.89 0.16 0.64 

‘Stratum below 0.15 m’ 15 0.45 0.62 0.54 6 0.58 0.50 0.54 8 0.56 0.53 0.55 7 0.36 0.69 0.55 

‘Stratum 0.15–1.37 m’ 9 0.44 0.46 0.45 1 0.54 0.45 0.50 4 0.52 0.49 0.51 5 0.37 0.43 0.40 

‘Stratum 1.37–5 m’ 9 0.44 0.38 0.41 6 0.57 0.47 0.52 7 0.56 0.46 0.51 2 0.34 0.30 0.32 

‘Stratum 20–30 m’ 4 0.39 0.28 0.34 0 0.62 0.19 0.46 4 0.56 0.28 0.45 0 0.23 0.28 0.26 

‘Stratum above 30 m’ 1 0.19 0.31 0.26 1 0.17 0.35 0.28 1 0.19 0.33 0.27 0 0.19 0.29 0.24 
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Table 1.5. Area-based dissimilarity metrics calculated from the validation dataset presented in Figure 1.10: 

Oversegmentation (OS), undersegmentation (US), summary score (D), modified oversegmentation (𝑂𝑆∗), 

modified undersegmentation (𝑈𝑆∗), and summary score (𝐷∗). 

Area Stands OS US D 𝑶𝑺∗ 𝑼𝑺∗ 𝑫∗ 

Clear Creek 

All 0.25 0.26 0.26 0.18 0.27 0.23 

UAF 0.39 0.35 0.37 0.24 0.37 0.31 

EAF 0.12 0.18 0.15 0.12 0.18 0.15 

Selway 

All 0.36 0.15 0.27 0.21 0.14 0.18 

UAF 0.50 0.21 0.39 0.22 0.21 0.21 

EAF 0.22 0.08 0.16 0.20 0.08 0.15 
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Figure 1.1. Location of the study area in the Nez-Perce & Clearwater National Forest (Idaho-USA); boundaries 

of the 2009 and 2012 Light Detection and Ranging (LiDAR) acquisitions; and reference polygons of historical 

stand clearcuts (>2 ha) from the Forest Service Activity Track System (FACTs) harvest dataset. The FACTs 

polygons are displayed with a rainbow color scale indicating the year of harvest, from 1956 to 1996. No data are 

available for clearcuts performed before 1956; no clearcuts (>2 ha) were reported from 1996 to the LiDAR 

acquisition dates. On the bottom right, a 4 × 4 km subset of the Clear Creek watershed. 
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Figure 1.2. Example of pre-processing of the FACTs harvest polygons. Adjacent polygons harvested within a 

time interval ≤5 years (left) are merged into aggregated polygons (right) that are used as reference objects in all 

the subsequent steps of the analysis. 
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Figure 1.3. The seven LiDAR metrics considered in the analysis (Table 1.2), displayed with a linear black to 

white grayscale color table (1% linear stretch), on a 4 × 4 km subset of the Clear Creek watershed (location on 

Figure 1.1). The FACTs harvest reference dataset is presented for comparison in the upper left, to highlight the 

different response of each metric to even-aged forest stands. 
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Figure 1.4. Flowchart of the proposed methodology for forest stand delineation based on a two-stage evaluation 

strategy. 
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Figure 1.5. Illustration of the area-based dissimilarity metrics (𝑂𝑆𝑖 , 𝑈𝑆𝑖 , 𝐷𝑖), and of the modified metrics (𝑂𝑆𝑖
∗, 

𝑈𝑆𝑖
∗, 𝐷𝑖

∗). A reference object 𝑥𝑖, (black vectors) is displayed together with its corresponding set of image objects 

(gray vectors): The top row shows an example where the reference object is oversegmented, but not 

undersegmented (i.e., it is closely matched by the union area ⋃ 𝑦𝑗𝑦𝑗∈𝑌𝑖
∗ ); the bottom row shows an example where 

the reference object is both oversegmented, and undersegmented. The center column illustrates the traditional 

oversegmentation (𝑂𝑆𝑖), undersegmentation (𝑈𝑆𝑖) and summary score 𝐷𝑖  for that single reference object, metrics 

that consider each individual corresponding image object. The right column illustrates the modified 𝑂𝑆𝑖
∗, 𝑈𝑆𝑖

∗, 

and 𝐷𝑖
∗ metrics, that consider instead the union area of all corresponding image objects. The summary score D 

does not report a significant difference between the two classifications (top: 𝐷𝑖= 0.59, bottom: 𝐷𝑖= 0.61), whereas 

the modified summary score D* indicates that through post-processing the top row segmentation could result in 

a near-perfect match with the reference object (𝐷𝑖
∗= 0.04), whereas significant errors will remain in the bottom 

row segmentation (𝐷𝑖
∗= 0.29). 
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Figure 1.6. Segmentations of the ‘H95′ LiDAR metric generated by the multiresolution segmentation (MRS) 

algorithm with different combinations of the scale and shape parameters, and the same compactness parameter 

(Comp. = 0.1). In all cases, the segmentation is displayed as orange vectors overlaid on the ‘H95′ metric raster, 

shown in grayscale. The same 4 × 4 km area of Figure 1.1 is presented. 
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Figure 1.7. Scatter-plot of the normalized weighted variance (𝑤𝑉𝑎𝑟𝑛𝑜𝑟𝑚) and normalized Moran’s Index 

(𝑀𝐼𝑛𝑜𝑟𝑚) of the segmentations of the ‘H95′ metric for the Clear Creek dataset, generated by different sets of the 

MRS algorithm parameters. The two metrics are combined in a quadratic Global Score (𝐺𝑆𝑚𝑜𝑑) and the 

segmentation with the lowest 𝐺𝑆𝑚𝑜𝑑 is selected as the optimal segmentation. 
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Figure 1.8. Optimal segmentation of the seven considered LiDAR metrics, shown for the same 4 × 4 km subset 

of Figure 1.1. The FACTS harvest reference dataset is shown at the upper left for comparison. 
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Figure 1.9. Optimal segmentation of the optimal ‘H95′ metric (orange vector, overlaid on the ‘H95′ shown in 

grayscale). Visual comparison with the FACTs dataset (Figure 1.2) indicates a good correspondence between 

even-aged forest stands and image objects. 
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Figure 1.10. Validation dataset: Reference objects delineated through visual interpretation of NAIP imagery and 

LiDAR point clouds (left); and corresponding image objects of the optimal segmentation of the ‘H95′ LiDAR 

metric (right). Even-aged forest stand (EAF) reference objects and their corresponding image objects are shown 

in green, and uneven-aged forest stand (UAF) reference objects and their corresponding image objects are shown 

in gray. A total of 100 reference objects were generated through visual interpretation of NAIP imagery and LiDAR 

point clouds: 25 EAF (average area: ~23 ha) and 25 UAF (average area: ~158 ha) on each LiDAR dataset. 
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Figure 1.11. Illustrative examples of the spatial relationship between visually interpreted reference objects and 

corresponding image objects of the optimal segmentation of the ‘H95′ LiDAR metric. The two top rows present 

examples of uneven-aged forest stands (UAF), and the two bottom rows present examples of even-aged forest 

stands (EAF). Left column: Reference objects (red polygons) and set of the corresponding image objects (gray 

polygons). Center column: Reference objects overlaid on the ‘H95′ LiDAR metric shown in grayscale. Right 

column: Reference object and all image objects (orange polygons) overlaid on 1 m spatial resolution NAIP 

imagery used to generate the validation dataset, shown in true color. 
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Chapter 2: Reconstruction of the disturbance history of a temperate coniferous forest through 

stand-level analysis of airborne LiDAR data. 

Under review in Forestry An international journal of forest research  

Abstract 

Spatially explicit information about stand-level Time Since the last stand-replacing 

Disturbance (TSD) is fundamental for modelling many forest ecosystem processes, but most of the 

current satellite remote sensing mapping approaches are based on change detection and time series 

analysis, and can detect only disturbances that have occurred since the start of the optical satellite data 

record. The spatial legacy of stand-replacing disturbances can however persist on the landscape for 

several decades to centuries, in the form of distinct horizontal and vertical stand structure features. We 

propose a new approach to reconstruct the long-term disturbance history of a forest, estimating TSD 

through stand-level analysis of LiDAR data, which are highly sensitive to the three-dimensional forest 

canopy structure. The study area is in the Nez Perce-Clearwater National Forest in north-central Idaho, 

where airborne LiDAR covering about 52,000 ha and ancillary TSD reference data for a period of more 

than 140 years were available. The root mean square difference (RSMD) between predicted and 

reference TSD was 17.5 years with a BIAS of 0.8 years; and on 72.8% of the stands the predicted TSD 

was less than 10 years apart from the reference TSD (78.2% of the stands when considering only 

disturbances occurred in the last 100 years). The results demonstrate that airborne LiDAR-derived data 

have enough explanatory power to reconstruct the long-term, stand-replacing disturbance history of 

temperate forested areas at regional scales. 

Introduction 

Stand-replacing disturbances are a key component of forest ecosystem dynamics (Oliver and 

Larson, 1996) driving forest structure, function, and composition (Franklin et al., 2002; Oliver, 1980). 

Maps of the long-term disturbance history of a forest would improve estimates of historic, current, and 

potential carbon sequestration (Bradford et al., 2008; Chapin III et al., 2002; Pan et al., 2011), reduce 

uncertainties in the carbon budget (Frolking et al., 2009), and contribute to a better understanding of 

disturbance causes and consequences (Cohen et al., 2002).  

A stand-replacing (major) disturbance is a mortality event (e.g., clearcut, fire, insect outbreak) 

that frees up growing space and leads to complete replacement of the trees of an entire forest stand, so 

that post-disturbance regeneration is characterized by competition between a cohort of new trees 

(Oliver, 1980; Oliver and Larson, 1996). Anthropogenic and natural stand-replacing disturbances result 

therefore in a patchy and heterogeneous landscape of even-aged forest stands, which are structurally 

distinct from each other based on their successional state. Long-term stand-replacing disturbance 
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legacies on forested land can persist on the landscape for decades to centuries (Turner, 2010), depending 

on the forest type. Tree height, canopy density and, more generally, the forest structure are illustrative 

of these legacies (Spies, 1998), especially in even-aged stands where forest structure is driven by age 

(Pflugmacher et al., 2012).   

Traditional approaches to map forest disturbances at regional scales with remotely sensed data 

have mostly relied on time series analysis of optical data. While single image analysis has limited 

applications because the persistence of stand-replacing disturbance spectral signatures is limited 

depending on vegetation recovery rates (Healey et al., 2005; Lunetta et al., 2004), and the spectral 

response of vegetation in optical wavelengths saturates in closed canopy forest (Cohen et al., 1995; 

Spanner et al., 1990; Turner et al., 1999), it is widely established that time series of Earth Observation 

satellite data can be used to systematically detect forest disturbances at a variety of spatial scales (Cohen 

and Goward, 2004; Hansen et al., 2013). With particular regard to multispectral, moderate resolution 

data such as those provided by the Landsat satellite series, the detection and characterization of 

disturbances involves the detection of spectral changes in a time series of observation to detect 

discontinuities (to capture abrupt events) and/or trends (to capture slower processes) (Hansen et al., 

2008; Hayes and Sader, 2001; Huang et al., 2009; Huo et al., 2019; Kennedy et al., 2010; Lu et al., 

2004; Masek et al., 2008; Schroeder et al., 2011). The main limitation of this approach is that it is 

necessarily limited to mapping disturbances that have occurred within the temporal extent of the 

available optical satellite record; at the earliest, 1972 when Landsat-1 was launched with the 60 m 

resolution Multi-Spectral Scanner (MSS). The disturbance history of a forest mapped with these 

approaches, being limited to at most 50 years, is necessarily incomplete in ecosystems where stands 

may require up to 100 years to mature (Bonnell et al., 2011; Fu et al., 2017; Liebsch et al., 2008). It 

should also be noted that, while the Landsat archive is largely complete in the United States, in many 

other parts of the World it is extremely fragmentary until the availability of Landsat-7 in 1999 (Wulder 

et al., 2016). 

A second limitation of these approaches is that the change detection is generally conducted for 

each pixel independently, without considering the spatial relationship between neighbouring raster cells 

of the same forest stand. Pixel based change detection algorithms are prone to generate noisy outputs, 

i.e. isolated pixels spuriously labelled as change in the middle of non-change area, and vice versa 

(Radke et al., 2005). Object-based approaches, conversely, use image objects (a discrete region 

composed by a group of cells internally coherent and different from the surroundings (Blaschke et al., 

2008) as the basic spatial unit of analysis. The cell by itself doesn’t represent a true geographical feature 

(Fisher, 1997), but the image object does represent a geographical feature of interest that is also 
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internally coherent and different from the surroundings. Forest stands can be detected as image objects: 

object-based analysis has been used to identify and describe forest disturbances (see Chen et al., 2012; 

Hussain et al., 2013). While studies to identify forest disturbances are still mostly multi-temporal, the 

potential to use object-based analysis on single date datasets to characterize TSD at the stand-level has 

occasionally been shown in the literature. Wulder et al. (2004), for instance, applied object-based 

analysis to Landsat ETM+ imagery to estimate forest stand age from an approximate time since 

disturbance to 20 years after harvest. They relied on optical image-derived metrics sensitive to 

vegetation structure, such as the Tasselled Cap indices, for the predictions, and an object-based analysis 

to provide a contextual frame of analysis and neglect anomalous cells through different regeneration 

stages. Their results had an associated estimation error of less than 2.5 years, but the time span of the 

analysis was relatively small (20 years).  

Alternatively, few studies have proposed to use remotely sensed data of the three-dimensional 

structure of the forest canopy to map forest stand age. Véga and St-Onge (2009), for instance, mapped 

age and site index of jack pine using known age-height curves and time series of canopy height models 

derived from aerial photographs. Racine et al. (2014) estimated forest age in a managed boreal forest 

using predictors derived from Light Detection and Ranging (LiDAR) data in 158 field plot locations. 

This study showed the strong linkage between LiDAR predictor variables, especially LiDAR-derived 

height, and plot age. In Zhang et al. (2014), stand age was mapped across different forest types in China 

(at 1 km spatial resolution) using biomass estimates derived from canopy height maps (Simard et al., 

2011). More recently, Vastaranta et al. (2016) used time series of image-based digital surface models 

(DSM) and canopy height models (CHM) to classify forest stand age.  All these studies obtained 

relatively good results, exploiting the strong relationship between forest age and canopy structure. This 

relationship is particularly significant in the first decades after a stand replacing disturbance, before the 

height distribution of trees in a mature stand becomes uneven. 

In this study, we characterize the stand age of a forest in terms of time since the last stand-

replacing disturbance (TSD). We hypothesize that remotely sensed data capturing the three-

dimensional structure of the vegetation (i.e., Light Detection and Ranging (LiDAR)) is suitable for the 

long-term estimation of TSD, beyond the timeframe of the available optical remote sensing data record, 

thus complementing the traditional time-series based TSD mapping approaches. We developed a stand-

level, object-based approach to estimate TSD from single-image LiDAR metrics, and we compared the 

results to independent reference data to assess the accuracy of the prediction. 
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Materials 

Study area  

The study area is a temperate mixed-conifer forest located within the Nez Perce-Clearwater 

National Forest in Idaho (USA), covering 52,257 ha in the Clear Creek, Selway River, and Elk Creek 

watersheds (Figure 2.1). Dominant tree species are Douglas-fir (Pseudotsuga menziesii) and grand fir 

(Abies grandis), but other species such as western redcedar (Thuja plicata) and ponderosa pine (Pinus 

ponderosa) are also common.  

The combination of anthropogenic and natural stand-replacing disturbances has generated a patchy 

landscape of even-aged forest stands. Historical records describe large-scale wildfires happening in this 

area since the decade of 1870 (Morgan et al., 2017; USDA, Forest Service, 2016); of particular 

relevance are 1919 and 1931 fires that affected respectively ~12,000 and 3,500 ha (i.e., ~23.0% and 

6.7% of the study area). Additionally, timber harvest was common since early in the twentieth century. 

Logging activity peaked during the 1960s and 1970s, with clearcuts and shelterwoods being the most 

prevalent harvest practices (Cochrell, 1960; Space, 1964; USDA, Forest Service, 2016). 

LiDAR Datasets and Data Pre-Processing 

Airborne LiDAR data were acquired in 2009 on the Clear Creek watershed and in 2012 on the 

Selway River and Elk Creek watersheds (Figure 2.1, Table 2.1). Point clouds in a binary format (.las) 

and a digital terrain model (DTM) interpolated from the ground returns at 1-meter spatial resolution 

were delivered by the provider. The TerraScan software (TerraSolid Ltd, Helsinki, Finland) was used 

by the vendors to classify ground returns in the point cloud and to interpolate the terrain model. The 

average pulse density was at least 4 points/m2 in both flights, and the point cloud was converted to 

height above ground using the DTM. The LiDAR point cloud was subsequently rasterized, and gridded 

summary metrics (i.e., statistics summarizing the LiDAR point cloud for a specific cell size) were 

calculated using the FUSION software (McGaughey, 2009). 

A total of 21 metrics were generated at 30 m resolution (Table 2.2): 15 LiDAR canopy metrics (6 

related to vegetation canopy height and complexity, and 9 related to canopy density) and 6 topographic 

metrics. Echoes below 1.37 m above the terrain were ignored to compute vegetation canopy height 

metrics, assuming that most of them stemmed from ground or understory. If no echoes were found 

within the 30 m x 30 m grid cell, then that cell was given a value of zero. Canopy height metrics include 

the average, 5th, 25th, 75th and 95th percentile the distribution of return height within the cell, and are 

complemented by the rumple index, which is a measure of canopy complexity. It is defined as the ratio 

of canopy surface area over the underlying ground surface area (Kane et al., 2010; Parker et al., 2004) 

and, unlike the rest of metrics, it was retrieved from a 1-m canopy height model (CHM) and the 
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“GridSurfaceStats” tool within the FUSION software. Canopy density metrics include the percentage 

of LiDAR returns for different vertical strata of the forest canopy. Additionally, six topographic metrics 

of elevation, slope, solar radiation index and aspect were derived from the DTM. Aspect in particular 

is characterized through three transformed metrics: the ‘SRAI’ (Solar-Radiation Aspect Index) is a 

linear transformation of the topographic aspect (Roberts and Cooper, 1989); the cosine (‘SCA’) and the 

sine (‘SSA’) aspect transformations account for the interaction between aspect and slope, considered 

of importance for tree growth (Stage, 1976). 

The overlap area between the two datasets covers 1,271 ha (Figure 2.1). Since no significant 

disturbances occurred in the overlap area between the two LiDAR acquisition dates, the cells of the 

overlapping area were used to assess the mean growth increment between 2009 and 2012 on the canopy 

height metrics. Having thus harmonized the height metrics by adding to the 2009 dataset the observed 

mean growth, both LiDAR datasets were mosaicked together to obtain single raster, with metrics 

nominally reported to 2012, that was used as the reference year in all subsequent steps of the analysis. 

We note that the mean difference between the two acquisitions was relatively modest (0.07 m, 0.08 m, 

0.10 m, 0.03 m, and 0.21 m for ‘H.Ave’, ‘H05’, ‘H25’, ‘H75’ and ‘H95’ respectively) as expected due 

to the fact that only two complete growing seasons separate the two LiDAR acquisitions (Hopkinson 

et al., 2008; Hudak et al., 2012). 

Forest Stand Map 

A map of forest stands was used to provide the spatial units of analysis for TSD estimation. It was 

generated following the object-based strategy presented in Sanchez-Lopez et al. (2018), and based on 

the segmentation of the ‘H95’ metric, identified as the optimal LiDAR metric for the delineation of 

even-aged forest stands (Sanchez-Lopez et al., 2018).  

The 30 m raster of the ‘H95’ metric was systematically segmented with different sets of parameters 

of the multiresolution segmentation (MRS) algorithm (Baatz and Schape, 2000) implemented in 

eCognition software. Measures of spatial autocorrelation (Böck et al., 2017; Espindola et al., 2006; 

Johnson and Xie, 2011) were used to evaluate the resulting set of segmentations, and the segmentation 

with the maximum degree of intra-segment homogeneity and inter-segment heterogeneity was selected 

as the optimal stand map. For a complete description of the workflow refer to Sanchez-Lopez et al. 

(2018).   

The selected segmentation (i.e., the selected forest stand map) was composed of 1470 image 

objects (hereafter referred as forest stands) with an average size of 35.6 ha, and median size of 29 ha 

(Figure 2.2).  
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Ancillary Reference Data and Pre-Processing 

The FACTS (Forest ACtivity Tracking System) timber harvest dataset (USDA, Forest Service, 

2016) was used to locate stand-replacing harvests since 1956. The FACTS dataset is maintained by the 

U.S. Forest Service and contains polygon features representing forest management units, generally 

forest stands or forest patches, with an indication of the year in which timber management activities 

(e.g., clearcut, shelterwood, thinning) were executed. All the stand and patch clearcut management units 

in the FACTS harvest data record for the study area were initially considered, corresponding to 6,200 

ha logged between 1956 and 2005. No logging was reported in the area from 2005 to the LiDAR 

acquisition date.  

Additionally, a dataset of burned area perimeters of wildfires from 1870 to 2000 (Morgan et al., 

2017) was used as a reference dataset for fire disturbance. The burned area perimeters were interpreted 

by an expert ecologist from fire atlas records and historical aerial photographs when available. The 

dataset also defines burn severity classes (unburned, low, moderate and high), based on percent of tree 

mortality of the overstory, visually delineated by the same interpreter within each fire perimeter 

(Morgan et al., 2017). High and moderate severity burns were considered in our study as stand-

replacing disturbance events totaling 22,395 ha, 99.95% of which (i.e., ~22,384 ha) were disturbed 

between 1870 and 1940, and the remaining 0.05% (i.e. ~11 ha) were disturbed in 1992. 

Time since disturbance (TSD) was computed for all reference data using 2012, i.e. the acquisition 

date of the second LiDAR dataset, as reference year; consequently, the disturbances present in the 

reference dataset had TSD ranging from 7 (stands disturbed in 2005) to 142 (stands disturbed in 1870). 

The ancillary reference dataset assembled from the FACTs harvests and the historical burns was 

manually refined: post-disturbances (i.e., small areas with evident biomass removal or other post-

logging activity, especially within the fire perimeters) and bare ground areas were manually digitized 

through visual interpretation of the 2011 National Agricultural Imagery Program (NAIP) imagery (1 m 

spatial resolution) and the LiDAR data, then erased from the compiled disturbance reference dataset. 

Additionally, three polygons reported as clearcuts in the 1950s were removed from the dataset since no 

evidence of actual harvest could be observed. Neighboring forest management units harvested in 

consecutive years showed small differences in their structure due to low growth of vegetation during 

consecutive cuts and were considered as part of the same forest stand. Thus, following the procedure 

introduced in Sanchez-Lopez et al. (2018), units sharing borders and harvested within a short time 

interval (≤5 years) were merged as exemplified in Figure 2.3, top row. The year of harvest assigned to 

each aggregated forest stand was calculated as the weighted average of the merged management units 

accounting for the relative area of each of the integrating stands. Figure 2.1 shows the location and TSD 
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of the stand-replacing disturbances, compiled from the FACTS dataset and the burned area perimeters, 

and pre-processed as described above. 

Further pre-processing was needed to match the ancillary dataset with the forest stand map. As 

exemplified in Figure 2.3, bottom row, there is a degree of mismatching between the perimeters of the 

ancillary reference dataset and the forest stand perimeters, due to the different processing 

methodologies (i.e. photointerpretation for the reference datasets, semiautomatic image segmentation 

for the stand map) and data sources (historical records and aerial photographs for the reference datasets, 

LiDAR for the stand map). To reconcile the two datasets, we defined as “Forest stands with known 

TSD” the segmented forest stands whose area overlapped by at least 50% with the area of the ancillary 

reference data polygons defined above. The 50% area criterion is commonly used in the GEOBIA 

literature for matching objects across datasets (Clinton et al., 2010; Drăguţ et al., 2014; Liu et al., 2012; 

Zhan et al., 2005). The histogram of the overlapping area between the forest stands and the ancillary 

dataset (Figure 2.4) shows that there is generally a good agreement between the two datasets: only 26% 

of the forest overlap less than 75% with the reference dataset, and among these, 78% correspond to old 

fires.  

Additionally, 50 undisturbed forest stands, covering a total area of 2,121 ha, were visually 

identified overlaying the 1-meter spatial resolution NAIP imagery, the rasterized LiDAR metrics (Table 

2.2), and the ancillary reference dataset. These forest stands were mainly characterized by high height 

of the dominant cohort of the forest canopy, for instance, the mean ‘H95’ was 43.7 m, while the mean 

‘H95’ of the stands disturbed in 1870 and 1880 was 36.3 and 34.1 m respectively. Thus, they were 

considered non-disturbed since 1870 (i.e., TSD greater than 142 years) and were added to the reference 

dataset, to ensure that it represented all the stand types within the study area.  

Figure 2.4 shows the 781 (731 disturbed and 50 non-disturbed) forest stands (26,644 ha) which, 

hereafter, are all considered forest stands with known TSD, and Table 2.3 summarizes accordingly the 

disturbed area by decade of both the ancillary reference dataset and the forest stands with known TSD.  

Methods 

A disturbance history map was obtained using a Random Forest (RF) classifier (Breiman, 2001) 

to impute TSD over a period of 142 years. The methodology involved four main steps (Figure 2.5): (1) 

training stand data selection following a LiDAR-assisted stratification strategy; (2) TSD estimation; 

first, at the cell-level imputing TSD from RF with LiDAR metrics as predictor variables; and second, 

at the stand-level using the perimeters of the stands to calculate median TSD from the cell-level 
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imputations; (3) accuracy assessment using the stands with known TSD as reference (Figure 2.4); and 

(4) sensitivity analysis of the stratification strategy and the sample size of the training data.  

Training Dataset  

A training set of stands with known TSD (Figure 2.4) was extracted through stratified random 

sampling. A stratification based on topography (‘SRAI’) and canopy height (‘H95’) was used to ensure 

the representativeness of the training set. Previous studies have demonstrated that LiDAR-assisted plot 

stratification of LiDAR-based forest inventories is cost-effective to reduce the number of field plots 

required for model calibration compared to simple random sampling (Gobakken et al., 2013; Hawbaker 

et al., 2009).  

The transformed solar-radiation aspect index (‘SRAI’, Table 2.2), was selected as the first metric. 

‘SRAI’ ranges between 0 and 1, where areas with values close to 0 are north-northeast oriented, i.e., 

cooler and moistier; and areas with values close to 1 are south-shouthwest oriented, i.e., warmer and 

drier. Considering the strong linkage between canopy height and age (Racine et al., 2014), the choice 

was made to have one of the height metrics as the second stratification metric. To select the metric 

among the five canopy height metrics listed in Table 2.2, Pairwise Pearson correlations coefficients (R) 

were calculated between TSD and mean value of each canopy metric based on all the stands with known 

TSD (i.e., the stands reported in Figure 2.4). The ‘H95’ metric resulted in highest correlation (R=0.89) 

and was selected as the second stratification metric. 

A hierarchical, two level stratification approach was used. Two ‘SRAI’ strata (high ‘SRAI’ / low 

‘SRAI’) of equal size were defined, using the median of the stand-level SRAI as threshold. Within each 

‘SRAI’ stratum, five ‘H95’ canopy height strata (based on the mean ‘H95’ per stand) were defined, 

using the quintiles of the ‘H95’ distribution. As a result, ten strata of equal size were identified (Figure 

2.6).  

The training dataset was selected by extracting randomly five forest stands from each of the 10 

strata (50 stands). Additionally, the three forest stands with the lowest and the three forest stands with 

highest ‘H95’ (i.e., 6 forest stands) were added to the training dataset to ensure that the full dynamic 

range of canopy heights was represented, which is particularly relevant for using RF classifiers since 

decision trees can’t effectively extrapolate results out of the range of the training dataset (Zimmerman 

et al., 2018). The resulting training dataset included 56 stands, as reported in Figure 2.6.  

TSD Estimation 
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A stand-level map of estimated TSD was obtained in two steps. First, TSD for each 30 m raster 

cell was imputed through the RF; TSD at the stand-level was subsequently obtained as the median value 

of the cell-level imputations within each forest stand (Figure 2.2).  

The raster cells within the 56 training forest stands were used to train the RF classifier; the TSD 

as determined by the reference dataset was used as the dependent (response) variable, and all the LiDAR 

metrics as independent (predictor) variables. RF is relatively insensitive to outliers and data noise, but 

errors in the predictions might increase exponentially if a 20% noise threshold is reached (Rodriguez-

Galiano et al., 2012). Consequently, outliers were removed from the training data by removing the 

individual cells with ‘H95’ below the 5th or above the 95th percentiles of the distribution of each stand. 

Outliers in the study area are primarily due to old stands where the uneven-aged distribution of the 

canopy is reached and the likelihood to encounter gaps with young trees due to tree mortality increases 

(Runkle, 1982); to stands recently harvested where some old standing trees are left for seedling and are 

not representative of TSD; and to cells at the edge of the stands in cases where there is a significant 

border effect.  

The 56 training objects identified a total of 17,604 cell observations used to train the RF model. 

These cells represented ~1,584 ha, i.e., 3.0% of the study area. Disturbances were unequally distributed 

over time (Table 2.3, Figure 2.1) as reflected in the number of training stands per disturbance decade 

(Table 2.4). 

The yai function implemented on the yaImpute R package (Crookston and Finley, 2008) was used 

to train the RF classifier. The number of decision trees was set at 500 and the number of LiDAR 

variables available to split at each tree node at the default value, i.e., as the square root of the number 

of predictor variables. The Out-of-Bag (OOB) error estimate of the RF was calculated. As defined here, 

RF randomly sampled two thirds of the available training observations to build each of the 500 decision 

trees. A predicted error is then obtained using the defined tree on the Out-Of-Bag (i.e., non-included) 

portion of the training data. The average of the predicted errors of all the trees is the OOB error estimate. 

The AsciiGridImpute function on the yaImpute R package was used to impute TSD at the raster 

cell-level over the whole study area; and TSD at the stand-level was then calculated as the median of 

all the TSD cell values enclosed within the perimeters of each forest stand.  

Accuracy Assessment 

The forest stands with known TSD (Figure 2.4) and not used to train the RF were used as reference 

data to assess the accuracy of the TSD stand predictions. The forest stands visually identified as non-

disturbed (i.e., 44 stands since 6 were part of the training set) were similarly excluded from the 
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validation dataset since the actual age of the last stand-replacing disturbance was unknown. As a result, 

the accuracy assessment was conducted on a total of 681 stands. 

The accuracy of the predictions at the forest stand-level was evaluated using five metrics, defined 

as follows. 

Root Mean Square Difference between predicted and observed TSD (RMSD): 

 𝑅𝑀𝑆𝐷 = √
∑ (Ŷ𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
   (1)  

where n is the number of forest stands, Ŷ𝑖 is the predicted TSD for stand i, and  𝑌𝑖 is the observed 

TSD for stand i. RMSD has been used in imputation as an accuracy metric similar to the traditional 

RMSE used for regression model accuracy (Stage and Crookston, 2007).   

Relative RMSD (𝑅𝑀𝑆𝐷𝑟𝑒𝑙):    

 𝑅𝑀𝑆𝐷𝑟𝑒𝑙  =
𝑅𝑀𝑆𝐷

1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1

𝑥100   
(2)  

where n is the number of forest stands, and 𝑌𝑖 is the observed TSD for stand i.  

The bias (BIAS): 

 𝐵𝐼𝐴𝑆 =
1

𝑛
∑ (Ŷ𝑖 − 𝑌𝑖)𝑛

𝑖=1    
(3)  

where n is the number of forest stands, Ŷ𝑖 is the predicted TSD for stand i, and  𝑌𝑖 is the observed 

TSD for stand i. The bias shows overall trend in over and underestimations between predicted and 

observed year of disturbance.  

Relative bias (𝐵𝐼𝐴𝑆𝑟𝑒𝑙):    

   𝐵𝐼𝐴𝑆𝑟𝑒𝑙 =
∑ (Ŷ𝑖−𝑌𝑖)𝑛

𝑖=1

∑ 𝑌𝑖
𝑛
𝑖=1

𝑥100   (4)  

where n is the number of forest stands, Ŷ𝑖 is the predicted TSD for stand i, and  𝑌𝑖 is the observed 

TSD for stand i. 

Percentage of forest stands that had less than 10 years of absolute error (Perct.10): 
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𝑃𝑒𝑟𝑐𝑡. 10 = (
∑ |Ŷ𝑖 − 𝑌𝑖| < 10𝑛

𝑖=1

𝑛
) 𝑥100 (5)  

where n is the number of forest stands, Ŷ𝑖 is the predicted TSD for stand i, and  𝑌𝑖 is the observed 

TSD for stand i. 

Additionally, a confusion matrix of the stand-level predictions aggregated by decade was also 

computed, using the reference dataset as defined above, with the addition of the 44 undisturbed forest 

stands not used in the training.  

Predictor Variable Importance 

Because there is significant correlation among the predictor metrics of each group (i.e. canopy 

height & complexity, canopy density, topography), the measures of variable importance that are directly 

generated by RF classifiers can potentially result in spurious rankings that do not reflect the actual 

importance of the predictors (Nicodemus et al., 2010; Strobl et al., 2008). The relative importance of 

the predictor variables was therefore assessed though the methods proposed by Roy and Kumar (2017) 

and Tulbure et al. (2012), specifically designed to deal with correlated predictor variables.  

We examined all the possible combinations of predictor metrics selecting one metric at a time 

from each of the three groups, resulting in a total of a total of 324 combinations. If the predictor metrics 

of a particular combination were highly correlated (i.e. absolute value |R| of the Pearson coefficient 

greater than 0.5), then the combination was discarded. For each uncorrelated combination, a RF 

classifier was trained and the Mean Decrease in the Gini (MDG) index, which is a robust metric of 

variable importance (Breiman, 2001), was used to rank the three predictors. The percentage of times 

that each specific metric ranked first, second and third was calculated, and used as overall measure of 

the relative importance of each predictor and group.  

Additionally, partial dependence plots with probability distribution based on scaled margin 

distances of the most important metrics were generated using the rf.partial.prob function implemented 

in the R rfUtilities package (Evans and Murphy, 2018).   

Sensitivity Analysis  

A sensitivity analysis was performed, to determine the sensitivity of the accuracy metrics to the 

sample size. The number of randomly selected forest stands in each stratum was varied from 1 to 10, 

and for each size the random selection was repeated 10 times. The three forest stands with the lowest 

and the highest ‘H95’ (i.e., 6 forest stands) were always included in the training dataset. The entire 

classification procedure was repeated for each set (100 output classifications in total), and the accuracy 
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of each classification was assessed by computing the RMSD, BIAS and Perct.10 metrics. Non-

parametric statistics (median, 25th and 75th percentiles) of the accuracy metrics were calculated for each 

sample size. 

Results 

TSD Estimation 

The RF classifier was trained using the 17,604 cells selected as detailed above, and cell-level 

imputations of TSD were generated for the entire study area (Figure 2.7). The OOB (Out of Bag) error 

estimate of the RF is considered as a robust indicator of error rate that correlates well with the estimated 

error of cross-validation and it was relatively low (OOB error= 0.10).  

The cell level TSD imputations were subsequently aggregated through the use of the median 

operator to generated the stand-level disturbance history map, displayed in Figure 2.8. The study area 

was broadly disturbed by fires in 1919, so this historic disturbance event was well represented in the 

training data (Table 2.4), in the cell-level imputation (Figure 2.7), and in the disturbance history map 

(Figure 2.8).  

Accuracy Assessment 

RMSD was 17.5 years and 𝑅𝑀𝑆𝐷𝑟𝑒𝑙 was 24.2%, while BIAS was 0.8 years and 𝐵𝐼𝐴𝑆𝑟𝑒𝑙 was 1.1%, 

i.e., the predicted year of the disturbance was slightly before to the observed year. The percentage of 

stands with less than 10 years of absolute error (Perct.10) was relatively high (72.8%.) considering the 

large dataset of forest stands included in the accuracy assessment; i.e., 681 stands after excluding the 

56 stands selected for training and the 44 non-disturbed stands (Figure 2.4); this percentage increased 

to 78.4% when only stands disturbed since the decade of 1910 were considered (i.e., forest stand 

disturbed within the last 100 years).  

The confusion matrix of the disturbance history map at decadal steps (Table 2.5) showed a 

relatively good agreement between reference and predicted TSD values, especially in recently disturbed 

stands (i.e., forest stands disturbed within the last 60 years) where confusion mainly happened between 

subsequent decades. On the other hand, forest stands disturbed in the 1930s (specifically in 1931) were 

sometimes classified as disturbed in the 1910s (specifically in 1919); and forest stands disturbed in the 

1880s were often classified as disturbed in the 1910s and vice versa.  

Predictor Variable Importance 

Table 2.6 presents the results of the variable importance analysis. Out of the 324 possible 

combinations of predictor metrics from each group (Table 2.2), 210 had low pairwise correlation 
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between metrics (i.e. |R| < 0.5) and were retained in the analysis. Significant correlation between 

Canopy density and Canopy height & complexity metrics was observed: for example, the ‘ST_ab30’ 

and the ‘ST_5-10’ density metrics had high correlation with all canopy height and complexity metrics—

rumple index excepted—and were therefore only included in six combinations. Topography metrics 

were always uncorrelated with the metrics from the other two groups.  

The ‘H95’ metric had the highest predictive power among all metrics: every time it was in a 

combination, it ranked first importance based on MDG. It was followed by ‘H.Ave’,  ‘H75’ and the 

Rumple index, all ranking first 83% of the times. When the results are aggregated by group (Table 2.7), 

the Canopy height & complexity group are the most important (ranking first in 82% of the 

combinations), followed by the topography (13%) and density metrics (5%). 

The partial dependence plots of the ‘H95’, ‘H.Ave’ and ‘H75’ metrics (Figure 2.9) all indicate, as 

expected, a general pattern of monotonic relationship between tree height and TSD. Among the 

variable, ‘H95’ shows a better ability to discriminate TSD than the other two height metrics. For 

instance, considering the ‘H95’ metric, the mode of the probability distribution for the 10-19 years TSD 

class corresponds to a height of ~4.5 m, and it increases to ~10.5 m for the 20-29 years TSD class. By 

contrast, ‘H75’ and ‘H.Ave’ are less sensitive to TSD: the mode of the 10-19 year TSD class is ~3 m 

for ‘H75’ and ~2 m for ‘H.Ave’, and the mode of the 20-29 year TSD class is ~4 m for ‘H75’ and ~3 

m for ‘H.Ave’. The rumple index, which is a measure of canopy complexity, shows that the complexity 

of the canopy increases with stand age, albeit without a clear separation, except for the separation 

between the oldest stands, and those disturbed in the last 140 years. 

Sensitivity Analysis 

One hundred disturbance history maps were obtained varying the number of forest stands selected 

per stratum in the stratification (from 1 to 10) (Figure 2.5), and replicating the random selection as well 

10 times.  

Overall accuracy was influenced by the number of training stands, with the highest accuracy 

achieved when ten stands are selected, and dropping very significantly especially when fewer than four 

stands per stratum were selected (Figure 2.10). RMSD ranged from 20.0 to 32.2 years (median: 24.6 

years) if only one forest stand was sampled; it ranged from 17.4 to 21.3 years (median: 19.6 years) if 

five stands were sampled; and from 15.4 to 19.2 years (median: 17.5 years) if ten stands were sampled. 

Similarly, BIAS ranged from -1.3 to 18.8 years (median: 4.8 years) if only one forest stand was 

sampled; it ranged from -0.8 to 6.6 years (median: 2.1 years) if five stands were sampled; and from -

1.9 and 2.3 years (median: -0.9 years) if ten forest stands were sampled. And finally, Perct.10 ranged 
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from 41.9 and 65.3% (median: 51.9 %) if one stand was sampled, it ranged from 64.2 to 72.8% (median: 

70.8 %) if five forest stands were sampled, and from 70.2 to 80.1% (median: 74.5%) if ten stands were 

sampled. 

Discussion 

TSD is generally missing or incomplete for most forested areas and rarely extends to the past 

longer than the available satellite record. Traditionally, field data collection can expand such record, 

but this requires time-consuming and expensive field inventory and dendrochronological analyses 

(Speer, 2010). 

This study presents a methodology to predict TSD and map disturbances at the stand-level using 

RF analysis on single date airborne LiDAR data. This approach is designed to complement the more 

established optical-data based methodologies used for detecting forest disturbances, which are limited 

by the temporal coverage of the optical Earth Observation record. Our results indicate that canopy 

LiDAR metrics are well suited to reconstruct the long term disturbance history of a forest, provided 

that reference data of the different disturbance times is available for training a RF imputation. 

Additionally, the introduction of meaningful spatial units of analysis (i.e., even-aged forest stands) 

introduces contextual information that is advantageous to reduce the time required for analysis (i.e., by 

reducing the amount of training data required to impute TSD); and to reduce the inherent variability of 

cell-level analyses. This is particularly relevant when estimating an attribute—such as TSD—that is 

inherently constant across all cells of a stand. Another methodological advantage, apart from above 

comments on the stand-level approach, is the use of current, single-date LiDAR data, which reduces 

the amount of historical time series data required to impute TSD. The disturbance history map obtained 

by applying the proposed methodology shows good accuracy, as reflected by the overall RMSD (17.5 

years) BIAS (0.08 years) and Perct.10 (72.8%). Unsurprisingly, the progressively uneven-aged 

distribution of the canopy due to natural tree mortality of pioneer species creating gaps that become 

filled with younger trees (Luyssaert et al., 2008) negatively affects the overall accuracy of the TSD 

estimation for very old disturbances (>100 years).  

The predictor variable importance analysis indicated that canopy height metrics are the strongest 

TSD predictors, followed by topography and by density. This is not surprising considering the well-

known, strong relationship between stand age and growth (Monserud, 1984; Oliver and Larson, 1996; 

Ryan et al., 2004). The ‘H95’ metric, in particular, had the highest importance, reflecting the fact that 

it represents the dominant cohort of the forest canopy (Kane et al., 2010) so it was expected to have a 

stronger predictive power than other percentiles of the return height distribution. Our variable 

importance ranking is consistent with previously published results: Racine et al. (2014) predicted stand 
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age on field plots using similar LiDAR predictors as used in the present research, and K-NN imputation, 

finding ‘H95’ to be the most important predictor of stand age, and the topographic elevation the most 

significant out of the topographic metrics included in their research as site index indicators. Out of the 

density metrics used in our study, the ‘ST_20_30’ metric was the most important 28% of the times and 

ranked second 61% of the times, which might be explained because in many stands 20-30 m is the 

range encompassing the height of the dominant tree cohort, as reflected by the distribution of ‘H95’ in 

the stands with known TSD (the mean ‘H95’ is 24.5 m, the median ‘H95’ is 26.1 m, see Figure 2.4). 

The density metrics might therefore capture some residual variability of the structural complexity of 

the landscape, and consequently contribute to the TSD prediction. 

The uncertainties of the TSD prediction, reflected by the accuracy metrics, can be attributed, at 

least in part, to the uncertainties of the ancillary reference dataset: any errors in the reference data would 

translate into inaccuracies both in the TSD imputation and in the accuracy assessment. Although 

theoretically the TSD ancillary dataset covered the study area wall-to-wall, and extended for 140 years 

of past disturbances, the record is not complete. Harvest reference data prior to the 1950s are missing, 

and false negatives are likely present in the burn history dataset. The areas located within the perimeters 

of the 1919 and the 1931 large fires, for instance, were very heterogeneous in vegetation structure 

parameters, and it is likely that some post-fire logging had occurred before the start of the FACTS data 

record. In these cases, the site conditions and the actual severity of the fires in each specific stand drives 

the recovery rates at different phases, making one decade between two disturbance events not enough 

to substantially distinguish the successional states of some stands (e.g., there are only twelve years of 

difference between the large fires of 1919 and 1931). Therefore, some confusion in the classification 

was expected, especially in old stands (Table 2.5). Misclassification in these cases was also accentuated 

by the scarcity or outrights absence of reference data in some specific decades (e.g., 1900, 1890) and 

the overrepresentation of other decades (e.g., 1910s).  

These limitations notwithstanding, this study showed that it is possible to generate a classification 

of TSD with high accuracy at the decadal scale by using only 56 forest stands as training dataset, i.e. 

3.8% of the total number of stands of the study area. The sensitivity analysis indicates that the accuracy 

of the methodology has low sensitivity to the size of the training set, with the accuracy of the TSD 

prediction dropping significantly only when fewer than four stands are selected from each stratum 

(Figure 2.10). This is a particularly significant result, because it indicates that a limited amount of 

fieldwork would be sufficient to generate enough training data to apply the proposed methodology to a 

new area where no reference data are available. Furthermore, the stratification is entirely based on 

topographic and LiDAR metrics, hence not requiring any prior knowledge of the TSD distribution. 
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We demonstrated that forest structure as observed by LiDAR is a strong predictor for stand-level 

TSD in the area considered by this study. Some caution should be used when extrapolating these results 

to different ecosystems. The good performance of the proposed methodology might be influenced by 

the particular conditions of the study area, covering a temperate mixed-conifer forest subject to high 

disturbance pressure, with more than half of the study area having undergone stand-replacing 

disturbances since 1870 (Table 2.3). While other management activities such as occasional overstory 

removal, salvage cuts, and biomass removal have been accomplished in the study area (USDA, Forest 

Service, 2016), even-aged management (including clearcut, shelterwood and seed-tree harvest) was the 

dominant regeneration method. The landscape is therefore dominated by even-aged forest stands of 

relatively large size (average of 35.5 ha), which are the result of large wildfires that occurred at the 

beginning of the 20th century and widespread harvest in the second half of the 20th century. In other 

areas of the world, the mosaics created by even-aged management might be less evident if the stands 

are smaller, and uneven-aged and intermediate cutting are predominantly. Similarly, fire disturbance 

regimes in other ecoregions might determine other landscape structural shapes depending on the 

predominant severity and extension of the burns. Besides this, stand development and recovery rates 

after a disturbance also depend on the geographic location (Cole et al., 2014), pre-disturbance situation 

(Ilisson and Chen, 2009) which can determine atypical stand structures, and post-disturbance 

management. In the former case, for instance, burnt biomass removal is rare in large forests such as 

those of the Pacific Northwest, especially in areas hard to reach, while it is a more common practice in 

European countries with less inaccessible areas. Other management practices, such seedling, accelerate 

vegetation regeneration rates compare to natural regrowth, which is a slower process since trees might 

span over several decades (Pregitzer and Euskirchen, 2004). As a result, accurate TSD prediction in 

different ecoregions and forest types might require a different stratification strategy and a larger training 

dataset than in the present study. 

Conclusions  

The disturbance history map obtained in this research largely expands the temporal 

contextualization of stand-replacing disturbances beyond what can be done with traditional optical 

remotely sensed data and change detection analysis. Stand-replacing disturbance legacies in the Nez 

Perce-Clearwater National forest remain distinct in the horizontal and vertical structures of the 

vegetation for a long period (i.e., ~100 years), and LiDAR canopy and topographic metrics have enough 

explanatory power to categorize these disturbance patterns through time. The obtained map is 

unprecedented in the literature considering both the temporal extent (>140 years) and the approach 

(stand-level based) of the analysis, and its overall accuracy is satisfactory especially within the first 100 

years after disturbance occurrence, requiring a relatively low amount of training stands to generate it. 
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On the other hand, the integration of meaningful spatial units of analysis in the workflow (i.e., forest 

stand perimeters) provides a contextual frame of analysis that constitutes a methodological advantage 

to improve TSD estimates, among other reasons, because information of the spatial relationship 

between cells gets intrinsically incorporated into the analysis.  

We expect stand-replacing disturbance legacies in the form of horizontal and vertical canopy 

structural signatures to be recognizable with LiDAR data for a long period in temperate forests with 

similar disturbance dynamics (e.g., other forests in the Pacific Northwest). Therefore, LiDAR data can 

be used to map disturbances that pre-date the beginning of the Landsat data record in 1972 and have 

potential to model disturbance patterns over the long-term (i.e., ~100 years), implementing a stand-

level analysis.  

Overall, the combination of different data sources and strategies to reconstruct the disturbance 

history of forested areas, including this methodology, will increase the amount of reliable ready-to-use 

maps of TSD, which are required to improve carbon cycle modelling and the understanding of forest 

ecosystem processes. Further research would involve the replication of the analysis to other study sites, 

the evaluation of other predictors to impute TSD, such as climatic variables, and the categorization of 

other disturbance attributes such as typology or severity.  
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Table 2.1. LiDAR acquisition parameters. 

  Clear Creek  Selway River& Elk Creek  

Date October 2009 June-July 2012 

vendor  Earth Eye LLC, Orlando, FL Watershed Sciences, Corvallis, OR 

LiDAR sensor Leica ALS60 Leica ALS50/ ALS60 Phase II 

Scan angle ±6° ±14° 

Pulse rate (Hz) 69,400 88,000 

Altitude (m above ground level) 2400-3850  1200-1300 

Minimum return density (pts/ m2) 4 4  
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Table 2.2. LiDAR-derived summary metrics related to canopy structure (height & complexity, and density) and 

topography, computed as predictor variables for TSD modelling. All metrics are defined in 30m x 30m raster 

cells. On the equations, α is the topographic aspect in radians. 

Predictor variables 

Canopy height 

& complexity 

H.Ave  Mean height value  

H05  5th percentile of height above 1.37 m  

H25  25th percentile of height above 1.37 m  

H75  75th percentile of height above 1.37 m  

H95   95th percentile of height above 1.37 m  

Rumple index  Canopy roughness. Canopy complexity 

Canopy density 

PRT1Mean Percentage first returns above mean height over first returns 

PRT1BH  Percentage first returns above 1.37 m height over first returns 

ST_b0.15  Percentage of returns below 0.15 m. Inverse of total canopy density  

ST_0.15-1.37 Percentage of returns between 0.15 and 1.37 m 

ST_1.37-5 Percentage of returns between 1.37 and 5 m 

ST_5-10 Percentage of returns between 5 and 10 m 

ST_10-20 Percentage of returns between10 and 20 m 

ST_20-30 Percentage of returns between 20 and 30 m 

ST_ab30 Percentage of returns above 30 m 

Topography 

Elevation Elevation (meters) 

SLP Slope (percentage) 

SRI Solar Radiation Index 

SRAI 
Topographic solar-radiation aspect index   

SRAI =  
1−cos ((

π

180
)(α−30))    

2
  (Roberts and Cooper, 1989) 

SCA 
Transformation cos(aspect) x Percent slope   

SCA= SLP x cos(α) (Stage, 1976) 

SSA 
Transformation sine(aspect) x Percent slope   

SCA= SLP x sin(α) (Stage, 1976) 
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Table 2.3. Disturbed area reported on the ancillary reference dataset (Figure 2.1) and on the selected forest stands 

with known TSD (Figure 2.4) summarized by decade. Area is reported in number of disturbed hectares, and in 

percentage relative to the extent of the entire study area (52,257 ha). ND: forest stands non-disturbed since 1870. 

 Ancillary reference dataset Forest Stands with known TSD 

Disturbance Decade  Area (ha) Relative area (%) Area (ha) Relative area (%) 

ND - - 2121 4.06 

1870 1199 2.29 1031 1.97 

1880 5509 10.54 4745 9.08 

1890 0 0.00 0 0.00 

1900 0 0.00 0 0.00 

1910 9928 19.00 9718 18.60 

1920 756 1.45 644 1.23 

1930 2884 5.52 2845 5.44 

1940 278 0.53 322 0.62 

1950 102 0.20 75 0.14 

1960 2415 4.62 2176 4.16 

1970 1799 3.44 1584 3.03 

1980 773 1.48 614 1.18 

1990 1026 1.96 758 1.45 

2000 57 0.11 13 0.02 

Total  26725 51.1 26644 51.0 
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 Table 2.4. Number and percentage of stands with known TSD within the study area summarized by decade; and 

number and percentage of sampled forest stands following the LiDAR-assisted stratification strategy (Figure 2.6). 

ND: forest stands non-disturbed since 1870. 

Decade 
# Stands with 

known TSD 

Stand with 

known TSD 

(%) 

# Sampled 

stands 

Sampled 

stands (%) 

ND 50 6 6 11 

1870 23 3 2 4 

1880 112 14 7 13 

1890 0 0 0 0 

1900 0 0 0 0 

1910 202 26 12 21 

1920 14 2 0 0 

1930 72 9 8 14 

1940 11 1 1 2 

1950 5 1 0 0 

1960 57 7 6 11 

1970 46 6 1 2 

1980 89 11 3 5 

1990 96 12 9 16 

2000 4 1 1 2 
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Table 2.5. Confusion matrix of the TSD stand-level estimates of the 725 forest stands with known TSD not 

used to train the RF (Table 2.4) summarized by decade. ND: forest stands non-disturbed since 1870. 

 

 

  

 Reference data 

Predictions ND 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

ND 22 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
1870 8 8 4 0 0 0 0 0 0 0 0 0 0 0 0 
1880 12 7 53 0 0 31 1 1 1 0 0 0 0 1 0 
1890 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1910 2 5 45 0 0 148 12 10 6 0 1 3 0 1 0 
1920 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1930 0 1 1 0 0 8 1 47 3 1 6 3 3 1 2 
1940 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1960 0 0 1 0 0 2 0 5 0 4 44 31 11 1 0 
1970 0 0 0 0 0 0 0 0 0 0 0 3 4 0 0 
1980 0 0 0 0 0 0 0 0 0 0 0 5 39 11 0 
1990 0 0 0 0 0 1 0 1 0 0 0 0 29 72 0 
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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Table 2.6. Percentage and number (in brackets) of times that a predictor variable included in uncorrelated variable 

combinations ranked 1st, 2nd, or 3rd in order of importance based on the Mean Decrease in Gini (MDG) index of 

the RF. Pearson correlation threshold |R| = 0.5 for uncorrelated variable combination. 

  

  

Predictor variable 
Rank 

1 2 3 

Canopy height & complexity 

H.Ave  83% (20) 17% (4) 0% (0) 

H05 69% (25) 28% (10) 3% (1) 

H25 63% (15) 33% (8) 4% (1) 

H75 83% (25) 17% (5) 0% (0) 

H95 100% (42) 0% (0) 0% (0) 

Rumple index  83% (45) 17% (9) 0% (0) 

Canopy density  

PRT1Mean 0% (0) 17% (2) 83% (10) 

PRT1BH 0% (0) 13% (13) 88% (21) 

ST_b0.15 0% (0) 25% (9) 75% (27) 

ST_0.15-1.37 0% (0) 0% (0) 100% (36) 

ST_1.37-5 0% (0) 05 (0) 100% (36) 

ST_5-10 0% (0) 83% (5) 17% (1) 

ST_10-20 0% (0) 445 (8) 56% (10) 

ST_20-30 28% (10) 61% (22) 11% (4) 

ST_ab30 0% (0) 83% (5) 17% (1) 

Topography 

Elevation 80% (28) 20% (7) 0% (0) 

SLP 0% (0) 71% (25) 29% (10) 

SRI 0% (0) 77% (27) 23% (8) 

SCA 0% (0) 77% (27) 23% (8) 

SSA 0% (0) 60% (21) 40% (14) 

TRSI 0% (0) 37% (13) 63% (22) 
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Table 2.7. Relative predictor variable importance summarized by group of metrics (Table 2.2), showing the 

percentage (and number) of uncorrelated variable combinations (out 210) that a variable from a group ranked 1st, 

2nd, or 3rd (rank one is the most important) according to the Mean Decrease in Gini (MDG) index of the RF. 

 Rank 

Predictor variable group 1 2 3 

Canopy height & complexity 82% (172) 17% (36) 1% (2) 

Canopy density  5% (10) 26% (54) 69% (146) 

Topography 13% (28) 57% (120) 30% (62) 
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Figure 2.1. Location of the study area in the Nez Perce-Clearwater National Forest (Idaho, USA); boundaries of 

the 2009 and 2012 LiDAR acquisitions; ancillary reference dataset of stand-replacing disturbances compiled from 

historic burns digitized from aerial photos (Morgan et al., 2017), and the perimeters of the stand and patch clearcut 

management units reported in the Forest Service Activity Track System (FACTs) harvest dataset (USDA, Forest 

Service, 2016). The color scale indicates the disturbance year (ranging between 2005 and 1870) and Time Since 

Disturbance (TSD, in parentheses), calculated with reference to 2012, i.e. the year of the more recent LiDAR data 

acquisition. 
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Figure 2.2. Forest stand map (orange vector) overlaid on the ‘H95’ LiDAR summary metric shown in 

grayscale. Top-right, histogram showing the percentage distribution of the size of the stands. 
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Figure 2.3. Pre-processing of the FACTs harvest management units (top row) and selection of forest stands with 

known TSD (bottom row). The top row shows an example of adjacent polygons harvested within a time interval 

≤5 years (left) that are merged into aggregated polygons (right) that are used as ancillary reference polygons. 

Bottom row shows the corresponding forest stand with known TSD selected from the forest stand map (Figure 

2.2) according to the 50% overlap area criterion.  The ‘H95’ LiDAR summary metric is shown in grayscale in the 

bottom left figure. 
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Figure 2.4. Forest stands with known TSD. Colour ramp indicates the disturbance year (ranging between 2005 

and 1870) and Time Since Disturbance (TSD). Top-right, histogram showing the percentage distribution of the 

overlapping area (in %) between the forest stands with known TSD and the ancillary reference dataset (Figure 

2.1). 
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Figure 2.5. Workflow of the proposed methodology to generate a map of estimated Time Since the last stand-

replacing Disturbance (TSD) at the forest stand-level. 
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Figure 2.6. Scheme of the LiDAR-assisted stratification of the forest stands with known TSD. The mean 

topographic solar-radiation aspect index (‘SRAI’) and the mean 95th percentile of height above 1.37 m (‘H95’) 

are used as stratification variables. The 56 stands used as training dataset are reported as red triangles. 
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Figure 2.7. TSD imputations at the cell level using RF analysis and 21 LiDAR predictor variables related to 

canopy structure and topography (Table 2.2). 
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Figure 2.8. Stand-replacing disturbance history map. TSD stand-level calculated as the median value of the 

imputed TSD (Figure 2.7) cell estimates enclosed within the perimeters of the forest stands (Figure 2.2). 
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Figure 2.9. Partial dependence plots with probability distribution of TSD for the four variables with the highest 

importance (Table 2.6). Each curve represents the conditional TSD probability as a function of the LiDAR metrics 

(TSD is aggregated in 10-year bins). 

  



93 

 

 

 

Figure 2.10. Boxplots of RMSD, BIAS, and Perct.10 obtained for TSD predictions when 1 to 10 forest stands 

were selected per stratum (Figure 2.6). The random selection of forest stands was replicated 10 times. Central line 

represents the median, edges of the box are the first (i.e., the 25th percentile) and the third (i.e., 75th percentile) 

quartiles, and the whiskers are 1.5 times the range of the upper and lower quartiles. 
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Chapter 3: Estimating Time Since the last stand-replacing Disturbance (TSD) from spaceborne 

GEDI data: a feasibility study. 

Abstract 

Stand-level maps of past forest disturbances (expressed as Time Since the Last stand-replacing 

Disturbance, TSD), are needed to model forest ecosystem processes, but the conventional approaches 

based on time series of optical remotely sensed satellite data can only extend as far back as the first 

available satellite observations. LiDAR data have proven potential to accurately map long-term TSD 

(~100 years). NASA’s new spaceborne LiDAR Global Ecosystem Dynamics Investigation (GEDI) 

instrument, successfully launched in December 2018, will soon provide billions of measurements of 

the forest canopy of tropical and temperate forests around the globe. GEDI is, however, a sampling 

instrument that has ground footprints separated by ~600 m across track and ~60 m along-track, 

providing only discrete measurements of the forest canopy. New approaches are therefore needed to 

generate wall-to-wall maps from the forest structural information collected at the GEDI footprint level. 

We study the feasibility of a data fusion approach between GEDI and Landsat data for wall-to-wall 

mapping of TSD, and we test the methodology on a ~52,000 ha study area located in the Nez Perce-

Clearwater National Forest (Idaho, USA) where an extensive record of past forest management and fire 

disturbances is available, starting in 1870. GEDI data are simulated over the two-year programmed 

mission from airborne LiDAR point clouds. The simulated GEDI data are used for TSD estimation 

using a Random Forest classifier, trained with a sample of stands with known TSD, that were randomly 

sampled using a two-level stratification based on topographic and GEDI metrics. Single image Landsat-

8 OLI (Operational Land Imager) data are used to segment the study area, obtaining image-objects 

needed for the spatial extrapolation of TSD from the GEDI footprints to forest stands. Throughout the 

study, we assess the influence in overall accuracy of the training dataset, the GEDI sampling grid of 

measurements, and observed TSD. The results show that the proposed GEDI-Landsat data fusion has 

the potential to reconstruct the long-term disturbance history of a temperate, even-aged forest which is 

a breakthrough to obtain global maps of the complete disturbance history of forests from remotely 

sensed data. 

Introduction 

Global and regional maps of forest stand age are required to improve carbon pools and flux 

estimates, and understand the impact of forest disturbances on net carbon accumulation (Pan et al., 

2011; Pregitzer and Euskirchen, 2004; Pugh et al., 2019).  
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Available stand age datasets can be obtained from several sources such as field inventory and 

remotely sensed data. Forest inventories provide accurate ground-based data to assess forest age, but 

they are limited in tracking disturbances at large spatial scales. Optical satellite sensor data, in particular 

Landsat data, have so far been the best alternative to generate timely records of  stand age (expressed 

as Time Since Disturbance, TSD) at large spatial scales through change detection and multi-temporal 

time series analysis (e.g., Hansen et al., 2008; Hayes and Sader, 2001; Huang et al., 2009; Huo et al., 

2019; Kennedy et al., 2010; Lu et al., 2004; Masek et al., 2008; Schroeder et al., 2007). While these 

methods can provide spatially explicit information of disturbances at small time intervals (i.e., yearly 

based), they can only detect disturbances that have happened since the beginning of the Earth 

Observation data record which broadly began in the 1970s. 

Active remotely sensed data sensitive to the three-dimensional structure of the forest canopy 

are increasingly used to estimate forest age as there exists a strong linkage between forest structure and 

growth (Monserud, 1984; Oliver and Larson, 1996; Ryan et al., 2004). In particular, Light Detection 

and Ranging (LiDAR) sensors record direct measurements of the forest canopy and are one of the most 

powerful remote sensing systems to describe forest structure (Goetz and Dubayah, 2011). LiDAR data 

are suitable to model a wide variety of forest structural attributes such as height, basal area, density, 

leaf area index, biomass and carbon stocks (e.g., Andersen et al., 2005; Boudreau et al., 2008; Hudak 

et al., 2006; Lefsky et al., 1999; Naesset, 1997; Nelson et al., 1988; Zhao and Popescu, 2009); and these 

attributes have explanatory power to estimate stand age, forest regrowth, forest succession, and TSD 

(Falkowski et al., 2009; Poulter et al., 2019; Racine et al., 2014; Sanchez-Lopez et al., 2019, in review; 

Zhang et al., 2014).  

 The deployment of LiDAR is dominated by airborne platforms, but largescale coverage of 

LiDAR is only attainable through satellite systems. The Geoscience Laser Altimeter System (GLAS), 

onboard the Ice Cloud and Land Elevation Satellite (ICESat), was the first sensor providing global 

LiDAR measurements from space (Zwally et al., 2002). GLAS collected ~250 million observations 

over forest regions from 2003 to 2009 (Lefsky, 2010), that were used in a variety of forest-related 

studies (Baccini et al., 2012; Duncanson et al., 2010; Lefsky, 2010; Montesano et al., 2013; Poulter et 

al., 2019; Simard et al., 2011). Two recently launched LiDAR spaceborne missions, ICESat-2 and the 

Global Ecosystem Dynamics Investigations (GEDI), are complementing this pioneer LiDAR 

spaceborne mission, and are collecting billions of measurements of the forest canopy. In particular, 

GEDI has been designed to monitor forest ecosystems and improve the understanding of forest carbon 

dynamics (Dubayah et al., 2014). With a two-year programmed mission, GEDI is recording data from 
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51.6° N to 51.6° S latitudes as constrained by the orbit of the International Space Station (ISS) where 

GEDI was mounted in December 2018. 

Although spaceborne LiDAR missions, such as the GEDI, record global data of forest 

ecosystems, they don’t provide complete horizontal coverage of measurements due to the sampling 

configuration of their instruments. The GEDI instrument is a multi-beam large-footprint waveform 

LiDAR composed of three laser transmitters that generate eight ground tracks; GEDI footprints of about 

22 m diameter are spaced on the ground ~600 m across-track, and ~60 m along-track (Hancock et al., 

2019). This makes it necessary to develop approaches that extend the forest structural information 

collected at the sensor footprint level across larger spatial scales. The footprint observations can be 

clustered, for instance, into cells of constant resolution (e.g., Baccini et al., 2012; Simard et al., 2011). 

However, the cell doesn’t represent by itself a true geographical unit of analysis (Fisher, 1997), and its 

use might introduce large uncertainties into the analysis depending on cell size and landscape 

heterogeneity. Alternatively, footprint observations can be scaled up to an image object that represents 

a forest patch (Lefsky, 2010; Montesano et al., 2013). Geographic Object-Based Image Analysis 

(GEOBIA) carries out the delineation of the image objects through image segmentation procedures 

(Blaschke et al., 2008), for which spatially contiguous sensed data are required. Lefsky (2010), for 

instance, used object-based analysis to delineate forest patches using MODIS data to generate wall-to-

wall canopy height maps from spaceborne GLAS data. GEDI will provide coverage of LiDAR data for 

tropical and temperate forests at a denser sampling than the ICESat missions. Therefore, data fusion 

object-based strategies between GEDI and data sources of moderate spatial resolution, such as Landsat, 

are worth exploring. Landsat provides global coverage—ideal for vegetation landscape mapping—and 

has an adequate spatial resolution (i.e., 30 m) for stand-level analysis at regional scales. Moreover, 

Landsat data have been used for image segmentation in studies related to the estimation of stand 

structure attributes such as biomass and TSD (Montesano et al., 2013; Wulder et al., 2004). We 

hypothesize that the data fusion of GEDI and Landsat can be suitable to map TSD at the stand level. 

However, the feasibility of the object-based data fusion approach would depend on the combined effect 

of the GEDI sampling grid, the quality of the delineation, and the size and spatial pattern of the 

disturbances. 

 In this study, we evaluate the feasibility of using GEDI data and image objects delineated on 

Landsat data for synoptic mapping of TSD. Landsat data are used for image segmentation and simulated 

GEDI data over the two-year programmed mission are used to estimate TSD using Random Forest (RF) 

analysis. The main goal was to test whether the proposed approach can be successfully used to reduce 
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the limitations of the GEDI sampling configuration to map stand-level TSD and whether it can provide 

comparable results to those obtained with airborne LiDAR (Sanchez-Lopez et al., 2019, in review). We 

investigate the scope of the proposed methodology by assessing the influence on overall accuracy of 

the (a) training dataset, (b) GEDI sampling grid of measurements, and (c) observed TSD. 

Materials 

Study area  

The study area is in the Nez Perce-Clearwater National Forest in Idaho (USA) (Figure 3.1). It is a 

temperate mixed-conifer forest covering ~52,000 ha of the Clear Creek, Selway River, and Elk Creek 

watersheds. The study area is mountainous, with elevation ranging from ~400 m to 2000 m; and steep, 

with slopes often higher than 30%. Predominant tree species are Douglas-fir (Pseudotsuga 

menziesii (Mirb.) Franco.) and grand fir (Abies grandis (Dougl. Ex D. Don) Lindl.), often accompanied 

by ponderosa pine (Pinus ponderosa C. Lawson) and western redcedar (Thuja plicata Donn ex D.Don). 

The forest landscape is a mosaic of even-aged stands result of systematic wildfires and harvests 

that have disturbed the study area since the 19th century  (Morgan et al., 2017; USDA, Forest Service, 

2016). 

LiDAR and GEDI simulated data 

Small-footprint discrete return airborne LiDAR data were acquired in October 2009 and June-July 

2012 on the Clear Creek watershed and the Selway River and Elk Creek watersheds respectively. A 

Leica ALS60 instrument at 69,400 Hz pulse rate in a multi-pulse mode in the Clear Creek area and at 

88,000 Hz in the Selway area was used. The average point density was at least 4 points/m2 in both 

datasets.   

Large-footprint LiDAR waveforms were simulated from the airborne LiDAR point clouds using 

the GEDI simulator that has been used for calibration of algorithms and assessment of GEDI mission 

accuracy (Blair and Hofton, 1999; Hancock et al., 2019). The waveforms were simulated on footprints 

of ~22 meters and distributed over the study area considering the GEDI sampling configuration and the 

orbit of the International Space Station (ISS), where GEDI is attached. The simulated grid of footprints 

contained 28,602 GEDI footprints, separated ~600 m across-track and ~60 m along-track (Hancock et 

al., 2019). The simulator was only allocated enough power to have it firing 60% of the time over the 

two-year programmed mission and accounted for data loss due to leaf-off conditions and 50% of cloud 

cover.  

A total of 57 metrics were calculated from the simulated waveforms (Table 3.1). 
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Additionally, a raster grid at 30 m spatial resolution of the solar radiation aspect index (‘SRAI’; 

Roberts and Cooper, 1989), a linear transformation of the topographic aspect, was obtained (equation 

1):  

SRAI =  
1−cos ((

π

180
)(α−30))    

2
  

(1)  

where α is the topographic aspect in radians that was obtained from the airborne LiDAR point 

cloud using the FUSION software (McGaughey, 2009). 

Landsat data and data processing 

A cloud-free Landsat-8 scene (path 42 row 28) close in time (23rd of  July 2013) to the airborne 

LiDAR surveys was acquired from the USGS Earth explorer (https://earthexplorer.usgs.gov). Landsat-

8 was preferred over Landsat-5 and 7, both overlapping in time with the LiDAR acquisitions, because 

of the poor radiometric resolution of the TM instrument of Landsat-5, and the failure in 2003 of the 

Scan Line Corrector (SLC) of the Landsat-7 ETM+ sensor.  

The Landsat multispectral data were pan-sharpened using the panchromatic band and the 

NNDifusse algorithm implemented in ENVI software (Sun et al., 2014). Tasseled Cap (TC) indices of 

Brightness (TCB), Greenness (TCG) and Wetness (TCW) were then calculated using the coefficients 

published in Baig et al. (2014) for the TC transformation based on Landsat-8 at-satellite reflectance 

data. The three indices were normalized between 0-100 applying a 2% linear stretch.  

 Ancillary reference data  

Records of stand-replacing disturbances that have happened in the study area between 1870 and 

2005 were available from two different data sources: 

(1) the FACTS (Forest ACtivity Tracking System) timber harvest dataset which is maintained 

by the U.S. Forest Service and contains spatial and temporal records of planned and 

accomplished forest management activities, such as clearctus. It consists of polygon 

features with embedded metadata that include the fiscal year in which the activity was 

done. The dataset contained records since 1956 for the study area (USDA, Forest Service, 

2016);   

(2) a dataset of burned area perimeters of historical wildfires that occurred from 1870 to 2000, 

although 99.95% of them happened between 1870 and 1940. The fires were photo-

interpreted using fire atlas data and historical aerial photographs (Morgan et al., 2017).  

https://earthexplorer.usgs.gov/order/track/orderNum/0101801040220
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Both datasets were assembled together and manually refined to amend potential non-reported post-

disturbances (e.g., small areas with evident biomass removal and other post-logging activity, especially 

within the fire perimeters) as described in Sanchez-Lopez et al., (2019, in review). TSD was calculated 

for each polygon from 2012, considered as the benchmark year based on the acquisition dates of the 

airborne LiDAR (used to simulate the GEDI data). 

Twenty additional non-disturbed forest stands (i.e., disturbed before 1870) were digitized and 

visually photo-interpreted using NAIP imagery, the airborne LiDAR point clouds, and the ancillary 

reference datasets. The stands were characterized by dense canopy closure and relatively high height 

of the dominant cohort of the forest canopy. They were joined to the dataset to represent all the stand 

typologies of the study area, i.e., disturbed from 1870 and non-disturbed before 1870 (Figure 3.2). 

Methods 

In this study, TSD is estimated at the image object level using GEDI simulated data and image 

objects delineated from Landsat data. The overall workflow is divided into four main steps: (1) image 

segmentation using the Landsat Tasseled Cap (TC) derived indices, seeking an optimal segmentation 

where the image objects are homogenous in terms of forest structure (and potentially are representing 

even-aged stands); (2) training data selection through stratified random sampling to extract data of 

known TSD to train a RF classifier; (3) TSD estimation at the GEDI footprint and image object levels; 

and (4) accuracy assessment (Figure 3.3).  

Throughout the study, we evaluate the sensitivity of the results to the:  

(1)  sample size of the training dataset. TSD reference data (particularly of mature and old 

forest stands) are often not available and their collection requires expensive and time-

consuming procedures (e.g., dendrochronology analysis);  

(2) observed TSD. TSD estimation using forest structural related data becomes progressively 

more complex as the uneven-aged distribution of the forest canopy is reached. This 

analysis will provide insight into the temporal scope of the methodology. 

(3) GEDI sampling grid. The number of GEDI footprints available to estimate TSD within 

each image object would depend on the image object size and the distribution of the 

sample grid. 

Landsat segmentation 
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Landsat image segmentation was performed using the multiresolution segmentation algorithm 

(Baatz and Schape, 2000) implemented in eCognition 9.1 software. TC indices were the input data for 

segmentation since they are more correlated to successional stages and recent disturbances (particularly 

the TCW) compared to other Landsat derived indices (Cohen et al., 1995; Cohen and Spies, 1992; Jin 

and Sader, 2005); and have been previously used for segmentation of forest patches in studies related 

to the estimation of forest structural parameters such as biomass or TSD (Montesano et al., 2013; 

Wulder et al., 2004).   

Several segmentations varying the MRS algorithm parameters and the input layers were obtained. 

A two-stage object-based evaluation strategy was followed to select a segmentation output (Sanchez-

Lopez et al., 2018). Object-based segmentation evaluations were implemented in GEOBIA to assess 

the quality of the segmented outputs. They can be used to objectively select among input data, 

segmentation algorithms and algorithm parameters (Costa et al., 2018; Georganos et al., 2018; Grybas 

et al., 2017; Johnson and Xie, 2011; Sanchez-Lopez et al., 2018). The first stage of the evaluation used 

here is based on an unsupervised evaluation that measures intra-segment homogeneity and inter-

segment heterogeneity through spatial autocorrelation statistics (Böck et al., 2017; Espindola et al., 

2006; Johnson and Xie, 2011). These measures are calculated from the Landsat TC indices that were 

used as input for segmentation. This step allowed for calibration of the parameters of the multiresolution 

segmentation algorithm. The second stage is a supervised evaluation, i.e., it depends on external 

reference data to evaluate over and undersegmentation. Oversegmentation happens when multiple 

image objects are corresponding to a single geographic object; undersegmentation happens when an 

image object corresponds to more than one geographic object. Over and undersegmetnation were 

calculated by pairwise comparing the image objects of the segmentation outputs to reference objects 

representing actual even-aged forest stands (Clinton et al., 2010). This stage allowed for properly 

setting the weights assigned to each of the TC indices for the segmentation. For a more detailed 

explanation of the two-stage evaluation strategy followed to select a segmentation refer to Sanchez-

Lopez et al. (2018).  

The image objects of the selected segmentation that were smaller than 2 ha, which is commonly 

used as a threshold between stand and patch forest management units in areas of the Pacific Northwest 

(USDA, Forest Service, 2016), were dissolved into larger objects based on the statistics of the TC 

indices.  

Training dataset 
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A subset of 630 image objects totaling 16,062 ha (Table 3.2) was extracted from the segmentation 

and used as candidates for training. These image objects met two conditions: (1) they overlapped at 

least 75% of their area with the ancillary reference dataset (Figure 3.2); and (2) they enclosed at least 

one GEDI footprint within their perimeters.  

The training dataset of image objects of known TSD was extracted from the previous subset 

through stratified random sampling using the ‘SRAI’ topographic metric and a canopy-height GEDI 

metric (‘rhInfl98’) as stratification variables. ‘SRAI’ was selected because it is related to solar 

insolation: ‘SRAI’ ranges between 0 and 1; lower values represent cooler and moister areas that are 

north-northeast oriented, and higher values represent warmer and drier areas that are south-southwest 

oriented. The ‘rhInfl98’ GEDI derived metric (Table 3.1), a canopy height metric that represents the 

upper layer of the forest canopy, was selected as a second stratification variable considering the strong 

linkage between stand height and age (i.e., TSD) (Racine et al., 2014). 

For each image object of known TSD, mean values of the ‘SRAI’ and ‘rhInfl98’ were calculated 

from the GEDI footprints that were fully enclosed within their perimeters. ‘SRAI’ was extracted for 

each footprint location from the 30 m raster grid (see “LiDAR and GEDI simulated data” section). The 

‘rhInfl98’ was the 98% relative height metric derived from the simulated GEDI waveforms (Table 3.1), 

a metric representing the dominant cohort of the forest canopy (Lefsky et al., 2005).  

Two ‘SRAI’ strata (xeric/humid) of equal size were defined, using the median ‘SRAI’ of the image 

objects of known TSD as a benchmark. Within each ‘SRAI’ stratum, five ‘rhInfl98’ strata were defined, 

using the quintiles of the average ‘rhInfl98’ distribution. As a result, ten strata of equal size were 

identified (Figure 3.4).  

One thousand datasets were generated to assess the sensitivity of the size of the training data on 

the TSD estimation (see below). Accordingly, we randomly selected from 1 to 10 image objects per 

each of the defined strata (Figure 3.4), and we repeated the extraction 100 times for each sampled size. 

TSD estimation 

The ‘yaimpute’ package within the R software (Crookston and Finley, 2008) was used to train a 

RF classifier and predict TSD at the GEDI footprint level. The training data used in the RF consisted 

the GEDI footprint observations fully enclosed within the perimeters of the sampled image objects 

(Figure 3.4). The TSD, as observed in the ancillary reference data, was the dependent variable and the 

57 GEDI derived metrics of the simulated GEDI waveforms were the predictor variables (Table 3.1). 

The number of decision trees was set at 500, and the number of predictor variables available to split at 
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each tree node was 7. Once the RF classifier was trained, TSD was imputed to the grid of GEDI 

simulated footprints.    

TSD at the image object level was calculated as the median value of the TSD predictions of the 

GEDI footprints fully enclosed within each image object.   

Accuracy metrics 

Accuracy of the predictions was assessed at the image object level using three accuracy metrics, 

defined as follows:  

The Root Mean Square Difference between predicted and observed TSD (RMSD): 

 𝑅𝑀𝑆𝐷 = √
∑ (Ŷ𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
  ; 

(2)  

where n is the number of image objects; Ŷ𝑖 is the predicted TSD value of the image object i; and  

𝑌𝑖 is the observed TSD value of the image object i.  

 The bias (BIAS): 

𝐵𝐼𝐴𝑆 =
1

𝑛
∑ (Ŷ𝑖 − 𝑌𝑖)

𝑛

𝑖=1
 (3)  

where n is the number of GEDI image objects; Ŷ𝑖 is the predicted TSD value of the image object i; 

and  𝑌𝑖 is the observed TSD value of the image object i.  

 And the percentage of forest stands that had less than 10 years of absolute error (Perct.10): 

𝑃𝑒𝑟𝑐𝑡. 10 = (
∑ |Ŷ𝑖 − 𝑌𝑖| < 10𝑛

𝑖=1

𝑛
) 𝑥100 (4)  

where n is the number of GEDI image objects; Ŷ𝑖 is the predicted TSD value of the image object i; 

and  𝑌𝑖 is the observed TSD value of the image object i.  

The validation dataset used to compute these metrics comprised the image objects of known TSD 

that were not used for training (Table 3.2). The image objects overlapping with the visually photo-

interpreted non-disturbed forest stands (i.e., non-disturbed after 1870) (Figure 3.2) were also excluded 

because their age was unknown. 

Influence of TSD and GEDI sampling 
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The sensitivity of the accuracy metrics to TSD, as observed in the ancillary dataset, and to the 

GEDI sampling configuration was further investigated. For that, the 100 TSD imputations obtained 

using the random extractions of training data with five sampled image objects were considered (see 

“Training dataset” section). 𝑅𝑀𝑆𝐷, 𝐵𝐼𝐴𝑆, and Perct.10 calculated for the image objects disturbed at 

the different disturbance decades were evaluated. Accuracy of the TSD predictions was also evaluated 

for the image objects that enclosed from 1 to 10 GEDI footprints. 

Results  

Landsat segmentation 

The selected segmentation was composed of 2,060 image objects of 25.5 ha average size (Figure 

3.5). The segmentation was obtained including the three TC indices in the multiresolution segmentation 

algorithm in eCognition with double weight assigned to the TCW.  

A total of 22,603 GEDI footprints out of the 28,602 originally simulated over the study area 

(Figure 3.1) were fully enclosed within the perimeters of the image objects of the segmentation (Figure 

3.5). The percentage of objects enclosing at least one GEDI footprint was 87.5% (that represent 95.3% 

of the study area); 61.1% of image objects fully enclosed at least five GEDI footprints (that represent 

82.5% of the study area); and 40.7% of images objects fully enclosed at least ten GEDI footprints (that 

represent 66.2% of the study area) (Figure 3.6).  

Training dataset  

Out of the 1000 random extractions of training data, the minimum amount of fully enclosed GEDI 

footprints within the sampled objects was 47 (sampling one image object per stratum) and the maximum 

was 1427 (sampling ten image objects per stratum).  

Overall accuracy at the image object level was slightly influenced by the number of training image 

objects provided that a minimum was sampled per stratum (Figure 3.7). Perct.10 reflected well that 

trend suggesting that around four image objects would be necessary to assure that more of the 50% of 

the image objects are classified within 10 years of absolute error. Conversely, the variation in training 

data had an influence on the overall accuracy, as reflected especially on the larger range interquartile 

of the RMSD, BIAS and Pert.10 obtained with the same sample size in the 100 replicated iterations.   

TSD estimation 

We mapped TSD at the image object level for one of the instances that sampled five image objects 

per stratum on the stratification. The number of GEDI footprints fully enclosed in the 50 sampled image 

objects was 621 (Table 3.3). The RMSD was 21.4 years, BIAS was -4.47 years and the percentage of 
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stands with less than 10 years of absolute error (Perct.10) was 55.6%. When considering the image 

objects disturbed since the decade of 1910 (TSD <102 years), RMSD was 16.9 years, BIAS was 0.97 

years and the Perct.10 was 65.4%.  

Figure 3.8 shows an illustrative example of the predictions at the GEDI footprint level and how 

they overlay on the Landsat segmentation; and Figure 3.9 shows the (almost) wall-to-wall map of TSD 

of the study area.    

The confusion matrix of the TSD predictions at the image object level per decade (Table 3.4) 

shows that confusion in the predictions happened between decades close in time for the most recent 

disturbances. For instance, 27 image objects disturbed in the decade of the 1970s were classified as 

disturbed in the decade of the 1960s, and 21 image objects disturbed in the decade of the 1990s were 

classified as disturbed in the decade of the 1970s.  

The area reported as disturbed in the 1910s (especially after the large fire of 1919) was ~19% of 

the study area (Table 3.2). Therefore, this decade was largely represented in the training data, and in 

the predictions. The confusion matrix shows that areas disturbed more than 100 years ago were often 

classified as disturbed in 1910, as well as areas disturbed in the 1930s.   

Influence of TSD and GEDI sampling 

The predictions were biased at the beginning of the time series (i.e., 1870 and 1880) and at the end 

(i.e., 1990 and 2000) (Figure 3.10). Nevertheless, the case of 2000 was expected since only one image 

object was available for training and validation. The decades with fewer reference data were prone to 

not be represented in the training dataset, thus, image objects disturbed within these decades were often 

misclassified, as observed in the Perct.10. Both 𝑅𝑀𝑆𝐷 and 𝐵𝐼𝐴𝑆 were relatively stable from 1910 to 

1990, with larger interquartile range when the number of image objects in the dataset was small (i.e., 

1920, 1940 or 1950) (Figure 3.10).  

The number of GEDI footprints per image object slightly influenced the overall accuracy of the 

predictions (Figure 3.11). The likelihood of accurately classifying an image object within ten years of 

absolute error (Perct.10) was relatively similar with one to three footprints per object. Moreover, there 

was not an overall improvement in the predictions when the number of GEDI footprints significantly 

increased. 
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Discussion and Conclusions 

Spaceborne LiDAR systems provide global structural data of forest ecosystems, but their 

configuration as sampling instruments makes it necessary to develop approaches that extend the 

information collected at the footprint level across larger spatial scales, for instance, through data fusion 

strategies. This research has studied the feasibility of using GEDI data and image objects delineated 

from Landsat imagery to effectively map TSD. For that, GEDI data simulated from airborne LiDAR 

point clouds have been used (Hancock et al., 2019). 

Upscaling footprint estimates using Landsat derived image objects overcomes the limitations of 

the GEDI sampling configuration to map TSD at the stand-level. As opposed to the use of cells of 

constant size while using spaceborne LiDAR data (e.g., 1 km, 500 m) (Baccini et al., 2012, 2008; 

Simard et al., 2011),  the use of image objects is adequate to map forest attributes that are marginally 

variable over the whole stand, such as TSD. The image object, as defined here, related to a homogenous 

structural forest patch that ideally is even-aged. Thus, the footprints enclosed within the same object 

represent canopy structures of similar TSD. GEDI will provide a relatively dense grid of canopy 

measurements after the two-year programmed mission and, as shown here, its combination with a 

Landsat segmentation provides a means to map TSD: 87.5% of the image objects (~95% of the study 

area) would enclose, at least, one GEDI footprint (Figure 3.6). We expect this area to remain under the 

5% threshold. The simulation of GEDI data was conservative accounting for data loss due to leaf-off 

conditions and assuming 50% cloud cover.  

This research builds upon the study of Sanchez-Lopez et al. (2019, in review) that combined 

airborne LiDAR data, object-based, and RF analysis to predict stand-level TSD in the same study area. 

Overall accuracy obtained in this study—RMSD= 21.4 years, BIAS= -4.47 and Perct.10= 55.6%—is 

relatively lower compared to the former study—RMSD= 17.5 years, BIAS= 0.8 years and Perct.10= 

72.8%. This difference (especially noticeable in BIAS and Perct.10) is explained by the large disparity 

between the number of GEDI footprints (~22 m in diameter) and the cells (at 30 m resolution) of the 

rasterized derived airborne LiDAR metrics: the GEDI footprints cover only ~2% of the study area while 

the airborne LiDAR point clouds provided a complete coverage with return density of at least 4 

points/m2. Yet the difference of image objects that were classified less than 10 years apart of the 

reference TSD within the last 100 years is only 13% between the two studies (65% versus 78%). This 

preliminary analysis suggests that comparable accuracies could be achieved predicting TSD in young 

and mature forests through GEDI-Landsat data fusion. Nevertheless, more research is needed: the 
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methodology followed in both studies was similar, but the particulars of the GEDI and the Landsat 

datasets enforce a tailored methodology in the segmentation and training data selection.   

Landsat data have an adequate spatial resolution (i.e., 30 m) to detect typical forest management 

units such as forest stands. Nevertheless, it is well established that the use of Landsat for analyses of 

forest structure is limited under dense canopies (Cohen et al., 1995; Turner et al., 1999). Besides this, 

there is an asymptotic relationship between stand age and variables derived from optical data that 

confounds differentiation of forest stands of different ages (Fiorella and Ripple, 1993). Thus, a degree 

of mismatch between the perimeters of the image objects and the actual forest stands was expected, 

especially in stands disturbed long ago (i.e., TSD>100 years). On the other hand, the object-based two-

stage evaluation strategy followed to select a segmentation output (Sanchez-Lopez et al., 2018) was 

expressly designed for even-aged forest stand delineation using single metrics derived from airborne 

LiDAR data; therefore, more research is needed to adjust it to a Landsat-based workflow.  

 The accuracy of the TSD predictions is influenced by the training dataset that depends on the 

random sampling of the stratification (Figure 3.7). Following Sanchez-Lopez et al. (2019, in review), 

the stratification was based on topographic and canopy height related metrics. Therefore, a priori 

information on the distribution of TSD over the complete study area was not required, which would 

facilitate deployment of the approach in other study sites. The training set should represent the fullest 

range of TSD in a proportional way, but that depends on (1) the amount of sampled image objects, (2) 

how thoroughly the objects represent even-aged and homogenous structures (dependable on the 

segmentation), and (3) the amount of available reference data (Table 3.2). In this sense, it would be 

recommended to adjust the stratification, for instance, by sampling more intensively some specific 

stratum or using alternative stratification variables.  

On the other hand, the GEDI sampling configuration that determines the number of footprints 

measurements enclosed within the image objects doesn’t have a conclusive influence on the accuracy 

of the predictions. Figure 3.11 shows that the accuracy of the predictions is slightly influenced by the 

number of GEDI footprints enclosed within each image object, although a minimum of three 

measurements per image object would be recommended. Other factors such as the structural 

development of the forest represented by the image object, the actual age of the patches, or the 

distribution of the footprints might be more important. It would be expected, for instance, that the 

estimation of TSD in stands that are young and have little canopy variability requires fewer 

observations compared to the estimation of TSD in older stands that have uneven canopy structures 
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(Dubayah et al., 2010). Based on that, future research will involve a deeper analysis to understand the 

interaction between image object size, observed TSD and number of GEDI footprints.  

The confusion matrix (Table 3.4) and the accuracy metrics show errors in predicting TSD that are 

over the decadal level. As an example, areas that have undergone wildfires during the decade of the 

1910s (in which fires mainly happened in 1919), or the 1930s (in which fires mainly happened in 1931) 

displayed heterogeneous structures, which might have resulted from differences on vegetation recovery 

rates, site conditions, post-disturbance management, or disturbance severities. Consequently, stands 

disturbed in 1919 sometimes showed similar structural development to stands disturbed in 1931 (and 

vice versa) and misclassifications among these times were expected. This error pattern was also 

discussed in Sanchez-Lopez et al. (2019, in review), but it got accentuated using the GEDI discrete grid 

of measurements to estimate TSD over the whole stand. In short, the estimation of TSD in relatively 

old stands is more prone to misclassifications. Forests undisturbed for long periods achieve uneven-

aged structures as canopy gaps become filled with younger trees (Luyssaert et al., 2008). The 

distribution of a limited number of GEDI footprints within these stands would result in classification 

errors if the footprints fall upon the gaps with younger, regenerating trees. In view of these results, 

Landsat-GEDI data fusion might be appropriate to characterize stand development through forest 

succession. Successional stages are related to TSD and stand age, but the classification often spans over 

larger time intervals than a decade; moreover, they describe stand development according to structural 

complexity, an intrinsic property of the vegetation recovery rates and site conditions.  

Datasets of stand level disturbance history of forest ecosystems and forest stand age are required 

to fully understand global carbon cycle dynamics and assess the role of forests in the mitigation of 

climate change. Forest vertical structural data provide a means to accurately reconstruct the long-term 

history of stand-replacing disturbances. Data fusion between GEDI and Landsat, as proposed in this 

study, can be used to map TSD at the stand level especially in areas disturbed within the last 100 years.  

However, the delineation of the image objects, the stratification procedure to extract training data, and 

the disturbance patterns of the study area should be carefully considered as they influence the accuracy 

of the predictions.  
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Table 3.1. Fifty-seven summary metrics calculated from the simulated GEDI waveforms (Hancock et al., 

2019). 

Predictor variables 

inflGround  Ground elevation (m) from inflection points. 

rhInfl 0-100   Relative height (rh) metrics, ranging from 0%-100% and computed at 2% steps, using ground from inflection points (m) 

maxHalfCov  Canopy cover (fraction) from double the energy beneath the lowest maximum ground 

infHalfCov  Canopy cover (fraction) from double the energy beneath the inflection point ground 

Leading edge extent  Leading edge extent (m), related to the slope (Lefksy et al., 2007) 

Trailing edge extent  Trailing edge extent (m), related to canopy elevation (Lefksy et al., 2007) 

BlairSense  Blair's sensitivity metric. Canopy cover at which this SNR would have 90% chance of detecting ground 
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Table 3.2. Disturbed area reported on the ancillary reference dataset (Figure 3.2) and on the selected image objects 

of known TSD summarized by decade. The image objects overlapped 75% of their area with the ancillary 

reference dataset and enclosed at least one GEDI footprint. The area is reported in number of disturbed hectares, 

and in percentage relative to the extent of the entire study area. ND: forest stands non-disturbed since 1870.   

 Ancillary reference dataset Image objects of known TSD 

Disturbance Decade Area (ha) Relative area (%) Area (ha) 
Relative area 

(%) 
# objects 

ND 2429 4.63 1368 2.61 39 

1870 1199 2.28 388 0.74 10 

1880 5509 10.5 2410 4.59 80 
1890 0 0 0 0.00 0 

1900 0 0 0 0.00 0 

1910 9928 18.92 6539 12.46 218 

1920 756 1.44 166 0.32 5 

1930 2884 5.49 1917 3.65 77 

1940 278 0.53 194 0.37 10 
1950 102 0.19 60 0.11 7 

1960 2415 4.6 1262 2.40 63 

1970 1799 3.43 1041 1.98 44 
1980 773 1.47 187 0.36 23 

1990 1026 1.96 525 1.00 53 

2000 57 0.11 5 0.01 1 

Total  29154 56 16062 30.61 630 
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Table 3.3. Number of image objects sampled following the stratification strategy for one of the instances that 

extracted five image objects per stratum (Figure 3.4) summarized by decade; and number of GEDI footprints 

enclosed within their perimeters. ND: forest stands non-disturbed since 1870. 

Disturbance Decade # Image objects  #  GEDI footprints 

ND 4 57 

1870 0 0 

1880 2 31 

1890 0 0 

1900 0 0 

1910 19 247 

1920 1 5 

1930 4 51 

1940 1 3 

1950 1 10 

1960 8 125 

1970 6 56 

1980 2 15 

1990 2 21 

2000 0 0 
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Table 3.4. Confusion matrix of the TSD estimates of the 674 image objects of known TSD not used to train the 

RF summarized by decade. ND: forest stands non-disturbed since 1870. 

 Reference 

Prediction ND 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

ND 3 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

1870 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

1880 3 0 4 0 0 4 0 1 0 0 0 0 0 0 0 

1890 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1900 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

1910 26 7 71 0 0 165 0 27 5 0 0 1 0 0 0 

1920 0 0 0 0 0 2 1 4 0 0 0 0 0 0 0 

1930 0 2 0 0 0 7 1 18 1 0 3 1 0 0 0 

1940 0 0 0 0 0 10 0 3 1 1 3 2 0 0 0 

1950 0 0 0 0 0 1 0 3 0 0 0 1 0 2 0 

1960 0 0 0 0 0 3 2 10 2 1 44 27 8 5 0 

1970 0 0 0 0 0 3 0 2 0 4 5 5 6 21 1 

1980 0 0 1 0 0 1 0 1 0 0 0 0 7 9 0 

1990 0 1 0 0 0 1 0 4 0 0 0 0 0 14 0 

2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 3.1. Study area in the Nez-Perce & Clearwater National Forest (Idaho-USA), and distribution of the 

simulated GEDI footprints (not drawn to scale for visualization).  
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Figure 3.2. Historical stand-replacing disturbances reported in the study area between 1870 and 2005. The dataset 

was compiled from records of historical burns digitized from aerial photographs (Morgan et al., 2017), and 

digitized perimeters of clearcut management units reported in the FACTs (Forest Service Activity Track System) 

harvest dataset (USDA, Forest Service, 2016). Twenty additional forest stands non-disturbed since 1870 were 

delineated through visual photo-interpretation and added to the dataset. 
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Figure 3.3. Flowchart of the proposed methodology. 
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Figure 3.4. Scheme of the stratified random sampling to extract training image objects of known TSD. The mean 

topographic solar-radiation aspect index (‘SRAI’) and the mean GEDI 98% relative of height (from inflection 

points) (‘rhInfl98’) were used as stratification variables. In this example, 50 image objects (reported as red 

triangles) are sampled. 
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Figure 3.5. Optimal Landsat segmentation (grey vector) of the Tasseled Cap indices of Brightness (TCB), 

Greenness (TCG) and Wetness (TCW), that are displayed as background in an RGB combination (R= TCW, G= 

TCG, B= TCB). 
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Figure 3.6. Percentage of image objects of the Landsat segmentation (Figure 3.5) that enclosed, at least, the 

number of GEDI footprints specified on the x axis; and percentage of the study area that they represent. 
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Figure 3.7. Boxplots of RMSD, BIAS, and Perct.10 obtained for TSD predictions when 1 to 10 image objects 

are selected per stratum (Figure 3.4) to train the RF. The random selection of image objects was replicated 100 

times per sample size. Central line represents the median, edges of the box are the first (i.e., the 25th percentile) 

and the third (i.e., 75th percentile) quartiles, and the whiskers are 1.5 times the range of the upper and lower 

quartiles. 
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Figure 3.8. Illustrative example of the TSD predictions at the GEDI footprint level (~22 m diameter) and the 

resulting estimates at the image object level.   
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Figure 3.9. TSD predictions at the image object level.  
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Figure 3.10. Boxplots of the number of validation objects, RMSD, BIAS, and Perct.10 for TSD predictions 

according to disturbance decade (as observed in the ancillary reference dataset). The boxplots display the results 

of the 100 imputations obtained by sampling five image objects per stratum to train the RF (Figure 3.4). Central 

line represents the median, edges of the box are the first (i.e., the 25th percentile) and the third (i.e., 75th percentile) 

quartiles, and the whiskers are 1.5 times the range of the upper and lower quartiles 
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Figure 3.11. Boxplots of number of validation objects, RMSD, BIAS, and Perct.10 obtained for TSD predictions 

of the validation image objects matching from 1 to 10 GEDI footprints. The boxplots display the results of the 

100 imputations obtained by sampling five image objects per stratum to train the RF (Figure 3.4). Central line 

represents the median, edges of the box are the first (i.e., the 25th percentile) and the third (i.e., 75th percentile) 

quartiles, and the whiskers are 1.5 times the range of the upper and lower quartiles. 
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Conclusion  

Maps of disturbance history of forests are needed to fully understand global carbon cycle 

dynamics and assess the role of forests as carbon sink and their climate change mitigation potential, 

one of the major challenges of our society. This research has demonstrated the feasibility of 

reconstructing the long term (~100 years) stand-level disturbance history of a forest using LiDAR data 

and GEOBIA techniques.  Our results show that is possible to map historical disturbances that pre-date 

the beginning of the Earth Observation satellite record, that starts in 1972, and that the accuracy of the 

resulting disturbance maps is acceptable, at the very least, in estimating the timing of the disturbances 

(Time Since Disturbance, TSD) in decadal steps. The results thus meet the main overarching goal of 

the research, i.e. overcoming the spatial and temporal limitations of current, conventionally used 

disturbance mapping techniques based on time series analysis of optical remotely sensed data. In 

contrast to these traditional change detection techniques, where time series of imagery acquired close 

in time to the disturbance event are required to detect abrupt land cover changes, the proposed 

methodology uses single date, recently acquired LiDAR data as the main input data source. We believe 

that the methods proposed in this dissertation can complement the established optical data based 

methodologies, by detecting disturbances that pre-date the systematic availability of moderate 

resolution Landsat data. It should be noted that while the Landsat data archive is mostly complete in 

the US since the launch of Landsat-1 in 1972, in many parts of the world it is highly fragmentary until 

the availability of Landsat-7 in 1999 (Wulder et al., 2016).  

The results obtained from airborne (Chapters 1 and 2) and spaceborne simulated data (Chapter 

3) demonstrate that both small and large footprint LiDAR-derived data are effective predictors for TSD. 

The use of LiDAR for TSD estimation leverages the strong relationship between forest structure and 

forest age, particularly in the early succession stages following a stand-replacing disturbance, before 

the uneven-aged distribution of the forest canopy is reached.  

The importance of adopting the forest stand as a meaningful spatial analysis unit is also one of 

the main results of this research. We demonstrated that its use introduces contextual information in the 

LiDAR data analysis that enhances the discrimination of neighboring forest stands, and leads to a more 

robust estimation of TSD, especially in older, less homogeneous stands. The findings of this research 

suggest that, in the assessment of forest attributes and ecosystem processes at the stand-level, GEOBIA 

techniques overcome several of the limitation of pixel-based analysis techniques, commonly adopted 

in past forest remote sensing studies.  
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The feasibility study presented in Chapter 3 shows that the recently launched spaceborne 

LiDAR instruments are suitable for the reconstruction of the disturbance history of forests at regional 

and global scales. LiDAR missions such as GEDI and ICESAT-2 will provide in the next years global 

data coverage, potentially transforming the way that forests and their processes are monitored from 

spaceborne systems (Abdalati et al., 2010; Dubayah et al., 2014). We demonstrated that some of the 

limitations due to the sampling configuration of these instruments can be overcome through GEOBIA-

based data fusion strategies, using contiguously remotely sensed data, such as Landsat or Sentinel-2, 

as an additional data source. 

Drawing from the present study, it is recommended that future research be undertaken to improve 

the (a) stand delineation through segmentation evaluations designed for specific stand typologies, and 

(b) TSD classification. For instance, the semi-automatic delineation of the forest stands could be 

improved developing a multi-scale segmentation approach. This could enhance the delineation of 

stands regenerating from different forest management activities (e.g., shelterwood, tree seed, etc.), 

disturbance severities (e.g., low, moderate, high), and disturbance types (e.g., outbreaks, wildfires, 

harvests). The spatial extent of forest disturbances depends on several factors such as the geographic 

location, management plans, site conditions, and climate trends. While the technique developed in 

Chapter 1 is effective in detecting even-aged forest stands, a multi-scale approach could ensure that 

small disturbed patches—e.g., regenerating from small harvests—or larger but heterogeneous ones—

e.g., regenerating from large scale wildfires—are also accurately delineated. The semi-automated 

delineation and classification of forest stands could be therefore extended from forests whose structure 

results from stand-replacing disturbances, to forests with more complex stand typologies. The 

estimation of TSD, on the other hand, could be improved by considering additional predictor variables 

such as climatic or site index indicators. These variables influence tree growth and stand development, 

so it is a reasonable expectation that their combination with LiDAR canopy height and density metrics 

and with topographic variables will increase the accuracy of the TSD classification.  

Regarding the GEDI-Landsat data fusion methodology presented in Chapter 3, it is recommended 

that future research be devoted to the improvement of GEOBIA techniques for the generation of forest 

stand maps from the segmentation of optical data, such as Landsat or Sentinel-2, potentially exploring 

their combined use. Furthermore, because of the high sensitivity of the accuracy of the TSD estimation 

to the number of available GEDI footprints, a natural extension of the present research would be the 

use of ICESat-2 data as an additional data source. ICESat-2 is also a waveform LiDAR instrument, and  

while its footprint density is lower than GEDI (Gwenzi et al., 2016; Hancock et al., 2019), their 
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combined use will provide additional forest structure measurements to be used both for training and for 

TSD estimation. Finally, future studies should explicitly investigate the influence of image object size, 

observed TSD and number of footprint observations on the overall accuracy of stand-level TSD 

estimates.  

This thesis demonstrates that GEOBIA techniques on LiDAR data are successful for the 

specific problem of TSD estimation on forest stands: we believe that future research should investigate 

the potential of using a similar methodology for estimating additional forest attributes. For example, a 

similar approach could be used for the explicit assessment of stand-level forest regrowth and 

successional states. Forest regrowth is one of the major drivers of the forest carbon sink, but large 

uncertainties are still due to forest demography, mortality, and growth rates which have a large 

influence on carbon assessment from aboveground biomass (Büntgen et al., 2019; Pugh et al., 2019). 

The integration of both GEOBIA techniques and LiDAR data could be an asset to improve forest 

regrowth modelling and to understand the influence of disturbances on stand development and 

vegetation regeneration, in the same way they that have demonstrated effectiveness to assess TSD. The 

understanding of past stand regrowth patterns at specific ecosystems is required to model vegetation 

development and assess the vulnerability of forest ecosystems under different scenarios of climate 

change and disturbance regimes, which is essential to appraise the role of forests as carbon sinks.   
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