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ABSTRACT 

 

 The generation of acid rock drainage (ARD) continues to significantly impact water resources 

around the globe. Passive treatment systems have been developed as lower-cost remediation 

alternatives to active treatment systems, but seasonality of flow, acidity, and metal concentrations 

present challenges for passive systems. This thesis examines the limitations of current passive 

treatment system options and explores the potential of a manufactured silica fiber functionalized with 

(3-Aminopropyl)triethoxysilane (Si+APTES) and a naturally occurring silicate mineral (clinoptilolite) 

as reactive substrates for passive treatment of ARD. 

 The first chapter is a review of passive treatment options for acid rock drainage. This review 

indicates reduced efficacy due to seasonal periods of increased drainage and metal concentrations that 

lead to mineral precipitation, surface passivation, and flow bypass. In select cases, passive treatment 

systems prematurely failed due to seasonal flux. Complimentary systems are needed to minimize 

impacts from seasonal flux of drainage and metal concentrations to improve treatment efficacy and 

preserve the life of a multi-component system or a downstream primary system. Multi-component 

systems are possible with integration of existing treatment systems and design of new treatment 

options to tailor treatment to site specifications. 

  The second chapter explores Si+APTES and clinoptilolite as potential reactive substrates for 

passive treatment of acid rock drainage. Column permeability experiments with silica fiber and 

loosely packed clinoptilolite indicate greater permeability and stability of the clinoptilolite. Batch 

sorption experiments with bare silica fiber, Si+APTES, and clinoptilolite in an Fe-SO4, pH 3.0 

solution indicate an Fe specific sorption efficacy of Si+APTES > clinoptilolite > bare silica fiber at 

equivalent surface areas. Specific sorption values normalized to possible packing densities indicate 

greater sorption per volume for clinoptilolite. Sorption results for Si+APTES and clinoptilolite did not 

produce isotherms that could be described by the Langmuir or Freundlich models likely because of 

surface heterogeneity and precipitation reactions.  Column sorption experiments under flowing 

conditions indicate an Fe removal efficacy of clinoptilolite > Si+APTES for permeable packing 

densities. Si+APTES demonstrated high specific sorption of Fe in batch sorption experiments and has 

potential use in low-flow, passive treatment of acid rock drainage. The balance of greater 

permeability, stability under flowing conditions, large surface area, microporous structure, and ion-

exchange properties of clinoptilolite make these zeolite grains a better reactive substrate for passive 

treatment of acidic drainage in high- or low-flow conditions. 
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CHAPTER 1: A REVIEW OF ACID ROCK DRAINAGE, SEASONAL FLUX OF 

DISCHARGE AND METAL CONCENTRATIONS, AND PASSIVE TREATMENT 

SYSTEM LIMITATIONS 

 

This is a modified version of an Accepted Manuscript published by Taylor & Francis:  

W.R. Sandlin, J.B. Langman, J.G. Moberly, A review of acid rock drainage, seasonal flux of 

discharge and metal concentrations, and passive treatment system limitations, Int. J. Min. Reclam. 

Env. (2020). pp. 1-14. doi:10.1080/17480930.2020.1728035. 

 

Introduction   

The generation of acid rock drainage (ARD) from the weathering of sulfidic ores and waste 

rock and acidification of resulting drainage continues to significantly impact local and regional water 

resources across the United States and around the globe [1–4]. Abandoned mine sites with degrading 

infrastructure, unregulated mine water build-up, and discharge of ARD are acutely difficult sites for 

remediation. Common methods to address abandoned mine ARD are the reduction of potential 

discharge through mine dewatering (source control) or downstream collection of the ARD for active 

or passive treatment [5,6]. Active and passive treatment systems primarily target acidity reduction and 

associated metal mobility through chemical alteration. Active treatment systems can adjust to 

changing influent conditions; typically require power, equipment, personnel, and maintenance to 

continually treat the drainage; and generally have higher operational costs compared to passive 

methods [3,6]. Passive systems rely on natural physical, chemical, and biological processes to 

passively treat the drainage without regular maintenance, power inputs, and personnel requirements 

and typically have lower costs of installation and operation [6–9]. An ARD passive treatment system 

may be designed for a range of flow rates and metal concentrations, but large pulses of drainage and 

metals may induce higher rates of mineral precipitation and passivation of reactive surfaces, which 

can result in clogging or bypass of the treatment components [2,9–12]. Substantial surface passivation 

and bypass will reduce treatment efficacy (ability to obtain treatment goals) and(or) shorten the life of 

the treatment system [11,13].  

ARD site characteristics, including mineralogy, geomorphology, and biology each influence 

the weathering of sulfide minerals and the transport of oxidation products; but the hydrology of a site 

most directly affects the production of ARD through saturation of the weathering mineral surfaces 
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with oxygenated water and flushing of solutes [14,15]. Design and construction of passive treatment 

systems can be challenging for sites that experience periods of intense or extended rainfall and(or) 

snowmelt due to the associated large seasonal flux (temporal variability) of discharge and metal 

concentrations [2–4,14,16–19]. Strong seasonal differences can make it difficult to estimate 

representative discharges or metal concentrations, leading to incorrect design of the primary treatment 

system [20]. Under or over design of the system can shorten the lifespan or significantly increase 

remediation costs [20].  

The inability of passive treatment systems to adjust to changes in discharge and metal 

concentrations can limit their application in comparison to active treatment systems [6]. Instead of 

directing all effort to design a singular system for passive treatment of ARD, remediation managers 

are examining multi-component or modular systems that can provide complimentary treatment or 

support to a primary passive treatment system [6,20,21]. Flexibility of design, particularly a modular 

design that allows for refreshing of a treatment component during low volume periods, can reduce the 

impact of seasonal flux of discharge and metal concentrations, increase treatment efficacy, extend 

overall system life, decrease costs, and minimize ARD environmental impacts. Following is a review 

of common passive treatment systems and associated weaknesses, which can be overcome with 

integration of existing and new passive treatment systems as complimentary modules for ARD 

remediation. Multi-component passive treatment systems have the potential to improve treatment 

efficacy and sustain predicted life of the treatment system. 

Current passive treatment methods 

The challenge of treating ARD has inspired the development of multiple treatment methods 

divided between active and passive treatment systems [6,9,22,23]. The high cost of active treatment 

systems led to the rise of passive treatment systems to reduce implementation and maintenance costs 

along with manpower requirements to sustain treatment [6,22]. The four primary ARD passive 

treatment systems—permeable reactive barriers, alkalinity-producing systems, phytoremediation, and 

bioremediation—each have strengths and weaknesses for deployment in a variety of terrains and 

environmental conditions, and each system has potential issues in treating the seasonal flux of 

discharge and metal concentrations of ARD.  

Permeable reactive barrier 

Permeable reactive barriers (PRBs) are increasingly popular in ARD remediation because of 

their low cost and low maintenance, but their use is typically limited to sites containing shallow, 

spatially-limited groundwater plumes of ARD [24–27]. PRBs (Figure 1.1) are composed of porous 
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reactive materials buried in a trench that intercept contaminated groundwater and capture or degrade 

the contaminant to an environmentally appropriate form(s) [27–31]. Reactive materials in PRBs vary 

depending on site characteristics including hydraulic gradient, acidity, and metal concentrations [27–

31]. The selected reactive material(s) must be contained within an appropriate trench configuration of 

sufficient volume and length to ensure the necessary residence time for reducing acidity and metal 

concentrations, while maintaining permeability and reactivity [28,29,32,33]. PRBs are designed for 

long-term deployment because of the below ground nature of the treatment system, and a reduction in 

predicted system life can be a substantial cost if exhumation and modification become necessary 

[20,26]. 

 

 

Figure 1.1. Treatment of a contaminant plume by permeable reactive barrier. Courtesy of the EPA [27]. 

 

PRB materials may include one or more reactive mediums, such as a reductant (e.g., zero-

valent iron (ZVI), large surface area materials for sorption and mineral precipitation (e.g., zeolites, 

activated carbon, biochar), alkaline materials to reduce acidity (e.g., limestone),  and organic 

materials (e.g., mulch) to enhance biological activity for sulfate (SO4)-reduction [8,11,27,30,34–37]. 
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PRBs for ARD remediation typically include a mixture of ZVI, organic, and alkaline materials to 

create suitable conditions for bacterially mediated SO4-reduction and precipitation of metal sulfides 

[9,24,28]. Biochar, a substance formed from the pyrolysis of organic material such as agriculture or 

forestry waste, has become increasingly popular as a reactive material in PRBs because of high 

sorption capacity and ability to consume acid [16,38–43]. 

The efficacy of a PRB depends on the reactivity and availability of the materials and 

sustained permeability for sufficient residence time in this below ground system [33,34]. Thorough 

hydrogeologic and geochemical assessments of the contaminated site are necessary prior to the design 

and implementation of a PRB [27,44]. Unanticipated ARD seasonal flux in drainage and metal 

concentrations can result in reduced reactivity (surface passivation), clogging, and flow bypass [32]. 

Use of reactive material with large grain sizes can sustain greater permeability and reduce preferential 

flow but also reduces available reactive surface area [24,28,29]. Smaller grain sizes allow longer 

residence time but are more prone to preferential flow as precipitates clog pore-spaces [24,28,29]. 

Limited plume capture or system bypass can occur if the permeability of the PRB is reduced with 

mineral precipitation and clogging [24,26,32,44]. Balancing permeability, residence time, and 

reactive surface contact is crucial to the efficacy of a PRB [10,11,26,28,29,32,33,44]. 

Alkalinity-producing systems 

Alkalinity-producing systems are passive systems that use calcium oxide (CaO), calcium 

carbonate (CaCO3), sodium carbonate (NaCO3), sodium hydroxide (NaOH), or natural lime 

(calcium-containing inorganic materials of carbonate, hydroxide, and oxide form) to consume acid 

and precipitate metals that were soluble under acidic conditions [6,9,45,46]. Anoxic limestone drains 

(ALDs) and open limestone channels (OLCs) (Figure 1.2) are two of the most prominent alkalinity-

producing systems, along with less popular limestone leach beds (LLBs) and steel slag leach beds 

(SLBs) [9,47]. These systems typically have low installation and maintenance costs, but each require 

specific ARD conditions to ensure high efficacy over the predicted life of the system [9,48]. 
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Figure 1.2. Cross-sectional view of anoxic limestone drain (left) and an open limestone channel (right). 

 

ALDs consist of trenches filled with crushed limestone and downgradient settling ponds for 

retention of precipitating metals [22,49,50]. ALDs typically are covered by clay and(or) a vegetative 

soil cap to retain CO2 and exclude O2 to minimize Fe2+ oxidation and Fe-(oxyhydr)oxide 

precipitation, which would reduce acid neutralization, limit permeability, and shorten the life of the 

treatment system [6,51,52]. Preventing O2 entrance into an ALD allows CO2 to build up within the 

system– neutralizing acid and allowing for greater metal removal in settling ponds when treated ARD 

exits the ALD [6,22]. ALDs are best suited for acidic water with low metal concentrations, hypoxic 

conditions, and limited change in environmental conditions [9,53]. 

OLCs consist of open channels lined with a layer of limestone and include one or more 

settling ponds to collect mineral precipitates [9,45,48,50]. The channel is steeply sloped to increase 

discharge velocity, induce turbulence that scours passivated limestone surfaces, and suspend minerals 

formed with decreases in acidity [9,45,48,50]. If discharge velocity decreases, precipitates can 

passivate limestone surfaces and clog channels [45,48,50,54,55]. Effluent drainage from an OLC is 

directed towards settling ponds where suspended metal forms settle, sorbed to manufactured materials 

(e.g., high surface area plastics [45]), or are retained by plants through phytoremediation [9,33]. 

Typically, OLCs can treat ARD with higher metal and dissolved oxygen concentrations compared to 

ALDs [9].  

Less common forms of alkalinity-producing systems include LLBs and SLBs that have 

limited application in ARD remediation [9,50]. LLBs are open ponds filled with limestone designed 

to allow for long residence time (e.g., a minimum residence time of 12 hours) necessary to reduce 

acidity [22,55]. SLBs have a similar design, but contain steel manufacturing waste with high 



6 

 

 

concentrations of alkalinity-producing minerals such as Ca(OH)2 and (Ca, Fe)-silicates [56,57]. These 

minerals are formed as a by-product of steel manufacturing due to the addition of limestone or 

dolomite to the smelting process to assist in the removal of impurities [57,58]. Like ALDs, LLBs and 

SLBs are designed to interact with ARD containing lower metal concentrations to minimize surface 

passivation [9]. The need for lower metal concentrations substantially restricts the application of these 

passive treatment systems, particularly in areas with large seasonal fluxes of ARD [1,3,4]. 

Phytoremediation 

Phytoremediation is a relatively newer passive treatment system for ARD that utilizes acid- 

and metal-tolerant plants in constructed wetlands (surface ARD) or contaminated soils (surface to 

shallow subsurface ARD) to remove metals through phytoextraction and phytostabilization (Figure 

1.3) [22,59–63]. Phytoextraction involves plants transporting metals from ARD-contaminated soil to 

their shoots (hyper-accumulator plants) where they are stored and eventually harvested for metal 

processing or hazardous waste disposal [22,59]. Phytostabilization utilizes root systems to reduce the 

distribution of a contaminant(s) by inhibiting erosion and adsorbing metals and mineral precipitates to 

root systems and the surrounding soil matrix [22,59,62,63]. Phytoremediation relies on living 

organisms that have specific tolerances to acidity, salinity, and other contaminants; therefore, the use 

of phytoremediation is limited to environments with low metal concentrations that are suitable for 

plant life and tolerance ranges of specific species [59]. 
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Figure 1.3. Phytoremediation of influent ARD (orange) through phytoextraction and phytostabilization. 

 

At least 400 hyper-accumulator plants have been identified, including bulrush (Scirpus 

validus), bunchgrass (Vetiveria zizanioides L), cattail (Typha latifolia), and tickseed sunflower 

(Bidens aristosa) [61,64–66]. Unfortunately, most hyperaccumulator plants grow slowly and cannot 

produce enough biomass to sufficiently remediate metal-contaminated sites or ARD through 

phytoextraction alone [59,66]. Phytoremediation studies indicate that phytostabilization is the more 

effective at reducing metal concentrations in ARD compared to phytoextraction [61,67,68]. 

Karathanasis and Johnson (2003) suggest that plants for phytoremediation should be selected on 

metal tolerance and root system surface area rather than bioaccumulation potential. Phytoremediation 

alone has shown little promise due to the biological and chemical limitations of plants, but the 

incorporation of metal-tolerant plants with other ARD remediation systems to promote 

phytostabilization may assist in treatment system efficacy [61,65,68,69]. 

Bioremediation 

Similar to phytoremediation, bioremediation utilizes living organisms to reduce acidity and 

immobilize metals; however, bioremediation primarily relies on SO4-reducing bacteria (SRBs) for 

precipitation of metal-sulfide minerals [6,9,22,32,70]. Bioremediation is often implemented with 

other forms of passive treatment systems (permeable reactive barriers (PRBs), alkalinity-producing 
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systems, phytoremediation), or functions as a primary passive treatment system in the form of a 

passive bioreactor (Figure 1.4) [6,9,22,59,70]. In a passive bioreactor ARD flows through an organic 

matter matrix, often with a corresponding alkalinity-producing material, to allow for oxidation of 

organic matter, stimulation of SRB, reduction of acidity, and metal-sulfide precipitation [9,32,70] 

(Equation 1.1). 

2CH2O(s) + SO4
2-

(aq) + M2+ ↔ MS(s) + 2H2CO3    (1.1) 

 

 

Figure 1.4. Example configuration of a passive bioreactor. 

 

Organic matter such as compost or manure provides nutrients (N, P, and C) that aid in 

microbial growth to sustain SO4 reduction [9,32,71]. The addition of an alkalinity source, such as 

biochar, mussel shells, limestone, or other calcareous wastes, can reduce acidity and allow for greater 

growth of SRBs, which prefer a more neutral pH environment for optimal sulfate reduction 

[9,22,32,40,41,72,73]. Metal sulfides produced with bioremediation must remain in an anoxic 

environment, or their oxidation would release metals back into solution and may produce acid (e.g., 

Equation 1.2 for an Fe-sulfide) [9]. Bioremediation is often incorporated with other treatment 

methods such as PRBs and certain alkalinity-producing systems (e.g., ALD) to promote SO4 

reduction, acid neutralization, and mineral precipitation in O2-free or O2-limited environments [9]. 
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FeS2 + 
7

2
O2 + H2O ↔ Fe2+ + 2SO4

2− + 2H+    (1.2) 

Passive bioreactors can accept ARD with high acidity and metal concentrations, but such 

conditions can be limited by SRB growth [9]. If SRB growth and activity are limited, the efficacy of a 

bioreactor will be limited and may require a large-scale system where ARD is substantive [9]. High 

efficacy bioreactors require a neutral, reducing environment with a continuous supply of nutrients and 

SO4, as well as an available internal matrix for microbial and metal sorption [22]. These systems need 

regular refreshment of organic matter and drainage of by-product sludge, which can require active 

maintenance and(or) limit the predicted life of a purely passive system [9,22]. Furthermore, seasonal 

flux of discharges and metal concentrations can inhibit SRB growth by introducing oxygen into 

anoxic zones and increasing metal or acid concentrations, which may destabilize the microbial 

community and limit the efficacy of bioremediation [2,10–12,55]. 

Common problems associated with passive treatment systems 

The physical, chemical, and biological processes that determine the performance of a passive 

treatment system are affected by parameters such as acidity, temperature, metal concentrations, and 

dissolved oxygen [23,29,70,74–77]. Seasonal fluxes in these parameters can result in reduced 

treatment efficacy, commonly due to the passivation of reactive surfaces or system clogging and 

bypass [2,9–12]. Additionally, periods of elevated metal, acid, and(or) dissolved oxygen 

concentrations can disrupt SRB processes crucial to bioremediation [70]. Designing a functional, 

long-term passive treatment system can be difficult due to the range of parameters that must be 

considered and the variation of the parameters that a site may experience [23,24,78]. 

Sorption, mineral precipitation, and surface passivation 

Metal sorption and(or) mineral precipitation within a treatment system will reduce surface 

reactivity and ultimately determine the life of the system [9,20,44,48,54,79,80]. Acid neutralization 

from the sorption of protons (H+) to reactive surfaces and the cell walls of microorganisms can also 

passivate reactive surfaces (protonation), reducing treatment efficacy within a passive treatment 

system [70]. Sorbed elements/compounds and precipitates can occur in various forms depending on 

acidity and reduction-oxidation (redox) conditions that influence metal form/species and solubility 

[50,54,80,81]. As sorbed metals and mineral precipitates reduce reactive surface availability (Figure 

1.5), treatment efficacy is reduced unless additional reactive surface is available in the transport 

pathways [79,80]. In addition to protonating reactive surfaces, periods of elevated acidity can induce 

the desorption of previously sorbed elements/compounds by proton exchange [70]. The predicted life 
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of a passive treatment system is based on the exhaustion of all available reactive surfaces, but system 

life can be difficult to estimate because of seasonal flux of discharge and metal concentrations [9,44]. 

Substantial changes in ARD characteristics may induce quicker surface passivation and substantially 

reduce the life of the treatment system [9,44,48]. 

 

 

Figure 1.5. Sorption of metal ions on a sorbing surface over time (left to right). The sorbing surface is initially 

unsaturated; but with time, surface sites are occupied and additional metals either exchange with sorbed metals 

(no net concentration change) or bypass the sorbing surface. 

 

Precipitation, clogging, and bypass 

The accumulation of precipitates or microbial biomass in a passive treatment system has the 

potential to reduce permeability, clog and alter flowpaths, and reduce residence time (Figure 1.6), 

which can substantially reduce treatment efficacy [11,20,29,32,81–83]. Bypass is especially 

problematic in systems such as permeable reactive barriers (PRBs) or anoxic limestone drains (ALDs) 

where flow is confined and permeability must be sustained to allow for the necessary residence times 

required for the desired reactions to occur [9,13,29]. Alteration of permeability and development of 

preferential flowpaths will reduce residence time and lead to further precipitation and surface 

passivation in the available flowpaths; thereby, initiating a process that can cut off parts of the 

treatment system from the influent and substantially reduce treatment efficacy [13]. Seasonal flux of 
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discharge and metal concentrations can increase the rate and severity of this potential problem if the 

treatment system is not designed to accommodate changes in ARD characteristics [9,10,12,13]. 

 

 

Figure 1.6. Accumulation of precipitates on reactive materials resulting in preferential flow paths and decreased 

contact times. Vparticle = particle velocity; τresidence = residence time. 

 

Design considerations  

The most difficult problem with passive treatment systems is designing and constructing a 

functioning, lasting system based on an array of physical, hydrological, geochemical, and biological 

parameters that can be difficult to estimate and(or) maintain [20,23,24,78,84]. Seasonal ARD flux can 
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induce changes in these parameters; thereby, influencing treatment efficacy, system life, and may 

require unexpected construction modifications, or reconstruction [2,20,83,84]. The following case 

studies examine passive treatment systems that experienced seasonal flux of ARD and how their 

design may have resulted in unsuccessful or successful long-term remediation.   

Case study 1: Multi-module permeable reactive barrier 

In Aznalcóllar, Spain a PRB was installed to remediate ARD that had impacted the Agrio 

aquifer. Groundwater had an average pH of 3.4 and high concentrations of SO4, Zn, Al, and Cu 

[32,85]. The PRB consisted of three lateral modules filled with various ratios of calcite, vegetable 

compost, sewage sludge, and zero-valent iron (ZVI) [32,85]. The calcite was included to raise pH and 

induce metal-(oxy)hydroxide and metal-carbonate precipitation, while organic material and ZVI were 

included to promote SRB activity and metal-sulfide precipitation [32,85]. Results from downgradient 

monitoring wells indicated that metal concentrations substantially declined, but SO4 concentrations 

were minimally affected [32,85]. It was concluded that metal removal was occurring through 

(oxy)hydroxide and carbonate precipitation rather than sulfide generation, which potentially 

contributed to clogging, preferential flow, and bypass of the SRB module [32,85]. Additionally, the 

PRB system did not fully capture the ARD-impacted groundwater because of under-estimation of 

ARD flux and contribution to the aquifer [32,85]. The capture issue was magnified during extended 

periods of heavy rainfall that substantially increased the input of ARD to the aquifer, which expanded 

the plume beyond the entrance of the PRB [32,85]. 

Case study 2: Bioremediation + phytoremediation 

A passive treatment system consisting of a settling pond and a vegetated bioreactor was 

installed near Benhar Bing in Glasgow, U.K. to remediate ARD with an average pH of 2.6 and high 

concentrations of SO4, Fe, Al, Mg, and Mn [86]. Influent was collected in the settling pond and 

routed to a bioreactor filled with limestone, mushroom compost, and planted Typhia latifolia (cattail) 

[86]. The treatment goal was to induce mineral precipitation and SO4-reduction through SRB and 

phytostabilizing processes [86]. Evaluation of post-treatment effluent and sediment cores from 6 

months of monitoring indicated that SRB activity and limestone dissolution were the primary 

contributors to contaminant removal, however removal rates for all contaminants did not exceed 30% 

[86]. The majority of cattail did not survive the low pH influent, and the treatment efficacy of the 

bioreactor was reduced over time for multiple reasons [86]. Metal ions and mineral precipitates were 

sorbed by reactive material surfaces within the bioreactor, decreasing the amount of surface area 

available for the desired reactions to occur [86]. Mineral precipitates clogged pore-spaces, creating 
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preferential flow and decreasing residence time [86]. Additionally, the majority of sulfide produced 

by SRB activity was thought to be re-oxidised, resulting in little reduction in SO4 concentrations [86].  

Case study 3: Alkalinity-producing + bioremediation 

A passive treatment system in McCreary County, Kentucky, USA, consisting of two 

consecutive bioreactors, was reconstructed after failing to remediate ARD with a pH range of 2.7 to 

4.4 and highly variable SO4, Al, Fe, and Mn concentrations [87]. In order to improve treatment 

efficacy, the reconstruction incorporated a multi-module, complimentary passive treatment system 

design, including alkalinity-producing and bioremediating systems [87]. Influent ARD was collected 

in an anaerobic pond prior to being routed to an ALD [87]. From the ALD, effluent was directed 

through five duplicate passive treatment modules, each consisting of a bioreactor and an aerobic 

settling pond [87]. Evaluation of post-treatment effluent indicated that the combination of anaerobic 

pond, ALD and repetitive bioreactor/settling pond modules inhibited the surface passivation of ALDs 

and bioreactors, allowing for substantial reduction in acid, SO4, and metal concentrations over the 14 

months of monitoring [87]. 

Conclusions 

Acid rock drainage (ARD) passive treatment systems can successfully reduce acidity and 

metal concentrations, but the seasonal flux of ARD can reduce treatment efficacy and(or) reduce 

system life. Periods of intense precipitation an(or) snowmelt runoff can vary ARD conditions beyond 

the original design criteria of the passive treatment system. Modification or replacement of 

improperly designed passive treatment systems can add substantial cost to the remediation project. 

Permeable reactive barriers, alkalinity-producing systems, phytoremediation, and bioremediation each 

have potential to reduce the environmental impacts of ARD, but the physical, chemical, and 

biological processes that determine treatment efficacy for these systems can be affected by seasonal 

ARD flux and associated problems such as surface passivation and flow bypass. Design integration of 

complimentary passive treatment types for a multi-component treatment system has shown greater 

success in remediating ARD compared to individual systems.  

If there is potential that the seasonal flux of ARD will impact treatment efficacy and(or) 

system life of a single type of passive treatment, design of a passive treatment system should focus on 

integrating complimentary passive treatment types into a multi-component system. In cases of highly 

variable ARD conditions, multiple treatment types can be integrated to sustain treatment efficacy, 

either seasonally or continuously, to reduce the burden on one individual system and reduce impacts 

to the life of the system. Complimentary systems that can assist in reducing acid, metal, dissolved 
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oxygen, and SO4 concentrations and variable discharge rates can be spatially integrated with distinct 

or modular systems in relatively small footprints. A modular design for individual systems would 

allow additional modules to be incorporated as needed and can provide additional flexibility to assist 

with construction/deployment as mine drainage evolves. Multi-component passive treatment systems 

with modular flexibility would be the ideal design to allow for adjustments with seasonal or annual 

ARD flux to ensure desired drainage conditions and residence time for treatment targets and sustained 

life of the system.  
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CHAPTER 2: COMPARISON OF APTES-FUNCTIONALIZED SILICA FIBER AND 

CLINOPTILOLITE FOR REMEDIATION OF ACID ROCK DRAINAGE 

 

Submitted to Mine Water and the Environment 

 

Introduction 

The generation of acid rock drainage (ARD) from weathering of sulfidic ore and waste rock 

continues to significantly impact local and regional water resources (Figure 2.1) across the United 

States and around the globe [1–3]. In particular, abandoned mining sites with degrading 

infrastructure and uncontrolled entrance of water and oxygen impact water resources in areas that are 

difficult for reduction or treatment of mine drainage [4]. In an attempt to treat abandoned mine 

drainage and other sources of poor-quality drainage, passive treatment systems were developed to 

reduce contaminant concentrations, minimize health risks, and lower treatment costs [4]. Such 

systems have shown mixed results with treating ARD because of proton (H+) competition, seasonal 

flux differences, and variable metal concentrations [5–7], which indicate the need for evaluating 

additional passive treatment systems and reactive substrates for ARD remediation.  
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Figure 2.1. Example of acid rock drainage from Stockett, Montana, in the Great Falls Coal Field. 

 

 Quality of mine drainage typically is proportional to the acidity of the drainage,[8,9] which 

is driven by the oxidation of iron-sulfide minerals and subsequent release and mobility of iron [Fe] 

and other metals [10–14]. Passive treatment of poor-quality mine drainage includes biological, 

geochemical, and physical processes to improve water quality by reducing acidity and metal 

concentrations [15]. Inorganic substrates such as calcite, or organic substrates such as organic waste 

(e.g. mulch), induce metal capture through sorption and(or) changes in acidity and(or) reduction-

oxidation potential that induce mineral precipitation [15,16]. Metal capture on inorganic substrates 

can be viewed as the combination of ligand availability and sorption and(or) precipitation to hydrous 

oxide surfaces [17–19]. Sorption typically occurs through electrostatic interaction between metals in 

solution and a negatively charged surface (commonly the oxide of another metal), which can be 

influenced by surface site availability, sorption of neighboring sites, and cation competition [19]. 
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Metal capture by sorption on silicate substrates, such as zeolites and clays, is common for 

treatment of waste water [20–22], but silicate options have not typically been used for ARD 

treatment because of their limited point of zero charge (pHpzc). The presence of competing protons 

influences the sorption of metals [18,23] through neutralization of the residual negative surface 

charge (surface protonation) of reactive materials [24]. Artificial and natural silicate substrates such 

as silica glass and zeolite minerals, tend to have a pHpzc near 3.0 [25,26], which make such substrates 

applicable to ARD treatment for weak (>4.5) to mildly (>3.0) acidic solutions. 

For this study, a manufactured silicate material (fused silica fiber) functionalized with 

chelator, (3-aminopropyl)triethoxysilane (Si+APTES) and a natural silicate substrate (clinoptilolite 

[(Na,K,Ca)₂₋₃Al₃(Al,Si)₂Si₁₃O₃₆·12H₂O]) were evaluated at the benchtop scale for potential use in a 

high-flow ARD passive treatment system. Bare silica fiber was used for comparison as a similar pHpzc 

without the presence of a chelator. The goal of the study was to determine the potential applicability 

of these low cost, readily available, and easily prepared substrates for capturing Fe under mildly 

acidic conditions. 

Materials and methods 

The selected silica (Si) fiber (Technical Glass Products, Inc., Painesville, Ohio) is a 

noncrystalline quartz (fused glass) consisting of a wool spun from 5 µm to 15 µm in diameter (Figure 

2.2). Specific surface area of the Si fiber (assumed 10 µm diameter) was calculated from a density of 

0.016 g/cm, a specific volume of 0.45 cm3/g, a total length (continuous height (h) (Equation 2.1)) of 

the fiber in the specific volume equal to 5,787 m/g, which produces a specific surface area (A) of 18 

m2/g (Equation 2.2): 

ℎ =
𝑉

𝜋𝑟2         (2.1) 

𝐴 = 2𝜋𝑟ℎ + 2𝜋𝑟2        (2.2) 

The Si fiber was factory coated on both sides with a starch binder (4-5% by weight) for ease 

of handling (Figure 2.2). The weaving of the fiber (wool-like product) provides torsion and bending 

resistance in a flexible wool that may be manipulated (e.g., rolled, packed) to provide structural 

resistance to the flow of water.  
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Figure 2.2. Silica fiber spun into a felt; starch coating on top and bottom. 

 

Clinoptilolite (zeolite mineral [hydrated (Na,K,Ca)2-6AlxSiyOz]) are micro-porous 

aluminosilicate grains derived from volcanic activity but also are synthetically produced [22,27]. 

Zeolites have the capacity to capture metals through sorption as well as cation exchange and are 

commonly referred to as “molecular sieves” because of their micropore structure [22,28–31]. For 

this study, clinoptilolite grains of 2.4 to 4.8 mm in diameter (4 × 8 mesh) were obtained from KMI 

Zeolite, Inc. in Nevada (Figure 2.3). Specific surface area of the clinoptilolite was determined by the 

manufacturer to be 40 m2/g. This type of zeolite typically has a 10- and 8-ring (framework element) 

micropore structure, which is considered a larger ring (micropore) size in the zeolite mineral family 

[32]. Prior to experimental use, clinoptilolite grains were triple-rinsed with reverse-osmosis filtered 

water (ultrapure water) and dried at 80 ºC to remove clinoptilolite dust generated during mining and 

handling.  
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Figure 2.3. Clinoptilolite grains, 2.4 to 4.8 mm diameter (4×8 mesh). 

 

Substrate permeability  

The permeability of bare Si fiber and the 4 × 8 mesh clinoptilolite were compared through 

permeability experiments using 5-cm diameter, PVC columns. Permeability experiments were 

conducted by filling 40-cm (L) columns with either a rolled Si fiber or loosely packed clinoptilolite. 

Bare Si fiber was tightly rolled and inserted into the column perpendicular to the rolling direction. 

This configuration allows structural resistance against collapse under the experimental flow 
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conditions. Si fiber packing densities of 0.073, 0.037, and 0.018 g/cm3 were tested in this 

configuration.  

Clinoptilolite was poured into the column until grains were freely settled, which produced a 

packing density of 0.73 g/cm3. Hydrostatic pressure directed water from a 57 L container, through the 

40-cm column and into a collection container (Figure 2.4) where the effluent flow rate was measured. 

Flow rates were measured after 1 min to allow for full saturation and settling of each substrate. A 

constant head of 34 L (0.3 m depth) was maintained throughout the experiment with a peristaltic 

pump that recirculated water from the lower to upper tank. Methylene blue was added as a tracer to 

the Si fiber permeability experiments for observing possible preferential flow or bypass within the 

various packing densities. 



27 

 

 

 

Figure 2.4. Laboratory setup for permeability column experiments. 
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Si fiber functionalization 

The selected Si fiber represents a synthetic silicate surface that can readily be functionalized 

with a chelator through a known silanization process where ethoxy groups hydrolyze and form 

covalent Si-O-Si bonds with the fiber surface [33]. Branched polyethylenimine 

[H(NHCH2CH2)nNH2] (PEI) and (3-Aminopropyl)triethoxysilane [C9H23NO3Si] (APTES) were 

considered for potential use as chelators that could be easily applied to the Si fiber. Preliminary tests 

indicated greater ease of use (lower viscosity) and superior surface coverage with APTES, which was 

selected for surface functionalization of the Si fiber for all sorption experiments. The amine 

functional groups on APTES have proven effective for metal chelation/capture in a variety of 

solutions [34–36]. APTES was applied to the Si fiber per methods developed by Acres et al. (2012) 

and Liu et al. (2013) [33,37]. The desired amount of Si fiber was submerged in a 2% APTES (98% 

EtOH) solution for 20 min while agitated on an orbital shaker. Following submergence and agitation, 

the Si+APTES was removed and repeatedly rinsed with 100% EtOH and ultrapure water. Rinsed 

Si+APTES were dried in an oven at 80 ºC for 15 hours. Si surfaces were not treated with an oxidizer, 

such as piranha solution (mixture of H2SO4 and H2O2), prior to functionalization [37,38] because 

such a step would have removed the starch coating that is crucial to its structural integrity for ease of 

handling and packing.  

Preparation of acidic Fe2+ stock solutions 

Acidic Fe2+ solutions were prepared for sorption experiments at Fe concentrations of 25 to 

1,000 mg/L by dissolving an appropriate mass of ferrous-sulfate heptahydrate [FeSO4·7H2O] in 

ultrapure water. Sulfuric acid [H2SO4] was added to solutions until an initial pH of 3.0 was obtained 

and stable while solutions were mixed on an orbital shaker at 100 rpm for 30 minutes. 

Batch sorption experiments 

Batch sorption experiments were conducted on equivalent surface areas (216 m2) of each 

substrate by inserting 12 g of Si, 12 g of Si+APTES, and 5.4 g of clinoptilolite within polyester mesh 

bags (three replicates) and suspending them in acidic Fe2+ solutions [25, 50, 75, 100 mg/L] at 25 ºC. 

Solutions were continuously agitated on an orbital shaker at 100 rpm, and a pH of 3.00 ± 0.10 was 

maintained throughout each experiment by introduction of H2SO4 (monitored by pH probe). The 

substrates were suspended in the acidic Fe2+ solutions in 1-L beakers and agitated on a shaker table 

for 4 to 6 hr until sorption equilibrium occurred (stabilization of solution Fe concentration). Fe 

concentrations were measured with a Hach 3900 spectrophotometer and FerroVer reagent. Quality 

control and accuracy checks were performed over the course of the experiments with instrument 
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blanks, replicate samples, and calibration standards. No false positive results were indicated, and 

replicate results were within acceptable range (±10%) for Fe concentration. Specific sorption values 

(q; mg/g) were calculated for batch and column sorption experiments: 

q = 
𝐶𝑖−𝐶𝑓

𝑀
         (2.3) 

where Ci and Cf are initial and final concentrations of Fe (mg/L), respectively, and M is 

substrate mass (mg/L). 

Adsorption isotherms 

Specific sorption values for each substrate were compared to Langmuir and Freundlich 

isotherm models to evaluate possible sorption characteristics. The Langmuir isotherm model assumes 

a homogeneous surface with a finite number of monolayer sorption sites [39]:  

qe = qmax 
𝐾𝐿𝐶𝑒

1+𝐾𝐿𝐶𝑒
         (2.4) 

where qe is amount adsorbed (mg/g) at an equilibrium concentration Ce (mg/L), qmax is maximum 

monolayer adsorption (mg/g), and KL is the Langmuir constant related to free energy of adsorption 

[28].  

 The Freundlich isotherm model assumes a heterogeneous surface where adsorption can occur 

in multiple layers [28,40,41].  

qe = KfCe
1/n         (2.5) 

where Kf is the Freundlich constant related to maximum adsorption capacity (mg/g) and n is a 

constant related to adsorption intensity [28,42]. 

Small-scale column experiments 

Small-scale column experiments were conducted by inserting 15 g of Si+APTES or 150 g of 

clinoptilolite (packing densities of 0.073 and 0.73 g/cm3, respectively) within a PVC column of 5-cm 

diameter × 10-cm length (Figure 2.5). Si+APTES was tightly rolled into a cylinder form prior to 

insertion into the column to provide sufficient structural integrity during wetting, and maximizing 

surface area availability. A peristaltic pump directed acidic Fe2+ solution (1,000 mg/L) to the bottom 

of the flow column, through the permeable substrates, out the top of the column, and into a waste 

container at a rate of 25 mL/min and 12 mL/min for Si+APTES and clinoptilolite, respectively 

(slowest possible rate given resistance to flow). Effluent solution was collected at 0, 7.5, 15, 30, 60, 
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90, 120, 150, 180, 240, 300, and 360 minutes. Fe concentration was measured with a Hach DR3900 

spectrophotometer until sorption site exhaustion of each substrate (effluent Fe concentration equal to 

influent concentration). Three replicate experiments were conducted in sequential order for each 

substrate. Following each experiment, the experimental apparatus was cleaned in a 15% HNO3 bath 

and rinsed with ultrapure water.  

 

 

Figure 2.5. Example of small-scale column experiment. 
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In both small- and large-scale column experiments the concentration of removed Fe was 

found by subtracting effluent Fe concentration from influent Fe concentration. The area under the 

breakthrough curve attained by integrating the removed concentration (Crem; mg/L) versus time (min) 

plot can be used to find the total Fe removed (Rtotal; mg) in the column for a given pumping rate (Q) 

(Equation 2.6) [43].  

𝑅𝑡𝑜𝑡𝑎𝑙 =
𝑄

1000
∫ 𝐶𝑟𝑒𝑚 𝑑𝑡

𝑡=𝑡𝑡𝑜𝑡𝑎𝑙

𝑡=0
      (2.6) 

Large-scale column experiments 

Large-scale column experiments were conducted by inserting 600 g of clinoptilolite (0.73 

g/cm3 packing density) within a PVC column of 5-cm diameter × 40-cm length (Figure 2.6). A 

peristaltic pump directed acidic Fe2+ solution (1,000 mg/L) to the bottom of the flow column, through 

the permeable substrates, out the top of the column, and into a waste container at a rate of 12 mL/min. 

Effluent solution was collected at 0, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 

74, 80, 86, 92, 98, and 104 hr. Total Fe concentration was measured with a Hach DR3900 

spectrophotometer until surface site exhaustion (influent concentration = effluent concentration). 

Large-scale column experiments were conducted sequentially in triplicate. 
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Figure 2.6. Example of large-scale column experiment. 

 

Clinoptilolite surface analysis 

Pre- and post-experiment clinoptilolite surface morphology and Fe distribution were analyzed 

using a scanning electron microscope (Zeiss SUPRA 35 SEM) equipped with energy dispersive x-ray 
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spectroscopy (Noran System Six EDS) at the University of Idaho Electron Microscopy Center. 

Samples were carbon-coated prior to analysis. Clinoptilolite surfaces were imaged for an evaluation 

of potential changes in surface morphology pre- and post-experiment and distribution of captured Fe 

across the grain surface. 

Results and discussion 

Permeability comparison 

Permeability results indicate that clinoptilolite at a 4 × 8 mesh grain size has a greater 

permeability that Si fiber at all packing densities tested. Measured flow rates through Si fiber at 

packing densities of 0.073, 0.037, and 0.018 g/cm3 were 0.06, 0.08, and 0.14 L/s, respectively. 

Results indicate that flow rate increased at lower packing densities; however, methylene blue dye 

tracers revealed that preferential flow was occurring within the column at packing densities of 0.037 

and 0.018 g/cm3. Si fiber at a packing density of 0.073 g/cm3 resulted in a supportable and permeable 

packing arrangement that did not induce flow bypass. In all cases, Si fiber retained water in void 

space, restricting permeability. 

Clinoptilolite grains were slightly compacted after saturation, but permeability remained at 

0.20 L/s for the duration of the experiment. This flow rate is nearly three times the flow rate allowed 

by Si fiber at 0.073 g/cm3. From the permeability results, packing densities of 0.073 g/cm3 for Si fiber 

and Si+APTES, and 0.73 g/cm3 for clinoptilolite were selected for use in batch sorption calculations 

and column experiments. 

Batch sorption comparison and adsorption isotherms 

Specific sorption of Fe2+ by bare Si fiber was minimal for all Fe concentrations; therefore, 

further experimentation with bare Si fiber was abandoned. Sorption of Fe on Si+APTES and 

clinoptilolite increased as Fe concentration increased (Figure 2.7). Specific sorption of Fe2+ at all 

concentrations was greater for Si+APTES compared to clinoptilolite (Figure 2.7). Specific sorption 

values are not indicative of how the substrates would perform in a passive treatment system because a 

greater mass (and surface area) of clinoptilolite could be packed into a similar volume and retain 

permeability compared to Si+APTES. For this reason, specific sorption values were multiplied by 

packing densities of 0.073 and 0.73 g/cm3 for Si+APTES and clinoptilolite, respectively (Figure 2.8). 

Results indicate that a greater amount of Fe2+ was sorbed per volume (mg/cm3) for clinoptilolite 

compared to Si+APTES (Figure 2.8). 
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Figure 2.7. Equivalent surface area adsorption equilibria of Fe2+ on Si+APTES and clinoptilolite at pH of 3.0 

and Fe concentrations of 25, 50, 75, 100 mg/L with associated Langmuir and Freundlich isotherm curves. 

 

 

Figure 2.8. Packing density normalized adsorption equilibria of Fe2+ on Si+APTES and clinoptilolite at pH of 

3.0 and Fe concentrations of 25, 50, 75, 100 mg/L with associated Langmuir and Freundlich isotherm curves. 
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Neither the Langmuir or Freundlich isotherms were representative of the specific sorption 

results for Si+APTES and clinoptilolite. R2 values calculated for the Langmuir isotherm were 0.545 

and 0.544 for Si+APTES and clinoptilolite, respectively (Table 2.1). The chelating functional group 

of Si+APTES and the microporous structure of clinoptilolite create heterogeneous surfaces, and 

sorption likely is not occurring in a monolayer as predicted by the Langmuir model. R2 values 

calculated for the Freundlich isotherm were 0.541 and 0.632 for Si+APTES and clinoptilolite, 

respectively (Table 1). The Freundlich model does not represent metal capture by Si+APTES because 

Fe removal is occurring by sorption and chelation rather than just adsorption. The Freundlich model 

is a better fit for clinoptilolite because the model assumes a heterogeneous surface where multilayer 

sorption can occur, which is an applicable assumption for the variable topography of a clinoptilolite 

surface. Overall, neither model is appropriate to fully describe metal removal by Si+APTES or 

clinoptilolite surfaces, which also may be a result of Fe precipitation processes in addition to sorption. 

All post-experiment Si+APTES and clinoptilolite surfaces indicated a color change (Figure 2.9) 

suggestive of Fe-(oxyhydr)oxide precipitation as a result of capture and interaction with the substrate 

surfaces. 

 

Table 2.1. Parameter estimates for Langmuir and Freundlich isotherm models for experimental results of Fe2+ 

adsorption on Si+APTES and clinoptilolite at a solution pH of 3.0. 

Model type Si+APTES Clinoptilolite 

Langmuir isotherm 

Kl
a (L/mg) 

qmax
b (mg/g) 

R2 c 

 

0.024 ± 0.028 

9.225 ± 6.164 

0.545 

 

0.061 ± 0.027 

1.936 ± 0.214 

0.544 

Freundlich isotherm 

Kf 
d

 (mg/g) 

n
e
 

R2 

 

0.436 ± 0.356 

1.564 ± 0.590 

0.541 

 

0.436 ± 0.135 

3.337 ± 0.849 

0.632 

aKL= Langmuir constant related to free energy of adsorption. bqmax = maximum monolayer adsorption. cR2 = coefficient of 

determination. dKf = Freundlich constant related to maximum adsorption. en = constant related to sorption intensity. 
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Figure 2.9. (Left to right) 12 g of Si, 12 g of Si+APTES, and 5.4 g of clinoptilolite before (top row) and after 

(bottom row) batch sorption experiments. Orange color is due to sorbed/precipitated iron-(oxyhydr)oxides. 

 

Column experiments 

Results from small-scale column experiments with 150 g of clinoptilolite (6,000 m2 surface 

area), 15 g of Si + APTES (270 m2 surface area), and 1,000 mg/L Fe solutions indicate greater Fe 

removal by clinoptilolite, with sorption site exhaustion occurring at approximately 60 minutes for 

Si+APTES and 360 minutes for clinoptilolite (Figure 2.10). Values for total Fe removal (Rtotal) were 

normalized by substrate mass and surface area, indicating equivalent Fe removal per g (RM; mg/g) for 
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both substrates, and a greater Fe removal per m2 of surface area (RSA) for Si+APTES (Table 2.2). For 

both substrates, Fe-(oxyhydr)oxide precipitation occurred because of unidentified acid-neutralizing 

processes, resulting in rapid increases in effluent pH from 3.0 to 6.3 for Si+APTES and 3.0 to 5.9 for 

clinoptilolite (Figure 2.11). As small-scale column experiments continued, effluent pH gradually 

decreased to 3.0 for Si+APTES and 3.4 for clinoptilolite after 360 minutes (Figure 2.11). 

 

 

Figure 2.10. Sorption of Fe2+ to Si+APTES (left) and clinoptilolite (right) in small-scale column experiments. 
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Figure 2.11. pH change over the course of small-scale column experiments. Initial pH of solution was 3.0 ± 0.1. 

 

Given greater permeability and greater normalized Fe removal for clinoptilolite, large-scale 

column experiments were used to evaluate potential changes in Fe removal with an increase in 

flowpath length through the same loosely packed, clinoptilolite grain structure. Results indicate that 

quadrupling the amount of clinoptilolite from small to large column experiments increased time to 

exhaustion by a factor of 17 (Figure 2.12). Normalized Rtotal values indicate that the longer flowpath 

length of the large-scale column experiments increased Fe removal by nearly 50 mg/g and 1.5 mg/m2 

(Table 2.2). Initial column effluent increased in pH from 3.0 to 7.0, resulting in Fe-(oxyhydr)oxide 

precipitation, followed by a gradual decrease of pH to 3.7 by the end of the experiments (Figure 

2.12). 
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Table 2.2. Results from large- and small-scale column experiments. 

Substrate Mass (g) SAa (m2) Rtotal
b
 (mg) RM

c (mg/g) RSA
d (mg/m2) 

Small-scale column      

Si+APTES 15 270 137 9.1 0.5 

Clinoptilolite 150 6,000 1,364 9.1 0.2 

Large-scale column      

Clinoptilolite 600 24,000 40,302 67.2 1.7 

aSA = square meters of surface area.  bRtotal = total milligrams of iron removed.  cRM = milligrams of iron removed per g of 

substrate. dRSA = milligrams of iron removed per square meter of substrate surface area. 

 

 

 

Figure 2.12. Change in Fe2+ concentration and pH during large-scale column experiments. Initial pH of solution 

was 3.0 ± 0.1. 
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Column experimental trend comparison 

In both small- and large-scale column experiments, Fe removal was initially high and 

decreased exponentially, followed by a linear trend in surface passivation with continual Fe removal 

(Figures 2.10 and 2.12). The large removal of Fe from solution during the initial period of the small- 

and large-scale column experiments likely is a result of the corresponding change in pH, which 

decreased Fe solubility and resulted in precipitation of Fe-(oxyhydr)oxides [44]. Subsequently, these 

Fe-(oxyhydr)oxides potentially provided additional surfaces for Fe sorption to occur [45]. The 

ensuing period of a gradual increase in Fe concentration in solution and decrease in pH likely is 

reflective of the decrease in sorption sites as the surface and pores become saturated with sorbed and 

precipitated Fe (Figures 2.10 and 2.12) [46]. Fe removal did not scale according to an increase in 

mass or surface area between small- and large-scale column experiments (Table 2.2). Fe removal by 

clinoptilolite increased substantially on a normalized comparison from small- to large-scale column 

experiments as a result of longer flowpaths and greater interaction with clinoptilolite (Table 2.2).  

SEM analysis 

The irregular surface topography and its microporous structures result in large surface areas 

available for sorption of ions [22]. A post-experiment evaluation of Fe distribution on the surface of 

clinoptilolite indicates a diffuse capture of Fe across the clinoptilolite surface (Figure 2.13). There 

were concentrated areas of Fe capture but no obvious patterns of Fe distribution across the 

grain surface that indicate greater capture on any topographic area or large accumulations 

suggestive of primary areas of mineral precipitation and growth. The entire clinoptilolite 

surface of the grains appear to have been available for metal removal through sorption and 

precipitation. 
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Figure 2.13. (Top row) SEM image of pre-experiment clinoptilolite surface at 137× magnification with 

corresponding EDS spectral map of Fe. (Bottom row) SEM image of post-experiment clinoptilolite surface at 

380× magnification with corresponding EDS spectral map of Fe. Kα peak was used for element identification. 

 

Substrate selection 

Si+APTES demonstrated high specific sorption of Fe in batch sorption experiments and has 

potential use in low-flow ARD passive treatment systems. The balance of greater packing stability 

and permeability, large surface area, microporous structure, and ion-exchange properties of 

clinoptilolite make these natural zeolite grains a better reactive substrate for passive treatment of 

acidic drainage in high- or low-flow conditions. Furthermore, surface preparation is minimal for 

clinoptilolite and as a readily available substrate, it can easily be incorporated into construction of 

passive treatment systems. 
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also be found at the following link: https://www.osmre.gov/programs/tdt/appliedscience/projects.shtm 

 

 


