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Abstract

Air-Core Reactors are employed in shunt configurations to maintain the line voltage within limits.
The reactors consume VARs under lightly loaded conditions, countering the shunt capacitance of
transmission lines. Turn-to-Turn faults are commonly observed in the high-side of the reactor wind-
ings, and are attributed to the degradation of insulation caused by transients from switching or surge
conditions. The fault behavior in these air-core reactors is often observed, but not fully understood.
This document is presented as a summary of work developing methods to evaluate the behavior of
air-core reactors due to inter-turn shorts. Modeling tools developed for the analysis of turn-to-turn
faults, and examples of use are provided, with examples of faults in reactors similar to those used in
high-voltage shunt applications.
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Preliminary

Terminology Overview

There are a number of elements of an Air-Core Reactor discussed throughout this document. To
reduce the chances of confusion while reading, the following are reactor terminology definitions for
your reference.

• Loop: A loop is a single turn of a conductor at a specified radius (normally rloop).

Figure 1: A Loop, with the schematic representation to the right

• Layer: A set of N turns connected in series, with the same radius rloop 1 = rloop 2 = ... = rloop N .

Figure 2: A Layer, with the schematic representation to the right



xii
• Package: A contiguous set of parallel layers, usually encapsulated with an epoxy resin.

Figure 3: A Package, with the schematic representation to the right

• Reactor: When referred to as a element of a circuit is a set of packages connected in parallel
which are separated by cooling ducts.

Figure 4: A Reactor, represented as a schematic.

• Phase: A series of reactors, usually with two or more stacked coaxially.

Figure 5: A Phase, represented as a schematic.

Notation

Lowercase variables, i.e. a, b, etc., represent scalars, or individual parameters. Specific parameters
are given as uppercase, such as Impedance Z or Current I. Vectors are given with a arrow above
the variable, so a current vector would be: I⃗. Matrices have a bar above the variable, for example an
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impedance matrix: Z̄. Units are given within square brackets to distinguish from variables, for example
meters ⇒ [m]. In this document the complex variable is j = √

−1.

List of Symbols and Units

Symbol units description
ρ Ohm-meters, Ω·m2

m Resistivity, usually assumed to be Aluminum 2.65× 10−7Ω ·m

ψ Webers,Wb Flux
Z, Z̄ Ohms, Ω Impedance
X Ohms, Ω Reactance
Y, Ȳ Mhos, Ω−1 = ℧ Admittance
I, I⃗ Amps, A Current
V, V⃗ Volts, V Voltage
L Henry, H = Wb

A Inductance
M Henry, H Mutual Inductance, Mab is mutual between elements a and b.
R R = H−1 → A

Wb Reluctance
µ Wb

A·m Relative Permeability, µ = B/H

µ0
Wb
A·m Permeability of Air, µ0 = 4π × 10−7

Table 1: Symbols and Units
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Chapter 1

Introduction

1.1 Introduction

Air-Core Reactors (ACR) are increasingly deployed by utilities in place of oil-immersed reactors,
for a number of reasons including the lower capital cost and reduction of maintenance [1]. Surge
conditions and transients from switching can damage inter-turn insulation, which is a challenge to
detect. When insulation is damaged, shorts can occur between winding turns and cause significant
damage before being detected. Models of ACRs under fault conditions are needed to develop pro-
tection schemes, and determine if, and for how long, a faulted reactor can be operated with faults in
place.

The ACR is modeled with the Biot-Savart Law, and Ampère’s Law. Using programs written in Python,
the reactor is first designed and prefault conditions are evaluated. Turn-to-Turn faults are a common
fault type, and are the focus of this thesis. The development of the modeling method to evaluate the
effects of the turn-to-turn faults is presented and demonstrated with a reactor model approximating
multi-layered units.

1.2 Motivation

An Air-Core Reactor is a passive component used in operation of the power grid to help main-
tain line voltage within acceptable limits. Air-Core Reactors can be installed in locations where oil-
immersed reactors could pose a risk to the environment. An air-core reactor is cooled via convection,
where an oil immersed unit relies on oil for the removal of heat. The oil requires periodic maintenance,
and used oil has additional requirements for disposal. Faults in ACRs commonly occur in the high-
voltage end of the winding as a result of transients from surges or when energized, these transient
conditions can stress and cause breakdown of the insulation and encapsulation of the windings [2].
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When the breakdown of insulation progresses sufficiently, it becomes a turn-to-turn fault. Detecting
faults for the purpose of protecting Air-Core Reactors is important to utilities and operators.

1.3 Contribution

The focus of the research being presented is the effects of turn-to-turn faults in air-core reactors.
In the presentation of this work, the contributions of this thesis are:

• Present a computationally efficient method of modeling and analyzing Air-Core Reactors under
normal and faulted conditions.

• Show how the reactor behavior changes due to a fault.
• Present a simplified analogue to describe the fault behavior as an N : 1 transformer.

Numeric results were attained using programs written in the Python Programming language and the
NumPy and SciPy Packages.

1.4 Overview

Each chapter is a general subtopic of the Air-Core Reactor.
The second chapter, Background, discusses the theoretical foundations of reactor modeling, start-

ing with the Biot-Savart law, which describes the magnetic field intensity at a point due to a current.
It then expands into more specific equations to model series of concentric, coaxial current loops.

The third chapter, Reactor Modeling, covers the specific application of the theory presented in the
Background chapter to model an air-core reactor.

The fourth chapter, Fault Modeling, presents a technique to describe turn-to-turn faults that is
computationally efficient. Additionally, examples are given relating a fault in a reactor to an intuitive
transformer model, which should be familiar to engineers.

The fifth chapter, Fault Detection, is a discussion of fault detection using information from reactor
and fault modeling.

The sixth chapter, Computer Program, discusses the reasoning behind the computer programs
used for design and evaluation of the ACR.

The results in chapter 7, give experimental results from the computer program simulating a reactor
model similar to units deployed in industry.

Finally, the conclusions and discussion of future work. The research presented in this document
isn’t complete, but provides a groundwork for a more targeted study of device behavior.
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1.5 Literature Review

1.5.1 Modeling Reactors

Paul published a book in 2010 [3] in which he gives a thorough and detailed explanation of the
various methods for computing the flux and inductance of current carrying loops, derived from Gauss’
Law, the Biot-Savart law, and Amperes’ Law. In chapter 4.4 Paul presents the Neumann integral as a
method of calculating the mutual inductance between two concentric, circular loops. The Neumann
integral cannot be evaluated to a closed-form solution, but can be evaluated numerically to an accept-
able accuracy, but comes with the burden of calculating the mutual inductance between every turn in
a reactor.

Burke and Fawzi in 1978 [4] present a method to simplify the self and mutual inductance calculation
of N-turn series windings in air-core reactors as a cylindrical sheet with zero thickness. Similar to the
Neumann integral presented in Paul’s book, the method presented by Fawzi and Burke doesn’t have a
closed form solution, but can be evaluated numerically. They also went a step further and presented a
method of calculating the inductance of a package, in what they refer to as a ”coil of finite thickness”.
This method greatly reduces the number of integrals to be evaluated numerically from N2 terms to a
more manageableN terms, N being the number of layers in a reactor model. Further, in 1988 with the
addition of Dahab, Fawzi and Burke [5] published work wherein they modeled a single layer reactor
(single package) using the finite-thickness calculation from [4] with the addition of a capacitance
network.

Fawzi and Burke published another article in 1991 [6] describing a method of computing the eddy
current losses in reactors. The Method provided is useful when simulating transient conditions at
various frequencies, but does leave out the capacitance submatrix for the reactor. The Perturbation
matrix is frequency dependent and does take into account the skin effects. The method involves
”slicing” the reactor into vertical subsections, where the magnetic field intensity is calculated, in the
vertical and radial components, this method assumes axial symmetry to simplify calculations.

In 2021, Zaninelli and Bortoni [7] published a paper comparing the results of the methods from
Fawzi and Burke’s 1978 paper to that of modern Finite Element Analysis (FEA) methods. In the paper,
the authors show that Fawzi and Burke’s method performs well at low frequencies, but doesn’t properly
account for eddy-current losses in the windings, as Fawzi and Burke discuss in their 1991 paper
[6]. Zaninelli and Bortoni do provide a correction factor for the reactor inductance value at higher
frequencies, but for the purposes of this research, the low frequency accuracy will be sufficient.

Nurminen’s dissertation from 2008 [8] detailed how he evaluated the thermal design and mechan-
ical stresses of a purpose-built reactor. Using optical fiber to sense temperature they were effectively
able to eliminate electrical noise from the currents induced by the reactor while operating. To sense
temperature they leveraged the transmission mediums sensitivity to temperature variation, where as
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the optic is deferentially heated, there are regions where minuscule amounts of light are reflected back
down the fiber which can be detected by the sending unit. Depending on the intensity of the light being
sent back down the fiber and the time of travel, Nurminen was able to determine where the reactor
was heated unevenly.

Yuan et al. 2017 [9] provide insight into the thermal optimization that goes into the design of an
ACR. The authors’ optimization process has the goal of minimizing temperature rise and minimizing
total conductor mass, which will improve the reactor performance while minimizing cost of construc-
tion. The initial parameters of the reactor (turn count, layer count, layer radii, etc) being optimized
were calculated elsewhere, with an optimization constraint of preserving the inductance of the model.
The primary parameters varied by the optimization process were the widths of the cooling ducts (i.e.
varying the layer radii), and the conductor radii. The authors validated the results of their work using
FEM software to calculate the final inductance and thermal transfer to the surrounding air.

Fiorentin et al. 2016 [10] present a method to model the vibrations of an air-core reactor as a
function of the frequency and current for a reactor under load. In the development of their analytical
vibroacoustic model, the authors relate to electrical energy input to vibrations, using the Biot-Savart
law, to the force that produces the vibration modes. This model doesn’t directly influence the develop-
ment of the model for fault analysis, but rather provides insight as to the mechanical forces degrading
the insulation and encapsulation of the reactor windings.

Damron in 2016 [1] discussed the application of air-core shunt reactors installed by a utility
operator. The focus of the paper is on the non-standard installation of the dry-type shunt reactors,
and a challenge in implementing protection schemes due to a lack of available information. Reasoning
for the choice of dry-type air-core reactors over the oil-immersed variety was given as the proximity
to a waterway which required increased environmental considerations.

1.5.2 Faults in Air-Core Reactors

Haziah’s Dissertation [2], 2012, explores the mechanisms by which air-core reactors fail when
in use as filter reactors in mechanically-switched capacitor banks with a damping network. This
work provides insight as to how these reactors are used in an application and the (comparatively)
limited information needed for an operator to perform transients studies. The work builds a lumped-
parameter model for use in transients studies. Haziah’s work was focused on the effects of the
transients around the energization and de-energization of the filter network, particularly, and how daily
repeated switching will cause uneven voltage distribution in the reactor degrading the encapsulation
materials from heat generated by the series losses. The work, unfortunately, doesn’t continue into the
failure modes of the reactor.

At the time of this writing, there are few published published works detailing methods where an
Air-Core Reactor is subject to fault conditions. However, there is an interesting method presented by
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Faridi et al. [11]. They propose a model for Continuously Transposed Cables (CTCs) by segmenting
the winding as ”transpose lays”, or ”FELD” as referred to in the article, where each lay differs from
the last by ”rotating” around the center insulation. By rotating the conductors through an assumed
uniform magnetic field for a turn of the CTC, the self and mutual inductance of turn is evaluated.
Continuously Transposed Cables are used in transformers and other electric machines to improve the
efficiency by reducing eddy-current losses, and have possible applications in ACRs. The authors model
the inductance of the winding asN impedance elements withM branch currents, an impedance matrix
is calculated as BM×(N+1)ZN×NB

T
M×(N+1), to calculate the current distribution of a winding turn. In

application, the self, and mutual inductance is calculated for the positions of the winding before being
applied to the entire set of turns in the winding. Faridi et al. test the proposed model under normal
operation and a faulted condition. The fault is a short between 2 strands of the cable, which causes
a 20% change in current distribution between the faulted conductors, but a minimal variation in the
others. This finding is particularly interesting for the purposes of cross-layer faults as they may occur
in a package of a reactor.

In the 2015 article by Geissler and Leibfreid [12] evaluated the forces continuously transposed
cables (CTC) are subjected to during short-circuit conditions. While the article was primarily interested
in the mechanical integrity of cellulose insulation, the authors went into detail regarding the structure
and geometry of a CTC.

Mohammad et al. [13], 2018, proposed of method of detecting turn-to-tun faults for the purpose
of developing relay protection schemes. There were two methods of detection, first method was to
compare the performance of the two or more reactor banks connected on the same bus, and moni-
toring the neutral connection between the banks. When a fault occurs, the inductance value should
change in the reactor, which causes current to pass on the neutral connection, the neutral current can
also be detected in the zero sequence. This first method relies on two reactor banks of near-identical
characteristics. The second method relies on the zero sequence current of an independent reactor.
Where the operator would record the zero sequence current and bus voltage in the steady-state as a
reference, and check the error between the reactors zero sequence values during operation against
an ”ideal” approximation based on the reference.

Basha and Thompson presented a paper in 2013 [14] in which they list the expected fault types
and the ways in which the faults effect the performance of the reactor. The one fault type of interest
they discuss is the Turn-to-Turn fault. Where a turn-to-turn fault is likely to occur on the high-side of
the reactor winding, sometimes due to transients from switching, similar to the findings of [2]. Also
in the paper the authors state that the fault can be seen in as a zero-sequence unbalance.

Chowdhury et al. [15] in 2022, look at the practical considerations of the protecting the air-core
shunt reactors during faulted conditions. The article looks at 3 types of faults in air-core reactors; a
phase (think line-to-line) fault, a ground (analogous to a single-line-to-ground) fault, and a turn (turn-
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to-turn) fault. The authors discuss the current transformer selection and protective relay configuration
for air-core reactors, and compare to oil-immersed reactors. Interestingly, their modeling method
and conclusions regarding turn-to-turn shorts, is that the turn-to-turn fault type is best detected by
observing the transient on the neutral line or a rapid change in phase current if the reactor is solidly
grounded. The authors provided examples of this method functioning as intended using data from a
reactor with a turn-to-turn fault.

Instrumentation of a 35kV reactor was published by Zhigang et al. in 2020 [16]. The authors de-
tailed their instrumentation module, and the methods by which air-core reactors are normally checked,
primarily by DC resistance measurement and non-contact temperature measurement methods. Their
article details the challenges of implementing effective instrumentation for the air-core reactors, which
further exemplifies the need to a practical method of determining fault characteristics in air-core
reactors.

Guzman, in 2002 [17], presents a method of modeling and simulating energization, steady-state,
and fault conditions of conventional iron-core transformers. The transformers are variations of sin-
gle and three phase units used in transmission and distribution networks. The thesis presents the
characteristics of transformer design, considerations and a solution methodology, exemplified in an
occurrence matrix, which clearly lays out the equations needed and the solution order used by the pro-
gram. Guzman’s thorough work provides a baseline behavior of the iron core reactor under abnormal
conditions, which is useful for comparing findings in ACRs.

1.5.3 Other Materials

These materials were used as a general reference, or as a review of fundamentals to reduce occur-
rences of ”simple” mistakes.

The linear algebra text by Strang [18] provided a background of information regarding the numeric
challenges involved in implementing large, dense, matracies and the condition nuber of matracies.

The Tables of Integrals by Dwight [19] was used to review the ellipric integral approximations
presented by paul [3].

A textbook on the theory of fault modeling by Tleis [20] presents power system modeling and
analysis methods. Tleis presents methods of fault modeling using parameters transformed into the
sequence domain.

Lammeraner’s book on eddy currents [21] is a presentation of eddycurrents in varying appli-
cations. Of particular interest is the sections on eddy currents in conductive cylinders and in coil
windings.

Kulkarni and Khaparde’s book on transformer design [22] provided a background for designing
transformers, and analysis methods.
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1.5.4 Tools Used in Research

The tools and other materials used (for example, software libraries) in the process of this work
include open-source tools built by researchers and enthusiasts and provided free of charge.

• The Python Programming language, an open-source general-purpose interpreted language, ver-
sion 3.11.

• The NumPy library [23] for the Python programming language, a general purpose scientific data
structures and manipulation library.

• The SciPy library [24] for the Python programming language, specifically, the integration library
used in the numeric evaluation and analysis.

• MatPlotLib [25], the de facto Python plotting and graphing library.
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Chapter 2

Background

2.1 Overview

This chapter provides the theoretical development of the analysis tools used to model Air-Core
Reactors, starting with the fundamental equations, and developing the methods used in the modeling
and analysis of reactors. The Biot-Savart Law and Ampère’s Law are used to evaluate the inductance
of the reactor using geometric parameters, and simplifying elements using circuit analysis techniques
and then simplifying to a circuits based approach. Then, using the methods presented by Fawzi and
Burke [4], to evaluate the inductance of elements of air-core reactors in a computationally efficient
method.

2.2 The Biot-Savart Law

The cornerstone of the work done is the use of the Biot-Savart Law [3] to model the flux of the
air-core reactor.

B =
µ0

4π

∫
v

J⃗ × a⃗R
R2

dv (2.1)
The Biot-Savart law (2.1), is the fundamental law for computing a magnetic field due to a current [3]

using a volumetric integral. The current density vector, J⃗ , and a⃗R is a unit vector directed at the point
where B is being computed. The parameter R in the denominator of Eq.2.1 is the distance from the
current, J⃗ , to the point where B is being computed. Similar to Gauss’s Law and Ampère’s Law, the
Biot-Savart Law has an inverse-square relation between distance and intensity. For a circular loop
with radius a and wire radius rw on the xy plane, the flux, ψ, through the surface enclosed by the loop
can be written in terms of the z component perpendicular to the enclosed surface:
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ψ =

∫
s

B · ds =
∫ ra−rw

r=0

∫ 2π

ϕ′=0

Bz r dϕ
′ dr (2.2)

Using the definition ofψ from eqn. 2.2, the z component of theB field, Bz, at a specific point emanating
from a loop with radius r is then Bz can be written using the law of cosines [3]:

Bz(r) =
µ0I

2πr

∫ π

ϕ=0

r2acosϕ(a− r cosϕ)

(a2 + r2 − 2ar cosϕ)3/2
dϕ (2.3)

Figure 2.1: A Conductor loop

Equations 2.2 and 2.3 are used to write an expression for the flux passing perpendicular through
the area enclosed by a conducting loop, as illustrated in figure 2.1. Substituting the flux perpendicular
to surface enclosed by a loop, Eq.2.3, into the definition of ψ from Eq.2.2. The resulting integrals is
the evaluation of the of flux passing perpendicular through the enclosed surface:

ψloop =
µ0I

2π

∫ rloop−rcond

r=0

∫ 2π

ϕ′=0

1

r

[ ∫ π

ϕ=0

r2loopcosϕ(rloop − r cosϕ)

(r2loop + r2 + 2 rloop r cosϕ)3/2
dϕ

]
r dr dϕ′ (2.4)

When ϕ′ is integrated out, the 2π from the scaling factor out front of the integral in Eq.2.4 is canceled
out:

ψloop = µ0I

∫ π

ϕ=0

[ ∫ rloop−rcond

r=0

r2loop cosϕ(rloop − r cosϕ)

(r2loop + r2 + 2 rloop r cosϕ)3/2
dr

]
dϕ (2.5)

When the interior integral of Eq.2.5 is evaluated [3], the result is the flux through the area enclosed
by a loop, due to a current Iloop, as shown in Eq.2.6:

ψloop = µ0 I rlooprb

∫ π

ϕ=0

cosϕ√
r2loop + r2b − 2 rcond rb cosϕ

dϕ (2.6)

Where rb = rloop − rcond, rb is the radius of the inner surface of the wire loop. The integral in
Eq.2.6 cannot be evaluated to have a closed-form solution, Paul [3] uses a pair of elliptic integrals to
approximate a solution. But, Eq.2.6 can be evaluated numerically to a sufficient degree of precision.
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2.2.1 Inductance

An issue with using flux is the need to know the current in an element to complete the calculation.
A current independent value related to flux, ψ, is inductance L, and the relation is shown in Eq.2.7.

ψ = LI ⇒ 1

I
ψ = L (2.7)

When current in one loop gives rise to flux passing through the surface enclosed by another, it is called
a mutual. The relation between current, flux, and inductance can be described in-terms of a mutual
inductance, where current in element a, Ia, gives rise to flux at element b, ψb, shown in Eq.2.8:

Mab =
ψb
Ia

(2.8)

2.3 The Neumann integral

Fundamentally, the Biot-Savart Law (BSL) is used to calculate the inductance (L) values of el-
ements within the reactor. The Neumann Integral, derived from the BSL, is specifically formulated
to determine the self inductance of a closed loop carrying a current filament ( See [3] ), and the
mutual to other loops carrying a current filament, see Figure 2.2. The Neumann integral doesn’t have
a closed-form solution. There is an approximation that uses Elliptic integrals of the first and third
kind [19]. However, the integral can be evaluated numerically, and using an algorithm like Gaussian
Quadrature [24] the accuracy will be sufficient for our purposes.

Figure 2.2: Concentric Coaxial Loops
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L = µ0ab
1

2

∫ 2π

ϕ=0

cosϕ√
r2loop + r2b + d2 − 2rloopbcos2ϕ

dϕ (2.9)
Using the Neumann integral (2.9) to evaluate the turn-to-turn inductance will produce a value

mutual inductance for each turn of the reactor. The result of evaluating the a system of N inductance
and current values:
Vterminal = L1

di1
dt

+ L2
di2
dt

+ ...+ LN
diN
dt

+M12

(
di1
dt

+
di2
dt

)
+ ...+MN (N−1)

(
diN
dt

+
di(N−1)

dt

)
The number of elements can be reduced by superimposing the elements that share the same current,
i.e. where:i1 = i2 = ... = i(N−1) = iN , with N being the number of turns in the layer:

Vterminal =
di

dt

(
L1 + L2 + ...+ LN +M12 + ...+MN (N−1)

)
In this way, the size of the L (and R and Z) matrices can be simplified to a number of elements
representing the number of layers in a device. The primary issue with this turn-to-turn method to
calculate the inductance is the evaluation time, Using the Gaussian quadrature algorithm for numeric
integration evaluating the integrals, to evaluate all the turns in a reactor the runtime is O(N2).

2.3.1 Mutual Inductance

Mutual inductance is the a product of the flux in a loop, ψm, that is induced by the current in another
loop, In. So we can use the linear relation:

Mnm =
ψm
In

The Neumann integral (2.10) is the method used to compute the mutual inductance between two
loops. Here the current, I, isn’t needed since inductance, L, can be represented as: L = ψI−1.

Mnm = µ0 rn rb

∫ π

ϕ=0

cosϕ√
(r2n + r2b − 2 rn rb cosϕ+ d2)

dϕ (2.10)
Where rn is the wire loop radius, rb = rm − rcondm is the radius of the surface being linked by flux
enclosed by the second loop, and d is the distance between the parallel planes the loops are on.

Mutual inductances are symmetrical, Mnm = Mmn, so the mutual only needs to be calculated
once and any mutual is simply doubled; Mnm +Mmn = 2Mnm. Inductances can be super-imposed
(summed) with other self and mutual inductances to formulate a net-inductance for a single homoge-
neous component. Because we’re wrapping the loops of our inductor concentrically about the others,
we can say that the mutuals are always going to be positive (additive-influence), as all loops have the
same polarity.
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2.4 Integral Evaluation Method

Because the integral for computing mutual inductance, Eq.2.10, doesn’t have a closed-form so-
lution, the integral is evaluated numerically. The Python SciPy library has a quadrature (quad) inte-
gration method, the quad integration method evaluates a given function, in this case the Neumann
integral, to a specified error [24]. The error is set by either the available precision of the floating-
point representation, or a defined minimum error, which is 10−13 by default. In figure 2.3, it is clearly
visible that the Biot-Savart flux has an inverse-relation to the loop separation distance. Also visible in
the figure is the effect that increasing the radial difference, i.e. the second loop radius r2 as shown in
figure 2.2, the mutual coupling decreases slower than when the loops are separated concentrically,
i.e. increasing d.

(a) Coaxial vertical separation (b) Coaxial radius increase
Figure 2.3: Mutual Inductance vs Distance, with parameters a = r1,b = r2 − rcond 2,and d described in
figure 2.2

2.5 Internal Flux

In the ACR, Flux that doesn’t link to any other loop is entirely contained within the conductor and
insulation. This flux internal to the wire is a significant component of the reactor.

Linternal = µ0

(
rloop
4

+
rcond
5

)
(2.11)

Equation 2.11 was developed using (2.2) with the B field being provided by Ampère’s Law rather than
the Biot-Savart Law. The derivation is given in appendix A.
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2.6 Modeling as a Matrix

The Reactor can be modeled as an N ×N matrix, with elements being the superposition of induc-
tance values that share the same current:

L̄ =


L1 M12 . . . M1n

M21 L2 . . . M2n... ... . . . ...
Mn1 Mn2 . . . Ln


With the Ln values representing the sum of self and mutual inductance that are due to the currents In.
The off-diagonal elements, Mnm, are the mutual inductance values that give rise to a current in the
layer in due to the current in another element im. The convention used will denote diagonal elements
of the matrices using a single indexing subscript, i.e. Ln = Lnn.

To model the reactor, the inductance is converted to reactance using the angular frequency, ω [rad/s] =

2πf [rad ·Hz], of the steady-state operation:
jX [Ω] = jω L̄ [Ω] = j 2π f L̄ [Ω]

The reactor is evaluated by solving the linear system for I⃗:
V⃗ = Z̄ I⃗ =⇒ I⃗ = Z̄−1 V⃗

To determine the total impedence of the reactor, the current vector is summed to get the total:
Itotal =

∑
∀n

I⃗n

The total impedence of the reactor is calcualted:
Ztotal =

Vterm
Itotal

Using these methods, the reactor is evaluated for prefault and postfault behavior. The values
given by Itotal and Ztotal are the values as would be measured at the terminals of the reactor. For
the simulations performed in the work for this thesis, ther terminal voltage Vterm is the 0◦ phasor
reference.

2.7 Turn-to-Turn Method

To model an air-core reactor using the turn-to-turn method is a straightforward implementation of
the Neumann integral (Eq.2.10), with the internal flux given by Eq.2.11. Knowing the radius from the
center of the loop to the center of the conductor, rloop, the conductor radius, rcond, and the vertical
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separation, d, between two loops, including d = 0 for the self value, Eq.2.10 can be evaluated nu-
merically. These evaluations are repeated until every self and mutual inductance has been calculated.
Using superposition, the loops that are in the same layer have their inductance values summed, to
consolidate the number of unknowns when solving for the current in each layer.

2.8 Thin Sheets Method

Fawzi and Burke in 1978 [4], proposed a more computationally efficient method for calculating
the inductance of a series of turns, and the mutual between two series turns. The elaboration of the
Neumann Integral resulted in the expression used to compute the induction of concentric coils:
M = 2πµ0(R1R2)

3/2n1n2[Ci(R1, R2, z1)− Ci(R1, R2, z2) + Ci(R1, R2, z3)− Ci(R1, R2, z4)] (2.12)
Where:

n1 =
N1

h1

[turns]

[m]
(2.13)

n2 =
N2

h2

[turns]

[m]
(2.14)

z1 = l1 + l2 + s [m] (2.15)
z2 = l1 − l2 + s [m] (2.16)
z3 = −l1 − l2 + s [m] (2.17)
z4 = −l1 + l2 + s [m] (2.18)

With: l1 = h1

2 [m] l2 = h2

2 [m], and
Ci(R1, R2, z) =

√
R1R2

2π

∫ π

ψ=0

√
R2

1 +R2
2 + z2 − 2R1R2cosψ

R2
1 +R2

2 − 2R1R2cosψ
sin2ψ dψ (2.19)

The Ci Eq.(2.19), like the Neumann integral doesn’t have a closed form solution and needs to be
evaluated numerically, Gaussian Quadrature algorithm from the SciPy Python library [24] as used for
the low time, and low error advantages of the technique.

2.9 Cylindrical Shells Method

Fawzi and Burke elaborated further on their thin-sheets method so the reactor packages could be
represented as cylindrical shells of finite thickness. This is done by integrating the thin sheets mutual
between the thickness of both packages or layers:
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(a) Flux around a single reactor layer (b) Flux around a 2-layer reactor package
Figure 2.4: Flux interaction between turns resulting in flux around an entire layer or package

Figure 2.5: Schematic representation of an Air-Core Reactor, with elements represented as parallel
inductors

Mshell =

∫ R1+t1/2

r1=R1−t1/2

∫ R2+t2/2

r2=R2−t2/2
n1n2M(r1, r2)dr2dr1 (2.20)

= 2πµ0n
2
1n

2
2

∫ R1+t1/2

r1=R1−t1/2

∫ R2+t2/2

r2=R2−t2/2
(r1r2)

3/4Ci(r1, r2, z1, ..., z4)dr2dr1 (2.21)
With Ci(r1, r2, z1, ..., z4) = [Ci(r1, r2, z1) − Ci(r1, r2, z2) + Ci(r1, r2, z3) − Ci(r1, r2, z4)] in Eq.2.21.

This cylindrical shell inductance model appears to account for the flux that links subsets of the turns
in each layer, and how the overlapping fields would effectively cancel-out the that of it’s neighbors
immediately to the inside and outside of the loop, leaving only the links that pass round the loops as
a whole, see figure 2.4b.

2.10 Reactor Construction

In most literature, the reactor is described as each layer connected in parallel, as shown in figure
2.5. The parallel arrangement of the reactor layers means each layer of a package effectively links the
same flux. Because the Neumann integral is describing the effect of the flux produced by a current in
one circular loop passing through an area enclosed by another coaxial loop, the effect of increasing
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the radius will be an increased self inductance. Ass more layers are added to the reactor, the increase
in radius will necessitate a decreased number of turns to ensure a similar inductance to that of the
layers with a smaller radius.

Ideally each layer of the reactor would have a similar self inductance and a mutual coupling to the
other layers, and the current in each layer would be approximately equal in magnitude and phase angle.
Another way to say it, would be to eliminate currents circulating in the reactor, which generate heat
without any performance gain. Through careful consideration, it was deemed impractical to design a
reactor in which the currents are of equal magnitude, and of similar phase, in reference to terminal
voltage. Instead, to eliminate circulating currents within the reactor, the current magnitude is allowed
to vary, but the phase angle of the currents in each layer should be as close to in-phase as possible.

2.11 Notes on Computation

The modeling of a reactor consists of 2 main parts that can be considered independently, these
are the turns of elements of the reactor, and the geometric components of the reactor. Looking at
the matrix L̄ with elements computed using Fawzi and Burke’s method, we can see the matrix can be
rewritten as a scaled Hadamard product of 2 matrices:

L̄ = 2πµ0 · N̄ ◦ Ḡ (2.22)
Which will be N̄ with elements representing the product of the turns of two layers, and a matrix Ḡ

representing the values dependent of the geometry of the reactor, and computed using theCi function
(eqn 2.19) from [4].

N̄ =


N2

1 N1N2 . . . N1Nn

N2N1 N2
2 . . . N2Nn... ... . . . ...

NnN1 NnN2 . . . N2
n

 (2.23)

Ḡ =


g1,1 g1,2 . . . g1,n

g2,1 g2,2 . . . g2,n... ... . . . ...
gn,1 gn,2 . . . gn,n

 (2.24)

=


C(R1, R1, h1, h1, s) C(R1, R2, h1, h2, s) . . . C(R1, Rn, h1, hn, s)

C(R2, R1, h2, h1, s) C(R2, R2, h2, h2, s) . . . C(R2, Rn, h2, hn, s)... ... . . . ...
C(Rn, R1, hn, h1, s) C(Rn, R2, hn, h2, s) . . . C(Rn, Rn, hn, hn, s)

 (2.25)



17
Where:
C(Ra, Rb, ha, hb, s) ⇒

1

hahb

[
(Ci(Ra, Rb, z1)− Ci(Ra, Rb, z2)) + (Ci(Ra, Rb, z3)− Ci(Ra, Rb, z4))

]
(2.26)

with z1,z2,z3, and z4 are defined as in equations 2.15, 2.16, 2.17, and 2.18.
When evaluating the condition of the turns and geometry matrices separately, the evaluation of the

geometric portion requires the evaluation of 2 or more integrals, shown in 2.26 in the more general
form where 4 integrals are evaluated to evaluate the geometric component of the mutual coupling.
To save computation time, a geometric configuration can be evaluated to generate the Ḡ matrix, then
iterate the N̄ matrix to produce the L̄ and Z̄ matrices. The parameters driving the Ḡ matrix would be
driven by thermal or other mechanical constraints.
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Chapter 3

Reactor Modeling

3.1 Introduction

The following chapter is a presentation of the methods and assumptions used to generate a prefault
model reactor.

3.2 Modeling Software

The software for modeling the reactor and the effects of faults was written in Python, using the
NumPy library for matrix manipulation functionality [23], and the SciPy Integrate library was used
for an efficient implementation of the quadrature integration algorithm [24]. Development of analysis
tools started with the turn-to-turn method of calculating mutual inductance using the Neumann in-
tegral (2.9), with each flux linkage between turns evaluated numerically using a series of integration
methods and ultimately the quadrature algorithm. Using the turn-to-turn method was slow, requiring
minutes to hours to cacualte the inductance of a reactor configuration. Then, using the method by
Fawzi and Burke in their 1978 paper [4], the computation time was greatly reduced

3.3 Turn-to-Turn Method

The turn-to-turn method is a direct implementation using the Neumann intergral (2.10), and the
internal inductance of a cylindrical conductor. Each turn of the reactor is evaluated to determine the
self inductance, due to the flux enclosed by the loop and due to the flux internal to the conductor, and
the coupling to each of the other turns in the reactor. With the turn-to-turn method, the inductance
calculation can take some time, originally the program was extended to use hyper threading, which
has a different set of challenges, especially memory management. In later versions of the project,
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with the thin-sheets method implemented, the need for the added complexity of hyper threading was
unnecessary.

3.4 Thin-Sheets Method

The implementation of the methods presented by Fawzi and Burke [4] is likewise straightforward.
Taking the layer or package radii, turns, and height, the self and mutual inductance values can be
evaluated numerically. In the modeling of the reactor, there is a caveat in the accuracy of the mutual,
this comes down to where the two radii are being evaluated. Using the turn-to-turn method, the mutual
was evaluated to the inner contour of the conductor loop, with the thin sheets method, the mutual is
being evaluated to, effectivl, the same loop radius. The difference is obvious when turn count and
radius are relatively small, to reduce the error further the second radius of the sheet self inductance
should be the loop radius minus the radius of the conductor: rb = rloop − rcond.

3.5 Reactor Modeling Parameters

Turns, layer/package radius, difference in radius of coupled packages, package height, wire di-
ameter, number of layers in a package (package thickness). All these things have significant impact
on the inductance and mutual coupling. The values listed in table 3.1 are gathered from a variety of
sources for the purpose of accurately modeling the component behavior of the air-core reactors. The
known values from the manufacturer reports are used as a baseline in the design process.

For the model reactor used in fault analysis, because there is missing information regarding the
mean radius or diameter of each package of the reactor, initially the outer diameter and the inner and
outer turn counts are used to determine the innermost package diameter, and the 8 packages between
inner and outer are assumed to be evenly distributed between the inner and outer layers.
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parameter value source
Reactor Height 3.1m Drawings
Reactor Outer Diameter 2.301m Drawings
Average Turns 985.8 Communications
Minimum Turns 841 Communications
Maximum Turns 1285 Communications
Measured DC Resistance 0.9394Ω Test Reports
Measured AC Resistance 1.1168Ω Test Reports
Measured Inductance 694.44mH Test Reports
DC Power Dissipation 13821.8W Test Reports
Testing Current 121.3A Test Reports
Testing Frequency 60Hz Test Reports

Table 3.1: Reactor parameters from manufacturer testing reports, mechanical drawings, and e-
mail communications, these parameters are used as the baseline for developing a reasonable
approximation of a commercial reactor.

3.6 Conditioning

3.6.1 Condition Analysis

Because the fundamental equations of the reactor are not of the closed-form variety, the additional
steps need to be take to ensure a minimum of error introduced into the reactor model.

The Condition number (3.1) of the Z̄ matrix is a representation of the matrix sensitivity to small
perturbations, and an indicator of the computational error in the Ȳ matrix during the inversion process
[18]. The relative error for a solution to a linear system x⃗ = Ā−1 · b⃗ is bounded by (3.2)

c =
λn
λ1

=
λmax
λmin

(3.1)

∥δx∥
∥x∥

≤ λmax
λmin

∥δb∥
∥b∥

(3.2)
The condition number of the Z̄ matrix is increases proportionally with the dimension of the matrix
Using the component matrices N̄ (2.23) and Ḡ (2.24), the condition number of the turns compo-

nent matrix, N̄ , is very large, meaning that N̄ is very poorly conditioned. However, The condition of
the geometry component matrix is on the same order as the square of the matrix dimension, and when
the component matrices are element-wise multiplied (Hadamard product), the condition of N̄ ◦ Ḡ has
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a condition number less than the condition of Ḡ, more formally:

cond(N̄ ◦ Ḡ) < cond(Ḡ) << cond(N̄)

Therefore, when designing a reactor, or developing a model for evaluation, time should be spent
evaluating the geometry of the reactor to minimize error. Keeping in-mind that the mutual coupling of
the elements is the product of turns-squared and the relative positioning of the sheets being evaluated,
or hollow cylinders if the finite-thickness representation is being used.

In the process of modeling the reactor, the condition number of the reactor matrix provides an
insight into the performance of the model. By minimizing the condition number of the reactor, the
accuracy of the model increases by reducing the error bounded by the condition. Minimizing the
condition number of the impedance matrix can be achieved by reducing the number of elements in
the matrix, or by reducing the mutual coupling between reactor elements.

3.7 Prefault Behavior

The design of a reactor is challenging, and critical, part to properly understanding the fault behavior
of and ACR. As shown in table 3.1, the parameters of the reactor are In the design of the reactor, the
turns of each layer is optimized to prevent circulating currents, this constraint can be interpreted as
a dependent voltage source, Vmab = Ib · jXmab, where jXmab is the mutual reactence between layers
a and b.

(a) 2 Layer Model
(b) N Layer Model

Figure 3.1: Prefault Reactor Models, with Mutuals shown as Dependent Voltages

The design process for the reactors is intended to produce self and mutual terms that will produce
a balanced set of currents. Where the currents are all approximatly in-phase, and no one laye rhas
significantly larger currents than the others.
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3.8 Model Validation

3.8.1 Example: 2 Element Reactor

Figure 3.2: 2 Layer, 4 Loop Reactor Turns Diagram, with relevant parameters listed

Using the diagram in figure 3.2, we’ll go through the process of calculating the self and mutual
inductance for a reactor, and the consolidation

1. First, the self inductance is calculated, L11 in the diagram using the Neumann Integral, equation
2.10, for mutual inductance to itself with a = Rloop1, b = Rloop1 − rcond, and d = 0. Using
equation 2.11, the loop radius and conductor are plugged-in, and added to the self mutual to
get the total self inductance. For the turns numbered 2 and 4, the self inductance is the same,
i.e. L11 = L22, and L33 = L44, so the calculation only needs to be perform once per pair. This
process is repeated for for the second layer, with Rloop2 substituted in, these are the diagonal
elements of the inductance matrix.

2. Next, the mutual inductance is calculated, for the mutual inductance values along the first :
L12 =MNeumann(a = Rloop1, b = Rloop1 − rcond, d ̸= 0)

L13 =MNeumann(a = Rloop1, b = Rloop2 − rcond, d = 0)

L14 =MNeumann(a = Rloop1, b = Rloop2 − rcond, d ̸= 0)

Since, the mutual values between turns are the same, i.e. L12 = L21, the values can be placed
in the corresponding row,column pairs of the inductance matrix. These steps are repeated to
calculate L23, L24, and L34, so for a 4 × 4 matrix, 6 mutual values are computed. The resulting
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inductance matrix is then:

L =


l11 l12 l13 l14

l12 l22 l23 l24

l13 l23 l33 l34

l14 l24 l34 l44

 (3.3)

3. Then to simplify the 4× 4 matrix, assume it1 = it2, and it3 = it4

Ψ11 = l11i1 + l22i2 + l12(i1 + i2) ⇒ L11 = l11 + l22 + 2 ∗ l12

Ψ33 = l33i3 + l44i4 + l34(i3 + i4) ⇒ L22 = l33 + l44 + 2 ∗ l34

Ψ13 = l13i1 + l14i1 + l23i2 + l24i2 ⇒ L12 = L21 = l13 + l14 + l23 + l24

4. Simplify the L̄ matrix using the consolidated elements:
L̄ =

L11 L12

L12 L22


To perform the same calculation using Fawzi and Burke’s thin-sheets method, equation 2.12:

1. The turns are computed as a density: n1 = n2 = 2
(2∗rcond+d)

[turns]
[m] ,

2. The Layer heights are n ∗ rcond + (turn pitch) = 2 ∗ rcond + d [m]

3. Evaluate 3 mutuals:
L11 =MFB(n1 = n2, R1 = R2, h1 = h2)

L22 =MFB(n1 = n2, R1 = R2, h1 = h2)

L12 = L21 =MFB(n1 ̸= n2, R1 ̸= R2, h1 ̸= h2)

4. Form the inductance matrix L̄:
L̄ =

L11 L12

L12 L22


3.8.2 Comparing Methods Numerically

Using the example reactor shown in figure 3.2, applying the following parameters:
rcond = 0.25 [mm]

cins = 0.01 [mm]

d = 2 ∗ (rcond + cins)

Rloop1 = 0.1[m]
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Rloop2 = 0.103[m]

The addition of cins is the radial insulation thickness on the conductor, is not strictly needed for this
example, but practically needed if this were to be physically realized. When the parameters above are
applied to to the elements of the matrix described in equation 3.3, the result is 3.4. A 4×4 inductance
matrix matrix using the turn-to-turn method.

Lt2t 4×4 =


7.618E − 07 6.568E − 07 4.697E − 07 4.675E − 07

6.568E − 07 7.618E − 07 4.675E − 07 4.697E − 07

4.697E − 07 4.675E − 07 7.885E − 07 6.804E − 07

4.675E − 07 4.697E − 07 6.804E − 07 7.885E − 07

 (3.4)

Looking at the coupling coefficients of the 4× 4 reactor, 3.5, the coupling between turns of the same
radius are ”strong”, with K12 = 86.2% and K34 = 86.3% of the self elements.

Kt2t 4×4 =


1.000 0.862 0.606 0.603

0.862 1.000 0.603 0.606

0.606 0.603 1.000 0.863

0.603 0.606 0.863 1.000

 (3.5)

When simplified from a 4× 4 to a 2× 2 the inductance becomes:
Lt2t 2×2 =

2.837E − 06 1.874E − 06

1.874E − 06 2.938E − 06

 (3.6)

Kt2t 2×2 =

1.000 0.649

0.649 1.000

 (3.7)
Now, looking at the equivalent 2× 2 matrix produced by the thin sheets method:

Lsheet =

2.796E − 06 1.873E − 06

1.873E − 06 2.895E − 06

 (3.8)

With the corresponding coupling coefficients matrix:
Ksheet =

1.000 0.658

0.658 1.000

 (3.9)

Looking at the difference between the result given by the turn-to-turn method and the method
given by Fawzi and Burke [4]:

Ldiff = Lt2t 2×2 − Lsheet =

4.169E − 08 1.211E − 09

1.211E − 09 4.294E − 08

 (3.10)
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Restating the difference in 3.10 as a percentage:

Lt2t 2×2 − Lsheet
Lt2t 2×2

× 100% =

1.469 0.065

0.065 1.462

% (3.11)
The difference in methods numeric results given in 3.10, and the relative difference given as a per-
centage 3.11.

3.8.3 Physical tests of Reactors

To validate the modeling methodology and design considerations, small scale test reactors were
constructed. These test reactors were wound around 3d printed forms to ensure a specified layer
radius, and testing was performed while the layers were installed in a jig to ensure concentricity, see
figure 3.4.

Reactor Layer Turns Radius Height Position Note
Layer 1p 41 50mm 23mm innermost layer prefault layer 1
Layer 1f 41 50mm 23mm innermost layer turn 21 shorted
Layer 2a 41 54mm 23mm middle layer ”untuned” case
Layer 3a 41 58mm 23mm outermost layer ”untuned” case
Layer 2b 37 54mm 23mm middle layer ”tuned” turn count
Layer 3b 37 58mm 23mm outermost layer ”tuned” turn count

Table 3.2: Parameters for the test reactor, all wound using 24AWG enameled solid copper

3.8.4 41 Turn Test

Using a 41 turn Reactor of 50mm diameter, 24awg enameled magnet wire, and a 3d printed form,
the accuracy of the modeling method using the turn-to-turn method from section 2.3 and the sheets
method from section 2.8 were tested.

Figure 3.3: Rendering of a 41 turn simple test reactor
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The simple test reactor shown in figure 3.3, which has the parameters of ”layer 1p” in table 3.2,

was calculated to have the following inductance values:
Lbs = 87.9365[nH]

Lfb = 88.6318[nH]

Lfbt = 74.5048[nH]

When the Biot-Savart loop-to-loop method is compared to Fawzi and Burke’s more computational
efficient methods, i.e. the thin sheets Lfb, and cylindrical shells Lfbt methods,

Lbs
Lfb

= 0.9921561086787597 ⇒ Lbs − Lfb
Lbs

= 0.791% Difference
Lbs
Lfbt

= 1.180280437602568 ⇒ Lbs − Lfbt
Lbs

= 15.27% Difference
Here we can see that for a small wire dimer the finite thickness, cylindrical shells method, is not as
accurate for small reactors. The script to generate this test can be found in appendix D.5.

Testing results using the parameters: current sensing resistor: Ri = 10Ω, and testing frequency:
ftesting = 10000[Hz]:

Zbs = 10.5284 + 5.5252j[Ω]

Zfb = 10.5284 + 5.5689j[Ω]

Zfbt = 10.5284 + 4.6813j[Ω]

Ibs = 8.915× 10−02∠− 27.690◦

Ifb = 8.900× 10−02∠− 27.876◦

Ifbt = 9.200× 10−02∠− 23.972◦

The results from testing this single layer reactor with a 1 V , 10 kHz sinusoidal excitation yielded a
7.8∠27.3◦ [mA] current, measured across a 10 Ω± 1% resistor. An the oscilloscope screen capture of
this test can be found in appendix B, figure B.14.
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3.8.5 Multilayer Models

(a) Expanded (b) Nested
Figure 3.4: Rendering of the 3-layer testing reactor, with parameters listed in table 3.2

Expanding the testing to include multiple layers, the reactor would appear as in figure 3.4. The
3-layer model will use layer 1p, 2a, and 3a parameters from table 3.2. In the following multilayer
model tests, the layer current is measured as the voltage across a 10Ω ±1% resistor in series with the
layer winding. Using the same turn count for each layer of the reactor would result in an unbalanced
reactor model, however, with the resistors used to measure the current of the layers the effective
layer resistance is increased. With the artificially larger per-layer resistance from the instrumentation
resistors, the reactors won’t exhibit a circulating current behavior, where the angle of the current
phasor is less than −90◦.

Zut =


10.53 + j5.733 j5.247 j4.849

j5.247 10.57 + j6.441 j5.901

j4.849 j5.901 10.61 + j7.171

 (3.12)

In equation 3.12, the untuned impedance matrix,

Iut =


2.097E − 02− j2.630E − 02

1.602E − 02− j2.853E − 02

1.498E − 02− j2.861E − 02

 =


3.364E − 02∠− 51.432◦

3.272E − 02∠− 60.684◦

3.229E − 02∠− 62.370◦

 (3.13)

Equation 3.14 is the total total current of the physical test reactor:
Itotal ut = 5.1971E − 02− j8.3444E − 02 = 9.8305E − 02∠− 58.085◦ (3.14)

The total impedance of the untuned reactor, equation 3.15:
Ztotal ut = 3.5494 + j5.6989 = 6.7138∠58.085◦ (3.15)
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Looking at a tuned variant of the 3-layer model, using layer 1p, 2b, and 3b parameters from table

3.2.

Zt =


1.053E + 01 + j5.733E + 00 0 + j4.833E + 00 0 + j4.456E + 00

0 + j4.833E + 00 1.051E + 01 + j5.522E + 00 0 + j5.022E + 00

0 + j4.456E + 00 0 + j5.022E + 00 1.055E + 01 + j6.139E + 00


(3.16)

Equation 3.17 is the current vector of the

It =


1.976E − 02− j2.703E − 02

1.879E − 02− j2.757E − 02

1.806E − 02− j2.779E − 02

 =


3.348E − 02∠− 53.833◦

3.337E − 02∠− 55.722◦

3.314E − 02∠− 56.986◦

 (3.17)

Equation 3.18 is the total current of the tuned model.
Itotal t = 5.6603E − 02− j8.2384E − 02 = 9.9955E − 02∠− 55.508◦ (3.18)

Equation 3.19 is the total impedance of the tuned reactor model.
Ztotal t = 3.5125E + 00 + j5.1124E + 00 = 6.2028E + 00∠55.508◦ (3.19)

3.8.6 Impact of Tuning

The untuned reactor current phasors each have the argument:
arg(Il1p) = −51.432◦

arg(Il2a) = −60.684◦

arg(Il3a) = −62.370◦

Where the difference in argument are relatively large in the untuned case. Without the 10Ω measure-
ment resistor the untuned arguments would be nearer to −90◦

arg(Il1p) = −53.833◦

arg(Il2b) = −55.722◦

arg(Il3b) = −56.986◦

The result of tuning the reactor can be seen in the argument of the current phasors, where the
layer currents are closer to going in the same direction. The magnitudes of the currents also move
into a reasonable range, where the magnitudes of adjacent layers become closer to an average of the
magnitudes, as seen when comparing equation 3.13 to 3.17.
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Chapter 4

Fault Modeling

4.1 Introduction

The purpose of this chapter is to present the method developed and used to evaluate faults,
specifically turn to turn, in air core reactors. presented here is the application of the theory, and the
parametrization of the faults that they can be evaluated using an extension of the theory presented in
previous chapters.

4.2 Fault Background

To evaluate the fault using Fawzi and Burke’s cylindrical shell methods the physical space of shorted
loop needs to be evaluated. When using the cylindrical shell with zero thickness, i.e. the thin-sheet
method, turn mass is evaluated separately from the turns density, as in equation 2.12, n1 = N1

h1
,

n2 = N2

h2
.

The density of the turns, Nh , will be the same as in the layer the fault occurs in, this maintains the
integrity of cylindrical sheets approximation of equation (2.12). The height of the fault is evaluated
as part of the height elements, z1,z2,z3,and z4, where the height is evaluated as 1

N · h. That is to say,
the height of a turn-to-turn fault is calculated as the fraction of the height of the layer or package in
which the now closed loop occupies.

To evaluate fault current the impedance matrix is formed and inverted as usual, but to calculate
currents we assume a potential of zero volts (0.0 [V ]) in the column vector corresponding to the
indices were the faults self occurs: V⃗ = [V1, V2, ..., VN , Vf ]

T = [Vterm, Vterm, ..., Vterm, 0]
T . When the

current vector is solved for, I⃗ = Z̄−1 V⃗ , the fault won’t contribute a self flux produced by a current in
the faulted loop. Instead, the faulted turn will have current induced by the mutual flux of the current-
carrying elements in the reactor, so the fault current will lag 90◦ behind the layer and terminal currents.
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(a) A Prefault Reactor Schematic (b) A Faulted Reactor Schematic
Figure 4.1: Currents in a Reactor, (a) prefault, (b) with faulted turns

4.3 Representing a Fault Between Turns

The perturbation matrices will start with the unfaulted NxN matrix, with with an additional row/-
column appended to the right for each fault.

Zpref =



Z00 jX01 jX02 . . . jX0n

jX10 Z11 jX12 . . . jX1n

jX20 jX21 Z22 . . . jX2n... ... ... . . . ...
jXn0 jXn1 jXn2 . . . Znn


The Perturbation, a fault in Z1 in this example, effects the impedance Z here proportionally to the

short impedance ZS1, and the mutuals to other layers. Where ZS1 here is the impedance of the shorted
turn(s).

Zpert =



0 −jX0S1
0 . . . 0 jXnS1

−jXS10 −ZS1
− jXS1 −jXS12 . . . −jXS1n jX1S1

0 −jX2S1 0 . . . 0 jX2S1... ... ... . . . ... ...
0 −jXnS1

0 . . . 0 jXnS1

jXS10 jXS11 jXS12 . . . jXS1n ZS1
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This results in an N+S square matrix:

Zfaulted =



Z00 jX01 jX02 . . . jX0n jX0S1

jX10 Z11 jX12 . . . jX1n jX1S1

jX20 jX21 Z22 . . . jX2n jX2S1... ... ... . . . ... ...
jXn0 jXn1 jXn2 . . . Znn jXnS1

jXS10 jXS11 jXS12 . . . jXS1n ZS1S1


There will be additional elements, augments, to represent the fault self and contribution to the

other elements of the reactor: ZS1
The mutuals M = { jXS10, jXS11, jXS12, · · · , jXS1n }

This representation of a fault as a perturbed matrix preserves the computation that went into the
prefault condition while explicitly quantifying the effects of the fault on the reactor in-terms of the
change in self and mutuals. The new row / column added to the perturbation matrix are the same
magnitude of the difference from the prefault case, proportional to the loss of the turn.

When the faulted loop progresses to an open, the extra row and column can be removed to rep-
resent the loss of turn as reduction in self inductance, and the proportional losses in the mutual that
turn contributes to the package. The open fault is then represented as a loss of inductance of the self,
and the turns contribution to the mutual linkages to the other elements within the reactor.
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(a) Prefault Reactor (b) Faulted, Closed

(c) Faulted Open, Closed Layer (d) Faulted Open, Open Layer
Figure 4.2: Possible Fault states of an Air-Core Reactor

4.4 Faulted Reactor as a Transformer

To better understand the behavior of the fault in an ACR, the fault can be thought of as aN : 1 ideal
transformer. In this transformer analogue, the change in layer currents can be described in-terms of
the fault resistance, Rf , being referred to the primary side of the transformer via a N2 : 1 ratio, R′

f .
As will be demonstrated in section 4.4.1, the resistance of the fault turn is significantly larger than
inductance of the faulted turn, so the fault resistance dominates the fault behavior. When the fault
resistance is referred to the primary, it will be relatively large depending on the turns ratio, and will be
in parallel with the winding resistance and reactance. The larger resistance will pass a small amount
of current and would present as a slight positive phase shift toward 0◦, there is also an increase in the
current magnitude as measurable from the terminal.

4.4.1 2 Layer Fault Example

Each fault case described in the example will have a correspondence to the fault states illustrated
in figure 4.2. For this example, the reactor radii (layers 1 and 2) and height were chosen arbitrarily,
and the layer 1 turn count also chosen arbitrarily. Layer 2 turn count was driven by the desire to have
the currents of each layer approximately in-phase, and thus have a reduced turn count. The reactor
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(a)

re
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Vterm

Ifaulted

Ifault

(b)
Figure 4.3: Example Fault Schematic and Phasor Diagram

parameter layer 1 layer 2 fault
radius [m] 0.50 0.55 0.55

height [m] 0.50 0.50 0.000532

turns 1000 940 1

Table 4.1: Parameters for the 2-layer example reactor.

parameters listed in table 4.1, during fault conditions, the layer 2 will effectively have 1 fewer turn, but
this is modeled in the perturbation Lp which is the effect the fault has on the prefault reactor, shown in
equation (4.12). The total DC resistance was desired to be around 0.9Ω, and real components of the
diagonal of the impedence matrix (4.4) were chosen to achieve that final resistance as seen in (4.7).

N =

1000000 940000

940000 883600

 (4.1)

G =

0.131 0.119

0.119 0.152

 (4.2)

L =

1.037 0.881

0.881 1.060

 (4.3)

Z =

1.800E + 00 + j3.911E + 02 0 + j3.320E + 02

0 + j3.320E + 02 1.800E + 00 + j3.998E + 02

 (4.4)

I =

6.337E − 06− j1.470E − 03

5.038E − 07− j1.281E − 03

 =

1.470E − 03∠− 89.753◦

1.281E − 03∠− 89.977◦

 (4.5)

IT = 6.841E − 06− j2.750E − 03 = 2.751E − 03∠− 89.857◦ (4.6)
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ZT = 9.042E − 01 + j3.636E + 02 = 3.636E + 02∠89.857◦ (4.7)
As a reminder; N andG are provided as they are used to compute L by way of a Hadamard product

and scaled by the value 2πµ0, for more see equation (2.22). The prefault conditions in (4.1) through
(4.7) give us a bit of information:

1. The difference in self inductance of the Layer minor, < 13mH,
2. The mutual elements of (4.3) are between 85% and 83% of the self values, looking at the differ-

ence in area enclosed by the two layers, this makes sense since: 1−A2−A1

A2
= 1− ((.55m)2−(.5m2))

(.55m)2 ≈

0.826 = 82.6%, and as stated in a previous chapter inductance is proportional to the flux through
the surface enclosed by a loop.

3. Both currents are on of the same order of magnitude
Equation 4.8 gives the turns matrix of the faulted reactor:

Nf =


1000000 940000 1000

940000 883600 940

1000 940 1

 (4.8)

Equation 4.9 is the geometry matrix of the faulted reactor with the input parameters given in table
4.1.

Gf =


0.131 0.119 1.394E − 04

0.119 0.152 1.774E − 04

1.394E − 04 1.774E − 04 8.441E − 07

 (4.9)

Equation 4.10 is the reactor inductance with a single loop fault. Note that L3,3 is significantly
smaller than the layer the fault is in, approximately 1/9402 smaller.

Lf =


1.037 0.881 1.101E − 06

0.881 1.060 1.316E − 06

1.101E − 06 1.316E − 06 6.665E − 12

 (4.10)

Equation 4.11 is the faulted impedance matrix, with the perturbation added.

Zf =


1.800 + j3.911E + 02 0 + j3.320E + 02 0 + j4.150E − 04

0 + j3.320E + 02 1.798 + j3.998E + 02 0 + j4.963E − 04

0 + j4.150E − 04 0 + j4.963E − 04 1.915E − 03 + j2.513E − 09

 (4.11)
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Equation 4.12 inductance perterbation matrix for this example, this is how the fault effects the self

and mutual elements of the layer.

Lp =


0 −1.101E − 06 0

−1.101E − 06 −1.316E − 06 0

0 0 0

 (4.12)

Equation 4.13 is the faulted loop current vector, the loop is clopsed and still able to carry a current.

If cl =


6.355E − 06− j1.470E − 03

4.840E − 07− j1.281E − 03

0− j1.502E − 06

 =


1.470E − 03∠− 89.752◦

1.281E − 03∠− 89.978◦

6.505E − 04∠− 179.868◦

 (4.13)

Equation 4.14 shows the total current, as would be seen by a current probe at a terminal.
IT cl = −6.437E − 04− j2.752E − 03 = 2.826E − 03∠− 103.164◦ (4.14)

Equation 4.15 the total impedance, as measurable at the terminals.
ZT cl = 9.042E − 01 + j3.636E + 02 = 3.636E + 02∠89.857◦ (4.15)

Equation 4.16 faulted current loop vector, where the faulted loop has opened and is no longer
carrying a current.

If ol =

6.355E − 06− j1.470E − 03

4.832E − 07− j1.281E − 03

 =

1.470E − 03∠− 89.752◦

1.281E − 03∠− 89.978◦

 (4.16)
Equation 4.17 is the faulted-open total current as would be seen from a terminal.

IT ol = 6.838E − 06− j2.750E − 03 = 2.751E − 03∠− 89.858◦ (4.17)
Equation 4.18 is the total impedance of the reactor with the faulted turn opened up.

ZT ol = 9.038E − 01 + j3.636E + 02 = 3.636E + 02∠89.858◦ (4.18)
Equation 4.19 shows the faulted current when the layer containing the fault opens, and the entire

layer is effectivly removed from the reactor
If o = 1.177E − 05− j2.557E − 03 = 2.557E − 03∠− 89.736◦ (4.19)

Equation 4.20 is the total current of the open-layer condition, effectivly just the current on layer 1
(inner layer)

IT o = 1.177E − 05− j2.557E − 03 = 2.557E − 03∠− 89.736◦ (4.20)
Equation 4.21 is the total impedance, which is the same as the impedance of the 1st layer because
the 2nd is open.

ZT o = 1.800E + 00 + j3.911E + 02 = 3.911E + 02∠89.736◦ (4.21)
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In the results above 4.13 shows the current vector with the fault as the last element, and it can be

see the angle of the current in the closed loop is lagging 90◦ behind either layer 1 or layer 2. When
the faulted loop opens up in equation 4.16, the current returns to a normal angle, but the inductance
has changed by 1 turn and there is more real current flowing due to the reduced resistance.

The large influence of the faulted loop on the angle of the total current can be attributed to the
relatively small system, in this example, a single faulted loop is 1 turn

1940turns . In production reactors, there
are between 10k and 40k turns or more, which reduces the effects of a single fault on the system.

4.5 Fault Model Validation

This section goes over the analysis of the fault, and validation of fault modeling methods logically
by using a transformer analogue to describe behavior.

Using the parameters from the previous chapter, the model reactors described in table 3.2 are
used, with faults inserted on the innermost layer.

4.5.1 Single Layer, Single Turn Fault

Figure 4.4: Faulted turn in a cylindrical shell (red band), the
To test the transformer analogue using test data gathered using the test reactors from the previous

chapter, the single-layer test reactor is built, and a short is inserted at turn 21, the turn-to-turn
visualization and sheets visualized in figure 4.5. The reactor is described in table 3.2, as Layer 1f,
it is a faulted equivalent to the reactor shown in figure 3.3. The test reactor is in series with a 10Ω

resistor to measure the current in the faulted reactor.
Using the Biot-Savart methods to evaluate the turn-to-turn inductance of the reactor in the faulted

state, the inductance matrix can be seen in 4.22, this result
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(a) Turns Representation (b) Sheets Representation
Figure 4.5: Visualization of a fault in a single-layer reactor. The fault is highlighted by the red turn and
band.

Lbs =

8.338E − 05 2.204E − 06

2.204E − 06 1.535E − 07

 (4.22)

Zbs =

1.052E + 01 + j5.239 0 + j1.385E − 01

0 + j1.385E − 01 1.289E − 02 + j9.646E − 03

 (4.23)

Ibs =

7.997E − 02− j3.155E − 02

0− j3.881E − 01

 =

 8.597E − 02∠− 21.531◦

7.395E − 01∠− 148.345◦

 (4.24)

Lfb =

8.609E − 05 2.439E − 06

2.439E − 06 1.689E − 07

 (4.25)

Zfb =

1.052E + 01 + j5.409 0 + j1.532E − 01

0 + j1.532E − 01 1.289E − 02 + j1.061E − 02

 (4.26)

Ifb =

7.935E − 02− j3.088E − 02

0− j3.820E − 01

 =

 8.515E − 02∠− 21.265◦

7.815E − 01∠− 150.735◦

 (4.27)
When Compared to a physical test of a 41 turn reactor with turn 21 faulted, the result in the first

element, representing the current in the layer, it closly matches the result seen in physical testing, the
results of the testing can be found in appendix B.2. When compared to the prefault model from the
previous chapter: Ibs = 8.915 × 10−02∠ − 27.690◦ and Ifb = 8.900 × 10−02∠ − 27.876◦, the resulting
change due to the fault is minor, both methods show a change in current as ≈ 3.56% using the turn-
to-turn methods, and ≈ 4.33% from the sheets method. Considering the change in turns is 1, and the
fault is 1/40 = 2.5% of the total turns in the reactor, this appears to be a valid
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(a) Turns Depiction (b) Layers Depiction
Figure 4.6: Visualization of a ”Untuned” multilayer reactor model. The fault is highlighted by the red
turn and band.

Comparing the values of the current, in either method, we see there is approximately an order of
magnitude difference in the current between the prefault and faulted cases. The Python program to
simulate these tests can be found in appendix D.6.

4.5.2 Multiple Layer, Single Turn Fault

Starting with the 3-layer example model from the previous chapter, the innermost layer the example
fault from the previous section. The following section will demonstrate the modeling and analysis
method for a multi-layer reactor.

Equation 4.28 impedance matrix of the untuned prefault reactor.

Zut =


10.53 + j5.733 0 + j5.247 0 + j4.849

0 + j5.247 10.57 + j6.441 0 + j5.901

0 + j4.849 0 + j5.901 10.61 + j7.171

 (4.28)

Equation 4.29 is the prefault current vector for an untuned reactor.

Iut =


2.097E − 02− j2.630E − 02

1.602E − 02− j2.853E − 02

1.498E − 02− j2.861E − 02

 =


3.364E − 02∠− 51.432◦

3.272E − 02∠− 60.684◦

3.229E − 02∠− 62.370◦

 (4.29)

Equation 4.30 is the total current for the prefault untuned reactor.
Itotal ut = 5.1971E − 02− j8.3444E − 02 = 9.8305E − 02∠− 58.085◦ (4.30)

Equation 4.31 is the total impedance of the untuned reactor, prefault.
Ztotal ut = 3.5494 + j5.6989 = 6.7138∠58.085◦ (4.31)
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(a) Turns Depiction (b) Layers Depiction
Figure 4.7: Visualization of a ”Tuned” multilayer reactor model. The fault is highlighted by the red turn
and band.

Equation 4.32 is the impedance matrix of the untuned test reactor, with a fault on turn 21 of the
innermost layer, layer 1.

Zutf =


10.53 + j5.733 0 + j5.247 0 + j4.849 0 + j0.1398

0 + j5.247 10.57 + j6.441 0 + j5.901 0 + j0.1280

0 + j4.849 0 + j5.901 10.61 + j7.171 0 + j0.1183

0 + j0.1398 0 + j0.1280 0 + j0.1183 0.01289 + j3.410E − 3

 (4.32)

Equation 4.33 is the current vector of the untuned test reactor, here it can be seen that the fault
current is around 90◦ lagging the average layer current.

Iutf =


2.306E − 02− j2.012E − 02

1.917E − 02− j2.387E − 02

1.845E − 02− j2.486E − 02

0− j4.009E − 01

 =


3.060E − 02∠− 41.107◦

3.061E − 02∠− 51.235◦

3.096E − 02∠− 53.417◦

8.855E − 01∠− 153.080◦

 (4.33)

Itotal utf = 6.0683E − 02− j6.8857E − 02 = 9.1781E − 02∠− 48.611◦ (4.34)
Ztotal utf = 4.7545 + j5.3950 = 7.1910∠48.611◦ (4.35)

Equation 4.34 is the total current of the untuned test reactor, excluding the fault element Iutf . Com-
paring the faulted case, eqn. 4.34, to the prefault case, eqn. 3.15, the total current has decreased.
When looking at the total impedence of the test reactor, eqn. 4.35, shows that the total impedance of
the untuned test reactor has increased.

When the simulated values are compared to a physical test of prefault and faulted cases, we see
the fault behavior of the simulated model relativly accuratly captures the effects. Equation 4.36 shows
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the measured untuned prefault currents in the 3-Layer model reactor, and equation 4.37 shows the
measured untuned currents in the faulted 3-Layer model reactor.

Imeas. ut =


3.400E − 02∠− 42.25◦

3.200E − 02∠− 69.15◦

3.000E − 02∠− 66.03◦

 (4.36)

Imeas. utf =


3.200E − 02∠− 39.44◦

3.000E − 02∠− 52.55◦

3.000E − 02∠− 55.92◦

 (4.37)

It is worth mentioning that the physical test reactors were excited at 10kHz, which does have a non-
negligable amount of skin effect that the simulation doesn’t account for, and makes for part of the
difference between simulated and experimental values.

Now, to look into the case where the example reactor layers have been tuned for balanced currents:
Equation 4.38 is the prefault impedance matrix of the tuned test reactor.

Zt =


10.53 + j5.733 0 + j4.833 0 + j4.456

0 + j4.833 10.51 + j5.522 0 + j5.022

0 + j4.456 0 + j5.022 10.55 + j6.139

 (4.38)

Equation 4.39 current vector of the prefault tuned reactor.

It =


1.976E − 02− j2.703E − 02

1.879E − 02− j2.757E − 02

1.806E − 02− j2.779E − 02

 =


3.348E − 02∠− 53.833◦

3.337E − 02∠− 55.722◦

3.314E − 02∠− 56.986◦

 (4.39)

Equation 4.40 is the total current of the prefault tuned test reactor.
Itotal t = 5.6603E − 02− j8.2384E − 02 = 9.9955E − 02∠− 55.508◦ (4.40)

Equation 4.41 is the prefault total impedance, with the 10Ω resistors inserted in series with the
layer:

Ztotal t = 3.5125 + j5.1124 = 6.2028∠55.508◦ (4.41)

Ztuned f =


10.53 + j5.733 0 + j5.247 0 + j4.849 0 + j0.1398

0 + j5.247 10.57 + j6.441 0 + j5.901 0 + j0.1280

0 + j4.849 0 + j5.901 10.61 + j7.171 0 + j0.1183

0 + j0.1398 0 + j0.1280 0 + j0.1183 1.289E − 2 + j3.410E − 3

 (4.42)

Itf =


2.306E − 02− j2.012E − 02

1.917E − 02− j2.387E − 02

1.845E − 02− j2.486E − 02

0− j4.009E − 01

 =


3.060E − 02∠− 41.107◦

3.061E − 02∠− 51.235◦

3.096E − 02∠− 53.417◦

8.855E − 01∠− 153.080◦

 (4.43)
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Equation 4.44 is the total current of the faulted condition:

Itotal tf = 6.0683E − 02− j6.8857E − 02 = 9.1781E − 02∠− 48.611◦ (4.44)
Equation 4.45 is the total impedance of the test reactor with the shorted loop #21 of layer 0:

Ztotal tf = 4.7545 + j5.3950 = 7.1910∠48.611◦ (4.45)
As with the untuned variant of the physical test reactors, Equation 4.46 shows the tuned prefault

3-layer model reactor, and equation 4.47 is the faulted model reactor:

Imeas. t =


3.400E − 02∠− 49.87◦

3.400E − 02∠− 55.65◦

3.400E − 02∠− 60.91◦

 (4.46)

Imeas. tf =


3.400E − 02∠− 39.78◦

3.400E − 02∠− 50.24◦

3.400E − 02∠− 55.36◦

 (4.47)

The Python program to simulate these tests can also be found in appendix D.7. Oscilloscope
screencaptures for the measured results are provided in appendix B.1.
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Chapter 5

Fault Detection

Turn to turn faults in air core reactors are a common mode of failure, repeated high-voltage tran-
sients from switching the reactor into service and the mechanical stresses produced can degrade the
reactor insulation over time [2]. Modeling of turn-to-turn faults has been the primary goal of the
research presented.

There is a method presented in literature, [13] and [15], both articles use an approach based on the
relative angle between the zero and negative sequence current on the bus the reactors are connected.
The idea behind this approach is that as a faulted loop occurs, and progresses, The faulted turns will be
producing a flux counter to the primary flux generated by the reactor, which presents in the negative
and zero sequence currents in reference to the phase which it is connected [15]. The issue with turn
to turn faults is the high degree of sensitivity needed to detect fault.

Mohammad et. al. [13], propose a method for determining the presence of a turn-to-turn fault in
an ACR relying on the negative and zero sequence currents measured by a relay. Using the argument
of the negative and zero sequence currents, θ0 = arg(I0) and θ2 = arg(I2), the difference is used for
evaluating presence of a fault: ∆θ = θ0 − θ2. The zero sequence current argument, θ0, is used as a
reference, and when a turn-to-turn fault is present the negative sequence argument, θ2, will change
from being approximately the same as θ0 to where ∆θ = 120◦. Chowdhury et. al. [15], like Mohammad
et. al., uses the deviation in argument of the negative and zero sequence current.

The use of negative and zero sequence current looks to be a standard method of detecting turn-
to-turn faults. The work of Mohammad et. al. [13] and Chowdhury et. al. [15] rely on the symmetrical
components to determine the presence of the fault.

Although it would be impractical for production units, Nurminen’s thesis [8] presented a novel
method to evaluate the design of a reactor that could be applied to fault detection. The method
using optical fibers embedded within the reactor layers for temperature measurements and hotspot
detection. The change in refractive index can be calculated from the time it takes a light pulse to travel
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the length of the fiber. Hotspots can be detected with a combination of time and back scatter, to detect
the position of the hotspot. In the case of a turn-to-turn fault, the insulation and encapsulation would
degrade from excess heat prior to a fault, which would be seen as a hotspot. would provide sufficient
information to the operator to take action before a fault or potential fault becomes a larger issue.

The result of the work performed in the course of the modeling and fault analysis chapters shows
the ACR is relatively insensitive to a few, between 1 and 10 turns, faults. These observations are in-
line with the issues stated by Chowdhury et. al. [15]. As the effects of faults in ACRs is challenging
to detect using terminal measurements, aside from adding additional hardware to the system, there
isn’t a better method of detecting faults than those already in-use.
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Chapter 6

Computer Program

6.1 Introduction

The computer program used to construct a model of a reactor, and evaluate the fault behavior was
where a significant amount of time and effort went into for the duration of the research presented in
this document. The computer program evolved from a computation intense loop to loop method, to a
more efficient method through the application of Fawzi and Burke’s 1978 paper. This chapter will look
at the general practices and optimizations used in the development of the computer program during
the course of the research. Starting with thee loop to loop implementation and thee techniques used
to reduce compute time,Going to the more competition efficient thin sheets method and how that
method is used to design, or tune, reactors to achieve a desired pre-fault state.

6.2 Loop to Loop Implementation

Initially the computer program to evaluate air core reactors and faults use an object oriented
approach. With an object class for layer elements, packages, and reactor objects, the use of object
or intend programming seemed necessary to manages the process and data in concise ways color
by packaging methods with data the mutual inductance between layer objects which would form
packages. Because the mutual between every turn and every other turn and the reactor was necessary,
it made the object oriented approach convenient. Also due to the number of mutuals that needed
to be computed, a multithreaded computation method was necessary to leverage modern multicore
compute power primarily to reduce the amount of time it took to calculate the mutual inductance
between all the terms and the reactor, for since the processes used were O(N2). Once the more
computationally efficient method by Fawzi and Burke was implemented it made the object oriented
approach unnecessary Because the amount of data and computation was significantly reduced. This
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Figure 6.1: The behavior used to calculate mutual inductance of a layer once, due to regular spacing
of turns.

eliminated the complexity of the object oriented approach, and eliminated the need for multithreaded
programming which was prone to memory weeks and allocation errors which would hold the evaluation
effort and cause the program to crash.

Initially the project started using individual turns as the lowest level object, this approach led to
a hierarchy of objects with the lowest level being a turn continuing onto groups of turns as layers
which were turns connected in series, and packages consisting of multiple layers in parallel. This
object oriented approach was highly granular where turns could be added and removed from layers
relatively easily recompute the total inductance of the reactor,

The mutual inductance between turns in a layer can be evaluated in O(N) time, assuming turns
are of the same radius and distributed over a regular interval. With the assumption of a regular and
consistent turn pitch, the mutual inductance can be calculated once, and the resultant values can be
re-used for turns that are of the same distance apart. Figure 6.1 illustrates the reasoning behind the
process, the mutual links are evaluated from turn 1 to each turn 2, 3, ..., (N − 1), N . Then, evaluate
the mutual inductance between turn 2 and turns 3, ..., (N − 1), N , the mutuals become: M2,3 = M1,2,
M2,4 = M1,3, ..., M2,(N−1) = M1,(N−2), M2,N = M1,(N−1), where M1,2→N were evaluated on the first
pass. The mutual M2,1 is the same as the mutual M2,3 when the regularity assumption is applied, and
both M2,1, M2,3 =M1,2.

Because all the turns in a single layer shared the same current superposition could be used to
consolidate values of the layers. Layers place into a package will not have the same current magnitude
so superposition cannot be used to simplify that element. The entire react you be represented by a
square matrix whose dimensions are driven by the number of layers in the reactor total.

As layers are placed in parallel and packages who position could not be used as we cannot assume
the same current magnitude in every layer of the package. So when forming the matrix to represent
the reactor model there would be a single element for every layer in every package. And because every
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layer in the package consisted at the same number of turns, the only thing that changed between layers
is the radius of the layer and since the Biot-Savart law, and specifically the Newman integral is highly
sensitive to the area enclosed by the current filament ( i.e. the turns). This means that the mutual
and self terms of the submatrix that represents the package would all be very similar. That means the
submatrix representing to package would be close to singular, and as discussed in a previous section
the condition number of that matrix would be large, so we would have high error when inverting the
matrix. this poor conditioning can be extended out to the larger matrix, and since the condition number
is the ratio of the largest eigen value over the smallest, the lower bound on error when inverted the
matrix for the entire reactor would be large.

The procedure for implementing a fault in one of these reactors, which is described by components,
is to remove the turn and any mutual between the faulted turn from every element of the reactor. Then
compose a new element for the reactor which consists of that single faulted turn and every layer
element within that matrix. This would add a new row and column to the reactor model, whose self
element would be the self inductance of the turn and the flux internal to that turn, and the of diagonal
elements would be the mutual between the faulted turn and the layer, for every layer in the reactor.

This approach to computation preserved the values already computed for the prefault case, since
the only element that changed was that turn. And since the turn that was faulted in the prefault case
is physically located in the same space the values could simply be copied over to the new element
representing that fault.

Begin

Calc. Self Inductance:
Linternal + Lself

Calc turn-to-turn Mut.
Ml0:m (2:Nm)

Calc layer-to-layer Mut.
M(l0 (1:N0)):(lm (1:Nm))

Finish

Figure 6.2: Turn-to-Turn Reactor Model Calculation, N : Number of Turns, m: Number of Layers in the
Reactor
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The drawback to this approach is that it was computationally intense to solve. Since the mutual

had to be computed from every turn to every other, turn this approach required an N2 time to solve.
The advantage to this approach is that we have extreme granularity and we can pick and choose what
we want to change and when we can do it on the fly the initial computation time and effort can be
preserved.

To compute the inductance value of a layer ”object” the main thing to remember is the symmetry
of the flux linkages. This symmetry means that we can effectively halve our computation effort,
when computing the self inductance of a layer used the torch turn method because the linkages are
symmetrical we don’t need to calculates the inductance going backwards, that is, we don’t need to
calculate inductions going towards the zero index, we only need to calculate the inductance towards
the nth index. Was we had the inductance for each value from the zero to the end index it is a trivial
operation to simply double it to represent going from the nth index to the zeroth index. A similar
principle to this applies when computing the mutual between turns in different layers, where the
different layers have different current values flowing through them, where we only need to calculate
the mutual inductance from a layer a to a layer b and those values can be reflected (mirrored) on
layer b. A nice mental visualization of this would be something like a slighting scale on set of er near
calipers, the inductance in a lair is only dependent on its for total distance (assuming the coupled
loops are coaxial).

6.3 Sheets Implementation

Begin

Calc. Self Inductance:
L(R,N,H)

Calc. layer-to-layer
Mut.

M(l0 (1:N0)):(lm (1:Nm))

Finish

Figure 6.3: Thin-Sheets and Cylindrical-Shells Reactor Model Calculation, N : Number of Turns, m:
Number of Layers in the Reactor
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The sheet’s method as described by Fawzi and Burke’s 1978 publication is an extrapolation of the

Neumann Integral which generally lumps the parameters from the turn to turn method into a single
unit known as a sheet. Implementing this method greatly reduces the time to compute the inductance
of a series of turns, and the mutual inductance between series of turns. This method of simplifying
a series of turns as a sheet makes the smallest element of a reactor a layer or package instead of a
turn, as with the turned to turn method. This method greatly simplifies the reactor in terms of data
structures, and reducing the time it takes to compute elements of the structure.

The computation time used to calculate the inductance values of an air corrector using deter to
turn method verses the sheets method is still on the order of O(N2), with N being the number of
elements in the reactor. But with N ≈ 10 in this case, rather than N ≈ 104 for the turn-to-turn
method. Evaluating the Newman integral takes up the majority of the computation time, rather than
having to evaluate N2

turns integrals per layer / package, the four integrals of the Ci function per layer
/ package requires considerably less time to complete.

The method of valuating fault effects follows the same principles as the turn to turn method of
faults, but there is a difference in that we don’t have individual turns to evaluate. Instead the space in
which the fault occupies is evaluated using the turns density of the layer that it is contained within and
the equivalent height for the number of turns involved in the fault. This procedure will effectively create
another cylindrical shell / sheet and its self and mutual contributions represent the self an mutual
contributions of the fault to the rest of the reactor. This contribution is subtracted from the diagonal
element representing the layer that the fault occurs in as well as its mutual contribution to that layer,
this contribution will be also subtracted from the mutuals to other layers in the reactor. When the
mutuals are placed on the outer row and column these values represent the mutual contributions of
the fault to the rest the reactor, and the self of the fault is added to theN+1th place of the perturbation
matrix.

6.4 Tuning Components For Balance

The process of tuning, more generally referred to as design, of the reactors took an iterative
approach. There are two algorithms developed to tune the reactor, both algorithms seek approximately
the same current magnitude distributed evenly across layers, and require all currents be flowing in
roughly the same direction, i.e. the argument of the current phasor be approximately equal. The thin
sheets reactor is a relatively straightforward implementation, but the finite thickens reactor has a few
extra steps, as there are more parameters to tune. Both methods assume that the diameters of the
lairs or packages have already been determined, and these methods are changing either the turns or
package thickness to achieve a desired result.
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6.4.1 Tuning a Thin-Sheets Reactor

Tuning the thin-sheets reactor is a time consuming process due to the number of elements in the
reactor model. The method discussed here will focus on optimizing the number of turns to achieve a
current phase angle on every layer that are approximately the same, to put another way we want all the
layer currents to have approximately the same phase angle. The process is described in the flowchart
shown in figure 6.4. Assuming the layer radii r and heights (h) are known, an initial guess as to the
number of turns for each layer is given N , and the desired thevenin equivalent resistance the reactor
would exhibit if measured across the terminals with all letters connected in parallel. To save time,
the matrix representing the influence of the geometric parameters, Ḡ (equation 2.24), is calculated
since these values are assumed not change. The matrix representing the influence of the turns, N̄
(equation 2.23), can be evaluated for each iteration of turns without the need to evaluate the integrals
that make the elements of the geometry matrix. The inductance matrix, L̄, is then calculated as the
scaled Hadamard product of the turns and geometry matrix (equation 2.22) The resistance of each
layer is calculated to be proportional to the number of turns so that the final DC thevenin in resistance
is the same as the desired input RT , knowing that the DC resistance of each layer is proportional to
the number of turns in that layer: Rk ∝ Nk.
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Start

Parameters
N ,r,h,RT

Compute
Inductance
Ḡ(r, h),N̄(N)

L̄ = N̄ ◦ Ḡ

Compute
Resistance
Rn ∝ Nn

Based on RT

Z̄ = R̄ + jωL̄

I⃗ = Z̄−1 · V⃗

arg(I⃗n) ≈ 89.9◦

Success
Turns are Good

End

Turns Adjustment

yes

no

Figure 6.4: Tuning turns for a thin-sheets reactor model
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Begin arg(I⃗n) > 88◦?

arg(I⃗n) < 89.9◦?

arg(I⃗n) > 0?,
n < M?

Nn + 1

Nn − 1

Nn+1 − 1 Finish

no

no

yes

yes

yes

Figure 6.5: Turns Adjustment Subprocess

6.4.2 Tuning a Cylindrical-Shell Reactor

Tuning the finite-thickness, or cylindrical-shell reactor is similar to the process of tuning the turn
counts of a thin sheets reactor. The primary difference in this case is that we’re taking the result of the
thin sheets reactor tuning process, and from there we will add thickness to the reactor elements using
the same principles of minimizing circulating currents. If necessary a turns tuning process can be
performed after the thickness has been determined, to further reduce circulating currents if needed.
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Start

Parameters
N ,r,h,RT

Compute
Inductance
Ḡ(r, h),N̄(N)

L̄ = N̄ ◦ Ḡ

Compute
Resistance
Rn ∝ Nn

Based on RT

Z̄ = R̄ + jωL̄

I⃗ = Z̄−1 · V⃗

arg(I⃗n) ≈ 89.9◦

Success
Turns are Good

End

Thickness
Adjustment

yes

no

Figure 6.6: Tuning turns and thickness for a finite-thickness reactor model



53

Begin arg(I⃗n) > 88◦?

arg(I⃗n) < 89.9◦?

arg(I⃗n) > 0?,
n < M?

tn + 1%

tn − 1%

tn+1 − 1% Finish

no

no

yes

yes

yes

Figure 6.7: Thickness Adjustment Subprocess
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Chapter 7

Results

7.1 Introduction

This chapter discusses the results of the simulation, which is the culmination of the work in this
thesis. Here we will discuss the reactor model, which is the result of the iterative designed process
discussed in previous chapters, and will be used in the fault analysis. A number of fault conditions will
be discussed, starting with single turns, and how the location of those turns effects the reactor’s be-
havior. And then we will discuss multiple faults, clustering as though a single turn fault has progressed
to a multi turn fault through the breakdown of insulation and encapsulation media.

7.2 Reactor Modeling

The design of a reactor is a challenging, but critical step. In the development of the reactor
modeling process, the ideal reactor would have currents of varying magnitudes, with each layer having
the same X/R ratio. The goal in reactor design is to minimize the circulating currents between layers
in the reactor. The tuning of a reactor design is achieved by varying the turn counts and conductor
diameters. Varying the turn count will adjust the inductance values, and the layer resistnace. Changing
the conductor diameter will vary the resistance of the layer with little impact on the inductance.
Practically, the manuacturer of the reactor will have a specified set of conductors to wind the layers
to balance the reactor layer currents.

For the models devoloped for the purpose of fault analysis, the design wasn’t perfect, there are
small circulating currents in the layers, further refinements could be achieved by adjusting the layer
resisntance values. The design of the model reactor achieved a minimized set of circulating currents,
which will be sufficient for the purtposes of evaluating faults. Effects of faults are measured as the
change in model reactor current as would be measured at the reactor terminals, with the phasor
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Package 1 2 3 4 5 6 7 8 9 10
package turns 1327 1187 1093 1029 985 956 938 929 928 935
average radius [m] 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
package height [m] 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1

Table 7.1: Cylindrical Sheet modeled Reactor Parameters, with package 1 being the innermost , and
10 being the outermost

reference being the excitation voltage at an angle of 0◦.

7.3 Reactor Model

The result of tuning a reactor to minimize circulating currents using the cylindrical sheets modeling
method, with parameters listed in table 7.1. The vector provided in Eqn. 7.2 is the relatively balanced
current vector for a reactor of 10 packages represented as cylindrical sheets, with the resistances
being massaged to approximate what they would be if calculated using the conductor diameter and
number of turns so that the resistances measured at the terminal are similar to that provided in the
testing reports of the reactor being modeled. The summing of the current vector, as in Eqn. 7.3, gives
the total current of the device as if measured at the terminals, with Eqn. 7.4 being the total impedance
of the reactor as if measured across the terminals.

L =



0.916 0.803 0.726 0.672 0.632 0.603 0.582 0.567 0.557 0.552

0.803 0.831 0.750 0.693 0.652 0.622 0.600 0.584 0.574 0.569

0.726 0.750 0.792 0.731 0.687 0.655 0.632 0.615 0.604 0.599

0.672 0.693 0.731 0.783 0.735 0.700 0.675 0.657 0.645 0.639

0.632 0.652 0.687 0.735 0.795 0.757 0.729 0.709 0.696 0.689

0.603 0.622 0.655 0.700 0.757 0.824 0.793 0.771 0.757 0.749

0.582 0.600 0.632 0.675 0.729 0.793 0.869 0.844 0.828 0.820

0.567 0.584 0.615 0.657 0.709 0.771 0.844 0.929 0.911 0.901

0.557 0.574 0.604 0.645 0.696 0.757 0.828 0.911 1.006 0.994

0.552 0.569 0.599 0.639 0.689 0.749 0.820 0.901 0.994 1.104



(7.1)
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I =



1.040E − 05− j6.064E − 04

2.738E − 06− j5.571E − 04

7.349E − 06− j5.127E − 04

−1.051E − 06− j4.430E − 04

4.124E − 06− j3.904E − 04

−2.826E − 06− j3.238E − 04

−2.134E − 06− j2.758E − 04

−2.455E − 06− j2.411E − 04

−2.132E − 06− j2.208E − 04

−1.028E − 06− j2.138E − 04



=



6.065E − 04∠− 89.017◦

5.571E − 04∠− 89.718◦

5.127E − 04∠− 89.179◦

4.430E − 04∠− 90.136◦

3.905E − 04∠− 89.395◦

3.238E − 04∠− 90.500◦

2.758E − 04∠− 90.443◦

2.411E − 04∠− 90.583◦

2.208E − 04∠− 90.553◦

2.138E − 04∠− 90.275◦



(7.2)

IT = 1.299E − 05− j3.785E − 03 = 3.785E − 03∠− 89.803◦ (7.3)

ZT = 9.065E − 01 + j2.642E + 02 = 2.642E + 02∠89.803◦ (7.4)
Looking at the coupling coefficient matrix, Eqn. 7.5, for the model reactor inductance matrix in Eqn.

7.6. We see there is high coupling between adjacent layers, with the coupling only dropping below 75%

after the 4th element from the diagonal. This ”tight coupling” between the reactor elements shows
one of the reasons why reactor design before

K =



1.000 0.921 0.853 0.793 0.741 0.694 0.652 0.614 0.580 0.549

0.921 1.000 0.925 0.860 0.802 0.752 0.706 0.665 0.628 0.594

0.853 0.925 1.000 0.929 0.866 0.811 0.761 0.717 0.677 0.640

0.793 0.860 0.929 1.000 0.932 0.872 0.818 0.770 0.727 0.688

0.741 0.802 0.866 0.932 1.000 0.935 0.877 0.825 0.778 0.736

0.694 0.752 0.811 0.872 0.935 1.000 0.937 0.881 0.831 0.786

0.652 0.706 0.761 0.818 0.877 0.937 1.000 0.939 0.885 0.837

0.614 0.665 0.717 0.770 0.825 0.881 0.939 1.000 0.942 0.889

0.580 0.628 0.677 0.727 0.778 0.831 0.885 0.942 1.000 0.944

0.549 0.594 0.640 0.688 0.736 0.786 0.837 0.889 0.944 1.000



(7.5)

7.3.1 Single Faulted Turn

As discussed in the faults modeling section, the faulted reactor is modeled using a perturbed matrix
to represent the loss of a turn due to the fault.

In the results below, Eqn. 7.7 and Eqn. 7.8 are the prefault current values, the reactor has a fault
placed at the center of the 1st (innermost) package, Comparing them to the results in Eqn. 7.10 and
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Eqn. 7.11, we can see a change in the real component of the 1st element of the current vector, but
no impact on the other elements, and an imperceptible change in total current: prefault Eqn. 7.8 vs
faulted Eqn. 7.11. Appendix C contains more iterations, where the fault is moved around each layer
and effects are calculated.

Equation 7.6 is the prefault reactor inductance matrix, with the

L =



0.916 0.803 0.726 0.672 0.632 0.603 0.582 0.567 0.557 0.552

0.803 0.831 0.750 0.693 0.652 0.622 0.600 0.584 0.574 0.569

0.726 0.750 0.792 0.731 0.687 0.655 0.632 0.615 0.604 0.599

0.672 0.693 0.731 0.783 0.735 0.700 0.675 0.657 0.645 0.639

0.632 0.652 0.687 0.735 0.795 0.757 0.729 0.709 0.696 0.689

0.603 0.622 0.655 0.700 0.757 0.824 0.793 0.771 0.757 0.749

0.582 0.600 0.632 0.675 0.729 0.793 0.869 0.844 0.828 0.820

0.567 0.584 0.615 0.657 0.709 0.771 0.844 0.929 0.911 0.901

0.557 0.574 0.604 0.645 0.696 0.757 0.828 0.911 1.006 0.994

0.552 0.569 0.599 0.639 0.689 0.749 0.820 0.901 0.994 1.104



(7.6)

I =



3.615E + 01∠− 89.733◦

3.304E + 01∠− 90.028◦

3.064E + 01∠− 89.926◦

2.621E + 01∠− 90.080◦

2.337E + 01∠− 89.940◦

1.918E + 01∠− 90.096◦

1.642E + 01∠− 90.054◦

1.434E + 01∠− 90.072◦

1.313E + 01∠− 90.067◦

1.273E + 01∠− 90.020◦



(7.7)

IT = 9.404E − 02− j2.252E + 02 = 2.252E + 02∠− 89.976◦ (7.8)

ZT = 1.854E − 06 + j4.440E − 03 = 4.440E − 03∠89.976◦ (7.9)
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Ip =



3.615E + 01∠− 89.732◦

3.304E + 01∠− 90.029◦

3.064E + 01∠− 89.926◦

2.621E + 01∠− 90.080◦

2.337E + 01∠− 89.940◦

1.918E + 01∠− 90.096◦

1.642E + 01∠− 90.054◦

1.434E + 01∠− 90.072◦

1.313E + 01∠− 90.067◦

1.273E + 01∠− 90.020◦

4.346E + 01∠− 179.961◦



(7.10)

IpT = 9.409E − 02− j2.252E + 02 = 2.252E + 02∠− 89.976◦ (7.11)

ZpT = 1.855E − 06 + j4.440E − 03 = 4.440E − 03∠89.976◦ (7.12)
With the fault occurring in the first layer of the reaactor, we see a minor change in magnitude the

faulted current vector, Eqn. 7.10, and the prefault vector Eqn. 7.7. There is a significant current in the
faulted turn, shown in the 11th element of Eqn. 7.10, the resistance of the faulted turn is 8.732×10−4Ω,
so the power dissipated by the turn is only around 1.5 [W ] and as seen in the difference in the total
current Eqn. 7.11, there is (practically) no noticeable change in either the magnitude or the phase
angle.

7.3.2 Single Fault Position in a Model Reactor

Depending where the fault occurs in the reactor layer will have a different impact on the change in
current. With 7.13 being the total current for prefault conditions, the greatest impact on the change
in current is when the fault occurs in the center (fz = 0) of the layer, as seen in Eqn. 7.15. It can be
seen that the effects of the fault being at the top Eqn. 7.16 or the bottom Eqn. 7.14 of the reactor
(fz = ±0.5) is the same. moving the fault from the innermost Eqn. 7.15 to the outermost Eqn. 7.17
layer, likewise has a greater impact, since the faulted loop will have a greater self-inductance, and will
link more flux in it’s enclosed surface area.

Equation 7.13 is the total current for prefault conditions:
Ipre F = 0.09404491− j225.21319038 = 225.21321001∠− 89.976◦ (7.13)

Equation 7.14 is the total current for fault at −0.5 [m] of reactor layer height (bottom), in layer 0
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(innermost):

IpT 0,fz=−0.5 = 1.86279697− j229.97717007 = 229.98471420∠− 89.536◦ (7.14)
Equation 7.15 is the total current for fault at 0 [m] of reactor layer height (middle), in layer 0:

IpT 0,fz=0 = 6.90653399− j242.15712227 = 242.25559246∠− 88.366◦ (7.15)
Equation 7.16 is the total current for fault at 0.5 [m] of reactor layer height (top), in layer 0:

IpT 0,fz=0.5 = 1.86279697− j229.97717007 = 229.98471420∠− 89.536◦ (7.16)
Equation 7.17 is total current for fault at 0 [m] of reactor layer height, in layer 9 (outermost):

IpT 9,fz=0 = 6.15407727− j249.13961819 = 249.21561352∠− 88.585◦ (7.17)
The effect of fault locations for each layer of the model reactor can be found in appendix C.1.

7.3.3 Multiple faulted turns

Continuing with a selection of faults on the model reactor described in table 7.1, looking at the
total current of the model reactor, with varying numbers of faulted turns, we can get a feel for how
many faults it takes to see any noticeable change at the terminals: The results in Eqn. C.32 through
Eqn. C.38 show the effects of sequential faults, i.e. one on-top of the other as though a more loops
are getting shorted die to thermal breakdown on insulation. We can see there is a negligible difference
going from 2 faults to 4 has a negligible impact on the total current, with the imaginary part of the
total current not seeing a change until 6 turns are faulted.

Figure 7.1

Equation C.32 is the total current for 2 faults in layer 0:
IpT 0,nf=2 = 4.82852335− j246.24253931 = 246.28987556∠− 88.877◦ (7.18)



60
Equation C.33 is the total current for 10 faults in layer 0:

IpT 0,nf=10 = 2.40648604− j256.77246058 = 256.78373720∠− 89.463◦ (7.19)
Equation C.34 is the total current for 20 faults in layer 0:

IpT 0,nf=20 = 2.03295420− j264.65137104 = 264.65917913∠− 89.560◦ (7.20)
Equation C.35 is the total current for 40 faults in layer 0:

IpT 0,nf=40 = 1.94022750− j277.96406199 = 277.97083343∠− 89.600◦ (7.21)
Equation C.36 is the total current for 100 faults in layer 0:

IpT 0,nf=100 = 2.56847638− j319.50374981 = 319.51407358∠− 89.539◦ (7.22)
Equation C.37 is the total current for 150 faults in layer 0:

IpT 0,nf=150 = 3.62243974− j363.82962825 = 363.84766106∠− 89.430◦ (7.23)
Equation C.38 is the total current for 200 faults in layer 0:

IpT 0,nf=200 = 5.35972542− j423.66196115 = 423.69586260∠− 89.275◦ (7.24)
See appendix C.2 for the fault progressions in each layer other than 0 (the innermost).
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Chapter 8

Summary, Conclusions, and Future

Work

This chapter presents the summary of the thesis, conclusions drawn from the research and results,
and future work needed to produce useful insights into ACRs.

8.1 Summary

This thesis is the summary of the theory and methods used to model prefault and faulted reactors.
Developed performance metrics, and defined a ”well behaved” reactor as one with unequal currents,
but approximately in-phase, to minimize circulating currents. The method of describing faults is
intuitive, with an analogy to explain the behavior of a fault. The method developed to evaluate the
effects of faults in air-core reactors is an intuitive and computationally efficient method to evaluate
the changes in the reactor die to the fault. Finally, the results presenting the effects of faults in a
model similar to a physical air-core reactor show the effects of faults aren’t practically observable,
and doesn’t present a method of reactor protection.

8.2 Conclusions

As a result of the work performed, and the experience gained through the course of the research,
this section presents conclusions regarding the modeling and design of ACRs. With the small-scale
reactor designs used to test the effectiveness of the reactor and fault modeling methods, there are
questions regarding the influence of capacitance in models as layer turn counts increase to around
1000 turns or more.
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Reactors are challenging to design, Improper turns in layers will cause circulating currents, causing

large losses. The heat from large losses will degrade the insulation and encapsulation material. The
optimization of the geometry, turn count, and package layer count to minimize circulating currents
and unnecessary heating Because reactors are relatively simple devices to build, manufacturers keep
details such as turn counts and layer radii to themselves in order to protect their investments. However,
as demonstrated in the modeling of faults in reactor models similar to those deployed in industry, a
reactor in a faulted state is difficult to detect until the fault has progressed to a significant number of
turns.

The most likely fault to occur is between turns in series, that have a large ∆V compared to those
turns in parallel layers. In the event of a turn-to-turn fault, the best case scenario is the connection
opening up immediately due to the heat from the current in the closed loop The detection of a small
number of faults before it progresses too far is practically impossible when the only inputs to the
detection algorithm are measurements from the terminals of the reactor.

8.3 Future Work

The methods and results presented in this thesis are first-steps to thoroughly understanding the
effects of faults in ACRs. More physical testing and comparisons to simulations are required to deter-
mine the effects of faults in larger models.

A shortcoming of the modeling methods used in this thesis is the purely inductive modeling method,
where the turn-to-turn, layer-to-layer, and reactor-to-ground capacitance was ignored. Implementing
a capacitance model that can be super-imposed on either the impedance matrix, or a separate analysis
technique applied as a correction factor to the current vector.

The design of the reactor, i.e. the ”tuning”, is necessary to minimize losses from circulating cur-
rents. Determine more computationally efficient method of designing a reactor, or develop a minimally
iterative approach.

Explore thermal optimization to minimize losses, and methods to balance the mass of the reactor
with minimal losses to reduce material requirements. Thermal optimization methods are presented by
Yuan et. al. [9]. But, the use of finite-element modeling software limits the use of the methods with
the modeling methods presented in this thesis.

The work presented was performed with the goal of understanding the effects of turn-to-turn faults,
cross-layer faults were ignored due to a high-level analysis performed that determined the effects of
a cross-layer fault would be either negligible, or the result of a more serious turn-to-turn fault. Due to
the difference in voltage across layers being relatively low, and based on the fault cases described by
Mohammad et. al. in [13], the primary focus of this work was turn-to-turn faults. To properly model the
effects of cross-layer faults would require a robust method of modeling the different network topology
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possibilities, which would lend itself to the problem of a fault that propagates, or cascades through the
package. Greater knowledge of the materials used in the construction of reactors, and the occurrence
of insulation or encapsulation defects would be needed to adequately tackle those problems.
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Appendix A

Derivations

Flux internal to a cylindrical conductor

This appendix section is the development of equation 2.11. The result is an approximation of the
internal wire (cylindrical conductor) inductance for a given loop of wire, where the radius of the wire
is significantly larger than the wire: rwire << rloop.
Permeability of free space: µ0 = 4π × 10−7 ≈ 1.257× 10−6

Ampere’s Law describing the magnetic filed inside a conductor: Bint(rx) =
µ0 I

2πr2wire

The fraction of the flux linked by a current: πr2x
πr2wire

da = (rloop + rx)dθ drx (A.1)

ψinternal =

∫ rloop−rwire

rx=0

∫ 2π

θ=0

(
πr2x
πr2wire

)
Bint(rx)(rloop + rx) dθ drx (A.2)

rloop is the distance from the origin to the center of the conductor.
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ψinternal =

∫ rloop−rwire

rx=0

∫ 2π

θ=0

(
πr2x
πr2wire

)(
µ0 I

2πr2wire

)
(rloop + rx) dθ drx

=

∫ rloop−rwire

rx=0

(
πr2x
πr2wire

)(
µ0 I

2πr2wire

)
(rloop + rx) drx

∫ 2π

θ=0

1 dθ

= 2π

∫ rloop−rwire

rx=0

(
r2x
r2wire

)(
µ0 I

2πr2wire

)
(rloop + rx) drx

=
2π µ0 I

2π r4wire

∫ rwire

rx=0

r3x

(
rloop + rx

)
drx

=
µ0 I

r4wire

∫ rwire

rx=0

(
r3x rloop + r4x

)
drx

=
µ0 I

r4wire

(
r4wire
4

rloop +
r5wire
5

)
= µ0 I

(
rloop
4

+
rwire
5

)

(A.3)

Now, using the identity L = ψ/I;

Linternal = µ0

(
rloop
4

+
rwire
5

)
(A.4)
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Appendix B

Testing Designs

The information in this appendix are the oscilloscope screen captures from the testing of the small-
scale test reactors.

B.1 Testing Data

In this section are the Oscilloscope screen captures of the reactor modules and assembled reactors
in normal and faulted condition. Channel 3, the blue curve, is the terminal excitation voltage Vterm.
Channel 4, the green curve is the measured voltage across the current sensing resistor Ri.
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B.1.1 Faulted Turn in Isolation

Prefault and faulted innermost module measurements outside of assembled test reactor:

Figure B.1: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series.
|Vpk−pk| = 1.06V , f = 10kHz, |Ipk−pk| = 78.0mA, ΦV−I = 27.29◦

Figure B.2: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series,
with Turn 21 shorted. |Vpk−pk| = 1.06V , f = 10kHz, |Ipk−pk| = 78.0mA, ΦV−I = 21.02◦
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B.1.2 Improperly Tuned Reactor Assembly

Prefault reactor assembly with all elements having 41 turns:

Figure B.3: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series.
|Vpk−pk| = 660mV , f = 10kHz, |Ipk−pk| = 34.0mA, ΦV−I = 42.25◦

Figure B.4: 41 Turn, 54mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series.
|Vpk−pk| = 660mV , f = 10kHz, |Ipk−pk| = 32.0mA, ΦV−I = 69.15◦
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Figure B.5: 41 Turn, 58mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series.
|Vpk−pk| = 700mV , f = 10kHz, |Ipk−pk| = 30.0mA, ΦV−I = 66.03◦

B.1.3 Improperly Tuned Reactor Assembly with a Fault

Faulted reactor assembly with all elements having 41 turns, and a fault in package 1 (innermost)
on turn 21:

Figure B.6: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series.
|Vpk−pk| = 660mV , f = 10kHz, |Ipk−pk| = 32.0mA, ΦV−I = 39.44◦
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Figure B.7: 41 Turn, 54mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series.|Vpk−pk| = 680mV , f = 10kHz, |Ipk−pk| = 30.0mA, ΦV−I = 52.55◦

Figure B.8: 41 Turn, 58mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series.
|Vpk−pk| = 680mV , f = 10kHz, |Ipk−pk| = 30.0mA, ΦV−I = 55.92◦
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B.1.4 Tuned Reactor Assembly

Prefault ”Tuned” reactor:

Figure B.9: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-series.
|Vpk−pk| = 620mV , f = 10kHz, |Ipk−pk| = 34.0mA, ΦV−I = 49.87◦

Figure B.10: 37 Turn, 54mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series. |Vpk−pk| = 620mV , f = 10kHz, |Ipk−pk| = 34.0mA, ΦV−I = 55.65◦
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Figure B.11: 37 Turn, 58mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series. |Vpk−pk| = 620mV , f = 10kHz, |Ipk−pk| = 34.0mA, ΦV−I = 60.91◦

B.1.5 Tuned Reactor Assembly with a Fault

Faulted ”Tuned” Reactor, with fault on turn 21 of the package 1 (innermost).

Figure B.12: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series, turn 21 shorted. |Vpk−pk| = 620mV , f = 10kHz, |Ipk−pk| = 34.0mA, ΦV−I = 39.78◦
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Figure B.13: 37 Turn, 54mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series. |Vpk−pk| = 600mV , f = 10kHz, |Ipk−pk| = 34.0mA, ΦV−I = 52.24◦

Figure B.14: 37 Turn, 58mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series. |Vpk−pk| = 620mV , f = 10kHz, |Ipk−pk| = 34.0mA, ΦV−I = 55.36◦
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B.1.6 Second Test Core used in Tuned Reactor

Second test core used for the ”Tuned” tests, this unit is wound counter-clockwise, where the non-
tuned core is wound clockwise and is non-optimal.

Figure B.15: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series. |Vpk−pk| = 1.06V , f = 10kHz, |Ipk−pk| = 78.0mA, ΦV−I = 27.67◦

Figure B.16: 41 Turn, 50mm diameter, Test Reactor Module with 10Ω Current-Sensing Resistor in-
series, with turn 21 shorted. |Vpk−pk| = 1.06V , f = 10kHz, |Ipk−pk| = 78.0mA, ΦV−I = 22.32◦
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Appendix C

Extended Results

The sections following are extended results that can be referenced, looking at the the

C.1 Simple Behavior due to a Fault

This section presents extended results detailing the effects of a single turn fault, and how the fault
effect will vary with the layer, and the position of the fault within that layer.

Current vectors here are described in the format: Ipf ¡fault layer¿ ¡vertical position¿. With fault layer being
the layer in which the fault occurs, and vertical position being the position on the layer, top or bottom
are at 95% of the height. and center is at 50% of the layer height.

Equation C.1 total current for prefault conditions.
Ipre F = 0.09404491− j225.21319038 = 225.21321001∠− 89.976◦ (C.1)

Equation C.2 total current for fault at -0.5 of reactor layer height, in layer 0.
IpT 0,fz=−0.5 = 1.86279697− j229.97717007 = 229.98471420∠− 89.536◦ (C.2)

Equation C.3 total current for fault at 0 of reactor layer height, in layer 0.
IpT 0,fz=0 = 6.90653399− j242.15712227 = 242.25559246∠− 88.366◦ (C.3)

Equation C.4 total current for fault at 0.5 of reactor layer height, in layer 0.
IpT 0,fz=0.5 = 1.86279697− j229.97717007 = 229.98471420∠− 89.536◦ (C.4)

Equation C.5 total current for fault at -0.5 of reactor layer height, in layer 1.
IpT 1,fz=−0.5 = 2.07797265− j230.88984468 = 230.89919521∠− 89.484◦ (C.5)
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Equation C.6 total current for fault at 0 of reactor layer height, in layer 1.

IpT 1,fz=0 = 7.80868429− j245.49622512 = 245.62038209∠− 88.178◦ (C.6)
Equation C.7 total current for fault at 0.5 of reactor layer height, in layer 1.

IpT 1,fz=0.5 = 2.07797265− j230.88984468 = 230.89919521∠− 89.484◦ (C.7)
Equation C.8 total current for fault at -0.5 of reactor layer height, in layer 2.

IpT 2,fz=−0.5 = 2.20710496− j231.62962077 = 231.64013584∠− 89.454◦ (C.8)
Equation C.9 total current for fault at 0 of reactor layer height, in layer 2.

IpT 2,fz=0 = 8.35884144− j248.16679746 = 248.30753028∠− 88.071◦ (C.9)
Equation C.10 total current for fault at 0.5 of reactor layer height, in layer 2.

IpT 2,fz=0.5 = 2.20710496− j231.62962077 = 231.64013584∠− 89.454◦ (C.10)
Equation C.11 total current for fault at -0.5 of reactor layer height, in layer 3.

IpT 3,fz=−0.5 = 2.25746609− j232.17550506 = 232.18647959∠− 89.443◦ (C.11)
Equation C.12 total current for fault at 0 of reactor layer height, in layer 3.

IpT 3,fz=0 = 8.57978778− j250.08596405 = 250.23309568∠− 88.035◦ (C.12)
Equation C.13 total current for fault at 0.5 of reactor layer height, in layer 3.

IpT 3,fz=0.5 = 2.25746609− j232.17550506 = 232.18647959∠− 89.443◦ (C.13)
Equation C.14 total current for fault at -0.5 of reactor layer height, in layer 4.

IpT 4,fz=−0.5 = 2.24635895− j232.54291650 = 232.55376614∠− 89.447◦ (C.14)
Equation C.15 total current for fault at 0 of reactor layer height, in layer 4.

IpT 4,fz=0 = 8.53881088− j251.30357675 = 251.44860107∠− 88.054◦ (C.15)
Equation C.16 total current for fault at 0.5 of reactor layer height, in layer 4.

IpT 4,fz=0.5 = 2.24635895− j232.54291650 = 232.55376614∠− 89.447◦ (C.16)
Equation C.17 total current for fault at -0.5 of reactor layer height, in layer 5.

IpT 5,fz=−0.5 = 2.18513549− j232.73713338 = 232.74739112∠− 89.462◦ (C.17)
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Equation C.18 total current for fault at 0 of reactor layer height, in layer 5.

IpT 5,fz=0 = 8.28227585− j251.84696186 = 251.98311112∠− 88.116◦ (C.18)
Equation C.19 total current for fault at 0.5 of reactor layer height, in layer 5.

IpT 5,fz=0.5 = 2.18513549− j232.73713338 = 232.74739112∠− 89.462◦ (C.19)
Equation C.20 total current for fault at -0.5 of reactor layer height, in layer 6.

IpT 6,fz=−0.5 = 2.08979724− j232.78845689 = 232.79783701∠− 89.486◦ (C.20)
Equation C.21 total current for fault at 0 of reactor layer height, in layer 6.

IpT 6,fz=0 = 7.87705386− j251.83033767 = 251.95350156∠− 88.208◦ (C.21)
Equation C.22 total current for fault at 0.5 of reactor layer height, in layer 6.

IpT 6,fz=0.5 = 2.08979724− j232.78845689 = 232.79783701∠− 89.486◦ (C.22)
Equation C.23 total current for fault at -0.5 of reactor layer height, in layer 7.

IpT 7,fz=−0.5 = 1.97038942− j232.71540918 = 232.72375062∠− 89.515◦ (C.23)
Equation C.24 total current for fault at 0 of reactor layer height, in layer 7.

IpT 7,fz=0 = 7.36671795− j251.33168606 = 251.43962486∠− 88.321◦ (C.24)
Equation C.25 total current for fault at 0.5 of reactor layer height, in layer 7.

IpT 7,fz=0.5 = 1.97038942− j232.71540918 = 232.72375062∠− 89.515◦ (C.25)
Equation C.26 total current for fault at -0.5 of reactor layer height, in layer 8.

IpT 8,fz=−0.5 = 1.83458886− j232.53442418 = 232.54166109∠− 89.548◦ (C.26)
Equation C.27 total current for fault at 0 of reactor layer height, in layer 8.

IpT 8,fz=0 = 6.78498828− j250.41950789 = 250.51140892∠− 88.448◦ (C.27)
Equation C.28 total current for fault at 0.5 of reactor layer height, in layer 8.

IpT 8,fz=0.5 = 1.83458886− j232.53442418 = 232.54166109∠− 89.548◦ (C.28)
Equation C.29 total current for fault at -0.5 of reactor layer height, in layer 9.

IpT 9,fz=−0.5 = 1.68747116− j232.25602145 = 232.26215159∠− 89.584◦ (C.29)
Equation C.30 total current for fault at 0 of reactor layer height, in layer 9.

IpT 9,fz=0 = 6.15407727− j249.13961819 = 249.21561352∠− 88.585◦ (C.30)
Equation C.31 total current for fault at 0.5 of reactor layer height, in layer 9.

IpT 9,fz=0.5 = 1.68747116− j232.25602145 = 232.26215159∠− 89.584◦ (C.31)
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C.2 Multiple Faults in Each Layer

This section contains the total current values for each instance of 2, 10, 20, ..., 200 faults in each
layer of the sheet reactor model described in table 7.1, other than layer 0, which is in section 7.3.3
The Reactor has a terminal voltage of 13.7 [kV ], with the parameters given in table C.1, which is the
same as table 7.1.

Package 1 2 3 4 5 6 7 8 9 10
package turns 1327 1187 1093 1029 985 956 938 929 928 935
average radius [m] 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
package height [m] 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1

Table C.1: Cylindrical Modeled Reactor Parameters

Layer 0 (Innermost)

Figure C.1

Equation C.32 is the total current for 2 faults in layer 0:
IpT 0,nf=2 = 4.82852335− j246.24253931 = 246.28987556∠− 88.877◦ (C.32)

Equation C.33 is the total current for 10 faults in layer 0:
IpT 0,nf=10 = 2.40648604− j256.77246058 = 256.78373720∠− 89.463◦ (C.33)

Equation C.34 is the total current for 20 faults in layer 0:
IpT 0,nf=20 = 2.03295420− j264.65137104 = 264.65917913∠− 89.560◦ (C.34)



82
Equation C.35 is the total current for 40 faults in layer 0:

IpT 0,nf=40 = 1.94022750− j277.96406199 = 277.97083343∠− 89.600◦ (C.35)
Equation C.36 is the total current for 100 faults in layer 0:

IpT 0,nf=100 = 2.56847638− j319.50374981 = 319.51407358∠− 89.539◦ (C.36)
Equation C.37 is the total current for 150 faults in layer 0:

IpT 0,nf=150 = 3.62243974− j363.82962825 = 363.84766106∠− 89.430◦ (C.37)
Equation C.38 is the total current for 200 faults in layer 0:

IpT 0,nf=200 = 5.35972542− j423.66196115 = 423.69586260∠− 89.275◦ (C.38)

Layer 1

Figure C.2

Equation C.39 total current for 2 faults in layer 1
IpT 1,nf=2 = 5.42079829− j250.18155687 = 250.24027744∠− 88.759◦ (C.39)

Equation C.40 total current for 10 faults in layer 1
IpT 1,nf=10 = 2.75018424− j262.82679113 = 262.84117952∠− 89.400◦ (C.40)

Equation C.41 total current for 20 faults in layer 1
IpT 1,nf=20 = 2.36786155− j272.60508224 = 272.61536572∠− 89.502◦ (C.41)
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Equation C.42 total current for 40 faults in layer 1

IpT 1,nf=40 = 2.34982174− j289.65515963 = 289.66469091∠− 89.535◦ (C.42)
Equation C.43 total current for 100 faults in layer 1

IpT 1,nf=100 = 3.39550212− j345.52246743 = 345.53915109∠− 89.437◦ (C.43)
Equation C.44 total current for 150 faults in layer 1

IpT 1,nf=150 = 5.06771857− j408.22734923 = 408.25880325∠− 89.289◦ (C.44)
Equation C.45 total current for 200 faults in layer 1

IpT 1,nf=200 = 8.03209571− j498.06723447 = 498.13199517∠− 89.076◦ (C.45)

Layer 2

Figure C.3

Equation C.46 total current for 2 faults in layer 2
IpT 2,nf=2 = 5.76501140− j253.25574484 = 253.32135254∠− 88.696◦ (C.46)

Equation C.47 total current for 10 faults in layer 2
IpT 2,nf=10 = 2.96673282− j267.54288817 = 267.55933644∠− 89.365◦ (C.47)

Equation C.48 total current for 20 faults in layer 2
IpT 2,nf=20 = 2.58421523− j278.82240312 = 278.83437853∠− 89.469◦ (C.48)
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Equation C.49 total current for 40 faults in layer 2

IpT 2,nf=40 = 2.61854137− j298.83769840 = 298.84917056∠− 89.498◦ (C.49)
Equation C.50 total current for 100 faults in layer 2

IpT 2,nf=100 = 3.98423533− j366.74348017 = 366.76512154∠− 89.378◦ (C.50)
Equation C.51 total current for 150 faults in layer 2

IpT 2,nf=150 = 6.24657554− j446.78831169 = 446.83197644∠− 89.199◦ (C.51)
Equation C.52 total current for 200 faults in layer 2

IpT 2,nf=200 = 10.64439298− j568.95530791 = 569.05487038∠− 88.928◦ (C.52)

Layer 3

Figure C.4

Equation C.53 total current for 2 faults in layer 3
IpT 3,nf=2 = 5.88049490− j255.38557002 = 255.45326303∠− 88.681◦ (C.53)

Equation C.54 total current for 10 faults in layer 3
IpT 3,nf=10 = 3.05884609− j270.77714786 = 270.79442451∠− 89.353◦ (C.54)

Equation C.55 total current for 20 faults in layer 3
IpT 3,nf=20 = 2.68602337− j283.12116774 = 283.13390886∠− 89.456◦ (C.55)
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Equation C.56 total current for 40 faults in layer 3

IpT 3,nf=40 = 2.76192255− j305.32543958 = 305.33793127∠− 89.482◦ (C.56)
Equation C.57 total current for 100 faults in layer 3

IpT 3,nf=100 = 4.36949668− j382.82187243 = 382.84680815∠− 89.346◦ (C.57)
Equation C.58 total current for 150 faults in layer 3

IpT 3,nf=150 = 7.14832223− j478.13447616 = 478.18790847∠− 89.143◦ (C.58)
Equation C.59 total current for 200 faults in layer 3

IpT 3,nf=200 = 13.04843995− j632.40475704 = 632.53935729∠− 88.818◦ (C.59)

Layer 4

Figure C.5

Equation C.60 total current for 2 faults in layer 4
IpT 4,nf=2 = 5.81943354− j256.65995039 = 256.72591599∠− 88.701◦ (C.60)

Equation C.61 total current for 10 faults in layer 4
IpT 4,nf=10 = 3.05630955− j272.70010804 = 272.71723443∠− 89.358◦ (C.61)

Equation C.62 total current for 20 faults in layer 4
IpT 4,nf=20 = 2.70144101− j285.72393846 = 285.73670887∠− 89.458◦ (C.62)
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Equation C.63 total current for 40 faults in layer 4

IpT 4,nf=40 = 2.80831519− j309.38394273 = 309.39668818∠− 89.480◦ (C.63)
Equation C.64 total current for 100 faults in layer 4

IpT 4,nf=100 = 4.57099012− j393.75497758 = 393.78150836∠− 89.335◦ (C.64)
Equation C.65 total current for 150 faults in layer 4

IpT 4,nf=150 = 7.74470452− j501.25143481 = 501.31126194∠− 89.115◦ (C.65)
Equation C.66 total current for 200 faults in layer 4

IpT 4,nf=200 = 15.04765451− j684.66001787 = 684.82535874∠− 88.741◦ (C.66)

Layer 5

Figure C.6

Equation C.67 total current for 2 faults in layer 5
IpT 5,nf=2 = 5.61432050− j257.12348392 = 257.18477128∠− 88.749◦ (C.67)

Equation C.68 total current for 10 faults in layer 5
IpT 5,nf=10 = 2.96864002− j273.34254164 = 273.35866164∠− 89.378◦ (C.68)

Equation C.69 total current for 20 faults in layer 5
IpT 5,nf=20 = 2.63377749− j286.62631410 = 286.63841459∠− 89.474◦ (C.69)
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Equation C.70 total current for 40 faults in layer 5

IpT 5,nf=40 = 2.75581391− j310.93174039 = 310.94395265∠− 89.492◦ (C.70)
Equation C.71 total current for 100 faults in layer 5

IpT 5,nf=100 = 4.57443259− j399.04572776 = 399.07194624∠− 89.343◦ (C.71)
Equation C.72 total current for 150 faults in layer 5

IpT 5,nf=150 = 7.97101970− j514.54968556 = 514.61142240∠− 89.112◦ (C.72)
Equation C.73 total current for 200 faults in layer 5

IpT 5,nf=200 = 16.34371028− j720.63417543 = 720.81948619∠− 88.701◦ (C.73)

Layer 6

Figure C.7

Equation C.74 total current for 2 faults in layer 6
IpT 6,nf=2 = 5.31374231− j256.93106701 = 256.98600944∠− 88.815◦ (C.74)

Equation C.75 total current for 10 faults in layer 6
IpT 6,nf=10 = 2.82590335− j272.98049552 = 272.99512205∠− 89.407◦ (C.75)

Equation C.76 total current for 20 faults in layer 6
IpT 6,nf=20 = 2.51308402− j286.20584622 = 286.21687931∠− 89.497◦ (C.76)
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Equation C.77 total current for 40 faults in layer 6

IpT 6,nf=40 = 2.63870318− j310.51062673 = 310.52183831∠− 89.513◦ (C.77)
Equation C.78 total current for 100 faults in layer 6

IpT 6,nf=100 = 4.42992616− j399.60227726 = 399.62683123∠− 89.365◦ (C.78)
Equation C.79 total current for 150 faults in layer 6

IpT 6,nf=150 = 7.87728450− j518.90078357 = 518.96057153∠− 89.130◦ (C.79)
Equation C.80 total current for 200 faults in layer 6

IpT 6,nf=200 = 16.86020196− j739.49693988 = 739.68911747∠− 88.694◦ (C.80)

Layer 7

Figure C.8

Equation C.81 total current for 2 faults in layer 7
IpT 7,nf=2 = 4.94733496− j256.18251147 = 256.23027789∠− 88.894◦ (C.81)

Equation C.82 total current for 10 faults in layer 7
IpT 7,nf=10 = 2.64228034− j271.76222257 = 271.77506741∠− 89.443◦ (C.82)

Equation C.83 total current for 20 faults in layer 7
IpT 7,nf=20 = 2.35128058− j284.64786627 = 284.65757726∠− 89.527◦ (C.83)
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Equation C.84 total current for 40 faults in layer 7

IpT 7,nf=40 = 2.46974381− j308.37646654 = 308.38635629∠− 89.541◦ (C.84)
Equation C.85 total current for 100 faults in layer 7

IpT 7,nf=100 = 4.16246422− j395.90600417 = 395.92788516∠− 89.398◦ (C.85)
Equation C.86 total current for 150 faults in layer 7

IpT 7,nf=150 = 7.49610493− j514.79404914 = 514.84862301∠− 89.166◦ (C.86)
Equation C.87 total current for 200 faults in layer 7

IpT 7,nf=200 = 16.53946494− j740.32084768 = 740.50557824∠− 88.720◦ (C.87)

Layer 8

Figure C.9

Equation C.88 total current for 2 faults in layer 8
IpT 8,nf=2 = 4.53804719− j254.96455434 = 255.00493690∠− 88.980◦ (C.88)

Equation C.89 total current for 10 faults in layer 8
IpT 8,nf=10 = 2.43078186− j269.82791631 = 269.83886510∠− 89.484◦ (C.89)

Equation C.90 total current for 20 faults in layer 8
IpT 8,nf=20 = 2.16073005− j282.13930242 = 282.14757614∠− 89.561◦ (C.90)
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Equation C.91 total current for 40 faults in layer 8

IpT 8,nf=40 = 2.26305254− j304.80471496 = 304.81311598∠− 89.575◦ (C.91)
Equation C.92 total current for 100 faults in layer 8

IpT 8,nf=100 = 3.79770766− j388.54106838 = 388.55962786∠− 89.440◦ (C.92)
Equation C.93 total current for 150 faults in layer 8

IpT 8,nf=150 = 6.86867698− j503.06735438 = 503.11424325∠− 89.218◦ (C.93)
Equation C.94 total current for 200 faults in layer 8

IpT 8,nf=200 = 15.39857942− j723.42748173 = 723.59134708∠− 88.781◦ (C.94)

Layer 9 (outermost)

Figure C.10

Equation C.95 total current for 2 faults in layer 9
IpT 9,nf=2 = 4.10005148− j253.33281865 = 253.36599501∠− 89.073◦ (C.95)

Equation C.96 total current for 10 faults in layer 9
IpT 9,nf=10 = 2.18775153− j267.18634912 = 267.19530574∠− 89.531◦ (C.96)

Equation C.97 total current for 20 faults in layer 9
IpT 9,nf=20 = 1.91901782− j278.50966805 = 278.51627928∠− 89.605◦ (C.97)
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Equation C.98 total current for 40 faults in layer 9

IpT 9,nf=40 = 1.96681935− j299.14417369 = 299.15063936∠− 89.623◦ (C.98)
Equation C.99 total current for 100 faults in layer 9

IpT 9,nf=100 = 3.25617265− j375.65993547 = 375.67404725∠− 89.503◦ (C.99)
Equation C.100 total current for 150 faults in layer 9

IpT 9,nf=150 = 5.92939175− j481.41557257 = 481.45208609∠− 89.294◦ (C.100)
Equation C.101 total current for 200 faults in layer 9

IpT 9,nf=200 = 13.41697770− j686.31683825 = 686.44797163∠− 88.880◦ (C.101)
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Appendix D

Programs

D.1 Python Dependencies

These modules were written in Python v3.6+, there is no garentee that these will work in any
version less that v3.6 The NumPy and SciPy processing Libraries, and the MatPlotLib graphing Library
are needed for these programs to function

D.2 Reactor Python Library

D.2.1 Biot-Savart Methods

Turn-to-turn calculations based the Biot-Savart law and the Neumann Integral, Implementation
based on Paul [3].

1 #!/bin/python3
2 """
3 ‘biot_savart_methods.py‘
4 methods to implement turn to turn inductance calculations.

5 18 May 2021

6 R. Sanford

7 """

8 import numpy as np

9 from numpy import sin , cos , tan , exp , arcsin , arccos , arctan , sqrt , pi

10 import scipy.integrate as integrate

11
12 mu0 = 4*pi*10**( -7) # [H/m] permeability of the void

13 def numint(fx , x0 , x1 , nn):

14 """

15 Numeric Integration using trapezoid -rule (18 May 2021)

16 fx : function handle
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17 x0 : starting point

18 x1 : end point

19 nn : the number of stepsto take

20 fx_args : parameters to pass into fx

21 """

22 res = 0 # results: area under a curve.

23 dx = (x1 -x0)/nn # step

24
25 for n in range(nn):

26 res = res + dx * .5 * ( fx(n*dx) + fx((n+1)*dx) )

27
28 return res

29
30 def numint_w_args(fx, x0, x1, nn, a, b, d):

31 """

32 Numeric Integration using trapezoid -rule

33 fx : function handle

34 x0 : starting point

35 x1 : end point

36 nn : the number of stepsto take

37 fx_args : parameters to pass into fx

38 """

39 res = np.zeros(nn) # results: area under a curve.

40 dx = (x1 -x0)/nn # step

41
42 for n in range(nn):

43 res[n] = dx * .5 * ( fx(n*dx , a, b, d) + fx((n+1)*dx, a, b, d) )

44
45 return np.sum(res)

46
47 def quadrature(fx, x0 , x1 , a, b, d):

48 # wrapper for scipy quadrature.

49 # from scipy quadrature integration; this is faster than anything I could write

quickly

50 #res = integrate.quad(lambda x: fx(x, a, b, d), x0, x1, epsabs =1e-13, limit =1000)

51 #res = integrate.quad(fx , x0, x1, args=(a, b, d), epsabs =1.5e-8, limit =10)

52 res = integrate.quad(fx, x0, x1, args=(a, b, d))

53 #print(res [1])

54 return res[0]

55
56 def neumann(phi ,a,b,d):

57 """ The part of the Neumann integral within the integrad """

58 return cos(phi)/sqrt(a**2 + b**2 + d**2 - 2*a*b*cos(phi))

59
60 def bs_mutual(a,b,d=0):
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61 """

62 Biot -Savart mutual calcuation for concentric (circular) loops , because

63 we’ll use this a good bit.

64
65 parameters:

66 a : loop radius (to center of wire) : "R_wire" [m]

67 b : radius of the area enclosed by the wire loop : "R_loop -r_wire" [m]

68 d : distance seperating the two loops (can be 0) [m]

69 """

70 mut = mu0 * a * b * quadrature(neumann , 0, pi, a, b, d)

71
72 return mut

73
74 def internal(R, r):

75 """

76 Inductance internal to the wire loop

77 R : loop radius (to center of wire) [m]

78 r : wire radius (diam /2) [m]

79 """

80 return mu0*(R/4 + r/5)

D.2.2 Thin-Sheet Methods

Computationally efficient methods originally presented by Fawzi and Burke [4].
1 #!/bin/python3
2 """
3 ‘fawzi_and_burke_methods.py‘
4 Fawzi and Burke Method Impelementation

5 Computation Method From:

6 The Accurate Computation of Self and Mutual Inductances of Circular Coils , 1978

7 https ://doi.org /10.1109/ TPAS .1978.354506

8 12 December 2021

9 R. Sanford

10 """

11
12 from numpy import pi, sqrt , sin , cos

13 import numpy as np

14 import scipy.integrate as integrate

15 import matplotlib.pyplot as plt

16 mu0 = 4*pi*10**( -7)

17
18 def Ci_1(R1,R2 ,z):

19 """

20 This is the integral (equation 3) as presented in the referenced paper.
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21
22 Parameters:

23 ‘R1‘,‘R2‘ : Coil radius [m]

24 ‘z‘ : Vertical position [m]

25 Returns:

26 ‘Ci‘ : Constant used in calculating inductance

27 """

28 fn = lambda p: ( (sqrt((R1**2) + (R2**2) + (z**2) - (2*R1*R2*cos(p)))\

29 * (sin(p)**2)) / ((R1**2) + (R2**2) - (2*R1*R2*cos(p))) )

30 res = integrate.quad(fn, 0, pi)

31 C = (sqrt(R1*R2)/(2*pi))*res[0]

32
33 return C

34
35
36 def fb_mutual(N1,R1 ,h1,N2,R2 ,h2,s):

37 """

38 Compute a layer -to -layer mutual using equation 2 from the reference paper.

39
40 Parameters:

41 ‘N1‘,‘N2‘ : Turn count (not turn density as in paper)

42 ‘R1‘,‘R2‘ : Radii of the layers [m]

43 ‘h1‘,‘h2‘ : Height of the coil [m]

44 ‘s‘ : concentric seperation (z) [m]

45
46 Turn denstiy is calculated as: N/h [turns/m]

47
48 Returns:

49 ‘M‘ : Mutual inductance

50 """

51
52 l1 = 0.5*h1

53 l2 = 0.5*h2

54 z1 = l1 + l2 + s

55 z2 = l1 - l2 + s

56 z3 = -l1 - l2 + s

57 z4 = -l1 + l2 + s

58
59 M = 2*pi*mu0*( (R1*R2)**(3/2) ) * (N1/h1)*(N2/h2)\

60 *( (Ci_1(R1,R2 ,z1) - Ci_1(R1,R2,z2))\

61 + (Ci_1(R1,R2 ,z3) - Ci_1(R1,R2,z4)) )

62 return M

63
64
65 def fb_mutual_thick(N1,R1,h1 ,t1,N2,R2 ,h2,t2,s):
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66 """

67 Compute a layer -to -layer mutual using equation 18 from the reference paper ,

68 which takes into account the thickness of a coil set (as for non -finite

69 thickness coils).

70
71 Parameters:

72 ‘N1‘,‘N2‘ : Turn count (not turn density as in paper) *

73 ‘R1‘,‘R2‘ : Radii of the layers [m]

74 ‘h1‘,‘h2‘ : Height of the coil [m]

75 ‘t1‘,‘t2‘ : Thickness of the coils [m]

76 ‘s‘ : concentric seperation (z) [m]

77
78 * Turn denstiy is calculated within the function as: n = N/h [turns/m]

79
80 Returns:

81 ‘M‘ : Mutual inductance

82 """

83 l1 = 0.5*h1

84 l2 = 0.5*h2

85 z1 = l1 + l2 + s

86 z2 = l1 - l2 + s

87 z3 = -l1 - l2 + s

88 z4 = -l1 + l2 + s

89
90 t12 = (t1/2)

91 t22 = (t2/2)

92
93 M = lambda r2 ,r1: fb_mutual(N1 ,r1,h1,N2 ,r2,h2,s=s)

94
95 res = integrate.dblquad(M, R1 -t12 , R1+t12 , R2 -t22 , R2+t22 , epsabs =5e-6)

96
97 Mut = ((N1/h1)*(N2/h2)) * res[0] # need to scale by the turn density as per eqn

18

98
99 return Mut

100
101 def fb_self_ind(N,R,h): # good (1/5/2022)

102 """

103 Self -inductance method presented in the paper (equation 16)

104
105 Parameters:

106 ‘N‘ : Number of turns (not turn density as in paper)

107 ‘R‘ : Radius of the layer [m]

108 ‘h‘ : Layer height [m]

109
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110 Turn denstiy is calculated as: N/h [turns/m]

111
112 Returns:

113 ’L’ : self -inductance of the layer coil

114 """

115 L = fb_mutual(N1=N,R1=R,h1=h,

116 N2=N,R2=R,h2=h,s=0)

117 return L

D.3 Utility Scripts

D.3.1 util.py

This resource is used by the library to handle things like making the matrix look pretty in the
terminal.

1 """

2 ‘util.py‘
3 Utilities to make life easier.

4 R. Sanford

5 """
6 import numpy as np

7 from os import get_terminal_size

8 import os

9
10 def imaginary_formatter(m):

11
12 m_r = m.real

13 m_i = m.imag

14
15 string_mat = ’’

16 if m_r == 0:

17 string_mat += ’ 0’

18 elif m_r > 0:

19 string_mat += ’ {:1.3e}’.format(np.abs(m_r))

20 else:

21 string_mat += ’ -{:1.3e}’.format(np.abs(m_r))

22
23 if m_i == 0:

24 string_mat += ’ ’.format(np.abs(m_i))

25 elif m_i > 0:

26 string_mat += ’+{:1.3e}j ’.format(np.abs(m_i))

27 else:
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28 string_mat += ’ -{:1.3e}j ’.format(np.abs(m_i))

29
30 return string_mat

31
32 def vector_formatter(m):

33 # angle = ’\u2220’

34 string_mat = ’’

35
36
37 if m == 0:

38 string_mat += ’ 0.’+’ ’*19

39 else:

40 # ang = np.arctan(m.imag/m.real)*180/np.pi

41 ang = np.angle(m,deg=True)

42 # print("ang =",ang)

43 # if m.real < 0:

44 # ang = 90-abs(ang)

45 mag = np.abs(m)

46
47 if abs(ang) < 10:

48 string_mat += ’{}{:1.3e}\u2220 {}{:0.3f}\ u00B0 ’.format ((’’ if mag < 0

else ’ ’),mag ,(’’ if ang < 0 else ’ ’),ang)

49 elif abs(ang) < 100:

50 string_mat += ’{}{:1.3e}\u2220 {}{:0.3f}\ u00B0 ’.format ((’’ if mag < 0

else ’ ’),mag ,(’’ if ang < 0 else ’ ’),ang)

51 else:

52 string_mat += ’{}{:1.3e}\u2220 {}{:0.3f}\ u00B0 ’.format ((’’ if mag < 0

else ’ ’),mag ,(’’ if ang < 0 else ’ ’),ang)

53
54 return string_mat

55
56 def str_matrix(mat ,phasor=False ,indicators =[None],** kwargs):

57 """

58 Stringify matrix or 2D array , and python list , that doens’t have a preferred wrap

length.

59 If the provided mat is a 1d list , it will assume you meant for it to be an "N by

1" vector.

60
61 Arguments:

62 ‘phasor ‘ determines if you are want to represent complex values as R+i or value

at an angle (phasor)

63 ‘inticators ‘ is a list of indexes that get an ’*’ at the end of the row (doens’t

accept reverse indexing -1) ex: ‘indicators =[0,3]‘

64 ‘left_offset ‘ provides the number of spaces to offset the matrix from the left
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65 ‘row_labels ‘ and ‘col_labels ‘ can be specified for provide Row (applied to the

left) and Column (applied above) labels for the matrix

66 ‘label ‘ matrix label , have an inline label assigned: ex: G = [matrix ]. the label

will be centered.

67 for compatability: ‘vector_value ‘ can be used in place of the ‘phasor ‘ argument

68
69 Example:

70 ‘‘‘python

71 import nympy as np

72 from util import str_matrix

73
74 mat = np.array ([[1 ,2] ,[3 ,4]])

75
76 matrix_string = str_matrix(mat)

77 print(matrix_string) # this will print the matrix in 2 rows

78 print(str_matrix ([[1 ,2] ,[3 ,4]])) # this will print the same as the line above

79
80 c_mat = np.array ([[1+1j,2],[3j,4+2j]]) # complex matrix

81 print(str_matrix(c_mat)) # this will print the matrix so each element is a R+jI

82 print(str_matrix(c_mat ,phasor=True)) # this will print the matrix so each element

is a magnitude at some angle

83
84 print(str_matrix ([k for k in range (8)])) # this will print the values [0,1,...,7]

as an Nx1 vector

85 ‘‘‘

86 """

87
88 # unicode parts:

89 ULC = ’\u23A1 ’ # left ceiling

90 URC = ’\u23A4 ’ # right ciling

91 ULF = ’\u23A3 ’ # left floor

92 URF = ’\u23A6 ’ # right floor

93 UVR = ’\u23A5 ’ # right vertical

94 UVL = ’\u23A2 ’ # left vertical

95 # example use of the brakets

96 # print( ULC+’ 1 2 3 ’+URC+’\n ’+\

97 # UVL+’ 4 5 6 ’+UVR+’\n ’+\

98 # ULF+" 7 8 9 "+URF)

99 left_offset = kwargs[’left_offset ’] if ’left_offset ’ in kwargs else 0

100 row_labels = kwargs[’row_labels ’]+[] if ’row_labels ’ in kwargs else []

101 col_labels = kwargs[’col_labels ’]+[] if ’col_labels ’ in kwargs else []

102 matrix_label = kwargs[’label’] if ’label’ in kwargs else ""

103 as_decimal = kwargs[’as_decimal ’] if ’as_decimal ’ in kwargs else False

104
105 # phasor cpmpatability with ’vector_value ’:
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106 phasor = phasor or (kwargs[’vector_value ’] if ’vector_value ’ in kwargs else False

)

107
108 # print(mat)

109 # print(type(mat))

110
111 if type(mat) == list: # if it’s a list , convert it to a numpy array

112 # print("List")

113 if isinstance(mat[0],list): # if a 2d list is provided instead of a numpy

array

114 mat = np.array(mat)

115 else: # otherwise it is a 1d list , and needs fixed , and is assumed to be a

vector

116 mat = np.array ([mat]).T

117
118 try:

119 N,M = mat.shape # N=no. rows , M=no. cols

120 except ValueError:

121 mat = np.reshape(mat ,(-1,1))

122 N,M = mat.shape

123
124 if len(matrix_label) > 0:

125 mli = int(N/2)

126 if len(row_labels) > 0:

127 row_labels[mli] = matrix_label + ’ ’ + row_labels[mli]

128 else:

129 RLM = [’’]*(mli -1)+[ matrix_label ]+[’’]*(N-mli) # row -label modifications

130 row_labels += RLM

131
132
133 str_rows = []

134 if ’complex ’ in str(mat.dtype):

135 str_rows = __complex_matrix(mat ,as_phasor=phasor)

136 base_width = len(’3.285e+01+2.103e+02j’)

137 elif ’int’ in str(mat.dtype):

138 str_rows , base_width = __int_matrix(mat)

139 else: # default: just use float

140 str_rows = __real_float_matrix(mat ,as_decimal)

141 base_width = len(’3.285e+01’)

142
143 nr = len(str_rows)

144 for r in range(nr):

145 if r == 0:

146 str_rows[r] = ULC + str_rows[r] + URC

147 elif r==(nr -1):
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148 str_rows[r] = ULF + str_rows[r] + URF

149 else:

150 str_rows[r] = UVL + str_rows[r] + UVR

151
152 if r in indicators: # add the indicator

153 str_rows[r] += ’ *’

154
155 # Add Decorations:

156
157 row_label_width = 0

158 if len(row_labels) > 0:

159 if not len(row_labels) == nr:

160 raise ValueError("Number of row labels doesn’t match number of rows")

161 f_row_labels ,row_label_width = __format_row_labels(row_labels)

162 for r in range(nr):

163 str_rows[r] = f_row_labels[r] + str_rows[r]

164
165 if len(col_labels) > 0:

166 # print(’row_label_width =’,row_label_width)

167 # basically form a new row for str_rows

168 FCL = __format_col_labels(labels=col_labels ,base_w=base_width ,row_offset=

row_label_width)

169
170 str_rows = [FCL] + str_rows

171
172 # str_mat = __fit_to_terminal(str_rows ,left_offset)

173 # str_mat = __fit_to_terminal(str_rows ,left_offset ,len(matrix_label))

174 str_mat = ’\n’

175 for row in str_rows:

176 # print(’str_matrix_v2: row =’,row)

177 str_mat += ’ ’*left_offset + row + ’\n’

178
179 return str_mat

180
181 def __complex_matrix(mat ,as_phasor):

182
183 N,M = mat.shape # N=no. rows , M=no. cols

184 square_mat = (N==M) # square matrix flag for diagomal bolding

185 str_rows = [’’]*N

186 for n in range(N): # rows

187 for m in range(M): # columns

188 if square_mat and n==m:

189 str_rows[n] +=’\033[1m’ # special formatting bold begin unicode

190
191 if as_phasor: # format as magnitude at angle
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192 str_rows[n] += vector_formatter(mat[n,m])

193 else: # format as re+j*im

194 str_rows[n] += imaginary_formatter(mat[n,m])

195
196 if square_mat and n==m:

197 str_rows[n] +=’\033[0m’ # special formatting (bold) termination

unicode

198
199 # for row in str_rows:

200 # print(’__complex_matrix: row = ’,row)

201 return str_rows

202
203 def __real_float_matrix(mat , as_dec):

204 N,M = mat.shape # N=no. rows , M=no. cols

205 square_mat = (N==M) # square matrix flag for diagomal bolding

206 str_rows = [’’]*N

207 for n in range(N): # rows

208 for m in range(M): # columns

209 if square_mat and n==m:

210 str_rows[n] +=’\033[1m’ # special formatting bold begin unicode

211 if mat[n,m] == 0:

212 if as_dec:

213 str_rows[n] += ’ ’*1 + ’0.’ + ’ ’*4

214 else:

215 str_rows[n] += ’ ’*1 + ’0.’ + ’ ’*8

216 else:

217 if as_dec:

218 if mat[n,m] > 0:

219 # str_rows[n] += ’ {:1.3f} ’.format(mat[n,m])

220 if mat[n,m] < 10:

221 str_rows[n] += ’ {:1.3f} ’.format(mat[n,m])

222 elif mat[n,m] > 100:

223 str_rows[n] += ’ {:1.3f} ’.format(mat[n,m])

224 else:

225 str_rows[n] += ’ {:1.2f} ’.format(mat[n,m])

226 else: # leave space the the negative sign

227 # str_rows[n] += ’{:1.3f} ’.format(mat[n,m])

228 if mat[n,m] > -10:

229 str_rows[n] += ’{:1.3f} ’.format(mat[n,m])

230 elif mat[n,m] < -100:

231 str_rows[n] += ’{:1.1f} ’.format(mat[n,m])

232 else: # -10 to -99

233 str_rows[n] += ’{:1.2f} ’.format(mat[n,m])

234 else:

235 if mat[n,m] > 0:
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236 str_rows[n] += ’ {:1.3e} ’.format(mat[n,m])

237 else: # leave space the the negative sign

238 str_rows[n] += ’{:1.3e} ’.format(mat[n,m])

239
240 if square_mat and n==m:

241 str_rows[n] +=’\033[0m’ # special formatting (bold) termination

unicode

242
243 # for row in str_rows:

244 # print(’__real_float_matrix: row =’,row)

245 return str_rows

246
247 def __int_matrix(mat):

248 N,M = mat.shape # N=no. rows , M=no. cols

249 square_mat = (N==M) # square matrix flag for diagomal bolding

250 # mat[0,0] = -1*mat[0,0]

251 base_length = len(str(np.max(mat))) # longest element in the matrix

252 # print(’__int_matrix: base_length =’,base_length)

253
254 str_rows = [’’]*N

255 for n in range(N): # rows

256 for m in range(M): # columns

257 if square_mat and n==m:

258 str_rows[n] +=’\033[1m’ # special formatting bold begin unicode

259
260 val = str(mat[n,m])

261 str_rows[n] += ’ ’*( base_length -len(val)) + (’ ’ if mat[n,m]>=0 else ’’)

+ val + ’ ’

262
263 if square_mat and n==m:

264 str_rows[n] +=’\033[0m’ # special formatting (bold) termination

unicode

265
266 # for row in str_rows:

267 # print(’__real_float_matrix: row =’,row)

268 return str_rows , base_length # return base length for column labels if needed

269
270 def __format_row_labels(labels):

271 # print(row_labels)

272 formatted_row_labels = [] # make row labels a uniform width

273 row_label_width =0

274
275 row_label_width=max([len(ss) for ss in labels ])

276 for k in range(len(labels)):
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277 # formatted_row_labels.append(labels[k] + ’ ’*(row_label_width -len(labels[k])

) +’ ’)

278 formatted_row_labels.append(’ ’*( row_label_width -len(labels[k])) + labels[k]

+ ’ ’)

279
280 return formatted_row_labels ,row_label_width

281
282 def __format_col_labels(labels ,base_w =12, row_offset =0):

283 string_mat = ’’

284 # print(col_labels)

285 fcl = ’ ’*( row_offset + 2)# make row labels a uniform width

286 # print(’column base width =’,base_w)

287 # print(’row offset =’,row_offset)

288 # base_w = 12

289 col_label_width = max([len(ss) for ss in labels ])

290 for k in range(len(labels)):

291 cl = ’ ’ + labels[k] + ’ ’

292 # print(cl,len(cl))

293 if len(cl) > base_w +2:

294 # print(f’len({cl}) > {base_w +2}’)

295 cl = cl[0: base_w +1] + ’ ’

296 elif len(cl) < base_w +2:

297 # print(f’len({cl}) < {base_w +2}’)

298 # cl += ’ ’*(( base_w +2)-len(cl)) # right justify

299 cl = ’ ’*(( base_w +2)-len(cl)) + cl # left justify

300 # print(cl,len(cl))

301
302 fcl += cl

303 # print(’str_matrix_v2: row =’,fcl)

304 return fcl

305
306 def __fit_to_terminal(str_rows , left_off=0, label_width =0):

307 """

308 Fit to the terminal by breaking lines as needed.

309 """

310 term_size = get_terminal_size ()

311 t_cols = term_size.columns

312 t_lines = term_size.lines

313 print(’terminal size:’,t_cols ,’x’,t_lines)

314 break_len = (t_cols -4)-left_off

315 print(’line break at character:’,break_len)

316
317 str_mat = ’\n’

318 if len(str_rows [1])+left_off > break_len:

319 str_rows_extended = {}
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320
321 length_offset = 0

322 print(’str_rows [-1]’,str_rows [-1])

323 if not str_rows [-1][ break_len] == ’ ’: # check that we are breaking on

whitespace

324 for k in range(break_len):

325 if str_rows [-1][ break_len -k] == ’ ’:

326 length_offset = k+1

327 break

328 print(’length_offset =’,length_offset)

329 break_len += -1* length_offset

330
331 print(’break_len =’,break_len)

332
333 # figure out how many breaks it will need:

334 char_ratio= (len(str_rows [-1])+left_off)/( break_len)

335 num_breaks = int(char_ratio) if char_ratio - int(char_ratio) < 0.8 else int(

char_ratio)+1

336 print(’number of line breaks:’,num_breaks)

337
338 for k in range(num_breaks +1):

339 str_rows_extended[k] = []

340
341 # print(str_rows_extended)

342 for ri in range(len(str_rows)):

343 broken_line = break_string_to_segments(str_rows[ri],break_len ,num_breaks)

344 for line in range(len(broken_line)):

345 str_rows_extended[line] += broken_line[line]

346
347 # print(str_rows_extended)

348 for k in str_rows_extended:

349 for row in str_rows_extended[k]:

350 str_mat += ’ ’*( left_off +( label_width +1 if k > 0 else 0 )) + row + ’

\n’

351 str_mat += ’\n’

352
353 else:

354 for row in str_rows:

355 # print(’str_matrix_v2: row =’,row)

356 str_mat += ’ ’*left_off + row + ’\n’

357
358 return str_mat

359
360 def break_string_to_segments(s,length ,n_breaks):

361 ss = [] # string segments
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362 # if not s[length] == ’ ’: # check that we are breaking on whitespace

363 # for k in range(length):

364 # if s[length -k] == ’ ’:

365 # length_offset = k

366 # break

367 print(’len(s) =’,len(s),’extra:’,len(s)-length)

368 break_char = s[length]

369
370 bold_start = ’\033[1m’

371 bold_end = ’\033[0m’

372
373 special_check_before = lambda c, i: s.index(bold_start) <= i and s.index(bold_end

) <= i

374 special_check_between = lambda c, i: s.index(bold_start) <= i <= s.index(bold_end

)

375 print(’bold_start index =’,s.index(bold_start),

376 ’bold_end index =’,s.index(bold_end),

377 ’length is between bold?’,special_check_between(s,length),

378 ’length is after bold?’,special_check_before(s,length))

379
380 offset = 0

381 if special_check_before(s,length):

382 offset = len(bold_start) + len(bold_end) +0

383 elif special_check_between(s,length):

384 if length < s.index(bold_start) + 0.45*(s.index(bold_end)-s.index(bold_start)

): # closer to start

385 offset = s.index(bold_start) - length + 0

386 else: # closer to the end

387 offset = (length - s.index(bold_start))# + len(bold_start)

388 # s = s.replace(’ ’+bold_end ,bold_end + ’ ’)

389 # pass

390 # offset = len(bold_end)

391 # else:

392 # offset = 0

393
394 # s = s.replace ( ’\033[0m’,’\b}’)

395 # s = s.replace ( ’\033[1m’,’\b{’)

396 # s = s.replace ( ’\033[0m ’,’\033[0m ’+’}’)

397 # s = s.replace ( ’\033[1m ’,’\033[1m ’+’{’)

398
399 for k in range(n_breaks +1):

400 i0 = k*( length + offset)

401 i1 = (k+1)*( length + offset) # subreact k to deal with white -space

402 # ss_s = (’ ’ if k > 0 else ’’) + s[i0:i1] + ’|’# + f’ k={k}’

403 ss_s = s[i0:i1]
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404 # print(f’k={k} >>>’,ss_s)

405
406 # print(ss_s if k > 0 else ss_s)

407 ss.append ([ss_s])

408
409 return ss

410
411
412 def increment_name(path ,ext=’.png’):

413 """

414 Check if the file already exists , if it does , ingrement the filepath

415 """

416 if os.path.isfile(path):

417 path_inc=path.replace(ext ,’’)

418
419 k=0

420 while k < 1e8:

421 k+=1

422 if not os.path.isfile(path_inc+’_{}{}’.format(k,ext)):

423 return path_inc+’_{}{}’.format(k,ext)

424 print(f"file \"{ path }\" exists , incrementing name to \"{ path_inc }\"")

425 else:

426 return path

427
428 def check_for_path(path , create_if_dne=False):

429 """

430 Check that a path exists , create if it doens’t exist (depending on ‘create_if_dne

‘)

431 returns the path (string) or ‘None ‘ id DNE and Didn’t create.

432 """

433
434 path_mod = None

435
436 # if the path DNE , and it’s not a filename

437 if ( not os.path.isdir(path) ):

438 if create_if_dne: # if you want to make one

439 os.makedirs(path) # use the recursive functionality.

440 path_mod = path

441 else:

442 print(f"Path \"{ path }\" DNE , not making one")

443 return path_mod

444 else: # it is a path

445 return path

446
447 def cofactor(M):
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448 """

449 calculate the cofactor of a matrix , M should be square.

450 """

451 adj_M = np.zeros(M.shape)

452
453 M = M.T

454
455 for i in range(M.shape [0]):

456 for j in range(M.shape [1]):

457 a = M[:i,:j] # square up to i,j

458 b = M[:i,j+1:] # rows down to i

459 c = M[i+1:,:j] # columns up to j

460 d = M[i+1:,j+1:] # square from i+1,j+1

461 ’’’

462 arrange as:

463 cof = [[a, b],[c,d]]

464 ’’’

465 cof_1 = np.concatenate ((a,b),axis =1)

466 cof_2 = np.concatenate ((c,d),axis =1)

467 cof = np.concatenate ((cof_1 ,cof_2),axis =0) # stack

468 # print(str_matrix(cof ,label=f’cof({i},{j}) =’))

469 # print(f’|cof({i},{j})| =’,np.linalg.det(cof))

470
471 adj_M[i,j] = np.linalg.det(cof)

472
473 return adj_M

474
475 def coupling_coef(L):

476 K = np.zeros(L.shape)

477 for i in range(L.shape [0]):

478 for j in range(L.shape [1]):

479 if i==j:

480 K[i,j] = 1

481 else:

482 K[i,j] = L[i,j] / np.sqrt(L[i,i] * L[j,j])

483 return K

484
485 def layer_ring_plot(plt , radii , layers):

486 """

487 Plot the rings of the reactor.

488 radii is an array of layer radii

489 layers indicate how many layers are in each "package" ex: [1,3,2,2] would

indicate 1 layer in 0th position , positions 1-3 would be another package ,

490 """

491 th = np.linspace (0,2*np.pi ,64+1)
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492 # r,linespec ,label=None ,fn=64

493 color_i = 0

494 k = 0

495 plt.figure("Reactor Layer Ring Plot")

496 for layer in layers:

497 # print(layer)

498 for ln in range(layer):

499 # r = self.layers[layer][’r_loop ’]

500 # print(k)

501 x = radii[k]*np.cos(th)

502 y = radii[k]*np.sin(th)

503 plt.plot(x,y,’C{}’.format(color_i))

504 k += 1

505 color_i += 1

506 plt.axis(’equal’)

507
508 if __name__ == ’__main__ ’:

509
510 # str_matrix testing

511 v1 = np.array ([[k*(1+0.5j) for k in range (15) ]])

512 # v1 = np.array ([[k*(1) for k in range (35) ]])

513 mat = np.matmul(v1.T,v1)

514 print(str_matrix(mat))

515
516 # break_string_to_segments(s=’[’+’ 0123456789 ABC ’*24+’]’ ,length =106, n_breaks =3)

D.3.2 tex util.py

1 """

2 ‘tex_util.py‘
3 Utilities for generating reports in LaTeX.

4 R. Sanford

5 20 January 2023

6 """
7 import numpy as np

8 import os,random

9 from util import str_matrix , vector_formatter , increment_name ,

10 cofactor , coupling_coef , check_for_path

11
12
13 n_tab = 4 # number of spaces to be a tab

14
15 def tex_report(models , desc , report_file , sigfig):

16 """

17 make a report , models is a dict with the keys corresponding
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18 to the matrix variable label.

19
20 Parameters:

21 - models : Library of objects , the library label will be the variable label.

22 - desc : Object descriptions , will be printed as a comment under the equation

23 - report_file : path to file (full filename included)

24 - reference_desc : print the refernece before the description text so it ...

25 becommes: \ref{eqn_label} {description}

26 """

27 report_file = increment_name(report_file ,’.tex’)

28
29 for k in models:

30 # print(type(models[k]))

31 if ’array’ in str(type(models[k])):

32 save_matrix_as_tex(models[k],mat_label=k,savepath=report_file ,

33 description=desc[k],write_mode=’a’,sigfig=sigfig)

34 else:

35 save_as_tex(models[k],label=k,savepath=report_file ,

36 description=desc[k],write_mode=’a’,sigfig=sigfig)

37
38
39 def tex_vector_formatter(a,sigfig =3):

40 format_string = ’{:0.’+f’{sigfig}’+’E} \\ angle {:0.3f}^\\ circ’

41 return format_string.format(np.abs(a),np.angle(a,deg=True))

42
43
44 def save_matrix_as_tex(M,mat_label ,savepath ,description ,write_mode=’w’,

45 sigfig=3, as_decimal=False):

46 """

47 convert a numpy matrix into a LaTeX matrix

48 """

49 randid = random.randint (1e2 ,1e8)

50 item_label = f’eqn:{ labelify(mat_label)}_{randid}’

51 is_vector = (M.shape [0] > 1) and (M.shape [1] == 1)

52 print(mat_label , ’is vector?’,is_vector)

53
54 tex_str = ’\n\\begin{equation }\ label{’+item_label+’}\n’+’ ’*n_tab\

55 +mat_label+’=\n’+’ ’*n_tab+’\\begin{bmatrix }\n’

56 dtype = str(M.dtype)

57 # print(M.dtype)

58 for ii in range(M.shape [0]):

59 tex_str += ’ ’*2* n_tab

60 for jj in range(M.shape [1]):

61 if ’int’ in dtype :

62 tex_str += ’{:d}’.format(M[ii,jj])\
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63 + ( ’ & ’ if jj <(M.shape [1]-1) else ’’ )

64
65 elif ’float’ in dtype:

66 if M[ii,jj] == 0:

67 tex_str += ’0’ + ( ’ & ’ if jj <(M.shape [1]-1) else ’’ )

68 else:

69 if M[ii,jj] >= 1e-3 or as_decimal:

70 tex_str += ’{:0.3f}’.format(M[ii ,jj])\

71 + ( ’ & ’ if jj <(M.shape [1]-1) else ’’ )

72 else:

73 tex_str += ’{:0.3E}’.format(M[ii ,jj])\

74 + ( ’ & ’ if jj <(M.shape [1]-1) else ’’ )

75
76 elif ’complex ’ in dtype :

77 m_r = M[ii,jj].real

78 m_i = abs(M[ii,jj].imag)

79 m_is = ’+’ if M[ii,jj].imag > 0 else ’-’

80
81 if m_r > 0:

82 tex_str += ’{:0.3E}{}j{:0.3E}’.format(m_r ,m_is ,m_i)\

83 + ( ’ & ’ if jj <(M.shape [1]-1) else ’’ )

84 else:

85 tex_str += ’0{}j{:0.3E}’.format(m_is ,m_i)\

86 + ( ’ & ’ if jj <(M.shape [1]-1) else ’’ )

87
88 tex_str += ’ \\\\\n’

89 if is_vector:

90 tex_str += ’ ’*n_tab+’\\end{bmatrix }\n\\end{equation}’\

91 if (not ’complex ’ in dtype) else ’ ’*n_tab\

92 +’\\end{bmatrix }\n’+’ ’*n_tab+’=\n’+’ ’*n_tab+’\\ begin{bmatrix }\n’

93 if ’complex ’ in dtype:

94 for ii in range(M.shape [0]):

95 tex_str += ’ ’*2* n_tab

96 for jj in range(M.shape [1]):

97 m_r = M[ii,jj].real

98 m_i = abs(M[ii,jj].imag)

99 m_is = ’+’ if M[ii,jj].imag > 0 else ’-’

100 tex_str += tex_vector_formatter(M[ii,jj])\

101 + ( ’ & ’ if jj <(M.shape [1]-1) else ’’ )

102 tex_str += ’ \\\\\n’

103 tex_str += ’ ’*n_tab+’\\end{bmatrix }\n\\end{equation}’

104 else:

105 tex_str += ’ ’*n_tab+’\\end{bmatrix }\n\\end{equation}’

106
107 desc = description.split(’\n’)
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108 tex_str += (’\n% ’ + ’\\ref{’+item_label+’} ’\

109 + desc [0]. strip()) if len(desc [0]) > 0 else ’\n %\\ref{’+item_label+’} ’

110 if len(desc) > 1:

111 for dl in desc [1:]:

112 sdl = dl.strip ()

113 tex_str += (’\n% ’ + sdl) if len(sdl) > 0 else ’’

114 tex_str += ’\n’

115 # print(tex_str)

116
117 with open(savepath ,write_mode) as texfile:

118 texfile.write(tex_str)

119 texfile.close ()

120
121
122 def save_as_tex(M,label ,savepath ,description ,write_mode=’w’,sigfig =3):

123 """

124 Save a value to a tex equation in a file in the same style as a matrix

125 """

126 randid = random.randint (1e2 ,1e8)

127
128 item_label = f’eqn:{ labelify(label)}_{randid}’

129 tex_str = ’\n\\begin{equation }\ label{’+item_label+’}\n’+’ ’*n_tab+label+’=’

130 dtype = str(M.dtype)

131 # print(M.dtype)

132 if ’int’ in dtype :

133 tex_str += ’{:d}’.format(M)

134
135 elif ’float ’ in dtype :

136 tex_str += ’{:0.3f}’.format(M)

137
138 elif ’complex ’ in dtype :

139 m_r = M.real

140 m_i = abs(M.imag)

141 m_is = ’+’ if M.imag > 0 else ’-’

142 complex_format_str = ’{:0.’+f’{sigfig}’+’E}{}j{:0.’+f’{sigfig}’+’E} = ’

143 tex_str += complex_format_str.format(m_r ,m_is ,m_i)

144 tex_str += tex_vector_formatter(M,sigfig)

145
146
147 tex_str += ’\n\\end{equation}’

148
149 desc = description.split(’\n’)

150
151 tex_str += (’\n’ + ’\\ref{’+item_label+’} ’\

152 + desc [0]. strip()) if len(desc [0]) > 0 else ’\n% \\ref{’+item_label+’} ’
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153 if len(desc) > 1:

154 for dl in desc [1:]:

155 sdl = dl.strip ()

156 tex_str += (’\n% ’ + sdl) if len(sdl) > 0 else ’’

157
158 tex_str += ’\n’

159 # print(tex_str)

160
161 with open(savepath ,write_mode) as texfile:

162 texfile.write(tex_str)

163 texfile.close ()

164
165
166 def labelify(ml):

167 if ’\;’ in ml:

168 ml=ml.replace(’\;’,’_’)

169 if ’{’ in ml or ’}’ in ml:

170 ml=ml.replace(’{’,’’)

171 ml=ml.replace(’}’,’’)

172 return ml

D.3.3 wires.py

1 """

2
3 Wire Parameter Values , and functions for useful stuff therein

4
5 """
6 from numpy import pi

7
8 AWG_diam = { # AWG diameters in millimeters

9 ’4/0’:11.684 , ’3/0’:10.4049 , ’2/0’:9.2658 , ’1/0’:8.2515 ,

10 1:7.3481 , 2:6.5437 , 3:5.8273 , 4:5.1894 , 5:4.6213 , 6:4.1154 ,

11 7:3.6649 , 8:3.2636 , 9:2.9064 , 10:2.5882 , 11:2.3048 , 12:2.0525 ,

12 13:1.8278 , 14:1.6277 , 15:1.4495 , 16:1.2908 , 17:1.1495 , 18:1.0237 ,

13 19:0.9116 , 20:0.8118 , 21:0.7229 , 22:0.6438 , 23:0.5733 , 24:0.5106 ,

14 26:0.4049 , 27:0.3606 , 28:0.3211 , 29:0.2859 , 30:0.2546 , 31:0.2268 ,

15 32:0.2019 , 33:0.1798 , 34:0.1601 , 35:0.1426 , 36:0.1270 , 37:0.1131 ,

16 38:0.1007 , 39:0.0897 , 40:0.0799 ,

17 }
18
19 resistivity = { # Ohm -m^2/m, use by dividing by the area of the wire

20 # these are the 20C values.

21 ’Al’:2.65*10**( -8) ,

22 ’Cu’:1.68*10**( -8) ,

23 }
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24
25 T_coeffs = { # temperatue coefficients [1/K]

26 ’Al’:0.00390 ,

27 ’Cu’:0.00380 ,

28 }
29
30 permeability = {

31 ’mu0’:4*pi*10**( -7),

32 ’Al’:1.256665*10**( -6) ,

33 ’Cu’:1.256629*10**( -6)

34
35 }

D.3.4 display models.py

This script is a graphing utility for visualizing the reactor wiht either a turns-in-profile view or a 3D
view of the reactor as a set of parallel sheets.

1 """

2
3 Wire Parameter Values , and functions for useful stuff therein

4
5 """
6 from numpy import pi

7
8 AWG_diam = { # AWG diameters in millimeters

9 ’4/0’:11.684 , ’3/0’:10.4049 , ’2/0’:9.2658 , ’1/0’:8.2515 ,

10 1:7.3481 , 2:6.5437 , 3:5.8273 , 4:5.1894 , 5:4.6213 , 6:4.1154 ,

11 7:3.6649 , 8:3.2636 , 9:2.9064 , 10:2.5882 , 11:2.3048 , 12:2.0525 ,

12 13:1.8278 , 14:1.6277 , 15:1.4495 , 16:1.2908 , 17:1.1495 , 18:1.0237 ,

13 19:0.9116 , 20:0.8118 , 21:0.7229 , 22:0.6438 , 23:0.5733 , 24:0.5106 ,

14 26:0.4049 , 27:0.3606 , 28:0.3211 , 29:0.2859 , 30:0.2546 , 31:0.2268 ,

15 32:0.2019 , 33:0.1798 , 34:0.1601 , 35:0.1426 , 36:0.1270 , 37:0.1131 ,

16 38:0.1007 , 39:0.0897 , 40:0.0799 ,

17 }
18
19 resistivity = { # Ohm -m^2/m, use by dividing by the area of the wire

20 # these are the 20C values.

21 ’Al’:2.65*10**( -8) ,

22 ’Cu’:1.68*10**( -8) ,

23 }
24
25 T_coeffs = { # temperatue coefficients [1/K]

26 ’Al’:0.00390 ,

27 ’Cu’:0.00380 ,

28 }
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29
30 permeability = {

31 ’mu0’:4*pi*10**( -7),

32 ’Al’:1.256665*10**( -6) ,

33 ’Cu’:1.256629*10**( -6)

34
35 }

D.4 Illustration Reactor

This python program produces the data used in the 4-turn 2-layer ”2-element” reactor in section
3.8.1. The program also gives a comparison between turn-to-turn calculation method and the methods
presented by Fawzi and Burke.

1 #!/bin/python3
2 """ illustration_reactor.py """

3 from biot_savart_methods import bs_mutual , internal

4 from fawzi_and_burke_methods import fb_mutual , fb_mutual_thick , fb_self_ind

5 from util import vector_formatter , str_matrix , coupling_coef

6 from tex_util import tex_report , save_matrix_as_tex

7 import numpy as np

8 from display_models import turn_model

9
10 rho_cu = 1.68*10**( -8) # resistivity of copper [Ohm * m^2/m]

11 mm2m = 10**( -3) # millimeters to meters

12
13 testing_freq = 60_000 # Hz

14
15 # r_cond = [0.5106* mm2m *0.5]+[0.3211* mm2m *0.5]*2 # conductor radius ~24awg ,28 [meters

]

16 r_cond = 0.25* mm2m # conductor radius ~24awg[meters]

17 c_ins = 0.01* mm2m # insulation on enameled wire

18
19 d = 2*( r_cond + c_ins)

20
21 R_loop1 = 0.1

22 R_loop2 = 0.103

23
24 sp = check_for_path(’./ results/illustration_reactor.tex’,True) # savepath

25
26 def t2t_illustration ():

27 l11 = bs_mutual(a=R_loop1 ,b=(R_loop1 -r_cond),d=0)

28 l22 = l11

29 l33 = bs_mutual(a=R_loop2 ,b=(R_loop2 -r_cond),d=0)
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30 l44 = l33

31
32 m12 = bs_mutual(a=R_loop1 ,b=(R_loop1 -r_cond),d=d)

33 m13 = bs_mutual(a=R_loop1 ,b=(R_loop2 -r_cond),d=0)

34 m14 = bs_mutual(a=R_loop1 ,b=(R_loop2 -r_cond),d=d)

35
36 m23 = bs_mutual(a=R_loop1 ,b=(R_loop2 -r_cond),d=-d)

37 m24 = bs_mutual(a=R_loop1 ,b=(R_loop2 -r_cond),d=0)

38
39 m34 = bs_mutual(a=R_loop2 ,b=(R_loop2 -r_cond),d=d)

40
41 L_4x4 = np.array([ [l11 ,m12 ,m13 ,m14],

42 [m12 ,l22 ,m23 ,m24],

43 [m13 ,m23 ,l33 ,m34],

44 [m14 ,m24 ,m34 ,l44] ])

45
46 K_4x4 = coupling_coef(L_4x4)

47
48 print(str_matrix(L_4x4 ,label=’L_4x4 =’))

49 print(str_matrix(K_4x4 ,label=’K_4x4 =’, as_decimal=True))

50
51 # Simplify to a 2x2 inductance matrix:

52
53 L_1 = l11 + l22 + 2*m12

54 L_2 = l33 + l44 + 2*m34

55 M12 = m13 + m14 + m23 + m24

56
57 L_2x2 = np.array([ [L_1 , M12],

58 [M12 , L_2 ]])

59
60 K_2x2 = coupling_coef(L_2x2)

61
62 print(str_matrix(L_2x2 ,label=’L_2x2 =’))

63 print(str_matrix(K_2x2 ,label=’K_2x2 =’, as_decimal=True))

64
65 save_matrix_as_tex(M=L_4x4 ,mat_label=’L_4x4’,savepath=sp ,description=’4x4 L

matrix using t2t’,write_mode=’w’,sigfig=3, as_decimal=False)

66 save_matrix_as_tex(M=K_4x4 ,mat_label=’K_4x4’,savepath=sp ,description=’4x4 K

matrix using t2t’,write_mode=’a’,sigfig=3, as_decimal=True)

67 save_matrix_as_tex(M=L_2x2 ,mat_label=’L_2x2’,savepath=sp ,description=’2x2 L

matrix using t2t’,write_mode=’a’,sigfig=3, as_decimal=False)

68 save_matrix_as_tex(M=K_2x2 ,mat_label=’K_2x2’,savepath=sp ,description=’2x2 K

matrix using t2t’,write_mode=’a’,sigfig=3, as_decimal=True)

69
70 return L_2x2
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71
72 def sheet_equiv ():

73 h = d + 2* r_cond

74 L_1 = fb_mutual(N1=2,R1=R_loop1 ,h1=h,

75 N2=2,R2=R_loop1 -r_cond ,h2=h,s=0)

76 L_2 = fb_mutual(N1=2,R1=R_loop2 ,h1=h,

77 N2=2,R2=R_loop2 -r_cond ,h2=h,s=0)

78 M12 = fb_mutual(N1=2,R1=R_loop1 ,h1=h,

79 N2=2,R2=R_loop2 -r_cond ,h2=h,s=0)

80
81 L_sheet = np.array ([[L_1 , M12],

82 [M12 , L_2 ]])

83
84 K_sheet = coupling_coef(L_sheet)

85
86 print(str_matrix(L_sheet ,label=’L_sheet =’))

87 print(str_matrix(K_sheet ,label=’K_sheet =’, as_decimal=True))

88
89 save_matrix_as_tex(M=L_sheet ,mat_label=’L_sheet ’,savepath=sp,description=’2x2 L

matrix using F&B sheets ’,write_mode=’a’,sigfig=3, as_decimal=False)

90 save_matrix_as_tex(M=K_sheet ,mat_label=’K_sheet ’,savepath=sp,description=’2x2 K

matrix using F&B sheets ’,write_mode=’a’,sigfig=3, as_decimal=True)

91
92 return L_sheet

93
94 if __name__ == ’__main__ ’:

95 L_t2t = t2t_illustration ()

96 L_sheet = sheet_equiv ()

97
98 print("Compare t2t with sheet method: L_t2t - L_sheet:")

99 print(str_matrix(L_t2t - L_sheet ,label=’L_t2t - L_s =’, as_decimal=True))

100 print(str_matrix(L_t2t - L_sheet ,label=’L_t2t - L_s =’))

101 L_diff = 100*( L_t2t - L_sheet)/L_t2t

102 print(str_matrix(L_diff ,label=’L_t2t - L_s (% diff) =’, as_decimal=True))

103
104 save_matrix_as_tex(M=L_t2t - L_sheet ,mat_label=’L_diff ’,savepath=sp,

105 description=’difference between t2t and F&B sheets ’,

write_mode=’a’,sigfig=3, as_decimal=False)

106 save_matrix_as_tex(M=L_diff ,mat_label=’L_diff ’,savepath=sp,description=’

difference between t2t and F&B sheets ’,write_mode=’a’,sigfig=3, as_decimal=True)
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D.5 41 Turn Example

This is a script to demonstrate the use and computation accuracy of the varying inductance cal-
culation methods.

1 #!/bin/python3
2 """ compare_41turn.py """

3 import numpy as np

4 from fawzi_and_burke_methods import fb_self_ind , fb_mutual , fb_mutual_thick

5 from util import vector_formatter , cofactor

6 import matplotlib.pyplot as plt

7
8 from biot_savart_methods import bs_mutual , internal

9 from display_models import sheet_model , turn_model

10
11 rho_cu = 1.68*10**( -8) # resistivity of copper [Ohm * m^2/m]

12 mm2m = 10**( -3) # millimeters to meters

13
14 turns = 41

15 r_loop = 50* mm2m * 0.5 # loop radius [meters]

16 r_cond = 0.5106* mm2m * 0.5 # conductor radius ~24awg [meters]

17 c_ins = 0.025187* mm2m # insulation on enameled wire

18 height = 23* mm2m#turns*( r_cond+c_ins)*2-2* c_ins*0 # take the top and bottom

insualtion off the height ...

19 # b/c it doesn ’t have an effect on the

magnetic properties

20 print(f’turns={turns}, r_loop ={ r_loop}, r_cond ={ r_cond}, height ={ height :.5f}’)

21 def t2t_reactor ():

22
23 z_inc = height /(turns -1)# 2*( r_cond*c_ins) # z increment (conductor diameter)

24
25 Lm = [] # inductance values for increasing turns distance. 0th index being the

nearest adjacent turn

26 for k in range(0,turns):

27 m = bs_mutual(a=( r_loop),b=(r_loop -r_cond),d=k*z_inc)

28 # print(f’k={k} d={k*z_inc}: m={m}’)

29 Lm.append(m)

30 # print(len(Lm))

31
32 L_int = internal(R=r_loop ,r=r_cond) # flux internal to the conductor

33
34 # account for the self and internal inductanve of each turn:

35 L = turns*(Lm[0] + L_int)

36
37 # apply superposition:

38 for k in range(1,turns):
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39 # print(len(Lm[1:turns -k+1]))

40 L += 2*np.sum(Lm[1:turns -k+1]) # double the quantity because of symmetry

41
42 return L

43
44 def sheet_reactor ():

45
46 # L = fb_self_ind(N=turns ,R=r_loop ,h=( turns)*r_cond *2)

47 # L = fb_self_ind(N=turns ,R=r_loop ,h=height)

48 L = fb_mutual(N1=turns ,R1=r_loop ,h1=height ,

49 N2=turns ,R2=r_loop -r_cond ,h2=height ,s=0) # concentric

50 return L

51
52 def shell_reactor ():

53
54 N = turns

55 R = r_loop

56 h = height#(turns)*r_cond *2

57 t = 2* r_cond

58 L = fb_mutual_thick(N1=N,R1=R,h1=h,t1=t,

59 N2=N,R2=R,h2=h,t2=t,s=0) # concentric

60
61 return L

62
63 if __name__ == ’__main__ ’:

64 L_bs = t2t_reactor ()

65 L_fb = sheet_reactor ()

66 L_fbt = shell_reactor ()

67
68 print(f’L_bs = {L_bs*1e6:.4f} [nH]’)

69 print(f’L_fb = {L_fb*1e6:.4f} [nH]’)

70 print(f’L_fbt = {L_fbt *1e6:.4f} [nH]’)

71 print(f’L_bs/L_fb = {L_bs/L_fb}’)

72 print(f’L_bs/L_fbt = {L_bs/L_fbt}’)

73
74 # to check the results with a measurable value

75 f = 10000

76 w_test = f*2*np.pi; # test angular frequency

77 V_term = 1.06

78 R_i = 10 # current sensing resistor for measuring phase angle:

79 print(f’current sensing resistor: R_i = {R_i}’)

80 R_L = turns *(2*np.pi*r_loop)*( rho_cu /(np.pi*r_cond **2) ) # calculate the

resistance of the wire used to construct the reactor

81
82 Z_bs = R_L+R_i + L_bs*w_test *1j
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83 Z_fb = R_L+R_i + L_fb*w_test *1j

84 Z_fbt = R_L+R_i + L_fbt*w_test *1j

85
86 print(f’freq = {f}[Hz]’)

87 print(f’Z_bs = {Z_bs :.4f} [\u03a9]’)

88 print(f’Z_fb = {Z_fb :.4f} [\u03a9]’)

89 print(f’Z_fbt = {Z_fbt :.4f} [\u03a9]’)

90
91 I_bs = (V_term /(Z_bs))

92 I_fb = (V_term /(Z_fb))

93 I_fbt = (V_term /(Z_fbt))

94
95 print(’I_bs =’,vector_formatter(I_bs))

96 print(’I_fb =’,vector_formatter(I_fb))

97 print(’I_fbt =’,vector_formatter(I_fbt))

98
99 # turn_model(turns=[turns],radii=[ r_loop],heights =[ height],r_conds =[ r_cond],s

=[0], c=[’#000’],lw=0.5)

100 # sheet_model(radii=[ r_loop],heights =[turns*r_cond *2],s=[0],c=[’#000’],a=[.2])

101 # plt.savefig (’./figs/turnModel_41t_r50mm.png ’,dpi=600, bbox_inches=’tight ’)

102 # plt.show()

D.6 41 Turn Faulted Example

This is a script to demonstrate the use and comparison between faults calculated using the two
inductance calculation methods.

1 #!/bin/python3
2 """ compare_41turn.py """

3 import numpy as np

4 from biot_savart_methods import bs_mutual , internal

5 from fawzi_and_burke_methods import fb_self_ind , fb_mutual , geometry_mat , turns_mat ,

NG_scalar

6 from util import vector_formatter , cofactor , str_matrix , check_for_path

7 from tex_util import save_matrix_as_tex

8 import matplotlib.pyplot as plt

9
10 from display_models import sheet_model , turn_model

11
12 rho_cu = 1.68*10**( -8) # resistivity of copper [Ohm * m^2/m]

13 mm2m = 10**( -3) # millimeters to meters

14
15 turns = 41

16 r_loop = 50* mm2m * 0.5 # loop radius [meters]
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17 r_cond = 0.5106* mm2m * 0.5 # conductor radius ~24awg [meters]

18 c_ins = 0.025187* mm2m # insulation on enameled wire

19 height = 23* mm2m#turns*( r_cond+c_ins)*2-2* c_ins*0 # take the top and bottom

insualtion off the height ...

20 # b/c it doesn ’t have an effect on the

magnetic properties

21 n_fault = 21 # fault index

22
23 print(r_cond)
24
25 sp = ’./ results/single_layer_test_fault.tex’

26
27 print(f’turns={turns}, r_loop ={ r_loop}, r_cond ={ r_cond}, height ={ height :.5f}, faulted

turn:{ n_fault}’)

28
29 def t2t_reactor ():

30 L = np.zeros ((2,2))

31 z_inc = height /(turns -1)# 2*( r_cond*c_ins) # z increment (conductor diameter)

32
33 Lm = [] # inductance values for increasing turns distance. 0th index being the

nearest adjacent turn

34 for k in range(0,turns):

35 m = bs_mutual(a=( r_loop),b=(r_loop -r_cond),d=k*z_inc)

36 # print(f’k={k} d={k*z_inc}: m={m}’)

37 Lm.append(m)

38 # print(len(Lm))

39
40 L_int = internal(R=r_loop ,r=r_cond) # flux internal to the conductor

41
42 # account for the self and internal inductanve of each turn:

43 L[0,0] = turns*(Lm[0] + L_int)

44
45 # apply superposition:

46 for k in range(1,turns):

47 # print(len(Lm[1:turns -k+1]))

48 L[0,0] += 2*np.sum(Lm[1:turns -k+1]) # double the quantity because of symmetry

49
50 m_1f = 2*np.sum(Lm[1: n_fault ]) # get the mutuals from the center turn to the rest

51 L[0,1] = m_1f # these are the off -diagonals

52 L[1,0] = m_1f # also off -diagonal

53 L[1,1] = Lm[0] + L_int # the self inductance is the same for a fault turn or a

layer turn

54 L[0,0] = L[0,0]-(Lm[0] + L_int + 2*m_1f) # remove the mutual and self of the

fault from the layer

55 return L
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56
57
58 def sheet_reactor ():

59 N = turns_mat ([turns ,1])

60 G = geometry_mat(radii=[ r_loop ]*2,h=[height ,( height/turns)],h_frac =[1,1],z=0)

61 print(str_matrix(N,label=’N =’))

62 print(str_matrix(G,label=’G =’))

63
64 L = NG_scalar * N * G

65
66 print(str_matrix(L,label=’L =’))

67 L[0,0] = L[0,0] - (L[1,1] + 2*L[0,1])

68 print(str_matrix(L,label=’L =’))

69
70 return L

71
72
73 if __name__ == ’__main__ ’:

74 L_bs = t2t_reactor ()

75 L_fb = sheet_reactor ()

76
77 print(str_matrix(L_bs*1e6, label=’L_bs [nH] =’, as_decimal=False))

78 print(str_matrix(L_fb*1e6, label=’L_fb [nH] =’, as_decimal=False))

79
80 # to check the results with a measurable value

81 f = 10000

82 w_test = f*2*np.pi; # test angular frequency

83 V_term = 1.06

84 R_i = 10 # current sensing resistor for measuring phase angle:

85 print(f’current sensing resistor: R_i = {R_i}’)

86 R_L = turns *(2*np.pi*r_loop)*( rho_cu /(np.pi*r_cond **2) ) # calculate the

resistance of the wire used to construct the reactor

87 R_mat = np.array ([[ R_L*((turns -1)/turns)+R_i ,0],[0,R_L *(1/ turns)]])

88 Z_bs = R_mat + L_bs*w_test *1j

89 Z_fb = R_mat + L_fb*w_test *1j

90
91 print(f’freq = {f}[Hz]’)

92 print(str_matrix(Z_bs , label=’Z_bs [\ u03a9] =’))

93 print(str_matrix(Z_fb , label=’Z_fb [\ u03a9] =’))

94
95 V = np.array ([[ V_term ] ,[0]])

96
97 I_bs = np.matmul(np.linalg.inv(Z_bs),V)

98 I_fb = np.matmul(np.linalg.inv(Z_fb),V)

99
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100 print(str_matrix(I_bs , label=’I_bs [A] =’, phasor=True))

101 print(str_matrix(I_fb , label=’I_fb [A] =’, phasor=True))

102
103 turn_model(turns =[turns ,1], radii=[ r_loop ]*2, heights =[height ,0], r_conds =[ r_cond

]*2,s=[0]*2 , c=[’#000’,’#800’],lw=[0.5 ,1])

104 sheet_model(radii=[ r_loop ]*2, heights =[turns*r_cond*2, 2* r_cond],s=[0,0],c=[’#000’

,’#f00’],a=[.2 ,.8])

105 plt.show()

D.7 3-Layer Example

This script is used in the simulaiton of the physical 3-layer test reactors with the tuned and untuned
variants.

1 #!/bin/python3
2 from biot_savart_methods import bs_mutual , internal

3 from fawzi_and_burke_methods import fb_mutual , fb_mutual_thick , fb_self_ind ,

geometry_mat , turns_mat , NG_scalar

4 from util import vector_formatter , str_matrix

5 from tex_util import save_matrix_as_tex , save_as_tex

6 import numpy as np

7 from display_models import turn_model , sheet_model

8 import matplotlib.pyplot as plt

9
10 rho_cu = 1.68*10**( -8) # resistivity of copper [Ohm * m^2/m]

11 mm2m = 10**( -3) # millimeters to meters

12
13 testing_freq = 10_000 # Hz

14
15 # r_cond = [0.5106* mm2m *0.5]+[0.3211* mm2m *0.5]*2 # conductor radius ~24awg ,28 [meters

]

16 r_cond = [0.5106* mm2m *0.5]*4 # conductor radius ~24awg[meters]

17 c_ins = 0.025187* mm2m # insulation on enameled wire

18
19 def t2t_reactor(turns ,radii ,height ,R_add):

20 NN = len(turns)

21 L = np.zeros((NN,NN))

22 for k in range(NN):

23 z_inc = height[k]/( turns[k]-1)# 2*( r_cond*c_ins) # z increment (conductor

diameter)

24 Lm = [] # inductance values for increasing turns distance. 0th index being

the nearest adjacent turn

25 for l in range(0,turns[k]):

26 m = bs_mutual(a=( radii[k]),b=(radii[k]-r_cond[k]),d=l*z_inc)
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27 # print(f’k={k} d={k*z_inc}: m={m}’)

28 Lm.append(m)

29 # print(len(Lm))

30
31 L_int = internal(R=radii[k],r=r_cond[k]) # flux internal to the conductor

32
33 # account for the self and internal inductanve of each turn:

34 L_mut = turns[k]*(Lm[0] + L_int)

35
36 # apply superposition:

37 for l in range(1,turns[k]):

38 # print(len(Lm[1:turns -k+1]))

39 L_mut += 2*np.sum(Lm[1: turns[k]-l+1]) # double the quantity because of

symmetry

40
41 L[k,k] = L_mut # insert diagonal elements

42
43 # calculate the off -diagonal elements (mutuals)

44 for k in range(0,NN):

45 ta = turns[k]

46 rca = r_cond[k]

47 z_inc_a = height[k]/(ta -1)# 2*( r_cond*c_ins) # z increment (conductor

diameter)

48 for j in range(k+1,NN):

49 print(f’({k},{j})’)

50 tb = turns[j]

51 rcb = r_cond[j]

52 z_inc_b = height[j]/(tb -1)# 2*( r_cond*c_ins) # z increment (conductor

diameter)

53 Lm = 0 # inductance values for increasing turns distance. 0th index being

the nearest adjacent turn

54 ct = 0 # counter for debugging , should go to (ta*tb) -1

55 for l in range(0,ta):

56 for i in range(0,tb):

57 m = bs_mutual(a=( radii[k]),b=(radii[j]-rcb),d=abs(i*z_inc_b -l*

z_inc_a))

58 # print(f’{ct} [{l},{i}], d={i*z_inc_b -l*z_inc_a }: m={m}’)

59 Lm += m

60 ct += 1

61
62 L[k,j] = Lm

63 L[j,k] = Lm

64
65
66 X = 2j*np.pi*testing_freq*L
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67
68 R = calc_R(turns ,radii ,R_add)

69
70 Z = np.diag(R) + X

71
72 return L,Z

73
74
75 def sheet_reactor(turns ,radii ,height ,R_add):

76 """ """

77 # L = fb_self_ind(N=turns ,R=r_loop ,h=( turns)*r_cond *2)

78 L1 = fb_self_ind(N=turns [0],R=radii[0],h=height [0])

79 L2 = fb_self_ind(N=turns [1],R=radii[1],h=height [1])

80 L3 = fb_self_ind(N=turns [2],R=radii[2],h=height [2])

81
82 L12 = fb_mutual(N1=turns[0],R1=radii[0],h1=height [0],

83 N2=turns [1],R2=radii[1],h2=height [1],s=0)

84 L13 = fb_mutual(N1=turns[0],R1=radii[0],h1=height [0],

85 N2=turns [2],R2=radii[2],h2=height [2],s=0)

86 L23 = fb_mutual(N1=turns[1],R1=radii[1],h1=height [1],

87 N2=turns [2],R2=radii[2],h2=height [2],s=0)

88
89 L = np.array ([[L1,L12 ,L13],[L12 ,L2,L23],[L13 ,L23 ,L3]])

90
91 X = 2j*np.pi*testing_freq*L

92
93 R = calc_R(turns ,radii ,R_add)

94
95 Z = np.diag(R) + X

96
97 return L,Z

98
99 def sheet_reactor_faulted(turns ,radii ,height ,R_add):

100 """ """

101 # L = fb_self_ind(N=turns ,R=r_loop ,h=( turns)*r_cond *2)

102 # L1 = fb_self_ind(N=turns[0],R=radii [0],h=height [0])

103 # L2 = fb_self_ind(N=turns[1],R=radii [1],h=height [1])

104 # L3 = fb_self_ind(N=turns[2],R=radii [2],h=height [2])

105 #

106 # L12 = fb_mutual(N1=turns[0],R1=radii [0],h1=height [0],

107 # N2=turns[1],R2=radii[1],h2=height [1],s=0)

108 # L13 = fb_mutual(N1=turns[0],R1=radii [0],h1=height [0],

109 # N2=turns[2],R2=radii[2],h2=height [2],s=0)

110 # L23 = fb_mutual(N1=turns[1],R1=radii [1],h1=height [1],

111 # N2=turns[2],R2=radii[2],h2=height [2],s=0)
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112 #

113 # L = np.array ([[L1,L12 ,L13],[L12 ,L2 ,L23],[L13 ,L23 ,L3]])

114 N = turns_mat(turns +[1])

115 G = geometry_mat(radii=radii+[ radii [0]],h=height +[ height [0]])

116 L = NG_scalar * N * G

117
118 X = 2j*np.pi*testing_freq*L

119
120 R = calc_R(turns +[1], radii+[radii [0]], R_add +[0])

121
122 Z = np.diag(R) + X

123
124 return L,Z

125
126 def calc_R(turns ,radii ,R_add):

127 R = [0]* len(turns)

128 print(turns)

129 print(radii)

130 print(R_add)

131 for k,t in enumerate(turns):

132 ll = (2*np.pi*radii[k])

133 ca = rho_cu /(np.pi*r_cond[k]**2)

134 r = t*( ca )*ll + R_add[k]

135 print(f’k={k},R_k={r}’)

136 R[k] = r

137
138 return R

139
140 sp = ’./ results/multilayer_faults_combined.tex’

141
142 def analysis(Z,V_term ,R_i ,nF=0,wm=’a’,ss=’a’):

143 """ perform analysis on the matrix """

144 cZ = np.linalg.cond(Z)

145 print(str_matrix(Z,label=f’Z_{ss} =’))

146 print(’condition of Z: cond(d) =’,cZ)

147
148 Y = np.linalg.inv(Z)

149 print(str_matrix(Y,label=f’Y_{ss} =’))

150 V = V_term * np.ones((Z.shape [0] ,1))

151 if nF > 0:

152 V[-nF:] = 0

153 print(str_matrix(V,label=f’V_{ss} =’))

154 I = np.matmul(Y,V)

155 V_Ri = np.array ([R_i]).T * I

156 print(str_matrix(I,label=f’I_{ss} =’,phasor=True))
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157 print(str_matrix(V_Ri ,label=’V_Ri =’,phasor=True))

158
159 It = np.sum(I[:-nF]) if nF > 0 else np.sum(I)

160 # It = np.sum(I)

161 Zt = V_term / It

162 print(f’I_{ss}t =’, It,’=’, vector_formatter(It))

163 print(f’Z_{ss}t =’, Zt,’=’, vector_formatter(Zt))

164
165 # save_matrix_as_tex(M=L,mat_label=f’L_{ss}’,savepath=sp,description=’’,

write_mode=wm,sigfig=4, as_decimal=False)

166 save_matrix_as_tex(M=Z,mat_label=f’Z_{ss}’,savepath=sp,description=’impedance

matrix ’,write_mode=wm ,sigfig=4, as_decimal=False)

167 save_matrix_as_tex(M=I,mat_label=f’I_{ss}’,savepath=sp,description=’current

vector ’,write_mode=’a’,sigfig=4, as_decimal=False)

168 save_as_tex(M=It,label=f’I_total{ss}’,savepath=sp,description=’total current ’,

write_mode=’a’,sigfig =4)

169 save_as_tex(M=Zt,label=f’Z_total{ss}’,savepath=sp,description=’total impedance ’,

write_mode=’a’,sigfig =4)

170 # save_matrix_as_tex(M=Z_bs ,mat_label=f’Z_{ss}’,savepath=sp,description=’’,

write_mode=’a’,sigfig=4, as_decimal=False)

171
172 if __name__ == ’__main__ ’:

173 untuned_turns = [41]*3

174 # tuned_turns = [41 ,37 ,37] # all 24awg , for 1 ohm R_sense

175 tuned_turns = [41 ,37 ,37] # all 24awg , for 10 ohm R_sense

176 # tuned_turns = [41 ,35+0 ,35 -1] # 24,28,28 awg

177 radii = [mm2m*d*.5 for d in [50 ,54 ,58]]

178 Ri = [10]*3 # current sensing resistors

179
180 untuned_heights = [t*( r_cond [0]+ c_ins)*2-2* c_ins for i,t in enumerate(

untuned_turns)]

181 tuned_heights = [t*( r_cond[i]+c_ins)*2-2* c_ins for i,t in enumerate(tuned_turns)]

182
183 # L_untuned ,Z_untuned = sheet_reactor(untuned_turns ,radii ,untuned_heights ,R_add=

Ri)

184 # L_tuned ,Z_tuned = sheet_reactor(tuned_turns ,radii ,tuned_heights ,R_add=Ri)

185 # L_untuned_f ,Z_untuned_f = sheet_reactor_faulted(untuned_turns ,radii ,

untuned_heights ,R_add=Ri)

186 # L_tuned_f ,Z_tuned_f = sheet_reactor_faulted(tuned_turns ,radii ,tuned_heights ,

R_add=Ri)

187 #

188 # print(str_matrix(L_untuned ,label=’L_untuned =’))

189 # analysis(Z=Z_untuned ,V_term =0.66,R_i=Ri,wm=’w’,ss=’ut ’)

190 #

191 # print(str_matrix(L_untuned_f ,label=’L_untuned_f =’))
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192 # analysis(Z=Z_untuned_f ,V_term =0.66 ,R_i=Ri+[0],nF=1,ss=’utf ’)

193 #

194 # print(str_matrix(L_tuned ,label=’L_tuned =’))

195 # # print(str_matrix(Z_tuned ,label=’Z_tuned =’))

196 # analysis(Z=Z_tuned ,V_term =0.62 ,R_i=Ri ,ss=’t’)

197 #

198 # print(str_matrix(L_untuned_f ,label=’L_untuned_f =’))

199 # analysis(Z=Z_untuned_f ,V_term =0.66 ,R_i=Ri+[0],nF=1,ss=’tf ’)

200
201 # plt = turn_model( turns=tuned_turns ,

202 # radii=radii ,

203 # heights=tuned_heights ,

204 # r_conds=r_cond ,

205 # s=[0]*3 ,

206 # c=[ ’#000 ’]*3,

207 # lw =0.3)

208 # plt.show()

209
210 # L_t2t_ut , Z_t2t_ut = t2t_reactor(untuned_turns ,radii ,untuned_heights ,R_add=Ri)

211 # print(str_matrix(L_t2t_ut ,label=’L_t2t_untuned =’))

212 # print(str_matrix(Z_t2t_ut ,label=’Z_t2t_untuned =’))

213 # analysis(Z=Z_t2t_ut ,V_term =0.66,R_i=Ri)

214 #

215 # L_t2t_t , Z_t2t_t = t2t_reactor(tuned_turns ,radii ,tuned_heights ,R_add=Ri)

216 # print(str_matrix(L_t2t_t ,label=’L_t2t_tuned =’))

217 # print(str_matrix(Z_t2t_t ,label=’Z_t2t_tuned =’))

218 # analysis(Z=Z_t2t_t ,V_term =0.62 ,R_i=Ri)

219
220 # prefault plots

221 turn_model(turns=untuned_turns ,radii=radii ,

222 heights=untuned_heights ,r_conds=r_cond ,

223 s=0, c=[’#000’]*3,lw =[0.5]*3)

224 plt.savefig(’./figs/untuned_mutlilayer_pref.png’,dpi=600, bbox_inches=’tight’)

225
226 turn_model(turns=tuned_turns ,radii=radii ,

227 heights=tuned_heights ,r_conds=r_cond ,

228 s=0, c=[’#000’]*3,lw =[0.5]*3)

229 plt.savefig(’./figs/tuned_mutlilayer_pref.png’,dpi=600, bbox_inches=’tight ’)

230
231
232 # fAULTED PLOTs

233 # turn_model(turns=untuned_turns +[1], radii=radii+[ radii [0]],

234 # heights=untuned_heights +[0], r_conds=r_cond ,

235 # s=0, c=[ ’#000 ’]*3+[ ’# a00 ’],lw =[0.5]*3+[1])

236 # plt.savefig (’./figs/untuned_mutlilayer_f21.png ’,dpi=600, bbox_inches=’tight ’)
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237 #

238 # turn_model(turns=tuned_turns +[1], radii=radii+[radii [0]],

239 # heights=tuned_heights +[0], r_conds=r_cond ,

240 # s=0, c=[ ’#000 ’]*3+[ ’# a00 ’],lw =[0.5]*3+[1])

241 # plt.savefig (’./figs/tuned_mutlilayer_f21.png ’,dpi=600, bbox_inches=’tight ’)

242 #

243 # sheet_model(radii=radii+[ radii [0]],

244 # heights =[t*r_cond [0]*2 for t in untuned_turns ]+[2* r_cond [0]],

245 # s=[0]*4 ,c=[ ’#000 ’]*3+[ ’# f00 ’],a=[.2]*3+[.8])

246 # plt.savefig (’./figs/untunedMultilayer_sheetModel_f21.png ’,dpi=600, bbox_inches=’

tight ’)

247 #

248 # sheet_model(radii=radii+[ radii [0]],

249 # heights =[t*r_cond [0]*2 for t in tuned_turns ]+[2* r_cond [0]],

250 # s=[0]*4 ,c=[ ’#000 ’]*3+[ ’# f00 ’],a=[.2]*3+[.8])

251 # plt.savefig (’./figs/tunedMultilayer_sheetModel_f21.png ’,dpi=600, bbox_inches=’

tight ’)

252
253 plt.show()

D.8 Model Reactor and Faults

This script is the program used to generate the results for this thesis, and extended results data
given in appendix C

1 #!/bin/python3
2
3 import numpy as np

4 from util import str_matrix , vector_formatter , increment_name , cofactor ,

coupling_coef

5 from fawzi_and_burke_methods import Ci_1#, Ci_2 , Ci_same_R , Cb

6 from fawzi_and_burke_methods import geometry_mat , turns_mat

7 # from reactor_behavior.component_matrix_modeling import geometry_mat , turns_mat

8 import matplotlib.pyplot as plt

9
10 # from simple_behavior import resistances , base_definition

11
12 import sys

13
14 from tex_util import tex_report , save_matrix_as_tex , save_as_tex

15
16 V_term = 238 _000 / 4

17 print(f’V-term = {V_term}’)

18
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19 ## parameters from tuning in simple_behavior.py

20 turns = [1327, 1187, 1093, 1029, 985, 956, 938, 929, 928, 935] # good enough from

tuning after fixing coupling.

21 radii = np.linspace (0.7 ,1.15 ,10) # radii of the reactor layers

22 RH = 3.1 # reactor height

23 r_cond = 0.001184 # conductor radii (for some resistance uses)

24 # R_dc_eq =8 # target rquivelant resistance for the reactor

25 R_dc_eq =0.9 # target rquivelant resistance for the reactor

26 G = geometry_mat(radii ,RH)

27 mu0 = 4*np.pi*10**( -7)

28
29 def geometry_mat(radii , h, h_frac=1, z=0):

30 """

31 calculate Ci (compitationally intense process) for each radii , using

32
33 radii: 1d list of radius values

34 h : height of the layers , single value or list (for turns density)

35 h_frac : fraction of the height (used for actual fault height , otherwise 1)

36 z : concentric seperation , z=0 is at h/2 (centered vertically)

37 """

38 nr = len(radii)

39 # print(’geometry_mat : radii =’,radii ,len(radii))

40 Cr = np.zeros((nr,nr))

41
42 if not type(h)==list:

43 h = [h] * len(radii)

44
45 if not type(h_frac)==list:

46 h_frac = [h_frac] * len(radii)

47
48 # print(f’package heights = {h} [m]’)

49
50 if not type(z)==list:

51 z = [z]*len(radii)

52
53
54 for i in range(nr):

55 for j in range(i,nr):

56 s = abs(z[i] - z[j])

57
58 l1 = 0.5*h[i] * h_frac[i]

59 l2 = 0.5*h[j] * h_frac[j]

60 z1 = (l1 + l2 + s)

61 z2 = (l1 - l2 + s)

62 z3 = (-l1 - l2 + s)



131
63 z4 = (-l1 + l2 + s)

64 R1 = radii[i]

65 R2 = radii[j]

66
67 C_z1 = Ci_1(R1 ,R2,z1)

68 C_z2 = Ci_1(R1 ,R2,z2)

69 C_z3 = Ci_1(R1 ,R2,z3)

70 C_z4 = Ci_1(R1 ,R2,z4)

71
72 c = ( 1/(h[i]*h[j]) ) * ( (R1*R2)**(3/2) ) * ( (C_z1 - C_z2) + (C_z3 -

C_z4) )

73 Cr[i,j] = c

74 Cr[j,i] = c

75
76 return Cr

77
78 def fault_test(fault_layer =[0], fault_z =[0]):

79 """

80 Parameters:

81 - fault_layer : list of layers to place a fault in

82 - fault_z : list of seperation from z=0 (center of reactor , aka RH/2) of the

fault

83
84 in what way does this work?

85 1) Lump parameters around the fault to minimize computation and condition:

86 [pack 1] ... [fault package] ... [pack n]

87
88 2) generate a geometry and turns matrix , check coupleing coeff and condition

89
90 3) calcualte resistance by defining the resistance at the terminals and scaling it by

(turns)/(avg. turns)

91
92 4) generate Z matrix: R + 120j*pi*L

93
94 5) perturb the minimal matrix

95 Note: the mutual between the short and the fault will appear larger than

96 that between the fault and the pakcage it occurs in because the parameters

are lumped.

97 """

98 # fault_layer = 0

99 mod_radii = list(radii)

100 mod_turns = turns

101 nl = len(mod_radii)

102
103 avg_turns = np.sum(mod_turns)/len(mod_turns)
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104 R = [ R_dc_eq * t/avg_turns for t in mod_turns] # resistace array , based on DC

equiv.

105 # print(R)

106
107 fault_turns = []

108 fault_radii = []

109 fault_z_off = []

110 fault_h_frac = []

111 fault_R_values = []

112 faulted_R = R+[]

113 for k,fl in enumerate(fault_layer):

114 fault_turns.append (1)#turns[fl])

115 fault_radii.append(radii[fl])

116 fault_z_off.append(fault_z[k])

117 fault_h_frac.append (1/ turns[fl])

118
119 # Resistance values:

120 r_turn = R_dc_eq/avg_turns # resistance of a single turn (approx resistance

of a fault)

121 fault_R_values.append(r_turn)

122 faulted_R[fl] += r_turn

123
124
125 # print(’fault_radii =’,fault_radii)

126 # print(’fault_turns =’,fault_turns)

127 # print(’fault_z_off =’,fault_z_off)

128 # print(’fault_z_frac =’,fault_h_frac)

129 #

130 # print(’fault_R_values =’,fault_R_values)

131 # print(’faulted_R =’, faulted_R)

132
133 nf = len(fault_turns)

134 Gp = geometry_mat(radii = mod_radii + fault_radii ,

135 h = ([RH]*nl) + ([RH*fh for fh in fault_h_frac ]),#([RH]*nf),

136 h_frac = ([1]*nl) + ([1]*nf),#fault_h_frac ,

137 z = ([0]*nl)+fault_z_off)

138
139 # print(str_matrix(Gp,label=’Gp =’))

140
141 # sys.exit() # Test break ----------------------------------------------------

142
143 N = turns_mat(mod_turns)

144 L = (2*np.pi*mu0)*N*G

145 # L = base_definition(turns)

146 # print(str_matrix(G,label=’G =’))
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147 # print(str_matrix(N,label=’N =’, as_decimal=True))

148 # print(str_matrix(L,label=’L =’, as_decimal=True))

149 # print(str_matrix(coupling_coef(L),label=’K =’, as_decimal=True))

150
151
152 # 3 resistance: (is futile)

153 # R_dc_eq = 0.9

154
155 # 4) Z matrix:

156 Z = np.diag(R) + 120j * np.pi * L

157 Y = np.linalg.inv(Z)

158 # I = np.sum(Y,axis =1)

159 # V = np.array ([[1]*10]).T

160 V = np.array ([[ V_term ]*10]).T

161 I = np.matmul( Y, V )

162 I_T = np.sum(I)

163 # print(str_matrix(Z,label=’Z =’))

164 # print(str_matrix(Y,label=’Y =’,phasor=True))

165
166
167 # 5) perturbation:

168 # print(’fault radii =’,fault_radii)

169 # mod_radii.append(fault_radii)

170 # input(f’{mod_radii} {len(mod_radii)}’)

171 # Gp = geometry_mat(mod_radii + [fault_radii *1.000] ,[RH]*len(mod_radii) + [RH/

fault_turns ])

172 # Gp = geometry_mat(mod_radii ,[RH]*len(mod_radii) + [RH/fault_turns ])

173 Np = turns_mat(mod_turns + [1]*nf)

174 Lp = (2*np.pi*mu0)*Np*Gp

175 mat_label = [f’{k}’ for k in range(nl+nf)]

176 # print(str_matrix(coupling_coef(Lp),label=’Kp =’, as_decimal=True))

177 # print(str_matrix(Gp,label=’Gp =’, row_labels=mat_label , col_labels=mat_label ))

178 # print(str_matrix(Np,label=’Np =’, as_decimal=True , row_labels=mat_label ,

col_labels=mat_label ))

179 # print(str_matrix(Lp,label=’Lp =’, as_decimal=False , row_labels=mat_label ,

col_labels=mat_label ))

180
181 # print(mod_radii + fault_radii)

182
183 Rp = faulted_R + fault_R_values

184 # print(’Rp =’,Rp)

185 # form the perturbed Z:

186 Zp = np.diag(Rp) + 120j * np.pi * Lp

187 # print(str_matrix(Zp,label=’Zp =’, as_decimal=False , row_labels=mat_label ,

col_labels=mat_label ))
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188
189 # fix the self and mutual elements between the faults and the layers to reflect

the losses in turns:

190 z_shape = Z.shape

191 print(f’Z prefault shape: {z_shape}’)

192 n_f = len(fault_layer)

193 dZ = np.zeros(z_shape ,dtype=’complex ’)

194 for k in range(nf):

195 dzM = Zp[0: z_shape [0], z_shape [1]+k] # changes to be applied to the reactor

mutuals

196 # print(’dzM ’,dzM)

197 # print(’dzM ’,Zp[z_shape [1]+k,0: z_shape [0]])

198 # print(’insert into:’, z_shape [0], fault_layer[k])

199 dZ[0: z_shape [0], fault_layer[k]] += dzM

200 if fault_layer[k] > 0:

201 dZ[fault_layer[k],0: fault_layer[k]] += dzM[0: fault_layer[k]]

202 dZ[fault_layer[k],fault_layer[k]+1: z_shape [1]] += dzM[fault_layer[k]+1:]

203 elif fault_layer[k] >= z_shape [0] -1: # if it’s the last row

204 dZ[fault_layer[k],0: z_shape [1]-1] += dzM[:-1]

205 else: # it’s the first row

206 dZ[fault_layer[k],1: z_shape [1]] += dzM [1:] # works

207
208 dZ[fault_layer[k],fault_layer[k]] += Zp[z_shape [0]+k,z_shape [1]+k]

209
210 # print(str_matrix(dZ ,label=’dZ =’)) # check that all the changes are in the

right places

211
212 Zp[0: z_shape [0],0: z_shape [1]] += -1*dZ # add the change to the faulted matrix

213 # input(’hold ’)

214
215 print(str_matrix(Z-Zp[0: z_shape [0],0: z_shape [1]], label=’Z-Zp =’)) # double check

the changes

216
217 Yp = np.linalg.inv(Zp)

218 # Ip = np.sum(Yp[:,:-1],axis =1)

219 # Vp = np.array ([[1]* nl+[0]* nf]).T

220 Vp = np.array ([[ V_term ]*nl +[0]*nf]).T

221 Ip = np.matmul( Yp, Vp )

222 Ip_T = np.sum(Ip[:nl])

223 I_labels = [f’{j}’ for j in range(len(I))]

224 # print(str_matrix(Zp,label=’Zp =’))

225 # print(str_matrix(Yp,label=’Yp =’,phasor=False))

226 # print(str_matrix(Yp,label=’Yp =’,phasor=True))

227 # print(str_matrix(Vp,label=’Vp =’))
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228 # print(str_matrix(I[0: z_shape [0]], label=’I =’,phasor=True , row_labels=I_labels

+[]))

229 # print(str_matrix(I[0: z_shape [0]], label=’I =’,phasor=False , row_labels=I_labels

+[]))

230 print(’I_T =’,vector_formatter(I_T))

231 print(’Z_T =’,vector_formatter(V_term/I_T),’=’,V_term/I_T)

232
233 print(str_matrix(Ip[0: z_shape [0]], label=’Ip =’,phasor=True ,

234 indicators =[l for l in fault_layer ]))#,

235 # row_labels=I_labels +[f’f{k}’ for k in range(nf)]))

236 print(str_matrix(Ip[0: z_shape [0]], label=’Ip =’,phasor=False ,indicators =[len(Ip)

-1]))#,row_labels=I_labels +[f’f{k}’ for k in range(nf)]))

237 print(’Ip_T =’,vector_formatter(Ip_T))

238 print(’Ip_T =’,vector_formatter(V_term/Ip_T),’=’,V_term/Ip_T)

239
240 print(’average no. turns:’, np.average(turns))

241
242 return I, I_T , Ip , Ip_T , L, Z, Lp, Zp

243
244 # ------------------------------------------------------------------------------

245 #
246
247 def report_multifault ():

248
249 NF = 22 # number of fautls

250 FS = 2 # fault step

251 fault_z_range = 0.4 #

252 # for l in range (2):

253 I = []

254 # for l in [0,1,4,7,9]:# range(len(turns)):

255 # for l in [0 ,4]:# range(len(turns)):

256 for l in range(len(turns)):

257 models = {}

258 m_desc = {}

259 I_total = []

260 Ip_total = []

261 nF = []

262 for nf in [2 ,10 ,20 ,40 ,100 ,150 ,200]:#range(2,NF,FS): # number of faults

263 # I, I_T , Ip, Ip_T , L, Z, Lp, Zp = fault_test(fault_layer =[l]*nf , fault_z

=[0])

264 I, I_T , Ip, Ip_T , L, Z, Lp, Zp = fault_test(fault_layer =[l]*nf ,

265 fault_z =[(RH/turns[l])*(i-.5*nf) for

i in range(nf)])

266 print(I)

267 I_total.append(I_T)
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268 Ip_total.append(Ip_T)

269 nF.append(nf)

270 Z_T = 1/I_T

271 Zp_T = 1/Ip_T

272 # models[f’I_ {{p\;{l},nf={nf}}}’] = Ip

273 models[f’I_{{pT\;{l},nf={nf}}}’] = Ip_T

274 # models[f’Z_{{pT\;{l},nf={nf}}}’] = Zp_T

275 # m_desc[f’I_{{p\;{l},nf={nf}}}’] = f’current vector for {nf} faults in

layer {l}’

276 m_desc[f’I_{{pT\;{l},nf={nf}}}’] = f’total current for {nf} faults in

layer {l}’

277 # m_desc[f’Z_{{pT\;{l},nf={nf}}}’] = f’total impednace for {nf} faults in

layer {l}’

278
279 tex_report(models ,m_desc ,f’./ results/MultiFault/

tuned_reactor_simple_multifault_layer{l}.tex’,sigfig=8, as_decimal=True)

280 plt.figure ()

281 plt.suptitle(f’Total Current , with Faults in Layer {l}’)

282 plt.subplot (211)

283 # plt.plot(nF,np.abs(I_total),’--’,label=r’$|I_{pre\,f}|$’)

284 plt.plot(nF ,np.abs(Ip_total),’o-’,label=r’$|I_{f}|$’)

285 plt.xticks(nF)

286 plt.ylabel(r’$|I_T|$’)

287 plt.legend ()

288
289 plt.subplot (212)

290 # plt.plot(nF,np.angle(I_total ,deg=True),’--’,label=r’arg($I_{pre\,f}$)’)

291 plt.plot(nF ,np.angle(Ip_total ,deg=True),’o-’,label=r’arg($I_{f}$)’)

292 plt.xticks(nF)

293 plt.xlabel(’number of faults [turns]’)

294 plt.ylabel(r’arg($I_T$) [$^\circ$]’)

295 plt.legend ()

296 plt.savefig(f’./ results/MultiFault/figs_2to250/I_vs_nF_layer{l}.png’,dpi=600,

bbox_inches=’tight’)

297
298 plt.show()

299
300 def report_singlefault ():

301
302 NF = 22 # number of fautls

303 FS = 2 # fault step

304 fault_z_range = 0.4 #

305 # for l in range (2):

306 I = []

307 # for l in [0,1,4,7,9]:# range(len(turns)):
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308 # for l in [0 ,4]:# range(len(turns)):

309 models = {}

310 m_desc = {}

311 for l in range(len(turns)):

312 I_total = []

313 Ip_total = []

314 Fz = []

315 for fz in [ -0.5 ,0 ,0.5]:#range(2,NF ,FS): # number of faults

316 # I, I_T , Ip, Ip_T , L, Z, Lp, Zp = fault_test(fault_layer =[l]*nf , fault_z

=[0])

317 I, I_T , Ip, Ip_T , L, Z, Lp, Zp = fault_test(fault_layer =[l],

318 fault_z =[RH*fz])

319 print(I)

320 I_total.append(I_T)

321 Ip_total.append(Ip_T)

322 Fz.append(fz)

323 Z_T = 1/I_T

324 Zp_T = 1/Ip_T

325 # models[f’I_ {{p\;{l},nf={nf}}}’] = Ip

326 models[’I_{{pre\,F}}’] = I_T

327 m_desc[’I_{{pre\,F}}’] = f’total current for prefault conditions.’

328
329 models[f’I_{{pT\;{l},fz={fz}}}’] = Ip_T

330 # models[f’Z_{{pT\;{l},nf={nf}}}’] = Zp_T

331 # m_desc[f’I_{{p\;{l},nf={nf}}}’] = f’current vector for {nf} faults in

layer {l}’

332 m_desc[f’I_{{pT\;{l},fz={fz}}}’] = f’total current for fault at {fz} of

reactor layer height , in layer {l}.’

333 # m_desc[f’Z_{{pT\;{l},nf={nf}}}’] = f’total impednace for {nf} faults in

layer {l}’

334
335
336 plt.figure ()

337 plt.suptitle(f’Total Current , with Faults in Layer {l}’)

338 plt.subplot (211)

339 # plt.plot(nF,np.abs(I_total),’--’,label=r’$|I_{pre\,f}|$’)

340 plt.plot(Fz ,np.abs(Ip_total),’o-’,label=r’$|I_{f}|$’)

341 plt.xticks(Fz)

342 plt.ylabel(r’$|I_T|$’)

343 plt.legend ()

344
345 plt.subplot (212)

346 # plt.plot(nF,np.angle(I_total ,deg=True),’--’,label=r’arg($I_{pre\,f}$)’)

347 plt.plot(Fz ,np.angle(Ip_total ,deg=True),’o-’,label=r’arg($I_{f}$)’)

348 plt.xticks(Fz)
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349 plt.xlabel(’vertical position of fault’)

350 plt.ylabel(r’arg($I_T$) [$^\circ$]’)

351 plt.legend ()

352 plt.savefig(f’./ results/SingleFault/figs/I_vs_Fz_layer{l}.png’,dpi=600,

bbox_inches=’tight’)

353
354 tex_report(models ,m_desc ,f’./ results/SingleFault/tuned_reactor_moving_singlefault

.tex’,sigfig=8, as_decimal=True)

355 # plt.show()

356
357 # ------------------------------------------------------------------------------

358 if __name__ == "__main__":

359 # report_multifault ()

360 report_singlefault ()
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