# Effects of Turn-to-Turn Faults in Air-Core Reactors 

A Thesis<br>Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science<br>with a<br>Major in Electrical Engineering<br>in the<br>College of Graduate Studies<br>University of Idaho<br>by<br>Rowdy A. Sanford

Approved by:
Major Professor: Joseph Law, Ph.D., P.E.
Committee Members: Brian Johnson, Ph.D., P.E., Hangtian Lei, Ph.D., P.E. Department Administrator: Joseph Law, Ph.D., P.E.

May 2023


#### Abstract

Air-Core Reactors are employed in shunt configurations to maintain the line voltage within limits. The reactors consume VARs under lightly loaded conditions, countering the shunt capacitance of transmission lines. Turn-to-Turn faults are commonly observed in the high-side of the reactor windings, and are attributed to the degradation of insulation caused by transients from switching or surge conditions. The fault behavior in these air-core reactors is often observed, but not fully understood. This document is presented as a summary of work developing methods to evaluate the behavior of air-core reactors due to inter-turn shorts. Modeling tools developed for the analysis of turn-to-turn faults, and examples of use are provided, with examples of faults in reactors similar to those used in high-voltage shunt applications.


## Contents

Abstract ..... ii
List of Figures ..... ix
List of Tables ..... x
Preliminary ..... xi
Terminology ..... xi
Notation ..... xii
List of Symbols and Units ..... xiii
1 Introduction ..... 1
1.1 Introduction ..... 1
1.2 Motivation ..... 1
1.3 Contribution ..... 2
1.4 Overview ..... 2
1.5 Literature Review ..... 3
1.5.1 Modeling Reactors ..... 3
1.5.2 Faults in Air-Core Reactors ..... 4
1.5.3 Other Materials ..... 6
1.5.4 Tools Used in Research ..... 7
2 Background ..... 8
2.1 Overview ..... 8
2.2 The Biot-Savart Law ..... 8
2.2.1 Inductance ..... 10
2.3 The Neumann integral ..... 10
2.3.1 Mutual Inductance ..... 11
2.4 Integral Evaluation Method ..... 12
2.5 Internal Flux ..... 12
2.6 Modeling as a Matrix ..... 13
2.7 Turn-to-Turn Method ..... 13
2.8 Thin Sheets Method ..... 14
2.9 Cylindrical Shells Method ..... 14
2.10 Reactor Construction ..... 15
2.11 Notes on Computation ..... 16
3 Reactor Modeling ..... 18
3.1 Introduction ..... 18
3.2 Modeling Software ..... 18
3.3 Turn-to-Turn Method ..... 18
3.4 Thin-Sheets Method ..... 19
3.5 Reactor Modeling Parameters ..... 19
3.6 Conditioning ..... 20
3.6.1 Condition Analysis ..... 20
3.7 Prefault Behavior ..... 21
3.8 Model Validation ..... 22
3.8.1 Example: 2 Element Reactor ..... 22
3.8.2 Comparing Methods Numerically ..... 23
3.8.3 Physical tests of Reactors ..... 25
3.8.4 41 Turn Test ..... 25
3.8.5 Multilayer Models ..... 27
3.8.6 Impact of Tuning ..... 28
4 Fault Modeling ..... 29
4.1 Introduction ..... 29
4.2 Fault Background ..... 29
4.3 Representing a Fault Between Turns ..... 30
4.4 Faulted Reactor as a Transformer ..... 32
4.4.1 2 Layer Fault Example ..... 32
4.5 Fault Model Validation ..... 36
4.5.1 Single Layer, Single Turn Fault ..... 36
4.5.2 Multiple Layer, Single Turn Fault ..... 38
5 Fault Detection ..... 42
6 Computer Program ..... 44
6.1 Introduction ..... 44
6.2 Loop to Loop Implementation ..... 44
6.3 Sheets Implementation ..... 47
6.4 Tuning Components For Balance ..... 48
6.4.1 Tuning a Thin-Sheets Reactor ..... 49
6.4.2 Tuning a Cylindrical-Shell Reactor ..... 51
7 Results ..... 54
7.1 Introduction ..... 54
7.2 Reactor Modeling ..... 54
7.3 Reactor Model ..... 55
7.3.1 Single Faulted Turn ..... 56
7.3.2 Single Fault Position in a Model Reactor ..... 58
7.3.3 Multiple faulted turns ..... 59
8 Summary, Conclusions, and Future Work ..... 61
8.1 Summary ..... 61
8.2 Conclusions ..... 61
8.3 Future Work ..... 62
Bibliography ..... 66
A Derivations ..... 67
B Testing Designs ..... 69
B. 1 Testing Data ..... 69
B.1.1 Faulted Turn in Isolation ..... 70
B.1.2 Improperly Tuned Reactor Assembly ..... 71
B.1.3 Improperly Tuned Reactor Assembly with a Fault ..... 72
B.1.4 Tuned Reactor Assembly ..... 74
B.1.5 Tuned Reactor Assembly with a Fault ..... 75
B.1.6 Second Test Core used in Tuned Reactor ..... 77
C Extended Results ..... 78
C. 1 Simple Behavior due to a Fault ..... 78
C. 2 Multiple Faults in Each Layer ..... 81
D Programs ..... 92
D. 1 Python Dependencies ..... 92
D. 2 Reactor Python Library ..... 92
D.2.1 Biot-Savart Methods ..... 92
D.2.2 Thin-Sheet Methods ..... 94
D. 3 Utility Scripts ..... 97
D.3.1 util.py ..... 97
D.3.2 tex_util.py ..... 109
D.3.3 wires.py ..... 113
D.3.4 display_models.py ..... 114
D. 4 Illustration Reactor ..... 115
D. 541 Turn Example ..... 118
D. 641 Turn Faulted Example ..... 120
D. 7 3-Layer Example ..... 123
D. 8 Model Reactor and Faults ..... 129

## List of Figures

1 A Loop, with the schematic representation to the right ..... xi
2 A Layer, with the schematic representation to the right ..... xi
3 A Package, with the schematic representation to the right ..... xii
4 A Reactor, represented as a schematic. ..... xii
5 A Phase, represented as a schematic ..... xii
2.1 A Conductor loop ..... 9
2.2 Concentric Coaxial Loops ..... 10
2.3 Mutual Inductance vs Distance, with parameters $a=r_{1}, b=r_{2}-r_{\text {cond } 2}$, and $d$ described in figure 2.2 ..... 12
2.4 Flux interaction between turns resulting in flux around an entire layer or package ..... 15
2.5 Schematic representation of an Air-Core Reactor, with elements represented as parallel inductors ..... 15
3.1 Prefault Reactor Models, with Mutuals shown as Dependent Voltages ..... 21
3.2 2 Layer, 4 Loop Reactor Turns Diagram, with relevant parameters listed ..... 22
3.3 Rendering of a 41 turn simple test reactor ..... 25
3.4 Rendering of the 3-layer testing reactor, with parameters listed in table 3.2 ..... 27
4.1 Currents in a Reactor, (a) prefault, (b) with faulted turns ..... 30
4.2 Possible Fault states of an Air-Core Reactor ..... 32
4.3 Example Fault Schematic and Phasor Diagram ..... 33
4.4 Faulted turn in a cylindrical shell (red band), the ..... 36
4.5 Visualization of a fault in a single-layer reactor. The fault is highlighted by the red turn and band. ..... 37
4.6 Visualization of a "Untuned" multilayer reactor model. The fault is highlighted by the red turn and band. ..... 38
4.7 Visualization of a "Tuned" multilayer reactor model. The fault is highlighted by the red turn and band. ..... 39
6.1 The behavior used to calculate mutual inductance of a layer once, due to regular spacing of turns. ..... 45
6.2 Turn-to-Turn Reactor Model Calculation, $N$ : Number of Turns, $m$ : Number of Layers in the Reactor ..... 46
6.3 Thin-Sheets and Cylindrical-Shells Reactor Model Calculation, $N$ : Number of Turns, $m$ : Number of Layers in the Reactor ..... 47
6.4 Tuning turns for a thin-sheets reactor model ..... 50
6.5 Turns Adjustment Subprocess ..... 51
6.6 Tuning turns and thickness for a finite-thickness reactor model ..... 52
6.7 Thickness Adjustment Subprocess ..... 53
7.1 ..... 59
B. 141 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=1.06 \mathrm{~V}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=78.0 \mathrm{~mA}, \Phi_{V-I}=27.29^{\circ}$70
B. 241 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries, with Turn 21 shorted. $\left|V_{p k-p k}\right|=1.06 \mathrm{~V}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=78.0 \mathrm{~mA}, \Phi_{V-I}=$ $21.02^{\circ}$70
B. 341 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=660 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=42.25^{\circ}$71
B. 441 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=660 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=32.0 \mathrm{~mA}, \Phi_{V-I}=69.15^{\circ}$71
B. 541 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=700 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=30.0 \mathrm{~mA}, \Phi_{V-I}=66.03^{\circ}$
B. 641 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=660 m V, f=10 k H z,\left|I_{p k-p k}\right|=32.0 m A, \Phi_{V-I}=39.44^{\circ}$
B. 741 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=680 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=30.0 \mathrm{~mA}, \Phi_{V-I}=52.55^{\circ}$73
B. 841 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=680 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=30.0 \mathrm{~mA}, \Phi_{V-I}=55.92^{\circ}$
B. 941 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=49.87^{\circ}$
B. 1037 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=55.65^{\circ}$
B. 1137 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=60.91^{\circ}$ 75
B. 1241 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series, turn 21 shorted. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=39.78^{\circ} 75$
B. 1337 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in- series. $\left|V_{p k-p k}\right|=600 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=52.24^{\circ}$ ..... 76
B. 1437 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in- series. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=55.36^{\circ}$ ..... 76
B. 1541 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in- series. $\left|V_{p k-p k}\right|=1.06 \mathrm{~V}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=78.0 \mathrm{~mA}, \Phi_{V-I}=27.67^{\circ}$ ..... 77
B. 1641 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in- series, with turn 21 shorted. $\left|V_{p k-p k}\right|=1.06 \mathrm{~V}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=78.0 \mathrm{~mA}, \Phi_{V-I}=$ $22.32^{\circ}$ ..... 77
C. 1 ..... 81
C. 2 ..... 82
C. 3 ..... 83
C. 4 ..... 84
C. 5 ..... 85
C. 6 ..... 86
C. 7 ..... 87
C. 8 ..... 88
C. 9 ..... 89
C. 10 ..... 90

## List of Tables

1 List of Symbols and Units ..... xiii
3.1 Reactor parameters from manufacturer testing reports, mechanical drawings, and e- mail communications, these parameters are used as the baseline for developing a rea- sonable approximation of a commercial reactor. ..... 20
3.2 Parameters for the test reactor, all wound using 24AWG enameled solid copper ..... 25
4.1 Parameters for the 2-layer example reactor. ..... 33
7.1 Cylindrical Sheet modeled Reactor Parameters, with package 1 being the innermost, and 10 being the outermost ..... 55
C. 1 Cylindrical Modeled Reactor Parameters ..... 81

## Preliminary

## Terminology Overview

There are a number of elements of an Air-Core Reactor discussed throughout this document. To reduce the chances of confusion while reading, the following are reactor terminology definitions for your reference.

- Loop: A loop is a single turn of a conductor at a specified radius (normally $r_{\text {loop }}$ ).


Figure 1: A Loop, with the schematic representation to the right

- Layer: A set of $N$ turns connected in series, with the same radius $r_{\text {loop } 1}=r_{\text {loop } 2}=\ldots=r_{\text {loop } N}$.


Figure 2: A Layer, with the schematic representation to the right

- Package: A contiguous set of parallel layers, usually encapsulated with an epoxy resin.


Figure 3: A Package, with the schematic representation to the right

- Reactor: When referred to as a element of a circuit is a set of packages connected in parallel which are separated by cooling ducts.


Figure 4: A Reactor, represented as a schematic.

- Phase: A series of reactors, usually with two or more stacked coaxially.


Figure 5: A Phase, represented as a schematic.

## Notation

Lowercase variables, i.e. $a, b$, etc., represent scalars, or individual parameters. Specific parameters are given as uppercase, such as Impedance $Z$ or Current $I$. Vectors are given with a arrow above the variable, so a current vector would be: $\vec{I}$. Matrices have a bar above the variable, for example an
impedance matrix: $\bar{Z}$. Units are given within square brackets to distinguish from variables, for example meters $\Rightarrow[m]$. In this document the complex variable is $j=\sqrt{-1}$.

## List of Symbols and Units

| Symbol | units | description |
| :---: | :---: | :--- |
| $\rho$ | Ohm-meters, $\frac{\Omega \cdot m^{2}}{m}$ | Resistivity, usually assumed to be Aluminum $2.65 \times 10^{-7} \Omega \cdot m$ |
| $\psi$ | Webers, $W b$ | Flux |
| $Z, \bar{Z}$ | Ohms, $\Omega$ | Impedance |
| $X$ | Ohms, $\Omega$ | Reactance |
| $Y, \bar{Y}$ | Mhos, $\Omega^{-1}=\mho$ | Admittance |
| $I, \vec{I}$ | Amps, $A$ | Current |
| $V, \vec{V}$ | Volts, $V$ | Voltage |
| $L$ | Henry, $H=\frac{W b}{A}$ | Inductance |
| $M$ | Henry, $H$ | Mutual Inductance, $M_{a b}$ is mutual between elements $a$ and $b$. |
| $\mathcal{R}$ | $\mathcal{R}=H^{-1} \rightarrow \frac{A}{W b}$ | Reluctance |
| $\mu$ | $\frac{W b}{A \cdot m}$ | Relative Permeability, $\mu=\mathbf{B} / \mathbf{H}$ |
| $\mu_{0}$ | $\frac{W b}{A \cdot m}$ | Permeability of Air, $\mu_{0}=4 \pi \times 10^{-7}$ |
|  |  |  |

Table 1: Symbols and Units

## Chapter 1

## Introduction

### 1.1 Introduction

Air-Core Reactors (ACR) are increasingly deployed by utilities in place of oil-immersed reactors, for a number of reasons including the lower capital cost and reduction of maintenance [1]. Surge conditions and transients from switching can damage inter-turn insulation, which is a challenge to detect. When insulation is damaged, shorts can occur between winding turns and cause significant damage before being detected. Models of ACRs under fault conditions are needed to develop protection schemes, and determine if, and for how long, a faulted reactor can be operated with faults in place.

The ACR is modeled with the Biot-Savart Law, and Ampère's Law. Using programs written in Python, the reactor is first designed and prefault conditions are evaluated. Turn-to-Turn faults are a common fault type, and are the focus of this thesis. The development of the modeling method to evaluate the effects of the turn-to-turn faults is presented and demonstrated with a reactor model approximating multi-layered units.

### 1.2 Motivation

An Air-Core Reactor is a passive component used in operation of the power grid to help maintain line voltage within acceptable limits. Air-Core Reactors can be installed in locations where oilimmersed reactors could pose a risk to the environment. An air-core reactor is cooled via convection, where an oil immersed unit relies on oil for the removal of heat. The oil requires periodic maintenance, and used oil has additional requirements for disposal. Faults in ACRs commonly occur in the highvoltage end of the winding as a result of transients from surges or when energized, these transient conditions can stress and cause breakdown of the insulation and encapsulation of the windings [2].

When the breakdown of insulation progresses sufficiently, it becomes a turn-to-turn fault. Detecting faults for the purpose of protecting Air-Core Reactors is important to utilities and operators.

### 1.3 Contribution

The focus of the research being presented is the effects of turn-to-turn faults in air-core reactors. In the presentation of this work, the contributions of this thesis are:

- Present a computationally efficient method of modeling and analyzing Air-Core Reactors under normal and faulted conditions
- Show how the reactor behavior changes due to a fault.
- Present a simplified analogue to describe the fault behavior as an $N: 1$ transformer.

Numeric results were attained using programs written in the Python Programming language and the NumPy and SciPy Packages.

### 1.4 Overview

Each chapter is a general subtopic of the Air-Core Reactor.
The second chapter, Background, discusses the theoretical foundations of reactor modeling, starting with the Biot-Savart law, which describes the magnetic field intensity at a point due to a current. It then expands into more specific equations to model series of concentric, coaxial current loops.

The third chapter, Reactor Modeling, covers the specific application of the theory presented in the Background chapter to model an air-core reactor.

The fourth chapter, Fault Modeling, presents a technique to describe turn-to-turn faults that is computationally efficient. Additionally, examples are given relating a fault in a reactor to an intuitive transformer model, which should be familiar to engineers.

The fifth chapter, Fault Detection, is a discussion of fault detection using information from reactor and fault modeling.

The sixth chapter, Computer Program, discusses the reasoning behind the computer programs used for design and evaluation of the ACR.

The results in chapter 7, give experimental results from the computer program simulating a reactor model similar to units deployed in industry.

Finally, the conclusions and discussion of future work. The research presented in this document isn't complete, but provides a groundwork for a more targeted study of device behavior.

### 1.5 Literature Review

### 1.5.1 Modeling Reactors

Paul published a book in 2010 [3] in which he gives a thorough and detailed explanation of the various methods for computing the flux and inductance of current carrying loops, derived from Gauss' Law, the Biot-Savart law, and Amperes' Law. In chapter 4.4 Paul presents the Neumann integral as a method of calculating the mutual inductance between two concentric, circular loops. The Neumann integral cannot be evaluated to a closed-form solution, but can be evaluated numerically to an acceptable accuracy, but comes with the burden of calculating the mutual inductance between every turn in a reactor.

Burke and Fawzi in 1978 [4] present a method to simplify the self and mutual inductance calculation of N -turn series windings in air-core reactors as a cylindrical sheet with zero thickness. Similar to the Neumann integral presented in Paul's book, the method presented by Fawzi and Burke doesn't have a closed form solution, but can be evaluated numerically. They also went a step further and presented a method of calculating the inductance of a package, in what they refer to as a "coil of finite thickness". This method greatly reduces the number of integrals to be evaluated numerically from $N^{2}$ terms to a more manageable $N$ terms, $N$ being the number of layers in a reactor model. Further, in 1988 with the addition of Dahab, Fawzi and Burke [5] published work wherein they modeled a single layer reactor (single package) using the finite-thickness calculation from [4] with the addition of a capacitance network.

Fawzi and Burke published another article in 1991 [6] describing a method of computing the eddy current losses in reactors. The Method provided is useful when simulating transient conditions at various frequencies, but does leave out the capacitance submatrix for the reactor. The Perturbation matrix is frequency dependent and does take into account the skin effects. The method involves "slicing" the reactor into vertical subsections, where the magnetic field intensity is calculated, in the vertical and radial components, this method assumes axial symmetry to simplify calculations.

In 2021, Zaninelli and Bortoni [7] published a paper comparing the results of the methods from Fawzi and Burke's 1978 paper to that of modern Finite Element Analysis (FEA) methods. In the paper, the authors show that Fawzi and Burke's method performs well at low frequencies, but doesn't properly account for eddy-current losses in the windings, as Fawzi and Burke discuss in their 1991 paper [6]. Zaninelli and Bortoni do provide a correction factor for the reactor inductance value at higher frequencies, but for the purposes of this research, the low frequency accuracy will be sufficient.

Nurminen's dissertation from 2008 [8] detailed how he evaluated the thermal design and mechanical stresses of a purpose-built reactor. Using optical fiber to sense temperature they were effectively able to eliminate electrical noise from the currents induced by the reactor while operating. To sense temperature they leveraged the transmission mediums sensitivity to temperature variation, where as
the optic is deferentially heated, there are regions where minuscule amounts of light are reflected back down the fiber which can be detected by the sending unit. Depending on the intensity of the light being sent back down the fiber and the time of travel, Nurminen was able to determine where the reactor was heated unevenly.

Yuan et al. 2017 [9] provide insight into the thermal optimization that goes into the design of an ACR. The authors' optimization process has the goal of minimizing temperature rise and minimizing total conductor mass, which will improve the reactor performance while minimizing cost of construction. The initial parameters of the reactor (turn count, layer count, layer radii, etc) being optimized were calculated elsewhere, with an optimization constraint of preserving the inductance of the model. The primary parameters varied by the optimization process were the widths of the cooling ducts (i.e. varying the layer radii), and the conductor radii. The authors validated the results of their work using FEM software to calculate the final inductance and thermal transfer to the surrounding air.

Fiorentin et al. 2016 [10] present a method to model the vibrations of an air-core reactor as a function of the frequency and current for a reactor under load. In the development of their analytical vibroacoustic model, the authors relate to electrical energy input to vibrations, using the Biot-Savart law, to the force that produces the vibration modes. This model doesn't directly influence the development of the model for fault analysis, but rather provides insight as to the mechanical forces degrading the insulation and encapsulation of the reactor windings.

Damron in 2016 [1] discussed the application of air-core shunt reactors installed by a utility operator. The focus of the paper is on the non-standard installation of the dry-type shunt reactors, and a challenge in implementing protection schemes due to a lack of available information. Reasoning for the choice of dry-type air-core reactors over the oil-immersed variety was given as the proximity to a waterway which required increased environmental considerations.

### 1.5.2 Faults in Air-Core Reactors

Haziah's Dissertation [2], 2012, explores the mechanisms by which air-core reactors fail when in use as filter reactors in mechanically-switched capacitor banks with a damping network. This work provides insight as to how these reactors are used in an application and the (comparatively) limited information needed for an operator to perform transients studies. The work builds a lumpedparameter model for use in transients studies. Haziah's work was focused on the effects of the transients around the energization and de-energization of the filter network, particularly, and how daily repeated switching will cause uneven voltage distribution in the reactor degrading the encapsulation materials from heat generated by the series losses. The work, unfortunately, doesn't continue into the failure modes of the reactor.

At the time of this writing, there are few published published works detailing methods where an Air-Core Reactor is subject to fault conditions. However, there is an interesting method presented by

Faridi et al. [11]. They propose a model for Continuously Transposed Cables (CTCs) by segmenting the winding as "transpose lays", or "FELD" as referred to in the article, where each lay differs from the last by "rotating" around the center insulation. By rotating the conductors through an assumed uniform magnetic field for a turn of the CTC, the self and mutual inductance of turn is evaluated. Continuously Transposed Cables are used in transformers and other electric machines to improve the efficiency by reducing eddy-current losses, and have possible applications in ACRs. The authors model the inductance of the winding as $N$ impedance elements with $M$ branch currents, an impedance matrix is calculated as $B_{M \times(N+1)} Z_{N \times N} B_{M \times(N+1)}^{T}$, to calculate the current distribution of a winding turn. In application, the self, and mutual inductance is calculated for the positions of the winding before being applied to the entire set of turns in the winding. Faridi et al. test the proposed model under normal operation and a faulted condition. The fault is a short between 2 strands of the cable, which causes a $20 \%$ change in current distribution between the faulted conductors, but a minimal variation in the others. This finding is particularly interesting for the purposes of cross-layer faults as they may occur in a package of a reactor.

In the 2015 article by Geissler and Leibfreid [12] evaluated the forces continuously transposed cables (CTC) are subjected to during short-circuit conditions. While the article was primarily interested in the mechanical integrity of cellulose insulation, the authors went into detail regarding the structure and geometry of a CTC.

Mohammad et al. [13], 2018, proposed of method of detecting turn-to-tun faults for the purpose of developing relay protection schemes. There were two methods of detection, first method was to compare the performance of the two or more reactor banks connected on the same bus, and monitoring the neutral connection between the banks. When a fault occurs, the inductance value should change in the reactor, which causes current to pass on the neutral connection, the neutral current can also be detected in the zero sequence. This first method relies on two reactor banks of near-identical characteristics. The second method relies on the zero sequence current of an independent reactor. Where the operator would record the zero sequence current and bus voltage in the steady-state as a reference, and check the error between the reactors zero sequence values during operation against an "ideal" approximation based on the reference.

Basha and Thompson presented a paper in 2013 [14] in which they list the expected fault types and the ways in which the faults effect the performance of the reactor. The one fault type of interest they discuss is the Turn-to-Turn fault. Where a turn-to-turn fault is likely to occur on the high-side of the reactor winding, sometimes due to transients from switching, similar to the findings of [2]. Also in the paper the authors state that the fault can be seen in as a zero-sequence unbalance.

Chowdhury et al. [15] in 2022, look at the practical considerations of the protecting the air-core shunt reactors during faulted conditions. The article looks at 3 types of faults in air-core reactors; a phase (think line-to-line) fault, a ground (analogous to a single-line-to-ground) fault, and a turn (turn-
to-turn) fault. The authors discuss the current transformer selection and protective relay configuration for air-core reactors, and compare to oil-immersed reactors. Interestingly, their modeling method and conclusions regarding turn-to-turn shorts, is that the turn-to-turn fault type is best detected by observing the transient on the neutral line or a rapid change in phase current if the reactor is solidly grounded. The authors provided examples of this method functioning as intended using data from a reactor with a turn-to-turn fault.

Instrumentation of a 35 kV reactor was published by Zhigang et al. in 2020 [16]. The authors detailed their instrumentation module, and the methods by which air-core reactors are normally checked, primarily by DC resistance measurement and non-contact temperature measurement methods. Their article details the challenges of implementing effective instrumentation for the air-core reactors, which further exemplifies the need to a practical method of determining fault characteristics in air-core reactors.

Guzman, in 2002 [17], presents a method of modeling and simulating energization, steady-state, and fault conditions of conventional iron-core transformers. The transformers are variations of single and three phase units used in transmission and distribution networks. The thesis presents the characteristics of transformer design, considerations and a solution methodology, exemplified in an occurrence matrix, which clearly lays out the equations needed and the solution order used by the program. Guzman's thorough work provides a baseline behavior of the iron core reactor under abnormal conditions, which is useful for comparing findings in ACRs.

### 1.5.3 Other Materials

These materials were used as a general reference, or as a review of fundamentals to reduce occurrences of "simple" mistakes.

The linear algebra text by Strang [18] provided a background of information regarding the numeric challenges involved in implementing large, dense, matracies and the condition nuber of matracies.

The Tables of Integrals by Dwight [19] was used to review the ellipric integral approximations presented by paul [3].

A textbook on the theory of fault modeling by Tleis [20] presents power system modeling and analysis methods. Tleis presents methods of fault modeling using parameters transformed into the sequence domain.

Lammeraner's book on eddy currents [21] is a presentation of eddycurrents in varying applications. Of particular interest is the sections on eddy currents in conductive cylinders and in coil windings.

Kulkarni and Khaparde's book on transformer design [22] provided a background for designing transformers, and analysis methods.

### 1.5.4 Tools Used in Research

The tools and other materials used (for example, software libraries) in the process of this work include open-source tools built by researchers and enthusiasts and provided free of charge.

- The Python Programming language, an open-source general-purpose interpreted language, version 3.11 .
- The NumPy library [23] for the Python programming language, a general purpose scientific data structures and manipulation library.
- The SciPy library [24] for the Python programming language, specifically, the integration library used in the numeric evaluation and analysis.
- MatPlotLib [25], the de facto Python plotting and graphing library.


## Chapter 2

## Background

### 2.1 Overview

This chapter provides the theoretical development of the analysis tools used to model Air-Core Reactors, starting with the fundamental equations, and developing the methods used in the modeling and analysis of reactors. The Biot-Savart Law and Ampère's Law are used to evaluate the inductance of the reactor using geometric parameters, and simplifying elements using circuit analysis techniques and then simplifying to a circuits based approach. Then, using the methods presented by Fawzi and Burke [4], to evaluate the inductance of elements of air-core reactors in a computationally efficient method.

### 2.2 The Biot-Savart Law

The cornerstone of the work done is the use of the Biot-Savart Law [3] to model the flux of the air-core reactor.

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{v} \frac{\vec{J} \times \vec{a}_{R}}{R^{2}} d v \tag{2.1}
\end{equation*}
$$

The Biot-Savart law (2.1), is the fundamental law for computing a magnetic field due to a current [3] using a volumetric integral. The current density vector, $\vec{J}$, and $\vec{a}_{R}$ is a unit vector directed at the point where $\mathbf{B}$ is being computed. The parameter $R$ in the denominator of Eq.2.1 is the distance from the current, $\vec{J}$, to the point where $\mathbf{B}$ is being computed. Similar to Gauss's Law and Ampère's Law, the Biot-Savart Law has an inverse-square relation between distance and intensity. For a circular loop with radius $a$ and wire radius $r_{w}$ on the $x y$ plane, the flux, $\psi$, through the surface enclosed by the loop can be written in terms of the $z$ component perpendicular to the enclosed surface:

$$
\begin{equation*}
\psi=\int_{s} \mathbf{B} \cdot d s=\int_{r=0}^{r_{a}-r_{w}} \int_{\phi^{\prime}=0}^{2 \pi} B_{z} r d \phi^{\prime} d r \tag{2.2}
\end{equation*}
$$

Using the definition of $\psi$ from eqn. 2.2, the $z$ component of the $\mathbf{B}$ field, $\mathbf{B}_{z}$, at a specific point emanating from a loop with radius $r$ is then $B_{z}$ can be written using the law of cosines [3]:

$$
\begin{equation*}
B_{z}(r)=\frac{\mu_{0} I}{2 \pi r} \int_{\phi=0}^{\pi} \frac{r_{a}^{2} \cos \phi(a-r \cos \phi)}{\left(a^{2}+r^{2}-2 a r \cos \phi\right)^{3 / 2}} d \phi \tag{2.3}
\end{equation*}
$$



Figure 2.1: A Conductor loop

Equations 2.2 and 2.3 are used to write an expression for the flux passing perpendicular through the area enclosed by a conducting loop, as illustrated in figure 2.1. Substituting the flux perpendicular to surface enclosed by a loop, Eq.2.3, into the definition of $\psi$ from Eq.2.2. The resulting integrals is the evaluation of the of flux passing perpendicular through the enclosed surface:

$$
\begin{equation*}
\psi_{\text {loop }}=\frac{\mu_{0} I}{2 \pi} \int_{r=0}^{r_{\text {loop }}-r_{\text {cond }}} \int_{\phi^{\prime}=0}^{2 \pi} \frac{1}{r}\left[\int_{\phi=0}^{\pi} \frac{r_{\text {loop }}^{2} \cos \phi\left(r_{\text {loop }}-r \cos \phi\right)}{\left(r_{\text {loop }}^{2}+r^{2}+2 r_{\text {loop }} r \cos \phi\right)^{3 / 2}} d \phi\right] r d r d \phi^{\prime} \tag{2.4}
\end{equation*}
$$

When $\phi^{\prime}$ is integrated out, the $2 \pi$ from the scaling factor out front of the integral in Eq. 2.4 is canceled out:

$$
\begin{equation*}
\psi_{\text {loop }}=\mu_{0} I \int_{\phi=0}^{\pi}\left[\int_{r=0}^{r_{\text {loop }}-r_{\text {cond }}} \frac{r_{\text {loop }}^{2} \cos \phi\left(r_{\text {loop }}-r \cos \phi\right)}{\left(r_{\text {loop }}^{2}+r^{2}+2 r_{\text {loop }} r \cos \phi\right)^{3 / 2}} d r\right] d \phi \tag{2.5}
\end{equation*}
$$

When the interior integral of Eq. 2.5 is evaluated [3], the result is the flux through the area enclosed by a loop, due to a current $I_{\text {loop }}$, as shown in Eq.2.6:

$$
\begin{equation*}
\psi_{\text {loop }}=\mu_{0} I r_{\text {loop }} r_{b} \int_{\phi=0}^{\pi} \frac{\cos \phi}{\sqrt{r_{\text {loop }}^{2}+r_{b}^{2}-2 r_{\text {cond }} r_{b} \cos \phi}} d \phi \tag{2.6}
\end{equation*}
$$

Where $r_{b}=r_{\text {loop }}-r_{\text {cond }}, r_{b}$ is the radius of the inner surface of the wire loop. The integral in Eq.2.6 cannot be evaluated to have a closed-form solution, Paul [3] uses a pair of elliptic integrals to approximate a solution. But, Eq. 2.6 can be evaluated numerically to a sufficient degree of precision.

### 2.2.1 Inductance

An issue with using flux is the need to know the current in an element to complete the calculation. A current independent value related to flux, $\psi$, is inductance $L$, and the relation is shown in Eq.2.7.

$$
\begin{equation*}
\psi=L I \Rightarrow \frac{1}{I} \psi=L \tag{2.7}
\end{equation*}
$$

When current in one loop gives rise to flux passing through the surface enclosed by another, it is called a mutual. The relation between current, flux, and inductance can be described in-terms of a mutual inductance, where current in element $a, I_{a}$, gives rise to flux at element $b, \psi_{b}$, shown in Eq.2.8:

$$
\begin{equation*}
M_{a b}=\frac{\psi_{b}}{I_{a}} \tag{2.8}
\end{equation*}
$$

### 2.3 The Neumann integral

Fundamentally, the Biot-Savart Law (BSL) is used to calculate the inductance ( $L$ ) values of elements within the reactor. The Neumann Integral, derived from the BSL, is specifically formulated to determine the self inductance of a closed loop carrying a current filament (See [3] ), and the mutual to other loops carrying a current filament, see Figure 2.2. The Neumann integral doesn't have a closed-form solution. There is an approximation that uses Elliptic integrals of the first and third kind [19]. However, the integral can be evaluated numerically, and using an algorithm like Gaussian Quadrature [24] the accuracy will be sufficient for our purposes.


Figure 2.2: Concentric Coaxial Loops

$$
\begin{equation*}
L=\mu_{0} a b \frac{1}{2} \int_{\phi=0}^{2 \pi} \frac{\cos \phi}{\sqrt{r_{\text {loop }}^{2}+r_{b}^{2}+d^{2}-2 r_{\text {loop }} b \cos ^{2} \phi}} d \phi \tag{2.9}
\end{equation*}
$$

Using the Neumann integral (2.9) to evaluate the turn-to-turn inductance will produce a value mutual inductance for each turn of the reactor. The result of evaluating the a system of $N$ inductance and current values:

$$
V_{\text {terminal }}=L_{1} \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}+\ldots+L_{N} \frac{d i_{N}}{d t}+M_{12}\left(\frac{d i_{1}}{d t}+\frac{d i_{2}}{d t}\right)+\ldots+M_{N(N-1)}\left(\frac{d i_{N}}{d t}+\frac{d i_{(N-1)}}{d t}\right)
$$

The number of elements can be reduced by superimposing the elements that share the same current, i.e. where: $i_{1}=i_{2}=\ldots=i_{(N-1)}=i_{N}$, with $N$ being the number of turns in the layer:

$$
V_{\text {terminal }}=\frac{d i}{d t}\left(L_{1}+L_{2}+\ldots+L_{N}+M_{12}+\ldots+M_{N(N-1)}\right)
$$

In this way, the size of the $L$ (and $R$ and $Z$ ) matrices can be simplified to a number of elements representing the number of layers in a device. The primary issue with this turn-to-turn method to calculate the inductance is the evaluation time, Using the Gaussian quadrature algorithm for numeric integration evaluating the integrals, to evaluate all the turns in a reactor the runtime is $\mathcal{O}\left(N^{2}\right)$.

### 2.3.1 Mutual Inductance

Mutual inductance is the a product of the flux in a loop, $\psi_{m}$, that is induced by the current in another loop, $I_{n}$. So we can use the linear relation:

$$
M_{n m}=\frac{\psi_{m}}{I_{n}}
$$

The Neumann integral (2.10) is the method used to compute the mutual inductance between two loops. Here the current, $I$, isn't needed since inductance, $L$, can be represented as: $L=\psi I^{-1}$.

$$
\begin{equation*}
M_{n m}=\mu_{0} r_{n} r_{b} \int_{\phi=0}^{\pi} \frac{\cos \phi}{\sqrt{\left(r_{n}^{2}+r_{b}^{2}-2 r_{n} r_{b} \cos \phi+d^{2}\right)}} d \phi \tag{2.10}
\end{equation*}
$$

Where $r_{n}$ is the wire loop radius, $r_{b}=r_{m}-r_{\text {cond } m}$ is the radius of the surface being linked by flux enclosed by the second loop, and $d$ is the distance between the parallel planes the loops are on.

Mutual inductances are symmetrical, $M_{n m}=M_{m n}$, so the mutual only needs to be calculated once and any mutual is simply doubled; $M_{n m}+M_{m n}=2 M_{n m}$. Inductances can be super-imposed (summed) with other self and mutual inductances to formulate a net-inductance for a single homogeneous component. Because we're wrapping the loops of our inductor concentrically about the others, we can say that the mutuals are always going to be positive (additive-influence), as all loops have the same polarity.

### 2.4 Integral Evaluation Method

Because the integral for computing mutual inductance, Eq.2.10, doesn't have a closed-form solution, the integral is evaluated numerically. The Python SciPy library has a quadrature (quad) integration method, the quad integration method evaluates a given function, in this case the Neumann integral, to a specified error [24]. The error is set by either the available precision of the floatingpoint representation, or a defined minimum error, which is $10^{-13}$ by default. In figure 2.3 , it is clearly visible that the Biot-Savart flux has an inverse-relation to the loop separation distance. Also visible in the figure is the effect that increasing the radial difference, i.e. the second loop radius $r_{2}$ as shown in figure 2.2, the mutual coupling decreases slower than when the loops are separated concentrically, i.e. increasing $d$.


Figure 2.3: Mutual Inductance vs Distance, with parameters $a=r_{1}, b=r_{2}-r_{\text {cond } 2}$, and $d$ described in figure 2.2

### 2.5 Internal Flux

In the ACR, Flux that doesn't link to any other loop is entirely contained within the conductor and insulation. This flux internal to the wire is a significant component of the reactor.

$$
\begin{equation*}
L_{\text {internal }}=\mu_{0}\left(\frac{r_{l o o p}}{4}+\frac{r_{\text {cond }}}{5}\right) \tag{2.11}
\end{equation*}
$$

Equation 2.11 was developed using (2.2) with the $\mathbf{B}$ field being provided by Ampère's Law rather than the Biot-Savart Law. The derivation is given in appendix A.

### 2.6 Modeling as a Matrix

The Reactor can be modeled as an $N \times N$ matrix, with elements being the superposition of inductance values that share the same current:

$$
\bar{L}=\left[\begin{array}{cccc}
L_{1} & M_{12} & \ldots & M_{1 n} \\
M_{21} & L_{2} & \ldots & M_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
M_{n 1} & M_{n 2} & \ldots & L_{n}
\end{array}\right]
$$

With the $L_{n}$ values representing the sum of self and mutual inductance that are due to the currents $I_{n}$. The off-diagonal elements, $M_{n m}$, are the mutual inductance values that give rise to a current in the layer $i_{n}$ due to the current in another element $i_{m}$. The convention used will denote diagonal elements of the matrices using a single indexing subscript, i.e. $L_{n}=L_{n n}$.

To model the reactor, the inductance is converted to reactance using the angular frequency, $\omega[\mathrm{rad} / \mathrm{s}]=$ $2 \pi f[\mathrm{rad} \cdot \mathrm{Hz}]$, of the steady-state operation:

$$
j X[\Omega]=j \omega \bar{L}[\Omega]=j 2 \pi f \bar{L}[\Omega]
$$

The reactor is evaluated by solving the linear system for $\vec{I}$ :

$$
\vec{V}=\bar{Z} \vec{I} \Longrightarrow \vec{I}=\bar{Z}^{-1} \vec{V}
$$

To determine the total impedence of the reactor, the current vector is summed to get the total:

$$
I_{t o t a l}=\sum_{\forall n} \vec{I}_{n}
$$

The total impedence of the reactor is calcualted:

$$
Z_{\text {total }}=\frac{V_{\text {term }}}{I_{\text {total }}}
$$

Using these methods, the reactor is evaluated for prefault and postfault behavior. The values given by $I_{t o t a l}$ and $Z_{t o t a l}$ are the values as would be measured at the terminals of the reactor. For the simulations performed in the work for this thesis, ther terminal voltage $V_{\text {term }}$ is the $0^{\circ}$ phasor reference.

### 2.7 Turn-to-Turn Method

To model an air-core reactor using the turn-to-turn method is a straightforward implementation of the Neumann integral (Eq.2.10), with the internal flux given by Eq.2.11. Knowing the radius from the center of the loop to the center of the conductor, $r_{l o o p}$, the conductor radius, $r_{\text {cond }}$, and the vertical
separation, $d$, between two loops, including $d=0$ for the self value, Eq.2.10 can be evaluated numerically. These evaluations are repeated until every self and mutual inductance has been calculated. Using superposition, the loops that are in the same layer have their inductance values summed, to consolidate the number of unknowns when solving for the current in each layer.

### 2.8 Thin Sheets Method

Fawzi and Burke in 1978 [4], proposed a more computationally efficient method for calculating the inductance of a series of turns, and the mutual between two series turns. The elaboration of the Neumann Integral resulted in the expression used to compute the induction of concentric coils:

$$
\begin{equation*}
M=2 \pi \mu_{0}\left(R_{1} R_{2}\right)^{3 / 2} n_{1} n_{2}\left[C i\left(R_{1}, R_{2}, z_{1}\right)-C i\left(R_{1}, R_{2}, z_{2}\right)+C i\left(R_{1}, R_{2}, z_{3}\right)-C i\left(R_{1}, R_{2}, z_{4}\right)\right] \tag{2.12}
\end{equation*}
$$

Where:

$$
\begin{gather*}
n_{1}=\frac{N_{1}}{h_{1}} \frac{[\text { turns }]}{[m]}  \tag{2.13}\\
n_{2}=\frac{N_{2}}{h_{2}} \frac{[\text { turns }]}{[m]}  \tag{2.14}\\
z_{1}=l_{1}+l_{2}+s[\mathrm{~m}]  \tag{2.15}\\
z_{2}=l_{1}-l_{2}+s[\mathrm{~m}]  \tag{2.16}\\
z_{3}=-l_{1}-l_{2}+s[\mathrm{~m}]  \tag{2.17}\\
z_{4}=-l_{1}+l_{2}+s[\mathrm{~m}] \tag{2.18}
\end{gather*}
$$

With: $l_{1}=\frac{h_{1}}{2}[m] l_{2}=\frac{h_{2}}{2}[m]$, and

$$
\begin{equation*}
C i\left(R_{1}, R_{2}, z\right)=\frac{\sqrt{R_{1} R_{2}}}{2 \pi} \int_{\psi=0}^{\pi} \frac{\sqrt{R_{1}^{2}+R_{2}^{2}+z^{2}-2 R_{1} R_{2} \cos \psi}}{R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \psi} \sin ^{2} \psi d \psi \tag{2.19}
\end{equation*}
$$

The $C i$ Eq.(2.19), like the Neumann integral doesn't have a closed form solution and needs to be evaluated numerically, Gaussian Quadrature algorithm from the SciPy Python library [24] as used for the low time, and low error advantages of the technique.

### 2.9 Cylindrical Shells Method

Fawzi and Burke elaborated further on their thin-sheets method so the reactor packages could be represented as cylindrical shells of finite thickness. This is done by integrating the thin sheets mutual between the thickness of both packages or layers:


Figure 2.4: Flux interaction between turns resulting in flux around an entire layer or package


Figure 2.5: Schematic representation of an Air-Core Reactor, with elements represented as parallel inductors

$$
\begin{align*}
M_{\text {shell }} & =\int_{r_{1}=R_{1}-t_{1} / 2}^{R_{1}+t_{1} / 2} \int_{r_{2}=R_{2}-t_{2} / 2}^{R_{2}+t_{2} / 2} n_{1} n_{2} M\left(r_{1}, r_{2}\right) d r_{2} d r_{1}  \tag{2.20}\\
& =2 \pi \mu_{0} n_{1}^{2} n_{2}^{2} \int_{r_{1}=R_{1}-t_{1} / 2}^{R_{1}+t_{1} / 2} \int_{r_{2}=R_{2}-t_{2} / 2}^{R_{2}+t_{2} / 2}\left(r_{1} r_{2}\right)^{3 / 4} C i\left(r_{1}, r_{2}, z_{1}, \ldots, z_{4}\right) d r_{2} d r_{1} \tag{2.21}
\end{align*}
$$

With $C i\left(r_{1}, r_{2}, z_{1}, \ldots, z_{4}\right)=\left[C i\left(r_{1}, r_{2}, z_{1}\right)-C i\left(r_{1}, r_{2}, z_{2}\right)+C i\left(r_{1}, r_{2}, z_{3}\right)-C i\left(r_{1}, r_{2}, z_{4}\right)\right]$ in Eq.2.21. This cylindrical shell inductance model appears to account for the flux that links subsets of the turns in each layer, and how the overlapping fields would effectively cancel-out the that of it's neighbors immediately to the inside and outside of the loop, leaving only the links that pass round the loops as a whole, see figure 2.4b.

### 2.10 Reactor Construction

In most literature, the reactor is described as each layer connected in parallel, as shown in figure 2.5. The parallel arrangement of the reactor layers means each layer of a package effectively links the same flux. Because the Neumann integral is describing the effect of the flux produced by a current in one circular loop passing through an area enclosed by another coaxial loop, the effect of increasing
the radius will be an increased self inductance. Ass more layers are added to the reactor, the increase in radius will necessitate a decreased number of turns to ensure a similar inductance to that of the layers with a smaller radius.

Ideally each layer of the reactor would have a similar self inductance and a mutual coupling to the other layers, and the current in each layer would be approximately equal in magnitude and phase angle. Another way to say it, would be to eliminate currents circulating in the reactor, which generate heat without any performance gain. Through careful consideration, it was deemed impractical to design a reactor in which the currents are of equal magnitude, and of similar phase, in reference to terminal voltage. Instead, to eliminate circulating currents within the reactor, the current magnitude is allowed to vary, but the phase angle of the currents in each layer should be as close to in-phase as possible.

### 2.11 Notes on Computation

The modeling of a reactor consists of 2 main parts that can be considered independently, these are the turns of elements of the reactor, and the geometric components of the reactor. Looking at the matrix $\bar{L}$ with elements computed using Fawzi and Burke's method, we can see the matrix can be rewritten as a scaled Hadamard product of 2 matrices:

$$
\begin{equation*}
\bar{L}=2 \pi \mu_{0} \cdot \bar{N} \circ \bar{G} \tag{2.22}
\end{equation*}
$$

Which will be $\bar{N}$ with elements representing the product of the turns of two layers, and a matrix $\bar{G}$ representing the values dependent of the geometry of the reactor, and computed using the $C i$ function (eqn 2.19) from [4].

$$
\begin{gather*}
\bar{N}=\left[\begin{array}{cccc}
N_{1}^{2} & N_{1} N_{2} & \ldots & N_{1} N_{n} \\
N_{2} N_{1} & N_{2}^{2} & \ldots & N_{2} N_{n} \\
\vdots & \vdots & \ddots & \vdots \\
N_{n} N_{1} & N_{n} N_{2} & \ldots & N_{n}^{2}
\end{array}\right]  \tag{2.23}\\
\bar{G}
\end{gathered} \begin{gathered}
{\left[\begin{array}{cccc}
g_{1,1} & g_{1,2} & \ldots & g_{1, n} \\
g_{2,1} & g_{2,2} & \ldots & g_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n, 1} & g_{n, 2} & \ldots & g_{n, n}
\end{array}\right]}  \tag{2.24}\\
\end{gather*}=\left[\begin{array}{ccccc}
C\left(R_{1}, R_{1}, h_{1}, h_{1}, s\right) & C\left(R_{1}, R_{2}, h_{1}, h_{2}, s\right) & \ldots & C\left(R_{1}, R_{n}, h_{1}, h_{n}, s\right)  \tag{2.25}\\
C\left(R_{2}, R_{1}, h_{2}, h_{1}, s\right) & C\left(R_{2}, R_{2}, h_{2}, h_{2}, s\right) & \ldots & C\left(R_{2}, R_{n}, h_{2}, h_{n}, s\right) \\
\vdots & \vdots & \ddots & \vdots \\
C\left(R_{n}, R_{1}, h_{n}, h_{1}, s\right) & C\left(R_{n}, R_{2}, h_{n}, h_{2}, s\right) & \ldots & C\left(R_{n}, R_{n}, h_{n}, h_{n}, s\right)
\end{array}\right] .
$$

Where:

$$
\begin{equation*}
C\left(R_{a}, R_{b}, h_{a}, h_{b}, s\right) \Rightarrow \frac{1}{h_{a} h_{b}}\left[\left(C i\left(R_{a}, R_{b}, z_{1}\right)-C i\left(R_{a}, R_{b}, z_{2}\right)\right)+\left(C i\left(R_{a}, R_{b}, z_{3}\right)-C i\left(R_{a}, R_{b}, z_{4}\right)\right)\right] \tag{2.26}
\end{equation*}
$$

with $z_{1}, z_{2}, z_{3}$, and $z_{4}$ are defined as in equations $2.15,2.16,2.17$, and 2.18.
When evaluating the condition of the turns and geometry matrices separately, the evaluation of the geometric portion requires the evaluation of 2 or more integrals, shown in 2.26 in the more general form where 4 integrals are evaluated to evaluate the geometric component of the mutual coupling. To save computation time, a geometric configuration can be evaluated to generate the $\bar{G}$ matrix, then iterate the $\bar{N}$ matrix to produce the $\bar{L}$ and $\bar{Z}$ matrices. The parameters driving the $\bar{G}$ matrix would be driven by thermal or other mechanical constraints.

## Chapter 3

## Reactor Modeling

### 3.1 Introduction

The following chapter is a presentation of the methods and assumptions used to generate a prefault model reactor.

### 3.2 Modeling Software

The software for modeling the reactor and the effects of faults was written in Python, using the NumPy library for matrix manipulation functionality [23], and the SciPy Integrate library was used for an efficient implementation of the quadrature integration algorithm [24]. Development of analysis tools started with the turn-to-turn method of calculating mutual inductance using the Neumann integral (2.9), with each flux linkage between turns evaluated numerically using a series of integration methods and ultimately the quadrature algorithm. Using the turn-to-turn method was slow, requiring minutes to hours to cacualte the inductance of a reactor configuration. Then, using the method by Fawzi and Burke in their 1978 paper [4], the computation time was greatly reduced

### 3.3 Turn-to-Turn Method

The turn-to-turn method is a direct implementation using the Neumann intergral (2.10), and the internal inductance of a cylindrical conductor. Each turn of the reactor is evaluated to determine the self inductance, due to the flux enclosed by the loop and due to the flux internal to the conductor, and the coupling to each of the other turns in the reactor. With the turn-to-turn method, the inductance calculation can take some time, originally the program was extended to use hyper threading, which has a different set of challenges, especially memory management. In later versions of the project,
with the thin-sheets method implemented, the need for the added complexity of hyper threading was unnecessary.

### 3.4 Thin-Sheets Method

The implementation of the methods presented by Fawzi and Burke [4] is likewise straightforward. Taking the layer or package radii, turns, and height, the self and mutual inductance values can be evaluated numerically. In the modeling of the reactor, there is a caveat in the accuracy of the mutual, this comes down to where the two radii are being evaluated. Using the turn-to-turn method, the mutual was evaluated to the inner contour of the conductor loop, with the thin sheets method, the mutual is being evaluated to, effectivl, the same loop radius. The difference is obvious when turn count and radius are relatively small, to reduce the error further the second radius of the sheet self inductance should be the loop radius minus the radius of the conductor: $r_{b}=r_{l o o p}-r_{\text {cond }}$.

### 3.5 Reactor Modeling Parameters

Turns, layer/package radius, difference in radius of coupled packages, package height, wire diameter, number of layers in a package (package thickness). All these things have significant impact on the inductance and mutual coupling. The values listed in table 3.1 are gathered from a variety of sources for the purpose of accurately modeling the component behavior of the air-core reactors. The known values from the manufacturer reports are used as a baseline in the design process.

For the model reactor used in fault analysis, because there is missing information regarding the mean radius or diameter of each package of the reactor, initially the outer diameter and the inner and outer turn counts are used to determine the innermost package diameter, and the 8 packages between inner and outer are assumed to be evenly distributed between the inner and outer layers.

| parameter | value | source |
| :--- | :---: | :--- |
| Reactor Height | $3.1 m$ | Drawings |
| Reactor Outer Diameter | 2.301 m | Drawings |
| Average Turns | 985.8 | Communications |
| Minimum Turns | 841 | Communications |
| Maximum Turns | 1285 | Communications |
| Measured DC Resistance | $0.9394 \Omega$ | Test Reports |
| Measured AC Resistance | $1.1168 \Omega$ | Test Reports |
| Measured Inductance | $694.44 m H$ | Test Reports |
| DC Power Dissipation | 13821.8 W | Test Reports |
| Testing Current | 121.3 A | Test Reports |
| Testing Frequency | 60 Hz | Test Reports |

Table 3.1: Reactor parameters from manufacturer testing reports, mechanical drawings, and email communications, these parameters are used as the baseline for developing a reasonable approximation of a commercial reactor.

### 3.6 Conditioning

### 3.6.1 Condition Analysis

Because the fundamental equations of the reactor are not of the closed-form variety, the additional steps need to be take to ensure a minimum of error introduced into the reactor model.

The Condition number (3.1) of the $\bar{Z}$ matrix is a representation of the matrix sensitivity to small perturbations, and an indicator of the computational error in the $\bar{Y}$ matrix during the inversion process [18]. The relative error for a solution to a linear system $\vec{x}=\bar{A}^{-1} \cdot \vec{b}$ is bounded by (3.2)

$$
\begin{gather*}
c=\frac{\lambda_{n}}{\lambda_{1}}=\frac{\lambda_{\max }}{\lambda_{\min }}  \tag{3.1}\\
\frac{\|\delta x\|}{\|x\|} \leq \frac{\lambda_{\max }}{\lambda_{\min }} \frac{\|\delta b\|}{\|b\|} \tag{3.2}
\end{gather*}
$$

The condition number of the $\bar{Z}$ matrix is increases proportionally with the dimension of the matrix
Using the component matrices $\bar{N}(2.23)$ and $\bar{G}(2.24)$, the condition number of the turns component matrix, $\bar{N}$, is very large, meaning that $\bar{N}$ is very poorly conditioned. However, The condition of the geometry component matrix is on the same order as the square of the matrix dimension, and when the component matrices are element-wise multiplied (Hadamard product), the condition of $\bar{N} \circ \bar{G}$ has
a condition number less than the condition of $\bar{G}$, more formally:

$$
\operatorname{cond}(\bar{N} \circ \bar{G})<\operatorname{cond}(\bar{G}) \ll \operatorname{cond}(\bar{N})
$$

Therefore, when designing a reactor, or developing a model for evaluation, time should be spent evaluating the geometry of the reactor to minimize error. Keeping in-mind that the mutual coupling of the elements is the product of turns-squared and the relative positioning of the sheets being evaluated, or hollow cylinders if the finite-thickness representation is being used.

In the process of modeling the reactor, the condition number of the reactor matrix provides an insight into the performance of the model. By minimizing the condition number of the reactor, the accuracy of the model increases by reducing the error bounded by the condition. Minimizing the condition number of the impedance matrix can be achieved by reducing the number of elements in the matrix, or by reducing the mutual coupling between reactor elements.

### 3.7 Prefault Behavior

The design of a reactor is challenging, and critical, part to properly understanding the fault behavior of and ACR. As shown in table 3.1, the parameters of the reactor are In the design of the reactor, the turns of each layer is optimized to prevent circulating currents, this constraint can be interpreted as a dependent voltage source, $V_{m a b}=I_{b} \cdot j X_{m a b}$, where $j X_{m a b}$ is the mutual reactence between layers $a$ and $b$.

(a) 2 Layer Model

(b) $N$ Layer Model

Figure 3.1: Prefault Reactor Models, with Mutuals shown as Dependent Voltages

The design process for the reactors is intended to produce self and mutual terms that will produce a balanced set of currents. Where the currents are all approximatly in-phase, and no one laye rhas significantly larger currents than the others.

### 3.8 Model Validation

### 3.8.1 Example: 2 Element Reactor



Figure 3.2: 2 Layer, 4 Loop Reactor Turns Diagram, with relevant parameters listed

Using the diagram in figure 3.2, we'll go through the process of calculating the self and mutual inductance for a reactor, and the consolidation

1. First, the self inductance is calculated, $L_{11}$ in the diagram using the Neumann Integral, equation 2.10, for mutual inductance to itself with $a=R_{\text {loop } 1}, b=R_{\text {loop } 1}-r_{\text {cond }}$, and $d=0$. Using equation 2.11 , the loop radius and conductor are plugged-in, and added to the self mutual to get the total self inductance. For the turns numbered 2 and 4 , the self inductance is the same, i.e. $L_{11}=L_{22}$, and $L_{33}=L_{44}$, so the calculation only needs to be perform once per pair. This process is repeated for for the second layer, with $R_{\text {loop } 2}$ substituted in, these are the diagonal elements of the inductance matrix.
2. Next, the mutual inductance is calculated, for the mutual inductance values along the first :

$$
\begin{aligned}
& L_{12}=M_{\text {Neumann }}\left(a=R_{l o o p 1}, b=R_{\text {loop } 1}-r_{\text {cond }}, d \neq 0\right) \\
& L_{13}=M_{\text {Neumann }}\left(a=R_{\text {loop } 1}, b=R_{\text {loop } 2}-r_{\text {cond }}, d=0\right) \\
& L_{14}=M_{\text {Neumann }}\left(a=R_{\text {loop } 1}, b=R_{\text {loop } 2}-r_{\text {cond }}, d \neq 0\right)
\end{aligned}
$$

Since, the mutual values between turns are the same, i.e. $L_{12}=L_{21}$, the values can be placed in the corresponding row,column pairs of the inductance matrix. These steps are repeated to calculate $L_{23}, L_{24}$, and $L_{34}$, so for a $4 \times 4$ matrix, 6 mutual values are computed. The resulting
inductance matrix is then:

$$
L=\left[\begin{array}{llll}
l_{11} & l_{12} & l_{13} & l_{14}  \tag{3.3}\\
l_{12} & l_{22} & l_{23} & l_{24} \\
l_{13} & l_{23} & l_{33} & l_{34} \\
l_{14} & l_{24} & l_{34} & l_{44}
\end{array}\right]
$$

3. Then to simplify the $4 \times 4$ matrix, assume $i_{t 1}=i_{t 2}$, and $i_{t 3}=i_{t 4}$

$$
\begin{gathered}
\Psi_{11}=l_{11} i_{1}+l_{22} i_{2}+l_{12}\left(i_{1}+i_{2}\right) \Rightarrow L_{11}=l_{11}+l_{22}+2 * l_{12} \\
\Psi_{33}=l_{33} i_{3}+l_{44} i_{4}+l_{34}\left(i_{3}+i_{4}\right) \Rightarrow L_{22}=l_{33}+l_{44}+2 * l_{34} \\
\Psi_{13}=l_{13} i_{1}+l_{14} i_{1}+l_{23} i_{2}+l_{24} i_{2} \Rightarrow L_{12}=L_{21}=l_{13}+l_{14}+l_{23}+l_{24}
\end{gathered}
$$

4. Simplify the $\bar{L}$ matrix using the consolidated elements:

$$
\bar{L}=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{12} & L_{22}
\end{array}\right]
$$

To perform the same calculation using Fawzi and Burke's thin-sheets method, equation 2.12:

1. The turns are computed as a density: $n_{1}=n_{2}=\frac{2}{\left(2 * r_{\text {cond }}+d\right)} \frac{[\text { turns }]}{[m]}$,
2. The Layer heights are $n * r_{\text {cond }}+($ turn pitch $)=2 * r_{\text {cond }}+d[m]$
3. Evaluate 3 mutuals:

$$
\begin{gathered}
L_{11}=M_{F B}(n 1=n 2, R 1=R 2, h 1=h 2) \\
L_{22}=M_{F B}(n 1=n 2, R 1=R 2, h 1=h 2) \\
L_{12}=L_{21}=M_{F B}(n 1 \neq n 2, R 1 \neq R 2, h 1 \neq h 2)
\end{gathered}
$$

4. Form the inductance matrix $\bar{L}$ :

$$
\bar{L}=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{12} & L_{22}
\end{array}\right]
$$

### 3.8.2 Comparing Methods Numerically

Using the example reactor shown in figure 3.2, applying the following parameters:

$$
\begin{gathered}
r_{\text {cond }}=0.25[\mathrm{~mm}] \\
c_{\text {ins }}=0.01[\mathrm{~mm}] \\
d=2 *\left(r_{\text {cond }}+c_{\text {ins }}\right) \\
R_{\text {loop } 1}=0.1[\mathrm{~m}]
\end{gathered}
$$

$$
R_{l o o p 2}=0.103[\mathrm{~m}]
$$

The addition of $c_{i} n s$ is the radial insulation thickness on the conductor, is not strictly needed for this example, but practically needed if this were to be physically realized. When the parameters above are applied to to the elements of the matrix described in equation 3.3 , the result is 3.4 . A $4 \times 4$ inductance matrix matrix using the turn-to-turn method.

$$
L_{t 2 t 4 \times 4}=\left[\begin{array}{llll}
7.618 E-07 & 6.568 E-07 & 4.697 E-07 & 4.675 E-07  \tag{3.4}\\
6.568 E-07 & 7.618 E-07 & 4.675 E-07 & 4.697 E-07 \\
4.697 E-07 & 4.675 E-07 & 7.885 E-07 & 6.804 E-07 \\
4.675 E-07 & 4.697 E-07 & 6.804 E-07 & 7.885 E-07
\end{array}\right]
$$

Looking at the coupling coefficients of the $4 \times 4$ reactor, 3.5 , the coupling between turns of the same radius are "strong", with $K_{12}=86.2 \%$ and $K_{34}=86.3 \%$ of the self elements.

$$
K_{t 2 t 4 \times 4}=\left[\begin{array}{cccc}
1.000 & 0.862 & 0.606 & 0.603  \tag{3.5}\\
0.862 & 1.000 & 0.603 & 0.606 \\
0.606 & 0.603 & 1.000 & 0.863 \\
0.603 & 0.606 & 0.863 & 1.000
\end{array}\right]
$$

When simplified from a $4 \times 4$ to a $2 \times 2$ the inductance becomes:

$$
\begin{gather*}
L_{t 2 t} 2 \times 2=\left[\begin{array}{ll}
2.837 E-06 & 1.874 E-06 \\
1.874 E-06 & 2.938 E-06
\end{array}\right]  \tag{3.6}\\
K_{t 2 t}{ }_{2 \times 2}=\left[\begin{array}{ll}
1.000 & 0.649 \\
0.649 & 1.000
\end{array}\right] \tag{3.7}
\end{gather*}
$$

Now, looking at the equivalent $2 \times 2$ matrix produced by the thin sheets method:

$$
L_{\text {sheet }}=\left[\begin{array}{ll}
2.796 E-06 & 1.873 E-06  \tag{3.8}\\
1.873 E-06 & 2.895 E-06
\end{array}\right]
$$

With the corresponding coupling coefficients matrix:

$$
K_{\text {sheet }}=\left[\begin{array}{ll}
1.000 & 0.658  \tag{3.9}\\
0.658 & 1.000
\end{array}\right]
$$

Looking at the difference between the result given by the turn-to-turn method and the method given by Fawzi and Burke [4]:

$$
L_{d i f f}=L_{t 2 t 2 \times 2}-L_{\text {sheet }}=\left[\begin{array}{ll}
4.169 E-08 & 1.211 E-09  \tag{3.10}\\
1.211 E-09 & 4.294 E-08
\end{array}\right]
$$

Restating the difference in 3.10 as a percentage:

$$
\frac{L_{t 2 t 2 \times 2}-L_{\text {sheet }}}{L_{t 2 t 2 \times 2}} \times 100 \%=\left[\begin{array}{ll}
1.469 & 0.065  \tag{3.11}\\
0.065 & 1.462
\end{array}\right] \%
$$

The difference in methods numeric results given in 3.10 , and the relative difference given as a percentage 3.11 .

### 3.8.3 Physical tests of Reactors

To validate the modeling methodology and design considerations, small scale test reactors were constructed. These test reactors were wound around 3d printed forms to ensure a specified layer radius, and testing was performed while the layers were installed in a jig to ensure concentricity, see figure 3.4.

| Reactor Layer | Turns | Radius | Height | Position | Note |
| :--- | :---: | :---: | :---: | :---: | :--- |
| Layer 1p | 41 | 50 mm | 23 mm | innermost layer | prefault layer 1 |
| Layer 1f | 41 | 50 mm | 23 mm | innermost layer | turn 21 shorted |
| Layer 2a | 41 | 54 mm | 23 mm | middle layer | "untuned" case |
| Layer 3a | 41 | 58 mm | 23 mm | outermost layer | "untuned" case |
| Layer 2b | 37 | $54 m m$ | 23 mm | middle layer | "tuned" turn count |
| Layer 3b | 37 | 58 mm | 23 mm | outermost layer | "tuned" turn count |

Table 3.2: Parameters for the test reactor, all wound using 24AWG enameled solid copper

### 3.8.4 41 Turn Test

Using a 41 turn Reactor of 50 mm diameter, 24 awg enameled magnet wire, and a 3d printed form, the accuracy of the modeling method using the turn-to-turn method from section 2.3 and the sheets method from section 2.8 were tested.


Figure 3.3: Rendering of a 41 turn simple test reactor

The simple test reactor shown in figure 3.3 , which has the parameters of "layer 1 p " in table 3.2 , was calculated to have the following inductance values:

$$
\begin{aligned}
L_{b s} & =87.9365[n H] \\
L_{f b} & =88.6318[n H] \\
L_{f b t} & =74.5048[n H]
\end{aligned}
$$

When the Biot-Savart loop-to-loop method is compared to Fawzi and Burke's more computational efficient methods, i.e. the thin sheets $L_{f b}$, and cylindrical shells $L_{f b t}$ methods,

$$
\begin{aligned}
\frac{L_{b s}}{L_{f b}} & =0.9921561086787597 \Rightarrow \frac{L_{b s}-L_{f b}}{L_{b s}}=0.791 \% \text { Difference } \\
\frac{L_{b s}}{L_{f b t}} & =1.180280437602568 \Rightarrow \frac{L_{b s}-L_{f b t}}{L_{b s}}=15.27 \% \text { Difference }
\end{aligned}
$$

Here we can see that for a small wire dimer the finite thickness, cylindrical shells method, is not as accurate for small reactors. The script to generate this test can be found in appendix D.5.

Testing results using the parameters: current sensing resistor: $R_{i}=10 \Omega$, and testing frequency: $f_{\text {testing }}=10000[H z]$ :

$$
\begin{gathered}
Z_{b s}=10.5284+5.5252 j[\Omega] \\
Z_{f b}=10.5284+5.5689 j[\Omega] \\
Z_{f b t}=10.5284+4.6813 j[\Omega] \\
I_{b s}=8.915 \times 10^{-02} \angle-27.690^{\circ} \\
I_{f b}=8.900 \times 10^{-02} \angle-27.876^{\circ} \\
I_{f b t}=9.200 \times 10^{-02} \angle-23.972^{\circ}
\end{gathered}
$$

The results from testing this single layer reactor with a $1 \mathrm{~V}, 10 \mathrm{kHz}$ sinusoidal excitation yielded a $7.8 \angle 27.3^{\circ}[m A]$ current, measured across a $10 \Omega \pm 1 \%$ resistor. An the oscilloscope screen capture of this test can be found in appendix $B$, figure B. 14 .

### 3.8.5 Multilayer Models



Figure 3.4: Rendering of the 3-layer testing reactor, with parameters listed in table 3.2

Expanding the testing to include multiple layers, the reactor would appear as in figure 3.4. The 3 -layer model will use layer 1 p, 2a, and 3a parameters from table 3.2. In the following multilayer model tests, the layer current is measured as the voltage across a $10 \Omega \pm 1 \%$ resistor in series with the layer winding. Using the same turn count for each layer of the reactor would result in an unbalanced reactor model, however, with the resistors used to measure the current of the layers the effective layer resistance is increased. With the artificially larger per-layer resistance from the instrumentation resistors, the reactors won't exhibit a circulating current behavior, where the angle of the current phasor is less than $-90^{\circ}$.

$$
Z_{u t}=\left[\begin{array}{ccc}
10.53+j 5.733 & j 5.247 & j 4.849  \tag{3.12}\\
j 5.247 & 10.57+j 6.441 & j 5.901 \\
j 4.849 & j 5.901 & 10.61+j 7.171
\end{array}\right]
$$

In equation 3.12, the untuned impedance matrix,

$$
I_{u t}=\left[\begin{array}{l}
2.097 E-02-j 2.630 E-02  \tag{3.13}\\
1.602 E-02-j 2.853 E-02 \\
1.498 E-02-j 2.861 E-02
\end{array}\right]=\left[\begin{array}{l}
3.364 E-02 \angle-51.432^{\circ} \\
3.272 E-02 \angle-60.684^{\circ} \\
3.229 E-02 \angle-62.370^{\circ}
\end{array}\right]
$$

Equation 3.14 is the total total current of the physical test reactor:

$$
\begin{equation*}
I_{\text {total ut }}=5.1971 E-02-j 8.3444 E-02=9.8305 E-02 \angle-58.085^{\circ} \tag{3.14}
\end{equation*}
$$

The total impedance of the untuned reactor, equation 3.15:

$$
\begin{equation*}
Z_{\text {total ut }}=3.5494+j 5.6989=6.7138 \angle 58.085^{\circ} \tag{3.15}
\end{equation*}
$$

Looking at a tuned variant of the 3-layer model, using layer $1 \mathrm{p}, 2 \mathrm{~b}$, and 3 b parameters from table 3.2 .

$$
Z_{t}=\left[\begin{array}{ccc}
1.053 E+01+j 5.733 E+00 & 0+j 4.833 E+00 & 0+j 4.456 E+00  \tag{3.16}\\
0+j 4.833 E+00 & 1.051 E+01+j 5.522 E+00 & 0+j 5.022 E+00 \\
0+j 4.456 E+00 & 0+j 5.022 E+00 & 1.055 E+01+j 6.139 E+00
\end{array}\right]
$$

Equation 3.17 is the current vector of the

$$
I_{t}=\left[\begin{array}{l}
1.976 E-02-j 2.703 E-02  \tag{3.17}\\
1.879 E-02-j 2.757 E-02 \\
1.806 E-02-j 2.779 E-02
\end{array}\right]=\left[\begin{array}{l}
3.348 E-02 \angle-53.833^{\circ} \\
3.337 E-02 \angle-55.722^{\circ} \\
3.314 E-02 \angle-56.986^{\circ}
\end{array}\right]
$$

Equation 3.18 is the total current of the tuned model.

$$
\begin{equation*}
I_{t o t a l ~ t}=5.6603 E-02-j 8.2384 E-02=9.9955 E-02 \angle-55.508^{\circ} \tag{3.18}
\end{equation*}
$$

Equation 3.19 is the total impedance of the tuned reactor model.

$$
\begin{equation*}
Z_{\text {total } t}=3.5125 E+00+j 5.1124 E+00=6.2028 E+00 \angle 55.508^{\circ} \tag{3.19}
\end{equation*}
$$

### 3.8.6 Impact of Tuning

The untuned reactor current phasors each have the argument:

$$
\begin{aligned}
& \arg \left(I_{l 1 p}\right)=-51.432^{\circ} \\
& \arg \left(I_{l 2 a}\right)=-60.684^{\circ} \\
& \arg \left(I_{l 3 a}\right)=-62.370^{\circ}
\end{aligned}
$$

Where the difference in argument are relatively large in the untuned case. Without the $10 \Omega$ measurement resistor the untuned arguments would be nearer to $-90^{\circ}$

$$
\begin{aligned}
& \arg \left(I_{l 1 p}\right)=-53.833^{\circ} \\
& \arg \left(I_{l 2 b}\right)=-55.722^{\circ} \\
& \arg \left(I_{l 3 b}\right)=-56.986^{\circ}
\end{aligned}
$$

The result of tuning the reactor can be seen in the argument of the current phasors, where the layer currents are closer to going in the same direction. The magnitudes of the currents also move into a reasonable range, where the magnitudes of adjacent layers become closer to an average of the magnitudes, as seen when comparing equation 3.13 to 3.17 .

## Chapter 4

## Fault Modeling

### 4.1 Introduction

The purpose of this chapter is to present the method developed and used to evaluate faults, specifically turn to turn, in air core reactors. presented here is the application of the theory, and the parametrization of the faults that they can be evaluated using an extension of the theory presented in previous chapters.

### 4.2 Fault Background

To evaluate the fault using Fawzi and Burke's cylindrical shell methods the physical space of shorted loop needs to be evaluated. When using the cylindrical shell with zero thickness, i.e. the thin-sheet method, turn mass is evaluated separately from the turns density, as in equation $2.12, n_{1}=\frac{N_{1}}{h_{1}}$, $n_{2}=\frac{N_{2}}{h_{2}}$.

The density of the turns, $\frac{N}{h}$, will be the same as in the layer the fault occurs in, this maintains the integrity of cylindrical sheets approximation of equation (2.12). The height of the fault is evaluated as part of the height elements, $z_{1}, z_{2}, z_{3}$, and $z_{4}$, where the height is evaluated as $\frac{1}{N} \cdot h$. That is to say, the height of a turn-to-turn fault is calculated as the fraction of the height of the layer or package in which the now closed loop occupies.

To evaluate fault current the impedance matrix is formed and inverted as usual, but to calculate currents we assume a potential of zero volts ( $0.0[V]$ ) in the column vector corresponding to the indices were the faults self occurs: $\vec{V}=\left[V_{1}, V_{2}, \ldots, V_{N}, V_{f}\right]^{T}=\left[V_{\text {term }}, V_{\text {term }}, \ldots, V_{\text {term }}, 0\right]^{T}$. When the current vector is solved for, $\vec{I}=\bar{Z}^{-1} \vec{V}$, the fault won't contribute a self flux produced by a current in the faulted loop. Instead, the faulted turn will have current induced by the mutual flux of the currentcarrying elements in the reactor, so the fault current will lag $90^{\circ}$ behind the layer and terminal currents.


Figure 4.1: Currents in a Reactor, (a) prefault, (b) with faulted turns

### 4.3 Representing a Fault Between Turns

The perturbation matrices will start with the unfaulted NxN matrix, with with an additional row/column appended to the right for each fault.

$$
Z_{\text {pref }}=\left[\begin{array}{ccccc}
Z_{00} & j X_{01} & j X_{02} & \ldots & j X_{0 n} \\
j X_{10} & Z_{11} & j X_{12} & \ldots & j X_{1 n} \\
j X_{20} & j X_{21} & Z_{22} & \ldots & j X_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
j X_{n 0} & j X_{n 1} & j X_{n 2} & \ldots & Z_{n n}
\end{array}\right]
$$

The Perturbation, a fault in $Z 1$ in this example, effects the impedance $Z$ here proportionally to the short impedance $Z_{S 1}$, and the mutuals to other layers. Where $Z_{S_{1}}$ here is the impedance of the shorted turn(s).

$$
Z_{\text {pert }}=\left[\begin{array}{cccccc}
0 & -j X_{0 S_{1}} & 0 & \cdots & 0 & j X_{n S_{1}} \\
-j X_{S_{1} 0} & -Z_{S_{1}}-j X_{S 1} & -j X_{S_{1} 2} & \ldots & -j X_{S_{1} n} & j X_{1 S_{1}} \\
0 & -j X_{2 S_{1}} & 0 & \cdots & 0 & j X_{2 S_{1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & -j X_{n S_{1}} & 0 & \cdots & 0 & j X_{n S_{1}} \\
j X_{S_{1} 0} & j X_{S_{1} 1} & j X_{S_{1} 2} & \cdots & j X_{S_{1} n} & Z_{S_{1}}
\end{array}\right]
$$

This results in an $\mathrm{N}+\mathrm{S}$ square matrix:

$$
Z_{\text {faulted }}=\left[\begin{array}{cccccc}
Z_{00} & j X_{01} & j X_{02} & \ldots & j X_{0 n} & j X_{0 S_{1}} \\
j X_{10} & Z_{11} & j X_{12} & \ldots & j X_{1 n} & j X_{1 S_{1}} \\
& & & & & \\
j X_{20} & j X_{21} & Z_{22} & \ldots & j X_{2 n} & j X_{2 S_{1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
j X_{n 0} & j X_{n 1} & j X_{n 2} & \ldots & Z_{n n} & j X_{n S_{1}} \\
j X_{S_{1} 0} & j X_{S_{1} 1} & j X_{S_{1} 2} & \ldots & j X_{S_{1} n} & Z_{S_{1} S_{1}}
\end{array}\right]
$$

There will be additional elements, augments, to represent the fault self and contribution to the other elements of the reactor: $Z_{S_{1}}$ The mutuals $M=\left\{j X_{S_{1} 0}, j X_{S_{1} 1}, j X_{S_{1} 2}, \cdots, j X_{S_{1} n}\right\}$

This representation of a fault as a perturbed matrix preserves the computation that went into the prefault condition while explicitly quantifying the effects of the fault on the reactor in-terms of the change in self and mutuals. The new row / column added to the perturbation matrix are the same magnitude of the difference from the prefault case, proportional to the loss of the turn.

When the faulted loop progresses to an open, the extra row and column can be removed to represent the loss of turn as reduction in self inductance, and the proportional losses in the mutual that turn contributes to the package. The open fault is then represented as a loss of inductance of the self, and the turns contribution to the mutual linkages to the other elements within the reactor.


Figure 4.2: Possible Fault states of an Air-Core Reactor

### 4.4 Faulted Reactor as a Transformer

To better understand the behavior of the fault in an ACR, the fault can be thought of as a $N: 1$ ideal transformer. In this transformer analogue, the change in layer currents can be described in-terms of the fault resistance, $R_{f}$, being referred to the primary side of the transformer via a $N^{2}: 1$ ratio, $R_{f}^{\prime}$. As will be demonstrated in section 4.4.1, the resistance of the fault turn is significantly larger than inductance of the faulted turn, so the fault resistance dominates the fault behavior. When the fault resistance is referred to the primary, it will be relatively large depending on the turns ratio, and will be in parallel with the winding resistance and reactance. The larger resistance will pass a small amount of current and would present as a slight positive phase shift toward $0^{\circ}$, there is also an increase in the current magnitude as measurable from the terminal.

### 4.4.1 2 Layer Fault Example

Each fault case described in the example will have a correspondence to the fault states illustrated in figure 4.2. For this example, the reactor radii (layers 1 and 2 ) and height were chosen arbitrarily, and the layer 1 turn count also chosen arbitrarily. Layer 2 turn count was driven by the desire to have the currents of each layer approximately in-phase, and thus have a reduced turn count. The reactor


Figure 4.3: Example Fault Schematic and Phasor Diagram

| parameter | layer 1 | layer 2 | fault |
| :--- | :---: | :---: | :---: |
| radius $[m]$ | 0.50 | 0.55 | 0.55 |
| height $[m]$ | 0.50 | 0.50 | 0.000532 |
| turns | 1000 | 940 | 1 |

Table 4.1: Parameters for the 2-layer example reactor.
parameters listed in table 4.1, during fault conditions, the layer 2 will effectively have 1 fewer turn, but this is modeled in the perturbation $L_{p}$ which is the effect the fault has on the prefault reactor, shown in equation (4.12). The total DC resistance was desired to be around $0.9 \Omega$, and real components of the diagonal of the impedence matrix (4.4) were chosen to achieve that final resistance as seen in (4.7).

$$
\begin{gather*}
N=\left[\begin{array}{cc}
1000000 & 940000 \\
940000 & 883600
\end{array}\right]  \tag{4.1}\\
G=\left[\begin{array}{ll}
0.131 & 0.119 \\
0.119 & 0.152
\end{array}\right]  \tag{4.2}\\
L=\left[\begin{array}{ll}
1.037 & 0.881 \\
0.881 & 1.060
\end{array}\right]  \tag{4.3}\\
I=\left[\begin{array}{rr}
1.800 E+00+j 3.911 E+02 & 0+j 3.320 E+02 \\
0+j 3.320 E+02 & 1.800 E+00+j 3.998 E+02
\end{array}\right]  \tag{4.4}\\
{\left[\begin{array}{r}
6.337 E-06-j 1.470 E-03 \\
5.038 E-07-j 1.281 E-03
\end{array}\right]=\left[\begin{array}{r}
1.470 E-03 \angle-89.753^{\circ} \\
1.281 E-03 \angle-89.977^{\circ}
\end{array}\right]}  \tag{4.5}\\
I_{T}=6.841 E-06-j 2.750 E-03=2.751 E-03 \angle-89.857^{\circ} \tag{4.6}
\end{gather*}
$$

$$
\begin{equation*}
Z_{T}=9.042 E-01+j 3.636 E+02=3.636 E+02 \angle 89.857^{\circ} \tag{4.7}
\end{equation*}
$$

As a reminder; $N$ and $G$ are provided as they are used to compute $L$ by way of a Hadamard product and scaled by the value $2 \pi \mu_{0}$, for more see equation (2.22). The prefault conditions in (4.1) through (4.7) give us a bit of information:

1. The difference in self inductance of the Layer minor, $<13 \mathrm{mH}$,
2. The mutual elements of (4.3) are between $85 \%$ and $83 \%$ of the self values, looking at the difference in area enclosed by the two layers, this makes sense since: $1-\frac{A_{2}-A_{1}}{A_{2}}=1-\frac{\left((.55 m)^{2}-\left(.5 m^{2}\right)\right)}{(.55 m)^{2}} \approx$ $0.826=82.6 \%$, and as stated in a previous chapter inductance is proportional to the flux through the surface enclosed by a loop.
3. Both currents are on of the same order of magnitude

Equation 4.8 gives the turns matrix of the faulted reactor:

$$
N_{f}=\left[\begin{array}{ccc}
1000000 & 940000 & 1000  \tag{4.8}\\
940000 & 883600 & 940 \\
1000 & 940 & 1
\end{array}\right]
$$

Equation 4.9 is the geometry matrix of the faulted reactor with the input parameters given in table 4.1.

$$
G_{f}=\left[\begin{array}{ccc}
0.131 & 0.119 & 1.394 E-04  \tag{4.9}\\
0.119 & 0.152 & 1.774 E-04 \\
1.394 E-04 & 1.774 E-04 & 8.441 E-07
\end{array}\right]
$$

Equation 4.10 is the reactor inductance with a single loop fault. Note that $L_{3,3}$ is significantly smaller than the layer the fault is in, approximately $1 / 940^{2}$ smaller.

$$
L_{f}=\left[\begin{array}{ccc}
1.037 & 0.881 & 1.101 E-06  \tag{4.10}\\
0.881 & 1.060 & 1.316 E-06 \\
1.101 E-06 & 1.316 E-06 & 6.665 E-12
\end{array}\right]
$$

Equation 4.11 is the faulted impedance matrix, with the perturbation added.

$$
Z_{f}=\left[\begin{array}{ccc}
1.800+j 3.911 E+02 & 0+j 3.320 E+02 & 0+j 4.150 E-04  \tag{4.11}\\
0+j 3.320 E+02 & 1.798+j 3.998 E+02 & 0+j 4.963 E-04 \\
0+j 4.150 E-04 & 0+j 4.963 E-04 & 1.915 E-03+j 2.513 E-09
\end{array}\right]
$$

Equation 4.12 inductance perterbation matrix for this example, this is how the fault effects the self and mutual elements of the layer.

$$
L_{p}=\left[\begin{array}{ccc}
0 & -1.101 E-06 & 0  \tag{4.12}\\
-1.101 E-06 & -1.316 E-06 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Equation 4.13 is the faulted loop current vector, the loop is clopsed and still able to carry a current.

$$
I_{f c l}=\left[\begin{array}{c}
6.355 E-06-j 1.470 E-03  \tag{4.13}\\
4.840 E-07-j 1.281 E-03 \\
0-j 1.502 E-06
\end{array}\right]=\left[\begin{array}{c}
1.470 E-03 \angle-89.752^{\circ} \\
1.281 E-03 \angle-89.978^{\circ} \\
6.505 E-04 \angle-179.868^{\circ}
\end{array}\right]
$$

Equation 4.14 shows the total current, as would be seen by a current probe at a terminal.

$$
\begin{equation*}
I_{T c l}=-6.437 E-04-j 2.752 E-03=2.826 E-03 \angle-103.164^{\circ} \tag{4.14}
\end{equation*}
$$

Equation 4.15 the total impedance, as measurable at the terminals.

$$
\begin{equation*}
Z_{T ~ c l}=9.042 E-01+j 3.636 E+02=3.636 E+02 \angle 89.857^{\circ} \tag{4.15}
\end{equation*}
$$

Equation 4.16 faulted current loop vector, where the faulted loop has opened and is no longer carrying a current.

$$
I_{\text {f ol }}=\left[\begin{array}{c}
6.355 E-06-j 1.470 E-03  \tag{4.16}\\
4.832 E-07-j 1.281 E-03
\end{array}\right]=\left[\begin{array}{l}
1.470 E-03 \angle-89.752^{\circ} \\
1.281 E-03 \angle-89.978^{\circ}
\end{array}\right]
$$

Equation 4.17 is the faulted-open total current as would be seen from a terminal.

$$
\begin{equation*}
I_{T ~ o l}=6.838 E-06-j 2.750 E-03=2.751 E-03 \angle-89.858^{\circ} \tag{4.17}
\end{equation*}
$$

Equation 4.18 is the total impedance of the reactor with the faulted turn opened up.

$$
\begin{equation*}
Z_{\text {T ol }}=9.038 E-01+j 3.636 E+02=3.636 E+02 \angle 89.858^{\circ} \tag{4.18}
\end{equation*}
$$

Equation 4.19 shows the faulted current when the layer containing the fault opens, and the entire layer is effectivly removed from the reactor

$$
\begin{equation*}
I_{f o}=1.177 E-05-j 2.557 E-03=2.557 E-03 \angle-89.736^{\circ} \tag{4.19}
\end{equation*}
$$

Equation 4.20 is the total current of the open-layer condition, effectivly just the current on layer 1 (inner layer)

$$
\begin{equation*}
I_{T o}=1.177 E-05-j 2.557 E-03=2.557 E-03 \angle-89.736^{\circ} \tag{4.20}
\end{equation*}
$$

Equation 4.21 is the total impedance, which is the same as the impedance of the 1st layer because the 2 nd is open.

$$
\begin{equation*}
Z_{T o}=1.800 E+00+j 3.911 E+02=3.911 E+02 \angle 89.736^{\circ} \tag{4.21}
\end{equation*}
$$

In the results above 4.13 shows the current vector with the fault as the last element, and it can be see the angle of the current in the closed loop is lagging $90^{\circ}$ behind either layer 1 or layer 2 . When the faulted loop opens up in equation 4.16, the current returns to a normal angle, but the inductance has changed by 1 turn and there is more real current flowing due to the reduced resistance.

The large influence of the faulted loop on the angle of the total current can be attributed to the relatively small system, in this example, a single faulted loop is $\frac{1 \text { turn }}{1940 \text { turns }}$. In production reactors, there are between $10 k$ and $40 k$ turns or more, which reduces the effects of a single fault on the system.

### 4.5 Fault Model Validation

This section goes over the analysis of the fault, and validation of fault modeling methods logically by using a transformer analogue to describe behavior.

Using the parameters from the previous chapter, the model reactors described in table 3.2 are used, with faults inserted on the innermost layer.

### 4.5.1 Single Layer, Single Turn Fault



Figure 4.4: Faulted turn in a cylindrical shell (red band), the

To test the transformer analogue using test data gathered using the test reactors from the previous chapter, the single-layer test reactor is built, and a short is inserted at turn 21, the turn-to-turn visualization and sheets visualized in figure 4.5. The reactor is described in table 3.2, as Layer $1 f$, it is a faulted equivalent to the reactor shown in figure 3.3. The test reactor is in series with a $10 \Omega$ resistor to measure the current in the faulted reactor.

Using the Biot-Savart methods to evaluate the turn-to-turn inductance of the reactor in the faulted state, the inductance matrix can be seen in 4.22 , this result


Figure 4.5: Visualization of a fault in a single-layer reactor. The fault is highlighted by the red turn and band.

$$
\begin{gather*}
L_{b s}=\left[\begin{array}{ll}
8.338 E-05 & 2.204 E-06 \\
2.204 E-06 & 1.535 E-07
\end{array}\right]  \tag{4.22}\\
Z_{b s}=\left[\begin{array}{cc}
1.052 E+01+j 5.239 & 0+j 1.385 E-01 \\
0+j 1.385 E-01 & 1.289 E-02+j 9.646 E-03
\end{array}\right]  \tag{4.23}\\
I_{b s}=\left[\begin{array}{cc}
7.997 E-02-j 3.155 E-02 \\
0-j 3.881 E-01
\end{array}\right]=\left[\begin{array}{c}
8.597 E-02 \angle-21.531^{\circ} \\
7.395 E-01 \angle-148.345^{\circ}
\end{array}\right]  \tag{4.24}\\
L_{f b}=\left[\begin{array}{ll}
8.609 E-05 & 2.439 E-06 \\
2.439 E-06 & 1.689 E-07
\end{array}\right]  \tag{4.25}\\
Z_{f b}=\left[\begin{array}{cc}
1.052 E+01+j 5.409 & 0+j 1.532 E-01 \\
0+j 1.532 E-01 & 1.289 E-02+j 1.061 E-02
\end{array}\right]  \tag{4.26}\\
I_{f b}=\left[\begin{array}{c}
7.935 E-02-j 3.088 E-02 \\
0-j 3.820 E-01
\end{array}\right]=\left[\begin{array}{c}
8.515 E-02 \angle-21.265^{\circ} \\
7.815 E-01 \angle-150.735^{\circ}
\end{array}\right] \tag{4.27}
\end{gather*}
$$

When Compared to a physical test of a 41 turn reactor with turn 21 faulted, the result in the first element, representing the current in the layer, it closly matches the result seen in physical testing, the results of the testing can be found in appendix B.2. When compared to the prefault model from the previous chapter: $I_{b s}=8.915 \times 10^{-02} \angle-27.690^{\circ}$ and $I_{f b}=8.900 \times 10^{-02} \angle-27.876^{\circ}$, the resulting change due to the fault is minor, both methods show a change in current as $\approx 3.56 \%$ using the turn-to-turn methods, and $\approx 4.33 \%$ from the sheets method. Considering the change in turns is 1 , and the fault is $1 / 40=2.5 \%$ of the total turns in the reactor, this appears to be a valid


Figure 4.6: Visualization of a "Untuned" multilayer reactor model. The fault is highlighted by the red turn and band.

Comparing the values of the current, in either method, we see there is approximately an order of magnitude difference in the current between the prefault and faulted cases. The Python program to simulate these tests can be found in appendix D.6.

### 4.5.2 Multiple Layer, Single Turn Fault

Starting with the 3-layer example model from the previous chapter, the innermost layer the example fault from the previous section. The following section will demonstrate the modeling and analysis method for a multi-layer reactor.

Equation 4.28 impedance matrix of the untuned prefault reactor.

$$
Z_{u t}=\left[\begin{array}{ccc}
10.53+j 5.733 & 0+j 5.247 & 0+j 4.849  \tag{4.28}\\
0+j 5.247 & 10.57+j 6.441 & 0+j 5.901 \\
0+j 4.849 & 0+j 5.901 & 10.61+j 7.171
\end{array}\right]
$$

Equation 4.29 is the prefault current vector for an untuned reactor.

$$
I_{u t}=\left[\begin{array}{l}
2.097 E-02-j 2.630 E-02  \tag{4.29}\\
1.602 E-02-j 2.853 E-02 \\
1.498 E-02-j 2.861 E-02
\end{array}\right]=\left[\begin{array}{l}
3.364 E-02 \angle-51.432^{\circ} \\
3.272 E-02 \angle-60.684^{\circ} \\
3.229 E-02 \angle-62.370^{\circ}
\end{array}\right]
$$

Equation 4.30 is the total current for the prefault untuned reactor.

$$
\begin{equation*}
I_{t o t a l ~ u t}=5.1971 E-02-j 8.3444 E-02=9.8305 E-02 \angle-58.085^{\circ} \tag{4.30}
\end{equation*}
$$

Equation 4.31 is the total impedance of the untuned reactor, prefault.

$$
\begin{equation*}
Z_{\text {total ut }}=3.5494+j 5.6989=6.7138 \angle 58.085^{\circ} \tag{4.31}
\end{equation*}
$$



Figure 4.7: Visualization of a "Tuned" multilayer reactor model. The fault is highlighted by the red turn and band.

Equation 4.32 is the impedance matrix of the untuned test reactor, with a fault on turn 21 of the innermost layer, layer 1.

$$
Z_{u t f}=\left[\begin{array}{cccc}
10.53+j 5.733 & 0+j 5.247 & 0+j 4.849 & 0+j 0.1398  \tag{4.32}\\
0+j 5.247 & 10.57+j 6.441 & 0+j 5.901 & 0+j 0.1280 \\
0+j 4.849 & 0+j 5.901 & 10.61+j 7.171 & 0+j 0.1183 \\
0+j 0.1398 & 0+j 0.1280 & 0+j 0.1183 & 0.01289+j 3.410 E-3
\end{array}\right]
$$

Equation 4.33 is the current vector of the untuned test reactor, here it can be seen that the fault current is around $90^{\circ}$ lagging the average layer current.

$$
\begin{gather*}
I_{u t f}=\left[\begin{array}{c}
2.306 E-02-j 2.012 E-02 \\
1.917 E-02-j 2.387 E-02 \\
1.845 E-02-j 2.486 E-02 \\
0-j 4.009 E-01
\end{array}\right]=\left[\begin{array}{c}
3.060 E-02 \angle-41.107^{\circ} \\
3.061 E-02 \angle-51.235^{\circ} \\
3.096 E-02 \angle-53.417^{\circ} \\
8.855 E-01 \angle-153.080^{\circ}
\end{array}\right]  \tag{4.33}\\
I_{\text {total utf }}=6.0683 E-02-j 6.8857 E-02=9.1781 E-02 \angle-48.611^{\circ}  \tag{4.34}\\
Z_{\text {total utf }}=4.7545+j 5.3950=7.1910 \angle 48.611^{\circ} \tag{4.35}
\end{gather*}
$$

Equation 4.34 is the total current of the untuned test reactor, excluding the fault element $I_{u t f}$. Comparing the faulted case, eqn. 4.34 , to the prefault case, eqn. 3.15 , the total current has decreased. When looking at the total impedence of the test reactor, eqn. 4.35, shows that the total impedance of the untuned test reactor has increased.

When the simulated values are compared to a physical test of prefault and faulted cases, we see the fault behavior of the simulated model relativly accuratly captures the effects. Equation 4.36 shows
the measured untuned prefault currents in the 3-Layer model reactor, and equation 4.37 shows the measured untuned currents in the faulted 3-Layer model reactor.

$$
\begin{align*}
& I_{\text {meas. ut }}=\left[\begin{array}{l}
3.400 E-02 \angle-42.25^{\circ} \\
3.200 E-02 \angle-69.15^{\circ} \\
3.000 E-02 \angle-66.03^{\circ}
\end{array}\right]  \tag{4.36}\\
& I_{\text {meas. utf }}=\left[\begin{array}{l}
3.200 E-02 \angle-39.44^{\circ} \\
3.000 E-02 \angle-52.55^{\circ} \\
3.000 E-02 \angle-55.92^{\circ}
\end{array}\right] \tag{4.37}
\end{align*}
$$

It is worth mentioning that the physical test reactors were excited at 10 kHz , which does have a nonnegligable amount of skin effect that the simulation doesn't account for, and makes for part of the difference between simulated and experimental values.

Now, to look into the case where the example reactor layers have been tuned for balanced currents: Equation 4.38 is the prefault impedance matrix of the tuned test reactor.

$$
Z_{t}=\left[\begin{array}{ccc}
10.53+j 5.733 & 0+j 4.833 & 0+j 4.456  \tag{4.38}\\
0+j 4.833 & 10.51+j 5.522 & 0+j 5.022 \\
0+j 4.456 & 0+j 5.022 & 10.55+j 6.139
\end{array}\right]
$$

Equation 4.39 current vector of the prefault tuned reactor.

$$
I_{t}=\left[\begin{array}{c}
1.976 E-02-j 2.703 E-02  \tag{4.39}\\
1.879 E-02-j 2.757 E-02 \\
1.806 E-02-j 2.779 E-02
\end{array}\right]=\left[\begin{array}{l}
3.348 E-02 \angle-53.833^{\circ} \\
3.337 E-02 \angle-55.722^{\circ} \\
3.314 E-02 \angle-56.986^{\circ}
\end{array}\right]
$$

Equation 4.40 is the total current of the prefault tuned test reactor.

$$
\begin{equation*}
I_{\text {totalt }}=5.6603 E-02-j 8.2384 E-02=9.9955 E-02 \angle-55.508^{\circ} \tag{4.40}
\end{equation*}
$$

Equation 4.41 is the prefault total impedance, with the $10 \Omega$ resistors inserted in series with the layer:

$$
\begin{equation*}
Z_{\text {totalt }}=3.5125+j 5.1124=6.2028 \angle 55.508^{\circ} \tag{4.41}
\end{equation*}
$$

$$
\begin{gather*}
Z_{\text {tuned } f}=\left[\begin{array}{cccc}
10.53+j 5.733 & 0+j 5.247 & 0+j 4.849 & 0+j 0.1398 \\
0+j 5.247 & 10.57+j 6.441 & 0+j 5.901 & 0+j 0.1280 \\
0+j 4.849 & 0+j 5.901 & 10.61+j 7.171 & 0+j 0.1183 \\
0+j 0.1398 & 0+j 0.1280 & 0+j 0.1183 & 1.289 E-2+j 3.410 E-3
\end{array}\right]  \tag{4.42}\\
I_{t f}=\left[\begin{array}{c}
2.306 E-02-j 2.012 E-02 \\
1.917 E-02-j 2.387 E-02 \\
1.845 E-02-j 2.486 E-02 \\
0-j 4.009 E-01
\end{array}\right]=\left[\begin{array}{c}
3.060 E-02 \angle-41.107^{\circ} \\
3.061 E-02 \angle-51.235^{\circ} \\
3.096 E-02 \angle-53.417^{\circ} \\
8.855 E-01 \angle-153.080^{\circ}
\end{array}\right] \tag{4.43}
\end{gather*}
$$

Equation 4.44 is the total current of the faulted condition:

$$
\begin{equation*}
I_{t o t a l t f}=6.0683 E-02-j 6.8857 E-02=9.1781 E-02 \angle-48.611^{\circ} \tag{4.44}
\end{equation*}
$$

Equation 4.45 is the total impedance of the test reactor with the shorted loop \#21 of layer 0:

$$
\begin{equation*}
Z_{t o t a l t f}=4.7545+j 5.3950=7.1910 \angle 48.611^{\circ} \tag{4.45}
\end{equation*}
$$

As with the untuned variant of the physical test reactors, Equation 4.46 shows the tuned prefault 3 -layer model reactor, and equation 4.47 is the faulted model reactor:

$$
\begin{gather*}
I_{\text {meas.t }}=\left[\begin{array}{l}
3.400 E-02 \angle-49.87^{\circ} \\
3.400 E-02 \angle-55.65^{\circ} \\
3.400 E-02 \angle-60.91^{\circ}
\end{array}\right]  \tag{4.46}\\
I_{\text {meas.tf }}=\left[\begin{array}{l}
3.400 E-02 \angle-39.78^{\circ} \\
3.400 E-02 \angle-50.24^{\circ} \\
3.400 E-02 \angle-55.36^{\circ}
\end{array}\right] \tag{4.47}
\end{gather*}
$$

The Python program to simulate these tests can also be found in appendix D.7. Oscilloscope screencaptures for the measured results are provided in appendix B.1.

## Chapter 5

## Fault Detection

Turn to turn faults in air core reactors are a common mode of failure, repeated high-voltage transients from switching the reactor into service and the mechanical stresses produced can degrade the reactor insulation over time [2]. Modeling of turn-to-turn faults has been the primary goal of the research presented.

There is a method presented in literature, [13] and [15], both articles use an approach based on the relative angle between the zero and negative sequence current on the bus the reactors are connected. The idea behind this approach is that as a faulted loop occurs, and progresses, The faulted turns will be producing a flux counter to the primary flux generated by the reactor, which presents in the negative and zero sequence currents in reference to the phase which it is connected [15]. The issue with turn to turn faults is the high degree of sensitivity needed to detect fault.

Mohammad et. al. [13], propose a method for determining the presence of a turn-to-turn fault in an ACR relying on the negative and zero sequence currents measured by a relay. Using the argument of the negative and zero sequence currents, $\theta_{0}=\arg \left(I_{0}\right)$ and $\theta_{2}=\arg \left(I_{2}\right)$, the difference is used for evaluating presence of a fault: $\Delta \theta=\theta_{0}-\theta_{2}$. The zero sequence current argument, $\theta_{0}$, is used as a reference, and when a turn-to-turn fault is present the negative sequence argument, $\theta_{2}$, will change from being approximately the same as $\theta_{0}$ to where $\Delta \theta=120^{\circ}$. Chowdhury et. al. [15], like Mohammad et. al., uses the deviation in argument of the negative and zero sequence current.

The use of negative and zero sequence current looks to be a standard method of detecting turn-to-turn faults. The work of Mohammad et. al. [13] and Chowdhury et. al. [15] rely on the symmetrical components to determine the presence of the fault.

Although it would be impractical for production units, Nurminen's thesis [8] presented a novel method to evaluate the design of a reactor that could be applied to fault detection. The method using optical fibers embedded within the reactor layers for temperature measurements and hotspot detection. The change in refractive index can be calculated from the time it takes a light pulse to travel
the length of the fiber. Hotspots can be detected with a combination of time and back scatter, to detect the position of the hotspot. In the case of a turn-to-turn fault, the insulation and encapsulation would degrade from excess heat prior to a fault, which would be seen as a hotspot. would provide sufficient information to the operator to take action before a fault or potential fault becomes a larger issue.

The result of the work performed in the course of the modeling and fault analysis chapters shows the ACR is relatively insensitive to a few, between 1 and 10 turns, faults. These observations are inline with the issues stated by Chowdhury et. al. [15]. As the effects of faults in ACRs is challenging to detect using terminal measurements, aside from adding additional hardware to the system, there isn't a better method of detecting faults than those already in-use.

## Chapter 6

## Computer Program

### 6.1 Introduction

The computer program used to construct a model of a reactor, and evaluate the fault behavior was where a significant amount of time and effort went into for the duration of the research presented in this document. The computer program evolved from a computation intense loop to loop method, to a more efficient method through the application of Fawzi and Burke's 1978 paper. This chapter will look at the general practices and optimizations used in the development of the computer program during the course of the research. Starting with thee loop to loop implementation and thee techniques used to reduce compute time,Going to the more competition efficient thin sheets method and how that method is used to design, or tune, reactors to achieve a desired pre-fault state.

### 6.2 Loop to Loop Implementation

Initially the computer program to evaluate air core reactors and faults use an object oriented approach. With an object class for layer elements, packages, and reactor objects, the use of object or intend programming seemed necessary to manages the process and data in concise ways color by packaging methods with data the mutual inductance between layer objects which would form packages. Because the mutual between every turn and every other turn and the reactor was necessary, it made the object oriented approach convenient. Also due to the number of mutuals that needed to be computed, a multithreaded computation method was necessary to leverage modern multicore compute power primarily to reduce the amount of time it took to calculate the mutual inductance between all the terms and the reactor, for since the processes used were $\mathcal{O}\left(N^{2}\right)$. Once the more computationally efficient method by Fawzi and Burke was implemented it made the object oriented approach unnecessary Because the amount of data and computation was significantly reduced. This


Figure 6.1: The behavior used to calculate mutual inductance of a layer once, due to regular spacing of turns.
eliminated the complexity of the object oriented approach, and eliminated the need for multithreaded programming which was prone to memory weeks and allocation errors which would hold the evaluation effort and cause the program to crash.

Initially the project started using individual turns as the lowest level object, this approach led to a hierarchy of objects with the lowest level being a turn continuing onto groups of turns as layers which were turns connected in series, and packages consisting of multiple layers in parallel. This object oriented approach was highly granular where turns could be added and removed from layers relatively easily recompute the total inductance of the reactor,

The mutual inductance between turns in a layer can be evaluated in $\mathcal{O}(N)$ time, assuming turns are of the same radius and distributed over a regular interval. With the assumption of a regular and consistent turn pitch, the mutual inductance can be calculated once, and the resultant values can be re-used for turns that are of the same distance apart. Figure 6.1 illustrates the reasoning behind the process, the mutual links are evaluated from turn 1 to each turn $2,3, \ldots,(N-1), N$. Then, evaluate the mutual inductance between turn 2 and turns $3, \ldots,(N-1), N$, the mutuals become: $M_{2,3}=M_{1,2}$, $M_{2,4}=M_{1,3}, \ldots, M_{2,(N-1)}=M_{1,(N-2)}, M_{2, N}=M_{1,(N-1)}$, where $M_{1,2 \rightarrow N}$ were evaluated on the first pass. The mutual $M_{2,1}$ is the same as the mutual $M_{2,3}$ when the regularity assumption is applied, and both $M_{2,1}, M_{2,3}=M_{1,2}$.

Because all the turns in a single layer shared the same current superposition could be used to consolidate values of the layers. Layers place into a package will not have the same current magnitude so superposition cannot be used to simplify that element. The entire react you be represented by a square matrix whose dimensions are driven by the number of layers in the reactor total.

As layers are placed in parallel and packages who position could not be used as we cannot assume the same current magnitude in every layer of the package. So when forming the matrix to represent the reactor model there would be a single element for every layer in every package. And because every
layer in the package consisted at the same number of turns, the only thing that changed between layers is the radius of the layer and since the Biot-Savart law, and specifically the Newman integral is highly sensitive to the area enclosed by the current filament (i.e. the turns). This means that the mutual and self terms of the submatrix that represents the package would all be very similar. That means the submatrix representing to package would be close to singular, and as discussed in a previous section the condition number of that matrix would be large, so we would have high error when inverting the matrix. this poor conditioning can be extended out to the larger matrix, and since the condition number is the ratio of the largest eigen value over the smallest, the lower bound on error when inverted the matrix for the entire reactor would be large.

The procedure for implementing a fault in one of these reactors, which is described by components, is to remove the turn and any mutual between the faulted turn from every element of the reactor. Then compose a new element for the reactor which consists of that single faulted turn and every layer element within that matrix. This would add a new row and column to the reactor model, whose self element would be the self inductance of the turn and the flux internal to that turn, and the of diagonal elements would be the mutual between the faulted turn and the layer, for every layer in the reactor.

This approach to computation preserved the values already computed for the prefault case, since the only element that changed was that turn. And since the turn that was faulted in the prefault case is physically located in the same space the values could simply be copied over to the new element representing that fault.


Figure 6.2: Turn-to-Turn Reactor Model Calculation, $N$ : Number of Turns, $m$ : Number of Layers in the Reactor

The drawback to this approach is that it was computationally intense to solve. Since the mutual had to be computed from every turn to every other, turn this approach required an $N^{2}$ time to solve. The advantage to this approach is that we have extreme granularity and we can pick and choose what we want to change and when we can do it on the fly the initial computation time and effort can be preserved.

To compute the inductance value of a layer "object" the main thing to remember is the symmetry of the flux linkages. This symmetry means that we can effectively halve our computation effort, when computing the self inductance of a layer used the torch turn method because the linkages are symmetrical we don't need to calculates the inductance going backwards, that is, we don't need to calculate inductions going towards the zero index, we only need to calculate the inductance towards the nth index. Was we had the inductance for each value from the zero to the end index it is a trivial operation to simply double it to represent going from the nth index to the zeroth index. A similar principle to this applies when computing the mutual between turns in different layers, where the different layers have different current values flowing through them, where we only need to calculate the mutual inductance from a layer a to a layer $b$ and those values can be reflected (mirrored) on layer b. A nice mental visualization of this would be something like a slighting scale on set of er near calipers, the inductance in a lair is only dependent on its for total distance (assuming the coupled loops are coaxial).

### 6.3 Sheets Implementation



Figure 6.3: Thin-Sheets and Cylindrical-Shells Reactor Model Calculation, $N$ : Number of Turns, $m$ : Number of Layers in the Reactor

The sheet's method as described by Fawzi and Burke's 1978 publication is an extrapolation of the Neumann Integral which generally lumps the parameters from the turn to turn method into a single unit known as a sheet. Implementing this method greatly reduces the time to compute the inductance of a series of turns, and the mutual inductance between series of turns. This method of simplifying a series of turns as a sheet makes the smallest element of a reactor a layer or package instead of a turn, as with the turned to turn method. This method greatly simplifies the reactor in terms of data structures, and reducing the time it takes to compute elements of the structure.

The computation time used to calculate the inductance values of an air corrector using deter to turn method verses the sheets method is still on the order of $\mathcal{O}\left(N^{2}\right)$, with $N$ being the number of elements in the reactor. But with $N \approx 10$ in this case, rather than $N \approx 10^{4}$ for the turn-to-turn method. Evaluating the Newman integral takes up the majority of the computation time, rather than having to evaluate $N_{\text {turns }}^{2}$ integrals per layer / package, the four integrals of the Ci function per layer / package requires considerably less time to complete.

The method of valuating fault effects follows the same principles as the turn to turn method of faults, but there is a difference in that we don't have individual turns to evaluate. Instead the space in which the fault occupies is evaluated using the turns density of the layer that it is contained within and the equivalent height for the number of turns involved in the fault. This procedure will effectively create another cylindrical shell / sheet and its self and mutual contributions represent the self an mutual contributions of the fault to the rest of the reactor. This contribution is subtracted from the diagonal element representing the layer that the fault occurs in as well as its mutual contribution to that layer, this contribution will be also subtracted from the mutuals to other layers in the reactor. When the mutuals are placed on the outer row and column these values represent the mutual contributions of the fault to the rest the reactor, and the self of the fault is added to the $N+1^{\text {th }}$ place of the perturbation matrix.

### 6.4 Tuning Components For Balance

The process of tuning, more generally referred to as design, of the reactors took an iterative approach. There are two algorithms developed to tune the reactor, both algorithms seek approximately the same current magnitude distributed evenly across layers, and require all currents be flowing in roughly the same direction, i.e. the argument of the current phasor be approximately equal. The thin sheets reactor is a relatively straightforward implementation, but the finite thickens reactor has a few extra steps, as there are more parameters to tune. Both methods assume that the diameters of the lairs or packages have already been determined, and these methods are changing either the turns or package thickness to achieve a desired result.

### 6.4.1 Tuning a Thin-Sheets Reactor

Tuning the thin-sheets reactor is a time consuming process due to the number of elements in the reactor model. The method discussed here will focus on optimizing the number of turns to achieve a current phase angle on every layer that are approximately the same, to put another way we want all the layer currents to have approximately the same phase angle. The process is described in the flowchart shown in figure 6.4. Assuming the layer radii $r$ and heights ( $h$ ) are known, an initial guess as to the number of turns for each layer is given $N$, and the desired thevenin equivalent resistance the reactor would exhibit if measured across the terminals with all letters connected in parallel. To save time, the matrix representing the influence of the geometric parameters, $\bar{G}$ (equation 2.24 ), is calculated since these values are assumed not change. The matrix representing the influence of the turns, $\bar{N}$ (equation 2.23), can be evaluated for each iteration of turns without the need to evaluate the integrals that make the elements of the geometry matrix. The inductance matrix, $\bar{L}$, is then calculated as the scaled Hadamard product of the turns and geometry matrix (equation 2.22 ) The resistance of each layer is calculated to be proportional to the number of turns so that the final DC thevenin in resistance is the same as the desired input $R_{T}$, knowing that the DC resistance of each layer is proportional to the number of turns in that layer: $R_{k} \propto N_{k}$.


Figure 6.4: Tuning turns for a thin-sheets reactor model


Figure 6.5: Turns Adjustment Subprocess

### 6.4.2 Tuning a Cylindrical-Shell Reactor

Tuning the finite-thickness, or cylindrical-shell reactor is similar to the process of tuning the turn counts of a thin sheets reactor. The primary difference in this case is that we're taking the result of the thin sheets reactor tuning process, and from there we will add thickness to the reactor elements using the same principles of minimizing circulating currents. If necessary a turns tuning process can be performed after the thickness has been determined, to further reduce circulating currents if needed.


Figure 6.6: Tuning turns and thickness for a finite-thickness reactor model


Figure 6.7: Thickness Adjustment Subprocess

## Chapter 7

## Results

### 7.1 Introduction

This chapter discusses the results of the simulation, which is the culmination of the work in this thesis. Here we will discuss the reactor model, which is the result of the iterative designed process discussed in previous chapters, and will be used in the fault analysis. A number of fault conditions will be discussed, starting with single turns, and how the location of those turns effects the reactor's behavior. And then we will discuss multiple faults, clustering as though a single turn fault has progressed to a multi turn fault through the breakdown of insulation and encapsulation media.

### 7.2 Reactor Modeling

The design of a reactor is a challenging, but critical step. In the development of the reactor modeling process, the ideal reactor would have currents of varying magnitudes, with each layer having the same $X / R$ ratio. The goal in reactor design is to minimize the circulating currents between layers in the reactor. The tuning of a reactor design is achieved by varying the turn counts and conductor diameters. Varying the turn count will adjust the inductance values, and the layer resistnace. Changing the conductor diameter will vary the resistance of the layer with little impact on the inductance. Practically, the manuacturer of the reactor will have a specified set of conductors to wind the layers to balance the reactor layer currents.

For the models devoloped for the purpose of fault analysis, the design wasn't perfect, there are small circulating currents in the layers, further refinements could be achieved by adjusting the layer resisntance values. The design of the model reactor achieved a minimized set of circulating currents, which will be sufficient for the purtposes of evaluating faults. Effects of faults are measured as the change in model reactor current as would be measured at the reactor terminals, with the phasor

| Package | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| package turns | 1327 | 1187 | 1093 | 1029 | 985 | 956 | 938 | 929 | 928 | 935 |
| average radius $[\mathrm{m}]$ | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 | 1.0 | 1.05 | 1.1 | 1.15 |
| package height $[\mathrm{m}]$ | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 |

Table 7.1: Cylindrical Sheet modeled Reactor Parameters, with package 1 being the innermost, and 10 being the outermost
reference being the excitation voltage at an angle of $0^{\circ}$.

### 7.3 Reactor Model

The result of tuning a reactor to minimize circulating currents using the cylindrical sheets modeling method, with parameters listed in table 7.1. The vector provided in Eqn. 7.2 is the relatively balanced current vector for a reactor of 10 packages represented as cylindrical sheets, with the resistances being massaged to approximate what they would be if calculated using the conductor diameter and number of turns so that the resistances measured at the terminal are similar to that provided in the testing reports of the reactor being modeled. The summing of the current vector, as in Eqn. 7.3, gives the total current of the device as if measured at the terminals, with Eqn. 7.4 being the total impedance of the reactor as if measured across the terminals.

$$
L=\left[\begin{array}{llllllllll}
0.916 & 0.803 & 0.726 & 0.672 & 0.632 & 0.603 & 0.582 & 0.567 & 0.557 & 0.552  \tag{7.1}\\
0.803 & 0.831 & 0.750 & 0.693 & 0.652 & 0.622 & 0.600 & 0.584 & 0.574 & 0.569 \\
0.726 & 0.750 & 0.792 & 0.731 & 0.687 & 0.655 & 0.632 & 0.615 & 0.604 & 0.599 \\
0.672 & 0.693 & 0.731 & 0.783 & 0.735 & 0.700 & 0.675 & 0.657 & 0.645 & 0.639 \\
0.632 & 0.652 & 0.687 & 0.735 & 0.795 & 0.757 & 0.729 & 0.709 & 0.696 & 0.689 \\
0.603 & 0.622 & 0.655 & 0.700 & 0.757 & 0.824 & 0.793 & 0.771 & 0.757 & 0.749 \\
0.582 & 0.600 & 0.632 & 0.675 & 0.729 & 0.793 & 0.869 & 0.844 & 0.828 & 0.820 \\
0.567 & 0.584 & 0.615 & 0.657 & 0.709 & 0.771 & 0.844 & 0.929 & 0.911 & 0.901 \\
0.557 & 0.574 & 0.604 & 0.645 & 0.696 & 0.757 & 0.828 & 0.911 & 1.006 & 0.994 \\
0.552 & 0.569 & 0.599 & 0.639 & 0.689 & 0.749 & 0.820 & 0.901 & 0.994 & 1.104
\end{array}\right]
$$

$$
\begin{gather*}
I=\left[\begin{array}{c}
1.040 E-05-j 6.064 E-04 \\
2.738 E-06-j 5.571 E-04 \\
7.349 E-06-j 5.127 E-04 \\
-1.051 E-06-j 4.430 E-04 \\
4.124 E-06-j 3.904 E-04 \\
-2.826 E-06-j 3.238 E-04 \\
-2.134 E-06-j 2.758 E-04 \\
-2.455 E-06-j 2.411 E-04 \\
-2.132 E-06-j 2.208 E-04 \\
-1.028 E-06-j 2.138 E-04
\end{array}\right]=\left[\begin{array}{l}
6.065 E-04 \angle-89.017^{\circ} \\
5.571 E-04 \angle-89.718^{\circ} \\
5.127 E-04 \angle-89.179^{\circ} \\
4.430 E-04 \angle-90.136^{\circ} \\
3.905 E-04 \angle-89.395^{\circ} \\
3.238 E-04 \angle-90.500^{\circ} \\
2.758 E-04 \angle-90.443^{\circ} \\
2.411 E-04 \angle-90.583^{\circ} \\
2.208 E-04 \angle-90.553^{\circ} \\
2.138 E-04 \angle-90.275^{\circ}
\end{array}\right]  \tag{7.2}\\
I_{T}=1.299 E-05-j 3.785 E-03=3.785 E-03 \angle-89.803^{\circ} \tag{7.3}
\end{gather*}
$$

$$
\begin{equation*}
Z_{T}=9.065 E-01+j 2.642 E+02=2.642 E+02 \angle 89.803^{\circ} \tag{7.4}
\end{equation*}
$$

Looking at the coupling coefficient matrix, Eqn. 7.5, for the model reactor inductance matrix in Eqn. 7.6. We see there is high coupling between adjacent layers, with the coupling only dropping below $75 \%$ after the 4th element from the diagonal. This "tight coupling" between the reactor elements shows one of the reasons why reactor design before

$$
K=\left[\begin{array}{llllllllll}
1.000 & 0.921 & 0.853 & 0.793 & 0.741 & 0.694 & 0.652 & 0.614 & 0.580 & 0.549  \tag{7.5}\\
0.921 & 1.000 & 0.925 & 0.860 & 0.802 & 0.752 & 0.706 & 0.665 & 0.628 & 0.594 \\
0.853 & 0.925 & 1.000 & 0.929 & 0.866 & 0.811 & 0.761 & 0.717 & 0.677 & 0.640 \\
0.793 & 0.860 & 0.929 & 1.000 & 0.932 & 0.872 & 0.818 & 0.770 & 0.727 & 0.688 \\
0.741 & 0.802 & 0.866 & 0.932 & 1.000 & 0.935 & 0.877 & 0.825 & 0.778 & 0.736 \\
0.694 & 0.752 & 0.811 & 0.872 & 0.935 & 1.000 & 0.937 & 0.881 & 0.831 & 0.786 \\
0.652 & 0.706 & 0.761 & 0.818 & 0.877 & 0.937 & 1.000 & 0.939 & 0.885 & 0.837 \\
0.614 & 0.665 & 0.717 & 0.770 & 0.825 & 0.881 & 0.939 & 1.000 & 0.942 & 0.889 \\
0.580 & 0.628 & 0.677 & 0.727 & 0.778 & 0.831 & 0.885 & 0.942 & 1.000 & 0.944 \\
0.549 & 0.594 & 0.640 & 0.688 & 0.736 & 0.786 & 0.837 & 0.889 & 0.944 & 1.000
\end{array}\right]
$$

### 7.3.1 Single Faulted Turn

As discussed in the faults modeling section, the faulted reactor is modeled using a perturbed matrix to represent the loss of a turn due to the fault.

In the results below, Eqn. 7.7 and Eqn. 7.8 are the prefault current values, the reactor has a fault placed at the center of the 1 st (innermost) package, Comparing them to the results in Eqn. 7.10 and

Eqn. 7.11, we can see a change in the real component of the 1st element of the current vector, but no impact on the other elements, and an imperceptible change in total current: prefault Eqn. 7.8 vs faulted Eqn. 7.11. Appendix C contains more iterations, where the fault is moved around each layer and effects are calculated.

Equation 7.6 is the prefault reactor inductance matrix, with the

$$
L=\left[\begin{array}{llllllllll}
0.916 & 0.803 & 0.726 & 0.672 & 0.632 & 0.603 & 0.582 & 0.567 & 0.557 & 0.552 \\
0.803 & 0.831 & 0.750 & 0.693 & 0.652 & 0.622 & 0.600 & 0.584 & 0.574 & 0.569  \tag{7.7}\\
0.726 & 0.750 & 0.792 & 0.731 & 0.687 & 0.655 & 0.632 & 0.615 & 0.604 & 0.599 \\
0.672 & 0.693 & 0.731 & 0.783 & 0.735 & 0.700 & 0.675 & 0.657 & 0.645 & 0.639 \\
0.632 & 0.652 & 0.687 & 0.735 & 0.795 & 0.757 & 0.729 & 0.709 & 0.696 & 0.689 \\
0.603 & 0.622 & 0.655 & 0.700 & 0.757 & 0.824 & 0.793 & 0.771 & 0.757 & 0.749 \\
0.582 & 0.600 & 0.632 & 0.675 & 0.729 & 0.793 & 0.869 & 0.844 & 0.828 & 0.820 \\
0.567 & 0.584 & 0.615 & 0.657 & 0.709 & 0.771 & 0.844 & 0.929 & 0.911 & 0.901 \\
0.557 & 0.574 & 0.604 & 0.645 & 0.696 & 0.757 & 0.828 & 0.911 & 1.006 & 0.994 \\
0.552 & 0.569 & 0.599 & 0.639 & 0.689 & 0.749 & 0.820 & 0.901 & 0.994 & 1.104
\end{array}\right]
$$

$$
\begin{equation*}
Z_{T}=1.854 E-06+j 4.440 E-03=4.440 E-03 \angle 89.976^{\circ} \tag{7.9}
\end{equation*}
$$

$$
\begin{align*}
& I_{p}=\left[\begin{array}{l}
3.615 E+01 \angle-89.732^{\circ} \\
3.304 E+01 \angle-90.029^{\circ} \\
3.064 E+01 \angle-89.926^{\circ} \\
2.621 E+01 \angle-90.080^{\circ} \\
2.337 E+01 \angle-89.940^{\circ} \\
1.918 E+01 \angle-90.096^{\circ} \\
1.642 E+01 \angle-90.054^{\circ} \\
1.434 E+01 \angle-90.072^{\circ} \\
1.313 E+01 \angle-90.067^{\circ} \\
1.273 E+01 \angle-90.020^{\circ} \\
4.346 E+01 \angle-179.961^{\circ}
\end{array}\right]  \tag{7.10}\\
& I_{p T}=9.409 E-02-j 2.252 E+02=2.252 E+02 \angle-89.976^{\circ}  \tag{7.11}\\
& Z_{p T}=1.855 E-06+j 4.440 E-03=4.440 E-03 \angle 89.976^{\circ} \tag{7.12}
\end{align*}
$$

With the fault occurring in the first layer of the reactor, we see a minor change in magnitude the faulted current vector, Eqn. 7.10, and the prefault vector Eqn. 7.7. There is a significant current in the faulted turn, shown in the 11 th element of Eqn. 7.10 , the resistance of the faulted turn is $8.732 \times 10^{-4} \Omega$, so the power dissipated by the turn is only around $1.5[W]$ and as seen in the difference in the total current Eqn. 7.11, there is (practically) no noticeable change in either the magnitude or the phase angle.

### 7.3.2 Single Fault Position in a Model Reactor

Depending where the fault occurs in the reactor layer will have a different impact on the change in current. With 7.13 being the total current for prefault conditions, the greatest impact on the change in current is when the fault occurs in the center $(f z=0)$ of the layer, as seen in Eqn. 7.15. It can be seen that the effects of the fault being at the top Eqn. 7.16 or the bottom Eqn. 7.14 of the reactor ( $f z= \pm 0.5$ ) is the same. moving the fault from the innermost Eqn. 7.15 to the outermost Eqn. 7.17 layer, likewise has a greater impact, since the faulted loop will have a greater self-inductance, and will link more flux in it's enclosed surface area.

Equation 7.13 is the total current for prefault conditions:

$$
\begin{equation*}
I_{\text {pre } F}=0.09404491-j 225.21319038=225.21321001 \angle-89.976^{\circ} \tag{7.13}
\end{equation*}
$$

Equation 7.14 is the total current for fault at $-0.5[m]$ of reactor layer height (bottom), in layer 0
(innermost):

$$
\begin{equation*}
I_{p T 0, f z=-0.5}=1.86279697-j 229.97717007=229.98471420 \angle-89.536^{\circ} \tag{7.14}
\end{equation*}
$$

Equation 7.15 is the total current for fault at $0[m]$ of reactor layer height (middle), in layer 0 :

$$
\begin{equation*}
I_{p T 0, f z=0}=6.90653399-j 242.15712227=242.25559246 \angle-88.366^{\circ} \tag{7.15}
\end{equation*}
$$

Equation 7.16 is the total current for fault at $0.5[\mathrm{~m}]$ of reactor layer height (top), in layer 0 :

$$
\begin{equation*}
I_{p T 0, f z=0.5}=1.86279697-j 229.97717007=229.98471420 \angle-89.536^{\circ} \tag{7.16}
\end{equation*}
$$

Equation 7.17 is total current for fault at $0[m]$ of reactor layer height, in layer 9 (outermost):

$$
\begin{equation*}
I_{p T 9, f z=0}=6.15407727-j 249.13961819=249.21561352 \angle-88.585^{\circ} \tag{7.17}
\end{equation*}
$$

The effect of fault locations for each layer of the model reactor can be found in appendix C.1.

### 7.3.3 Multiple faulted turns

Continuing with a selection of faults on the model reactor described in table 7.1, looking at the total current of the model reactor, with varying numbers of faulted turns, we can get a feel for how many faults it takes to see any noticeable change at the terminals: The results in Eqn. C. 32 through Eqn. C. 38 show the effects of sequential faults, i.e. one on-top of the other as though a more loops are getting shorted die to thermal breakdown on insulation. We can see there is a negligible difference going from 2 faults to 4 has a negligible impact on the total current, with the imaginary part of the total current not seeing a change until 6 turns are faulted.


Figure 7.1

Equation C. 32 is the total current for 2 faults in layer 0 :

$$
\begin{equation*}
I_{p T 0, n f=2}=4.82852335-j 246.24253931=246.28987556 \angle-88.877^{\circ} \tag{7.18}
\end{equation*}
$$

Equation C. 33 is the total current for 10 faults in layer 0 :

$$
\begin{equation*}
I_{p T 0, n f=10}=2.40648604-j 256.77246058=256.78373720 \angle-89.463^{\circ} \tag{7.19}
\end{equation*}
$$

Equation C. 34 is the total current for 20 faults in layer 0:

$$
\begin{equation*}
I_{p T ~ 0, n f=20}=2.03295420-j 264.65137104=264.65917913 \angle-89.560^{\circ} \tag{7.20}
\end{equation*}
$$

Equation C. 35 is the total current for 40 faults in layer 0:

$$
\begin{equation*}
I_{p T 0, n f=40}=1.94022750-j 277.96406199=277.97083343 \angle-89.600^{\circ} \tag{7.21}
\end{equation*}
$$

Equation C. 36 is the total current for 100 faults in layer 0:

$$
\begin{equation*}
I_{p T 0, n f=100}=2.56847638-j 319.50374981=319.51407358 \angle-89.539^{\circ} \tag{7.22}
\end{equation*}
$$

Equation C. 37 is the total current for 150 faults in layer 0 :

$$
\begin{equation*}
I_{p T 0, n f=150}=3.62243974-j 363.82962825=363.84766106 \angle-89.430^{\circ} \tag{7.23}
\end{equation*}
$$

Equation C. 38 is the total current for 200 faults in layer 0:

$$
\begin{equation*}
I_{p T 0, n f=200}=5.35972542-j 423.66196115=423.69586260 \angle-89.275^{\circ} \tag{7.24}
\end{equation*}
$$

See appendix C. 2 for the fault progressions in each layer other than 0 (the innermost).

## Chapter 8

## Summary, Conclusions, and Future

## Work

This chapter presents the summary of the thesis, conclusions drawn from the research and results, and future work needed to produce useful insights into ACRs.

### 8.1 Summary

This thesis is the summary of the theory and methods used to model prefault and faulted reactors. Developed performance metrics, and defined a "well behaved" reactor as one with unequal currents, but approximately in-phase, to minimize circulating currents. The method of describing faults is intuitive, with an analogy to explain the behavior of a fault. The method developed to evaluate the effects of faults in air-core reactors is an intuitive and computationally efficient method to evaluate the changes in the reactor die to the fault. Finally, the results presenting the effects of faults in a model similar to a physical air-core reactor show the effects of faults aren't practically observable, and doesn't present a method of reactor protection.

### 8.2 Conclusions

As a result of the work performed, and the experience gained through the course of the research, this section presents conclusions regarding the modeling and design of ACRs. With the small-scale reactor designs used to test the effectiveness of the reactor and fault modeling methods, there are questions regarding the influence of capacitance in models as layer turn counts increase to around 1000 turns or more.

Reactors are challenging to design, Improper turns in layers will cause circulating currents, causing large losses. The heat from large losses will degrade the insulation and encapsulation material. The optimization of the geometry, turn count, and package layer count to minimize circulating currents and unnecessary heating Because reactors are relatively simple devices to build, manufacturers keep details such as turn counts and layer radii to themselves in order to protect their investments. However, as demonstrated in the modeling of faults in reactor models similar to those deployed in industry, a reactor in a faulted state is difficult to detect until the fault has progressed to a significant number of turns.

The most likely fault to occur is between turns in series, that have a large $\Delta V$ compared to those turns in parallel layers. In the event of a turn-to-turn fault, the best case scenario is the connection opening up immediately due to the heat from the current in the closed loop The detection of a small number of faults before it progresses too far is practically impossible when the only inputs to the detection algorithm are measurements from the terminals of the reactor.

### 8.3 Future Work

The methods and results presented in this thesis are first-steps to thoroughly understanding the effects of faults in ACRs. More physical testing and comparisons to simulations are required to determine the effects of faults in larger models.

A shortcoming of the modeling methods used in this thesis is the purely inductive modeling method, where the turn-to-turn, layer-to-layer, and reactor-to-ground capacitance was ignored. Implementing a capacitance model that can be super-imposed on either the impedance matrix, or a separate analysis technique applied as a correction factor to the current vector.

The design of the reactor, i.e. the "tuning", is necessary to minimize losses from circulating currents. Determine more computationally efficient method of designing a reactor, or develop a minimally iterative approach.

Explore thermal optimization to minimize losses, and methods to balance the mass of the reactor with minimal losses to reduce material requirements. Thermal optimization methods are presented by Yuan et. al. [9]. But, the use of finite-element modeling software limits the use of the methods with the modeling methods presented in this thesis.

The work presented was performed with the goal of understanding the effects of turn-to-turn faults, cross-layer faults were ignored due to a high-level analysis performed that determined the effects of a cross-layer fault would be either negligible, or the result of a more serious turn-to-turn fault. Due to the difference in voltage across layers being relatively low, and based on the fault cases described by Mohammad et. al. in [13], the primary focus of this work was turn-to-turn faults. To properly model the effects of cross-layer faults would require a robust method of modeling the different network topology
possibilities, which would lend itself to the problem of a fault that propagates, or cascades through the package. Greater knowledge of the materials used in the construction of reactors, and the occurrence of insulation or encapsulation defects would be needed to adequately tackle those problems.

## Bibliography

[1] K. Damron, "Practical considerations and experiences protecting 230 kV shunt air-core reactors banks," in 43rd Annual Western Protective Relay Conference, Spokane, WA, pp. 18-20, 2016.
[2] A. H. Haziah, Transients in Reactors for Power Systems Compensation. Doctroal thesis, Cardiff University, 2012.
[3] C. Paul, Inductance: Loop and Partial. Hoboken, NJ, USA: Wiley, 2010.
[4] T. H. Fawzi and P. E. Burke, "The accurate computation of self and mutual inductances of circular coils," IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, no. 2, pp. 464-468, 1978.
[5] A. A. Dahab, P. E. Burke, and T. H. Fawzi, "A complete model of a single layer air-cored reactor for impulse voltage distribution," IEEE Transactions on Power Delivery, vol. 3, no. 4, pp. 1745-1753, 1988.
[6] P. Burke and T. Fawzi, "Effect of eddy losses on the design and modelling of air-cored reactors," IEEE Transactions on Magnetics, vol. 27, no. 6, pp. 5001-5003, 1991.
[7] H. B. Zaninelli and E. C. Bortoni, "Optimized modeling process for air core reactors using finite element analysis," in 2021 IEEE Power \& Energy Society General Meeting (PESGM), pp. 1-5, 2021.
[8] K. Nurminen, Thermal modeling and evaluation of harmonic effects on a dry-type air-core reactor. Doctoral thesis, Teknillinen korkeakoulu, 2008.
[9] F. Yuan, Z. Yuan, L. Chen, Y. Wang, J. Liu, J. He, and Y. Pan, "Thermal and electromagnetic combined optimization design of dry type air core reactor," Energies, vol. 10, no. 12, 2017.
[10] T. Fiorentin, L. Lopes, O. Silva, and A. Lenzi, "Vibroacoustic models of air-core reactors," International Journal of Acoustics and Vibrations, vol. 21, pp. 453-461, 122016.
[11] M. Faridi, V. Nabaei, S. A. Mousavi, and M. Mohammadi, "Modeling of continuously transposed cable in power transformer for fault analysis based on FEM," in 2009 International Conference on Electrical Machines and Systems, pp. 1-4, 2009.
[12] D. Geissler and T. Leibfried, "Mechanical breakdown of aged insulating paper around continuously transposed conductors for power transformers under the influence of short-circuit forces analysis by numerical simulations," in 2015 IEEE Electrical Insulation Conference (EIC), pp. 401406, 2015.
[13] A. I. Mohammad, T. Mort, J. Jeter, A. Hoth, J. England, B. K. Johnson, N. Fischer, and K. Damron, "Turn-to-turn fault protection for dry-type shunt reactors," in 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T\&D), pp. 1-5, 2018.
[14] F. K. Basha and M. Thompson, "Practical EHV reactor protection," in 2013 66th Annual Conference for Protective Relay Engineers, pp. 408-419, 2013.
[15] R. Chowdhury, N. Fischer, D. Taylor, D. Caverly, and A. B. Dehkordi, "A fresh look at practical shunt reactor protection," in 49th Annual Western Protective Relay Conference, 2022.
[16] C. Zhigang, Q. Guochao, H. Changjin, L. Yi, Y. Chao, and O. Yangyong, "Development and test of distributed current monitoring device for dry type air core reactor," in 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), pp. 1-4, 2020.
[17] A. Guzman, Transformer Internal Fault Model for Protection Analysis. Masters thesis, The University of Idaho, College of Graduate Studies, 2002.
[18] G. Strang, Linear Algebra and its Applications, 3rd Edition. Toronto, On. Canada: Brooks/Cole, 1988.
[19] H. B. Dwight, Tables if Integrals and Other Mathematical Data, 4th Edition. New York, NY, USA: Macmillan, 1966.
[20] N. D. Tleis, Power Systems Modelling and Fault Analysis: Theory and Practice. New York, NY, USA: Newnes, 2008.
[21] J. Lammeraner and M. Stafl, Eddy currents. London, UK: Prague, publisher not identified T.L., 1966.
[22] S. V. Kulkarni and S. A. Khaparde, Transformer Engineering: Design and Practice. New York, NY, USA: Dekker, 2005.
[23] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,
J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, "Array programming with NumPy," Nature, vol. 585, pp. 357-362, Sept. 2020.
[24] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python," Nature Methods, vol. 17, pp. 261272, 2020.
[25] J. D. Hunter, "Matplotlib: A 2d graphics environment," Computing in Science \& Engineering, vol. 9, no. 3, pp. 90-95, 2007.

## Appendix A

## Derivations

## Flux internal to a cylindrical conductor

This appendix section is the development of equation 2.11. The result is an approximation of the internal wire (cylindrical conductor) inductance for a given loop of wire, where the radius of the wire is significantly larger than the wire: $r_{\text {wire }} \ll r_{\text {loop }}$.
Permeability of free space: $\mu_{0}=4 \pi \times 10^{-7} \approx 1.257 \times 10^{-6}$
Ampere's Law describing the magnetic filed inside a conductor: $\mathbf{B}_{\text {int }}\left(r_{x}\right)=\frac{\mu_{0} I}{2 \pi r_{\text {wire }}^{2}}$ The fraction of the flux linked by a current: $\frac{\pi r_{x}^{2}}{\pi r_{\text {wire }}^{2}}$

$$
\begin{gather*}
d a=\left(r_{\text {loop }}+r_{x}\right) d \theta d r_{x}  \tag{A.1}\\
\psi_{\text {internal }}=\int_{r_{x}=0}^{r_{\text {loop }}-r_{\text {wire }}} \int_{\theta=0}^{2 \pi}\left(\frac{\pi r_{x}^{2}}{\pi r_{\text {wire }}}\right) \mathbf{B}_{\text {int }}\left(r_{x}\right)\left(r_{\text {loop }}+r_{x}\right) d \theta d r_{x} \tag{A.2}
\end{gather*}
$$

$r_{\text {loop }}$ is the distance from the origin to the center of the conductor.

$$
\begin{align*}
\psi_{\text {internal }} & =\int_{r_{x}=0}^{r_{\text {loop }}-r_{\text {wire }}} \int_{\theta=0}^{2 \pi}\left(\frac{\pi r_{x}^{2}}{\pi r_{\text {wire }}^{2}}\right)\left(\frac{\mu_{0} I}{2 \pi r_{\text {wire }}^{2}}\right)\left(r_{\text {loop }}+r_{x}\right) d \theta d r_{x} \\
& =\int_{r_{x}=0}^{r_{\text {loop }}-r_{\text {wire }}}\left(\frac{\pi r_{x}^{2}}{\pi r_{w i r e}^{2}}\right)\left(\frac{\mu_{0} I}{2 \pi r_{\text {wire }}^{2}}\right)\left(r_{\text {loop }}+r_{x}\right) d r_{x} \int_{\theta=0}^{2 \pi} 1 d \theta \\
& =2 \pi \int_{r_{x}=0}^{r_{\text {loop }}-r_{\text {wire }}}\left(\frac{r_{x}^{2}}{r_{\text {wire }}^{2}}\right)\left(\frac{\mu_{0} I}{2 \pi r_{w i r e}^{2}}\right)\left(r_{\text {loop }}+r_{x}\right) d r_{x} \\
& =\frac{2 \pi \mu_{0} I}{2 \pi r_{w i r e}^{4}} \int_{r_{x}=0}^{r_{w i r e}} r_{x}^{3}\left(r_{\text {loop }}+r_{x}\right) d r_{x}  \tag{A.3}\\
& =\frac{\mu_{0} I}{r_{\text {wire }}^{4}} \int_{r_{x}=0}^{r_{w i r e}}\left(r_{x}^{3} r_{\text {loop }}+r_{x}^{4}\right) d r_{x} \\
& =\frac{\mu_{0} I}{r_{w i r e}^{4}}\left(\frac{r_{w i r e}^{4}}{4} r_{\text {loop }}+\frac{r_{\text {wire }}^{5}}{5}\right) \\
& =\mu_{0} I\left(\frac{r_{\text {loop }}}{4}+\frac{r_{w i r e}}{5}\right)
\end{align*}
$$

Now, using the identity $L=\psi / I$;

$$
\begin{equation*}
L_{\text {internal }}=\mu_{0}\left(\frac{r_{\text {loop }}}{4}+\frac{r_{\text {wire }}}{5}\right) \tag{A.4}
\end{equation*}
$$

## Appendix B

## Testing Designs

The information in this appendix are the oscilloscope screen captures from the testing of the smallscale test reactors.

## B. 1 Testing Data

In this section are the Oscilloscope screen captures of the reactor modules and assembled reactors in normal and faulted condition. Channel 3 , the blue curve, is the terminal excitation voltage $V_{\text {term }}$. Channel 4, the green curve is the measured voltage across the current sensing resistor $R_{i}$.

## B.1.1 Faulted Turn in Isolation

Prefault and faulted innermost module measurements outside of assembled test reactor:


Figure B.1: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series.
$\left|V_{p k-p k}\right|=1.06 \mathrm{~V}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=78.0 \mathrm{~mA}, \Phi_{V-I}=27.29^{\circ}$


Figure B.2: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series, with Turn 21 shorted. $\left|V_{p k-p k}\right|=1.06 \mathrm{~V}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=78.0 \mathrm{~mA}, \Phi_{V-I}=21.02^{\circ}$

## B.1.2 Improperly Tuned Reactor Assembly

Prefault reactor assembly with all elements having 41 turns:


Figure B.3: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series.
$\left|V_{p k-p k}\right|=660 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=42.25^{\circ}$


Figure B.4: 41 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series.

$$
\left|V_{p k-p k}\right|=660 m V, f=10 k H z,\left|I_{p k-p k}\right|=32.0 m A, \Phi_{V-I}=69.15^{\circ}
$$



Figure B.5: 41 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series. $\left|V_{p k-p k}\right|=700 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=30.0 \mathrm{~mA}, \Phi_{V-I}=66.03^{\circ}$

## B.1.3 Improperly Tuned Reactor Assembly with a Fault

Faulted reactor assembly with all elements having 41 turns, and a fault in package 1 (innermost) on turn 21:


Figure B.6: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series.
$\left|V_{p k-p k}\right|=660 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=32.0 \mathrm{~m} A, \Phi_{V-I}=39.44^{\circ}$


Figure B.7: 41 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=680 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=30.0 \mathrm{~mA}, \Phi_{V-I}=52.55^{\circ}$


Figure B.8: 41 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series.
$\left|V_{p k-p k}\right|=680 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=30.0 \mathrm{~mA}, \Phi_{V-I}=55.92^{\circ}$

## B.1.4 Tuned Reactor Assembly

Prefault "Tuned" reactor:


Figure B.9: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor in-series.
$\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=49.87^{\circ}$


Figure B.10: 37 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=55.65^{\circ}$


Figure B.11: 37 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=620 m V, f=10 k H z,\left|I_{p k-p k}\right|=34.0 m A, \Phi_{V-I}=60.91^{\circ}$

## B.1.5 Tuned Reactor Assembly with a Fault

Faulted "Tuned" Reactor, with fault on turn 21 of the package 1 (innermost).


Figure B.12: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries, turn 21 shorted. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=39.78^{\circ}$


Figure B.13: 37 Turn, 54 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=600 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=52.24^{\circ}$


Figure B.14: 37 Turn, 58 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=620 \mathrm{mV}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=34.0 \mathrm{~mA}, \Phi_{V-I}=55.36^{\circ}$

## B.1.6 Second Test Core used in Tuned Reactor

Second test core used for the "Tuned" tests, this unit is wound counter-clockwise, where the nontuned core is wound clockwise and is non-optimal.


Figure B.15: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries. $\left|V_{p k-p k}\right|=1.06 V, f=10 k H z,\left|I_{p k-p k}\right|=78.0 m A, \Phi_{V-I}=27.67^{\circ}$


Figure B.16: 41 Turn, 50 mm diameter, Test Reactor Module with $10 \Omega$ Current-Sensing Resistor inseries, with turn 21 shorted. $\left|V_{p k-p k}\right|=1.06 \mathrm{~V}, f=10 \mathrm{kHz},\left|I_{p k-p k}\right|=78.0 \mathrm{~mA}, \Phi_{V-I}=22.32^{\circ}$

## Appendix C

## Extended Results

The sections following are extended results that can be referenced, looking at the the

## C. 1 Simple Behavior due to a Fault

This section presents extended results detailing the effects of a single turn fault, and how the fault effect will vary with the layer, and the position of the fault within that layer.

Current vectors here are described in the format: $I_{p f_{i} f a u l t ~ l a y e r c i v e r t i c a l ~ p o s i t i o n ~}^{c}$. With fault layer being the layer in which the fault occurs, and vertical position being the position on the layer, top or bottom are at $95 \%$ of the height. and center is at $50 \%$ of the layer height.

Equation C. 1 total current for prefault conditions.

$$
\begin{equation*}
I_{\text {pre } F}=0.09404491-j 225.21319038=225.21321001 \angle-89.976^{\circ} \tag{C.1}
\end{equation*}
$$

Equation C. 2 total current for fault at -0.5 of reactor layer height, in layer 0 .

$$
\begin{equation*}
I_{p T 0, f z=-0.5}=1.86279697-j 229.97717007=229.98471420 \angle-89.536^{\circ} \tag{C.2}
\end{equation*}
$$

Equation C. 3 total current for fault at 0 of reactor layer height, in layer 0.

$$
\begin{equation*}
I_{p T 0, f z=0}=6.90653399-j 242.15712227=242.25559246 \angle-88.366^{\circ} \tag{C.3}
\end{equation*}
$$

Equation C. 4 total current for fault at 0.5 of reactor layer height, in layer 0.

$$
\begin{equation*}
I_{p T 0, f z=0.5}=1.86279697-j 229.97717007=229.98471420 \angle-89.536^{\circ} \tag{C.4}
\end{equation*}
$$

Equation C. 5 total current for fault at -0.5 of reactor layer height, in layer 1.

$$
\begin{equation*}
I_{p T 1, f z=-0.5}=2.07797265-j 230.88984468=230.89919521 \angle-89.484^{\circ} \tag{C.5}
\end{equation*}
$$

Equation C. 6 total current for fault at 0 of reactor layer height, in layer 1.

$$
\begin{equation*}
I_{p T 1, f z=0}=7.80868429-j 245.49622512=245.62038209 \angle-88.178^{\circ} \tag{C.6}
\end{equation*}
$$

Equation C. 7 total current for fault at 0.5 of reactor layer height, in layer 1.

$$
\begin{equation*}
I_{p T 1, f z=0.5}=2.07797265-j 230.88984468=230.89919521 \angle-89.484^{\circ} \tag{C.7}
\end{equation*}
$$

Equation C. 8 total current for fault at -0.5 of reactor layer height, in layer 2.

$$
\begin{equation*}
I_{p T 2, f z=-0.5}=2.20710496-j 231.62962077=231.64013584 \angle-89.454^{\circ} \tag{C.8}
\end{equation*}
$$

Equation C. 9 total current for fault at 0 of reactor layer height, in layer 2.

$$
\begin{equation*}
I_{p T 2, f z=0}=8.35884144-j 248.16679746=248.30753028 \angle-88.071^{\circ} \tag{C.9}
\end{equation*}
$$

Equation C. 10 total current for fault at 0.5 of reactor layer height, in layer 2.

$$
\begin{equation*}
I_{p T 2, f z=0.5}=2.20710496-j 231.62962077=231.64013584 \angle-89.454^{\circ} \tag{C.10}
\end{equation*}
$$

Equation C. 11 total current for fault at -0.5 of reactor layer height, in layer 3.

$$
\begin{equation*}
I_{p T 3, f z=-0.5}=2.25746609-j 232.17550506=232.18647959 \angle-89.443^{\circ} \tag{C.11}
\end{equation*}
$$

Equation C. 12 total current for fault at 0 of reactor layer height, in layer 3.

$$
\begin{equation*}
I_{p T 3, f z=0}=8.57978778-j 250.08596405=250.23309568 \angle-88.035^{\circ} \tag{C.12}
\end{equation*}
$$

Equation C. 13 total current for fault at 0.5 of reactor layer height, in layer 3.

$$
\begin{equation*}
I_{p T 3, f z=0.5}=2.25746609-j 232.17550506=232.18647959 \angle-89.443^{\circ} \tag{C.13}
\end{equation*}
$$

Equation C. 14 total current for fault at -0.5 of reactor layer height, in layer 4.

$$
\begin{equation*}
I_{p T 4, f z=-0.5}=2.24635895-j 232.54291650=232.55376614 \angle-89.447^{\circ} \tag{C.14}
\end{equation*}
$$

Equation C. 15 total current for fault at 0 of reactor layer height, in layer 4.

$$
\begin{equation*}
I_{p T 4, f z=0}=8.53881088-j 251.30357675=251.44860107 \angle-88.054^{\circ} \tag{C.15}
\end{equation*}
$$

Equation C. 16 total current for fault at 0.5 of reactor layer height, in layer 4.

$$
\begin{equation*}
I_{p T 4, f z=0.5}=2.24635895-j 232.54291650=232.55376614 \angle-89.447^{\circ} \tag{C.16}
\end{equation*}
$$

Equation C. 17 total current for fault at -0.5 of reactor layer height, in layer 5.

$$
\begin{equation*}
I_{p T 5, f z=-0.5}=2.18513549-j 232.73713338=232.74739112 \angle-89.462^{\circ} \tag{C.17}
\end{equation*}
$$

Equation C. 18 total current for fault at 0 of reactor layer height, in layer 5.

$$
\begin{equation*}
I_{p T 5, f z=0}=8.28227585-j 251.84696186=251.98311112 \angle-88.116^{\circ} \tag{C.18}
\end{equation*}
$$

Equation C. 19 total current for fault at 0.5 of reactor layer height, in layer 5 .

$$
\begin{equation*}
I_{p T 5, f z=0.5}=2.18513549-j 232.73713338=232.74739112 \angle-89.462^{\circ} \tag{C.19}
\end{equation*}
$$

Equation C. 20 total current for fault at -0.5 of reactor layer height, in layer 6.

$$
\begin{equation*}
I_{p T 6, f z=-0.5}=2.08979724-j 232.78845689=232.79783701 \angle-89.486^{\circ} \tag{C.20}
\end{equation*}
$$

Equation C. 21 total current for fault at 0 of reactor layer height, in layer 6.

$$
\begin{equation*}
I_{p T 6, f z=0}=7.87705386-j 251.83033767=251.95350156 \angle-88.208^{\circ} \tag{C.21}
\end{equation*}
$$

Equation C .22 total current for fault at 0.5 of reactor layer height, in layer 6 .

$$
\begin{equation*}
I_{p T ~ 6, f z=0.5}=2.08979724-j 232.78845689=232.79783701 \angle-89.486^{\circ} \tag{C.22}
\end{equation*}
$$

Equation C. 23 total current for fault at -0.5 of reactor layer height, in layer 7.

$$
\begin{equation*}
I_{p T ~}, f z=-0.5=1.97038942-j 232.71540918=232.72375062 \angle-89.515^{\circ} \tag{C.23}
\end{equation*}
$$

Equation C. 24 total current for fault at 0 of reactor layer height, in layer 7.

$$
\begin{equation*}
I_{p T ~ 7, f z=0}=7.36671795-j 251.33168606=251.43962486 \angle-88.321^{\circ} \tag{C.24}
\end{equation*}
$$

Equation C. 25 total current for fault at 0.5 of reactor layer height, in layer 7.

$$
\begin{equation*}
I_{p T 7, f z=0.5}=1.97038942-j 232.71540918=232.72375062 \angle-89.515^{\circ} \tag{C.25}
\end{equation*}
$$

Equation C. 26 total current for fault at -0.5 of reactor layer height, in layer 8.

$$
\begin{equation*}
I_{p T 8, f z=-0.5}=1.83458886-j 232.53442418=232.54166109 \angle-89.548^{\circ} \tag{C.26}
\end{equation*}
$$

Equation C. 27 total current for fault at 0 of reactor layer height, in layer 8.

$$
\begin{equation*}
I_{p T ~ 8, f z=0}=6.78498828-j 250.41950789=250.51140892 \angle-88.448^{\circ} \tag{C.27}
\end{equation*}
$$

Equation C. 28 total current for fault at 0.5 of reactor layer height, in layer 8 .

$$
\begin{equation*}
I_{p T} 8, f z=0.5=1.83458886-j 232.53442418=232.54166109 \angle-89.548^{\circ} \tag{C.28}
\end{equation*}
$$

Equation C. 29 total current for fault at -0.5 of reactor layer height, in layer 9.

$$
\begin{equation*}
I_{p T 9, f z=-0.5}=1.68747116-j 232.25602145=232.26215159 \angle-89.584^{\circ} \tag{C.29}
\end{equation*}
$$

Equation C. 30 total current for fault at 0 of reactor layer height, in layer 9.

$$
\begin{equation*}
I_{p T ~ 9, f z=0}=6.15407727-j 249.13961819=249.21561352 \angle-88.585^{\circ} \tag{C.30}
\end{equation*}
$$

Equation C. 31 total current for fault at 0.5 of reactor layer height, in layer 9 .

$$
\begin{equation*}
I_{p T 9, f z=0.5}=1.68747116-j 232.25602145=232.26215159 \angle-89.584^{\circ} \tag{C.31}
\end{equation*}
$$

## C. 2 Multiple Faults in Each Layer

This section contains the total current values for each instance of $2,10,20, \ldots, 200$ faults in each layer of the sheet reactor model described in table 7.1, other than layer 0 , which is in section 7.3 .3 The Reactor has a terminal voltage of $13.7[k V]$, with the parameters given in table C.1, which is the same as table 7.1.

| Package | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| package turns | 1327 | 1187 | 1093 | 1029 | 985 | 956 | 938 | 929 | 928 | 935 |
| average radius [m] | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 | 1.0 | 1.05 | 1.1 | 1.15 |
| package height [m] | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 |

Table C.1: Cylindrical Modeled Reactor Parameters

## Layer 0 (Innermost)



Figure C. 1

Equation C. 32 is the total current for 2 faults in layer 0 :

$$
\begin{equation*}
I_{p T 0, n f=2}=4.82852335-j 246.24253931=246.28987556 \angle-88.877^{\circ} \tag{C.32}
\end{equation*}
$$

Equation C. 33 is the total current for 10 faults in layer 0 :

$$
\begin{equation*}
I_{p T 0, n f=10}=2.40648604-j 256.77246058=256.78373720 \angle-89.463^{\circ} \tag{C.33}
\end{equation*}
$$

Equation C. 34 is the total current for 20 faults in layer 0:

$$
\begin{equation*}
I_{p T 0, n f=20}=2.03295420-j 264.65137104=264.65917913 \angle-89.560^{\circ} \tag{C.34}
\end{equation*}
$$

Equation C. 35 is the total current for 40 faults in layer 0 :

$$
\begin{equation*}
I_{p T 0, n f=40}=1.94022750-j 277.96406199=277.97083343 \angle-89.600^{\circ} \tag{C.35}
\end{equation*}
$$

Equation C. 36 is the total current for 100 faults in layer 0:

$$
\begin{equation*}
I_{p T 0, n f=100}=2.56847638-j 319.50374981=319.51407358 \angle-89.539^{\circ} \tag{C.36}
\end{equation*}
$$

Equation C. 37 is the total current for 150 faults in layer 0:

$$
\begin{equation*}
I_{p T 0, n f=150}=3.62243974-j 363.82962825=363.84766106 \angle-89.430^{\circ} \tag{C.37}
\end{equation*}
$$

Equation C. 38 is the total current for 200 faults in layer 0:

$$
\begin{equation*}
I_{p T 0, n f=200}=5.35972542-j 423.66196115=423.69586260 \angle-89.275^{\circ} \tag{C.38}
\end{equation*}
$$

## Layer 1



Figure C. 2

Equation C. 39 total current for 2 faults in layer 1

$$
\begin{equation*}
I_{p T 1, n f=2}=5.42079829-j 250.18155687=250.24027744 \angle-88.759^{\circ} \tag{C.39}
\end{equation*}
$$

Equation C. 40 total current for 10 faults in layer 1

$$
\begin{equation*}
I_{p T 1, n f=10}=2.75018424-j 262.82679113=262.84117952 \angle-89.400^{\circ} \tag{C.40}
\end{equation*}
$$

Equation C. 41 total current for 20 faults in layer 1

$$
\begin{equation*}
I_{p T 1, n f=20}=2.36786155-j 272.60508224=272.61536572 \angle-89.502^{\circ} \tag{C.41}
\end{equation*}
$$

Equation C. 42 total current for 40 faults in layer 1

$$
\begin{equation*}
I_{p T 1, n f=40}=2.34982174-j 289.65515963=289.66469091 \angle-89.535^{\circ} \tag{C.42}
\end{equation*}
$$

Equation C. 43 total current for 100 faults in layer 1

$$
\begin{equation*}
I_{p T 1, n f=100}=3.39550212-j 345.52246743=345.53915109 \angle-89.437^{\circ} \tag{C.43}
\end{equation*}
$$

Equation C. 44 total current for 150 faults in layer 1

$$
\begin{equation*}
I_{p T ~ 1, n f=150}=5.06771857-j 408.22734923=408.25880325 \angle-89.289^{\circ} \tag{C.44}
\end{equation*}
$$

Equation C. 45 total current for 200 faults in layer 1

$$
\begin{equation*}
I_{p T ~ 1, n f=200}=8.03209571-j 498.06723447=498.13199517 \angle-89.076^{\circ} \tag{C.45}
\end{equation*}
$$

## Layer 2



Figure C. 3

Equation C. 46 total current for 2 faults in layer 2

$$
\begin{equation*}
I_{p T 2, n f=2}=5.76501140-j 253.25574484=253.32135254 \angle-88.696^{\circ} \tag{C.46}
\end{equation*}
$$

Equation C. 47 total current for 10 faults in layer 2

$$
\begin{equation*}
I_{p T 2, n f=10}=2.96673282-j 267.54288817=267.55933644 \angle-89.365^{\circ} \tag{C.47}
\end{equation*}
$$

Equation C. 48 total current for 20 faults in layer 2

$$
\begin{equation*}
I_{p T 2, n f=20}=2.58421523-j 278.82240312=278.83437853 \angle-89.469^{\circ} \tag{C.48}
\end{equation*}
$$

Equation C. 49 total current for 40 faults in layer 2

$$
\begin{equation*}
I_{p T 2, n f=40}=2.61854137-j 298.83769840=298.84917056 \angle-89.498^{\circ} \tag{C.49}
\end{equation*}
$$

Equation C. 50 total current for 100 faults in layer 2

$$
\begin{equation*}
I_{p T 2, n f=100}=3.98423533-j 366.74348017=366.76512154 \angle-89.378^{\circ} \tag{C.50}
\end{equation*}
$$

Equation C. 51 total current for 150 faults in layer 2

$$
\begin{equation*}
I_{p T 2, n f=150}=6.24657554-j 446.78831169=446.83197644 \angle-89.199^{\circ} \tag{C.51}
\end{equation*}
$$

Equation C. 52 total current for 200 faults in layer 2

$$
\begin{equation*}
I_{p T 2, n f=200}=10.64439298-j 568.95530791=569.05487038 \angle-88.928^{\circ} \tag{C.52}
\end{equation*}
$$

## Layer 3



Figure C. 4

Equation C. 53 total current for 2 faults in layer 3

$$
\begin{equation*}
I_{p T 3, n f=2}=5.88049490-j 255.38557002=255.45326303 \angle-88.681^{\circ} \tag{C.53}
\end{equation*}
$$

Equation C. 54 total current for 10 faults in layer 3

$$
\begin{equation*}
I_{p T 3, n f=10}=3.05884609-j 270.77714786=270.79442451 \angle-89.353^{\circ} \tag{C.54}
\end{equation*}
$$

Equation C. 55 total current for 20 faults in layer 3

$$
\begin{equation*}
I_{p T 3, n f=20}=2.68602337-j 283.12116774=283.13390886 \angle-89.456^{\circ} \tag{C.55}
\end{equation*}
$$

Equation C. 56 total current for 40 faults in layer 3

$$
\begin{equation*}
I_{p T 3, n f=40}=2.76192255-j 305.32543958=305.33793127 \angle-89.482^{\circ} \tag{C.56}
\end{equation*}
$$

Equation C. 57 total current for 100 faults in layer 3

$$
\begin{equation*}
I_{p T 3, n f=100}=4.36949668-j 382.82187243=382.84680815 \angle-89.346^{\circ} \tag{C.57}
\end{equation*}
$$

Equation C. 58 total current for 150 faults in layer 3

$$
\begin{equation*}
I_{p T 3, n f=150}=7.14832223-j 478.13447616=478.18790847 \angle-89.143^{\circ} \tag{C.58}
\end{equation*}
$$

Equation C. 59 total current for 200 faults in layer 3

$$
\begin{equation*}
I_{p T 3, n f=200}=13.04843995-j 632.40475704=632.53935729 \angle-88.818^{\circ} \tag{C.59}
\end{equation*}
$$

## Layer 4



Figure C. 5

Equation C. 60 total current for 2 faults in layer 4

$$
\begin{equation*}
I_{p T 4, n f=2}=5.81943354-j 256.65995039=256.72591599 \angle-88.701^{\circ} \tag{C.60}
\end{equation*}
$$

Equation C. 61 total current for 10 faults in layer 4

$$
\begin{equation*}
I_{p T 4, n f=10}=3.05630955-j 272.70010804=272.71723443 \angle-89.358^{\circ} \tag{C.61}
\end{equation*}
$$

Equation C. 62 total current for 20 faults in layer 4

$$
\begin{equation*}
I_{p T 4, n f=20}=2.70144101-j 285.72393846=285.73670887 \angle-89.458^{\circ} \tag{C.62}
\end{equation*}
$$

Equation C. 63 total current for 40 faults in layer 4

$$
\begin{equation*}
I_{p T 4, n f=40}=2.80831519-j 309.38394273=309.39668818 \angle-89.480^{\circ} \tag{C.63}
\end{equation*}
$$

Equation C. 64 total current for 100 faults in layer 4

$$
\begin{equation*}
I_{p T 4, n f=100}=4.57099012-j 393.75497758=393.78150836 \angle-89.335^{\circ} \tag{C.64}
\end{equation*}
$$

Equation C. 65 total current for 150 faults in layer 4

$$
\begin{equation*}
I_{p T 4, n f=150}=7.74470452-j 501.25143481=501.31126194 \angle-89.115^{\circ} \tag{C.65}
\end{equation*}
$$

Equation C. 66 total current for 200 faults in layer 4

$$
\begin{equation*}
I_{p T 4, n f=200}=15.04765451-j 684.66001787=684.82535874 \angle-88.741^{\circ} \tag{C.66}
\end{equation*}
$$

## Layer 5



Figure C. 6

Equation C. 67 total current for 2 faults in layer 5

$$
\begin{equation*}
I_{p T{ }_{5, n f=2}}=5.61432050-j 257.12348392=257.18477128 \angle-88.749^{\circ} \tag{C.67}
\end{equation*}
$$

Equation C. 68 total current for 10 faults in layer 5

$$
\begin{equation*}
I_{p T 5, n f=10}=2.96864002-j 273.34254164=273.35866164 \angle-89.378^{\circ} \tag{C.68}
\end{equation*}
$$

Equation C. 69 total current for 20 faults in layer 5

$$
\begin{equation*}
I_{p T 5, n f=20}=2.63377749-j 286.62631410=286.63841459 \angle-89.474^{\circ} \tag{C.69}
\end{equation*}
$$

Equation C. 70 total current for 40 faults in layer 5

$$
\begin{equation*}
I_{p T 5, n f=40}=2.75581391-j 310.93174039=310.94395265 \angle-89.492^{\circ} \tag{C.70}
\end{equation*}
$$

Equation C. 71 total current for 100 faults in layer 5

$$
\begin{equation*}
I_{p T 5, n f=100}=4.57443259-j 399.04572776=399.07194624 \angle-89.343^{\circ} \tag{C.71}
\end{equation*}
$$

Equation C. 72 total current for 150 faults in layer 5

$$
\begin{equation*}
I_{p T 5, n f=150}=7.97101970-j 514.54968556=514.61142240 \angle-89.112^{\circ} \tag{C.72}
\end{equation*}
$$

Equation C. 73 total current for 200 faults in layer 5

$$
\begin{equation*}
I_{p T 5, n f=200}=16.34371028-j 720.63417543=720.81948619 \angle-88.701^{\circ} \tag{C.73}
\end{equation*}
$$

## Layer 6



Figure C. 7

Equation C. 74 total current for 2 faults in layer 6

$$
\begin{equation*}
I_{p T 6, n f=2}=5.31374231-j 256.93106701=256.98600944 \angle-88.815^{\circ} \tag{C.74}
\end{equation*}
$$

Equation C. 75 total current for 10 faults in layer 6

$$
\begin{equation*}
I_{p T 6, n f=10}=2.82590335-j 272.98049552=272.99512205 \angle-89.407^{\circ} \tag{C.75}
\end{equation*}
$$

Equation C. 76 total current for 20 faults in layer 6

$$
\begin{equation*}
I_{p T 6, n f=20}=2.51308402-j 286.20584622=286.21687931 \angle-89.497^{\circ} \tag{C.76}
\end{equation*}
$$

Equation C. 77 total current for 40 faults in layer 6

$$
\begin{equation*}
I_{p T 6, n f=40}=2.63870318-j 310.51062673=310.52183831 \angle-89.513^{\circ} \tag{C.77}
\end{equation*}
$$

Equation C. 78 total current for 100 faults in layer 6

$$
\begin{equation*}
I_{p T 6, n f=100}=4.42992616-j 399.60227726=399.62683123 \angle-89.365^{\circ} \tag{C.78}
\end{equation*}
$$

Equation C. 79 total current for 150 faults in layer 6

$$
\begin{equation*}
I_{p T 6, n f=150}=7.87728450-j 518.90078357=518.96057153 \angle-89.130^{\circ} \tag{C.79}
\end{equation*}
$$

Equation C. 80 total current for 200 faults in layer 6

$$
\begin{equation*}
I_{p T 6, n f=200}=16.86020196-j 739.49693988=739.68911747 \angle-88.694^{\circ} \tag{C.80}
\end{equation*}
$$

## Layer 7



Figure C. 8

Equation C. 81 total current for 2 faults in layer 7

$$
\begin{equation*}
I_{p T 7, n f=2}=4.94733496-j 256.18251147=256.23027789 \angle-88.894^{\circ} \tag{C.81}
\end{equation*}
$$

Equation C. 82 total current for 10 faults in layer 7

$$
\begin{equation*}
I_{p T 7, n f=10}=2.64228034-j 271.76222257=271.77506741 \angle-89.443^{\circ} \tag{C.82}
\end{equation*}
$$

Equation C. 83 total current for 20 faults in layer 7

$$
\begin{equation*}
I_{p T ~ 7, n f=20}=2.35128058-j 284.64786627=284.65757726 \angle-89.527^{\circ} \tag{C.83}
\end{equation*}
$$

Equation C. 84 total current for 40 faults in layer 7

$$
\begin{equation*}
I_{p T 7, n f=40}=2.46974381-j 308.37646654=308.38635629 \angle-89.541^{\circ} \tag{C.84}
\end{equation*}
$$

Equation C. 85 total current for 100 faults in layer 7

$$
\begin{equation*}
I_{p T ~ 7, n f=100}=4.16246422-j 395.90600417=395.92788516 \angle-89.398^{\circ} \tag{C.85}
\end{equation*}
$$

Equation C. 86 total current for 150 faults in layer 7

$$
\begin{equation*}
I_{p T 7, n f=150}=7.49610493-j 514.79404914=514.84862301 \angle-89.166^{\circ} \tag{C.86}
\end{equation*}
$$

Equation C. 87 total current for 200 faults in layer 7

$$
\begin{equation*}
I_{p T ~ 7, n f=200}=16.53946494-j 740.32084768=740.50557824 \angle-88.720^{\circ} \tag{C.87}
\end{equation*}
$$

## Layer 8



Figure C. 9

Equation C. 88 total current for 2 faults in layer 8

$$
\begin{equation*}
I_{p T ~ 8, n f=2}=4.53804719-j 254.96455434=255.00493690 \angle-88.980^{\circ} \tag{C.88}
\end{equation*}
$$

Equation C. 89 total current for 10 faults in layer 8

$$
\begin{equation*}
I_{p T 8, n f=10}=2.43078186-j 269.82791631=269.83886510 \angle-89.484^{\circ} \tag{C.89}
\end{equation*}
$$

Equation C. 90 total current for 20 faults in layer 8

$$
\begin{equation*}
I_{p T 8, n f=20}=2.16073005-j 282.13930242=282.14757614 \angle-89.561^{\circ} \tag{C.90}
\end{equation*}
$$

Equation C. 91 total current for 40 faults in layer 8

$$
\begin{equation*}
I_{p T ~ 8, n f=40}=2.26305254-j 304.80471496=304.81311598 \angle-89.575^{\circ} \tag{C.91}
\end{equation*}
$$

Equation C. 92 total current for 100 faults in layer 8

$$
\begin{equation*}
I_{p T 8, n f=100}=3.79770766-j 388.54106838=388.55962786 \angle-89.440^{\circ} \tag{C.92}
\end{equation*}
$$

Equation C. 93 total current for 150 faults in layer 8

$$
\begin{equation*}
I_{p T 8, n f=150}=6.86867698-j 503.06735438=503.11424325 \angle-89.218^{\circ} \tag{C.93}
\end{equation*}
$$

Equation C. 94 total current for 200 faults in layer 8

$$
\begin{equation*}
I_{p T ~ 8, n f=200}=15.39857942-j 723.42748173=723.59134708 \angle-88.781^{\circ} \tag{C.94}
\end{equation*}
$$

## Layer 9 (outermost)



Figure C. 10

Equation C. 95 total current for 2 faults in layer 9

$$
\begin{equation*}
I_{p T 9, n f=2}=4.10005148-j 253.33281865=253.36599501 \angle-89.073^{\circ} \tag{C.95}
\end{equation*}
$$

Equation C. 96 total current for 10 faults in layer 9

$$
\begin{equation*}
I_{p T ~ 9, n f=10}=2.18775153-j 267.18634912=267.19530574 \angle-89.531^{\circ} \tag{C.96}
\end{equation*}
$$

Equation C. 97 total current for 20 faults in layer 9

$$
\begin{equation*}
I_{p T 9, n f=20}=1.91901782-j 278.50966805=278.51627928 \angle-89.605^{\circ} \tag{C.97}
\end{equation*}
$$

Equation C. 98 total current for 40 faults in layer 9

$$
\begin{equation*}
I_{p T} 9, n f=40=1.96681935-j 299.14417369=299.15063936 \angle-89.623^{\circ} \tag{C.98}
\end{equation*}
$$

Equation C. 99 total current for 100 faults in layer 9

$$
\begin{equation*}
I_{p T 9, n f=100}=3.25617265-j 375.65993547=375.67404725 \angle-89.503^{\circ} \tag{C.99}
\end{equation*}
$$

Equation C. 100 total current for 150 faults in layer 9

$$
\begin{equation*}
I_{p T 9, n f=150}=5.92939175-j 481.41557257=481.45208609 \angle-89.294^{\circ} \tag{C.100}
\end{equation*}
$$

Equation C. 101 total current for 200 faults in layer 9

$$
\begin{equation*}
I_{p T ~ 9, n f=200}=13.41697770-j 686.31683825=686.44797163 \angle-88.880^{\circ} \tag{C.101}
\end{equation*}
$$

## Appendix D

## Programs

## D. 1 Python Dependencies

These modules were written in Python v3.6+, there is no garentee that these will work in any version less that v3.6 The NumPy and SciPy processing Libraries, and the MatPlotLib graphing Library are needed for these programs to function

## D. 2 Reactor Python Library

## D.2.1 Biot-Savart Methods

Turn-to-turn calculations based the Biot-Savart law and the Neumann Integral, Implementation based on Paul [3].

```
1 #!/bin/python3
2"""
3'biot_savart_methods.py'
4 methods to implement turn to turn inductance calculations.
518 May 2021
6 R. Sanford
7 " " "
8import numpy as np
g from numpy import sin, cos, tan, exp, arcsin, arccos, arctan, sqrt, pi
10 import scipy.integrate as integrate
11
12 mu0 = 4*pi*10**(-7) # [H/m] permeability of the void
13 def numint(fx, x0, x1, nn):
14 " " "
15 Numeric Integration using trapezoid-rule (18 May 2021)
16 fx : function handle
```

```
    x0 : starting point
x1 : end point
nn : the number of stepsto take
    fx_args : parameters to pass into fx
    " " "
    res = 0 # results: area under a curve.
    dx = (x1-x0)/nn # step
    for n in range(nn):
        res = res + dx * . 5 * (fx(n*dx) + fx((n+1)*dx) )
    return res
def numint_w_args(fx, x0, x1, nn, a, b, d):
    " " "
    Numeric Integration using trapezoid-rule
    fx : function handle
x0 : starting point
    x1 : end point
    nn : the number of stepsto take
    fx_args : parameters to pass into fx
    " " "
    res = np.zeros(nn) # results: area under a curve.
    dx = (x1-x0)/nn # step
    for n in range(nn):
        res[n] = dx *.5 * (fx (n*dx, a, b, d) + fx ((n+1)*dx, a, b, d) )
    return np.sum(res)
def quadrature(fx, x0, x1, a, b, d):
    # wrapper for scipy quadrature.
    # from scipy quadrature integration; this is faster than anything I could write
    quickly
    #res = integrate.quad(lambda x: fx(x, a, b, d), x0, x1, epsabs=1e-13, limit=1000)
    #res = integrate.quad(fx, x0, x1, args=(a, b, d), epsabs=1.5e-8, limit=10)
    res = integrate.quad(fx, x0, x1, args=(a, b, d))
    #print(res [1])
    return res [0]
def neumann(phi,a,b,d):
    """The part of the Neumann integral within the integrad"""
    return cos(phi)/sqrt(a**2 + b**2 + d**2 - 2*a*b*\operatorname{cos(phi))}
60 def bs_mutual (a,b,d=0):
```

59

```
    " " "
    Biot-Savart mutual calcuation for concentric (circular) loops, because
    we'll use this a good bit.
    parameters:
    a : loop radius (to center of wire) : "R_wire" [m]
    b : radius of the area enclosed by the wire loop : "R_loop-r_wire" [m]
    d : distance seperating the two loops (can be 0) [m]
    " " "
    mut = muO * a * b * quadrature(neumann, 0, pi, a, b, d)
    return mut
def internal(R, r):
    " " "
    Inductance internal to the wire loop
    R : loop radius (to center of wire) [m]
    r : wire radius (diam/2) [m]
    " " "
    return mu0*(R/4 + r/5)
```


## D.2.2 Thin-Sheet Methods

Computationally efficient methods originally presented by Fawzi and Burke [4].

```
#!/bin/python3
2" ""
3'fawzi_and_burke_methods.py'
4Fawzi and Burke Method Impelementation
5 Computation Method From:
6 The Accurate Computation of Self and Mutual Inductances of Circular Coils, 1978
https://doi.org/10.1109/TPAS.1978.354506
812 December 2021
9 R. Sanford
10 " " "
1 1
12from numpy import pi, sqrt, sin, cos
13 import numpy as np
14 import scipy.integrate as integrate
15 import matplotlib.pyplot as plt
16 mu0 = 4*pi*10**(-7)
1 7
18 def Ci_1(R1,R2,z):
19 """
20 This is the integral (equation 3) as presented in the referenced paper.
```

```
21
22 Parameters:
    'R1','R2' : Coil radius [m]
    'z' : Vertical position [m]
    Returns:
        'Ci' : Constant used in calculating inductance
    " " "
    fn}= lambda p:((sqrt((R1**2) + (R2**2) + (z**2) - (2*R1*R2*\operatorname{cos}(p)))
                            * ( }\operatorname{sin}(\textrm{p})**2)) / ((R1**2) + (R2**2) - (2*R1*R2*\operatorname{cos}(\textrm{p}))) 
    res = integrate.quad(fn, 0, pi)
    C = (sqrt(R1*R2)/(2*pi))*res[0]
    return C
def fb_mutual(N1,R1,h1,N2,R2,h2,s):
    " " "
    Compute a layer-to-layer mutual using equation 2 from the reference paper.
    Parameters:
        'N1','N2' : Turn count (not turn density as in paper)
        'R1','R2' : Radii of the layers [m]
        'h1','h2' : Height of the coil [m]
        's' : concentric seperation (z) [m]
    Turn denstiy is calculated as: N/h [turns/m]
    Returns:
            'M' : Mutual inductance
    " " "
    l1 = 0.5*h1
    12 = 0.5*h2
    z1 = 11 + 12 + s
    z2 = l1 - 12 + s
    z3 = -11 - 12 + s
    z4 = -11 + 12 + s
    M = 2*pi*mu0*( (R1*R2)**(3/2) ) * (N1/h1)*(N2/h2)\
            *( (Ci_1(R1,R2,z1) - Ci_1(R1,R2,z2))\
            + (Ci_1(R1,R2,z3) - Ci_1(R1,R2,z4)) )
    return M
def fb_mutual_thick(N1,R1,h1,t1,N2,R2,h2,t2,s):
```

```
    " " "
    Compute a layer-to-layer mutual using equation 18 from the reference paper,
    which takes into account the thickness of a coil set (as for non-finite
    thickness coils).
    Parameters:
    'N1','N2' : Turn count (not turn density as in paper) *
    'R1','R2' : Radii of the layers [m]
    'h1','h2' : Height of the coil [m]
    't1','t2' : Thickness of the coils [m]
    's' : concentric seperation (z) [m]
    * Turn denstiy is calculated within the function as: n = N/h [turns/m]
    Returns:
    'M' : Mutual inductance
    " " "
    l1 = 0.5*h1
    l2 = 0.5*h2
    z1 = l1 + l2 + s
    z2 = 11 - 12 + s
    z3 = -11 - 12 + s
    z4 = -11 + 12 + s
    t12 = (t1/2)
    t22 = (t2/2)
    M = lambda r2,r1: fb_mutual(N1,r1,h1,N2,r2,h2,s=s)
    res = integrate.dblquad(M, R1-t12, R1+t12, R2-t22, R2+t22, epsabs=5e-6)
    Mut = ((N1/h1)*(N2/h2)) * res[0] # need to scale by the turn density as per eqn
    1 8
    return Mut
def fb_self_ind(N,R,h): # good (1/5/2022)
    " " "
    Self-inductance method presented in the paper (equation 16)
    Parameters:
        'N' : Number of turns (not turn density as in paper)
            'R' : Radius of the layer [m]
            'h' : Layer height [m]
```

```
110 Turn denstiy is calculated as: N/h [turns/m]
111
112 Returns:
    'L' : self-inductance of the layer coil
" " "
L = fb_mutual(N1=N,R1=R,h1=h,
    N2=N,R2=R,h2=h,s=0)
return L
```


## D. 3 Utility Scripts

## D.3.1 util.py

This resource is used by the library to handle things like making the matrix look pretty in the terminal.

```
1 " " "
2'util.py'
3 Utilities to make life easier.
4R. Sanford
5 """
6 import numpy as np
from os import get_terminal_size
8import os
9
10 def imaginary_formatter(m):
1 1
12 m_r = m.real
13 m_i = m.imag
14
15 string_mat = ,'
16 if m_r == 0:
17 string_mat += , 0'
18 elif m_r > 0:
19 string_mat += , {:1.3e}'.format(np.abs(m_r))
20 else:
        string_mat += , -{:1.3e}'.format(np.abs(m_r))
        if m_i == 0:
            string_mat += , '.format(np.abs(m_i))
        elif m_i > 0:
        string_mat += '+{:1.3e}j '.format(np.abs(m_i))
        else:
```

```
        string_mat += '-{:1.3e}j '.format(np.abs(m_i))
    return string_mat
def vector_formatter(m):
    # angle = '\u2220'
    string_mat = ,'
    if m == 0:
        string_mat += , 0.''+' '*19
    else:
        # ang = np.arctan(m.imag/m.real)*180/np.pi
        ang = np.angle(m,deg=True)
        # print("ang =",ang)
        # if m.real < 0:
        # ang = 90-abs(ang)
        mag = np.abs(m)
        if abs(ang) < 10:
            string_mat += '{}{:1.3e}\u2220 {}{:0.3f}\u00B0 ,.format((', if mag < 0
    else , '),mag,(', if ang < 0 else ' '), ang)
        elif abs(ang) < 100:
            string_mat += '{}{:1.3e}\u2220 {}{:0.3f}\u00B0 '.format((', if mag < 0
    else ' '),mag,(', if ang < O else ' '),ang)
        else:
            string_mat += '{}{:1.3e}\u2220 {}{:0.3f}\u00B0, .format((', if mag < 0
    else ' '),mag,(', if ang < O else ' '),ang)
    return string_mat
def str_matrix(mat,phasor=False,indicators=[None],**kwargs):
    "" "
    Stringify matrix or 2D array, and python list, that doens't have a preferred wrap
        length.
    If the provided mat is a 1d list, it will assume you meant for it to be an "N by
    1" vector.
    Arguments:
    'phasor' determines if you are want to represent complex values as R+i or value
    at an angle (phasor)
    'inticators' is a list of indexes that get an '*' at the end of the row (doens't
    accept reverse indexing -1) ex: 'indicators=[0,3]'
    'left_offset' provides the number of spaces to offset the matrix from the left
```

```
'row_labels' and 'col_labels' can be specified for provide Row (applied to the
```

'row_labels' and 'col_labels' can be specified for provide Row (applied to the
left) and Column (applied above) labels for the matrix
left) and Column (applied above) labels for the matrix
'label' matrix label, have an inline label assigned: ex: G = [matrix]. the label
'label' matrix label, have an inline label assigned: ex: G = [matrix]. the label
will be centered.
will be centered.
for compatability: 'vector_value' can be used in place of the 'phasor' argument
for compatability: 'vector_value' can be used in place of the 'phasor' argument
Example:
Example:
'،'python
'،'python
import nympy as np
import nympy as np
from util import str_matrix
from util import str_matrix
mat = np.array([[1, 2],[3,4]])
mat = np.array([[1, 2],[3,4]])
matrix_string = str_matrix(mat)
matrix_string = str_matrix(mat)
print(matrix_string) \# this will print the matrix in 2 rows
print(matrix_string) \# this will print the matrix in 2 rows
print(str_matrix([[1,2],[3,4]])) \# this will print the same as the line above
print(str_matrix([[1,2],[3,4]])) \# this will print the same as the line above
c_mat = np.array([[1+1j, 2],[3j,4+2j]]) \# complex matrix
c_mat = np.array([[1+1j, 2],[3j,4+2j]]) \# complex matrix
print(str_matrix(c_mat)) \# this will print the matrix so each element is a R+jI
print(str_matrix(c_mat)) \# this will print the matrix so each element is a R+jI
print(str_matrix(c_mat,phasor=True)) \# this will print the matrix so each element
print(str_matrix(c_mat,phasor=True)) \# this will print the matrix so each element
is a magnitude at some angle
is a magnitude at some angle
print(str_matrix([k for k in range(8)])) \# this will print the values [0,1,...,7]
print(str_matrix([k for k in range(8)])) \# this will print the values [0,1,...,7]
as an Nx1 vector
as an Nx1 vector
،.،
،.،
" " "
" " "

# unicode parts:

# unicode parts:

ULC = '\u23A1' \# left ceiling
ULC = '\u23A1' \# left ceiling
URC = '\u23A4' \# right ciling
URC = '\u23A4' \# right ciling
ULF = '\u23A3' \# left floor
ULF = '\u23A3' \# left floor
URF = '\u23A6' \# right floor
URF = '\u23A6' \# right floor
UVR = '\u23A5' \# right vertical
UVR = '\u23A5' \# right vertical
UVL = '\u23A2' \# left vertical
UVL = '\u23A2' \# left vertical

# example use of the brakets

# example use of the brakets

# print( ULC+' 1 2 3 '+URC+'\n'+\

# print( ULC+' 1 2 3 '+URC+'\n'+\

# UVL+' 4 5 6 '+UVR+'\n'+\

# UVL+' 4 5 6 '+UVR+'\n'+\

# ULF+" 7 8 8 9 "+URF)

# ULF+" 7 8 8 9 "+URF)

left_offset = kwargs['left_offset'] if 'left_offset' in kwargs else 0
left_offset = kwargs['left_offset'] if 'left_offset' in kwargs else 0
row_labels = kwargs['row_labels']+[] if 'row_labels' in kwargs else []
row_labels = kwargs['row_labels']+[] if 'row_labels' in kwargs else []
col_labels = kwargs['col_labels']+[] if 'col_labels' in kwargs else []
col_labels = kwargs['col_labels']+[] if 'col_labels' in kwargs else []
matrix_label = kwargs['label'] if 'label' in kwargs else ""
matrix_label = kwargs['label'] if 'label' in kwargs else ""
as_decimal = kwargs['as_decimal'] if 'as_decimal' in kwargs else False
as_decimal = kwargs['as_decimal'] if 'as_decimal' in kwargs else False

# phasor cpmpatability with 'vector_value':

```
# phasor cpmpatability with 'vector_value':
```

```
phasor = phasor or (kwargs['vector_value'] if 'vector_value' in kwargs else False
```

phasor = phasor or (kwargs['vector_value'] if 'vector_value' in kwargs else False
)
)

# print(mat)

# print(mat)

# print(type(mat))

# print(type(mat))

if type(mat) == list: \# if it's a list, convert it to a numpy array
if type(mat) == list: \# if it's a list, convert it to a numpy array
\# print("List")
\# print("List")
if isinstance(mat[0],list): \# if a 2d list is provided instead of a numpy
if isinstance(mat[0],list): \# if a 2d list is provided instead of a numpy
array
array
mat = np.array(mat)
mat = np.array(mat)
else: \# otherwise it is a 1d list, and needs fixed, and is assumed to be a
else: \# otherwise it is a 1d list, and needs fixed, and is assumed to be a
vector
vector
mat = np.array([mat]).T
mat = np.array([mat]).T
try:
try:
N,M = mat.shape \# N=no. rows, M=no. cols
N,M = mat.shape \# N=no. rows, M=no. cols
except ValueError:
except ValueError:
mat = np.reshape(mat, (-1, 1))
mat = np.reshape(mat, (-1, 1))
N,M = mat.shape
N,M = mat.shape
if len(matrix_label) > 0:
if len(matrix_label) > 0:
mli = int(N/2)
mli = int(N/2)
if len(row_labels) > 0:
if len(row_labels) > 0:
row_labels[mli] = matrix_label + , , + row_labels[mli]
row_labels[mli] = matrix_label + , , + row_labels[mli]
else:
else:
RLM = ['']*(mli-1)+[matrix_label]+['']*(N-mli) \# row-label modifications
RLM = ['']*(mli-1)+[matrix_label]+['']*(N-mli) \# row-label modifications
row_labels += RLM
row_labels += RLM
str_rows = []
str_rows = []
if 'complex' in str(mat.dtype):
if 'complex' in str(mat.dtype):
str_rows = __complex_matrix(mat,as_phasor=phasor)
str_rows = __complex_matrix(mat,as_phasor=phasor)
base_width = len('3.285e+01+2.103e+02j')
base_width = len('3.285e+01+2.103e+02j')
elif 'int' in str(mat.dtype):
elif 'int' in str(mat.dtype):
str_rows, base_width = __int_matrix(mat)
str_rows, base_width = __int_matrix(mat)
else: \# default: just use float
else: \# default: just use float
str_rows = __real_float_matrix(mat,as_decimal)
str_rows = __real_float_matrix(mat,as_decimal)
base_width = len('3.285e+01')
base_width = len('3.285e+01')
nr = len(str_rows)
nr = len(str_rows)
for r in range(nr):
for r in range(nr):
if r == 0:
if r == 0:
str_rows[r] = ULC + str_rows[r] + URC
str_rows[r] = ULC + str_rows[r] + URC
elif r==(nr-1):

```
    elif r==(nr-1):
```

```
            str_rows[r] = ULF + str_rows[r] + URF
        else:
            str_rows[r] = UVL + str_rows[r] + UVR
        if r in indicators: # add the indicator
            str_rows[r] += ' *'
# Add Decorations:
row_label_width = 0
if len(row_labels) > 0:
    if not len(row_labels) == nr:
            raise ValueError("Number of row labels doesn't match number of rows")
        f_row_labels,row_label_width = __format_row_labels(row_labels)
        for r in range(nr):
            str_rows[r] = f_row_labels[r] + str_rows[r]
if len(col_labels) > 0:
        # print('row_label_width =',row_label_width)
        # basically form a new row for str_rows
        FCL = __format_col_labels(labels=col_labels,base_w=base_width,row_offset=
row_label_width)
    str_rows = [FCL] + str_rows
# str_mat = __fit_to_terminal(str_rows,left_offset)
# str_mat = __fit_to_terminal(str_rows,left_offset,len(matrix_label))
str_mat = '\n'
for row in str_rows:
    # print('str_matrix_v2: row =',row)
    str_mat += , '*left_offset + row + '\n'
return str_mat
def __complex_matrix(mat,as_phasor):
N,M = mat.shape # N=no. rows, M=no. cols
square_mat = (N==M) # square matrix flag for diagomal bolding
str_rows = ['']*N
for n in range(N): # rows
    for m in range(M): # columns
            if square_mat and n==m:
                str_rows[n] +='\033[1m' # special formatting bold begin unicode
            if as_phasor: # format as magnitude at angle
```

```
            str_rows[n] += vector_formatter(mat[n,m])
```

            str_rows[n] += vector_formatter(mat[n,m])
                else: # format as re+j*im
                else: # format as re+j*im
                str_rows[n] += imaginary_formatter(mat[n,m])
                str_rows[n] += imaginary_formatter(mat[n,m])
        if square_mat and n==m:
        if square_mat and n==m:
                str_rows[n] +='\033[0m' # special formatting (bold) termination
                str_rows[n] +='\033[0m' # special formatting (bold) termination
    unicode
    unicode
    # for row in str_rows:
    # for row in str_rows:
    # print('__complex_matrix: row = ',row)
    # print('__complex_matrix: row = ',row)
    return str_rows
    return str_rows
    __real_float_matrix(mat, as_dec):
    __real_float_matrix(mat, as_dec):
    N,M = mat.shape # N=no. rows, M=no. cols
    N,M = mat.shape # N=no. rows, M=no. cols
    square_mat = (N==M) # square matrix flag for diagomal bolding
    square_mat = (N==M) # square matrix flag for diagomal bolding
    str_rows = ['',]*N
    str_rows = ['',]*N
    for n in range(N): # rows
    for n in range(N): # rows
        for m in range(M): # columns
        for m in range(M): # columns
            if square_mat and n==m:
            if square_mat and n==m:
                str_rows[n] +='\033[1m' # special formatting bold begin unicode
                str_rows[n] +='\033[1m' # special formatting bold begin unicode
            if mat[n,m] == 0:
            if mat[n,m] == 0:
                if as_dec:
                if as_dec:
                    str_rows[n] +=,',*1 + '0.' +, '*4
                    str_rows[n] +=,',*1 + '0.' +, '*4
                else:
                else:
                str_rows[n] += , '*1 + '0.' + , '*8
                str_rows[n] += , '*1 + '0.' + , '*8
            else:
            else:
                if as_dec:
                if as_dec:
                    if mat[n,m] > 0:
                    if mat[n,m] > 0:
                    # str_rows[n] += , {:1.3f} '.format(mat[n,m])
                    # str_rows[n] += , {:1.3f} '.format(mat[n,m])
                if mat[n,m] < 10:
                if mat[n,m] < 10:
                    str_rows[n] += , {:1.3f} '.format(mat[n,m])
                    str_rows[n] += , {:1.3f} '.format(mat[n,m])
                elif mat[n,m] > 100:
                elif mat[n,m] > 100:
                    str_rows[n] += , {:1.3f} ,.format(mat [n,m])
                    str_rows[n] += , {:1.3f} ,.format(mat [n,m])
                else:
                else:
                    str_rows[n] += , {:1.2f} '.format(mat[n,m])
                    str_rows[n] += , {:1.2f} '.format(mat[n,m])
                else: # leave space the the negative sign
                else: # leave space the the negative sign
                # str_rows[n] += '{:1.3f} '.format(mat[n,m])
                # str_rows[n] += '{:1.3f} '.format(mat[n,m])
                if mat[n,m] > -10:
                if mat[n,m] > -10:
                    str_rows[n] += '{:1.3f} '.format(mat[n,m])
                    str_rows[n] += '{:1.3f} '.format(mat[n,m])
                elif mat[n,m] < -100:
                elif mat[n,m] < -100:
                    str_rows[n] += '{:1.1f} '.format(mat[n,m])
                    str_rows[n] += '{:1.1f} '.format(mat[n,m])
                else: # -10 to -99
                else: # -10 to -99
                    str_rows[n] += '{:1.2f} '.format(mat[n,m])
                    str_rows[n] += '{:1.2f} '.format(mat[n,m])
                else:
                else:
                if mat[n,m] > 0:
    ```
                if mat[n,m] > 0:
```

```
            str_rows[n] += , {:1.3e} ,.format(mat [n,m])
```

            str_rows[n] += , {:1.3e} ,.format(mat [n,m])
                else: # leave space the the negative sign
                else: # leave space the the negative sign
                    str_rows[n] += '{:1.3e} '.format(mat[n,m])
                    str_rows[n] += '{:1.3e} '.format(mat[n,m])
        if square_mat and n==m:
        if square_mat and n==m:
            str_rows[n] +='\033[0m' # special formatting (bold) termination
            str_rows[n] +='\033[0m' # special formatting (bold) termination
    unicode
    unicode
    # for row in str_rows:
    # for row in str_rows:
    # print(' __real_float_matrix: row =',row)
    # print(' __real_float_matrix: row =',row)
    return str_rows
    return str_rows
    __int_matrix(mat):
    __int_matrix(mat):
    N,M = mat.shape # N=no. rows, M=no. cols
    N,M = mat.shape # N=no. rows, M=no. cols
    square_mat = (N==M) # square matrix flag for diagomal bolding
    square_mat = (N==M) # square matrix flag for diagomal bolding
    # mat [0,0] = - 1*mat [0,0]
    # mat [0,0] = - 1*mat [0,0]
    base_length = len(str(np.max(mat))) # longest element in the matrix
    base_length = len(str(np.max(mat))) # longest element in the matrix
    # print('__int_matrix: base_length =',base_length)
    # print('__int_matrix: base_length =',base_length)
    str_rows = [',]*N
    str_rows = [',]*N
    for n in range(N): # rows
    for n in range(N): # rows
        for m in range(M): # columns
        for m in range(M): # columns
            if square_mat and n==m:
            if square_mat and n==m:
                str_rows[n] +='\033[1m' # special formatting bold begin unicode
                str_rows[n] +='\033[1m' # special formatting bold begin unicode
            val = str(mat[n,m])
            val = str(mat[n,m])
            str_rows[n] += , '*(base_length-len(val)) + (, , if mat[n,m]>=0 else ',)
            str_rows[n] += , '*(base_length-len(val)) + (, , if mat[n,m]>=0 else ',)
        + val + , ,
        + val + , ,
            if square_mat and n==m:
            if square_mat and n==m:
                str_rows[n] +='\033[0m' # special formatting (bold) termination
                str_rows[n] +='\033[0m' # special formatting (bold) termination
    unicode
    unicode
    # for row in str_rows:
    # for row in str_rows:
    # print('__real_float_matrix: row =',row)
    # print('__real_float_matrix: row =',row)
    return str_rows, base_length # return base length for column labels if needed
    return str_rows, base_length # return base length for column labels if needed
    __format_row_labels(labels):
    __format_row_labels(labels):
    # print(row_labels)
    # print(row_labels)
    formatted_row_labels = [] # make row labels a uniform width
    formatted_row_labels = [] # make row labels a uniform width
    row_label_width=0
    row_label_width=0
    row_label_width=max([len(ss) for ss in labels])
    row_label_width=max([len(ss) for ss in labels])
    for k in range(len(labels)):
    ```
    for k in range(len(labels)):
```

```
2 7 7
2 7 9
2 8 0
2 8 1
28 de
```

            # formatted_row_labels.append(labels[k] + , '*(row_label_width-len(labels[k])
    ```
            # formatted_row_labels.append(labels[k] + , '*(row_label_width-len(labels[k])
        ) +' ')
        ) +' ')
            formatted_row_labels.append(' '*(row_label_width-len(labels[k])) + labels[k]
            formatted_row_labels.append(' '*(row_label_width-len(labels[k])) + labels[k]
        + , ,)
        + , ,)
    return formatted_row_labels,row_label_width
    return formatted_row_labels,row_label_width
ef __format_col_labels(labels,base_w=12,row_offset=0):
ef __format_col_labels(labels,base_w=12,row_offset=0):
    string_mat = ,'
    string_mat = ,'
    # print(col_labels)
    # print(col_labels)
    fcl = , '*(row_offset + 2)# make row labels a uniform width
    fcl = , '*(row_offset + 2)# make row labels a uniform width
    # print('column base width =',base_w)
    # print('column base width =',base_w)
    # print('row offset =',row_offset)
    # print('row offset =',row_offset)
    # base_w = 12
    # base_w = 12
    col_label_width = max([len(ss) for ss in labels])
    col_label_width = max([len(ss) for ss in labels])
    for k in range(len(labels)):
    for k in range(len(labels)):
        cl = , , + labels[k] + , '
        cl = , , + labels[k] + , '
        # print(cl,len(cl))
        # print(cl,len(cl))
        if len(cl) > base_w+2:
        if len(cl) > base_w+2:
            # print(f'len({cl}) > {base_w+2}')
            # print(f'len({cl}) > {base_w+2}')
            cl = cl[0:base_w+1] + , ,
            cl = cl[0:base_w+1] + , ,
        elif len(cl) < base_w+2:
        elif len(cl) < base_w+2:
            # print(f'len({cl}) < {base_w+2}')
            # print(f'len({cl}) < {base_w+2}')
            # cl += , '*((base_w+2)-len(cl)) # right justify
            # cl += , '*((base_w+2)-len(cl)) # right justify
            cl = ',*((base_w+2)-len(cl)) + cl # left justify
            cl = ',*((base_w+2)-len(cl)) + cl # left justify
        # print(cl,len(cl))
        # print(cl,len(cl))
        fcl += cl
        fcl += cl
    # print('str_matrix_v2: row =',fcl)
    # print('str_matrix_v2: row =',fcl)
    return fcl
    return fcl
    __fit_to_terminal(str_rows, left_off=0,label_width=0):
    __fit_to_terminal(str_rows, left_off=0,label_width=0):
    """
    """
    Fit to the terminal by breaking lines as needed.
    Fit to the terminal by breaking lines as needed.
    " " "
    " " "
    term_size = get_terminal_size()
    term_size = get_terminal_size()
    t_cols = term_size.columns
    t_cols = term_size.columns
    t_lines = term_size.lines
    t_lines = term_size.lines
    print('terminal size:',t_cols,'x',t_lines)
    print('terminal size:',t_cols,'x',t_lines)
    break_len = (t_cols-4)-left_off
    break_len = (t_cols-4)-left_off
    print('line break at character:',break_len)
    print('line break at character:',break_len)
    str_mat = '\n'
    str_mat = '\n'
    if len(str_rows[1])+left_off > break_len:
    if len(str_rows[1])+left_off > break_len:
        str_rows_extended = {}
```

        str_rows_extended = {}
    ```
```

        length_offset = 0
    print('str_rows[-1]',str_rows[-1])
    if not str_rows[-1][break_len] == , ': # check that we are breaking on
    whitespace
        for k in range(break_len):
            if str_rows[-1][break_len-k] == , ':
            length_offset = k+1
            break
    print('length_offset =', length_offset)
    break_len += -1*length_offset
    print('break_len =',break_len)
    # figure out how many breaks it will need:
    char_ratio=(len(str_rows[-1])+left_off)/(break_len)
    num_breaks = int(char_ratio) if char_ratio - int(char_ratio) < 0.8 else int(
    char_ratio)+1
print('number of line breaks:', num_breaks)
for k in range(num_breaks+1):
str_rows_extended [k] = []
\# print(str_rows_extended)
for ri in range(len(str_rows)):
broken_line = break_string_to_segments(str_rows[ri],break_len, num_breaks)
for line in range(len(broken_line)):
str_rows_extended[line] += broken_line[line]
\# print(str_rows_extended)
for k in str_rows_extended:
for row in str_rows_extended[k]:
str_mat +=, ,*(left_off+( label_width+1 if k > 0 else 0 ) ) + row + ,
\n'
str_mat += '\n'
else:
for row in str_rows:
\# print('str_matrix_v2: row =', row)
str_mat += , '*left_off + row + '\n'
return str_mat
ss = [] \# string segments

```
```


# if not s[length] == , ': \# check that we are breaking on whitespace

# for k in range(length):

# if s[length-k] == , ':

# length_offset = k

# break

print('len(s) =', len(s),'extra:',len(s)-length)
break_char = s[length]
bold_start = '\033[1m'
bold_end = '\033[0m'
special_check_before = lambda c, i: s.index(bold_start) <= i and s.index(bold_end
) <= i
special_check_between = lambda c, i: s.index(bold_start) <= i <= s.index(bold_end
)
print('bold_start index =',s.index(bold_start),
'bold_end index =',s.index(bold_end),
'length is between bold?', special_check_between(s,length),
'length is after bold?', special_check_before(s,length))
offset = 0
if special_check_before(s,length):
offset = len(bold_start) + len(bold_end) +0
elif special_check_between(s,length):
if length < s.index(bold_start) + 0.45*(s.index(bold_end)-s.index(bold_start)
): \# closer to start
offset = s.index(bold_start) - length + 0
else: \# closer to the end
offset = (length - s.index(bold_start))\# + len(bold_start)
\# s = s.replace(, '+bold_end,bold_end + , ')
\# pass
\# offset = len(bold_end)

# else:

# offset = 0

# s=s.replace('\033[0m','\b}')

# s = s.replace('\033[1m','\b{')

# s = s.replace('\033[0m','\033[0m'+'}')

# s = s.replace('\033[1m','\033[1m'+'{')

for k in range(n_breaks+1):
iO = k*(length + offset)
i1 = (k+1)*(length + offset) \# subreact k to deal with white-space
\# ss_s = (, , if k> 0 else '') + s[i0:i1] + '|'\# + f' k={k}'
ss_s = s[i0:i1]

```
```

4 0 4
4 0 5
4 0 6
4 0 7
4 0 8
09 return ss
4 1 0
4 1 1
412def increment_name(path,ext='.png'):
" " "
Check if the file already exists, if it does, ingrement the filepath
" " "
if os.path.isfile(path):
path_inc=path.replace(ext,',)
k=0
While k < 1e8:
k+=1
if not os.path.isfile(path_inc+',_{}{}'.format(k,ext)):
return path_inc+'_{}{}'.format (k, ext)
print(f"file \"{path}\" exists, incrementing name to \"{path_inc}\"")
else:
return path
def check_for_path(path, create_if_dne=False):
" " "
Check that a path exists, create if it doens't exist (depending on 'create_if_dne
')
returns the path (string) or 'None' id DNE and Didn't create.
" " "
path_mod = None
\# if the path DNE, and it's not a filename
if ( not os.path.isdir(path) ):
if create_if_dne: \# if you want to make one
os.makedirs(path) \# use the recursive functionality.
path_mod = path
else:
print(f"Path \"{path}\" DNE, not making one")
return path_mod
else: \# it is a path
return path
4 4 6
447 def cofactor(M):

```
```

    " " "
    calculate the cofactor of a matrix, M should be square.
    " " "
    adj_M = np.zeros(M.shape)
    M = M.T
    for i in range(M.shape[0]):
        for j in range(M.shape[1]):
            a = M[:i,:j] # square up to i,j
            b = M[:i,j+1:] # rows down to i
            c = M[i+1:,:j] # columns up to j
            d = M[i+1:,j+1:] # square from i+1,j+1
            ,,'
            arrange as:
            cof = [[a, b],[c,d]]
            , ,'
            cof_1 = np.concatenate((a,b),axis=1)
            cof_2 = np.concatenate((c,d), axis=1)
            cof = np.concatenate((cof_1,cof_2), axis=0) # stack
            # print(str_matrix(cof,label=f'cof({i},{j}) ='))
            # print(f,|\operatorname{cof ({i},{j})| =',np.linalg.det(cof))}
            adj_M[i,j] = np.linalg.det(cof)
    return adj_M
    def coupling_coef(L):
K = np.zeros(L.shape)
for i in range(L.shape[0]):
for j in range(L.shape[1]):
if i==j:
K[i,j] = 1
else:
K[i,j] = L[i,j] / np.sqrt(L[i,i] * L[j,j])
return K
def layer_ring_plot(plt, radii, layers):
" " "
Plot the rings of the reactor.
radii is an array of layer radii
layers indicate how many layers are in each "package" ex: [1,3,2,2] would
indicate 1 layer in Oth position, positions 1-3 would be another package,
" " "
th = np.linspace(0, 2*np.pi,64+1)

```
```


# r,linespec, label=None, fn=64

    color_i = 0
    k = 0
    plt.figure("Reactor Layer Ring Plot")
    for layer in layers:
        # print(layer)
        for ln in range(layer):
            # r = self.layers[layer]['r_loop']
            # print(k)
            x = radii [k]*np.cos(th)
            y = radii[k]*np.sin(th)
            plt.plot(x,y,'C{}'.format(color_i))
            k += 1
        color_i += 1
    plt.axis('equal')
    __name__ == ',__main__':
    # str_matrix testing
    v1 = np.array([[k*(1+0.5j) for k in range(15)]])
    # v1 = np.array([[k*(1) for k in range(35)]])
    mat = np.matmul(v1.T,v1)
    print(str_matrix(mat))
    # break_string_to_segments(s='['+' 0123456789ABC '*24+']', ,length=106,n_breaks=3)
    ```

\section*{D.3.2 tex_util.py}
```

1 " " "
2'tex_util.py'
3 Utilities for generating reports in LaTeX.
4R.Sanford
520 January 2023
6 " " "
7 import numpy as np
8import os,random
f from util import str_matrix, vector_formatter, increment_name,
cofactor, coupling_coef, check_for_path
11
12
13 n_tab = 4 \# number of spaces to be a tab
15 def tex_report(models, desc, report_file, sigfig):
16 """
17 make a report, models is a dict with the keys corresponding

```
```

    to the matrix variable label.
    Parameters:
    - models : Library of objects, the library label will be the variable label.
    - desc : Object descriptions, will be printed as a comment under the equation
    - report_file : path to file (full filename included)
    - reference_desc : print the refernece before the description text so it ...
        becommes: \ref{eqn_label} {description}
    " " "
    report_file = increment_name(report_file,'.tex')
    for k in models:
        # print(type(models[k]))
        if 'array' in str(type(models[k])):
            save_matrix_as_tex(models[k],mat_label=k, savepath=report_file,
                description=desc[k],write_mode='a',sigfig=sigfig)
        else:
            save_as_tex(models[k],label=k, savepath=report_file,
                description=desc[k],write_mode='a',sigfig=sigfig)
    def tex_vector_formatter(a,sigfig=3):
format_string = '{:0.'+f'{sigfig}'+'E} <br>angle {:0.3f}^<br>circ'
return format_string.format(np.abs(a),np.angle(a,deg=True))
def save_matrix_as_tex(M,mat_label, savepath, description,write_mode='w',
sigfig=3,as_decimal=False):
" " "
convert a numpy matrix into a LaTeX matrix
" " "
randid = random.randint(1e2,1e8)
item_label = f'eqn:{labelify(mat_label)}_{randid}'
is_vector = (M.shape[0] > 1) and (M.shape[1] == 1)
print(mat_label, 'is vector?',is_vector)

    tex_str = '\n\\begin{equation}\label{'+item_label+'}\n'+','*n_tab\
            +mat_label+'=\n'+' '*n_tab+'\\begin{bmatrix}\n'
    dtype = str(M.dtype)
    # print(M.dtype)
    for ii in range(M.shape [0]):
        tex_str +=, ,*2*n_tab
        for jj in range(M.shape[1]):
            if 'int' in dtype :
            tex_str += '{:d}'.format(M[ii,jj])\
    ```
```

            + ( , & , if jj<(M.shape[1]-1) else ,' )
            elif 'float' in dtype:
            if M[ii,jj] == 0:
                tex_str += 'O' + (, & ' if jj<(M.shape[1]-1) else ', )
            else:
                if M[ii,jj] >= 1e-3 or as_decimal:
                    tex_str += '{:0.3f}'.format(M[ii,jj])\
                    + ( , & , if jj<(M.shape[1]-1) else ,, )
                else:
                    tex_str += '{:0.3E}'.format(M[ii,jj])\
                            + ( , & , if jj<(M.shape[1]-1) else ,' )
        elif 'complex' in dtype :
            m_r = M[ii,jj].real
            m_i = abs(M[ii,jj].imag)
            m_is = '+' if M[ii,jj].imag > O else '_,
            if m_r > 0:
                tex_str += '{:0.3E}{}j{:0.3E}'.format(m_r,m_is,m_i)\
                    + ( , & ' if jj<(M.shape[1]-1) else ', )
            else:
                tex_str += '0{}j{:0.3E},.format(m_is,m_i)\
                    + ( , & ' if jj<(M.shape[1]-1) else ', )
    tex_str += , \\\\\\n,
    if is_vector:
tex_str += , '*n_tab+'<br>end{bmatrix}\n<br>end{equation}'\

        if (not 'complex' in dtype) else ' '*n_tab\
            +'\\end{bmatrix}\n'+' '*n_tab+'=\n'+' '*n_tab+'\\\begin{bmatrix}\n'
    if 'complex' in dtype:
        for ii in range(M.shape[0]):
            tex_str += , '*2*n_tab
            for jj in range(M.shape[1]):
                m_r = M[ii,jj].real
                m_i = abs(M[ii,jj].imag)
                m_is = '+' if M[ii,jj].imag > O else '-'
                tex_str += tex_vector_formatter(M[ii,jj])\
                    + ( , & , if jj<(M.shape[1]-1) else ,' )
            tex_str += , \\\\\\n'
        tex_str += ' '*n_tab+'\\end{bmatrix}\n\\end{equation}'
    else:
tex_str += ' '*n_tab+'<br>end{bmatrix}\n<br>\end{equation}'

desc = description.split('\n')

```
```

tex_str += ('\n% ' + '<br>ref{'+item_label+'} '\
+ desc[0].strip()) if len(desc[0]) > 0 else '\n %<br>ref{'+item_label+'} '
if len(desc) > 1:
for dl in desc[1:]:
sdl = dl.strip()
tex_str += ('\n% , + sdl) if len(sdl) > 0 else ',
tex_str += '\n'

# print(tex_str)

with open(savepath,write_mode) as texfile:
texfile.write(tex_str)
texfile.close()
def save_as_tex(M,label, savepath, description,write_mode='w',sigfig=3):
"""
Save a value to a tex equation in a file in the same style as a matrix
" " "
randid = random.randint(1e2,1e8)
item_label = f'eqn:{labelify(label)}_{randid}'

tex_str = '\n<br>begin{equation}\n'+','*n_tab+label+'='
dtype = str(M.dtype)
\# print(M.dtype)
if 'int' in dtype :
tex_str += '{:d}'.format(M)
elif 'float' in dtype :
tex_str += '{:0.3f}'.format(M)
elif 'complex' in dtype :
m_r = M.real
m_i = abs(M.imag)
m_is = '+' if M.imag > 0 else '_,
complex_format_str = '{:0.'+f'{sigfig}'+'E}{}j{:0.'+f'{sigfig}'+'E} = '
tex_str += complex_format_str.format(m_r,m_is,m_i)
tex_str += tex_vector_formatter(M,sigfig)
tex_str += '\n<br>end{equation}'

desc = description.split('\n')
tex_str += ('\n' + '<br>ref{'+item_label+'} '\
+ desc[0].strip()) if len(desc[0]) > 0 else '\n% <br>ref{'+item_label+'},'

```
```

53 if len(desc) > 1:
54 for dl in desc[1:]:
155
156
157
166 def labelify(ml):
if '\;' in ml:
ml=ml.replace('\;',' _')
if '{' in ml or '}' in ml:
ml=ml.replace('{','')
ml=ml.replace('}','')
return ml

```

\section*{D.3.3 wires.py}
```

1 " ""
2
3Wire Parameter Values, and functions for useful stuff therein
5 " ""
from numpy import pi
7
AWG_diam = { \# AWG diameters in millimeters
'4/0':11.684, '3/0':10.4049, '2/0':9.2658, '1/0':8.2515,
1:7.3481, 2:6.5437, 3:5.8273, 4:5.1894, 5:4.6213, 6:4.1154,
7:3.6649, 8:3.2636, 9:2.9064, 10:2.5882, 11:2.3048, 12:2.0525,
13:1.8278, 14:1.6277, 15:1.4495, 16:1.2908, 17:1.1495, 18:1.0237,
19:0.9116, 20:0.8118, 21:0.7229, 22:0.6438, 23:0.5733, 24:0.5106,
26:0.4049, 27:0.3606, 28:0.3211, 29:0.2859, 30:0.2546, 31:0.2268,
32:0.2019, 33:0.1798, 34:0.1601, 35:0.1426, 36:0.1270, 37:0.1131,
38:0.1007, 39:0.0897, 40:0.0799,
7}
18
resistivity = { \# Ohm-m^2/m, use by dividing by the area of the wire
\# these are the 20C values.
'Al':2.65*10**(-8),
'Cu':1.68*10**(-8),
23}

```
```

24
T_coeffs = { \# temperatue coefficients [1/K]
'Al':0.00390,
'Cu':0.00380,
28}
29
permeability = {
'mu0':4*pi*10**(-7),
'Al':1.256665*10**(-6),
'Cu':1.256629*10**(-6)
34
35}

```

\section*{D.3.4 display_models.py}

This script is a graphing utility for visualizing the reactor wiht either a turns-in-profile view or a 3D view of the reactor as a set of parallel sheets.
```

1 " " "
3Wire Parameter Values, and functions for useful stuff therein
4
5 """
from numpy import pi
AWG_diam = { \# AWG diameters in millimeters
'4/0':11.684, '3/0':10.4049, '2/0':9.2658, '1/0':8.2515,
1:7.3481, 2:6.5437, 3:5.8273, 4:5.1894, 5:4.6213, 6:4.1154,
7:3.6649, 8:3.2636, 9:2.9064, 10:2.5882, 11:2.3048, 12:2.0525,
13:1.8278, 14:1.6277, 15:1.4495, 16:1.2908, 17:1.1495, 18:1.0237,
19:0.9116, 20:0.8118, 21:0.7229, 22:0.6438, 23:0.5733, 24:0.5106,
26:0.4049, 27:0.3606, 28:0.3211, 29:0.2859, 30:0.2546, 31:0.2268,
32:0.2019, 33:0.1798, 34:0.1601, 35:0.1426, 36:0.1270, 37:0.1131,
38:0.1007, 39:0.0897, 40:0.0799,
}
18
resistivity = { \# Ohm-m^2/m, use by dividing by the area of the wire
\# these are the 20C values.
'Al':2.65*10**(-8),
'Cu':1.68*10**(-8),
23}
24
25 T_coeffs = { \# temperatue coefficients [1/K]
26 'Al':0.00390,
27 ', Cu':0.00380,
28}

```
```

29
permeability = {
'mu0':4*pi*10**(-7),
'Al':1.256665*10**(-6),
'Cu':1.256629*10**(-6)
34
35}

```

\section*{D. 4 Illustration Reactor}

This python program produces the data used in the 4-turn 2-layer "2-element" reactor in section 3.8.1. The program also gives a comparison between turn-to-turn calculation method and the methods presented by Fawzi and Burke.
```

\#!/bin/python3
2""" illustration_reactor.py """
3 from biot_savart_methods import bs_mutual, internal
4 from fawzi_and_burke_methods import fb_mutual, fb_mutual_thick, fb_self_ind
5from util import vector_formatter, str_matrix, coupling_coef
6 from tex_util import tex_report, save_matrix_as_tex
7 import numpy as np
8from display_models import turn_model
9
10 rho_cu = 1.68*10**(-8) \# resistivity of copper [0hm * m^2/m]
11 mm2m = 10**(-3) \# millimeters to meters
12
13 testing_freq = 60_000 \# Hz
14
15\# r_cond = [0.5106*mm2m*0.5]+[0.3211*mm2m*0.5]*2 \# conductor radius ~ 24awg,28 [meters
]
16 r_cond = 0. 25*mm2m \# conductor radius ~ 24awg[meters]
17c_ins = 0.01*mm2m \# insulation on enameled wire
18
19 d = 2*(r_cond + c_ins)
20
21 R_loop1 = 0.1
22 R_loop2 = 0.103
23
24 sp = check_for_path('./results/illustration_reactor.tex',True) \# savepath
25
26 def t2t_illustration():
27 l11 = bs_mutual(a=R_loop1,b=(R_loop1-r_cond), d=0)
28 l22 = l11
29 133 = bs_mutual(a=R_loop2,b=(R_loop2-r_cond), d=0)

```
\(144=133\)
m12 = bs_mutual ( \(a=R_{\text {_ }}\) loop1, \(b=\left(R_{-}\right.\)loop1- \(r_{-}\)cond),\(\left.d=d\right)\)
m13 = bs_mutual ( \(a=R_{\text {_ loop1, }}, b=\left(R_{\text {_loop }}-r_{\text {_ }}\right.\) cond),\(\left.d=0\right)\)
m14 = bs_mutual ( \(a=R_{\text {_ loop1 }}, b=\left(R_{\text {_loop }}-r_{\text {_ }}\right.\) cond),\(\left.d=d\right)\)
```




```
m34 = bs_mutual ( \(a=R_{\text {_ }}\) loop2, \(b=\left(R_{-}\right.\)loop2- \(r_{-}\)cond),\(\left.d=d\right)\)
L_ \(4 \times 4=n p . \operatorname{array}([\quad[111, m 12, m 13, m 14]\),
[m12, 122, m23, m24],
[m13, m23, 133, m34],
[m14,m24,m34,144] ])
\(K_{-} 4 \times 4=\) coupling_coef (L_4x4)
print (str_matrix (L_ \(4 x 4\), label=' \(L_{-} 4 x 4=\) '))
print (str_matrix (K_4x4,label=' \(K_{\_} 4 x 4\) =', as_decimal=True))
\# Simplify to a \(2 x 2\) inductance matrix:
\(L_{\_} 1=111+122+2 * m 12\)
\(L_{-} 2=133+144+2 * \mathrm{~m} 34\)
\(\mathrm{M} 12=\mathrm{m} 13+\mathrm{m} 14+\mathrm{m} 23+\mathrm{m} 24\)
L_2x2 = np. array \(\left(\left[\quad\left[L_{-} 1, M 12\right]\right.\right.\), [M12, L_2]])
\(K_{-} 2 \times 2=\) coupling_coef (L_2x2)
print (str_matrix (L_2x2, label=' \(L_{-} 2 \mathrm{x} 2\) ='))
print(str_matrix(K_2x2,label=' \(K_{-} 2 x 2=\), as_decimal=True))
save_matrix_as_tex (M=L_4x4, mat_label=' L_ \(4 x 4^{\prime}\), savepath=sp, description='4x4 L matrix using t2t', write_mode='w', sigfig=3, as_decimal=False)
```



``` matrix using t2t', write_mode='a',sigfig=3, as_decimal=True)
save_matrix_as_tex (M=L_2x2, mat_label=' L_ \(2 \times 2\) ', savepath=sp, description=' \(2 x 2\) L matrix using t2t', write_mode='a', sigfig=3, as_decimal=False)
```



```
matrix using t2t', write_mode='a',sigfig=3, as_decimal=True)
return L_ 2 x 2
```

```
7 1
def sheet_equiv():
    h = d + 2*r_cond
    L_1 = fb_mutual(N1=2,R1=R_loop1,h1=h,
        N2=2,R2=R_loop1 -r_cond,h2=h,s=0)
    L_2 = fb_mutual(N1=2,R1=R_loop2,h1=h,
                N2=2,R2=R_loop2-r_cond,h2=h,s=0)
    M12 = fb_mutual(N1=2,R1=R_loop1,h1=h,
                N2=2,R2=R_loop2 -r_cond,h2=h,s=0)
    L_sheet = np.array([[L_1, M12],
                                    [M12, L_2]])
    K_sheet = coupling_coef(L_sheet)
    print(str_matrix(L_sheet,label='L_sheet ='))
    print(str_matrix(K_sheet,label='K_sheet =', as_decimal=True))
    save_matrix_as_tex(M=L_sheet,mat_label=' L_sheet', savepath=sp,description=' 2x2 L
    matrix using F&B sheets',write_mode='a',sigfig=3, as_decimal=False)
    save_matrix_as_tex(M=K_sheet,mat_label=' K_sheet', savepath=sp,description='2x2 K
    matrix using F&B sheets',write_mode='a',sigfig=3,as_decimal=True)
    return L_sheet
if __name__ == ' __main__':
    L_t2t = t2t_illustration()
    L_sheet = sheet_equiv()
    print("Compare t2t with sheet method: L_t2t - L_sheet:")
    print(str_matrix(L_t2t - L_sheet,label=' L_t2t - L_s =', as_decimal=True))
    print(str_matrix(L_t2t - L_sheet,label=' L_t2t - L_s ='))
    L_diff = 100*(L_t2t - L_sheet)/L_t2t
    print(str_matrix(L_diff,label=' L_t2t - L_s (% diff) =', as_decimal=True))
    save_matrix_as_tex(M=L_t2t - L_sheet,mat_label=' L_diff',savepath=sp,
                            description='difference between t2t and F&B sheets',
    write_mode='a', sigfig=3, as_decimal=False)
    save_matrix_as_tex(M=L_diff,mat_label=' L_diff', savepath=sp,description='
    difference between t2t and F&B sheets',write_mode='a',sigfig=3,as_decimal=True)
```


## D. 541 Turn Example

This is a script to demonstrate the use and computation accuracy of the varying inductance calculation methods.

```
1 #!/bin/python3
2""" compare_41turn.py """
3import numpy as np
4 from fawzi_and_burke_methods import fb_self_ind, fb_mutual, fb_mutual_thick
5from util import vector_formatter, cofactor
6import matplotlib.pyplot as plt
8from biot_savart_methods import bs_mutual, internal
g from display_models import sheet_model, turn_model
1 0
11 rho_cu = 1.68*10**(-8) # resistivity of copper [Ohm * m^2/m]
2mm2m = 10**(-3) # millimeters to meters
13
14turns = 41
15 r_loop = 50*mm2m * 0.5 # loop radius [meters]
16 r_cond = 0.5106*mm2m * 0.5 # conductor radius ~ 24awg [meters]
17 c_ins = 0.025187*mm2m # insulation on enameled wire
18 height = 23*mm2m#turns*(r_cond+c_ins)*2-2*c_ins*0 # take the top and bottom
        insualtion off the height...
1 9
        magnetic properties
20 print(f'turns={turns}, r_loop={r_loop}, r_cond={r_cond}, height={height:.5f}')
21def t2t_reactor():
22
23
24
25 Lm = [] # inductance values for increasing turns distance. Oth index being the
        nearest adjacent turn
        for k in range(0,turns):
            m = bs_mutual(a=(r_loop),b=(r_loop-r_cond), d=k*z_inc)
            # print(f'k={k} d={k*z_inc}: m={m}')
            Lm.append(m)
        # print(len(Lm))
        L_int = internal(R=r_loop,r=r_cond) # flux internal to the conductor
        # account for the self and internal inductanve of each turn:
        L = turns*(Lm[0] + L_int)
        # apply superposition:
        for k in range(1,turns):
```

```
            # print(len(Lm[1:turns-k+1]))
            L += 2*np.sum(Lm[1:turns-k+1]) # double the quantity because of symmetry
    return L
def sheet_reactor():
    # L = fb_self_ind(N=turns,R=r_loop,h=(turns)*r_cond*2)
    # L = fb_self_ind(N=turns,R=r_loop,h=height)
    L = fb_mutual(N1=turns,R1=r_loop,h1=height,
            N2=turns,R2=r_loop -r_cond,h2=height,s=0) # concentric
    return L
def shell_reactor():
    N = turns
    R = r_loop
    h = height#(turns)*r_cond*2
    t = 2*r_cond
    L = fb_mutual_thick(N1=N,R1=R,h1=h,t1=t,
                N2=N,R2=R,h2=h,t2=t,s=0) # concentric
    return L
    __name__ == '__main__':
    L_bs = t2t_reactor()
    L_fb = sheet_reactor()
    L_fbt = shell_reactor()
    print(f'L_bs = {L_bs*1e6:.4f} [nH]')
    print(f'L_fb = {L_fb*1e6:.4f} [nH]')
    print(f'L_fbt = {L_fbt*1e6:.4f} [nH]')
    print(f'L_bs/L_fb = {L_bs/L_fb}')
    print(f'L_bs/L_fbt = {L_bs/L_fbt}')
    # to check the results with a measurable value
    f = 10000
    w_test = f*2*np.pi; # test angular frequency
    V_term = 1.06
    R_i = 10 # current sensing resistor for measuring phase angle:
    print(f'current sensing resistor: R_i = {R_i}')
    R_L = turns*(2*np.pi*r_loop)*( rho_cu/(np.pi*r_cond**2) ) # calculate the
    resistance of the wire used to construct the reactor
    Z_bs = R_L+R_i + L_bs*W_test*1j
```

```
Z_fb = R_L+R_i + L_fb*W_test*1j
Z_fbt = R_L+R_i + L_fbt*W_test*1j
print(f'freq = {f}[Hz]')
print(f'Z_bs = {Z_bs:.4f} [\u03a9]')
print(f'Z_fb = {Z_fb:.4f} [\u03a9]')
print(f''Z_fbt = {Z_fbt:.4f} [\u03a9]')
I_bs = (V_term/(Z_bs))
I_fb = (V_term/(Z_fb))
I_fbt = (V_term/(Z_fbt))
print('I_bs =', vector_formatter(I_bs))
print('I_fb =',vector_formatter(I_fb))
print('I_fbt =', vector_formatter(I_fbt))
# turn_model(turns=[turns],radii=[r_loop],heights=[height],r_conds=[r_cond],s
=[0], c=['#000'], lw=0.5)
# sheet_model(radii=[r_loop],heights=[turns*r_cond*2],s=[0], c=['#000'],a=[.2])
# plt.savefig('./figs/turnModel_41t_r50mm.png',dpi=600,bbox_inches='tight')
# plt.show()
```


## D. 641 Turn Faulted Example

This is a script to demonstrate the use and comparison between faults calculated using the two inductance calculation methods.

```
1#!/bin/python3
2""" compare_41turn.py """
3 import numpy as np
4 from biot_savart_methods import bs_mutual, internal
5 from fawzi_and_burke_methods import fb_self_ind, fb_mutual, geometry_mat, turns_mat,
    NG_scalar
6 from util import vector_formatter, cofactor, str_matrix, check_for_path
7from tex_util import save_matrix_as_tex
8import matplotlib.pyplot as plt
9
10 from display_models import sheet_model, turn_model
11
12 rho_cu = 1.68*10**(-8) # resistivity of copper [Ohm * m^2/m]
13 mm2m = 10**(-3) # millimeters to meters
14
15 turns = 41
16 r_loop = 50*mm2m * 0.5 # loop radius [meters]
```

```
17 r_cond = 0.5106*mm2m * 0.5 # conductor radius ~ 24awg [meters]
18 c_ins = 0.025187*mm2m # insulation on enameled wire
19 height = 23*mm2m#turns*(r_cond+c_ins)*2-2*c_ins*0 # take the top and bottom
        insualtion off the height...
20 # b/c it doesn't have an effect on the
        magnetic properties
    n_fault = 21 # fault index
2 2
23 print(r_cond)
24
25 sp = './results/single_layer_test_fault.tex'
26
27 print(f'turns={turns}, r_loop={r_loop}, r_cond={r_cond}, height={height:.5f}, faulted
        turn:{n_fault}')
28
29 def t2t_reactor():
        L = np.zeros ((2, 2))
        z_inc = height/(turns-1)# 2*(r_cond*c_ins) # z increment (conductor diameter)
        Lm [] # inductance values for increasing turns distance. Oth index being the
        nearest adjacent turn
        for k in range(0,turns):
            m = bs_mutual (a= (r_loop), b=(r_loop -r_cond), d=k* z_inc)
            # print(f,k={k} d={k*z_inc}: m={m}')
            Lm. append (m)
        # print(len(Lm))
    L_int = internal(R=r_loop,r=r_cond) # flux internal to the conductor
    # account for the self and internal inductanve of each turn:
    L[0,0] = turns*(Lm[0] + L_int)
    # apply superposition:
    for k in range(1,turns):
        # print(len(Lm[1:turns-k+1]))
        L[0,0] += 2*np.sum(Lm[1:turns-k+1]) # double the quantity because of symmetry
    m_1f = 2*np.sum(Lm[1:n_fault]) # get the mutuals from the center turn to the rest
    L[0,1] = m_1f # these are the off-diagonals
    L[1,0] = m_1f # also off-diagonal
    L[1,1] = Lm[0] + L_int # the self inductance is the same for a fault turn or a
    layer turn
    L[0,0] = L[0,0]-(Lm[0] + L_int + 2*m_1f) # remove the mutual and self of the
    fault from the layer
    return L
```

```
56
5 7
def sheet_reactor():
    N = turns_mat([turns,1])
    G = geometry_mat(radii=[r_loop]*2,h=[height,(height/turns)],h_frac=[1, 1], z=0)
    print(str_matrix(N,label='N ='))
    print(str_matrix(G,label='G ='))
    L = NG_scalar * N * G
    print(str_matrix(L, label='L ='))
    L[0,0] = L[0,0] - (L[1,1] + 2*L[0,1])
    print(str_matrix(L, label='L ='))
    return L
f __name__ == '__main__':
    L_bs=t2t_reactor()
    L_fb = sheet_reactor()
    print(str_matrix(L_bs*1e6, label=' L_bs [nH] =', as_decimal=False))
    print(str_matrix(L_fb*1e6, label=' L_fb [nH] =', as_decimal=False))
    # to check the results with a measurable value
    f = 10000
    w_test = f*2*np.pi; # test angular frequency
    V_term = 1.06
    R_i = 10 # current sensing resistor for measuring phase angle:
    print(f'current sensing resistor: R_i = {R_i}')
    R_L = turns*(2*np.pi*r_loop)*( rho_cu/(np.pi*r_cond**2) ) # calculate the
    resistance of the wire used to construct the reactor
    R_mat = np.array ([[ R_L*((turns-1)/turns) + R_i,0],[0, R_L*(1/turns)]])
    Z_bs = R_mat + L_bs*W_test*1j
    Z_fb = R_mat + L_fb*W_test*1j
    print(f'freq={f}[Hz]')
    print(str_matrix(Z_bs, label='Z_bs [\u03a9] ='))
    print(str_matrix(Z_fb, label='Z_fb [\u03a9] ='))
    v = np.array([[v_term],[0]])
    I_bs = np.matmul(np.linalg.inv(Z_bs),V)
    I_fb = np.matmul(np.linalg.inv(Z_fb),V)
```

```
00 print(str_matrix(I_bs, label=' I_bs [A] =', phasor=True))
101 print(str_matrix(I_fb, label=' I_fb [A] =', phasor=True))
102
103
turn_model(turns=[turns,1], radii=[r_loop]*2, heights=[height,0], r_conds=[r_cond
]*2, s=[0]*2, c=['#000','`#800'],1w=[0.5,1])
sheet_model(radii=[r_loop]*2,heights=[turns*r_cond*2, 2*r_cond],s=[0,0] , c=['#000'
,'#f00'],a=[.2,.8])
plt.show()
```


## D. 7 3-Layer Example

This script is used in the simulaiton of the physical 3-layer test reactors with the tuned and untuned variants.

```
#!/bin/python3
2from biot_savart_methods import bs_mutual, internal
3 from fawzi_and_burke_methods import fb_mutual, fb_mutual_thick, fb_self_ind,
    geometry_mat, turns_mat, NG_scalar
4 from util import vector_formatter, str_matrix
5from tex_util import save_matrix_as_tex, save_as_tex
6 import numpy as np
from display_models import turn_model, sheet_model
8import matplotlib.pyplot as plt
rho_cu = 1.68*10**(-8) # resistivity of copper [Ohm * m^2/m]
mm2m = 10**(-3) # millimeters to meters
13 testing_freq = 10_000 # Hz
14
15# r_cond = [0.5106*mm2m*0.5]+[0.3211*mm2m*0.5]*2 # conductor radius ~ 24awg,28 [meters
        ]
16 r_cond = [0.5106*mm2m*0.5]*4 # conductor radius ~ 24awg[meters]
17 c_ins = 0.025187*mm2m # insulation on enameled wire
18
19 def t2t_reactor(turns,radii,height,R_add):
        NN = len(turns)
        L = np.zeros((NN,NN))
        for k in range(NN):
            z_inc = height[k]/(turns[k]-1)# 2*(r_cond*c_ins) # z increment (conductor
        diameter)
24 Lm = [] # inductance values for increasing turns distance. Oth index being
        the nearest adjacent turn
            for l in range(0,turns[k]):
            m = bs_mutual(a=(radii[k]),b=(radii[k]-r_cond[k]),d=l*z_inc)
```

```
        # print(f'k={k} d={k*z_inc}: m={m}')
        Lm.append (m)
        # print(len(Lm))
    L_int = internal(R=radii[k],r=r_cond[k]) # flux internal to the conductor
    # account for the self and internal inductanve of each turn:
    L_mut = turns[k]*(Lm[0] + L_int)
    # apply superposition:
    for l in range(1,turns[k]):
    # print(len(Lm[1:turns-k+1]))
    L_mut += 2*np.sum(Lm[1:turns[k]-l+1]) # double the quantity because of
symmetry
    L[k,k] = L_mut # insert diagonal elements
# calculate the off-diagonal elements (mutuals)
for k in range(O,NN):
    ta = turns[k]
    rca = r_cond[k]
    z_inc_a = height[k]/(ta-1)# 2*(r_cond*c_ins) # z increment (conductor
diameter)
    for j in range(k+1,NN):
        print(f'({k},{j})')
        tb = turns[j]
        rcb = r_cond[j]
        z_inc_b = height[j]/(tb-1)# 2*(r_cond*c_ins) # z increment (conductor
diameter)
    Lm = 0 # inductance values for increasing turns distance. Oth index being
    the nearest adjacent turn
    ct = 0 # counter for debugging, should go to (ta*tb)-1
    for l in range(0,ta):
        for i in range(0,tb):
            m = bs_mutual(a=(radii[k]),b=(radii[j]-rcb),d=abs(i*z_inc_b-l*
z_inc_a))
            # print(f'{ct} [{l},{i}], d={i*z_inc_b-l*z_inc_a}: m={m}')
            Lm += m
            ct += 1
        L[k,j] = Lm
        L[j,k] = Lm
X = 2j*np.pi*testing_freq*L
```

```
6 7
68 R = calc_R(turns,radii, R_add)
69
70
71
72 return L, Z
73
74
75 def sheet_reactor(turns,radii,height, R_add):
    """ """
    # L = fb_self_ind(N=turns, R=r_loop,h=(turns)*r_cond *2)
    L1 = fb_self_ind(N=turns [0], R=radii [0],h=height [0])
    L2 = fb_self_ind(N=turns[1], R=radii [1],h=height [1])
    L3 = fb_self_ind(N=turns [2], R=radii [2],h=height [2])
    L12 = fb_mutual(N1=turns[0],R1=radii [0],h1=height[0],
            N2=turns[1], R2=radii [1], h2=height[1], s=0)
    L13 = fb_mutual(N1=turns [0], R1=radii [0],h1=height[0],
            N2=turns[2], R2=radii [2], h2=height[2], s=0)
    L23 = fb_mutual(N1=turns[1],R1=radii[1],h1=height[1],
                    N2=turns[2], R2=radii [2], h2=height [2], s=0)
    L = np.array([[L1, L12, L13],[L12,L2,L23],[L13,L23,L3]])
    X = 2j*np.pi*testing_freq*L
    R = calc_R(turns,radii, R_add)
    Z = np.diag(R) + X
    return L, Z
def sheet_reactor_faulted(turns,radii,height, R_add):
    """ """
    # L = fb_self_ind(N=turns,R=r_loop,h=(turns)*r_cond*2)
    # L1 = fb_self_ind(N=turns[0], R=radii[[0],h=height[0])
    # L2 = fb_self_ind(N=turns[1], R=radii [1],h=height[1])
    # L3 = fb_self_ind(N=turns [2], R=radii [2],h=height [2])
    #
    # L12 = fb_mutual(N1=turns[0], R1=radii[0],h1=height[0],
    # N2=turns[1],R2=radii[1],h2=height[1],s=0)
    # L13 = fb_mutual(N1=turns[0], R1=radii[0],h1=height[0],
    # N2=turns[2],R2=radii[2],h2=height[2],s=0)
    # L23 = fb_mutual(N1=turns[1], R1=radii[1],h1=height[1],
    # N2=turns[2], R2=radii[2],h2=height[2],s=0)
```

```
    #
    # L = np.array([[L1,L12,L13],[L12,L2,L23],[L13,L23,L3]])
    N = turns_mat(turns+[1])
    G = geometry_mat(radii=radii + [radii [0]],h=height+[height[0]])
    L = NG_scalar * N * G
    X = 2j*np.pi*testing_freq*L
    R = calc_R(turns+[1],radii+[radii[0]], R_add+[0])
    Z = np.diag(R) + X
    return L,Z
def calc_R(turns,radii, R_add):
    R = [0]*len(turns)
    print(turns)
    print(radii)
    print(R_add)
    for k,t in enumerate(turns):
        ll = (2*np.pi*radii[k])
        ca = rho_cu/(np.pi*r_cond[k]**2)
        r = t*( ca )*ll + R_add[k]
        print(f'k={k},R_k={r}')
        R[k] = r
    return R
sp = './results/multilayer_faults_combined.tex'
42def analysis(Z,V_term, R_i,nF=0,wm='a',ss='a'):
    """ perform analysis on the matrix """
    cZ = np.linalg.cond(Z)
    print(str_matrix(Z,label=f'Z_{ss} ='))
    print('condition of Z: cond(d) =',cZ)
    Y = np.linalg.inv(Z)
    print(str_matrix(Y,label=f'Y_{ss} ='))
    V = V_term * np.ones((Z.shape [0],1))
    if nF > 0:
        V[-nF:] = 0
    print(str_matrix(V,label=f'V_{ss} ='))
    I = np.matmul(Y,V)
    V_Ri = np.array([R_i]).T * I
    print(str_matrix(I,label=f'I_{ss} =', phasor=True))
```

141

```
print(str_matrix(V_Ri,label='V_Ri =', phasor=True))
    It = np.sum(I[:-nF]) if nF > 0 else np.sum(I)
# It = np.sum(I)
Zt = V_term / It
print(f'I_{ss}t =', It,'=', vector_formatter(It))
print(f'Z_{ss}t =', Zt,'=', vector_formatter(Zt))
# save_matrix_as_tex(M=L,mat_label=f' L_{ss}', savepath=sp, description='',
write_mode=wm,sigfig=4, as_decimal=False)
save_matrix_as_tex(M=Z,mat_label=f' Z_{ss}', savepath=sp, description='impedance
matrix',write_mode=wm,sigfig=4, as_decimal=False)
save_matrix_as_tex(M=I,mat_label=f'I_{ss}', savepath=sp,description='current
vector',write_mode='a',sigfig=4,as_decimal=False)
save_as_tex(M=It,label=f'I_total{ss}', savepath=sp, description='total current',
write_mode='a',sigfig=4)
save_as_tex(M=Zt,label=f'Z_total{ss}',savepath=sp,description='total impedance',
write_mode='a',sigfig=4)
# save_matrix_as_tex(M=Z_bs,mat_label=f'Z_{ss}', savepath=sp, description='',
write_mode='a',sigfig=4, as_decimal=False)
__name__ == '__main__':
untuned_turns = [41]*3
# tuned_turns = [41,37,37] # all 24awg, for 1 ohm R_sense
tuned_turns = [41,37,37] # all 24awg, for 10 ohm R_sense
# tuned_turns = [41,35+0,35-1] # 24,28,28 awg
radii = [mm2m*d*.5 for d in [50,54,58]]
Ri = [10]*3 # current sensing resistors
untuned_heights = [t*(r_cond[0]+c_ins)*2-2*c_ins for i,t in enumerate(
untuned_turns)]
tuned_heights = [t*(r_cond[i]+c_ins)*2-2*c_ins for i,t in enumerate(tuned_turns)]
# L_untuned, Z_untuned = sheet_reactor(untuned_turns,radii,untuned_heights, R_add=
Ri)
# L_tuned, Z_tuned = sheet_reactor(tuned_turns,radii,tuned_heights, R_add=Ri)
# L_untuned_f,Z_untuned_f = sheet_reactor_faulted(untuned_turns,radii,
untuned_heights, R_add=Ri)
# L_tuned_f,Z_tuned_f = sheet_reactor_faulted(tuned_turns,radii,tuned_heights,
R_add=Ri)
#
# print(str_matrix(L_untuned,label=' L_untuned ='))
# analysis(Z=Z_untuned,V_term=0.66, R_i=Ri,wm='w',ss='ut')
#
# print(str_matrix(L_untuned_f,label='L_untuned_f ='))
```

```
# analysis(Z=Z_untuned_f,V_term=0.66, R_i=Ri+[0],nF=1,ss='utf')
#
# print(str_matrix(L_tuned,label='L_tuned ='))
# # print(str_matrix(Z_tuned,label='Z_tuned ='))
# analysis(Z=Z_tuned,V_term=0.62, R_i=Ri,ss='t')
#
# print(str_matrix(L_untuned_f,label=' L_untuned_f ='))
# analysis(Z=Z_untuned_f,V_term=0.66, R_i=Ri+[0],nF=1,ss='tf')
# plt = turn_model( turns=tuned_turns,
# radii=radii,
# heights=tuned_heights,
# r_conds=r_cond,
# s=[0]*3,
# c=['#000']*3,
# lw=0.3)
# plt.show()
# L_t2t_ut, Z_t2t_ut = t2t_reactor(untuned_turns,radii,untuned_heights, R_add=Ri)
# print(str_matrix(L_t2t_ut,label=' L_t2t_untuned ='))
# print(str_matrix(Z_t2t_ut,label='Z_t2t_untuned ='))
# analysis(Z=Z_t2t_ut,V_term=0.66, R_i=Ri)
#
# L_t2t_t, Z_t2t_t = t2t_reactor(tuned_turns,radii,tuned_heights,R_add=Ri)
# print(str_matrix(L_t2t_t,label=' L_t2t_tuned ='))
# print(str_matrix(Z_t2t_t,label=' Z_t2t_tuned ='))
# analysis(Z=Z_t2t_t,V_term=0.62, R_i=Ri)
# prefault plots
turn_model(turns=untuned_turns,radii=radii,
                    heights=untuned_heights,r_conds=r_cond,
                    s=0, c=['#000']*3,lw=[0.5]*3)
plt.savefig('./figs/untuned_mutlilayer_pref.png',dpi=600,bbox_inches='tight')
turn_model(turns=tuned_turns,radii=radii,
                    heights=tuned_heights,r_conds=r_cond,
                    s=0, c=['#000']*3, lw=[0.5]*3)
plt.savefig('./figs/tuned_mutlilayer_pref.png',dpi=600,bbox_inches='tight')
# fAULTED PLOTs
# turn_model(turns=untuned_turns+[1],radii=radii+[radii[0]],
# heights=untuned_heights + [0],r_conds=r_cond,
# s=0, c=['#000']*3+['#a00'],1w=[0.5]*3+[1])
# plt.savefig('./figs/untuned_mutlilayer_f21.png',dpi=600,bbox_inches='tight')
```

```
237 #
# turn_model(turns=tuned_turns+[1],radii=radii+[radii[0]],
# heights=tuned_heights+[0],r_conds=r_cond,
# s=0, c=['#000']*3+['#a00'],lw=[0.5]*3+[1])
# plt.savefig('./figs/tuned_mutlilayer_f21.png',dpi=600,bbox_inches='tight')
#
# sheet_model(radii=radii+[radii [0]],
# heights=[t*r_cond[0]*2 for t in untuned_turns]+[2*r_cond[0]],
    s=[0]*4,c=['#000']*3+['#f00'],a=[.2]*3+[.8])
# plt.savefig('./figs/untunedMultilayer_sheetModel_f21.png',dpi=600,bbox_inches='
tight')
#
# sheet_model(radii=radii+[radii [0]],
# heights=[t*r_cond[0]*2 for t in tuned_turns]+[2*r_cond[0]],
# s=[0]*4,c=['#000']*3+['#f00'],a=[.2]*3+[.8])
# plt.savefig('./figs/tunedMultilayer_sheetModel_f21.png',dpi=600,bbox_inches='
tight')
plt.show()
```


## D. 8 Model Reactor and Faults

This script is the program used to generate the results for this thesis, and extended results data given in appendix $C$

```
#!/bin/python3
2
3 import numpy as np
4from util import str_matrix, vector_formatter, increment_name, cofactor,
    coupling_coef
5 from fawzi_and_burke_methods import Ci_1#, Ci_2, Ci_same_R, Cb
6 from fawzi_and_burke_methods import geometry_mat, turns_mat
7# from reactor_behavior.component_matrix_modeling import geometry_mat, turns_mat
8import matplotlib.pyplot as plt
9
10# from simple_behavior import resistances, base_definition
11
12 import sys
13
14 from tex_util import tex_report, save_matrix_as_tex, save_as_tex
15
16 V_term = 238_000 / 4
17 print(f'V-term = {V_term}')
1 8
```

```
19## parameters from tuning in simple_behavior.py
turns = [1327, 1187, 1093, 1029, 985, 956, 938, 929, 928, 935] # good enough from
        tuning after fixing coupling.
    radii = np.linspace(0.7,1.15,10) # radii of the reactor layers
22 RH = 3.1 # reactor height
23 r_cond = 0.001184 # conductor radii (for some resistance uses)
24# R_dc_eq=8 # target rquivelant resistance for the reactor
25 R_dc_eq=0.9 # target rquivelant resistance for the reactor
26G = geometry_mat(radii,RH)
27 mu0 = 4*np.pi*10**(-7)
28
29 def geometry_mat(radii, h, h_frac=1, z=0):
        " ""
        calculate Ci (compitationally intense process) for each radii, using
        radii: 1d list of radius values
        h : height of the layers, single value or list (for turns density)
        h_frac : fraction of the height (used for actual fault height, otherwise 1)
        z : concentric seperation, z=0 is at h/2 (centered vertically)
        " " "
        nr = len(radii)
        # print('geometry_mat : radii =',radii,len(radii))
        Cr = np.zeros((nr,nr))
        if not type(h)==list:
            h = [h] * len(radii)
        if not type(h_frac)==list:
        h_frac = [h_frac] * len(radii)
        # print(f'package heights = {h} [m]')
        if not type(z)==list:
            z = [z]*len(radii)
        for i in range(nr):
            for j in range(i,nr):
            s = abs(z[i] - z[j])
            l1 = 0.5*h[i] * h_frac[i]
            l2 = 0.5*h[j] * h_frac[j]
            z1 = (l1 + l2 + s)
            z2 = (l1 - l2 + s)
            z3 = (-11 - 12 + s)
```

```
            z4 = (-11 + 12 + s)
            R1 = radii[i]
            R2 = radii[[j]
            C_z1 = Ci_1(R1,R2,z1)
            C_z2 = Ci_1(R1,R2,z2)
            C_z3 = Ci_1 (R1,R2,z3)
            C_z4 = Ci_1(R1,R2,z4)
            c = ( 1/(h[i]*h[j]) ) * ( (R1*R2)**(3/2) ) * ( (C_z1 - C_z2) + (C_z3 -
        C_z4) )
            Cr[i,j] = c
            Cr[j,i] = c
    return Cr
def fault_test(fault_layer=[0], fault_z=[0]):
    " " "
    Parameters:
    - fault_layer : list of layers to place a fault in
    - fault_z : list of seperation from z=0 (center of reactor, aka RH/2) of the
    fault
83
84 in what way does this work?
851) Lump parameters around the fault to minimize computation and condition:
6[pack 1] ... [fault package] ... [pack n]
87
88 2) generate a geometry and turns matrix, check coupleing coeff and condition
89
903) calcualte resistance by defining the resistance at the terminals and scaling it by
        (turns)/(avg. turns)
924) generate Z matrix: R + 120j*pi*L
93
945) perturb the minimal matrix
    Note: the mutual between the short and the fault will appear larger than
            that between the fault and the pakcage it occurs in because the parameters
    are lumped.
    " " "
    # fault_layer = 0
    mod_radii = list(radii)
    mod_turns = turns
    nl = len(mod_radii)
    avg_turns = np.sum(mod_turns)/len(mod_turns)
```

```
R = [ R_dc_eq * t/avg_turns for t in mod_turns] # resistace array, based on DC
```

R = [ R_dc_eq * t/avg_turns for t in mod_turns] \# resistace array, based on DC
equiv.
equiv.

# print(R)

# print(R)

fault_turns = []
fault_turns = []
fault_radii = []
fault_radii = []
fault_z_off = []
fault_z_off = []
fault_h_frac = []
fault_h_frac = []
fault_R_values = []
fault_R_values = []
faulted_R = R+[]
faulted_R = R+[]
for k,fl in enumerate(fault_layer):
for k,fl in enumerate(fault_layer):
fault_turns.append(1) \#turns[fl])
fault_turns.append(1) \#turns[fl])
fault_radii.append(radii[fl])
fault_radii.append(radii[fl])
fault_z_off.append(fault_z[k])
fault_z_off.append(fault_z[k])
fault_h_frac.append(1/turns[fl])
fault_h_frac.append(1/turns[fl])
\# Resistance values:
\# Resistance values:
r_turn = R_dc_eq/avg_turns \# resistance of a single turn (approx resistance
r_turn = R_dc_eq/avg_turns \# resistance of a single turn (approx resistance
of a fault)
of a fault)
fault_R_values.append(r_turn)
fault_R_values.append(r_turn)
faulted_R[fl] += r_turn
faulted_R[fl] += r_turn

# print('fault_radii =',fault_radii)

# print('fault_radii =',fault_radii)

# print('fault_turns =',fault_turns)

# print('fault_turns =',fault_turns)

# print('fault_z_off =',fault_z_off)

# print('fault_z_off =',fault_z_off)

# print('fault_z_frac =',fault_h_frac)

# print('fault_z_frac =',fault_h_frac)

# 

# 

# print('fault_R_values =',fault_R_values)

# print('fault_R_values =',fault_R_values)

# print('faulted_R =', faulted_R)

# print('faulted_R =', faulted_R)

nf = len(fault_turns)
nf = len(fault_turns)
Gp = geometry_mat(radii = mod_radii + fault_radii,
Gp = geometry_mat(radii = mod_radii + fault_radii,
h = ([RH]*nl) + ([RH*fh for fh in fault_h_frac]),\#([RH]*nf),
h = ([RH]*nl) + ([RH*fh for fh in fault_h_frac]),\#([RH]*nf),
h_frac = ([1]*nl) + ([1]*nf),\#fault_h_frac,
h_frac = ([1]*nl) + ([1]*nf),\#fault_h_frac,
z = ([0]*nl)+fault_z_off)
z = ([0]*nl)+fault_z_off)

# print(str_matrix(Gp,label='Gp ='))

# print(str_matrix(Gp,label='Gp ='))

# sys.exit() \# Test break ------------------------------------------------------------------

# sys.exit() \# Test break ------------------------------------------------------------------

N = turns_mat(mod_turns)
N = turns_mat(mod_turns)
L}=(2*np.pi*mu0)*N*
L}=(2*np.pi*mu0)*N*

# L = base_definition(turns)

# L = base_definition(turns)

# print(str_matrix(G,label='G ='))

```
# print(str_matrix(G,label='G ='))
```

```
# print(str_matrix(N,label='N =', as_decimal=True))
```


# print(str_matrix(N,label='N =', as_decimal=True))

# print(str_matrix(L,label='L =', as_decimal=True))

# print(str_matrix(L,label='L =', as_decimal=True))

# print(str_matrix(coupling_coef(L),label='K =', as_decimal=True))

# print(str_matrix(coupling_coef(L),label='K =', as_decimal=True))

# 3 resistance: (is futile)

# 3 resistance: (is futile)

# R_dc_eq = 0.9

# R_dc_eq = 0.9

# 4) Z matrix:

# 4) Z matrix:

Z = np.diag(R) + 120j * np.pi * L
Z = np.diag(R) + 120j * np.pi * L
Y = np.linalg.inv(Z)
Y = np.linalg.inv(Z)

# I = np.sum(Y,axis=1)

# I = np.sum(Y,axis=1)

# V = np.array([[1]*10]).T

# V = np.array([[1]*10]).T

V = np.array([[V_term]*10]).T
V = np.array([[V_term]*10]).T
I = np.matmul( Y, V )
I = np.matmul( Y, V )
I_T = np.sum(I)
I_T = np.sum(I)

# print(str_matrix(Z,label='Z ='))

# print(str_matrix(Z,label='Z ='))

# print(str_matrix(Y,label='Y =',phasor=True))

# print(str_matrix(Y,label='Y =',phasor=True))

# 5) perturbation:

# 5) perturbation:

# print('fault radii =',fault_radii)

# print('fault radii =',fault_radii)

# mod_radii.append(fault_radii)

# mod_radii.append(fault_radii)

# input(f'{mod_radii} {len(mod_radii)}')

# input(f'{mod_radii} {len(mod_radii)}')

# Gp = geometry_mat(mod_radii + [fault_radii*1.OOO],[RH]*len(mod_radii) + [RH/

# Gp = geometry_mat(mod_radii + [fault_radii*1.OOO],[RH]*len(mod_radii) + [RH/

fault_turns])
fault_turns])

# Gp = geometry_mat(mod_radii, [RH]*len(mod_radii) + [RH/fault_turns])

# Gp = geometry_mat(mod_radii, [RH]*len(mod_radii) + [RH/fault_turns])

Np = turns_mat(mod_turns + [1]*nf)
Np = turns_mat(mod_turns + [1]*nf)
Lp = (2*np.pi*muO)*Np*Gp
Lp = (2*np.pi*muO)*Np*Gp
mat_label=[f,{k}, for k in range(nl+nf)]
mat_label=[f,{k}, for k in range(nl+nf)]

# print(str_matrix(coupling_coef(Lp),label='Kp =', as_decimal=True))

# print(str_matrix(coupling_coef(Lp),label='Kp =', as_decimal=True))

# print(str_matrix(Gp,label='Gp =', row_labels=mat_label, col_labels=mat_label ))

# print(str_matrix(Gp,label='Gp =', row_labels=mat_label, col_labels=mat_label ))

# print(str_matrix(Np,label='Np =', as_decimal=True, row_labels=mat_label,

# print(str_matrix(Np,label='Np =', as_decimal=True, row_labels=mat_label,

col_labels=mat_label ))
col_labels=mat_label ))

# print(str_matrix(Lp,label='Lp =', as_decimal=False, row_labels=mat_label,

# print(str_matrix(Lp,label='Lp =', as_decimal=False, row_labels=mat_label,

col_labels=mat_label ))
col_labels=mat_label ))

# print(mod_radii + fault_radii)

# print(mod_radii + fault_radii)

Rp = faulted_R + fault_R_values
Rp = faulted_R + fault_R_values

# print('Rp =',Rp)

# print('Rp =',Rp)

# form the perturbed Z:

# form the perturbed Z:

Zp = np.diag(Rp) + 120j * np.pi * Lp
Zp = np.diag(Rp) + 120j * np.pi * Lp

# print(str_matrix(Zp,label='Zp =', as_decimal=False, row_labels=mat_label,

# print(str_matrix(Zp,label='Zp =', as_decimal=False, row_labels=mat_label,

col_labels=mat_label ))

```
col_labels=mat_label ))
```

```
# fix the self and mutual elements between the faults and the layers to reflect
the losses in turns:
z_shape = Z.shape
print(f'Z prefault shape: {z_shape}')
n_f = len(fault_layer)
dZ = np.zeros(z_shape, dtype='complex')
for k in range(nf):
    dzM = Zp[0:z_shape[0], z_shape[1]+k] # changes to be applied to the reactor
mutuals
    # print('dzM',dzM)
    # print('dzM', Zp [z_shape[1]+k,0:z_shape [0]])
    # print('insert into:', z_shape[0], fault_layer [k])
    dZ[0:z_shape[0], fault_layer[k]] += dzM
    if fault_layer[k] > 0:
                dZ[fault_layer[k],0:fault_layer[k]] += dzM[0:fault_layer [k]]
            dZ[fault_layer[k],fault_layer[k]+1:z_shape[1]] += dzM[fault_layer[k]+1:]
        elif fault_layer [k] >= z_shape[0]-1: # if it's the last row
            dZ[fault_layer[k],0:z_shape[1]-1] += dzM[:-1]
        else: # it's the first row
            dZ[fault_layer[k],1:z_shape[1]] += dzM[1:] # works
    dZ[fault_layer[k],fault_layer[k]] += Zp[z_shape[0]+k, z_shape [1] +k]
    # print(str_matrix(dZ,label='dZ =')) # check that all the changes are in the
right places
Zp[0:z_shape[0],0:z_shape[1]] += -1*dZ # add the change to the faulted matrix
    # input('hold')
print(str_matrix(Z-Zp[0:z_shape[0],0:z_shape[1]],label='Z-Zp =')) # double check
the changes
Yp = np.linalg.inv(Zp)
# Ip = np.sum(Yp[:,: -1], axis=1)
# Vp = np.array([[1]*nl+[0]*nf]).T
Vp}=n\mp@code{np.array([[V_term]*nl+[0]*nf]).T
Ip = np.matmul( Yp, Vp )
Ip_T = np.sum(Ip [:nl])
I_labels = [f'{j}' for j in range(len(I))]
# print(str_matrix(Zp,label='Zp ='))
# print(str_matrix(Yp,label='Yp =', phasor=False))
# print(str_matrix(Yp,label='Yp =', phasor=True))
# print(str_matrix(Vp,label='Vp ='))
```

```
    # print(str_matrix(I[0: z_shape[0]], label='I =', phasor=True, row_labels=I_labels
    +[]))
    # print(str_matrix(I[0:z_shape[0]], label='I =', phasor=False, row_labels=I_labels
    +[]))
    print('I_T =', vector_formatter(I_T))
    print('Z_T =', vector_formatter(V_term/I_T),'=', V_term/I_T)
    print(str_matrix(Ip[0:z_shape[0]], label='Ip =', phasor=True,
                    indicators=[l for l in fault_layer]))#,
                    # row_labels=I_labels+[f'f{k}', for k in range(nf)]))
    print(str_matrix(Ip[0:z_shape[0]],label='Ip =', phasor=False,indicators=[len(Ip)
    -1]))#,row_labels=I_labels+[f'f{k}, for k in range(nf)]))
    print('Ip_T =', vector_formatter(Ip_T))
    print('Ip_T=', vector_formatter(V_term/Ip_T),'=', V_term/Ip_T)
    print(',average no. turns:', np.average(turns))
    return I, I_T, Ip, Ip_T, L, Z, Lp, Zp
    FS = 2 # fault step
    fault_z_range = 0.4 #
    # for l in range(2):
    I = []
    # for l in [0,1,4,7,9]:#range(len(turns)):
    # for l in [0,4]:#range(len(turns)):
    for l in range(len(turns)):
        models = {}
        m_desc}={
        I_total = []
        Ip_total=[]
        nF=[]
        for nf in [2,10,20,40,100,150,200]:#range(2,NF,FS): # number of faults
            # I, I_T, Ip, Ip_T, L, Z, Lp, Zp = fault_test(fault_layer=[l]*nf, fault_z
    = [0])
            I, I_T, Ip, Ip_T, L, Z, Lp, Zp = fault_test(fault_layer=[l]*nf,
                fault_z=[(RH/turns[l])*(i-.5*nf) for
    i in range(nf)])
        print(I)
        I_total.append(I_T)
```

```
    Ip_total.append(Ip_T)
```

    Ip_total.append(Ip_T)
            nF.append(nf)
            nF.append(nf)
            Z_T = 1/I_T
            Z_T = 1/I_T
            Zp_T = 1/Ip_T
            Zp_T = 1/Ip_T
            # models[f''I_ {{p\;{I},nf={nf}}}'] = Ip
            # models[f''I_ {{p\;{I},nf={nf}}}'] = Ip
            models[f'I_{{pT\;{l},nf={nf}}}'] = Ip_T
            models[f'I_{{pT\;{l},nf={nf}}}'] = Ip_T
            # models[f'Z_{{pT\;{l},nf={nf}}}'] = Zp_T
            # models[f'Z_{{pT\;{l},nf={nf}}}'] = Zp_T
            # m_desc[f'I_{{p\;{l},nf={nf}}}'] = f'current vector for {nf} faults in
            # m_desc[f'I_{{p\;{l},nf={nf}}}'] = f'current vector for {nf} faults in
    layer {l},
layer {l},
m_desc[f'I_{{pT\;{l},nf={nf}}}'] = f'total current for {nf} faults in
m_desc[f'I_{{pT\;{l},nf={nf}}}'] = f'total current for {nf} faults in
layer {l}
layer {l}
\# m_desc[f'Z_{{pT\;{l},nf={nf}}}'] = f'total impednace for {nf} faults in
\# m_desc[f'Z_{{pT\;{l},nf={nf}}}'] = f'total impednace for {nf} faults in
layer {1},
layer {1},
tex_report(models,m_desc,f'./results/MultiFault/
tex_report(models,m_desc,f'./results/MultiFault/
tuned_reactor_simple_multifault_layer{l}.tex',sigfig=8, as_decimal=True)
tuned_reactor_simple_multifault_layer{l}.tex',sigfig=8, as_decimal=True)
plt.figure()
plt.figure()
plt.suptitle(f'Total Current, with Faults in Layer {l}')
plt.suptitle(f'Total Current, with Faults in Layer {l}')
plt.subplot(211)
plt.subplot(211)
\# plt.plot(nF,np.abs(I_total),'--',label=r'$|I_{pre\,f}|$')
\# plt.plot(nF,np.abs(I_total),'--',label=r'$|I_{pre\,f}|$')
plt.plot(nF,np.abs(Ip_total),'o-',label=r'$|I_{f}|$')
plt.plot(nF,np.abs(Ip_total),'o-',label=r'$|I_{f}|$')
plt.xticks(nF)
plt.xticks(nF)
plt.ylabel(r'$|I_T|$')
plt.ylabel(r'$|I_T|$')
plt.legend()
plt.legend()
plt.subplot(212)
plt.subplot(212)
\# plt.plot(nF,np.angle(I_total, deg=True),'--', label=r'arg($I_{pre\,f}$)')
\# plt.plot(nF,np.angle(I_total, deg=True),'--', label=r'arg($I_{pre\,f}$)')
plt.plot(nF,np.angle(Ip_total,deg=True),'o-',label=r'arg($I_{f}$)')
plt.plot(nF,np.angle(Ip_total,deg=True),'o-',label=r'arg($I_{f}$)')
plt.xticks(nF)
plt.xticks(nF)
plt.xlabel('number of faults [turns]')
plt.xlabel('number of faults [turns]')
plt.ylabel(r'arg($I_T$) [$^\circ$]')
plt.ylabel(r'arg($I_T$) [$^\circ$]')
plt.legend()
plt.legend()
plt.savefig(f'./results/MultiFault/figs_2to250/I_vs_nF_layer{l}.png',dpi=600,
plt.savefig(f'./results/MultiFault/figs_2to250/I_vs_nF_layer{l}.png',dpi=600,
bbox_inches='tight')
bbox_inches='tight')
plt.show()
plt.show()
def report_singlefault():
def report_singlefault():
NF = 22 \# number of fautls
NF = 22 \# number of fautls
FS = 2 \# fault step
FS = 2 \# fault step
fault_z_range = 0.4 \#
fault_z_range = 0.4 \#

# for l in range(2):

# for l in range(2):

I = []
I = []

# for l in [0,1,4,7,9]:\#range(len(turns)):

```
# for l in [0,1,4,7,9]:#range(len(turns)):
```

```
# for l in [0,4]:#range(len(turns)):
models = {}
m_desc = {}
for l in range(len(turns)):
    I_total = []
    Ip_total = []
    Fz = []
    for fz in [-0.5,0,0.5]:#range(2,NF,FS): # number of faults
            # I, I_T, Ip, Ip_T, L, Z, Lp, Zp = fault_test(fault_layer=[l]*nf, fault_z
= [0] )
            I, I_T, Ip, Ip_T, L, Z, Lp, Zp = fault_test(fault_layer=[l],
                                    fault_z=[RH*fz])
            print(I)
            I_total.append(I_T)
            Ip_total.append(Ip_T)
            Fz.append(fz)
            Z_T = 1/I_T
            Zp_T = 1/Ip_T
            # models[f'㿟 {{p\;{l},nf={nf}}}'] = Ip
            models['I_{{pre\,F}}'] = I_T
            m_desc['I_{{pre\,F}}'] = f'total current for prefault conditions.'
            models[f''I_{{pT\;{I},fz={fz}}}'] = Ip_T
            # models[f'Z_{{pT\;{l},nf={nf}}}'] = Zp_T
            # m_desc[f'㛂{{p\;{l},nf={nf}}}'] = f'current vector for {nf} faults in
layer {l},
            m_desc[f'I_{{pT\;{l},fz={fz}}}'] = f'total current for fault at {fz} of
reactor layer height, in layer {l}.'
            # m_desc[f'Z_{{pT\;{l},nf={nf}}}'] = f'total impednace for {nf} faults in
    layer {l},
        plt.figure()
        plt.suptitle(f'Total Current, with Faults in Layer {l}')
        plt.subplot(211)
        # plt.plot(nF,np.abs(I_total),'--',label=r'$|I_{pre\,f}|$')
        plt.plot(Fz,np.abs(Ip_total),'o-',label=r'$| I_{f}|$')
        plt.xticks(Fz)
        plt.ylabel(r'$|I_T|$')
        plt.legend()
        plt.subplot(212)
        # plt.plot(nF,np.angle(I_total,deg=True),'--', label=r'arg($I_{pre\,f}$)')
        plt.plot(Fz,np.angle(Ip_total,deg=True),'o-',label=r'arg($I_{f}$)')
        plt.xticks(Fz)
```

```
        plt.xlabel('vertical position of fault')
        plt.ylabel(r'arg($I_T$) [$^\circ$]')
        plt.legend()
        plt.savefig(f'./results/SingleFault/figs/I_vs_Fz_layer{l}.png',dpi=600,
    bbox_inches='tight')
    tex_report(models,m_desc,f'./results/SingleFault/tuned_reactor_moving_singlefault
    .tex',sigfig=8, as_decimal=True)
    # plt.show()
358 if __name__ == "__main__":
    # report_multifault()
    report_singlefault()
```

356
357 \#

