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Abstract 

 Speciation, the means through which new species arise, is of central interest to 

biology. Recent theoretical, methodological, and computational advances have allowed 

researchers to study speciation at scales that were once impossible. This dissertation builds 

on existing literature to arrive at conclusions regarding the estimation of diversification rates 

from molecular phylogenies and characterize nuclear and mitochondrial genetic patterns in 

western North American chipmunks (Tamias, subgenus Neotamias), a system that has 

experienced rapid diversification in the face of gene flow. 

 Rates of diversification and extinction can be inferred from phylogenies using a 

series of statistical approaches. However, parameter estimates should be affected by errors 

introduced during phylogenetic estimation. I conducted a simulation study to assess the 

impact of molecular clocks and tree priors on the estimates of diversification rates. I found 

that the choice of molecular clock and choice of tree prior do not impact estimates of 

diversification rates except in circumstances of extreme mismatch (e.g., assuming a single-

rate clock when extreme rate heterogeneity is present). 

 Previous work describes widespread mitochondrial introgression in chipmunks. To 

generate data sufficient to characterize evolutionary patterns in central and southern Rocky 

Mountains chipmunks, I use an exon capture technique to sequence thousands of loci from 

51 individuals across 6 species of chipmunks. I assemble and characterize mitochondrial 

genomes from all individuals. Phylogenetic analyses indicated rampant mitochondrial 

introgression; subsequent tests suggest that selection at protein-coding genes does not appear 

to be governing introgression. I conclude that demographic factors, such as population 

expansion, provide a likely explanation of the patterns of introgression in these species. 
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I conducted a nuclear phylogenomic analysis, using data from thousands of nuclear 

loci and resolved the relationships among the six species using a mix of traditional and 

species-tree estimation approaches. I characterized the genomics of this system using several 

population genetic approaches and find little nuclear introgression, suggesting that the 

nuclear genome is resistant to introgression in the face of widespread mitochondrial 

introgression. I conducted these analyses in the absence of a reference genome and provide 

pipelines and suggestions for genomic inferences in non-model systems. 
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Chapter 1 

Introduction 

Speciation biology is synthetic, and it incorporates data from across many sub-

disciplines of biology to draw conclusions about how species form and, ultimately, explain 

life’s diversity (Coyne and Orr 2004; Seehausen et al. 2014). A PubMed search reveals that 

1,657 papers were published in 2013 that included the term “speciation,” and the number of 

papers published each year has been steadily increasing since 2000. This is not surprising. 

The early 2000s marked the transition to the “Genomic Era” of modern biology (Guttmacher 

and Collins 2003), and with it came the ability to generate datasets that were once 

impossible or cost-prohibitive. 

Prior to the advent of high-throughput sequencing technologies, models had been 

developed with the goal of explaining and characterizing genomic patterns of divergence. 

These models, coupled with evidence that hybridization and introgression appears frequently 

in natural systems (Funk and Omland 2003; Mallet 2005, 2007), focused attention on the 

notion that reproductive isolation between lineages does not necessarily occur 

instantaneously. Commonly referred to as “divergence (or speciation) with gene flow” 

models (Wu 2001; Pinho and Hey 2010), these conceptualizations emphasize that 

reproductive isolation between incipient lineages occurs gradually. Furthermore, species can 

still be characterized as “good” species and not be reproductively isolated. Under these 

models, genomic divergence increases with time, driven by genetic hitchhiking, until 

isolation is complete. However, characterizing genome-wide patterns of divergence requires 

sequencing technologies and computational approaches that were, until recently, unavailable 

outside of model systems.  
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It is now possible to obtain data from hundreds or thousands of markers from 

multiple individuals and test hypotheses in a system of interest. This can be done with or 

without a reference genome (e.g., Hodges et al. 2007, 2009; Bi et al. 2012) and is therefore 

applicable to non-model systems. Genomic datasets provided the basis for two new fields: 

population genomics (Jorde et al. 2001; Charlesworth 2010) and phylogenomics (Eisen 

1998; Delsuc et al. 2005). This dissertation draws from these fields and explores speciation 

using phylogenetic simulations and empirical characterization of a natural system. 

 Chapter 2 focuses on estimating diversification rates from phylogenies. A series of 

models have been developed that take information present in phylogenies, such as branching 

times, and estimate diversification parameters (e.g., net rate of diversification or relative rate 

of extinction) from them (e.g., Yule 1925; Kendall 1948; Nee et al. 1994a,b; Gernhard 2008; 

Stadler 2013). However, parameters are closely tied to the phylogenies from which they are 

estimated; if error is introduced while estimating the phylogeny, results may be incorrect or 

biased. Only a handful of studies have investigated the impact of phylogenetic error on 

inferring diversification rates, focusing on model misspecification (Revell et al. 2005), error 

in branch length estimates (Wertheim and Sanderson 2011), and incomplete taxonomic 

sampling (Höhna 2014). 

 This chapter assesses the impact of tree priors and molecular clocks on estimates of 

diversification parameters. Specifically, I simulated trees by sampling from the prior under 

several combinations of tree priors and molecular clocks using BEAST v1.7.5 (Drummond 

et al. 2012). I then simulated data on these trees and estimated trees from the sequence data 

under all combinations of tree priors and molecular clocks. Finally, I estimated 

diversification parameters from the resulting posterior distributions. This approach allowed 
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me to assess the impact of phylogenetic misspecification (of the tree prior, molecular clock, 

or both) on estimates of diversification parameters by comparing parameter estimates from 

the original trees to trees generated under match and mismatch conditions. 

 Chapters 3 and 4 investigate evolutionary patterns in chipmunks (Sciuridae: Tamias). 

Chimpunks consist of 25 species. One species, Tamias sibiricus (subgenus Eutamias), is 

distributed throughout eastern Asia. The remaining 24 are distributed throughout North 

America, with one species, T. striatus (subgenus Tamias) inhabiting eastern North America 

and the remaining 23 (subgenus Neotamias) inhabiting western North America. Chipmunks 

are stark niche partitioners with narrow zones of contact (Heller 1971; Heller and Gates 

1971), and species distributions can be governed by competitive exclusion (e.g., Brown 

1971). Furthermore, individuals can be assigned to species based on a morphological 

character, the baculum or os penis, providing a reliable, non-genetic means of species 

identification. 

Over a decade of work has used a single mitochondrial locus (cytochrome b) in 

concert with nuclear loci and microsatellites to describe genetic patterns in chipmunks 

(Good et al. 2003, 2008; Hird and Sullivan 2009; Hird et al. 2010; Reid et al. 2010, 2012; 

Sullivan et al. 2014). One of the most surprising outcomes from this work is the extent of 

mitochondrial introgression. Mitochondrial introgression is pervasive and, as a result, 

hinders systematic resolution within the genus (Good et al. 2008; Reid et al. 2012). To 

combat these issues, Reid et al. (2012) sequenced reproductively-associated proteins in an 

attempt to resolve species relationships. While the analysis produced the most resolved 

chipmunk phylogeny to date, several nodes presented with low statistical support. 
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These two chapters focus on a subgroup of western North American chipmunks, the 

T. quadrivittatus group, consisting of six species (T. canipes, T. cinereicollis, T. dorsalis, T. 

quadrivittatus, T. rufus, and T. umbrinus). Using a targeted exon capture protocol designed 

for chipmunks using a pooled-tissue transcriptome (Bi et al. 2012), I was able to obtain data 

for thousands of loci spanning the diversity of this group. The analysis of this data was 

broken into two separate studies. 

Chapter 3 focuses on describing patterns of mitochondrial introgression using whole 

mitochondrial genomes. A draft mitochondrial genome was included as part of probes 

designed for exon capture, and an iterative assembly approach (ARC; Hunter et al. in prep; 

https://github.com/ibest/ARC) was used to assemble a mitochondrial genome for each 

individual. Here, I focus on investigating patterns of introgression within the T. 

quadrivittatus group; specifically, I am interested in characterizing the mitochondrial 

genomes, estimating a phylogeny, and testing for evidence of positive selection using a 

myriad of approaches. If there is evidence for selection, it could provide an explanation of 

the widespread introgression in this system. If, however, I fail to detect signatures of 

selection, I would favor an alternative hypothesis: demographic factors, such as population 

expansion, explain patterns of introgression (e.g., Klopfstein et al. 2006; Currat et al. 2008; 

Excoffier et al. 2009). 

Chapter 4 provides a contrast to work in Chapter 3, focusing on the nuclear genome. 

In light of extensive mitochondrial introgression, the next logical step is to document the 

extent of nuclear introgression. In addition, there are still outstanding questions concerning 

the systematic relationships among the six species. In order to investigate these questions, I 

use ARC to generate a set of contigs for each individual that are based on the sequences 
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used to design exon capture probes. The resulting set of contigs was processed to generate 

two datasets: a reduced dataset consisting of approximately 220,000 base pairs across ~1000 

contigs to be used for phylogenetic inference, and a set of variants called against the 

assembly from a single individual to be used in population genomic analyses. I estimated 

phylogenies using a series of classical (i.e., concatenation) and species-tree (e.g., Maddison 

1997; Edwards 2009) approaches that explicitly account for discordance among loci. 

Furthermore, I estimated population genetic statistics (e.g. FST, FIS, HO, etc.) for species or 

species pairs in addition to individual coancestry to describe patterns of admixture among 

species. 

In conclusion, this dissertation consists of three chapters. Chapter 2 uses 

phylogenetic simulations to assess the impact of tree prior and molecular clock 

misspecification on phylogenetic estimates of diversification rates. Chapter 3 describes the 

assembly of chipmunk mitochondrial genomes, their characteristics, and tests for selection 

as the driving force of mitochondrial introgression. Chapter 4 characterizes nuclear patterns 

of introgression, estimates population genetic parameters, and uses a series of phylogenetic 

approaches to resolve the systematics of central and southern Rocky Mountains chipmunks. 
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Chapter 2 

 
The Choice of Tree Prior and Molecular Clock Does Not Substantially Affect 

Phylogenetic Inferences of Diversification Rates 
 

Abstract 

Comparative methods allow researchers to make inferences about evolutionary 

processes and patterns from phylogenetic trees. In the majority of studies, the phylogeny is 

assumed to be estimated without error. However, estimating trees can be error prone for a 

variety of reasons. Sources of error introduced throughout the process, and their impact on 

comparative parameters, has only been investigated in a handful of studies. Additionally, 

this error may systematically bias phylogenetic estimation and, therefore, estimation of 

parameters. Here, we focus on the impact of priors in Bayesian phylogenetic inference and 

evaluate how it affects the estimation of parameters in macroevolutionary models of lineage 

diversification. Specifically, we use BEAST to simulate trees under combinations of tree 

priors and molecular clocks, simulate sequence data, estimate trees, and estimate 

diversification parameters (e.g., speciation rates and extinction rates) from these trees. We 

find that the choice of tree prior and molecular clock has relatively little impact on the 

estimation of diversification rates, insofar as the sequence data are sufficiently informative 

and rate heterogeneity among lineages is low to moderate. When rate heterogeneity is large, 

parameter estimates deviate substantially from those estimated under the simulation 

conditions. Therefore, the impact of priors on phylogenetic analyses should be assessed 

before using phylogenetic trees to infer rates of diversification. 
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Introduction 

 Statistical comparative methods use phylogenetic trees to gain insight into large 

scale, macroevolutionary patterns (Felsenstein 1985; Harvey and Pagel 1991; Pennell and 

Harmon 2013). Branch lengths and node ages provide information about the rate of lineage 

accumulation throughout time (e.g., Nee et al. 1994b; Nee 2006; Ricklefs 2007; Pyron and 

Burbrink 2013). Approaches use a point estimate of a phylogenetic tree or a distribution of 

trees to estimate macroevolutionary parameters, such as the rate of lineage accumulation 

(speciation) or extinction, which are often compared across groups to provide insight into 

diversification rates and the tempo of evolution (Nee et al. 1992; Magallón and Sanderson 

2001; Alfaro et al. 2009). However, parameter estimates are dependent on the tree from 

which they are inferred (Felsenstein 1985). Most inference procedures assume that a tree is 

estimated without error (Felsenstein 1985, 2004), but, because branching times and branch 

lengths are critical to estimates of diversification parameters, inaccurate phylogenies can be 

expected to yield unreliable estimates. A handful of studies have focused on the causes of 

parameter misestimation when fitting diversification models to trees (e.g., Nee et al. 1994b; 

Barraclough and Nee 2001; Revell et al. 2005; Cusimano and Renner 2010; Rabosky 2010; 

Wertheim and Sanderson 2011), but few studies have evaluated error in phylogenetic 

estimation explicitly (but see Revell et al. 2005). 

 While a definitive characterization of the impact of phylogenetic error remains at 

large, recent theoretical advances have expanded the scope of phylogenetic comparative 

methods. Previously, only models that assumed a constant rate of lineage diversification or 

extinction existed. Current methods can use phylogenies to determine where shifts in the 

rates of speciation and extinction take place (e.g., Rabosky 2006a, 2006b, 2014; Alfaro et al. 
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2009) or estimate rates that depend on species’ traits (e.g., Maddison et al. 2007; FitzJohn et 

al. 2009; FitzJohn 2010). However, phylogenetic error can directly affect results. For 

example, Revell et al. (2005) demonstrated that underparameterization of the model of 

nucleotide sequence evolution as part of the process of phylogenetic estimation can produce 

apparent slowdowns in the rate of diversification as quantified by Pybus and Harvey’s 

(2000) gamma statistic (Revell et al. 2005). Additionally, errors in branch lengths 

(Wertheim and Sanderson 2011) and biased taxonomic sampling can both affect estimates of 

diversification rates (Höhna 2014). These studies suggest that phylogenetic error can affect 

the estimation of comparative parameters. 

Bayesian methods of inference produce posterior distributions of trees, and 

comparative parameters can be estimated across such distributions to quantify error. 

Furthermore, the use of Bayesian approaches in phylogenetics has increased in recent years 

due in part to the availability of efficient software, including BEAST (Drummond et al. 

2012) and MrBayes (Ronquist et al. 2012). However, the impact that the choice of priors 

governing the molecular clock and branching processes has on the estimate of comparative 

parameters has not been thoroughly investigated. Two commonly used tree priors are the 

Yule (Yule 1925) and Birth-Death (BD; Kendall 1948; Nee et al. 1994b; Gernhard 2008; 

Stadler 2013) models. The Yule model is the simplest of a group of continuous-time 

branching processes; it has one parameter, λ, which is the instantaneous per-lineage rate of 

speciation that is constant across the tree. The BD model is also a continuous-time process 

but includes a probability that a lineage will go extinct (and, therefore, leave no 

descendants); thus, model has two parameters, λ and µ, the instantaneous per-lineage rates of 

speciation and extinction (both of which are constant across the tree). In practice, many 
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approaches re-parameterize the model and estimate r = (λ – µ) and ε = (µ / λ), the net 

diversification rate and relative extinction rate, respectively. In general, estimates of r have 

greater precision than ε (Nee et al. 1994a, 1994b; FitzJohn et al. 2009). In BEAST, 

researchers must specify a prior distribution on λ or on r and ε, depending on the choice of 

tree prior.  

Molecular clock models must also be specified; BEAST v1.7.5 gives users the 

choice of using a strict (or global) molecular clock or an uncorrelated log-normal relaxed 

molecular clock, among others (Drummond et al. 2012). The strict clock assumes a constant, 

global rate of sequence evolution across the tree (Zuckerkandl and Pauling 1962), and the 

uncorrelated log-normal relaxed clock (UCLN) assumes branch-specific rates are drawn 

from a log-normal distribution (Drummond et al. 2006). Priors are placed on the mean rate 

of evolution for the strict clock and the mean and standard deviation of the log-normal 

distribution for the uncorrelated log-normal relaxed clock. 

 Wertheim and Sanderson (2011) focus on trees generated only under the Yule 

process with a range of λ values. They simulated sequences under a simple model of 

sequence evolution (HKY85), and trees were estimated using BEAST assuming a strict 

clock and narrow prior or range of prior widths on the root age. Their study assessed the 

impact of sequence length and nodal calibrations on estimating posterior distributions of λ, 

and they found that increasing sequence length leads, as expected, to narrower 95% HPD 

widths of speciation rates. Additionally, broader calibration priors were shown to increase 

posterior widths of these estimates.  

As a result, there is precedence for the choice of priors affecting the estimation of 

diversification parameters. Similar conclusions can be drawn from first principles in 
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Bayesian statistics: strong priors influence posterior distributions. In a phylogenetic sense, it 

is plausible that forcing estimation of a tree under a particular branching process (such as a 

Yule process) may produce an inaccurate tree if the true generating process was different 

(such as a BD process); this could systematically affect diversification parameter estimates. 

Since branch lengths play an important part in estimating diversification parameters, it is 

also the case that a mismatch of clock models could similarly affect results.  

Here, we quantify the effect of tree prior and clock misspecification on parameter 

estimation for diversification models by comparing estimated values inferred under the 

generating conditions to those inferred from mismatched conditions. In order to accomplish 

this, we simulate phylogenetic trees and associated sequence data under a range of 

combinations of tree priors and molecular clock models. We re-estimate trees using BEAST 

and use these reconstructed trees to calculate maximum likelihood estimates of 

diversification rate parameters. We compare these trees to estimates from the original trees 

to evaluate whether or not prior misspecification contributes to error in estimating 

diversification rates. 

Materials and Methods 

We take advantage of existing and newly-developed applications to simulate trees 

under a variety of conditions, simulate nucleotide sequence data on these trees, estimate a 

tree from the nucleotide data, and estimate comparative parameters. The workflow is 

illustrated in Figure 1.1. All scripts are written in the R programming language (R Core 

Team 2013) and are available on GitHub (http://github.com/bricesarver/priorsims). 

Generation of initial distributions of trees 
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We simulated trees of two sizes, 25 and 100 taxa, both with a tree depth of 5 

arbitrary time units. We simulated initial trees using BEAST v1.7.5 with XML input files 

from BEAUti v1.7.5 (Drummond et al. 2012). Because BEAUti requires data in NEXUS 

format consisting of DNA sequences for each individual, we created a ‘dummy’ tree using 

TreeSim (Stadler 2011). DNA sequence data were simulated on this tree using SeqGen 

v1.3.2 (Rambaut and Grass 1997). These dummy data were only used to fix the number of 

taxa; sequence data were replaced by an empty alignment before execution by sampling 

from the prior (see below). 

The simulation process itself consisted of two steps. First, a tree prior was selected 

for each round of simulations. Of the possible choices, Yule and BD were used in this study. 

In order to avoid improbable combinations of parameters such that tree shapes were non-

randomly sampled (Pennell et al. 2012), initial parameter values were calculated using the 

expectation relating the net diversification rate, the number of taxa, and the tree height: 

 

! !!! = !!!!"  [1] 

 

where !! is the number of taxa at t, !! is the initial number of taxa, r is the net 

diversification rate (λ – µ), and t is the height of the tree (Nee 2006). For BD cases, ε is fixed 

at 0.5. 

BEAST produces chronograms and phylograms and requires the specification of a 

type of molecular clock. For the strict case, the prior on the clock rate is fixed to a log-

normal distribution of the form log-normal(1.5, log(0.125)). For the UCLN case, the prior 

on the mean of the distribution is of the form U(1.45, 1.55), and the prior on the standard 
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deviation of the distribution is U(0.17, 0.18). This log-normal prior distribution represents a 

modest-to-low amount of per-lineage rate heterogeneity. 

For the 100-taxa case, we also investigated the impact of estimating under Yule and 

BD tree priors when rates are sampled from an ‘extreme’ log-normal distribution. We placed 

a U(45, 55) prior on the mean and a U(0.95, 1.05) prior on the standard deviation, resulting 

in trees with a wide range of rates on each branch. Rates were, therefore, more variable and 

greater than in the standard UCLN case above. Other than these prior probabilities, all other 

simulations and analyses were identical to the non-extreme cases. 

We then generated a distribution of trees under these conditions using BEAST, 

sampling only from the priors. Operators were removed for fixed parameters, such as root 

height, r, ε, and λ, and left in place for parameters associated with clocks. Operators are the 

implementations of the MCMC proposal mechanisms; in other words, they governed the 

distributions from which new parameter values were drawn. Removing them fixed 

parameters at their initial value. 

Simulation of nucleotide datasets 

We generated a posterior distribution of 10,001 phylograms by sampling from the 

prior. Ten trees were selected at random without replacement. Trees were rescaled by 

multiplying branch lengths by 0.01 before simulation of nucleotide sequence data, 

effectively reducing the substitution rate to more realistic values. Alternatively, the 

distributions from which rates were drawn could be characterized by smaller values. 

Regardless, trees were rescaled to the appropriate size after estimation in BEAST. 5000 bp 

of sequence data (see Wertheim and Sanderson 2011) were simulated under a GTR+Γ model 

of nucleotide sequence evolution with parameters estimated in Weisrock et al. (2005) for 
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nuclear rRNA (πA: 0.1978, πC: 0.2874, πG: 0.3403, πT: 0.1835; rAC: 1.6493, rAG: 2.9172, rAT: 

0.3969, rCG: 0.9164 rCT: 8.4170, rGT: 1.0; α: 2.3592). Sequences were simulated on selected 

topologies using Seq-Gen v1.3.5 (Rambaut and Grass 1997) with randomly generated seeds. 

Estimation under tree prior and clock combinations 

The resulting NEXUS data files were processed using BEASTifier v1.0 (Brown 

2014). BEASTifier takes a list of NEXUS files and generates BEAST XML input files under 

conditions specified in a configuration file. Each combination of tree priors and clock types 

was used for each dataset. For example, the sequences generated using a 100 taxon tree that 

is simulated under a Yule tree prior and strict molecular clock ultimately produced four 

XML files for analysis: the condition matching the simulation conditions [e.g., a posterior 

distribution of trees using a Yule tree prior and a strict clock (1)] and all mismatch 

conditions [e.g., a posterior distribution of trees using a Yule tree prior and a UCLN clock 

(2), a BD tree prior and a strict clock (3), and a BD prior and UCLN clock (4)]. Each file 

was then processed using BEAST v1.7.5 (Drummond et al. 2012). Chains were run for 

50,000,000 generations, sampling every 5000, with a burn-in of 5,000,000 generations. 

Convergence was assessed through visual inspection of traces and verification that the ESS 

of all parameters was approximately 200 or greater. A maximum clade credibility tree was 

generated for each analysis using TreeAnnotator v1.7.5 and assuming median node heights 

and a posterior probability limit of 0.5. 

Analysis of posterior distributions and maximum clade credibility trees 

We analyzed each combination of the four possible simulation/estimation cases 

(Yule:Strict, Yule:UCLN, BD:Strict, and BD:UCLN) and number of taxa (25 or 100). First, 

each distribution of trees was rescaled to the exact root height of the original tree using 
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functions in ape (Paradis et al. 2004). This served to remove a small amount of error when 

estimating parameters because, in almost every case, the root height was not exactly 5 but 

was extremely close (e.g., 4.9997). The first 1000 trees of the posterior distribution were 

removed as a burnin. For each tree in the posterior, we estimated λ and r using the 

pureBirth() and bd() functions in the library LASER (Rabosky 2006a). The means of λ and r 

were calculated for each posterior distribution. These ten point estimates were then plotted 

for each simulation case. 

In addition, we produced lineage-through-time (LTT) plots for each replicate. The 

LTT plot of the maximum clade credibility tree produced from each analysis was plotted on 

the same graph as the original tree from which that data was simulated. Each plot, then, 

consists of LTT plots for the 10 original trees and consensus trees from the corresponding 10 

estimated posterior distributions.  

Results and Discussion 

The goal of this study is to determine the impact the choice of tree prior and 

molecular clock have on the estimation of comparative phylogenetic parameters. We 

focused our efforts on estimating λ, the rate of lineage formation, and r, the net 

diversification rate, under all combinations of two tree priors (Yule and BD) and two flavors 

of molecular clocks (strict and UCLN). While previous work describes a relationship 

between parameter estimation and misspecification of the model of nucleotide sequence 

evolution during phylogenetic estimation (Revell et al. 2005), as well as sequence length and 

nodal calibrations (Wertheim and Sanderson 2011), no studies to our knowledge have 

directly focused on the impact of tree priors and choice of molecular clocks under which 

trees are estimated.  
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We found that the combination of tree prior and clock did not substantially impact 

diversification parameter estimates. Across our simulation conditions, parameters from trees 

estimated under all combinations of tree priors and clocks were concordant with parameter 

estimates produced from the trees on which nucleotide data is simulated. When original 

trees were simulated under a Yule process, all combinations of tree priors and clocks 

produced extremely similar estimates to the parameters estimated from trees on which data 

were simulated (Fig. 1.2). Distributions overlapped across all combinations of tree priors 

and molecular clocks. Interestingly, there appeared to be some inflation of estimates as 

indicated by a noticeable increase in medians when estimating λ (Fig. 1.2, 100:Yule:Strict 

and 25:Yule:Strict λ cases). These trends were not replicated when estimating r. 

Additionally, there was a slight decrease in median estimates in the 100-taxon Yule:UCLN 

cases. LTT plots of maximum clade credibility trees indicated that the estimated trees 

generally coincide with the original trees, though the Yule:UCLN case showed greater 

discordance at nodes deeper in the tree (Fig. 1.3). This is likely attributable to sampling error 

associated with selecting 10 trees on which to simulate data, and we would expect that this 

discrepancy would be reduced if we were to perform simulations using thousands of starting 

trees. Computational limitations prohibit this in practice. 

When trees were simulated under a BD process, estimates were also concordant with 

the original trees. Medians were nearly identical among many simulation conditions (Fig. 

1.4). Parameters were slightly underestimated in a single case, the BD:UCLN estimates of λ, 

though not extremely so. LTT plots revealed that maximum clade credibility trees were, 

again, approximately equivalent to the original. There were some exceptions, again in the 

deep nodes of the trees (most clearly illustrated in the BD:UCLN case indicating non-
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overlap of the original trees and estimated trees), though these did not affect parameter 

estimation (Fig. 3). 

Extreme clock simulations revealed that it is possible for the choice of clock to have 

an impact on the estimates of results (Fig. 1.5). It is important to recognize that, in these 

circumstances, rates of evolution will be both large and highly variable among branches. 

Parameters estimated from trees inferred under conditions identical to which they were 

originally simulated are the most accurate, with estimates overlapping those produced from 

the original trees. Mismatch conditions produced less accurate results. In particular, the strict 

clock, which assumes a single rate of evolution across the tree, did not accurately capture 

rate heterogeneity, resulting in inflated or depressed estimates (Fig. 1.5). The uncorrelated 

log-normal clock better captured per-branch rate heterogeneity, as expected. 

Therefore, it appears that reasonable parameter estimates can be achieved with either 

prior. This is somewhat surprising given that posterior estimates can be influenced by the 

choice of priors. At least in these cases, either choice of tree prior appears to capture the 

underlying branching process on which data was simulated; the same holds for molecular 

clocks (at least for the non-extreme cases). While estimates are concordant across tree priors 

and clock models, previous studies have shown that the accuracy of the estimates depends 

on the amount of data available; here, this refers to the number of taxa. In one example, trees 

of 1000 taxa produce more accurate estimates of diversification rates than trees of 100 taxa 

(Stadler 2013). Adding more informative data produces more accurate phylogenetic 

estimates (assuming no signal conflict) and should reduce the impact of stochasticity on 

parameter estimation. 
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The assumption of a single rate of evolution across a tree is often violated and can 

severely impair phylogenetic estimation (e.g., Shavit et al. 2007; Penny 2013). This study 

assumed rates with a modest amount of heterogeneity, and it appears that a strict clock 

produces reasonable results in the face of this violation. In other words, a dataset with a 

small to moderate amount of heterogeneity may have rates that are reasonably captured by a 

single, global rate. However, it may not be known a priori whether a dataset has disparate 

rates of evolution among lineages. It would be advisable, then, to assume a clock model that 

has the potential to model heterogeneity accurately, and this is partially why the 

uncorrelated log-normal relaxed clock has seen such widespread use and success in 

systematic analyses (Drummond et al. 2006). Furthermore, should rates of evolution be 

extreme among some lineages, it would make sense to attempt to capture any heterogeneity 

using appropriate priors as opposed to assuming it is absent. Rate homogeneity among 

lineages, or the absence of a clock altogether, may represent a poor prior given our current 

understanding of molecular biological processes (Drummond et al. 2006).  

There are several caveats to these conclusions. First, our original trees are fully 

resolved, and nucleotide sequence data are simulated under parameters estimated from a 

quickly evolving nuclear intron. This indicates that there will be a large number of 

phylogenetically informative sites per individual. Therefore, these trees will be easier to 

estimate than those that lack signal and/or contain unresolved nodes. Second, there is not 

extreme rate heterogeneity among lineages. Third, the datasets only contain 25 and 100 taxa, 

each with only 5000 bp of nucleotide sequence data, following the protocol of Wertheim and 

Sanderson (2011). Datasets of this size are considered modest in the current era of high-

throughput sequencing, where the generation of hundreds of thousands or millions of base 



! 18!
pairs of sequence per individual is possible. It is also reasonable to assume that some 

systems may be best explained through more complex models, i.e., models that specifically 

assume multiple, independent diversification rates across a dataset (e.g., Alfaro et al. 2009; 

Rabosky 2014). Our analyses only assume a single rate of diversification, and this 

assumption may be violated in larger datasets with greater levels of taxonomic divergence. It 

is important to select among models in order to produce accurate, interpretable results for 

each dataset. 

Conclusion 

The choice of tree priors and molecular clock has little impact on the estimation of 

diversification parameters under these simulation conditions. Parameters can be estimated 

reliably from any combination of tree prior and molecular clock with informative data and 

reasonable clock rates. The choice of molecular clock has little impact on diversification 

parameters unless there is extreme rate heterogeneity. 
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Figures 

 
Figure 2.1: Simulation workflow. λ is the instantaneous speciation rate, and r is the net 
diversification rate. Both are estimated for each set of simulation conditions. 

 

  

Simulate a distribution of trees using 
BEAST

Select ten trees at random

Simulate 5000 bp of sequence data

Estimate trees using BEAST under each 
tree prior/clock model combination

BD:Strict BD:UCLN Yule:Strict Yule:UCLN

Analyze posterior distribution of trees and estimate parameters

Compare  r and h�from 
original trees to 

estimated



! 23!
 
Figure 2.2: Yule simulations. The top row of plots refers to the 100-taxa cases, whereas the 
bottom row refers to the 25-taxa cases. Median estimates of λ or r, estimated from the 10 
original trees, are displayed on each plot. The title of each subplot refers to the simulation 
conditions. Each combination of tree priors and molecular clocks under which trees are 
estimated is listed on the x-axis. The distribution of estimates from the original trees is also 
displayed. Parameter estimates are generally consistent with the original trees with slight 
deviations in some cases. 
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Figure 2.3: Lineage-through-time plots. The y-axis of each plot is natural-log transformed. 
Rows refer to conditions under which original trees are simulated, and columns refer to 
conditions under which trees are estimated. Thick gray lines represent the original trees and 
are, therefore, identical across each row of plots. Thin dark lines refer to the maximum clade 
credibility trees summarized from the posterior distribution of trees under the specified 
combination of tree prior and molecular clock. There is a significant amount of concordance, 
indicative of accurate phylogenetic estimation, though some discordance (indicated by non-
overlapping lines) is present. 
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Figure 2.4: Birth-Death simulations. The top row of plots refers to the 100-taxa cases, 
whereas the bottom row refers to the 25-taxa cases. The median estimates of λ or r, 
estimated from the 10 original trees, is displayed on each plot. The title of each subplot 
refers to the simulation conditions. Each combination of tree priors and molecular clocks 
under which trees are estimated is listed on the x-axis. The distribution of estimates from the 
original trees is also displayed. Parameter estimates are highly congruent with the original 
trees under each set of simulation conditions. 
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Figure 2.5: ‘Extreme’ clock prior simulations. A prior distribution of U(45, 55) was placed 
on the mean of the log-normal distribution from which rates are estimated under an 
uncorrelated log-normal relaxed molecular clock, and a prior of U(0.95, 1.05) was placed on 
the standard deviation. This results in more substantial rate heterogeneity per lineage than 
under the original simulation conditions. Misspecification of the tree prior and molecular 
clock reveals substantial differences in the parameter estimates produced using the original 
trees (simulated using an uncorrelated log-normal relaxed molecular clock) and the trees 
estimated using a strict clock. We attribute these trends to the inability of a single-rate strict 
clock to accurately account for substantial clock rate heterogeneity. 
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Chapter 3 

Comparative Mitochondrial Phylogenomic Assessment of Introgression Among 
Several Species of Chipmunks 

 

Abstract 

 Many well-characterized species are not completely reproductively isolated and 

hybridize, resulting in introgressive hybridization and offspring of mixed ancestry. 

Organellar genomes, such as those derived from mitochondria (mtDNA) and chloroplasts, 

introgress frequently in natural systems; however, the forces shaping patterns of 

introgression are not always clear. Here, we investigate extensive mtDNA introgression in 

western chipmunks, focusing on species in the Tamias quadrivittatus group from the central 

and southern Rocky Mountains. Specifically, we investigate the role of selection and 

demographic factors are factors in driving patterns of introgression. We sequenced 51 

mtDNA genomes from six species and combine these sequences with other published 

genomic data to yield annotated mitochondrial reference genomes for nine species of 

chipmunks. Genomic characterization was performed using a series of molecular 

evolutionary and phylogenetic analyses to test protein-coding genes for positive selection. 

We fit a series of maximum likelihood models using a model-averaging approach, assessed 

deviations from neutral expectations, and performed additional tests to search for codons 

under positive or diversifying selection. We found no evidence for positive selection among 

these genomes and extensive evidence for negative or purifying selection, indicating that 

selection has not been the driving force of introgression in these species. Thus, extensive 

mtDNA introgression among several species of chipmunks likely reflects genetic drift of 

introgressed alleles in historically fluctuating populations. 
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Introduction 

Interspecific hybridization occurs frequently in natural systems. Approximately 23% 

of animals exhibit mitochondrial DNA (mtDNA) polyphyly (Funk & Omland 2003), and 

approximately 10% of species are estimated to hybridize (Gray 1972; Mallet 2005). 

Although hybridization may promote genetic homogenization by collapsing incipient 

lineages into hybrid swarms (e.g. Taylor et al. 2006; Behm et al. 2010; Gilman & Behm 

2011), it is becoming clear that gene flow between lineages may not prevent lineage 

divergence (Wu 2001; Pinho & Hey 2010). Models detailing this process are captured by the 

overarching term ‘divergence-with-gene-flow’ (e.g., Rice & Hostert, 1993) and describe the 

speciation process as an accumulation of reproductive barriers over time. 

One of the most strongly recurring patterns in hybridizing systems is that organellar 

genomes (i.e., mitochondrial and chloroplast genomes) often introgress. Indeed, much of the 

evidence for hybridization in animals derives from studies of mtDNA introgression, which 

has been documented in many groups, including lizards, amphibians, birds, and mammals 

(e.g., Funk & Omland 2003; Mallet 2005; McGuire et al. 2007; Ryan et al. 2009; Rheindt & 

Edwards 2011; Johanet et al. 2011). The high frequency of mitochondrial introgression may 

result from selection on haplotypes in a novel genetic or ecological background (e.g., 

Llopart et al. 2014). Alternatively, genetic drift can promote haplotype fixation in small 

populations either through chance or in concert with selection following introgression 

(Ballard & Whitlock 2004). A special case of genetic drift is allele surfing, in which rare 

alleles present on the front of expanding populations may become fixed (Edmonds et al. 

2004; Hallatschek et al. 2007; Hallatschek & Nelson 2008; Excoffier & Ray 2008); such 
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“surfing” alleles can either be deleterious, neutral, or advantageous (Klopfstein et al. 2006; 

Travis et al. 2007; Excoffier et al. 2009). 

Yet another form of neutral introgression occurs when diverged populations come 

into contact due to expansion of one (or perhaps both); the alleles of the resident population 

can introgress into the expanding population (Currat & Excoffier 2004; Currat et al. 2008). 

This results in an asymmetric pattern of introgression, and empirical results provide support 

for this prediction; 36 of the 44 studies examined by Currat et al. (2008) involve allelic 

introgression from the resident population into the invading population. In this case, the 

extent of introgression appears to be governed jointly by allelic fitness, the rate of migration, 

and demographic stochasticity (Petit & Excoffier 2009). 

Here, we focus on characterizing whole mitochondrial genomes in a group of 

hybridizing chipmunks (Sciuridae: Tamias), a diverse group of ground squirrels composed 

of 25 species (but see Piaggio & Spicer 2000, 2001). Of these, one species is restricted to 

eastern Asia (T. sibiricus; subgenus Eutamias), and one is restricted to eastern North 

America (T. striatus; subgenus Tamias). The remaining 23 species (subgenus Neotamias) 

are distributed throughout western North America. Assignment to species has relied on 

variation in the male genital bone, the baculum or os penis, with variation of other 

phenotypic characters (e.g., pelage and body size) showing considerable overlap among 

species.  

Previous work in this system characterizes frequent mitochondrial introgression, 

which has been most thoroughly documented through two cases. First, several studies have 

documented asymmetric introgression of red-tailed chipmunk (T. ruficaudus) mtDNA 

genome into yellow-pine (T. amoenus) chipmunks (Good et al. 2003, 2008; Hird et al. 2010; 



! 30!
Reid et al. 2010, 2012), even though these species are rather distantly related 

phylogenetically (Reid et al. 2012). Second, more recent work documented widespread 

mtDNA introgression within the T. quadrivittatus species group, a group of six species that 

appears to have diverged within the last ca. 1.7 MY (Sullivan et al. 2014).  

These previous studies used variation at a singe mtDNA gene (cyt b) to characterize 

introgression between species and therefore did not assess the molecular evolution of 

chipmunk mtDNA genome in the context of introgression. Here, we combine published 

genomic data from T. amoenus and T. ruficaudus (Bi et al. 2012) with sequencing of 

complete mtDNA genomes sampled from 52 individuals across the six species in the T. 

quadrivittatus group to characterizing representative mitochondrial genomes in these 

species. We use these data to assess the roles of selection and drift in explaining the 

distribution of introgressed mitochondrial genomes among species. Specifically, we 

investigate whether widespread introgression in Tamias is mediated by selection by 

explicitly testing for positive selection across the mtDNA genome. 

Materials and Methods 

Sample selection and extractions. 

To date, approximately 1800 mtDNA Cyt b sequences have been generated 

(reviewed in Sullivan et al. 2014), nearly 300 of which have introgressed haplotypes. We 

selected 56 individuals from taxa that have been demonstrated to exhibit extensive mtDNA 

introgression (Good et al. 2003; Sullivan et al. 2014). These included T. ruficaudus 

ruficaudus, T. r. simulans, T. amoenus luteiventris, T. a. canicaudus, and T. striatus (one 

each, which were sequenced as part of a separate study; Bi et al. 2012), as well as 51 

individuals from the T. quadrivittatus group (T. canipes, T. rufus, T. quadrivittatus, T. 
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cinereicollis, T. dorsalis, and T. umbrinus; see Supplementary Table 3.2 for collection 

localities). The T. quadrivittatus-group sample included both introgressed and non-

introgressed individuals. DNA was isolated from heart or liver tissue using Qiagen DNEasy 

DNA extraction kits and eluted into ~ 50 uL of 10 mM Tris-Cl. Extractions were stored at -

20°C prior to use. 

Obtaining a draft Tamias mitochondrial genome 

Prior to this study, no reference mitochondrial genome was available for Tamias. We 

therefore generated a preliminary reference via primer walking and Sanger sequencing. In 

order to design primers (using Primer3; Untergasser et al. 2007), we generated a consensus 

sequence from Sciurus vulgaris (a sciurid; Reyes et al. 2000), and Glis glis (a glirid; Reyes 

et al. 1998). Pairwise combinations of primers for PCR were utilized in 50 �L 

amplifications consisting of 39.3 �L of ddH2O, 5 �L of 10X buffer, 1 �L of 10 mM 

dNTPs, 1.5 �L of 50 mM MgCl2, 1 �L of a 100 �M solution of each primer, and 2 �L 

of genomic DNA. Amplification was performed on a BioRad MyCycler with the following 

parameters: 94°C for 2:00 followed by 45 cycles of 94°C for 0:30, 55°C for 0:45, and 72°C 

for a variable period depending on the size of the region amplified (assuming 1:00/1000bp). 

Each reaction was subject to a 5:00 final extension at 72°C and a 4°C final hold. Amplicons 

were cleaned using Qiagen PCR purification kits. Purified amplicons were prepared for 

cycle sequencing in 8 �L reactions consisting of 2 �L Big Dye, 1.6 �L 100 �M primer 

solution, and 4.4 �L purified amplicon. Cycle sequencing was performed on the same 

thermocycler under the following conditions: 96°C for 1:00, followed by 25 cycles of 96°C 

for 0:15, 50°C for 0:15, and 60°C for 4:00. Each sequencing reaction was subject to a 4°C 

hold. Sequencing reactions were cleaned using Sephadex spin columns, dried, and 
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suspended in 10 �L of formamide for sequencing on an Applied Biosystems 3130 capillary 

sequencer. The final genome was checked for sequence quality and assembled into a 

working draft genome, using the Sciurus mitochondrial genome as a backbone. This draft 

mitochondrial genome was included as part of a set of approximately 12,000 exons that were 

used as baits for a targeted capture experiment.  

Targeted capture and mitochondrial genome assembly 

Fifty-one samples across of six species of chipmunks (Tamias canipes, T. rufus, T. 

quadrivittatus, T. cinereicollis, T. dorsalis, and T. umbrinus: the T. quadrivittatus group, 

Figure 1) were captured on an Agilent SureSelect microarray using a previously described 

protocol (Bi et al. 2012). Samples were sequenced on two lanes of an Illumina HiSeq 2000 

at the Vincent Coates Genome Sequencing Laboratory at the University of California–

Berkeley. In addition, raw data from five additional individuals (T. r. ruficaudus, T. r. 

simulans, T. a. luteiventris, T. a. canicaudus, and T. striatus) captured on the same 

microarrays as part of another study (Bi et al. 2012) were included in this analysis. Libraries 

were cleaned using SeqyClean (Zhbannikov et al. in prep.; 

http://bitbucket.org/izhbannikov/seqyclean) in order to remove low-quality reads, low-

quality bases, and residual Illumina adapter sequences.  

Cleaned reads were used as the starting point for de novo assembly using Assembly 

by Reduced Complexity v0.1 (ARC; Hunter et al. in prep.; current version available from 

http://github.com/ibest/ARC). Briefly, ARC identifies reads that are similar to a target of 

interest, places these reads into a reduced-representation pool, and performs a de novo 

assembly on the reduced pool of reads. This process is then iterated until no new reads are 

incorporated. This approach reduces biases that may be introduced through de novo 
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assembly of the entire library and/or by calling variants relative to a divergent reference in a 

different species (data not shown; Hunter et al. in prep.). The Sciurus vulgaris mitochondrial 

genome was used as the target sequence for assembly of a randomly selected T. canipes 

mitochondrial genome. This mitochondrial genome was then used as the target for all other 

assemblies in order to reduce reference bias and expedite assembly. 

Following assembly, the resulting contig(s) were oriented to a common start site 

(tRNA-Phenylalanine/12S rRNA) by mapping and manual reorientation using Geneious Pro 

v6.1.7 (created by Biomatters; available from www.geneious.com). Protein-coding genes 

and rRNAs were identified by free-end alignment to Sciurus sequences downloaded from 

Genbank. Two datasets were produced: a complete dataset consisting of all data available 

across all individuals, and a pruned dataset where individuals missing all or a large portion 

of a gene were removed for that gene. Any individuals that had sequence removed for one 

gene may have been included for other genes if other gene sequences were complete. Due to 

incomplete sequencing of the control region in the draft genome, each genome was trimmed 

to 16,500 bp after multiple sequence alignment; as a result, the working genomes may have 

less than 16,500 bp. The final mitochondrial genome assemblies were also included as part 

of the complete dataset. A representative mitochondrial genome from each of the nine 

species (including the two subspecies of T. ruficaudus and two of T. amoenus) was used to 

calculate nucleotide frequencies using Geneious Pro. Sequences will be uploaded to 

Genbank before publication. An annotated version of the draft genome is included as part of 

the supplementary material (Supplementary Figure S1). 

In order to provide an independent validation for the de novo assemblies of the 

mitochondrial genomes, the lysine transfer RNA (tRNA-Lys) was extracted from each 
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genome. This tRNA has an interesting evolutionary history within Mammalia (Dorner et al. 

2001; see Results). A representative from each species and subspecies was annotated, 

extracted, and transcribed using Geneious Pro v6.1.7. The secondary structure was generated 

using the RNAfold web server (Hofacker 2003). The secondary structure of the Mus 

musculus tRNA-Lys was also visualized using the same approach. 

Phylogenetic analyses 

The 13 protein coding and two rRNA loci from both datasets were aligned in Mafft 

v6.86b using the G-INS-i (global homology) algorithm (Katoh & Toh 2008). A model of 

nucleotide sequence evolution was inferred for each locus using the decision theoretic 

approach implemented in DT-ModSel (Minin et al. 2003). Maximum-likelihood 

phylogenetic estimation under the inferred model were performed using Garli v1.0, with a 

score threshold of 0.01 and a requirement of 500,000 stable generations prior to termination 

(Zwickl 2006). We performed ten replicate searches, and convergence among searches was 

assessed by identification of identical or highly similar trees and similar log likelihood 

values. Trees from the complete dataset were used to assess topological incongruence 

among genes using the Shimodaira-Hasegawa (Shimodaira & Hasegawa 1999) test 

implemented in PAUP* v4.10b (Swofford 2003). These tests used the model of sequence 

evolution selected by DT-ModSel and calculated likelihoods using RELL bootstrapping 

with 1000 replicates. The tree generated from each locus was compared to the tree generated 

using the mitochondrial genome that was included in the set of alternative topologies among 

topologies estimated from each individual locus. 

A maximum clade-credibility tree for the entire mitochondrial genome of the 

complete dataset was generated from a posterior distribution of trees estimated using 
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BEAST v1.7.5 (Drummond & Rambaut 2007; Drummond et al. 2012). Two identical runs 

were performed using a GTR+I+G model of nucleotide sequence evolution, a birth-death 

tree prior, and an uncorrelated lognormal clock prior. Chains were run for 50 million 

generations with samples taken every 5000. Convergence between runs was assessed 

through visual inspection of traces, comparison of mean parameter estimates, and 

verification that all ESS ~200 or greater. The posterior was summarized into a maximum 

clade credibility tree after removing 10% of samples as a burn-in using TreeAnnotator 

v1.7.5, with median node heights and a nodal probability cutoff of 0.5. 

Finally, we estimated the mtDNA gene tree from 989 Tamias cytochrome b 

sequences obtained from Genbank via the PhyLoTA Browser (Sanderson et al. 2008). This 

tree includes individuals sampled from across the diversity of chipmunks, including the nine 

species in this study and the Siberian chipmunk (Tamias sibiricus). Where necessary, 

sequences were trimmed to include the 632 bp that are common across all individuals. The 

analysis was performed using RAxML v8.0.1 under the GTR+G model of sequence 

evolution with 1000 bootstrap replicates (Stamatakis 2014). All trees are deposited in 

TreeBASE. 

Tests for selection 

The pruned dataset was used to infer patterns of selection among loci using codeml 

in PAML v4.6 (Yang 2007) and a range of site models (M0, M1a, M2a, M3, M4, M5, M6, 

M7, M8, M8a). The simplest of these models is M0, which assumes a single ω (dN/dS) 

across all sites. The other models estimate the proportion of sites assigned to a range of site 

classes when the omegas corresponding to these classes are constrained. For example, M1a 

estimates the proportion of sites assigned to two classes, one where ω is fixed at one and 
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another where ω < 1. Alternatively, model M2a estimates the proportion of sites assigned to 

three classes, one where ω is fixed at one, another where ω is less than one, and a third 

where ω is greater than one. These models, and the others, are described in greater detail 

within the PAML manual.  

Two approaches are commonly used to test for selection using these sets of models. 

The first is to select among the models using an information theoretic criterion, typically the 

Akaike Information Criterion. The second is to perform a series of likelihood-ratio tests 

(LRT) among nested models that allow sites to be placed into a class with a ω greater than 

one. Three likelihood-ratio tests were performed: M1a vs. M2a, M7 vs. M8, and M8 vs. 

M8a. Models M2a and M8 allow for assignment of codons to a site class where ω is greater 

than one and, therefore, allow for the detection of positive selection. M8a includes a site 

class where ω is fixed at one instead of being allowed to vary. The null distribution of the 

test statistic using these two models is a mixture and therefore differs from the standard chi-

square distribution used to calculate p-values for the other two comparisons (see details in 

the PAML manual).  

However, the LRT approach is not applicable to tests among other models (e.g. M3, 

M4, M5, and M6). In order to accommodate uncertainty in model choice into our assessment 

of selection, we implemented a model-averaging approach. (e.g., Sullivan & Joyce 2005). 

Although some authors (e.g., Posada & Buckley 2004) have advocated model averaging 

based on dAIC, the posterior probabilities calculated by Bayesian approaches represent a 

more explicit treatment of the model as a random variable (Sullivan & Joyce 2005). The 

posterior probability of a model can be approximated as: 

, P Mi |D( ) ≈ e(−BICi /2)

e(−BICi /2)
i

m
∑
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where the summation in the denominator is across all m models in the candidate pool and 

.  

Here, ki is the number of free parameters in model i, and n is the sample size (Raftery 1995; 

this is usually approximated by sequence length). This approach assumes uniform (or vague; 

Schwarz 1978) prior probabilities across models. Furthermore, because lnL is typically 

calculated at its highest point (and therefore estimates a joint rather than marginal 

probability), this use of the BIC to approximate posterior probabilities assumes that the joint 

MLEs approximate the marginal likelihoods. Evans and Sullivan (2010) used reversible-

jump MCMC to estimate model probabilities directly and assessed the usefulness of the BIC 

as an approximation of probabilities for models of nucleotide substation. They found that the 

approximation works well when there is much information in the data regarding model 

preference (Evans & Sullivan 2011). Therefore, we created a custom script (codemlMA.py, 

available from www.github.com/bricesarver/codemlma) to perform LRTs, calculate BICs, 

and approximate posterior probabilities of the models available in PAML. We then used this 

approach to derive model-averaged estimates of model parameters (κ and ω). 

 We also performed pairwise, multilocus McDonald-Kreitman tests (McDonald & 

Kreitman 1991) for each protein-coding gene combined using the Generalized and Standard 

McDonald-Kreitman test website (Egea et al. 2008). Mantel-Haenszel tests of homogeneity 

were performed to confirm equal rates among loci. If the rates were homogenous, multilocus 

McDonald-Kreitman p-values were calculated to determine whether there was a significant 

deviation from neutral expectations. Furthermore, we calculated three population-genetic 

statistics commonly used to test for neutrality: Tajima’s D (Tajima 1989), Fu and Li’s D2*, 

and Fu and Li’s F* (Fu & Li 1993). Each statistic was calculated per-species and per-locus, 

BICi = −2 ln(Li )+ ki ln(n)
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including a combined alignment of all loci. These analyses were performed using the 

Intrapop Neutrality Tests web server (located at 

http://wwwabi.snv.jussieu.fr/achaz/neutralitytest.html). 

 Finally, we performed additional tests to look for positive or negative selection 

across all protein-coding loci in the T. quadrivittatus group. Five models were fit to attempt 

to identify codons under selection: SLAC (Single-Likelihood Ancestor Counting; 

Kosakovsky Pond & Frost 2005), FEL (Fixed Effects Likelihood; Kosakovsky Pond & Frost 

2005), IFEL (Internal Fixed Effects Likelihood; Kosakovsky Pond et al. 2006), REL 

(Random Effects Likelihood; Kosakovsky Pond & Frost 2005), and FUBAR (Fast, 

Unconstrained Bayesian AppRoximation; Murrell et al. 2013). When applicable, these 

analyses utilized neighbor-joining trees with distances corrected using the model of 

nucleotide sequence evolution selected by DT-ModSel (see above). Furthermore, each 

codon determined to be under positive or diversifying selection, regardless of the method 

used, was subject to a series of molecular characterizations to identify amino acid changes, 

shifts in biochemical properties (using PRoperty Informed Models of Evolution, PRIME; 

Pond et al. 2005), and placement of the amino acid within the protein. All analyses were 

performed using the Datamonkey web server (Kosakovsky Pond & Frost 2005), a 

publically-accessible front-end to a cluster computing system running HyPhy (Kosakovsky 

Pond et al. 2005).  

Results 

Characteristics of the chipmunk mitochondrial genome 

Chipmunk mtDNA genomes exhibit syntenic conservation with other mammalian 

mtDNA genomes. 36% (+/- 0.9%) of the positive strand is composed of cytosine or guanine 
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nucleotides. This strand also has a 46:54 purine:pyrimidine bias with a standard deviation of 

0.006 across all species. Nucleotide frequencies are similar across species (Table 3.1). 

Lengths of protein-coding genes are largely conserved, but there is some interspecific length 

variation in the control region and ribosomal RNAs associated with indels in loop regions. 

Several genes are missing one or two nucleotides that make up the final stop codon (see 

Table 3.2; complete vs. pruned lengths). In Sciurus and other mammals, the stop codon 

appears to be completed through the polyadenylation of pre-mRNAs (Reyes et al. 2000; 

Chang & Tong 2012). Tamias also appears to require this modification, as several exons do 

not end in the appropriate stop codon for mammalian species. 

Twelve of the 13 protein-coding genes have estimates of κ between 8 and 17, 

implying that the number of transitions is around an order of magnitude higher than the 

number of transversions across all samples. Interestingly, the κ of ND3 is estimated at 123.8, 

slightly more than an order of magnitude higher than the other loci (Table 3.2). ND3 is one 

of the shortest genes, consisting of 345 nucleotides without the stop codon present. There 

are seven amino-acid substitutions in T. striatus relative to T. ruficaudus ruficaudus at this 

locus, higher than the mean among all species (2.2 +/- 1.8; Table 3). All T. striatus loci 

exhibit a greater number of substitutions, as expected given the p-distance of T. striatus 

relative to the other species (~0.16, Table 3.4). 

One interesting case involves tRNA-Lys, the transfer RNA sequenced as part of a 

validation of mitochondrial assembly described above. Within Mammalia, monotremes and 

eutherians possess a functional tRNA-Lys that is synthesized from the mitochondrial 

genome and then lysylated by a lysine-tRNA ligase. In metatherians, the mitochondrial 

genome lacks a functional tRNA-Lys (Dorner et al. 2001; Axel et al. 1994). Instead, this 
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tRNA is synthesized from nuclear DNA. In these cases, it acts as a functional pseudogene in 

the mitochondrial genome due to a relaxation of selective constraint. We found that, as 

expected, chipmunks possess functional mitochondrial tRNA-Lysines. The secondary 

structures exhibit the canonical cloverleaf shape, and the appropriate anticodon for tRNA-

Lys (UUU) is present in the anticodon loop (Figure 3.2). Furthermore, substitutions and 

insertions are present in areas that do not affect the secondary structure of the RNA, as 

expected for a locus under strong purifying selection. Tamias tRNA-Lysines have one, two, 

three, or four bp inserted in the first loop (the “D-loop”) relative to Mus, but all other 

intramolecular base pairings are maintained. Positional probabilities are high, indicating 

good structural estimates. Additionally, resolution of this tRNA provides evidence of 

accurate assembly. 

Phylogenetic inference 

DT-ModSel selected two- or three-parameter models with or without gamma-

distributed rate heterogeneity or a proportion of invariable sites. More complex models 

(TIM+I+� and GTR+I+�) were selected for rRNAs and the complete genome. The same 

models were selected within the complete or pruned datasets and regardless of whether the 

stop codon (or trailing bases) was removed from the sequence. Phylogenetic analysis of 

complete mtDNA genomes is broadly congruent with the analysis of 989 cytochrome b 

sequences and the tree estimated in Sullivan et al. (2014) (Figure 3.3, Supplementary Figure 

3.2, Supplementary Figure 3.3).  

The yellow-pine (T. amoenus) and red-tailed (T. ruficaudus) chipmunks are 

recovered as sister to the six T. quadrivittatus group species. Within this clade, T. canipes 

and T. rufus are each recovered as monophyletic (PP = 1). The other four species (T. 
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umbrinus, T. cinereicollis, T. dorsalis, and T. quadrivittatus) have genomes dispersed 

throughout the tree with high posterior nodal support. Because species were assigned using 

morphology, the complete mtDNA genome tree is in agreement with other studies (e.g., 

Good et al. 2003; Sullivan et al. 2014) in indicating extensive mitochondrial introgression. 

SH tests reveal that each gene tree is not significantly different from the combined 

tree (Table 3.2). These results support the interpretation that mitochondrial genomes can be 

treated as a single marker due to linkage, a hypothesis is rarely tested in empirical datasets. 

Since a single underlying topology is supported among all loci, using the complete genome 

for phylogenetic inference is appropriate. It also confirms that previous studies that used 

cytochrome b or cytochrome oxidase subunit II as the sole marker should have recovered the 

correct underlying mitochondrial tree. This provides support for previous, single-locus 

studies in chipmunks.  

Selection analyses 

Likelihood-ratio tests between models M1a and M2a detect no signatures of 

selection. In contrast, a significant difference between M7 and M8 is detected for COII (p < 

0.01), and marginally significant differences occur between M8 and M8a for ATP8 (p = 

0.087), COII (p = 0.092), and ND3 (p = 0.0548), though these differences disappear when 

corrections for multiple testing are applied (Supplementary Table 3.1). Estimating the 

posterior probability of each model is illuminating. In many cases, high posterior 

probabilities are assigned to models M1, M5, and M7, models that do not include a site class 

where ω > 1. In cases where a site is assigned to a class with ω > 1, the posterior probability 

of that model is no more than 0.03. Investigating model fit by traditional likelihood-ratio 

tests, in concert with Bayesian model averaging, allows for a more confident inference of 
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patterns of selection; this approach could be used in other studies where the posterior 

probabilities of a particular site being under selection can be inferred with greater 

confidence. 

 Pairwise McDonald-Kreitman tests reveal no significant deviations from neutrality 

except in two cases involving T. canipes (Supplementary Table 3.3). The significant p-

values are most likely artifacts resulting from small sample size, and Tajima’s D, Fu and 

Li’s D2*, and Fu and Li’s F* provide support for this claim (Supplementary Table 3.4). For 

many T. canipes and T. rufus loci, there are not enough substitutions to produce accurate 

estimates. No species has a significant deviation from neutrality at an individual locus or 

with all loci combined (with one exception: ND4L for T. dorsalis for Tajima’s D). 

 Many of our analyses (SLAC, FEL, IFEL, REL, and FUBAR) detected pervasive 

negative or purifying selection across all genes (Supplementary Table 3.5). In a handful of 

cases, codons were classified as being under positive or diversifying selection. Upon further 

inspection, including biochemical characterization, many appear to be false-positives 

(Supplementary Material). There is marginal evidence for a single codon under positive or 

diversifying selection in T. dorsalis at the COII gene, though three out of five methods do 

not identify this as a site of interest.  

Discussion 

 Mitochondrial introgression is often described in natural systems, and the frequency 

at which it occurs is surprising. Since mitochondrial genomes contain protein-coding genes 

that act as part of the oxidative-phosphorylation pathway, as well as rRNAs that bind with 

ribosomal proteins encoded in the nuclear genome (and imported into the mitochondria) for 

proper ribosomal assembly, it is reasonable to assume that antagonistic epistatic interactions 
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with nuclear-encoded proteins from divergent lineages could reduce fitness. Selection, then, 

ought to purge substitutions that lead to deleterious mitonuclear interactions (reviewed in 

Dowling et al. 2008). However, the mitochondrial genome has the potential to act as a 

source of novel genetic variation, often resulting in the presence of multiple haplotypes 

within a population (e.g., Dowling et al. 2007). 

 The population genetic dynamics of mtDNA depend on relative fitness in concert 

with demographic factors. Haplotypes that confer high fitness may rise to a high frequency 

in a population following a selective sweep (e.g., Haldane 1924; Barton 2000). 

Alternatively, genotypes may invade resident populations through demographic means such 

as population expansion. Theory has shown that this results in asymmetric introgression of 

alleles from the resident population into the invading population (Excoffier et al. 2009). 

Furthermore, alleles at the front of an advancing population may also become fixed due to 

local effects (Excoffier & Ray 2008; Hallatschek & Nelson 2008). Because these effects are 

at least partly stochastic, it may be impossible to predict the resulting dynamics a priori. 

 We did not detect positive selection acting on mitochondrial protein-coding genes. 

While these genes do have polymorphic sites, consistently low values of model-averaged 

estimates of omega suggest that purifying or negative selection plays a principal role in 

preserving amino acid similarity. McDonald-Kreitman tests, Tajima’s D, Fu and Li’s D2*, 

and Fu and Li’s F* detect almost no significant deviations from neutrality, and any 

significant results can be explained by multiple testing artifacts. Additionally, support for 

pervasive negative or purifying selection is widespread across five additional analyses 

(SLAC, FEL, IFEL, REL, and FUBAR), with little-to-no support for positive or diversifying 

selection. However, it could be the case that positive selection does act on the mitochondrial 
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genome, just not on the 13 protein-coding genes (e.g., Melo-Ferreira et al. 2014). Ribosomal 

RNAs interact with a number of nuclear proteins to construct a functional ribosome, 

suggesting that selection could act on these genes. In addition, the control region contains 

several promoter regions and an origin of replication, any of which could viably be targets 

for positive selection. 

 In the absence of evidence for positive selection, we accept demographic factors as a 

likely explanation that governs the distribution of mtDNA. T. dorsalis provides support for 

this conclusion. It is broadly distributed, and its range overlaps with several other species. 

Interestingly, whenever it co-occurs with another species, it receives a mitochondrial 

genome from its congener. It is reasonable that T. dorsalis expanded into populations 

consisting of other species and, as a result, inherited those species’ mitochondrial genomes. 

Ancestral niche modeling by Waltari and Guralnick (2009) revealed that T. dorsalis has 

undergone a northward range expansion since the Last Glacial Maximum resulting in recent 

contact with other species; T. dorsalis-specific mtDNA is only found in southern refugial 

areas. Furthermore, T. dorsalis has consistently negative values of Tajima’s D at each locus 

and all loci combined, suggestive of population expansion.  

 However, the northern Rocky Mountains introgression of T. ruficaudus ruficaudus 

into T. amoenus luteiventris (Good et al. 2003) may not follow this pattern. In this case, it 

appears that the T. ruficaudus ruficaudus mtDNA is introgressing into T. amoenus 

luteiventris. However, because the location of this introgression (along the crest of the 

Canadian Rockies) did not support forested habitats until just a few thousand years ago 

(Mack et al. 1978). T. amoenus luteiventris has been undergoing population expansion in a 

similar fashion to T. ruficaudus ruficaudus; differential rates of expansion could produce the 
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observed pattern of introgression. A complete characterization of the dynamics of this 

introgressive event would require mitochondrial genome sequencing from several 

individuals within and around this contact zone.  

 It may also be the case that we cannot accurately estimate ω with a dataset of this 

size and across such recently diverged genomes (~2.5 MYa; Sullivan et al. 2014). These 

analyses are likely influenced by the length of the sequence, the number of individuals, and 

the amount of sequence divergence among individuals (Anisimova et al. 2001, 2002; Wong 

et al. 2004). Thus, it may not be possible to confidently estimate ω with modestly divergent 

sequences relative to analyses of taxa that span deeper divergences.  

 Additionally, we develop a model-averaging approach that can be used to investigate 

patterns of selection in genomic-scale datasets. Estimating posterior probabilities for a range 

of models provides more information than discriminating among models using δAIC or 

likelihood ratio tests alone. Furthermore, posterior probabilities can be used to weight 

parameters of interest, such as kappa or omega, estimated under several models and mitigate 

biases that may be introduced from using a single model. We suggest use of the model-

averaging approach described above account explicitly for uncertainty in model selection, 

especially with regard to detecting positive selection when using likelihood-based 

approaches.  
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Conclusion 

We sequence and characterize mitochondrial genomes for several species of 

chipmunks. Protein-coding genes are analyzed and used to test demographic vs. selection 

hypotheses governing introgression. We find no evidence for positive selection at 

mitochondrial loci and conclude that introgression is mediated by demographic factors in 

this system. Future analyses will focus on quantifying the amount of nuclear introgression 

taking place in this complex system, building on the characterizations in this study. 
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Figures 

Figure 3.1: Sampling localities of the 51 T. quadrivittatus group individuals sequenced as 
part of this study. Individuals are color-coded based on their bacular species assignments. 
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Figure 3.2: Secondary structures of tRNA-Lysine for each of the nine species in this study. 
Secondary structures are visualized using the RNAfold server (Hofacker 2003). Colors refer 
to per-base positional probabilities with blue representing 0 and red representing 1. The 
secondary structure estimated for Mus is also included for reference. 
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Figure 3.3: Maximum clade credibility tree estimated for the T. quadrivittatus group using 
all mitochondrial sequence data. Each node with a posterior probability greater than 0.7 is 
annotated. Colors correspond to bacular species assignments, which are also indicated as 
part of the individual identifier. 
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Supplementary Material 

 This section describes the rationale behind ruling out sites as part of the selection 
analyses described in the text. It also includes supplementary figures and tables. 
 
ATP8: 
 
REL detects three codons under positive selection: codons 18, 35, and 47. 
 
Codon substitutions: 
 
Codon 18: Two of the shifts take place on a branch leading to a canipes and amoenus 
canicaudus. There is no amino acid substitution. T. ruficaudus ruficaudus has a shift from 
phenylalanine to leucine. T. striatus has a shift from leucine to alanine. This codon is 
explicitly negatively selected in other analyses. Chemical composition is conserved but is 
not significant (p = 0.192).  
 
Codon 35: The shift takes place on a branch leading to T. striatus. No amino acid 
substitution. Chemical composition changes but is not significant (p=0.850). 
 
Codon 47: The shift takes place on branches leading to a single T. dorsalis and T. striatus. 
The dorsalis has a shift from histidine to asparagine. The striatus has a shift from histidine to 
tyrosine. Chemical composition and polarity changes are present but are not significant (p = 
0.747 and p = 0.610).  
 
Codon 18 encodes an amino acid in a membrane-spanning domain. The others are outside 
the membrane. 
 
Conclusion: These are false-positives. 
 
COII: 
 
REL and FUBAR detect a single codon under positive selection: 129. Two internal nodes, T. 
striatus, and two T. dorsalis experience a shift from serine to asparagine. 
 
There is conservation in the chemical composition of this codon, though it is not significant 
(p = 0.190). 
 
This codon encodes an amino acid in a topological domain in the mitochondrial 
intermembrane. 
 
Conclusion: Two out of five analyses support this change in the outgroup and in two T. 
dorsalis. Possible site under positive selection in T. dorsalis. 
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CytB:  
 
FEL and FUBAR detect a single codon under positive selection: 238. An internal node, T. 
amoenus luteiventris, and T. striatus experience an amino acid shift from valine to alanine, 
threonine, and leucine, respectively.  
 
This codon has a shift in hydropathy, though it is not significant (p = 0.325). 
 
This amino acid is in a transmembrane domain. 
 
Conclusion: Since this is divergent in the outgroup and also in a transmembrane domain, 
chances are the substitution has little effect on functional protein structure especially since 
the amino acid side chains are of approximately equal size. The shift in amoenus canacaudis 
to threonine does replace a methyl group with a hydroxyl group, but this is the only change. 
Unlikely to be under positive selection for these reasons. 
 
ND6: 
 
REL detects a single codon under positive selection: 171. 
 
There is no polymorphism at this codon. This is a false positive. 
 
Remarks 
 
Since the NJ trees constructed by DataMonkey are unrooted, and we have prior knowledge 
that confirms T. striatus is the appropriate outgroup, many of these represent substitutions in 
striatus relative to the quadrivittatus group. Possible positive selection at COII within 
dorsalis, but only marginal evidence at this point. More sampling and sequencing would be 
needed to confirm that this is a truly adaptive substitution and not a sampling-based artifact. 
No more than two of five methods ever agree that there is selection at a codon, and SLAC, 
the most conservative, never detects any. 
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Supplementary Table 3.2: Sampling information for the central and southern Rocky 
Mountains chipmunks sequenced as part of this study. 

 

  

Species Sample Identifier Latitude Longitude Sex Genbank8ID
canipes DZTM.156 ZM.11091 33.4469 -105.782 female JN042434
canipes DZTM.158 ZM.11093 32.1097 -104.7475 male JN042436
canipes DZTM.160 ZM.11095 34.2207 -105.796 male JN042435
canipes DZTM.324 ZM.11424 33.3946 -105.7246 male KJ139460
canipes DZTM.159 ZM.11094 34.2207 -105.796 female KJ139457
rufus DZTM.185 ZM.11203 39.8629 -106.642 female JN042432
rufus DZTM.188 ZM.11206 39.8629 -106.642 male NA
rufus DZTM.574 ZM.11807 39.8189 -108.715 male NA
rufus DZTM.572 ZM.11805 39.8189 -108.715 male KJ139470
rufus DZTM.573 ZM.11806 39.8189 -108.715 male KJ139464
dorsalis DZTM.713 ZM.11837 31.8782 -109.2229 female KJ139550:
dorsalis DZTM.721 ZM.11845 32.6661 -109.8747 male KJ139558:
dorsalis DZTM.711 ZM.11825 32.9773 -108.2181 male KJ139568:
dorsalis DZTM.582 ZM.11676 39.224 -114.5662 female KJ139582:
dorsalis DZTM.605 ZM.11692 39.1784 -114.2833 male KJ139571:
dorsalis DZTM.330 ZM.11428 34.01 -107.1995 male NA
dorsalis DZTM.155 ZM.11090 33.9363 -107.515 female KJ139561:
dorsalis DZTM.154 ZM.11089 33.9363 -107.515 female JN042410:
dorsalis DZTM.201 ZM.11393 40.8295 -108.7349 female JN042396:
dorsalis DZTM.217 ZM.11133 35.25 -107.6758 female JN042427:
dorsalis DZTM.236 ZM.11121 34.3838 -111.265 female JN042416:
dorsalis DZTM.250 ZM.11144 41.2851 -109.335 male JN042426:
umbrinus DZTM.563 ZM.11625 39.0995 -106.1548 male KJ139596:
umbrinus DZTM.238 ZM.11379 36.699 -112.2752 male JN042406:
umbrinus DZTM.251 ZM.11160 40.607 -110.9933 male JN042394:
umbrinus DZTM.256 ZM.11165 44.2976 -109.2544 female JN042395:
umbrinus DZTM.267 ZM.11147 44.2976 -109.2544 female JN042397:
umbrinus DZTM.587 ZM.11681 38.9219 -116.8647 female KJ139613:
umbrinus DZTM.613 ZM.11700 39.1511 -111.557 male KJ139614:
umbrinus DZTM.600 ZM.11687 40.1755 -114.8556 male KJ139611:
umbrinus DZTM.781 ZM.11881 42.53891 -108.79631 male KJ139624:
umbrinus DZTM.335 ZM.11433 40.0205 -105.5142 male KJ139595:

quadrivittatus DZTM.60 ZM.11031 39.7603 -105.3296 male JN042423:
quadrivittatus DZTM.70 ZM.11024 39.7362 -105.248 female JN042424:
quadrivittatus DZTM.85 ZM.11078 36.6776 -106.014 male JN042428:
quadrivittatus DZTM.87 ZM.11085 36.4443 -106.007 female JN042429:
quadrivittatus DZTM.176 ZM.11096 38.0222 -105.6799 female JN042430:
quadrivittatus DZTM.218 ZM.11134 35.2092 -107.6274 female JN042409:
quadrivittatus DZTM.704 ZM.11818 35.2165 -108.1309 male KJ139475:
quadrivittatus DZTM.222 ZM.11138 35.2092 -107.6274 female KJ139474:
quadrivittatus DZTM.705 ZM.11819 35.2165 -108.1309 male KJ139492:
quadrivittatus DZTM.700 ZM.11814 36.7981 -105.0714 male KJ139496:
quadrivittatus DZTM.220 ZM.11136 35.2092 -107.6274 female KJ139471:
cinereicollis DZTM.151 ZM.11086 33.8995 -107.5107 female JN042411:
cinereicollis DZTM.152 ZM.11087 33.8441 -107.561 male JN042412:
cinereicollis DZTM.223 ZM.11110 33.7269 -108.9771 female JN042419:
cinereicollis DZTM.226 ZM.11111 33.671 -109.3495 female JN042418:
cinereicollis DZTM.228 ZM.11113 33.671 -109.3495 male KJ139539:
cinereicollis DZTM.230 ZM.11115 34.1106 -109.5931 male JN042414:
cinereicollis DZTM.231 ZM.11116 34.375 -110.9796 female JN042420:
cinereicollis DZTM.225 ZM.11108 33.7269 -108.9771 male KJ139547:
cinereicollis DZTM.237 ZM.11378 34.9337 -111.356 female JN042417:
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Supplementary Table 3.3: Multilocus McDonald-Kreitman tests. For each comparison, a 
Mantel-Haenszel test of Homogeneity was performed to assess rate homogeneity among 
loci. When applicable, the p-value for the multilocus McDonald-Kreitman test is listed for 
each comparison. N/A refers to the inability to calculate a test statistic due to a lack of 
nonsynonymous substitutions. 

 

Supplementary Table 3.4: Tests for deviations from neutrality. Tajima’s D, Fu and Li’s D2*, 
and Fu and Li’s F* were estimated for each locus and all loci combined per species. A: T. 
canipes; B: T. cinereicollis; C: T. dorsalis; D: T. quadrivittatus; E: T. rufus; F: T. umbrinus. 

A: 

 

Species'1 Species'2 Chi,Square'(Mantel,Haenszel'Test'of'Homogeneity) p,value Mantel,Haenszel'Estimator'Omega Chi,Square p,value alpha
quadrivittatus cinereicollis 1.853 0.999 N/A N/A N/A N/A
quadrivittatus rufus 3.853 0.985 1.425 0.593 0.441 -0.684
quadrivittatus canipes 11.579 0.48 1.525 2.948 0.085 -0.703
quadrivittatus dorsalis 2.635 0.997 N/A N/A N/A N/A
quadrivittatus umbrinus 3.917 0.984 N/A 0.6942 0.405 N/A

cinereicollis rufus 4.959 0.959 1.816 3.243 0.071 -0.537
cinereicollis canipes 8.983 0.704 1.756 5.076 0.024 -0.438
cinereicollis dorsalis 1.674 0.999 N/A N/A N/A N/A
cinereicollis umbrinus 7.025 0.855 1.61 0.114 0.735 -0.365

rufus canipes 9.183 0.687 2.074 5.818 0.015 -0.366
rufus dorsalis 4.85 0.962 1.074 0 0.991 -0.43
rufus umbrinus 8.125 0.775 1.277 0.281 0.591 -0.15

canipes dorsalis 8.395 0.753 1.262 0.845 0.357 -0.466
canipes umbrinus 19.463 0.077 1.52 2.878 0.089 -0.299

dorsalis umbrinus 2.31 0.998 N/A N/A N/A N/A

Locus Tajima's,D p/value Fu,and,Li's,D2* p/value Fu,and,Li's,F* p/value
ATP6 0 0 0 0 0 0
ATP8 0 0 0 0 0 0
COI *0.97762 0.11046 *0.97762 0.11046 *0.97762 0.11046
COII *1.123974 0 *1.123974 0 *1.123974 0
COIII *1.184406 0 *1.184406 0 *1.184406 0
CytB *1.214724 0 *1.214724 0 *1.214724 0
ND1 *0.197401 0.45083 *0.197401 0.45083 *0.197401 0.45083
ND2 *0.596333 0.29572 *0.596333 0.29572 *0.596333 0.29572
ND3 *0.174749 0.36047 *0.174749 0.36047 *0.174749 0.36047
ND4H *1.174318 0 *1.174318 0 *1.174318 0
ND4L *0.972558 0 *0.972558 0 *0.972558 0
ND5 *1.078084 0.06615 *1.078084 0.06615 *1.078084 0.06615
ND6 *1.145536 0 *1.145536 0 *1.145536 0

All *1.010666 0.12632 *1.010666 0.12632 *1.010666 0.12632
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B: 

 

C: 

 

  

Locus Tajima's,D p/value Fu,and,Li's,D2* p/value Fu,and,Li's,F* p/value
ATP6 0.150569 0.60121 +0.009942 0.42523 0.029276 0.49705
ATP8 0.986274 0.66681 0.840403 0.4351 0.888288 0.66681
COI +0.215582 0.44199 +0.417306 0.31208 +0.375904 0.3482
COII 0.157798 0.59741 +0.04974 0.38635 0 0.49567
COIII 0.532164 0.7416 0.472403 0.6342 0.49637 0.68094
CytB +0.480357 0.33988 +0.347678 0.38689 +0.380836 0.36889
ND1 0.783727 0.82024 0.508173 0.62546 0.585629 0.72418
ND2 0.152053 0.60128 +0.079632 0.41814 +0.024074 0.46864
ND3 +0.075406 0.48149 +0.264179 0.28436 +0.223159 0.43011
ND4H 0.042067 0.55708 0.081307 0.49555 0.073256 0.50883
ND4L 0.195897 0.62361 +0.221036 0.35902 +0.124671 0.52608
ND5 0.258639 0.63755 +0.001495 0.47027 0.060245 0.50634
ND6 +0.328122 0.39761 +0.432274 0.31899 +0.415192 0.33905

All 0.121829 0.59412 +0.030127 0.45367 0.006929 0.47716

Locus Tajima's,D p/value Fu,and,Li's,D2* p/value Fu,and,Li's,F* p/value
ATP6 %0.970556 0.16477 %0.875871 0.19556 %0.928407 0.18781
ATP8 %0.912217 0.18571 %0.81667 0.2201 %0.865872 0.19912
COI %1.375866 0.08034 %1.235604 0.1321 %1.311889 0.12025
COII %1.043234 0.14914 %0.966527 0.18234 %1.016944 0.17137
COIII %1.137053 0.12738 %1.075416 0.15535 %1.125469 0.15162
CytB %0.992033 0.15918 %0.816635 0.21342 %0.888959 0.19433
ND1 %1.019811 0.15266 %0.836391 0.20204 %0.911429 0.19073
ND2 %1.302934 0.09326 %1.256125 0.12814 %1.30829 0.12164
ND3 %1.437091 0.06868 %1.48579 0.08617 %1.519115 0.0874
ND4H %1.14665 0.12468 %1.074599 0.15866 %1.127773 0.15191
ND4L %1.596787 0.04376 %1.64779 0.05668 %1.684379 0.05895
ND5 %1.13602 0.13486 %1.169989 0.14807 %1.192028 0.14586
ND6 %0.930486 0.17947 %1.048218 0.16782 %1.045241 0.17008

All %1.196217 0.11649 %1.105179 0.1557 %1.1647 0.14611
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D:  

 

E: 

 

Locus Tajima's,D p/value Fu,and,Li's,D2* p/value Fu,and,Li's,F* p/value
ATP6 0.957 0.871 1.382 0.983 1.309 0.973
ATP8 0.453846 0.71523 0.623123 0.65387 0.59544 0.72025
COI 0.792407 0.8339 1.307816 0.97907 1.212334 0.96267
COII 1.338129 0.9414 1.453101 0.99163 1.467701 0.98814
COIII 1.133779 0.9087 1.591583 0.99729 1.519966 0.99114
CytB 0.965507 0.87805 1.36197 0.98696 1.299762 0.97636
ND1 1.015034 0.88766 1.275858 0.97109 1.246753 0.96645
ND2 0.912372 0.86482 1.520159 0.99859 1.406875 0.98694
ND3 0.616865 0.77529 1.135199 0.92432 1.03351 0.91351
ND4H 0.871448 0.85839 1.366145 0.98883 1.278011 0.97391
ND4L 0.607578 0.76509 1.489884 0.97114 1.303574 0.95757
ND5 0.848197 0.84634 1.444637 0.99575 1.32924 0.98044
ND6 1.188288 0.9195 1.252471 0.96241 1.27445 0.96879

All 0.971042 0.88119 1.418727 0.99702 1.344881 0.9849

Locus Tajima's,D p/value Fu,and,Li's,D2* p/value Fu,and,Li's,F* p/value
ATP6 1.224745 0.61731 1.224745 0.61731 1.224745 0.61731
ATP8 0 0 0 0 0 0
COI 10.816497 0 10.816497 0 10.816497 0
COII 1.224745 0.61468 1.224745 0.61468 1.224745 0.61468
COIII 0.243139 0.45021 0.243139 0.45021 0.243139 0.45021
CytB 10.972558 0 10.972558 0 10.972558 0
ND1 1.224745 0 1.224745 0 1.224745 0
ND2 0.91278 0.74944 0.91278 0.74944 0.91278 0.74944
ND3 0.698995 0.63421 0.698995 0.63421 0.698995 0.63421
ND4H 1.718304 0.9351 1.718304 0.9351 1.718304 0.9351
ND4L 1.224745 0.61809 1.224745 0.61809 1.224745 0.61809
ND5 0.660554 0.68986 0.660554 0.68986 0.660554 0.68986
ND6 0 0 0 0 0 0

All 0.927095 0.79921 0.927095 0.79921 0.927095 0.79921
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F: 

 

Supplementary Table 3.5: Additional tests for selection. For each of the six species in the 
quadrivittatus group (T. canipes, cinereicollis, dorsalis, quadrivittatus, rufus, and 
umbrinus), we performed a series of analyses (SLAC, FEL, IFEL, REL, and FUBAR) for 
each protein-coding gene. + refers to the number of sites identified as being under positive 
selection. – refers to the number of sites identified as being under negative selection. 

 

 

Locus Tajima's,D p/value Fu,and,Li's,D2* p/value Fu,and,Li's,F* p/value
ATP6 %0.498858 0.32248 0.453536 0.64884 0.221764 0.57223
ATP8 %0.203435 0.44741 0.376717 0.60894 0.239549 0.56491
COI %0.078593 0.50893 0.945936 0.88387 0.707949 0.79502
COII %0.282624 0.41472 0.719558 0.74234 0.482224 0.68676
COIII 0.027752 0.55406 1.049676 0.88444 0.815441 0.83225
CytB %0.058728 0.48854 0.61185 0.7223 0.461507 0.67267
ND1 %0.364479 0.37829 0.424163 0.63968 0.233101 0.57948
ND2 0.050346 0.56816 0.977908 0.90207 0.765358 0.82398
ND3 %0.295347 0.40674 0.775302 0.79037 0.521529 0.7114
ND4H %0.242612 0.43178 0.490749 0.67366 0.315399 0.61489
ND4L 0.074092 0.54315 1.16252 0.91421 0.918013 0.84738
ND5 %0.192677 0.4549 0.830283 0.83509 0.589258 0.74719
ND6 %0.320602 0.39483 0.572779 0.70145 0.359177 0.63294

All %0.203233 0.44893 0.762273 0.81969 0.533877 0.72344

Locus SLAC)+ SLAC)+ FEL)+ FEL)+ IFEL)+ IFEL)+ REL)+ REL)+ FUBAR)Diversifying FUBAR)Purifying
ATP6 0 16 0 68 0 20 0 0 0 121
ATP8 0 2 0 9 0 1 3 9 0 8
COI 0 44 0 171 0 61 0 0 0 444
COII 0 13 0 75 0 28 1 132 1 138
COIII 0 19 0 83 0 30 0 0 0 176
CytB 0 49 1 166 0 73 0 269 1 308
ND1 0 26 0 129 0 56 0 0 0 260
ND2 0 38 0 122 0 54 0 216 0 252
ND3 0 6 0 38 0 14 0 72 0 57
ND4H 0 50 0 153 0 76 0 294 0 349
ND4L 0 8 0 30 0 6 0 58 0 38
ND5 0 57 0 203 0 87 0 386 0 442
ND6 0 18 0 39 0 22 1 97 0 60

Total 0 346 1 1286 0 528 5 1533 2 2653
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Chapter 4 

Phylogenomic and Population Genomic Characterization of Patterns of Diversification 
in Central and Southern Rocky Mountains Chipmunks (Sciuridae: Tamias) 

 

Abstract 

 Evidence from natural systems suggests that hybridization between species is more 

common than traditionally thought. Studies have historically relied on a handful of loci, 

often mitochondrially-linked, to describe patterns of introgression. This study describes a 

series of genomic analyses in chipmunks, a system with a documented pattern of widespread 

mitochondrial introgression among species. Here, we use a targeted exon capture approach 

to sequence thousands of nuclear loci from chipmunks in the central and southern Rocky 

Mountains belonging to the T. quadrivittatus group. In contrast to a number of studies 

focused on describing the extent of mitochondrial introgression in this system, relatively 

little nuclear-genomic analysis has been performed. We used a series of phylogenomic 

analyses to resolve the systematic relationships among the six species in this group. 

Additionally, we performed several population genomic analyses to characterize nuclear 

genomes and infer coancestry among individuals. We found that, even though mitochondrial 

introgression is rampant among some species pairs, there appears to be little evidence of 

nuclear introgression. These results suggest that other forces, such as sexual selection, play 

an important role in preventing nuclear genomic admixture in chipmunks.  
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Introduction 

 The characterization of genetic changes underlying speciation is one of the most 

central topics in evolutionary biology (e.g., Coyne and Orr 2004; Butlin and Ritchie 2009; 

Nosil and Schluter 2011; Butlin et al. 2012; Seehausen et al. 2014). Speciation is often 

understood as a continuous process governed by the accumulation of genetic differences 

between incipient lineages that ultimately reduce or eliminate reproductive success between 

diverging lineages (Nosil et al. 2009; Strasburg et al. 2012; Seehausen et al. 2014). 

Consequently, ongoing gene flow can occur throughout the speciation process and may even 

occur between lineages recognized as distinct species; closely related species may not be 

completely reproductively isolated and produce viable interspecific hybrids (e.g., Coyne and 

Orr 2004; Mallet 2005; Rieseberg 2009). Furthermore, hybridization may result in 

movement of genetic regions across species boundaries via introgression (Anderson 1949), 

resulting in heterospecific genomes and generating genetic diversity through the novel 

combination of genotypes or elevated allelic diversity (e.g., Rieseberg et al. 1996; Castric et 

al. 2008; Kim et al. 2008; Twyford and Ennos 2012).  

The notion that the genomes of well-described species are semi-permeable has been 

discussed for some time (reviewed in Harrison and Larson (2014)). Conceptual 

characterizations have been formulated that attempt to explain genomic patterns of 

divergence in the face of ongoing gene flow (Wu 2001; Pinho and Hey 2010; Smadja and 

Butlin 2011; Nosil and Feder 2012). These models, generally termed “speciation-with-gene 

flow” models, generate predictions that can be tested using genome-scale data from natural 

populations.  
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Recent evidence suggests that the radiation of western North American chipmunks 

(Sciuridae: Tamias) may be described by speciation-with-gene flow models. The genus 

Tamias is distributed throughout Asia (1 species, Tamias sibiricus, subgenus Eutamias), 

eastern North America (1 species, Tamias striatus, subgenus Tamias), and western North 

America (23 species, subgenus Neotamias). Species can be identified by their genital 

morphology, with the baculum (os penis) acting as a diagnostic character.  

Sullivan et al. (2014) summarized work from the past 12+ years in this system and, 

in particular, outlined several well-studied cases of introgression. Extensive mtDNA 

introgression within two Neotamias subgroups is described in a series of studies (Good et al. 

2003, 2008; Hird et al. 2010; Reid et al. 2010, 2012; Sullivan et al. 2014). Initially, 

asymmetric introgression from T. ruficaudus into T. amoenus was described in the northern 

Rocky Mountains (Good et al. 2003, 2008; Hird et al. 2010; Reid et al. 2010). Subsequent 

work documented the extent of introgression in the central and southern Rocky Mountains, 

specifically six species in the T. quadrivittatus group (Sullivan et al. 2014; Sarver et al. in 

prep.). Among these species, mitochondrial introgression is rampant among four of the six, 

and one species (T. dorsalis) appears to inherit the mitochondrial genome of species it is co-

distributed with. 

 Even though mitochondrial introgression is pervasive and suggests widespread 

hybridization, relatively less work has focused on the extent of nuclear introgression in 

chipmunks. Hird and Sullivan (2009) characterized a contact zone between T. ruficaudus 

ruficaudus and T. ruficaudus simulans and found that bacular morphotypes and nuclear loci 

showed stark delimitation at the Lochsa River; however they identified substantial gene flow 

across the Bitterroot divide along an axis perpendicular to the bacular contact zone. 
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Mitochondrial data from the same individuals indicated introgression that attenuated with 

increasing distance from the zone of contact. Furthermore, Reid et al. (2012) developed a 

series of nuclear markers associated with reproductive protein genes in order to attempt to 

resolve chipmunk systematics. They used multiple phylogenetic approaches, including 

concatenation and several methods of species-tree estimation, but failed to resolve all nodes 

with high statistical support. There are, therefore, several open questions in this system that 

can be addressed with genomic-scale data. 

Here, we characterize the extent of nuclear introgression in one group from the 

central and southern Rocky Mountains. Specifically, we use a targeted exon capture 

approach to sequence thousands of loci from six species in the T. quadrivittatus group. We 

first use population genetic approaches to document the extent of nuclear introgression, 

which has not been assessed in these taxa. We then use phylogenomic approaches to resolve 

systematic relationships among these six species using a series of techniques for estimating 

species trees from multilocus data.  

Materials and Methods 

Sample preparation and sequencing 

 Fifty-one T. quadrivittatus-group chipmunks (five T. canipes, nine T. cinereicollis, 

11 T. dorsalis, 11 T. quadrivittatus, five T. rufus, and ten T. umbrinus) were selected from 

the 231 individuals used by Sullivan et al. (2014) to characterize mtDNA introgression. For 

each species, we included individuals containing introgressed and non-introgressed mtDNA. 

We also included data from three T. striatus individuals published by Bi et al. (2012). DNA 

was isolated from heart or liver tissue, and extractions were performed using Qiagen 

DNEasy DNA extraction kits. Samples were eluted into 50 uL of 10 mM Tris-Cl and stored 
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at -20°C before use. We then performed exon capture using Agilent SureSelect microarrays 

following Bi et al. (2012). Samples were sequenced on two lanes of an Illumina HiSeq 2000 

at the Vincent Coates Genome Sequencing Laboratory at the University of California – 

Berkeley. Sequences were processed using a comprehensive cleaning pipeline. First, 

duplicate sequences were removed. Remaining sequences were screened for quality and 

residual adapters using SeqyClean (Zhbannikov et al. in prep; 

http://bitbucket.org/izhbannikov/seqyclean). Finally, overlapping reads were consolidated 

using Flash (Magoč and Salzberg 2011). Population genetic analyses used the same pipeline 

without Flash overlapping 

 Reads were assembled into contigs using Assembly by Reduced Complexity (ARC; 

Hunter et al. in prep; https://github.com/ibest/ARC), an approach that uses reference 

sequences as a starting point for assembly; reads were mapped to the sequences, and each 

pool of reads corresponding to a single sequence was assembled in a de novo fashion. The 

assembled contigs were used as a new reference for another round of mapping and 

assembly, and this process was repeated until one of a series of termination conditions was 

achieved. ARC has the ability to recruit additional reads throughout iterations to extend 

target sequence length into flanking regions. Since no genomic reference is available for 

Tamias, we used ARC to produce sets of contigs with targets from which capture probes 

were designed used as reference sequences (see Bi et al. 2012). Because targets were 

originally designed using a pooled-tissue transcriptome, we removed any targets that 

included redundant exons (resulting from isotigs) to avoid inclusion of multiple targets with 

the same sequence. Finally, in order to capture heterozygous sites, sequencing reads were 

mapped to each ARC contig using GATK (McKenna et al. 2010; DePristo et al. 2011). 
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High-quality heterozygous sites, as identified through high mapping quality and depth of 

coverage, were translated into their corresponding IUPAC ambiguity codes and injected 

back into the ARC contig.  

Phylogenetic analyses 

 The final contig set produced by ARC for each individual was processed using R 

v3.0.2 (R Core Team 2013) and several other applications. First, all results were trimmed to 

include only targets where ARC produced a single contig across all libraries. Then, a 

multiple sequence alignment was performed on each set of sequences using MUSCLE 

v3.8.31 (Edgar 2004). The resulting matrices were then squared by trimming hanging ends.  

We inferred phylogenies with this dataset using several approaches. First, all contigs 

were concatenated using Phyutility (Smith and Dunn 2008). A phylogeny was inferred using 

RAxML v8.0.5 (Stamatakis 2014) using a full ML search across 1000 bootstrap replicates 

under a GTR + G model of nucleotide sequence evolution.  Modern assemblers do not 

incorporate heterozygotes into contigs; instead, assemblers either use the first base 

encountered as the reference call or use a majority-rule call, removing heterozygous sites 

from the final assembly. Therefore, in order to assess the impact of heterozygous sites on 

phylgenomics, we also constructed a dataset consisting of ARC contigs without 

heterozygous sites (i.e., contigs resulting from assembly with no subsequent modification). 

This dataset was subject to the same processing treatment as the dataset above, and the same 

phylogenetic inference was performed using RAxML v8.0.5 (Stamatakis 2014). 

We then conducted a series of species-tree inferences using two datasets. First, we 

approximated the chromosomal location of each ARC contig relative to the GRCm38 

reference assembly of Mus musculus using BLAT (Kent 2002); despite deep divergence 
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between murids and sciruids, chromosome painting studies (Li et al. 2004) have 

demonstrated remarkable conservatism in karyotypes and patterns of synteny. In order for 

assignment to a (pseudo)chromosome, all individuals in the data set must have been 

assigned to the same chromosome unambiguously. Contigs were then concatenated based on 

their chromosome assignment. Model selection was performed on each contig set using DT-

ModSel (Minin et al. 2003). Phylogenetic trees were estimated using Garli v2.01 (Zwickl 

2006) under the selected model and a termination threshold of 0.01 for 50,000 generations. 

Ten independent search replicates were performed. The best tree among replicates was used 

for subsequent analysis. Each tree was made ultrametric using treePL (Smith and O’Meara 

2012) and the three T. striatus samples as an outgroup with the minimum split time set to 7 

MYA. We view this approach as a moderately-informed binning procedure. 

 We also implemented a naïve binning approach (Bayzid and Warnow 2013). All 

contigs were randomly assigned without replacement into 10 bins of equal size. 

Combination of loci, model selection, phylogenetic inference, and ultrametric 

transformation were performed as described for the chromosome case. Twenty-five random 

binnings and phylogenetic estimations were performed. 

 Finally, species trees were inferred for trees inferred under the moderately-informed 

binning procedure and the naïve binning procedure. We used three separate approaches: 

MP-EST (Liu et al. 2010), STAR (Liu et al. 2009), and STEAC (Liu et al. 2009). MP-EST 

estimates the species tree under the coalescent using a pseudo-likelihood approach. In 

contrast, STAR uses ranks of coalescent times, and STEAC uses average coalescent times in 

order to produce an estimate of the species tree. STAR and STEAC trees were estimated 

under both neighbor-joining (NJ) and unweighted pair-group method with arithmetic mean 



! 77!
(UPGMA) clustering approaches. Comparisons between naïve binning replicates and the 

concatenated RAxML topology were made using Robinson-Foulds distances (Robinson and 

Foulds 1981) as implemented in the R package ape (Paradis et al. 2004).   

Population genomic analyses  

 For population genomic analyses, one individual (S600; T. umbrinus) was arbitrarily 

selected to serve as a genomic reference. The ARC assembly for this individual was pruned 

to include targets that produced three or fewer contigs in order to account for mis-assembly. 

Variants were then called for each individual using this reference set. Post-processed reads 

were aligned to the ARC assembly using Bowtie 2 v2.1.0 (Langmead and Salzberg 2012). 

Alignments were improved using GATK (McKenna et al. 2010; DePristo et al. 2011), and 

variants were phased and missing genotypes were imputed with BEAGLE v4.0 (Browning 

and Browning 2007, 2009; Browning and Yu 2009). Finally, using VCFtools v0.1.12a 

(Danecek et al. 2011), variants were screened to remove sites that violated Hardy-Weinberg 

Equilibrium (HWE) per species group at a p-value of 0.05. Remaining variants were filtered 

using a minor allele frequency cutoff of 0.05. T. striatus was removed for these analyses.  

 Individual coancestry was estimated using ADMIXTURE v1.23 (Alexander et al. 

2009) with 10 rounds of cross-validation and 10 values of K (number of genotypic clusters) 

after selecting a single variant from each ARC contig (due to a lack of information about 

linkage). The same single-variant dataset was used for a multidimensional scaling analysis 

visualized in two dimensions to provide an overall assessment of population genomic 

structure; this analysis was performed using PLINK v.1.07 (Purcell et al. 2007). 

Additionally, Weir and Cockerham’s FST (Weir and Cockerham 1984) and average allele 

frequencies were estimated for all SNPs across all species pairs using the Genotype-
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Phenotype Association Toolkit ++ (available at https://github.com/jewmanchue/vcflib). FST 

values less than zero were converted to zero. Number of heterozygotes, observed 

heterozygosity, and FIS were also calculated fore each species. SNPs that lacked variability 

were removed before calculating statistics. For comparison, FST was also calculated using 

DnaSP (Librado and Rozas 2009) from a concatenated set of mitochondrial protein-coding 

genes assembled as part of another study (Chapter 3).   

Results 

Assembly and processing 

 The pruned ARC targets file included a total length of 4,003,445 bp of sequence data 

consisting of 7,627 genes and 11,976 exons or targeted loci. ARC performed 1,300,188 

assemblies total across all targets and individuals; 5,640 assemblies were terminated due to 

the incorporation of a repetitive element (as diagnosed through the incorporation of a huge 

number of reads relative to the previous ARC iteration) or assembly timeout (indicating 

assemblies took longer than 20 minutes to complete), most likely due to the incorporation of 

difficult-to-resolve repetitive sequences. 

 For molecular phylogenetics, sequences were only included in the final analysis if 

they were present across all libraries. Furthermore, in order to avoid possible errors due to 

improper resolution of sequence order (i.e., two contigs from a single gene may or may not 

be called in a consistent order across assemblies due to the stochastic nature of the assembly 

process), only genes that produced a single contig were included in downstream analyses. 

This resulted in 1,106 sequences. After alignment, this set was truncated to remove 

sequences that were 100% identical among all libraries and assemblies or contained too 

many divergent sites (indicative of assembly errors). This resulted in 1,060 sequences with 
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between 0.33% and 15.2% variable sites (calculated by counting the number of non-

identical columns in the alignment and dividing by the length of the alignment). The final 

alignment consists of 221,556 bp per individual with no missing data. 

The S600 T. umbrinus reference was generated by selecting targets for which ARC 

produced three or fewer contigs per gene. Of the 7,627 capture genes, 6,827 (89.5%) met 

this criterion;10,088 of 11,976 (84.2%) loci were included. 4,326 (56.7%) genes were 

resolved as a single contig for this library. The cutoff of three or fewer contigs per gene is 

conservative but recovers approximately 85% of targeted sequences. 

Phylogenetic inference 

  Concatenated sequence data analyzed using RAxML produced a tree that recovers 

T. umbrinus as sister to the rest of the T. quadrivittatus group (Figure 1). Strong support was 

recovered for the relationships among T. umbrinus, T. dorsalis, T. quadrivittatus, and T. 

cinereicollis. Moderate support (bipartition frequencies between 70% and 80%) was 

recovered for bipartitions including T. rufus and T. canipes. When heterozygous sites were 

not explicitly accounted for, the same topology was recovered. However, all bootstrap 

support values were greater than 94% (Figure 2). These results were surprising, especially 

considering that many phylogenomic methods do not assess whether sites are truly 

homozygous post-assembly. 

 Species-tree estimation was performed using loci putatively identified to Mus 

chromosomal locations. 802 of the 1060 ARC contigs were unambiguously assigned to a 

chromosome and were used for this analysis. The number of contigs assigned to each 

chromosome ranges from 26 to 66, with the exception of a single contig assigned to the X 

and zero assigned to the Y. Each of the 19 Mus autosomes was represented.  
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Several of the species-tree estimation approaches (MP-EST, STAR-UPGMA and 

STAR-NJ) trees recover the same relationships as the concatenated RAxML tree from gene 

trees generated from datatsets of genes assigned to chromosomes, (Fig. 3). The estimate 

from STEAC differs, albeit with short internal branches; the STEAC-UPGMA tree suggests 

that T. canipes and T. rufus form a clade, whereas the STEAC-NJ tree flips the relationship 

between T. canipes and T. dorsalis. 

Furthermore, the 1060 ARC contigs were subject to 25 rounds of naïve binning 

(Table 1). For each type of analysis (MP-EST, STAR, STEAC), Robinson-Foulds (RF) 

distances were computed between the trees relative to the concatenated tree; no comparison 

had a RF-distance greater than 2 from the concatenated tree. Across all replicate analyses, 

trees were in agreement with the concatenated tree 84% of the time or greater, lending 

strong support for the relationships suggested by the concatenated tree. These conclusions 

differ from phylogenies estimated in previously published analyses (Reid et al. 2012; 

Sullivan et al. 2014). Bootstrap values and posterior probabilities resolving the placement of 

T. canipes and T. rufus in Reid et al. (2012) were low and their placement on the tree was 

swapped relative to this study, but other relationships among the T. quadrivittatus group 

species are consistent with our findings. 

Population genomics 

 There were, on average, 4,667,279 genotyped sites per library. A total of 218,792 

variant sites consisting of 214,149 SNVs and 4,643 indels were identified. A small fraction 

of positions were multi-allelic (6,277). Two filters were applied to the raw variants. The first 

removed sites where less than 75% of individuals were genotyped, and the second removed 

sites with a minor allele frequency greater less than 1%. After the filtering steps, 180,879 
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variant sites remained (176,554 SNVs and 4,325 indels). Filtering on HWE and minor allele 

frequency (a final filtering at 5%) resulted in a final count of 111,441 variants. Selecting one 

variant per contig resulted in a thinned dataset of 7,530 SNPs for population assignment 

analyses. 

 ADMIXTURE’s cross-validation approach suggests the optimum number of 

populations is 7 (Supplementary Figure 1), though it is important to interpret other values of 

K in a biological context. ADMIXTURE coancestry plots (Fig. 4) revealed a progression of 

resolution across K values, with T. umbrinus being resolved as its own population first 

(K=2), then T. dorsalis (K=3), followed by T. rufus/T. canipes and T. cinereicollis/T. 

quadrivittatus (K=5) and a resolution of T. cinereicollis and T. quadrivittatus (K=6). At 

K=7, populations, each species was identified and substructure suggested within T. dorsalis. 

There was little indication of interspecific admixture. 

   Multidimensional scaling revealed very similar clustering of individuals into the six 

species (Fig. 5). T. umbrinus and T. dorsalis were separated from the other four species in 

multivariate space. T. rufus and T. canipes cluster cleanly but were separated by much less 

distance.  T. cinereicollis and T. quadrivittatus showed clear clustering but nearly overlap. 

 Average observed heterozygosity ranged from 0.11% to 0.14% with T. umbrinus 

having the lowest. FIS estimates range from 0.0374 to 0.0755 (Table 2). Pairwise FST values 

showed clear differences among species (Table 3). Any comparison that contained T. 

umbrinus had a higher FST relative to other comparisons (> 0.38). FST values including T. 

canipes, T. dorsalis, or T. rufus showed intermediate estimates. The T. quadrivittatus and T. 

cinereicollis estimate was the lowest (0.10). There was a stark contrast between values 

calculated from mitochondrial and nuclear data. In some comparisons, such as those 
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involving T. rufus and T. canipes that lack mitochondrial introgression, FST values were 

large and approach one in some cases. Other comparisons, especially those with T. dorsalis, 

have lower values with some approaching 0.05. 

Discussion 

 Advances in sequencing now allow for genomic characterization in non-model 

systems (Seehausen et al. 2014). Indeed, natural systems and hybrid zones often provide 

insights into the evolutionary process that cannot be obtained in model systems (Hewitt 

1988). Until recently, the lack of molecular biological and bioinformatics tools in non-model 

systems impeded analysis. While not as sophisticated as the tools developed for Homo or 

Mus, techniques currently exist that can be used to manipulate non-model data and drawing 

biological inferences. 

 The present study uses some of these techniques to investigate genomic patterns of 

divergence in chipmunks. Previous studies in this system have shown widespread 

mitochondrial introgression (Good et al. 2003, 2008; Hird and Sullivan 2009; Ried et al. 

2012; Sarver et al. in prep.; Sullivan et al. 2014), whereas few studies (Hird and Sullivan 

2009; Reid et al. 2012) focus on the nuclear introgression that may also result from 

hybridization. Our results show that, in this system, concatenating nuclear data produces an 

estimate of the species tree that is generally consistent with other methods. Since 

concatenation assumes a single evolutionary process governs all loci, we employ species 

tree estimation methods in order to account for phylogenetic discordance among loci 

(Edwards 2009). Trees estimated from loci assigned to Mus chromosomes are consistent 

across methods (with the exception of STEAC) with the concatenated tree. We attempt to 

increase confidence in our estimate by randomly binning subsets of loci and inferring 
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species trees. A majority of methods agree with the concatenated tree (84% or greater 

among replicates), providing strong support for these relationships reflecting the accurate 

evolutionary history of this group. 

 We also find that the failure to account for heterozygous sites in phylogenomic 

inference may not influence results greatly. Here, trees were estimated with identical species 

relationships regardless of whether heterozygous sites were included in the analysis or not. 

However, bootstrap support values differed substantially between analyses; in particular, the 

node between T. cinereicollis/T. quadrivittatus and T. rufus shifts from being highly 

supported to weakly supported, and the same holds for the node uniting T. rufus and T. 

canipes.  

 We also estimate population genetic statistics by calling variants relative to a set of 

ARC contigs from a single individual. This provides a useful set of variants in the absence 

of an established chipmunk reference. Since previous studies indicate rampant mitochondrial 

introgression, we expected to see some evidence of admixture. Mean estimates of FST 

suggest that gene flow may present between species pairs, with the greatest amount between 

T. cinereicollis and T. quadrivittatus and the least between T. umbrinus and any other 

species. This differs from the conclusions drawn from mitochondrial phylogenomic studies; 

such analyses indicated an absence of mitochondrial introgression between T. rufus, T. 

canipes but rampant mitochondrial introgression in T. dorsalis and other species. 

Furthermore, FST values calculated from mitochondrial protein-coding genes are consistent 

with the widespread mitochondrial introgression observed in this system. In contrast, T. 

rufus and T. canipes FST estimates obtained from nuclear data are approximately equivalent 
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to other comparisons, producing a stark contrast to the low values estimated from 

mitochondrial data. 

  Furthermore, ADMIXTURE results indicate little coancestry among species; across 

all species, individuals almost exclusively share coancestry exclusively with individuals of 

their same species. Multidimensional scaling indicates that each species group shows that 

individuals cluster only with their assigned species. These results suggest that even though 

there has been rampant mitochondrial introgression within Tamias, relatively little nuclear 

introgression has taken place. 

It may be that some mechanism, such as selection against hybrids, prevents nuclear 

introgression in the face of ongoing gene flow. In T. sibiricus, male reproductive success is 

correlated with range size, and hybrids of intermediate size may be inferior competitors for 

large territories (Marmet et al. 2012). However, it is unclear whether this holds for western 

North American chipmunks, though similar findings in the Eastern chipmunk (T. striatus) 

indicate that this may be the case (Yahner 1978). Recent work in Mus has shown that 

divergent bacular morphologies are likely the result of sexual selection (Stockley et al. 2013; 

Simmons and Firman 2014). Mechanical stimulation may play an important role in 

reproductive success, and hybrid bacula may perform suboptimally in this context. It is 

possible, then, that sexual selection plays a central role in explaining genetic patterns in this 

system. Breeding work will be required to address these hypotheses.  

This study represents the first genomic-scale study in central and southern Rocky 

Mountains chipmunks and one of the first in chipmunks as a species (see Bi et al. 2012, 

2013). Here, however, we only consider species that comprise 24% of the diversity of the 

genus. Future work will focus on analyzing genus-wide capture data to arrive at more 
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general conclusions about the genomic nature of divergence in this system. Specifically, the 

assembly and phylogenomic approaches implemented here can be used across species to 

provide resolution across the genus and build on approaches using few loci (e.g., Reid et al. 

2012). A resolved phylogeny, in concert with population genomic estimates of divergence, 

gene flow, and population structure, will result in a comprehensive characterization of this 

natural system. 

Conclusion 

 Here, we use targeted exon capture to sequence thousands of nuclear loci from 

chipmunks in the T. quadrivittatus-group. Using phylogenomic approaches, we are able to 

produce a phylogeny using a variety of techniques that resolves the systematics of this 

group. Furthermore, we document a lack of nuclear introgression in the face of substantial 

mitochondrial introgression. Future work will characterize this system further using 

additional analyses and increased, genus-wide sampling.   
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Figures 

Figure 4.1: Best-scoring RAxML tree estimated including heterozygous sites. Bootstrap 
values are listed above branches. Individuals have been collapsed into species groups for 
ease of viewing. Tree is rooted on the branch leading to T. striatus. 
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Figure 4.2: Best-scoring RAxML tree estimated excluding heterozygous sites. Bootstrap 
values are listed above branches. Individuals have been collapsed into species groups for 
ease of viewing. Tree is rooted on the branch leading to T. striatus. Bootstraps are higher for 
splits with T. rufus and T. canipes than in Figure 1. 
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Figure 4.3: Species trees estimated from MP-EST, STAR, and STEAC for ARC contigs 
assigned to chromosomes. All trees are in agreement with the exception of a single STEAC 
tree. A: MP-EST; B: STAR-NJ; C: STAR-UPGMA; D: STEAC-NJ; E: STEAC-UPGMA. 
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Tables 

 
Table 4.1: Robinson-Foulds distances relative to the concatenated RAxML phylogeny. 
Distances are grouped based on the method of species tree estimation. The final row lists the 
number of replicate trees that are in agreement with the RAxML tree. There is a high 
percentage of concordance across all replicates and all approaches. 
 

 
 

Table 4.2: Genomic characterization. Mean number of sites refers to the total length of 
sequence data that has a sequencing depth of at least one averaged across all individuals in 
each species pool. FIS is calculated per SNP for each species pool and then averaged over all 
sites. Non-informative sites are removed before calculation. 
 

 
 

 

Replicate MP+EST STAR0(NJ) STAR0(UPGMA) STEAC0(NJ) STEAC0(UPGMA)
1 2 0 2 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 2 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 2 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
11 0 0 0 2 2
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 0 0 0
17 2 0 0 0 0
18 0 0 0 0 0
19 2 2 2 0 0
20 0 0 0 0 0
21 0 2 2 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0

%0in0agreement: 0.84 0.92 0.84 0.96 0.96

Species Mean*Number*of*Sites Total*Number*of*Heterozygous*Genotypes Mean*Observed*Heterozygosity FIS
T.#canipes 4298388 30658 0.0014 0.0473

T.#cinereicollis 4793771 61382 0.0014 0.0465
T.#dorsalis 4826024 73022 0.0014 0.0683

T.#quadrivittatus 4564067 67181 0.0013 0.0479
T.#rufus 4409452 29748 0.0013 0.0374

T.#umbrinus 4781474 54540 0.0011 0.0755
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Table 4.3: Pairwise FST estimates. Estimates from this study are on the lower diagonal. Sites 
with FST values less than zero are set equal to zero. Non-informative sites are removed prior 
to calculating the mean. The upper diagonal contains estimates from mitochondrial exons. 
Mitochondrial estimates suggest introgression between some pairs (i.e., estimates involving 
T. dorsalis) and a lack of introgression between others (i.e., estimates involving T. canipes 
and T. rufus), in agreement with previous studies. Nuclear and mitochondrial estimates often 
differ substantially. 
 

 
 

Supplementary Material 

Supplementary Figure 4.1: ADMIXTURE cross-validation plot for 10 values of K. 

 

T.#canipes T.#cinereicollis T.#dorsalis T.#quadrivittatus T.#rufus T.#umbrinus
T.#canipes ! 0.90039 0.77282 0.7423 0.94093 0.83481

T.#cinereicollis 0.3039 ! 0.13329 0.34286 0.86096 0.39919
T.#dorsalis 0.3185 0.3005 ! 0.0903 0.63409 0.05138

T.#quadrivittatus 0.2939 0.1032 0.2899 ! 0.59239 0.22374
T.#rufus 0.281 0.2563 0.305 0.2348 ! 0.73139

T.#umbrinus 0.4012 0.3998 0.3762 0.3905 0.4017 !
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Chapter 5 

Conclusions and Future Directions 

 

 This dissertation contains three separate studies. Chapter 2 describes series of 

phylogenetic simulations used to address inferences of diversification rates from molecular 

phylogenies. Chapter 3 is a mitogenomic study that investigates patterns and causes of 

mitochondrial introgression in central and southern Rocky Mountains chipmunks. Chapter 4 

is a nuclear phylogenomic/population genomic study that resolves phylogenetic 

relationships and describes patterns of nuclear introgression in the same system. 

Chapter 2 

 Phylogenetic simulations reveal that, unless there is extreme rate heterogeneity, the 

choice of tree prior and choice of molecular clock does not strongly affect estimates of 

diversification rates. As a result, an uncorrelated lognormal relaxed molecular clock should 

be used to avoid error associated with a failure to accurately model rate heterogeneity 

among lineages. Since trees are now made from large, phylogenomic datasets spanning 

multiple families, it is reassuring that diversification rate estimates are not significantly 

affected by prior misspecification. However, Bayesian phylogenetic techniques are often 

computationally intractable with many individuals or a large amount of sequence data. 

Current methods for analyzing large datasets consist of using approximate-likelihood 

approaches, such as RAxML (Stamatakis et al. 2005; Stamatakis 2014), under a single 

model of nucleotide sequence evolution, and trees are transformed using a molecular clock 

afterwards. It remains to be seen whether computational and methodological advances in 

likelihood-based phylogenetics can accommodate the amount of data generated using high-
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throughput sequencing techniques. Additionally, this study simulates trees under 

combinations of tree priors and molecular clocks by sampling from fixed priors, an approach 

not seen in other studies. Future studies can use trees simulated this way to assess the impact 

of phylogenetic error on the estimation of the magnitude and number of shifts in the rate of 

morphological diversification (e.g., Eastman et al. 2011; Slater et al. 2012). 

Chapter 3 

 Results from selection analyses suggest that selection is not playing a role in 

governing mitochondrial introgression in central and southern Rocky Mountains chipmunks. 

Demographic factors, such as population expansion, provide a possible explanation of 

introgression patterns. An interesting evolutionary case involving tRNA-lysine reveals that 

iterative assembly using ARC is an appropriate approach to recover mitochondrial genomes. 

Furthermore, I develop a Bayesian model-averaging approach to estimate model-averaged 

parameters from a series of selection models implemented in codeml in PAML (Yang 2007). 

This approach builds on work on decision-theoretic approaches in phylogenetic model 

selection (Minin et al. 2003) and can be used to incorporate model uncertainty into selection 

analyses. Future work will include sequencing mitochondrial genomes from across Tamias, 

allowing the characterization of genus-wide patterns of introgression and increase power to 

detect selection. Demographic scenarios can be tested using coalescent simulations; 

increased sampling will produce parameter estimates that can be used to erect a series of 

simulations and test demographic hypotheses, as well as selection, explicitly (Hudson 2002; 

Ewing and Hermisson 2010). 
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Chapter 4 

 In contrast to patterns of mitochondrial introgression, there appears to be little 

nuclear introgression in central and southern Rocky Mountains chipmunks. Estimates of 

individual coancestry, combined with clustering resulting from multidimensional scaling, 

indicate that each species is recovered as a distinct group using nuclear data. FST estimates 

generally follow the phylogeny, with T. quadrivittatus and T. cinereicollis having the 

smallest estimate and any comparison with T. umbrinus having the greatest estimate. All 

other estimates fall within this range. FST estimates from mitochondrial genomic data 

support the phylogenetic notion of rampant introgression among some species, and near 

isolation among others. Furthermore, phylogenies estimated from concatenation and a 

variety of species-tree approaches, whether loci are binned based on chromosome 

assignment or at random, recover a single tree in the majority of cases across all methods. 

As a result, this study produces the first conclusive phylogeny for central and southern 

Rocky Mountains chipmunks. Future work will focus on detecting fine-scale patterns of 

introgression using ABBA-BABA tests (Green et al. 2010; Durand et al. 2011) and 

identifying loci that act as divergence and/or FST outliers. In addition, exome capture 

datasets are being generated for individuals spanning the genus. This data will, for the first 

time, allow for the characterization of genomic patterns at this scale in chipmunks and, 

potentially, resolve phylogenetic relationships among all species. The phylogenomic 

approaches implemented for this chapter will be combined into an R library for use in other 

systems. This will increase the usability of ARC among biologists by expediting analyses in 

non-model systems. 

  



! 105!
References 

(The following references cover the “Introduction” and “Conclusions and Future Directions” 
sections only) 

Bi, K., D. Vanderpool, S. Singhal, T. Linderoth, C. Moritz, and J. M. Good. 2012. 
Transcriptome-based exon capture enables highly cost-effective comparative genomic data 
collection at moderate evolutionary scales. BMC Genomics 13:403. 

Brown, J. H. 1971. Mechanisms of Competitive Exclusion Between Two Species of 
Chipmunks. Ecology 52:305. 

Charlesworth, B. 2010. Molecular population genomics: a short history. Genet. Res. 92:397–
411. 

Coyne, J. A., and H. A. Orr. 2004. Speciation. 

Currat, M., M. Ruedi, R. J. Petit, and L. Excoffier. 2008. The hidden side of invasions: 
massive introgression by local genes. Evolution 62:1908–20. 

Delsuc, F., H. Brinkmann, and H. Philippe. 2005. Phylogenomics and the reconstruction of 
the tree of life. Nat. Rev. Genet. 6:361–75. 

Drummond, A. J., M. a Suchard, D. Xie, and A. Rambaut. 2012. Bayesian phylogenetics 
with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29:1969–73. 

Durand, E. Y., N. Patterson, D. Reich, and M. Slatkin. 2011. Testing for ancient admixture 
between closely related populations. Mol. Biol. Evol. 28:2239–52. 

Eastman, J. M., M. E. Alfaro, P. Joyce, A. L. Hipp, and L. J. Harmon. 2011. A novel 
comparative method for identifying shifts in the rate of character evolution on trees. 
Evolution 65:3578–89. 

Edwards, S. V. 2009. Is a new and general theory of molecular systematics emerging? 
Evolution 63:1–19. 

Eisen, J. A. 1998. Phylogenomics: Improving Functional Predictions for Uncharacterized 
Genes by Evolutionary Analysis. Genome Res. 8:163–167. 

Ewing, G., and J. Hermisson. 2010. MSMS: a coalescent simulation program including 
recombination, demographic structure and selection at a single locus. Bioinformatics 
26:2064–5. 

Excoffier, L., M. Foll, and R. J. Petit. 2009. Genetic Consequences of Range Expansions. 
Annu. Rev. Ecol. Evol. Syst. 40:481–501. 



! 106!
Funk, D. J., and K. E. Omland. 2003. Species-level paraphyly and polyphyly!: Frequency, 
Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annu. Rev. 
Ecol. Evol. Syst. 34:397–423. 

Gernhard, T. 2008. The conditioned reconstructed process. J. Theor. Biol. 253:769–78. 

Good, J. M., J. R. Demboski, D. W. Nagorsen, and J. Sullivan. 2003. Phylogeography and 
introgressive hybridization: chipmunks (genus Tamias) in the northern Rocky Mountains. 
Evolution 57:1900–16. 

Good, J. M., S. Hird, N. Reid, J. R. Demboski, S. J. Steppan, T. R. Martin-Nims, and J. 
Sullivan. 2008. Ancient hybridization and mitochondrial capture between two species of 
chipmunks. Mol. Ecol. 17:1313–27. 

Green, R. E., J. Krause, A. W. Briggs, T. Maricic, U. Stenzel, M. Kircher, N. Patterson, H. 
Li, W. Zhai, M. H.-Y. Fritz, N. F. Hansen, E. Y. Durand, A.-S. Malaspinas, J. D. Jensen, T. 
Marques-Bonet, C. Alkan, K. Prüfer, M. Meyer, H. a Burbano, J. M. Good, R. Schultz, A. 
Aximu-Petri, A. Butthof, B. Höber, B. Höffner, M. Siegemund, A. Weihmann, C. Nusbaum, 
E. S. Lander, C. Russ, N. Novod, J. Affourtit, M. Egholm, C. Verna, P. Rudan, D. 
Brajkovic, Z. Kucan, I. Gusic, V. B. Doronichev, L. V Golovanova, C. Lalueza-Fox, M. de 
la Rasilla, J. Fortea, A. Rosas, R. W. Schmitz, P. L. F. Johnson, E. E. Eichler, D. Falush, E. 
Birney, J. C. Mullikin, M. Slatkin, R. Nielsen, J. Kelso, M. Lachmann, D. Reich, and S. 
Pääbo. 2010. A draft sequence of the Neandertal genome. Science 328:710–22. 

Guttmacher, A. E., and F. S. Collins. 2003. Welcome to the genomic era. N. Engl. J. Med. 
349:996–8. 

Heller, H. C. 1971. Altitudinal Zonation of Chipmunks (Eutamias): Interspecific 
Aggression. Ecology 52:312. 

Heller, H. C., and D. M. Gates. 1971. Altitudinal Zonation of Chipmunks (Eutamias): 
Energy Budgets. Ecology 52:424. 

Hird, S., N. Reid, J. Demboski, and J. Sullivan. 2010. Introgression at differentially aged 
hybrid zones in red-tailed chipmunks. Genetica 138:869–83. 

Hird, S., and J. Sullivan. 2009. Assessment of gene flow across a hybrid zone in red-tailed 
chipmunks (Tamias ruficaudus). Mol. Ecol. 18:3097–109. 

Hodges, E., M. Rooks, Z. Xuan, A. Bhattacharjee, D. Benjamin Gordon, L. Brizuela, W. 
Richard McCombie, and G. J. Hannon. 2009. Hybrid selection of discrete genomic intervals 
on custom-designed microarrays for massively parallel sequencing. Nat. Protoc. 4:960–74. 

Hodges, E., Z. Xuan, V. Balija, M. Kramer, M. N. Molla, S. W. Smith, C. M. Middle, M. J. 
Rodesch, T. J. Albert, G. J. Hannon, and W. R. McCombie. 2007. Genome-wide in situ exon 
capture for selective resequencing. Nat. Genet. 39:1522–7. 



! 107!
Höhna, S. 2014. Likelihood inference of non-constant diversification rates with incomplete 
taxon sampling. PLoS One 9:e84184. 

Hudson, R. R. 2002. Generating samples under a Wright-Fisher neutral model of genetic 
variation. Bioinformatics 18:337–338. 

Jorde, L. B., W. S. Watkins, and M. J. Bamshad. 2001. Population genomics!: a bridge from 
evolutionary history to genetic medicine. Hum. Mol. Genet. 10:2199–2208. 

Kendall, D. G. 1948. On the Generalized “Birth-and-Death” Process. Ann. Math. Stat. 19:1–
15. 

Klopfstein, S., M. Currat, and L. Excoffier. 2006. The fate of mutations surfing on the wave 
of a range expansion. Mol. Biol. Evol. 23:482–90. 

Maddison, W. P. 1997. Gene Trees in Species Trees. Syst. Biol. 46:523–536. 

Mallet, J. 2007. Hybrid speciation. Nature 446:279–83. 

Mallet, J. 2005. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20:229–37. 

Minin, V., Z. Abdo, P. Joyce, and J. Sullivan. 2003. Performance-Based Selection of 
Likelihood Models for Phylogeny Estimation. Syst. Biol. 52:674–683. 

Nee, S., E. C. Holmes, R. M. May, and P. H. Harvey. 1994a. Extinction rates can be 
estimated from molecular phylogenies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 344:77–82. 

Nee, S., R. M. May, and P. H. Harvey. 1994b. The reconstructed evolutionary process. 
Philos. Trans. R. Soc. Lond. B. Biol. Sci. 344:305–11. 

Pinho, C., and J. Hey. 2010. Divergence with Gene Flow: Models and Data. Annu. Rev. 
Ecol. Evol. Syst. 41:215–230. 

Reid, N., J. R. Demboski, and J. Sullivan. 2012. Phylogeny estimation of the radiation of 
western North American chipmunks (Tamias) in the face of introgression using reproductive 
protein genes. Syst. Biol. 61:44–62. 

Reid, N., S. Hird, A. Schulte-Hostedde, and J. Sullivan. 2010. Examination of nuclear loci 
across a zone of mitochondrial introgression between Tamias ruficaudus and T. amoenus. J. 
Mammal. 91:1389–1400. 

Revell, L., L. Harmon, and R. Glor. 2005. Under-parameterized Model of Sequence 
Evolution Leads to Bias in the Estimation of Diversification Rates from Molecular 
Phylogenies. Syst. Biol. 54:973–983. 



! 108!
Seehausen, O., R. K. Butlin, I. Keller, C. E. Wagner, J. W. Boughman, P. a Hohenlohe, C. 
L. Peichel, G.-P. Saetre, C. Bank, A. Brännström, A. Brelsford, C. S. Clarkson, F. 
Eroukhmanoff, J. L. Feder, M. C. Fischer, A. D. Foote, P. Franchini, C. D. Jiggins, F. C. 
Jones, A. K. Lindholm, K. Lucek, M. E. Maan, D. a Marques, S. H. Martin, B. Matthews, J. 
I. Meier, M. Möst, M. W. Nachman, E. Nonaka, D. J. Rennison, J. Schwarzer, E. T. Watson, 
A. M. Westram, and A. Widmer. 2014. Genomics and the origin of species. Nat. Rev. Genet. 
15:176–92. 

Slater, G. J., L. J. Harmon, D. Wegmann, P. Joyce, L. J. Revell, and M. E. Alfaro. 2012. 
Fitting models of continuous trait evolution to incompletely sampled comparative data using 
approximate Bayesian computation. Evolution 66:752–62. 

Stadler, T. 2013. How can we improve accuracy of macroevolutionary rate estimates? Syst. 
Biol. 62:321–9. 

Stamatakis, A., T. Ludwig, and H. Meier. 2005. RAxML-III: a fast program for maximum 
likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–63. 

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis 
of large phylogenies. Bioinformatics 2010–2011. 

Sullivan, J., J. R. Demboski, K. C. Bell, S. Hird, B. A. J. Sarver, N. Reid, and J. M. Good. 
2014. Divergence-with-gene-flow within the recent chipmunk radiation (Tamias). Heredity. 

Wertheim, J. O., and M. J. Sanderson. 2011. Estimating diversification rates: how useful are 
divergence times? Evolution 65:309–20. 

Wu, C.-I. 2001. The genic view of the process of speciation. J. Evol. Biol. 14:851–865. 

Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 
24:1586–91. 

Yule, G. U. 1925. A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. 
C. Willis, F.R.S. Philos. Trans. R. Soc. B Biol. Sci. 213:21–87.  

!


