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Abstract 

 Wildfires in mixed conifer forests have increased in size and occurrence over the past 

decades and are expected to increase in the future because of a warming climate leading to 

longer fire seasons.  To better understand that impacts of wildfires on forests, research 

focusing on the connection between severity of the fire and forest recovery is needed.  

Research on immediate fire effects and post-fire recovery within five years of fires have 

been reported, however long term effects are largely unexplored. To understand long term 

recovery in mixed conifer forests after wildfire, four wildfires from the 2003 fire season in 

western Montana were sampled in the field and via remote sensing.  Analysis of field data 

and satellite imagery shows lower tree density in high severity burns and significant 

differences in recovery rates between severity classes. This research contributes to the   

scientific knowledge of long term effects of wildfires in mixed conifer forests.   
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Chapter 1: Impact of fire severity on plant community response and wildland fuels in 

mixed conifer forests ten years post-fire 

Abstract 

Wildfire is an important ecological process in mixed conifer forests. Wildfires shape 

forest structure and species composition. To better understand how forests are affected by 

wildfire, it is common practice in the US to use remotely sensed indicators of fire severity, 

such as the Normalized Burn Ratio (NBR) maps. Although remotely sensed fire severity 

indices have been correlated with field assessments of severity immediately after fire, few 

studies have researched the long term effects of fire severity on forest structure and species 

composition. We chose four fires that burned in western Montana in 2003, each with 

varying degrees of severity within the fire perimeter. Data collection included tree density by 

size class, seedling regeneration, fuel loadings, understory cover, and species composition. 

Using both Multivariate Analysis of Variance (MANOVA) and ordination indicated that the 

major difference between the remotely sensed severity classes, ten years post-fire, was the 

number of live trees. No significant differences were detected between severity classes for 

fuel loadings, sapling density, seedling density, shrub cover, species diversity or richness. The 

understory species composition in areas that burned in low or moderate severity was 

dominated by species with the ability to resprout after fire while areas that burned at high 

severity contained more species with highly dispersed propagules, with 19 of 148 species 

exclusively found in high severity burns. Under current climate conditions, we conclude that 

the mixed-severity fire regime, characterized by a pattern of patches burned at variable 
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severity, contributes to ecological resilience by increasing gamma heterogeneity and 

biodiversity in these mixed conifer forests.  

Introduction 

Fire is an important and complex ecological process in the mixed conifer forests of 

North America (Agee 1993). Recent research provides evidence that mixed-severity fire 

regimes were historically widespread in these forests (Odion et al. 2014). Mixed-severity fire 

regimes contain severity levels ranging from low, moderate, to high distributed in patterns 

of varying scales across the landscape (Halofsky et al. 2011). This pattern of severity patches 

originates in variable topography, weather during the fire, and vegetation patterns (Birch et 

al. 2015).  It has been proposed that the patch heterogeneity can contribute to the resilience 

of mixed conifer forests (Collins & Stephens 2010; Haflofsly et al. 2011) by increasing 

diversity and intermingling of species. However, it has also been demonstrated that 

frequently reburned patches can contribute to reduced tree density and alter the ecosystem 

recovery trajectory (Stevens-Rumann 2015). The high severity fire rotation has been 

estimated at 200-500 years in mixed conifer forests while the lower severity fire has a 

shorter rotation (Odion et al. 2014), generally meaning that low and moderate severity fire 

occurs with a higher frequency at any single location compared to high severity fire (Agee 

1993). Fire rotation was defined as the time it takes to burn an area equal in size to the area 

of interest. Traditionally, mixed conifer forests were thought to be adapted to frequent 

low/moderate severity fires, however, Odion et al. (2014) presents evidence that areas 

burned at moderate and high severity commonly occurred in these landscapes. It is 

understood that high severity fires will have a large impact on the ecosystem than lower 
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severity fires due to the removal of the oldest group of vegetation, the mature trees. The 

extended time it takes for trees to recover has a major impact on available sunlight and soil 

nutrients in the ecosystem.  

 Fire severity has been discussed widely in fire ecology literature over the past decade 

and describes a number of physical and biological effects (Lentile et al. 2006; Lentile et al. 

2007; Keeley 2009; Morgan et al. 2014). By its broadest definition it is the degree of 

environmental change incurred by the fire (Keeley 2009). Fire severity can be estimated at 

several strata in the forest and includes fire effects such as plant mortality, fuel 

consumption, smoke production, soil heating, and soil water repellency (Morgan et al. 2014). 

All of these measurements of severity can be measured from the ground, for example using 

the Composite Burn Index (CBI) (Key & Benson 2006).  

To estimate severity for the entirety of a wildfire event data such as satellite imagery 

are commonly utilized. Pre-and post-fire images of the Normalized Difference Vegetation 

Index (NDVI; Tucker 1979) or the Normalized Burn Ratio (NBR; Key & Benson 2006) are 

commonly used to map fire severity across large areas. The difference between pre- and 

post-fire NBR (dNBR) is documented for all wildfires larger than 500 ha in the US via the  

Monitoring Trends in Burn Severity (MTBS) project, from 1985 to the present day 

(Eidenshink et al. 2007). The NBR is computed using the formula: 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Using band 4 for the near infrared (NIR) and band 7 for the short wave infrared 

(SWIR). MTBS uses the Landsat constellation to estimate fire severity by the dNBR index for 
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all fires on record. According to MTBS procedures, dNBR represents the difference between 

pre-fire NBR calculated from an image collected immediately before the fire and post-fire 

NBR calculated from an image collected one year after the fire by the formula:  

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒 

The dNBR has been shown to correlate well with the loss of biomass and vegetation 

mortality induced immediately by the fire as well as delayed mortality of trees occurring 

within the first year post-fire (Key & Benson 2006). Several studies have documented the 

correlation between dNBR and percent tree mortality in forests (Hudak et al. 2007; Lentile et 

al.2007; Smith et al. 2010). 

 Only a few studies have documented relationships between fire severity and 

understory plant cover including forb, graminoid and shrub cover in mixed conifer forests 

(Turner et al. 1999; Lentile et al. 2007). Generally, species cover and richness are lower in 

areas that burn at high severity ( Turner et al. 1999; Lentile et al. 2007), at least for a few 

years following the fire.  Turner et al. (1999) found a greater number of forbs following 

crown fires compared to severe surface fires in mixed conifer forests four years after the 

1988 fires in Yellowstone National Park. Turner et al. (1999) further documented that four 

years after fire, shrub cover was lower at increased fire severity.  They also found a higher 

tree seedling density in areas that burned in surface fires compared to high severity crown 

fires. The same was discovered for red fir seedlings in Oregon’s southern Cascade Mountains 

where the lowest seedling establishment was observed in high severity areas (Chappell & 

Agee 1996). These results agree with lab experiments that show high temperatures reduce 

the survival of seeds in the canopy (Knapp & Anderson 1980; Johnson & Gutsell 1993). To 
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this date, we have not found any studies recording post-fire vegetation recovery in mixed 

conifer forests of North America over time periods as long as ten years. This study is 

therefore unique because it documents changes in forest structure, plant community 

composition, and wildland fuels ten years after mixed-severity fires in mixed conifer forests 

in Montana and therefore contributes new knowledge to our understanding of fire severity 

effects in this forest type.  

A better understanding of the effects of fire severity in mixed conifer forests also is 

important because of expected changes in climate.  Consequences of a changing climate 

include earlier springs resulting in earlier fire seasons and thus a longer fire season 

(Westerling et al. 2006). Climate change is expected to result in a higher frequency of fires 

and larger fires  (Westerling et al. 2006). Given that the wildland fuels will be dryer, 

especially the coarse woody debris, these fires may also increase in severity. Fire 

suppression techniques used in the early- and mid-1900s have left many undeveloped areas 

with a buildup of fuels (Pyne 1996). Fire effects are generally not consistent across the 

burned area due to spatial variability in fuel loads, topography, variable weather, and 

suppression priorities (Kolden et al. 2012; Hayes & Robeson 2013; Strand et al. 2013; Hoff et 

al. 2014). Considering expected changes in climate and resulting increases in fire occurrence 

and intensity, Goetz et al. (2007) suggested that further research is required to improve the 

integration of remotely sensed data, field research, and models to better quantify the long 

term trajectories of disturbances. To better understand how mixed conifer forests recover 

after wildfire with variable severity levels, we collected field data ten years post-fire to 

characterize plant community composition and fuel loads, along a fire severity gradient, in 
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four fires in western Montana that burned in 2003. Specifically, we collected data to address 

the following research questions: 1) Does remotely sensed dNBR indicate tree density, 

establishment of trees, understory plant response, and wildland fuel loads ten years post-

fire in mixed conifer forests? 2) Is plant community composition affected by the fire severity 

level, topographic position, and climate ten years post-fire?  

Methods 

Study Area 

The wildfires incorporated in this study occurred in 2003 in the Northern Rockies of 

western Montana. The fires can be broken up into two different regions, the northwest fires 

and the west fires. The northwest fires are the Wedge Canyon and Robert fires that started 

on July 18th and 23rd respectively. The west fires are the Black Mountain 2 and Cooney 

Ridge fires that started on August 8th and 9th respectively (Tables 1 and 2).  These fires 

contained all types of fire behavior from crown fire, surface fire, and a mixture of behavior.  
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Figure 1. Locations of wildfires in western Montana and their MTBS severity classifications. 

The Robert fire footprint contains gaps in the data caused by the failure of the scan line 

corrector (SLC) onboard Landsat 7 while the other fires were imaged by Landsat 5.  
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Table 1. Table showing the number of hectares burned at different severity levels within the 

fire perimeter of each fire based on remotely sensed data from MTBS. Percentages are 

reported in parentheses.  

Name Unburned/low 
(ha) 

Low 
(ha) 

Moderate 
(ha) 

High 
(ha) 

Increased 
greenness 

(ha) 

Black 
Mountain 2 

634.9 (27.5%) 468.2 (20.3%) 834.8 (36.2%) 364.6 (15.8%) 3.6 (0.2%) 

Cooney Ridge 2186.1 (21.4%) 3731.1 
(36.5%) 

3105.5 
(30.4%) 

1181.7 
(11.6%) 

8.5 (0.1%) 

Robert 1958.2 (6.0%) 19761.2 
(60.9%) 

5818.9 
(17.9%) 

4884.9 
(15.0%) 

49.8 (0.2%) 

Wedge 1335.0 (6.4%) 5361.6 
(25.8%) 

7517.7 
(36.1%) 

6587.8 
(31.7%) 

8.9 (0.0%) 

 

Table 2. Information about the fires included in this research. The fire size is calculated from 

the final MTBS fire perimeter. The climatic variables are taken from the USFS:RMRS Spline 

Model of Climate for the Western United States (Rehfeldt 2006) for each of the fires.  

Name Region Date of 
Ignition in 

2003 

Final 
size (ha) 

Elevation 
(m) 

Mean Annual 
Precipitation 

(cm) 

Mean Annual 
Temperature 
(degrees C) 

Wedge 
Canyon 

NW July 18th 21,038 1134-2480 81.5 2.5 

Robert 
 

NW July 23rd 22,055 950-2362 78.5 3.7 

Black 
Mountain 2 

W August 8th 2,996 963-1807 56.1 4.5 

Cooney 
Ridge 

W August 9th 10,417 1125-2318 51.9 3.9 
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The West region is dryer than the Northwest region by 20 cm of mean annual 

precipitation from 1971-2000. The driest part of the year for both regions is July and August 

with the fires in the West receiving the least amount of precipitation (Pfister et al. 1977). The 

precipitation that occurred in the year before the fire was lower than normal at the western 

fires and higher at the northwestern fires. Due to the large changes in elevation there is also 

a large difference in precipitation within each fire, with some higher elevation areas 

receiving two to three times as much precipitation as some low elevation sites (Pfister et al. 

1977).  

 All four wildfires occurred in mixed conifer forest.  The western region is comprised 

primarily of the Douglas-fir (Pseudotsuga menziesii) habitat type (Pfister et al. 1977),  

dominated by ponderosa pine (Pinus ponderosa); however in areas with greater fire 

suppression there are denser Douglas-fir stands (Cooper et al. 1991). Regionally, the 

Douglas-fir habitat type in general is thought to have  a fire return interval of 15-30 years, 

however the two western fires have a documented fire return interval of 35-60 years (Arno 

1980). The northwestern region fires occurred in a subalpine fir (Abies lasiocarpa) habitat 

type which has a mean fire return interval as low as 90 years for the lower elevations and as 

high as 150 years in the higher elevation northern aspects (Arno 1980). All four areas hosted 

lodgepole pine (Pinus contorta), western larch (Larix occidentalis) and Engelmann spruce 

(Picea engelmannii).  Common shrubs included Rocky Mountain maple (Acer glabrum), 

serviceberry (Amelanchier alnifolia), myrtle boxwood (Pachystima myrsinites), rose (Rosa 

spp.), western thimbleberry (Rubus parviflorus), willow species (Salix spp.), spiraea (Spiraea 

betulifolia), and huckleberry (Vaccinium globulare). Common forbs included common yarrow 
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(Achillea millefolium), pearly everlasting (Anaphalis margaritacea), heartleaf arnica (Arnica 

cordifolia), fireweed (Epilobium angustifolium), white-flowered hawkweed (Hieracium 

albiflorum), western meadowrue (Thalictrum occidentale), round-leaved violet (Viola 

orbiculata), and beargrass (Xerophyllum tenax); and common grasses or grass-like species 

were elk sedge (Carex geyeri), pinegrass (Calamagrostis rubescens), and blue wildrye (Elymus 

glaucus). Moss and lichen were observed in almost all plots, but were not identified to the 

species level. A list of all species observed during field data collection can be found in 

Appendix 1.  

Field Data Collection 

Field data were collected at all four of these fires. Field data collection sites were 

stratified by remotely sensed wildfire severity (low, moderate, and high), elevation, and 

aspect. The elevation and aspect were both classified into two classes using a density slice 

creating: two classes elevation, low and high; and two classes of aspect, warm and cold, 

where the warm aspects encompassed azimuths from 120 to 300 degrees and cold aspects 

encompasses all other aspects.  

All field sites were located at least 60 m from the Montana state road layer available 

from the Montana geographic information clearinghouse (http://geoinfo.msl.mt.gov/). Each 

field site consisted of five plots (Figure 2), where the central plot was labeled A. The next 

plot, labeled B, was located upslope from A. The next plot moving clockwise 90 degrees was 

plot D; moving clockwise another 90 degrees the next plot (downslope from plot A) was 

labeled F; followed after moving another 90 degrees by plot H (Figure 2).  All outer plots B, 
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D, F, and H were located 30 m from subplot A. At each of the five locations understory 

vegetation cover by species and fine woody fuels were sampled within a 1x1m quadrat. 

Ground cover was estimated ocularly by percentage of the quadrat covered by for each 

class: green vegetation, non-photosynthetic vegetation (NPV, charred and uncharred), rock, 

and soil. Woody fuels by size class (1 hour (< 2.54 cm in diameter), 10 hour (2.54 – 7.62 cm in 

diameter), and 100 hour (7.62-20.32 cm in diameter)) were estimated using the photo load 

technique (Keana & Dickinson 2007). Litter and duff depth were measured in cm at each 

plot. Forest canopy cover was collected at the plots using a spherical convex densiometer. 

Data from the densiometer measurements were taken in each cardinal direction at each plot 

and then averaged.    

Figure 2. Layout of plots at each sampling site. 

Tree data were collected by tallying all the healthy, unhealthy, and dead tree species 

in an 8-m radius around plot A. Sapling data were collected by counting all the live and dead 

tree species in a 5.6-m radius around plot A. Saplings are defined as young trees with a stem 

diameter less than 10 cm at breast height (1.37 m). Seedlings (defined as trees below 1.37 m 

height but taller than 15 cm) were counted along a belt transect of variable width from F to 

B; the width as well as the distance along the transect were recorded so seedling counts 

30m 

B 

D 

F 

H A 



12 
 

could be converted to seedling density (seedlings per hectare). The width of the belt transect 

and number of 30m segments (ranging from 1-4) was adjusted so the seedling count would 

be > 30 for the major tree species. Shrub cover taller than breast height was estimated 

ocularly within the 5.6-m radius sapling subplot centered at plot A. Finally, the 1000 hour (> 

20.32 cm in diameter), 100 hour (2.54-7.62 cm), 10 hour (0.64-2.54 cm), and 1 hour (< 0.64 

cm) woody fuels were estimated using a photo load guide containing images that show a 

range of fuel loads (Keana & Dickinson 2007). We then compared what large woody fuels we 

could see within a 5.6-m radius around plot A to the images and selected the image that 

looked the most similar to the fuel loads observed on the ground.  Field data was collected 

at a total of 34 locations across the four fires, stratified by the elevation, aspect, and fire 

severity. There were 9 low severity points, 13 moderate severity points, and 12 high severity 

points. All data used in the analysis are listed in Appendix 2. 

Data analysis 

Species richness, the total number of species present including trees, shrubs, grasses, 

forbs, moss, and lichen, was calculated for each plot and also at the site level. Species 

diversity was calculated using the Shannon’s diversity index (Shannon 1948). Stem counts of 

trees (live, unhealthy, dead), saplings, and seedlings were converted to stem density 

measurements in stems per hectare. To consolidate the stem counts of trees measured we 

computed percent mortality of trees.  

We analyzed these data using Multivariate Analysis of Variance (MANOVA) to test for 

differences in group means of response variables between the severity classes using a non-
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parametric method called Permutational Multivariate Analysis of Variance Using Distance 

Matrices from the Vegan package in the R statistical software (Oksanen et al. 2015; R Core 

Team 2013).  Non-parametric statistics were used because the data did not fulfill the 

requirements of normality for parametric statistics. We created three groups of variables for 

analysis based on the scale of data collection: group 1 included the ground cover and species 

richness; group 2 included fine woody fuels data as well as litter and duff; group 3 included 

percent tree mortality data, 1000 hour fuels, and shrub cover; and the final group was the 

same as group 3 but included seedling density.  We included 1000 hour fuels in group three 

because snags become 1000 hour fuels when they fall. For each group there were 999 

permutations run to accurately determine statistical significance.  

Following the permutation MANOVA, we used another non-parametric method, the 

Kruskal-Wallis rank sum test of significance (Kruskal & Wallis 2012), to determine if the mean 

of each response variable was significantly different (p < 0.05) between fire severity levels. 

We used R statistical software (R Core Team 2013) for all statistical analysis.  

To analyze the large species dataset, multivariate ordination analysis was used to 

explore patterns in the plant community composition. Gradient analysis was used to explore 

gradients of fire severity, dNBR, elevation, cosine transformed aspect (Stage 1976), impact of 

region (NW and W), and climate in the data using the PCORD software (McCune & Grace 

2002). Specifically we used Nonmetric Multidimensional Scaling (NMS), a non-parametric 

ordination method designed to reveal gradients in species data and correlations with 

environmental variables. This method was developed after Principal Components Analysis 

(PCA) was used to analyze species data and is recommended by  McCune & Grace (2002) as 
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the most generally effective ordination method for ecological community data. This method 

was chosen because it works well with non-normal data, does not assume a linear 

relationship, and avoids the zero truncation problem that many times occurs with 

community data (McCune & Grace 2002). NMS is an iterative technique that searches for the 

solution until it has found a solution within the number of axes given by the user.  We used 

an iterative method described by McCune & Grace (2002) to find the number of axes that 

corresponded to the lowest stress of just the species data.  The axes were then correlated 

with the primary and secondary matrix using Kendall’s tau coefficient (Kendall 1938). The 

Kendall tau is a non-parametric statistical method to quantify correlation, it is appropriate 

for data lacking normality. Kendall’s tau ranges from -1 to 1, where 0 indicates lack of 

correlation, a positive number indicates a positive correlation and a negative number 

indicates a negative correlation. The primary matrix consisted of the cover of species that 

occurred in a minimum of two stands, 82 species total, and the secondary matrix consisted 

of the explanatory variables including severity classes, dNBR, elevation, the cosine 

transformed aspect (Stage 1976), overstory canopy cover, region, and climate variables from 

the USFS:RMRS Spline Model of Climate for the Western United States (Rehfeldt 2006). 

These climate variables included: mean annual temperature (MAT), mean annual 

precipitation (MAP), Julian date of the last freezing date of spring (SDAY), degree-days <0 

degrees C (MMINDD0), and summer precipitation balance: (jul+aug+sep)/(apr+may+jun) 

(SMRPB). 
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Results 

Forest structure and fuels by severity class 

Multivariate analysis shows that there are differences in vegetation data between 

areas that burned at low, moderate, and high severity ten years post-fire. Non-parametric 

multivariate analysis of variance did not reveal significant differences between low-high 

severity levels for the understory ground cover data (see group 1 in Table 3).  Significant 

differences were observed in the fuels (see group 2 in Table 3), tree data (see group 3 in 

Table 3), and tree data plus seedling density (see group 4 in Table 3). When seedling density 

was included in the tree data (group 4) the difference between severity classes was still 

significant at alpha = 0.05. 

Table 3. Variable group and the F and p values from the non-parametric MANOVA test. For 

each group there were 999 permutations run, two degrees of freedom, and 31 error degrees 

of freedom.  

Group 
Number 

Variables Used F P  

1 green vegetation cover, non-photosynthetic 
vegetation (NPV), charred NPV, rock , soil, and 
species richness 

0.6514 0.530 

2 1 hr fuels, 10 hr fuels, 100 hr fuels, litter, and duff 2.9258 0.037 

3 % mortality, 1000 hr fuels, and shrub cover 7.1462 0.002 

4 % mortality, 1000 hr fuels, shrub cover, and live 
seedling density 

3.4934 0.027 

 

To further evaluate the MANOVA results, we tested the significance of each variable 

individually with the non-parametric Kruskal-Wallis rank sum test of significance (Table 4). 

Five variables were significantly different between severity classes those being rock cover, 
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duff depth, percent tree mortality, 1000 hr fuels, and shrub cover. Figure 3 shows summary 

statistics for each variable that was significant in the MANOVA and the Kruskal-Wallis rank 

sum test, and the statistics for all variables collected in the field are summarized in Appendix 

3. 

Table 4. All the variables tested using the Kruskal-Wallis rank sum test. All of these tests had 

two degrees of freedom. The table shows that rock cover, duff depth, percent tree mortality, 

1000 hr fuels, and shrub cover were all significant variables at the 0.05 significance level. 

Variable Kruskal-Wallis Chi-squared P value 

green cover 1.0773 0.5835 

NPV 0.4212 0.8101 

NPV charred 2.9127 0.2331 

rock  8.4003 0.0150 

soil 3.8671 0.1446 

species richness 0.5251 0.7691 

1 hr fuels 2.5726 0.2763 

10 hr fuels 3.6634 0.1601 

100 hr fuels 2.6883 0.2608 

litter 3.1615 0.2058 

duff 8.6696 0.0131 

% tree mortality 21.965 0.00002 

fuels 1000 hr  13.7547 0.0010 

shrub cover  8.6565 0.0131 

seedling density 3.4469 0.1785 
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Figure 3. Variables that are significant in the MANOVA and significant in the Kruskal-Wallis 

rank sum test. The bold line represents the sample median, the box represents the first and 

third quartile of the sample, the whiskers represent the minimum and maximum, and the 

dots represent outliers.  

 

Ordination of species data 

The NMS ordination method organizes the species data along multiple axes such that 

species that are similar in ordination space are placed closer together (Figure 4).  The first 
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axis explained 51.4% of the data while the second axis explained 8.1%. A third axis was 

identified via ordination, however it only explained 3.6% of the data and was therefore 

excluded from further consideration. To understand correlations between the identified 

axes, species data, and explanatory variables we looked at the Kendall tau rank correlation 

coefficient (Kendall 1938) for the explanatory variables (Table 5) and for the individual 

species (Appendix 4). Correlation with the explanatory variables (Table 5) showed that mean 

annual precipitation (MAP) was the most important variable explaining axis 1, followed by 

mean annual temperature (MAT) and remotely sensed burn severity (dNBR).  The correlation 

with MAP was positive while the correlation with MAT was negative, meaning that a high 

value on axis 1 corresponds to high precipitation and burn severity (dNBR); and low 

temperatures. 
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Table 5. The correlation of the explanatory variables to the ordination axis derived from 

species data. Explanatory variables are: Tree canopy cover (CC), remotely sensed burn 

severity (dNBR), transformed aspect (TRASP), elevation (DEM), mean annual temperature 

(MAT), mean annual precipitation (MAP), Julian date of the last freezing date of spring 

(SDAY), degree-days <0 degrees C (MMINDD0), and summer precipitation balance: 

(jul+aug+sep)/(apr+may+jun) (SMRPB). Pearson’s correlation coefficient, r-squared, and 

Kendall’s tau statistics are reported.  

Axis: 1 2 3 

 r r-sq tau r r-sq tau r r-sq tau 

CC 0.022 0.000 -0.030 -0.269 0.072 -0.167 -0.366 0.134 -0.163 

dNBR 0.388 0.151 0.250 0.085 0.007 0.038 0.426 0.182 0.322 

TRASP 0.201 0.041 0.189 -0.134 0.018 -0.068 0.039 0.002 0.004 

DEM 0.061 0.004 0.106 -0.126 0.016 -0.068 0.473 0.224 0.352 

MAT -0.386 0.149 -0.312 0.075 0.006 0.069 -0.382 0.146 -0.308 

MAP 0.539 0.291 0.328 -0.133 0.018 -0.074 0.109 0.012 0.055 

SDAY -0.035 0.001 -0.077 0.079 0.006 0.077 0.312 0.097 0.271 

MMINDD0 0.142 0.020 0.102 -0.067 0.005 -0.042 0.405 0.164 0.334 

SMRPB 0.035 0.001 -0.058 0.185 0.034 0.116 -0.441 0.194 -0.349 

 

  The ordination graph (Figure 4) showed that areas burned at high and low severity 

respectively had different species compositions but many species occurred in both areas 

burned at high and low severity.   Overall, 148 species were recorded at the 34 field sites, 

with 119 species recorded on low severity sites, 71 species recorded on moderate severity 

sites, and 89 species recorded on high severity sites. Of those species 35 were observed only 

in low severity burns, 10 only in moderate severity burns, and 19 species were observed only 

in high severity burns. When the cumulative number of species is graphed against the 

number of plots sampled, the total species richness asymptotes at 148 for the last four plots 
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and we therefore conclude that the sample size is sufficient to adequately characterize the 

region with regards to species composition.    

 

 

Figure 4. Species and plot locations displayed in ordination space with the severity level for 

plot locations displayed as a different symbol. Axis 1 shows a positive correlation with mean 

annual precipitation, fire severity and a negative correlation with annual mean temperature. 

Therefore, species that are associated with high severity plots are located to the right in the 

graph and species associated with low severity plots are located at the left side for the 

graph.  

Severity:         Low                        Moderate                       High 
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Discussion 

Changes in ground cover, fuel loads and tree mortality 

  Results from multivariate statistical analysis showed that there was no significant 

difference in ground cover, including green vegetation, NPV, soil, rock, char, or species 

richness depending on fire severity ten years post-fire in the mixed conifer forest fires 

sampled in Montana.  One year post-fire, in these same fires, Lentile et al. (2007) found that 

species richness differed between low/moderate severity and high severity patches, with 

lower richness in high severity burns. They found little difference in species richness 

between the low and moderate fire severity levels. They also found that the high severity 

locations had a higher portion of exposed mineral soil than the lower severity patches 

(Lentile et al. 2007). To mimic the experiments run by Lentile et al. (2007), low and moderate 

severity were grouped together and were tested against high severity, however ten years 

post-fire we observed no significant difference in the species richness and exposed mineral 

soil between the severity groups. Lentile et al’s (2007) results are different when compared 

to our research, and we attribute these differences to the increase in time since fire resulting 

in adequate time for understory vegetation to recover. The Kruskal-Wallis rank sum tests 

showed that out of the ground cover group only rock cover was significantly different 

between severity classes. We believe this is due to the increase exposure of rock post-fire 

and a large difference in rock cover between high and low severity. Our observations 

indicated that ten years post-fire, the understory vegetation had recovered to the extent 

that the differences initially observed between severity levels were no longer detectable 

using metrics such as species cover, richness, or diversity. Turner et al. (1999) stated that 
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three years after the 1988 Yellowstone fires the percent biotic cover was back to unburned 

percentages. Our study agreed with their research that showed no significant effect of 

severity on understory green cover ten years post-fire.  Turner et al. (1999) also found that 

shrub cover decreased with an increase in fire severity, and tree seedling densities were 

greater following surface fires compared to crown fires four years post-fire. We observed 

the highest shrub cover in areas burned at moderate severity (Figure 3), which was different 

than from Turner et al.’s (1999) findings where shrub cover in a 1 m plot was analyzed. This 

could be due to the increase in time from the fire to sampling, four years in Turner’s study 

compared to ten years in our research project.  

The MANOVA showed a significant difference in fine woody fuel loads (1 hour, 10 

hour, 100 hour), litter and duff, across the range of burn severity classes ten years post-fire. 

In the Kruskal-Wallis rank sum test duff was highly significant and due to this and possibly 

some interaction effects there was significance in the MANOVA for fuels (group 2). A recent 

study by Stevens-Rumann (2015) in mixed conifer forests in Idaho did not find a significant 

difference in fine woody debris fuels in areas burned in high and low severity fires during the 

time period 2000-2007, which is in agreement with our results. Stevens-Rumann (2015) 

however, found reduced loads of fine woody debris in forests that had burned more than 

once in the past 18 years. During these ten years since fire, it is possible that fuels have 

accumulated to similar loads regardless of burn severity level in our study area. For example, 

Sah et al. (2006) found that fuel accumulation follows an asymptotic relationship with time, 

and that in 15-20 years the forest total fuel load has reached its max in Florida Keys pine 

forests. 
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The MANOVA showed a significant difference between the fire severity classes ten 

years post-fire for the combination of percent tree mortality, 1000 hour fuels, and shrub 

cover (Group 3).  All variables in this group were significantly different between severity 

levels (p < 0.05) when the variables were tested separately using the Kruskal-Wallis rank sum 

test. Clearly, the potential for crown fire has been reduced in areas that burned at high 

severity because the trees have yet to return to pre-fire heights and density. We included 

the 1000 hour fuels in the group 3 because they were most likely standing trees before the 

fire that became snags and logs after the fire, and the size of this coarse woody debris is 

large enough that ten years is not enough time for them to decompose like fine woody fuels. 

The density graph (Figure 3) for 1000 hr fuels indicates that there are higher fuel loads in 

areas that burned in high compared to low severity. The high variability in 1000 hr fuel loads 

in the moderate severity class obscures these results. In comparison, Stevens-Rumann 

(2015) found significantly higher 1000 hr fuel loads in high severity burns, compared to the 

combination of low and moderate severity burns, 8-15 years post-fire. These larger fuels are 

produced during the burn as trees are killed in the fire but the larger and live sections are 

not consumed by the flames.  

When seedlings were included with the tree variables in MANOVA group 4, the 

combination of variables continued to be significant. Although in the Kruskal-Wallis rank sum 

test seedlings alone was not significant. We conclude that all areas in the burned area 

quickly reseeded after the fire because the fire releases nutrients as well as opens the 

canopy to increase sunlight to the forest floor. Although there was no significant difference 

in seedling density between the severity classes, we observed higher seedling densities in 
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high severity burns compared to low (see seedling density graph in Appendix 3). It should be 

noted that we observed a large range of seedling density in moderate severity patches. In 

particular, areas dominated by lodgepole pine prior to the fire had a very high seedling 

density post-fire. The distance from seed trees within our study ranged from 0 m to 500 m in 

the sampled plots, suggesting that seed source is not a limiting factor for germination and 

establishment of new trees in most areas in these four Montana fires. Our results support 

research by Stevens-Rumann (2015), who found that tree seedling density was significantly 

correlated with distance to seed-source and with elevation in fires in the Northern Rockies, 

but that these relationships were independent of fire severity levels.  

Turner et al. (1999) showed that areas burned at high severity had the lowest density 

of seedling re-establishment due to the damage that occurred to the canopy which is the 

seed source. These results agree with lab experiments that show high temperatures reduces 

the survival of seeds in the canopy (Knapp & Anderson 1980; Johnson & Gutsell 1993). 

Turner et al. (1999) found that in the 1988 Yellowstone fire the majority of regeneration 

occurred between the first and second years, after the fire after which the seedling 

establishment rate slowed down.  

Turner et al. (1999) further found that with increased severity there was a decrease 

in shrub cover. In the southern cascades of Oregon, Chappell & Agee (1996) found that pre-

fire lodgepole dominated stands, where the fire burned at high severity, returned to 

lodgepole pine dominated stands. The same was not true for areas lacking lodgepole pine; 

these areas instead were dominated by shrubs post-fire (Chappell & Agee 1996). This could 

be why we observed the one outlier for a moderate severity plot in the seedling density 
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graphs (Appendix 3), a site where lodgepole dominated pre-fire and then rapidly returned 

with a high density of lodgepole pine seedlings. This is due the lodgepole pine cones 

response to high heat that results from typical moderate or high severity fires.  

Understory species composition 

 The results from the ordination show that fire severity is an important factor 

impacting the species composition ten years post-fire. Even though species diversity, 

richness, and cover were not significantly different between the severity classes, 35 species 

occurred in only low severity, 10 species in only moderate, and 19 species in only high 

severity.  We suggest that the patches of variable fire severity creates a mosaic of post-fire 

environments that are suitable for establishment of different species, thereby increasing the 

overall richness and diversity from a landscape perspective. These results support the 

hypothesis proposed by Halofsky et al. (2011), that mixed-severity fires create a landscape 

where the close proximity of live and dead forest immediately after the fire, and a fine scale 

mosaic of early- and late successional plant communities, creates a landscape-level patch 

mosaic that contributes to resilience within plant communities and thereby potentially by 

wildlife species.  

When we review the species attributes of re-establishment strategies, we noted that 

species with highly dispersed propagules showed high correlation with the ordination axis 1, 

representing high severity; while species that reproduce vegetatively or via rhizomes 

occurred at low to moderate severity on ordination axis 1. For example, we found wind 

dispersed species such as fire weed (Epilobium angustifolium), white-flowered hawkweed 
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(Hieracium albiflorum), and pearly everlasting (Anaphalis margaritacea), associated with 

high severity plots while low severity plots showed sprouting species and species spread by 

rhizomes more frequently. This includes species such as serviceberry (Amelanchier alnifolia), 

ninebark (Physocarpus malvaceus), spiraea (Spiraea betulifolia), kinnikinnick (Arctostaphylos 

uva-ursi), and creeping Oregon grape (Berberis repens).  

High severity fires cause damage to the below-ground plant tissue via soil heating, 

resulting in a lack of rhizomes, seeds in the seedbank, or other reproductive tissue, available 

to sprout after the fire (Rowe 1983; Ryan 2002; Stephan et al. 2010). Many of the species 

that re-established in such areas are wind dispersed, or dispersed by birds or other animals. 

Low severity areas often have little to no damage to the soil resulting in more of the 

sprouting and rhizome species in the understory. The moderate severity areas show species 

with many different re-establishment techniques because moderate severity at this spatial 

resolution is a conglomeration of fire severity levels and thus fire effects. Many species have 

multiple modes of reproduction and can re-establish either via sprouting or from seed, e.g. 

many of the shrubs and rhizomatous forbs and grasses. These species have the ability to 

rapidly sprout after a low or moderate severity fire or establish via seed after a high severity 

event; quaking aspen (Populus tremuloides) is a good example of such a species.   

Our observations in Montana mixed conifer forest follow the relationship between 

fire severity and the mode of post-fire regeneration proposed by Rowe (1983) and further by 

Ryan (2002).  The ordination (Figure 4) show areas of overlap between severity classes and 

we believe this is because these species express multiple modes of re-establishment (seed 
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and sprouting), or they have a broader amplitude than those species that were only in one 

or two severity polygons.  

Conclusions and management implications 

We conclude that this research does not suggest that the long term successional 

trajectory is different for areas that burned in high, moderate, and low severity in the fires 

studied as part of this project. Comparing the severity levels, the only statistically significant 

results were groups two through four. The most important of these was group three that 

contained percent tree mortality, 1000 hr fuels, and shrub cover. With the ordination we 

noticed that understory species composition dominated by plants with highly dispersed 

seeds were located in areas that burned at high severity. Tree seedling density and species 

diversity were not statistically different in areas that burned in high severity compared to 

low or moderate severity 10 years after the fire. The high seedling density across the burned 

area indicates that the forest will grow back, given time, unless another fire occurs. We 

therefore suggest that, although high severity fires result in high tree mortality and longer 

time for mature trees to occupy the sites, the mixed-severity fires contribute to resilience 

and diversity at the landscape scale in the forests of Montana.  Under a warmer and dryer 

climate scenario, seedling regeneration could however become a concern (Kemp 2015). 

The use of remote sensing indices to determine wildfire severity in mixed conifer 

forests is related to wildfire effects on trees more so than on surface vegetation. Indices 

such as dNBR are useful estimating percent tree mortality but do not tell us much about the 

expected recovery of understory species or trees. Based on our results and as observed by 

many others (e.g. Smith et al. 2007), areas classified as high severity via remote sensing have 



28 
 

a low live tree density, or in our case a high percent mortality.  Across the fires we sampled 

the tree regeneration was high, however, that may not be the case after all fires, especially 

in areas that have reburned relatively close together in time (Stevens-Rumann 2015).  

Remote sensing could therefore be an effective tool in forest management to identify areas 

for seedling surveys a few years post-fire. If no seedlings are present and trees are desired, 

then the area could be planted with tree seedlings to speed forest development. To better 

understand factors impacting tree regeneration following fire, we recommend that future 

research address the relationship between distance to seed source, seedling regeneration, 

high severity patch size, and climate.   
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Chapter 2: Remote Sensing of Fire Severity and Post-Fire Recovery in Mixed Conifer Forests 

Abstract 

  With the increase of area burned in wildfires due to climate change, it is important to 

understand how these fires affect our forests. Earth orbiting satellites have been used to 

assess wildfires over the last few decades, specifically the Landsat satellite constellation has 

been used to assess wildfire effects on vegetation. Current fire severity products are 

produced from Landsat imagery to assess impacts on forest soils and vegetation. These 

products are provided by the Burned Area Emergency Response (BAER) and the Monitoring 

Trends in Burn Severity (MTBS) projects. The BAER products are created to quickly assess the 

soils and their susceptibility to erosion. The MTBS products are used for one-year post-fire 

assessment of fire effect on the vegetation. Currently there is a lack of research investigating 

wildfire effects on vegetation for five or more years after the fire. The goal of this research is 

to create a methodology that uses freely available data to assess long- term wildfire effects 

on forests. This research documents the time required to return to pre-fire reflectance 

values for four wildfires that burned at mixed-severity levels in mixed conifer forests in 

western Montana. Significant differences in recovery time between MTBS burn severity 

classes were observed.  

Introduction 

Forest wildfires impact both biological and social systems. Wildfire alters vegetation 

composition and structure with consequences for wildlife habitat (Smith & Fischer 1997; 

Vierling et al. 2008; Seavy & Alexander 2014). Plant community composition is often  altered 

because species adaptation to fire is variable; for example, some species require fire to 
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sprout or germinate and establish, while other species have a low tolerance to fire (Stephan 

et al. 2010).   The atmosphere is affected by the release of greenhouse gasses during the 

flaming and smoldering phases of combustion (Pyne 1996), and the timber that was once 

standing and holding carbon releases a portion of it to the atmosphere and to decay into the 

lithosphere. Timber resources may be lost due to wildfire and recreational opportunities are 

often temporarily affected by reduction in vegetation and wildlife after the fire (Stein et al. 

2013).  With federal wildfire suppression costs approaching the billions it is imperative that 

we study what impacts fire inflicts on the vegetation (National Interagency Fire Center 2015) 

both short and long term. 

Global climate change is predicted to occur over the next few decades (Solomon et 

al. 2007). Consequences of a changing climate include earlier springs resulting in earlier fire 

seasons thus a longer fire season (Westerling et al. 2006). These changes are predicted to 

result in a higher frequency of fires and larger fires occurring (Westerling et al. 2006), with 

the greatest changes predicted in the low elevation forests of the Northern Rockies. Fire 

suppression techniques used in the early and mid 1900s have left many undeveloped areas 

with a buildup of fuels (Pyne 1996). When a fire occurs the burn is generally not consistent 

across the burned area due to spatial variability in fuel loads, topography, variable weather, 

and suppression priorities (Hayes & Robeson 2013; Kolden et al. 2012; Hoff et al. 2014; 

Strand et al. 2013). Within the fire perimeter there are areas that burn at different severity 

levels, impacting plant mortality, seedbanks, soil properties and post-fire recovery (Stephan 

et al. 2010).  
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Fire severity is measured in a number of different ways (Lentile et al. 2007; Key & 

Benson 2006; Morgan et al. 2014). Protocols for ground measurements, such as the 

Composite Burn Index (CBI; Key & Benson 2006)  are used by field crews to assess fire 

severity at different strata ranging from the soil to the upper tree canopy. Another common 

method is the use of spectral indices derived from data obtained from satellite sensors to 

estimate fire severity. There are two common indices for measuring fire severity from 

satellite and those are the Normalized Burn Ratio (NBR) and the Normalized Difference 

Vegetation Index (NDVI). The most frequently used index is the NBR that takes the 

Shortwave Infrared (SWIR) band and subtracts it from the Near Infrared (NIR) band to create 

a multi-spectral index of fire severity (M.J. & Caselles 1991). NBR is computed using the 

formula: 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

The difference between NBR pre-fire and post-fire, the difference normalized burn 

ratio (dNBR) value, shows the difference between burned and unburned pixels and has been 

classified into a range of severity levels. The dNBR is computed using the formula: 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒 

There are two ways that dNBR is calculated: 1) The initial assessments are used by 

federal agency teams such as the Burned Area Emergency Response (BAER) teams to 

prioritize areas that are in need of post-fire rehabilitation. These initial assessments are 

created with one post-fire NBR image obtained immediately after the fire subtracted from a 

pre-fire image that is often taken the year before the wildfire around the same date as the 
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post-fire image. For the BAER teams a Burned Area Reflectance Classification (BARC) map is 

produced as soon as possible after the wildfire following the initial assessment method. This 

means often times that there is smoke, or clouds in the satellite image causing analysis 

errors. 2) The extended assessments computes a dNBR that uses a one year anniversary 

image and subtracts it from a pre-fire image immediately pre-fire (Brewer et al. 2005). The 

Monitoring Trends in Burn Severity (MTBS) project has published extended assessments on 

all fires that occurred since 1984 (Eidenshink et al. 2007). The extended assessment is 

produced under less time constraint compared to the BARC maps and there is often little to 

no clouds or smoke in the images. For both the immediate and extended assessment it is 

important to keep the Julian date or day of the year close to one another to reduce 

variations caused by phenology (Key & Benson 2006). 

Fire behavior and effects can vary greatly across vegetation types. Variations in 

phenology and productivity are more pronounced in dry grasslands where large variations in 

precipitation are common. When these grasslands burn they burn with a moderate to high 

rate of spread thus there is little to no residence time to create a large heat pulse into the 

soil (Scott & Burgan 2005). This means that the below-ground tissue of many perennial 

grasses and forbs, and sprouting shrubs, survive the fire and only the above-ground portion 

of the vegetation is removed. In forested systems with minimal fuels buildup and lack of 

ladder fuels, low intensity surface fires only consume a portion of the biomass on the forest 

floor. If fire enters the forest canopy there can be much damage done to the trees from 

crown scorch and from a long lasting smoldering surface fire resulting in a larger heat pulse 

into the base of the tree that can kill trees by damaging the cambium (Reinhardt et al. 1997). 
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Several studies have documented the correlation between dNBR and percent tree mortality 

in forests (Hudak et al. 2007; Lentile et al. 2007; Smith et al. 2010). Further research has 

been focusing on high severity crown fires resulting in a forested system that takes much 

longer to return to a pre-fire state after the wildfire (Lannom et al. in review).  

Recent research quantifying post-fire forest recovery using remote sensing has been 

conducted by Lannom et al.  (in review) where they created a chronosequence of recovery 

for extreme fires in the western US using Landsat imagery. They used a technique of 

swapping space for time to quantify recovery for fires that occurred from the 1910 fire up to 

the 2007 East Zone complex fire in central Idaho. Lannom et al. (in review) limited the 

analysis area to high severity locations only. Our study expands on the research conducted 

by Lannom et al. (in review) by studying differences in recovery rates between severity 

levels. We analyzed a post-fire recovery chronosequence of Landsat images for four wildfires 

that occurred in 2003 using severity metrics from two different sources (BARC and MTBS).  

This research, conducted in mixed conifer forests with a mixed-severity fire regime in 

western Montana, was motivated by three research questions: 

 1) Is the post-fire recovery rate, i.e. the time it takes for the ecosystem to return to pre-fire 

NDVI, different for different remotely sensed fire severity levels?; 2) How long does it take 

for burned areas in different fire severity classes to return to pre-fire NDVI?; 3) Is the initial 

(BARC) or extended (MTBS) fire severity assessment, or a combination of the two, a better 

indicator of what the recovery rate will be in mixed conifer forests? 
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Methods 

Study area 

The wildfires incorporated in this study occurred in 2003 in the Northern Rockies of 

western Montana. The fires can be broken up into two different groups, the northwest fires 

and the west fires. The northwest fires are the Wedge Canyon and Robert fires that started 

on July 18th, and July 23rd respectively. The west fires are the Black Mountain 2 and Cooney 

Ridge fires that started on August 8th, and August 9th respectively (Table 1, Figure 1).  These 

fires contained all types of fire from crown fire down to surface fire. All of the fires were 

ignited by lightning.  

Table 1. Description of the fires included in this research. The fire size is an estimate from 

the final MTBS fire perimeter. The climatic variables are taken from the USFS:RMRS Spline 

Model of Climate for the Western United States (Rehfeldt 2006) for each of the fires.  

Name Region Date of 
Ignition in 

2003 

Final size 
(ha) 

Elevation 
(m) 

Mean Annual 
Precipitation 

(cm) 

Mean Annual 
Temperature 
(degrees C) 

Wedge 
Canyon 

NW July 18th 21,038 1134-2480 81.5 2.5 

Robert NW July 23rd 22,055 950-2362 78.5 3.7 

Black 
Mountain 2 

W August 8th 2,996 963-1807 56.1 4.5 

Cooney Ridge W August 9th 10,417 1125-2318 51.9 3.9 
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The West region is dryer than the Northwest region by about 10 cm of precipitation 

for the average yearly precipitation from 1971-2000. The driest part of the year for both 

regions is July and August with the fires in the West receiving the least amount of 

precipitation (Pfister et al. 1977). The precipitation that occurred in the water year before 

the fire was lower than the normal at the western fires and higher at the northwestern fires. 

Due to the large changes in elevation there is also a large difference in precipitation within 

each fire, some higher elevation areas have two to three times as much precipitation as 

those low elevation sites (Pfister et al. 1977).  

All four wildfires occurred in mixed conifer forest.  The burned areas in the forests of 

the western region are composed of Douglas-fir (Pseudotsuga menziesii) habitat type (Pfister 

et al. 1977), which is dominated by ponderosa pine (Pinus ponderosa); however in areas with 

greater fire suppression there are denser Douglas-fir stands (Cooper et al. 1991). The 

Douglas-fir habitat type has a fire return interval of 15 to 30 years, however the western 

region of this study have a fire return interval of 35-60 years according to Arno (1980). The 

northwestern region fires occurred in a subalpine fir (Abies lasiocarpa) habitat type which 

has a mean fire return interval as low as 90 years for the lower elevations and as high as 150 

years in the higher elevation northern aspects (Arno 1980). All four areas hosted lodgepole 

pine (Pinus contorta), western larch (Larix occidentalis) and Engelmann spruce (Picea 

engelmannii).   
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Figure 1. Map of the locations of the wildfire used in this study including the MTBS severity 

raster images.  
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Data 

  Multiple sources of data were used in this research including:  Landsat imagery, 

Monitoring Trends in Burn Severity (MTBS), LANDFIRE, and Burned Area Reflectance 

Classification (BARC). The Landsat data were obtained from the Landsat Climate Data Record 

(CDR). All data provided by the CDR were delivered as surface reflectance using the LEDAPS 

software (Masek et al. 2006). This software geometrically, radiometrically, and 

atmospherically corrects the data, therefore no preprocessing was necessary, except to scale 

the values from integers of reflectance into real numbers of reflectance. To remove the 

interference caused by clouds, water, and ice the mask provided by the CDR was used to 

exclude these areas from analysis. The Landsat data were transformed into the Normalized 

Difference Vegetation Index (NDVI) to represent the amount leaf area of each pixel (Tucker 

1979) and in turn the amount of photosynthesis occurring (Myneni et al. 1995). NDVI layers 

were derived from Landsat images of the burned area five years prior to the 2003 fire and 11 

years following the fire.  
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Table 2. Landsat image dates for all four wildfires.  

Fire Name Image Dates 

Wedge 
Canyon and 

Robert 

July 7th, 1998; July 26th, 1999; July 12th, 2000; June 29th, 2001; July 18th, 
2002; July 23rd, 2004; July 26th, 2005; July 13th, 2006; August 1st, 2007; July 
18th, 2008; July 21st , 2009; July 8th, 2010; August 12th, 2011; August 6th, 
2012; July 16th, 2013; August 4th, 2014 

Black 
Mountain 2 

July 23rd, 1998; July 26th, 1999; July 12th, 2000; August 16th, 2001; July 18th, 
2002; July 23rd, 2004; July 26th, 2005; July 29th, 2006; July 16th, 2007; July 
18th, 2008; July 21st, 2009; July 24th, 2010; July 11th, 2011; August 22nd, 
2012; July 16th, 2013; July 3rd, 2014 

Cooney July 16th, 1998; July 19th, 1999; July 21st, 2000; July 24th, 2001; July 11th, 
2002; July 16th, 2004; July 19th, 2005; July 22nd, 2006; July 25th, 2007; July 
27th, 2008; July 30th, 2009; July 17th, 2010; July 4th, 2011; June 28th, 2012; 
July 9th, 2013; August 29th, 2014 

 

 LANDFIRE (www.landfire.gov) is a database of landcover, fire and fuels related GIS 

data that is modeled from Landsat images including spatial raster layers describing 

disturbances, vegetation, fuels, and topography. The existing vegetation type layer from 

LANDFIRE was used to remove areas that are classified as a vegetation type other than 

conifer forest. The LANDFIRE layer was based on imagery obtained prior to the occurrence of 

the 2003 fires of this study. The forest pixels remaining within the four fire perimeters 

comprised the analysis area.  

The MTBS data for each fire included a severity raster created from satellite images 

taken pre-fire and one year post-fire (Table 3) and a perimeter shapefile. The severity raster 

is a classification of the dNBR image where the breakpoints for fire severity classes are 

selected according to Key and Benson (2006) with adjustments of approximately 5%. We 

combined Key and Benson’s (2006) unburned-low and the increased greeness MTBS classes 

together and called the class unburned. The MTBS documentation clearly states that there 
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are limitations to these data (www.mtbs.gov). One of those limitations is a bias towards 

showing the fire effects on canopy level vegetation compared to surface level vegetation 

(Eidenshink et al. 2007).  This bias can be a limitation when the objective is to quantify first-

order fire effects such as the consumption of the surface fuels and understory vegetation.  

Table 3. Images dates that MTBS used for severity classification.  

MTBS Image Dates 

Fire Name Pre-Fire Image Date Post-Fire Image Date 

Wedge Canyon July 17th, 2002 July 14th, 2004 

Robert July 10th, 2002 July 15th, 2004 

Black Mountain 2 July 10th, 2002 July 23rd, 2004 

Cooney Ridge July 10th, 2002 July 23rd, 2004 

 

 BARC severity rasters were used to characterize the initial assessment of fire severity 

(Table 4).   We combined the BARC severity with the MTBS severity to produce a total of 16 

possible classes containing two severity levels, one from each data set. The combination of 

these stems from the idea that the BARC map provides a representation of burned area and 

the MTBS map provides information about fire-caused mortality including initial post-fire 

regeneration and delayed mortality (Kolden et al. 2012).  
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Table 4. Images dates that BAER used in creation of BARC maps. A combination of Landsat, 

Spot, and Aster images were used for these classifications. The Wedge Canyon fire was a 

single image assessment.  

BARC Image Dates 

Fire Name Pre-Fire Image Dates Post-Fire Image Dates 

Wedge Canyon    August 10th, 2003 (SPOT)  

Robert August 3rd, 20003 (ASTER) August 10th, 2003 (SPOT)  

Black Mountain 2 July 10th, 2002 (LANDSAT)  September 31st, 2003 (SPOT)  

Cooney Ridge September 3rd, 2001 (SPOT) August 31st, 2003 (LANDSAT) 

 

 From initial investigation we noticed trends in both the pre- and post-fire models for 

all the severity classes. We used the unburned class as a baseline trend and removed this 

trend from the burn severity models to show only the variability between classes caused by 

the difference in severity. The unburned class can contain areas that burned very lightly in 

small patches but typically these areas are completely unburned. In addition to the trend in 

NDVI recovery rate by severity class we also documented the mean NDVI for each year to 

show the variability from year to year.  

To better understand the difference and similarities between the BARC and MTBS 

assessments and what occurred at each of the different severity levels and combinations of 

BARC and MTBS severity levels, we performed a visual interpretation of change in aerial 

imagery acquired pre-fire and post-fire. The pre-fire imagery was from the late 1980’s to the 

early 1990’s and were obtained from Montana Geographic Information Clearinghouse. Post-

fire imagery were obtained from the National Agricultural Imagery Program (NAIP). Image 

interpretation was performed at 600 locations stratified along the MTBS/BARC classes.   We 
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were particularly interested in points that showed a mismatch in severity level from BARC to 

MTBS, for example combinations such as high severity in BARC but unburned in MTBS, and 

vice versa.    

Statistics   

  A stratified random sample of points was created across the 16 BARC/MTBS classes.  

NDVI values for each year during the time period 1998 – 2014 were extracted at these 

points, and linear models for NDVI versus time were generated for the unburned models 

first. Then these unburned models were subtracted from the other severity levels values. All 

other models were then created using the linear model list function from the Linear and 

Nonlinear Mixed Effects Models package in R (Pinheiro et al. 2015).   All of the samples were 

plotted with NDVI on the y-axis and time in years relative to the fires on the x-axis. To 

determine when the NDVI within these classes returned to pre-fire NDVI, we show when the 

post-fire NDVI model crosses the pre-fire end point using a horizontal line of the lowest 

point of the pre-fire model. We applied a Z test using R (R Core Team 2014) to determine if 

the models of NDVI over time were significantly different between BARC/MTBS classes.  

 Results 

NDVI recovery time within BARC and MTBS severity classes 

To evaluate whether there was a difference in the time it takes for NDVI to return to 

pre-fire values we plotted NDVI versus time for the different fire severity levels using the 

BARC classification (Figure 2) and the MTBS classification (Figure 3). Full recovery in NDVI 

was achieved approximately 10 -35 years post-fire in mixed conifer forests of Montana. The 
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BARC severity classification show a much lower variation in the time to recover to pre-fire 

NDVI between severity classes compared to the MTBS classification. BARC shows recovery 

times with low takings 35 years, moderate at 24 years, and high taking 21 years (Figure 2). 

According to the extended assessment (MTBS), we observe differences in NDVI recovery 

time ranging from 10 to 13 years. A Z-test was performed to show that the models 

significantly differ from one another at the 0.05 significance level (Paternoster et al. 1998). 

The Z-test showed that the models of the NDVI recovery models were significantly different 

between severity classes for both the BARC and the MTBS classifications, indicating that 

NDVI increases at significantly different rates depending on the fire severity (Figure 4).  To 

display these we used a graphic that compares the different classes within a severity metric 

and colors the cells black if they are significantly different and grey if they are not. This type 

of graph is typically called a heatmap.  
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Figure 2. NDVI versus years since fire for each of the four BARC severity classes pre- and 

post-fire. Regression lines (solid) are included for both the pre-fire and the post-fire models. 

The dashed horizontal line shows the NDVI value of the model the year before the fire. The 

difference in NDVI recovery time from unburned to high severity was only about 14 years.  
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Figure 3. NDVI vs years since fire for each of the four MTBS severity classes pre-and post-fire. 

Regression lines (solid) are included for both the pre-fire and the post-fire data models. The 

dashed horizontal line shows the NDVI value the year before the fire, which was the lowest 

NDVI observed prior to the fire. There was an increase in NDVI recovery time from unburned 

to high severity of about 3 years. 
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Figure 4. These heatmaps show which severity class recovery models were significantly 

different from each other for the BARC (left) and MTBS (right) classifications. The white cells 

are those that are not significantly different from one another and the black cells are 

significantly different from one another. All classes were significantly different from one 

another but it is important to note that the MTBS severity is more significantly different than 

the BARC severity classes are. The numbers in the cells represent the z-scores.  

Recovery Time for the Combined BARC and MTBS severity classes  

To better understand the spatial context and extents of the combinations of 

BARC/MTBS classes we created a map of the combinations (Figure 5). A large portion of the 

Wedge Canyon and Robert fires have no data there was no BARC classification available for 

the area. 



53 
 



54 
 



55 
 



56 
 

  
 



57 
 

Figure 5. The above maps show the combination of the severity classifications with BARC 

being the first severity classification and MTBS being the second in each of the classes 

displayed in the legend. The areas with no change are white and those that changed are 

either a red or blue hue. The blue hues represent areas where BARC is a higher severity than 

MTBS and red represents the opposite. The larger the difference in severity levels the dark 

the color. The percentage following the combined class name is the percentage of the area 

that class encompasses.    

We further plotted NDVI values against time since fire for all BARC/MTBS 

combinations (Figure 6). The dashed horizontal line represents the end point of the pre-fire 

model and was included as a guide showing when the post-fire model returned to pre-fire 

NDVI values. The post-fire models all increase in NDVI over time and cross the horizontal line 

at different times depending on the combination of BARC and MTBS severity (Figure 6). The 

MTBS low severity class show the greatest variability where returning to pre-fire NDVI takes 

five to 15 years depending on the associated BARC severity level. The MTBS moderate 

severity class shows similar variability with a return to pre-fire NDVI taking eight to 17 years 

depending on the associated BARC severity level. The moderate and high MTBS classes show 

more consistency with only a few years between the different MTBS classes. The unburned 

BARC severity classification shows the highest range (5-10years) in the time it takes to return 

to pre-fire NDVI.  The high BARC severity shows the most consistency with recovery time 

with a range of only three years difference between classes to return to pre-fire NDVI. The 

combination of BARC high and MTBS unburned severity has a low sample size compared to 

the other combinations with only 47 samples.
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To understand how these NDVI chronosequences of BARC/MTBS combinations  differ 

from each other, we tested the models using a Z-test of significance for large sample sizes at 

the 0.05 significance level (Paternoster et al. 1998).  

 

Figure 7. This is a heat map showing what combinations of BARC/MTBS severity were 

significantly different from one another. The format for the labels is: BARC severity – MTBS 
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severity. The black cells are significantly different from one another (alpha = 0.05) where the 

grey cells are not. The number in the cell represents the Z-scores. 

The heat map (Figure 7) shows black cells for where the recovery models of NDVI 

were significantly different from each other. The grey cells represent combinations that 

were not significantly different from one another. The upper right and the lower left are 

divided by empty cells because those are where the slopes are exactly the same, meaning 

that the upper right and lower left are mirror images of one another.  Combinations along 

the center line tend to be non-significant. Combinations that include the unburned MTBS 

severity are also not significantly different from other combinations with MTBS unburned 

severity. The same is observed for MTBS low severity with low-low being the only exception. 

The combinations that include a high severity component tend to be significantly different 

from combinations that include an unburned or low severity component.  

Aerial Photograph Interpretation of outlying groups 

 To better understand how the forest recovered after the wildfire and the relationship 

between recovery and remotely sensed severity measures we looked at aerial photos 

acquired pre- and post-fire. Photos were provided by the Montana State GIS clearinghouse 

(black & white) and NAIP (color photos). There were a few limitations with the data from 

Montana because of the remote nature of the northwestern wildfires. All of the aerial 

photos were 1-m resolution, but some of the pre-fire images for the northern wildfires were 

acquired in the 80’s. No wildfire occurred between the time of the pre-fire images and the 
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wildfires being studied. Harvesting practices or weather damage could have occurred during 

the time after the pre-fire images and before the fire resulting in some error.  
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Figure 8. This figure shows a representation of the change we observed in aerial photos due 

to a wildfire. The green circles within the squares represent trees within a Landsat pixel. The 

table shows the percentage of each class combination that followed that path due to a 

wildfire.  

 Based on the information in Figure 8 it is apparent that when BARC records a higher 

severity than MTBS, path 3 is the dominate path, i.e. forests with an open canopy both 

before and after the fire. When MTBS severity is higher than BARC the forest often follows 

path 2, going from a closed canopy pre-fire to an open canopy post-fire, but there are times 

that we see these severity combinations following path 3. When the difference in severity 

between BARC and MTBS is large, path 3 is the dominating path. The high (BARC), unburned 

(MTBS) combination had a lower sample size because the combination only covers 0.1% of 

the area (Figure 6).  These areas are typically only a few pixels and surrounded by other 

combinations where BARC is higher than MTBS.  

Discussion  

NDVI recovery time for BARC and MTBS severity classes 

Overall the recovery time within severity classes of both severity metrics (BARC and 

MTBS) is in agreement with previous research. Hicke et al. (2003) show that Net Primary 

Productivity (NPP) in North American boreal forests has returned to pre-fire levels nine years 

following the fire based on remote sensing assessments that were performed using the 

Moderate Resolution Imaging Spectroradiometer (MODIS). It is important to note that NPP 

does not show the change in vegetation type from trees to shrub or herbaceous vegetation, 
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similar to NDVI derived from Landsat images. The aerial photo analysis is therefore essential 

to understand the shift in vegetation type and structure. The MTBS severity classes show a 

lower range of recovery times (3 years) while BARC has a much larger range (14 years).  This 

was also observed in the heatmaps showing that the Z-statistics are much higher for MTBS 

severity classes compared to BARC severity classes (Figure 4).  This could be expected 

because the MTBS severity metric focuses on delayed mortality and initial recovery (Key & 

Benson 2006) while BARC severity maps include areas where the above-ground understory 

vegetation has been blackened but not necessarily incurred mortality.  

Recovery time for the combined BARC and MTBS severity classes 

Severity maps produced by MTBS and BAER are readily available and have plenty of 

supporting documentation on how to use the data effectively. Many times only one of these 

data sets is used in land management or research.  When combining the two we generate 

additional information on how much vegetation was burned and initial vegetation recovery 

(Key & Benson 2006).  

In 25.6% of the samples, the severity from the BARC assessment was higher than the 

severity observed in the MTBS assessment. The photo interpretation indicates that that 

these areas represent the scenario where no change occurred in the tree canopy cover, 

however herbaceous, shrub, or grass canopy in the interspaces between trees incurred 

mortality due to the fire. Herbaceous and shrub vegetation recover much quicker than trees 

so when the post-fire image is taken for MTBS these areas are already approaching pre-fire 

greenness.  
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In the majority of the area where BARC showed unburned pixels and MTBS showed 

moderate to high severity pixels, we suggest there was damage or consumption of tree 

crowns, resulting in prolonged recovery times. When this is reversed and BARC is higher than 

MTBS we see much more variability in recovery times. When MTBS is unburned there is little 

to no recovery time, except when BARC is high then there is a longer recovery time but a low 

sample size to confound the results. When we look at the four graphs when the severity 

class is the same for BARC and MTBS we see a steady increase in recovery time from 

unburned to high, as expected. The high-unburned group lacked a high sample size so most 

of the time it was not significantly different than other combinations. To better understand 

whether a species or vegetation type shift occurred, for examples from shrubs to grasses, we 

need higher resolution images and possibly field work to validate the image results.  

Aerial Photograph interpretation of outlying groups 

Aerial photo interpretation provided information regarding the changes in vegetation 

structure that occurred as a result of the wildfire, complementary to the spectral reflectance 

changes observed via Landsat. The first set of combinations, when there is no difference 

between BARC and MTBS, i.e. they both show low, moderate, or high severity covers 47.5% 

of the analysis area. Within these combinations, we suggest that there will be a gradient of 

time to recovery with low severity being the shortest and high severity being the longest. 

The low severity locations will have little to no damage to the trees and were likely caused 

by a surface fire, thus the only vegetation type that is recovering would be grasses, forbs, 

shrubs, and small trees. The high severity areas show damage to the tree canopy as well as 

the understory vegetation. In places where BARC shows a higher severity class than MTBS, 
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we expect to see damage or removal of the tree canopy and quick green up of the grasses or 

limited canopy and large density of shrubs, grasses, and forbs. When MTBS severity is higher 

than BARC, we expect to see some of the tree canopy remaining, but removal of a majority 

of the grasses, forbs, and shrubs. It is important to note that when MTBS is higher than BARC 

we could also see more canopy damage in the form of discoloration which later leads to 

mortality, snags or downed trees. It is important to note that one pixel can contain one or 

more of the fire types, effects, and severities (Kolden et al. 2012), particularly in the 

moderate and low severity pixels.  

When looking at high BARC severity samples, MTBS increases while there is a shift 

from the majority of samples following path 2 to path 3. We believe this is due to BARC 

detecting more char in the background, which may lead to misclassification of the remaining 

green vegetation. This misclassification could be due to the fact that char no longer has 

leaves with water in the leaf cells. The NIR band used in the calculation of NBR is directly 

connected to leaf cell water content (Tucker 1979). The MTBS post-fire image is taken a year 

after the fire when some of the ground vegetation has returned resulting in more visible leaf 

cell water content than that of the BARC post fire image.  

  The aerial photos show the loss in tree canopy but are not high enough in spatial 

resolution to show individual understory species, so therefore an assessment of understory 

species shifts from aerial photos is not possible. The pre-fire aerial imagery were also black-

and- white making it impossible to see discolored trees pre-fire, thus it was impossible to see 

trees had been heavily damaged. From Landsat a single tree canopy cannot be seen and if an 
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area of tree crowns were not destroyed but damaged, resulting in a live tree that will simply 

take longer to recover compared to shrubs and herbaceous vegetation.  

On the opposite side of the severity spectrum; areas that showed low severity, or 

were classified as unburned in the BARC assessment, but were classified in a higher severity 

class in the MTBS assessment, may be a sign of delayed mortality post-fire. This could also be 

an effect of the lower amount of charred debris in the MTBS image compared to BARC, thus 

no large difference in the NIR band and leaf cell water content. These areas potentially had 

larger fuel loads of coarse woody debris (logs) or deep duff that were able to smolder for 

long periods of time resulting in tree mortality and damage to the soil, below ground 

vegetative structures and the seedbank (Ryan 2002; Stephan et al. 2010). Trees killed from 

delayed mortality within a year of the fire would contribute to a higher severity classification 

in the MTBS compared to the BARC assessment.  

Conclusion and management implications 

 Based on aerial photo interpretation and overlays with the freely available BARC and 

MTBS severity products we conclude that the MTBS product provides better understanding 

of the long term effects of wildfires in mixed conifer forests. This research has shown 

interesting results some of which were unexpected. The BARC and MTBS severity products 

often show different results, in fact, they were in agreement only in 47.5% of the analysis 

area. When combined, we can better understand wildfire effects on the area. When BARC 

shows considerably higher severity than MTBS, the area is likely composed of open forest 

pre-fire and the initially observed high severity represents removal of understory shrubs and 

herbaceous vegetation as well as a pixel saturated by charred debris. When MTBS shows 
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considerably higher severity than BARC the area has likely incurred high tree mortality. 

Overall this process was meant to be simple so that any agency that has access to GIS 

software can process the free BARC and MTBS data and better focus rehabilitation efforts.  

This methodology can help managers to prioritize post-fire assessments and treatments in 

the forested areas in the most urgent need of rehabilitation.  
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Appendix 1.  

List of all the species and their lifeforms that were found during the 2013 and 2014 field work.  

FORM CODE SCIENTIFIC NAME COMMON NAME 

TREE ABGR Abies grandis Grand fir 

TREE ABLA Abies lasiocarpa Subalpine fir 

TREE LAOC Larix occidentalis Western larch 

TREE PIEN Picea engelmannii Engelmann spruce 

TREE PICO Pinus contorta Lodgepole pine 

TREE POTR Populus tremuloides Quaking aspen 

TREE PSME Pseudotsuga menziesii Douglas-fir 

TREE THPL Thuja plicata Western red cedar 

SHRB ACGL Acer glabrum Rocky Mountain maple 

SHRB ALSI Alnus sinuata Sitka alder 

SHRB AMAL Amelanchier alnifolia Serviceberry 

SHRB ARUV Arctostaphylos uva-ursi Kinnikinnick, bearberry 

SHRB BERE Berberis repens Creeping Oregon grape 

SHRB CESA Ceanothus sanguineus Redstem ceanothus 

SHRB CEVE Ceanothus velutinus Shinyleaf ceanothus 

SHRB CHUM Chimaphila umbellata Western pipsissewa 

SHRB HODI Holodiscus discolor Ocean-spray 

SHRB LIBO2 Linnaea borealis Twinflower 

SHRB LOUT2 Lonicera utahensis Utah honeysuckle 

SHRB MEFE Menziesia ferruginea Fool's huckleberry 

SHRB PAMY Pachystima myrsinites Myrtle boxwood 

SHRB PHMA Physocarpus malvaceus Ninebark 

SHRB RILA Ribes lacustre Prickly currant 

SHRB RIVI Ribes viscosissimum Sticky currant 

SHRB ROSA Rosa sp. Rose 

SHRB RUID Rubus idaeus Red raspberry 

SHRB RUPA Rubus parviflorus Western thimbleberry 

SHRB SALX Salix sp. Willow species 

SHRB SARA Sambucus racemosa Elderberry 

SHRB SHCA Shepherdia canadensis Buffaloberry 

SHRB SOSC2 Sorbus scopulina Mountain-ash 

SHRB SOSI Sorbus sitchensis Sitka mountain-ash 

SHRB SPBE Spiraea betulifolia Spiraea 

SHRB SYAL Symphoricarpos albus Common snowberry 

SHRB SYOR Symphoricarpos oreophilus Mountain snowberry 

SHRB VAGL Vaccinium globulare Huckleberry 
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SHRB VASC Vaccinium scoparium Grouse whortleberry 

FORB ACMI Achillea millefolium Common yarrow 

FORB ADBI Adenocaulon bicolor Pathfinder 

FORB AGSP Agoseris sp. Agoseris 

FORB ANMA Anaphalis margaritacea Pearly everlasting 

FORB ANMI Antennaria microphylla Rosy pussytoes 

FORB ANRA Antennaria racemosa Racemose pussytoes 

FORB APAN Apocynum androsaemifolium Spreading dogbane 

FORB AQFL Aquilegia flavescens Yellow columbine 

FORB ARCO Arnica cordifolia Heartleaf arnica 

FORB ARNU Aralia nudicaulis Wild sarsaparilla 

FORB ARSP Arabis sp. Rockcress 

FORB ASCO Aster conspicuus Showy aster 

FORB ASSP Aster sp. Aster 

FORB ASSP1 Astragalus sp. Milk-vetch 

FORB BASA Balsamorhiza sagittata Arrowleaf balsamroot 

FORB CAAP Calochortus apiculatus Three-spot mariposa lily 

FORB CARO Campanula rotundifolia Common harebell 

FORB CAMI Castilleja miniata Indian paintbrush 

FORB CASP Castilleja sp. Paintbrush 

FORB CASP3 Calochortus sp. Mariposa lily 

FORB CLOC Clematis 
occidentalis/columbiana 

Blue clematis 

FORB CLUN Clintonia uniflora Queen cup beadlily 

FORB COPA Collinsia parviflora Small-flowered blue-eyed Mary 

FORB COCA Cornus canadensis Bunchberry dogwood 

FORB COCA2 Conyza canadensis Horseweed 

FORB COSP Corallorhiza sp. Coral-root 

FORB CRSP Crepis sp. Hawksbeard species 

FORB DIHO Disporum hookeri Hooker fairy-bell 

FORB EPAN Epilobium angustifolium Fireweed 

FORB EPSP Epilobium sp. Epilobium 

FORB FRVE Fragaria vesca Woods strawberry 

FORB FRVI Fragaria virginiana Wild strawberry 

FORB GABO Galium boreale Northern bedstraw 

FORB GATR Galium triflorum Sweetscented bedstraw 

FORB GERI Geum rivale Water avens 

FORB GOOB Goodyera oblongifolia Rattlesnake plantain 

FORB HELA Heracleum lanatum Cow parsnip 

FORB HIAL2 Hieracium albertinum Western hawkweed 

FORB HIAL Hieracium albiflorum White-flowered hawkweed 

FORB HIUM Hieracium umbellatum Narrow-leaved hawkweed 
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FORB HECY Heuchera cylindrica Roundleaf alumroot 

FORB ILRI Iliamna rivularis Mountain hollyhock 

FORB LASP Lathyrus sp. Peavine 

FORB LOCO Lotus corniculatus Bird's-foot trefoil 

FORB LODI Lomatium dissectum Fern-leaved lomatium 

FORB LOTR Lomatium triternatum Nine-leaved lomatium 

FORB LUSE Lupinus sericeus Silky lupine 

FORB LUPN Lupinus sp. Lupine 

FORB MEFA Medicago falcata Yellow lucerne 

FORB MIGR Microsteris gracilis Pink twink 

FORB MISP Mitella sp. Mitrewort 

FORB OSCH Osmorhiza chilensis Mountain sweet-cicely 

FORB PEDE Penstemon deustus Hot-rock penstemon 

FORB PELY Penstemon lyallii Lyall's penstemon 

FORB PEWI Penstemon wilcoxii Wilcox's penstemon 

FORB PENS Penstemon sp. Penstemon species 

FORB PHHA Phacelia hastata Silverleaf phacelia 

FORB POPU Polemonium pulcherrimum Jacob's-ladder 

FORB PYAS Pyrola asarifolia Common pink wintergreen 

FORB PYSE Pyrola secunda One-sided wintergreen 

FORB PYSP Pyrola sp. Wintergreen 

FORB SELA Sedum lanceolatum Lance-leaved stonecrop 

FORB SETR Senecio triangularis Arrowleaf groundsel 

FORB SMRA Smilacina racemosa False Solomon's seal 

FORB SMST Smilacina stellata Starry Solomon's seal 

FORB SOCA Solidago canadensis Canada goldenrod 

FORB STSP Stellaria sp. Starwort 

FORB TAOF Taraxacum officinale Common dandelion 

FORB THOC Thalictrum occidentale Western meadowrue 

FORB TITR Tiarella trifoliata Coolwort foamflower 

FORB TIUN Tiarella unifoliata One-leaved foamflower 

FORB TRDU Tragopogon dubius Yellow salsify 

FORB TROV Trillium ovatum Trillium 

FORB TRRE Trifolium repens White clover 

FORB VESP Veronica sp. Veronica 

FORB VIAM Vicia americana American vetch 

FORB VIAD Viola adunca Hook violet 

FORB VIGL Viola glabella Stream violet 

FORB VIOR Viola orbiculata Round-leaved violet 

FORB XETE Xerophyllum tenax Beargrass 

NOXS CEST Centaurea stoebe spotted knapweed 
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NOXS CIAR4 Cirsium arvense Canada thistle 

NOXS CIVU Cirsium vulgare Bull thistle 

NOXS THIS Cirsium sp. Thistle 

NOXS LASE Lactuca serriola Prickly lettuce 

FERN POMU Polystichum munitum Western swordfern 

FERN PTAQ Pteridium aquilinum Bracken fern 

FERN EQAR Equisetum arvense Field horsetail 

GRAS BRTE Bromus tectorum Cheatgrass 

GRAS BRSP Bromus sp. Brome 

GRAS CACA Calamagrostis canadensis Bluejoint reedgrass 

GRAS CARU Calamagrostis rubescens Pinegrass 

GRAS CAGE Carex geyeri Elk sedge 

GRAS CARX Carex sp. Sedge 

GRAS ELGL Elymus glaucus Blue wildrye 

GRAS FEID Festuca idahoensis Idaho fescue 

GRAS KOMA Koeleria macrantha Junegrass 

GRAS LUPA Luzula parviflora Millet woodrush 

GRAS PHPR Phleum pratense Timothy 

GRAS POSA Poa sandbergii Sandberg bluegrass 

GRAS POSP Poa sp. Bluegrass 

GRAS PSSP Pseudoregneria spicata Bluebunch wheatgrass 

GRAS TRSP Trisetum spicatum Spike trisetum 

GRAS GRASS  Grass 

GRAS GRASS 1  Grass 1 

CLAS MOSS  Moss 

CLAS LICEN  Lichen 

CLAS FUNGI  Fungi 

CLAS FUNGI1  Fungi 1 

CLAS FUNGI2  Fungi 2 

UNKN UNKNJ  Unknown plant (Cooney 9; 
2014) 
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Appendix 2 

Data used in the analysis. 

 MTBS green_cover NPV_cover NPV_char_cover rock_cover soil_cover 

B1 3 0.57 0.25 0.01 0.1 0.08 

B2 2 0.6 0.4 0 0 0 

B3 1 0.42 0.55 0.1 0.03 0 

B4 1 0.84 0.1 0 0.01 0.05 

B5 3 0.84 0.1 0.1 0.03 0.03 

B6 1 0.79 0.2 0 0 0.01 

C1 3 0.72 0.15 0.01 0.03 0.1 

C10 3 0.75 0.25 0 0 0 

C2 1 0.25 0.63 0 0 0.02 

C3 1 0.5 0.35 0.7 0 0.15 

C4 1 0.22 0.76 0.01 0 0.02 

C5 2 0.65 0.35 0.2 0 0 

C6 1 0.85 0.15 0.01 0 0 

C7 1 0.5 0.1 0 0.25 0.15 

C8 1 0.5 0.5 0.05 0 0 

C9 1 0.13 0.02 0.4 0.2 0.65 

R1 3 0.75 0.25 0.05 0 0 

R10 3 0.81 0.07 0.8 0.1 0.02 

R11 2 0.3 0.7 0.25 0 0 

R2 1 0.45 0.55 0.01 0.02 0 

R3 1 0.2 0.76 0.05 0.02 0.02 

R4 2 0.89 0.08 0.05 0 0.03 

R5 1 0.88 0.1 0 0.01 0.01 

R6 2 0.75 0.25 0.05 0 0 

R7 1 0.75 0.25 0 0 0 

R8 3 0.13 0.3 0.05 0.55 0.02 

R9 3 0.19 0.75 0 0.02 0.04 

W2 3 0.8 0.1 0.01 0.05 0.05 

W3 1 0.74 0.2 0.25 0.01 0.05 

W4 3 0.65 0.35 0.05 0 0 

W5 1 0.9 0.1 0 0 0 

W6 3 0.84 0.15 0.02 0.01 0 

W7 2 0.9 0.1 0.9 0 0 

W8 1 0.69 0.2 0.05 0.01 0.1 
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 species_richness 1_hour_fuels 10_hour_fuels 100_hour_fuels litter_depth duff_depth 

B1 9 0 0 0 11 9 

B2 18 0.04 0.07 0.5 16 14 

B3 24 0.02 0.02 3 11 2 

B4 28 0.01 0 0 21 0 

B5 16 0.03 0.2 0 15 2 

B6 23 0.07 0.03 0.2 12 16 

C1 27 0.3 0.5 0.5 9 2 

C10 49 0.7 0.8 2 40 17 

C2 35 0.1 0.05 0.3 31 6 

C3 29 0.2 2 1 9 9 

C4 22 0.01 0.05 0 16 0 

C5 20 0.3 0.6 3 20 13 

C6 16 0.1 0.5 2 18 8 

C7 22 0.01 0.03 0 3 0 

C8 35 0.1 0.04 0.02 22 8 

C9 43 0.01 0.01 0.01 0 0 

R1 20 0.07 0.03 0.1 3 15 

R10 39 0.07 0.1 0.01 5 19 

R11 31 1 0.05 0.5 20 20 

R2 16 0.1 0.07 0.05 0 0 

R3 21 0.1 1 1 17 9 

R4 19 0.06 0.08 0.1 4 4 

R5 23 0.06 0 0 5 2 

R6 32 0.6 0.3 0.5 64 26 

R7 31 0.04 0.07 0.4 17 11 

R8 49 0.5 0.7 3 9 24 

R9 43 0.5 0.8 0.4 4 9 

W2 31 0.07 0.03 0.07 7 2 

W3 18 0.07 0.03 0.07 7 2 

W4 26 0.03 0.07 0.3 13.1 3 

W5 29 0.1 0.01 0.3 3 10 

W6 22 0.7 0.9 0.06 27 11 

W7 34 0.04 0.04 0.08 19 13 

W8 30 0.3 0.2 0.06 8 9 
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 duff_depth healthy_tree_density unhealthy_tree_density dead_tree_density 

B1 9 0 0 1200 

B2 14 250 0 300 

B3 2 50 0 100 

B4 0 50 0 0 

B5 2 0 0 100 

B6 16 0 0 700 

C1 2 0 0 50 

C10 17 0 0 450 

C2 6 750 0 50 

C3 9 0 0 200 

C4 0 250 0 0 

C5 13 0 0 700 

C6 8 400 150 350 

C7 0 0 0 0 

C8 8 300 50 0 

C9 0 0 0 0 

R1 15 0 0 200 

R10 19 0 0 50 

R11 20 100 0 1100 

R2 0 800 50 50 

R3 9 50 0 0 

R4 4 0 0 300 

R5 2 50 0 0 

R6 26 0 0 100 

R7 11 250 0 0 

R8 24 0 0 50 

R9 9 0 0 150 

W2 2 0 0 700 

W3 2 600 0 0 

W4 3 0 0 250 

W5 10 550 0 50 

W6 11 0 0 600 

W7 13 0 0 250 

W8 9 350 200 200 
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 1000_hour_fuels shrub_cover live_sapling_density live_seedling_density 

B1 13 0 0 5833.333 

B2 50 500 2000 12666.67 

B3 100 100 0 1000 

B4 0 0 0 0 

B5 6 1500 1200 2100 

B6 35 200 300 10833.33 

C1 40 0 400 3333.333 

C10 35 400 600 45333.33 

C2 3 100 0 8.333333 

C3 23 100 2000 10000 

C4 3 0 0 500 

C5 27 700 1400 1666.667 

C6 20 0 0 4666.667 

C7 0 0 400 550 

C8 1 800 500 2733.333 

C9 0 0 100 683.3333 

R1 12 1000 1800 355.5556 

R10 23 1500 400 566.6667 

R11 60 7000 0 92000 

R2 1 500 100 83.33333 

R3 28 2000 1100 4666.667 

R4 50 3000 1300 2500 

R5 9 1000 100 1133.333 

R6 90 2000 0 1033.333 

R7 12.5 1200 900 2750 

R8 50 100 0 266.6667 

R9 60 500 500 5533.333 

W2 30 100 0 1291.667 

W3 4 200 6900 18666.67 

W4 100 200 26800 20000 

W5 10 300 200 1000 

W6 15 300 4300 30666.67 

W7 40 800 100 43333.33 

W8 1 0 0 6833.333 
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Appendix 3. Density graphs for the data used in the MANOVA, group 1 and 2 and seedling 

density. 

 

 

 

 

 

 

 



82 
 

Appendix 4. Correlations for the species to the axis produced by the ordination. Pearson 

correlation coefficient, r-squared and Kendall’s tau are reported.  

Axis 1 2 3 

 r r-sq tau r r-sq tau r r-sq tau 

ABLA -0.011 0 -0.174 0.023 0.001 0.174 -0.327 0.107 -0.188 

ACGL 0.135 0.018 0.293 0.003 0 0.094 -0.312 0.098 -0.176 

ACMI 0.011 0 -0.041 0.11 0.012 0.127 0.204 0.042 0.178 

ALSI -0.252 0.064 -0.131 0.07 0.005 0.077 -0.257 0.066 -0.167 

AMAL 0.403 0.163 0.33 -0.311 0.096 -0.176 -0.249 0.062 -0.145 

ANMA -0.478 0.228 -0.439 0.206 0.042 0.091 0.032 0.001 -0.127 

ANMI -0.187 0.035 -0.15 -0.438 0.192 -0.378 -0.144 0.021 -0.173 

ANRA -0.006 0 0.115 0.425 0.181 0.259 0.074 0.006 0.19 

APAN 0.386 0.149 0.344 -0.092 0.008 -0.21 -0.353 0.125 -0.281 

ARCO -0.11 0.012 -0.098 0.448 0.201 0.493 -0.196 0.038 -0.14 

ARUV 0.41 0.168 0.323 -0.052 0.003 0.039 -0.173 0.03 -0.047 

ASCO 0.147 0.022 0.187 -0.039 0.002 0.064 0.289 0.083 0.128 

ASSP -0.014 0 0.025 -0.275 0.076 -0.036 -0.149 0.022 -0.036 

BERE 0.629 0.396 0.558 -0.301 0.09 -0.107 0.175 0.031 0.03 

BRSP -0.306 0.094 -0.313 0.255 0.065 0.233 -0.102 0.01 -0.075 

BRTE 0.357 0.127 0.372 0.028 0.001 -0.163 0.118 0.014 0.027 

CAGE -0.15 0.022 -0.195 -0.329 0.108 -0.136 0.382 0.146 0.186 

CAMI 0.234 0.055 0.218 -0.051 0.003 -0.154 0.031 0.001 0.146 

CARU 0.196 0.038 0.257 0.445 0.198 0.307 0.431 0.186 0.328 

CARX 0.333 0.111 0.388 0.127 0.016 0.152 0.328 0.108 0.069 

CASP -0.071 0.005 0.052 -0.239 0.057 0.023 0.007 0 0.127 

CEST 0.035 0.001 0.292 -0.204 0.042 -0.113 -0.028 0.001 -0.02 

CEVE 0.017 0 0.041 -0.009 0 -0.041 0.086 0.007 0.23 

CHUM -0.164 0.027 -0.146 -0.09 0.008 -0.162 -0.139 0.019 -0.123 

CLUN -0.286 0.082 -0.217 0.043 0.002 0.03 -0.347 0.121 -0.201 

COPA 0.246 0.061 0.183 -0.009 0 -0.028 0.191 0.037 0.174 

DIHO -0.065 0.004 0.043 -0.058 0.003 0 -0.097 0.009 -0.085 

ELGL -0.337 0.113 -0.337 -0.035 0.001 -0.023 -0.074 0.005 0.003 

EPAN -0.481 0.231 -0.449 -0.132 0.017 -0.075 -0.195 0.038 -0.06 

EPSP 0.396 0.156 0.232 -0.224 0.05 -0.007 0.06 0.004 -0.007 

FEID 0.195 0.038 -0.075 0.082 0.007 0.02 0.168 0.028 0.162 

FRVE 0.009 0 0.012 0.163 0.027 0.108 -0.044 0.002 -0.044 

FRVI -0.036 0.001 0.14 -0.059 0.003 -0.033 -0.009 0 -0.018 

FUNGI -0.324 0.105 -0.299 0.041 0.002 0.028 -0.044 0.002 -0.052 

GABO 0.027 0.001 0.091 -0.184 0.034 0.064 0.001 0 -0.091 

GATR -0.251 0.063 -0.248 0.147 0.022 0.036 -0.185 0.034 -0.129 

GRASS 0.121 0.015 -0.036 -0.16 0.026 -0.241 -0.069 0.005 -0.051 
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HIAL -0.536 0.287 -0.478 0.205 0.042 0.127 -0.117 0.014 -0.064 

HIAL2 -0.07 0.005 -0.07 -0.123 0.015 -0.124 -0.224 0.05 -0.086 

ILRI -0.19 0.036 -0.134 -0.068 0.005 0 0.055 0.003 0.016 

LAOC 0.067 0.004 -0.048 0.179 0.032 0.028 -0.249 0.062 -0.308 

LIBO2 -0.057 0.003 0.083 0.011 0 0.055 -0.034 0.001 -0.044 

LICEN 0.238 0.057 0.187 -0.195 0.038 -0.151 -0.148 0.022 -0.093 

LOUT2 -0.063 0.004 -0.069 0.021 0 -0.167 0.106 0.011 -0.023 

LUPN 0.124 0.015 0.282 0.227 0.051 0.16 0.16 0.026 0.282 

MEFA -0.178 0.032 -0.14 -0.313 0.098 -0.357 -0.11 0.012 -0.068 

MEFE -0.366 0.134 -0.35 -0.227 0.051 -0.186 0.089 0.008 0.173 

MISP -0.018 0 -0.086 0.359 0.129 0.338 0.04 0.002 0.086 

MOSS -0.56 0.314 -0.524 -0.635 0.404 -0.425 -0.03 0.001 -0.002 

OSCH 0.089 0.008 0.072 0.187 0.035 0.114 -0.031 0.001 -0.057 

PAMY -0.114 0.013 0.042 0.24 0.057 0.033 -0.059 0.004 -0.042 

PENS 0.035 0.001 -0.021 -0.064 0.004 -0.072 0.463 0.214 0.272 

PHMA 0.672 0.451 0.484 -0.176 0.031 -0.031 -0.096 0.009 -0.061 

PICO 0.052 0.003 0 0.186 0.035 -0.044 0.294 0.086 0.312 

PIEN -0.315 0.099 -0.314 0.062 0.004 0.016 -0.282 0.079 -0.258 

POSA 0.185 0.034 0.199 0.32 0.102 0.254 -0.259 0.067 -0.21 

POSP -0.049 0.002 0.027 -0.147 0.022 -0.009 -0.126 0.016 -0.109 

POTR -0.319 0.102 -0.214 -0.265 0.07 -0.079 0.114 0.013 0.205 

PSME 0.073 0.005 0.168 0.204 0.042 0.245 -0.097 0.009 -0.068 

PSSP 0.267 0.071 0.009 -0.251 0.063 -0.118 -0.158 0.025 -0.1 

PTAQ -0.223 0.05 -0.175 -0.024 0.001 -0.046 -0.197 0.039 -0.26 

PYAS -0.106 0.011 -0.059 -0.034 0.001 -0.067 -0.295 0.087 -0.202 

PYSE -0.265 0.07 -0.203 -0.1 0.01 -0.127 0.01 0 0.023 

RILA -0.304 0.092 -0.236 0.234 0.055 0.236 -0.249 0.062 -0.11 

RIVI 0.22 0.048 0.185 0.017 0 0.014 0.299 0.09 0.212 

ROSA 0.315 0.099 0.332 0.122 0.015 0.077 -0.206 0.042 -0.29 

RUPA -0.175 0.031 -0.095 0.167 0.028 0.232 0.01 0 -0.137 

SALX -0.439 0.193 -0.404 -0.123 0.015 -0.089 -0.445 0.198 -0.268 

SMRA 0.142 0.02 0.186 -0.109 0.012 -0.02 0.368 0.136 0.218 

SMST -0.144 0.021 -0.041 0.027 0.001 0.006 -0.426 0.181 -0.353 

SOCA -0.248 0.061 -0.117 -0.179 0.032 -0.037 -0.255 0.065 -0.148 

SOSC2 -0.161 0.026 -0.221 0.254 0.065 0.257 -0.069 0.005 -0.176 

SPBE 0.476 0.226 0.556 0.223 0.05 0.159 -0.354 0.126 -0.12 

SYAL 0.274 0.075 0.321 -0.368 0.136 -0.111 -0.204 0.042 -0.133 

TAOF -0.199 0.039 -0.147 -0.088 0.008 0.012 -0.08 0.006 -0.051 

THOC 0.074 0.006 -0.069 0.335 0.112 0.245 -0.129 0.017 -0.078 

VAGL -0.385 0.148 -0.291 0.274 0.075 0.271 0.303 0.092 0.171 

VASC -0.178 0.032 -0.142 -0.384 0.148 -0.163 0.185 0.034 0.149 
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VIAM -0.013 0 -0.068 0.222 0.049 0.041 0.066 0.004 0.077 

VIGL -0.142 0.02 -0.067 0.335 0.112 0.305 -0.318 0.101 -0.226 

VIOR -0.393 0.154 -0.292 0.001 0 0.061 -0.372 0.139 -0.243 

XETE -0.218 0.047 -0.24 -0.081 0.006 -0.048 0.626 0.392 0.348 

 


