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Abstract 

 

Land-cover and land-use studies in Asia, Australia, and Canada began in the early 

1970s with the advent of the first Landsat sensors. However, the satellite receiving stations 

didn’t have extensive coverage until the mid-1980s. With the advent of the new century, 

regional onsite researchers began noting forest regrowth signs in Central America. However, 

few investigations took place in the Trifinio Region, a transboundary region at the join of El 

Salvador, Guatemala and Honduras. Most were considerably beyond, in the Yucatan, the 

Guatemalan highland, central El Salvador, and the Peten.  

In Chapter 1, we examined secondary maps to understand the region, its human and 

natural resources and changes. We sought to create new modeling, aided by data from 

participating agricultural development partners. We considered land use data to learn about 

correlated change drivers and potential transition causes and studied transitions inside and 

outside the region’s most diverse protected cloud forest park. We found population density 

correlated with severe deforestation, found a relation between transport and deforestation, and 

found potential drivers of deforestation to be much the same as those affecting the wider 

region in Central America and tropical zones.  

A bold assumption also underpinning Chapter 2 was that we ought to be able to sense, 

measure, and compare common results in terms of vegetative responses and differences across 

the region’s countries, counties, and protected areas (PA). We developed large databases, 

sampling the territories of the protected and non-protected landscapes of Trifinio Region to 

explore forest transitions that we could not measure using classical remote sensing 

classification methods. We prepared percent greenness from NDVI and created novel 

methods to describe and understand temporal transitions both inside and about 20km outside 

of the Trifinio Region because there were no tools ready for us to use our short time series 

data readily, though we found existing gene expression tools useful. We hunted for a sign of 

forest regrowth or resurgence connected with the regional protected areas, agriculture, 

pastoral activity, and agroforestry, to corroborate reports from regional studies in the past two 

decades. In follow-on work in Chapter 3, we calculated pattern and texture measures for an 

area of central Trifinio Region using different types of relatively new satellite sensors (both 

optical and radar) with a view to being able to identify differences in shade agroforestry from 
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native forest cover. We found relationships between the two of these measures, shade coffee 

production, and forest cover. We extracted training sites using a high-resolution sensor to 

classify these areas using machine learning classifiers; we compared our efforts accuracy 

estimates with those of other researchers, some of whom had tried some of these classifiers 

before us. Few experiences have been reported studying rural agriculture with these sensors 

and techniques. 
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CHAPTER 1: THE TRIFINIO REGION: A CASE STUDY OF 

TRANSBOUNDARY FOREST CHANGE IN CENTRAL AMERICA 

“The Trifinio Region: a case study of transboundary forest change in Central America.” in 

Journal of Land Use Science, 12(1), 36–54. 

 

Abstract 

Strategic planning to increase forest cover in Central American transboundary areas of 

the Mesoamerican Biological Corridor requires understanding land-cover and land-use change 

trends and drivers. We estimated forest cover change from remotely-sensed land-cover and 

land-use classifications from 1986, 2001, and 2010, in the tri-national Trifinio Region, 

bordering El Salvador, Guatemala, and Honduras. Our analysis spanned sub-national, 

national, regional, and protected area borders. We determined correlations with direct drivers 

of deforestation, developing a multilevel linear regression model. Higher population density 

was significantly correlated with deforestation; coffee, agroforestry, and pasture replaced 

forests. The tri-national park retained forests compared to neighbouring areas, but 

additionality requires more research. The literature on drivers suggests similar processes and 

factors in other tropical regions. Forest cover governance efficacy is highly variable. Results 

indicate relationship between governance and forest cover; though more comprehensive 

understanding of this complex region is needed to determine their causality.  

Keywords: Coffee, deforestation, land use, protected area, transboundary, Trifinio 

 

Resumen 

Las áreas transfronterizas centroamericanas del Corredor Biológico Mesoamericano 

requieren comprender las tendencias y los impulsores del cambio de uso de la tierra y la tierra. 

Estimamos la cubierta forestal a partir de las clasificaciones de uso del suelo y de la cobertura 

terrestre detectadas remotamente desde 1986, 2001 y 2010, en la región tri-nacional Trifinio, 

que limita con El Salvador, Guatemala y Honduras. Nuestro análisis abarcó fronteras de áreas 

subnacionales, nacionales, regionales y áreas protegidas. Determinamos las correlaciones con 

los impulsores directos de la deforestación, desarrollando un modelo de regresión lineal 

multinivel. Una mayor densidad de población se correlacionó significativamente con la 
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deforestación; el café, la agrosilvicultura y el pasto reemplazaron a los bosques. El parque tri-

nacional preservo los bosques en comparación con las áreas vecinas, pero la adicionalidad 

requiere más investigación. La literatura sobre conductores sugiere procesos similares y 

factores en otras regiones tropicales. La gobernanza de la cubierta forestal tiene una variable 

muy alta. Los resultados indican una relación entre gobernanza y cobertura forestal; aunque 

un entendimiento más comprensivo de esta compleja región es necesario para determinar su 

causalidad. 

Palabras clave: Café, deforestación, uso del suelo, área protegida, Transfronterizo, 

Trifinio 

 

Introduction 

Effective governance of land-cover in transboundary PAs of Central America and their 

connecting corridors is vital for regional biodiversity conservation (Sandwith, 2001). 

However, nearly 4000 km2 of forest in the region is used annually for farming (Graham, 

2002; Inter Press Service, 2002; Food and Agricultural Organization [FAO], 2010d), 

undermining regional biological corridors (Mendoza et al., 2013), as well as the efficacy of 

protected area governance (Stevens, 2013). Barriers to effective transboundary governance in 

forest conservation can include differences in access to monitoring technologies and the 

ability to work together with common goals regardless of administrative boundaries and 

national priorities (Sandwith, 2001). Transboundary governance efficacy should be 

measurable, when decoupled from municipal and national administration, with 

implementation of unilateral governance policies (Zbicz, 1999). It is unclear how much these 

governance approaches affect land-cover and land-use change (LCLUC) and which of the 

underlying drivers of this change are most important. 

Two examples of transboundary PAs in the Mesoamerican Biological Corridor are the 

Maya Biosphere Reserve (MBR) (Belize-Guatemala-Mexico) and La Amistad (Costa Rica-

Panama). The MBR is under severe LCLUC pressure due to subsistence agriculture and 

ranching combined with illicit trafficking; illegal logging and other incursions have taken a 

significant toll on forests (Carr, 2008a; Choi, 2008). Governance and LCLUC monitoring 

have been a joint effort by government, military, and nonprofit organizations using climate 
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mitigation and forest certification as conservation tools. At La Amistad, one of the oldest and 

largest transboundary PAs, governance mechanisms have been ineffective at countering 

LCLUC (Oestreicher et al., 2009), requiring dynamic surveillance and strong command and 

control measures. In neither case was true transboundary management initiated; the PAs 

extend across borders, but their territories are managed separately within each country as 

international adjoining PAs, as described by Zcibz (2001). 

A third transboundary protected area, the Montecristo Trifinio Protected Area 

(MTPA), resides within the Trifinio Region situated between El Salvador, Guatemala, and 

Honduras (Organization of American States [OAS], 1993; Artiga, 2003). The MTPA has been 

managed as a tri-national conservation area since 1987; in 1997, 221 km2 were set aside as a 

tri-national protected area, spanning adjoining boundaries (CTPT, 1997). In 2011, it became a 

core site of the Trifinio-Fraternidad Biosphere Reserve under UNESCO-MAB Programme 

and the first tri-national biosphere reserve in Central America. Trifinio’s governance and 

LCLUC drivers pose challenges for resource management, because like many regional border 

areas, Trifinio is poor, marginalized, and isolated from national political centers (Girot, 1997). 

Yet the Trifinio region is also rich in biodiversity, water resources, and culture, with a full 

range of optimal elevations for coffee agroforestry (400-1600m). While strategic planning 

agencies have promoted rural development and water resource protection in Trifinio for more 

than two decades, little peer-reviewed regional scientific work has been published on this 

area, with the exception of a few studies focused on species habitat and biodiversity (e.g. 

Komar, 2002; Greenbaum & Komar, 2005). 

In this paper, we advance the knowledge base on transboundary governance by 

investigating LCLUC at different administrative levels in the Trifinio Region. Our research 

objectives are: 1) to assess the region’s major land-cover and land-use changes and 

differences across governance boundaries, including the MTPA, and 2) to identify direct 

drivers of deforestation affecting this unique tri-national transboundary area. Related to 

objective one, digital maps estimating forest cover and major land uses were created to 

support regional rural development planning for three time periods: 1986, 2001, and 2010 

(Water Center for the Humid Tropics of Latin America and Caribbean [CATHALAC], 2011). 

We used these unpublished data to quantify LCLUC within transboundary and protected area 

governance units. A key assumption is that the trends identified in our assessment occurred in 
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response to transboundary management and protective strategies, which are measurable, 

common, and constant across the region. Specifically, we assess: What kinds and amounts of 

change are apparent? Is there a relationship between LCLUC and the MTPA? Is LCLUC 

more responsive to certain levels of nested governance than others?  

The integration of theories and methods from socioeconomic, remote sensing, and 

ecological sciences has been used to identify key indirect (underlying) and direct (proximate) 

drivers of land change (Angelsen & Kaimowitz, 1999; Geist & Lambin, 2002; Lambin & 

Geist, 2006; Turner, Lambin, & Reenberg, 2007; Lambin et al., 2014). In this paper we 

develop a multilevel linear regression model to assess the levels of correlation among direct 

drivers of change, different administrative levels and deforestation. We also highlight the 

potential indirect drivers of LCLUC in Trifinio through secondary literature review. Specific 

research questions assessed related to our second objective include: What are the key events 

and drivers of LCLUC in the Trifinio Region? Are these events and drivers the same as found 

elsewhere in land use literature? Is LCLUC correlated with certain levels of nested 

governance more than others? 

 

Methods 

Study Area 

Establishment of Trifinio Region 

The Trifinio Region (Figure 1.1), comprising 7,500 km2 in El Salvador (15%), 

Guatemala (45%) and Honduras (40%), is an outcome of peace accords signed August 7, 

1987 to end 40 years of war. The war had tremendously negative implications for economic 

development, institutional reform, landlessness, and natural resource uses that are still 

apparent today. One tri-national partnership that arose out of this period spurred the Comisión 

Trinacional del Plan Trifinio, a group of member country vice presidents, advised by 

municipal and civil society organizations (Miranda, Slowing Umaña, & Raudales, 2010). This 

Trifinio commission manages and promotes a mission of regional conservation and 

sustainable use of natural and water resources. 
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Figure 1.1. Map of the Trifinio Region location in Central America, municipalities by 

country, the core of the Montecristo Transboundary Protected Area (MTPA), regional 

PAs, and the nested protective governance structure. 

 

Socioeconomics 

Regional population estimates show that Trifinio has grown from 572,000 to nearly 

900,000 during 1987-2011 (German Society for International Cooperation (GIZ), 2011). 

These estimates are based in part on projections, in the absence of recent censuses for 

Honduras (2001) or Guatemala (2002). Marginalization estimates report 87% in poverty and 

53% in extreme poverty in the region; however, these too are out-dated (Artiga, 2002). 

Nonetheless, extreme poverty inhibits farmers, who maintain an average of 1.4 ha of land, 

from becoming development actors in their own right (Castaneda, 2009; Cherrett, personal 

communication 2014).  

 

Governance 

Trifinio is managed using a series of spatially and institutionally-nested regions 

intended to promote cross-border cooperation and integration. Nested, multi-level governance 

is common in Central America (Celata, Coletti, & Sanna, 2013), but Trifinio’s 
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implementation is unique in the transboundary schema. It consists of three distinct nested 

regions – a regional outer boundary, a central area for sustainable development, and a highly 

protected core – and promotes international inter-municipal integration (MARN, 2010). 

Celata et al. (2013) categorize this as an example of a new type of territorialization (Figure 

1.1). 

There are 45 municipalities in Trifinio (22 in Honduras; 15 in Guatemala; and eight in 

El Salvador) (Figure 1.1), including several hundred small villages and six cities. Multilateral 

aid supports forest management and reforestation, as well as basic services in these 

municipalities (Global Environment Facility [GEF], 2006). Between 1998 and 2006, groups 

of 3-5 municipalities further organized into ‘Mancomunidades’; these governing entities are 

meant to facilitate cohesion and cooperation and foster economies of scale for productive 

activities and sustainable land use. 

The MTPA in Trifinio has a core zone straddling the three country borders, 

surrounded by a buffer and multiple use zones (Figure 1.2). Its biological importance is for 

mountain pine-oak and Pacific dry forests, highly-threatened ecoregions of Central America, 

and a key element of regional conservation efforts over the last 20 years (Dinerstein et al., 

1995). It is also the source of three major river systems: the Motagua, Ulua, and Lempa. The 

Lempa, one of the largest watersheds in Central America, serves 4.7 million downstream 

users alone (InterAmerican Development Bank [IDB], 2010). Cooperation and integrated 

management of the riparian area is critical for downstream populations (Artiga, 2002; United 

Nations Environment Program [UNEP] & Permanent Commission for the South Pacific 

[CPPS], 2006; Carius, 2007). 
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Figure 1.2. Zones of the Montecristo Trifinio Protected Area. 

 

Data 

Our research draws on site visits to Trifinio to collect secondary remote sensing data, 

geospatial data, interview notes, documents, and photos taken with corresponding GPS points 

that were acquired to help better understand the land-cover and the map classification in 

August and November 2013. The Water Center for the Humid Tropics of Latin America and 

Caribbean (CATHALAC) led a group of 25 regional agency and university participants who 

mapped Trifinio’s natural resources using satellite images through an InterAmerican 

Development Bank/Global Environment Facility-funded project, ‘Integrated Management of 

the MTPA’ (CATHALAC, 2011). Their transboundary land-cover classifications were 

produced for three epochs – 1986, 2001, and 2010 – with support from the GIZ Forests and 

Water project. Our study compared and quantified rates of change that we estimated using 

three land-cover and land use geospatial datasets (i.e. shapefiles) produced by the 

CATHALAC-led regional project. These CATHALAC shapefiles were the spatial final result 

of a careful classification of least-cloud Landsat 5 Thematic Mapper images following 

standard remote sensing methods (using ENVI v. 4.5, ERDAS Imagine v. 9.2, and ArcGIS v. 
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9.3) (see Appendix 1 for more details). We quantified LCLUC using the mapped 

classifications, as described in as described in the Analysis section below. 

We acquired administrative boundary and associated population data to facilitate 

regression model development. Road density was prepared from the global gROADSv1 

dataset (CIESIN, 2013) dividing summed road segment length for each municipality (km) by 

municipal area (km2). Population density was prepared similarly, dividing population (CTPT, 

2011) by municipal area in km2. Elevation and slope were estimated using 30m data from the 

Shuttle Radar Topography Mission (Farr et al., 2007). We derived novel forest loss rates 

using the CATHALAC land-cover and land use epoch shapefiles (CATHALAC, 2011). 

 

Types and differences in land-cover and land-use changes 

We used the CATHALAC land-cover classifications (Table A1.1) to create 

deforestation layers corresponding only to areas of forest loss during each of the three epochs 

occurring from 1986-2001, 2001-2010, and 1986-2010. These and all other raster and vector 

input data were re-projected to Universal Transverse Mercator (UTM) Zone 16-North using 

map datum WGS1984 via established geographic analysis tools – IDRISI Selva® version 

17.02 (Eastman, 1989) and ArcGIS® version 10.1 (ESRI, 2012). We used the IDRISI Selva 

CROSSTAB function to estimate all transitioning classes via cross-classification. We 

calculated forest cover annual rates of change using Puyravaud’s formula (2003, p. 594),  

 

𝑟 =
1

𝑡2−𝑡1 
ln

𝐴2

𝐴1
                                                                              (Equation 1.1) 

where t1, t2 = Time 1 and Time 2; and A1, A2 = Forested Area in Time 1 and Time 2. This 

method represents a practical, conservative method of calculating annual rates of LCLUC 

(FAO, 1995). 

Our objective was to estimate pan-Trifinio forest cover changes, with comparisons 

across national boundaries, followed by a narrower focus to consider changes in 250 m-wide 

Euclidean distance-based buffers within and up to 4 km-distant from MTPA’s core zone. 

Buffers were normalized by their area, and a 300-m mask in the central part of the MTPA 

eliminated imperfections of adjoining national boundaries (see Figure 1.2). Our approach 

followed that of Joppa, Loarie, & Pimm (2008), who examined polygons inside and outside of 

the World Database of PAs (WDPA) to examine percent deforestation and fragmentation, as 
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well as Nepstad et al. (2006), who quantified fires and deforestation in and outside of parks 

and reserves in the Brazilian Amazon. Comparisons of forest cover area for each buffer were 

summarized in 1 km increments for countries and municipalities over the study period (Figure 

1.3). The total area of our analysis was reduced to about 7,300 km2 (from 7,500 km2) due to 

combined insignificant classes (e.g. lava, mining, unclassified, etc.).  

 

Figure 1.3. MTPA buffer analysis showing the tapering off of deforestation 

from the protected area core, based on CATHALAC (2011) data. 

 

Direct drivers of deforestation 

We focused on changes in deforestation and the associated drivers, utilizing secondary 

data sets, field interviews, and mapping evaluation. The focus on deforestation, whether 

driven by ecological marginalization of farmers or by public or private investments for 

frontier development, is justified as an indicator of the potential economic use of land in this 

transboundary area (Geist & Lambin, 2002). The effects of deforestation at fine spatial scales 

in Trifinio is likely to follow similar patterns as in other tropical regions, with increases in 

land surface temperature and reduction in evapotranspiration with forest conversion to pasture 

and agriculture (Lawrence & Vandecar, 2015).  
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  We developed a multilevel linear regression model to determine correlations between 

direct drivers, municipality- and country-boundaries, and forest cover loss for the Trifinio 

Region. Multilevel models are advantageous for land-cover change analysis when data have a 

nested structure (e.g., Pan & Bilsborrow, 2005, Vance & Iovanna, 2006). Multilevel models 

relax the assumption of independence between observations by decomposing the error term 

into hierarchical components – in this study municipalities are nested within countries – and 

then imposing a structure on the variance and covariance of these terms. This controls for 

correlations across municipalities within the same country and has emerged as an alternative 

strategy in correcting for spatial correlation when the correlation has a nested structure 

(Anselin, 2002). Maximum restricted likelihood was used to estimate the multilevel model. 

The multilevel model was specified for two levels: a level-one municipality-level 

effect and a level-two country-level effect. The level-one model, where i is a municipality, j a 

country identifier, and t time, can be expressed as: 

 

𝑌𝑖𝑗𝑡 = 𝜑0𝑗 +  𝜏𝐹𝑖𝑡 + 𝛽𝑋𝑖𝑗𝑡 + 𝜗𝑇𝑡 + 𝑑𝑖𝑗 + 휀𝑖𝑗𝑡,                   (Equation 1.2) 

where 𝑌𝑖𝑗𝑡 is the amount of forest cover loss in municipality i nested in country j at time t; 𝜑0𝑗 

is the country-specific effect for all municipalities within the same country; 𝐹𝑖𝑗𝑡 is total forest 

area; 𝑋𝑖𝑗𝑡 is a vector of covariates controlling for direct drivers of forest loss; 𝑇𝑡 is a vector of 

time dummy variables capturing time-varying and spatially invariant unobservables; 𝑑𝑖𝑗 is a 

municipality-level error term; and 휀𝑖𝑗𝑡 is residual error. The level-two effects enter Equation 

1.2 as: 

 

𝜑0𝑗 = 𝛿00 + 𝜇0𝑗.           (Equation 1.3) 

𝜇0𝑗 is the country-specific random effect and 𝛿00 is the average outcome for the population. 

Combining these two equations (Equations 2 & 3) gives the full multilevel structure: 

 

𝑌𝑖𝑗𝑡 = 𝛿00 + 𝜏𝐹𝑖𝑗𝑡 + 𝛽𝑋𝑖𝑗𝑡 + 𝜗𝑇𝑡 + 𝑑𝑖𝑗 + 𝜇0𝑗 + 휀𝑖𝑗𝑡.  (Equation 1.4) 

𝑌𝑖𝑗𝑡 was derived from the CATHLAC land-cover data, providing two epochs of forest 

cover change: 1986-2001 and 2001-2010. To ease interpretation of regression output, we 

converted the 10-year change periods into yearly rates of change by dividing total change by 

ten. We log-transformed the dependent variable because the rate of forest loss was skewed 
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and log-transforming it led to a more normal distribution. Total forest area, 𝐹𝑖𝑗𝑡, was included 

to control for the stock of forest resources available at the start of the time period since our 

dependent variable was the area of forest loss and not the rate of forest loss. Direct drivers, 

𝑋𝑖𝑗𝑡, included in Equation 1.4 are: total protected area, distance to national capital, road 

density, population density, elevation, and slope. We log-transformed each of these 

independent variables to ease interpretation of coefficients; with the log-log model we can 

look at elasticity (i.e., percent change in X leads to a percent change in Y). 

By estimating Equation 4 without covariates (i.e., without 𝐹𝑖𝑗𝑡 and 𝑋𝑖𝑗𝑡) we can 

calculate the unconditional intraclass correlation coefficient and the proportional reduction in 

total residual variance for the specifications with covariates (i.e., R2 for the multilevel model). 

Rabe-Hesketh & Skrondal (2008, p.58) give the formula (Equation 5) for the intraclass 

correlation as:  

 

�̂� =
�̂�

�̂�+�̂�+�̂�
 ,      (Equation 1.5) 

where �̂� is the estimated variance from the country-level effect, 𝜇0𝑗;  𝜃 is the estimated 

variance from the municipality-level effect 𝑑𝑖𝑗; and �̂� is the residual variance from 휀𝑖𝑗𝑡. As 

written, this formula gives the percent of variation in forest cover loss attributable to the 

country-level; the amount attributable to municipalities and observations is found by 

substituting the appropriate variance component into the numerator. Following this notation, 

the total variance from the null model can be calculated in Equation 6 as: 

 

�̂�0 = �̂� + 𝜃 + �̂� .                  (Equation 1.6) 

Letting �̂�1 represent the total variance from Equation 4 with covariates, the formula 

for R2 (Equation 7) is given in Rabe-Hesketh & Skrondal (2008, p.102) as: 

 

𝑅2 =
�̂�0−�̂�1

�̂�0
 .                   (Equation 1.7) 

While countries and municipalities are treated as random effects in Equation 1.4, 

Rabe-Hesketh & Skrondal (2008, p.77) describe a method using maximum likelihood 

estimation that can estimate values for these random intercepts. Briefly, this method assumes 

that the estimated parameter values from Equation 4 are the true values and that the random 

intercepts are the only unknown parameters to be estimated. The values for each country-level 
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and municipality-level intercept that maximizes the likelihood of the observed responses of 

the dependent variable after treating the model parameter estimates as known are then 

calculated. These estimated values can be interpreted as the country-level and municipality-

level influence on unexplained variation in forest cover loss. Thus, it represents the 

unexplained impact a country or municipality has on forest cover loss, after controlling for the 

covariates in Equation 1.4.  

 

Results 

Types and rates of land-cover and land-use changes 

Pan-Trifinio 

Our review of the CATHALAC land-cover classification showed that the proportional 

distribution of forested area in 1986 by country was 9% in El Salvador, 29% in Guatemala, 

and 62% in Honduras. By 2001, the forested area in El Salvador (8%), Guatemala (27%), and 

Honduras (65%) had changed slightly, and by 2010, it had further fluctuated again to 9%, 

26%, and 65%, respectively. The major changes seen across land uses were coffee, 

agroforestry, pasture, and urban growth. Agroforestry accounted for mixes of permanent 

crops, such as maize, beans or coffee, with trees, including plantains, bananas, citrus, or local 

wood species. No differentiation was made in the land classification for sun-grown and/or 

shaded coffee.  

Across the Trifinio Region, substantial LCLUC occurred from 1986-2010, with a 

1.5% annual forest conversion rate (see Equation 1.1). In 1986, forested area was about 3,300 

km2 (about 45% of Trifinio), while coffee (0.1%) was almost non-existent. Losses in forest 

were mainly driven by on-farm expansions, particularly in coffee, agroforestry, basic grains, 

pasture and other crops (Table 1.1). The land uses with the highest annual rates of change 

were coffee (7.2%), pastures (2.5%), and agroforestry (2.3%), representing an increase of 

nearly 75 km2 of coffee, 43km2 of pastures, and 130 km2 of agroforestry. By 2001, forested 

area diminished to nearly 2,910 km2 and by 2010, again to 2,302 km2. The annual rate of 

change in forest was highest in 2001-2010, at 2.6% per year, compared with 0.9% per year in 

1986-2001. When compared to globally available datasets on forest cover, we found four 

times greater land-cover change across the Trifinio Region through our analysis of the 

CATHALAC data than found by the latest global efforts (Hansen et al., 2013). 
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Table 1.1. Percentage annual rate of change per land use class per country 

in Trifinio by years of change between epochs. 

 

 

Protected area comparison across buffers 

The core of the MTPA remained relatively intact (Figure 1.2), while there was 

significant LCLUC beyond this zone, although this disturbance appears to taper off after the 

first 3 km distance buffers for El Salvador and within the first 3 km distance buffers for 

Honduras and Guatemala. Annual rates of change in forest loss increased across the region 

over time. In El Salvador, the annual rate of change was slightly greater during the 2001-2010 

period within the MTPA and within a 1 km buffer from the park; however, rates of change 

were higher in 1986-2001 for buffers >2 km. In Guatemala, the annual rate of change was 

higher in 1986-2001 within the MTPA and buffers tested than during 2001-2010. For 

Honduras, the annual rates of change were more accelerated in the 2001-2010 period for all 

buffers compared to 1986-2001, but change within the MTPA core zone remained similar 

across the two time periods. Growth in the urban class was observed in larger and important 

regional cities (Esquipulas, Metapán, and Ocotepeque), located just beyond the 4 km buffer 

from the core of the MTPA. This assessment of rates of change in the protected area does not 

establish a causal relationship between the presence of the MTPA and forest protection (Joppa 

& Pfaff, 2010; Meyfroidt 2015); it only highlights trends.  

 
El Salvador Guatemala Honduras 

LCLUC class 86-01 01-10 86-01 01-10 86-01 01-10 

Forests -1.2 -1.3 -1.3 -3.0 -0.6 -2.6 

Coffee  7.3   14.6  8.4  6.0  5.8  9.2 

Agroforestry  1.7  1.6  2.2  2.8  2.0  3.1 

Basic grains  1.3  1.6  1.6  0.3  1.7 -0.1 

Other crops  0.4  1.2 -0.6  6.8  1.9  6.7 

Pastures  1.2  1.3  1.6  1.9  2.3  5.1 

Bushes -0.6 -0.9 -0.3 -0.2  0.3  2.1 

Urban  5.9  0.9  4.7  2.1  4.5  1.1 
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Direct drivers of land-cover and land-use change 

The multilevel regression structure allowed us to explicitly calculate the municipality- 

and country-level influence on forest cover loss and their contribution to unexplained 

variation in the model after controlling for direct drivers of deforestation (Rabe-Hesketh & 

Skrondal, 2008); this provided some information on the influence that nested governance 

structures had on LCLUC. Summary statistics of variables included in Equation 4 are found in 

Appendix 2 in Table A2.1. Variables statistically correlated with forest loss in our regression 

model included: total forest cover, distance to national capital, road density, population 

density, elevation and slope (Table 1.2). On average, greater loss occurred in municipalities 

with more forest cover and people, farther from national capitals, with fewer roads and steep 

slopes at lower elevations. The amount of variance explained by this econometric model was 

79%.  

Municipality-level variation accounted for about 40% of total variation in forest loss, 

and country-level variation accounted for about 16%. This means that more heterogeneity in 

deforestation patterns exists within a country, i.e., at the sub-national level, than across 

countries. When we estimated the contribution of nested governance of countries and 

municipalities to unexplained variation in the regression model, however, coefficients were 

not statistically significant (Table 2). Figure A2.1 illustrates the direction of unexplained 

influence of each municipality: a positive sign indicates that a municipality had unexplained 

variation in forest loss above the average value of forest loss, and a negative sign indicates 

that a municipality had unexplained variation in forest loss below the average value; while not 

statistically significant, they show that the general trends vary across and within countries.  
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Table 1.2. Multilevel regression output of direct drivers of forest cover loss. 

Variable Mean 

(Std Dev) 

Amount of forest 0.32*** 

 (0.02) 

Amount of protected land 0.01 

 (0.01) 

Distance to national capital 0.37*** 

 (0.10) 

Road density -1.00*** 

 (0.30) 

Population density 0.15** 

 (0.05) 

Elevation -0.51*** 

 (0.12) 

Slope -0.29** 

 (0.13) 

2001-2010 time dummy 0.33*** 

 (0.04) 
  

Observations 90 

Calculated R2 0.79 

Intraclass correlation Percent variation 

Country-level 16% 

Municipality-level 40% 

Observation-level 44% 

Estimated random intercepts for 

country dummy variables 

Mean 

(Std Dev) 

El Salvador 0.02 

(0.05) 

Guatemala -0.01 

(0.04) 

Honduras -0.01 

(0.03) 

Significance level: p<0.01***; p<0.05** 
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Discussion 

In this study we assessed and described land changes in an understudied 

transboundary area – the Trifinio Region – by assessing LCLUC at different boundaries and 

estimating direct drivers of these changes. Below we discuss the significance and implications 

of these findings for understanding transboundary forest change. 

  

General trends and drivers of land-cover and land-use change 

Annual rates of forest loss in Trifinio measured highest in Guatemala (2%), followed 

by Honduras (1.4%), and El Salvador (1.2%). At the national scale, the average annual rate of 

forest loss (nationally) over the period 1986-2010 was 1.3% for Guatemala (FAO, 2010a), 

2.2% for Honduras (FAO, 2010c), and 1.4% for El Salvador (FAO, 2010b). Although, there 

are slightly different methods and periods under study (four more years considered in our 

study period than the FAO statistics), the rates of change were similar for the transboundary 

area of El Salvador relative to nationwide data but above average in Guatemala, and below 

average in Honduras. Honduras, though, had the largest area of forest loss (575 km2), whereas 

the area of forest loss was 357 km2 in Guatemala and only 72 km2 in El Salvador. This 

suggests considerable variability in forest loss in the region, and further work to assess 

whether the transboundary designation has any influence on forest change patterns in Trifinio 

is warranted.  

Overall, forest loss in Trifinio follows similar tropical land-use conversions from 

forest to economic land-use opportunities, such as coffee and cattle (Table 3). Coffee 

represents a large part of the export economy in each of these countries. Historically, coffee 

productivity intensified with technological and transport improvements. From 2000-2010, the 

coffee export average as a share of total export earnings was 9% for El Salvador, 12% for 

Guatemala, and 20% for Honduras (ICO, 2014). Nearly 500,000 pickers lost their jobs 

(Luttinger & Dicum, 2006) in the early 2000s when prices dropped. Cattle ranching and 

coffee production provide important sources of income to landholders, and changes in these 

land-uses are linked to market conditions that foster expansion of pasture or coffee 

plantations, and subsequently, when prices are low, can cause unemployed labourers to 

expand agricultural production on their own lands to meet subsistence needs. The 

consummate poverty reduction strategy in pursuit of socioeconomic benefits from coffee and 
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other crops leads to high percentages of forest conversion with negative environmental 

consequences, not unlike outcomes in other regions where forest reduction comes as a trade-

off for rural development (Soares-Filho et al., 2004; Müller & Munroe, 2005). In Honduras in 

1987, road-building subsidies were decreed to incentivize coffee-production, resulting in 

minor producers expanding production to take advantage of the subsidy (Tucker, 2008). This 

outcome highlights the inherent trade-off in sustainable development and conservation faced 

by transboundary conservation areas. 

 

Table 1.3. Indirect drivers of forest change that operate at multi-levels. 

 

Major factors Examples of specific indirect drivers 

Institutional Land tenure system 

 Establishment of protected areas 

 Land or agrarian reform (1970s-1990s) 

 Transboundary Agreement (Plan Trifinio) 

 Transboundary protection (MTPA1) since 1987 

 Transboundary Reserve of the Biosphere (Trifinio-Fraternidad) 

since 2011 

Socio-political triggers Wars (between 1970s to 1990s) 

 Peace agreements (late 1980s, early 1990s) 

Market-oriented Change in commodity prices 

 Coffee prices high years (1977, 1986, 1995, 1997, 2011) 

 Coffee crisis in early 1990s and 2000s 

 Cattle prices high years (1974, 1980s, 1992, early 2010s) 

 Cattle prices low years (1976 and late 1990s) 

Technological Improvements in equipment that affect agricultural 

intensification, agricultural expansion, and deforestation 

 Access to machinery and transportation of produce 

Demographic Changes in population 

 Immigration (due economic opportunities) 

 Outmigration (due to war or constrains) 

Biophysical Natural events (e.g., hurricanes, fire) 

 Crop diseases 
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There was considerable heterogeneity in observed land changes across countries and 

sub-nationally. In our regression model of direct drivers of change, we found that accessibility 

and population were significantly correlated with forest loss, and that there was more 

heterogeneity in deforestation at the sub-national than national level. Demographic factors 

such as migration from rural areas to urban centers may have had an effect on land-use 

changes in Trifinio. Blackman, Ávalos-Sartorio, & Chow (2007) noted that in the 1990s 

northern El Salvador (corresponding to the Trifinio region) was characterized by civic unrest 

and poverty after the civil wars. Massive internal migration to the southwest and greater 

metropolitan areas near the capital of the country also took place during that time (Edelman, 

2008). To our knowledge the linkages between migration and land changes in Trifinio have 

not been studied. However, because forest regrowth may have resulted from decreased 

pressure on forestlands brought about by constrained agricultural activity, it is reasonable that 

available agricultural area may have been related to the same process of migration-and-

repopulation-after-strife that occurred in the Peten Region (Carr, 2008b). Trifinio is affected 

by human, landscape, and climate-based environmental challenges as elsewhere in Central 

America, including insufficient arable land, located on steep, forested slopes, farmed by a 

burgeoning rural poor (i.e., ecological marginalization) (Artiga, 2003; CATIE, 2003; GEF, 

2006; US Agency for International Development [USAID], 2011; Castellanos et al., 2013).  

 At the sub-national level, the democratization process and development of new forms 

of sub-national governance developed in the late 1990’s and may have affected land 

outcomes, with an unintended consequence of higher rates of forest change in some places. 

Some of the most important factors are associated with institutional changes around land 

reform. Land tenure in Trifinio includes private, state-owned, and unclaimed lands, and 

common property resources. Agrarian land reforms, linked to environmental governance by 

institutional changes related to land, are encapsulated in Spanish literature as ‘reforma 

agraria’; Diskin noted that the reforms “endeavour to reshape tenure systems correcting 

conditions fostering inequality, political imbalance, and poverty by restructuring ownership 

and fostering use changes for development” (as cited in Thiesenhusen, 1989, p. 438). 

Agrarian reforms implemented from 1970-1990 changed land tenure dramatically (Williams, 

1986; Bulmer-Thomas, 1987), and are linked to other indirect drivers of LCLUC such as 

socio-political trigger events; specifically, the civil wars and the peace agreement that 
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followed. In general, regional documents describe scarce local presence of land governance in 

Trifinio. Governance and political stability are not sufficient conditions to drive change, 

however, but if coupled with global or locally higher prices (e.g. coffee, livestock) the effects 

of rural development policies on deforestation can be exacerbated. Additional investigation of 

nested governance and sub-national policies within the transboundary governance area are 

needed to understand fully how these institutional and governance changes relate to changes 

in land-cover.  

Several researchers reported forest-woodland resurgence in El Salvador during 2001-

2010, resulting from effects of globalization and integration through the combination of 

remittances, off-farm income, commodity markets, environmentalism, and agrarian reform 

(Hecht & Saatchi, 2007; Castaneda, 2009; Hecht, 2010; Herrador Valencia, Boada i Juncà, 

Varga Linde, & Mendizábal Riera, 2011). In addition, other indirect drivers associated with 

LCLUC in this region that are likely to have affected Trifinio include conversion from sun to 

shaded coffee, severe regional pests such as the coffee berry borer and leaf rust, and natural 

events such as hurricanes and wildfire (Eakin, Tucker, & Castellanos, 2006; Vega, Infante, 

Castillo, & Jaramillo, 2009; Castellanos et al., 2013; Haggar, Medina, Aguilar, & Munoz, 

2013; Schmitt-Harsh, 2013; El Mundo, 2015).  

  As noted above, increases in forest coverage were found for both El Salvador (8%-

9% from 1986-2001), and Honduras (62%-65%, from 2001-2010), and these could be related 

to increased use of traditional coffee varieties that are shaded by native forest vegetation, and 

hidden during Landsat analyses (Montenegro & Atwood, 2010; Ortega-Huerta, Komar, Price 

& Ventura, 2012; Schmitt-Harsh, Sweeney, & Evans, 2013). Very high-resolution (VHR) 

remote sensing products (e.g. IKONOS, Worldview 2, and aerial orthophotos) can detect 

shaded coffee formations; unpublished results show individual shade trees, as well as rows of 

coffee, for this study region (P. Schlesinger, unpublished data). Shaded coffee has been 

largely promoted because of its benefit to biodiversity conservation and livelihoods (Rice, 

2010), though there is argument about its efficacy (Calvo & Blake, 1998; Rappole, King, & 

Rivera, 2003; Tejeda-Cruz, Silva-Rivera, Barton, & Sutherland, 2010).  

Overall, scientists conducting remote sensing and mapping of tree cover in the tropics 

have made many important strides over the lifetime of the Landsat satellite program 

(Loveland & Dwyer, 2012; Hansen et al., 2013; Roy et al., 2014), such as those by the 
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LCLUC global assessment teams (e.g. Hansen et al., 2013; Kim et al., 2014; and, 

GLCF/GSFC, 2014). These global products were not designed to map human land-use, 

though they have traditionally captured large changes due to industrial agriculture and forest 

clearcut activity (Defries et al., 2005). Their format of hard classifications of strictly 30 x 30 

meter forest and nonforest pixels consistently underestimate forest losses in tropical Latin 

America (Kim et al., 2015) by obscuring tropical smallholder cropping and other regionally 

important economic land-uses (such as pasture and agroforestry) that remain a significant and 

important challenge to estimate (Lu, Batistella, Moran, & de Miranda, 2005; Jain, Mondal, 

DeFries, Small, & Galford, 2013). The large difference found between our regional findings 

of deforestation and the latest global efforts (e.g. Hansen et al., 2013) is likely due to 

inadequate detection of smallholder land-uses, particularly pastures and coffee agroforests. 

Major land-use changes in the tropics, from small-scale sun and shaded coffees, cocoas, and 

other forms of agroforestry, and woody vegetation, termed ‘trees outside of forests’ (TOF) by 

FAO (Schnell, 2015), are often only visible at higher spatial resolutions beneath canopies and 

without cloud cover. Thus, higher resolution (and radar) satellite data may provide further 

insight to tropical land-use change (Ryan et al., 2012, Vaglio Laurin et al., 2014). Devoting 

attention to cost-effective and accurate mapping of tree-based agricultural and agroforestry 

systems would therefore be of great benefit to many LCLUC-related studies in the tropics.  

Trends and drivers of changes within and around the MTPA. 

Forest loss can be seen as a positive outcome of agriculture and livestock expansion, 

because other benefits and opportunities can be realized with the right policies in place for 

forest protection (e.g. PAs, biological corridors, and incentives). Finding this balance is 

fundamental for policy design. Thus, it is important to understand the roles of socioeconomic 

dynamics and biophysical drivers in determining LCLUC, especially in and around PAs, 

whether these are domestic or transnational (DeFries, Hansen, Turner, Reid, & Liu, 2007).  

The spatial biophysical composition of the landscape of this region (e.g. amount of 

forest, elevation, and slope) may also define what specific human activities (e.g. protection of 

land, forest conversion) slow or intensify the process of change from direct drivers. Our 

analysis of the MTPA core zone finds that forest cover is maintained throughout the study 

period relative to surrounding buffer zones. As compared to other transboundary protected 

areas in Central America (e. g. La Amistad), our observations of general trends indicated that 
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the tri-national governance of this protected area appears to have had positive benefits for 

forest protection within its boundaries.  

The tapering of deforestation as one moves from the core Montecristo park boundary 

to further away might be attributed to: a) better land for coffee existing at the mid-to-higher 

altitude lands that are closer to the park boundary (Blackman et al., 2008; Fischer & Victor, 

2014); b) the fact that there was little suitable land left for agroforestry coffee that had not 

already been cultivated further from the park as of 1986; or c) the park itself may have led to 

‘spillovers’ of land-use pressure at mid-to- higher elevation directly around its boundaries 

(Joppa & Pfaff, 2010). The large annual rate of change observed for the urban class 

corresponded geographically to the areas just beyond 4 km buffer that saw significant 

disturbance. The very high-level disturbance immediately outside the park, and the ability to 

maintain forest cover within the park core over time is notable and suggests that its protected 

status constrained LCLUC within the park over the study period.  

Conducting an assessment of the causal impact of the protected area on deforestation 

was beyond the scope of this study, and so we cannot conclude that protection in forest cover 

is ‘additional’ to what would have occurred without the protected area (Joppa & Pfaff, 2010). 

Further analysis is needed to elucidate the causal impact of the park on deforestation by more 

carefully controlling for confounding factors (Joppa & Pfaff 2010). 

 

Conclusion 

The creation of the Trifinio Region and its MTPA appears to have safeguarded forest 

in the vicinity of the tri-national park. However, across the larger region, key drivers of 

LCLUC during the study period are similar to those found elsewhere in Central America – 

with agricultural expansion of coffee, pasture, and other crop production – suggesting that 

there is little detectable difference from the transboundary governance arrangement on 

LCLUC. Additional research is needed, however, to test the causal relationships between 

transboundary governance, including the MTPA, within Trifinio and its impact of natural 

resources management in comparison with efforts outside of the region. While we observed 

considerable heterogeneity in land changes across countries, including within each country’s 

MTPA core and buffer zones, our regression analysis suggested that more heterogeneity 

occurred in forest loss patterns at the sub-national level within each of the Trifinio countries 
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than across countries. At the sub-national level, our regression model of direct drivers of 

change suggested that factors like road access to forest resources and population were 

significantly correlated with forest loss. There are several important indirect drivers of land-

cover change in Trifinio, such as recent land reforms and rapid changes in commodity prices, 

linked to these observed direct drivers. Finally, our analysis revealed large differences in 

deforestation between global scale forest assessments and measured local changes, 

highlighting the need for further research in mapping tropical tree crops and shaded 

agroforestry. 
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CHAPTER 2: INVESTIGATING FOREST COVER TRANSITIONS OVER 30 

YEARS WITH LANDSAT IMAGES IN THE TRIFINIO REGION 

 

Abstract 

International development to reduce poverty at the same time as conserving natural 

resources requires a good understanding of vegetative transitions over the recent past, how 

and when they increase, decrease, and when they remain constant. A database of percent 

greenness derived from normalized difference vegetation index data was constructed from 30 

years of medium resolution-satellite imagery to understand land cover and land use changes 

(across countries, counties, and PAs) of a unique Central American transboundary region. A 

novel method for evaluating temporal trends was applied using short time series analysis 

tools; temporal trends were largely found to be flat. Proximity to PAs showed a relation to 

greenness inside the Region. Despite centralized environmental conservation and 

management, vegetative growth varies widely across the region. Regional regrowth or 

resurgence of natural forest cover was not observed.  

Keywords: Coffee, deforestation, land use, NDVI, protected area, transboundary, 

Trifinio 

 

Resumen 

El desarrollo internacional para reducir la pobreza al mismo tiempo que la 

conservación de los recursos naturales requiere una buena comprensión de las transiciones 

vegetativas en el pasado reciente, cómo y cuándo aumentan, disminuyen y cuándo 

permanecen constantes. Una base de datos de porcentaje de verdor derivado de datos de índice 

de vegetación de diferencia normalizada se construyó a partir de 30 años de imágenes 

satelitales de resolución media para comprender la cobertura terrestre y los cambios en el uso 

de la tierra (en países, condados y áreas protegidas) de una región transfronteriza única de 

Centroamérica. Un metodo novedoso para la evaluacion de la tendencia temporal fue aplicado 

usando herramientas de análisis de series temporales cortas; las tendencias temporales fueron 

descubiertas en gran parte que eran planas. La proximidad a las áreas protegidas mostró una 

relación con el verdor dentro de la Región. A pesar de la gestión y conservación ambiental 
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centralizada, el crecimiento vegetativo varía ampliamente en la región. No se observó rebrote 

regional o resurgimiento de la cubierta forestal natural. 

Palabras claves: Café, deforestación, uso del suelo, área protegida, NDVI, índice de 

vegetación, verdor, transfronterizo, Trifinio 

 

Introduction 

Improved understanding of the complexity of the dynamics of vegetated land cover 

and land use changes (LCLUCs) for the monitoring of transboundary PAs (PAs) supports a 

wide range of decisions. The dynamics of LCLUC patterns are extremely important for 

managers and planners of natural resource conservation of nationally adjoining parks, and 

wildlife refuges that span national borders across the Americas. The notion of transboundary 

and adjoining parks offers direct potential for reduction of international conflict, and 

increased stability, peace and conservation, because nations need to work together to 

collectively maintain forest and cropland productivity (Schlesinger et al, 2017). Surrounding 

Central America’s Trifinio Region, a 7400-km2 transboundary region at the join of the 

boundaries of Guatemala, Honduras, and El Salvador, human land use has been increasing 

levels of landscape fragmentation largely resulting in forest fragments existing in a matrix of 

agricultural lands. 

Significant time and financial resources have been expended since the late 1980s in 

the continued development of the Trifinio Plan. However, assessment of whether the Plan has 

been successful from the perspective of conservation, LCLUC, international development, 

poverty reduction, and water source protection has been limited (Artiga, 2003). The region 

came together in the aftermath of civil wars, in common national interest to protect the water 

supply source of three important watersheds, the Ulua, Lempa, and Motagua that supply water 

to millions of downstream users. Investments in the region are supported by the international 

community, and its centralized administration is a combined effort of the offices of the Vice 

Presidents of the three participating countries. It would therefore be expected that the 

common centralized goals, planning, and conservation management implementation of the 

participating countries, counties, and PAs would manifest in an increase of greenness across 

the landscape over time. 
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Remotely-sensed greenness imaging based on normalized differencing of red and 

near-infrared optical satellite image bands, such as the Normalized Difference Vegetation 

Index (NDVI) (Rouse et al, 1974, Deering et al, 1975) enables long term, regional greenness 

monitoring. Mapping with NDVI allows for LCLUC and degradation to be studied in a 

consistent manner using multiple satellite sensors (Yengoh et al., 2014). Arithmetic 

manipulation of the image bands responsible for the ratio of absorption of red light by green 

chlorophyll to the reflection of near infrared (NIR) light by expanding leaf mesophyll cells 

highlights differences in vegetative responses to changes in its environment. Early study of 

the relationships between prairie grass biomass samples and in situ spectrometer values 

(Tucker, 1978) offered an assessment of the various equations developed up to that that time 

(some of which had been applied to Landsat satellite digital numbers) and concluded that 

linear combinations of red and infrared radiation were suitable to assess plant canopy 

photosynthesis. Mathematical equations and relationships investigated following this same 

logic have led to the creation of nearly two hundred vegetation indices and applications 

discriminating natural and anthropogenic differences and disturbances (Heinrich et al, 2012). 

Thus greenness-based land cover and land use transitions can be sampled and used over time 

in satellite imagery to investigate and measure changes in vegetative cover commensurate 

with various land uses relating to agriculture, agroforestry, and pasture.  

The creation of databases to conduct vegetation analyses in areas once covered by 

seasonally dry tropical forests with Landsat and other optical remote sensing data can be 

challenging. Seasonally dry tropical regions are fraught with high levels of cloud cover and 

cloud shadows, fires, and dynamic water bodies. Recent scholarship, however, has created 

means of identifying and creating ways to consider some of these dynamic changes in Landsat 

bands, while detailing the location of cloud cover, shadows, and water (Zhu & Woodcock, 

2012). These features can then be removed, and multiple dates of these images can be 

compared and fused to create more useful data sets for understanding LCLUC over time. 

Calibration of satellite images is required to prepare vegetation indices for characterization of 

land uses and their measurement over time, facilitating the search for forest regrowth. 

Reforestation has recently become a goal of each of the Trifinio Region’s participating 

countries, however, there has not been a regional study of forest regrowth trends (Figure 2.1).  
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Figure 2.1. The Trifinio study region participating countries 

are El Salvador, Guatemala, and Honduras. 

 

In Honduras, the government has recently amended mandates and budgeted funds to 

support reforestation, but the country also directly supports large monocultures (African Palm, 

coffee, sugar cane, and pasture to support cattle) (USAID, 2014). In 2016, in time for the 

International Arbor Day, the Honduran government began its new “Honduras plants a life” 

campaign.  

From 2015 to 2017 Guatemala’s National Institute of Forest annually began the 

reforestation campaigns with slogans of “Sowing Traces”, “It’s time to reforest Guatemala”, 

and “We Will Reforest Guatemala”, and goals of replanting 1 million tree seedlings. 

Contradictions in development policies are rampant, and forestry is no different than other 

areas. Forestry development activities were created to support pine species, at the same time 

as rural dwellers were encouraged to use pine species as household fuel. Likewise, in 

Guatemala, the Constitution’s Article 126 (OAS, 1993) declared reforestation and forest 

conservation matters of national urgency, and there have been efforts to bring these to the 

forefront with national LCLUC monitoring to accommodate reporting responsibilities for the 

2015 Paris Agreement. However, economic development policy has also permitted growth of 
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the highest national deforestation rates in supporting expansion of African palm, sugar cane, 

cattle, and narco-farms (Foucart, 2011).  

El Salvador’s national environmental act was enacted in 1998, but progress in the land 

use and forest sector has been slow to materialize. The country is participating in UNFCCC 

preparations to implement the REDD+ mitigation mechanism, but real progress on this front 

is only expected to materialize this year (CATIE, 2017). The Ministry of Environment and 

Natural Resources (MARN) is charged with forest and forestry issues in El Salvador; but 

there is not a tremendous amount of marketable forest cover, as sugar cane and coffee 

production are significant agricultural players (estimates from unofficial national mapping of 

land cover and land use (Jimenez, 2014, updated in 2017) show 56% agriculture and 32% 

forest cover). In April 2016, on Earth Day, MARN launched a reforestation and restoration 

program in five priority sites, three of which include PAs, wetlands restoration, as well as the 

promotion of coffee and cocoa (MARN, 2016); a total of 14,000 ha are designated for Trifinio 

and regions nearby as a part of the Bonn Challenge initiative. Cocoa is preferred over coffee 

for new agricultural development due to rampant destruction by the coffee rust (‘roya’ in 

Spanish). Coffee cooperative growers from El Salvador at an event at CUNORI in 

Chiquimula reported to us that their government is urging a conversion to cocoa, but has 

offered no incentives nor supports for the period in which it will take to convert their crops, 

and many are considering selling their lands.  

Forest regrowth and resurgence, and natural reforestation have been noted by 

published Central American studies, including some local level studies in the Trifinio Region 

(Redo et al, 2012; Vaca et al, 2012; Bray, 2009; Chowdhury, 2010; Hecht, 2010; Castaneda, 

2009; Hecht and Saatchi, 2007; Tucker et al, 2005; Sader et al, 2003; Aguilar, 2002; 

Southworth and Tucker, 2001, Sader et al, 2001; Turner, 2010). Redo et al (2012), who 

examined 2000-2010 using Moderate Resolution Imaging Spectrometer (MODIS) for 

Guatemala and the Trifinio Region showed a marked recovery of conifers, but almost no 

broadleaf recovery; the study noted Guatemala as dominated by net deforestation. Castaneda 

(2009) and Hecht and Saatchi (2007) also documented a forest resurgence in El Salvador, but 

their study areas did not include the Trifinio Region.  

Looming increases in satellite image breadth and frequency offer increased ability to 

study forest cover changes, but some areas still face more considerable challenges in terms of 
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the number of archived images available for analyses due to incessant cloud cover, limited 

interest and ability of some nations to map their territories, and higher economic and human 

priorities. The Trifinio Region has a long rainy season, and poor rural farmers are trying to 

convert the remaining forest cover to pasture and agroforestry. The contribution of this 

research is a spatiotemporal assessment of well-known vegetation indices using a novel 

method to assess trends of forest transition and regrowth inside and outside of a 

transboundary region, its participating countries, counties, and PAs, that are expected to 

exhibit common behavior due to common forest governance and development. Specifically, 

we ask, do trends of greenness transitions vary significantly over the last 30 years when 

measured across the different countries, counties, and parks that make up the Trifinio Region? 

Are these trends greater near PAs? Is there a perceived greenness resurgence as reported by 

regional researchers? And finally, if there is a green-up signal, is it related to abandoned 

agricultural fields, pastures, or coffee shading? 

 

Methods 

We created a time series of remotely-sensed Landsat images to assess human impacted 

land cover transitions inside and outside of the Trifinio Region. Common activities in time 

series assessment are to try to sufficiently separate cyclical changes relating to vegetation 

phenology or cloud cover from true departures from the norm, such as a fire or deforestation 

event. In this study, however, limitations due to cloud cover necessitated that we examine the 

earliest portion of the dry season, when vegetation is senescing. Using cloud-free Landsat 

images between 1986 and 2016, we constructed seven epochs of observations to enable 

analyses of land cover change (Table 2.1). 
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Table 2.1. Landsat data selected for use. 

 

 

  

 

 

 

 

 

 

 

 

 

 

In preparatory investigation for this study, we used CLASlite software (Asner et al, 

2009) with Landsat 5, 7, and 8 images to build a traditional time series of mapped forest 

polygons with which we could measure and use to understand LCLUC (Schlesinger et al, 

2017). CLASlite employs a proprietary form of linear mixed pixel analysis to create fractional 

forest coverages which has been shown to be very successful for landscape analyses (Kanniah 

et al, 2016; Tarigan, 2016; Allnutt et al, 2013). However, in the Trifinio Region and its 

participating countries outside of the region, the native forest cover is widely used to shade 

coffee production. It was therefore not possible to separate native forest from coffee 

plantations, nor from forest used for coffee shading using Landsat data. We therefore used 

NDVI, a simple greenness measure, as an indicator of general vegetation cover change over 

time. 

 

 

 

 

LCLUC Landsat Acquisition Percent 

Epoch Satellite Date Cloud Cover

1986 5 February 2, 1986 20

1986 5 April 7, 1986 0

1986 5 March 25, 1987 10

1991 5 March 4, 1991 2

1991 5 March 20, 1991 0

1996 5 January 29, 1996 43

1996 5 March 17, 1996 6

2001 5 February 11, 2001 13

2001 5 March 15, 2001 6

2001 5 March 31, 2001 0

2003 7 April 14, 2003 1

2011 5 March 27, 2011 5

2011 5 April 28, 2011 2

2016 8 April 9, 2016 5
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Data 

Data Acquisition 

Landsat data of 30m spatial resolution were acquired from United States Geological 

Survey (USGS)/Earth Resources and Observation Science Center (EROS) for LCLUC 

analyses. Landsat-derived surface reflectance values were used to develop least-cloud 

approximately five-year “epochs” of vegetation index for use as a proxy for forest transitions 

to better understand forest disturbance and regrowth (Table 2.1). These images had already 

been orthocorrected to the USGS Level 1 Terrain Corrected (L1T) level. In addition, they 

were radiometrically and atmospherically corrected via the Landsat Ecosystem Disturbance 

Adaptive Processing System (Masek et al, 2013) and processed to include cloud-shadow mask 

layers through the USGS EROS Science Processing Architecture Climate Data Record 

program (Zhu & Woodcock, 2012; USGS, 2014). These data were classified as “provisional” 

by USGS at the time of download because the processing code was subject to change; all data 

used in this study were consistently preprocessed using the same date of code (mid-July 

2016).  

 Satellite data for the study were sampled to coincide with the end of the deciduous 

leaf-off dry season (month of March), to enable acquiring images with limited cloud cover 

(Table 2.1). Landsat 7 incurred an anomalous scanline corrector failure in May 2003 causing 

systematic data gaps in ensuing images. Though Year 2006 Landsat 7 images were initially 

explored for use in the time series, this was not possible and therefore, a cloud-free Landsat 7 

scene that had been acquired just prior to the sensor anomaly in 2003 was substituted for the 

2006 epoch. 

 

Data Preprocessing 

Data from Landsats 4, 7, and 8 comprised five-year epochs (centered on years 1986, 

1991, 1996, 2001, 2003/2006, 2011, and 2016) of surface reflectance. Administrative GIS 

data layers were reprojected from local projections into a common Universal Transverse 

Mercator (UTM) projection for comparison with Landsat data. Global datasets (i.e. Shuttle 

Radar Topography Mission (SRTM), Global Administrative Areas (GADM), and World 

Database on Protected Areas (WDPA)) were incorporated to facilitate characterization of 

trends among administrative boundaries of nations, counties, and protected areas (PA). Spatial 
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PA boundary data were gathered during separate field visits (Munoz, 2017) from the 

individual PA managers who provided and permitted the use of these GIS layers. The Trifinio 

Region’s PAs practice both land and water conservation; however, only PAs concerned with 

land conservation were selected for use. Spatial databases of agriculture and agroforestry 

users were downloaded from the region’s Trinational Territorial Information System 

(SINTET geoserver, http://sintet.net) in July 2017. Additional remote sensing data included a 

set of 113 very-high-resolution (VHR) 2013-2014 Worldview 2 (WV2) satellite images of 

panchromatic and multispectral data (of 0.5m and 2m resolution respectively), that were used 

in lieu of orthophotos repeatedly to verify LCLUC activity (e.g. Was a pasture in use or 

abandoned? Were trees located on the edge of a field or in the middle of a field? and Could 

suggested new vegetation be seen in the area of a pixels of with increasing slope transitions?). 

 All remote sensing data underwent pre-processes differing by sensor type and epoch 

because each epoch was made up of different quantities of inputs, though only a single sensor 

comprised any one epoch (Figure 2.2). Cloud and shadow polygons from the C Function of 

Mask (CFMask) layers (Foga et al, 2017; Zhu & Woodcock, 2012) were used to mask out the 

cloud- and shadow-compromised regions from all processing and analyses streams. Water 

pixels vary spatially and temporally across the dataset (depending on variable rainfall and 

subsequent river and lake heights); thus, all water pixels were reclassed to Boolean values and 

logically summed to create a single water mask. Removing all water pixels over the 30-year 

period prevented potential water-related false transitions from impacting our analyses. 
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Figure 2.2. Steps followed to produce CPA and point-sampled  

greenness slope transition classes to assess LCLUC trends. 

 

Preparing the Greenness Database 

The original surface reflectance data values range from -10000 to +20000 (USGS, 

2017), however, valid data are only held in those values between -10,000 and +10,000. Input 

integers were rescaled to decimal (real value) reflectance, by multiplying input values by a 

scale factor of 0.0001. NDVI layers were calculated using the standard formula NIR-

RED/NIR+RED (bands 4 and 3 respectively for sensors onboard Landsat 5 and 7, whereas 

bands 5 and 4 are used with Landsat 8). These data were reclassed to clip the negative range 

of NDVI values to 0, effectively scaling NDVI to only a positive range. The only reason to 

keep negative values would have been to capture water, bare soil, snow, ice, cloud, and 

shadow, but since these values were effectively eliminated with using the CFMask layers and 

the study is investigating green vegetation, it made no sense to maintain the entire range of 
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values. From this point on the positive values will be referred to as Percent Greenness (or % 

greenness). 

NDVI layers for each epoch were prepared in five-ranked greenness categories (with 

linear quintiles of positive NDVI values in each bin). Some epochs were comprised of data 

from an adjacent year because of insufficient least cloud coverage, providing the acquisition 

date of the additional scenes corresponded with the March dry season. For example, the image 

epoch created for 1986 was made up of 2 scenes from 1986 and another from 1987, using the 

maximum value compositing approach (Holben, 1986) created initially for Advanced Very 

High-Resolution Radiometer (AVHRR) data. In this approach the greenest pixel of all the 

inputs determines the source pixel values that are used in the epochal image.  

 

Sampling Approaches 

Two sampling approaches were initiated to create the data sets used to understand the 

percent greenness changes across time and space (Figure 2.2). A combined county-protected 

area (CPA) variant summarized by polygon boundary file and a wall-to-wall variant spatially 

sampled the epochal layers by map-projected coordinate points. Both approaches were 

applied inside and in an approximately 20km buffer region outside of Trifinio Region. The 

distance of the outer buffer was related to our high-resolution WV2 imagery which extended 

to almost 20km beyond the boundaries of the region (Figure 2.3). 
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Figure 2.3. Trifinio Region Countries, Counties, and PAs, surrounded by buffer. 

 

 Point sampling applied variable sampling rates that were set at 10% and 50% 

depending on the PA extent (which in some cases had also been reduced by the presence of 

clouds, shadow, and water). PAs <50ha were sampled at a 50% rate, while all others were 

sampled at a 10% sampling rate, yielding more than 27,000 samples within PAs inside 

Trifinio, and almost 40,000 samples in PAs outside of Trifinio. The area outside of PAs was 

sampled at a 10% rate which yielded a total of about 722 thousand NDVI samples. Outside of 

the Trifinio Region sampling yielded a total of about 993 thousand samples. Sampling was 

carried out in TerrSet using the SAMPLE executable with vector and raster outputs; Boolean 

masks were created individually for each PA using the TerrSet BREAKOUT executable due 

to the need to apply variable sampling rates. All samples were converted using the TerrSet 

XYZIDRIS executable to a worksheet format. As a result, all samples, both inside and outside 

of Trifinio, contained their respective projected XY coordinates, and were given an 

identification (ID) number, and IDs to enable our analyses. Additional IDs included country 

identification codes (1, 2, and 3) for Guatemala, Honduras, and El Salvador, respectively, 

county name and source database code, code and name of nearest PA, a dummy variable to 
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indicate if sample was located within a PA, Euclidean distance from the sample to the nearest 

PA boundary in kilometers, area in kilometers of the nearest PA, greenness values in percent 

for each year of study, as well as greenness category number (1-5).  

 The second sampling approach, CPA, gathered knowledge from the same area, though 

the data values characterized the extent of a combination of the overlay of 56 PAs on 141 

counties, in which 45 counties were within the Trifinio Region and 96 counties were located 

in the buffer outside of the region. Of the PAs, 48 are located within Trifinio, while six are 

located outside of the region in the 20km buffer. The labels of the 141-county polygons were 

multiplied by a factor of 100 and then the label values of the protected area polygons were 

added to the county labels. This allowed us to better manage the sources of PAs during 

analyses, as a single PA is often present in several counties, and in one case, in three different 

countries. 

 

Basic Statistics 

A total of 244 polygons comprised the administrative structures characterized in this 

study. Six PAs concerned solely with lakes were omitted at the outset as the study is about 

LCLUC. The portions of the 141 counties with and without 56 PAs across the combined 

inside of the Trifinio Region (45 counties) and outside (96 counties) were summarized by 

mode and mean values using a raster polygon mask for each combined CPA feature label (that 

had itself been masked by the 30-year cloud, shadow, and water features) (Figure 2.4). All 

summary operations used the TerrSet EXTRACT executable. 

 

 

Figure 2.4. Data processing workflow for CPA group. 
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 Figure 2.4 Mode and mean greenness values were extracted from each of the seven 

epochs with a county mask and reclassed to one of five 20% categories (called “quintiles” in 

this study). The quintiles were concatenated to each other to create short time series sequences 

and analyzed for transition direction.  

 We calculated a one-way analysis of variance (ANOVA) in R (version 3.3.3, 2017, 

“Another Canoe”, R Core Team 2017) with % greenness as the dependent variable and Year 

of % greenness as the independent variable to compare the means collected within each epoch 

to check on consistency. Additionally, we compared our greenness values with MODIS 

MOD13Q1 NDVI data to make sure our processing was not compromised by a misstep.  

 

Cross-tabulation 

We cross-tabulated greenness categories to quantify their change over time. Mean and 

modal values were extracted for each combination of county & PA for the three countries 

inside and outside of the Trifinio Region and these values were reclassed into 5 equidistant, 

fixed-boundary categories corresponding to 20% of spectral response for each epoch. Each 

category label was concatenated with the other labels corresponding to that county-PA as 

strings of values to help facilitate understanding of the spectral changes seen over the study 

period. For example, 2222345 is a CPA sample that started in greenness category 2 in 1986, 

stayed at the same level of greenness in the subsequent three epochs and then increased 1 

category each in 2003, 2011, and 2016. 

 

Clustering 

Next, we clustered the data set to divide up its variability into a number of regions that 

might be explained. Clustering can occur spectrally or spatially, and we carried out both 

methods. Many clustering algorithms required a user-defined number of initial or maximum 

clusters. The number of relevant clusters in the percent greenness data was assessed by the 

‘NbClust’ package in R (Charrad et al, 2014), which suggests the use of a majority rule to 

determine the outcome of 30 implemented indices. The number of clusters is useful to extract 

geospatial patterns that can be used to understand the mechanism and degree of land cover 

change in play during the dry season period used by the study. Twenty-eight of the indices are 

numeric. Two indices are graphical indicators (titled Hubert (Charrad et al, 2014) and Dindex 
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(Lebart et al. 2000)) that are interpreted by a visually determined “significant knee” in the 

graphical plots (Figure 2.5).  

 

Figure 2.5. The Second differences Dindex Values graphic 

estimates 3 clusters of average percent greenness. 

 

Using the predicted number of clusters (determined by the majority vote of the 30 

indices), we predicted geographic cluster locations using the CLUSTER executable in TerrSet 

and also by using simple Microsoft Excel conditional statements to assess potential increasing 

or decreasing transition directions, discussed here as “slopes” (increasing, decreasing, or flat) 

and temporal transition length (e.g. for how many timesteps did a greenness transition 

continue). Consecutive higher or lower categorical placements were presumed to signify 

growth and loss of vegetation; two consecutive changes in the same direction higher or lower 

or two as long as the change is by two categories (Figure 2.6). 
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Figure 2.6. 30-year (7 epochs) assignments of slopes. 

 

Short Time Series analyses 

Short time series (STS) analytic software were used to indicate graphically the general 

shapes of land cover transition curves, and to visually sample locations of increasing and 

decreasing trend status that had been verified with WV2 imagery. STS using Cluster Analysis 

of Gene Expression Dynamics (CAGED) (Ramoni et al, 2002) and Short Time-series 

Expression Miner (STEM) (Ernst and Bar-Joseph, 2006) are Java-based tools have been used 

for more than a decade to express human genome profile data in sequences of eight-time 

points or fewer. Therefore, these tools allowed us to quickly visualize patterns of our series of 

seven-time points. STS profile plotting of the greenness samples using the gene expression 

tools proved immensely useful (especially CAGED) to quickly import, plot, and understand 

time series differences (to quickly see which sample or set of samples is at what potential 

growth point at which point in the series).  
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Modeling 

We used R packages to study greenness trends over time using linear, nonlinear, and 

general linear model mixed effects models (applying the lm and nlme (R stats version 3.5, (R 

Core Team, 2017)) and R lme4 packages (Bates et al, 2017)). We assessed the statistical 

influence of administrative structures (i.e. county, protected area, country, and transboundary 

region) on greenness using InfoStat v. 2017d.  

 

Normality assessment 

Evidence of normality and significant differences between groups were assessed using 

R (version 3.3.3) (The R Foundation for Statistical Computing, 2017). To try to align the 

Landsat 7 data values more closely to Landsat 8 values, a calibration equation (Li et al. 2010; 

Roy et al, 2016) was applied to the 2003 data value.  

 

Trends 

Keeping in mind that the percent greenness data had been grouped in 5 categories by 

percent of positive NDVI, value changes across the seven epochs (using 4 questions) 

produced an index of the changing greenness data (that ranged at most from +3 to -3) 

permitting a comparison of temporal NDVI clustering: 

 To produce a slope index, a conditional statement was applied in MS Excel to assess 

incremental changes. This statement asked if the sum of the differences between temporally 

adjacent epochs (e.g. between Epoch 4 and Epoch 3, Epoch 6 and Epoch 5, and Epoch 7 and 

Epoch 6) is less than -1 then the slope is decreasing, and in other cases, if the sum of the 

differences in these same temporally adjacent epochs is greater than +1 then the slope is 

increasing, and in all other cases the slope is flat.  

 Applying the conditional statement above to categories ranging from 1-5, the only way 

to yield a number greater than 1 or less than -1 is to participate in a constant increasing or 

decreasing trend during the seven-epoch series. An additional set of equations was added to 

compare and accommodate the latest four epoch dates (last 15 years) (Figure 2.7) with the 

first three dates to learn what had happened more recently (e.g. 2001-2016). The trend 

equation applied for recent years is the same as the previous equation, but the starting year 

(2016) is differenced with 2011, 2011 is differenced with 2003, and 2003 is differenced with 



51 

2001; and then the sum of these differences is compared to -1 and +1, as earlier, to gain a 

picture of the most recent trend. These conditional comparisons of binned categories could 

mathematically lead to an index range extending from -4 to +4. 

 

Figure 2.7. 15-year (5 epochs) assignment of slopes. 

 

 In long time series analyses it is common to smooth the series to eliminate/minimize 

spurious increases and decreases (Bayr et al, 2016), but that method does not help 

considerably in this case with only 7 temporal data points. Instead, we used a rule to allow the 

signal to rise or fall the width of one categorical bin, which happens frequently. Comparing 

summed differences between temporally-adjacent epochs greater than 1 and less than -1 

accomplishes the same intent as filtering (without changing the values), as samples that rise 

and fall 2 or three times in a single sequence (e.g. 2323232) would be considered to have a 

flat slope.  

Evaluation of trend directions (increasing, flat, decreasing) were easily plotted in 

CAGED. Individual plots of all 244 CPA average percent greenness timesteps showed the 

general trend directions graphically (Figure 2.8). Figure 2.8 A and Figure 2.8 B are indicative 

of flat trends, while the Figure 2.8 C is increasing. Flat trends can be located anywhere 
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vertically in the plots, but none were seen in the CPA approach outside of the 3-5 category 

(because the data are averaged). 

 

 

Figure 2.8. Sample flat (A & B) and increasing percent (C) 

greenness trends as plotted by CAGED. 

  

Increasing trends (Figure 2.8. C) in this sample increase from 30% greenness in 1986 

to 62% in 2011 and fall to 45% in 2016). The CPA data rise and fall in a subsequent epoch; 

none of the CPA data decrease to a point lower than a starting timestep.  

 When comparing frequency of transitions near PAs and proximity of transitions to 

PAs, an equation was applied to normalize the effect of the differences in frequency and rates 

due the concentric effect outside of the Trifinio Region. Given that the outside of Trifinio 

Region in out approximately 20km buffer is about 38% bigger than the area within the region, 

areas, sample frequencies, and therefore, rates were appropriately normalized by reducing 

those values with a scaling factor (Equation 2.1) before conversion to percent greenness 

trends: 

 

 0.7259 =  1/ 10194km2 / 7400 km2                                     (Equation 2.1) 

 

At the most detailed level, each of the 722 thousand samples were evaluated for 

temporal and spectral trends and differences among the administrative structures. Proximity to 

nearest PA boundary was measured for each record using each sample’s UTM coordinates. A 

set of 200 random “increasing slope” samples were verified as to their position on the 

landscape (in a field, on the edge of a field), interactively with WV2 data using ArcGIS taking 

into consideration that the sample source data were 30m resolution-sized Landsat pixels being 
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displayed on 2-meter resolution images. The distance from each field boundary was measured 

to each sample point. If the sample point was less than 30-meters distant from the start of the 

field, then the sample pixel was considered to be at the edge of a field, and if this distance was 

greater than 30 meters, then the sample was considered to be located within the field. Some 

fields were in use, while others appeared abandoned or were not in use. Some had green 

vegetation growing in them, but didn’t appear to be in use. 

 

Results 

Basic Statistics 

The minimum, maximum, average mean, and standard deviation of the different 

calculated percent greenness epochs (for Inside and Outside of the Trifinio Region) (Table 

2.2). The average minimum and maximum percent greenness outside of the Trifinio Region is 

three and one percent higher, respectively. The average standard deviation in percent 

greenness is the same inside and outside. The highest maximum percent greenness values 

were outside of Trifinio Region, for four consecutive epochs. This contrasts with the average 

mean over the study period being two percent lower outside the region than inside. 

 

Table 2.2. The minimum, maximum, average mean, and standard deviation 

for percent greenness epochs inside and outside of the Trifinio Region. 

Inside Trifinio:          Outside Trifinio: 

Year Min Max Mean Std Dev Min Max Mean Std Dev 

1986 0.09 0.89 0.51 0.15 0.16 0.90 0.50 0.15 

1991 0.14 0.91 0.52 0.16 0.16 0.95 0.49 0.17 

1996 0.10 0.94 0.51 0.16 0.18 0.95 0.50 0.16 

2001 0.10 0.91 0.52 0.16 0.18 0.95 0.50 0.17 

2003 0.09 0.93 0.52 0.18 0.07 0.95 0.50 0.19 

2011 0.17 0.93 0.56 0.15 0.12 0.89 0.56 0.15 

2016 0.04 0.93 0.58 0.17 0.05 0.94 0.55 0.17 

 

As noted, in one of our modeling runs, there had been a slight indication that year of 

data might be related with NDVI. An ANOVA comparing the means of epochs found that the 

independent variable Year was significant at the 0.001 level in relation to % greenness as 
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dependent variable. A subsequent Tukey HSD pairwise ad-hoc test was significant at the 0.05 

level between the means of 2003, 2011, and 2016, and 2001 and earlier data. It was 

conceivable that the significant differences in mean greenness percent between 2016, 2011, 

and 2003, between Landsats 5, 7, and 8 was related to the image dates of those scenes (Table 

2.1).  

 The relevant dates of the MOD13Q1 for Collection 6 were downloaded and imported 

into TerrSet to permit the percent greenness data values for the comparison with the imaging 

dates of the original Landsat images. The Landsat NDVI-converted to percent greenness 

compared favorably with a 500-pixel random sample extracted from the MODIS collection 

for same dates. There is no reason why these data should have had the same values (MODIS 

is collected by two different satellites, has very different resolution than Landsat (250m vs 

30m), is collected using a different method, and our greenness epochs are not daily data), but 

they were similar enough to allow us gain confidence that the greenness data that we had 

sampled were not demonstrably different. 

 

Cross-tabulation 

Following the creation and cross-tabulation of categories, there were 18,556 groups of 

different strings, including 1111111, 2222222, 3333333, 4444444, and 5555555, containing 

1-5 descriptive statistics about those temporal groups (though the distribution of those strings 

(Figure 2.9) is slightly skewed. Inspection of the variability showed that a cell in 1st category 

greenness bin in 1986 almost never reached category 5. In fact, only 1.7 thousandth of cases 

move from category 1 to category 5. There was never movement from category 1 to category 

5 in five years and almost none in any ten-year period. Only about seven one hundredths of 

one-percent of all pixels in greenness bin 1 in 1986 regrew sufficiently to be included in 

greenness bin four or five by 2011 or 2016. 
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Figure 2.9. Greenness Frequencies in 30 Years organized in categories.  

There are no values less than 1111111, nor higher than 5555555. 

 

Spatial autocorrelation is apparent in the source NDVI data (Moran’s I was greater than .98 

for all epochs analyzed). 

 

Clustering 

 All indices of Nbclust were successful and revealed six different potential quantities of 

relevant clusters in the average percent greenness data (Table 2.3). The highest value in the 

Second Differences DIndex graphic determines the number of clusters in the data set (Figure 

2.5). The majority rule indicated three clusters in the average percent greenness summary 

values, whereas the modal summary values proved to only have two clusters. 

 

Table 2.3. Number of relevant average percent greenness  

clusters estimated by Nbclust. 

Number of Relevant Clusters Number of Reporting Indices 

2 4 

3 12 

4 2 

6 2 

7 2 

15 5 
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With three clusters identified corroborated by the NbClust analysis and CAGED plots, 

the sample data was separated using slope formulas in Microsoft Excel spreadsheets and 

subsequently verified using high-resolution WV2 images. Nearly 16% of the pixels over the 

entire study period inside and outside of the Trifinio Region did not demonstrate any change 

(as noted by the summed frequency of epochal bins that remained the same (1111111, 

2222222, 3333333, 4444444, and 5555555, had 3,072,423 no change pixels out of a total of 

19,324,574 pixels).  

 

Modeling 

No relationships, let alone significant relationships were found. Everything we tried, 

failed; these included linear models, logistic regressing, and generalized linear models. 

Normality testing ensued when it was discovered that none of the parametric approaches were 

working. 

 

Normality 

Graphical measures using box plots, qqplot plots, and histograms (Figure 2.10) offered 

evidence our data had not come from a normal distribution. Checks on skewness and kurtosis 

using the R package Nor.test (Gross & Liggs, 2015) “Tests for Normality” were carried out to 

confirm non-normality with the Anderson-Darling, Cramer-von Mises, Shapiro-Wilk, 

Lilliefors (Kolmogorov-Smirnov), and further follow-up with Pearson Chi Square tests, each 

of which significantly confirmed the dataset was not from a normal distribution (Gross & 

Liggs, 2015). 
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Figure 2.10. Multimodal histogram of average percent greenness  

data for combined CPA polygons across the Trifinio Region 

 

Non-parametric significance testing was performed using Wilcoxon Rank Sum/Mann 

Whitney U tests in R (Table 2.4). 
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Table 2.4. Significant differences of greenness trends across 

administrative structures in the Trifinio Region. 

 

p<0.05 **; p<0.001 *** 

 

Trends 

The response to the first question on trends was broken down into three parts (to 

assess if there is statistically significant variation between the sample estimates organized by 

administrative structure), and reported in three tables. Table 2.4 presents the outcomes of non-

parametric significance testing of greenness between counties, PAs, and countries inside and 

outside of the Trifinio Region using the Wilcoxon Rank Sum / Mann Whitney U (WMW) 

Test in R. The statistics include: the WMW p-values, the 95% confidence interval for the 

Admin

Structures

p-value 2.73e-06 *** Est. -0.88

95% CI [-0.08, -0.03] 95% CI [-1.3, -0.49]

p-value 1.29E-07 *** Est. -0.27

95% CI [0.41, 0.47] 95% CI [-63, -0.09]

p-value 1.68E-06 *** Est. -0.69

95% CI [-0.08, -0.01] 95% CI [-97, -0.43]

p-value 0.01892 ** Est. -0.56

95% CI [-0.19, -0.01] 95% CI [-.98, -0.14]

p-value 0.01549 ** Est. 0.07

95% CI [-0.08, -0.01] 95% CI [-.19, 0.32]

p-value 4.65E-05 *** Est. -0.83

95% CI [-0.21, -0.07] 95% CI [-1.2, -0.42]

p-value 1.80E-07 *** Est. -1.7

95% CI [-0.26, -0.11] 95% CI [-2.5, -0.9]

p-value 0.001126 ** Est. 1.3

95% CI [0.07, 0.35] 95% CI [-.55, 2.0]

p-value 0.02952 ** Est. -0.76

95% CI [-0.21, -0.007] 95% CI [-1.4, -0.15]

p-value 0.6048 Est. 0.13

95% CI [-0.09, 0.05] 95% CI [-.52 -0.77]

p-value 0.4074 Est. 0.29

95% CI [0.12, 0.03] 95% CI [-.19, -0.78]

p-value 1.12E-06 *** Est. 1.3

95% CI [0.12, 0.34] 95% CI [0.8, 1.8]

p-value 1.78E-04 *** Est. -0.77

95% CI [-0.21, -0.05] 95% CI [-1.2, -0.34]

p-value 0.3187 Est. 0.18

95% CI [-0.09, 0.03] 95% CI [-.41, -.76]

p-value 5.52E-05 *** Est. -1.0

95% CI [0.07, 0.18] 95% CI [-1.5, -0.45]

p-value 1.15E-05 *** Est. -1.1

95% CI [0.11, 0.22] 95% CI [-1.6, -0.57]
Guat vs Hond Large Null Rejected

Null Rejected

Elsa vs Guat Negligible Not Rejected

Elsa vs Hond Large Null Rejected

Guat vs Elsa/Hond Large Null Rejected

Hond vs Elsa/Guat Medium Null Rejected

Elsa vs All Other PAs Negligible INVALID

Elsa vs Guat/Hond Small Not Rejected

Countries Guat vs Non Guat Large Null Rejected

Hond vs Non Hond Medium Null Rejected

All inside PAs vs Outside PAs Large Null Rejected

Trinational PA vs Others Large Null Rejected

Null Rejected

Protected Areas All PA vs non-PA Inside Trifinio Medium Null Rejected

All Counties & PAs Inside vs Outside Negligible Not Rejected

All Inside vs Outside Avg of Means Small

All Inside vs Outside Avg of Modes Medium

Located where? Wilcoxon Rank Sum Cohen’s D Effect Size Outcome

County All Inside vs All Outside Large Null Rejected
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WMW p-values, the Cohen’s D estimate (in units of standard deviation) which evaluates the 

effect size of the WMW p-values, the 95% confidence interval for the Cohen’s D estimate, the 

effect size, and outcome of the Null Hypothesis. The Null Hypothesis in this case is that there 

is no difference between the two greenness quantities in a particular administrative structure. 

The WMW p-value only tells us that there is or isn’t a statistically significant difference 

between the greenness at the locations tested. However, Cohen’s D will assess the 

standardized effect size (by differencing the two values and dividing by the standard 

deviation). If Cohen’s D is negative, then the 2nd mean is larger than the first. In the first row, 

for example, all greenness values (organized by counties) inside and outside of Trifinio are 

compared.  

 Table 2.5 presents percent greenness trend differences geographically and across the 

administrative structures in units of percent greenness. Administrative structures are self-

explanatory. Inside and outside of Trifinio are considered as a co-variable against which to 

measure county and PAs. Inside and outside refer to the Trifinio Region. A 95% confidence 

interval is offered for each WMW tested p-value. Cohen’s D assesses the importance of the p-

value and its effect size; and, Table 2.6. presents trends in percent like Table 2.5 (except the 

period evaluated is the most recent 15 years).  

Table 2.5. Greenness trends across administrative structures over 30 years (in percent). 

 30-Year Study Period  

Administrative 

Structures 

Inside Trifinio Outside of Trifinio  

Increasing Flat Decreasing Increasing Flat Decreasing 

Counties 4.4 95.2 0.3 5 93 2 

National – 

Guatemala 

34.4 45.9 
 

59.6 
 

28 44.3 42.2 

National –

Honduras 

56.8 39.2 
 

31.0 
 

49.7 31.7 18.6 

National –  

El Salvador 

8.8 14.8 
 

9.4 
 

22.4 24.0 

 

39.7 
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Table 2.6. Greenness trends across administrative 

structures over latest 15 years (in percent). 

 Latest 15-Year Trend  

Administrative 

Structures 

Inside Trifinio Outside of Trifinio 

Increasing Flat Decreasing Increasing Flat Decreasing 

Counties 1.6 98.0 0.3 4 95 1 

National – 

Guatemala 
32.5 45.7 48.5 31.7 44.0 42.6 

National –

Honduras 
40.7 39.9 48.2 31.5 32.5 29.0 

National – 

El Salvador 
26.8 14.4 3.3 

37.1 

 
23.5 28.4 

 

The proximity of sources of increasing greenness suggests a relation to PAs (Table 

2.1B), as the frequency of samples with increasing trends within Trifinio and near or within 

PAs is 35 times greater than the frequency of normalized samples outside of the region. 

Table 2.7. Frequency of samples with increasing trends within 

and near PAs located both inside and outside of Trifinio. 

Administrative 

Structures 

Inside Trifinio 

721166 

Out of Trifinio 

993427 

Out of Trifinio 

Normalized 

County 4.4% (32003) of 

721K Samples Had 

Increasing Trends 

5.5% (52081) of 

993K Samples Had 

Increasing Trends 

3.8% (37807) of 

993K Norm. Samples 

Increasing Trends 

in Prot Areas 

3.8% (27564) 

Samples were found 

within PAs 

1077 Samples were 

found within PAs 

0.0007% (782) were 

found within PAs 

Increasing Trend 

Proximity to Prot 

Areas 

1924 < 1km 

1714 >1<2km 

1510 >2<3km 

1514 >3<4km 
 

1941 < 1km 

2125 >1<2km 

2370 >2<3km 

2601 >3<4km 
 

1409 < 1km 

1543 >1<2km 

1720 >2<3km 

1888 >3<4km 
 

National – Guat 

(incrsg) 
11020 14572 10577 

National -Hond  

(incrsg) 
18183 25864 18775 

National –  

El Sal (incrsg) 
2800 11645 8453 
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Regrowth and Resurgence 

An overlay of 3000 randomly selected with estimated increasing slope samples on the 

three most recent land use maps (one each for Guatemala, Honduras, and El Salvador, all 

created with RapidEye satellite images at 5x5m spatial resolution in the 2011-2014 period) 

only fell on coffee polygons about 1% of the time. The points fell adjacent to rivers, routes, in 

pastures, and on the edges of pastures. Some points fell on annual agricultural crops some on 

coniferous forest classes, some on secondary forest. In Guatemala, most fell on annual 

agriculture and brush.  

 

Resurgence in abandoned fields and pastures 

A total of 500 greenness samples with estimated increasing slope were randomly 

selected from the greenness databases sites of database samples were randomly selected. A 

total of 250 samples inside and 250 samples outside of the Trifinio Region were examined to 

check their location with the 2-meter WV2 images. Inside of the Trifinio Region, 104 

increasing sites occurred in recent and abandoned agricultural fields, while 96 increasing 

samples fell on the edges of those fields. Outside of the Trifinio Region, 135 increasing sites 

occurred in recent and abandoned agricultural fields, while 65 samples fell on the edges of 

fields. 

 

Discussion 

With few exceptions, the data support significant differences in greenness transitions 

inside and outside of the Trifinio Region across the various administrative structures for the 

study period. Strangely, we would have expected the opposite findings for the null 

hypothesis’ non-rejected in the cases of El Salvador vs Guatemala, El Salvador vs Guatemala 

and Honduras, because El Salvador has a much smaller amount of suitable land than other 

countries.  

 Significance testing indicated that greenness levels vary with significance across the 

different administrative structures, but not everywhere. More testing needs to be done to 

ascertain why. The significance of this is likely a mixed picture; conservation and natural 

resources management is likely not as centralized as supposed. The documents and papers 

describing Trifinio would have us believe that all is in common. But the outcome of this study 
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doesn’t offer sufficient evidence for that. This overall finding might not have been expected 

under the assumption that common and centralized management would lead to more 

similarities.  

The null hypothesis was that each of the two groups tested had equal medians, yet it 

has been shown that these data offered evidence that the medians were not the same and that 

the percent greenness trend values varied across all groups except El Salvador where noted. 

 The rates of change in trends inside and outside of Trifinio Region in the entire study 

period grouped by counties are the same with slightly differing magnitudes. There are 

differing (more increasing and decreasing) trends in Guatemala and Honduras vs El Salvador, 

and more flat trends in El Salvador when compared to Guatemala and Honduras. This last 

finding is potentially congruent with the conclusion by Hecht and Saatchi (2007) and 

Castaneda (2009) that boosted incomes from transnational remittances was impacting on-farm 

activity levels in El Salvador (though they did not study the Trifinio Region in their work). It 

is important to recognize 3 points that flat greenness trend does not necessarily mean a lack of 

activity. As the CAGED plots show, there are two important flat trends (one at the high level -

- which could be equivalent to forests and agroforestry remaining strong and the other in the 

midlevel, and one at the mid-level that could be equivalent to non-forest dry season 

agriculture remaining constant. 

 Percent greenness trends in the latest 15-year period look somewhat similar to the 30-

year trend, although the magnitudes of increasing trend have reduced, and decreasing have 

augmented in Honduras. Outside of Trifinio the magnitudes of decreasing greenness trend 

have changed for Honduras (increased by 50%) and El Salvador (decreased by 30%). Trends 

are largely the same for Guatemala in both periods. 

 The most likely reason for the significant differences in mean greenness percent 

between 2016, 2011, and 2003, between Landsats 5, 7, and 8 was related to the image dates of 

those scenes (Table 2.1). As historical rainfall was recorded in the range of dates in question 

(between the 9 and 21st of April), it is conceivable that our dataset could have recorded green 

up that had not occurred by that time in other epochs. We tried very hard to make sure the 

images were clustered around the same period of the year and had the least amount of cloud. 

The dry season is truly a very difficult time to assess green vegetation because many 

broadleaved species will have dropped their leaves, reducing the vegetation signal intended to 
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show variation in LCLUC trends; however, the current analysis would not have been possible 

in any other season with these data. Other studies in the region have had to accept the same 

set of circumstances (Nagendra et al, 2003; Southworth and Tucker, 2001). This has limited 

satellite-based investigations to coniferous vegetation types, such as the pine species 

reforested near the Celaque National Park in Honduras in the late 1990s.  

 The spatial autocorrelation result is an expected outcome in satellite remote sensing 

involving ecological and vegetation analyses, as it is quite logical that we would find similar 

features and species in geographic pockets with other similar variables. This quality can be 

important when analyses assess adjacency or proximity of pixel values to each other, such as 

in predictive spatial modelling. However, it is likely that none of the analyses undertaken in 

the CPA approach of this study could have been impacted by spatial autocorrelation because 

no adjacency or proximity-based measure of NDVI values was performed, and the greenness 

data associated with the county and PA polygons were elicited by modal or mean extractions 

using the polygon as a raster mask. We did examine the proximity of increasing slope 

greenness to PAs. Wulder and Boots (1998) prepared an extensive examination of the impact 

of spatial autocorrelation in remotely-sensed image analysis projects.  

  In any case, with respect to the proximity of increasing trends near PAs, almost no 

samples with increasing trends were found outside of the Trifinio Region; however, there are 

only 6 PAs outside of Trifinio compared with 50 PAs inside the region. While only 4.4% of 

samples associated with increasing percent greenness trends were found within PAs inside 

Trifinio, this amount of 35x greater inside the regional PAs than those outside the region 

suggests a need for follow up work to find out why. An interesting trend direction was noted 

in relation to proximity to PAs which proves the hypothesis to be correct near the PAs; 

Schlesinger et al. (2017) found this same trend in its examination of forested LCLUC 

surrounding the Montecristo Trifinio Trinational Park; that is, that frequency of forest is 

higher adjacent to the park and dissipates moving away from the park, whereas outside of 

Trifinio the frequency of users is different. The frequency of users is smaller near the PAs and 

greater away from them.  

 An examination of the five categorical greenness bins measured at the pixel scale 

summed by county level offers no evidence to show that previously degraded lands (of the 

first greenness category) in the Trifinio Region are part of any large scale regional recovery or 
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transition to a stage congruent with agroforestry or forest cover. No large greenness 

transitions were estimated. These county data showed that only 0.07% of pixels were found to 

have recovered from category 1 greenness. It is conceivable that land deforested for 

replanting to agroforestry (e.g. coffee) could have been converted after the dry season in a 

single epoch study date, and might have been measured as woodland, bush, or forest cover 

and then as agroforestry in a subsequent epoch. But given the very small percentage of pixels 

recovering to any extent in the region, it is more than likely that Trifinio Region is not 

participating in any resurgence reported by other studies.  

 There is little evidence that this is occurring because of the size of the increases and 

the locations of the increasing growth pixels, occurring within fields or on the edges of fields. 

Whatever they are, they are not going to replace or act as replacement forest. Coffee shading 

is problematic for agroforestry identification by eye and by remote sensing, but no overall 

resurgence of greenness was found using the methods applied in this study.  

 Only a small number of researchers have been working on land cover change near the 

Trifinio Region and most during the 2000-2012 period with differing types of data reported 

and varying amounts and types of forest cover regrowth that occurred in the latter part of the 

1990s. Redo et al (2012) reported conifer regrowth, but no broadleaf recovery, and net 

deforestation in Guatemala. Vaca (2012) reported recovery as complex and resulting from 

passive properties in Southern Mexico at 0.2% per year, with Chowdhury et al (2004), and 

Turner (2010) reporting similarly. Bray (2009) reports Guatemala forest recovery nationally 

at 3% annually, with forest plantations of 133,000 ha versus coffee agroforestry at 260,000 

ha, but he did not work in the Trifinio Region. The forest plantations in El Salvador are very 

visible on satellite images, but their dimensions did not appear to change over the study 

period. Southworth et al. (2004) worked in the Celaque National Park (Honduras) and 

reported of 25% land cover change occurring there before 2000; none of this resurgence was 

visible through this work.  

 There is limited evidence of increasing greenness occurring more in abandoned fields 

and pasture lands. Only about 50% of the 200 random samples were found in recent fields or 

abandoned pastures inside of Trifinio (Table W), and about 68% were found outside of the 

Trifinio Region. Abandoned fields and pasture lands are a regular feature of the Trifinio 

Region landscape, but it is not very easy to recognize them in the dry season, even with very 
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high-resolution satellite images. It is apparent that greenness trends are occurring passively 

near rivers, transport routes, and on the edges of areas of heavier land use (e.g. pasture, 

agriculture).  

As noted above, if vegetation in greenness category 1 (bare soil degraded grasslands) 

remains; it does not recover to a level sufficient to support agriculture or agroforestry within 

25-30 years. If vegetation in greenness category 2 becomes extremely degraded and moves to 

category 1, it will likely not recover enough to become a member of category 4 or 5, if these 

data prove that history of these samples is any predictor of future behavior. This does not 

bode well for the future of degraded abandoned pastures and other fields in the Trifinio 

Region and beyond.  

 A review of preprocessing methods did not find any difference in data handling, and 

following a rerun of data preparation from source materials, the ANOVA still proved 

significant for the years in question. A follow-up investigative check of historical rainfall for 

the periods of March 16- April 21 for both 2011 and 2016 showed that rainfall in millimeter 

quantities were recorded at the Esquipulas Airport during those days. The historical data show 

that 11.5 mm of rain fell during that period in 2011, and 5 mm fell during the same period in 

2016. Those amounts may seem very small, but in the years in question they amounted to 

about 5% of annual rainfall for those locations. 

 A literature search into very short time series approaches yielded no suitable models. 

Much of the relevant literature about timeseries of NDVI use data from 250-meter MODIS 

MOD13Q1, with as many as 23 images annually with 16-day revisit frequency (Redo, 2012) 

(or are using 1km resolution SPOT VEGETATION data at an annual sequence (Tucker et al, 

2005). However, because the Trifinio Region is so cloudy, most of the time, when a Landsat 

satellite passes by 50% of the region is covered by cloud cover. Even with the max greenness 

method we used, we still lost nearly 10% of the inside of the Trifinio Region as it as was 

always covered by clouds. Like in many other tropical locales, it is not possible to assess 

vegetation with optical sensors outside of the “dry” seasons. Indeed, the cloudiness observed 

made more temporally frequent collection of imagery impossible. The Landsat data collected 

are the best we could amass for this region without merging additional sensors (e.g. MODIS) 

of more frequent coverage, but with considerably larger pixels. Analyses of available Landsat 

data only permitted the creation of seven epochs over the 30 years study period. It is 
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conceivable that in time with regular imaging by the Sentinel 2A and 2B optical sensors, there 

may be additional coverage as the overpass times (10-day revisit frequency in Central 

America) will be more frequent than Landsat.  

 Land cover change evaluation by time series is commonly carried out with longer or 

more complete series of annual or seasonal NDVI data; the data available through passive 

sensing in this part of the world is replete with cloud cover for much the year. There is only a 

short period of time with medium resolution images to be able to view the land surface due to 

clouds and shadows and long revisit times. MODIS data, widely used and available since 

1999, is commonly evaluated, however while useful for this work to corroborate its NDVI 

values, the minimum pixel size (250m) is counterproductive for measuring in tropical Latin 

American tropical environments dominated by small farmers working small fields near and 

undercover of shaded agroforestry canopies (near coffee, cocoa, and others). Even Landsat’s 

30-meter pixel resolution is difficult to use for analyses of most small farmer holdings. The 

Worldview 2 data, on the other hand, with higher-resolution and more spectral depth is 

certainly sufficient (when plants are young to count the individual plants in planted rows), but 

these too can have limited availability because as a commercial sensor it is not turned on 

unless there is a paying client, and this limits its availability in archival use due to more 

potential for cloud cover given reduced coverage. 

 

Uncertainty 

Potential uncertainties of this work including the timing of the images, signal 

saturation, lack of correction for slope and aspect factors that influence illumination 

differences, and stand-age. It is supposed that much broad-leaved vegetation was in a leaf-off 

period for the extent of the study, thus the timing of the images centered around the month of 

March and in one case April may have influenced the study’s outcome; however, no other 

image dates were available to try to assess the cover change. 

To reduce uncertainty variation at the project outset, all the data used in the study were 

surface reflectance-corrected Eros Science Processing Architecture (ESPA) Level-2 science 

products. No caveats nor constraints associated with those products were triggered by our 

image acquisition dates. All pixels remaining with cloud cover or shadow after the maximum-

value compositing effort to build the seven epochs were removed from the dataset, and all the 
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cloud, shadow, and water pixels in the composite 30-year mask were also removed from all 

querying GIS layers created for each of the administrative structures. The NDVI values 

estimated for the epochs of the 2001-2016 epochs compared favorably for a 500-sample set of 

random locations with MODIS Mod13Q1 Collection 6 NDVI data.  

            Yet is possible that external influences may have affected the variability of response in 

the pine-oak dominated region surrounding Celaque National Park, for example, as the park is 

situated on an upland on the edge of the Trifinio Region. There are considerable slope and 

aspect differences extending outward in all directions (with a mean slope of 30%) from the 

center of the park to its boundaries on all sides. However, no differences in apparent 

greenness were more or less visible at any location around the park.  

Moderate to high-density biomass has been shown to impact NDVI saturation (Viña et 

al, 2004), and it is conceivable that this impacted our understanding of change in the Celaque 

region. Some of those pines reportedly grew back (the ‘old and permanent forest regrowth’ 

class) and achieved 25% canopy closure in just 9 years from previously farmed fallows 

(Nagendra et al, 2003) in response to a countywide logging ban initiated in 1987. Some 

others, two classes would have had to achieve a high level of biomass in just five years as 

they are noted as having not been a forest in 1991 and being so in 1996. While possible, it is 

questionable that these trees could have achieved a moderate to high biomass in such a short 

period of regrowth. 

 

Conclusion 

Greenness is not static among most counties, PAs, and countries of the Trifinio 

Region. Land cover and land use is always changing due to local needs for agricultural, 

agroforestry, and pastoral uses. Many lands prepared for annual cropping are burned to 

eliminate stubble and litter, and while this is evident in high-resolution images, it was not 

recognizable on our medium resolution Landsat images. A tremendous amount of the lands 

that make up the Trifinio Region (both inside and outside) vary in greenness percentages, but 

were not seen to be changing their greenness quantities temporally to any large degree plus or 

minus. The spectral slope was largely measured to remain flat (with little to no change). 

Among those that remain flat, there are many that increase and decrease every five-years, 
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fluctuation in direction more than a few percentage points each epoch. Almost no extreme 

events in one direction or another were found.  

 Only a very small percentage of lands might be experiencing regrowth or resurgence 

of green cover. However, there was no clear signal of any location that is experiencing 

regrowth more than any other, contrary to reports by regional researchers; all signs of 

increasing greenness were sporadic. Surprisingly, there was no sign of the coniferous 

resurgence reported in the vicinity of the Celaque National Park of Honduras (Redo et al, 

2012; Nagendra et al, 2003). Some locations of increasing greenness can be found in fields, 

on the sides of fields, or as a factor in abandoned fields and pastures, but there was not any 

clear signal to favor one location over another.  

 In other tropical countries, Brazil and Peru, for example, squatters in agriculture and 

pastoral activities have taken up positions outside of PA boundaries and their clearing fires 

and transitions are easily found on satellite images, but nothing has yet been found like that in 

the Trifinio Region. Management efforts in sub-watersheds seem to be working, because no 

major greenness transitions were found in these areas more than others. Greenness appears on 

pasture edges, remnant patches of forests between agricultural areas, and in brush, but not in 

upland coffee landscapes. However, transitions are occurring in areas of heavier land use, 

following human transport routes, rivers, and highways, and likewise, vegetation is appearing 

in populated urban centers. 

 Interestingly, though, lands of very low greenness, perhaps degraded pastures, were 

almost never seen to recover. Once the landcover had been allowed to degrade to the level of 

the first quintile, the greenness quality never recovered. On this same note, about 5% of lands 

never change, remaining at the same level of greenness today as they were 30 years ago.  

These findings should offer some good news to regional natural resource managers, who can 

know that their efforts reduce forest resource extraction in areas of intact forest cover, 

especially the micro-watershed recharge areas, are seeing positive results. Additionally, 

degraded lands of continually low amounts of vegetation, may offer an opportunity for their 

rehabilitation.  
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CHAPTER 3: ADVANCES IN MAPPING COFFEE PLANTATIONS: 

THE CASE OF THE TRIFINIO REGION, CENTRAL AMERICA. 

 

Abstract 

Coffee (Coffea arabica) is one of the most important agricultural crops grown in 

tropical regions, with added implications for local ecosystems, biodiversity, and water 

management. Determining the location and extent of coffee plantations, especially those using 

shade production methods is therefore an important endeavor. However, mapping coffee 

agroforestry systems using remotely sensed images is challenging because of the similarity 

between the spectral characteristics of coffee, and native tropical leaves and woodland 

structures. This research applies texture analysis to Worldview 2, Landsat 8, Sentinel 1 & 2 

images, assessing the accuracy of classification in the identification of coffee. We compared 

combinations of image bands and textures and the latter were not found to be significant 

predictors. Neural network, Naïve Bayes, K-Nearest Neighbor, Maximum Likelihood, 

Random Forest, and Support Vector Machines algorithms were applied in R with RStoolbox 

(Leutner & Horning, 2017) to identify pasture, forest, coffee classes of shade, sun, adult, and 

immature. Overall coffee map accuracy was analyzed with confusion matrices and kappa 

indices. Results indicated that a maximum of 85-87% accuracy is achievable with Landsat 

data alone; a hybrid optical, infrared, vegetation index with effective incidence angle 

predictors was shown to be effective; however, no increased accuracy over methods used by 

previous studies was attained. 

Keywords: Coffee, machine-learning, remote sensing, shade, sun, texture, Trifinio 

 

Resumen 

El café (Coffea arabica) es uno de los cultivos agrícolas más importantes que se 

cultivan en regiones tropicales, pero también tiene implicaciones para el ecosistema local y la 

gestión del agua. La determinación de la ubicación y extensión de las plantaciones de café es, 

por lo tanto, un esfuerzo importante. Sin embargo, mapear las plantaciones de café usando 

imágenes obtenidas por teledetección es un desafío debido a la similitud entre las 

características espectrales del café y los árboles tropicales. Esta investigación se aplica al 
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análisis de textura de imágenes de Worldview 2, Landsat 8, Sentinel 1 y 2, evaluando la 

precisión de la clasificación en la identificación del café. Comparamos combinaciones de 

bandas de imagen y texturas y las últimas no se encontraron como predictores significativos. 

Los algoritmos de la red neuronal, Naïve Bayes, K-Nearest Neighbour, Maximum Likelihood, 

Random Forests y Support Vector Machines se aplicaron con R para identificar pasto, bosque 

y café, las clasesde sombra, sol, adulto e inmaduro. La precisión general del mapa del café fue 

analizado con matrices de confusión. Los resultados comentaron que casi el 93 por ciento de 

la precisión del mapeo es posible con un clasificador de redes neuronales y datos de Landsat 8 

solo; se demostró que es eficaz un índice híbrido óptico, infrarrojo, de vegetación con 

predictores de ángulo de incidencia efectivo. Se alcanzó una mayor precisión sobre los 

métodos en estudios previos. 

Palabras claves: Aprendizaje automático, teledetección, café con sombra, café en plein 

sol, textura, Trifinio 

 

Introduction 

The role of coffee in tropical land cover change 

Coffee, a cash crop, is the most important agricultural commodity in the world and is 

only second to oil in terms of trade value (Cordero-Sancho and Sader (2007); Donald, 2004), 

it has played a complex role in land use-led land cover changes in rural subsistence farming in 

neotropical dry forest regions (McCook, 2017). While contributing considerably to regional 

deforestation growth with a nearly three-fold contribution from land use expansion 

(Schlesinger et al, 2017), its production types (full sun, and under shade) have made positive 

contributions to ecological services (Blackman et al, 2012). Shade coffee is involved with 

climate and nutrient regulation, controlling erosion, insect abundance, and providing habitat 

support for bird species involved in seed disbursals and pollinators (Jezeer et al, 2017; Jha et 

al, 2014; Classen A et al. (2014); Schmitt-Harsh et al (2013); Richards and Mendez, 2013; 

Blackman et al (2012); Rice, 2010; and Greenberg et al., 1997). Sun coffee contributes to 

some of these benefits creating higher yield due to higher planting density permitted with 

greater inputs (labor, irrigation, and chemicals) and shorter time to market (Donald, 2004); 

though, shaded coffee is much more effective (Rice, 2010). In El Salvador, despite the higher 
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yield opportunity, the great majority of farms (95%) pursue shade coffee production 

(Blackman et al, 2012). Understanding these benefits can lead to good management decisions 

and subsequently to improved crop production, employment, and sustainability. 

The drivers of coffee land use changes are complicated and vary in that existing coffee 

development areas are necessarily not the same as those traditionally found near undeveloped 

native forests (Blackman et al, 2012) where development is usually related to flat, fertile land, 

near to roads and markets that could increase profits due to decrease access costs 

(Kleinschroth and Healey, 2017; Geist & Lambin, 2002; Geist & Lambin, 2001). It depends 

on the existing dominant cleared land use, posits Blackman et al (2012). In their modeled 

examination of El Salvador near two urban and one rural settings from 1990-2010, they found 

that proximity to urban areas did not explain clearing. They did find, however, in the rural 

setting that traditional drivers (subsistence agriculture, pasture, and livestock production 

provide greater returns) do drive coffee plot forest-clearings. Monitoring of these land use 

changes over time, especially those that propel coffee agroforestry has proven difficult, 

especially in areas where today there is currently little outright deforestation, and populations 

are being led to coexist in sustainable fashion, develop areas to protect biodiverse plant and 

animal species, boost ecotouristic value, and maintain water supplies.  

 In one such location, the Trifinio Region, an important transboundary region at the 

join of the borders of Guatemala, Honduras, and El Salvador, while considerable effort has 

been expended on the protection of coffee cropping, there is still limited knowledge of the 

extent, location, and importance of coffee land use. At its conception, the Trifinio Plan had 

been approved by its three participating nations (in 1987 in the aftermath of Central American 

civil wars) for the purposes of common forest and watershed protection, and eradication of 

poverty (Artiga, 2003). The region had been especially impacted by soil erosion due to high-

elevation deforestation, due to planting of coffee on steep slopes. The initial Plan protected 

coffee crops and high-elevation biodiverse species. The follow-on “Trifinio 2” Plan reforested 

4,500 ha to reduce the potential for flooding and spearheaded creation of a tri-national 

environmental mindset to protect the three main regional watersheds (Motagua, Ulua, and 

Lempa). Together the Plans envision sustainable coexistence, ecotourism, considerable 

protected forest and marine areas, as well as protected watersheds for millions downstream 
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which included mapping of water resources and monitoring of agricultural wastewater and 

runoff from coffee-growing regions with European assistance. 

 In one-such activity, a German Society for International Cooperation (GIZ)-funded 

project (ICP, 2015) “Tropical forest protection and watershed management in the Trifinio 

Region” worked directly with nearly 7000 coffee farming families, developing knowledge 

about how to adapt to regional water conservation needs to to permit increased aquifer 

recharge in sub-watersheds, as well as to protect and expand coffee agroforestry without 

compromising objectives. The forests and water program efforts also focused on improving 

understanding of the roles of women on the family farm, who not only rear and care for kids, 

but take care of the house, farm, and tend their cash (coffee) crops and subsistence 

production.  

 The root of the challenge (for the rural farmer in Trifinio Region to produce more 

efficiently, yet restrict activities to protect water supplies) is in its linkage to higher value 

agroforestry crops (particularly coffee) that optimally grow at specific elevation ranges, often 

overlapping with key micro-watershed recharge areas. Because mapping of coffee growing 

areas did not exist, educating coffee farmers required the creation of vinyl high-resolution 

Ikonos image maps that could be shared with farmers in their fields to explain the water 

resource protection situation at a scale more easily understood (Ingrid Hausinger, personal 

communication).  

 The only recent maps of coffee growing in the Trifinio Region stem from the national 

forest classifications of Rapid Eye 5-meter high-resolution images. The Ministries of 

Environment and Natural Resources (MARN) of Honduras, Guatemala, and El Salvador have 

each used these data to create recent mapped assessments of land cover and land use change 

(LCLUC). These maps include forest and crop types, some including shade coffee, suitable 

for developing Reference Emissions Levels (REL) that comply with national reporting 

requirements of signatories to the United Nations Framework Convention on Climate Change 

(UNFCCC) Paris Agreement.  

 MARN/El Salvador contracted a team to produce a REL map using these Rapid eye 

data (Center for Tropical Agricultural Research and Higher Education (CATIE), 2017). 

Making the map involved the mosaicking and classification of 11 overlapping least-cloud 

mosaics of Rapid Eye data to produce a pan-El Salvador forest cover map of 2015-2016, part 
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of which includes the Trifinio Region; a similar map was produced by using 54 classified 

Rapid Eye images from 2011. 

 The Trifinio Plans never envisioned a regional monitoring and mapping capability, 

though regional LCLUC maps (that include coffee as a land use class) were produced 

(CATHALAC, 2011) for natural resource planning and management. Through a framework 

agreement between the Trinational Territorial Information Systems Network (RITT), CTPT, 

local communities, university, and nonprofit agencies, those forest cover maps and additional 

data on agricultural and agroforestry stakeholders and natural resources management 

indicators have recently become available for download via the Trifinio Region information 

system and map server (Sistema de Información Territorial Trinacional or SINTET). 

 

Coffee’s role in the local economy 

Coffee has been a feature of the Central American economy and farming families 

nearly three hundred years. Coffee (originally from Ethiopia) arrived in Central America 

almost 300 years ago (McCook, 2017). It has been used as currency. National governments 

have used it as an incentive for aid. In Honduras, the government linked it to county road-

building money (Ian Cherrett personal communication). It is a choice crop of poorer farmers 

to be able to put more than corn on the table, to gain cash to expand land holdings (Fischer 

and Victor, 2014).  

 With globalization and increasing demand for coffee, farmers in Brazil and Vietnam 

increased production so well that in 1999-2002 supply exceeded demand causing the price to 

plummet causing the widely known “Coffee Crisis” that occurred across Central America and 

many farmers lost employment and went bankrupt. Since then, international prices have 

stabilized somewhat but started again to slip in 2010 and haven’t yet recovered 

(CEDICAFE/ANACAFE, 2017). Locally during the period since the crisis, more than 50,000 

new growers were added in Guatemala alone (Fischer and Victor, 2014). To complicate 

matters, the 2012 coffee rust (known locally as “roya”) epidemic (devastated yields across the 

entire region) and is still impacting the area. In fact, today, coffee rust is impacting more than 

31% of Trifinio Region’s farms at a rate more than twice the national average 

(CEDICAFE/ANACAFE, 2017), while regionally, Honduras, El Salvador, and Nicaragua 

have extremely low rates of infestation. There are recent reports and commentary questioning 
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the sustainability of coffee in Guatemala with the rust, low prices, and high production costs 

(Bolanos, 2017). Development agencies working in the Trifinio region, on the other hand, 

report that coffee is the most important crop economically (Stiftung, 2013).  

 Recent statistics from Guatemala say that coffee production impacts 2.5 million 

people in Guatemala (CABI, 2017); that number could be higher in El Salvador, but the 

quantity of land involved in coffee production in the El Salvador portion of Trifinio Region is 

but a tiny fraction of that in Guatemala as El Salvador’s land within the region is not 

optimally-located for coffee. In Honduras, there is an enormous amount of coffee in 

production now because the physical environment is optimal, there are government incentives 

for production, and though it is widely thought that the country has not suffered the recent 

coffee rust infestation as badly as its neighbors because they planted rust-resistant varieties, 

there are other opinions (Avelino, 2006). 

 

Experience Researching Coffee 

In Trifinio, two types of coffee are popular, sun and shade coffee (varieties of Coffea 

arabica); while these can be found at various elevations, coffees in shade are more likely 

found on the slopes of Trifinio’s mountains near Copan, Honduras, for example, at elevations 

from 900-1300 meters (Smith, 2010). Sun coffee are most easily found on high-resolution 

satellite imagery when only 1-2 years of age, because the rows flow like pieces of textured 

ribbons. After two years of age and the bushes have grown together (visually) finding them is 

not so easily done with solely a single image, and Google Earth is a great tool to zoom in to 

find them (Figure 3.1). 
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Figure 3.1. Sun coffee (on a hill top near Esquipulas, Guatemala) is easily spotted 

because of their planting rows. Usually, they follow a dirt path which is never straight. 

 

As noted in Figure 3.1, sun coffee cultivated by small producers is usually only visible 

from very close inspection with high-resolution imaging because the planting rows run helter-

skelter and the color is spectrally confused with local forests (Cordero-Sancho and Sader, 

2007; Ortega-Huerta et al., 2012; Gomez et al., 2010), though there are differences in 

textures. Shade coffee is not possible to map with coarse 30-meter Landsat 8 data, because it 

is grown underneath the forest canopy, and gaps in the canopy can only be seen with 

difficulty using very high-resolution data (e.g. two-meter Worldview 2 (LeLong et al, 2014) 

and/or Quickbird (Gomez et al, 2010) (Figure 3.2)). In Costa Rica, the shading component of 

coffee production is a native tree locally called “poro”. The branches of the poro are clipped 

before the dry season, permitting maximum sun and temperature for setting fruit. After three 

months, the branches grow back, and the dry season is over. In the Trifinio Region, farmers 

use native vegetation for shading, thus to a satellite imaging investigator it is almost possible 

to see the rows of coffee beneath the trees. Using Worldview 2 data, the rows of plantings do 

show in gaps and on the edges of the fields of trees. Within the canopy gaps, rows of planting 

and/or ploughing are visible (Figure 3.2).  
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Figure 3.2. Shade coffee can be seen in rows of through the canopy gaps. 

 

Texture measurement tools have been used for almost 45 years to evaluate changes at 

the earth’s surface for land cover mapping using satellite images to identify and measure 

production of and impacts to crops (Karakizi et al, 2016; Tang et al, 2015; Gomez et al, 

2010), to assess urban zones (Zhang et al, , 2017), to estimate snowcover (Chen & E, 2007), 

to evaluate ice surfaces (Soh & Tsatsoulis, 1999), to assess forest structures (Ozdemir and 

Karnieli, 2011) and differences between arable and forest lands (Zhang et al, 2017; and 

Herold et al, 2004). In a study like this one, Chuang and Shiu (2016) analyzed Worldview 2 

data with image pixels and object classification with significant field work using 21  different 

grey level co-occurrence matrix (GLCM) texture layers (Haralick, 1973) from Environment 

for Visualizing Images (ENVI) and classified them using machine learning techniques 

(random forest and support vector machine) to examine new possibilities for identifying and 

measuring very large industrial tea crops in fields of orderly rows in East Asia.  

 Though used to learn about images and also in raster format, GLCM measures are not 

images themselves (Hall-Beyer, 2007); they are raster results of convolution kernels that pass 

throughout an image. Applied to remotely sensed spectral data, the resulting GLCM layers 

help to predict the layout of landscape features (Hall-Beyer, 2017).  
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 The sequences of texture differences found in landscapes of a remotely-sensed image 

range sometimes follow patterns that are naturally-derived or human-induced (for example, a 

field intermittently used for crops, burned, plowed, planted, and harvested may be 

characterized with texture measures). Under production, some fields are in recognizable rows, 

while more mature plants will have grown together, and very immature plants appear as a set 

of organized dots against a background of bare soil.  

 Using textures to evaluate coffee-growing in Trifinio with optical Google Earth 

images would only be possible when there are no clouds. In Trifinio, at high elevations, 

clouds are prevalent all year Thus, characterizing coffee with optical satellite images is only 

feasible on a clear day, and in the tropics, that is largely only possible in the dry season in 

Central America. Radio Detection and Ranging (RADAR) satellite images on the other hand 

can be used at any time of day or during most weather events. However, they present their 

own set of challenges for processing and understanding the signal. Historically, these images 

have been very expensive and difficult to process until recently.  

 The free proliferation of tools and images from the European Space Agency’s (ESA) 

Sentinel constellation of satellites, and the distribution by ESA and the National Aeronautics 

and Space Administration (NASA) of Sentinel 1A and 1B, Synthetic Aperture Radars (SAR) 

and 2A (a Multispectral Imager with optical and infrared channels), is significantly helping to 

make remote imaging more accessible (ESA, 2010).  

 Several remotely-sensed investigations in coffee cropping regions, some in Central 

America, have tried to improve location of shade coffee, and assess regional coffee 

production and cropping challenges (Table 3.1). 
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Table 3.1. Some recent experience in coffee crop imaging in Central America 

Classification 

Approach 

Sensor Classification Method Authors 

Unsupervised Landsat 5/7; SPOT; 

MASTER & 

GeoEye-1 

Unknown; ISODATA; 

Gaussian Mixture 

Rueda et al., 2014; 

Cruz-Bello et al., 

2011; Martignoni, 

2011 

Unsupervised ALOS PALSAR1 & 

Landsat TM Combo 

ISODATA Montenegro and 

Atwood, 2010 

Supervised Landsat 5; SPOT; 

MASTER & 

GeoEye-1; Landsat 

ETM+ 

Maximum Likelihood 

(ML); ML; ML, 

Support Vector 

Machine (SVM); ML 

Schmitt-Harsh, 

2013; Martinez-

Verduzco et al., 

2012; Martignoni, 

2011; Cordero-

Sancho and Sader, 

2007 

Supervised HyMap 2, Landsat 

5/7 

Random Forest, 

Decision Trees 

Fagan et al., 2015 

Supervised Landsat 5 with 

thermal channel 

Linear Spectral 

Mixture Analysis 

Schmitt-Harsh et 

al., 2013 

 

Accuracy of identification and classification, in these studies, was clearly an issue. 

None of the supervised classification studies surveyed surpassed overall accuracy of 86%. 

Cruz-Bello et al (2011) reported a range of accuracy of 94-97% using unsupervised 

classification with visual interpretation of panchromatic photos. To improve accuracy, 

Cordero-Sancho and Sader (2007) recommended using a subset of optical channels, combined 

with a vegetation index and a layer describing incident angle of solar energy. None of these 

studies used the new sensors, yet some of these have applied machine-learning classification 

algorithms.  

Machine learning describes an applied set of instructions and improved results based 

on knowledge gains from repeated trials. The algorithms behind the instructions are not new. 

Randomforests (Breiman, 2001), has been around for two decades, for example; however, the 

development of these tools recently for “data mining” for the business, industrial, and thus 

image processing world is flourishing (Danilla, 2017) Applications languages, such as R (R 

Core Team, 2017) and Python (van Rossum, 2007) are advancing, as packages of instructions, 

such as “scikit-learn” (Pedregosa, 2011), “caret” (Kuhn et al, 2017), and others, learn and use 

other’s collective experiences for processing of remotely-sensed images. 
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 Some remotely sensed studies have used Google Earth images to help validate remote 

places that experience severe cloud cover (Laso-Bayas et al, 2017). These images can be very 

useful especially in developing nations, despite reports of generally low accuracy among 

these, Google Maps, and Bing (See et al, 2017). They can be problematic, because one often 

hasn’t very clear understanding of the date of acquisition.  

 Identification of remotely sensed features is carried out differently depending on 

image type and resolution. Each type is sensitive to different surfaces. Passive or optical 

sensors receive solar energy reflected off the surface of the Earth, whereas radar sensors that 

have large solar arrays to generate great power to actively send a signal to the Earth and 

collect billions of backscattered pulses of echoes. In images of 0.5-2m spatial resolution 

optical images, especially Worldview 2 data, many features can be readily identified by eye. 

On the other hand, some of the same features in 10-meter resolution Sentinel 2 and Landsat 8 

images can be inferred by their shape, texture, and colors in red, green, and blue (RGB) 

channel presentations.  

 Active sensor backscatter in radar images, from nominally 10-meter resolution 

Sentinel 1A (Sentinel 1), SAR a C-band sensor are readily available for study of Trifinio 

Region’s forest and agricultural lands. Other wavelengths of radar are available for the region, 

but at a high cost. The Japanese Advanced Land Observing Satellite (ALOS) Phased Array 

type L-band Synthetic Aperture Radar (PALSAR) 2, a L-band satellite-based sensor was 

launched in 2014. Its 23.4 cm wavelength, longer than Sentinel’s 5.6 cm, is more useful to 

view tree structure deeper in the canopy than Sentinel. Sentinel can see objects as small as its 

wavelength, but is limited in terms of canopy penetration. The signal is responsive to textures, 

soil moisture, and look angle. High decibel backscatter is indicative of solid, manmade 

structures. Forest cover is usually bright as the signal bounces off all the branches in the upper 

canopy (known as ‘volume scattering’), and relatively smooth water is dark because the signal 

bounces away and does not backscatter to the sensor. An interest of this study is that sun and 

shade will be detectable with C-band radar which is available almost every two weeks for free 

to be able to provide a monitoring capability not feasible previously. 
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Objectives 

Data from Landsat 8, Sentinel 1, Sentinel 2, and Worldview 2 have only become 

available in the last few years, and due to their advanced specifications, it is important to test 

and analyze their use for neotropical monitoring. For example, these data may afford new 

opportunities for monitoring sun and shade coffee. In addition, it may be possible to use 

common texture measures combined with machine learning classifiers help us identify shade 

and sun coffees using these data. Specifically, my goals are three-fold, 1) to explore the 

differences between three relatively new sensors to identify coffee; 2) to test whether images 

of small producer sun, shade, adult and immature coffee production activities will exhibit 

differences in textures that can be classified and mapped; and 3) to compare the accuracy of 

five machine-learning classifiers to identify coffee with Landsat 8, Sentinel 1, Sentinel 2, and 

Worldview 2 satellite image data. 

 

Methods 

Study Region 

The study takes place in the Trifinio Region, a 7400 km2 transboundary region at the 

intersection of the borders of Guatemala, Honduras, and El Salvador. The local population of 

more than 600,000 is mostly rural, though the region has several large towns and cities. 

Agriculture is very important in the region; most land cover is impacted by farming and 

livestock production. The region has numerous protected areas (PAs) of various types and 

stages of growth (Munoz et al, in prep). One of these PAs, the Montecristo Trifinio Park, an 

important cloud forest of Central America, spans the tri-national borders of the participating 

nations. Extending outward from the PA boundaries, the rate of deforestation has varied due 

to coffee agroforestry development that competes with forest and biodiversity conservation 

(Schlesinger et al, 2017).  

 

Data Availability and Acquisition 

Trifinio experiences extended periods of cloud cover; this has prevented most viewing of 

the region by optical satellite imagery. There are only a few mostly optical multispectral 

Landsat satellite images of suitable resolution that are available each year with diminished 

cloud cover and only for the dry season (January-March). In most years, it takes an effort with 
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several images to mosaic together enough pixels to see Trifinio. A subset of the Trifinio 

Region was identified to carry out this study. The subset is delineated by the following World 

Geodetic Survey 1984 Datum coordinates:  

 

Upper left Corner Longitude = -89.445445 

Upper left Corner Latitude = 14.683407 

Lower right Corner Longitude = 14.256615 

Lower right Corner Latitude = -89.445445 

 

Sentinel 1 synthetic aperture radar (SAR) images from the European Space Agency have been 

available for the Trifinio region in a limited fashion since mid-2014. SAR data can be used to 

collect data regardless of cloud cover. These data currently provide free 10m images every 

two weeks. Access to the Sentinel data is open; tutorials, software, training materials, and a 

user forum is free for all users (ESA, 2015).  

 SAR data differ from optical data in that their signal is actively transmitted and 

received in differing polarizations, horizontal, vertical, or a combination of the two; the 

optical signal is only passively received by a sensor passing by at the time of reflectance. 

Because the signal is not dependent on solar energy, it can be collected regardless of weather 

conditions or time of day; it is thus well suited for tropical research. The limitations of SAR 

include low positional accuracy. The Sentinel 1A data used in the current study is a C-band 

sensor; thus, its radar penetrates the vegetated canopy less than Advanced Land Observing 

Satellite (ALOS) PALSAR Phased Array type L-band Synthetic Aperture Radar (PALSAR) 

’s L-band sensor. As a result, the reflected echoes interact more with the upper reaches of the 

canopy than the main stem of a tree. Because this C-band sensor has lower frequency, it has 

markedly reduced spatial accuracy (10m as opposed to a maximum of 3m of ALOS 2). But 

the Sentinel 1 data, tools, and methods for its processing are freely accessible, and available 

almost everywhere about every 2 weeks in the neotropics.  

In this study, we used a single image from Landsat 8 and Sentinel 2, two adjacent 

images (in space and time) from Sentinel 1A, and eight adjacent images of Worldview 2 

(Table 3.3) that make up the study subset (Figure 3.3).  
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Table 3.2. Image Dates from Sentinel 1 and 2, and Landsat 8 

were acquired as near to each other in time possible. 

Satellite Date Scene Identification 

Landsat 

8 
4/9/2016 LC80190502016100LGN00 

Sentinel 

1A 
4/6/2016 

S1A_IW_GRDH_1SSV_20160406T114536_ 

20160406T114601_010700_00FF50_5741.SAFE 

Sentinel 

1A 
4/6/2016 

S1A_IW_GRDH_1SSV_20160406T114601_ 

20160406T114618_010700_00FF50_8D23.SAFE 

Sentinel 

2A 
4/10/2016 

S2A_OPER_PRD_MSIL1C_PDMC_20160412T201139 

_R040_V20160410T163251_20160410T163251 

 

Table 3.3. Eight Worldview 2 images were used in the study. 

Date Worldview 2 Identifier Resolution 

04/13/14 14apr13164944-m2as-500111330010_06_p005 2 meters 

04/13/14 14apr13164945-m2as-500111330010_06_p006 2 meters 

04/13/14 14apr13164923-m2as-500111330010_06_p013 2 meters 

04/13/14 14apr13164924-m2as-500111330010_06_p014 2 meters 

04/13/14 14apr13164926-m2as-500111330010_06_p015 2 meters 

04/13/14 14apr13164927-m2as-500111330010_06_p016 2 meters 

04/13/14 14apr13164942-m2as-500111330010_06_p003 2 meters 

04/13/14 14apr13164943-m2as-500111330010_06_p004 2 meters 

 

Acquisition of Landsat 8 occurred via the USGS Earth Explorer web portal, while 

download of Sentinel 1 data was facilitated by the Alaska Satellite Facility (NASA ASF). 

Sentinel 2 data were acquired and downloaded from European Space Agency (ESA). A full 

set of Worldview 2 data were available for the Trifinio Region through a partnership with US 

Fish & Wildlife. There is a two-year gap between the high and low-resolution images, 

therefore, the high-resolution images were used for identification of classes and training site 

facilitation.  
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Figure 3.3 Trifinio Region Study Area (Central America) 

 

Data Preprocessing 

Satellite Data Preprocessing 

Preprocessing of the optical data in units of proportional surface reflectance was 

accommodated by Clark Labs’ TerrSet (Eastman, 1989); Landsat Climate Data Record 

imaging was accessed for Landsat 8 surface reflectance data. Sentinel Application Platform 

(SNAP) (ESA Sentinel Application Platform v2.0.2, 2017) was used to process radar images. 

Othocorrection of optical imagery was handled by the image vendors. The Worldview 2 data 

are orthocorrected with the Circular Error 90 Digital Elevation Model (CE90 DEM), Landsat 

data were orthorectified with ground control points to a level of Level 1 Terrain (L1T) 

correction. The L1T level of processing corrects pixels for the effect of terrain displacement 

caused by the sensing of the relief before passing by it. SNAP was used to correct Sentinel 1 

data using a 3-arc second automatically downloaded chunk of a Shuttle Radar Topography 

Mission (SRTM) digital elevation model through a SNAP process called Range Doppler 

Terrain Correction. Range Doppler Terrain Correction orthocorrects each image pixel to the 

closest SRTM pixel, at the same time as correcting for the impact of the Doppler effect in the 

range direction (the direction of the satellite).  
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 The Sentinel 1 SAR data used were of the Ground Range Detected (GRD) variety. 

These GRD data arrive preprocessed by ESA to remove the complex (“phase”) data 

associated with each pixel, and they require fewer steps, but they have less data associated 

with them are less useful for certain applications. We applied precise orbital data, radiometric 

calibration, and speckle-filtering, followed by range doppler terrain correction. Application of 

precise orbital data permits correction of orbital offsets and degradation. We calibrated the 

image from raw pulses to units of backscatter in sigma0, sometimes called “sigma nought”. 

Once calibrated, an image can be compared with other calibrated images regardless of 

incidence angles or brightness levels.  

 Speckle filtering reduces the impacts of the constructive and destructive interference 

inherent in radar images. These ‘speckle’ pulses result from the effect of many backscattering 

elements. The effect or impact of speckle within an image can either be reduced or enhanced 

by passing processing windows of known dimensions over the entire image and performing 

the same filter algorithm. This can occur across all pixels, or adaptively to mostly carry out 

one task on pixels of similar slope, for example.  

 

SAR Filter Evaluation 

Ozdarici and Akeyurek (2010) recommended an evaluation of differences between 

means and standard deviations in pre-filtered and post-filtered SAR data to determine the best 

type and dimensions of filter to reduce image speckle. The objective with speckle filtering is 

to generally reduce the backscatter noise while maintaining a high correlation between the 

original and filtered SAR image. These two statistics are used to derive two measures called 

Quality and Equivalent Number of Looks (ENL). If edges are a necessary component of the 

landscape, adaptive filters are designed to reduce speckle but preserve edges. Previous work 

indicates how to determine the optimal size of filter to use in processing various datasets 

(Ozdarici and Akeyurek (2010); Anys & He, 1995). We tried 3x3, 5x5, 7x7, and 9x9 sized 

filters of 10 different varieties to evaluate the optimal filter type and size for delineating 

coffee plantations from other land use and land cover types (Table A.2), and ultimately chose 

a Lee 3x3 filter.  
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Topographic Effects 

Terrain flattening is recommended for applications involving SAR image 

classification. Flattening can eliminate the impact of topography on SAR backscatter. SAR 

backscatter variation is manifested by either of two SAR geometric viewing-related issues: 

foreshortening (when the angle of incidence is not 90 degrees) and layover (when the top of a 

slope is nearer to the sensor platform than the bottom and the signal returns more quickly). 

Range Doppler Terrain Correction was performed in the Sentinel Application (SNAP) 

software.  

 

Clouds and Shadows 

We masked clouds and cloud shadows in the Landsat 8 and WorldView data prior to 

image analysis. In Landsat images, we used the Fmask layer (Zhu & Woodcock, 2012) to 

mask out the clouds.  

 

Image Segmentation 

Traditionally practiced, remotely-sensed image analysis attempts to categorize 

landscape feature knowledge and classify images using supervised or unsupervised grouping 

of similar pixel values in spectral space, separated using knowledge categories. Geospatial 

object-based image analysis similarly uses ‘rule sets’ to separate similar pixels by their 

knowledge categories of shape, length, pattern, texture, and spectral qualities (Whiteside & 

Bartolo, 2014; Blaschke, 2010) (into vector objects or segments – a process known as 

“segmentation”). All tiles of the Worldview 2 images (Table 3.3) were segmented into vector 

objects, called ‘segments’ using TerrSet v. 18.31 to ultimately create raster and vector 

shapefiles that could be used as training sites for both object-driven and image-based 

classification methods. TerrSet’s segmentation method uses a watershed approach. We used a 

3x3 window with a similarity tolerance of 50, and equal weights for the full set of input 

bands, mean, and variance factors, capturing 20 classes of objects (Table A.1).  
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Data Analysis 

Mapping Vegetation 

Four main types of coffee exist in the Trifinio Region, including immature coffee with 

low canopy cover, mature coffee (bushes are darker and taller than others and also in rows, 

but more dispersed than immature plants, ‘sun coffee’ of various ages grown in full sun, and 

‘shade coffee’ grown next to or under other tree species. Farmers often chop the upper 

branches of the shade components of coffee growing in shadows in the beginning of the dry 

season and then this growth returns with the onset of rains at the start of the rainy period. 

 Some kinds of trees in high-resolution images are more obviously identified than 

others. The crowns of certain species of coniferous trees are pointy and easier to detect than 

some, and their degree of reflectance is less than broadleaved varieties in the NIR band, but in 

the dry season, when some leaves are off, and others are on, we decided not to try to 

determine what was a tree. All likely forested objects not identified as shrubs, sun or shade 

coffee bushes, or large tree crowns were assigned to the forest class. In this study, large single 

tree crowns were often identified as the only object of a segment. These usually occurred at 

the edges of coffee fields, as these large canopy trees are mostly outside of a field or in a 

pasture. All single tree crowns were reclassified to the forest class. Shrubs are common, but 

individual shrubs can only be identified on high- resolution images, probably because they 

only begin to become identifiable at those scales. The shrub class exists on the El Salvador 

forest cover map, but not on the maps of Guatemala nor Honduras. Shrubs are identifiable by 

their stature, dispersed locations (not in rows), often at the edge of or near the edge of fields 

or fallow. One of the problems with the class is that height (which sometimes determines the 

difference between a shrub and a tree) is not easily distinguishable in passive imagery. We 

determined shrubs from forest by lack of associated shadow, as trees invariably have 

shadows. Aside from the various coffee classifications, forest, and shrub classes, all other land 

use and land cover types were unclassified.  

Within the subset area chosen for analysis, differing classes and quantities of 

landcover classes were found depending on the resolution of the data used to evaluate. Image 

segmentation of the Worldview 2 data permitted classification of 20 different classes (Table 

A.1). 
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Of the 20 landcover classes mapped across the images used in the study, only five 

classes (shade, sun, adult, and immature coffees, as well as forest/bush cover) were critical to 

the first part of this work, thus all statistical analysis for the first question were related to 

determining differences in the perception of coffee by the new sensors. These five classes 

were compared using logistic regression in R to the seven TerrSet texture types and four grey-

level co-occurrence matrix measures involving four different satellite sensors (Table 3.2).  

 

Training Sites & Validation Maps 

We generated training sites to conduct supervised classification of the imagery. Some 

training sites were identified in existing maps acquired from the three participating countries 

of the Trifinio Region (REDD/CCAD-GIZ, 2014; Jimenez, 2014; and Catalan et al, 2015). 

Each of these maps were independently created using five-meter Rapid Eye optical satellite 

data. The completed legend has the classes of: Pasture, Coffee, Forest, Agriculture, Bushes, 

Fruit, Urban, Water, Unclassified, and NoData.  

 Validation of the study region map was carried out using Google Earth Pro (version 

7.3.0.3832, Google, 2017) with historical imagery data activated. Three polygons of 

specifically coffee agroforestry sites were randomly selected to be about 150 hectares each, 

and located in one of the countries. A random sample set of 100 locations were identified for 

each polygon, and each sample was identified visually as to whether it was shade, sun, or not 

coffee (an average of 68% of the combined national map polygons were identified as either 

shade or sun coffee). Additional to the Google Earth mapping activity, locational data in 

geographic coordinates were available for about 7,000 coffee and agroforestry cooperative 

members and their farm locations were downloaded from the Trifinio Region SINTET 

Geoserver in July 2017. These agroforestry participants were mapped and concentrated within 

the Trifinio Region’s 15 key sub-watersheds. A subset of these agroforestry farm locating 

polygons (87) overlapped with our study region.  

We created a map of sun and shade coffees to be able to compare the usefulness of the 

optical and radar images. We used eight scenes of WV2 data at 2m resolution in the middle of 

the Trifinio Region (boxes in center of Figure 3.3) centered on a majority number of coffee 

polygons identified by the combined 5m resolution mapping done by the three country 

environmental agencies. The same areas had been mapped with Landsat 8 at 30m and by 
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Sentinel 1A SAR and Sentinel 2A Multi-Spectral optical data at 10m-resolution each. A tile 

structure was created to accommodate the combined images. While the 10m medium 

resolution data could use the entire area, the high-resolution data needed to be mapped 

separately because collectively these were too large for any of the software and hardware 

processing tools available. The sun and shade class polygons mapped from Worldview 2 were 

combined in a single map for the study area and these points were validated using random 

samples and the Google Earth procedure described above.  

 

Vegetation Indices & Others 

We calculated the normalized difference vegetation index (NDVI; Rouse et al., 1973) 

to characterize differences between pairs of image bands in remote sensing image processing. 

Cordero-Sancho and Sader (2007) recommended that adding NDVI for classification of 

coffee was useful to improve classification accuracy (Equation 1) when combined with a 

subset of Landsat Thematic Mapper (TM) bands and a layer characterizing the effective 

incidence angle (EIA) of reflected solar energy (Holben and Justice, 1980). In this work we 

chose Landsat 8 bands comparable to those used on Landsat 5 in the original research (Barsi 

et al. 2014). The incidence angle is the difference between the solar declination angle and the 

solar normal, and can be calculated from a combination of trigonometry and a digital 

elevation model, such as Shuttle RADAR Topography Mission (SRTM) data (Farr et al, 

2007). The new Angle Coefficient file that comes with the Landsat Collection 1 Landsat data 

from USGS contain angular data to calculate solar viewing angles on a pixel by pixel basis as 

opposed to only using the scene center Sun Elevation and Sun Azimuth reported in the 

Metadata Library (MTL) file, but the equations and tools for the new Solar and View Angle 

Generation Algorithm have not yet been made available (USGS, 2017).  

 

cos (𝑖) = cos (𝑆_𝑧)  cos (𝛽) + sin (𝑆_𝑧)(sin(𝛽) cos(𝑎_𝑧 − 𝑎𝑠𝑝𝑒𝑐𝑡))   (Equation 3.1) 

 

where 

  Sz = solar zenith angle (o) 

  β = slope (o) 

Az = solar azimuth angle (o) 

 

                                                                          (Cordero-Sancho and Sader (2007) 
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Slope and Aspect were calculated in degrees. The Solar Zenith Angle is equivalent to the 

difference between 90 degrees and the Solar Elevation angle in degrees. The Solar Azimuth 

Angle (also in degrees) is equivalent to the SUN_AZIMUTH parameter in the Landsat MTL 

file. 

 

Textures 

Texture measures used in this study were found in standard image processing software 

(e.g. ENVI and TerrSet). Texture measures are comprised of four groups, geometric, 

statistical, model-based, and signal-related (Ojala and Pietikainen, 2002). Geometric and 

statistical measures are commonly used. Hall-Beyer (2017) reported in her GLCM Tutorial 

the importance of an assessing band to band correlation by image type to ascertain which 

texture measures are most independent and not correlated with another to be able to reduce 

the quantity of bands, amount of work, and increase the value of classification outputs.  

 A total of 15 different types of texture measures (seven texture patterns from TerrSet 

and eight GLCMs from ENVI) were compared for each band of every input image. These 

included: Relative Richness, Fragmentation Index, Diversity, Dominance Index, Number of 

different classes (NDC), Binary comparison matrix (BCM), and Center versus Neighbors 

(CVN) (consult TerrSet for specific information on the textural variability measure 

algorithms) (Eastman, 1989); as well as the GLCM measures mean, variance, homogeneity, 

contrast, dissimilarity, entropy, second moment, and correlation (Harelick, 1973). A 3x3 

window was applied to reduce resolution the least, and consider the size of the coffee plant.  

Visualizations supporting exploratory data analyses (using qqplots, boxplots, and 

histograms), followed by omnibus normality measures (e.g. Lilliefors, Kolmogorov-Smirnov 

(p-value < 2.2e-16)) from the R Analysis of Over-Dispersed Data “aod” package (version 1.3) 

(Lesnoff and Lancelot, 2012) that supported a conclusion that these texture data and mapped 

forest and coffee classifications were not from a normal distribution. Attempts to transform 

these data and reassess normality were undertaken with a randomly stratified sample of nearly 

73,000 forested land cover and coffee land use class values, which were subjected to log, 

square root, and cubic transformations in rigorous in R. The cubic transformation was found 

to impact histogram structure considerably. 
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 A literature review of GLCM texture measures (Hall-Beyer, 2017) recommended the 

inclusion of mean and contrast measures, plus the addition of two or three others and no more 

than that to avoid confusion. An examination of these measures showed that entropy and 

correlation could be useful to pursue. Therefore, these four measures were included in 

subsequent logistic regressions in addition to a set of seven pattern measures from TerrSet to 

assess significant coffee relationships. General Linear Model logistic regressions in R were 

used to assess potential texture relationships with forest and coffee, and several significant 

relationships were noted (Table 3.2), but were invalidated in subsequent testing (with 

Hosmer.test and Wald.test, deviance measure assessment, and relative operating characteristic 

(ROC) estimation in TerrSet).  

 

Data Reduction 

Including the 15 texture layers for each of the 30 bands of spectral and radar 

backscatter data, there were a total of 450 prospective raster predictor variables for use in the 

study’s land cover and land use classifications. Additionally, there are 7 different window 

sizes, 5 different offset levels and 3 offset distances that need to be set when preparing any 

texture layer using TerrSet or ENVI, for a grand total of 47,250 potential classifications to 

carry out our study. Thus, rigorous band selection was carried out using the “cor.test” package 

in R (v.3.3.3) to create correlation matrices and to determine collinearity (Tables A.3, A.4, 

A.5, and A.11). Principal components analysis with Worldview2, Sentinel 2, and Landsat 8 

images in TerrSet reduce inputs to the least quantity of principal components to make the 

research even more efficient (Table A.6); two principal components of Worldview were used 

in each tile to produce training site polygons that were then combined later to develop 

classifications. In the end, with the selection of a single GLCM processing window 

dimension, we had reduced our requirements to 45 different model runs. A literature review 

of texture measures and their applications (Hall-Beyer, 2017; Kailath, 1967) suggested that 

not all texture measures would be useful as some are more correlated with different spectral 

bands than others. Subsequently all 15 original texture measures were regressed (using 

logistic regression in R) against nearly 73,000 stratified random samples of binary 

classifications of the four Worldview 2 coffee and forest classes to seek only those texture 
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measures showing significant relationships (Table 3.1). Four pattern measures from TerrSet 

and four GLCM measures from ENVI were selected for further research (Hall-Beyer, 2017).  

 

Machine Learning Classifier Selection 

Six classifiers were selected to model our training sites (Neural Network (nnet), 

Support Vector Machine (svm), Random Forest (rf), Maximum Likelihood (mlc), Naïve 

Bayes (n_b), and k-Nearest Neighbor (knn)). We selected these classifiers because they each 

accommodate non-parametric data. We used the R programming environment (version 3.3.3, 

2017, “Another Canoe”, R Core Team 2017) for implementing the classifiers. All runs used 

the same set of input parameters, though the classifier mnemonic and input and output files 

needed to be changed for each run. The superclass function is from the RStoolbox (Leutner 

and Horning, 2017), and uses ‘train’ from the caret package (Kuhn et al, 2017). The code is 

parallelized to take advantage of multiple cores. The input files for model runs used the 

TerrSet IDRISI file structure for input and output. These codes can be easily changed to 

accommodate other file systems and structures using existing infrastructure or additional R 

packages (such as the Geospatial Data Abstraction Language package for R, called “Rgdal” 

(Bivand et al, 2017)). 

 

Results 

The key results of this study are that texture variables show statistically significant 

association with shade coffee and forest cover, and that machine learning classifiers can 

produce coffee mapping results that are comparable to those produced in previous research 

efforts. 

 

Logistic regression modeling 

The logistic regression modeling of the coffee and forest type classes in R (version 

3.3.3, R Core Team 2017) initially showed significant relationships with three of TerrSet’s 

texture measures (including Relative-Richness, Diversity, and Dominance Index (Turner, 

M.G., 1989). However, follow-on assessment with strength tests (Hosmer-Lemeshow from 

the ‘ResourceSelection’ package in R (Lele, et al., 2017) and Wald test from the ‘aod’ 

package in R (Lesnoff & Lancelot, 2012)), invalidated almost all of the significant 
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relationships, except for three models (Table 3.4) that demonstrated significance at the 0.90 

and 0.99 levels for shade coffee and forest cover (see R code in Table A.8). The deviance 

model of logistic regression tests the null hypothesis that the deviance measures of the 

constant model are the same as the deviance measures of the residual model. In this case, the 

p-values of the logistic regression are significant when the null hypothesis for deviance is 

rejected. In this case (Table 3.4), the null hypothesis was rejected in three models for shade 

coffee and forest cover by relative richness and diversity texture measures.  

 

Table 3.4. Logistic regression results of predicting coffee targets with independent 

texture layers based on Sentinel 1 & Deviance P-Values 

Target 
Predictor 
Texture 

P-Value, Signif. 
Level 

Confidence 
Interval 

Deviance          
P-Value 

Shade 
Coffee 

Relative 
Richness 

0.00901, ** [.0024, .464] 0.006737     
** 

Diversity 0.00149, ** [-0.716,-0.0719] 

Forest Diversity .0799, . [0.14, 0.41] 1.30E-10 

Forest 
Relative 
Richness 0.0936, .  [0023-.2732]; 

2.29E-11 
Forest  Diversity 0.0772, . [0157-.4099] 

Significance level: p<0.05**; p<0.1”.” 

 

Subsequent logistic regression modeling of the vegetative type classes in R (version 

3.3.3, R Core Team 2017)  as binomial targets of 0 or 1 as a function of the seven texture 

layers from Terrset showed significant relationships between the coffee types identified and 

four landscape ecology variability pattern measures (including Relative-Richness, Diversity, 

and Dominance Index (from Turner, M.G., 1989), and Fragmentation Index (Monmonier, 

M.S., 1974) created by assessing sensor bands with the PATTERN.EXE program in Terrset, 

where the equations are explained).  

 

Logistic Regression Results of Texture Analyses.  

 Logistic regression was sought to find relationships between transformed 

predictors texture layers and the target features in R. Potential relationships were invalidated 

using Hosmer-Lemeshow from the ‘ResourceSelection’ package (Lele, et al., 2017), the Wald 

test from the ‘aod’ package (Lesnoff & Lancelot, 2012), as well as the Relative Operating 
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Characteristic (ROC), as well as the calculation of confidence intervals for the significant 

relationships.  

 

Kappa Commission/Omission 

Validation of all machine learning classifications compared shade and sun coffee 

classifications with the validation map (Table 3.5). At this point, however, shade coffee could 

only be compared between Landsat 8 and Sentinel 2, because there were no significant 

relationships found between the SAR texture measures and coffee situations. 

Table 3.5. Filter Type and Size Evaluation 

 

MEAN Reduce/ Kernel BEST SCORE

Type Despeckle 3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9 3x3

Boxcar R 0.1244 0.1244 0.1244 0.1244 0.0000 0.0000 0.0000 0.0000

Median R 0.1171 0.1103 0.1061 0.1033 -0.0073 -0.0141 -0.0183 -0.0211 (larger value

Frost D 0.1236 0.1228 0.1229 0.1232 -0.0008 -0.0016 -0.0015 -0.0012 = higher

Gamma Map R 0.1243 0.1242 0.124 0.124 -0.0001 -0.0002 -0.0004 -0.0004 quality)

Lee D 0.1243 0.1242 0.124 0.124 -0.0001 -0.0002 -0.0004 -0.0004 Lee

Lee Sigma D XXXX 0.1258 0.1245 0.1234 XXXX 0.0014 0.0001 -0.0010

IDAN50 R 0.1087 -0.0157

IDAN75 R 0.1067 -0.0177

IDAN100 R 0.1055 -0.0189

RefinedLee R 0.1176 -0.0068

SIGMA

Reduce/ Kernel SIGMA DIFFERENCE (POST-FILTERING)

Type Despeckle 3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9 3x3

Boxcar R 0.144 0.116 0.0999 0.893 -0.0421 -0.0701 -0.0862 0.7069

Median R 0.1227 0.0866 0.0712 0.0622 -0.0634 -0.0995 -0.1149 -0.1239 (smaller value

Frost D 0.1449 0.1573 0.1629 0.164 -0.0412 -0.0288 -0.0232 -0.0221 = higher

Gamma Map R 0.1435 0.1141 0.1055 0.0943 -0.0426 -0.0720 -0.0806 -0.0918 quality)

Lee D 0.1437 0.1158 0.1015 0.1038 -0.0424 -0.0703 -0.0846 -0.0823 Lee

Lee Sigma D XXXX 0.1769 0.5112 0.172 XXXX -0.0092 0.3251 -0.0141

IDAN50 R 0.089 -0.0971

IDAN75 R 0.0852 -0.1009

IDAN100 R 0.083 -0.1031

RefinedLee R 0.1168 -0.0693

ENL

Reduce/ Kernel

Type Despeckle 3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9 3x3

Boxcar R 0.7459 1.1492 1.549 1.9375 0.2995 0.7028 1.1026 1.4911

Median R 0.9115 1.6215 2.2172 2.7564 0.4651 1.1751 1.7708 2.31 (larger value

Frost D 0.7272 0.6095 0.5692 0.5642 0.2808 0.1631 0.1228 0.1178 = higher

Gamma Map R 0.75 1.1819 1.3772 1.7128 0.3036 0.7355 0.9308 1.2664 quality)

Lee D 0.7483 1.1502 1.4934 1.4273 0.3019 0.7038 1.047 0.9809 Lee

Lee Sigma D XXXX 0.5054 0.5112 0.5147 XXXX 0.059 0.0648 0.0683

IDAN50 R 1.4922 1.0458

IDAN75 R 1.568 1.1216

IDAN100 R 1.6165 1.1701

RefinedLee R 1.0147 0.5683

MEAN DIFFERENCE (POST-FILTERING)

ENL DIFFERENCE (POST-FILTERING)
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Classification accuracy of effective incidence angle (EIA) product 

 Thermal infrared sensor (TIRS) 2 from Landsat 8 combined with bands 4, 5, 6, 7, 

NDVI, and EIA, when compared with TIRS1 using a maximum likelihood classifier, offered 

the highest accuracy in the identification of coffee (Table 3.6). 

Table 3.6. Image accuracies, errors of omission, errors of commission, 

and kappa index of agreement for the coffee class. 

Image Source Classifier OverallA ErrorO ErrorC Kappa Index by Class* 

Landsat 8 knn 71% 21% 80% 31% 

Landsat 8 mlc 87% 12% 90% 60% 

Landsat 8 n_b 76% 15% 86% 21% 

Landsat 8 nnet 73% 26% 88% 31% 

Landsat 8 rf 71% 15% 84% 73% 

Landsat 8 svm 75% 31% 86% 46% 

Sentinel 2 knn 73% 35% 86% 43% 

Sentinel 2 mlc 77% 42% 88% 31% 

Sentinel 2 n_b 80% 37% 85% 43% 

Sentinel 2 nnet 69% 46% 85% 35% 

Sentinel 2 rf 76% 30% 86% 47% 

Sentinel 2 svm 69% 46% 84% 35% 

 

OverallA = Overall Accuracy 

ErrorO     = Error of Omission 

ErrorC     = Error of Comission 

*Kappa index of agreement per classifier for the coffee class) 

 

Discussion 

Research-achieved accuracies 

Drawing a line down the middle of the overall accuracies reported by previous research 

teams (Table 3.7) yields about 62% accuracy (eliminating the estimated data of Langford and 

Bell (1997) who applied the methods of Card (1982) that may not be compatible with other 

reported efforts); averaging the maximum overall accuracies reported by these research teams 
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yields about 82%. Our own average overall accuracy of 12 classifications of Sentinel 2 and 

Landsat 8 data (Table 3.6, with confusion matrices found in Table A.10) yielded about 75%, 

which puts us at a little better than the middle of the pack, even if we also add in the results of 

the hybrid classifications (Table 3.8) using NDVI, TIRS, and EIA in Landsat 8. Our errors of 

omission were smaller than previous work, but our errors of commission were of similar 

amounts. These results (Table 3.6) indicate that there is substantial room for improvement, 

especially on class identification. 

 

Table 3.7. A review of accuracies and errors in coffee literature over 20 years 

Research 

Team 

Overall 

Accuracy 

(Percent) 

Error of 

Comission/ 

User’s 

Error of 

Omission / 

Producer’s 

Data Type 

Bolanos 72-75% Na na Landsat 

Cordero-

Sancho and 

Sader 

63 % 92%; 86% 55%; 68% Landsat 

Cruz-Bello 

et al 

93% Na na SPOT 

Gomez et al  61-83% Na na Quickbird 

Langford 

and Bell 

38-59% * * Landsat 

Martinez-

Verduzco 

73% 60-83% 92% SPOT 

Mukashema 

et al 

83-97% Na na Quickbird 

Rahman and 

Sumantyo 

83% (forest) 83% 87% SIR-C, Alos 

Palsar 

Schmitt-

Harsh 

73-86% 67% 89% Landsat TM 

 

 

Table 3.8. Classification accuracy achieved by inclusion of NDVI and EIA  

with each of the short-wave infrared (SWIR) bands. 

Bands Used 
Classification Accuracy Achieved 

4,5,6, 7, TIRS1, NDVI, EIA 
78% 

4,5,6, 7, TIRS2, NDVI, EIA 
79% 

Classification accuracy achieved by inclusion of NDVI and EIA with each of the thermal-

infrared sensor (TIRS) bands (Bands 10 and 11 in Landsat 8). 
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We might be able to improve in the way in which we view and use these indicators 

(e.g. errors of omission, errors of comission). We tend to use them statically to measure the 

quality of our work, however, new research (Lu et al, 2014) suggests that these values are 

only an intermediary output that can be put to work to determine achievable accuracy and 

overall levels for specific cover classes, suggesting that it isn’t that we necessarily failed to 

produce, but that we failed to identify a maximum level of accuracy that can be achieved 

given a certain set number of inputs and which set of layers (spectral or textural) need to be 

put together to create an expected level of accuracy. 

 

Sensor differences and added ancillary data for coffee classifications 

The sensor resolution of Worldview 2 was degraded pre-classification (from 2x2 

meters to that of Sentinel 2. Landsat 8 was expanded post-classification (from 30 to 10 

meters) to accommodate their comparisons with the Sentinel 1, Sentinel 2 data sets and 

degraded Worldview 2. This almost certainly had negative consequences, especially for the 

experience of Worldview 2 which showed the worst performance. There was one run with a 

non-convergence of the maximum likelihood classifier. SAR surprisingly with its single 

polarization did not exhibit the worst performance for identification of coffee.  

The study date was fixed at a time when co-polarized data had not yet been made 

available for Central America. It has been proven in other studies that multi-polarized and co-

polarized SAR offers a much better classification performance when compared with use of 

any single polarization (VV in this study). In prior work (with ALOS PALSAR 1 data) in the 

study region, both horizontal send and horizontal-receive (HH) and horizontal send, vertical 

receive (HV) data were available (during 2006-2011), and the experience with HV co-

polarization was more fruitful for the identification of forest cover than only using HH. Co-

polarized (VV and VH) data are now available for the Trifinio Region. Landsat 8 data showed 

the most accurate results, followed by Sentinel 1. 

The inclusion of the EIA with optical, infrared, and vegetation index layers 

demonstrated that TIRS2 improved the classification of coffee, using the maximum likelihood 

classifier; yet it offered no greater classification accuracy value than that experienced with the 

other sources and techniques. It seems that inclusion of the NDVI and EIA layers were an aid 

to classification (Cordero-Sancho and Sader, 2007), but more work is necessary there to 
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determine which part of those layers are the most important contribution to the higher 

accuracy experience. Holben and Justice (1980) offered the EIA layer as a correction for the 

effect of angle of a slope and the direction in which it faces, as sunny and bright east-facing 

slopes with different radiances are invariably classified differently than those showing up 

darker due to slopes facing other directions. The inclusion of the EIA with optical, shortwave 

infrared, and vegetation index layers t perform better than the top two classifiers (MLC and 

N_B) in terms of overall accuracy. Inclusion of the NDVI and EIA proved to be a marginal 

improvement for the classification of Landsat TM layers (Cordero-Sancho and Sader, 2007); 

they wrote that land cover classifications that included both NDVI and EIA only improved 

when topographic data were not included as part of the classification. Sesnie et al, (2008) 

tested four vegetation indices (VI) to improve separability of woodland classes being 

evaluated by machine learning classifiers support vector machines and random forests 

classifiers to separate forest types in tropical Costa Rica. Sesnie et al (2008) wrote that one of 

the four VIs increased spectral separability more than another index, and two of the four 

spectrally separated reforestation layers from regrowth layers, while the remaining VI type 

(Enhanced Vegetation Index) had poor performance. Sesnie et al’s team also found that 

applying an elevation layer to the classification achieved greater class separability, Elevation 

and slope layers (from the Shuttle Radar Topography Mission – SRTMGL1) were included in 

this study’s logistic regression testing to develop texture predictors, but though p-values 

achieved were initially found significant, deviance testing invalidated any potential 

relationships. More work is necessary on this topic to determine which part(s) of these layers 

contributes more to classification accuracy. 

A central theme that emerges is the choice of predictors and predictor bands. We 

reduced the band set using band to band correlations and principal components among some 

methods to direct our choices. Correlation among optical bands was high among the medium 

resolution sensors (Sentinel 2 (Table 3.9), Landsat 8 (Table 3.9), and Worldview 2 (Table 

3.11) with considerable redundancy seen. This is certainly important for cost and data 

reduction (time and money) and improving classifications. The GLCM correlation by Landsat 

8 bands was interesting (Figure A.3), as the infrared bands showed very low correlation. Not 

enough classifications were undertaken to know whether this was useful or not. 
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Table 3.9. Sentinel 2A Band Correlation Matrix 

 

 

 

 

 

Table 3.10. Landsat 8 Band Correlation Matrix 

 

 

Table 3.11. Worldview 2 Correlation Frequency Matrix (by band 1-8). 

  B1 B2 B3 B4 B5 B6 B7 B8 

B1   8 8 8 2 0 0 0 

B2     8 8 5 0 0 0 

B3       8 8 2 0 0 

B4         8 0 0 0 

B5           0 0 0 

B6             8 8 

B7               8 

 

Logistic regression strength 

There are several areas of concern with this study. The study was premised on the idea 

that GLCM and pattern textures could be used in lieu of spectral variables that are confused 

because of closeness of coffee leaf color with that of surrounding native vegetation. It was 

supposed that the four types of coffee structure (sun, shade, adult, immature) variables related 

to how the plant is grown, its physical position on the landscape and its age would be able to 

define changes to aid in classification. The logistic regressions demonstrated that there were 

B1 B2 B3 B4 B5 B6 B7 B9

B1 1 0.99 0.96 0.95 0.12 0.82 0.87 -0.2

B2 0.99 1 0.97 0.97 0.13 0.84 0.9 -0.17

B3 0.96 0.97 1 0.97 0.27 0.85 0.88 -0.12

B4 0.95 0.97 0.97 1 0.13 0.9 0.93 -0.11

B5 0.12 0.13 0.27 0.13 1 0.24 0.1 0.04

B6 0.82 0.84 0.85 0.9 0.24 1 0.96 -0.11

B7 0.87 0.9 0.88 0.93 0.1 0.96 1 -0.09

B9 -0.2 -0.17 -0.12 -0.11 0.04 -0.11 -0.09 1

B2 B2 B4 B8

B2 1 0.97 0.96 0.1

B3 0.97 1 0.95 0.24

B4 0.96 0.95 1 0.07

B8 0.1 0.24 0.07 1



106 

initially significant findings for three variability texture measures (relative richness, diversity, 

and dominance index), but a closer comparison of the differences between the deviance 

values in the residual model versus the null model invalidated the calculated p-values, and 

subsequent checks of those p-values with additional measures (Hosmer Lemeshow and Wald) 

gave more evidence for that conclusion. At the end of the R investigation, two quick 

additional logistic regressions (from the LOGISTICREG.EXE program with Terrset) showed 

very low relative operating characteristic (ROC) scores indicating, as found previously, that 

the outcome of the relationship between the texture predictors and the coffee variable targets 

was no more than a chance occurrence.  

 

Texture and coffee 

 It was assumed from the start because of successes reported in the literature (Zhou et 

al, 2017; Herold et al, 2004) with row crops in China (e.g. wheat, corn) and in Kenya (with 

tea plantations) that texture measures created for coffee agroforests were going to be easily 

measured and seen to be related to different statures of coffee bushes. It was also assumed at 

the outset that texture measures from optical and radar bands could be used to aid in 

classification of coffee as there is a wide variety of literature supporting the topic. However, 

almost no studies reported on a relationship between shade and sun coffee and measured 

texture, and certainly not by using SAR. Two studies noted they had used GLCM in their 

work on coffee, but did not share any result (Rueda et al, 2014). Herold et al. (2004) reported 

on the use of GLCM and SAR in locations other than commercial agriculture, but not with 

coffee. A study most like this one, took place on the Pacific Island of Caledonia, and used 48 

GLCM measures in filtered neighborhood windows of 99x99 pixels with optical sensors and 

machine classifiers to develop relationships between canopy heterogeneity and tree crowns to 

be able to predict locations of shade coffee (Gomez et al, 2010). Most of the coffee 

agroforests in the Trifinio Region are located on variable landscapes; some are very 

inaccessible, located on slopes or on hilltops.  

There may yet be a relationship between texture variables and coffee, despite one not 

found in this examination, for a variety of reasons (e.g. texture window dimensions and 

overall reduction of texture because of the timing of the speckle reduction, as well as 

insufficient ground data for classification and verification due partially to a lack an onsite 
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component and insufficient investigator site knowledge). To be more specific, there is little 

consensus for setting the thresholds. Hall-Beyer (2017) noted that a simple assessment of the 

best filter type, convolution kernel size, and considered parameters could present a user with 

as many as 6300 different filter options to carry out a study to follow to determine which filter 

to use at what dimensions; nonetheless, a literature review found that some researchers stress 

comparisons of an image quality measure (based on differences measured in pre-filtering and 

post-filtering image means and standard deviations), with the results of a commonly used 

equation in radar image processing, called the Equivalent Number of Looks (ENL) (Ozdarici 

and Akeyurek, 2010). The idea is that the filter-based speckle reduction process should not 

overly impact the image mean nor standard deviation. A comparison of 10 filters with 4 

window dimensions and 3 neighborhoods demonstrated that the Lee filter (Lee, 1983) used at 

3x3 dimensions was the main dimensions chosen for this study (Table 3.6). Strengths of 

training site locations with coffee textures could have been addressed with Jeffries-Matushita. 

This decision to use the Lee filter took into consideration the impact of the filter on the 

size of the object to be imaged (small and large coffee bushes) and the fact that the production 

is often small-footprint agroforestry, many times haphazardly planted (as opposed to large-

scale industrial farming occurring in orderly rows. An adaptive filter that is edge preserving 

would not likely add value to images of small-scale agroforestry. Works from other studies 

conflict with this decision. Two investigations reported that the chosen kernel size impacts 

coefficient of variation (CV) impacting the ability of crops being classified (Tonye, 2002; 

Anys & He, 1995). Anys & He (1995) noted that the smaller (3x3) window caused the CV to 

be too broad, and largest filter they studied (13x13) caused the CV to be too small to 

distinguish differences among classes and that the 7x7 filter they chose was a compromise for 

that situation. In other studies, it was noted that the size of filter could be very large. A review 

of filters use showed some at 21x21 and still others at 99x99 (Brito, 2003).  

 

Validation of Training Site Maps 

The maps locating coffee agroforestry plantations were each derived from 5x5-meter 

Rapideye data for the three countries by separate agencies in different periods without 

knowledge of the others’ efforts; the three products are independent; they were not intended 

to be used in conjunction with each other. Almost no other data were found to corroborate 
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these map classes, however, there are some possibilities. For example, the CATHALAC map 

(2010) was produced before the RapidEye images were even acquired. Additionally, nearly 

7,000 members of coffee cooperatives and agroforestry associations were mapped in the last 

few years by the coffee cooperative associations of the three countries, working with Trifinio 

Commission projects, and the points associated with these mapping efforts were recently 

made available and downloaded from the CTPT’s SINTET Geoserver. Within these datasets 

organized by watershed and association name are coffee farmer names, their coffee crop local 

name, the GPS locations of their fields for each of the sub-watersheds identified as important 

for aquifer recharge for water supply distributed by the three main watersheds (Motagua, 

Lempa, and Ulua rivers). The farm sites are distributed by geographically among the three 

countries by watershed, and the efforts to collect those data were independent of the three 

country forest mapping efforts that created the coffee map used as a training site input for 

image classifications in this study. The second part of the issue relates to lack of an onsite 

component, a limitation, because there was insufficient material to know with full confidence 

that the locations chosen as training sites for shade and sun and adult coffee were adequately 

selected (the immature coffee was very obvious visually seen on undegraded Worldview 2 

data). The two methods used to determine these classes were visual inspection of high-

resolution Worldview 2 imagery and the 1-meter Geoeye images that we all see or think of as 

photos on Google Earth imagery. It could have been much more fruitful if we had done that 

selection on site or in concert with local coffee association partners who could verify our 

selection of training sites.  

 

Machine learning classifiers 

The machine-learning classifiers implemented with R in this study were traditional, 

supervised pixel-based classifiers as opposed to object-based segmenting classifiers. The 

maximum likelihood segmenting classification used by TerrSet to derive training set vectors 

worked well for that purpose (using principal component layers as inputs), but the immature 

coffee class didn’t survive as an identifiable pattern through that classification process. It is 

conceivable that a multi-resolution segmentation or pattern-recognition or image recognition-

based system, such as convolutional neural networks, that can learn from chips of photos and 

images will be able to learn, remember, and readily identify those types of features immature 
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coffee features in time, just like it can recognize what is a cat, a dog, a city, or an agricultural 

field. 

Overall there is no clear consensus on what is a good machine learning classifier for 

remote sensing, maybe because it’s too early and there have not been quite enough adopters. 

On the top of the list of dominant “best classifier” characteristics, though, and perhaps 

mistakenly, is the theme of model accuracy. Probably every researcher involved in coffee 

classification that was referenced in this study arrived at different quantitative conclusions 

about the quality of their classifications. Each of them were working in a different region, 

though some were working in Central America with similar datasets to each other. At least 

one of these researchers had three dates of Landsat images coinciding with our own, yet the 

conclusions at which they arrived were dramatically different to the conclusions at which we 

arrived. What is noticeable is that all of them were working with different classifiers or 

different versions of the similar classifiers. And it’s not because they’re daft that the results 

don’t yield the same answers; but because the classifiers they’re using expected different 

inputs, input parameter ranges, or were tuned to accept a narrower selection of default 

parameters, or totally from another perspective that the orientation of the input data was not 

what the classifier was expecting. Thus, what makes a good classifier is one which can be 

very flexible, can work with a very large set of default values and still be able to yield good 

results for that wide variety of inputs (Amancio et al, 2013). Commercial remote sensing 

packages have not yet included many ‘machine learning’ classifiers in their toolsets. Most 

people describing these classifiers discuss them in terms of accuracy of output; our efforts in 

this study and previously tell us that a classifier is not necessarily best but that certain 

classifiers appeal to certain types of datasets and certain levels of processing of data do better 

for some than others. For example, principal components analyses are data dependent, 

however the algorithm seems to work better when data are normalized or transformed. Certain 

classifiers don’t want to see extreme variability in their inputs (e.g. k-Nearest Neighbor seems 

to do be impacted by non-normalized data; and the normalization method seems to be 

classifier specific as well). Judging by the accuracy data presented (Table 3.5), the Maximum 

Likelihood Classifier (MLC) classifier had the best performance of all these efforts with 

Naïve_Bayes classifier coming in second position with two higher accuracies of both Sentinel 

2 and Landsat 8 The worst experience (least accurate) achieved by a classifier was made by 
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the SVM Linear classifier, but only by 1000th of a percentage point from the Neural Network 

classifier. So, one thing learned it that probably a lot more classifications need to be carried 

out before one can say with confidence what is the best classifier of the machine learning 

tools in R for remotely-sensed data. 

 

Conclusion 

In this study, we analyzed relationships of texture measures with four different growth 

habits of coffee derived from Worldview 2, Landsat 8, Sentinel 1 & 2 images, and assessed 

the accuracy of classifying several land cover classes including these different coffee growth 

habits. We found that two pattern TerrSet texture measures, Relative Richness and Diversity 

(when applied to the Sentinel 1A SAR), were significant predictors of shade coffee and forest 

cover. GLCM measures were not found to be significant predictors of coffee growth habits. 

We applied machine learning classifiers (Neural network, Naïve Bayes, K-Nearest Neighbor, 

Random Forests and Support Vector Machines) with R to identify pasture, forest, coffee 

classes of shade, sun, adult, and immature and analyzed coffee map accuracy with confusion 

matrices. Results indicated that 80 percent accuracy is feasible with a Naïve Bayes classifier 

with Sentinel 2 data alone. We also found that a hybrid optical, infrared, vegetation index 

with effective incidence angle predictors was somewhat effective, achieving at most a 79% 

accuracy. No increased accuracies over previous methods were achieved. It is remains 

conceivable that texture can be found to be more helpful in the classification of coffee with 

additional work to overcome limitations. 

 

Acknowledgements 

We gratefully acknowledge the assistance from our land management partners in this 

research including the Tropical Agricultural Research and Higher Education Center 

(CATIE)’s Mesoamerican Agroenvironmental Program (MAP Norway) for their assistance in 

field access and data collection, Central American Commission for Environment and 

Development (CCAD), Trinational Commission of the Trifinio Plan (CTPT), Proyecto 

Trinacional Café Especial Sostenible (Protcafes), GIZ Forests and Water Program, and the US 

Fish and Wildlife Service.  

 



111 

Funding 

This work was funded by NASA LCLUC Grant NNX13AC70G (K. Jones, PI) and 

MICITT/CONICIT in Costa Rica, and the University of Idaho Graduate Fellowship Program.  



112 

References 

Amancio, D. R., Comin, C. H., Casanova, D., Travieso, G., Bruno, O. M., Rodrigues, F. A., & 

da Fontoura Costa, L. (2014). A Systematic Comparison of Supervised Classifiers. 

PLOS ONE, 9(4), e94137. https://doi.org/10.1371/journal.pone.0094137 

Anys, H., & He, D.-C. (1995). Evaluation of textural and multipolarization radar features for 

crop classification. IEEE Transactions on Geoscience and Remote Sensing, 33(5), 

1170–1181. https://doi.org/10.1109/36.469481 

Artiga, R. (2003). The Case of the Trifinio Plan in the Upper Lempa: Opportunities and 

Challenges for the Shared Management of Central American Transnational Basins. 

Unesco. Retrieved from 

http://webworld.unesco.org/water/wwap/pccp/cd/pdf/case_studies/the_case_of_the_tri

finio_plan_in_the_upper_lempa_2.pdf 

Avelino, J., Zelaya, H., Merlo, A., Pineda, A., Ordoñez, M., & Savary, S. (2006). The 

intensity of a coffee rust epidemic is dependent on production situations. Ecological 

Modelling, 197(3), 431–447. https://doi.org/10.1016/j.ecolmodel.2006.03.013 

Barsi, J. A., Lee, K., Kvaran, G., L. Markham, B., & A. Pedelty, J. (2014). The Spectral 

Response of the Landsat-8 Operational Land Imager. Remote Sensing, 6, 10232–

10251. https://doi.org/10.3390/rs61010232 

Bivand, R. (2017). rgdal: Bindings for the “Geospatial” Data Abstraction Library (Version 

1.2-15). Retrieved from https://cran.r-project.org/web/packages/rgdal/rgdal.pdf 

Blackman, A., Ávalos-Sartorio, B., & Chow, J. (2012). Land cover change in agroforestry: 

Shade coffee in El Salvador. Land Economics, 88(1), 75–101. 

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of 

Photogrammetry and Remote Sensing, 65(1), 2–16. 

https://doi.org/10.1016/j.isprsjprs.2009.06.004 

Bolanos, R. M. (2017). Producción de café es insostenible en el país. Prensalibre. Retrieved 

from http://www.prensalibre.com/economia/economia/produccion-de-cafe-es-

insostenible-en-el-pais 

Bolanos, S. (2007). Using image analysis and GIS for coffee mapping. ProQuest. 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 



113 

Card, D. H. (1982). Using Known Map Category Marginal Frequencies to Improve Tematic 

Map Accuracy. Photogrammetric Engineering and Remote Sensing, 48, 431–439. 

Castaneda, H. (2009). Analysis of the spatial dynamics and drivers of forest cover change in 

the Lempa River Basin of El Salvador. [Gainesville, Fla.]: University of Florida. 

Retrieved from http://purl.fcla.edu/fcla/etd/UFE0024235 

Catalan, M. (2015). Mapa Forestal por Tipo y Subtipo de Bosque, 2012, GUATEMALA 

(Technical Report). San Salvador: INAB. Retrieved from 

http://www.sifgua.org.gt/Documentos/Cobertura%20Forestal/Cobertura%202012/Info

rme_de_Cobertura_Forestal_20_julio_15.pdf 

Cathalac. (2011). Cobertura y Uso de la Tierra de la Región del Trifinio Estudio de los anos 

1986, 2001 y 2010 mediante metodos de teledeteccion. Panama: Centro del Agua del 

Trópico Húmedo para América Latina y el Caribe. 

CEDICAFE, & ANACAFE. (2017). Situación Nacional de la Roya del Café y 

Recomendaciones para su Manejo, 5. 

Chen, G., & E, D. (2012). Support vector machines for cloud detection over ice-snow areas. 

Geo-Spatial Information Science. Retrieved from 

http://www.tandfonline.com/doi/pdf/10.1007/s11806-007-0047-7 

Chuang, Y.-C. M., & Shiu, Y.-S. (2016). A Comparative Analysis of Machine Learning with 

WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping. Sensors (Basel, 

Switzerland), 16(5). https://doi.org/10.3390/s16050594 

Classen, A., Peters, M. K., Ferger, S. W., Helbig-Bonitz, M., Schmack, J. M., Maassen, G., … 

Steffan-Dewenter, I. (2014). Complementary ecosystem services provided by pest 

predators and pollinators increase quantity and quality of coffee yields. Proceedings of 

the Royal Society B: Biological Sciences, 281(1779). 

https://doi.org/10.1098/rspb.2013.3148 

Cordero‐Sancho, S., & Sader, S. A. (2007). Spectral analysis and classification accuracy of 

coffee crops using Landsat and a topographic‐environmental model. International 

Journal of Remote Sensing, 28(7), 1577–1593. 

https://doi.org/10.1080/01431160600887680 

Cruz-Bello, G. M., Eakin, H., Morales, H., & Barrera, J. F. (2011). Linking multi-temporal 

analysis and community consultation to evaluate the response to the impact of 



114 

Hurricane Stan in coffee areas of Chiapas, Mexico. Natural Hazards, 58(1), 103–116. 

https://doi.org/10.1007/s11069-010-9652-0 

Danilla, C. (2017). Convolutional Neural Networks for Denoising and Classification of SAR 

Images. University of Twente, Enschede, Netherlands. Retrieved from 

http://www.itc.nl/library/papers_2017/msc/gfm/danilla.pdf 

Donald, P. F. (2004). Biodiversity Impacts of Some Agricultural Commodity Production 

Systems. Conservation Biology, 18(1), 17–37. 

Eastman, J. R. (1989). IDRISI : A geographic information system for international 

development. Presented at the 

Conference  on  Information  Technologies  for  Developing  Countries, California: 

University of Southern California. 

ESA. (2010). ESA Data Distribution Policy. European Space Agency. 

Fagan, Matthew, D., Ruth. (2015). Measurement and Monitoring of the World’s  Forests: A 

Review and Summary of Remote  Sensing Technical Capability, 2009–2015. 

Resources for the Future. Retrieved from 

http://www.rff.org/files/sharepoint/WorkImages/Download/RFF-Rpt-

Measurement%20and%20Monitoring_Final.pdf 

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., … others. (2007). The 

shuttle radar topography mission. Reviews of Geophysics, 45(2). Retrieved from 

http://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full 

Fischer, E. F., & Victor, B. (2014). High-End Coffee and Smallholding Growers in 

Guatemala. Latin American Research Review, 49(1), 155–177. 

Geist, H. J., & Lambin, E. F. (2001). What Drives Tropical Deforestation? Retrieved June 26, 

2015, from http://www.pik-potsdam.de/~luedeke/lucc4.pdf 

Geist, H. J., & Lambin, E. F. (2002). Proximate Causes and Underlying Driving Forces of 

Tropical Deforestation. BioScience, 52(2), 143. 

Gomez, C., Mangeas, M., Petit, M., Corbane, C., Hamon, P., Hamon, S., … Despinoy, M. 

(2010). Use of high-resolution satellite imagery in an integrated model to predict the 

distribution of shade coffee tree hybrid zones. Remote Sensing of Environment, 

114(11), 2731–2744. https://doi.org/10.1016/j.rse.2010.06.007 



115 

Greenberg, R., Bichier, P., Cruz Angon, A., & Reitsma, R. (1997). BIRD POPULATIONS IN 

SHADE AND SUN COFFEE PLANTATIONS.pdf. Conservation Biology, 11(2), 

448–459. 

Gross, J., & Liggs, U. (2015). Nortest: Tests for normality (Version 1.0-4) [R]. CRAN. 

Retrieved from https://cran.r-project.org/web/packages/nortest/nortest.pdf 

Hall-Beyer, M. (2017). GLCM Texture: A Tutorial v. 3.0 March 2017. Retrieved from 

http://prism.ucalgary.ca//handle/1880/51900 

Haralick, R., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image 

Classification. IEEE Transactions On Systems, Man and Cybernetics, SMC-3(6), 610–

621. 

Hecht, S. B., & Saatchi, S. S. (2007). Globalization and forest resurgence: Changes in forest 

cover in El Salvador. Bioscience, 57(8), 663–672. 

Herold, N. D., Haack, B. N., & Solomon, E. (2004). An evaluation of radar texture for land 

use/cover extraction in varied landscapes. International Journal of Applied Earth 

Observation and Geoinformation, 5, 113–128. 

https://doi.org/10.1016/j.jag.2004.01.005 

Holben, B. N., & Justice, C. O. (1980). The Topographic Effect on Spectral Response from 

Nadir-Pointing Sensors. Photogrammetric Engineering & Remote Sensing, 46(9), 

1191–1200. 

Jezeer, R. E. (n.d.). Shaded Coffee and Cocoa – Double Dividend for Biodiversity and Small-

scale Farmers. Retrieved October 8, 2017, from 

https://www.researchgate.net/publication/316827107_Shaded_Coffee_and_Cocoa_-

_Double_Dividend_for_Biodiversity_and_Small-scale_Farmers 

Jha, S., Bacon, C. M., Philpott, S., Mendez, E., Laderach, P., & Rice, R. (2014). Shade 

Coffee: Update on a Disappearing Refuge for Biodiversity. Bioscience, 64(5), 416–28. 

Jimenez, A. J. (2014). Final Report of ES Forest Map 2011, July 2014. San Salvador. 

Kailath, T. (1967). The Divergence and Bhattacharyya Distance Measures in Signal Selection. 

IEEE Transactions on Communication Technology, 15(1), 52–60. 

https://doi.org/10.1109/TCOM.1967.1089532 



116 

Karakizi, C., Oikonomou, M., & Karantzalos, K. (2016). Vineyard Detection and Vine 

Variety Discrimination from Very High Resolution Satellite Data. Remote Sensing, 

8(3), 235. https://doi.org/10.3390/rs8030235 

Kleinschroth, F., & Healey, J. R. (2017). Impacts of logging roads on tropical forests. 

Biotropica, 49(5), 620–635. https://doi.org/10.1111/btp.12462 

Kuhn, M. (2014). Applied Predictive Modeling in R. Groton, CT. Retrieved from 

http://static.squarespace.com/static/51156277e4b0b8b2ffe11c00/t/53ad86e5e4b0b52e

4e71cfab/1403881189332/Applied_Predictive_Modeling_in_R.pdf 

Langford, M., & Bell, W. (1997). Land cover mapping in a tropical hillsides environment: a 

case study in the Cauca region of Colombia. International Journal of Remote Sensing, 

18(6), 1289–1306. 

Lelong, C., Alexandre, C., & Dupuy, S. (2014). Discrimination of tropical agroforestry 

systems in very high resolution satellite imagery using object-based hierarchical 

classification: A case-study in Cameroon. South-Eastern European Journal of Earth 

Observation and Geomatics, 3(2S), 255–258. 

Lelong, C. C. D., & Thong-Chane, A. (2003). Application of textural analysis on very high 

resolution panchromatic images to map coffee orchards in Uganda. In IGARSS 2003. 

2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings 

(IEEE Cat. No.03CH37477) (Vol. 2, pp. 1007–1009 vol.2). 

https://doi.org/10.1109/IGARSS.2003.1293994 

Leutner, B., & Horning, N. (n.d.). RStoolbox: Tools for Remote Sensing Data Analysis 

(Version R Package version 0.1.9). Retrieved from https://cran.r-

project.org/web/packages/RStoolbox/index.html 

Li, F., Jupp, D. L. B., Reddy, S., Lymburner, L., Mueller, N., Tan, P., & Islam, A. (2010). An 

Evaluation of the Use of Atmospheric and BRDF Correction to Standardize Landsat 

Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 3(3), 257–270. https://doi.org/10.1109/JSTARS.2010.2042281 

Lu, D., Li, G., Moran, E., Dutra, L., & Batistella, M. (2014). The roles of textural images in 

improving land-cover classification in the Brazilian Amazon. International Journal of 

Remote Sensing, 35(24), 8188–8207. https://doi.org/10.1080/01431161.2014.980920 



117 

MARN. (April 20016). MARN lanza el Plan Nacional de Restauración y Reforestación | 

MARN | Ministerio de Medio Ambiente y Recursos Naturales [Government]. 

Retrieved July 11, 2016, from http://www.marn.gob.sv/marn-lanza-el-plan-nacional-

de-restauracion-y-reforestacion/ 

Martignoni, M. (2011). Land use and cover classification using airborne MASTER and 

spaceborne GeoEye-1 sensors: Focus on coffee-banana agroforestry systems near 

Turrialba. Costa Rica. Retrieved from 

http://agroforestbanana.org/files/documentos/M_Martignoni_thesis_final.pdf 

Martínez-Verduzco, G. C., Galeana-Pizaña, J. M., & Cruz-Bello, G. M. (2012). Coupling 

Community Mapping and supervised classification to discriminate Shade coffee from 

Natural vegetation. Applied Geography, 34, 1–9. 

https://doi.org/10.1016/j.apgeog.2011.10.001 

Menendez Martinez, A. F. (2015). Sustainable Coffee Production in the Trifinio Region, 

Guatemala, Honduras, El Salvador (Annual). Esquipulas: ICP. Retrieved from 

http://www.coffee-

partners.org/files/uploads/documents/Downloads_Trifinio/1503%20ICP%20Trifinio%

20-%20Annual%20Report.pdf 

Monmonier, M. S. (n.d.). Measures of Pattern Complexity for Choropleth Maps. The 

American Cartographer, 1(2), 159–169. 

Montenegro, R., & Atwood, D. (2010). Identification of Shade Coffee Using Optical / SAR 

Data Fusion. Poster presented at the 2010 AGU Meeting of the Americas, Foz do 

Iguacu, Brazil. Retrieved from 

http://www.agu.org/meetings/ja10/pdf/AGU_JA10_Program.pdf 

Mukashema, A., Veldkamp, A., & Vrieling, A. (2014). Automated high resolution mapping of 

coffee in Rwanda using an expert Bayesian network. International Journal of Applied 

Earth Observation and Geoinformation, 33, 331–340. 

https://doi.org/10.1016/j.jag.2014.05.005 

Muñoz Brenes, C. L. (2017, April 24). Crossing the Line on Governance: Evaluating the 

Impact of National and Transboundary Protected Areas on Land Cover Outcomes in 

Central America. University of Idaho, Moscow. 



118 

Nagendra, H., Southworth, J., & Tucker, C. (2003). Accessibility as a determinant of 

landscape transformation in western Honduras: linking pattern and process. Landscape 

Ecology, 18(2), 141–158. 

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures 

with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. 

https://doi.org/10.1016/0031-3203(95)00067-4 

Ortega-Huerta, M. A., Komar, O., Price, K. P., & Ventura, H. J. (2012). Mapping coffee 

plantations with Landsat imagery: an example from El Salvador. International Journal 

of Remote Sensing, 33(1), 220–242. https://doi.org/10.1080/01431161.2011.591442 

Ozdarici Ok, A., & Akyurek, Z. (2012). A segment-based approach to classify agricultural 

lands by using multi-temporal optical and microwave data. International Journal of 

Remote Sensing, 33(22), 7184–7204. https://doi.org/10.1080/01431161.2012.700423 

Ozdemir, I., & Karnieli, A. (2011). Predicting forest structural parameters using the image 

texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. 

International Journal of Applied Earth Observation and Geoinformation, 13(5), 701–

710. https://doi.org/10.1016/j.jag.2011.05.006 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., & Thirion, B. (2011). Scikit-learn: 

Machine Learning in Python, 12, 6. 

Raczko, E., & Zagajewski, B. (2017). Comparison of support vector machine, random forest 

and neural network classifiers for tree species classification on airborne hyperspectral 

APEX images. European Journal of Remote Sensing, 50(1), 144–154. 

https://doi.org/10.1080/22797254.2017.1299557 

Rahman, M. M. (2010). Mapping tropical forest and deforestation using synthetic aperture 

radar (SAR) images. Applied Geomatics, 2, 113–121. 

REDDCCADGIZ. (2011). Sistematización de Experiencias Regionales, Análisis de la 

Situación Actual y Propuesta para la Operativización de un Sistema de Monitoreo de 

Bosques Multinivel para los Países de Centroamérica y República Dominicana (p. 

86). SanSalvador. Retrieved from 

http://www.reddccadgiz.org/documentos/doc_1148286616.pdf 



119 

Rice, R. (2010). The ecological benefits of shade-grown coffee: the case for going bird 

friendly. Smithsonian Migratory Bird Center, Washington. Retrieved from 

http://nationalzoo.si.edu/scbi/migratorybirds/coffee/bird_friendly/Eco-Report.pdf 

Richards, M. B., & Méndez, V. E. (2014). Interactions between Carbon Sequestration and 

Shade Tree Diversity in a Smallholder Coffee Cooperative in El Salvador. 

Conservation Biology, 28(2), 489–497. https://doi.org/10.1111/cobi.12181 

Rouse, J., Haas, R., Schell, J., & Deering, D. (1973). Monitoring the Vernal Advancement and 

Retrogradation (Green Wave Effect) of Natural Vegetation (Progress Report) (p. 112). 

Greenbelt, MD: NASA GSFC. 

Rueda, X., Thomas, N. E., & Lambin, E. F. (2015). Eco-certification and coffee cultivation 

enhance tree cover and forest connectivity in the Colombian coffee landscapes. 

Regional Environmental Change, 15(1), 25–33. https://doi.org/10.1007/s10113-014-

0607-y 

Schlesinger, P., Muñoz Brenes, C. L., Jones, K. W., & Vierling, L. A. (2017). The Trifinio 

Region: a case study of transboundary forest change in Central America. Journal of 

Land Use Science, 12(1), 36–54. https://doi.org/10.1080/1747423X.2016.1261948 

Schmitt-Harsh, M. (2013). Landscape change in Guatemala: Driving forces of forest and 

coffee agroforest expansion and contraction from 1990 to 2010. Applied Geography, 

40, 40–50. https://doi.org/10.1016/j.apgeog.2013.01.007 

See, L., Laso Bayas, J. C., Schepaschenko, D., Perger, C., Dresel, C., Maus, V., … Fritz, S. 

(2017). LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using 

GlobeLand30 for Kenya. Remote Sensing, 9(7), 754. 

https://doi.org/10.3390/rs9070754 

Sesnie, S. E., Finegan, B., Gessler, P. E., Thessler, S., Ramos Bendana, Z., & Smith, A. M. S. 

(2010). The multispectral separability of Costa Rican rainforest types with support 

vector machines and Random Forest decision trees. International Journal of Remote 

Sensing, 31(11), 2885–2909. https://doi.org/10.1080/01431160903140803 

Sesnie, S. E., Hagell, S. E., Otterstrom, S. M., Chambers, C. L., & Dickson, B. G. (2008). 

SRTM-DEM and landsat ETM+ data for mapping tropical dry forest cover and 

biodiversity assessment in Nicaragua. Rev. Geogr. Acad, 2, 53–65. 



120 

Smith, E. S. (2010). The Evolution of Coffee Markets for Sustainable Development: A 

Honduran Cooperative’s Experience With Fair Trade. Retrieved from 

https://www.csuchico.edu/anth/pdf/Erin%20Smith%20thesis.pdf 

Soh, L.-K., & Tsatsoulis, C. (1999). Texture Analysis of SAR Sea Ice Imagery Using Gray 

Level Co-Occurrence Matrices, 47, 17. 

Stiftung, H. R. N. (n.d.). Trifinio Regional Program. Retrieved from 

https://www.hrnstiftung.org/projekte/trifinio-regional-program 

Tang, Z., Qi, F., Zhou, Y., Pan, F., & Zhou, J. (2015). Tea Leaves Classification Based on 

Texture Analysis. In Proceedings of the 2015 Chinese Intelligent Automation 

Conference (pp. 353–360). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-662-46469-4_37 

Tonye, E. (2002). Evaluation of speckle filtering and texture analysis methods for land cover 

classification from SAR images. International Journal of Remote Sensing, 23(9), 

1895–1925. 

Turner, M. G. (1989). Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. 

Syst, 20, 171–197. 

USGS. (2014). Landsat Surface Reflectance Climate Data Records. Retrieved from 

https://pubs.usgs.gov/fs/2013/3117/pdf/fs2013-3117.pdf 

USGS. (2017, October). Landsat 4-7 Surface Reflectance (LEDAPS) Product Guide. USGS. 

Retrieved from 

https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf 

USGS. (n.d.). Solar Illumination and Sensor Viewing Angle Coefficient Files. Retrieved 

November 15, 2017, from https://landsat.usgs.gov/solar-illumination-and-sensor-

viewing-angle-coefficient-file 

van Rossum, G. (1995). Python Tutorial (Technical report CS-R9526). Amsterdam: Centrum 

voor Wikunde en Informatica (CWI). Retrieved from 

http://www.oalib.com/references/12583079 

Whiteside, T., & Bartolo, R. (2014). Vegetation map for Magela Creek floodplain using 

WorldView-2 multispectral image data. Retrieved from 

http://www.environment.gov.au/system/files/resources/448c1688-77e6-4cc2-a5b6-

af1280d75048/files/ir628_3.pdf 



121 

Zhang, X., Cui, J., Wang, W., & Lin, C. (2017). A Study for Texture Feature Extraction of 

High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-

Occurrence Matrix Fusion Algorithm. Sensors, 17(7). 

https://doi.org/10.3390/s17071474 

Zhou, T., Pan, J., Han, T., & Wei, S. (2017). Planting area extraction of winter wheat based 

on multi-temporal SAR data and optical imagery. Transactions of the Chinese Society 

of Agricultural Engineering, 33(10), 215–221. 

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in 

Landsat imagery. Remote Sensing of Environment, 118, 83–94. 

https://doi.org/10.1016/j.rse.2011.10.028 

   



122 

CHAPTER 4: CONCLUSION 

 

In this dissertation, I investigated changes in forested land cover and land use across 

the Trifinio Region over a 30-year period, and studied how these changes may have differed 

from elsewhere in Central America. I tested whether regional forest transitions and forest 

resurgence were related to proximity to PAs, agricultural fields, pastures, or shaded coffee 

production. I specifically worked with Landsat 8, Sentinel 1, Sentinel 2, and Worldview 2 

images to test whether classifications derived from these new sensor data would show 

different accuracies than already reported use with machine learning classifiers: Neural 

network, Naïve Bayes, K-Nearest Neighbor, Random Forests and Support Vector Machines, 

and Maximum Likelihood.  

Land cover and land use changes initially measured using secondary data, and 

subsequently databases of percent greenness, determined that the types and drivers of 

transitions in the Trifinio Region over the last 30 years were no different than those affecting 

other tropical areas. We modeled deforestation with expected drivers and found relationships 

between population density and extreme deforestation. We also found correlations between 

road density and deforestation. While transitions of greenness pointed to temporal increases 

over the 30-year period, we did not find a signal of forest resurgence corresponding with the 

reports of earlier investigators. It is conceivable that the percent greenness transitions methods 

we used could have masked the changes we wanted to find; for example, while broadleaved 

forest has higher greenness when growing rapidly, coniferous forest has lower values, and we 

were not able to separate these data into forest types like this. Forest transitions in the study 

period did not correlate in any large way with abandoned agricultural fields and pastures, nor 

with proximity to areas of shaded coffee production. We did find considerably more samples 

of increasing slopes in and near PAs within the Trifinio Region relative to areas more distant 

from protected areas, and this is a finding that deserves future investigation. It is conceivable 

that the dry season timing of the time series of percent greenness data impacted the outcome 

of this study. 

We found that two texture measures (relative richness and diversity) are responsive to 

patterns of forest cover and coffee production land uses. Landsat 8 images offered the best 

data for mapping these neotropical forests and their coffee land uses. The new Sentinel 1 
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radar sensor provide data regardless of cloud cover, but did not provide any additional power 

to detect forest or coffee relative to optical sensors. In the future, it would be recommended to 

re-explore this question with L-band systems that penetrate deeper into the vegetative canopy 

than the C-band of Sentinel 1. We found little evidence that the Sentinel 1 active sensor 

images were suitable to identify forest or coffee. The influence of classifying land cover using 

radar was not affected by our choice of classifier. The Maximum Likelihood classifier offered 

the best accuracy among tested classifiers. We achieved medium accuracy using a hybrid 

approach that had been identified a decade ago using older Landsat images and effective 

incidence angles to offset the impact of the angle of solar reflectance. Future activities should 

seek to conduct similar assessments with multi-polarized radar data, as these have reportedly 

offered increased abilities to identify surfaces. Better onsite connections, working directly 

with local farmers and coffee cooperatives, and local researchers could improve the quality of 

training site materials. This work did blaze a trail for those who will come later, as few have 

yet conducted such work in Central America, let alone the Trifinio Region. The need for 

further education and connection of land use science with patterns of land cover changes 

remains. 

 

Uncertainties and Caveats 

Potential Uncertainties of the Overall Work 

 There are a number of relevant uncertainties that could be mentioned (organized by 

relevance to Chapter), including:  

  

 Chapter 1: 1, 3, 4, 6 

  

 Chapter 2: 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14    

  

 Chapter 3: 2, 3, 4, 6, 7, 8, 9, 10, 11 

   

1. Landsat 5 viewing geometry changes. 

 This study tried to use Landsat 5 as much as possible, because it has been the most 

consistent satellite sensor over time. However, a recent review of the 27-year archive of this 

satellite showed there have been small but noticeable inconsistencies in the viewing geometry 
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due to a combination of orbital changes and reflectance anisotropy. These impacted the 

sensor's NDVI values over time, with the overpass time changing about an hour, and solar 

zenith by more than 10 degrees (Zhang and Roy, 2016). While this certainly would have 

impacted the current study, it offers another reason for the use of quintiles as a conservative 

method to quantify change. 

  

2. Using NDVI as a proxy for landcover or forest cover change. 

     As my initial efforts to map forest cover in the Trifinio Region were spectrally 

confused by shade coffee production, as noted in Chapter 2, I decided to use NDVI as a proxy 

for forest cover. However, NDVI as a measure of the relative degree of greenness, does not 

offer a result the same as classical remotely-sensed maps (with supervised classifications and 

hard boundaries). Land cover (e.g. broadleaf, conifer, and mixed forest) and land use (coffee, 

agriculture, pasture, urban, and others) change for each of the seven temporal epochs were 

desired for comparison over time. My conclusion for the initial mapping failed because it not 

did not separate the predicted forest cover layer into forest and coffee classes (e.g. a sun 

coffee, a shade coffee, an immature coffee, a mature coffee) because of the spectral confusion 

between shade coffee and forest cover. A comparison of the predicted forest layer with very 

high-resolution data showed that the forest cover predicted in many locations was in fact 

natural vegetation-based coffee shading components, as well as coffee itself. 

  

3. Lack of illumination correction. 

None of the satellite data used in Chapter 2 and Chapter 3 were corrected for 

illumination (impacts of topographic slope and aspect) (with exception of a single test in 

Chapter 3 to include illumination correction created with different parts of the TIRS spectrum 

(via bands 10 and 11). 

  

4. Contentious issue of signal saturation (for tropical evergreen of moderate to high 

biomass) (Yengoh et al., 2016). 

Some scientists believe that NDVI saturation is a potential uncertainty with tropical 

evergreen areas of moderate to high biomass. If this issue is true, then this was a potential 

issue for study in several of the protected areas, especially in the Celaque National Park in 

Honduras, where no significant regrowth signal was found that had been reported by other 
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researchers 20 years earlier. However, Yengoh et al., (2016) argue that in fact saturation does 

not occur, and that instead photosynthesis is at a maximum because no more light can be 

absorbed. 

  

5. Temporal transition class assignments. 

Conservative class labels (20% categories - called quintiles) were assigned 

purposefully to the land cover transitions to avoid any chance of creating change just because 

a small threshold had been surpassed. Three types of changes were permitted (increasing, flat, 

and decreasing), with 15 and 30-year periods containing the entire study period and the most 

recent 15-year period. Different results may have occurred if we had considered the period of 

1986-2001, as multiple directions could have been encountered. 

  

6. Dry season timing of our study. 

The dry season is a difficult time to see forest cover (as most broadleaf trees are in 

leaf-off). There was no other option as the cloud cover was extensive in all other images of 

the region. 

 

7.  Single polarization of RADAR. 

Single polarized RADAR (was the only type available for during the study period. 

Dual polarized data are available now, and these data together been proven to achieve much 

better success at recognizing ground cover. 

  

8. Lack of onsite components (no onsite field work). 

As a result of security issues, we did not go to the field in the study site. However, it 

would have been more fruitful to have had a better feeling for the vegetation types and to have 

gained coordinate data via GPS for shade and sun coffee training sites. 

  

9. Use of Google Earth for validation of validation maps. 

Google Earth is not a completely reliable source for mapping. Google Earth mapped 

data was used as a method of last resort for verifying the national forest maps used as 

validation maps for accuracy assessment.  
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10. Mismatch between dates of validation maps. 

There was a mismatch of years (as many as 5 years) among the validation map sources 

that were joined for the study subset to measure accuracy in Chapter 3. 

  

11. Mismatch between satellite image dates. 

There was an unavoidable mismatch between one satellite image acquisition date that 

likely was impacted by a small green-up due to rainfall in the study region, but there was no 

alternate image to use because of cloud cover. 

  

12. Large sample size affected p-values. 

Texture predictors underwent transformations of square root, logarithm, and cube root 

and subjected to Logistic Regressions to seek significant correlates in R. The sample size was 

72,000 (10% of the 721,000 stratified random point samples within Trifinio Region. It is quite 

likely that this impacted our significant finding of texture measures being statistically 

significant predictors of shade coffee. 

  

13. Very small, but statistically-significant p-values. 

Very small, but statistically-significant p-values almost certainly impacted our 

outcome, probably due to the very large sample size. For example, shade coffee and diversity 

have a lower Confidence Interval bound of 0.0024, therefore the increase in likelihood from a 

one-unit increase in diversity would have only impacted our observation likelihood by 

1.0002430 times.  

 

14. Flat slope transitions has several positions higher and lower. 

 As flat slope transition has several potential positions (e.g. 5555555, 4444444, 

3333333, and 2222222), as well as the type that oscillates up and down by a single quintile 

over the seven epochs. It would be important to ascertain which type of class is apparent for 

any one region, and additionally to determine what happens to the flat slope at other parts of 

the year, by comparing its location spatially and spectrally with another method of monitoring 

NDVI (e.g. MODIS or GIMMS).  
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What does this all mean? How does it relate to LCLUC drivers? 

 My dissertation contributes to the science of LCLUC in the development of 

knowledge about changes in land cover and in response to drivers of land use transitions in a 

transboundary region of Central America. The NDVI trajectories (in the form of temporal 

transition classes) function as indicators for land cover degradation and vegetative recovery 

(and soil color changes) (Tovar, 2012). Accommodating some of the simple uncertainties 

(illumination correction, improving onsite knowledge, adding dual polarization to the 

RADAR band) should improve our understanding of the loses and gains. Landsat NDVI is 

already a useful tool to understand local processes and alert management to high level 

changes, but though often inconsistent (Cui et al, 2013; Zhang & Roy, 2015). Reducing its 

uncertainties will facilitate better understanding of forest loss drivers.  

  

Alternative data and measures 

 Wilson and Sader (2002) reviewed and compared other methods in a temperate forest 

exercise (at a hardwood site, leaf-on, and during the summer in the State of Maine) and 

included the Normalized Difference Moisture Index (NDMI) which uses the mid-infrared 

(MIR) band instead of the near-infrared, and found it superior to NDVI in a series of 

classifications of multi-layer change maps, investigating interval lengths between changes. 

The MIR band, an absorber of water, had reduced reflectance. The number of bands used and 

the length of the interval in the change detection, were important, with the highest six interval 

change created with seven dates of images 2-3 years apart being the most accurate. This 

compares well with my effort, except that the length of time between the limits of the 

intervals are longer in the Trifinio work, mostly 5, but as much as 8 years. Alternative 

measures include tasseled cap transformations (TCT) that can convert Landsat image layers 

into a set of wetness, greenness, and brightness layers that can be used to identify vegetation 

state, moisture, and degree of soil background & senescence.  Two alternative data sets, 

recommended by literature are considered the "best" data for long term analyses of NDVI 

(MODIS & GIMMS3g) (Yengoh et al, 2014; Mbow et al, 2015), however neither of these are 

likely very useful for sensing smallholder Central American agricultural assessment due to 

pixel resolution (250 meters & 1 kilometer, respectively), but for wide-area assessment time 

series work, these could be applied and compared with the Landsat short time series result. 
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 Land cover restoration and land use management efforts have been carried out 

elsewhere using NDVI time-series analyses. A comprehensive publication on the global 

experience with NDVI with useful examples of sub-global land use management via remote 

sensing can be found in Appendix A of Yengoh et al. (2015) "Inventory of Some Global and 

Sub-global Remote Sensing-Based Land Degradation Assessments". Topics of relevance to 

the Trifinio Region include drought, vegetation dynamics, ecosystem resilience, land use and 

land cover change, and drivers of degradation. Satellite image products used included 

Advanced Very High-Resolution Radiometer (AVHRR), Global Inventory for Mapping and 

Modeling Studies (GIMMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), 

Landsat, and Pathfinder AVHRR Land (PAL). Three of these efforts used Landsat data, and 

included topics of LCLUC, Soil Organic Carbon and Salinization, Desertification, and 

Vegetation Burning and Recovery. LCLUC was assessed with two images of southern Italy 

and the NDVI differencing approach (Mancini et al, 2014). In a study on desertification, Xu 

et al (2009) examined the Ordos region of Chinese Inner Mongolia using 21 Landsat MSS and 

TM images from 1980-2000 and NDVI and the Moving Standard Deviation Index (MSDI) to 

characterize desertification in 5 grades. The project developed rule-sets (thresholds to assign 

differing levels of NDVI, MSDI, and Albedo) to differing desertification stages (non, low, 

medium, high, and severe) for use with a decision tree. In a study on fire severity, Diaz-

Delgado et al (2003) used summed Landsat TM NDVI and fire severity classes to monitor 

regeneration after fire; they built a new variable of avg NDVI (in burned parcel by severity) 

divided by avg NDVI of a control location, to better understand the impact of fire severity on 

regeneration.   

 

Potential next steps 

Chapter 1 

A new 2016 map for Trifinio needs to be created to compare land use change between 

CATHALAC and current day. These data must be corrected for illumination and can 

overcome the coffee spectral confusion issue using brute force cluster-busting) and validation 

data collected by an onsite field component, perhaps with the assistance of PROTCAFE or 

CUNORI. 
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Chapter 2 

There is a need to follow up on areas with questions: including where and why are 

there thousands of increasing trend slopes in protected areas inside Trifinio, and why were 

there almost none outside of Trifinio; and what do the flat trends mean? Are they areas of 

degraded grasslands, irrigated agriculture, or perennial cropping? As well, a classical remote 

sensing approach should be sought with the Celaque National Park area for the years of the 

Nagendra et al (2003) study to replicate its finding and determine if these trees remained 

growing. It would useful to compare the slope transition classes with the tasseled cap wetness 

(Lea et al, 2003) procedure to verify to clarify our understanding of the transitions.  

 

Chapter 3 

The shade coffee-texture work should be replicated in Turrialba, Costa Rica, using a 

variety of large texture windows identified as useful by other researchers, and improved with 

an onsite component perhaps connected with Gamma, CIRAD, and Masters students to create 

better training and validation data for a coffee identification activity? convolutional neural 

network (CNN)-based model and classification should be constructed and tested to classify 

immature, adult, and shade coffees in Turrialba.  

A shade coffee and immature coffee database needs to be created as does an image 

library for a convolutional neural network test, though it is conceivable that this can be done 

with Google Earth images, and a regional GIS-based coffee inventory. 

 A study of how object-based classifiers compare with CNN-based classifiers could be 

very productive. 

  

 Lastly increasing technical capacity building in remote sensing and geographic 

processes can help to overcome barriers in the Trifinio Region. Still additional barriers 

include the identification of a regional team, lab space, and support to carry on key GIS and 

remote sensing work and in service to the Trifinio Region. Development of a financial 

proposal to improve technical capacity to the Region to carry out citizen science, and to 

improve knowledge management (e.g. information sharing) could likely be put together with 

the team at CUNORI and be supported by Trifinio's SINTET information management 

system. 
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Appendix A 

Intermediate Results 

 

Table A.1. Classes Mapped by Worldview 2 Segmentation and Classification 

1 Pasture 

2 Shade Coffee 

3 Sun Coffee 

4 Cloud1 bright white tops 

5 Cloud2 lower, hazy, mixed shadow) 

6 Forest 

7 Mature Coffee 

8 Immature Coffee 

9 Shadow 

10 Rural (housing/roofs) 

11 Urban (housing/streets, roofs) 

12 Shrubs 

13 Burned-pasture-woodland 

14 Field Water 

15 River / Lake Water  

16 White Stuff (bare soil or sand) 

17 Tree Crown 

18 Asphalt Road 

19 Dirt Road 

20 Wet Pasture 
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Table A.2. Filter Type and Size Evaluation 

Speckle filter type and size was determined by comparing pre-filtering and post filtering scores 

of the Mean, Sigma, and Equivalent Number of Looks (ENL) values implementing the rule that 

the chosen filter should reduce the speckle but produce post-filtering values that don’t overly 

compromise the dataset. In this case, we chose to use a filter that Despeckles (D), didn’t Reduce 

(R), because reducing adaptive filters assumed there is a need to preserve edges. 

 

 

  

MEAN Reduce/ Kernel BEST SCORE

Type Despeckle 3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9 3x3

Boxcar R 0.1244 0.1244 0.1244 0.1244 0.0000 0.0000 0.0000 0.0000

Median R 0.1171 0.1103 0.1061 0.1033 -0.0073 -0.0141 -0.0183 -0.0211 (larger value

Frost D 0.1236 0.1228 0.1229 0.1232 -0.0008 -0.0016 -0.0015 -0.0012 = higher

Gamma Map R 0.1243 0.1242 0.124 0.124 -0.0001 -0.0002 -0.0004 -0.0004 quality)

Lee D 0.1243 0.1242 0.124 0.124 -0.0001 -0.0002 -0.0004 -0.0004 Lee

Lee Sigma D XXXX 0.1258 0.1245 0.1234 XXXX 0.0014 0.0001 -0.0010

IDAN50 R 0.1087 -0.0157

IDAN75 R 0.1067 -0.0177

IDAN100 R 0.1055 -0.0189

RefinedLee R 0.1176 -0.0068

SIGMA

Reduce/ Kernel SIGMA DIFFERENCE (POST-FILTERING)

Type Despeckle 3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9 3x3

Boxcar R 0.144 0.116 0.0999 0.893 -0.0421 -0.0701 -0.0862 0.7069

Median R 0.1227 0.0866 0.0712 0.0622 -0.0634 -0.0995 -0.1149 -0.1239 (smaller value

Frost D 0.1449 0.1573 0.1629 0.164 -0.0412 -0.0288 -0.0232 -0.0221 = higher

Gamma Map R 0.1435 0.1141 0.1055 0.0943 -0.0426 -0.0720 -0.0806 -0.0918 quality)

Lee D 0.1437 0.1158 0.1015 0.1038 -0.0424 -0.0703 -0.0846 -0.0823 Lee

Lee Sigma D XXXX 0.1769 0.5112 0.172 XXXX -0.0092 0.3251 -0.0141

IDAN50 R 0.089 -0.0971

IDAN75 R 0.0852 -0.1009

IDAN100 R 0.083 -0.1031

RefinedLee R 0.1168 -0.0693

ENL

Reduce/ Kernel

Type Despeckle 3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9 3x3

Boxcar R 0.7459 1.1492 1.549 1.9375 0.2995 0.7028 1.1026 1.4911

Median R 0.9115 1.6215 2.2172 2.7564 0.4651 1.1751 1.7708 2.31 (larger value

Frost D 0.7272 0.6095 0.5692 0.5642 0.2808 0.1631 0.1228 0.1178 = higher

Gamma Map R 0.75 1.1819 1.3772 1.7128 0.3036 0.7355 0.9308 1.2664 quality)

Lee D 0.7483 1.1502 1.4934 1.4273 0.3019 0.7038 1.047 0.9809 Lee

Lee Sigma D XXXX 0.5054 0.5112 0.5147 XXXX 0.059 0.0648 0.0683

IDAN50 R 1.4922 1.0458

IDAN75 R 1.568 1.1216

IDAN100 R 1.6165 1.1701

RefinedLee R 1.0147 0.5683

MEAN DIFFERENCE (POST-FILTERING)

ENL DIFFERENCE (POST-FILTERING)
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Table A.3. Landsat 8 Correlation Matrix 

Optical Band Correlation/Correlation Matrices per image type. Landsat 8 bands 1-4, 6 & 7 

show significant correlation, while bands 5, 9, 10, and 11 are not (Table A.3). 

 

 

Table A.4. Sentinel 2a Band Correlation Matrix 

Sentinel 2A bands 2,3, and 4 are highly correlated while band 8 is not. 

 

 

Table A.5. Worldview 2 Correlation Matrix 

Worldview 2 Correlation Frequency Matrix (by band 1-8). 

  B1 B2 B3 B4 B5 B6 B7 B8 

B1   8 8 8 2 0 0 0 

B2     8 8 5 0 0 0 

B3       8 8 2 0 0 

B4         8 0 0 0 

B5           0 0 0 

B6             8 8 

B7               8 

 

The table values indicate the frequency in number of images (of the eight adjacent images 

research tiles) where there was a Pearson’s correlation value > 0.9.  

B1 B2 B3 B4 B5 B6 B7 B9

B1 1 0.99 0.96 0.95 0.12 0.82 0.87 -0.2

B2 0.99 1 0.97 0.97 0.13 0.84 0.9 -0.17

B3 0.96 0.97 1 0.97 0.27 0.85 0.88 -0.12

B4 0.95 0.97 0.97 1 0.13 0.9 0.93 -0.11

B5 0.12 0.13 0.27 0.13 1 0.24 0.1 0.04

B6 0.82 0.84 0.85 0.9 0.24 1 0.96 -0.11

B7 0.87 0.9 0.88 0.93 0.1 0.96 1 -0.09

B9 -0.2 -0.17 -0.12 -0.11 0.04 -0.11 -0.09 1

B2 B2 B4 B8

B2 1 0.97 0.96 0.1

B3 0.97 1 0.95 0.24

B4 0.96 0.95 1 0.07

B8 0.1 0.24 0.07 1



135 

Table A.6. Principal Components Analysis Results (in percent variance) 

This table shows that use of the first two components would be sufficient to capture 98-99% 

of the image variance. In this case, components C1 and C2 were used in segmentation of the 

Worldview 2 tiles to derive vector training sites. 

 

Table A.7. Correlogram Landsat 8 with GLCMs 

We assessed the Landsat 8 bands and each of the 8 GLCM texture measures and compared 

them with each other in groups as recommended (Hall-Beyer, 2017). Ten bands of Landsat 8 

were correlated with the 8 GLCMs (Table A.7). The only important information is this Table 

is in the top 11 rows. Each major column of colors relates to a Landsat band in order from left 

to right (excluding Band 8) and the very narrow columns relate to a single GLCM measure. 

There is moderate correlation among GLCM measures in optical bands, but not in the 

infrared. 

 

  

cl cat b1g1 b1g2 b1g3 b1g4 b1g5 b1g6 b1g7 b1g8 b2g1 b2g2 b2g3 b2g4 b2g5 b2g6 b2g7 b2g8 b3g1 b3g2 b3g3 b3g4 b3g5 b3g6 b3g7 b3g8 b4g1 b4g2 b4g3 b4g4 b4g5 b4g6 b4g7 b4g8 b5g1 b5g2 b5g3 b5g4 b5g5 b5g6 b5g7 b5g8 b6g1 b6g2 b6g3 b6g4 b6g5 b6g6 b6g7 b6g8 b7g1 b7g2 b7g3 b7g4 b7g5 b7g6 b7g7 b7g8 b9g1 b9g2 b9g3 b9g4 b9g5 b9g6 b9g7 b9g8 b10g1 b10g2 b10g3 b10g4 b10g5 b10g6 b10g7 b10g8 b11g1 b11g2 b11g3 b11g4 b11g5 b11g6 b11g7 b11g8

cat 1 0.14 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.14 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.16 0.07 0.07 0.08 0.08 0.08 0.07 0.02 0.14 0.06 0.07 0.08 0.08 0.06 0.06 0.05 0.08 0.02 0.02 0.02 0.02 0.03 0.03 0.01 0.09 0.05 0.04 0.05 0.05 0.04 0.04 0.01 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0 0.2 0.02 0.02 0.01 0.02 0.01 0.02 0.015 0.285 0.024 0.025 0.025 0.025 0.024 0.025 0.031 0.31 0.005 0.006 0.006 0.006 0.006 0.006 x

b1g1 0.1 1.0 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.9 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.8 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.7 0.2 0.2 0.3 0.3 0.2 0.2 0.0 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 x

b1g2 0.0 0.4 1.0 0.7 0.8 0.8 0.8 0.8 0.0 0.4 0.7 0.6 0.6 0.6 0.6 0.6 0.0 0.4 0.6 0.5 0.6 0.6 0.5 0.5 0.1 0.4 0.3 0.5 0.5 0.5 0.3 0.3 0.3 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.3 0.5 0.4 0.4 0.4 0.4 0.3 0.1 0.3 0.6 0.5 0.5 0.5 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b1g3 0.0 0.4 0.7 1.0 0.9 0.9 0.8 0.8 0.2 0.4 0.6 0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.5 0.6 0.6 0.6 0.5 0.5 0.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.5 0.5 0.4 0.3 0.0 0.4 0.5 0.5 0.5 0.6 0.4 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b1g4 0.0 0.4 0.8 0.9 1.0 0.5 0.8 0.8 0.2 0.4 0.6 0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.6 0.6 0.6 0.6 0.5 0.5 0.0 0.4 0.3 0.4 0.5 0.4 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.5 0.5 0.4 0.3 0.0 0.4 0.5 0.5 0.6 0.6 0.4 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b1g5 0.0 0.4 0.8 1.0 0.9 1.0 0.8 0.8 0.2 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.1 0.4 0.5 0.6 0.6 0.6 0.5 0.5 0.0 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.5 0.5 0.4 0.3 0.0 0.4 0.5 0.5 0.6 0.6 0.5 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b1g6 0.0 0.4 0.8 0.8 0.8 0.8 1.0 0.9 0.1 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.0 0.4 0.6 0.5 0.6 0.6 0.5 0.5 0.1 0.4 0.3 0.5 0.5 0.5 0.4 0.4 0.3 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.4 0.5 0.5 0.5 0.5 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b1g7 0.0 0.4 0.8 0.8 0.8 0.8 0.9 1.0 0.0 0.4 0.6 0.5 0.6 0.6 0.6 0.6 0.0 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.4 0.3 0.5 0.5 0.5 0.4 0.4 0.3 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b1g8 0.0 0.1 0.0 0.2 0.2 0.2 0.1 0.0 1.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.3 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b2g1 0.1 0.9 0.4 0.4 0.4 0.4 0.4 0.4 0.1 1.0 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.9 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.8 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.7 0.3 0.2 0.3 0.3 0.2 0.2 0.0 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 x

b2g2 0.0 0.4 0.7 0.6 0.6 0.6 0.6 0.6 0.0 0.4 1.0 0.7 0.8 0.8 0.8 0.8 0.0 0.4 0.6 0.5 0.6 0.6 0.5 0.5 0.1 0.4 0.4 0.5 0.5 0.5 0.4 0.4 0.3 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.3 0.5 0.4 0.5 0.4 0.4 0.3 0.1 0.4 0.6 0.5 0.5 0.5 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b2g3 0.0 0.4 0.6 0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.7 1.0 0.9 1.0 0.8 0.8 0.2 0.4 0.5 0.6 0.6 0.6 0.5 0.5 0.0 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.5 0.5 0.4 0.3 0.0 0.4 0.5 0.5 0.5 0.6 0.5 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b2g4 0.0 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.1 0.4 0.8 0.9 1.0 1.0 0.8 0.8 0.2 0.4 0.6 0.6 0.6 0.6 0.5 0.5 0.0 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.5 0.5 0.4 0.3 0.0 0.4 0.5 0.5 0.6 0.6 0.5 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b2g5 0.0 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.1 0.4 0.8 1.0 1.0 1.0 0.8 0.8 0.2 0.4 0.6 0.6 0.6 0.6 0.5 0.5 0.0 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.5 0.5 0.4 0.3 0.0 0.4 0.5 0.5 0.6 0.6 0.5 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b2g6 0.0 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.0 0.4 0.8 0.8 0.8 0.8 1.0 0.9 0.1 0.4 0.6 0.5 0.6 0.6 0.6 0.5 0.1 0.4 0.4 0.5 0.5 0.5 0.4 0.4 0.3 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.3 0.4 0.4 0.5 0.4 0.4 0.4 0.1 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b2g7 0.0 0.4 0.6 0.5 0.5 0.6 0.6 0.6 0.0 0.4 0.8 0.8 0.8 0.8 0.9 1.0 0.1 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.4 0.4 0.5 0.5 0.5 0.4 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.1 0.4 0.5 0.5 0.5 0.5 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b2g8 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.1 0.0 0.2 0.2 0.2 0.1 0.1 1.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.3 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b3g1 0.2 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.9 0.4 0.4 0.4 0.4 0.4 0.4 0.1 1.0 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.8 0.3 0.2 0.3 0.3 0.2 0.2 0.0 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 x

b3g2 0.1 0.4 0.6 0.5 0.6 0.5 0.6 0.5 0.0 0.4 0.6 0.5 0.6 0.6 0.6 0.5 0.0 0.4 1.0 0.7 0.8 0.8 0.8 0.7 0.2 0.4 0.3 0.5 0.5 0.5 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.1 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b3g3 0.1 0.4 0.5 0.6 0.6 0.6 0.5 0.5 0.1 0.4 0.5 0.6 0.6 0.6 0.5 0.5 0.1 0.4 0.7 1.0 0.9 0.9 0.8 0.8 0.0 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.5 0.5 0.5 0.4 0.4 0.0 0.3 0.5 0.5 0.5 0.5 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b3g4 0.1 0.4 0.6 0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.6 0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.8 0.9 1.0 0.9 0.8 0.7 0.0 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.0 0.3 0.5 0.5 0.5 0.5 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b3g5 0.1 0.4 0.6 0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.6 0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.8 0.9 0.9 1.0 0.8 0.8 0.0 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.5 0.5 0.5 0.4 0.4 0.0 0.3 0.5 0.5 0.5 0.5 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b3g6 0.1 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.4 0.5 0.5 0.5 0.5 0.6 0.5 0.0 0.4 0.8 0.8 0.8 0.8 1.0 0.9 0.1 0.4 0.3 0.5 0.5 0.5 0.4 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.1 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b3g7 0.1 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.4 0.7 0.8 0.7 0.8 0.9 1.0 0.1 0.4 0.3 0.5 0.5 0.5 0.4 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b3g8 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.2 0.0 0.0 0.0 0.1 0.1 1.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 x

b4g1 0.1 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.0 1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.8 0.3 0.2 0.3 0.3 0.2 0.2 0.0 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 x

b4g2 0.1 0.2 0.3 0.4 0.3 0.4 0.3 0.3 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.0 0.3 1.0 0.6 0.6 0.6 0.6 0.6 0.3 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.2 0.3 0.4 0.3 0.4 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 x

b4g3 0.1 0.3 0.5 0.4 0.4 0.4 0.5 0.5 0.0 0.3 0.5 0.4 0.4 0.4 0.5 0.5 0.0 0.3 0.5 0.4 0.4 0.4 0.5 0.5 0.1 0.3 0.6 1.0 0.9 1.0 0.7 0.7 0.5 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.5 0.4 0.4 0.4 0.4 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b4g4 0.1 0.3 0.5 0.4 0.5 0.5 0.5 0.5 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.6 0.9 1.0 1.0 0.7 0.7 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b4g5 0.1 0.3 0.5 0.4 0.4 0.5 0.5 0.5 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.6 1.0 1.0 1.0 0.7 0.7 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.5 0.4 0.5 0.5 0.4 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b4g6 0.1 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.0 0.3 0.6 0.7 0.7 0.7 1.0 1.0 0.4 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.4 0.4 0.3 0.3 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.1 0.1 0.1 x

b4g7 0.1 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.0 0.3 0.6 0.7 0.7 0.7 1.0 1.0 0.4 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.4 0.4 0.3 0.3 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.1 0.1 0.1 x

b4g8 0.0 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.0 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.0 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.1 0.2 0.3 0.5 0.4 0.4 0.4 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g2 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 1.0 0.6 0.7 0.7 0.6 0.6 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g3 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.6 1.0 0.7 0.8 0.7 0.7 0.0 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g4 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.7 0.7 1.0 0.9 0.6 0.6 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g5 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.7 0.8 0.9 1.0 0.7 0.6 0.0 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g6 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.6 0.7 0.6 0.7 1.0 0.9 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g7 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.6 0.7 0.6 0.6 0.9 1.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b5g8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.3 0.0 0.0 0.0 0.2 0.2 1.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 x

b6g1 0.1 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.8 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.0 1.0 0.2 0.2 0.3 0.3 0.2 0.2 0.0 0.9 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 x

b6g2 0.0 0.2 0.5 0.4 0.4 0.4 0.4 0.4 0.0 0.3 0.5 0.4 0.4 0.4 0.4 0.4 0.0 0.3 0.5 0.4 0.5 0.4 0.5 0.4 0.1 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 1.0 0.6 0.8 0.7 0.6 0.5 0.2 0.3 0.7 0.5 0.6 0.6 0.6 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 x

b6g3 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.4 0.5 0.4 0.5 0.4 0.4 0.0 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.0 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.6 1.0 0.7 0.8 0.6 0.6 0.0 0.2 0.5 0.7 0.6 0.6 0.5 0.5 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 x

b6g4 0.0 0.3 0.4 0.5 0.5 0.5 0.4 0.4 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.4 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.4 0.0 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.8 0.7 1.0 0.9 0.6 0.5 0.1 0.3 0.6 0.6 0.7 0.7 0.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 x

b6g5 0.0 0.3 0.4 0.5 0.5 0.5 0.4 0.4 0.1 0.3 0.4 0.5 0.5 0.5 0.4 0.4 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.4 0.0 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.0 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.3 0.7 0.8 0.9 1.0 0.6 0.6 0.0 0.3 0.6 0.7 0.7 0.7 0.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 x

b6g6 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.2 0.3 0.4 0.4 0.4 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.6 0.6 0.6 0.6 1.0 0.9 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 x

b6g7 0.0 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.0 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.2 0.3 0.4 0.4 0.4 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.5 0.6 0.5 0.6 0.9 1.0 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 x

b6g8 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.1 0.0 0.2 0.2 1.0 0.0 0.2 0.0 0.1 0.0 0.1 0.1 0.6 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 x

b7g1 0.1 0.8 0.3 0.4 0.4 0.4 0.4 0.3 0.1 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.8 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.0 0.9 0.3 0.2 0.3 0.3 0.2 0.2 0.0 1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 x

b7g2 0.0 0.3 0.6 0.5 0.5 0.5 0.5 0.5 0.0 0.3 0.6 0.5 0.5 0.5 0.5 0.5 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.3 0.5 0.5 0.5 0.4 0.4 0.3 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.3 0.7 0.5 0.6 0.6 0.5 0.5 0.2 0.3 1.0 0.6 0.8 0.7 0.7 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b7g3 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.3 0.4 0.5 0.5 0.5 0.4 0.4 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.5 0.7 0.6 0.7 0.5 0.5 0.0 0.3 0.6 1.0 0.8 0.9 0.7 0.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b7g4 0.0 0.3 0.5 0.5 0.6 0.6 0.5 0.5 0.1 0.3 0.5 0.5 0.6 0.6 0.5 0.5 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.3 0.3 0.4 0.5 0.5 0.4 0.4 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.6 0.6 0.7 0.7 0.5 0.5 0.1 0.3 0.8 0.8 1.0 0.9 0.6 0.6 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b7g5 0.0 0.3 0.5 0.6 0.6 0.6 0.5 0.5 0.1 0.3 0.5 0.6 0.6 0.6 0.5 0.5 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.3 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.6 0.6 0.7 0.7 0.5 0.5 0.0 0.3 0.7 0.9 0.9 1.0 0.7 0.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b7g6 0.0 0.3 0.5 0.4 0.4 0.5 0.5 0.5 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.6 0.5 0.5 0.6 0.5 0.5 0.1 0.3 0.7 0.7 0.6 0.7 1.0 0.9 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b7g7 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.3 0.4 0.4 0.4 0.4 0.5 0.4 0.1 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.6 0.7 0.6 0.7 0.9 1.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 x

b7g8 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.2 0.0 0.1 0.0 0.1 0.1 0.6 0.0 0.2 0.0 0.1 0.0 0.1 0.2 1.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.7 0.7 0.7 0.8 0.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.7 1.0 0.9 1.0 0.8 0.8 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.9 1.0 0.9 0.8 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.7 1.0 0.9 1.0 0.8 0.8 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.8 0.8 0.8 1.0 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.8 0.7 0.8 0.9 1.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 x

b9g8 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.2 0.2 0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 x

b10g1 0.3 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.6 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.0 0.0 0.0 0.0 0.0 0.0 x

b10g2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.9 0.9 0.9 0.9 0.9 0.8 0.1 0.2 0.2 0.2 0.2 0.2 0.2 x

b10g3 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 1.0 1.0 1.0 1.0 1.0 0.8 0.1 0.2 0.2 0.2 0.2 0.2 0.2 x

b10g4 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 1.0 1.0 1.0 1.0 1.0 0.8 0.1 0.2 0.2 0.2 0.2 0.2 0.2 x

b10g5 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 1.0 1.0 1.0 1.0 1.0 0.8 0.1 0.2 0.2 0.2 0.2 0.2 0.2 x

b10g6 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 1.0 1.0 1.0 1.0 1.0 0.8 0.1 0.2 0.2 0.2 0.2 0.2 0.2 x

b10g7 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 1.0 1.0 1.0 1.0 1.0 0.8 0.1 0.2 0.2 0.2 0.2 0.2 0.2 x

b10g8 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.8 0.8 0.8 0.8 0.8 1.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 x

b11g1 0.3 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.6 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 x

b11g2 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 1.0 0.9 0.9 0.9 0.9 0.9 x

b11g3 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.9 1.0 1.0 1.0 1.0 1.0 x

b11g4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.9 1.0 1.0 1.0 1.0 1.0 x

b11g5 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.9 1.0 1.0 1.0 1.0 1.0 x

b11g6 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.9 1.0 1.0 1.0 1.0 1.0 x

b11g7 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.9 1.0 1.0 1.0 1.0 1.0 x

b11g8 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.8 0.8 0.8 0.8 0.8 0.8 x

0.0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

X<0.4 X>0.6<0.8 X=1

X>0.4<0.6 X>0.8<1.0
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Table A.8. Logistic regression model results in R for cube-root transformed shade 

coffee and forest texture predictors (Relative Richness and Dominance).  

 

> summary(modelesveg3f72) 

 

Call: 

glm(formula = veg2 ~ gep3Rt(dBibv) + gep3Rt(dBibvd), family = binomial(link = "logit"),  

    data = modeles, maxit = 100) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-0.8162  -0.7337  -0.7292  -0.7234   1.7139   

 

Coefficients: 

               Estimate Std. Error z value Pr(>|z|)     

(Intercept)    -1.22502    0.08825 -13.880  < 2e-16 *** 

gep3Rt(dBibv)   0.23397    0.08959   2.612  0.00901 **  

gep3Rt(dBibvd) -0.39739    0.12508  -3.177  0.00149 **  

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 66483  on 60943  degrees of freedom 

Residual deviance: 66473  on 60941  degrees of freedom 

AIC: 66479 

 

Number of Fisher Scoring iterations: 4 

 

========================== 

> summary(modelesveg3f66) 
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Call: 

glm(formula = veg6 ~ gep3Rt(dBibv) + gep3Rt(dBibvd) + gep3Rt(dBibvdi),  

    family = binomial(link = "logit"), data = modeles, maxit = 100) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-0.9970  -0.9455  -0.9263   1.4262   1.5777   

 

Coefficients: 

                 Estimate Std. Error z value Pr(>|z|)     

(Intercept)     -1.078535   0.079308 -13.599   <2e-16 *** 

gep3Rt(dBibv)    0.136986   0.084353   1.624   0.1044     

gep3Rt(dBibvd)   0.212938   0.121580   1.751   0.0799 .  

gep3Rt(dBibvdi)  0.003474   0.057890   0.060   0.9521     

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 79258  on 60943  degrees of freedom 

Residual deviance: 79209  on 60940  degrees of freedom 

AIC: 79217 

 

Number of Fisher Scoring iterations: 4 

============================== 

> summary(modelesveg3f76) 

 

Call: 

glm(formula = veg6 ~ gep3Rt(dBibv) + gep3Rt(dBibvd), family = binomial(link = "logit"),  

    data = modeles, maxit = 100) 
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Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-0.9978  -0.9453  -0.9260   1.4262   1.5767   

 

Coefficients: 

               Estimate Std. Error z value Pr(>|z|)     

(Intercept)    -1.07782    0.07841 -13.745   <2e-16 *** 

gep3Rt(dBibv)   0.13808    0.08235   1.677   0.0936 .  

gep3Rt(dBibvd)  0.21171    0.11982   1.767   0.0772 .  

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 79258  on 60943  degrees of freedom 

Residual deviance: 79209  on 60941  degrees of freedom 

AIC: 79215 

 

Number of Fisher Scoring iterations: 4 
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Table A.9. Confusion Matrices – Part 1 

Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_KNN 

(rows : mapped) 

 
 1 2 3 4 5 Total ErrorC 

1 266710 173816 517636 142683 333050 1433895 0.813996 

2 750727 1085608 2626605 333891 699984 5496815 0.802502 

3 380236 61745 1769900 178896 198388 2589165 0.316421 

9 1995223 45499 1634805 1407195 912280 5995002 1 

10 279429 440 73183 318724 77679 749455 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.927373 0.205909 0.732729 1 1  0.708033 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000161 ( 0.807872 - 0.808193)  

95% Confidence Interval = +/- 0.000191 ( 0.807841 - 0.808224)  

99% Confidence Interval = +/- 0.000252 ( 0.807781 - 0.808285) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_KNN as the reference image ... 

Category KIA 

1 -0.051389 

2 0.123853 

3 0.466266 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 -0.017037 

2 0.308974 

3 0.128540 

4 0.0000 

5 0.0000 

Overall Kappa = 0.088893 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_MLC 

(rows : mapped) 

 
 1 2 3 4 5 Total ErrorC 

1 14019 7018 12957 12885 11210 58089 0.758663 

2 2342614 1206854 5127664 1274454 1585822 11537408 0.895396 

3 87672 95204 837314 37743 108168 1166101 0.281954 

9 1027011 59166 597786 853073 454021 2991057 1 

10 201105 56 47792 208593 62183 519729 1 

Total 3672421 1368298 6623513 2386748 2221404 16272384  

Error0 0.996183 0.117989 0.873585 1 1  0.873517 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

 

90% Confidence Interval = +/- 0.000136 ( 0.873381 - 0.873652)  

95% Confidence Interval = +/- 0.000162 ( 0.873355 - 0.873678)  

99% Confidence Interval = +/- 0.000213 ( 0.873304 - 0.873729) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_MLC as the reference image ... 

 

Category KIA 

1 0.020214 

2 0.022400 

3 0.524497 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.000248 

2 0.594515 

3 0.058981 

4 0.0000 

5 0.0000 
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Overall Kappa = 0.040520 

Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_N_B 

(rows : mapped) 

 
 1 2 3 4 5 Total ErrorC 

1 460964 136997 810118 256544 385242 2049865 0.775125 

2 1393917 1158116 4254605 665061 1090167 8561866 0.864736 

3 25275 30389 852516 8523 56898 973601 0.124368 

9 974770 22594 313712 747900 354097 2413073 1 

10 817495 20202 392562 708720 335000 2273979 1 

Total 3672421 1368298 6623513 2386748 2221404 16272384  

Error0 0.874480 0.153608 0.871289 1 1  0.758111 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000146 ( 0.847965 - 0.848257)  

95% Confidence Interval = +/- 0.000174 ( 0.847937 - 0.848285)  

99% Confidence Interval = +/- 0.000230 ( 0.847881 - 0.848341) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_N_B as the reference image ... 

Category KIA 

1 -0.001045 

2 0.055876 

3 0.790259 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 -0.000517 

2 0.205823 

3 0.073262 

4 0.0000 

5 0.0000 
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Overall Kappa = 0.060757 

Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_NNET 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 1163337 170840 686611 891399 539050 3451237 0.662922 

2 1705789 1009937 3576512 799305 1334895 8426438 0.880147 

3 279231 177603 2231202 91502 201037 2980575 0.251419 

9 523968 8728 127804 599183 146399 1406082 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.683215 0.261260 0.663069 1 1  0.729194 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000181 ( 0.729013 - 0.729375)  

95% Confidence Interval = +/- 0.000216 ( 0.728978 - 0.729410)  

99% Confidence Interval = +/- 0.000284 ( 0.728910 - 0.729478) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_NNET as the reference image ... 

Category KIA 

1 0.143744 

2 0.039083 

3 0.575910 

9 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.132759 

2 0.306862 

3 0.188154 

4 0.0000 

5 0.0000 

Overall Kappa = 0.125587 

  



143 

Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_RF (rows 

: mapped) 

 1 2 3 4 5 Total ErrorC 

1 93658 57338 119599 64887 71477 406959 0.769859 

2 1349801 1167088 2985855 655190 974449 7132383 0.836368 

3 524512 120136 2790512 261251 563782 4260193 0.344980 

9 1246171 21680 573814 933068 463583 3238316 1 

10 458279 2056 153733 472352 148113 1234533 1 

Total 3672421 1368298 6623513 2386748 2221404 16272384  

Error0 0.974497 0.147051 0.578696 1 1  0.711035 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

 

90% Confidence Interval = +/- 0.000176 ( 0.750858 - 0.751211)  

95% Confidence Interval = +/- 0.000210 ( 0.750825 - 0.751245)  

99% Confidence Interval = +/- 0.000277 ( 0.750758 - 0.751311) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_RF as the reference image ... 

Category KIA 

1 0.005756 

2 0.086848 

3 0.418207 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.000507 

2 0.728197 

3 0.216066 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.117400 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_SVM 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 486541 76957 694691 302691 334471 1895351 0.743298 

2 1632289 947045 2515386 885597 960791 6941108 0.863560 

3 403328 326207 2995076 163924 504600 4393135 0.318237 

9 177743 12662 47429 177928 84181 499943 1 

10 972520 5427 370931 856608 337361 2542847 1 

Total 3672421 1368298 6623513 2386748 2221404 16272384  

Error0 0.867515 0.307866 0.547812 1 1  0.727842 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

 

90% Confidence Interval = +/- 0.000181 ( 0.727660 - 0.728023)  

95% Confidence Interval = +/- 0.000216 ( 0.727626 - 0.728058)  

99% Confidence Interval = +/- 0.000285 ( 0.727557 - 0.728127) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_SVM as the reference image ... 

Category KIA 

1 0.040059 

2 0.057159 

3 0.463307 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.018119 

2 0.463126 

3 0.249599 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.120916 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_S2_KNN 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 328699 132213 510139 223225 170503 1364779 0.759156 

2 1325087 888433 2560442 707984 775405 6257351 0.858018 

3 666957 286117 3133478 285020 730744 5102316 0.385871 

9 1259076 57636 365126 1087842 477252 3246932 1 

10 92506 2709 52944 77318 67477 292954 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.910493 0.350137 0.526817 1 1  0.732506 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000181 ( 0.732326 - 0.732687)  

95% Confidence Interval = +/- 0.000215 ( 0.732291 - 0.732721)  

99% Confidence Interval = +/- 0.000283 ( 0.732223 - 0.732789) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_S2_KNN as the reference image ... 

Category KIA 

1 0.019444 

2 0.063243 

3 0.349118 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.006107 

2 0.430923 

3 0.232367 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.107772 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_S2_MLC 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 352819 99577 517734 255187 227982 1453299 0.757229 

2 1388489 787104 2624754 638646 874956 6313949 0.875339 

3 251439 384950 2653399 108926 287796 3686510 0.280241 

9 1588634 93727 780052 1302789 763809 4529011 1 

10 90944 1750 46190 75841 66838 281563 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.903925 0.424256 0.599313 1 1  0.766771 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000172 ( 0.766598 - 0.766943)  

95% Confidence Interval = +/- 0.000206 ( 0.766565 - 0.766976)  

99% Confidence Interval = +/- 0.000271 ( 0.766500 - 0.767041) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_S2_MLC as the reference image ... 

Category KIA 

1 0.021933 

2 0.044332 

3 0.527294 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.007380 

2 0.306535 

3 0.225030 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.103094 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_S2_N_B 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 538506 212908 823078 333274 302490 2210256 0.756360 

2 863804 857242 2868873 403932 560862 5554713 0.845673 

3 253239 177744 1848530 104251 298358 2682122 0.310796 

9 1149521 53605 303971 1035969 364836 2907902 1 

10 867255 65609 777677 503963 694835 2909339 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.853361 0.372952 0.720856 1 1  0.800528 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000163 ( 0.800365 - 0.800691)  

95% Confidence Interval = +/- 0.000194 ( 0.800334 - 0.800722)  

99% Confidence Interval = +/- 0.000256 ( 0.800272 - 0.800784) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_S2_N_B as the reference image ... 

Category KIA 

1 0.023055 

2 0.076720 

3 0.475754 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.012433 

2 0.433610 

3 0.136795 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.083503 

  



150 

Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_S2_NNET 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 1025607 163696 1131477 671775 662955 3655510 0.719435 

2 1050886 743260 1846694 512083 717725 4870648 0.847400 

3 473710 403592 3317690 175230 475572 4845794 0.315346 

9 1116929 55300 304169 1017278 358535 2852211 1 

10 5193 1260 22099 5023 6594 40169 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.720720 0.456327 0.498999 1 1  0.687257 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000189 ( 0.687068 - 0.687446)  

95% Confidence Interval = +/- 0.000225 ( 0.687032 - 0.687482)  

99% Confidence Interval = +/- 0.000297 ( 0.686960 - 0.687554) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_S2_NNET as the reference image ... 

Category KIA 

1 0.070749 

2 0.074834 

3 0.468078 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.070331 

2 0.348600 

3 0.289235 

4 0.0000 

5 0.0000 

 

 

Overall Kappa = 0.143895 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_S2_RF (rows 

: mapped) 

 1 2 3 4 5 Total ErrorC 

1 309377 117093 509335 210750 158067 1304622 0.762861 

2 1381778 955608 3091902 681604 868910 6979802 0.863090 

3 559095 223505 2573829 242229 637130 4235788 0.392361 

9 1344198 69232 403039 1182973 496660 3496102 1 

10 77877 1670 44024 63833 60614 248018 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.915754 0.301000 0.611329 1 1  0.763973 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000173 ( 0.763800 - 0.764147)  

95% Confidence Interval = +/- 0.000206 ( 0.763767 - 0.764180)  

99% Confidence Interval = +/- 0.000272 ( 0.763702 - 0.764245) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_S2_RF as the reference image ... 

Category KIA 

1 0.014659 

2 0.057705 

3 0.338171 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.004383 

2 0.472718 

3 0.173395 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.090268 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_S2_SVM 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 938396 173187 951709 618757 533004 3215053 0.708124 

2 976310 735196 1868805 437248 660178 4677737 0.842831 

3 507611 401788 3430138 200037 555109 5094683 0.326722 

9 1131275 53782 307321 1033344 384269 2909991 1 

10 118733 3155 64156 92003 88821 366868 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.744468 0.462225 0.482019 1 1  0.686201 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000189 ( 0.686012 - 0.686390)  

95% Confidence Interval = +/- 0.000226 ( 0.685976 - 0.686427)  

99% Confidence Interval = +/- 0.000297 ( 0.685904 - 0.686498) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_S2_SVM as the reference image ... 

Category KIA 

1 0.085359 

2 0.079823 

3 0.448890 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 0.072111 

2 0.351165 

3 0.298123 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.146148 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_COSI10 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 68414 81733 118491 45486 50023 364147 0.812125 

2 1851784 1019361 3552395 1026161 1140223 8589924 0.881331 

3 379423 218825 2410902 140231 427162 3576543 0.325913 

9 1078602 46708 417420 866248 485536 2894514 1 

10 294102 481 122921 303263 118437 839204 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.981370 0.254367 0.635932 1 1  0.784887 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000168 ( 0.784719 - 0.785054)  

95% Confidence Interval = +/- 0.000200 ( 0.784687 - 0.785086)  

99% Confidence Interval = +/- 0.000263 ( 0.784624 - 0.785149) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_COSI10 as the reference image ... 

Category KIA 

1 -0.048973 

2 0.037790 

3 0.450255 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 -0.003846 

2 0.460922 

3 0.184805 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.088419 
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Table A.10. Confusion Matrices – Part 2 

Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_COSI11 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 64075 84020 107600 42615 50011 348321 0.816046 

2 1830382 1028320 3683663 1006240 1169587 8718192 0.882049 

3 329094 212877 2250274 119911 373415 3285571 0.315104 

9 1089354 41512 436583 820235 494220 2881904 1 

10 359420 379 144009 392388 134148 1030344 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.982552 0.247814 0.660189 1 1  0.794479 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000165 ( 0.794314 - 0.794643)  

95% Confidence Interval = +/- 0.000196 ( 0.794282 - 0.794675)  

99% Confidence Interval = +/- 0.000259 ( 0.794220 - 0.794737) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_COSI11 as the reference image ... 

Category KIA 

1 -0.054037 

2 0.037006 

3 0.468487 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 -0.004055 

2 0.465883 

3 0.172685 

4 0.0000 

5 0.0000 

Overall Kappa = 0.084552 
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Error Matrix Analysis of WBVALIDATIONVWR (columns : truth) against PS_L8_COSI11 

(rows : mapped) 

 1 2 3 4 5 Total ErrorC 

1 64075 84020 107600 42615 50011 348321 0.816046 

2 1830382 1028320 3683663 1006240 1169587 8718192 0.882049 

3 329094 212877 2250274 119911 373415 3285571 0.315104 

9 1089354 41512 436583 820235 494220 2881904 1 

10 359420 379 144009 392388 134148 1030344 1 

Total 3672325 1367108 6622129 2381389 2221381 16264332  

Error0 0.982552 0.247814 0.660189 1 1  0.794479 

ErrorO = Errors of Omission (expressed as proportions)  

ErrorC = Errors of Commission (expressed as proportions) 

90% Confidence Interval = +/- 0.000165 ( 0.794314 - 0.794643)  

95% Confidence Interval = +/- 0.000196 ( 0.794282 - 0.794675)  

99% Confidence Interval = +/- 0.000259 ( 0.794220 - 0.794737) 

KAPPA INDEX OF AGREEMENT (KIA) 

Using PS_L8_COSI11 as the reference image ... 

Category KIA 

1 -0.054037 

2 0.037006 

3 0.468487 

9 0.0000 

10 0.0000 

 

WBVALIDATIONVWR 

Category KIA 

1 -0.004055 

2 0.465883 

3 0.172685 

4 0.0000 

5 0.0000 

 

Overall Kappa = 0.084552 
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Table A.11. Landsat 8 Band Correlation Matrix  

  

B1 B2 B3 B4 B5 B6 B7 B9

B1 1 0.99 0.96 0.95 0.12 0.82 0.87 -0.2

B2 0.99 1 0.97 0.97 0.13 0.84 0.9 -0.17

B3 0.96 0.97 1 0.97 0.27 0.85 0.88 -0.12

B4 0.95 0.97 0.97 1 0.13 0.9 0.93 -0.11

B5 0.12 0.13 0.27 0.13 1 0.24 0.1 0.04

B6 0.82 0.84 0.85 0.9 0.24 1 0.96 -0.11

B7 0.87 0.9 0.88 0.93 0.1 0.96 1 -0.09

B9 -0.2 -0.17 -0.12 -0.11 0.04 -0.11 -0.09 1
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Appendix B 

R Code for Processing TerrSet Images with Machine Learning Classifiers 

 

The objective was to create code in R that could be run iteratively to classify training set data 

and testing set data. The following six classifiers were envisioned, and code was prepared for 

each of them using the raster test data from the TerrSet Image Processing tutorial data set, but 

have been replaced with some Sentinel 2 work files. The codes are all prepared. One simply 

must swap out these data for other images and add in additional data frame slots to 

accommodate additional bands. Some of these codes are obviously part of other’s directions, 

as R-code is setup for everyone to borrow from everyone else to make the new codes work for 

them. However, these are also unique in that, until this study no one else had complete codes 

to run TerrSet IDRISI files natively for image classification in R.  
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MAXIMUM LIKELIHOOD 

# CLASSIFY Sentinel 2 IMAGES W MAXIMUM LIKELIHOOD IN R 

# ========================================================== 

# install.packages("e1071", dependencies = TRUE) 

# install.packages("raster", dependencies = TRUE) 

# install.packages("caret", dependencies = TRUE) 

# install.packages("RStoolbox", dependencies = TRUE) 

# install.packages("ddalpha", dependencies = TRUE) 

# install.packages("snow"), dependencies = TRUE) 

library(RStoolbox) 

library(e1071) 

library(raster) 

library(ddalpha) 

library(caret) 

library(snow) 

library(parallel) 

# Variables 

shapePath <- 'd:/data3/s2/wb_tsitesu.shp' 

brickPath <- 'd:/data3/s2' 

lcPath <- 'd:/data3/s2/wb_s2_rf_pred' 

setwd(brickPath) 

getwd() 

# Load objects  

wbapbb_b2 <- raster("wbapbb_b2.rst") 

wbapbb_b3 <- raster("wbapbb_b3.rst") 

wbapbb_b4 <- raster("wbapbb_b4.rst") 

wbapbb_b8 <- raster("wbapbb_b8.rst") 

 

brick <- brick(stack(wbapbb_b2, wbapbb_b3, wbapbb_b4, wbapbb_b8)) 

imgp <- brick 

# Get the vector of polygon class 
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trainData <- shapefile(shapePath) 

responseCol <- "class" 

lc = "mlcfile" 

 

# Train the classifier 

 

# Calculate the number of cores 

no_cores <- detectCores() - 1 

no_cores 

# Initiate cluster 

system.time(cl <- makeClusner(no_cores)) 

parLapply(cl, 1:8, rf <- superClass(imgp, trainData, valData = NULL, # RStoolbox 

                          responseCol = "class", nSamples = 1000,  

                          polygonBasedCV = FALSE, trainPartition = NULL, 

                          model = "mlc", tuneLength = 3, kfold = 5, minDist = 2, 

                          mode = "classification", predict = TRUE,  

                          predType = "raw", filename = lc, verbose = TRUE,  

                          overwrite = TRUE), arg = NULL) 

aveRSTBX(mlc,filename=paste("d:/ps_s2_rf_2348"), overwrite = TRUE) 

writeRaster(mlc$map, filenamenb=paste("d:/ps_s2_rf_2348"), format='RST', 

datatype='INT1U', overwrite=TRUE) 

# ============ END mlc =============  
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K NEAREST NEIGHBOR 

# CLASSIFY Sentinel 2 IMAGES W K NEAREST NEIGHBOR IN R 

# ========================================================== 

# install.packages("e1071", dependencies = TRUE) 

# install.packages("raster", dependencies = TRUE) 

# install.packages("caret", dependencies = TRUE) 

# install.packages("RStoolbox", dependencies = TRUE) 

# install.packages("ddalpha", dependencies = TRUE) 

# install.packages("snow"), dependencies = TRUE) 

library(RStoolbox) 

library(e1071) 

library(raster) 

library(ddalpha) 

library(caret) 

library(snow) 

library(parallel) 

# Variables 

shapePath <- 'd:/data3/s2/wb_tsitesu.shp' 

brickPath <- 'd:/data3/s2' 

lcPath <- 'd:/data3/s2/wb_s2_nb_pred' 

setwd(brickPath) 

getwd() 

# Load objects  

wbapbb_b2 <- raster("wbapbb_b2.rst") 

wbapbb_b3 <- raster("wbapbb_b3.rst") 

wbapbb_b4 <- raster("wbapbb_b4.rst") 

wbapbb_b8 <- raster("wbapbb_b8.rst") 

 

brick <- brick(stack(wbapbb_b2, wbapbb_b3, wbapbb_b4, wbapbb_b8)) 

imgp <- brick 
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# Get the vector of polygon class 

trainData <- shapefile(shapePath) 

responseCol <- "class" 

lc = "knnfile" 

 

# Train the classifier 

 

# Calculate the number of cores 

no_cores <- detectCores() - 1 

no_cores 

# Initiate cluster 

system.time(cl <- makeClusner(no_cores)) 

parLapply(cl, 1:8, knn <- superClass(imgp, trainData, valData = NULL, # RStoolbox 

                          responseCol = "class", nSamples = 1000,  

                          polygonBasedCV = FALSE, trainPartition = NULL, 

                          model = "knn", tuneLength = 3, kfold = 5, minDist = 2, 

                          mode = "classification", predict = TRUE,  

                          predType = "raw", filename = lc, verbose = TRUE,  

                          overwrite = TRUE), arg = NULL) 

aveRSTBX(knn,filename=paste("d:/ps_s2_knn_2348"), overwrite = TRUE) 

writeRaster(knn$map, filenamenb=paste("d:/ps_s2_knn_2348"), format='RST', 

datatype='INT1U', overwrite=TRUE) 

# ============ END knn ============= 
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NEURAL NETWORK 

# CLASSIFY Sentinel 2 IMAGES W NEURAL NETWORK IN R 

# ========================================================== 

# install.packages("e1071", dependencies = TRUE) 

# install.packages("raster", dependencies = TRUE) 

# install.packages("caret", dependencies = TRUE) 

# install.packages("RStoolbox", dependencies = TRUE) 

# install.packages("ddalpha", dependencies = TRUE) 

# install.packages("snow"), dependencies = TRUE) 

library(RStoolbox) 

library(e1071) 

library(raster) 

library(ddalpha) 

library(caret) 

library(snow) 

library(parallel) 

# Variables 

shapePath <- 'd:/data3/s2/wb_tsitesu.shp' 

brickPath <- 'd:/data3/s2' 

lcPath <- 'd:/data3/s2/wb_s2_nnet_pred' 

setwd(brickPath) 

getwd() 

# Load objects  

wbapbb_b2 <- raster("wbapbb_b2.rst") 

wbapbb_b3 <- raster("wbapbb_b3.rst") 

wbapbb_b4 <- raster("wbapbb_b4.rst") 

wbapbb_b8 <- raster("wbapbb_b8.rst") 

 

brick <- brick(stack(wbapbb_b2, wbapbb_b3, wbapbb_b4, wbapbb_b8)) 

imgp <- brick 

# Get the vector of polygon class 
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trainData <- shapefile(shapePath) 

responseCol <- "class" 

lc = "nnetfile" 

 

# Train the classifier 

 

# Calculate the number of cores 

no_cores <- detectCores() - 1 

no_cores 

# Initiate cluster 

system.time(cl <- makeCluster(no_cores)) 

parLapply(cl, 1:8, nnet <- superClass(imgp, trainData, valData = NULL, # RStoolbox 

                          responseCol = "class", nSamples = 1000,  

                          polygonBasedCV = FALSE, trainPartition = NULL, 

                          model = "nnet", tuneLength = 3, kfold = 5, minDist = 2, 

                          mode = "classification", predict = TRUE,  

                          predType = "raw", filename = lc, verbose = TRUE,  

                          overwrite = TRUE), arg = NULL) 

saveRSTBX(nnet,filename=paste("d:/ps_s2_nnet_2348"), overwrite = TRUE) 

writeRaster(nnet$map, filename=paste("d:/ps_s2_nnet_2348"), format='RST', 

datatype='INT1U', overwrite=TRUE) 

# ============ END nnet =============  
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SUPPORT VECTOR MACHINES 

# CLASSIFY Sentinel 2 IMAGES W SUPPORT VECTOR MACHINES IN R 

# ========================================================== 

# install.packages("e1071", dependencies = TRUE) 

# install.packages("raster", dependencies = TRUE) 

# install.packages("caret", dependencies = TRUE) 

# install.packages("RStoolbox", dependencies = TRUE) 

# install.packages("ddalpha", dependencies = TRUE) 

# install.packages("snow"), dependencies = TRUE) 

library(RStoolbox) 

library(e1071) 

library(raster) 

library(ddalpha) 

library(caret) 

library(snow) 

library(parallel) 

# Variables 

shapePath <- 'd:/data3/s2/wb_tsitesu.shp' 

brickPath <- 'd:/data3/s2' 

lcPath <- 'd:/data3/s2/wb_s2_svm_pred' 

setwd(brickPath) 

getwd() 

# Load objects  

wbapbb_b2 <- raster("wbapbb_b2.rst") 

wbapbb_b3 <- raster("wbapbb_b3.rst") 

wbapbb_b4 <- raster("wbapbb_b4.rst") 

wbapbb_b8 <- raster("wbapbb_b8.rst") 

 

brick <- brick(stack(wbapbb_b2, wbapbb_b3, wbapbb_b4, wbapbb_b8)) 

imgp <- brick 

# Get the vector of polygon class 
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trainData <- shapefile(shapePath) 

responseCol <- "class" 

lc = "svmfile" 

 

# Train the classifier 

 

# Calculate the number of cores 

no_cores <- detectCores() - 1 

no_cores 

# Initiate cluster 

system.time(cl <- makeCluster(no_cores)) 

parLapply(cl, 1:8, svm <- superClass(imgp, trainData, valData = NULL, # RStoolbox 

                          responseCol = "class", nSamples = 1000,  

                          polygonBasedCV = FALSE, trainPartition = NULL, 

                          model = "svmLinear", tuneLength = 3, kfold = 5, minDist = 2, 

                          mode = "classification", predict = TRUE,  

                          predType = "raw", filename = lc, verbose = TRUE,  

                          overwrite = TRUE), arg = NULL) 

saveRSTBX(svm,filename=paste("d:/ps_s2_svm_2348"), overwrite = TRUE) 

writeRaster(svm$map, filename=paste("d:/ps_s2_svm_2348"), format='RST', 

datatype='INT1U', overwrite=TRUE) 

# ============ END svm ============= 
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RANDOM FORESTS 

# CLASSIFY Sentinel 2 IMAGES W RANDOM FORESTS IN R 

# ========================================================== 

# install.packages("e1071", dependencies = TRUE) 

# install.packages("raster", dependencies = TRUE) 

# install.packages("caret", dependencies = TRUE) 

# install.packages("RStoolbox", dependencies = TRUE) 

# install.packages("ddalpha", dependencies = TRUE) 

# install.packages("snow"), dependencies = TRUE) 

library(RStoolbox) 

library(e1071) 

library(raster) 

library(ddalpha) 

library(caret) 

library(snow) 

library(parallel) 

# Variables 

shapePath <- 'd:/data3/s2/wb_tsitesu.shp' 

brickPath <- 'd:/data3/s2' 

lcPath <- 'd:/data3/s2/wb_s2_rf_pred' 

setwd(brickPath) 

getwd() 

# Load objects  

wbapbb_b2 <- raster("wbapbb_b2.rst") 

wbapbb_b3 <- raster("wbapbb_b3.rst") 

wbapbb_b4 <- raster("wbapbb_b4.rst") 

wbapbb_b8 <- raster("wbapbb_b8.rst") 

 

brick <- brick(stack(wbapbb_b2, wbapbb_b3, wbapbb_b4, wbapbb_b8)) 

imgp <- brick 

# Get the vector of polygon class 
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trainData <- shapefile(shapePath) 

responseCol <- "class" 

lc = "rffile" 

 

# Train the classifier 

 

# Calculate the number of cores 

no_cores <- detectCores() - 1 

no_cores 

# Initiate cluster 

system.time(cl <- makeClusner(no_cores)) 

parLapply(cl, 1:8, rf <- superClass(imgp, trainData, valData = NULL, # RStoolbox 

                          responseCol = "class", nSamples = 1000,  

                          polygonBasedCV = FALSE, trainPartition = NULL, 

                          model = "rf", tuneLength = 3, kfold = 5, minDist = 2, 

                          mode = "classification", predict = TRUE,  

                          predType = "raw", filename = lc, verbose = TRUE,  

                          overwrite = TRUE), arg = NULL) 

aveRSTBX(rf,filename=paste("d:/ps_s2_rf_2348"), overwrite = TRUE) 

writeRaster(rf$map, filenamenb=paste("d:/ps_s2_rf_2348"), format='RST', 

datatype='INT1U', overwrite=TRUE) 

# ============ END rf ============= 
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NAÏVE BAYES 

# CLASSIFY Sentinel 2 IMAGES W NAÏVE BAYES IN R 

# ========================================================== 

# install.packages("e1071", dependencies = TRUE) 

# install.packages("raster", dependencies = TRUE) 

# install.packages("caret", dependencies = TRUE) 

# install.packages("RStoolbox", dependencies = TRUE) 

# install.packages("ddalpha", dependencies = TRUE) 

# install.packages("snow"), dependencies = TRUE) 

library(RStoolbox) 

library(e1071) 

library(raster) 

library(ddalpha) 

library(caret) 

library(snow) 

library(parallel) 

# Variables 

shapePath <- 'd:/data3/s2/wb_tsitesu.shp' 

brickPath <- 'd:/data3/s2' 

lcPath <- 'd:/data3/s2/wb_s2_nb_pred' 

setwd(brickPath) 

getwd() 

# Load objects  

wbapbb_b2 <- raster("wbapbb_b2.rst") 

wbapbb_b3 <- raster("wbapbb_b3.rst") 

wbapbb_b4 <- raster("wbapbb_b4.rst") 

wbapbb_b8 <- raster("wbapbb_b8.rst") 

 

brick <- brick(stack(wbapbb_b2, wbapbb_b3, wbapbb_b4, wbapbb_b8)) 

imgp <- brick 

# Get the vector of polygon class 
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trainData <- shapefile(shapePath) 

responseCol <- "class" 

lc = "nbfile" 

 

# Train the classifier 

 

# Calculate the number of cores 

no_cores <- detectCores() - 1 

no_cores 

# Initiate cluster 

system.time(cl <- makeCluster(no_cores)) 

parLapply(cl, 1:8, nnet <- superClass(imgp, trainData, valData = NULL, # RStoolbox 

                          responseCol = "class", nSamples = 1000,  

                          polygonBasedCV = FALSE, trainPartition = NULL, 

                          model = "nb", tuneLength = 3, kfold = 5, minDist = 2, 

                          mode = "classification", predict = TRUE,  

                          predType = "raw", filename = lc, verbose = TRUE,  

                          overwrite = TRUE), arg = NULL) 

saveRSTBX(nb,filename=paste("d:/ps_s2_nb_2348"), overwrite = TRUE) 

writeRaster(nb$map, filenamenb=paste("d:/ps_s2_nb_2348"), format='RST', 

datatype='INT1U', overwrite=TRUE) 

# ============ END nb =======  
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