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Abstract

Neuromodulation refers to a broad term for perturbing the brain states using either

external electrical stimulation, optical stimulation, a drug, or a combination of all. In

recent years, neurostimulation, a paradigm for perturbing the brain states electrically

or optically, has emerged as a promising approach for investigating basic neuroscience

questions and developing therapies for various brain disorders such as Parkinson’s

disease, epilepsy, major depressive disorders, and Alzheimer’s disease. However,

most of the existing neurostimulation-based therapies for brain disorders focus on

suppressing symptoms and ignore the dynamical aspects of the underlying network

that create the pathological symptoms. As a result, the symptoms of specific disorders

reemerge once the external stimulation turns off. Based on the evidence of the plastic

nature of brain circuits in many areas of the brain, this dissertation investigates

novel neuromodulation strategies to achieve long-term changes in the brain states

by harnessing brain network’s plasticity. In the first part of this dissertation, a unified

multi-timescale computational modeling framework is developed to investigate drug-

based neuromodulation strategies for modulating synaptic plasticity dynamics in

the hippocampus and basal ganglia circuits for potential applications in developing

therapies for stress-mediated brain disorders and Parkinson’s disease. The second

part of the dissertation focuses on developing electrical stimulation strategies for

controlling synchronization of neuronal activity in large-scale brain networks by

harnessing synaptic plasticity for potential applications in suppressing epileptic

seizures and pathological synchronization in Parkinson’s disease.
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1996) (black-squares) and predicted my model (red-squares) with
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(black-arrow). The model parameters of the HFS model is the
same as the one used in Figure 3.17. The induced LTP of the
SC-CA1 synapse is measured in terms of the percentage (%)
change in evoked fEPSP slope from the control. The 6-bromo-
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is shown as the blue-triangles and observed in the experiment as
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F igure 3 .19 The effect of basal dopamine level on HFS-induced LTP. (A)
compares the LTP induced by a weak HFS protocol of 100
Hz stimulation in the presence of a D1/D5 antagonist SCH
23390 from experiments (shown in cyan-diamonds and green-
triangles) (Huang and Kandel, 1995; Sajikumar et al., 2008) with
the predictions from my model (blue-triangles). The only HFS-
induced LTP from the experiments are shown in red-circles and
magenta-stars and from the model is shown in black-squares. The
root mean squared error between the weak HFS experimental
data and the weak HFS model prediction for Huang (Huang
and Kandel, 1995) and Sajikumar (Sajikumar et al., 2008) is
10.1 % and 8.5 %, respectively. The root mean squared error
between the weak HFS plus SCH 23390 experimental data and
the weak HFS plus SCH 23390 model prediction for Huang
(Huang and Kandel, 1995) and Sajikumar (Sajikumar et al., 2008)
is 17 % and 9.9 %, respectively. (B) compares the LTP induced
by a strong HFS protocol (3 trains of 100 Hz) in the presence
of a D1/D5 antagonist SCH 23390 from the experiment (cyan-
diamond) (Huang and Kandel, 1995) with the prediction from
my model (blue-triangles). The only HFS-induced LTP from the
experiment is shown in red-circles and from the model is shown
in black-squares. The root mean squared error between the
experimental data and the model prediction for strong HFS data
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pulses at 100 Hz) in modulating HFS-induced LTP when SKF
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min) before the strong HFS protocol (black-arrow). ∆fEPSP is
computed by subtracting the measured potentiation of the strong
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F igure 3 .24 Quantitative comparison between the model predicted and
experimentally observed (Mockett et al., 2007) modulation of LFS-
induced LTD in the hippocampal SC-CA1 synapse by a D1/D5

agonist SKF 38393. The induced LTD of the SC-CA1 synapse
is measured in terms of the percentage (%) change in evoked
fEPSP slope from the control. The black-squares represents the
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100 µM SKF 38939 delivered immediately after the LFS protocol.
The experimentally reported SKF 38393 enhancement of LTD
(Mockett et al., 2007) is shown as the red-circles (∆t = 0 min).
The root mean squared error between the experimental data
and the model prediction for LFS data and LFS plus SKF 38393
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between the prediction from my model and the experimental data
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root mean squared error between the experimental data and the
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minutes before the LFS protocol marked as the blue-triangles
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F igure 3 .26 Quantitative comparison between the model predicted and
experimentally observed (Mockett et al., 2007) modulation of
the LFS-induced LTD under various LFS protocol by SKF 38393.
The induced LTD of the SC-CA1 synapse is measured in terms
of the percentage (%) change in evoked fEPSP slope from the
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of the LFS-induced LTD in the SC-CA1 synapse with the 20
minutes application of 100 µM SKF 38393 immediately after the
LFS protocol of 2400 pulses at 3 Hz reported in the experiment
(red-circles) and predicted by my model (blue-triangles). The
model predicted LFS-induced LTD by the LFS protocol alone
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LFS-induced LTD by SKF 38393 for a LFS protocol of 900 bursts
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F igure 4 .1 The synchrony level and stability points of a plastic 2,000 spiking
neuron E-I network. (A) The average synaptic weight either
converges to the maximum or minimum value. Each line
represents the trajectory of the synaptic weight with a different
initial condition. The stability threshold is depicted as a blue
dashed line. (B) The synchrony level of the network, represented
by the Kuramoto order parameter R(t), increases with increasing
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F igure 4 .2 The FTSTS protocol for a two neuron E-I network. (A) shows an
excitatory-inhibitory network. (B) and (C) show the FTSTS input
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FTSTS pulse parameters are Ustim = 300 mV, Tstim = 1 ms, and
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how swapping the FTSTS inputs to the excitatory and inhibitory
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F igure 4 .3 Desynchronization of neural activity in 2,000 neuron E-I network.
(A) shows the FTSTS waveform for inhibitory neurons. (B) shows
the FTSTS waveform for excitatory neurons. (C) shows the time
evolution of the average E-to-I synaptic weight. As shown here,
the average E-to-I synaptic weight of network is decreased to 75

mV (blue-line), where the stimulation is turned off. (D) shows the
synchrony level of excitatory neurons as a function of time. (E),
(F), and (G) show the spiking patterns before, during, and after
the FTSTS protocol, respectively. The FTSTS pulse parameters are
Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms. . . . . . . . . 143

F igure 4 .4 Resynchronization of neural activity in 2,000 neuron E-I network.
(A) shows the FTSTS waveform for inhibitory neurons. (B) shows
the FTSTS waveform for excitatory neurons. Note that the FTSTS
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shows the time evolution of the average E-to-I synaptic weight.
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off. (D) shows the synchrony level of the network as a function
of time. (E), (F), and (G) show the spiking patterns before,
during, and after the FTSTS protocol respectively. The FTSTS
pulse parameters are Ustim = 200 mV, Tstim = 1 ms, and Tneutral =
10 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



xxi

F igure 4 .5 Desynchronization of neural activity in 10,000 neuron E-I
network. (A) shows the decrease in the average E-to-I synaptic
weight of the network during and after the FTSTS stimulation
(black line), which is compared to the decrease of the average
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to push it into the asynchronous regime (green-dashed line).(B)
shows the network synchrony level during and after the FTSTS
stimulation. The FTSTS pulse parameters used in this simulation
are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms. . . . . . . 146

F igure 4 .6 Robustness of the FTSTS strategy against random variations in
the FTSTS pulse amplitude. The FTSTS pulse amplitude for
each pulse has been chosen from a Gaussian distribution with
mean Ustim and a variance of Ustim
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the decrease in average synaptic weight of a network without
random variation in the applied FTSTS pulse amplitude. (B)
shows the network synchrony level during and after the FTSTS
stimulation. The FTSTS pulse parameters used in this simulation
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F igure 4 .7 Robustness of the FTSTS strategy against uncertainty in the
membrane time constant of neurons in the 2,000 neuron E-I
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uncertainty in the membrane time constant (red line). (B) shows
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simulation where the membrane time constant τm of individual
neurons in the network is drawn from a uniform distribution
U (8, 12). The applied FTSTS pulse parameters are Ustim = 100
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F igure 4 .8 Efficacy of the FTSTS strategy in desynchronizing 2,000 neuron
E-I network in the presence of E-to-E and I-to-I synaptic
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F igure 4 .9 Efficacy of the FTSTS strategy in desynchronizing 2,000 neuron
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chapter 1

Introduction

Neuromodulation is defined as changes in the activity of a neuron or neuronal

population due to either the internal release of neurochemicals or hormones, or the

external electrical or chemical stimulation of the nervous system (Kaczmarek and

Levitan, 1987; Krames et al., 2009). This allows people to learn new skills and react

to their ever changing environment. Currently, pharmaceutical neuromodulation is

used to treat symptoms of Parkinson’s disease, depression, and epilepsy. In some

cases, patients are resistant to the pharmaceutical management of the symptoms.

These patients are eligible for direct electrical stimulation of the brain to suppress the

symptoms. Constant electrical stimulation is required to suppress the pathological

brain dynamics thought to produce the symptoms, such as the strong oscillatory

neural activity in Parkinson’s disease patients. One major challenge to the current

approaches to treat neurological diseases, such as Parkinson’s disease, is that they

purely focus on suppressing the symptoms in place of fixing the underlying brain

structure that is producing the symptoms. Harnessing the brain plasticity by

developing pharmacological or electrical neuromodulation strategies could lead to

the development of next-generation therapies for various neurological and psychiatric

disorders. The focus of this dissertation is to develop novel pharmacological and

electrical neuromodulation strategies to harness brain plasticity in order to develop

therapies for various brain disorders. Although in this dissertation I have focused

on the applicability of designed strategies in treating Parkinson’s disease, stress-

mediated brain disorders, and epilepsy, the ideas developed in this dissertation may

find applicability in various other brain disorders.
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1 .1 background

1.1.1 Neuron Anatomy and Function

I begin my dissertation with the fundamental building block of the brain, the neuron.

The neurons in our brain are responsible for encoding our thoughts, impulses, and

nonconscious actions, such as breathing, through electrical signals. These electrical

signals travel through the three main parts: the cell body, the dendrites, and the

axon (Purves et al.), which are depicted and labeled in the diagram in Figure 1.1A.

The dendrites of each neuron receive input from other neurons due to the release

of chemicals called neurotransmitters, which bind to receptors on dendrite in the

synaptic cleft. When neurotransmitters bind to their corresponding receptor in the

synaptic cleft, they can either depolarize (increase) or hyperpolarize (decrease) the

synaptic potential, which travels down the dendrite to the cell-body. Each synaptic

potential from all of the dendrites of the neuron integrate together in the cell-body.

If the membrane potential of the cell-body is depolarized past a threshold, the

membrane potential rapidly depolarizes further. This is followed by the membrane

potential rapidly repolarizing back to the resting membrane potential. The rapid

depolarization-repolarization is called an action potential, and an example of an

action potential is shown in Figure 1.1B. At this point, the depolarized membrane

potential travels down the axon of the neuron to the axon terminal where it terminates

and releases a neurotransmitter to the dendritic cleft of another neuron.

The ion channels, which are located on the membrane of neurons, are responsible

for creating the action potential and propagating any changes in the membrane

potentials from the dendrite, to the cell-body, and down the axon. The membrane

potential is created by an imbalance in the concentration of various ions, such as the

sodium, potassium, calcium, and chloride ions, on either side of the membrane, which

are tightly regulated by the neuron (Purves et al.; Hodgkin and Huxley, 1952). The

imbalance of ions creates an electricochemical gradient. This consists of an electrical

gradient, due to the charge imbalance, and a chemical concentration gradient, due to

the different concentrations of each ion on either side of the membrane. Therefore,

each ion has an equilibrium potential, which is responsible for creating the driving
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F igure 1 .1 : Neuron fundamentals. (A) shows a simple schematic of two neurons
taken from www.brainfact.org. (B) shows a diagram of an action potential.

force of the generation and propagation of the action potential. The equilibrium

potential for each ion can be calculated by the Nernst equation,

EX =
RT
zF

ln
[X]out

[X]in
, (1.1)

where EX is the equilibrium potential for ion X, R is the gas constant, T is the

temperature, z is the valence of the ion, and F is Faraday’s constant. The concentration

of the ion on the outside and inside of the membrane are [X]out and [X]in, respectively.

The two main ions that contribute the most to the resting membrane potential and

the action potential are the sodium and potassium ions (Purves et al.). The resting

membrane potential is largely determined by the large potassium concentration
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gradient maintained across the membrane with a high concentration of potassium

on the inside of the membrane compared to outside of the membrane, while the

initialization of the action potential is largely due to the permeability of the neuron’s

membrane to sodium ions. There exists voltage dependent sodium ion channels that

become permeable to the sodium ions when the membrane potential is depolarized.

Furthermore, there exists a large sodium gradient across the membrane potential with

a higher concentration of sodium ions on the outside of the membrane compared to

the inside of the neuron’s membrane. When the voltage-gated sodium ion channels

open, there is a large influx of sodium ions as the membrane becomes more permeable

to sodium ions. This leads to a rapid depolarization of the membrane potential to

create the action potential. The permeability of the membrane to sodium is short

lived and the sodium voltage-gated ion channels close. At this point, the membrane

becomes more permeable to potassium and a large efflux of potassium occurs to

repolarize the membrane potential. The flow of potassium ions cause the membrane

potential to overshoot the resting potential. The membrane slowly returns back to

the resting membrane potential as the initial balance of sodium and potassium ions

is restored. This overshooting phase is called the refractory period. During this time,

the neuron is not responsive to excitatory input from other neurons. Figure 1.2 shows

a schematic of the flow of sodium and potassium ions during each part of the action

potential. After generation, the action potential travels down the axon of the neuron

to the axon terminal to release neurotransmitters or neuromodulators to the dendrite

of another neuron.

The synaptic cleft is the point where the axon terminal meets the dendrite of

another neuron, and it is how neurons communicate with each other over long

distances (Purves et al.). When the action potential reaches the axon terminal, it

releases neurotransmitters or neuromodulators to the next neuron. Each neuron

is responsible for releasing one neurotransmitter or neuromodulator, and it is

typically defined by the neurochemical it releases. Here, the neuron releasing

neurotransmitters is defined as the pre-synaptic neuron and the neuron receiving

the neurotransmitters is defined as the post-synaptic neuron. There exists excitatory

and inhibitory neurotransmitters, such as glutamate and γ-aminobutyric acid



5

Extracellular

Intracellular
Na Channel

K Channel

Na
+

Na
+

Na
+

K
+

K
+

K
+

K
+ K

+
K

+

Na
+

Na
+ Na

+

Na
+

K
+

K
+

K
+

Na
+

Na
+

Na
+

Na
+

K
+

K
+

K
+

K
+

Na
+

Na
+

Na
+

Na
+

K
+

Na/K Pump

K
+

Na
+

K
+

Na
+

Na
+

Time
D

ep
o

la
ri

za
�

o
n

R
ep

o
lariza�

o
n

Refractory 

Period

Ac�on

Poten�al

Res�ng

Threshold
M

em
b

ra
n

e 
P

o
te

n
�

al

S�mulus

1

2

3

4

1

K
+

K
+

Na
+

1 2

4 3

F igure 1 .2 : The basis of the action potential. Here, I show a schematic of the flow
of sodium and potassium ions in relation to the evolution of the action potential.



6

(GABA). Glutamate binds to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptor (AMPAR) and ionotropic N-Methyl-d-aspartic acid receptor (NMDAR).

When glutamate binds to the AMPAR, the ionotropic channel opens and allows the

flow of sodium ions into the neuron, which depolarizes the membrane potential. The

NMDAR receptor requires both glutamate to bind to the receptor and the ejection of a

Mg2+ ion from the channel by the depolarization of the membrane potential in order

for sodium ions to flow through the channel. The inhibitory neurotransmitter GABA

binds to its corresponding GABA receptor (GABAR). The activation of the GABAR

allows chloride ions to flow into the neuron and produces a hyperpolarization of the

membrane potential, which inhibits the generation of action potentials. Since AMPAR,

NMDAR, and GABAR result in the influx of ions, they are classified as ionotropic

receptors.

1.1.2 Neural Plasticity

Synaptic plasticity is the change in the response of the postsynaptic neuron to

neurotransmitters released from the presynaptic neuron. The inherent synaptic

plasticity of our brain allows college students to learn a new language, children

to learn a new sport, or teachers to remember the names of an incoming class.

One of the most well-know definitions of plasticity was postulated by the Canadian

physiologist Donald Hebb, and the definition was named Hebbian plasticity after

him (Hebb, 1949). Hebbian plasticity states that the synaptic strength between a

presynaptic and postsynaptic neuron increases due to the persistent stimulation of

a post-synaptic neuron by a presynaptic neuron. Neuroscientists define an increase

in the synaptic strength as potentiation, while a decrease in the synaptic strength as

depotentiation. Based on Hebbian plasticity, a spike-time dependent plasticity (STDP)

(Song et al., 2000; Abbott and Nelson, 2000) rule has been proposed that states the

synaptic strength increases when a presynaptic neuron fires before a postsynaptic

neuron, while the synaptic strength decreases when a postsynaptic neuron fires

before a presynaptic neuron. Additionally, researchers found that the high frequency

stimulation (HFS) of the axon of a presynaptic neurons in the hippocampus induced

a sustained increase in the synaptic strength between the two neuron called long-
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term potentiation (LTP) (Lomo, 1966; Bliss and Lømo, 1973; Collingridge et al., 1983).

In contrast to LTP, researchers found that low frequency stimulation (LFS) of the

axon of a presynaptic neuron decreased the synaptic strength and is called long-term

depression (LTD) (Dudek and Bear, 1992). The release of neuromodulators, such as

dopamine, can modify the effect of these different stimulation protocol’s induction

of potentiation or depotentiation. For example, the binding of dopamine to the D1

receptor results in further potentiation in the hippocampus and the basal ganglia

(Huang and Kandel, 1995; Sajikumar and Frey, 2004; Otmakhova and Lisman, 1996;

Mockett et al., 2007; Shen et al., 2008, 2015).

1.1.3 Neuromodulators and their signaling cascades

Another class of neurochemicals released by neurons are neuromodulators, which

bind to metabotropic receptors on post-synaptic neuron. Unlike ionotropic receptors,

metabotropic receptors don’t allow ions to pass into the membrane immediately

upon a neuromodulator binding to it. Metabotropic receptors initiate a cascade

of biochemical reactions inside of the neuron that modulates the neural plasticity

by phosphorylating voltage-gated ion channel, ionotropic receptors, and proteins

involved in gene expression. A metabotropic receptor is coupled to heterotrimeric G-

coupled-protein (Neves et al., 2002; Gilman, 1987). Therefore, when a neuromodulator

binds to the receptor, the α subunit separates from the βγ dimer. Then, the free

α subunit controls the activation of an effector protein that initiates a biochemical

signaling cascade. There exists three subtypes of G-protein-coupled receptors, which

are Gs, Gi, and Gq (Pitcher et al., 1998). The Gs-protein-coupled and Gi-protein-

coupled receptors directly oppose each other. The activation of the Gs protein

activates the effector protein adenylyl cylcase (AC) (Glatt and Snyder, 1993), while

the activation of the Gi protein inhibits AC (Gerfen and Surmeier, 2011). The

activation of AC amplifies the biochemical signal by catalyzing the conversion of

adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP), which

activates protein kinase A (PKA) (Frey et al., 1993). A schematic diagram of

the Gs-protein-coupled and Gi-protein-coupled receptor biochemical pathways are

shown in Figure 1.3A. The activation of the Gq-protein-coupled receptor activates
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the effector protein phospholipase C (PLC) (Kostenis et al., 2020), which is shown in

the schematic diagram in Figure 1.3B. The activation of PLC catalyzes the splitting

of phosphatidylinositol biphosphate (P2P) into diacylglycerol (DAG) and inositol

triphosphate (IP3). DAG is responsible for activating protein kinase C (PKC), which

phosphorylate various membrane proteins, and IP3 binds to the IP3 receptor, which

releases internal storage of calcium. The internal release and inward flow of calcium

through voltage-gated calcium channels or permeable NMDAR also activates post-

synaptic biochemical signaling cascades.

Gs Gi

AC

cAMP

PKA

A
Gq

PLC

DAG

PKC

B

IP3

Ca2+

F igure 1 .3 : A schematic diagram of the pathways activated by G-protein-coupled
receptors. (A) shows the opposing action of the Gs- and Gi-protein-coupled receptors
on the activation of AC. The arrow represents an excitatory effect, while a T represents
an inhibitory effect. (B) shows biochemical pathway induced by activating the Gq-
protein-coupled receptor.

The release of Ca2+ ions into the neuron, due to the neuron firing or

the internal release, activates two well-known Ca2+-activated kinases, which are

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and PKC (Lisman et al., 2012).

CaMKII is a critical post-synaptic protein that consists of 12 subunits and plays a

critical role in long-term potentiation (LTP). CaMKII contributes to LTP by directly

phosphorylating AMPARs so that more AMPARs open when glutamate is released by

the presynaptic neuron. Additionally, CaMKII phosphorylates other protein kinases

involved in transcription and translation of more AMPARs and NMDARs, which
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also increases the post-synaptic neuron’s response to glutamate release from the

presynaptic neuron.

1 .2 broader problem

As I have just discussed, the plasticity dynamics of neurons or populations of neurons

is modulated by the release of multiple neuromodulators and the inherent electrical

activity of the membrane potential. The combination, duration, and timing of the

release of different neuromodulators can have a profound effect on the dynamics of

neurons by initiating different biochemical signaling cascades at different times and

strengths. Therefore, how would one design an experiment to efficiently investigate

the interaction of multiple neuromodulators as well as the temporal interaction

between the different neuromodulators? Furthermore, changes in the membrane

potential dictate the release of neuromodulators and neurotransmitters as well as

the open-state of voltage-gated ion channels. The opening of voltage-gated calcium

channels can initiate intracellular signaling pathways that interact with those activated

by neuromodulators. As a result, another question arise. How does one efficiently

explore the temporal interaction of the electrical signal of the membrane potential and

the biochemical signals of the neuromodulators? The number of experiments required

to sufficiently analyze the temporal interaction of just one neuromodulator at different

concentrations, durations, and timings with the electrical dynamics of the membrane

potential alone would cost the experimentalist too much time and money to conduct

the experiments. As a result, computational models that capture the electrical and

biochemical dynamics of neurons have arisen to cheaply and quickly study potential

experimental conditions.

1.2.1 Computational models of neuron dynamics

S ingle Neuron Membrane Potential Models — In order to more easily

study the complex dynamics of our brain, researchers have developed reduced

mathematical models of the neurons that make up our brain. The first electrical

mathematical models of a neuron’s membrane dynamics began to emerge at the
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beginning of the 20
th century. The development of the first phenomenological

mathematical model of a neuron is credited to Lapicque in 1907 (Brunel and

Van Rossum, 2007). Lapicque’s mathematical formulation of a neuron’s dynamics

were modeled after a leaky capacitor, which was coined and formalized as the leaky

integrate-and-fire neuron model in the 1970s (Knight, 1972). The leaky integrate-and-

fire neuron dynamics is shown in Equation 1.2

τm
dV
dt

= −(V −Vrest) + RIapp, (1.2)

where τm is the time-constant of the membrane dynamics, V is membrane potential,

Vrest is the resting potential, R is the membrane resistance, and Iapp is the applied

current. The simplified model attempts to capture the subthreshold membrane

potential dynamics. The action potentials are captured in this model by an event,

which is triggered by the membrane potential crossing a defined membrane potential

threshold value. Once the modeled membrane potential hits the threshold value,

the potential is reset to the resting potential value. While this model is able

to computationally efficiently capture the subthreshold dynamics and the action

potential events, it doesn’t capture the biophysical dynamics of the action potential.

The first biophysical mathematical neuron model was developed in the 1950’s

by two British scientist Hodgkin and Huxley (Schwiening, 2012). The pair collected

squid and successfully obtained the first intracellular recording of an action potential

from the squid’s giant axon. Later, they invented the voltage-clamp that allowed

the pair to investigate the sensitivity and kinetics of ion channels on the giant axon.

Based on these measurements, they developed a mathematical model of the fast

dynamics of an action potential that bears their name today: the Hodgkin-Huxley

model (Hodgkin and Huxley, 1952). Figure 1.4A shows that the model accurately

captures the dynamics of an action potential in a squid giant axon shown in Figure

1.4C. Amazingly, the pair did all this with a mechanical calculator similar to the one

shown in Figure 1.4B (Schwiening, 2012).

The Hodgkin-Huxley model incorporated physical properties that later elegantly

predicted the gating structure of the sodium and potassium ion channels. The model
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F igure 1 .4 : Mathematical solution to Hodgkin-Huxley neuron model. (A) shows
the action potential calculated using the mechanical calculator shown in (B). (C) shows
the measured action potential in a squid giant axon. The images were taken from
(Schwiening, 2012).
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sums the different ion currents to predict the membrane dynamics. Equation 1.3

shows the membrane dynamics in terms of the applied (Iapp), leaky (ḡl(V − Vl)),

sodium ion (ḡNam3h(V − VNa)), and potassium (ḡKn4(V − VK)) currents. Here, the

membrane conductance for each channel are ḡl, ḡK, and ḡNa, and the reversal

potentials are Vl, VK, and VNa. The voltage-dependent gating variables n, m, and

h were later found to mimic the opening and closing of the potassium and sodium

ion channels in experiment.

Cm
dV
dt

= Iapp − ḡl(V −Vl)− ḡKn4(V −VK)− ḡNam3h(V −VNa) (1.3)

While these electrical models of a neuron’s membrane potential captured the fast

changes in the dynamics of the membrane potential, they ignored the slower

biochemical dynamics, such as the biochemical signaling cascades initiated by G-

coupled protein receptors shown in Figure 1.3.

B iochemical K inetic Models — Biochemical kinetic mathematical models

of a neuron attempt to capture the dynamics of key signaling proteins involved

in modulating the excitability of the neuron (Kotaleski and Blackwell, 2010; Nair

et al., 2014). These models provide mechanistic insight into how a neuron’s

plasticity and excitability is modulated by different neuromodulators. Many of

the of the neuromodulators bind to a seven-membrane spanning G-protein coupled

receptors. There exist dopamine, muscarinic, nicotinic, and adenosine G-protein

coupled receptors. As previously stated, upon the neuromodulator binding to its

corresponding receptor, the Gα subunit dissociates from the Gβγ dimer. Both of

these G protein subunits control the initiation of a biochemical cascade through

an effector enzymes, such as adenylyl cyclase (AC) or phospholipase C (PLC). The

effector enzyme activate secondary messengers that amplify the response in order to

control the intrinsic excitability of the neuron by phosphorylating voltage-dependent

ion channels, the response to excitatory or inhibitory input from other neurons by

phosphorylating ligand-gated ion channels, or controlling the translation of plasticity

dependent proteins.
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Over the last two decades, with the advances in high performance computers,

detailed biochemical computational models of the biochemical kinetics of plasticity

have been develop in parts of the brain such as the Hippocampus (Mergenthal et al.,

2020), Basal Ganglia (Nair et al., 2014, 2016, 2015; Blackwell et al., 2019; Lindroos

et al., 2018; Mattioni and Le Novère, 2013), and cortex (Mäki-Marttunen et al.,

2020). Computational models of the biochemical cascades initiated by the binding

of dopamine, acetylcholine, or adenosine to their corresponding receptors have been

developed to study their individual and combined effect on key signaling proteins

involved in corticostriatal plasticity, such as cAMP dependent protein kinase A (PKA)

and Ca2+-Calmodulin-dependent kinase II (CaMKII). The low cost of creating these

biochemical models from the already existing experimental data allows scientist to

quickly and cheaply test their hypotheses and experimental set-up before spending

money and time on a project. These models have provided mechanistic insight and

have proposed potential new experiments in order to expand our understanding of

the signaling pathways involved in neural plasticity.

Typically, researchers model the biochemical cascades of neural plasticity with

simple kinetic dynamics. Simple biochemical dynamic models describe the reaction

of one or more substrate molecules or proteins, which produce one or more product

molecules or proteins. For example, the generic biochemical reaction

A +B
k f


kb

C + D, (1.4)

describes the interaction of substrates A and B to form C and D. The rate of

the forward and backward reaction are described by k f and kb. Additionally, the

biochemical reactions include enzyme kinetics due to the presence of multiple kinases.

The dynamics

A +E
k f


kb

AE kcat→ E + B, (1.5)

describe the conversion of substrate A into B catalyzed by enzyme E, which is neither

created or destroyed in the process. Both of these biochemical kinetics can be written
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as deterministic rate equations. Due to the high number of proteins known and not

known to be involved in synaptic plasticity, these biochemical kinetic models are quite

large.

1.2.2 Need for a biochemical and electrical modeling framework

In order to efficiently fill the gaps of our understanding and design novel therapies

to treat various brain disorders, I require a computational model that can quickly

and cheaply explore the interaction of various neuromodulators with each other at

different concentration, durations, and times as well as with the electrical dynamics

of the membrane potential of neurons. This computational model could quickly

and cheaply explore the rules of neuromodulators temporal interacting with each

other and with the membrane potential. These results would highlight the most

important experiments. Most of the previous computational models either only

capture the fast electrical dynamics of the membrane potential (Hodgkin and Huxley,

1952; Knight, 1972; Golomb et al., 2006) or the slow biochemical dynamics of

the intracellular signaling pathways of neurons (Triesch et al., 2018; Bhalla and

Iyengar, 1999; Kotaleski and Blackwell, 2010; Blackwell and Jedrzejewska-Szmek, 2013;

Blackwell and Miningou, 2020; Mäki-Marttunen et al., 2020; Foncelle et al., 2018;

Brzosko et al., 2017). While there exists unified multi-scale models that combine

detailed biochemical molecular level dynamics with electrical dynamics in medium

spiny neurons (Mattioni and Le Novère, 2013) and CA1 hippocampal neurons

(Bhalla, 2011) to explain published biochemical data from several experimental

protocols of LTP induction, these models do not integrate the initiation of biochemical

signaling cascades by neuromodulator with the electrical dynamics. Therefore,

a unified modeling framework is required that integrates the biochemical and

electrophysiology dynamics in order to systematically investigate the interaction of

different timings, concentrations, and duration of various neuromodulator with each

other and with the electrical membrane dynamics.
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F igure 1 .5 : A unified model of the biochemical and electrical dynamics.
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1 .3 dissertation overview

My dissertation is organized as follows: In Chapter 2, I discuss my investigation

into the changes of corticostriatal biochemical signaling pathways as dopamine is

depleted in order to mimic the death of dopamine neurons in Parkinson’s diseases.

Based on this model, I will suggest new targets for therapies to treat the symptoms

of Parkinson’s disease. In Chapter 3, I develop a set of phenomenological models

to describe the temporal dose-dependent effect of the dopamine D1/D5 receptors

agonists SKF 38393, 6-bromo-APB, and dopamine, on the Schaffer-collateral CA1 (SC-

CA1) pyramidal neuron synaptic conductance using published electrophysiological

data from hippocampal CA1 slice experiments on the % change in field excitatory

postsynaptic potential (fEPSP) slope. In Chapter 4, I develop a novel neurostimulation

strategy called “Forced Temporal Spike-Time Stimulation (FTSTS)” that I show is able

to efficiently desynchronize large excitatory-inhibitory (E-I) spiking neuron networks

and keep the network desynchronized without any further input by harnessing the

synaptic weight of the network. In Chapter 5, I expand upon the novel FTSTS strategy

developed in Chapter 4 by applying the stimulation protocol to a biophysically

constrained neocortical-onset seizure model and explore the parameter space of the

FTSTS protocol. Here, I determine the optimal parameters to efficiently control the

average synaptic weight. In the final Chapter, I summarize the work presented in my

dissertation and propose future directions of the various research topics.
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chapter 2

Restoration of Biochemical Signaling Pathway in

Dopamine Deficient Parkinson’s State

2 .1 introduction

One of the most well-known neuromodulators is dopamine. It plays a critical role

in regulating our actions by modulating the dynamics of neuron structures located

in the middle of our brain called the basal ganglia (Davie, 2008; Kordower et al.,

2013; Damier et al., 1999; Rajput et al., 2008). Input enters the basal ganglia through

the striatum from the cortex (KEMP and Powell, 1970). The traditional view of the

basal ganglia is that there exists two pathways, the direct and indirect pathways, that

diverge in the striatum (Kravitz et al., 2012; Calabresi et al., 2014). The direct pathway

is classified by the expression of D1 dopamine Gs-protein-coupled receptors on the

inhibitory medium spiny neurons (MSNs), and the indirect pathway is classified by

the expression of D2 Gi-protein-coupled receptors on MSNs (Nagai et al., 2016). The

activation of the D1 receptors on direct MSNs increases the excitability of the direct

MSNs, while the activation of D2 receptors on indirect MSNs decreases or inhibits

the excitability of the MSNs (Shen et al., 2008, 2015). Direct pathway MSNs have

inhibitory GABAergic projections to the globus pallidus interna (GPi), which project

out of the basal ganglia and inhibit the thalamus (TH) (Utter and Basso, 2008; Smith

et al., 2004). Indirect pathway MSNs have inhibitory projections to the globus pallidus

externa (GPe), which inhibit the subthalamic nucleus (STN). Then, the STN excites the

GPi, which outputs to the thalamus. A schematic of the direct and indirect pathways

of the basal ganglia is shown in Figure 2.1. Dopamine is released by projections

from the substantia nigra pars compacta (SN) (Schultz, 1999, 1998). Both dopamine

receptors exert their influence on the excitability of MSNs through the activation of

G-coupled protein receptors that initiate biochemical signaling pathways that control

the level of PKA, which is responsible for phosphorylating AMPAR and NMDAR
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directly, voltage-gated ion channels that control neuron’s inherent excitability, and

proteins involved in the translation of plasticity related proteins.

Cortex

Striatum

Direct Pathway 

MSNs

D1R 

Indirect Pathway 

MSNs

D2R

Cor�costriatal 

Synapse

GPi GPe STN 

TH

SN

Excitatory

Inhibitory

Dopaminergic

F igure 2 .1 : A schematic diagram of the direct and indirect pathways of the basal
ganglia.

In addition to dopamine receptors, there exist other G-protein coupled receptors

that oppose the action by the dopamine receptors expressed on the direct and indirect

MSNs (Nagai et al., 2016). M4 muscarinic receptors are highly localized to direct

MSNs. Acetylcholine released from tonically active cholinergic interneurons binds to

the M4 receptor (Shen et al., 2015; Bolam et al., 1984; Kemp and Powell, 1971). These

receptors are Gi-coupled receptors and directly opposes the excitatory action of the

dopamine binding to the D1 Gs-coupled receptor by inhibiting AC. Furthermore, the
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A2a adenosine receptor is a Gs-coupled protein receptor that is expressed on indirect

MSNs. When adenosine binds to the A2aR, it activates AC in order to oppose the

inhibitory action on AC from dopamine binding to the D2 Gi-coupled receptor. The

selectivity of the dopamine, muscarinic, and adenosine receptor to specific MSNs

of the direct or indirect pathway makes them ideal targets for therapies to treat

neurological disorders of the basal ganglia, such as Parkinson’s disease.

Parkinson’s Disease (PD) is a neurodegenerative disease characterized by the

progressive loss of motor skills and the death of dopamine neurons as the disease

progresses (Dauer and Przedborski, 2003; Poewe et al., 2017). The lost mid-

brain dopamine neurons of the substantia nigra (SN) project to the striatum of

the basal ganglia in order to modulate cortical striatal synaptic plasticity (Davie,

2008; Kordower et al., 2013; Damier et al., 1999; Rajput et al., 2008). Researchers

have demonstrated that the dopamine is required to maintain normal bidirectional

corticostriatal plasticity (Shen et al., 2008; Garcia-Munoz et al., 1992). Therefore,

one hypothesis about the disease progression of PD is that the loss of dopamine

neurons disrupt the balance of activity of the direct and indirect pathways, such

that the activity of the indirect pathway dominates the direct pathway to prevent

actions. Since PD is characterized by the death of dopamine neurons, one approach

for treating symptoms of PD is to increase the concentration of dopamine in the brain

(Connolly and Lang, 2014; Ferreira et al., 2013; Lang and Lees, 2002). Currently, the

gold-standard treatment of PD symptoms, L-DOPA, uses this approach (Connolly

and Lang, 2014). L-DOPA works well at early stages of the disease but as the

disease progresses higher doses are required that produce unwanted side effects,

such as L-DOPA induced dyskinesia (LID) that manifests as chorea, ballism, dystonia,

myoclonus, or some combination of symptoms (Pandey and Srivanitchapoom, 2017;

Calabresi et al., 2010). When patients become resistant to L-DOPA and the side effects

become unmanageable, they become eligible for surgical implantation of electrical

stimulating electrodes that attempt to disrupt the pathological dynamics to treat the

symptoms of PD (Krauss et al., 2020; Benabid et al., 1987; for Parkinson’s Disease

Study Group, 2001). Recently, another less invasive approach has been suggested,

which is to target the M4R on direct MSNs to oppose the potential over stimulation
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of the D1R (Bernard et al., 1992; Hersch et al., 1994; Ztaou et al., 2016; Tanimura et al.,

2018). In (Shen et al., 2015), the M4Rs were targeted by a positive allostaric modulators

(PAMs) that elevated the response of M4R to acetylcholine, in order to inhibit the over

activation of the D1R by high doses of L-DOPA. While this approach has proven

effective in experiment, the high levels of dopamine from the high doses of L-DOPA

may still produce unwanted side effects. Additional therapies strategies are needed

to effectively suppress PD symptoms with minimal unwanted side effects (Connolly

and Lang, 2014). Therefore, a more effective approach would be to directly lower the

activation of the M4R such that lower doses of L-DOPA are more effective at treating

symptoms of PD with fewer side effects, due to the higher selectivity for the direct

pathway MSNs.

Similarly, in order to investigate potential new therapies to treat PD symptoms,

many experiments would be required to explore the parameter space of activat-

ing/deactivating the M4R relative to various lower activation levels of the D1R, due

to the death of dopamine neurons. Again, an initial computational investigation

would quickly and cheaply explore potential therapy strategies before conducting

any time-consuming and expensive in vitro slice experiments. There exists many

computational models that study the effect of neuromodulators, such as dopamine,

acetylcholine, adenosine, and glutamate (Nair et al., 2015, 2016, 2019; Yapo et al., 2017,

2018; Mäki-Marttunen et al., 2020; Kim et al., 2013; Blackwell et al., 2019; Nakano

et al., 2010), at different concentrations on corticostriatal plasticity and plasticity in

other parts of the brain. Typically, these models are biochemical computational

models of the known biochemical mechanisms initiated by the neuromodulator

binding to its corresponding receptor, such as the dopamine receptors (D1 and D2R),

the muscarinic receptors (M1 and M4R), adenosine receptor (A2aR), and glutamate

receptos (mGlurR), in the striatum, neocortex, and cerebellum (Blackwell, 2013; Bhalla,

2014; Mäki-Marttunen et al., 2020; Nair et al., 2015; Mergenthal et al., 2020; Nair et al.,

2016, 2019; Blackwell et al., 2019; Yapo et al., 2017; Nakano et al., 2010). The activation of

these receptors in combination with Ca2+ influx controls the dynamics of key synaptic

plasticity kinases, such as PKA, CAMKII, and PP1, and ultimately the excitability

of each neuron (Yagishita et al., 2014; Nagai et al., 2016). While these models have
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provided key insights into the mechanism of plasticity and predictions that can be

validated in experiment, thus far no computational model has investigated inhibiting

M4R to offset symptoms of PD.

In this chapter, I developed a biochemical computational model of corticostriatal

plasticity in the direct medium spiny neuron in order to study how the loss of

dopamine effects key plasticity proteins and how targeting the M4R can restore the

levels of these key plasticity protein. I do so by studying the temporal interaction

of DA, ACh, and Ca2+ on the corticostriatal plasticity under physiological and

nonphysiological conditions. My corticostriatal plasticity computational model is

a biochemical single-compartment model of the direct MSN with three inputs

dopamine, acetylcholine, and calcium. In order to build the model, I have integrated

previously existing models and reparameterized the new model using experimental

data obtained from the literature. Here, I have used my model to explore the effect

of depletion of DA on key corticostriatal plasticity signaling proteins. Additionally, I

explored how the reduction of key corticostriatal plasticity proteins, due to dopamine

depletion, can be restored by targeting acetylcholine and calcium inputs.

2 .2 model system

2.2.1 Biochemical Pathways

The direct medium spiny neuron (dMSN) AC5/cAMP/PKA signaling pathway is

governed by the activation of the D1 dopamine (D1) and the M4 muscarinic (M4)

G-coupled protein receptors (GCPR) (Nagai et al., 2016; Castro et al., 2013). The D1

receptor is a Gs/ol f coupled receptor that increases the level of adenylyl cylcase 5

(AC5) in D1-MSN in the striatum when DA binds to it (Glatt and Snyder, 1993).

On the other hand, the M4R is a Gi/o coupled receptor that decreases the level of

AC5 with the binding of ACh (Gerfen and Surmeier, 2011). Due to the tonic firing

of cholinergic interneurons, which release ACh, there is a basal tonic inhibition of

AC5 (Aosaki et al., 1995). This tonic inhibition is overcome by a synchronous firing

pattern of dopaminergic neurons in the substantia nigra (SN), which releases a high

concentration of DA in a pulse that binds to the D1 receptor. In addition to DA
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binding to the D1 receptor on MSNs, it also binds to D2 receptors on cholinergic

interneurons to produce a pause in the tonic release of ACh (Goldberg and Reynolds,

2011). Therefore, a pulse of dopamine is accompanied by a pause in the release of

acetylcholine. Together these two signals causes an increase in the level of the effector

enzyme AC5 which amplifies the input dopaminergic and acetylcholine signals by

catalyzing the conversion of ATP to the intracellular secondary-messenger cyclic AMP

(cAMP). Then, cAMP elevates the level of cAMP dependent protein kinase (PKA).

The PKA signaling pathway modulates the excitability of MSNs by phosphorylat-

ing targets, such as voltage-gated ion channels (Surmeier et al., 1995), transcription

factors (Dong et al., 2006), and glutamate ionotropic receptors (Nagai et al., 2016;

Cepeda et al., 1993). The corticostriatal synaptic plasticity is directly modulated by

the direct phosphorylation of glutamate ionotropic receptors by PKA. Furthermore,

PKA indirectly controls the corticostriatal synaptic plasticity by phosphorylating other

intracellular signaling proteins highly enriched in the striatum, such as dopamine-

and cAMP-regulated neuronal phosphoprotein (DARPP-32) (Calabresi et al., 2000)

and cyclic AMP-regulated phosphoprotein (ARPP-21) (Ouimet et al., 1989; Rakhilin

et al., 2004). Phosphorylation of the threonine 34 (Thr-34) residue of DARPP-

32 converts DARPP-32 into a potent protein phosphatase-1 (PP1) inhibitor, which

dephosphorylates glutamate ionotropic receptors. Furthermore, the PKA signaling

pathway is inhibited by the phosphorylation of the threonine 75 (Thr-75) residue of

DARPP-32 by cyclin-dependent kinase (CDK5) (Bibb et al., 1999). Therefore, DARPP-

32 acts as a biochemical switches that, depending on the inputs, controls the PKA

signaling pathways. The other highly enriched intracellular protein found in the

striatum is ARPP-21, which is phosphorylated at the threonine 55 (Thr-55) residue

and competes for Ca2+/calmodulin (CaM) (Rakhilin et al., 2004). ARPP-21 acts

as a competive inhibitor for other CAM dependent proteins such as the calcium-

dependent activation of CaM-dependent kinase II (CAMKII).

Additionally, the corticostriatal plasticity is govern by the level of Ca2+ in

the dMSN. The Ca2+ that enters the dMSN binds to calmodulin to form a

Ca2+/calmodulin (CaM) complex (Stemmer and Klee, 1994). These complexes

activate CAMKII, which phosphorylates AMPARs and increase the strength of the
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corticostriatal synapse (Yagishita et al., 2014). CAMKII phosphorylation is directly

opposed by the activation of PP1 by low levels of intracellular Ca2+ (Yagishita et al.,

2014). In my model, I captured the competition of CAMKII and PP1 phosphorylating

or dephosphorylating corticostriatal plasticity substrates as one variable Substrate.

2.2.2 Biochemical Signaling Kinetics

The biochemical reactions involved in corticostriatal plasticity are modeled using a

simple well-mixed reversible chemical reaction model,

A + B
k f


kb

C. (2.1a)

Using this model, a series of ordinary differential equations are written to describe

the individual species dynamics, shown in Eqs 2.1b-2.1d. Here, A and B represents

two generic biochemical signaling species that reversibly combine to form C with

a forward k f and backward kb rate constants. If the reaction is irreversible, then the

backward reaction kb is set to zero. In order to investigate the temporal window of DA

and ACh release on the corticostriatal plasticity, I combined two previously developed

models on the corticostriatal synaptic plasticity (Nair et al., 2015, 2016). The modeled

reactions of DA or ACh binding to their corresponding receptor to activate the Gs- and

Gi-protein-coupled receptor, respectively, are shown in Tables 2.1, 2.3, and 2.2. Then,

the reversible biochemical reactions describing the amplification of cAMP by AC5 and

the activation of PKA are shown in Table 2.4. The last reversible reactions are shown in

Table 2.5 of the the CAMKII and PP1 dynamics. The irreversible biochemical reactions

are listed in Table 2.6.

dCA

dt
= kbCC − k f CACB, (2.1b)

dCB

dt
= kbCC − k f CACB, (2.1c)

dCC

dt
= k f CACB − kbCC. (2.1d)
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F igure 2 .2 : Validation of biochemical model of the direct MSN. (A) The biochemical
signaling pathways in direct MSNs activated by Ca, DA, and ACh, which integrate
together to phosphorylate the substrate (pSubstrate). (B) The model parameters were
fitted using experimental data from the literature and validated using physiological
experimental protocols.
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Table 2 .1 : Reversible biochemical dynamics of G-protein-coupled receptors.

Biochemical Reaction

D1RGol f + DA
k f


kb

D1RDAGol f

D1RDA + Gol f
k f


kb

D1RDAGol f

D1R + Gol f
k f


kb

D1RGol f

D1R + DA
k f


kb

D1RDA

M4R + Gi
k f


kb

M4RGi

M4RACh + Gi
k f


kb

M4RAChGi

ACh + M4RGi
k f


kb

M4RAChGi

ACh + M4R
k f


kb

M4RACh

The corticostriatal plasticity biochemical reaction parameters were constrained by

the observable biomarkers reported in the literature. I used the same biomarkers used

to fit the previous versions of the D1R-M4R MSN (Nair et al., 2015) and the temporal

window D1R MSN (Nair et al., 2016) models. The previous observable biomarkers

are reported in Table 2.11. To fit the my new corticostriatal plasticity biochemical

model, I used two new observable biomarkers, which were slice acetylcholine and

dopamine dose-dependent data on the activation of the cAMP from in vitro slice

experimental data. The new biomarkers are shown in Table 2.12. The concentration

of the observable biomarker in my model was taken at the steady-state condition

or I matched the activation dynamics parameter in my model to the the observable

biomarker from the experiment. The activation of the G-protein coupled receptors

were fit using this approach. The G-protein activation dynamics were fit to a

monoexponential function 100%(1 − exp{−kt}) and the parameter k was fit to a

range. Here, t is the time in seconds. I hand-tuned the parameters of the combined

model to match the reported observable biomarkers, and the parameters are presented

in Tables 2.8, 2.9, and 2.10. Figure 2.2B shows the one-to-one comparison of the
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Table 2 .2 : Reversible biochemical dynamics of Gi-protein activation.

Biochemical Reaction

AC5 + Gα,ol f GTP
k f


kb

AC5Gα,ol f GTP

AC5 + Ca
k f


kb

AC5Ca

AC5Ca + Gα,ol f GTP
k f


kb

AC5CaGα,ol f GTP

Gα,iGTP + AC5Ca
k f


kb

AC5CaGα,iGTP

Gα,iGTP + AC5
k f


kb

AC5Gα,iGTP

Gα,iGTP + AC5 ∗ Gα,ol f GTP
k f


kb

AC5Gα,ol f GTPGα,iGTP

Gα,iGTP + AC5 ∗ Gα,ol f GTP
k f


kb

AC5CaGα,ol f GTPGα,iGTP

AC5Gα,iGTP + Gα,ol f GTP
k f


kb

AC5Gα,ol f GTPGα,iGTP

AC5CaGα,iGTP + Gα,ol f GTP
k f


kb

AC5CaGα,ol f GTPGα,iGTP

AC5Gα,ol f GTPGα,iGTP + ATP
k f


kb

AC5Gα,ol f GTPGα,iGTPATP

ATP + AC5Gα,iGTP
k f


kb

AC5Gα,iGTPATP
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Table 2 .3 : Reversible biochemical dynamics of Gs-protein activation.

Biochemical Reaction

AC5Gα,ol f GTP + ATP
k f


kb

AC5Gα,ol f GTP ∗ ATP

AC5 + ATP
k f


kb

AC5 ∗ ATP

AC5Ca + ATP
k f


kb

AC5Ca ∗ ATP

AC5CaGα,ol f GTP + ATP
k f


kb

AC5CaGα,ol f GTP ∗ ATP

AC5CaGα,iGTP + ATP
k f


kb

AC5CaGα,iGTP ∗ ATP

AC5CaGα,ol f GTPGα,iGTP + ATP
k f


kb

AC5CaGα,ol f GTPGα,iGTP ∗ ATP

Gα,ol f GTP + AC5Gα,iGTP ∗ ATP
k f


kb

AC5Gα,ol f GTPGα,iGTP ∗ ATP

Gα,ol f GTP + AC5CaGα,iGTP ∗ ATP
k f


kb

AC5CaGα,ol f GTPGα,iGTP ∗ ATP

Gα,ol f GTP + AC5 ∗ ATP
k f


kb

AC5Gα,ol f GTP ∗ ATP

Gα,ol f GTP + AC5Ca ∗ ATP
k f


kb

AC5CaGα,ol f GTP ∗ ATP



28

Table 2 .4 : Reversible biochemical dynamics of cAMP and PKA.

Biochemical Reaction

Ca + AC5 ∗ ATP
k f


kb

AC5Ca ∗ ATP

AC5 ∗ ATP + Gα,iGTP
k f


kb

AC5Gα,iGTP ∗ ATP

Gα,iGTP + AC5Gα,ol f GTP ∗ ATP
k f


kb

AC5Gα,ol f GTPGα,iGTP ∗ ATP

AC5Ca ∗ ATP + Gα,iGTP
k f


kb

AC5CaGα,iGTP ∗ ATP

Gα,iGTP + AC5CaGα,ol f GTP ∗ ATP
k f


kb

AC5CaGα,ol f GTPGα,iGTP ∗ ATP

cAMP + PKA
k f


kb

PKAcAMP2

cAMP + PKAcAMP2
k f


kb

PKAcAMP4

PKAcAMP4
k f


kb

PKAc + PKAreg

cAMP + PDE4
k f


kb

PDE4 ∗ cAMP

PDE10 + 2 ∗ cAMP
k f


kb

PDE10c

cAMP + PDE10
k f


kb

PDE10 ∗ cAMP

cAMP + PDE10c
k f


kb

PDE10c ∗ cAMP
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Table 2 .5 : Reversible biochemical dynamics of CAMKII and PP1.

Biochemical Reaction

CaM + Ca
k f


kb

CaMCa2

Ca + CaMCa2
k f


kb

CaMCa4

PP2B + CaM
k f


kb

PP2BCaM

PP2B + CaMCa4
k f


kb

PP2Bc

PKAc + DARPP32
k f


kb

PKAc ∗ D32

PKAc + B56PP2A
k f


kb

PKAc ∗ B56PP2A

D32p34 + PP1
k f


kb

PP1D32p34

CDK5 + DARPP32
k f


kb

CDK5 ∗ D32

D32p75 + PKAc
k f


kb

PKAcD32p75

B72PP2A + Ca
k f


kb

B72PPA2Ca

B56PP2Ap + D32p75
k f


kb

B56PP2Ap ∗ D32p75

B72PP2A + D32p75
k f


kb

B72PP2A ∗ D32p75

D32p75 + B72PPA2Ca
k f


kb

B72PP2ACa ∗ D32p75

D32p34 + PP2Bc
k f


kb

PP2Bc ∗ D32p34

PP2BCaM + Ca
k f


kb

PP2BCaMCa2

PP2BCaMCa2 + Ca
k f


kb

PP2Bc

PP2B + CaMCa2
k f


kb

PP2BCaMCa2

D32p75 + B56PP2A
k f


kb

B56PP2A ∗ D32p75

D32p34 + B72PPA2Ca
k f


kb

B72PP2ACa ∗ D32p34

D32p34 + B72PP2A
k f


kb

B72PP2A ∗ D32p34
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Table 2 .6 : Irreversible Biochemical Reactions (1 of 2).

Biochemical Reaction

Gα,ol f GTP
kcat→ Gα,ol f GDP

D1RDAGol f
kcat→ Gβγ,ol f + D1RDA + Gα,ol f GTP

Gα,ol f GDP + Gβγ,ol f
kcat→ Gol f

Gα,iGTP
kcat→ Gα,iGDP

Gβγ,i + Gα,iGDP
kcat→ Gi

M4RAChGi
kcat→ Gα,iGTP + M4RACh + Gβγ,i

AC5Gα,ol f GTP ∗ ATP
kcat→ cAMP + AC5Gα,ol f GTP

cAMP + AC5Gα,ol f GTP
kcat→ AC5Gα,ol f GTP ∗ ATP

AC5 ∗ ATP
kcat→ cAMP + AC5

cAMP + AC5
kcat→ AC5 ∗ ATP

AC5Gα,iGTP ∗ ATP
kcat→ cAMP + AC5Gα,iGTP

cAMP + AC5Gα,iGTP
kcat→ AC5Gα,iGTP ∗ ATP

AC5Gα,ol f GTPGα,iGTP ∗ ATP
kcat→ cAMP + AC5Gα,ol f GTPGα,iGTP

cAMP + AC5Gα,ol f GTPGα,iGTP
kcat→ AC5Gα,ol f GTPGα,iGTP ∗ ATP

AC5CaGα,ol f GTPGα,iGTP ∗ ATP
kcat→ cAMP + AC5CaGα,ol f GTPGα,iGTP

cAMP + AC5CaGα,ol f GTPGα,iGTP
kcat→ AC5CaGα,ol f GTPGα,iGTP ∗ ATP

AC5CaGα,iGTP ∗ ATP
kcat→ cAMP + AC5CaGα,iGTP

cAMP + AC5CaGα,iGTP
kcat→ AC5CaGα,iGTP ∗ ATP
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Table 2 .7 : Irreversible Biochemical Reactions (2 of 2).

Biochemical Reaction

AC5Ca ∗ ATP
kcat→ cAMP + AC5Ca

cAMP + AC5Ca
kcat→ AC5Ca ∗ ATP

AC5CaGα,ol f GTP ∗ ATP
kcat→ cAMP + AC5CaGα,ol f GTP

cAMP + AC5CaGα,ol f GTP
kcat→ AC5CaGα,ol f GTP ∗ ATP

AC5Gα,ol f GTP
kcat→ AC5 + Gα,ol f GDP

AC5CaGα,ol f GTP
kcat→ AC5Ca + Gα,ol f GDP

AC5CaGα,iGTP
kcat→ AC5Ca + Gα,iGDP

AC5Gα,iGTP
kcat→ AC5 + Gα,iGDP

AC5Gα,ol f GTPGα,iGTP
kcat→ AC5Gα,iGTP + Gα,ol f GDP

AC5Gα,ol f GTPGα,iGTP
kcat→ AC5Gα,ol f GTP + Gα,iGDP

AC5CaGα,ol f GTPGα,iGTP
kcat→ AC5CaGα,iGTP + Gα,ol f GDP

AC5CaGα,ol f GTPGα,iGTP
kcat→ AC5CaGα,ol f GTP + Gα,iGDP

AC5Gα,ol f GTPGα,iGTP ∗ ATP
kcat→ Gα,iGDP + AC5Gα,ol f GTP ∗ ATP

AC5Gα,iGTP ∗ ATP
kcat→ AC5 ∗ ATP + Gα,iGDP

AC5Gα,ol f GTPGα,iGTP ∗ ATP
kcat→ AC5Gα,iGTP ∗ ATP + Gα,ol f GDP

AC5Gα,ol f GTP ∗ ATP
kcat→ AC5 ∗ ATP + Gα,ol f GDP

AC5CaGα,ol f GTP ∗ ATP
kcat→ AC5Ca ∗ ATP + Gα,ol f GDP

AC5CaGα,ol f GTPGα,iGTP ∗ ATP
kcat→ AC5CaGα,ol f GTP ∗ ATP + Gα,iGDP

AC5CaGα,iGTP ∗ ATP
kcat→ AC5Ca ∗ ATP + Gα,iGDP

AC5CaGα,ol f GTPGα,iGTP ∗ ATP
kcat→ AC5CaGα,iGTP ∗ ATP + Gα,ol f GDP

PDE4 ∗ cAMP
kcat→ PDE4 + AMP
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Table 2 .8 : Corticostriatal Biochemical Model Parameters (1 of 3). The bold
parameters were hand-tuned, and the remaining parameters were taken from Nair
et al. (2016).

Rate Constant Value [s−1nM−1] Rate Constant Value [s−1nM−1]

krM4R*Gi 90 kfB72PP2ACa*D32p75 0.015

kfM4R*Gi 0.012 krB72PP2ACa*D32p75 100

krPP2B*CaMCa2 0.03 kcatPP2Bc*D32p34 1.2
kfPP2B*CaMCa2 0.1 kcatCDK5*D32 10

krPP2BCaMCa2*2Ca 100 kactGi 60

kfPP2BCaMCa2*2Ca 0.1 kGiGTPase 30

krPP2BCaM*2Ca 0.0002 kGiback 100

kfPP2BCaM*2Ca 0.006 kfM4RACh*Gi 1.2
kfPP1*D32p34 1 krM4RACh*Gi 90

krPP1*D32p34 1.5 kfPKA*2cAMP 0.026

kfPP2B*CaMCa4 0.1 krPKA*2cAMP 350

krPP2B*CaMCa4 0.003 krPKAc*PKAr 50

kfB72PP2A*Ca 0.01 kfPKAc*PKAr 0.03

krB72PP2A*Ca 10 kfPKA2cAMP*2cAMP 0.0346

kfPP2B*CaM 0.1 krPKA2cAMP*2cAMP 50

krPP2B*CaM 3000 kfCDK5*D32 0.001

kcatPKAc*D32 10 krCDK5*D32 100

kGα,ol f GTPase 30 kactGolf 15

kfPP2Bc*D32p34 1.3 kcatPDE4*cAMP 2.5
krPP2Bc*D32p34 0.1 kfPKAc*D32 0.01

kfB56PP2A*D32p75 0.008 krPKAc*D32 200

krB56PP2A*D32p75 100 kfPDE4*cAMP 0.03

kfB56PP2Ap*D32p75 0.015 krPDE4*cAMP 1

krB56PP2Ap*D32p75 100 krPDE10*cAMP 1

kcatB56PP2Ap*D32p75 8 kcatPDE10c*cAMP 10

kcatB56PP2A*D32p75 1.5 kfPDE10*cAMP 1.00E-06

kcatB72PP2ACa*D32p75 8 kfcAMP*PDE10 0.1
kcatB72PP2A*D32p75 1.5 krcAMP*PDE10 2

kfB72PP2A*D32p75 0.008 kcatcAMP*PDE10 3

krB72PP2A*D32p75 100 kcatAC5Gα,ol f GTP*ATP 20

biomarkers measured in my model compared to the biomarkers measured in the

various experiments that I used to fit my model.

2 .3 results

2.3.1 Precise temporal pattern and timing between Ca, DA, and ACh are required to

maximize corticostriatal synaptic plasticity in direct MSNs

I began by examining the temporal interaction between the calcium (Ca2+) signal with

the dopamine (DA) and acetylcholine (ACh) signals on the corticostriatal synaptic
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Table 2 .9 : Corticostriatal Biochemical Model Parameters (2 of 3). The bold
parameters were hand-tuned, and the remaining parameter values were taken from
Nair et al. (2016).

Rate Constant Value [s−1nM−1] Rate Constant Value [s−1nM−1]

kicatAC5Gα,ol f GTP*ATP 0.084 krPKAc*B56PP2A 0.3
kcatAC5*ATP 1 kfCaMCa2*2Ca 0.1
kicatAC5*ATP 0.0004 kcatPKAc*B56PP2A 0.2

kcatAC5Gα,iGTP*ATP 0.25 kfPKAc*D32p75 0.1
kicatAC5Gα,iGTP*ATP 0.00105 kfAC5Gα,ol f GTP*ATP 0.00105

kcatAC5CaGα,iGTP*ATP 0.125 kfAC5Gα,iGTP*ATP 6.25E-05

kicatAC5CaGα,iGTP*ATP 2.81E-05 kfAC5Gα,ol f GTPGα,iGTP*ATP 0.0003

kcatAC5Ca*ATP 0.5 kfAC5Ca*ATP 7.50E-05

kicatAC5Ca*ATP 0.00015 kfD1R*Golf 0.003

kcatAC5CaGα,ol f GTP*ATP 10 krD1R*Golf 5

kicatAC5CaGα,ol f GTP*ATP 0.022 kfD1RDA*Golf 0.003

kfM4R*ACh 0.01 krD1RDA*Golf 5

kfM4RGi*ACh 1 kfB72PP2A*D32p34 0.0005

krM4RGi*ACh 90 krB72PP2A*D32p34 1

krM4R*ACh 90 krAC5X*ATP 1

kcatAC5Gα,ol f GTPGα,iGTP*ATP 5 kcatB72PP2A*D32p34 3

kicatAC5Gα,ol f GTPGα,iGTP*ATP 0.006 kfAC5XGα,ol f GTP 0.2
kicatAC5CaGα,ol f GTPGα,iGTP*ATP 0.00175 kfAC5Ca 0.001

kcatAC5CaGα,ol f GTPGα,iGTP*ATP 2.5 kfAC5XGα,iGTP 50

kfAC5*ATP 0.0001 kfAC5XNCGα,iGTP 0.01

kfAC5CaGα,ol f GTP*ATP 0.00055 kfAC5XNCGα,ol f GTP 0.002

kfAC5CaGα,iGTP*ATP 5.63E-05 krAC5XGα,ol f GTP 0.1
kfAC5CaGα,ol f GTPGα,iGTP*ATP 0.000175 krAC5Ca 10

kfCaM*2Ca 0.006 krAC5XGα,iGTP 5

kGolfback 100 krAC5XNCGα,iGTP 0.01

krCaM*2Ca 20 krAC5XNCGα,ol f GTP 0.01

kdpB56PP2Ap 0.008 krgso 0.2
krCaMCa2*2Ca 1000 krgsi 30

krPKAc*D32p75 100 kcatPP1*AKAR3p 1.2
kfPKAc*B56PP2A 0.001 kfPP1*AKAR3p 0
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Table 2 .10 : Corticostriatal Biochemical Model Parameters (3 of 3). The parameter
values were taken from Nair et al. (2016).

Rate Constant Value [s−1nM−1] Rate Constant Value [s−1nM−1]

krPP1*AKAR3p 10 kpCaMKIIc 0.07

kcatPKAc*AKAR3 3 kfPP2A*pARPP21 0.004

kfPKAc*AKAR3 0 krPP2A*pARPP21 100

krPKAc*AKAR3 1 kcatPP2A*pARPP21 1

kfPDE10c*cAMP 0.1 kfPP2Ac*pARPP21 0.007

krPDE10c*cAMP 2 krPP2Ac*pARPP21 100

kfD1R*DA 0.005 kcatPP2Ac*pARPP21 10

kfD1RGolf*DA 0.005 kcatPP1*pSubstrate 10

krD1R*DA 5 kfPP1*pSubstrate 0.0005

krD1RGolf*DA 5 krPP1*pSubstrate 1

kfCaMKII*CaMCa4 0.1 kfPKAc*ARPP21 0.045

krCaMKII*CaMCa4 40 krPKAc*ARPP21 200

kfCaMKII*CaMCa2 0.1 kcatPKAc*ARPP21 10

krCaMKII*CaMCa2 400 kfCaMCa4*pARPP21 0.5
kfCaMKII*CaM 0.1 krCaMCa4*pARPP21 10

krCaMKII*CaM 4000 kdppCaMKII 0.1
kfCaMKIICaM*2Ca 0.006 kfpCaMKII*Substrate 0.0005

krCaMKIICaM*2Ca 2 krpCaMKII*Substrate 10

kfCaMKIICaMCa2*2Ca 0.1 kcatpCaMKII*Substrate 10

krCaMKIICaMCa2*2Ca 100 kftranspCaMKII 0.5
kfpCaMKII*CaM 0.1 krtranspCaMKII 0.001

krpCaMKII*CaM 400 kfPP1*pCaMKIIpsd 0.0008

kfpCaMKII*CaMCa2 0.1 krPP1*pCaMKIIpsd 1

krpCaMKII*CaMCa2 40 ktransCaMKII 0.5
kfpCaMKII*CaMCa4 0.1 kftransCaMKII 0.5
krpCaMKII*CaMCa4 0.4 krtransCaMKII 0.5
kfpCaMKIICaM*2Ca 0.006 kcatPP1*pCaMKIIpsd 1

krpCaMKIICaM*2Ca 2

kfpCaMKIICaMCa2*2Ca 0.1
krpCaMKIICaMCa2*2Ca 10
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Table 2 .11 : Previously used observable biomarkers.

Experiment Protein xbio References

G-protein Activation Monoexponential k = 10− 100 ms Chuhma et al. (2014);
Saturation Dynamics Bmax = 100 Marcott et al. (2014)

Basal cAMP 30− 90 nM Bacskai et al. (1993);
Mironov et al. (2009)

No input D32p34 400 nM Nishi et al. (1997);
Bateup et al. (2008)

D32p75 1, 200 nM Bateup et al. (2008)
ARPP21p 700 nM Caporaso et al. (2000);

Girault et al. (1990)

Slice Dopamine D32p34 4, 400 nM Nishi et al. (2000);
Bateup et al. (2008)

10 uM of D1R agonist D32p75 6, 000 nM Nishi et al. (2000);
Bateup et al. (2008)

ARPP21p 4, 900 nM Girault et al. (1990)

Slice Calcium D32p34 200 nM Nishi et al. (2005, 2002)
100 uM of Ca D32p75 6, 000 nM Nishi et al. (2005, 2002)

Slice PKA Dynamics cAMP 10, 000 nM Polito et al. (2013)
10 uM of D1R agonist

Slice PDE Dynamics D32p34 800 nM Nishi et al. (2008)
PDE Inhibitor
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Table 2 .12 : Additional observable biomarkers.

Experiment Protein xbio References

Slice Acetylcholine cAMP 0.33× (cAMP level w/ DA + ACh) Nair et al. (2019)
No dip in tonic ACh

10 nM cAMP 1 × cAMP @ 10 nM Nair et al. (2019)
100 nM cAMP 0.2 × cAMP @ 10 nM Nair et al. (2019)
500 nM cAMP 0.03 × cAMP @ 10 nM Nair et al. (2019)

1000 nM cAMP 0.01 × cAMP @ 10 nM Nair et al. (2019)
10000 nM cAMP 0 × cAMP @ 10 nM Nair et al. (2019)

Slice Dopamine
10 nM cAMP 0 × cAMP @ 10 nM Yapo et al. (2017)

100 nM cAMP 0.0.05 × cAMP @ 10 nM Yapo et al. (2017)
500 nM cAMP 0.4 × cAMP @ 10 nM Yapo et al. (2017)

1000 nM cAMP 0.65 × cAMP @ 10 nM Yapo et al. (2017)
10000 nM cAMP 1 × cAMP @ 10 nM Yapo et al. (2017)
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plasticity. The effect of the three signals on synaptic plasticity was measured through

the level of phosphorylation of a generic substrate. The generic substrate stood in for

the phosphorylation of voltage-gated ion channels, ionotropic receptors, and proteins

involved in translation of plasticity related proteins. In order to measure the effect of

the DA and ACh signals on the corticostriatal synaptic plasticity, I first applied the

Ca2+ pulse at 2 seconds for a duration of 1 second. The calcium pulse represents the

calcium that enters the neuron due to the repeated pairing of glutamate released by

presynaptic neurons firing and the firing of the postsynaptic neuron (Yagishita et al.,

2014). The calcium signal induces an increase in the level substrate phosphorylation

as shown in Figure 2.3. All of the substrate phosphorylation profiles are normalized

to the maximum level of substrate phosphorylation induced by the calcium signal

including the substrate phosphorylation profile induced by the the calcium signal.

Therefore the pSubstrate profile induced by the calcium signal only has a maximum

of one. Then, the DA and ACh signals were applied one second after the calcium

signal. The DA signal consisted of a pulse of DA for one second from the basal

DA level of 10 nM to 1500 nM, which is shown in Figure 2.3D, and the ACh signal

consisted of a dip in the 100 nM basal level of ACh to 0 nM as shown in 2.3E. The

ACh was assumed to go to zero, due to the quick dynamics of acetylcholine esterase

that quickly cleaves ACh molecules. When the DA and ACh signals arrive one second

after the Ca2+ pulse, I observed a dramatic increase in the level of pSubstrate. The

increase in the level pSubstrate due to the timing of the three signals is shown in

Figure 2.3A. This highlights a clear increase in the level pSubstrate due to the DA and

ACh signals with the Ca2+ signal.

I then explored the effect of the DA and ACh signals arriving at different times

relative to the Ca2+ signal. Figure 2.3B shows the pSubstrate profile when the DA

and ACh signals arrive one second before the Ca2+ signal, at the same time as the

Ca2+ signal, and one second after the Ca2+ signal. The arrival of the DA and the ACh

signals one second before the Ca2+ signal resulted in no significant increase in the

level pSubstrate. When the DA and ACh signals arrived at the same time and one

second after the Ca2+ signal, there I observed a large increase in the pSubstrate level,

with a larger increase observed when the DA and ACh signals arrived one second
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after the Ca2+ signal. The dramatic effect of the DA and ACh signals arriving before

and after the Ca2+ signal establishes a clear temporal interaction between the three

signals. Therefore, additional timing between the three signals was considered. In

order to compare the effect of different timings of the DA and ACh signals compared

to the Ca2+ signal, the area on the pSubstrate curve was calculated and normalized

relative to the Ca2+ only pSubstrate curve shown in Figure 2.3A. Then, I considered

seven different timings (∆t = −2 s, ∆t = −1 s, ∆t = 0 s, ∆t = 1 s, ∆t = 2 s, ∆t = 3 s,

∆t = 4 s) between the arrival of the Ca2+ signal (tCa) and the arrival of the dual DA

and ACh signals (tDA,ACh). Here, the time difference ∆t is defined as tCa − tDA,ACh. A

similar trend was observed where the negative timings (∆t < 0) resulted in minimal

substrate phosphorylation, while the positive timings (∆t ≥ 0) resulted in a large

enhancement of the total substrate phosphorylated. The optimal timing occurred

when the DA and ACh signals arrived one second after the Ca2+ signal and the level

of substrate phosphorylation gradually decayed as the timing increased. Figure 2.3F

shows the total amount of substrate phosphorylation at the seven different timings.

2.3.2 Changes in synaptic plasticity are highly sensitive to changes in DA concentrations in

low dopamine regime compared to high dopamine regime.

Next, I examined the sensitivity of the substrate phosphorylation level to non-

physiological reductions in the DA levels. This mimics the loss of DA that is

typically associated with PD. As the DA concentration is reduced, I observed an

expected decreases in the amount of substrate phosphorylation. Figure 2.4A shows

the decrease the total level of substrate phosphorylation at different timings as

the dopamine amplitude concentration is decreased from 1500 nM to 187.5 nM.

This decrease is due to less DA binding to the D1R to increase PKA, which

influences the substrate phosphorylation level by phosphorylating DARPP-32 at

the Thr-34 residue. Phosphorylation of the Thr-34 residue inhibits PP1, which is

responsible for dephosphorylating the generic substrate. Therefore, a reduction in

the activation of the D1R by dopamine leads to less inhibition of PP1, which lowers

the level of the phosphorylated substrate. Interestingly, the decrease in the level of

substrate phosphorylation at all timings decreased non-linearly with the dopamine



39

Ca Only
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D

F igure 2 .3 : The temporal interactions of Ca2+, DA, and ACh signals. An
example of the calcium, dopamine, and acetylcholine signals are shown in (A). (B)
A comparison of the amount of substrate phosphorylated when the DA and ACh
signals arrive one second after the Ca2+ pulse (black line) and when they are absent
(blue line). Each of the profiles are normalized to the maximum of the Ca2+ pulse
only profile. (C) shows the profile of the phosphorylated substrate when the DA and
ACh signals arriving one second before the calcium signal (∆t = −1), at the same
time as the calcium signal (∆t = 0), and one second after the calcium signal (∆t = 1).
(D) shows the total amount of substrate phosphorylated for different arrival times of
the DA and ACh signals relative to the Ca2+ pulse (∆t). The time difference between
the two signals was calculated by subtracting the time of the DA pulse and ACh dip
arriving (tDA,ACh) from the time that the calcium pulse arrived (tCa) in other words
∆t = tDA,ACh − tCa. The total amount of phosphorylated substrate was calculated
by taking the area under the curve of the pSubstrate curves for each timing and was
normalized to the level of phosphorylation due to only the calcium signal. The blue-
line represents the level of phosphorylation due to only the calcium signal arriving.
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concentration amplitude. At high concentrations of DA, a relatively large reduction

in the DA level only produces a small decrease in the total substrate phosphorylation

level. This is shown in Figure 3A, where a 50 % reduction in the DA pulse

amplitude from 1500 nM to 750 nM produced only a relatively small reduction in

the substrate phosphorylation level. At low levels of dopamine, such as when the

DA pulse amplitude dropped from 750 nM to 375 nM, there was a large drop in total

substrate phosphorylation. This shows that the system is robust to changes in the DA

concentration at high concentrations of DA but highly sensitive to changes in the DA

concentration at low concentrations. This may explain why symptoms of PD typically

emerge with the death of approximately 70 % of dopamine neurons. A similar trend

was observed in the profiles of the key plasticity proteins PKA, pSubstrate, CaMKII,

and PP1 as shown in Figures 2.4B, 2.4C, 2.4D, and 2.4E, respectively.

Dopamine is not the only neuromodulator that controls the activity of PKA

and subsequently the substrate phosphorylation level. Acetylcholine also influences

the substrate phosphorylation level via the Gi-coupled M4 receptor. In order to

understand the role of the acetylcholine dip paired with the DA pulse, I held to

the acetylcholine concentration constant and observed the changes in the plasticity

time window as the amplitude of the dopamine pulse was reduced. Figure 2.5

shows the total phosphorylation plasticity time window as the dopamine amplitude

concentration was decreased. Once again there was an overall reduction in the total

amount of substrate phosphorylation that had a nonlinear relationship to the decrease

in the concentration of dopamine. This is due to more ACh binding to the M4R, which

inhibited PKA production. Since PKA influence PP1 inhibition, the reduction in PKA

resulted in more dephosphorylation of the generic substrate. In addition to the overall

reduction in the total substrate phosphorylation level, there was a shift in the optimal

timing of the Ca2+ pulse and the DA pulse (∆t). Previously the optimal timing (∆t) of

the Ca, DA, and ACh signals was 1 sec but the model showed that the removal of the

ACh dip moved the optimal timing to ∆t = 0 sec. This loss of the physiological ACh

signal forced the DA and Ca2+ signals to arrive at the same time to achieve maximal

enhancement of substrate phosphorylation. These results highlight the importance of

the acetylcholine dip for healthy corticostriatal plasticity dynamics.
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F igure 2 .4 : Changes in corticostriatal plasticity signaling due to a reduction in
high amplitude dopamine pulses. (A) shows the decrease in the total amount of
substrate phosphorylation at different timings as the amplitude of the dopamine pulse
decreases. The corresponding changes in the profiles of key plasticity proteins such
as PKA, CaMKII, pSubstrate, and PP1 are shown in (B), (C), (D), and, (E), respectively.
In all of the figures, the level of substrate phosphorylation and the amplitude of the
plasticity proteins decreases with the concentration of the dopamine amplitude.
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F igure 2 .5 : Effect of acetylcholine dip on corticostriatal plasticity window. The
amount of substrate phosphorylation at different timings of the Ca2+ signal arriving
and the dual DA and ACh signals. The phosphorylation time window decreases as
the dopamine amplitude concentration decreases.



43

2.3.3 Acetylcholine dip duration could restore the changes in corticostriatal synaptic

plasticity due to the loss of dopaminergic neurons

Next, I investigated if enhancing the acetylcholine dip duration could be used to

offset the negative effect of DA depletion. I considered the case where the DA pulse

amplitude is decreased by 70 % from 1500 nM to 450 nM, which is the percentage

of DA neuron lost where PD motor symptoms typically begin to emerge. Figure

2.6 shows that this decrease the level of PKA, pSubstrate, CaMKII, and PP1. Then,

I determined if the healthy profiles of these plasticity signaling proteins could be

restored by extending the ACh dip duration. First, I showed that reducing the ACh

dip duration from 0.4 sec to 0.2 sec reduces the level of PKA, pSubstrate and CaMKII

while it increases the level of PP1. Then, I extended the ACh dip to 1 sec. This boosted

the profiles of the plasticity proteins (red-line) close to their previous healthy case

profile shapes (dashed black-line) shown in Figure 2.6. These results indicate that

harnessing the acetylcholine signal could restore the corticostriatal dynamics when

there is a deficiency in dopamine signaling.

Since extending the ACh dip is able to compensate for a reduction in the dopamine

amplitude concentration, next I investigated the acetylcholine dip duration required

to restore the total amount of substrate phosphorylation and PKA activation. Figure

2.6A shows the exponential increase in the required duration of the ACh dip to restore

the phosphorylated substrate level and PKA activation level as the DA amplitude

concentration decreases. After the dopamine amplitude concentration dropped

below 250 nM, the ACh dip duration was not able to restore the total substrate

phosphorylation and total PKA activation to the healthy level. My additional

investigations into attempting to offset signaling losses due to dopamine amplitude

concentration under 250 nM showed that increasing the ACh dip duration from 0.4

seconds to 5 seconds increased the profile of PKA and pSusbstrate, as shown in

Figures 2.7B and 2.7C, but increasing the ACh dip further produced no significant

further increase in the profiles of PKA and pSubstrate. These results show that there

is an upper limit on the extending the ACh dip duration to offset dopamine amplitude

concentration deficits.
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F igure 2 .6 : The effect of the acetylcholine dip duration on key plasticity proteins.
The effect of changing the duration of the ACh dip duration from 0.2 sec to 1 sec on
key plasticity signaling proteins such as PKA, CaMKII, pSubstrate, and PP1 when the
dopamine amplitude concentration has been reduced by 70 % to 450 nM is shown in
(A), (B), (C), and (D), respectively.
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F igure 2 .7 : Harnessing the acetylcholine dip duration to offset dopamine depletion.
(A) shows the acetylcholine dip duration required to restore the healthy level of
total phosphorylated substrate at different dopamine amplitude concentrations. (B)
and (C) show the profiles of PKA and pSubstrate, respectively, for the health (black
dashed-line), the dopamine amplitude concentration of 100 nM & acetylcholine
dip duration of 0.4 sec (green-line), the dopamine amplitude concentration of 100
nM & acetylcholine dip duration of 5 sec (blue-line), and the dopamine amplitude
concentration of 100 nM & acetylcholine dip duration of 25 sec (red-line).
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2.3.4 A second Ca2+ signal boosts DA and ACh signaling

Finally, I explored harnessing a second Ca2+ signal to boost the corticostriatal

signaling back to the healthy level. A second Ca2+ signal means that the presynaptic

corticostriatal synapse is stimulated repeatedly prior to the postsynaptic MSN.

Practically, this means that the signal is repeated to offset the reduced pathological

dynamics from the loss of dopamine neurons. The calcium signal with the second

pulse is shown in Figure 2.8A. In Figures 2.8B, 2.8C, 2.8D, and 2.8E, I showed how

adding a second calcium pulse for 1 second was able to boost the profiles of the

plasticity proteins PKA, pSubstrate, CaMKII, and PP1, respectively. While extending

the ACh dip was able to almost restore the exact shape of the healthy profiles of the

key plasticity signaling proteins, the second calcium pulse was not able to restore

the shape of the profiles for most of the plasticity proteins except for pSubstrate.

Since pSubstrate stands in for the cellular proteins that increase the excitability of the

MSN, this suggests that harnessing a second calcium signal could restore the healthy

plasticity dynamics. When the second calcium pulse was extended from 1 second

to 2 seconds, the PKA profile had no significant increase in the level of PKA and

the pSubstrate level decreased. The counterintuitive result arose from the balance of

CaMKII and PP1, which compete to phosphorylate and dephosphorylate, respectively,

the generic substrate. Upon examination of the profiles of the CaMKII and PP1 for

the case with a second calcium pulse for 1 second, shown as the red-line compared

to the case with out the second calcium pulse shown as the green-line in Figures 2.8D

and 2.8E, the increase in the amplitude of CaMKII is much greater than the decrease

in the amplitude of PP1. Then, if the profile of the case with a second calcium pulse

for a duration of 1 second is compared to the case with a calcium pulse for 2 seconds,

the amplitude of the CaMKII profile only increased slightly while the minimum of

the PP1 profile is much higher. Therefore, the ratio of the dephosphorylating PP1 to

the phosphorylating CaMKII is higher. Figure 2.8F shows the ratio of CaMKII and

PP1 over time for the different calcium signal protocols. This figure clearly shows that

ratio of CaMKII is highest when the second calcium signal has a duration of 1 second.
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F igure 2 .8 : Effect of a second Ca2+ pulse on offsetting dopamine depletion. (A)
shows the profile of the Ca2+ signal with the second pulse relative to the DA and
ACh pulses (blue-arrow). (B-E) show the boosted profiles of key signaling proteins
involved in substrate phosphorylation with the second Ca2+ pulse. (F) shows the ratio
of CAMKII to PP1. (G) The biochemical signaling pathways in direct MSNs activated
by Ca, DA, and ACh.
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2 .4 summary

In this section, I investigated the changes in the corticostriatal plasticity induced by

different timings, concentration, and durations of Ca2+, dopamine, and acetylcholine.

I first examined how the timing of the calcium signal relative to the dual dopamine

and acetylcholine signals altered profile of a generic substrate phosphorylation,

which stood in for the phosphorylation of proteins involved in increasing the

excitability of the dMSN. Then, I showed how the plasticity time window of the total

amount of substrate phosphorylation decreased nonlinearly with the decrease in the

amplitude concentration of the dopamine pulse in order to gain insight into how the

corticostriatal plasticity dynamics changes with the death of dopamine neurons as

PD progresses. Since the dopamine pulse is associated with an acetylcholine dip, I

examined the importance of the acetylcholine dip on the plasticity time window of the

substrate phosphorylation. I showed that the loss of the acetylcholine dip moved the

optimal timing of the dopamine pulse arriving forward, such that the dopamine and

the calcium pulses were required to arrive at the same time to induce the maximum

level of the substrate phosphorylation. Since the acetylcholine dip influenced the

optimal time, I then explored and showed how extending the acetylcholine dip

duration could offset losses in the corticostriatal signaling due to the decrease in the

amplitude of the dopamine pulse concentration. Finally, I examined how a second

calcium pulse could be harnessed to offset the loss of the substrate phosphorylation

and the corticostriatal signaling in the reduced dopamine level state.
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chapter 3

A computational model of dopaminergic modulation of

hippocampal Schaffer collateral-CA1 long-term

plasticity

3 .1 introduction

One of the most studied regions of the mammalian brain is the hippocampus, due

to its role in learning and memory. In particular, changes in the connections,

otherwise know as synapses, between excitatory neurons of different subregions

of the hippocampus have been extensively studied. The researchers Lomo and

Bliss were the first researchers to describe long-term potentiation (LTP), which is

an activity-dependent plasticity phenomena, where the high frequency stimulation

of the perforant path of the hippocampus in rabbit increased the strength of the

synapse hours after the stimulation protocol (Lomo, 1966; Bliss and Lømo, 1973).

The perforant path and the dentate gyrus region of the hippocampus are shown in

the schematic of the hippocampus in Figure 3.1. In 1983, Collingridge et al. (1983)

found that LTP could be blocked by antagonizing the glutamate ionotropic N-Methyl-

d-aspartic acid receptor (NMDAR) with the antagonist D-AP5. The dynamics of the

AMPAR are much faster than the NMDAR (Andreasen et al., 1989; Blake et al., 1988),

but both depolarize the membrane potential when activated. The AMPAR opens

upon glutamate binding to the receptor, while it was found that NMDAR requires

glutamate to bind to the receptor as well as the ejection of a Mg2+ ion due to the

depolarization of the membrane potential to open (Herron et al., 1986). Wigström

et al. (1986) found that LTP exhibited the same properties as Hebbian plasticity,

which was the postulate by Hebb (1949). The co-requirement of glutamate binding

to the NMDAR and the ejection of the Mg2+ provided a biophysical explanation

of the Hebbian nature of LTP (Bliss and Collingridge, 1993; Collingridge, 1985). In

opposition to LTP, the Schaffer-Collateral CA1 pyramidal neuron (SC-CA1) synpase

could also be depotentiated with repeated low frequency stimulation that induced
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Schaffer Collateral 
Pathway

Mossy Fibers

Cornu Ammonis 3 (CA3)
Pyramidal

Cells

CA1
Pyramidal
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Dentate Gyrus (DG)
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Recording
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F igure 3 .1 : A schematic of the trisynaptic hippocampal circuit. The entrohinal
cortex (EC) projects into the hippocampus through the perforant pathway to the
dentate gyrus (DG) granule cells. Then, the DG projects to the CA3 pyramidal neurons
through mossy fiber synapses. The CA3 pyramidal neurons project through the
Schaffer-collateral (SC) synapse to CA1 pyramidal neurons. Finally, CA1 pyramidal
neurons project out of the hippocampus to the subiculum.

long-term depression (LTD) (Dudek and Bear, 1992). Similar to LTP, LTD was found

to be dependent on the NMDAR activation (Mulkey and Malenka, 1992).

The ejection of the Mg2+ ion from the NMDAR plays an additional role of allowing

the influx of Ca2+ into the neuron (Alford et al., 1993). Calcium not only depolarizes

the membrane potential but also acts as a secondary messenger to activate and

influence many signaling pathways, such as cyclic adenosine monophosphate (cAMP)-

dependent protein kinase (PKA), Ca2+/calmodulin-dependent kinase II (CAMKII),

and protein kinase C (PKC) (Malinow et al., 1989; Matthies and Reymann, 1993;

Reymann et al., 1988a,b). These signaling pathways are critical for the consolidation of

early-LTP into late-LTP (Kandel et al., 2014). Early-LTP last under an hour while late-

LTP lasts hours to days. In addition to these pathways being activated by Ca2+, they

are also dependent on various neuromodulators, which bind to their corresponding

G-protein coupled receptor, to amplify or inhibit these signaling pathways. It is

well-established that the activation of some of these pathways are time-dependent.

Particularly, it has been shown in in vitro hippocampal slice experiment that the

prior HFS-induced LTP occluded further potentiation by directly activating the PKA

pathway with the PKA activator Rp-cAMPS (Frey et al., 1993). Furthermore, the
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activation of the PKA pathway before High Frequency Stimulation (HFS)-induced

LTP prevented additional induction of late-LTP. These experiments showed a clear

temporal dependence on the activation of these pathways relative to the activity-

dependent plasticity induction protocols. Therefore, researchers began to study

how various neuromodulators, such as dopamine, modulate the activity-dependent

plasticity induction in the SC-CA1 synpase.

Dopamine released in the hippocampus plays a critical role in regulating spatial

learning, novelty detection, and novel object recognition by strengthening memory

encoding and pruning existing memories. Due to the role dopamine plays in

memory, researchers examined how dopamine modulates SC-CA1 synaptic plasticity

in a dose dependent manner in order to understand its role in learning and

memory (Mockett et al., 2004; Huang and Kandel, 1995; Lemon and Manahan-

Vaughan, 2006; Shivarama Shetty et al., 2016). Researchers found that similar to

the activation of the PKA pathways with Rp-CAMPS, after a strong HFS protocol,

the activation of dopamine D1/D5 receptors by the dopamine agonist SKF 38393

after a HFS protocol occluded further potentiation of the SC-CA1 synapse by the

dopamine agonist (Huang and Kandel, 1995). Additionally, the application of the

dopamine agonist SKF 38393 prior to a strong HFS protocol prevented further late-

LTP consolidation. Further investigation into the modulation of the SC-CA1 synaptic

plasticity by various dopamine agonists showed that dopamine agonist alone induced

a slow-onset-potentiation of the synaptic plasticity. The dopaminergic slow-onset-

potentiation was found to be dose-dependent where higher concentrations of a

dopamine agonists induced more potentiation (Sajikumar and Frey, 2004; Navakkode

et al., 2012; Shivarama Shetty et al., 2016). One researcher found that the application

of a low concentration of dopamine to the SC-CA1 synapse induced slow-onset-

depotentiation (Sajikumar and Frey, 2004). Additionally, an alternative D1/D5

dopamine agonist SKF 83959 has been suggested to selectively activate the PLC

pathway to induce depotentiation (Liu et al., 2009; Undieh, 2010). These results

taken together suggest that dopamine at high concentrations promote potentiation,

while lower levels of dopamine may promote depotentiation of the SC-CA1 synapse.

Furthermore, this suggest that the concentration, duration, timing of the application
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of the D1/D5 agonist relative to a stimulation protocol, and the specific D1/D5

dopamine agonist plays a significant role in the modulation of activity-dependent

plasticity induction in the SC-CA1 synapse.

Exploring the effect of the parameter space of various concentration levels of the

applied pharmacological agent as well as the frequency-specific characteristics of

the HFS/LFS protocol on the D1/D5 receptors mediated spatiotemporal modulation

of high frequency stimulation/ low frequency stimulation (HFS/LFS)-induced

long-term potentiation/depotentiation (LTP/LTD) is a combinatorically challenging

problem which is both expensive and time-consuming to address in experiments

alone. A computational modeling approach integrating experimental findings at

various levels (such as molecular and cellular levels) and from diverse experimental

protocols in a biophysiological manner could potentially address this challenge. In

this regard, computational modeling approaches have been developed to explain

molecular level mechanisms underlying LTP/LTD (Triesch et al., 2018; Bhalla and

Iyengar, 1999; Kotaleski and Blackwell, 2010; Blackwell and Jedrzejewska-Szmek,

2013; Blackwell and Miningou, 2020; Mäki-Marttunen et al., 2020; Foncelle et al.,

2018; Brzosko et al., 2017) and modulation of the neural activity by the activation

of G-protein coupled receptors, such as dopamine receptors (Nakano et al., 2010;

Nair et al., 2016; Yapo et al., 2017; Blackwell et al., 2019), muscarinic receptors (Nair

et al., 2015; Mergenthal et al., 2020), and β-adrenergic receptors (Luczak et al., 2017;

Jedrzejewska-Szmek et al., 2017). Furthermore, unified multi-scale models have

been developed that combine detailed biochemical molecular level dynamics with

electrical dynamics in medium spiny neurons (Mattioni and Le Novère, 2013) and

CA1 hippocampal neurons (Bhalla, 2011). Detailed molecular-level modeling of

chemical signaling pathways in these works explained the published biochemical data

from several diverse experimental protocols on LTP induction in the CA1 pyramidal

neurons. Moreover, it provided a comprehensive understanding of critical molecular

mechanisms involved in the modulation of this LTP by dopamine. Despite these

initial modeling efforts, the literature still lacks a unified modeling approach that

integrates biochemical effects on electrophysiology to systematically investigate the
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spatiotemporal modulation of HFS/LFS-induced LTP/LTD of the SC-CA1 synapses

by the activation of D1/D5 receptors under various parametric conditions.

In this chapter, I have developed a computational modeling approach to integrate

the spatiotemporal impact of D1/D5 agonists on the HFS/LFS-induced early and

late LTP/LTD at the electrophysiological level. The modeling hypothesis is that the

chain of biochemical signaling initiated by HFS/LFS and D1/D5 receptors agonists

compete for a limited available biochemical resources to induce and/or modulate late-

LTP/LTD in the hippocampal SC-CA1 synapses. I have formulated the hypotheses

based on the available experimental results on the modulation of the HFS-induced

LTP by various D1/D5 agonists, where authors showed that the application of SKF

38393 more than 150 minutes before the HFS protocol initially enhanced the HFS-

induced LTP but after 3 hours the dopaminergic enhancement decayed back to the

LTP level induced by only HFS (Huang and Kandel, 1995; Navakkode et al., 2012).

In contrast, the application of D1/D5 agonists after the HFS protocol does not have

a significant effect on HFS-induced LTP (Huang and Kandel, 1995; Otmakhova and

Lisman, 1998). Additionally, it has been shown experimentally that D1/D5 receptor

modulation of LFS-induced LTD due to the release of SKF 38393 immediately after the

LFS protocol disappears when the same amount of SKF 38393 is released 60 minutes

after the LFS protocol (Mockett et al., 2007). These experiments highlight a reduced

efficacy of either the D1/D5 receptors agonist or HFS/LFS protocol when it arrives

as the second input. Based on these experimental results, I hypothesize that the first

input may use up the shared biochemical resources rendering the second input less

effective.

Using the hypotheses mentioned above, I have developed a set of phe-

nomenological models to describe the temporal dose-dependent effect of dopamine

D1/D5 receptors agonist on the maximum synaptic conductance using published

electrophysiological data from hippocampal CA1 slice experiments on the % change

in field excitatory postsynaptic potential (fEPSP) slope in response to D1/D5 agonists

SKF 38393, 6-bromo-APB, and dopamine. Since the fEPSP slope is an extracellular

EPSP recording from the stratum radiatum of the CA1 area, I have used the recent

data on the simultaneous recording of fEPSP slope, and intracellular EPSP slope
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(Abrahamsson et al., 2016) to develop a linear correlation and used it to transform

the synaptic EPSP from CA1 neuron model into fEPSP. To model the synaptically

evoked EPSP, I have used an experimentally validated single compartmental

biophysiological model in a Hodgkin-Huxley formalism from (Golomb et al., 2006)

to represent the CA1 neuron dynamics. The synaptic dynamics, as well as the

dynamics of high/low-frequency stimulation (HFS/LFS), induced LTP/LTD of SC-

CA1 synapse are described using published phenomenological models of SC-CA1

synaptic dynamics and LTP/LTD (Graham, 2001; Migliore and Lansky, 1999; Saftenku,

2002). I have used an approximate Bayesian computation method with a sequential

Monte Carlo scheme (Toni et al., 2008) to estimate model parameters from the available

electrophysiological data in the literature.

3 .2 model system

3.2.1 Hippocampal CA1 pyramidal neuron model

We used an experimentally validated single compartment Hodgkin-Huxley model

(Golomb et al., 2006) to represent the CA1 pyramidal neuron dynamics. The details of

the model can be found in (Golomb et al., 2006). Here, I briefly described the model.

The time evolution of the membrane potential, V, is governed by the sum of various

ionic currents, as given by Eq. 3.1.

Cm
dV
dt

= −gL(V −VL)− INaT − INaP − IKdr

−IA − IM − ICa − IC − IsAHP − Is. (3.1)

In Eq. 3.1, INaT and INaP are the transient and persistent sodium (Na+) currents,

respectively. IKdr is the delayed rectifier potassium (K+) current, and IM is the

muscarinic-sensitive K+ current. IA is the A-type K+ current. ICa is the high threshold

calcium (Ca2+) current, and IC is the Ca2+-activated K+ current for the rapid spike

repolarization. IsAHP is the slow Ca2+-activated K+ current responsible for the slow

after hyperolarization and the spike frequency adaptation. Is is the synaptic current
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to the CA1 pyramidal neuron from the Schaffer collateral-CA1 synapse, which I

described in the next section. Cm, gL, and VL are the membrane capacitance, the

leaky current conductance, and the leaky current reversal potential, respectively.

The ionic currents in Eq. 3.1 are voltage-dependent, and I provided their functional

forms in Eqs. 3.2a-3.2h.

INaT(V, h) = gNaTm3h(V −VNa), (3.2a)

INaP(V) = gNaP p(V −VNa), (3.2b)

IKdr(V, n) = gKdrn4(V −VK), (3.2c)

IA(V, b) = gAa3b(V −VK), (3.2d)

IM(V, z) = gMz(V −VK), (3.2e)

ICa(V, r) = gCar2(V −VCa), (3.2f)

Ic(V, c) = gcdc(V −VK), (3.2g)

IsAHP(V, q) = gsAHPq(V −VK). (3.2h)

For a given ionic current Ii where i ∈ {NaT, NaP, Kdr, A, M, Ca, c, sAHP}, gi is the

maximum conductance of the ith ionic channel type. VNa, VK, and VCa are the reversal

potential of the sodium, potassium, and calcium channels, respectively. The dynamics

of the gating variables (m, h, p, n, a, b, z, r, d, c, q) are described by Eqs. 3.3a-3.3q. Their

activation and deactivation dynamics are described by either a differential equation,

a generic activation/inactivation function x∞(V) = {1 + exp[−(V − θx)]/σx}−1, or a

combination of both. The dynamics of the Ca2+ activated ion channel gating variables

d and q depend on the intracellular Ca2+ concentrations. I provided the governing

equation of the Ca2+ dynamics in Eq. 3.3r, where v is the rate of Ca2+ into the neuron
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and τCa is the Ca2+ decay constant.

m = m∞(V), (3.3a)
dh
dt

=
φ[h∞(V)− h]

τh(V)
, (3.3b)

τh(V) = 0.1 + 0.75

×{1 + exp[−(V − θht)/σht]}−1, (3.3c)

p = p∞(V), (3.3d)
dn
dt

= φ[n∞(V)− n]/τn(V), (3.3e)

τn(V) = 0.1 + 0.5

×{1 + exp[−(V − θnt)/σnt]}−1, (3.3f)

a = a∞(V), (3.3g)
db
dt

= [b∞(V)− b]/τb, (3.3h)

dz
dt

= [z∞(V)− z]/τz, (3.3i)

dr
dt

= [r∞(V)− r]/τr, (3.3j)

r∞(V) = {1 + exp[−(V − θr)/σr]}−1, (3.3k)
dc
dt

= [c∞(V)− c]/τc, (3.3l)

d = d∞([Ca2+]), (3.3m)

c∞(V) = {1 + exp[−(v− θc)/σc]}−1, (3.3n)

d∞([Ca2+]) = (1 + ac/[Ca2+])−1, (3.3o)
dq
dt

= [q∞([Ca2+])− q]/τq, (3.3p)

q∞([Ca2+]) = (1 + a4/[Ca2+]4)−1, (3.3q)
d[Ca2+]

dt
= −vICa − [Ca2+]/τCa. (3.3r)

We provided the CA1 pyramidal neuron model parameters used in this chapter in

Table 3.1.
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Table 3 .1 : CA1 Pyramidal Neuron Model Parameters Golomb et al. (2006).

Parameter Value Parameter Value

C 1 µF/cm2 θm −30 mV
gL 0.05 mS/cm2 σm 9.5 mV

gNaT 35 mS/cm2 θh −45 mV
gNaP 0.3 mS/cm2 σh −7 mV
gKdr 6 mS/cm2 θht −40.5 mV
gA 1.4 mS/cm2 σht −6 mV
gM 1 mS/cm2 φ 1
gCa 0.08 mS/cm2 θp −46 mV
gc 10 mS/cm2 σp 3 mV

gsAHP 5 mS/cm2 θn −35 mV
VL −70 mV σn 10 mV

VNa 55 mV θnt −27 mV
VK −90 mV σnt −15 mV
VCa 120 mV θa −50 mV

ν 0.13 cm2/(ms×µA) σa 20 mV
τCa 13 ms θb −80 mV
σb −6 mV θz −39 mV
σz 5 mV τb 15
τz 75 τr 1
θr −20 mV σr 10 mV
τc 2 θc −30 mV
σc 7 mV ac 6
τq 450 aq 2

3.2.2 Schaffer collateral - CA1 pyramidal neuron synaptic dynamics

To represent the dynamics of the synaptic current, Is, from the Schaffer collateral

fiber to the CA1 pyramidal neuron (see Eq. 3.1), I used a phenomenological synaptic

model (Graham, 2001), described by Eqs. 3.4a -3.4b. The model captures the synaptic

contributions from the AMPA and NMDA neurotransmitters.

Is = gsnsyn(V − Es) (3.4a)

gs = (1− α)gAMPA + αgNMDA (3.4b)
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In Eq. 3.4a, gs, V, and Es are the synaptic conductance, the postsynaptic CA1

pyramidal neuron membrane potential, and the synaptic reversal membrane potential,

respectively. nsyn is a scaling parameter based on an estimate of the number of

excitatory synapses (Megıas et al., 2001). The synaptic conductance gs (see Eq. 3.4b) is

the weighted sum of the AMPA (gAMPA) and NMDA (gNMDA) conductances, where

α determines the relative contribution of the AMPA and NMDA conductances. I

presented a dynamical model of the AMPA and NMDA conductances in Eqs. 3.4c-

3.4h.

gAMPA =
ḡsτ1τ2

τ2 − τ1
h, (3.4c)

gNMDA =
ḡs

1 + µs[Mg2+]e−γsV w, (3.4d)

dh
dt

= u, (3.4e)

du
dt

=
−u(τ1 + τ2)− h

τ1τ2
, (3.4f)

dw
dt

= r, (3.4g)

dr
dt

=
−r(τ3 + τ4)− w

τ3τ4
. (3.4h)

In Eqs. 3.4c-3.4h, ḡs is the maximum synaptic conductance of the Schaffer collateral -

CA1 pyramidal neuron (SC-CA1) synapse, measured in the presence of AMPA only

receptors. The gating variables h and w gate the AMPA and NMDA conductances,

respectively. τ1 and τ2 are the AMPA ionotropic receptors’ rise and decay time

constants, respectively. Similarly, τ3 and τ4 are the NMDA ionotropic receptors’ rise

and decay time constants, respectively. The NMDA conductance gNMDA is dependent

on both the postsynaptic membrane potential V and the magnesium concentration

[Mg2+]. µs and γs are scaling parameters.

The complete synaptic dynamics of the SC-CA1 synapse described by Eqs. 3.4a-

3.4h is governed by a set of model parameters ḡs, τ1, τ2, τ3, τ4, µs, γs, [Mg2+], α, Es.

I fixed the model parameters [Mg2+], α, and Es to 1 µM, 0.1, and 0 mV,

respectively (Graham, 2001). Then I inferred the remaining model parameters



59

using an approximate Bayesian inference approach based on the sequential Monte

Carlo (ABC-SMC) (Toni et al., 2008) from experimental data of AMPA and NMDA

excitatory postsynaptic current induced by stimulating the SC-CA1 synapse with a

brief electrical pulse (Christie and Jahr, 2006). Briefly, I first fitted the parameters ḡs,

τ1, and τ2 with the ABC-SMC approach using a sum of the squared errors distance

function shown in Eq. 3.5c between the AMPA current (Eq. 3.5a) in my model and

the experimental data available from (Christie and Jahr, 2006). Then, I fitted the

parameters τ3, τ4, µs, and γs using a distance function that measured the distance

between the NMDA current (Eq. 3.5b) in my model and the data from (Christie and

Jahr, 2006). I provided the inferred model parameters in Table 3.2 and Figure 3.2

shows the histograms representing the approximate posterior distributions for each

of the parameters.

IAMPA = (1− α)gAMPA(V − Es), (3.5a)

INMDA = αgNMDA(V − Es), (3.5b)

d(IAMPA, xd) =
n

∑
i=1

(
IAMPA(i)− xd(i)

)2, (3.5c)

d(INMDA, xd) =
n

∑
i=1

(
INMDA(i)− xd(i)

)2. (3.5d)

Table 3 .2 : SC-CA1 synaptic dynamics parameters.

Parameter Value Reference

[Mg2+] 1 µM (Graham, 2001)
α 0.1 (Graham, 2001)
Es 0 mV (Graham, 2001)
nsyn 1.79× 104 (Megıas et al., 2001)
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Table 3 .3 : Inferred SC-CA1 synaptic dynamics parameters.

Parameter Value

ḡs 4.981× 10−3 ± 0.7× 10−3 mS
τ1 0.8263± 0.17 ms
τ2 4.548± 0.74 ms
τ3 0.8189± 0.49 ms
τ4 74.788± 12 ms
µs 0.2866± 0.096 µM−1

γs 1.3× 10−2 ± 0.52× 10−2 mV−1

A B C

D E

F G

F igure 3 .2 : Inferred posterior distribution of the SC-CA1 synaptic dynamics
parameters. Each histogram represents the approximate posterior distributions of
the parameters (A) τ1, (B) τ2, (C) ḡs, (D) τ3, (E) τ4, (F) µs, and (G) γs. The red-line
represents the mean value.

3.2.3 Frequency dependent SC-CA1 LTP/LTD dynamics

In order to model the dynamics of the high-frequency stimulation (HFS) induced long-

term potentiation (LTP) and the low-frequency stimulation (LFS) induced long-term
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depression (LTD), I modified a published phenomenological model (Migliore and

Lansky, 1999; Saftenku, 2002) and inferred the model parameters using the available

hippocampal slice experimental data in the literature on the HFS/LFS induced

LTP/LTD. This simplified model assumes that the HFS/LFS induced LTP/LTD is

mediated by the change in the maximum synaptic conductance ḡs of the SC-CA1

synapse due to the changes in the calcium (Ca2+) current that enters through the

NMDA receptors. Although the model does not include the intermediate biochemical

dynamics, it exhibits multiple fixed points, which allow it to capture the frequency-

dependent effects of the HFS/LFS protocol on the induced LTP/LTD. I provided the

mathematical representation of the modified model in Eqs. 3.6a-3.6i.

ICa,NMDA = 0.1INMDA
V − 20
V − Es

(3.6a)

dC
dt

= −ηC− γC ICa,NMDA (3.6b)

dNp

dt
= νC− (ρC pp − ICag)Np

+
ρC MpN2

p

ρC Ap + N2
p

(3.6c)

dNd
dt

= νC− (ρB pd − ICag)Nd

+
ρBMdN2

d
ρB Ad + N2

d
(3.6d)

dP
dt

= f
(

dNp

dt
− dNd

dt

)
(3.6e)

Ctot =
∫ T

0
Cdt (3.6f)

ρC =


ρ1 Ctot < Cthr,1

ρ2 Ctot ≥ Cthr,1

(3.6g)

ρB =


ρ3 Ctot < Cthr,2

ρ4 Ctot ≥ Cthr,2

(3.6h)

Z = 1 + P (3.6i)



62

Eq. 3.6a, together with Eq. 3.1, Eqs. 3.3a-3.3r, and Eqs. 3.4a-3.4h, describe

the frequency-dependent HFS/LFS induced modulation by the NMDA Ca2+ current,

ICa,NMDA. γC is the rate constant and 1
η is the time constant of the dynamics. Eqs. 3.6c-

3.6i model the HFS/LFS induced net changes in the maximum synaptic conductance

ḡs (see Eqs. 3.4a-3.4h) of the SC-CA1 synapse. The model parameters ρC, ρB, pp,

pd, g, Mp, Md, Ap, and Ad in Eqs. 3.6c-3.6d control the number of fixed points

exhibited by the model. The model parameter f in Eq. 3.6e is a constant scaling

factor, which determines the relative contribution of the HFS/LFS induced changes

in the maximum synaptic conductance ḡs. ρC toggles the equilibrium points in

order to shift the weak HFS (ρ1) to the strong HFS (ρ2) protocol. Furthermore, ρC

and ρB toggle LFS induced plasticity between the different LTD equilibrium points.

The equilibrium points shift when the total amount of calcium, Ctot, crosses one of

the calcium thresholds Cthr,1 or Cthr,2. P is the change in the strength of the SC-

CA1 synapse from the control condition. This change has been incorporated in my

model by modifying the maximum synaptic conductance ḡs of the AMPA conductance

gAMPA by the factor 1 + P.

Using Eqs. 3.6a-3.6i, I modified my synaptic current model shown in Eq. 3.4a as

gs = (1− α)(1 + P)gAMPA + αgNMDA (3.7)

Is = gsnsyn(V − Es) (3.8)

to incorporate the effect of the HFS/LFS induced changes in the synaptic current to

the CA1 pyramidal neuron. With this, the complete model of the HFS/LFS induced

LTP/LTD is described by Eq 3.1, Eqs 3.2a-3.2h, Eqs 3.3a-3.3r, Eqs 3.4b-3.4h, Eqs 3.6a-

3.6i, and Eq 3.8.

To complete my modeling such that my model predicts the experimentally

observed HFS/LFS induced LTP/LTD in hippocampal slices, I fixed the model

parameters in Eq. 3.1, Eqs. 3.2a-3.2h, Eqs. 3.3a-3.3r, and Eq. 3.4b-3.4h to the

estimated model parameters values tabulated in Tables 3.1 and 3.2. I inferred the

remaining model parameters in Eqs. 3.6a-3.6i using the available experimental data

in the literature from various hippocampal slice experiments on the % change in
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field excitatory postsynaptic potential (fEPSP) slope in response to various HFS/LFS

protocols (Li et al., 2013; Zhang et al., 2008; Blitzer et al., 1995; Hernandez et al., 2005;

Kasahara et al., 2001; Roberto et al., 2003; Papatheodoropoulos and Kostopoulos, 2000;

Huang and Kandel, 1995; Stramiello and Wagner, 2008; Fonseca et al., 2006; Karpova

et al., 2006; Liu et al., 2009; Mockett et al., 2007; Daoudal et al., 2002; Heynen et al.,

1996).

Our model provides the intracellular excitatory post-synaptic potential (iEPSP).

Therefore, I required a transformation from iEPSP to fEPSP to compare my model

output to the experimental measurements of fEPSPs from the stratum radiatum

of the CA1 region. To find a transformation function, I used recent data on the

simultaneous recording of fEPSP slope and iEPSP slope from the hippocampal slices

(Abrahamsson et al., 2016). Since the experimental data showed an almost linear

relation between fEPSP and iEPSP, I performed a least-squares regression to obtain a

linear transformation function (see also Figure 3.3A)

Q(x) = 0.35912x + 0.12199. (3.9)

Here, Q(x) and x are the fEPSP and iEPSP slopes, respectively, at a given time.

Furthermore, to infer the model parameters more efficiently, I derived a

linear mapping between the fractional change in the maximum SC-CA1 synaptic

conductance 1+ P (see Eq. 3.6i) and the % change in the evoked fEPSP measurements

in my model by performing a least-squares regression (see Eq. 3.10 as well as Figure

3.3B).

G(P) = 62.5414(1 + P) + 37.3962. (3.10)

Here, G(P) is the % change in the evoked fEPSP slope at a given time with G(P) =

100% as the normalized base line value corresponding to P = 0.

To find a single set of parameters values for the model parameters η, γC, ν, ρ1,

ρ2, ρ3, ρ4, pp, pd, g, Mp, Md, Ap, Ad, and f involved in Eqs. 3.6a-3.6i that captures

the experimentally observed HFS and LFS induced LTP and LTD, respectively, in

this simplified model is a challenging problem. I first hand-fitted the parameters ρ1,
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(Abrahamsson, 2016) - fEPSP vs iEPSP data

 Q(x) = 0.35912(x) + 0.12199, r 2=0.886

P vs fEPSP

 G(P) = 62.5414(1+P) + 37.3962

A

B

F igure 3 .3 : Mapping Functions. (A) shows a linear relationship between fEPSP
and iEPSP (black-squares). The fitted linear least-squares regression Q(x) mapping
fEPSP to iEPSP is shown as a blue-line. (B) shows a linear relationship between the
fractional change in the maximum synaptic conductance (1 + P) and % change in the
slope of the evoked fEPSPs (black-squares). The linear relationship was fit with a
least-squares regression G(P) shown as a blue-line.

ρ2, ρ3, and ρ4 to establish the multiple equilibrium points present in LTP and LTD,

as observed in the experimental data. Then, I inferred two sets of parameters values,

one for the HFS-induced LTP and another for the LFS-induced LTD, from the available

experimental data in the literature on the HFS-induced LTP (Li et al., 2013; Zhang et al.,

2008; Blitzer et al., 1995; Hernandez et al., 2005; Kasahara et al., 2001; Roberto et al., 2003;

Papatheodoropoulos and Kostopoulos, 2000; Huang and Kandel, 1995; Stramiello and
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Wagner, 2008; Fonseca et al., 2006; Karpova et al., 2006) and on the LFS-induced LTD

(Huber et al., 2001; Daoudal et al., 2002; Liu et al., 2009; Selig et al., 1995; Mockett et al.,

2007; Heynen et al., 1996). The model parameters for the HFS-induced LTP and the

LFS-induced LTD were inferred separately using an approximate Bayesian inference

approached based on sequential Monte Carlo (Toni et al., 2008). Below I describe the

details of the parameter estimation approach from the experimental data for both LTP

and LTD.

We first categorized the unknown model parameters into two sets. The first set

consisted of model parameters pp, pd, Mp, Md, Ap, and Ad, which are associated with

the late-LTP or late-LTD and govern the steady-state changes in the late-LTP or late-

LTD. The second set consisted of model parameters f , γC, η, and g, which govern the

fast early-LTP or early LTD. To infer the model parameters, I noticed that the slow

late-LTP or late-LTD parameters are independent of the spiking activity induced by

the HFS or LFS protocol in the CA1 pyramidal neuron. This led me to set the NMDA

calcium current ICa,NMDA = 0 in Eq. 3.6a which resulted in the decay of C to 0 on

the order of few minutes based the fast rate of decay parameter η. I then applied the

steady-state conditions on the Eqs. 3.6a-3.6d, which resulted in

Np(N2
p pp −MpNp + ρC Ap pp) = 0, (3.11a)

Nd(N2
d pd −MdNd + ρB Ad pd) = 0. (3.11b)

Note that Eqs. 3.11a-3.11b are cubic in terms of the model parameters Np and Nd,

and thus the solution of these equations can exhibit at most 6 equilibrium points (3

from Eq 3.11a and 3 from Eq. 3.11b). Upon examination of Eqs. 3.11a and 3.11b,

I noticed that two of the equilibrium points are the trivial stable fixed points (i.e.,

Neq,1
p = 0 and Neq,1

d = 0). Assuming that 6 equilibrium points exist for Eqs. 3.11a

and 3.11b, I further noticed that Eq. 3.11a (or Eq. 3.11b) can exhibit either two stable

equilibrium points and one unstable equilibrium point or one stable equilibrium point

and two unstable equilibrium points. Based on these observations, I developed a cost

(distance) function (see Eq. 3.13) to enforce the existence of 3 equilibrium points with
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two stable and one unstable equilibrium points for Np and Nd in inferring the model

parameters. In my notations, Neq,1
p and Neq,1

d represent the stable equilibrium points

of the system in the absence of a HFS/LFS protocol. Neq,3
p and Neq,3

d are the stable

equilibrium points of the system in the presence of a HFS/LFS protocol. Neq,2
p and

Neq,2
d are the unstable equilibrium points.

Then, I used the equilibrium points from Eqs. 3.11a and 3.11b to solve for the

scaling parameter f . Neq,3
p and Neq,3

d represent the late-LTP (or late-LTD) equilibrium

points induced by HFS (or LFS). I used the mean LTP induced by one train of 100 Hz

stimulation for one second in experimental data to compute the scaling parameter f

of the LTP model (Roberto et al., 2003; Papatheodoropoulos and Kostopoulos, 2000;

Hernandez et al., 2005). Additionally, the scaling parameter f of the LTD model

was computed using the experimental data on the mean LTD induced by either a

stimulation protocol of 900 pulses at 1 Hz or 1200 pulses at 3 Hz (Mockett et al., 2007;

Liu et al., 2009; Huber et al., 2001). Since the LTD protocols consisting of 900 pulses at

1 Hz or 1200 pulses at 3 Hz induced the same level of LTD in experiments, I averaged

the scaling parameter f computed from each protocol to determine f in the LTD case.

Using Eq. 3.10 and the solution of the differential equation 3.6e ( f (Np − Nd)), I

computed f as

f =
(x̄eq

d − 37.3962)/(62.5414)− 100%

(Neq,3
p − Neq,3

d )× 100%
. (3.12)

Here x̄eq
d represents the average HFS/LFS induced LTP/LTD from the correspond-

ing experimental data.

It is computationally expensive to infer the frequency dependent HFS/LFS

induced LTP/LTD model parameters using the the biophysical CA1 pyramidal

Hodgkin-Huxley model (Eq. 3.1) and the HFS/LFS model (Eqs. 3.6a-3.6e) together.

Therefore, I used a reduced model to fit the remaining parameters γC, η, g, pp, pd, Mp,

Md, Ap, and Ad. In the reduced model, I only considered the frequency dependent

plasticity model (Eqs. 3.6a-3.6e) and the characteristic NMDA calcium current for each

HFS and LFS protocol when fitting the frequency dependent plasticity parameters. In
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order to determine the % change in the fEPSP slope, I used Eq. 3.10 to map the

change in the conductance P to % change in fEPSP slope. Then, the reduced model

was used to infer the frequency dependent model parameters using an approximate

Bayesian inference approach based on the sequential Monte Carlo (ABC-SMC) (Toni

et al., 2008) with a modified mean sum of squared errors distance function, shown in

Eq. 3.13 averaged over the m experimental data sets.

d(Np, Nd, xd) =
1
m

m

∑
j=1

nj

∑
i=1

[
[
G
(

f (Np[ti]− Nd[ti]) + 1
)
− xj[i]

]2
nj

]
+ Υ

(
f < 0

)
+ Υ

(
Imag

(
Np, Nd

)
== 0

)
+ Υ

(
Neq,2

d < 0.05Neq,3
d

)
+ Υ

(
Neq,2

p < 0.05Neq,3
p
)
. (3.13)

The first term on the right hand side of the distance function d(Np, Nd, xd) (see

Eq. 3.13) captures the error between the % change in the slope of evoked fEPSPs

from my model and the corresponding % change in the fEPSP slope data from m

different LTP/LTD experimental datasets available from the literature. The % change

in the slope of evoked fEPSPs was normalized (i.e. 100%) to the slope measured

prior to any HFS/LFS protocol. Each of the experimental data sets had nj number

of data points measuring the % change in the slope of evoked fEPSPs, xi,j, after

the HFS/LFS protocol. I used a mapping function G(P) (see Eq. 3.10) to compute

the % change in the evoked fEPSP slope in my model, where 1 + P represents the

corresponding fractional change in the maximum synaptic conductance of the SC-

CA1 synapse from the baseline (i.e., P = 0). The fractional synaptic conductance

change from the baseline in my model was determine by P(ti) = f (Np(ti)− Nd(ti)).

The baseline for the % change in fEPSP is 100%, which corresponds to P = 0 (see Eq.

3.6i) at the time ti of the experimental data point xi,j.
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The second term on the right hand side of the distance function d(Np, Nd, xd) (see

Eq. 3.13) ensures that only the parameters (pp, pd, Mp, Md, Ap, and Ad) that produce

a positive scaling parameter f are accepted. The need for this term arises out of the

differential equations describing Np and Nd in Eqs. 3.6c and 3.6d, which are identical

except for the parameters. Therefore, it is possible that the ABC-SMC algorithm could

select parameters for pp, Mp, and Ap that are typically selected for pd, Md, and Ad

and vice versa. This would result in Neq,3
p < Neq,3

d for the LTP model and Neq,3
d < Neq,3

p

for the LTD model, which would require f to be negative to match the experimental

data. Thus, f must be constrained to a strictly positive number.

The last three terms on the right hand side of the distance function d(Np, Nd, xd)

(see Eq. 3.13) penalize the equilibrium points that are complex or have unstable

equilibrium points Neq,2
p and Neq,2

d that are less than 5% of Neq,3
p and Neq,3

d , which are

the stable equilibrium points of the system in the presence of a HFS/LFS protocol.

The first term Υ(Imag(Np, Nd) == 0) ensures that the fractional change in the

maximum synaptic conductance is always a real number. The last term Υ(Neq,2
d <

0.05Neq,3
d ) + Υ(Neq,2

p < 0.05Neq,3
p ) ensures that that the small evoked fEPSPs used to

measure the plasticity of the SC-CA1 synapse prior to any HFS/LFS administration

does not induce any unwanted LTP/LTD, such that Np and Nd decay to Neq,1
p and Neq,1

d

after each fEPSP measurement prior to HFS/LFS administrations. Υ is the weighting

factor.

We first used the inferred model parameters of the LTP model to validate whether

my model captured the frequency-dependent effects of HFS protocol on the induced

LTP, as observed in the experiments. The inferred parameters are provided in Table

3.4. Figures 3.4 and 3.5 show the histograms representing the approximate posterior

distributions for the HFS and LFS parameters, respectively. Figures 3.6A, 3.6B, 3.6C,

and 3.6D show the comparison between the prediction from my model and the

experimental data for four different HFS protocols, i.e., 3 trains of pulses as 100 Hz

for 1 second with intertrain intervals of 0.5 seconds, 10 minutes, 20 seconds, and 10

seconds, respectively. Additionally, the LTP induced by a HFS protocol of four trains

of 100 pulses at 100 Hz is shown in Figure 3.7D. Here, the HFS-induced % fEPSP slope

change from the control, shown as a black square-line, follows the same trend as the
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Table 3 .4 : HFS Frequency Induced LTP Plasticity Parameters.

Parameters LTP Parameter Value
Mp 4.83× 10−8 ± 4.92× 10−9 µA ms−1

pp 1.01× 10−5 ± 1.03× 10−6 ms−1

Ap 2.30× 10−6 ± 2.54× 10−7 µA2

Md 4.91× 10−7 ± 5.16× 10−8 µA ms−1

pd 2.23× 10−4 ± 2.51× 10−5 ms−1

Ad 6.81× 10−7 ± 7.88× 10−8 µA2

γC 0.0364± 0.0036 ms−1

η 0.0035± 0.000382 ms−1

ν 0.107± 0.0122 ms−1

g 214.1± 24.6 µA−1 ms−1

f 460 µA−1

ρ1 2.2
ρ2 1
ρ3 1
ρ4 1
Cthr,1 0.45
Cthr,2 0

experimental data and achieves the same LTP magnitude change for all five protocols

(Karpova et al., 2006; Blitzer et al., 1995; Hernandez et al., 2005; Stramiello and Wagner,

2008; Zhang et al., 2008; Li et al., 2013). In order to capture the LTP induced by a weaker

HFS protocol, the equilibrium points were shifted by ρC to capture the lower LTP level

induced by a weaker HFS protocol. ρ1 was hand-fitted to match the LTP induced by

one and two trains of pulses at 100 Hz (Hernandez et al., 2005). Additionally, Cthr was

chosen such that three or more trains of HFS at 100 Hz switched the parameter ρC to

ρ2. Figure 3.7A shows my model is able to capture the LTP dynamics induced by 1

train of 100 Hz pulses reasonably well (Roberto et al., 2003; Papatheodoropoulos and

Kostopoulos, 2000; Hernandez et al., 2005). However, my model underpredicts the

experimental HFS-induced magnitude change evoked from 2 trains of 100 Hz pulses

(Kasahara et al., 2001; Hernandez et al., 2005) (see Figure 3.7B). Even though my model

underpredicts the magnitude change from 2 trains, experimental data shows that the

magnitude change induced by 2 trains (see Figure 3.7C) is not significantly different

from the magnitude change induced by 1 train (Hernandez et al., 2005).
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Table 3 .5 : LFS Frequency Induced LTD Plasticity Parameters.

Parameters Parameter Value
Mp 4.95× 10−7 ± 5.06× 10−8 µA ms−1

pp 2.16× 10−4 ± 2.41× 10−5 ms−1

Ap 9.76× 10−7 ± 1.11× 10−7 µA2

Md 5.81× 10−8 ± 5.41× 10−9 µA ms−1

pd 1.63× 10−5 ± 1.81× 10−6 ms−1

Ad 2.07× 10−6 ± 2.40× 10−7 µA2

γC 0.0238± 0.0027 ms−1

η 0.0024± 0.000276 ms−1

ν 0.0348± 0.0038 ms−1

g 52.0± 6.13 µA−1ms−1

f 281.3 µA−1

ρ1 1
ρ2 1.31
ρ3 1
ρ4 0.35

Cthr,1 3
Cthr,2 4.5

We then used the inferred model parameters of the LTD model to validate whether

my model captured the frequency-dependent effects of LFS protocol on the induced

LTD, as observed in the experiments. To validate my model, I considered seven

different LFS protocols. The first LFS protocol consisted of 900 pulses delivered to the

SC-CA1 synapse at the frequency of 1 Hz. Figure 3.8A shows the comparison between

the prediction from my model and the experimental data from different experiments.

As shown in this figure, my model predicted an approximately 19% decrease in the

evoked fEPSP slope compared to an average of 18% decrease in experimental data

(experimental data varied between 10% and 25%) (Huber et al., 2001; Daoudal et al.,

2002; Liu et al., 2009; Selig et al., 1995). The second LFS protocol I used was 1200

pulses at 3 Hz, which produced a decrease in the normalized slope of the evoked

fEPSPs of approximately 19% in my model compared to 21% in the experimental data

(Mockett et al., 2007) (see Figure 3.8B). Then, I considered the administration of 900

pulses at 3 Hz. Experimental data showed a decrement of 15% in the evoked fEPSP
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F igure 3 .4 : Inferred posterior distribution of the HFS-induced LTP parameters.
Each histogram represents the approximate posterior distributions of the parameters
(A) γ, (B) η, (C) Mp, (D) Pp, (E) Ap, (F) ν, (G) g, (H) Md, (I) Pd, and (J) Ad. The red-line
represents the mean value.

slope (Heynen et al., 1996) while my model predicted 19% of decrement (see Figure

3.8C).

Next, I considered multiple LFS trains. Again, I captured the multiple equilibrium

points of LTD induced by different LFS protocols with the parameters ρ2 and ρ4,
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F igure 3 .5 : Inferred posterior distribution of the LFS-induced LTD parameters.
Each histogram represents the approximate posterior distributions of the parameters
(A) γ, (B) η, (C) Mp, (D) Pp, (E) Ap, (F) ν, (G) g, (H) Md, (I) Pd, and (J) Ad. The red-line
represents the mean value.

which I fitted by hand to match the experimental data (Liu et al., 2009; Huber et al.,

2001). Here, I used the same LTD parameters in Table 3.5 that were used to model one

train of LFS. Then I hand-fitted the toggle parameters ρ2 and ρ4, in order to capture

the multiple equilibrium points of the LFS-induced LTD. The LTD toggle parameters

are found in Table 3.5, as well. Figure 3.9A shows a comparison between my model’s
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F igure 3 .6 : HFS-induced LTP. I provided three trains of 100 pulses delivered at
100 Hz to my SC-CA1 model with different inter-train intervals. The inter-train
intervals were (A) 0.5 seconds, (B) 10 minutes, (C) 20 seconds, and (D) 10 seconds.
The HFS-induced LTP in experiment is represented by the colored-circles and the LTP
predicted by my model is shown as the black-squares. The root mean squared error
between the experimental data and the model prediction for Zhang (Zhang et al., 2008),
Blitzer (Blitzer et al., 1995), Karpova, (Karpova et al., 2006), Stramuiello (Stramiello and
Wagner, 2008), and Hernandez (Hernandez et al., 2005) is 8.4 %, 18.2 %, 12.8 %, 6.5 %,
and 18.8 %, respectively.
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prediction and the experimental data from (Liu et al., 2009; Huber et al., 2001) on

the LFS-induced LTD for a LFS protocol consisting of 3 trains of 900 pulses at 1 Hz.

As shown here, the model accurately predicts the experimentally observed decrease

in the synaptic strength of the SC-CA1 synapse after each train of LFS. Figure 3.9B

shows a comparison between the model predicted LTD in the SC-CA1 synapse with

the experimental data from (Sajikumar and Frey, 2004) for a LFS protocol consisting

of 900 bursts at 1 Hz of 3 pulses at 20 Hz. Figure 3.9C compares the model predicted

LTD in the SC-CA1 synapse with the experimental data from (Mockett et al., 2007)

for a LFS protocol consisting of 2400 pulses at 3 Hz. Finally, Figure 3.9D compares

the model predicted LTD in the SC-CA1 synapse with the experimental data from

(Mockett et al., 2007) for a LFS protocol consisting of 2 trains of 1200 pulses at 3 Hz.

3.2.4 Dopaminergic modulation of HFS/LFS induced LTP/LTD in hippocampal SC-CA1

synapses

In this section, I describe a phenomenological model that I developed to integrate the

dose-dependent effects of D1/D5 agonists relative to the HFS/LFS on the maximum

synaptic conductance (see Eq. 3.8) of the SC-CA1 synapse. my model together

with the models described in the previous sections (see Eqs 3.1-3.8) is capable of

predicting the experimentally observed dose-dependent modulation of HFS/LFS-

induced LTP/LTD by D1/D5 agonists. Eqs. 3.14a-3.14d show my model in the form

of a set of kinetic reactions.

E + [TE,OFF]
k1


k2

[TE,ON], (3.14a)

[TE,ON] + [TOFF]
k3→[TE,OFF] + [Tl−LTP,ON ], (3.14b)

I + [TI,OFF]
k5


k4

[TI,ON], (3.14c)

[TI,ON] + [TOFF]
k6→[TI,OFF] + [Tl−LTD,ON ], (3.14d)

These reactions describe the modulation of the maximum synaptic conductance

ḡs of the SC-CA1 synapse by a D1/D5 agonist, such as SKF 38393, 6-Br-APB, or
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dopamine, in the absence of a LTP/LTD protocol (i.e., HFS/LFS). Investigations

on the biochemical mechanisms underlying the modulation of SC-CA1 long-term

synaptic plasticity by D1/D5 agonists have revealed two competing pathways, the

excitatory adenyl cyclase (AC) pathway and the inhibitory phosopholipase C (PLC)

pathway (Undieh, 2010; Panchalingam and Undie, 2000, 2005). In my model, I

captured the dynamics exhibited by the excitatory AC pathway, that induces slow-

onset-potentiation, using Eqs. 3.14a and 3.14b. The response of the inhibitory PLC

pathway, that induces a slow depotentiation in the SC-CA1 synapses, is captured by

Eqs. 3.14c and 3.14d. The change in the maximum synaptic conductance is dependent

on the activation of either the AC or PLC pathway through the tags TE,ON and TI,ON,

respectively. These pathways compete for TOFF to produce late-LTP (l-LTP) (Tl−LTP,ON)

or late-LTD (l-LTD) (Tl−LTP,ON) changes to the SC-CA1 synaptic strength through the

maximum synaptic conductance.

Mathematically, I modeled these reactions in a deterministic kinetic rate modeling

framework using Eqs. 3.15c-3.15h and Eq 3.15m with θlate = 0 and Tstim = 0 in

Eq. 3.15m. Eqs. 3.15a-3.15b are the Hill equations that model the dose response

of a D1/D5 agonist at a given concentration [Drug]. The activation of the AC and

PLC pathways is bound by a maximal response (Emax and Imax). The fraction of

maximal response is determined by the Hill parameters EC50, Emax, IC50, Imax, and

nH for each D1/D5 agonist. I estimated the Hill coefficients using the available

experimental data on the % change in the CA1 fEPSP slope in response to the applied

concentration of the D1/D5 agonist (Shivarama Shetty et al., 2016; Sajikumar and Frey,

2004; Navakkode et al., 2012).

The specific D1/D5 agonist and its temporal dosing profile determine the relative

activation of the AC and PLC pathways. The activation dynamics of the AC (TE,ON)

and PLC (TI,ON) pathway are described by Eqs. 3.15c - 3.15f. Eqs. 3.15g - 3.15h show

the consumption dynamics of TOFF to produce TlLTP and TlLTD .

Eqs. 3.15m - 3.15r model the integrative effect of HFS/LFS mediated LTP/LTD

and D1/D5 agonist on the SC-CA1 LTP/LTD. The combined effect of HFS/LFS and

D1/D5 agonist on the maximum synaptic conductance of the SC-CA1 synapse is

described in Eq. 3.15o. Here, the term f
( dNp

dt −
dNd
dt
)

captures the contribution from
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the HFS/LFS protocol and the term
( dTl−LTP

dt − dTl−LTD
dt

)
captures the contribution from

a D1/D5 agonist. Experimental data from hippocampal slices show that the LTP-

induced by a combination of strong HFS protocol and a D1/D5 agonist in SC-CA1

synapses slowly decays back to the HFS only induced late LTP in a period of 2-4

hours (Huang and Kandel, 1995; Navakkode et al., 2012). I hypothesized that this

may be due to the maximum available biochemical resources for inducing late LTP

and captured this effect in my model by introducing a decay term ksat(P − PLTP
sat ).

Particularly, whenever the induced LTP exceeds the saturation level, defined by PLTP
sat

in the presence of a D1/D5 receptors agonist at time tDA, ksat takes a nonzero value.

The term kbasalP models the effect of D1/D5 antagonist, such as SCH 23390. The

parameter kbasal takes a nonzero value ksat whenever SCH 23390 is applied to block

the D1/D5 receptors. Finally, the term sign
(
E + kI I

)
kETstimTDR models the nonlinear

interaction of the D1/D5 receptors activation and HFS/LFS on the induced LTP/LTD.
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E =
Emax

1 + (EC50/[Drug])nH (3.15a)

I =
Imax

1 + (IC50/[Drug])nH (3.15b)

dTON
E

dt
= k1[E][TOFF

E ]− k2[TON
E ]

−k7[TON
E ][TON

I ] (3.15c)
dTOFF

E
dt

= −
dTON

E
dt

(3.15d)

dTON
I

dt
= k3[I][TOFF

I ]− k4[TON
I ]

− k8[TON
I ][E]2 (3.15e)

dTOFF
I
dt

= −
dTON

I
dt

(3.15f)

dTl−LTP
dt

= k5[TON
I ]2[TOFF] (3.15g)

dTl−LTD
dt

= k6[TON
E ]2[TOFF] (3.15h)

dTstim

dt
= kstimTOFF

stim

∣∣∣∣dNp

dt
− dNd

dt

∣∣∣∣− Tstim

τstim
(3.15i)

dTOFF
stim
dt

= −kstimTOFF
stim

∣∣∣∣dNp

dt
− dNd

dt

∣∣∣∣+ Tstim

τstim
(3.15j)

dTDR

dt
= kDA

∣∣E + kI I
∣∣TOFF

DR −
TDR

τDR
(3.15k)

dTOFF
DR
dt

= −kDA
∣∣E + kI I

∣∣TOFF
DR +

TDR

τDR
(3.15l)

dTOFF

dt
= −dTl−LTP

dt
− dTl−LTD

dt
−klateTOFFθlate

− sign
(
E + kI I

)
kE|TstimTDR| (3.15m)
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θlate =


1 |Np− Nd| > 0

0 |Np− Nd| = 0

(3.15n)

dP
dt

= f
(

dNp

dt
− dNd

dt

)
− kbasalP

−ksat

(
P− PLTP

sat

)
+

(
dTl−LTP

dt
− dTl−LTD

dt

)
(3.15o)

+ sign
(
E + kI I

)
kETstimTDR

kbasal =


ksat [DA]basal = 0

0 [DA]basal > 0

(3.15p)

ksat =


0 P ≤ PLTP

sat & t < tDA

ksat P > PLTP
sat & t ≥ tDA

(3.15q)

(3.15r)

To infer the unknown model parameters k1, k2, k3, k4, k5, k6, k7, k8, ksat, klate, kE,

kI , kstim, kDA, τstim, and τDA from the available experimental data, I observed that the

set of Eqs. 3.15a-3.15h are independent of the set of Eqs. 3.15i-3.15r. This allowed

me to infer the unknown model parameters efficiently using the ABC-SMC approach.

Specifically, I first inferred the model parameters of the first set of equations (Eqs.

3.15a-3.15h), and which was then followed by the inference of model parameters of

the second set of equations (Eqs 3.15i-3.15r).

We first inferred the 8 unknown model parameters k1, k2, k3, k4, k5, k6, k7, and

k8 in Eqs. 3.15a-3.15h using the ABC-SMC method (Toni et al., 2008). For the

parameter inference, I used the input-output data (% change in fEPSP slope from

control in response to various concentrations of the D1/D5 agonists SKF 38393, 6-

bromo-APB, and dopamine) available from recent rat hippocampal slice experiments

(Shivarama Shetty et al., 2016; Navakkode et al., 2012; Sajikumar and Frey, 2004).

It has been shown in (Shivarama Shetty et al., 2016) that the application of a
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Table 3 .6 : Hill Function Parameters.

Parameters Value Reference

ECDA
50 40 µM (Sajikumar and Frey, 2004)

EDA
max 60% (Sajikumar and Frey, 2004)

ICDA
50 0.1 µM (Sajikumar and Frey, 2004)

IDA
max −25% (Sajikumar and Frey, 2004)

nHDA 2 (Sajikumar and Frey, 2004)
ECSKF

50 20 µM (Shivarama Shetty et al., 2016)
ESKF

max 60% (Shivarama Shetty et al., 2016)
ICSKF

50 0.1 µM (Shivarama Shetty et al., 2016)
ISKF
max −5.0% (Shivarama Shetty et al., 2016)

nHSKF 1 (Shivarama Shetty et al., 2016)

EC6−Br−APB
50 15 µM (Shivarama Shetty et al., 2016)

E6−Br−APB
max 40% (Shivarama Shetty et al., 2016)

IC6−Br−APB
50 0.01 µM (Shivarama Shetty et al., 2016)

I6−Br−APB
max −3.0% (Shivarama Shetty et al., 2016)

nH6−Br−APB 1 (Shivarama Shetty et al., 2016)

D1/D5 agonist alone, in the absence of a HFS-based LTP protocol, can potentiate

the SC-CA1 synapses in a dose-dependent manner. Moreover, these dopaminergic

mediated potentiations occur on a slow timescale (typically, several minutes to hours).

Since HFS or LFS was not applied when measuring the slow-onset dopaminergic

potentiation, I only considered the dopaminergic model (Eqs. 3.15a-3.15h) when

inferring the parameters k1, k2, k3, k4, k5, k6, k7, and k8. I considered a modified

mean sum of squared errors distance function (Eq. 3.16b) averaged over the m

experimental data sets that compares the distance between the ith experimental %

change in fEPSP slope (xj[i]) of the jth data set to the corresponding % change in fEPSP

slope in the model xm[ti] at time ti. In addition to the mean sum of squared error, the

distance function contains an additional non-steady state penalty in the second term

on the right hand side of Eq. 3.13 . Table 3.7 shows my inferred parameters value

represented in terms of the mean ± standard deviation and Figure 3.10 shows the

histograms representing the approximate posterior distribution for each parameter.
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Table 3 .7 : Dopaminergic Potentiation Parameters.

Parameters Value

k1 8.26× 10−6 ± 2.17× 10−6 ms−1

k2 7.10× 10−8 ± 2.99× 10−8 ms−1

k3 3.24× 10−6 ± 4.25× 10−6 ms−1

k4 1.44× 10−7 ± 5.27× 10−7 ms−1

k5 2.89× 10−7 ± 7.45× 10−8 ms−1

k6 2.35× 10−6 ± 4.31× 10−6 ms−1

k7 1.63× 10−7 ± 8.69× 10−7 ms−1

k8 5.32× 10−4 ± 6.90× 10−4 ms−1

ksat 1.34× 10−7 ± 1.07× 10−8 ms−1

kstim 557± 128 ms−1

kE 1.51× 10−6 ± 2.20× 10−7 ms−1

kI 2.49± 0.306
klate 4.36× 10−7 ± 4.49× 10−8 ms−1

kDA 1.0× 10−3 ± 2.36× 10−4 ms−1

τstim 7.73× 104 ± 1.69× 104 ms
τDR 2.46× 105 ± 4.26× 104 ms
PLTP

sat 1.12

Figure 3.12 shows the slow-onset-potentiation of the SC-CA1 pyramidal synapse by

various dopamine agonist observed in the experimental data (Shivarama Shetty et al.,

2016; Navakkode et al., 2012; Sajikumar and Frey, 2004) and in my model.

xm[ti] = G
(
Tl−LTP[ti]− Tl−LTD[ti]

)
, (3.16a)

d(xm, xd) =
1
m

m

∑
j=1

nj

∑
i=1

(
xm[ti]− xj[i]

)2

nj

+
(
xm[400 min]− xm[370 min]

)2. (3.16b)

We then inferred the 8 unknown model parameters ksat, klate, kE, kI , kstim, kDA,

τstim, and τDR in Eqs. 3.15i-3.15r using the ABC-SMC method (Toni et al., 2008). For

parameter inference, I used the input-output data (% change in fEPSP slope from

control by various D1/D5 agonists and HFS/LFS simultaneously) available from

rat hippocampal slice experiments (Huang and Kandel, 1995; Mockett et al., 2007;
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Sajikumar and Frey, 2004; Navakkode et al., 2012; Otmakhova and Lisman, 1996;

Chen et al., 1995). Using my full model to infer the parameters ksat, klate, kE, kI , kstim,

kDA, τstim, and τDA is computationally expensive. Therefore, I considered a reduced

model that consisted of the frequency dependent plasticity model (Eqs. 3.6a-3.6e),

the dopaminergic model (Eqs. 3.15a-3.15h), the temporal dopaminergic-frequency

dependent stimulation interaction model (Eqs. 3.15i-3.15r), and the characteristic

NMDA calcium current for each HFS and LFS protocol. I considered a mean sum

of squared errors distance function (Eq. 3.17) averaged over the m experimental data

sets. The distance function measures the squared distance between ith % change in

fEPSP slope (xj[i]) of the jth data set to the corresponding % change in fEPSP slope in

the model (G(P[ti])) at time ti. The model % change in fEPSP slope was determined

by mapping the change in the fractional conductance (P) to % change in fEPSP slope

with Eq. 3.10. Table 3.7 shows my inferred parameters value represented in terms of

the mean ± standard deviation and Figure 3.11 shows the histograms representing

the approximate posterior distribution for each parameter.

d(xm, xd) =
1
m

m

∑
j=1

nj

∑
i=1

[
G(P[ti])− xj[i]

]2
nj

. (3.17)

3.2.5 The Complete Model

Using Eq. 3.15o, the effect of both the HFS/LFS induced changes and dopaminergic

induced changes in the synaptic current to the CA1 pyramidal neuron is incorporated

through P in Eq. 3.8 rewritten as

gs = (1− α)(1 + P)gAMPA + αgNMDA (3.18)

Is = gsnsyn(V − Es). (3.19)

With this, my complete model describing the modulation of the HFS/LFS induced

LTP/LTD by a dopamine agonist in a dose-dependent manner is given by Eq. 3.1,

Eqs. 3.2a-3.2h, Eqs. 3.3a-3.3r, Eqs. 3.4b-3.4h, Eqs. 3.6a-3.6i, Eqs. 3.15a-3.15r, and
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Eq. 3.19. Furthermore, the experimental data used to fit and validate my model are

shown in Tables 3.8 and 3.9, respectively.

Table 3 .8 : List of experimental protocols and data used to fit my model.

Experimental Protocol Reference

3 train of HFS + DA (∆t = −165) (Navakkode et al., 2012)
1 train of HFS + 6-bromo-APB (∆t = −5) (Otmakhova and Lisman, 1996)

1 train of HFS + SCH (Huang and Kandel, 1995)
1 train of HFS + SCH (Sajikumar et al., 2008)

LFS (1200 pulses, 3 Hz) + SKF (∆t = 0) (Mockett et al., 2007)
LFS (1200 pulses, 3 Hz) + SKF (∆t = 60) (Mockett et al., 2007)
LFS (450 pulses, 1 Hz) + SKF (∆t = −5) (Chen et al., 1995)

1 train of HFS (Roberto et al., 2003)
(Papatheodoropoulos and Kostopoulos, 2000)

2 train of HFS (Hernandez et al., 2005)
3 train of HFS (Zhang et al., 2008)

(Stramiello and Wagner, 2008)
(Hernandez et al., 2005)

LFS (900 pulse, 1 Hz) (Huber et al., 2001)
(Selig et al., 1995)

(Daoudal et al., 2002)
(Liu et al., 2009)

LFS (1200 pulse, 3 Hz) (Mockett et al., 2007)
LFS (900 pulse, 3 Hz) (Heynen et al., 1996)

3.2.6 Bayesian Parameter Estimation

We inferred my model parameters using an approximate Bayesian computation

sequential Monte Carlo framework (Toni et al., 2008). This approach approximates the

posterior distribution π(θ|x) of desired parameters θ based on available experimental

data xd. The approximate Bayesian computation sequential Monte Carlo algorithm is

as follows:

0. Set population indicator to t = 0.

1. Set particle indicator to i = 1.

2. Draw θ∗∗ from π(θ)
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Table 3 .9 : List of experimental protocols and data used to validate my model.

Experimental Protocol Reference

3 train of HFS + SKF (∆t = −212) (Navakkode et al., 2012)
1 train of HFS + 6-bromo-APB (∆t = 35) (Otmakhova and Lisman, 1996)

HFS + SCH (Huang and Kandel, 1995)
LFS (2400 pulses, 3 Hz) + SKF (∆t = 0) (Mockett et al., 2007)

LFS (2× 1200 pulses, 3 Hz) + SKF (∆t = 0) (Mockett et al., 2007)
LFS (900 pulse-bursts, 1 Hz) + SCH (Sajikumar and Frey, 2004)

4 train of HFS (Li et al., 2013)
3 train of HFS (Blitzer et al., 1995; Karpova et al., 2006)
2 train of HFS (Kasahara et al., 2001)

LFS (3× 900 pulse, 1 Hz) (Liu et al., 2009; Huber et al., 2001)
LFS (3× 900 pulse-bursts, 1 Hz) (Sajikumar and Frey, 2004)

LFS (2400 pulses, 3 Hz) (Mockett et al., 2007)
LFS (2× 1200 pulses, 3 Hz) (Mockett et al., 2007)

3. Simulate x∗ ∼ f (x|θ∗∗) and if d(x∗, xd) ≥ εt return to Step 1.

4. Set w(i)
t = 1.

5. If i < N return to Step 2 and set i = i + 1.

6. Normalize weights.

7. Set population indicator to t = 1.

8. Set particle indicator to i = 1.

9. Sample θ∗ from previous population {θ(i)t−1} with weights wt−1 and perturb the

particle to obtain θ∗∗ ∼ Kt(θ
∣∣θ∗). If the π(θ∗∗) = 0 repeat step.

10. Simulate x∗ ∼ f (x|θ∗∗) and if d(x∗, xd) ≥ εt return to Step 9.

11. Set θ
(i)
t = θ∗∗ and calculate the weight

w(i)
t =

N

∑
j=1

w(j)
t−1Kt(θ

(j)
t−1, θ

(i)
t )

12. If i < N set i = i + 1 and return to Step 9.
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13. Normalize weights if t < T and set t = t + 1, then return to Step 8.

3 .3 results

3.3.1 The relative time between D1/D5 receptors activation and HFS significantly impact

the temporal modulation of HFS-induced LTP in hippocampal SC-CA1 synapses

We begin this section by summarizing the results from the limited in vitro

hippocampal slice experiments on the importance of the time window of the

activation of the D1/D5 receptors relative to the high-frequency stimulation (HFS)

protocol used to induce the long-term potentiation (LTP) in the Schaffer collateral-CA1

pyramidal (SC-CA1) synapses. In a classical experiment (Huang and Kandel, 1995),

Huang and Kandel showed that the 15 minutes administration of D1/D5 agonist

SKF 38393 212 minutes before the HFS protocol enhanced the LTP of the synapse

immediately after the HFS protocol but decayed to approximately the fEPSP level

induced by only HFS after 2 hours. In the same experiment, the authors found no

noticeable changes in the LTP of a SC-CA1 synapse when they administered SKF

38393 50 minutes after the HFS protocol. In (Navakkode et al., 2012), Navakkode et

al. investigated the HFS-mediated LTP modulation in SC-CA1 synapses by dopamine.

In in vitro slice experiments, the authors showed that the application of 50µM of

dopamine in three five minute pulses spaced ten minutes apart three hours prior to an

HFS protocol of three trains of 100 pulses at 100 Hz induced a transient enhancement

of HFS induced LTP that decayed to the level LTP induced by only HFS in 2 hours.

These results highlight the activation of the D1/D5 receptors a long time before HFS

significantly enhances the HFS-induced LTP of the SC-CA1 synapse. By contrast, the

activation of D1/D5 receptors more than an hour after HFS does not significantly

modulate the HFS-induced LTP. However, it is not clear from these results whether

the activation of D1/D5 receptors can still modulate the HFS-induced LTP of a SC-

CA1 synapse if one administers SKF 38393 sufficiently close to the timing of the HFS

protocol (a few minutes before or after HFS). A few experiments (Stramiello and

Wagner, 2008, 2010) have investigated this question in hippocampal slices under the

bath application of SKF 38393. The results from these experiments suggest that the
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activation of D1/D5 receptors at an earlier time than 200 minutes can also modulate

the HFS-induced LTP of a SC-CA1 synapse. In summary, the available experimental

results suggest that the relative timing between the HFS protocol and the activation

of the D1/D5 receptors plays an essential role in the dopaminergic modulation of

HFS-induced LTP of a SC-CA1 synapse. However, it is still not clear from these

experiments how various concentrations and relative timings of D1/D5 agonists

modulate the temporal dynamics of the HFS-induced LTP of a SC-CA1 synapse.

We used my developed model (see Eq. 3.1, Eqs. 3.2a-3.2h, Eqs. 3.3a-3.3r, Eqs. 3.4b-

3.4h, Eqs. 3.6a-3.6i, Eqs. 3.15a-3.15r, and Eq. 3.19) to quantify how different relative

timings of DA and the D1/D5 agonist SKF 38393 modulate the HFS-induced LTP

of a SC-CA1 synapse. I first used my model under a similar experimental protocol

condition as described in (Huang and Kandel, 1995) to demonstrate the capability of

my model in predicting the experimental results shown in (Huang and Kandel, 1995).

To do so, I delivered 50 µM SKF 38393 for 15 minutes to my SC-CA1 model more

than 200 minutes before or 50 minutes after the HFS protocol. For the HFS protocol,

I used 3 trains of 100 Hz pulses for 1 second with a 10 minute inter-train interval

and stimulated my SC-CA1 synapse model (see Eqs 3.4a-3.4h and Eqs 3.6a-3.8 in the

Model System section) to induce LTP. I measured the change in the SC-CA1 synaptic

strength through the percentage change in the slope of evoked fEPSPs normalized

to the slope of evoked fEPSPs prior to any induction of potentiation. Figures 3.13A

and 3.13B show the comparison between the experimental (Huang and Kandel, 1995)

and model predicted D1/D5 enhancement in the HFS-induced LTP by SKF 38393.

As shown in Figure 3.13A, my model makes a quantitative prediction of the time-

dependent enhancement in the late LTP reported by Huang and Kandel (Huang and

Kandel, 1995) when SKF 38393 is delivered 200 minutes before the HFS administration.

Moreover, my model predicts the experimental observation from Huang and Kandel

(Huang and Kandel, 1995) that 50 µM administration of SKF 38393 leads to no

significant changes in the HFS-induced LTP when it is delivered 50 minutes after

the HFS protocol (see Figure 3.13B).

Next, I compared my model’s prediction to the experimental results from

(Navakkode et al., 2012) on the transient enhancement in the late LTP by 50 µM
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application of dopamine (DA). Since I fitted the dopaminergic portion of my model

to specific D1/D5 agonists (see Eqs. 3.15a-3.15h in the Model System section), I used

the DA specific parameters specified in Table 3.6 to model the spatiotemporal effect

of DA on the HFS-induced late LTP of the SC-CA1 synapse. By following the exact

stimulation protocol used in the experiment (Navakkode et al., 2012), I injected 50 µM

of DA in three pulses 165 minutes before the HFS protocol consisting of three trains

of 100 pulses at 100 Hz in my model and measured the change in the fEPSP slope.

As shown in Figure 3.14, my model is able to quantitatively predict an enhancement

of approximately 27% in the HFS-induced LTP by DA, measured 60 minutes after the

HFS protocol, as reported in the experiment. My quantitative prediction 100 minutes

after the HFS protocol began to diverge from the experimental data. At this point, the

experimental data decayed much faster compared to my model predictions as well as

the decay observed in (Huang and Kandel, 1995). The divergence of my model from

the experimental data is potentially due to the simple linear decay dynamics of my

model, which consists of one decay constant parameter (ksat). Since the decay of the

potentiation induced by HFS quickens 60 minutes after the HFS protocol, my model

is not able to capture the change in the decay.

Finally, I used my model to make specific predictions by conducting two

simulation experiments where I administered 50 µM SKF 38393 30 minutes before

the HFS protocol (see Figure 3.15A) and 10 minutes after the HFS protocol (see

Figure 3.15B). Based on the experimental results on the two extreme cases (i.e., SKF

38393 application 200 minutes before or 50 minutes after the HFS protocol) and the

slow-onset potentiation of the SC-CA1 synapses by SKF 38393, one would expect a

reduction in the SKF 38393 mediated LTP enhancement as the time difference between

the SKF 38393 administration and the HFS protocol decreases. As shown in Figure

3.15A, the injection of 50 µM SKF 38393 30 minutes before HFS in my model led to

approximately 20% enhancement in the HFS-induced late LTP 60 minutes after HFS

compared to 30% enhancement when SKF 38393 was delivered 200 minutes before the

HFS protocol. Additionally, the injection of SKF 38393 10 minutes after the end of the

HFS protocol resulted in no significant enhancement (approximately 4% enhancement
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after 60 minutes of the HFS protocol) in HFS-induced late LTP (see Figure 3.15B) due

to the occlusion by HFS.

In sum, my model shows reasonable quantitative predictions of existing

experimental results on the HFS-induced late LTP modulation of SC-CA1 synapses by

SKF 38393 and DA. It generates new predictions based on the relative timing between

HFS and SKF 38393 administrations by capturing the dynamical mechanism of the

HFS-induced late LTP modulation by SKF 38393 and DA. Moreover, my simulation

results suggest that the enhancement in the HFS-induced LTP of the hippocampal SC-

CA1 synapse by D1/D5 agonists may depend on the timing and order of the applied

agonists relative to the HFS protocol in a nonlinear fashion.

3.3.2 6-bromo-APB enhances weak HFS-induced early LTP in hippocampal SC-CA1

synapses

In hippocampal slices from rats (Otmakhova and Lisman, 1996), Otmakhova and

Lisman showed that the 5 minutes application of a D1/D5 receptor agonist 6-bromo-

APB 5 minutes before a weak HFS protocol of 10 bursts of 4 pulses at 100 Hz with a 30

ms interval enhanced the HFS-induced LTP in the hippocampal SC-CA1 synapses by

approximately 11% immediately after the weak HFS protocol and approximately 8%

after 40 minutes. Furthermore, the application of 6-bromo-APB 35 minutes after the

weak HFS protocol produced no significant changes in the weak HFS-induced LTP.

These results highlight the time dependent modulation of a weak HFS-induced LTP

in SC-CA1 synapses by the D1/D5 agonist 6-bromo-APB. Moreover, 6-bromo-APB

interacts with HFS in a nonlinear fashion to modulate the HFS-induced LTP.

Before I used my model to predict the above experimental results, I first validated

my model’s capability in predicting slow-onset potentiation induced by 6-bromo-APB

in the absence of a HFS protocol for inducing LTP in the SC-CA1 synapse. In vitro

experimental data from (Shivarama Shetty et al., 2016) showed that the application

of 5µM 6-bromo-APB for 5 minutes three times (5 minutes inter-spacing) led to

the slow-onset potentiation of the SC-CA1 synapse. Under the same protocol as

described in (Shivarama Shetty et al., 2016), I used my model (see Eqs. 3.15a-3.15h

in the Model System section) to predict this slow-onset potentiation by 6-bromo-APB.
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Figure 3.16A compares the prediction from my model with the experimental data

in (Shivarama Shetty et al., 2016). As shown in this figure, my model captures the

essential dynamics to predict the slow-onset potentiation induced by 6-bromo-APB.

We then used my model to predict the experimental results from (Otmakhova

and Lisman, 1996) on the modulation of a weak HFS-induced LTP by 6-bromo-APB.

Figure 3.16B compares the prediction from my model with the experimental data

from (Otmakhova and Lisman, 1996) when 6-bromo-APB was applied 5 minutes

before the HFS protocol for 5 minutes. As shown in this figure, my model is able to

capture the key dynamical features presented in the data qualitatively, such as a sharp

enhancement in the HFS-induced LTP just after the HFS protocol (see Figure 3.16C)

and the temporal changes in the LTP over time. Figure 3.16C highlights the faster

dynamics of dopaminergic potentiation when the dopaminergic agonist 6-bromo-APB

is applied close to a weak HFS protocol compared to the much slower potentiation

dynamics observed by the application of only 6-bromo-APB in Figure 3.16A.

While my model accurately captures the dopaminergic potentiation dynamics, the

model predictions of the overall change in SC-CA1 potentiation differs significantly

from the experimental data quantitatively. I wondered whether this is because of the

differences in the HFS-induced LTP predicted from my model and the experimental

data. Would my model predict the data quantitatively better if I had the exact

HFS-induced LTP changes predicted by my model as in the experimental data? To

investigate this question, I tuned the HFS model parameters in Eq. 3.6c (pp and

Mp) through hand-fitting to match the HFS-induced LTP data from the experiment

in the absence of 6-bromo-APB. I then again used my model to predict the result

on the modulation of the weak HFS-induced LTP by 6-bromo-APB. Figures 3.17A

and 3.17B compare the prediction from my model and the experimental data. As

shown in Figure 3.17A, my model’s performance improved significantly in predicting

the experimental data quantitatively. This illustrates that my combined model

(HFS+6-bromo-APB) captured the essential biophysiological mechanisms underlying

the modulation of HFS-induced LTP by 6-bromo-APB in the hippocampal SC-CA1

synapses.
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Finally, I used my model to predict the experimental result on the modulation

of the weak HFS-induced LTP by 6-bromo-APB when 6-bromo-APB was applied 35

minutes after the HFS protocol. Figure 3.18 compares my model’s prediction with

the hand-fit parameters to the experimental data (Otmakhova and Lisman, 1996). As

shown in Figure 3.18, my model accurately predicts the experimental data, i.e., no

significant enhancement in the LTP by 6-bromo-APB. This highlights my model’s

capability at capturing the time dependency of dopaminergic modulation of SC-CA1

synaptic plasticity.

3.3.3 Antagonizing D1/D5 receptors blocks HFS induced late-LTP in hippocampal SC-CA1

synapses

One of the critical questions in understanding dopamine’s role in the hippocampal SC-

CA1 long-term synaptic plasticity is whether the basal level of dopamine is essential

for the induction of LTP, or it only plays a role in modulating the late LTP. Several

research groups have examined this question pharmacologically by blocking the

D1/D5 receptors using a D1/D5 selective antagonist SCH 23390 in hippocampal

slices from rats (Huang and Kandel, 1995; Sajikumar and Frey, 2004). Huang

and Kandel (Huang and Kandel, 1995) showed that pharmacologically blocking the

D1/D5 receptors using SCH 23390 blocks the HFS-induced late LTP in hippocampal

SC-CA1 synapses with a minimal effect on early LTP. Similarly, Sajikumar et al.

(Sajikumar et al., 2008) showed that the application of SCH 23390 blocked the late-

LTP induced by a weak HFS protocol of 100 pulses at 100 Hz in the SC-CA1 synapses.

We again used my model described in the previous sections (see Eqs. 3.1,3.6a -

3.6d, 3.6f - 3.6i, 3.15a -3.15r, and 3.19 in the Model System section) to predict these

experimental findings quantitatively. I incorporated the effect of SCH 233390 on

the late LTP by introducing a model parameter kbasal, which takes a nonzero value

whenever SCH 23390 is applied to block the D1/D5 receptors (see Eq. 3.15o in

the Model System section). The parameter kbasal decreases the HFS-induced LTP

predicted by my model to the baseline in approximately 400 minutes when D1/D5

receptors are blocked with the simultaneous application of SCH 23390 and HFS, as

observed in the experimental studies.



90

Figure 3.19A compares my model predictions with the experimental results from

Huang and Kandel (Huang and Kandel, 1995) and Sajikumar et al. (Sajikumar et al.,

2008) on the blockade of weak HFS (100 pulses at 100 Hz) induced late LTP by

SCH 23390. As shown in this figure, my model reasonably predicts the decay of

the weak HFS-induced LTP to the baseline (i.e., 100%) in approximately 400 minutes,

as observed in the experimental data. Figure 3.19B compares my model predictions

with the experimental results from Huang and Kandal (Huang and Kandel, 1995) on

the blockade of a strong HFS protocol (3 trains of 100 pulses at 100 Hz) induced LTP

in the hippocampal SC-CA1 synapses by SCH 23390. As shown in this figure, my

model struggles to make quantitative prediction of the changes in the early LTP but

provides a reasonable prediction of changes in the late LTP.

3.3.4 Concentration dependent effect of SKF 38393 on the modulation of HFS-induced LTP

It has been shown in hippocampal slice experiments that SKF 38393 induces a slow-

onset potentiation in SC-CA1 synapses in the absence of a LTP induction protocol

(Shivarama Shetty et al., 2016; Huang and Kandel, 1995) and this potentiation strongly

depends on the SKF 38393 concentration in a nonlinear fashion. However, no

experimental results exist on how various concentrations of SKF 38393 impact the

modulation of HFS-induced late LTP. After validating my model with the available

experimental data on the modulation of HFS-induced late LTP by D1/D5 agonists

and antagonists in the previous sections, I used my model (see Eqs. 3.1,3.6a -3.6d,

3.6f - 3.6i, 3.15a -3.15r, and 3.19) with SKF 38393 parameters given in Table 3.6 in the

Model System section to investigate this question.

We systematically investigated the effect of seven different concentrations of SKF

38393, ranging between 1− 50 µM, on the modulation of strong HFS-induced LTP in

the hippocampal SC-CA1 synapses while varying the relative time difference between

the SKF 38393 injection and the applied HFS protocol. Figures 3.20A, 3.20B and 3.20C

show the predictions of my model when seven different concentrations of SKF 38393

(i.e., 1 µM, 2 µM, 5 µM, 10 µM 15 µM, 25 µM, and 50 µM) were administered 212

minutes, 30 minutes, and 15 minutes, respectively, before a strong HFS protocol (3

trains of 100 pulses at 100 Hz). I applied each concentration of SKF 38393 for 15



91

minutes, which induced the slow-onset potentiation in the SC-CA1 synapse before

the HFS protocol. As shown in these figures, my model predicted a slow decay of

the SKF 38393 induced slow-onset potentiation in the hippocampal SC-CA1 synapse

after the application of a strong HFS protocol. Particularly, my model predicted a

bifurcation regime where the higher concentration of SKF 38393 (5 µM or higher)

led to significant modulation of HFS-induced LTP while lower concentration of SKF

38393 (below 5 µM) led to insignificant changes in the HFS-induced LTP. Moreover,

the observed concentration dependent enhancement of HFS-induced LTP decreased

as the time difference between the application the HFS protocol and the injection of

SKF 38393 increased. This highlights not only the importance of timing but also the

dopamine agonist concentration on the dopaminergic modulation of a strong HFS-

induced potentiation of the SC-CA1 synapse.

We noted in Figure 3.20C that when I applied SKF 38393 immediately before the

HFS protocol, my model predicted a bifurcation regime in the modulation of the HFS-

induced LTP depending on the concentration of SKF 38393. At a high concentration

(5− 50 µM), SKF 38393 further potentiated the HFS-induced LTP whereas at a low

concertation (1 − 2 µM), SKF 38393 depressed the HFS-induced LTP. A potential

mechanism underlying this observation may be the domination of the PLC pathway

at a low concentration of SKF 38393, which has been shown to be critical for the

induction of LTD (Reyes-Harde and Stanton, 1998; Horne and Dell’Acqua, 2007). It

has been hypothesized that there exists a D1-like dopamine receptor that is coupled

to a Gq-protein and selectively activates the phospholipase C (PLC) pathway (Liu

et al., 2009; Undieh, 2010). This receptor may explain the observation that while 1 µM

of SKF 38393 induced no significant potentiation after 4 hours but a small transient

depotentiation was observed up to one hour after the application of the dopamine

agonist in (Shivarama Shetty et al., 2016) Furthermore, HFS primarily activates the

CAMKII/PKA pathway (Frey et al., 1993) but also slightly activates the PLC pathway

(Neyman and Manahan-Vaughan, 2008; Undieh, 2010). Therefore, the CAMKII/PKA

pathway dominates to produce LTP. If a low concentration of SKF 38393 arrives

immediately before the HFS protocol, the PLC pathway may still be active and could

be boosted by the HFS protocol. The higher activity of the PLC pathway may slightly
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counteract the CAMKII/PKA pathway and reduce the level of LTP induced by the

HFS protocol.

Additionally, my model also correctly predicted the dynamical features of the

nonlinear interaction between SKF 38393 and HFS when I applied SKF 38393

just before the HFS protocol. As shown in Figure 3.17B, the application of the

weak HFS protocol immediately after the administration of a dopamine agonist

6-bromo-APB quickened the dynamics and amplified the effect of the agonist

on the SC-CA1 synapse. Therefore, high concentrations of SKF 38393, which

induced slow-onset potentiation (Shivarama Shetty et al., 2016), quickly enhanced LTP

induced potentiation, while low concentrations of SKF 38393 depressed LTP induced

potentiation.

We then used my model to investigate the concentration-dependent modulation of

HFS-induced LTP by SKF 38393 delivered after the HFS protocol (3 trains of 100 pulses

at 100 Hz). Figures 3.21A, 3.21B, and 3.21C show the model predicted enhancement

in the HFS-induced LTP by SKF 38393 at seven different concentrations (1 µM, 2

µM, 5 µM, 10 µM 15 µM, 25 µM, and 50 µM) when SKF 38393 was delivered 10, 30,

and 60 minutes, respectively, after the HFS protocol. As noted in these figures, the

overall enhanced potentiation in the HFS-induced LTP by SKF 38393 decreased with

the distance between the applied SKF 38393 and the HFS protocol. This supports

my limited resources hypothesis, since more resource may be consumed by the HFS-

induced LTP consolidation with the increased distance between the HFS and SKF

38393. Moreover, the potentiation by SKF 38393 decreased with the decrease in the

SKF 38393 concentration.

Next, I investigated the effect of the same seven concentrations of SKF 38393 on the

modulation of a weak HFS-induced LTP as the time difference was varied between

the injection of SKF 38393 and the application of the weak HFS (100 pulses at 100

Hz). Based on my limited resource hypothesis, I expect that the weak HFS-induced

LTP in SC-CA1 synapses will further be potentiated by the higher concentrations of

SKF 38393. Particularly, SKF 38393 can convert the weaker levels of LTP to stronger

levels of LTP in SC-CA1 synapse if a high concentration of SKF 38393 is administered

significantly before the HFS protocol.
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Figures 3.22A, 3.22B, 3.22C compare predictions from my model when SKF 38393

was applied 212, 30, and 15 minutes, respectively, before the weak HFS protocol. In

each case, the injection of SKF 38393 alone induced the slow-onset potentiation of

the SC-CA1 synapse that plateaued after the weak HFS protocol in all cases except

when a concentration greater than 10 µM was applied 212 minutes before a weak

HFS protocol. Since the weak HFS protocol alone doesn’t saturate the induced LTP,

concentrations of SKF 38393 greater than 10 µM delivered 212 minutes before the

weak HFS protocol enhanced the LTP to the saturated LTP level typically achieved

by a strong HFS protocol. Thus, these high concentrations and timing of SKF 38393

injection slowly decayed back to the saturated LTP level. When I applied the weak

HFS protocol immediately after the injection of SKF 38393 (see Figure 3.22C), the

weak HFS protocol quickened the modulation by SKF 38393. Importantly, the high

concentrations of SKF 38393 enhanced the weak HFS-induced LTP, while the low

concentrations of SKF 38393 suppressed the weak HFS-induced potentiation.

Then, I applied the dopamine agonist SKF 38393 10, 30, and 60 minutes after

the weak HFS protocol as shown in Figures 3.23A, 3.23B, and 3.23C, respectively.

In contrast to the concentration dependent dopaminergic modulation of strong

HFS induced LTP model predictions in Figures 3.20 and 3.21, the dopaminergic

enhancement of the weak HFS-induced LTP did not decay for most of the

concentrations and timings of SKF 38393. This supports my limited resource

hypothesis. The weak HFS protocol consumed less resources and never saturated,

which allowed the dopamine agonist to further enhance the weak HFS-induced LTP

without decaying back to the pure HFS-induced LTP baseline. Additionally, the

efficacy of the concentration dependent enhancement of the weak HFS-induced LTP

decreased as the time interval between the administration of the weak HFS protocol

and the injection of SKF 38393 increased.



94

3.3.5 The relative time between D1/D5 receptors activation and LFS protocol significantly

impacts the temporal modulation of LFS-induced LTD in hippocampal SC-CA1

synapses

We begin this section by summarizing the results from the limited in vitro

hippocampal slice experiments on the importance of the time window of the

activation of the dopamine D1/D5 receptors relative to a low-frequency stimulation

(LFS) protocol used to induce the long-term depression (LTD) in the Schaffer

collateral-CA1 pyramidal (SC-CA1) synapses. In in vitro hippocampal slice

experiments (Mockett et al., 2007), the authors applied 100 µM SKF 38393 for 20

minutes immediately after a LFS protocol of 1200 pulses at a frequency of 3 Hz.

They observed a complete reversal of the LFS-induced LTD an hour after the SKF

application. Next, the authors applied SKF 38393 an hour after the same LFS

protocol in order to understand the temporal interaction of the two inputs. The

application of 100 µM SKF 38393 one hour after the same LFS protocol produced

no significant change in the SC-CA1 plasticity. Chen showed that the application of

3 µM of SKF 38393 during a LFS protocol produced further depotentiation of the

SC-CA1 synapse in addition to the depotentiation induced by LFS alone (Chen et al.,

1995). Additionally, the application of the D1/D5 antagonist SCH 23390 blocked the

consolidation of LTD (Sajikumar and Frey, 2004) similar to the antagonist’s effect on

HFS consolidation of LTP. In summary, the available experimental results suggest that

the D1/D5 receptor mediated modulation of the LFS-induced LTD of the SC-CA1

synapse depends on the relative timing between the two inputs. It is not clear from

these limited results whether the activation of D1/D5 receptors before an LFS protocol

can reverse a LFS-induced LTD into LTP.

In order to investigate the temporal interaction of D1/D5 receptor activation by a

dopamine agonist and a LFS protocol, I developed a SC-CA1 plasticity model able to

predict the temporal dynamics of the dopaminergic modulation of LFS-induced LTD

by various dopamine agonists (see Eqs. 3.1,3.6a -3.6d, 3.6f - 3.6i, 3.15a -3.15r, and

3.19 in the Model System section). my model for LFS-induced LTD modulation by

D1/D5 agonists is similar to the HFS-induced LTP modulation model described in the
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previous sections except that I fitted the frequency-dependent plasticity parameters

in Eqs. 3.6a -3.6d and 3.6f - 3.6i using the LFS specific data. These parameters are

described in Table 3.5.

We validated my SC-CA1 model with the experimental data from Mockett et. al.

(Mockett et al., 2007) where 100 µM SKF 38393 was delivered immediately and 60

minutes after a LFS protocol of 1200 pulses at 3 Hz. Figures 3.24A and 3.24B compare

the synaptic plasticity change in the SC-CA1 synapse predicted by my model with

the experimental data when SKF 38393 was applied immediately and 60 minutes,

respectively, after the LFS protocol used in the experiment. As shown in Figure 3.24A,

when I delivered SKF 38393 immediately after the LFS protocol in my model, the LFS-

induced LTD reversed completely. This matched the reversal of LFS-induced LTD

observed in experimental data (Mockett et al., 2007). Next, I applied SKF 38393 60

minutes after a LFS protocol of 1200 pulses at 3 Hz. The application of SKF 38393

60 minutes after the LFS protocol induced only a slight potentiation of approximately

4% (see Figure 3.24B). A similar inflection was also observed in the experimental data

(Mockett et al., 2007), although it was not large enough to be statistically significant.

After validating my model with the experimental data from Mockett et. al.

(Mockett et al., 2007), I used my model to predict the dopaminergic modulation of

LFS-induced LTD when SKF 38393 was delivered 100 and 30 minutes before a LFS

protocol of 1200 pulses at 3 Hz. Figure 3.25A shows the prediction from my model

when SKF 38393 was delivered 100 minutes before the LFS protocol. As shown in this

figure, 100 µM of SKF 38393 delivered 100 minutes before the LFS protocol potentiated

the SC-CA1 synapse by 48% and converted the LFS-induced LTD into LTP. Then, I

applied 100 µM of SKF 38393 30 minutes before the same LFS protocol. Figure 3.25B

shows a 30 minute timing between the application of the dopamine agonist and the

following LFS protocol flipped the LFS-induced LTD to LTP too, although the overall

potentiation was less than if it were applied 100 minutes before the LFS protocol. my

model predictions, if correct, suggest that the application of SKF 38393 before a LFS

protocol could potentially convert the LFS-induced LTD into LTP.
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3.3.6 Dopaminergic modulation of LFS induce LTD predictions with other LFS protocols

In (Mockett et al., 2007), Mockett et al. also investigated whether SKF 38393 could

also reverse a strong LFS-induced LTD in SC-CA1 synapses. Specifically, they

showed in their experiments that a 20 minutes application of 100 µM SKF 38393

immediately after a LFS protocol of 2400 pulses delivered at a frequency of 3

Hz potentiated the SC-CA1 synapse by approximately 12% (although no complete

reversal of the LFS-induced LTD was observed). Furthermore, the delivery of 100

µM SKF 38393 immediately after a LFS protocol of 2 trains of 1200 pulses at 3 Hz

with a 5 minute intertrain interval potentiated the SC-CA1 synapse by approximately

8%. The authors stated that the 5 minutes time difference may allow for more

intracellular LTD consolidation to become more resistant to any modulation by

D1/D5 receptor activation. Therefore, the LFS protocol with the 5 minute gap between

two applications of 1200 pulses at 3 Hz was modulated less by SKF 38393. From these

results, the author’s in vitro experimental data suggests that the SKF 38393 mediated

changes in the LFS-induced LTD strongly depend on the LFS protocol.

To test the predictive capability of my model, I used my LTD model to see whether

my model can predict the experimental results shown by Mockett et al. (Mockett et al.,

2007) on the SKF 38393 mediated changes in the LFS-induced LTD under different LFS

protocols. I used the same model described in the previous section. First, I applied

100 µM SKF 38393 for a 20 minute duration immediately after a LFS protocol of 2400

pulses delivered at 3 Hz to my model, identical to the one used in (Mockett et al.,

2007). My model predicted 14% potentiation of the SC-CA1 synapse as compared to

approximately 12% in the experiment (see Figure 3.26A) and captured the temporal

changes mediated by SKF 38393 in the LFS-induced LTD, reasonably well. It should be

noted here that I did not use these data to infer my model parameters. Next, I applied

20 minutes of 100 µM SKF 38393 immediately after the LFS protocol of 2 trains of 1200

pulses at 3 Hz, identical to the one used in (Mockett et al., 2007). Figure 3.26B shows

the comparison between the prediction from my model and the experimental data

from (Mockett et al., 2007). My model predicted the observed fEPSP slope changes

observed in the experimental data well. In summary, my model quantitively predicted
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the experimentally observed LFS-induced LTD changes altered by SKF 38393 in SC-

CA1 synapses for different LFS protocols.

Since my model predicted the experimentally observed modulation of LFS-

induced LTD in SC-CA1 synapses by SKF 38393 quantitively under various LFS

protocols, I used my model to further investigate the SKF 38393 mediated modulation

of SC-CA1 synapses for two different LFS protocols. The first LFS protocol consisted

of three trains of 900 pulses at 1 Hz with 15 minute intertrain intervals and the second

protocol consisted of 900 bursts of three pulses delivered at 1 Hz. The rationale for

considering these two LFS protocols is that they both induce a similar level of LTD

but have a large difference in the duration of the applied LFS protocol. In both cases,

I administered 20 minutes of 100 µM SKF 38393 to my model immediately after the

LFS protocol similar to the protocol used in Mockett et. al. (Mockett et al., 2007) in

order to further examine how consolidation of LTD influences the extent SKF 38393

is able to modulate the SC-CA1 LTD. Figures 3.27A and 3.27B show the SKF 38393

mediated modulation of the LFS-induced LTD by these two different LFS protocols.

The application of 100 µM SKF 38393 immediately after three trains of 900 pulses at

1 Hz potentiated the SC-CA1 synapse by approximately 8% while SKF 38393 applied

immediately after the LFS protocol of 900 bursts at 1 Hz potentiated the SC-CA1

synapse by approximately 18%. It should be noted that none of the protocols led to the

complete reversal of the LFS-induced LTD. This follows the same trend observed in

the experimental data (see Figures 3.26A and 3.26B) where the longer the LFS protocol,

the less potentiation induced by SKF 38393. Mockett et. al. (Mockett et al., 2007)

hypothesized that longer LFS protocols may allow the LFS-induced LTD more time

to consolidate, which would reduce the ability of the dopamine agonist to modulate

the LTD. If this hypothesis is true, then the release of SKF 38393 immediately after

two different LFS protocols with dramatically different stimulation times would have

more obviously different effects on the dopaminergic modulation of LFS-induced LTD

for each protocol, as predicted by my model (see Figure 3.27).
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3.3.7 Antagonizing the D1/D5 receptor blocks LFS induced late-LTD

In this section, I investigated the capability of my model in predicting experimental

data on the modulation of SC-CA1 long-term synaptic plasticity by the simultaneous

application of the D1/D5 receptor antagonist SCH 23390 and a LFS protocol. In in

vitro experiment, Frey et. al. (Sajikumar and Frey, 2004) observed that the application

of the D1/D5 receptor antagonist SCH 23390 blocked consolidation of LFS-induced

LTD in SC-CA1 synapses. They applied 0.1 µM SCH 23390 for 60 minutes starting 30

minutes before the LFS protocol of 900 bursts of 3 pulses at 1 Hz and observed the

reversal of LFS-induced LTD back to the baseline over a period of 450 minutes. Since

the blockage of basal levels of dopamine binding to D1/D5 receptors with SCH 23390

blocked the consolidation of LTD, Frey (Sajikumar and Frey, 2004) hypothesized that

dopamine is required for the induction of late-LTD.

We used my model (see Eqs. 3.1,3.6a -3.6d, 3.6f - 3.6i, 3.15a -3.15r, and 3.19)

to predict the experimental data from (Sajikumar and Frey, 2004) under the same

protocol, quantitatively. I incorporated the effect of SCH 23390 in my model through

a model parameter kbasal. This parameter takes a non-zero value in the presence of

SCH 23390 (see Eq.3.15o). Figure 3.28 compares the prediction from my model with

the experimental data from Frey et. al. (Sajikumar and Frey, 2004). As shown in this

figure, my model predicts the reversal of the LFS-induced LTD in the presence of SCH

23390, as observed in the experiment.

3.3.8 Concentration dependent spatiotemporal modulation of LFS-induced LTD by SKF

38393

In this section, I used my model to investigate the effect of the concentration of SKF

38393 and its application time relative to the LFS protocol on the modulation of LFS-

induced LTD in SC-CA1 synapses. Experimental data from in vitro hippocampal

slice experiments have shown that the modulation of a LFS-induced LTD in SC-CA1

synapses strongly depends on the applied concentration and timing of SKF 38393

relative to the LFS protocol. Particularly, Chen et. al. (Chen et al., 1995) showed

that the application of 3 µM of SKF 38393 during a LFS protocol of 450 pulses at 1
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Hz enhanced the induced LTD by approximately 18% (see Figure 3.29). This result

highlights a different role that a dopamine agonists can play if applied at a low

concentration. Furthermore, the experimental observation was consistent with the

observed slow-onset depotentiation of the SC-CA1 synapse by the application of low

concentrations of dopamine alone (Sajikumar and Frey, 2004).

To investigate the capability of my model in predicting the observed depotentia-

tion of SC-CA1 synapse at a low concentration of SKF 38393 by Chen et.al. (Chen

et al., 1995), I applied the same low concentration of SKF 38393 to my model (see

Eqs. 3.1,3.6a -3.6d, 3.6f - 3.6i, 3.15a -3.15r, and 3.19 in Model System section) under

the same LFS protocol. Figure 3.29 compares the prediction from my model with

the experimental data from (Chen et al., 1995). As shown in this figure, my model

predicts the experimental data on the SKF 38393 modulated LFS-induced LTD at a low

concentration quantitatively (enhancement in the LFS-induced LTD by approximately

20% an hour after the LFS protocol). Additionally, my model captures the temporal

dynamics of these modulations.

After validating my model with the limited experimental data, I further used

my model to investigate how various concentrations and timing of the application

of SKF 38393 relative to a LFS protocol modulates the LFS-induced LTD in SC-CA1

synapses. I applied seven different concentrations (1− 100 µM, 20 minutes duration)

of SKF 38393 at various times before and after a LFS protocol of 1200 pulses at

3 Hz. Figures 3.30A, 3.30B, and 3.30C show the predictions from my model on

the SKF 38393 mediated modulation of the LFS-induced LTD for timings of SKF

38393 applied 212, 30, and 20 minutes, respectively, before the LFS protocol. Here,

SKF 38393 alone induced a slow onset potentiation of the SC-CA1 synapse that

plateaued after the LFS protocol in Figure 3.30A. In Figure 3.30B, the LFS protocol

applied 30 minutes after the administration of SKF 38393 reduced the concentration

dependent slow-onset potentiation by SKF 38393, since there was less time for the

consolidation of the SKF 38393 induced potentiation. After the LFS protocol, the SKF

38393 induced potentiation remained at the saturation level. The application of SKF

38393 20 minutes before the LFS protocol highlighted the concentration dependent

bifurcation of the SKF 38393 mediated modulation of the LFS-induced LTD, similar
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to the LTP case (see Figure 3.20C). Particularly, low concentrations of SKF 38393

enhanced the depotentiation of the SC-CA1 synapse, while high concentrations of

SKF 38393 reversed LFS induced-LTD to varying degrees.

Next, I used my model to investigate how various concentrations of SKF 38393

modulate the LFS-induced LTD in SC-CA1 synapses when SKF 38393 is applied at

different times relative to LFS but after the LFS protocol. Figures 3.31A, 3.31B, and

3.31C show the prediction from my model when I applied SKF 38393 10, 30, and 60

minutes after the same LFS protocol (1200 pulses at 3 Hz). As shown in these figures,

the concentration dependent potentiation by SKF 38393 decreased for the same given

concentration as the relative timing between the application of SKF 38393 and the LFS

increased. Moreover, the potentiation by SKF 38393 was much smaller compared to

when the SKF 38393 was applied before the LFS protocol to induce LTD, which is

consistent with results in the previous sections.

3 .4 summary

In this chapter, I modeled the dose-dependent modulation of high/low-frequency

stimulation (HFS/LFS) induced long-term potentiation/depression (LTP/LTD) of a

Schaffer collateral – CA1 pyramidal neuron (SC-CA1) synapse by three dopamine

D1/D5 receptor agonists, SKF 38393, dopamine and 6-bromo-APB. My model

predicted the experimentally observed temporal effects of these D1/D5 agonists’

concentrations, and the relative time between the applied agonist and the HFS/LFS

induction on both the early and the late LTP/LTD, quantitatively. Specifically, I

derived the following conclusions from my modeling results:

1. For a given concentration and duration of a dopamine D1/D5 receptors

agonist, the maximum change in the late LTP/LTD occurred when the agonist

was delivered a long-time (approximately 200 minutes) before the HFS/LFS

induction, which is consistent with the experimental results from Huang et.al.

(Huang and Kandel, 1995).
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2. For a given concentration and duration of a dopamine D1/D5 receptors agonist,

the maximum change in the late LTP/LTD decreased slowly with the decrease

in the time difference between the application of the agonist and the HFS/LFS

protocol when the agonist was applied before the HFS/LFS protocol but

not immediately before or during the HFS/LFS protocol. The conclusion is

consistent the experimental data available in the literature (Huang and Kandel,

1995; Navakkode et al., 2012).

3. For a given concentration and duration of a dopamine D1/D5 receptors agonist,

the maximum change in the late LTP/LTD quickly decreased with the increase

in the time gap between the application of the dopamine agonist and the

HFS/LFS protocol when the agonist was applied after the HFS/LFS protocol.

The conclusion is consistent with the experimental data available from (Mockett

et al., 2007).

4. For a given concentration and duration of a dopamine D1/D5 receptors agonist,

application of the agonist immediately before or during an HFS/LFS protocol

enhanced the dopaminergic modulation of the SC-CA1 synapse in a highly

nonlinear fashion (sharp changes), which is consistent with the experimental

data from (Otmakhova and Lisman, 1996; Chen et al., 1995).

5. For a given concentration and duration of a dopamine D1/D5 receptors agonist,

high concentrations of the agonist injected immediately before or during a

HFS/LFS protocol modulated SC-CA1 synaptic plasticity by further potentiating

the HFS/LFS induced potentiation/depotentiation. This result is consistent with

the experimentally observed data from (Otmakhova and Lisman, 1996).

6. For a given concentration and duration of a dopamine D1/D5 receptors

agonist, low concentrations of the agonist injected immediately before or

during a HFS/LFS protocol modulated SC-CA1 synaptic plasticity by further

depotentiating the HFS/LFS induced potentiation/depotentiation. This is

consistent with the limited experimental data from (Chen et al., 1995).
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7. For a fixed duration of the applied dopamine D1/D5 receptors agonist and a

large time gap between the dopamine agonist and the HFS/LFS protocol, the

dopaminergic mediated modulation of LTP/LTD increased with an increase in

the concentration level of the applied agonist.

Our modeling approach to integrate the LTP/LTD effects mediated by HFS/LFS

and D1/D5 agonists is based on the hypothesis that there exists limited resources

for the consolidation of the HFS/LFS-induced LTP/LTD into the late-LTP/LTD. I

formulated this hypothesis based on the limited experimental data from (Mockett

et al., 2007; Huang and Kandel, 1995; Navakkode et al., 2012; Chen et al., 1995;

Sajikumar and Frey, 2004; Sajikumar et al., 2008). Particularly, it was shown in

an in vitro hippocampal slice experiment that the application of 100 µM of SKF

38393 immediately after the LFS protocol reversed the consolidation of the late-LTD,

whereas the application of 100 µM of SKF 38393 an hour after the LFS protocol

produced no significant reversal of the late-LTD consolidation (Mockett et al., 2007).

Similarly, the application of 50 µM SKF 38393 200 minutes before HFS induction

resulted in a substantial magnitude change of HFS induced LTP, while the delivery

of 50 µM SKF 38393 50 minutes after resulted in no enhancement of HFS induced

LTP (Huang and Kandel, 1995). Additionally, it was shown that the direct activation

of PKA by sp-cAMPS 10 minutes after a strong HFS protocol induced only a small

additional potentiation of the SC-CA1 synapse, while the activation of the PKA by

sp-cAMPS 180 minutes before a strong HFS protocol resulted in only a transient

potentiation of the SC-CA1 synapse by the HFS protocol (Frey et al., 1993). This

result mirrored the observation by (Huang and Kandel, 1995) with the application the

dopamine agonist SKF 38393 before and after a strong HFS protocol. It suggests that

the biochemical pathways activated by HFS and PKA both converge onto the same

pathway (Frey et al., 1993) and consume a limited resource to produce late-LTP, since

the leading protocol occludes the following protocol. Furthermore, the application of

a protein synthesis inhibitor in combination with a HFS (Sajikumar et al., 2008) or LFS

(Sajikumar and Frey, 2004) protocol blocked the consolidation of early-LTP or early-

LTD into late-LTP or late-LTD, respectively. Various authors observed a similar result

when the dopamine receptors were blocked by the D1/D5 antagonist SCH 23390
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(Sajikumar et al., 2008; Huang and Kandel, 1995). These results taken together suggest

that the limited resource could possibly be a protein substrate critical for the protein

synthesis of plasticity proteins responsible for consolidation of LTP and LTD, or it

could possibly be the limited availability of protein synthesis machinery. I believe

that it would be worth performing additional experiments that would support the

limited resource hypothesis by applying a dopamine agonist immediately before two

different LFS protocols that induce similar levels of LTD but have drastically different

stimulation durations, such as the application of 100 µM SKF 38393 immediately after

three trains of 900 pulses at 1 Hz (see Figure 3.27A) and immediately after the a LFS

protocol of 900 bursts of 3 pulses at 1 Hz (see Figure 3.27B). This will not only validate

my modeling hypothesis of the limited resources but support many predictions from

my model.

We have developed my modeling framework in a way so that any part of the

model can be swapped out if an improved model becomes available. For example, if a

better HFS/LFS model becomes available, the new HFS/LFS model could replace

the frequency dependent plasticity dynamics in Eqs. 3.6a- 3.6i without making

substantive changes in the entire model. In order to fully incorporate the new model’s

dynamics into the rest of the model, the output of the frequency dependent model

to the other segments of my SC-CA1 model must be updated, as well. Therefore,

the derivative of the output of the new HFS/LFS model, which determines the SC-

CA1 synaptic plasticity change, must be updated in Eqs. 3.15i, 3.15j, 3.15n, and

3.15o. Additionally, my model could possibly be used to make prediction about the

dopaminergic modulation of spike-timing dependent plasticity (STDP) by swapping

out the frequency dependent plasticity model for a STDP model. The rest of the

parameters would then need to be re-fit to the STDP specific experimental data.

Finally, the dopaminergic model could be expanded to other dopamine agonists

if the concentration dependent slow-onset potentiation experimental data becomes

available. The inherent segmented nature of my model makes it more flexible and

may allow incorporation of different types of plasticity and neuromodulators to be

considered in the future.
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Our model assumes that SKF 38393 can induce a slow-onset-potentiation in the

SC-CA1 synapses in the absence of an LTP/LTD stimulation protocol (HFS/LFS).

Although I found some controversy on this in the literature (Mockett et al., 2007, 2004;

Huang and Kandel, 1995; Lemon and Manahan-Vaughan, 2006; Shivarama Shetty

et al., 2016), recent experiments on applying various concentration levels of SKF 38393

in the absence of any HFS/LFS protocol (Shivarama Shetty et al., 2016; Shetty and

Sajikumar, 2017) support my modeling assumption. While the lack of sufficient data

may limit the quality of my model, it still provides important insights into the gaps in

my current understanding. Moreover, it suggests specific experiments that I believe

will help to fill in the gaps in my understanding of the spatiotemporal modulation of

SC-CA1 synapses by dopamine.
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F igure 3 .7 : HFS-induced LTP with different HFS protocols. I provided one, two,
and four trains of 100 pulses delivered at 100 Hz to my SC-CA1 model with different
inter-train intervals. In (A), I applied one trains of HFS. (B) and (C) shows the induced
LTP from two trains of HFS with an inter-train interval of 10 seconds and 20 seconds,
respectively. (D) shows the HFS-induced LTP from four trains of HFS with an inter-
train of 5 minutes. In each case, the HFS-induced LTP observed in experiment is
represented by the colored-circles and the LTP induced in my model is shown as
the black-squares. The root mean squared error between the experimental data and
the model prediction for Roberto (Roberto et al., 2003), Hernandez (Hernandez et al.,
2005), Papatheodoropoulos, (Papatheodoropoulos and Kostopoulos, 2000), Kasashara
(Kasahara et al., 2001), Hernandez (Hernandez et al., 2005), and Li (Li et al., 2013) is 5
%, 4.9 %, 6.8 %, 22.1 %, 7.3 %, and 7.6 %, respectively.
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F igure 3 .8 : LFS-induced LTD. I provided three different LFS trains to my SC-CA1
model and compared the induced LTP in my model (black-squares) to the induced
LTP in experiment (colored-circles). I considered LFS protocols consisting of (A)
900 pulses at 1 Hz, (B) 1200 pulses at 3 Hz and (C) 900 pulses at 3 Hz. The root
mean squared error between the experimental data and the model prediction for Bear
(Huber et al., 2001), Malenka (Selig et al., 1995), Debanne (Daoudal et al., 2002), Liu
(Liu et al., 2009), Mockett (Mockett et al., 2007), Mockett (Mockett et al., 2007), and Bear
(Heynen et al., 1996) is 5.5 %, 4 %, 4.7 %, 3 %, 5.5 %, 8.9 %, and 3.8 %, respectively.
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F igure 3 .9 : LFS-induced LTD with other LFS protocols. I provided four other
LFS protocols to my SC-CA1 model and compared the induced LTP in my model
(black-squares) to the induced LTP in experiment (colored-circles). I considered LFS
protocols consisting of (A) three trains of 900 pulses at 1 Hz with a inter-train interval
of 15 minutes, (B) 900 burst of 3 pulses at 1 Hz where the pulses in the burst were
delivered at 20 Hz, (C) 2400 pulses at 3 Hz, and (D) two trains of 1200 pulses at
3 Hz. The root mean squared error between the experimental data and the model
prediction for Liu (Liu et al., 2009), Bear (Huber et al., 2001), Sajikumar (Sajikumar
and Frey, 2004), Mockett (Mockett et al., 2007), and Mockett (Mockett et al., 2007) is
2.3 %, 3.3 %, 12.5 %, 7.9 %, and 6.8 %, respectively.
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F igure 3 .10 : Inference of dopaminergic model parameters. Each histogram
represents the approximate posterior distributions of the parameters (A) k1, (B) k2,
(C) k3, (D) k4, (E) k5, (F) k6, (G) k7, and (H) k8. The red-line represents the mean log
value.
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F igure 3 .11 : Inference of dopaminergic modulation of HFS and LFS model
parameters. Each histogram represents the approximate posterior distributions of
the parameters (A) ksat, (B) kstim, (C) kE, (D) kI , (E) klate, (F) kDA, (G) τstim, and (H)
τDA. The red-line represents the mean value.
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F igure 3 .12 : Dopaminergic slow-onset-potentiation by SKF 38393, 6-bromo-APB,
and dopamine. I provided the dose dependent slow-onset-potentiation induced
by the application of the dopamine agonists (A) SKF 38393, (B) 6-bromo-APB, (C)
and dopamine. In the Shetty experimental data (Shivarama Shetty et al., 2016), the
dopaminergic agonist was applied three times for 5 minutes with 5 minute intervals
at 0 minutes. The dopaminergic agonists applied by Huang (Huang and Kandel,
1995) was applied for 15 minutes at 0 minutes. Frey (Sajikumar and Frey, 2004)
applied dopamine three times for 3 minutes with 10 minute intervals at 0 minutes,
and Navakkode (Navakkode et al., 2012) applied dopamine three times for 5 minutes
with 10 minute intervals at 0 minutes.
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F igure 3 .13 : Quantitative comparison between the model predicted and
experimentally observed (Huang and Kandel, 1995) modulation of HFS-induced LTP
in hippocampal SC-CA1 synapse by D1/D5 agonist SKF 38393. The induced LTP of
the SC-CA1 synapse is measured in terms of the percentage (%) change in evoked
fEPSP slope from the control. The black-squares represents the application of the HFS
protocol of three trains of pulse at 100 Hz for 1 second with a 10 minute intertrain
interval, while the blue-triangles represent the same HFS protocol in combination
with 50 µM SKF 38393 for 15 minutes applied at various time distances from the HFS
protocol (∆t = tSKF − tHFS). (A) shows the HFS-induced LTP without (black-squares)
and with (blue-triangles) 50 µM SKF 38939 delivered 212 minutes before the HFS
protocol. The experimentally reported SKF 38393 enhancement of LTP (Huang and
Kandel, 1995) is shown as the red-circles (∆t = −212 min). The root mean squared
error between the experimental data and the model prediction is 10.3 % change in
f EPSP. (B) shows the SKF 38393 enhancement of the HFS-induced LTP when 15
minutes of 50 µM SKF 38393 is delivered 50 minutes after the HFS administration
(∆t = 50 min). The root mean squared error between the experimental data and the
model prediction is 19.8 % change in f EPSP.
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F igure 3 .14 : Quantitative comparison between the model predicted and
experimentally observed (Navakkode et al., 2012) modulation of HFS-induced LTP
in hippocampal SC-CA1 synapse by dopamine (DA). The induced LTP of the SC-CA1
synapse is measured in terms of the percentage (%) change in evoked fEPSP slope
from the control. DA is applied 165 minutes before the HFS stimulation protocol of
three trains of 100 pulses at 100 Hz with a 5-minute inter-train interval. The HFS
induced LTP when (blue-triangles) 50 µM DA is delivered before the HFS protocol is
compared to the HFS only induced LTP (black-squares). The experimentally reported
dopaminergic enhancement of LTP (Navakkode et al., 2012) is shown as the red-circles
(∆t = −165 min). The root mean squared error between the experimental data and
the model prediction is 28.8 % change in f EPSP.
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F igure 3 .15 : Predictions from the model on the modulation of HFS-induced LTP
in the hippocampal SC-CA1 synapse by D1/D5 agonist SKF 38393 when the D1/D5

agonist SKF 38393 is delivered closer in time relative to the applied HFS protocol. In
these simulation results, SKF 38393 is applied 30 minutes before (A) and 10 minutes
after (B) the HFS protocol of 3 trains of 100 pulses at 100 Hz with a 10 minute
inter-train intervals. The induced LTP of the SC-CA1 synapse is measured in terms
of the percentage (%) change in evoked fEPSP slope from the control. (A) shows
approximately 20% enhancement immediately after the HFS protocol in the HFS-
induced LTP by SKF 38393 when delivered 30 minutes before the HFS protocol (blue-
triangles) of (∆t = −30 min). The LTP induced by only HFS is shown as the black-
squares. (B) shows a small (negligible) enhancement in the HFS-induced LTP when
SKF 38393 is delivered 10 minutes (blue-triangles) after the HFS protocol (∆t = 10
min).
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F igure 3 .16 : Comparison between the model predicted and experimentally
observed modulation of weak HFS-induced LTP in hippocampal SC-CA1 synapse by
D1/D5 agonist 6-bromo APB. The induced LTP of the SC-CA1 synapse is measured
in terms of the percentage (%) change in evoked fEPSP slope from the control.
(A) shows the slow-onset potentiation due to the application of 5 µM of 6-bromo-
APB for 5 minutes with 5 minute intervals (green-bars) observed in the experiment
(Shivarama Shetty et al., 2016) (red-circles) and predicted by my model (black-squares).
(B) shows the dopaminergic enhancement by 5 µM of 6-bromo-APB for 5 minutes
(green-bar) of LTP induced by a weak HFS protocol of 10 bursts of 4 pulses at 100
Hz with a 30 ms interval (black-arrow). The green-circles show the LTP induced
by the weak HFS protocol alone and the red-triangles show the LTP induced by the
weak HFS with 6-bromo-APB in the experiment (Otmakhova and Lisman, 1996). In
the result predicted by my model, the induced LTP from a weak HFS protocol is
shown as black-squares and the LTP induced by a weak HFS protocol with the 5
µM of 6-bromo-APB is shown as the blue-triangles. The root mean squared error
between the experimental data and the model prediction is 5.9 % and 7.5 % for
the weak HFS protocol and the weak HFS protocol plus 6-bromo-APB. (C) shows
the absolute dopaminergic enhancement of LTP (∆ fEPSP) by 6-bromo-APB in the
experiment (Otmakhova and Lisman, 1996) (red-diamonds) and my model (black-
squares) computed by subtracting the measured potentiation of the weak HFS plus
6-bromo-APB from potentiation by weak HFS alone.
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F igure 3 .17 : Enhancement in the model predictions shown in Figure 3.16 with
improved HFS-induced LTP prediction. I tuned the model parameters of the HFS
model to match the experimental data on weak HFS-induced LTP from (Otmakhova
and Lisman, 1996). Then I used my model to again predict the changes in the
weak HFS-induced LTP after the application 5 µM of 6-bromo-APB for 5 minutes
(green-bar). (A) shows the enhancement in the weak HFS-induced LTP by 6-bromo-
APB with the new parameters. The experimental and model predicted data on the
simultaneous application of weak HFS protocol and 6-bromo-APB are shown by the
red-triangles and blue-triangles, respectively. The experimental and model predicted
data on the weak HFS application alone are shown by the green-circles and black-
squares, respectively. The root mean squared error between the experimental data
and the model prediction is 3.5 % and 3.6 % for the weak HFS protocol and the weak
HFS protocol plus 6-bromo-APB, respectively. (B) shows the comparison between
the absolute dopaminergic enhancement of LTP (∆ fEPSP) by 6-bromo-APB observed
in the experiment (Otmakhova and Lisman, 1996) (black-squares) and predicted my
model (red-squares) with the modified HFS model parameters. ∆ fEPSP is computed
by subtracting the measured potentiation of the weak HFS plus 6-bromo-APB from
potentiation by the weak HFS alone. The modified HFS model parameters in Eq. 3.6c
are pp = 1.5099× 10−6 ms−1, Mp = 7.4938× 10−9 ms−1, and f = 298.
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(Otmakhova, 1998) - wHFS and 6-bromo-APB

(Model) - wHFS and 6-bromo-APB

F igure 3 .18 : Comparison between the model predicted and the experimentally
observed (Otmakhova and Lisman, 1996) modulation of a weak HFS-induced LTP
when 6-bromo-APB was delivered after the weak HFS protocol. The dopaminergic
agonist 6-bromo-APB is applied 35 minutes after a weak HFS protocol of 10 bursts
of 4 pulses at 100 Hz with a 30 ms interval (black-arrow). The model parameters of
the HFS model is the same as the one used in Figure 3.17. The induced LTP of the
SC-CA1 synapse is measured in terms of the percentage (%) change in evoked fEPSP
slope from the control. The 6-bromo-APB enhanced weak HFS-induced LTP predicted
by the model is shown as the blue-triangles and observed in the experiment as the
red-triangles (Otmakhova and Lisman, 1996). The root mean squared error between
the experimental data and the model prediction is 8.1 %. The modified HFS model
parameters in Eq. 3.6c are pp = 1.5099× 10−6 ms−1, Mp = 7.4938× 10−9 ms−1, and
f = 298.
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F igure 3 .19 : The effect of basal dopamine level on HFS-induced LTP. (A) compares
the LTP induced by a weak HFS protocol of 100 Hz stimulation in the presence of a
D1/D5 antagonist SCH 23390 from experiments (shown in cyan-diamonds and green-
triangles) (Huang and Kandel, 1995; Sajikumar et al., 2008) with the predictions from
my model (blue-triangles). The only HFS-induced LTP from the experiments are
shown in red-circles and magenta-stars and from the model is shown in black-squares.
The root mean squared error between the weak HFS experimental data and the weak
HFS model prediction for Huang (Huang and Kandel, 1995) and Sajikumar (Sajikumar
et al., 2008) is 10.1 % and 8.5 %, respectively. The root mean squared error between
the weak HFS plus SCH 23390 experimental data and the weak HFS plus SCH 23390

model prediction for Huang (Huang and Kandel, 1995) and Sajikumar (Sajikumar
et al., 2008) is 17 % and 9.9 %, respectively. (B) compares the LTP induced by a strong
HFS protocol (3 trains of 100 Hz) in the presence of a D1/D5 antagonist SCH 23390

from the experiment (cyan-diamond) (Huang and Kandel, 1995) with the prediction
from my model (blue-triangles). The only HFS-induced LTP from the experiment is
shown in red-circles and from the model is shown in black-squares. The root mean
squared error between the experimental data and the model prediction for strong HFS
data and strong HFS plus SCH 23390 is 28.3 % and 15.1 %, respectively.
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F igure 3 .20 : Model predictions on the effect of the concentration and timing of SKF
38393 relative to a strong HFS protocol (3 trains of 100 pulses at 100 Hz) in modulating
HFS-induced LTP when SKF 38393 was delivered before the HFS protocol. SKF 38393

(blue-bar) was delivered (A) 212 minutes (∆t = −212 min), (B) 30 minutes (∆t = −30
min), and (C) 15 minutes (∆t = −15 min) before the strong HFS protocol (black-
arrow). ∆fEPSP is computed by subtracting the measured potentiation of the strong
HFS plus SKF 38393 from the potentiation by the strong HFS alone. The strong HFS
protocol on its own results in a 67% increase of the synaptic strength.
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F igure 3 .21 : Model predictions on the effect of the concentration and timing of SKF
38393 relative to a strong HFS protocol (3 trains of 100 pulses at 100 Hz) in modulating
HFS-induced LTP when SKF 38393 was delivered after the HFS protocol. SKF 38393

(blue-bar) was delivered (A) 10 minutes (∆t = 10 min), (B) 30 minutes (∆t = 30 min),
and (C) 60 minutes (∆t = 60 min) after the end of the strong HFS protocol (black-
arrow). ∆fEPSP is computed by subtracting the measured potentiation of the strong
HFS plus SKF 38393 from the potentiation by the strong HFS alone. The strong HFS
protocol on its own results in a 67% increase of the synaptic strength.
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F igure 3 .22 : Model predictions on the effect of the concentration and timing of SKF
38393 relative to a weak HFS protocol (1 train of 100 pulses at 100 Hz) in modulating
HFS-induced LTP when SKF 38393 was delivered before the HFS protocol. SKF 38393

(blue-bar) was delivered (A) 212 minutes (∆t = −212 min), (B) 30 minutes (∆t =
−30 min), and (C) 15 minutes (∆t = −15 min) before the weak HFS protocol (black-
arrows). ∆fEPSP is computed by subtracting the measured potentiation of the weak
HFS plus SKF 38393 from the potentiation by the weak HFS alone. The weak HFS
protocol on its own results in a 41% increase of the synaptic strength.
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F igure 3 .23 : Model predictions on the effect of the concentration and timing of SKF
38393 relative to a weak HFS protocol (1 train of 100 pulses at 100 Hz) in modulating
HFS-induced LTP when SKF 38393 was delivered after the HFS protocol. SKF 38393

(blue-bar) was delivered (A) 10 minutes (∆t = 10 min), (B) 30 minutes (∆t = 30
min), and (C) 60 minutes (∆t = 60 min) after the weak HFS protocol (black-arrows).
∆fEPSP is computed by subtracting the measured potentiation of the weak HFS plus
SKF 38393 from the potentiation by the weak HFS alone. The weak HFS protocol on
its own results in a 41% increase of the synaptic strength.
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F igure 3 .24 : Quantitative comparison between the model predicted and
experimentally observed (Mockett et al., 2007) modulation of LFS-induced LTD in
the hippocampal SC-CA1 synapse by a D1/D5 agonist SKF 38393. The induced
LTD of the SC-CA1 synapse is measured in terms of the percentage (%) change in
evoked fEPSP slope from the control. The black-squares represents the application
of the LFS protocol of 1200 pulses at 3 Hz, while the blue-triangles represent
the same LFS protocol in combination with 100 µM SKF 38393 for 20 minutes
applied at time relative to the LFS protocol (∆t = tSKF − tLFS). (A) shows the LFS-
induced LTD without (black-squares) and with (blue-triangles) 100 µM SKF 38939

delivered immediately after the LFS protocol. The experimentally reported SKF 38393

enhancement of LTD (Mockett et al., 2007) is shown as the red-circles (∆t = 0 min).
The root mean squared error between the experimental data and the model prediction
for LFS data and LFS plus SKF 38393 is 8.9 % and 3.2 %, respectively. (B) shows
the comparison between the prediction from my model and the experimental data
(Mockett et al., 2007) where 100 µM SKF 38393 was administered 60 minutes after
the same LFS protocol (∆t = 60 min). The root mean squared error between the
experimental data and the model prediction for LFS data and LFS plus SKF 38393 is
8.9 % and 4.8 %, respectively.
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F igure 3 .25 : Predictions from my model on the modulation of LFS-induced LTD
in the hippocampal SC-CA1 synapse by D1/D5 receptor agonist SKF 38393 when SKF
38393 is delivered prior to the LFS protocol. In these simulation results, 100 µM of
SKF 38393 is applied 100 (A) and 30 minutes (B) before a LFS protocol of 1200 pulses
at 3 Hz. (A) shows the modulation of the LFS-induced LTD by SKF 38393 when SKF
38393 was delivered 100 minutes before the LFS protocol marked as the blue-triangles
(∆t = 100). The LTD induced by LFS alone is shown as the black-squares. (B) shows
the modulation of the LFS-induced LTD by SKF 38393 when SKF 38393 was delivered
30 minutes before the LFS protocol (∆t = 30).
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F igure 3 .26 : Quantitative comparison between the model predicted and
experimentally observed (Mockett et al., 2007) modulation of the LFS-induced LTD
under various LFS protocol by SKF 38393. The induced LTD of the SC-CA1 synapse
is measured in terms of the percentage (%) change in evoked fEPSP slope from the
control. (A) shows the comparison between the potentiation of the LFS-induced
LTD in the SC-CA1 synapse with the 20 minutes application of 100 µM SKF 38393

immediately after the LFS protocol of 2400 pulses at 3 Hz reported in the experiment
(red-circles) and predicted by my model (blue-triangles). The model predicted LFS-
induced LTD by the LFS protocol alone is shown as the black-squares. The root mean
squared error between the experimental data and the model prediction for LFS data
and LFS plus SKF 38393 is 7.1 % and 8 %, respectively. (B) shows the comparison
between the potentiation of the LFS-induced LTD in the SC-CA1 synapse when 20
minutes of 100 µM SKF 38393 was administered immediately after a LFS protocol of
two trains of 1200 pulses at 3 Hz with a 5 minute intertrain interval reported in the
experiment (red-circles) and predicted by my model (blue-triangles). The root mean
squared error between the experimental data and the model prediction for LFS data
and LFS plus SKF 38393 is 7 % and 11 %, respectively.
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F igure 3 .27 : Predictions from my model on the modulation of the LFS-induced
LTD under various LFS protocol by SKF 38393. 100 µM SKF 38393 was applied
for 20 minutes immediately after two different LFS protocols. (A) shows the model
predicted enhancement in the LFS-induced LTD by SKF 38393 for a LFS protocol of 3
trains of 900 pulses at 1 Hz with 10 minute intertrain intervals. (B) shows the model
predicted enhancement in the LFS-induced LTD by SKF 38393 for a LFS protocol of
900 bursts at 1 Hz where each burst consists of 3 pulses delivered at 20 Hz. The SKF
38393 modulated LFS-induced LTD is shown as blue-triangles and the LFS-induced
LTD in the absence of SKF 38393 is denoted as the black-squares.
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F igure 3 .28 : Quantitative comparison between the model predicted and
experimentally observed (Sajikumar and Frey, 2004) modulation of LFS-induced LTD
in the SC-CA1 synapse in the presence of a D1/D5 receptors antagonist SCH 23390.
The D1/D5 receptors were blocked with the application of 0.1 µM SCH 23390 during
a LFS protocol of 900 bursts of 3 pulses at 1 Hz where the 3 pulses of each burst were
delivered at 20 Hz (black-arrow). The slow reversal of the LFS-induced LTD observed
in the experiment and predicted by my model are shown as the red-circles and the
blue-triangles, respectively. The LTD induced by LFS alone is denoted by the black-
squares. The root mean squared error between the experimental data and the model
prediction is 5.6 %.
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F igure 3 .29 : Quantitative comparison between the model predicted and
experimentally observed (Chen et al., 1995) modulation of LFS-induced LTD in the
SC-CA1 synapse by SKF 38393 applied at a low concentration. A low concentration of
3 µM SKF 38393 was applied for a 15 minute duration (blue-bar) and 5 minutes before
a LFS protocol of 450 pulses at 1 Hz (black-arrow). The experimentally observed and
model predicted changes in the LFS-induced LTD by SKF 38393 are shown as the
red-circles and blue-triangles, respectively. The LTD induced by LFS alone in the
experiment and predicted by my model are denoted as the green-circles and black-
squares, respectively. The root mean squared error between the experimental data
and the model prediction for LFS data and LFS plus SKF 38393 is 6.1 % and 6.4 %,
respectively.
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F igure 3 .30 : Model predictions on the effect of the concentration and timing of
SKF 38393 relative to the LFS protocol (1200 pulses delivered at 3 Hz) in modulating
the LFS-induced LTD when SKF 38393 was applied before the LFS protocol for 20
minutes. SKF 38393 (blue-bar) was delivered (A) 212 minutes (∆t = −212 min), (B) 30
minutes (∆t = −30 min), and (C) 20 minutes (∆t = −20 min) before the LFS protocol
(black-arrow). ∆fEPSP is computed by subtracting the measured depotentiation of
LFS plus SKF 38393 from the depotentiation by LFS alone. The LFS protocol on its
own results in a 20% decrease of the synaptic strength.
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F igure 3 .31 : Model predictions on the effect of the concentration and timing of
SKF 38393 relative to the LFS protocol (1200 pulses delivered at 3 Hz) in modulating
the LFS-induced LTD when SKF 38393 was applied after the LFS protocol for 20
minutes. SKF 38393 (blue-bar) was delivered (A) 10 minutes, (B) 30 minutes, and (C)
60 minutes after the LFS protocol (black-arrow). ∆fEPSP is computed by subtracting
the measured depotentiation of LFS plus SKF 38393 from the depotentiation by LFS
alone. The LFS protocol on its own results in a 20% decrease of the synaptic strength.
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chapter 4

Controlling Synchronization of Spiking Neuronal

Networks by Harnessing Synaptic Plasticity

4 .1 introduction

I now move from pharmaceutical neuromodulation strategies into the development

of electrical neuromodulation. The first use of electrical brain stimulation was in 1948

by a neurosurgeon Lawerance Pool at Columbia Unversity to treat depression and

anorexia (Coffey, 2009). In (Heath, 1963, 1977), Robert Heath at Tulane University

developed a high frequency chronic stimulation of the septal area of the brain

technique to treat schizophrenia and pain. Norweigen neurophysiologist Carl Wilhem

Sem-Jacobsen extended neural electrical stimulation to treat symptoms of patients

with Parkinson’s disease (PD) (Sem-Jacobsen, 1966). The modern use of electrical

high frequency stimulation called deep brain stimulation (DBS) is to treat symptoms

of movement disorders, such as essential tremor and PD tremor (Benabid et al., 1987).

As evidence began to emerge about the unwanted side effects of PD drugs, such as

L-DOPA induced dyskinesia, and PD patients who were resistant to PD drugs, DBS

emerged as another tool to treat severe symptoms of PD. Initially, the subthalamic

nucleus (STN) was identified as the optimal taget to disrupt the pathologically

synchronous neural firing pattern observed in patients with PD and suppress the

PD tremor (Mitchell et al., 1989; Aziz et al., 1991; Pollak et al., 1993). Then, another

stimulation target in the basal ganglia was determined to be the globus pallidus

interna (GPi) to suppress the PD tremor (Siegfried and Lippitz, 1994). The first

implantable pulse generating device where the battery was implanted below the

clavical to supply power to the stimulating electrodes was developed by Medtronic

and targeted the STN (Krauss et al., 2020). Over the last two decades, additional

DBS hardware was developed by Activa, Abbott, Boston Scientific, SceneRay, PINS,

Neuropace, and Aleva Neurotherapeutics that expanded the parameter space of the
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DBS protocol and treat other disease characterized by highly synchronous activity,

such as epilepsy.

The expansion of the DBS parameters allowed for further optimization of the

protocol in order to improve the efficacy and the efficiency of DBS. Since constant

stimulation was required to suppress PD symptoms, more efficient and effective DBS

wave forms became critical to preserve the life of the battery and the device (Temperli

et al., 2003; Deuschl et al., 2006; Popovych and Tass, 2014). Recently, closed-loop

approach have been used to design an effective energy efficient desynchronizing pulse

(Popovych and Tass, 2014), such as a single pulse minimum energy desynchronizing

control input (Deuschl et al., 2006; Wilson and Moehlis, 2014; Monga et al., 2018;

Mauroy et al., 2014; Nabi et al., 2013b,a) and closed-loop delayed feedback (Vlachos

et al., 2016; Popovych et al., 2005; Hauptmann et al., 2005; Kiss et al., 2007; Popovych

et al., 2017). For the minimum energy control strategy, the control input designs

a pulse to push the state to a phaseless-set point where the inherent noise of the

systems kicks each neuron into a slightly different spiking cycle with its own phase

(Nabi et al., 2013b,a). Recently, a closed-loop delayed feedback control strategy was

developed by Vlachos et al. (2016) that used the time-delayed average population

membrane potential as feedback to desynchronize the network. Since this approach

only feeds the past population activity, the applied desynchronizing input is only

active whenever the network becomes synchronous. While these approaches provide

an optimal desynchronization strategy, most of them assume that the network

connections are static and ignore the inherent plastic nature of neuronal synapses

(Abbott and Nelson, 2000).

Hebbian plasticity is a well-known form of activity-dependent synaptic plasticity

(Abbott and Nelson, 2000). This form of plasticity enforces productive connections

between neurons that produce action potentials and depresses unproductive

connections that do not elicit action potentials (Hebb, 1949). One form of activity-

dependent synaptic plasticity is spike-time dependent plasticity (STDP) (Song et al.,

2000). This rule increases the weight of a synaptic connection when the pre-synaptic

neuron fires before the post-synaptic neuron within a given time window and

decreases the weight when the order is reversed (Song et al., 2000). An increase
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or decrease in the synaptic weight is coined long-term-potentiation (LTP) or long-

term-depression (LTD), respectively. The introduction of plasticity into a neuronal

network creates multiple stability points with different levels of synchronous activity

(Popovych and Tass, 2014; Pfister and Tass, 2010; Tass and Hauptmann, 2007). Since

the connections are plastic, an external stimulus can move the network from one

stability point to another in order to drive the network from a synchronous to an

asynchronous state.

Recently, another approach has been developed by Tass (Tass, 2003a,b; Pfister

and Tass, 2010; Tass and Hauptmann, 2007; Tass, 2003b,a; Tass and Majtanik, 2006;

Ebert et al., 2014; Zeitler and Tass, 2015) that takes advantage of the inherent plastic

nature of synpases (Abbott and Nelson, 2000) to produce a long lasting desynchronize

of spiking neural networks once the stimulation protocol is removed. It is called

coordinate reset (CR) stimulation. This protocol works by forcing different sections of

the synchronous spiking neural network to fire out of phase with each other, which

produces an asynchronous firing pattern. Due to the inherent domination of LTD over

LTP in asynchronous bistable networks, the network naturally depresses the average

synaptic weight to a level that produces an asynchronous firing patter (Pfister and

Tass, 2010). CR stimulation is no longer required once the average synaptic weight of

the network enters the asynchronous regime.

While the CR protocol is effective, it has its own limitations. CR stimulation

solely relies on a bistable network due to LTD dominating LTP during asynchronous

firing patterns, which may not be present in pathological networks. Furthermore, this

strategy is only able to depress the average synaptic weight and is not able to increase

the synaptic weight. Recent investigations into new treatments for Alzheimer’s

disease (AD) have shown that an increase in γ-oscillations in the hippocampus

promotes the clearing of amyloid β-plaque from the brain (Martorell et al., 2019; Singer

et al., 2018). In this case, the pathological case is an asynchronous firing pattern and

the healthy case is a synchronous firing pattern. As a result, CR stimulation will

fail. Therefore, I require a novel stimulation protocol that is able to have full control

over the synaptic plasticity and full control over the synchrony level of the neural

network. This new stimulation protocol would be able to treat more neurological
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diseases besides ones characterized by excessive synchronization. Furthermore, if

the synchronization is not due to a high average synaptic weight but a low average

synaptic weight, CR stimulation would fail again. A novel protocol that could increase

or decrease the average synaptic weight would succeed, since it could rewire the

pathological network to restore healthy network dynamics.

In this work, I have developed a novel stimulation strategy “ Forced Temporal

Spike-Time Stimulation (FTSTS)” which addresses above shortcomings of the CR-

based stimulation approach. While all other stimulation strategies focus on

desynchronizing neural activity within a network, my strategy focuses on harnessing

the underlying synaptic plasticity of the network to control the average network

synaptic strength by forcing the spiking neurons to fire in specific temporal patterns.

Thus, my strategy provides complete control over the synchrony level of networks

for a long period of time, not just desynchronization. I demonstrate the efficacy

of FTSTS strategy in controlling the desired synchrony level in large excitatory-

inhibitory (E-I) networks. I show in simulation that the FTSTS strategy can effectively

desynchronize the neural activity in networks where LTP dominates LTD on average.

Further, I combine the FTSTS strategy with the CR stimulation strategy to demonstrate

how this can enhance the overall performance of the CR stimulation strategy in

desynchronizing large networks.

This chapter begins with a description of models used to describe the spiking

E-I networks dynamics, STDP rules, and a measure of synchrony as well as the

stability analysis of E-I networks in Section 4.2. In Section 4.3, I first provide a

mechanistic understanding of the FTSTS strategy by considering control of synchrony

in a two neuron E-I network. I then demonstrate the efficacy of the FTSTS strategy

in desynchronizing large E-I networks subject to different plasticity rules, and

uncertainties in the network parameters and the designed stimulation parameters.

Finally, I show how the FTSTS strategy can be incorporated within the CR stimulation

strategy to improve the overall performance of the CR stimulation strategy. This

section ends with a detailed discussion on the comparison of my approach with the

existing stimulation strategies for desynchronization of spiking neural networks as

well as the limitations of my strategy in Section 4.4.
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4 .2 system model

4.2.1 Excitatory-Inhibitory (EI) Network Model

I consider networks of 2, 000 and 10, 000 spiking neurons consisting of 80 % excitatory

(E) and 20 % inhibitory (I) neurons (Vlachos et al., 2016; Brunel and Hansel, 2006).

The following Leaky-Integrate-and-Fire (LIF) model describes a single excitatory or

inhibitory neuron’s dynamics in the E-I network.

τm
dvE(t)

dt
= −vE(t) + ZE(t) + µE + σE

√
τmχ(t) + VE

stim(t), (4.1)

τm
dvI(t)

dt
= −vI(t) + ZI(t) + µI + σI

√
τmχ(t) + V I

stim(t). (4.2)

Here, vE(t) and vI(t), in millivolts (mV), represent the membrane potential of the

excitatory and inhibitory neurons respectively. τm (in ms) is the membrane time

constant. Zi(t) denotes the synaptic input to the ith population of neurons where

i ∈ {E, I}. The synapses between the excitatory and inhibitory populations are

randomly connected with a probability of ε. The synaptic input function

Zi(t) =
Jij

Cij
Sij(t) (4.3)

defines the input to the ith neuron population. In Equation (3), Jij represents the

synaptic strength between a presynaptic neuron in population j and postsynaptic

neuron in population i, in mV, where i ∈ {E, I} and j ∈ {E, I}. For example, the

synaptic strength of an I-to-E synapse is JEI . Cij = 0.3Ntot denotes a scaling factor

where Ntot is the total number of neurons in the network. Sij(t) is the synaptic

function. The Gaussian distributed baseline current to the ith type neuron is denoted

as

µi + σi
√

τmχ(t) (4.4)
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with a mean baseline current of µi and a variance of σ2
i τm. χ(t) is white noise with a

mean of 0 and a variance of 1. Finally, Vi
stim(t) denotes the external stimulation input

to the ith neuron population.

The synaptic function Sij(t) is modeled as ((Brunel and Hansel, 2006)):

τd
dSij(t)

dt
= −Sij(t) + Xij(t), (4.5)

τr
dXij(t)

dt
= −Xij(t) + Wij(t)δ(t− tpre + tdelay). (4.6)

Here, Xij describes the input to the ith population of neurons from the jth population of

neurons. The time constants governing the decay and rise time are τd (in ms) and τr (in

ms), respectively. Synaptic connections between the ith and jth neuron populations are

randomly connected with a probability of ε. The weight of each synaptic connection

is defined as Wij. Throughout the work, I assume that E-to-I connections (WIE(t)) are

plastic and the I-to-E connections (WEI) are static except in Section 4.3.9 and Figure

4.11 where I consider both connections to be plastic. Unless otherwise specified, I

further assume no synaptic connectivity among neurons in excitatory or inhibitory

populations. The Dirac-Delta function δ(t− tpre + tdelay) models the synaptic input to

a postsynaptic neuron from a presynaptic neuron when the presynaptic neuron fires

at time tpre (in ms) with a synaptic delay of tdelay (in ms).

4.2.2 Spike-Timing Dependent Plasticity (STDP) Model

The coupling value of the plastic E-to-I synapse (WIE(t)) is governed by STDP (Song

et al., 2000), which is defined as follows:

WIE(t + ∆t) = WIE(t) + ∆WIE(t), (4.7)

where ∆WIE(t) is given as

∆WIE(t) = ηeaLTP Apost(t) i f tpre − tpost < 0, (4.8a)
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∆WIE(t) = ηeaLTD Apre(t) i f tpre − tpost > 0. (4.8b)

Here, ∆WIE(t) defines the change in the synaptic weight determined by the spike-

time of a presynaptic (tpre) and postsynaptic (tpost) neuron. The rate at which the

E-to-I synaptic coupling changes is governed by the learning rate ηe. Additionally,

the relative contribution of LTD and LTP to ∆WIE(t) is denoted by aLTP and aLTD.

(Song et al., 2000; Ebert et al., 2014). Since LTD generally dominates LTP, aLTD is 10%

larger than aLTP. Apost(t) and Apre(t) are described by the following two exponential

functions:

τLTP
dApost

dt
= −Apost + A0δ(t− tpost), (4.8c)

τLTD
dApre

dt
= −Apre + A0δ(t− tpre). (4.8d)

Here, the size of the LTP and LTD time window is defined by the STDP time constants

τLTP and τLTD. In a similar fashion to aLTP and aLTD, τLTD is set to be 10% greater

than τLTP. Upon the firing of a presynaptic or postsynaptic neuron, a small value

A0 is added to the appropriate exponential STDP decay function. The E-to-I synaptic

weight is defined as the coupling value WIE(t) multiplied by the synaptic strength JIE

(i.e., JIEWIE(t)).

4.2.3 Synchrony Measurement

I measure the synchrony level of the network by computing the Kuramoto order

parameter (R(t)) based on the spike times of neurons in the excitatory population

(Kuramoto, 1984; Daido, 1992; Tass, 2007; Ebert et al., 2014). The phase (φk(t)) of the

kth neuron in the excitatory population is calculated using the following equation

φk(t) =
2π(tk,i+1 − t)

tk,i+1 − tk,i
, (4.9)

where tk,i is the ith spike time for the kth neuron. The Kuramoto order parameter

(R(t)) and the average phase of the neurons (ψ(t)) are calculated using
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R(t)eiψ(t) =
1

NE

NE

∑
k=1

eiφk(t). (4.10)

Here, NE represents the number of excitatory neurons. A highly synchronous network

has a Kuramoto order paramter of R(t) = 1 and a completely asynchronous network

has a value of R(t) = 0.

4.2.4 Determination of Synchronous and Asynchronous Regimes

It is well-known that plastic neural networks exhibit multiple stability points

(Popovych and Tass, 2014; Song et al., 2000; Pfister and Tass, 2010; Tass and

Hauptmann, 2007). Similar to other networks, my E-I network exhibits two stability

points at a high and low average E-to-I synaptic weight value. Figure 4.1A shows the

average E-to-I synaptic weight converging to either JIEWIE = 10 mV or JIEWIE = 290

mV. The average synaptic weight converges to JIEWIE = 290 mV if the initial average

synaptic weight is greater than 100 mV and converges to JIEWIE = 10 mV when it

less than 100 mV. Additionally, I find that the network becomes more synchronous as

the average E-to-I synaptic weight increases, which is shown in Figure 4.1B in terms

of the Kuramoto order parameter R(t). Therefore, the network exhibits a high level

of synchrony at high synaptic weights and a low level of synchrony at low synaptic

weights.

4.2.5 Model Parameters

I use the model parameters defined in Table 4.1 unless stated otherwise. All the

simulation are performed in Matlab R2016b. The differential equations are solved

using Euler’s method with a step size of 0.1 ms.

4 .3 results

I begin by providing an insight into the underlying mechanism of my stimulation

strategy “Forced Temporal Spike-Time Stimulation” (FTSTS) using an illustrative

example of a two neuron E-I network in Section 4.3.1. Next, I demonstrate the
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F igure 4 .1 : The synchrony level and stability points of a plastic 2,000 spiking
neuron E-I network. (A) The average synaptic weight either converges to the
maximum or minimum value. Each line represents the trajectory of the synaptic
weight with a different initial condition. The stability threshold is depicted as a blue
dashed line. (B) The synchrony level of the network, represented by the Kuramoto
order parameter R(t), increases with increasing average synaptic weight (JIEWIE(t)).
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Table 4 .1 : The model parameters of my E-I network.

Neuron Parameters Value
(Vlachos et al., 2016; Brunel and Hansel, 2006)
(Song et al., 2000; Hauptmann and Tass, 2009)

vreset 0 mV
vthreshold 20 mV

µE 20.8 mV
µI 18 mV
σE 1 mV
σI 3 mV
τm 10 ms
τd 1 ms
τr 1 ms

τdelay 5 ms
JEI 100 mV

JIEWIE(t) ∈ [10, 290] mV
WEI,0 1

ε 0.25
aLTD −1.1
aLTP 1
τLTD 22 ms
τLTP 20 ms
A0 0.005
ηe 0.25
cP 0.038

cD 0.02

τP 10 ms
τD 25 ms



140

efficacy of the FTSTS strategy in controlling synchronized activity of a 2,000 and

10,000 neuron E-I networks (see Sections 4.3.2, 4.3.3). I then show the robustness

of the FTSTS strategy in the presence of uncertainties in the designed stimulation

pulses, model parameters and network connectivity (see Sections 4.3.4, 4.3.5, 4.3.6,

4.3.7). Next, in Section 4.3.8, I combine the FTSTS strategy with the existing coordinate

reset (CR) stimulation strategy to show the efficacy of the FTSTS-CR strategy over

the CR stimulation strategy. Finally, in Sections 4.3.9 and 4.3.10, I demonstrate that

FTSTS strategy can desynchronize E-I networks with additional plastic synapses and

symmetric spike-time plasticity rules.

4.3.1 Control of E-to-I Synaptic Weight in a Two Neuron Network

I considered an excitatory-inhibitory (E-I) network of two neurons to develop my

“Forced Temporal Spike-Time Stimulation” (FTSTS) strategy. I set a scaling factor

of Cij = 10Ni and probability of connectivity of ε = 1 (see Section 4.2.1 for the

meaning of these variables). Based on the STDP rule of activity-dependent plasticity,

I designed stimulation inputs for both the inhibitory (V I
stim(t)) and excitatory (VE

stim(t))

neuron that forced the postsynaptic inhibitory neuron to spike before the presynaptic

excitatory neuron, as shown in Figures 4.2B and 4.2C, respectively. The protocol

stimulated the postsynaptic inhibitory neuron and the presynaptic excitatory neuron

using charge-balanced rectangular pulses with an equal and opposite amplitude

(Ustim). Figure 4.2E shows the induced firing patterns in neurons, which decreased the

average E-to-I synaptic weight of the network as shown in Figure 4.2D. On the other

hand, the average E-to-I synaptic weight increased when VE
stim(t) and V I

stim(t) were

switched such that the presynaptic excitatory neuron fired before the postsynaptic

inhibitory neuron. The increased synaptic weight observed from the induced spiking

pattern in Figure 4.2G is shown in Figure 4.2F.

4.3.2 FTSTS Effectively Controls the Neuronal Synchronization in a 2000 Neuron Network

I applied the FTSTS strategy to an E-I network of 1600 excitatory and 400 inhibitory

neurons to demonstrate how my strategy can be used to control the synchrony of
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excitatory-inhibitory network. (B) and (C) show the FTSTS input pattern for the
inhibitory and excitatory neuron, respectively. The FTSTS pulse parameters are Ustim
= 300 mV, Tstim = 1 ms, and Tneutral = 10 ms. This FTSTS protocol depresses the E-
to-I synaptic weight as shown in (D). The drop in synaptic weight is due to FTSTS
inducing a post-before-pre spiking pattern in the E-I network, which is shown in (E).
On the other hand, (F) shows how swapping the FTSTS inputs to the excitatory and
inhibitory neuron increases the E-to-I synaptic weight. This induces the pre-before-
post spiking pattern shown in (G).
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neuronal activity in large networks. In a larger network of neurons, my strategy forces

the postsynaptic inhibitory population of neurons to spike before the presynaptic

excitatory neuron population. I assumed that all the neurons in each specific

population receives the same input. The applied FTSTS inputs to each neuron

population are shown in Figures 4.3A and 4.3B. These inputs induced a specific

spiking pattern, as shown in Figure 4.3F, which depressed the average E-to-I synaptic

weight (shown in Figure 4.3C). The period of stimulation is highlighted with a

solid black line in Figure 4.3C. Since the network has an asynchronous regime that

converges to a low average E-to-I synaptic weight, I only required enough input

to drive the network into the asynchronous regime. Therefore, I provided enough

input to depress the synaptic weight of the network to 75 mV, which is slightly over

the synchronous-asynchronous regime boundary (see Figure 4.1). As a result, the

system naturally converged to the low synaptic weight stability point when the FTSTS

protocol was turned off. The synchronous and asynchronous firing patterns before

and after the stimulation protocol are displayed in Figures 4.3E and 4.3G, respectively.

The synchrony level of the network as it transitioned from the synchronous to

asynchronous regime is shown in Figure 4.3D. The activity of the E-I network prior to

the applied stimulation (the first 2 seconds) was measured around R(t) = 0.75. When

the stimulation protocol was turned on, the measured synchrony level became low

(see Figure 4.3D). This is due to the asynchronous firing between each FTSTS pulse.

When the FTSTS protocol was turned off, the network remained in the asynchronous

regime at the measured network synchrony level of R(t) = 0.05 (see Figure 4.3D).

Next, I demonstrate how my FTSTS strategy can also be used to synchronize the

asynchronous network activity. To do so, I swapped the inputs to the inhibitory and

excitatory neurons used in the desynchronization case, which are shown in Figures

4.4A and 4.4B. This stimulation protocol forced the presynaptic excitatory neuron

population to fire prior to the postsynaptic inhibitory neuron populations, which is

shown in Figure 4.4F. Similar to the two neuron case, swapping the inputs to the

excitatory and inhibitory neurons induced LTP in the network and increased the

average E-to-I synaptic weight of the network, as shown in Figure 4.4C. Again I are

only required to drive the network into the synchronous regime (i.e., the average
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F igure 4 .3 : Desynchronization of neural activity in 2,000 neuron E-I network. (A)
shows the FTSTS waveform for inhibitory neurons. (B) shows the FTSTS waveform
for excitatory neurons. (C) shows the time evolution of the average E-to-I synaptic
weight. As shown here, the average E-to-I synaptic weight of network is decreased
to 75 mV (blue-line), where the stimulation is turned off. (D) shows the synchrony
level of excitatory neurons as a function of time. (E), (F), and (G) show the spiking
patterns before, during, and after the FTSTS protocol, respectively. The FTSTS pulse
parameters are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.
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E-I synaptic weight above 100 mV) to synchronize the network. Therefore, the

stimulation protocol was turned off when the average E-to-I synaptic weight reached

125 mV, which was slightly over the threshold. Here, the network will remain in the

synchronous regime and the average E-to-I synaptic weight will converge to the high

synaptic weight stability point. The spiking patterns of the E-I network before, during,

and after the FTSTS protocol are shown in Figures 4.4E, 4.4F, and 4.4G, respectively.

Figure 4.4D shows the changes in the network synchrony level before, during, and

after the FTSTS protocol. As shown in Figure 4.4D, the network synchrony increased

from R(t) = 0.05 to R(t) = 0.6 after the removal of the stimulation. It should be

noted that the synchrony level increases significantly during the stimulation in this

case compared to the case of desynchronization (see Figure 4.3D for comparison).

This is due to the large input of Ustim = 200 mV compared to the input used in

Figure 4.3, which forces the neurons to fire in a highly synchronous firing pattern. If

a smaller input is used to resynchronize the network, it would be more noisy during

the FTSTS protocol and the FTSTS would be required for a longer period of time to

resynchronize the network.

4.3.3 Desynchronization of Neural Activity in a Large E-I Network

I applied my FTSTS protocol to demonstrate its applicability in larger networks.

For demonstration purposes, I considered a E-I network with 8,000 excitatory and

2,000 inhibitory neurons. I set the probability of connectivity of the E-to-I and I-to-

E synapses ε to 0.01. The FTSTS protocol induced the same post-before-pre firing

patterns in the larger network which decreased the average E-to-I synaptic weight,

as shown in Figure 4.5A. The stimulation protocol desynchronized the network in

approximately 22 seconds, which is comparable to the desynchronization time of the

2,000 neuron network. The changes in the network synchrony level before, during,

and after the FTSTS protocol are shown in Figure 4.5B. As noted in Figure 4.5B, the

initial synchrony level of R(t) = 0.8 is reduced to approximately R(t) = 0.05 after the

FTSTS protocol. Once the stimulation protocol reduced the average E-to-I synaptic

weight below 75 mV (i.e., the asynchronous regime), I no longer required the external

inputs to keep the network in the asynchronous regime.
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function of time. (E), (F), and (G) show the spiking patterns before, during, and after
the FTSTS protocol respectively. The FTSTS pulse parameters are Ustim = 200 mV, Tstim
= 1 ms, and Tneutral = 10 ms.
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(B) shows the network synchrony level during and after the FTSTS stimulation. The
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Tneutral = 10 ms.

4.3.4 Robustness to Uncertainties in the FTSTS Pulse Parameters

Here, I demonstrate the robustness of my protocol in desynchronizing a 2,000 neuron

E-I network against uncertainties in the FTSTS pulse parameters. In particular, I

considered uncertainty in the FTSTS pulse amplitude Ustim, which I modeled in

the form of a Gaussian distribution with mean Ustim and variance Ustim
10 . Each of

the applied pulse amplitude during stimulation was randomly chosen from this

distribution. As shown in Figure 4.6B, the FTSTS strategy efficiently desynchronized

the network by driving the network into the asynchronous regime. Figure 4.6A shows

the changes in the average synaptic weight of the network before, during, and after

the FTSTS protocol.
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4.3.5 Robustness to Uncertainties in the Network Model Parameters

In this section, I show the robustness of my FTSTS strategy against uncertainties in

the network model parameters. For demonstration, I considered variations in the

membrane time constant τm of neurons in the network. I randomly assigned the

membrane time constant τm of individual neurons in the 2,000 neuron E-I network

from a uniform distribution U (8, 12) to show the efficacy of my FTSTS strategy in

desynchronizing the network activity. Figures 4.7A shows my simulation results for

τm ∈ U (8, 12). Here, the FTSTS protocol forced the average E-to-I synaptic weight

of the network into the asynchronous regime within approximately 15 seconds of

stimulation which led to desynchronization of the network activity after the removal

of the stimulation, as shown in Figure 4.7B. As noticed here, the stimulation protocol

desynchronized the network faster in this case compared to the case in Figure 4.3C

where there is no variation in the membrane time constant. This is not surprising as

an increase variability in the membrane time constant would induce more noise and

desynchronize the firing pattern of the neurons initially, which is seen in Figure 4.7B

with a lower initial Kuramoto order parameter value.

4.3.6 Addition of E-to-E and I-to-I Synaptic Connections

In this section, I show the efficacy of the FTSTS strategy in desynchronizing 2000

neuron E-I network in the presence of E-to-E and I-to-I synaptic connectivity. I

assumed that the synaptic strength of all synapses within the network are static

except E-to-I synapses. I set the synaptic strength of the static I-to-E, E-to-E and

I-to-I synapses as JEI = 90 mV, JEE = 50 mV, and JI I = 50 mV respectively with

scaling factors of CEE = Ntot and CI I = Ntot, where Ntot = NE + NI . The probability

of connectivity of the E-to-E and I-to-I was 0.1. The addition of E-to-E and I-to-I

synapses within the E-I network didn’t change the bifurcation of the regime into

synchronous and asynchronous with respect to the network average E-I synaptic

weight qualitatively. My simulation results show that the FTSTS strategy effectively

desynchronized the network activity, shown in Figure 4.8B, in the presence of E-to-E
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and I-to-I synapses by driving the average E-to-I synaptic weight of the network into

the asynchronous stability regime, as shown in Figure 4.8A.

4.3.7 Robustness to Partial Spatially Inseparable Excitatory and Inhibitory Neuron

Population

In this section, I show the robustness of the FTSTS strategy for a case where E-I

populations are not well separated. I assume that 25% of the excitatory and 25%

of the inhibitory population are not spatially separable. Therefore, this inseparable

population of E-I neurons receives inputs designed for the excitatory and the

inhibitory population. Figure 4.9A shows that the FTSTS strategy is still able to

push the average synaptic weight of the network into the asynchronous regime. The

change in slope during the FTSTS protocol in Figure 4.9A is most likely due to the

synaptic weight of the separable populations reaching the minimum weight value. At

this point, the disruption from the stimulation protocol and the low average synaptic

weight of the network helped to further depress the synaptic weight of the neurons.
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Figure 4.9B shows the reduction of the network synchrony with the Kuramoto order

parameter dropping from R(t) = 0.72 to R(t) = 0.05.

4.3.8 Integration of FTSTS with the Coordinate Reset Strategy

In this section, I demonstrate how my FTSTS strategy could be incorporated within

the standard coordinate reset (CR) stimulation protocol to effectively stimulate a

large population of neurons. One way to implement the CR stimulation protocol is

to divide the synchronous population of neurons into four subpopulations, which

receive separate but identical inputs at different times over the course of period

T (Tass, 2003b,a). T is the overall period of the synchronous neuron population

without input. If the neuron population is divided into four subpopulations, then

each subpopulation approximately will receive input every T/4. The order that

each subpopulation receives input is randomly assigned at every period. In order

to compare the CR to the FTSTS strategy, I individually divide the excitatory and
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inhibitory population into four subpopulations (8 subpopulations for the E-I network).

Figures 4.10E and 4.10G show the CR stimulation pattern applied for one period

to the excitatory and inhibitory population, respectively. These figures show the

stimuli provided to the first quarter of neurons in the E-I network with one pulse

to excitatory subpopulation 1 (Figure 4.10E, blue) and one pulse to the inhibitory

subpopulation 2 (Figure 4.10G, orange). The stimuli to the second quarter of the E-I

network is a pulse delivered to the excitatory subpopulation 3 (Figure 4.10E, yellow)

and a pulse to the inhibitory subpopulation 1 (Figure 4.10G, blue). This is repeated

for the remaining subpopulations in the excitatory and inhibitory populations. After

every subpopulation has been stimulated over period T, a new random stimulation

order is assigned for each subpopulation. The efficiency of the CR approach is shown

in Figure 4.10A. Here, the CR stimulation depresses the average synaptic weight of

the network over the course of approximately 100 seconds. This causes a drop in

synchrony from R(t) = 0.7 to R(t) = 0.05, which is shown in Figure 4.10C.

I integrated this strategy with my FTSTS strategy and applied it to an E-I

network, consisting of 2,000 neurons, in the presence of E-to-E and I-to-I synaptic

connectivity. I randomly divided each excitatory and inhibitory population into

four subpopulations. Then, I adjusted the CR stimulation pattern to incorporate

my FTSTS protocol (FTSTS-CR), such that each randomly selected pair of excitatory

and inhibitory subpopulations are forced to spike post-before-pre. The FTSTS-CR

stimulation pattern for one period is shown in Figures 4.10F and 4.10H. For a single

FTSTS-CR pulse, I set Ustim = 100 mV, Tstim = 1 ms and Tneutral = 7 ms. Similar to

CR, I repeated this stimulation protocol for the other subpopulations in a random

sequence for one period. Then, a new stimulation order is assigned for the next

period T. My protocol forces a randomly selected inhibitory subpopulation to fire

prior to a randomly selected excitatory subpopulation, which over the course of

60 seconds depresses the average E-to-I synaptic weight of the entire population

into the asynchronous regime as shown in Figure 4.10B. When the average E-to-I

synaptic weight reached a preset value of 75 mV (asynchronous regime), I turned

off the stimulation protocol. Figure 4.10D shows that the network remained in the
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desynchronized state at a synchrony level of R(t) = 0.05 for the rest of the simulation

after removal of the FTSTS-CR protocol.

4.3.9 Robustness to Additional Plastic Synapses

In previous sections, I presented my results for networks where I considered only E-

to-I plastic synapses. In this section, I demonstrate the efficacy of my FTSTS strategy

in desynchronizing networks where both E-to-I and I-to-E synaptic connections are

plastic. I modeled the plasticity dynamics of I-to-E synapses using an anti-Hebbian

STDP plasticity rule (Bell et al., 1997; Luz and Shamir, 2012). For anti-Hebbian STDP,

I used Equations (8) and (9) with the changed parameters aLTD = 1 and aLTP = −1.1

so that pre-before-post spike times decrease and post-before-pre spike times increases

the synaptic weight. My simulation results (see Figures 4.11A and 4.11B) show that

the FTSTS strategy can potentially desynchronize the network by depressing both the

E-to-I and I-to-E synaptic weights. Additionally, Figure 4.11C shows a decrease in the

network synchrony from R(t) = 0.82 to R(t) = 0.05.

4.3.10 Robustness to a Symmetric Plasticity Rule

I demonstrate how a modified FTSTS protocol is able to control the synaptic weight

of an E-I network with a symmetric plasticity rule. I use the same network described

in Section 4.2 with the following changes to the plasticity rule. The E-to-I synaptic

weight is govern by the following equation (Tass and Hauptmann, 2009; Hauptmann

and Tass, 2009)

∆WIE(t) = cPe−|ISIIE|/τp − cDe−|ISIIE|/τD , (4.11)

where ISIIE is the inter-spike-interval between spike-times of inhibitory and excitatory

neurons in an E-to-I synapse. cP and cD are the potentiation and depotentiation

learning rates respectively. τP is the potentiation time constant and τD is the

depotentiation time constant. The symmetric plasticity parameters can be found in

Table 4.1.
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F igure 4 .10 : Efficacy of the FTSTS-CR strategy in desynchronizing 2,000 neuron
E-I network in the presence of E-to-E and I-to-I synaptic connectivity. Each excitatory
and inhibitory population of neurons is individually divided into 4 subpopulations (8
subpopulations for the E-I network). (A) and (C) show the changes in the average E-
to-I synaptic weight of the network and the network synchrony level respectively for
the CR desynchronization strategy. The FTSTS-CR is compared to the CR approach
in (B) and (D), which show the changes in the average E-to-I synaptic weight of
the network and the network synchrony level respectively. (E) and (G) show one
cycle of coordinate reset (CR) stimulation applied to the subpopulations in each
excitatory and inhibitory neuron population. (F) and (H) show one cycle of the FTSTS-
CR stimulation protocol applied to the excitatory and inhibitory populations. The
designed FTSTS-CR and CR pulse parameters are Ustim = 100 mV, Tstim = 1 ms, and
Tneutral = 7 ms.
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F igure 4 .11 : Efficacy of the FTSTS strategy in desynchronizing 2,000 neuron E-I
network in the presence of Hebbian E-to-I and anti-Hebbian I-to-E plasticity. (A) and
(B) show the change in the average E-to-I and I-to-E synaptic weight of the network,
respectively. (C) shows the network synchrony level during the simulation. The
FTSTS pulse parameters are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.
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In order to apply my FTSTS protocol for desynchronizing E-to-I network with a

symmetric plasticity rule, I modified the FTSTS protocol by offsetting the pulse to

the inhibitory population by To f f set. This forced ISIs that promote either an increase

or decrease in the synaptic weight. Using my modified FTSTS protocol, I show in

Figure 12A that my FTSTS strategy can efficiently depress the synaptic weight of

the synchronous network and desynchronize the network by forcing larger ISIIE

values. Additionally, my protocol can also increase the average synaptic weight of

the network to resynchronize the network by forcing short ISIIE values. Figure 4.12B

shows the increase in the average E-to-I synaptic weight. The subsequent increase in

the synchrony level is shown in Figure 4.12D, where the order parameter increases

from R(t) = 0.05 to R(t) = 0.6.

4.3.11 Comparison to Previous Desynchronization Strategies

My FTSTS strategy differs from existing stimulation strategies for desynchronizing

spiking neural networks in many ways. My strategy is based on harnessing the

underlying synaptic plasticity compared to most of the desynchronization strategies

reported in literature (Deuschl et al., 2006; Wilson and Moehlis, 2014; Monga et al.,

2018; Mauroy et al., 2014; Nabi et al., 2013b; Vlachos et al., 2016; Popovych et al.,

2005; Hauptmann et al., 2005; Kiss et al., 2007; Popovych et al., 2017). Most of these

strategies ignore the inherent synaptic plasticity among neurons in the network in

designing the stimulation protocol for desynchronizing the network activity (One

exception is “Coordinate Reset” (CR) (Pfister and Tass, 2010; Tass and Hauptmann,

2007; Tass, 2003b,a; Tass and Majtanik, 2006; Ebert et al., 2014; Zeitler and Tass, 2015)).

As a result, these strategies effectively desynchronize the network activity if the

stimulation protocol is active. Once the stimulation protocol is turned off, the network

resynchronizes rapidly because of the disappearance of the asynchronous regime in

the absence of stimulation. My strategy alleviates this problem, like CR, by explicitly

incorporating and harnessing Hebbian-based STDP, which allows the network to stay

in the asynchronous regime for a longer-time period after the stimulation is turned

off (see Figure 4.3).
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F igure 4 .12 : Efficacy of the FTSTS strategy in desynchronizing ((A) and (C)) and
resynchronizing ((B) and (D)) a 2,000 neuron E-I network with symmetric plasticity.
(A) shows the decrease in average synaptic weight of the network with the modified
FTSTS protocol for symmetric plasticity. (C) shows the change in the synchrony of
the network before, during, and after stimulation. (B) shows the increase in average
synaptic weight of the network with the modified FTSTS protocol for symmetric
plasticity. (D) shows the change in the synchrony of the network before, during, and
after stimulation. The FTSTS parameters used to decrease the average E-to-I synaptic
weight are Ustim = 200 mV, Tstim = 1 ms, Tneutral = 22 ms, and To f f set = 11 ms. The
FTSTS parameters used to increase the average E-to-I synaptic weight are Ustim = 100

mV, Tstim = 1 ms, Tneutral = 10 ms, and To f f set = 5 ms.
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Almost all the stimulation strategies focus on desynchronizing the network

activity by randomizing the firing patterns of neurons through direct stimulation.

In comparison, my FTSTS strategy focuses on decreasing the average synaptic

weight of the network by taking advantage of the Hebbian-based STDP protocol,

which leads to the desynchronization of network activity. For example, the CR-

based stimulation strategy desynchronizes the network activity by forcing different

subpopulations of neurons to fire out of phase with each other, which resets the

phase and desynchronizes the network (Pfister and Tass, 2010; Tass and Hauptmann,

2007; Tass, 2003b,a; Tass and Majtanik, 2006; Ebert et al., 2014; Zeitler and Tass, 2015).

This generates an artificial asynchronous firing pattern that increases the basin of

attraction of the asynchronous regime (i.e., lower synaptic weight stability point)

(Popovych and Tass, 2014; Pfister and Tass, 2010). The underlying synaptic plasticity

within the network then drives the average synaptic weight of the network towards

the lower synaptic weight stability point (see Figures 4.10 and 4.13 for comparison of

my approach to the CR-based stimulation strategy).

My developed framework can be incorporated into other desynchronization

strategies, such as CR, to improve their efficacy. Figure 4.10 shows a comparison

between the FTSTS-CR and CR performances in desynchronizing an E-I network

consisting of 2,000 neurons with E-I synaptic plasticity (see Section 4.3.8 for details of

model parameters and specifics about the design of FTSTS-CR stimulation strategy).

Since the FTSTS-CR stimulation strategy focused on decreasing the average synaptic

weight of network, which as a result desynchronized the neural activity (see Figures

4.10B and 4.10D), this strategy outperformed the CR stimulation strategy shown in

Figures 4.10A and 4.10C.

One of the limitations of the CR stimulation strategy is that the long-lasting effects

occur only in networks where the long-term depression (LTD) dominates the long-

term potentiation (LTP) of the synapses on average so that the network exhibits

bistability (Pfister and Tass, 2010). It has been found that LTP dominates in specific

aberrant neuronal pathways and brain regions such as the striatum indirect pathway

underlying Parkinson’s disease and hippocampus underlying epilepsy (Shen et al.,

2008; Johnston, 2004; Mathern et al., 1998). In such brain networks, the CR and FTSTS-
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CR stimulation strategy would both fail to produce long-lasting desynchronization

of the network activity but the FTSTS-CR will have a longer acute desynchronization

effect compared to the CR protocol. To demonstrate this, I applied the CR stimulation

strategy to an E-I network consisting of 2,000 neurons where LTP dominates LTD.

As shown in Figure 4.13D, the network synchrony level is disrupted during the

stimulation period of 140 s but increased to a synchrony level of R(t) = 0.7 after

removal of the stimulus. Since CR stimulation, in this scenario, only induces acute

desynchronization of the network and does not reduce the average synaptic weight,

the average synaptic weight of the network remains in the synchronous regime the

entire time, as shown in Figure 4.13B. As a result, the network resynchronized rapidly

after the removal of the CR stimulus. I compare the desynchronization efficacy of

the FTSTS-CR and CR approach in Figures 4.13A and 4.13B, respectively. During the

period of FTSTS-CR stimulation, there is a decrease in the average synaptic weight (see

Figure 4.13A). This results in a reduction in the synchrony level to R(t) = 0.05 when

the FTSTS-CR stimulus is removed. While this desynchronization is transient due to

the domination of LTP, the network remains desynchronized for a longer period of

time compared to CR as shown in Figure 4.13C.

4 .4 summary

In this chapter, I developed and presented a novel stimulation strategy “Forced

Temporal Spike-Time Stimulation (FTSTS)” for controlling synchronous activity of

neurons in large spiking neural networks. Compared to other desynchronization

strategies for large-scale spiking neural networks reported in the literature, my

strategy focuses on controlling the average network synaptic weight by harnessing

synaptic plasticity using a Hebbian-based spike-timing dependent plasticity (STDP)

protocol that as a result controls the synchronization of neurons within the network. I

presented a two neuron excitatory-inhibitory (E-I) network as an example to provide

a mechanistic understanding of my approach. I later demonstrated the efficacy

and robustness of the FTSTS strategy on large networks by varying the model

parameters, synaptic connectivity and noisy inputs to the network. These results
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F igure 4 .13 : Comparison of the FTSTS-CR stimulation strategy with the coordinate-
reset (CR) stimulation strategy on a network where LTP dominates LTD. (A) and
(C) show the changes in the average E-to-I synaptic weight of the network and the
network synchrony level respectively for the FTSTS-CR stimulation strategy. (B) and
(D) show the changes in the average E-to-I synaptic weight of the network and the
network synchrony level respectively for the CR stimulation strategy. (E) and (F) show
the FTSTS-CR stimulation pattern. The FTSTS-CR pulse parameters are Ustim = 200

mV, Tstim = 0.5 ms, and Tneutral = 3 ms. The STDP plasticity parameters are aLTD = −1,
aLTP = 1.01,τLTD = 20 ms, and τLTP = 20 ms.
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are also summarized in Figure 4.14 for clarity. While I only considered a LIF

network, my method will lead to similar outcomes qualitatively for other neuronal

models, since my approach is based on Hebbian activity-dependent plasticity. One

of the prominent features of my FTSTS strategy is that it allows both synchronization

and desynchronization of network activity by reversing the stimulation protocol (see

Figures 4.3 and 4.4), thus provides a complete control over the synchronization level

of neural activity within a given network.

In this work, I have considered excitatory-inhibitory (E-I) networks with plastic

E-to-I synapses. In general, My approach is applicable to other types of spiking

neural networks such as purely excitatory or inhibitory networks as well as to

networks with other plastic synapses such as E-to-E or I-to-I synapses. One of the

limitations of my approach is that it assumes the same stimulus waveform is delivered

to individual neurons within a subpopulation. Although I have demonstrated in

simulation that my FTSTS strategy effectively desynchronizes the neuronal firings in

a network even when the stimulation waveform parameters for individual neurons

are drawn randomly from a given distribution (see Figure 4.6) and are contaminated

with input designed for the opposite population (Figure 4.9), it is still able to utilize

the relationship between pre and post firings to effectively harness the synaptic

plasticity. Multi-laser optogenetics and recent development in optogenetics to excite

or inhibit the same neuron using two different light wavelengths could potentially

alleviate this limitation for experimental implementation of my strategy (Forli et al.,

2018). Additionally, I assumed the majority of the excitatory and inhibitory neuron

populations were spatially separate, which allows for the neuron populations to be

separately stimulated. Two examples of spatially separate excitatory and inhibitory

neuron populations are the striatum and cortex or the globus pallidus external

segment (GPe) and subthalamic nucleus (STN) (Lanciego et al., 2012; Hegeman et al.,

2016). The GPe-STN network has traditionally been targeted for DBS-HFS to treat PD

and could be potential area to test this hypothesis. Although I have not optimized the

FTSTR pulses to achieve a better performance or to make it more energy efficient, it is

not difficult to formulate optimization problems that minimizes the average synaptic
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F igure 4 .14 : Summary of the robustness studies (red line) of the FTSTS approach
with varying network and input parameters compared to the base E-I network in
Figure 4.3 (black line). (A) Desynchronization of neural activity in 10,000 neuron E-
I network. (B) Robustness of the FTSTS strategy against random variations in the
FTSTS pulse amplitude. (C) Robustness of the FTSTS strategy against uncertainty in
the membrane time constant of neurons in the 2,000 neuron E-I network. (D) Efficacy
of the FTSTS strategy in desynchronizing 2,000 neuron E-I network in the presence
of E-to-E and I-to-I synaptic connectivity. (E) Efficacy of the FTSTS strategy in
desynchronizing 2,000 neuron E-I network where 25% of the population is inseparable
and receives both the excitatory and inhibitory population input. The FTSTS pulse
parameters for all the studies are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.
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weight, network synchrony level, and applied stimulation energy simultaneously to

achieve a better overall performance.



164

chapter 5

Controlling Epileptic Seizures using Forced Temporal

Spike-Time Stimulation

5 .1 introduction

In the previous chapter, I developed a novel neurostimulation protocol called “Forced

Temporal Spike-Time Stimulation" (FTSTS) that I showed in simulation was able to

efficiently desynchronize large excitatory-inhibitory (E-I) spiking neuron networks

and keep the network desynchronized without further input by harnessing the

synaptic weight of the network (Schmalz and Kumar, 2019). My neurostimulation

protocol consisted of two biphasic out-of-phase pulses. One of the pulses was

delivered to the excitatory neuron population and the other to the inhibitory neuron

population. The pulse pair controlled the relative spike times of each neuron

population in order to control the average synaptic weight of the network and

move the synchronous E-I network from the synchronous to the asynchronous state.

Furthermore, if the pulse-pairs were exactly reversed, the FTSTS protocol was capable

of synchronizing an asynchronous neuron population. In my previous work, I showed

the capability of this selective FTSTS protocol in desynchronizing and resynchronizing

neuron activity in a generic excitatory-inhibitory (E-I) network model of various

sizes and dynamics. Based on these promising results, I wondered if my novel

neurostimulation strategy could potentially be used to terminate epileptic seizures,

which is another neurological disease characterized by highly synchronous neural

activity.

Epilepsy affects 65 million people world wide and is typically characterized by

highly synchronized episodes of neural activity that can lead to loss of autonomy

(Thurman et al., 2011; Moshé et al., 2015). In most cases, epileptic symptoms

are treatable with anti-epileptic drugs, although not all patients respond to the

drugs (Perucca, 1998; Kwan and Brodie, 2000; Brodie et al., 2012). This type of

epilepsy is coined drug resistant epilepsy (DRE). Patients with DRE become prime
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candidate for direct neurostimulation therapies, such as vagus nerve stimulation

(Handforth et al., 1998; Stefan et al., 2012) or deep brain stimulation (DBS) (Fisher

et al., 2010), which have proven to be effective in reducing epileptic episodes. DBS

is a neurostimulation therapy where electrodes are implanted into a specific part

of the brain and electrical high frequency stimulation (HFS) is applied to suppress

the epileptic activity (Zangiabadi et al., 2019). While this approach works well at

suppressing the epileptic activity when it arises, it doesn’t address the underlying

synaptic connections that generate the epileptic episodes. Therefore, seizures will

reemerge in the future and require continued re-application of DBS.

Building upon my prior work, I investigated the capability of the FTSTS protocol

in desynchronizing the pathologically synchronous firing patterns present during

epileptic seizures. I considered a biophysically constrained neocortical-onset seizure

model that captured the key features of neocortical seizures, such as the fast inward

moving ictal discharges and the slow outward wavefront of ictal recruitment (Liou

et al., 2020). Additionally, the model captured the predisposition of subsequent

seizures after an initial seizure. The propagation of the neocortical seizure throughout

the network and the emergence of a second spontaneous seizure is shown in Figure

5.1A. I applied my FTSTS protocol to this biophysically constrained seizure model.

My preliminary results showed that my FTSTS protocol, which was previously

applied to a generic E-I network, disrupted the initial seizure and suppressed

the emergence of future spontaneous seizures (see Figure 3.13B). Furthermore,

if I applied the exact reverse of the FTSTS protocol, additional spontaneous

neocortical seizure episodes began to emerge after the first seizure (see Figure 3.13C).

While my preliminary results highlighted the capability of the FTSTS protocol at

desynchronizing a biophysically constrained epileptic neocortical network model, the

optimal parameters of the FTSTS protocol have not yet been determined.

In this chapter, I investigate the parameter space of the "Forced Temporal Spike-

Time Stimulation" (FTSTS) protocol in order to determine the optimal parameters

to efficiently control the average E-to-I synaptic weight. I consider a biophysically

constrained neocortical-onset seizure model consisting of 1000 spiking neurons and

measured the rate of change in the average E-to-I synaptic weight induced by the
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FTSTS protocol over the five second interval of the applied FTSTS protocol. I

demonstrate that my FTSTS protocol is able to control the average excitatory-to-

inhibitory synaptic weight, and it can increase or decrease the future prevalence

of spontaneous or induced seizures. Then I determined the optimal FTSTS pulse

parameters to increase and decrease the average excitatory-to-inhibitory synaptic

weight. Finally, I integrate two optogenetic channelrhodopsin dynamics Chronos

and Chrimson into my FTSTS protocol in order to overcome spatial constraints of

electrically stimulating the excitatory and inhibitory neurons.

5 .2 system model

5.2.1 Neocortical Seizure Model

Throughout this paper, I have used a recently published computational model of

neocortical-onset seizures (Liou et al., 2020), validated with the clinical data from

epileptic patients, to simulate the seizure dynamics. Briefly, the model consists of a

spatially homogeneous one-dimensional neural network consisting of 500 excitatory

and 500 inhibitory neurons. The membrane potential, V, of each neuron is described

by the following conductance-based integrate-and-fire model:

C
dV
dt

= gL(EL −V) +
gE

fmax
(EE −V) +

gI

fmax
(ECl −V) (5.1a)

+
gK

fmax
(EK −V) + Iapp.

Here, C is the membrane capacitance, and Iapp is the external electrical current.

The model considers four conductances: leaky (gL), glutamatergic syanptic (gE),

GABAergic synaptic (gI), and slow after hyperpolarization sAHP (gK). fmax is

a scaling term equal to the maximum firing rate or the inverse of the refractory

period. Each conductance has a corresponding reversal potential EL, EE, EI , and

EK. The spike-times are stochastically determined based on the instantaneous firing

rate f = f0 exp
(V−φ

β

)
, where f0 is a scaling parameter, φ is firing threshold, and β

is the uncertainty of an action potential threshold. If a spike occurs, the membrane

potential is set to the average of 40 mV and the current membrane potential V(ti) at
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F igure 5 .1 : Preliminary investigation into the use of "Forced Temporal Spike-
Time Stimulation" (FTSTS) to suppress neocortical epileptic episodes. A seizure was
initiated in the biophysically-constrained neocortical model by applying a seizure
input of 200 pA for 3 s (red-bar). (A) shows the propagation of the seizure throughout
the network and its termination after approximately 40 s. Then, a second seizure
emerged approximately 50 s after the termination of the first seizure. I applied the
FTSTS protocol six seconds after the seizure initiating input (green-bar). (B) shows
the termination of the initial seizure and the suppression of further seizure for the
rest of the simulation. I then applied the exact opposite FTSTS protocol. (C) shows
the increased prevalence of spontaneous seizures after the FTSTS protocol.
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ti where ti is the time of a spike. After the spike, the membrane potential is reset to

V(ti+1) = V(ti−1)− 20 mV at ti+1. The dynamics of the firing threshold that dictates

the probability of a spike occurring is governed by Eq. 5.1b.

τφ
dφ

dt
= φ0 − φ. (5.1b)

Here, τφ is a time constant, φ0 is the baseline threshold, and ∆φ is added to φ at the

time of a spike. The excitatory and inhibitory synaptic dynamics are captured by gE

and gI , respectively (see Eq. 5.1a). The conductance dynamics of the excitatory and

inhibitory synapses are governed by the exponential decay functions of Eqs. 5.1c and

5.1d.

τsyn
dgE

dt
= −gE, (5.1c)

τsyn
dgI

dt
= −gI . (5.1d)

Here, τsyn is the time constant. If an excitatory or inhibitory neuron spikes, then

the weight of the synapse between the ith pre-synaptic and jth post-neuron is added

to the jth post-neuron’s conductance
(

gj(ti) = gj(ti−1) + W(i, j)
)
. Furthermore, the

inhibitory GABAergic synaptic input reversal potential is dependent on the chloride

concentration gradient. The gradient determines the reversal potential (ECl) of the

GABAergic synapse using the following Nernst equation:

ECl = −26.7 log
[Clout]

[Clin]
, (5.1e)

where [Clout] and [Clin] are the external and internal chloride concentration,

respectively. The external chloride concentration is assumed to be constant and the

internal chloride dynamics is modeled by the first-order kinetics

d[Clin]
dt

= − ICl
VdF
−

[Clin,eq]− [Clin]
τCl

, (5.1f)
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Table 5 .1 : Model parameters of spiking neurons.

Neuron Parameters Value Neuron Parameters Value

C 100 pF ∆φ −55 mV
gL 4 nS τCl 5000 mS
EL −57 mV Vd 0.2357 pL
EE 0 mV [Cl]in,eq 6 mM
EK −90 mV [Cl]out 110 mM
f0 0.002 Hz τK 5000 ms
β 1.5 mV ∆K 40 nS

τre f 5 ms σE 0.02
τsyn 15 ms σI 0.03
τφ 100 ms fmax 0.2 Hz
φ0 −55 mV F 96500 C mol−1

η 10−3 τSTDP 15 ms

where the chloride current is ICl = gI(V − ECl), Vd is the volume of distribution of

[Clin], F is Faraday’s constant, and τCl is the time constant of the [Clin] dynamics.

The equilibrium intracellular concentration of chloride is [Clin,eq]. Finally, the slow

after-hyperpolarization (sAHP) conductance dynamics is modeled as

τK
dgK

dt
= −gK, (5.1g)

where τK is a time constant. If a spike occurs, then ∆K
τK

is added to gK. I provide the

parameters for Eqs. 5.1a - 5.1g in Table 5.1.

5.2.2 Network Synaptic Connectivity

The synaptic connection between an excitatory and an inhibitory neuron is modeled in

a distance-dependent form. Briefly, the strength of the excitatory synapses is normally

distributed about each excitatory neuron with mean zero and spatial variance of σ2
E, as

described by the spatial distribution kernel KE in Eq. 5.2a. The strength of inhibitory

synaptic connections is modeled by the spatial distribution kernel KI (see Eq. 5.2b).

In addition to the normally distributed synaptic strength with mean zero and spatial

variance of σ2
I in Eq. 5.2b), there also exists weak uniformly distributed synapses in

the inhibitory network, which are represented by the term U. The contribution of the
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normally distributed inhibitory synapse is 1−γ and the contribution of the uniformly

distributed inhibitory synapses is γ.

KE ∼ N(0, σ2
E), (5.2a)

KI ∼ (1− γ)N(0, σ2
I ) + γU, (5.2b)

5.2.3 Spike-Time Dependent Plasticity Model

Throughout this work I have assumed that E-to-E and E-to-I synapses in the

neocortical model are plastic. Furthermore, I have assumed that the change in the

synaptic strength is activity-dependent, and I modeled the changes in the synaptic

strength of both type of synapses using a Hebbian-based spike-timing dependent

plasticity (STDP) rule (Song et al., 2000; Bi and Poo, 1998). Eqs. 5.3a-5.3e describe the

STDP dynamics.

Wi,j(t + ∆t) = Wi,j(t) + ∆Wi,j(t), (5.3a)

∆Wi,j(t) = ηApost(t) i f tpre − tpost < 0, (5.3b)

∆Wi,j(t) = −ηApre(t) i f tpre − tpost > 0, (5.3c)

τSTDP
dApost

dt
= −Apost + δ(t− tpost), (5.3d)

τSTDP
dApre

dt
= −Apre + δ(t− tpre). (5.3e)

Here, Wi,j(t) represents the weight (or strength) of a synapse connecting the jth

presynaptic neuron to the ith postsynaptic neuron. The synaptic weight at time t + ∆t

(i.e., Wi,j(t+∆t)) is updated by the change in the synaptic weight (∆W(t)) determined

by the time difference between jth presynaptic (tpre) and ith postsynaptic (tpost) neuron

spike times (see Eq. 5.3a). The parameter η represents the learning rate, i.e., the

rate at which the synaptic weight is updated each time. The contributions of the

long-term potentiation (LTP) and long-term depression (LTD) to the overall change

in the synaptic weight depending on the time difference between postsynaptic and
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presynaptic neuron spike-times are modeled using the exponential functions Apost(t)

and Apre(t) (see Eqs. 5.3d and 5.3e). The STDP time constant τSTDP defines the STDP

spike time window (Song et al., 2000). At the time of the postsynapitc neuron spiking

(tpost ) or the presynaptic neuron spiking at (tpre), Eqs. 5.3d and 5.3e are updated by

the dirac-delta functions δ(t− tpost) = 1 and δ(t− tpre) = 1, respectively. I provide

the STDP parameters used in this paper in Table 4.1.

5.2.4 Forced Temporal Spike-Timing Stimulation

Throughout this work, I have used my previously developed Forced Temporal Spike-

Timing Stimulation (FTSTS) strategy (Schmalz and Kumar, 2019) which has shown

to be effective in controlling the synchronization of neurons in E-I networks by

harnessing the synaptic plasticity of the network. Briefly, my FTSTS protocol consists

of excitatory and inhibitory charge-balanced biphasic stimulation pulses delivered to

individual neurons in each of the subpopulation.

In order to optimize the FTSTS protocol, I must first define the parameters of

the FTSTS pulse pair. The protocol consists of a pulse pair where each pulse is

delivered to a separate neuron population with synaptic connections between the two

neuron populations. In my biophysically constrained neocortical seizure model the

two neuron populations are the excitatory and inhibitory neocortical neurons. Each

pulse has the same amplitude (A), pulse width (W), and pulse interval (T), which

is inversely related to frequency (F). These parameters are shown in Figure 5.2A.

Additionally, each pulse has a polarity of 1 or −1 where a polarity of −1 inverts

the pulse. A polarity of 1 is defined as the negative portion of the biphasic pulse

leading the postive portion, while a polarity of −1 is the exact reverse. The polarity of

the pulse delivered to the excitatory population is aE and the polarity of the pulse

delivered to the inhibitory population is aI . Since the polarity can only be 1 or

−1, there exists four possible pulse-pair polarity combinations. Figure 5.2 shows

pulse-pair polarity combinations, which are standard FTSTS (aE = 1 and aI = −1),

inverted standard FTSTS (aE = −1 and aI = 1), mirrored FTSTS (aE = 1 and aI = 1),

and inverted mirrored FTSTS (aE = −1 and aI = −1). The final parameter of the

FTSTS pulse-pair is the train-offset time (∆φ), which is the time difference between
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F igure 5 .2 : Forced Temporal Spike-Time Stimulation (FTSTS) parameters. The
FTSTS pulse-pair parameters consist of amplitude (A), pulse width (W), pulse interval
(T), and polarity (aE and aI). The four different polarities are shown in (A) standard
FTSTS, (B) mirrored FTSTS, (C) inverted-standard FTSTS, and (D) inverted-mirrored
FTSTS.

the start time of the inhibitory population pulse (t0
I ) and the start time of the excitatory

population pulse (t0
E) shown in Eq. 5.4. Figure 5.3 shows three examples of different

train-offset times (∆φ = −1, ∆φ = 0, and ∆φ = 1) for each of the four polarities.

∆φ = t0
I − t0

E (5.4)
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F igure 5 .3 : The train-time offset of the FTSTS pulse-pair. (A), (C), (E) and (G) show
examples of a train-offset time of −1 ms for standard FTSTS, inverted-standard FTSTS,
mirrored FTSTS, and inverted-mirrored FTSTS, respectively. (B), (D), (F) and (H) show
examples of a train-offset time of 1 ms for standard FTSTS, inverted-standard FTSTS,
mirrored FTSTS, and inverted-mirrored FTSTS, respectively.
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5.2.5 Optogentic FTSTS Protocol

We modeled the channelrhodopsin light activated current with a reduced model

developed by (Shewcraft et al., 2020) and (Witt et al., 2013). The current through

the channelrhodopsin (see Eq 5.5a) is defined as the product of the conductance

prefactor (gChR2), the conductance waveform (FChR2), and the membrane potential

driving force (V − VChR2), where VChR2 is the reversal potential. The conductance

waveform is dependent on the intensity of the applied light (Wlight) and the duration

the light is applied (t − ton − d). Here, ton is the time the optical stimulation is

applied and d is a light dependent activation delay. The parameters of the light

dependent delay variable d are dA, dB, and dC. τact and τinact represent the activation

and deactivation time constants. The light intensity dependent variables Aact, A(1)
inact,

A(2)
inact, and Apersist modulate the open state of the channelrhodopsin. Aact represents

the light dependent activation of the channelrhodopsin. A(1)
inact and A(2)

inact determine

closing the rate of the channelrhodopsin. Finally, Apersist is the persistent activation

of the channelrhodopsin during prolonged optical stimulation. The activation and

deactivation parameters are a0, amin, b0, b1, b2, cinact, and kinact. The channelrhodopsin

dynamics while the optical stimulation is being applied are shown in Eqs. 5.5a -

5.5h. The channelrhodopsin follows a simple exponential decay once the optical

input is turned off. I considered two different channelrhodopsins, which were

Chronos and Crimson channelrhodopsin. The exponential decay parameter were set

as the experimentally measured value for each channelrhodopsin (Klapoetke et al.,

2014). Additionally, the intensity of the light for each channelrhodopsin (WChronos
light

and WChrimson
light ) was determined from the literature, such that there was no light

interference (Klapoetke et al., 2014). The channelrhodopsin parameters are listed in

Table 5.2.
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Table 5 .2 : Channelrhodopsin photocurrent parameters.

Neuron Parameters Value Neuron Parameters Value

Winact 0.11 WChonos
light 0.0308

τ
(1)
inact 9.06 ms WChrimson

light 0.0023

dA 0.27 b0 0.16
dB −0.05 b1 0.013
dC −0.0126 b2 0.027

τ
(0)
act 0.74 ms τ

(2)
inact 59.6 ms

cact 12 cinact 0.29
kact 25 kinact 2.4
a0 1 VChR2 0 mV

amin 0.4 gChR2 294 nS

W0.5 0.38 τChronos
o f f 3.6 ms

τChrimson
o f f 15.8 ms

IChR2 = −gChR2FChR2(V −VChR2), (5.5a)

FChR2 = Aact

(
1− e−

t−ton−d
τact

)
(5.5b)(

Apersist + A(1)
inacte

− t−ton−d

τ
(1)
inact + A(2)

inacte
− t−ton−d

τ
(2)
inact

)
,

d = dA + dBWlight +
dC

Wlight
, (5.5c)

τact = τ
(0)
act + cacte−kactWlight , (5.5d)

Aact = a0 +
amin − 1

1 +
(

W0.5
Wlight

)2 , (5.5e)

A(1)
inact = b0 +

b1

b2 + (Wlight −Winact)2 , (5.5f)

A(2)
inact = cinacte

−kinactWlight , (5.5g)

Apersist = 1− A(1)
inact − A(2)

inact. (5.5h)
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5 .3 results

5.3.1 Novel FTSTS Reduces Seizure Prevalence

First, I observed the emergence of seizures in the biophysically constrained

neocortical-onset seizure model. I initiated a seizure in the model with a seizure

initiating input of 200 pA applied for 3 s to 50 neocortical neurons. The seizure

propagated through the entire network and terminated after 40 s. After the initial

seizure, spontaneous spiking activity was observed for approximately 50 s. Then, a

second seizure spontaneously emerged, which was followed by a third seizure. Figure

5.4A shows the raster plot of the neocortical model and the three seizures. During

each neocortical seizure, the average E-to-I synaptic weight of the network increased

(see Figure 5.4B). As the seizure propagated throughout the network, the plastic

synaptic connections between the excitatory and inhibitory neurons were rewired by

the seizure. The percent change in each individual excitatory-to-inhibitory synaptic

weights is shown as a heat map in Figure 5.4C. The more dark-red the color is

in the heat map, the greater the percent increase in the synaptic weight, and the

more dark blue the color is in the heat map, the greater the percent decrease in the

synaptic weight. The synaptic weights were rewired by the seizure such that the

synaptic projections from the excitatory neurons to the inhibitory neurons in front

of the seizure wave were decreased and the synaptic projections from the excitatory

neurons to the inhibitory neurons behind the seizure wave front were decreased. This

rewiring prevented the inhibitory neurons in front of the seizure from inhibiting the

seizure progression through the network.

Then, I applied my “Forced Temporal Spike-Time Stimulation" (FTSTS) protocol

to the biophysically constrained neocortical-onset seizure model to determine if my

novel stimulation protocol was able to suppress synchronous network spiking activity

in a biophysically constrained model. I initiated a seizure by applying the same

seizure initiating input for 3 s. After removing the input, the seizure began to

propagate thoughout the neocortical network. I applied the inverted FTSTS protocol

(see Figure 5.2G) with an amplitude of 2 nA and pulse interval of 10 ms at the 10 sec

mark for 5 sec. The FTSTS protocol disrupted the synchronous spiking activity of the
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neocortical seizure and terminated the neocortical seizure (see Figure 5.5A). During

the rest of the simulation, I observed no additional spontaneous seizures. Figure

5.5B shows the average excitatory-to-inhibitory synaptic weight during the simulation

and the induced increase in the average synaptic weight from the inverted FTSTS

protocol. The FTSTS protocol increased the strength of all the connections between

the excitatory neurons and the inhibitory neurons, which is shown in Figure 5.5E. This

increase in the synaptic connections erased the re-wiring of the synaptic connections

by the seizure. Therefore, this reduced the predisposition of the neocortical network to

rewiring synaptic connection network connections to produce spontaneous seizures.

This highlights the ability of my FTSTS protocol to harness the synaptic weight of the

neocortical network to suppress the prevalence of spontaneous seizures.

Next, I applied the exact reverse of the inverted FTSTS protocol (i.e standard

FTSTS see Figure 5.2A) during the initial seizure. The standard FTSTS protocol was

applied for 5 seconds, which was denoted as the green-bar in Figure 5 C. The FTSTS

protocol depressed the average E-to-I synaptic weight of the neocortical network

by approximately 8 nS over the 5 second FTSTS window (see Figure 5.5D). Figure

5.5C shows an increased level of seizure activity in the neocortical network after the

FTSTS protocol. After the FTSTS protocol, the duration of the initial seizure was

much longer and the second seizure was much larger than the two small seizures

observed in Figure 5.4A. The FTSTS protocol decreased the synaptic weight of the

excitatory to inhibitory neurons (see Figure 5.5D), which lowered the activation of the

inhibitory neurons during the seizure. The lower inhibitory neuron activity prevented

the inhibitory neurons from slowing or stopping the neocortical seizure. The final

change in the exciatory to inhibitory synaptic weight at the end of the simulation

is shown in Figure 5.5F as a heat map. Again, the synapses projecting from the

excitatory neurons to the inhibitory neurons in front of the seizure were weakened,

while synapses projecting behind the seizure were strengthened. This neural synaptic

weight structure made the neocortical network prone to spontaneous in the future.

After showing my FTSTS protocol was able to control the average synaptic weight

of the neocortical network, I wondered what the best FTSTS parameter would be to

control the average E-to-I synaptic weight.



178

100 200 300 400 500

Inhibitory Neuron Index

100

200

300

400

500

E
xc

ita
to

ry
 N

eu
ro

n 
In

de
x

-40

-20

0

20

40

C

B

A

W
eight C

han
ge (%

)

F igure 5 .4 : Propagation of the neocortical seizure though network. A seizure
initiating input applied for 3 s (red-bar) to a biophysically constrained neocortical
network model initiated a seizure. (A) shows the propagation of the initial seizure
and the emergence of a second seizure after the first seizure terminated. (B) shows
the increase in the average synaptic weight during each seizure event. (C) shows the
percent change in the strength of the excitatory to inhibitory synaptic weight of each
synapse at the end of the simulation (t = 150 sec).

5.3.2 Effect of Amplitude on FTSTS Efficacy

Next, I examined the effect of the amplitude of the FTSTS protocol on the efficacy

for all four polarities. In the biophysically constrained neocortical-seizure model, I

induced a seizure with an input of 200 pA applied for 3 seconds. My FTSTS was

applied 6 seconds after the seizure input for a duration 5 seconds, which is shown in

Figure 5.4 as the green-bar. I varied the amplitude of the FTSTS protocol from 1 nA to

2.5 nA and measured the change in the average synaptic E-to-I weight before and after

the FTSTS protocol. I applied the FTSTS protocol at a frequency of 83 Hz with a pulse

width of 1 s and train-offset time of 0 ms. Figure 5.6 shows the measured change in

the average E-to-I synaptic weight of the neocortical network for each corresponding

FTSTS amplitude. The standard FTSTS protocol increased the magnitude of the

negative average synaptic weight rate change over the 5 second FTSTS duration

for all amplitudes greater than 1.75 nA. As the amplitude of the FTSTS protocol

increased, I observed a larger magnitude of the negative average synaptic weight rate

of change, which decreased the average synaptic weight of network more efficiently.
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F igure 5 .5 : Control of the spontaneous seizure state with FTSTS. A seizure
initiating input applied for 3 s (red-bar) to a biophysically constrained neocortical
network model initiated a seizure that begins to propagate through the network. (A)
shows the suppression of neocortical seizure activity by my FTSTS protocol (green-
bar). My FTSTS protocol increased the average synaptic (B) while it was applied.
(C) shows the promotion of spontaneous neocortical seizures by exactly flipping the
FTSTS protocol (green-bar). The inverted FTSTS decreased the average excitatory-to-
inhibitory synaptic weight in (D) over the 5 second duration the protocol was applied.
(E) and (F) show the percent change in the excitatory-to-inhibitory synaptic weights
at the end of the simulation (t = 150 sec) from applying inverted FTSTS and standard
FTSTS, respectively.

The increased amplitude forced more neurons to fire in a temporal pattern of post-

synaptic neurons before pre-synaptic neurons, which decreased the synaptic strength.

Then, I applied the exact opposite polarity of each FTSTS pulse (aE = −1 and

aI = 1) in order to determine the efficacy of the FTSTS protocol at increasing the
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average synaptic weight of the biophysically constrained model. Figure 5.6 shows

the measured increase in the positive average synaptic weight rate change for each

inverted standard FTSTS pulse amplitude. The reversed polarities of the pulses forced

the presynaptic neurons to fire before the postsynaptic neurons, which resulted in an

overall increase in the average synaptic weight of the network.

In addition to the standard FTSTS protocol, I also considered the effect of the

amplitude of the FTSTS protocol on the efficacy of two mirrored FTSTS polarities. A

mirrored FTSTS protocol delivered pulses to the excitatory and inhibitory populations

with the same polarities. I considered two mirrored polarity pairs. The first was the

standard mirrored FTSTS polarity pair (aE = 1 and aI = 1). The second was the

inverted mirrored FTSTS polarity pair (aE = 1 and aI = 1). The train-offset time was

held constant at 0 ms. Therefore, the same pulse train was applied to both neuron

populations. Since the mirrored FTSTS protocols provided the same pulse shape to

both neuron populations, there was no temporal difference in the spike times induced

by FTSTS. As expected, the mirrored and inverted mirrored FTSTS protocols failed to

change the average synaptic weight of the network without a train-offset time between

the two trains of pulses delivered to the excitatory and inhibitory populations, as

shown in Figure 5.4. While mirrored FTSTS without a train-offset failed to induce

a change in the average synaptic weight, mirrored FTSTS protocols with a nonzero

train-offset time should induce a weight change.

5.3.3 Effect of Phase Difference and Amplitude on FTSTS Efficacy

In order to understand how the phase difference in the FTSTS pulse pair effects the

efficacy of FTSTS, I varied the train-offset time of the FTSTS protocol at various pulse

amplitude for each of the four polarities. The FTSTS protocol was applied six seconds

after the end of the seizure initiating input for a duration of five seconds. The rate

change in the average synaptic weight was determined by measuring the change in the

average E-to-I synaptic weight over the five second window of the FTSTS application.

The efficacy was defined as a large change in the rate of the average synaptic weight

change over the five second FTSTS application. Again, I varied the amplitude from 1

nA to 2.5 nA and the train-offset time from 0 to 12 ms, while I held the pulse width
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F igure 5 .6 : Effect of amplitude on the FTSTS protocols. The amplitude of the
FTSTS protocol was varied from 1 nA to 2.5 nA. I measured the induced change in
the average synaptic weight at each pulse amplitude with a standard FTSTS polarity
where aE = 1 & aI = −1 (black-square), inverted FTSTS polarity where aE = −1 &
aI = 1 (red-circle), mirrored FTSTS polarity where aE = 1 & aI = 1 (blue-triangle),
and inverted mirrored FTSTS polarity where aE = −1 & aI = −1 (greed-diamond).
The phase difference was held constant (∆φ = 0).

and pulse interval constant at 1 ms and 10 ms, respectively. I noted for this constant

pulse width and pulse interval that the train-offset time completes a cycle every 12

ms. Thus, a train-offset time of 0 ms was equal to a train-offset time of 12 ms and a

train-offset time of −1 ms was equal to a train-offset time of 11 ms. This allowed me

to construct a surface plot of the full train-offset cycle vs pulse amplitude for each

pulse-pair polarity.

First, I considered the standard FTSTS polarity. The general trend observed in the

previous section that the efficacy increased with the amplitude was observed at each

train-offset time. Figure 5.7A shows the surface plot of the effect of the amplitude

versus the train-offset time on the magnitude of the average synaptic weight change
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(efficacy). I observed an optimal train-offset time of −11.5 ms (0.5 ms) to decrease the

average synaptic weight and an optimal train-offset time of −10 ms (2 ms) to increase

the average synaptic weight of the network. A train-offset time of 0.5 ms (−11.5 ms)

for the standard FTSTS polarity occurred when the positive portion of the inhibitory

population pulse began 0.5 ms before the positive portion of the excitatory population

pulse. This forced small positive spike-time difference between the presynaptic

inhibitory neurons and postsynaptic excitatory neurons. Small positive spike-time

differences resulted in a decrease in the average synaptic weight. Based on this result,

one would expect the best train-offset time to increase the synaptic weight to be 1.5 ms

(10.5 ms), which would correspond to the positive portion of the excitatory population

pulse starting 0.5 ms before the positive portion of the inhibitory population pulse.

This predicted best train-offset time was not observed. I observed the best train-

offset time to increase the average synaptic weight was 2 ms (−10 ms). A possible

reason for this deviation was that I defined the positive polarity as beginning with the

negative portion of the biphasic pulse followed by the positive portion. Therefore, the

positive portion of the excitatory population pulse must overcome the inhibition of

the excitatory neuron population by the negative portion of the pulse, which resulted

in a slower response of the excitatory neurons. This required the inhibitory neurons

to be stimulated a little later to achieve a more favorable temporal spike-time pattern

between the excitatory and inhibitory populations. Since the inhibitory population

pulse had a negative polarity, the positive portion of the pulse led the negative portion.

Therefore, the positive portion of the biphasic pulse did not have to overcome any

inhibition of the neuron population by its negative counterpart. While my exploration

of the amplitude and train-offset time parameter space highlighted the best amplitude

and train-offset parameters to decrease or increase the average synaptic weight of the

network, it also highlighted the importance of the FTSTS pulse polarity.

Then, I considered the exact opposite pulse polarity of the standard FTSTS

protocol. This polarity was called inverted standard FTSTS and is shown in Figure

5.2C. I examined the full train-offset time cycle for this polarity at various pulse

amplitudes. Over the five second window that the FTSTS protocol was applied, I

measured the rate of change in the synaptic weight. Figure 5.7C shows the surface
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plot of how the train-offset time and the pulse amplitude affect the rate of change in

the synaptic weight. For all the train-offset time, the efficacy of the FTSTS protocol

increased with the increase in amplitude. The most effective train-offset time to

increase the synaptic weight was −0.5 ms (11.5 ms) and to decrease the synaptic

weight was −2 ms (10 ms). Again, the lack of symmetry in the best train-offset time

was observed for the inverted standard FTSTS polarity. The pulses delivered to the

inhibitory population led with the negative portion of the biphasic pulse. Therefore,

the positive portion of the biphasic pulse must overcome this initial inhibition,

which created a delay in the evoked spike-times. If the inhibitory population was

required to fire before the excitatory population, the train-offset time must increase to

accommodate for the delay in spike-times. The asymmetry in the optimal spike-times

underscores the importance of the polarities of the FTSTS pulse.

In order to further examine the role that polarity plays in the efficiency of the

FTSTS protocol, I examined the remaining two polarity pair combination where the

polarities were the same for each neuron population pulse. The two polarity pairs

considered were the mirrored FTSTS (aE = 1 and aI = 1) and the inverted mirrored

FTSTS (aE = −1 and aI = −1). I examined the effect of the train-offset time and

pulse amplitude on the efficacy of both protocols, which was measured as the rate of

change in the average synaptic weight. Figures 5.7B and 5.7D show the surface plot

of the efficacy at various train-offset times and pulse amplitudes for the mirrored and

inverted mirrored FTSTS polarities, respectively. In both figures, the efficacy of the

FTSTS protocol increased with the increase in the pulse amplitude. The most effective

train-offset times was −0.5 ms (11.5 ms) to increase the synaptic weight and −11.5 ms

(0.5 ms) to decrease the synaptic weight for both polarities. Unlike the previous two

cases, the optimal train-offset time was symmetric, since the positive polarity spike-

time delay occurred in both pulses for the mirrored polarity. The most effective out

of these two polarities was the inverted mirrored. While the mirrored FTSTS protocol

had symmetric optimal train-offset time, the leading negative portion of the biphasic

pulse still inhibited the response of both neuron populations to the positive portion of

the biphasic pulse that followed it. The inverted mirrored FTSTS pulse began with the
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positive portion of the biphasic pulse so the protocol could more efficiently force the

neurons to fire in a temporally specific pattern to control the average synaptic weight.

A B

C D

Amplitude (nA)

Amplitude (nA) Amplitude (nA)

Amplitude (nA)

F igure 5 .7 : Efficacy of train-offset time and amplitude on FTSTS. The efficacy of
the FTSTS was measured for various amplitudes and phase differences. The change
in the average synaptic weight from the 5 seconds application of the FTSTS protocol
during a seizure (see Figure 5.4). The effect of the amplitude and phase difference
of the FTSTS protocol for the four possible polarities (A) the standard FTSTS polarity
(aE = 1 and aI = −1), (B) mirrored FTSTS polarity (aE = 1 and aI = 1), (C) inverted
standard FTSTS polarity (aE = −1 and aI = 1), and (D) inverted mirrored FTSTS
polarity (aE = −1 and aI = −1) on FTSTS efficacy were considered.

5.3.4 Effect of Frequency on FTSTS Efficacy

Next, I examined the effect of stimulation frequency on the efficacy of the FTSTS

protocol at different train-offset times and polarity pairs. The FTSTS protocol was

applied for a 5 second duration, which was applied 6 seconds after the seizure

initiating input. The rate of change in the average synaptic weight was measured

over the 5 second window to obtain the efficacy. I considered six different inter pulse

intervals (5 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, and 100 ms) that were inversely

related to the stimulation frequency (143 Hz, 83 Hz, 45 Hz, 31 Hz, 24 Hz, 19 Hz,
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and 9.8 Hz). Furthermore, I examined how the different frequencies interacted with

different train-offset times between −3.5 ms to 3.5 ms to influence the efficacy of the

FTSTS protocol, while the pulse width and pulse amplitude were held constant at 1

ms and 2 nA.

We began by examining the effect of the stimulation frequency on the standard

FTSTS protocol. The effect of train-offset time and frequency on the synaptic weight

rate change for the standard FTSTS polarity is shown in Figures 5.8A. In general, an

increase in the frequency increased the efficacy of the FTSTS protocol. The exception

to this trend occured at the two highest frequencies for all train-offset times expect 1.5

ms and 0.5 ms. When the frequency was increased from 83 Hz to 143 Hz, the efficacy

decreased at these higher magnitude train-offset times. The highest frequency that

I considered was 143 Hz, which corresponds to a pulse interval of 5 ms. The short

pulse interval forced a presynaptic-before-postsynaptic neuron spike-time difference

and also a postsynaptic-before-presynaptic neuron spike-time differences. These two

spike-time difference were within a few ms of each other at the shorter pulse interval.

For example, consider a train-off-set time of 0 ms for the standard FTSTS polarity

with a pulse interval of 5 ms shown in Figure 5.8A. This protocol attempts to force

a presynaptic before postsynaptic neuron spike time difference of 1 ms but it also

induces a postsynaptic before presynaptic neuron spike time difference of 5 ms at this

pulse interval. The close values of the spike-time difference counteract each other

and reduce the rate of the synaptic E-to-I weight is increases or decreases. At lower

frequencies, there was a larger difference between the presynaptic before postsynaptic

neuron spike times and the postsynaptic before presynaptic neuron spike times. Out

of the pulse intervals that I considered, the optimal pulse interval was 10 ms, which

balanced the increased efficacy from the more desired forced spike time difference

and decreased efficacy from the undesired forced spike time difference at higher

frequencies. At the best train-offset time observed in the previous section, the best

train-offset time to increase the average synaptic weight was 2 ms at the highest pulse

interval 10 ms but at the higher pulse intervals the best train offset-time was 1.5 ms.

This difference in best train-offset times was most likely due to the undesired induced

spike time difference counteracting the protocol more with the shorter train-offset
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time (5 ms). I observed the same best train-offset time of 0.5 ms to decrease the

average synaptic weight at the higher stimulation frequency. Therefore, the best pulse

interval and train-offset time for the standard FTSTS polarity to increase the average

synaptic weight was 10 ms (83 Hz) and 2 ms, respectively. Additionally, the optimal

pulse interval and train-offset time to decrease the average synaptic weight was 5 ms

(142 Hz) and 0.5 ms, respectively.

Next, I examined the effect of the frequency and the train-offset time on the

efficacy of the inverted standard FTSTS protocol. Figure 5.8C shows the average

E-to-I synaptic weight change at different frequency and train-offset times for the

inverted standard FTSTS polarity. The efficacy of the FTSTS protocol increased with

the frequency of stimulation except at the highest two frequencies. At the highest two

frequencies, the efficacy decreased for all train-offset times when the frequency was

increase from 83 Hz (pulse interval of 10 ms) to 143 Hz (pulse interval of 5 ms). Again,

this is due to the undesired forced spike-times counteracting the desired forced spike-

time difference at the shorter pulse interval. The optimal pulse interval and train-

offset time for the inverted standard FTSTS polarity to increase the average synaptic

weight was 10 ms (83 Hz) and −0.5 ms, respectively. Furthermore, the optimal pulse

interval and train-offset time to decrease the average synaptic weight was 10 ms (83

Hz) and −2 ms, respectively.

Then, I analyzed the effect of frequency and train-offset time on the efficacy of the

mirrored FTSTS protocol. Figure 5.8B shows that the efficacy of the FTSTS protocol

increases with the frequency except for the two highest frequencies. I observed a

decrease in the average synaptic weight rate change when the frequency was increased

from 83 Hz (pulse interval of 10 ms) to 143 Hz (pulse interval of 5 ms) for all train-

offset times except −0.5 ms and 0.5 ms. This corresponds to the positive portion

of the inhibitory biphasic pulse arriving half of a millisecond before and after the

positive portion of the excitatory biphasic pulse. I observed the same trend for the

standard FTSTS polarity. The general decrease in the efficacy of the FTSTS protocol

going from a pulse interval of 10 ms to 5 ms was from the undesired forced spike-

time difference between the two neuron populations counteracting the desired forced

spike-time difference at the lower pulse interval. Two exceptions to this trend occurred
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when the difference between desired and undesired forced spike-times of the two

neuron populations was the greatest (−0.5 ms and 0.5 ms). The optimal pulse interval

and train-offset time for the mirrored FTSTS polarity to increase the average synaptic

weight was 5 ms (142 Hz) and 0.5 ms, respectively. Additionally, the optimal pulse

interval and train-offset time to decrease the average synaptic weight was 10 ms (83

Hz) and −0.5 ms, respectively.

Finally, I considered the effect of frequency and train-offset time on the efficacy

of the inverted mirrored FTSTS protocol. The effect of frequency and train-offset

time on average synaptic weight rate change is shown in Figure 5.8D. The magnitude

of the average synaptic weight rate change (efficacy) increased with the stimulation

frequency up to a frequency of 83 Hz. I observed when the frequency was increased

from 83 Hz to 142 Hz the efficacy decreased for all train-offset times. Similar to the

other three polarities, this occurred due to the induced undesired forced spike-times

counteracting the desired forced spike-time difference at the shorter pulse interval

(higher frequency). For the inverted mirrored FTSTS protocol, the optimal pulse

interval and train-offset time to increase the average synaptic weight was 10 ms (83 Hz)

and 0.5 ms, respectively. Additionally, the optimal pulse interval and train-offset time

to decrease the average synaptic weight was 10 ms (83 Hz) and −0.5 ms, respectively.

I examined the role frequency and train-offset time played in influencing the

efficacy of the FTSTS protocol for all four polarities (see Figure 5.8). In general,

an increase in the stimulation frequency increased the efficacy except at the highest

frequencies. Additionally, at the highest frequency there were less deviations from

this trend with the inverted polarities. Clearly, this established the best polarity

of the excitatory population biphasic pulse as aE = −1. A possible reason for

this observation is that the negative polarity begins with the positive portion of

the biphasic pulse. Therefore, the pulse can more quickly force the neurons in the

excitatory population to fire, since it is not required to overcome any inhibition from

the negative portion of the biphasic pulse. These results highlight the importance of

the ability of FTSTS to force the neurons to fire during the positive portion of the

biphasic pulse. Therefore, optimizing the remaining FTSTS parameter, pulse width,

may further increase the efficacy of the protocol.
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F igure 5 .8 : Efficacy of frequency and train-offset time on FTSTS. I measured the
efficacy of the FTSTS protocol at different frequencies, train-offset times, and polarity
pairs. The efficacy was measured as the rate of change in the average synaptic weight
over the 5 second interval the FTSTS was applied for the (A) standard (aE = 1 and
aI = −1), (B) mirrored (aE = 1 and aI = 1), (C) inverted standard (aE = −1 and
aI = 1), and (D) inverted mirrored (aE = −1 and aI = −1) FTSTS protocols.

5.3.5 Effect of Pulse Width on FTSTS Efficacy

Finally, I examined the effect of the pulse width and train-offset time on the efficacy

of the FTSTS protocol for all four FTSTS polarities. I applied the FTSTS protocol

six seconds after the seizure initiating input ended for a duration of five seconds. I

considered the pulse width values ranging from 1 ms to 5 ms and the train-offset

times between −10 ms to 10 ms . The average excitatory-to-inhibitory synaptic weight

at the start and end of the 5 second window were used to determine the synaptic

weight rate change induced by the selected parameters. The synaptic weight rate

change over the FTSTS application window was used to determine the efficacy of

the chosen parameters, such that large magnitude synaptic weight changes indicated

more efficient FTSTS parameters.
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First, I analyzed the efficacy of the pulse width and train-offset time for the

standard FTSTS protocol (aE = 1 and aI = −1). For each pulse width, Figure

5.9A shows a clear most effective train-offset time to increase or decrease the average

synaptic weight. In general, the best train-offset time to increase the average synaptic

weight occurred at W + 1 ms, where W is the pulse width. This timing attempted to

force the excitatory neurons to fire 1 ms before the inhibitory neurons by delivering

the positive portion of the biphasic pulse to the excitatory population 1 ms before the

positive portion of the pulse delivered to the inhibitory population. The exception

to this general train-offset timing pattern occurred at pulse widths greater than 3

ms. For pulse widths of 4 ms and 5 ms, the best train-offset time occurred at 8

ms. This resulted in a majority or all of the positive portion of the biphasic pulse

delivered to the excitatory neurons arriving before the positive portion of the biphasic

pulse delivered to the inhibitory population. Therefore, the excitatory neurons were

forced to firing before the inhibitory neurons. The optimal pulse width to increase the

synaptic weight was 2 ms with a train-offset time of 3 ms. I then considered the best

parameters to decrease the average synaptic weight. There existed a clear optimal

train-offset time for each pulse width to decrease the average synaptic weight. The

best train-offset time was 0.5 ms for a pulse width of 1 ms, while all pulse widths

greater than 1 ms had a train-offset time equal to the pulse width. For pulse widths

greater than 1 ms, this resulted in the positive portion of the biphasic pulses delivered

to both the excitatory and inhibitory populations arriving at the same time. Since the

pulses delivered to each population had the opposite polarity, the negative portion

arrived before the positive portion of the biphasic pulse delivered to the excitatory

population, and the negative portion of the biphasic pulse delivered to the inhibitory

population arrived after the positive portion. This resulted in the excitatory neurons

responding slower to the excitatory portion of the pulse and the inhibitory neurons

responding faster. It allowed the inhibitory neurons to fire before the excitatory

neurons, while still forcing the excitatory neurons to fire after the inhibitory neurons

with the additional inhibitory input. The optimal pulse width and train-offset time to

decrease the average synaptic weight was 2 ms and 2 ms, respectively.
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Then, I examined the efficacy of the pulse width and train-offset time of the

inverted standard FTSTS polarity (aE = −1 and aI = 1). The best train-offset time

at each pulse width to increase or decrease the average synaptic weight is shown in

Figure 5.9C as the peak or trough, respectively. The efficiency of the inverted standard

FTSTS protocol decreased with the pulse width for both increasing and decreasing

the average synaptic weight. The trend of the best train-offset time for each pulse

width to increase the average synaptic weight was −W + 0.5 ms, where W is the

pulse width. This resulted in the positive portion of the biphasic pulses delivered

to the excitatory population arriving 0.5 ms before the positive portion delivered to

the inhibitory population. Due to the opposite polarities of the pulses delivered to

each population, the negative portion of the biphasic pulse arrived before the positive

portion of the pulse. This prevented the inhibitory neurons from firing before the

excitatory neurons. Additionally, the negative portion of the biphasic pulse delivered

to the excitatory population arrived mostly after the positive portion was delivered

to the inhibitory population, which prevented the excitatory neurons from firing after

the inhibitory neurons. The optimal train-offset time to decrease the synaptic weight

followed a general trend of −W − 1 ms for pulse widths less than 4 ms and a trend of

W − 1.5 ms for pulse widths greater than or equal to 4 ms. For pulse widths less than

4 ms, the positive portion of the biphasic pulse delivered to the inhibitory population

arrived 1 ms prior to the positive portion delivered to the excitatory population. As

the pulse width increased, the best train-offset time decreased to −W − 1.5 ms. This

may result from the increased inhibition of the inhibitory neurons by the negative

portion of the biphasic pulse as the pulse width increased, which the positive portion

of the biphasic must overcome to force the inhibitory neurons to fire. Therefore, the

inhibitory neurons responded slower and required a larger gap between when the

excitatory and inhibitory neurons are stimulated to ensure that most of the inhibitory

neurons fire before the excitatory neurons.

Next, I determined the efficacy of the pulse width and train-offset time on the

efficacy of the mirrored FTSTS polarity (aE = 1 and aI = 1). The symmetric polarities

result in best train-offset times to increase or decrease the average synaptic weight that

were the same across all pulse widths as shown in Figure 5.9B. The best train-offset
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time to increase the synaptic weight for all pulse widths was 1 ms. This resulted in

the positive portion of the biphasic pulse delivered to the excitatory neurons arriving

1 ms before the positive portion delivered to the inhibitory population. Due to the

symmetry of the polarity, the neurons consistently responded to the positive portion

of the pulse train in both of the neuron populations. The optimal pulse width

and train-offset time to increase the average synaptic weight was 2 ms and 1 ms,

respectively. Additionally, the best train-offset time for all pulse widths to decrease the

synaptic weight was −0.5 ms. In this case, the positive portion of the biphasic pulse

delivered to the inhibitory population arrived 0.5 ms before the portion delivered to

the excitatory neurons. Again, the symmetry of the polarities ensured the neurons in

both of the populations responded on the same timescale. The optimal pulse width

and train-offset time to decrease the average syanptic weight of the network was 2 ms

and −0.5 ms, respectively.

Finally, I analyzed how the pulse width and train-offset time parameters

influenced the efficacy of the inverted-mirrored FTSTS protocol (aE = −1 and

aI = −1). The surface plot of the change in average synaptic weight for the

different parameter combinations of pulse width and train-offset time is shown in

Figure 5.9D. The efficacy of the inverted FTSTS protocol decreased with the increase

in the pulse width for both increasing and decreasing the synaptic weight. For

pulse widths between 1 ms and 3 ms, the best train-offset time was 0.5 ms. The

symmetric polarities results in the positive portion of the biphasic pulse delivered to

the excitatory population arriving 0.5 ms before the positive portion delivered to the

inhibitory population. Also, the negative portion following the positive portion of the

biphasic pulse prevented unwanted neuron firing in both populations after forcing

the neurons to fire. At the longer pulse widths considered, the train-offset times for

a pulse width of 4 ms and 5 ms was 3.5 ms and 3 ms, respectively. These train-offset

times result in a majority of the positive portion of the biphasic pulse delivered to the

excitatory population arriving before the positive portion delivered to the inhibitory

population. This may be due to the longer pulse width forcing unwanted firing when

the positive portions of the the biphasic pulse overlapped, which occurred less at

shorter pulse widths due to the 2 ms refractory period. The best train-offset times to
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decrease the average synaptic weight was −0.5 ms for all pulse widths. This resulted

in the positive portion of the biphasic pulse delivered to the inhibitory population

arriving 0.5 ms before the positive portion delivered to the inhibitory population for

all pulse widths. Due to the inhibitory input to the excitatory neurons resulting

from the forcing the inhibitory neurons to fire, there was less unwanted firing when

the positive portions of the biphasic pulses delivered to each population overlapped.

Additionally, the negative portion of the biphasic pulse prevented unwanted firing

in both populations, after forcing the neurons of the opposite population to fire. The

optimal train-offset time and pulse width to decrease the average synaptic weight was

−0.5 ms and 1 ms, respectively.
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F igure 5 .9 : Efficacy of pulse width and train-offset time on FTSTS. I measured the
efficacy of the FTSTS protocol at different pulse widths, train-offset times, and polarity
pairs. The efficacy was measured as the rate of change in the average synaptic weight
over the 5 second interval the FTSTS was applied for the (A) standard (aE = 1 and
aI = −1), (B) mirrored (aE = 1 and aI = 1), (C) inverted standard (aE = −1 and
aI = 1), and (D) inverted mirrored (aE = −1 and aI = −1) FTSTS protocols.
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5.3.6 Best FTSTS Parameters

After examining the effect of amplitude, pulse interval and pulse width in

combination with train-offset time on the efficacy of different polarities of FTSTS

protocol, I determined the best FTSTS parameters. The optimal parameters to increase

the average synaptic weight were a pulse interval of 10 ms, a pulse width of 1 ms, an

inverted standard FTSTS polarity of (aE = −1 and aI = 1), and a train-offset time of

−0.5 ms for an amplitude of 2 nA. While I could have chosen a higher amplitude, I

chose 2 nA, since the rate of change in the average synaptic weight to increase the

synaptic weight plateaued at higher amplitudes. Additionally, an amplitude of 2 nA

induced a substantial decrease in the average synaptic weight when I applied the

opposite polarity. Since the primary goal was to increase the synaptic weight to stop

the neocortical seizure, I chose a pulse amplitude of 2 nA for the FTSTS protocol

to increase and decrease the synaptic weight. The best parameters to decrease the

average synaptic weight were a pulse interval of 10 ms, a pulse width of 1 ms, an

inverted standard FTSTS polarity of (aE = −1 and aI = 1), and a train-offset time

of −2 ms. I applied the FTSTS protocol to my biophysically constrained neocortical-

onset seizure model with the best parameters to increase and decrease the average

synaptic weight as shown in Figure 5.10. Both FTSTS protocol were applied at the

10 sec mark for 5 sec. Figure 5.10A shows after I applied the FTSTS protocol the

initial seizure stopped and no further seizure activity was observed for the rest of the

simulation. The FTSTS protocol increased the average synaptic weight while it was

applied, which is shown in Figure 5.10B. I then applied the FTSTS protocol to decrease

the average synaptic weight. Figure 5.10C shows the raster plot of the simulation

where the FTSTS was applied and initially stopped the seizure. Shortly after the first

seizure was prevented, very strong entire network seizures began to emerge. These

full seizures continued to spontaneously occur for the rest of the simulation. The

optimal FTSTS protocol decreased the average synaptic weight 30 nS over the 5 sec

FTSTS duration (see Figure 5.10D).
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5.3.7 Integration of the FTSTS with Optogenetic Techniques

One potential physical constraint of my FTSTS protocol is the requirement that

the excitatory and inhibitory neuron populations are spatially separable and can

be selectively stimulated, which may be difficult for the neocortical excitatory and

inhibitory neurons. In order to address this physical constraint, I inserted two

different optogenetic channelrhodopsins into the excitatory and inhibitory neurons.

Then, I examined how the spatially selective optogenetic stimulation of the different

neuron population could be integrated into my FTSTS protocol to control the

average E-to-I synaptic weight and the seizure activity of the network. The two

channelrhodopsins that I considered were Chronos and Chrimson, which were shown

to selectively respond to blue (460 nm) and red (625 nm) light, respectively (Klapoetke

et al., 2014). A schematic of the optogenetic set-up is shown in Figure 5.11A where

the channelrhodopsin Chronos was inserted into the excitatory neurons and the

channelrhodopsin Chrimson was inserted into the inhibitory neurons. Then, each

neuron population was spatially and temporally stimulated with different light

wavelengths turned on for 4 ms. After incorporating the optogenetic dynamics

into each neuron population, I integrated the optical stimulation of the two neuron

population with my FTSTS.

First, I integrated the optogenetic stimulation of the excitatory and inhibitory

neurons with my FTSTS to increase the average E-to-I synaptic weight of the network

and to decrease the prevalence of spontaneous neocortical seizures in the future. In

order to incorporate my FTSTS with the optogenetic stimulation, I stimulated the

excitatory neurons with a blue light applied 2 ms before stimulating the inhibitory

neurons with the red light, which increased the average E-to-I synaptic weight. The

red and blue lights were both turned on for a 2 ms duration. The blue and red light

pulses were applied at a frequency of 5 Hz. Again, I initiated a seizure with a seizure

initiating input applied for 3 sec shown as the red-square in Figure 5.11B. Then, I

applied the optogenetic FTSTS protocol at 10 sec for a 10 sec duration. The optogenetic

FTSTS was less efficient than direct stimulation with the biphasic electrical pulse trains

so the protocol required a 10 sec stimulation duration to increase the average synaptic
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weight by at least 15 nS, which is shown in Figure 5.11C. After the optogenetic FTSTS,

I did not observe any spontaneous seizures for the rest of the simulation (see Figure

5.11B). Therefore, the integration of optogenetic techniques into my FTSTS protocol

was able to overcome spatial constraints of the FTSTS protocol in the neocortex and

to prevent the emergence of spontaneous seizures.

After showing that the integration of the optogenetic technique into my FTSTS

protocol was able to increase the average synaptic E-to-I weight of the network, I

examined whether the optogenetic FTSTS protocol would also be able to decrease

the average E-to-I synaptic weight of the network and increase the prevalence

of spontaneous seizures. Since the Chrimson channelrhodopsin dynamics were

much slower than the Chronos channelrhodopsin dynamics, I swapped which

channelrhodopsin was inserted into the excitatory and inhibitory neuron populations.

In order to decrease the average synaptic, the Chronos channelrhodopsin was inserted

into the inhibitory population and the Chrimson channelrhodopsin was inserted

into the excitatory population. I was required to flip which channelrhodopsin

was inserted into each population because the slower Chrimson dynamics caused

unwanted neuron firing after optically stimulating the Chronos channelrhodopsin.

Then, I initiated a seizure with a seizure initiating input (red-box) and applied the

optogenetic FTSTS protocol at 10 sec for a 40 sec duration as shown in Figure 5.11D.

The optogenetic FTSTS protocol stimulated the inhibitory neurons with blue (470 nm)

light 2 ms before stimulating the excitatory neurons with red (625 nm) light. I applied

the optogenetic FTSTS protocol for 40 sec to decrease the average synatpic weight by

15 nS as shown in Figure 5.11E. After the FTSTS protocol, very strong seizures across

the entire neocortical network emerged for the rest of the simulation. This highlights

the ability of the optogenetic FTSTS to spatially and temporally selectively stimulation

the excitatory and inhibitory neurons to not only increase the synaptic weight but also

decrease the average synaptic weight of the network.
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5 .4 summary

In this chapter, I determined the optimal parameters of my previously developed

“Forced Temporal Spike-Time Stimulation" (FTSTS) protocol to control the average E-

to-I synaptic weight of a biophysically constrained neocortical-onset seizure model.

Previously, I showed that my FTSTS protocol was able to effectively control the

average synaptic weight and as a consequence the synchronous state of a generic

excitatory-inhibitory spiking neuron network (Schmalz and Kumar, 2019). Here, I

showed my FTSTS protocol was able to control the average synaptic weight of the

neocortical-onset seizure model in order to effectively stop seizures and prevent

further spontaneous seizures (see Figure 5.5A). When I flipped the polarities of my

FTSTS protocol, it increased the prevalence of spontaneous seizures (see Figure 5.5C).

After showing that my FTSTS protocol was able to control the average excitatory-

to-inhibitory synaptic weight in the neocortical model, I explored the effect of the

FTSTS pulse parameters, such as amplitude, train-offset time, frequency, pulse width,

and the pulse polarities, on the efficacy of the FTSTS protocol. I determined that

the optimal FTSTS parameters to increase the average synaptic weight were a pulse

interval of 10 ms, a pulse width of 1 ms, an inverted standard FTSTS polarity of

(aE = −1 and aI = 1), and a train-offset time of −0.5 ms. Additionally, I found

the optimal FTSTS parameters to decrease the average synaptic weight were a pulse

interval of 10 ms, a pulse width of 1 ms, an inverted standard FTSTS polarity of

(aE = −1 and aI = 1), and a train-offset time of −2 ms. Finally, I integrated two

different channelrhodopsin Chronos and Chrimson into the excitatory and inhibitory

neuron populations, respectively, in order to address physical spatial constraints of

stimulating the excitatory and inhibitory neuron population separately. I showed

that the optogenetic FTSTS protocol was able to effectively increase and decrease the

average synaptic weight of the biophysically constrained neocortical model.

Throughout my investigation of the parameter space of my recently developed

FTSTS protocol (Schmalz and Kumar, 2019), train-offset time induced the largest

changes in the excitatory-to-inhibitory synaptic weights. As the train-offset time

between the two pulses delivered to the excitatory and inhibitory neuron populations

was shifted, the efficiency and outcome of the FTSTS protocol drastically changed.
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For example in Figure 5.7A, when the train-offset time is shifted by 1.5 ms from 0.5

ms to 2 ms, the effect of the FTSTS protocol flipped from decreasing to increasing the

excitatory-to-inhibitory average synaptic weight. Since the FTSTS protocol is based

on controlling the spike-times of the two neuron populations, it follows that slightly

shifting the off-set times between the two pulse trains will have a significant effect

on the outcome of the stimulation protocol. This result has broader implications to

already existing desynchronizing stimulation protocol, such as coordinated reset (Tass,

2003a,b) and deep brain stimulation (DBS) (Fisher et al., 2010; Zangiabadi et al., 2019;

Krauss et al., 2020). While it was shown in (Schmalz and Kumar, 2019) that integration

of the FTSTS protocol into coordinate reset could improve the desynchronization

protocol, these results showed that off-setting stimulation trains of the different

stimulating electrodes may further improve the efficacy of the desynchronization

protocol by forcing spiking patterns in different neural population that result in the

long-term desynchronization of the synchronous neural network. Additionally, if

multiple high frequency stimulation (HFS) stimulating electrodes were inserted into

separate neural populations for DBS, then offsetting the pulse trains of each electrode

may improve neurostimulation therapies for already FDA approved diseases, such as

epilepsy (Zangiabadi et al., 2019) and Parkinson’s Disease(Krauss et al., 2020).

The investigation into the effect of the pulse interval (stimulation frequency)

parameter on the efficacy of the FTSTS protocol highlighted how smaller pulse

intervals (or higher stimulation frequencies) improved the efficacy of the protocol.

One exception I observed to this trend occurred when the pulse interval was

decreased from 10 ms (83 Hz) to 5 ms (142 Hz). Here, the efficacy generally

decreased, since the lower pulse intervals (higher stimulation frequencies) produced

an undesired spike-time pattern that counteracted the desired spike-time temporal

pattern. While the optimal FTSTS protocol pulse interval was 10 ms, large pulse

intervals (lower frequencies) were still able to control the excitatory-to-inhibitory

synaptic weight. These lower frequencies might be more desirable in experiments or

potentially in neurostimulation devices for epileptic patients, since lower frequencies

may produce fewer side effects. Furthermore, if my protocol were used to stop

and prevent seizures in in vivo experiments or in patients, the pulse interval
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(stimulation frequency) parameter could be used in a closed-loop control protocol to

oppose quickly or slowly changes synaptic weights with higher or lower frequencies,

respectively.

Generally, I found that the parameters pulse amplitude and pulse width influenced

the efficacy of the FTSTS protocol as expected. An increase in the pulse amplitude

increased the efficacy of the FTSTS protocol, but the efficacy plateaued when the

amplitude passed 2 nA. Additionally, I observed that smaller pulse widths favored a

more productive FTSTS protocol. This results from the higher temporal specificity in

the induced spike-times of each neuron population, which reduces extra unwanted

induced spiking. Importantly, I showed that even with the extra spiking induced by

longer pulse width the FTSTS protocol was able to control the average excitatory-to-

inhibitory synaptic weight of the network. This is critical for implementation of the

FTSTS into an experimental protocol where the stimulation pulse width may have a

lower width limit.

In order to address spatial constraints of stimulating the excitatory and inhibitory

populations separately, I integrated optogenetic stimulation dynamics into the FTSTS

protocol. I inserted the Chronos channelrhodopsin into the excitatory population and

the Chrimson channelrhodopsin into the inhibitory population. One of the major

benefits promoted by the optogenetic community is the high spatial selectivity of

optogenetic stimulation. Since the FTSTS protocol requires the selective stimulation

of separate neuron populations, optogenetic stimulation would fill this requirement.

Furthermore, I showed in Figure 3.20 that it is possible to integrate optogenetic

dynamics into the FTSTS protocol to control the average synaptic weight. One

experiment that would confirm my stimulation protocol would be to optogenetically

stimulate excitatory neurons in layers 1-3 of the cortex and inhibitory neurons in layers

2/3 (Harris and Shepherd, 2015) and record the changes in dynamics of the excitatory

and inhibitory neuron population in response to optogenetic FTSTS. If the FTSTS

increased the weight between the excitatory and inhibitory neocortical neurons and

the inhibitory population activity increases, this would suggest the FTSTS protocol is

able to control the synaptic strength between the two populations.
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Here, my goal was to determine the optimal FTSTS protocol parameters to

control the excitatory-to-inhibitory synaptic weights and as a consequence the seizure

state of the biophysical neocortical-onset seizure model. While I determined the

optimal FTSTS parameters to control the synaptic weights, my protocol relies on the

assumption that the excitatory and inhibitory neurons can be separately stimulated.

I showed that this major limitation could be overcome by integrating the FTSTS

protocol with an optogenetic stimulation protocol of the two neuron populations.

Additionally, the biophysically constrained neocortical-onset seizure model I used

(Liou et al., 2020) only considered neocortical excitatory and inhibitory neurons

and ignored any interconnectivity between neocortical neurons and neurons from

other brain regions, such as the thalamus (Allendoerfer and Shatz, 1994; Harris and

Shepherd, 2015). While I didn’t consider internetwork connections with neurons of

other brain regions, my protocol could be easily tested for this scenario. Also, the

more separable the neuron population are from each other the more the efficacy and

practicality of the FTSTS protocol would increase. In this work, I only considered

an open-loop FTSTS protocol. One future direction of this project would be to close

the loop and develop an optimal closed-loop framework to prevent the emergence of

seizures to treat epilepsy. Finally, one of the ultimate goals of this project is to show in

experiment that the FTSTS protocol is able to control the synaptic weight between two

neuron populations and control the synchronous state of a pathological synchronous

neuron network.
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A

B

C

D

F igure 5 .10 : Optimal FTSTS Parameters to Control the Average Synaptic Weight. I
applied my FTSTS protocol with a pulse amplitude of 2 nA, pulse interval of 10 ms,
a pulse width of 1 ms, and an inverted standard polarity (aE = −1 and aI = 1). The
initial seizure was induced by a seizure inducing input of 200 pA (red-bar). I applied
a train-offset time of −0.5 m to increase the average synaptic weight in (A) in order
to stop the initial seizure and prevent future seizures. (B) shows the increase in the
average synaptic weight induced by FTSTS protocol (green-bar). I applied a train-
offset time of −2 m to decrease the average synaptic weight in (C), which initially
stopped the first seizure but produced strong spontaneous seizure for the rest of the
simulation. (D) shows the decrease in the average synaptic weight induced by FTSTS
protocol (green-bar).
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F igure 5 .11 : Optogenetic FTSTS Control of the Average Synaptic Weight. I
incorporated optogenetic stimulation techniques into my FTSTS protocol to spatially
and temporally selectively stimulate the excitatory and inhibitory neurons with blue
(470 nm) and red (625 nm) light as shown in (A). A seizure was initiated with a seizure
initiating input of 200 pA applied for 3 sec shown as the red-box. Then, I applied
my optical FTSTS to control the average synaptic weight of the network (green-bar).
In order to increase the average synaptic weight, the Chronos channelrhodopsin was
inserted into the excitatory neurons and the Chrimson channelrhodopsin was inserted
into the inhibitory neurons. The raster plot in (B) shows the forced firing by the optical
stimulation and that no further seizure were observed after the optogenetic FTSTS
protocol. (C) shows the decrease in the average synaptic weight by the optogenetic
FTSTS protocol. In order to decrease the average synaptic weight of the network,
the Chronos channelrhodopsin was inserted into the inhibitory neurons and the
Chrimson channelrhodopsin was inserted into the excitatory neurons. (D) shows
the raster-plot of the excitatory neocortical neurons and the increased prevalence of
strong seizures after the optogenetic FTSTS protocol. (E) shows the decrease in the
average synaptic weight induced by the optogenetic FTSTS protocol.
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chapter 6

Summary and Directions for Future Work

6 .1 summary

In this dissertation, my focus was on developing neurostimulation strategies for

controlling plasticity dynamics in the brain in order to fill in the gaps of my

understanding of basic neuroscience questions and to develop novel therapies to treat

neurological diseases, such as Parkinson’s disease (PD) or epilepsy. In Chapters 2-

3, I investigated how plasticity dynamics were modulated by the release of different

neuromodulators, such as dopamine and acetylcholine, in the basal ganglia and the

hippocampus. Based on these results, I suggested new therapies to treat PD, such

as targeting the M4 receptors with a M4R antagonist, and new experiments that

will shed light on the temporal dopaminergic modulation of the SC-CA1 synaptic

plasticity in the hippocampus. In Chapters 4-5, I developed and optimized a novel

stimulation strategy called “Forced Temporal Spike-Time Stimulation" (FTSTS) that

is able to control the average synaptic weight of large excitatory-inhibitory neural

networks and as a result the synchrony level of the networks. In contrast to other

desynchronizing stimulation strategies, the FTSTS protocol could effectively drive

the network between the synchronous and asynchronous states where the network

would be in the driven state for a long-time without any further external input. I

expanded upon this result in Chapter 5 where the FTSTS protocol was optimized on

a biophysically constrained neocortical-onset seizure model.

In Chapter 2, I developed a biochemical computational model of corticostriatal

plasticity in the direct medium spiny neuron in order to investigate how the loss of

dopamine effects key plasticity proteins and how targeting the M4R can restore the

levels of these key plasticity protein. Using this model, I showed how decreases in

dopamine, which is associated with Parkinson’s disease, reduced the profile of key

corticostriatal plasticity signaling proteins. Additionally, I explored how the reduction

of key plasticity proteins, due to dopamine depletion, could be restored by targeting
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acetylcholine and calcium inputs. These results suggest that selectively targeting the

M4R may represent a novel therapeutic tool to treat symptoms of Parkinson’s Disease.

In Chapter 3, I developed a set of phenomenological models to describe

the temporal dose-dependent effect of the dopamine D1/D5 receptors agonists

SKF 38393, 6-bromo-APB, and dopamine, on the Schaffer-collateral CA1 (SC-CA1)

pyramidal neuron synaptic plasticity using published electrophysiological data

from hippocampal CA1 slice experiments on the % change in the field excitatory

postsynaptic potential (fEPSP) slope. I investigated the biochemical effects with the

electrical effects at the electrophysiological level in my model where I estimated the

model parameters using a Bayesian framework with the existing electrophysiological

data in the literature of diverse hippocampal CA1 slice experiments. I used my

biophysical model to make quantitative predictions of the temporal dose-dependent

modulation of the HFS/LFS induced LTP/LTD in SC-CA1 synapses by the various

D1/D5 agonists. My model was capable of making quantitative predictions of the

available experimental results under diverse HFS/LFS protocols. Furthermore, my

model predictions showed a strong nonlinear dependency of the modulation of

LTP/LTD by D1/D5 agonists that depended on the relative timing between the release

of the D1/D5 agonists at various concentrations and the HFS/LFS protocol. Out of

these modeled observation, I have suggested a set of experiments, such as

(1) the application of a high and low concentration of the D1/D5 agonist SKF

38393 immediately before a HFS or LFS protocol in order to verify my model

predictions of a concentration dependent bifurcation of the action by the

dopamine agonist on SC-CA1 synaptic plasticity, and

(2) the application of a high concentration of the dopamine agonist SKF 38393

immediately before two different LFS protocols that have been shown to induce

the same level of LTD, but have dramatically different stimulation durations

to validate my limited resources modeling hypothesis and support my model

predictions.

In Chapter 4, I developed a novel stimulation strategy “Forced Temporal Spike-

Time Stimulation (FTSTS)” that I showed, in simulation, was able to efficiently
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desynchronize large excitatory-inhibitory (E-I) spiking neuron networks and keep

the network desynchronized without any further input by harnessing the synaptic

weight of the network. In contrast to other desynchronization stimulation strategies,

my strategy focused on harnessing the underlying synaptic plasticity of the network

to control the average network synaptic strength by forcing the spiking neurons

to fire in specific temporal patterns, while the other stimulation strategies purely

focus on suppressing the synchronous neural activity. Since my neurostimulation

strategy focuses on controlling the temporal firing pattern, it provided complete

control over the synchrony level of the network for a long period of time, not

just desynchronization. Furthermore, I showed how combining FTSTS into already

existing stimulation protocols, such as coordinate reset (CR), can enhance the overall

performance of the CR stimulation strategy in desynchronizing large neural networks.

In Chapter 5, I explored the parameter space of the FTSTS protocol developed

in Chapter 4 and determined the optimal parameters to efficiently control the

average synaptic weight. I applied my strategy to a recently developed biophysically

constrained neocortical-onset seizure model (Liou et al., 2020) and showed my strategy

was able to control the average synaptic weight and suppress the emergence of

spontaneous seizures or induce more spontaneous seizures. Using this biophysically

constrained model, I optimized parameters of the FTSTS protocol. Finally, I

integrated the FTSTS into an optogenetic stimulation framework in order to show how

optogenetic stimulation could be used to overcome spatial constraints of separately

stimulating the excitatory and inhibitory neuron populations.

6 .2 future directions

6.2.1 Development of biochemical signaling model of D2R and A2aR

In Chapter 2, I developed a biochemical kinetic model of the direct pathway MSN

intracellular signaling pathways to study the effect of the loss of dopamine and the

interaction of dopamine, acetylcholine, and calcium. I used the model to suggest

potential new pharmaceutical neuromodulation strategies to treat the symptoms of

PD. Here, I only considered the direct pathway MSN and ignored the indirect pathway
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MSN. Therefore, a future direction of this work would be the development of a

biochemical kinetic model of the intracellular pathways of the indirect pathway MSN

in order to study the interaction of dopamine, adenosine, and calcium. This model

could be used to study how the balance between the direct and indirect pathway

pathways change as dopamine is depleted in the Parkinsonian state and develop novel

strategies to restore the healthy dynamics.

6.2.2 Biophysiologically 3D detailed modeling of the the hippocampus

In Chapter 3, I developed a phenomenological model to describe the temporal dose-

dependent dopaminergic modulation of high frequency stimulation (HFS) or low

frequency stimulation (LFS) that modulated the induced long-term potentiation (LTP)

or long-term depotentiation (LTD), respectively. I modeled the stimulation induced

plasticity changes of the SC-CA1 synapse with a frequency dependent HFS/LFS

model. In order to compare my model predictions to more experimental data on

the dopaminergic modulation of the SC-CA1 synapse, a plasticity model that is

able to account for other type of stimulation protocol induced plasticity changes,

such as spike-timing dependent plasticity (STDP). Furthermore, a more biophysically

representative model of the CA1 pyramidal neurons could help validate my model

predictions. Since the different parts of the computational model of the temporal dose-

dependent dopaminergic modulation of the SC-CA1 synapse could be easily swapped

for better models as they become available, a more biophysically representative model

of the CA1 neuron and plasticity could easily be incorporated in my previously

developed model from Chapter 3. If these results support the model predictions

from Chapter 3, it would validate my model predictions further.

The temporal dose-dependent dopaminergic modulation of SC-CA1 synaptic

plasticity model could be expanded upon by replacing the CA1 pyramidal

neuron with a morphologically and biophysically accurate single CA1 pyramidal

neuron model. Previously, other researchers have developed morphologically and

biophysically accurate models of CA1 pyramidal neurons (Migliore et al., 2018)

and reduced models that capture the same experimental variability as the more

morphologically accurate models (Cutsuridis and Poirazi, 2015; Cutsuridis et al.,
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2010; Turi et al., 2019; Tomko et al., 2021). The morphologically and biophysically

accurate single compartment models of the CA1 pyramidal neuron reconstruct

the experimentally determined neuron morphology and incorporate the intrinsic

electrophysiological properties of the various ion channels of the CA1 pyramidal

neuron. These electrophysiological models have been expanded by various groups

to include intracellular biochemical signaling dynamics in order to capture the effect

of neuromodulators, such as acetylcholine (Mergenthal et al., 2020). Additional

researchers have extend biophysical model developed by Migliore et al. (2018) to

include facilitation and depression of post-synaptic potentials (Ecker et al., 2020).

Therefore, the more morphologically and biophysically accurate models of the CA1

pyramidal neuron could be incorporated into my model. Additionally, inclusion

of the experimentally intracellular biochemical pathways similar to those used in

the cholinergic model (Mergenthal et al., 2020) could be incorporated into the

morphologically accurate model of the CA1 pyramidal neuron (Migliore and Lansky,

1999) to examine how intracellular signaling pathways activated by stimulating the

Schaffer-collateral interact with the biochemical signaling pathways activated by the

dopamine agonist. These results would further support my model predictions.

6.2.3 Closing the loop of FTSTS

In Chapters 4 and 5, I developed a novel open-loop stimulation strategy called “Forced

Temporal Spike-Time Stimulation" (FTSTS) where the parameters and the duration

of the FTSTS protocol were determined prior to applying the protocol. A more

efficient approach to controlling the synchrony of a spiking neural network would

be a closed-loop control policy that responds to the changing dynamics. A future

direction of the FTSTS strategy is to develop a close-loop control policy to control

the state of a synchronous neural network. Towards this goal, the optimized FTSTS

parameters determined in Chapter 5 could be used to inform the development of an

optimal closed-loop FTSTS policy. The integration of a closed-loop control policy may

produce a more robust neurostimulation strategy that would be capable of handling

fluctuations in brain dynamics. Additionally, a close-loop FTSTS control policy will

reduce the frequency of human hand-tuned modifications of the stimulation strategy.
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F igure 6 .1 : A schematic of the closed-loop optimal FTSTS design.

A successful implementation of a closed-loop FTSTS control policy would establish

a proof-of-concept for controlling abnormally synchronized neuronal activity in a

disease model

In order to develop the model-based predictive control (MPC) policy for

controlling the synchrony of a spiking neuron network, the MPC policy could first

be developed for a generic excitatory-inhibitory spiking neuron case described in

Chapter 4, and then it could be extended to the biophysically constrained neocortical-

onset seizure model. In the generic E-I neuron network case, the synchrony of the

network measured by the Kuramoto order parameter could be used as a feedback

signal to inform the MPC policy. Typically, the optimization problem formulation

in the MPC framework involves minimizing a model predicted cost or reward (e.g.,

network synchrony) over a finite time horizon into the future while satisfying the

input and output constraints (e.g., physiological bounds on the FTSTS amplitude,

bounds on neuronal firing rates, etc.). In this case, one could formulate the reward

function based on the E-I network synchrony, computed as the Kuramoto order

parameter, although other reward functions, such as the average synaptic weight

between the excitatory and inhibitory neurons computed based on the spiking data

should be considered, as well. Upon developing a close-loop FTSTS protocol, the

robustness of the closed-loop system to noise/perturbations would also need to

be investigated by leveraging closed-loop analysis techniques embedded in MPC

literature. Then, the MPC protocol could be extended to the neocortical-onset seizure
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model. One potential hurdle to extending MPC to the neocortical model is an

adequate synchrony or seizure state metric.
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