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Abstract

Zoonotic pathogens spread by wildlife continue to spill over into human populations

and threaten human lives. A potential way to reduce this threat is by vaccinating wildlife

species that harbor infectious diseases of humans. Unfortunately, even in cases where

vaccines can be distributed en masse as edible baits, achieving levels of vaccine coverage

sufficient for pathogen elimination is rare. Developing vaccines that self-disseminate may

help solve this problem by magnifying the impact of limited direct vaccination. Although

models now exist that quantify how well these self-disseminating vaccines will work when

introduced into temporally stable wildlife populations, how well they will perform when

introduced into populations with pronounced seasonal dynamics remains unknown. Here

we develop and analyze mathematical models of fluctuating wildlife populations that allow

us to study how reservoir ecology, vaccine design, and vaccine delivery interact to influence

vaccine coverage and opportunities for pathogen elimination. Our results demonstrate that

the timing of vaccine delivery can make or break the success of vaccination programs, and

that the importance of timing is greater for some types of vaccines than others. As a

general rule, the effectiveness of self-disseminating vaccines is optimized by introducing

after the peak of seasonal reproduction when the number of susceptible animals is near its

maximum.
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CHAPTER 1

Introduction

The majority of human infectious diseases are caused by pathogens with animal

origins (Jones et al. 2008). As the human population continues to encroach on wildlife

habitat, zoonotic pathogens such as Ebola virus, Borrelia burgdorferi, Lassa virus, Han-

tavirus, and Nipah virus pose an increasing threat of spillover into the human population

(Gottdenker et al. 2014; Pongsiri et al. 2009; Keesing et al. 2010; Coltart et al. 2017; Jones

et al. 2008). Several of these emerging infectious diseases have had devastating impacts

on public health. The 2014 Ebola outbreak, for example, killed more than 11,000 people

(Coltart et al. 2017), and the ongoing SARS-CoV-2 pandemic has killed millions (WHO

2021). The SARS-CoV-2 pandemic has made the perils of our current reactionary approach

to managing emerging infectious disease clear and helped to focus attention on methods

that proactively reduce the risk of spillover and emergence.

Vaccinating wildlife reservoir populations is a proven method for lowering pathogen

prevalence and reducing the risk of spillover into the human population (Hampson et al.

2007; Velasco-Villa et al. 2017). For example, oral rabies vaccines that are distributed in

bait-form have proven to be effective at controlling rabies in fox and raccoon populations

(Freuling et al. 2013; Sidwa et al. 2005; MacInnes et al. 2001). However, even in these cases

where an effective bait-deliverable vaccine exists, it remains difficult to achieve a level of

vaccination coverage sufficient for pathogen elimination (Ramey et al. 2008; Sattler et al.

2009). The key obstacles are the cost and logistical difficulty of distributing vaccine into

inaccessible wildlife populations. For zoonotic infectious diseases with short-lived reservoirs
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(e.g., rodents), the challenge is compounded by the rapid dilution of immunity established

through traditional vaccination. These challenges suggest that distributing traditional

vaccines as baits is unlikely to provide a general solution (Nuismer et al. 2020; Mariën

et al. 2019).

Recent developments in vaccine design offer fresh solutions to this long-standing prob-

lem by creating vaccines that are capable of some degree of self-dissemination. Self-

disseminating vaccines can be either transferable or transmissible. Development of trans-

ferable vaccines has focused on applying topical vaccine-laced gels to individual animals

(Bakker et al. 2019). When other individuals engage in natural allogrooming behaviors

common in some reservoir species (e.g., bats), they ingest the vaccine and become vacci-

nated. As a result, the number of animals that can be vaccinated is substantially multiplied

(Bakker et al. 2019). In contrast to transferable vaccines which do not generate sustained

chains of self-dissemination, transmissible vaccines are engineered to be contagious, and are

potentially capable of indefinite self-dissemination within the reservoir population (Nuis-

mer and Bull 2020). A diverse range of modeling studies have demonstrated that both

types of self-disseminating vaccines reduce the effort required to achieve herd immunity

within wildlife reservoir populations (Nuismer and Bull 2020; Bakker et al. 2019; Nuis-

mer et al. 2016; Layman et al. 2021; Varrelman et al. 2019; Basinski et al. 2018, 2019).

We do not yet know, however, how the introduction of these vaccines can be best timed

to maximize their impact when used in reservoir species that have pronounced seasonal

dynamics.

Previous modeling work has demonstrated that the success of traditional wildlife vacci-

nation campaigns can be improved by timing vaccine introduction to coincide with seasonal
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birth pulses in short-lived animal species (Schreiner et al. 2020). Although intuition sug-

gests similar results should hold for self-disseminating vaccines, the quantitative details

remain unknown and important questions remain unanswered. For instance, is timing

vaccine introduction more important in transferable than transmissible vaccines? Do the

detailed transmission dynamics of the vaccine (e.g., transmission rate and duration) in-

fluence the optimal timing of introduction? Does timing matter more for some reservoir

species than others? Here we develop a general mathematical modeling framework for

transmissible and transferable vaccines and use it to quantify the consequences of intro-

ducing self-disseminating vaccines at different times. We then apply our model to two

specific reservoir species of important humans pathogens Mastomys natalensis, the multi-

mammete rat (Lassa virus) and Desmodus rotundus, the common vampire bat (rabies virus)

to provide clear examples of potential applications of these new vaccines. The specific ques-

tions we address are: 1) What is the optimal time of year to distribute a self-disseminating

vaccine? 2) In which situations is optimal timing critical for success? 3) How does the

duration of self-dissemination affect the optimal implementation of vaccines?
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CHAPTER 2

Methods

Methods

We use a SIR (Susceptible-Infected-Recovered) modeling framework to study how the

timing of vaccination influences the ability of a self-disseminating vaccine to protect a

population from a pathogen. We focus our efforts on populations that undergo seasonal

fluctuations in population density driven by a well-defined seasonal pattern of reproduc-

tion. Our models assume vaccines are introduced into relatively small geographic areas

within which the reservoir population is well mixed and of modest size (e.g., 2000 individ-

uals). These assumptions are motivated by rodent species such as Mastomys natalensis

and Peromyscus maniculatis that harbor important human pathogens such as Lassa virus

and Sin Nombre virus, respectively (Leirs et al. 1994; Luis et al. 2010).

In the model, we use a time-dependent birth function that is a variation of the periodic

Gaussian function developed by Peel et al. (2014). To help facilitate the analysis of a stably

cycling population, we use this functional form to describe a density-independent rate of

births. We also adjusted this birth function to be in units of days rather than years, and

added a variable to adjust the day that the function reaches its maximum (tp):

b(t) = k · e−s·cos2 ( π
365

·(t−(tp+
365
2

)) (2.1)

where s tunes the synchrony of births, and k is set so that the average annual population

size is equal to N̄ (see appendix).
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Direct vaccination is assumed to occur each year beginning tv days after the start of

the reproductive season and continue for Vl days. Assuming Nv vaccine-laced baits are

distributed each year (transmissible vaccine) or Nv animals are painted with vaccine-laced

gel (transferable vaccine) at a rate σ(t), the rate at which individuals are vaccinated is

given by:

σ(t) =


Nv

Vl
tv ≤ mod(t, 365) < tv + Vl

0 Otherwise
. (2.2)

2.0.1 Transmissible Vaccine Model

Our transmissible vaccine model contains four classes: individuals that are susceptible

to both the pathogen and the vaccine (S), individuals that are infected with the pathogen

(P ), vaccinated individuals that are immune to the pathogen and capable of transmitting

vaccine to susceptible individuals (V ), and individuals that have immunity due to recovery

from pathogen infection or from vaccination (R). For simplicity, we assume individuals

that have recovered from either the pathogen or the vaccine maintain lifelong immunity to

both, and that co-infection with vaccine and pathogen does not occur. Individuals that are

infected with the pathogen recover at rate γP , and individuals infected with the vaccine

recover at rate γV . We assume density-dependent transmission of the pathogen and the

vaccine, with transmission coefficients βP and βV respectively. Individuals may also be lost

from the system due to pathogen-induced mortality at rate v. Setting the transmission

rate of the vaccine βV equal to zero (more on R0 below) yields a model for a traditional
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vaccination campaign.

Susceptible individuals can be vaccinated directly or by coming into contact with

vaccine-infected individuals. Because vaccine-laced baits can be consumed by any indi-

vidual in the population, including individuals already immune to the pathogen, waste is

inevitable. We model this feature of vaccine distribution by multiplying the the rate of

vaccines deployed at time t (σ(t)) by the fraction of susceptible individuals ( S
N

) in the

population. Thus, if the entire population is susceptible, vaccination efficiency is high and

waste is low. In contrast, if the population contains a large proportion of immune individ-

uals, vaccination efficiency is low and waste is high. Here, N denotes the total population

size. See table 2.1 for a description of parameters. Together, these assumptions lead to

the following system of differential equations:

dS

dt
= b(t)− βP S P − βV S V − σ(t)

S

N
− d S (2.3a)

dP

dt
= βP S P − γP P − v P − dP (2.3b)

dV

dt
= βV S V + σ(t)

S

N
− γV V − d V (2.3c)

dR

dt
= γP P + γV V − dR. (2.3d)
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2.0.2 Transferable Vaccine Model

Our transferable vaccine model contains five classes: individuals that are susceptible

to the pathogen (S), Individuals that are currently infected by the pathogen (P ), indi-

viduals that are immune to the pathogen (R), individuals that are currently infected by

the pathogen and also carrying the vaccine laced topical gel (Pg), and individuals that are

immune to the pathogen and also carrying the vaccine laced topical gel (Rg). We assume

vaccine laced gel is applied topically to captured animals at rate σ(t). These captured

animals are also assumed to be directly vaccinated and to immediately transition to the

Rg class. In contrast to the transmissible vaccine model, the rate of vaccination is multi-

plied by 1
S+P+R

rather than 1
N

. This is because we assume that if individuals have gel on

them, we will be able to recognize these individuals and will not apply more gel to them.

Allogrooming behavior allows an individual to become vaccinated at rate βg if it encoun-

ters an individual carrying the vaccine laced gel. At the same time, however, allogrooming

behavior also depletes the quantity of vaccine-laced gel an individual carries. We model

this phenomenon by assuming the topical gel is lost at rate αN which implies gel is lost

more rapidly in densely populated animal populations. Additionally, we assume the topical

gel loses its ability to serve as a vaccine at rate γg.

We assume that transfer of the vaccine can occur only from an individual to which

vaccine laced gel has been directly applied and that vaccine transfer is density dependent.

Pathogen transmission is also assumed to be density dependent and to occur at rate βP from

contact with either a pathogen-infected individual (P ) or a gelled and pathogen-infected

individual (Pg). Together, these assumptions lead to the following system of differential
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equations. Parameter descriptions and values can be found in table 2.1.

dS

dt
= b(t)− βP S (P + Pg)− βg S (Pg +Rg)− σ(t)

S

S + P +R
− d S (2.4a)

dP

dt
= βP S (P + Pg)− σ(t)

P

S + P +R
+ αN Pg − γP P + γg Pg − v P − dP (2.4b)

dPg

dt
= σ(t)

P

S + P +R
− αN Pg − γP Pg − γg Pg − v Pg − dPg (2.4c)

dR

dt
= βg S (Pg +Rg)− σ(t)

R

S + P +R
+ αN Rg + γP P + γg Rg − dR (2.4d)

dRg

dt
= σ(t)

S +R

S + P +R
− αN Rg + γP Pg − γg Rg − dRg (2.4e)

(2.4f)

2.0.3 Assessment of Vaccination Strategy

We evaluate the success of a vaccination campaign by comparing the reduction of

pathogen-infected individuals it achieves relative to the situation where no vaccination

occurs. For each type of vaccine and distribution strategy, we use the deSolve package in

R to numerically solve the corresponding system of differential equations (Soetaert et al.

2010). For each combination of parameters we solve the system of differential equations

twice: once with vaccination and once without vaccination. Initial conditions are identical

for these two cases and both are burned in for 15 years, allowing the system to settle into

stable seasonal cycles. One numerical solution is continued from this point for ten years
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with no vaccination occurring and the other is run with vaccination for ten years after

the first day of vaccination. We then extract from each of the numerical solutions the

average number of pathogen-infected hosts over the ten year period following the burn-in.

Specifically, we calculate the fractional reduction of pathogen-infected individuals (average

level of pathogen reduction) provided by vaccination as:

x0 − xv

x0

(2.5)

where x0 is the average number of pathogen-infected individuals in the scenario without

vaccination and xv is the average number of pathogen-infected individuals with vaccination.

We use this comparative approach to explore how the benefits of vaccination change as a

function of vaccine properties, reservoir properties, and the timing of vaccine introduction.

2.0.4 Case Studies

Up to this point we have used quite general models to explore a wide range of pa-

rameter space. Our goal was to develop a general understanding of the performance of

self-disseminating vaccines as a function of reservoir biology, vaccine properties, and intro-

duction protocol. Here we take a much more focused approach to the problem and tune

our models to the biology of two specific systems where self-disseminating vaccines have

been broadly proposed as a useful tool and for which vaccine development is currently

underway. Specifically, we focus on the primary rodent reservoir of Lassa virus, Mastomys

natalensis and a bat reservoir of rabies virus Desmodus rotundus. A list of parameters used

in both the general simulations and specific case studies can be found in Table 2.1.
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Table 2.1: List of parameters used. Values for α were

chosen by first exploring a range, and then deciding on

an intermediate value. For most simulations, this value

reflects that on average, individuals with gel lose gel due

to grooming in 8 days. We explored a range of values

that are not represented in the figures in the general re-

sults section. However these parameters did not change

the qualitative results discussed. For parameters where a

range of values were used, an asterisk in the general val-

ues column indicates the default parameters presented

in the general results section. Parameter values in fig-

ures are also indicated in the figure caption. The values

used for the case studies are also presented here with the

Rodent values and Bat values columns.

Parameter list

Parameter Description General

values

Rodent

values

Bat values Citation

tv day in year

of vaccine

initiation

(1–365) (1–365) (1–365) See text
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Parameter list

Parameter Description General

values

Rodent

values

Bat values Citation

vl Duration

of the vac-

cination

campaign

(1–365) (1–365) (1–365) See text

s Synchrony

of births

(1, 5, 10∗) 2.48 2.11 Leirs et al.

(1997); Black-

wood et al.

(2013)

tp Day in

year of

peak birth

rate

100 100 100 see text

d Natural

mortality

rate

(1/365∗,

1/(365/2),

1/(365*5))

1/365 1/(365*3.5) Nuismer et al.

(2020); Lord

et al. (1976)

N̄ Average

population

size

2000 2000 240 Mari Saez et al.

(2018); Bakker

et al. (2019)
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Parameter list

Parameter Description General

values

Rodent

values

Bat values Citation

R0,V R0 of the

vaccine

(0,0.75,

1.5, 2.5)

(0, 0.75, 1,

1.5, 2)

(0, 0.75, 1,

1.5, 2)

Varrelman et al.

(2019); Bakker

et al. (2019);

Griffiths et al.

(2020)

R0,P R0 of the

pathogen

(0,0.75,

1.5, 2∗)

1.5 1.5 Nuismer et al.

(2020); Black-

wood et al.

(2013); Hamp-

son et al. (2009)

γP Recovery

rate of the

pathogen

(1/21∗,

1/182.5,

1/365)

1/21 1/21 Nuismer et al.

(2020); Bakker

et al. (2019)

γV Recovery

rate of

the trans-

missible

vaccine

(1/21∗,

1/182.5,

1/365)

1/365 1/365 Varrelman et al.

(2022); Griffiths

et al. (2020)
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Parameter list

Parameter Description General

values

Rodent

values

Bat values Citation

γg Recovery

rate of

the trans-

ferable

vaccine

(1/21∗,

1/182.5,

1/365)

1/7 1/2 Nuismer et al.

(2020); Bakker

et al. (2019)

βP Rate of

pathogen

transmis-

sion

- - - See appendix

βV Rate of

transmissi-

ble vaccine

transmis-

sion

- - - See appendix
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Parameter list

Parameter Description General

values

Rodent

values

Bat values Citation

βg Rate of

trans-

ferable

vaccine

transmis-

sion

- - - See appendix

v Virulence

of

pathogen

(0∗,1/30,

1/100,

1/365)

0 10% of the

number in-

fected

Blackwood et al.

(2013); Bakker

et al. (2019)

α Rate at

which in-

dividuals

remove gel

( 1
1.0×104

,

1
1.5×104

∗,

1
2.0×104

)

1
1.5×104

1
1.5×104

See caption
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CHAPTER 3

Results

3.1 General Results

3.1.1 Temporal Dynamics of Immunity Depends on the Type of

Self-Disseminating Vaccine

Previous work has demonstrated that self-dissemination increases vaccine coverage and

reduces the effort required for disease eradication (Nuismer and Bull 2020). However it re-

mains unclear how self-disseminating vaccines will perform in fluctuating populations. To

establish baseline expectations for the performance of self-disseminating vaccines in fluctu-

ating reservoir populations we begin by studying the dynamics of immunity in the absence

of the pathogen. Numerical analyses performed over a wide range of parameters demon-

strate that the temporal dynamics of immunity differ across vaccine types in characteristic

ways (Figure 3.1). For conventional vaccines that lack the ability to self-disseminate, vac-

cination results in a rapid increase in the number of vaccinated individuals, followed by a

decrease due to the continued influx of susceptible individuals during the birthing season.

Transferable vaccines result in similar temporal dynamics but show a transient increase in

immunity from self-dissemination following vaccine introduction. In contrast, transmissi-

ble vaccines with an R0 > 1 can continue to increase the number of immune individuals

long after vaccine introduction due to their ability to generate self-sustaining chains of

transmission. Because all individuals die at a constant rate d, the number of immune

individuals decreases until the next vaccination campaign for each type of vaccine. We
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use the concept of the basic reproductive number, denoted as R0, to compare the relative

transmissibility of the vaccine and the pathogen. R0 represents the average number of new

infections caused by a single infected individual that is introduced into a fully susceptible

population (Keeling and Rohani 2011). More details on the R0 derived for this work can

be found in the appendix. With self-disseminating vaccines, the level of increase in the

number of immune individuals in the population is dependent on the vaccine R0 (Figure

3.1).

3.1.2 Timing is Critical for Most Self-Disseminating Vaccines

Previous work has shown that the timing of delivery for conventional vaccines matters

in short-lived animals with distinct reproductive seasons (Schreiner et al. 2020). Here,

our goal is to evaluate whether timing is more important for transmissible or transferable

vaccines and under what conditions is timing critical. To this end, we compared the

reduction in pathogen prevalence achieved for vaccination campaigns that are initiated at

different times of year and last for various lengths of time. Our results demonstrate that

distributing self-disseminating vaccines a few days after the peak of the birthing season

will substantially reduce pathogen prevalence (Figure 3.2). This is when the population

density is near its seasonal maximum, and contains the greatest proportion of susceptible

individuals.

For both types of self-disseminating vaccine, opportunity for pathogen reduction is

greater with a larger vaccine R0. In addition to facilitating pathogen eradication, increas-

ing the transmissible vaccine’s R0 also increases the range of times over which a vaccine
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Figure 3.1: The temporal dynamics of immunity for standard, transferable, and transmis-
sible vaccines in the absence of a pathogen. For each type of vaccine, 200 vaccines are dis-
tributed on day 50, which corresponds to the mid-point of the 100 day birthing season (gray
region). The lines show the number of immune individuals in the population over three
years of repeated vaccination. R0 of the standard, transferable, strongly transmissible, and
weakly transmissible are: (0, 1.5, 1.5, 0.75) respectively. The remaining parameters are:
s = 10, tp = 100, d = 1/365, N̄ = 2000, γP = 1/21, γV = 1/21, α = 6.6 · 10−5, Vl = 1 day.
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Figure 3.2: Optimal timing for self-disseminating vaccines as a function of vaccine R0.
Here the vaccination campaign lasts 1 week. R0 refers to the vaccine R0. Pathogen R0

is fixed at 2. Both the transmissible and transferable vaccine disseminate for an average
of 21 days (γv = 1/21) and infection with the pathogen has a mean duration of 21 days
(γp = 1/21). Grey region represents the reproductive season. The remaining parameters
are: s = 10, tp = 100, d = 1/365, N̄ = 2000, α = 6.6 · 10−5, NV = 200.
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can be introduced and still substantially reduce the pathogen’s prevalence (Figure 3.2).

This occurs because increased transmission allows the vaccine to be introduced earlier in

the reproductive season and yet still reach individuals that will be born later through

downstream transmission. In contrast, with reduced transmission (lower R0), if a trans-

missible vaccine is introduced too early, chains of transmission are generally too short to

reach individuals born later in the season resulting in wasted vaccine. Once the R0 of

the transmissible vaccine exceeds that of the pathogen R0, timing matters little and sig-

nificant pathogen reductions can be accomplished for a broad range of introduction times

(Figure 3.2). This is because a vaccine more transmissible than the target pathogen can

out-compete the pathogen and will inevitably displace it from the population over time

(Nuismer et al. 2016). A fundamental difference for transferable vaccines is that they never

reach this same level of insensitivity to the timing of introduction. The reason for this is

that they are (by definition) capable of spreading only from individuals that have been

directly vaccinated and thus generate chains of transmission only one step long. Because

of this limited spread an increased R0 of the transferable vaccine results in higher levels of

pathogen reduction, but not an increase in the range of times for high pathogen reduction

(Figure 3.2).

As mentioned above, transmissible vaccines with an R0 > 1 but less than the R0 of the

pathogen have a wide range of times of which > 90% pathogen reduction can be achieved.

This range corresponds to when the birthing seasons has begun. Distributing vaccine dur-

ing the birthing season allows for the transmissible vaccine to infect susceptible individuals

as they are introduced to the population. However for lower R0 values, optimal timing

(highest level of pathogen reduction) is slightly after the peak of the birthing season. Sim-
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Figure 3.3: Level of pathogen reduction achieved for both transmissible vaccines and trans-
ferable vaccines at different times and for different durations of a vaccination campaign.
The R0 in the figure refers to the vaccine R0. The pathogen R0 is set to 2. The remaining
parameters are set to the values described in Figure 3.1.
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ilar to the transmissible vaccine, the optimal time for the implementation of a transferable

vaccine is slightly after the peak of the host birthing season and over a short period of time

(Figure 3.2). This ensures a large number of susceptible individuals in the population and

thus allows for the highest level of vaccination to be achieved leading to higher levels of

pathogen reduction. In addition, for transferable vaccines or transmissible vaccines that

are unable to displace a pathogen autonomously, pathogen reduction is not achieved if they

are administered after the birthing season when newly born individuals have already been

infected.

For vaccination campaigns of feasible duration (one week - 2 months) and using the

same total amount of vaccine, the duration of the vaccination campaign matters little.

This insensitivity arises primarily because birth rates change little over such short periods

of time in most systems. In special cases where it is possible to distribute vaccine over

greater periods of time, differences do begin to develop (Figure 3.3 vertical axis). Generally

a longer vaccination campaign results in a lower overall vaccination rate because vaccines

are distributed when few susceptible individuals exist within the reservoir population and

are thus wasted. If, however, the vaccination campaign begins at the wrong time (i.e.,

after the birthing season), extending the duration of vaccine-delivery can compensate to

some degree (Figure 3.3). If the timing of birthing within the reservoir population is

known, however, the best solution for maximizing the reduction in pathogen prevalence is

to distribute vaccines shortly after the peak of the birthing season and over a relatively

short amount of time.
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3.1.3 Short Durations of Self-Dissemination Lead to More Effec-

tive Vaccines

Because vaccines may differ widely in the period of time over which they self-disseminate,

we explored how this property influenced the optimal timing of delivery. For both types

of vaccines, we considered scenarios where the vaccine self-disseminated for 21, 182, and

365 days on average. In these scenarios individuals had an average lifespan of one year,

these infectious periods model vaccines that generate short-lived acute infections as well

as vaccines that generate lifelong chronic infections. To evaluate the specific affect of the

duration of self-dissemination we held the vaccine R0 = 1.5 and evaluated the level of

pathogen reduction that was achieved. A necessary consequence of holding R0 constant is

that changing γV also changes the transmission rate of the vaccine βV . Thus vaccines with

a short duration of self-dissemination also have a high transmission rate and vaccines with

a lengthy period of self-dissemination have a low transmission rate.

Our results indicate that short durations of self-dissemination lead to more effective

vaccines and more opportunity for substantial pathogen reduction (Figure 3.4). Trans-

ferable vaccines achieve the highest level of pathogen reduction with acute durations of

self-dissemination. This is because with long durations of self-dissemination, βV is weaker

and thus it takes longer to infect the slow dynamics of the vaccine cause transferable vac-

cines to miss the peak of the birthing season. However, since the transferable vaccine is

groomed off of individuals at rate (alpha), the lengths of self-dissemination that are longer

than the average duration gel remains on individuals, show no difference 3.4. In contrast,

the transmissible vaccine can continue to spread and increase protection even into the
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Figure 3.4: Effect of the duration of self-dissemination on pathogen reduction. In each
of these simulations the vaccine R0 is held at 1.5 and the pathogen R0 is held at 2. The
duration of transmission is varied across each pane by changing the value of γV . The
duration of pathogen infection is held at 21 days (γp = 1/21).The remaining parameters
are set to the values described in Figure 3.1.
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subsequent birthing season, and so is less sensitive than the transferable vaccine. Overall,

we find that although the duration of self-dissemination influences the effectiveness of self-

disseminating vaccines, it has little impact on the optimal timing of vaccine introduction:

it is generally best to distribute the transmissible vaccine during the birthing season and

the transferable vaccine slightly after the peak of the birthing season.

3.2 Case Study Results

3.2.1 Rodents (Mastomys natalensis)

Rodents are a prime example of hosts that experience large fluctuations in population

size due to seasonal reproduction. For instance, population sizes of the primary rodent

reservoir of Lassa virus, Mastomys natalensis, have been shown to fluctuate seasonally in

East Africa in response to seasonal birth pulses coinciding with wet season and an increase

in the availability of green grass (Leirs et al. 1997; McCormick et al. 1987). We used data

from this well-studied system (Leirs et al. 1997) to parameterize our model of seasonal

birth rates. An important caveat is that the data from Leirs et al. (1997) comes from

outside of the range of Lassa virus and thus may overestimate the extent of seasonality in

populations where Lassa virus is endemic. We use a population size of 2000 (Mariën et al.

2019). Parameters estimated from Nuismer et al. (2020) suggest a lifespan of one year for

the rodent reservoir.

Lassa virus commonly spills over into the human population through rodent droppings

and leads to the development of Lassa fever (McCormick et al. 1987). Lassa fever is a

hemorrhagic fever that can be fatal (Dan-Nwafor et al. 2019). Infection from rodents
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occurs typically from rodents living in households (McCormick et al. 1987). The WHO

considers Lassa virus to be a pertinent threat to public health, and is of wide concern

(WHO 2018). Although infection in humans can be fatal, Lassa virus is not known to

cause much illness within the rodent population. To simulate the pathogen dynamics of

Lassa Virus we use a rate of recovery from Lassa virus infection equal to 1/21, and a Lassa

virus R0,P = 1.5 these values were estimated in Nuismer et al. (2020). We are then able to

solve for the transmission coefficient βP based on γp and R0,P .

Previous efforts to combat Lassa Virus have been insufficient to successfully eliminate

Lassa Virus in the rodent population (Mari Saez et al. 2018). Vaccinating these rodents

could reduce the prevalence of Lassa virus in the rodents which then could potentially

reduce both the rate of spillover into the human population and the number of deaths due

to Lassa fever. We base the transmissible vaccine parameters on a recent study (Varrelman

et al. 2022) which suggests that the rodents would be infectious with the vaccine for their

entire life (γv = 1/365). Due to self-disseminating vaccines currently being developed

we consider a range of values for the vaccine reproductive number. However, (Varrelman

et al. 2022) suggests R0,P to be between 1.2 and 11. We determine βV,g similar to how we

determined βP .

We studied simulated vaccination campaigns targeting Lassa virus using the parameters

described above. Our results indicate that both transmissible and transferable vaccines

have the potential to significantly reduce the prevalence of Lassa virus within the rodent

population. Similar to our general results above, the level of pathogen reduction achieved

largely depends on the R0 of the vaccine (Figure 3.5). If the vaccine is incapable of

spreading to additional individuals (R0,V = 0) timing of vaccine does not have much affect.
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Figure 3.5: The level of pathogen reduction achieved for administering either a transmissi-
ble vaccine or transferable vaccine into a rodent (Mastomys natalensis) population against
Lassa virus in West Africa at different times of year and for various Vaccine R0’s. The
parameters are: s = 2.48, tp = 100, d = 1/365, N̄ = 2000, R0,P = 1.5, γP = 1/21, γV =
1/7, α = 6.6 · 10−5, Vl = 1 week, NV = 200.
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When the transmissible vaccine is capable of spreading to additional individuals but not

more than the pathogen (0 < R0,V < 1.5) timing the implementation of the vaccination

campaign to be slightly after the peak of the birth pulse results in the highest level of

pathogen reduction. If the implementation of the vaccine does not occur at this time, the

level of pathogen reduction achieved will be substantially lower. Once the transmissible

vaccine can spread more than the pathogen, timing becomes irrelevant. However, for the

transferable vaccine, timing remains critical for any vaccine that is capable of spreading

to additional individuals. The results here appear to be less influenced by the timing in

comparison with the results demonstrated in Figure 3.2. This is likely due to the differing

levels of seasonality that is being simulated in these scenarios. Here in Figure 3.5 the

seasonality is much lower than in Figure 3.2 and so seasonality has less of an effect. For

either a transmissible or transferable vaccine that is implemented into the M. natalensis

population, the initiation of the vaccination campaign should occur slightly after the peak

of the birth pulse.

Our results for M. natalensis supports our general results for the optimal timing of

vaccine introduction. Specifically, our results show that pathogen reduction is maximized

by initiating the vaccination campaign slightly after the peak of the birthing season, and

that timing matters most for self-disseminating vaccines that cannot transmit more than

the pathogen (R0,V < R0,P ).
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3.2.2 Vampire Bats (Desmodus rotundus)

Desmodus rotundus are another animal that experiences seasonal reproduction, however

these animals tend to be longer lived than M. natalensis. It has been estimated that D.

rotundus live for three and a half years (Lord et al. 1976). Recent studies use lactation

rates to estimate the reproductive seasonality in these populations. We tailor our birth

function to data on lactation from Lord (1992). It is unclear what the overall population

size of D. rotundus is, however, estimates for colony size do exist. For this example we

assume vaccination to be occurring for a single colony and therefore use a population of

240 individuals as estimated by Bakker et al. (2019).

Bats harbor various viruses that pose a threat to the human population (Calisher et al.

2006; Luis et al. 2013). One that is a current threat in the Americas is rabies (Schneider

et al. 2009). Rabies is a disease caused by a virus commonly spread by bats and is fatal

in most mammals, including humans (Fisher et al. 2018). Rabies frequently spills over

into livestock from vampire bats (D. rotundus) in South America and can end up causing

dramatic losses for farmers (Benavides et al. 2017). To simulate the pathogen dynamics

of rabies we use a pathogen R0 of 1.5 and a recovery rate of 1/21 (Blackwood et al. 2013;

Hampson et al. 2009; Moreno and Baer 1980). In addition, it is thought that roughly

10% of bats that are exposed to rabies end up developing a lethal infection (Blackwood

et al. 2013; Bakker et al. 2019). Our model does not incorporate an exposed class, instead

we incorporate this by defining the virulence parameter to reflect that on average 10% of

infections should result in mortality. With these parameters we then back solve to find the

transmission rate βp.
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Previous efforts to control vampire-bat rabies has focused on culling, but has yet to

be successful. However, there are ongoing efforts to try and reduce the prevalence of

rabies within the vampire-bat population through self-disseminating vaccines rather than

culling (Bakker et al. 2019; Griffiths et al. 2020). We use parameters from these studies

to demonstrate the vaccine dynamics. Specifically, Bakker et al. (2019) suggests that the

transferable gel stays on for approximately two days for the transferable vaccine (γv = 1/2).

As the proposed transmissible vaccine vector for bats is a betaherpes virus which is likely to

induce lifelong infection (Griffiths et al. 2020, 2022), we use a recovery rate of 1/(365×3.5)

for the transmissible vaccine. Similar to the rodent example, it is unclear what R0 the self-

disseminating vaccines will have, thus, we explore a range of vaccine R0 values. Bakker

et al. (2019) demonstrates the potential of transferable vaccines to be effective within

vampire bat populations. However this was only over one year of vaccination and did not

include the seasonality of the bats. Here we provide an example of the outcome of self-

disseminating vaccines in vampire-bat populations against rabies, for both a transmissible

and transferable vaccine.

Figure 3.6 demonstrates that vaccination in the bat population could prove to be im-

mensely successful, even with vaccines with no transmission capabilities. This is likely due

to bats having longer lifespans than the previously mentioned M. natalensis. Due to bats

having longer lifespans and there being repeated vaccination, there is not much turnover in

the number of immune individuals in the population. This allows for the proportion of vac-

cinated individuals in the population to continually be boosted by yearly vaccination. Our

results indicate that seasonal reproduction would not have a major effect on the outcome

of a vaccination campaign. Additionally, a self-disseminating vaccine with at least some
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Figure 3.6: The level of pathogen reduction achieved for administering either a transmis-
sible vaccine or transferable vaccine into a bat (Desmodus rotundus) population against
Rabies virus in a small bat colony at different times of year and for various Vaccine R0’s.
The parameters are: s = 2.11, tp = 100, d = 1/(365 · 3.5), N̄ = 2000, R0,P = 1.5, γP =
1/21, γV = 1/7, α = 6.6 · 10−5, Vl = 1 week, NV = 200.
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spreadable capabilities should achieve a major level of pathogen reduction (>90%)(Figure

3.6). The sensitivity to timing of a self-disseminating vaccine into the bat population is

minimal. Again this is likely due to the lower seasonality and longer lifespan.
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CHAPTER 4

Discussion

4.1 Discussion

We have used mathematical models of self-disseminating vaccines to evaluate how the

timing and duration of vaccine distribution influences the impact of vaccination campaigns

targeting seasonally fluctuating wildlife populations. Our results demonstrate that self-

disseminating vaccines increase protection relative to traditional vaccines but that the

magnitude of this increase depends on the mechanism of self-dissemination and the timing

of vaccine distribution. Specifically, for both types of self-disseminating vaccines, introduc-

tion should be timed relative to seasonal reproduction. Introducing the vaccine during the

birthing season generally increases the success of vaccination campaigns. Vaccines intro-

duced far past the seasonal reproduction period are generally less effective. The importance

of timing arises because the number of susceptible individuals available for vaccination fluc-

tuates seasonally, reaching a maximum slightly after the peak of the birthing season.

Our results demonstrate that transferable vaccines are more sensitive to timing than

transmissible vaccines. This occurs primarily because transmissible vaccines can generate

self-sustaining chains of transmission whereas transferable vaccines cannot. Thus, transfer-

able vaccines can spread only to susceptible individuals at the time of vaccine introduction.

This also holds true but to a lesser extent for weakly transmissible vaccines that generate

only short chains of transmission. With proper timing, however, our results indicate that

highly transferable and weakly transmissible vaccines can be nearly as effective as highly

transmissible vaccines, at least in some cases.
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The importance of our results for real world applications rests upon the extent to which

reproduction shows strong patterns of seasonality within a target reservoir species as well

as how much population turnover there is. As demonstrated by our case studies with

comparable levels of seasonality, the lifespan of hosts has a large effect on the sensitivity to

seasonality. The rodent population demonstrated higher levels of sensitivity to the timing

of vaccine introduction. This is likely due to the combination of their seasonal reproduction

and their short lifespans. Due to high population turnover in the rodent population, the

individuals vaccinated in the prior year will not be present in subsequent years. This

reinforces the importance of vaccinating the newly introduced and susceptible individuals

in the population.

Our results are highly relevant to pathogens such as Lassa virus and Rabies virus. Other

pathogens that our results could be important for are, Sin Nombre virus and hantavirus.

Our results suggest that vaccination efforts targeting these pathogens will need to be well-

timed and carefully planned to achieve maximum effectiveness (Mills et al. 1999). Our

results demonstrate that campaigns with self-disseminating vaccines will need to be well

timed in host populations with distinct seasonal reproduction and short lifespans.

Our model makes three important assumptions. First, we have ignored age structure.

This could be important in cases where vaccines rely upon the natural behavior of the ani-

mal in order to spread. For instance, if vaccines are initially distributed as edible baits, most

may be consumed by actively foraging adults rather than susceptible juveniles. In such a

case, optimal timing of vaccine introduction may matter less and vaccine self-dissemination

may be less effective. Second, we do not take maternal antibodies into consideration. Ma-

ternal antibodies may interfere with juveniles to surmount an immune response to the
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vaccine, and therefore alter the optimal time for vaccination (Zhi Q. and Hildegund C.J.

1992). Third, we assume a constant rate of mortality. There are wildlife that experience

seasonally forced population sizes due to mortality rather than reproduction. For such

wildlife we expect our results may be heightened if seasonal mortality occurred after the

birthing season. However, if there was no seasonality due to reproduction, and instead fluc-

tuations were driven predominantly by seasonal mortality, we expect our results to differ

slightly due to mortality affecting all individuals rather than only susceptible individuals.

Here our goal was to gain both general understanding of the affects of seasonality and

the time of vaccine distribution as well as an idea of the affects within certain hosts. We

recognize that our model does not perfectly describe the dynamics of rabies in vampire bat

populations, nor the spread of Lassa virus in rodents, but we believe it generates a basic

understanding of self-disseminating vaccines in these hosts and provides a good foundation

for future studies to build from.

Self-disseminating vaccines make vaccinating hard to reach wildlife populations more

feasible. Our results show that optimizing the timing and duration of vaccine delivery can

make or break the success of a vaccination program in fluctuating wildlife populations with

high levels of population turnover. These results further demonstrate the importance of

understanding the population ecology of wildlife species prior to implementing vaccination

campaigns using self-disseminating vaccines.
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4.2 Appendix

4.2.1 Setting the Birth Scaling Constant k

In our simulations, the scaling constant k in the birthing function is set by the user-

specified values d, s, tp, and N̄ . To solve for the value of k, we first rewrite the birthing

function as

b(t) = k · e−s·cos2 ( π
365

·(t−(tp+
365
2

)) (4.1)

= k b̄(t). (4.2)

The differential equation that describes the population size in the absence of any infec-

tious agent is
dN

dt
= b(t)− dN. (4.3)

Let N∗(t) denote the T -periodic solution of Eq (4.3) with mean value N̄ . Then

1

T

∫ T

0

N∗(t) dt = N̄ . (4.4)
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This implies

dN∗

dt
= b(t)− dN∗ (4.5)∫ T

0

dN∗

dt
dt =

∫ T

0

b(t) dt− d

∫ T

0

N∗ dt (4.6)

0 = k

∫ T

0

b̄(t) dt− d T N̄. (4.7)

The left hand side of Eq (4.7) is zero because N∗ is T-periodic. Thus, we have

k =
dTN̄∫ T

0
b̄(t) dt

(4.8)

Thus, for a specified d, s, T , and N̄ , Eq (4.8) can be numerically integrated to solve for

the implied value of k. Note that the value of tp only shifts the birthing function in time;

namely, it does not change the integral of b̄(t) over a single period.

4.2.2 Derivation of R0

In this section, we derive an expression for the basic reproduction number, notated

R0, that describes the average number of new infections that result when a single infected

individual is introduced into a stably cycling population of susceptible hosts. We keep

our derivation broad so as to simultaneously derive the relevant R0 for the pathogen,

transmissible vaccine, and transferable vaccine.

Let N∗(t) denote the T-periodic limit cycle that describes a population of susceptible

hosts in the absence of infection and vaccination. We assume that N∗(t) >> 1 so that
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the susceptible population is not significantly depleted by the infection process. Let β,

γ, v denote the transmission rate, recovery rate, and the virulence rate of the infectious

agent. In addition, for the transferable vaccine, let αN∗(t) denote the rate at which

vaccine is groomed off gelled individuals. When a single infected host is introduced into

the population, the rate of new infections that are caused by the infected host at time t is

βN∗(t). This infection rate continues until the initial infected dies due to natural mortality

(at rate d), dies due to virulence (at rate v), recovers from infection (at rate γ), or in the

transferable vaccine case, leaves the infectious class due to grooming of gel at rate αN∗(t).

Note that α = 0 in the case of the pathogen or transmissible vaccine.

Let t0 denote the time at which the infected individual is introduced. The total number

of new infections caused by the infected individual is obtained by integrating the infection

rate multiplied by the probability that the individual has not recovered or died from time

t = t0 to time t = ∞: ∫ ∞

t0

βN∗(t) e−(d+γ+v+αN∗(t))(t−t0) dt. (4.9)

Eq (4.9) shows that, because the population size N∗(t) is non-constant, the number of

new infections is a function of the time t0 at which the infected individual is introduced.

In order to find the average number of new infections generated by an infected that is

introduced at a randomly chosen time, we integrate Eq (4.9) with respect to t0 over the

interval [0, T ], and divide by 1
T
. Note that because N∗(t) is T-periodic, averaging over

introduction times that are outside the interval [0, T ] is redundant. Consequently, we have

R0 =
1

T

∫ T

0

∫ ∞

t0

βN∗(t) e−(d+γ+v+αN∗(t))(t−t0)dt dt0. (4.10)
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Transferable Vaccine

In the case of the transferable vaccine virulence is absent so we set v = 0. In addition,

α ̸= 0, and the integral described by Eq 4.10 is made difficult to simplify by the presence

of N∗(t) in an exponent. However, it is possible to rewrite this expression for R0 as a

single integral by changing the order of integration. Let k(t) = d + γ + αN∗(t) and let

w(t, t0) = βN∗(t)ek(t)(t−t0). Then

R0 =
1

T

∫ T

0

∫ ∞

t0

βN∗(t) e−(d+γ+αN∗(t))(t−t0)dt dt0 (4.11)

=
1

T

∫ T

0

∫ t

0

w(t, t0) dt0 dt+
1

T

∫ ∞

T

∫ T

0

w(t, t0) dt0 dt (4.12)

=
1

T

∫ T

0

β N∗(t)

k(t)
(1− e−k(t) t) d t+

1

T

∫ ∞

T

β N∗(t)

k(t)
(e−k(t)(t−T ) − e−k(t) t) d t (4.13)

=
β

T

∫ ∞

0

N∗(t)

k(t)
(e−k(t)max(0,t−T ) − e−k(t) t). (4.14)

Here, we changed the order of integration so that integration with respect to dt0 is

performed first (Eq (4.12)). The limits of integration are changed accordingly so that the

region that is integrated over (Figure 4.1a) remains the same. The resulting inner integral

with respect to dt0 is straightforward to evaluate, leading to Eq (4.13). Finally, Eq (4.13)

can be written in the more compact form of Eq (4.14).
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Transmissible Vaccine and Pathogen

In the case of the transmissible vaccine and the pathogen, α = 0, and as a consequence

the expression for R0 in Eq (4.10) can be simplified. Specifically, the double integral

described by Eq (4.10) can be simplified by using the change of coordinates u = t, w = t−t0.

This change of coordinates needs to be applied to three terms in the above integral: the

area differential dt dt0, the limits of integration, and the integrand (Stewart 2012).

Let T (u,w) = (u, u − w) denote the vector-valued function that converts (u,w) coor-

dinates into (t, t0) coordinates. Then the area differential dt dt0 is equal to |DT | du dw,

where D denotes the Jacobian operator with respect to u and w, and | · | denotes the

determinant. Because |DT | = 1, we have dt dt0 = du dw. The region of integration in

the (u,w) plane can be found by drawing the region of integration in the (t, t0) plane, and

identifying boundary lines with their analogue in the (u,w) plane (Figure 4.1). Finally,

the integrand is transformed by the substitution t → u and t− t0 → w.

These substitutions allow us to transform the integral in Eq. (4.10) and evaluate as

follows:

R0 =
1

T

∫ ∞

0

∫ w+T

w

βN∗(u) e−(d+γ+v)wdu dw (4.15)

R0 =
β

T

∫ ∞

0

(∫ w+T

w

N∗(u) du
)

e−(d+γ+v)wdw (4.16)

= βN̄∗
∫ ∞

0

e−(d+γ+v)wdw (4.17)

=
βN̄∗

d+ γ + v
. (4.18)
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Figure 4.1: Region of integration (gray) of Eq (4.10) in the (t, t0) plane (a). When α = 0,
the calculation of R0 is simplified by transforming the region into the (u,w) plane (b). The
dashed boundary lines indicate that the region continues out to infinity. Boundary lines
and their transforms are identified by the same color.

Here, N̄∗ denotes the average population size over a single period T . Virulence v is

possibly nonzero in the case of the pathogen and is set to zero in the case of a transmissible

vaccine.

4.2.3 Setting transmission rate β

Equations (4.14) and (4.18) are used to define the transmission rate β that corresponds

to specific values of R0 in our simulations. For a given simulation and infectious agent, we

define an average population size N̄ , death rate d, virulence v, recovery rate γ, and R0.

In the case of a transmissible vaccine or pathogen, Eq (4.18) can then be used to solve for

the value of β that is implied by the user-defined parameters.

The transferable vaccine case is more difficult because we need the solution of N∗(t)

to evaluate Eq (4.14). To this end, we first solve for the value of k using Eq (4.8) and

parameters specified by the user. k, in turn, is used to define the birthing rate b(t). Next,



49

we obtain a numerical approximation of N∗(t) by simulating the population equation Eq

(4.3). Specifically, we simulate Eq (4.3) for 10 years to allow the solution to converge to

the stable limit cycle N∗(t). Next, we use the function “approxfun” in R to approximate

the stable limit cycle N∗(t) over a single period. Finally, we use this approximation in the

integral of Eq (4.14) to solve for the value of β that is implied by a user specified R0. All

integration was performed in the statistical language R using the deSolve package (Soetaert

et al. 2010).


