
 

i 

 
 

 Agricultural Insurance Loss and Relationships to Climate Across the Inland 

Pacific Northwest Region of the United States 

 

 

A Dissertation 

Presented in Partial Fulfillment of the Requirements for the  

Degree of Doctor of Philosophy 

with a 

Major in Natural Resources 

in the 

College of Graduate Studies 

University of Idaho 

by 

Erich Seamon 

 

 

Major Professor: Paul E. Gessler, Ph.D. 

Committee Members: John T. Abatzoglou, Ph.D.; Philip W. Mote, Ph.D.; 

Stephen S. Lee, Ph.D. 

 

Department Administrator: Charles Goebel, Ph.D. 

 

December 2019 

 



 

 

ii 

Authorization to Submit Dissertation 
 

This dissertation of Erich Seamon, submitted for the degree of Doctor of Philosophy with a 

Major in Natural Resources and titled “Agricultural Insurance Loss and Relationships to 

Climate Across the Inland Pacific Northwest Region of the United States,” has been 

reviewed in final form.  Permission, as indicated by the signatures and dates below, is now 

granted to submit final copies to the College of Graduate Studies for approval. 

 

 

Major Professor                    Date:                    

   Paul E. Gessler, Ph.D. 

 

 

Committee Members:          Date:      

   John T. Abatzoglou, Ph.D. 

 

 

            Date:    

   Philip W. Mote, Ph.D. 

 

 

            Date:    

   Stephen S. Lee, Ph.D. 

 

Department 

Administrator:           Date:    

   Charles Goebel, Ph.D. 

                                                                  



 

 

iii 

Abstract 

 
Agricultural crop insurance is an important component for mitigating farm risk, particularly 

given the potential for unexpected climatic events (Christiansen et al., 1975; Diskin, 1997; 

Miranda & Glauber, 1997). Using a 2.8 million insurance claim dataset from the United 

States Department of Agriculture (USDA), this research study examined spatiotemporal 

variations of agricultural insurance loss across the 24-county region of the inland Pacific 

Northwest (iPNW) portion of the United States, from 2001 to 2015.  For the prescribed time 

period, wheat was a dominant crop for the region, accounting for over $1.4 billion in 

insurance losses, with over $700 million resulting in claims due to drought.  Principal 

components analysis showed distinct spatial and temporal differentiations in wheat insurance 

losses using the range of damage causes as factor loadings, with PC1 and PC2 accounting for 

75% of total variance. Of particular note were the orthogonal relationships of county-level 

water availability damage causes (e.g. drought and heat vs. excessive moisture and cold wet 

winters), which aligned with regional climatic patterns.  While both 2009 and 2015 were 

peak years for wheat/drought insurance loss, 2015 was the only year of the two that actually 

experienced regional drought conditions.   Given the 2008/2009 recession economic impacts 

(Fan et al., 2015), this comparison may indicate the unique interaction of climate and 

economics and their impacts on climatically based damage cause insurance filings.  

Extending this iPNW analysis to evaluate quantitative climatic relationships to insurance 

loss, we developed a design matrix methodology to identify optimum temporal windows for 

climate variables by county, in relationship to wheat insurance loss due to drought.  The 

results of our temporal window construction for water availability variables (precipitation, 

temperature, evapotranspiration, Palmer Drought Severity Index (PDSI)) identified spatial 



 

 

iv 

patterns across the study area that aligned with regional climate patterns, particularly with 

regards to drought-prone counties of eastern Washington. Using these optimum time-lagged 

correlational relationships between insurance loss and individual climate variables, along 

with commodity pricing, we constructed a regression-based random forest model for 

insurance loss prediction, as well as to evaluate climatic feature importance.  Our cross 

validated model results indicated that PDSI was the most important factor in predicting total 

seasonal wheat/drought insurance loss, with wheat pricing and potential evapotranspiration 

having noted contributions.  Our overall regional model had a R2 of .45, and a RMSE of 

~$8.1 million.  Model performance typically underestimated annual losses, with moderate 

spatial variability in terms of performance between counties.   

Supporting our quantitative analysis of insurance loss and climate, we additionally 

constructed an open science-based framework for reproducibility (Flathers & Gessler, 2018; 

Fan et al., 2015; Dumontier & Wesley, 2018), applying our agricultural insurance loss and 

climate analysis as a case study example.  Our case study framework implementation, which 

provided a set of dynamic analytics dashboards, code outputs, and reproducible research 

notebooks, identified several challenges that are critical for collaborative data intensive 

research, including: issues of data scaling, the importance of modular analytic code 

development,  the challenges of team collaboration, data access and transformation and the 

difficulties regarding climatically gridded data, as well as institutional support for long term 

data resilience and viability. 
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CHAPTER 1: AGRICULTURAL INSURANCE LOSS ANALYSIS OF 
THE PACIFIC NORTHWEST, 2001-2015 
 

1.1. Introduction 

Agricultural systems are essential components to the Pacific Northwest (PNW) region of the 

United States (U.S.), encompassing the states of Idaho, Oregon, and Washington.  As of 

2015, agriculture accounted for over 500,000 jobs over these three states (Walker & Rahe 

2015; Sandison 2015; Aviles et al., 2018).  All three states consistently rank in the top five in 

terms of U.S. crop production for a range of agricultural commodities, including apples and 

wheat (Washington), potatoes and barley (Idaho), as well as hay, blackberries, and hazelnuts 

(Oregon) (United States Department of Agriculture [USDA] National Agricultural Statistics 

Service [NASS], 2016). In terms of agricultural exports, Washington ranked second behind 

California (2015), with Oregon placing eighth and Idaho, eleventh (USDA Economic 

Research Service [ERS], 2019).  

Due to the considerable economic impact of agricultural commodity systems, as well as the 

potential negative implications due to unforeseen events, agricultural crop insurance has been 

an important component for mitigating risk (Christiansen et al., 1975; Diskin, 1997; Miranda 

and Glauber, 1997). In 1996 the USDA formed the Risk Management Agency (RMA), which 

works to increase the availability and effectiveness of federal crop insurance as a risk 

management tool. With the implementation of the Federal Crop Insurance Act (FCIA) and 

the USDA RMA, program improvements (i.e. providing direct payments to farmers, 

implementing subsidies) grew the level of program participation to over 90% of all U.S. 

farmed land by 1998. Crop insurance program efforts have had a dramatic impact on overall 
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farm management, including the reduction of income risk around crop production, increasing 

land values, increasing farm survivability rates, stabilizing cash flow, and liquidity 

improvement (Yu et al., 2018). By 2015, the USDA had insured over 114 million hectares of 

farmland, with an insurance liability net worth of $102 billion (USDA RMA, 2015). Given 

that the combined efforts of insurance protection as well as risk mitigation (related to 

agricultural practices) provide farmers a level of protection against unforeseen natural 

disasters and economic events, our research goal was to use exploratory data analysis 

techniques to examine spatiotemporal insurance loss claim variations across both the PNW, 

as well the iPNW subregion (Figure 1.1). We focused on losses due to weather and climate 

extremes, particularly those due to drought and heat, across agricultural commodities in the 

iPNW.   

Weather and climate extremes, including those associated with climate change, have direct 

impacts on food security and resilience (Barrett et al., 2010; Gundersen et al., 2011).  These 

interactions may vary due to a number of factors, including crop type, geographic location, 

and farming practices (Li et al., 2009).  While previous studies have examined climate-yield 

relationships (Lobell & Burke 2010; Schlenker & Roberts 2009), there have been minimal 

analyses in examining climatic relationships related to crop insurance loss (Claassen et al., 

2016; Schoengold, et al., 2014) Drought, in particular, plays an important role in the success 

or failure of many agricultural systems.  Redmond (2002) conceptually defines drought as 

“insufficient water to meet needs”, with a particular note of the varied relationships of supply 

and demand.  Wilhite and Glantz (1985) describe drought broadly as a “deficiency of 

precipitation that results in water shortage for some activity or for some group” and 

emphasize the difficulties in having one overarching definition of drought, given its impacts 
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from an agricultural, climatological, meteorological, atmospheric, hydrologic, and water 

management perspective.   Operationally, drought is often times quantified in terms of 

frequency, severity, intensity and duration, compared to a historical time frame, with human, 

biological, and climatological influences on both water supply and demand.  Often times 

referred to as a “creeping phenomenon”, the impacts of drought on society can persist for a 

number of years, dependent upon the level of vulnerability (Redmond, 2002). Agriculturally, 

drought often refers to a period with anomalously low soil moisture that substantially limits 

crop production (Mishra & Singh, 2010).  Drought related impacts are evident in agricultural 

insurance loss claims, both nationally as well within the PNW.  For example, drought 

conditions in 2015 resulted in agricultural insurance losses for PNW wheat alone totaling 

$183 million (USDA Risk Management Agency [RMA], 2015), with total financial losses for 

all commodities ranging between $633 million and $773 million (Washington State 

Department of Agriculture [WSDA], 2016). Adverse growing conditions over a season (such 

as during drought) can force farmers to consider additional risk management approaches that 

complement insurance mechanisms, including irrigation, selective crop abandonment, crop 

diversification, and unique crop rotation practices which may mitigate current and future 

losses and preserve long-term economic viability of cropping systems (Wallander et al., 

2013; Yorgey & Kruger, 2017).  For example, crop producers who utilize conservation 

tillage are often able to improve the capture and storage of soil moisture, which provides 

their crops an important buffer against drought impacts. By increasing the number of crop 

types as part of a rotation cycle, altering seeding dates, as well as using drought-sensitive 

breeds, farmers can retain more available soil moisture (reducing long term drawdown), 

while maximizing production and sales by spreading risk across a larger set of commodities 
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(Antle & Capalbo, 2010). From an adaptive perspective, the economic implications of more 

severe drought conditions, as well as a change in seasonal ranges of climatic conditions, may 

encourage farmers to consider alternative crop systems that are more economically viable, 

such as profitable niche fruit commodities. In total, these added risk management efforts, in 

combination with crop insurance, provide farmers with a diversified ability to mitigate 

potential financial loss in the face of changing economic and climatic conditions. 

1.2. Data and Methods 

The USDA’s data archive of agricultural insurance claim records for the PNW, from 1989 to 

2015, is the primary dataset for this analysis (http://usda.gov/rma). Insurance claims were 

provided at monthly temporal and county level spatial scale. Each insurance record 

represents a claim filed by a farmer, containing the dollar amount of the insured loss, the 

commodity type related to the loss (e.g. wheat, barley, canola), the acreage for the loss, and 

most notably, a cause for the crop damage (e.g. heat, drought, hail, decline in price, failure of 

irrigation supply).  The extent of this data archive is considerable: for example, from 1989 to 

2015, the USDA’s crop insurance data collection for the United States totals approximately 

2.8 million claims, with ~35,000 claims originating in the Pacific Northwest (Idaho, Oregon, 

and Washington) for over 35 different commodities, across 30 different damage causes 

(Appendix A). 

 
We constructed a basic three step exploratory data analysis (EDA) methodology that allowed 

us to systematically examine commodity-specific insurance loss across damage causes in the 

PNW. EDA is an established approach (Tukey, 1977; Cleveland, 1993) to informally 

examine and refine large datasets, in preparation for more formal statistical and inferential 
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statistical analysis.  Numerous techniques can be used as part of this process, including; 

evaluating data for mistakes and potential limitations, the checking of particular assumptions, 

determining which model(s) may be appropriate for future data evaluation, and examining 

variable relationships and data refinements based on spatial and temporal scales (Behrens, 

1997).  Given our research goal to examine how spatiotemporal variation of agricultural 

insurance loss reflects known climatological and economic historical trends, the results of 

these EDA steps not only allowed us to narrow our factorial analysis by geography, time, 

commodity, and damage cause, but also to compare how water scarcity-specific damage 

causes (drought and heat) varied based on these refined factors.  Our EDA refinement 

process is described as follows: 

 
1. We initially performed a full examination of insurance loss across all commodities 

and damage causes, for the entire PNW region, from 1989 to 2015.  As part of this 

step, we aggregated the data by county, commodity, year, and damage cause. An 

initial data review indicated that approximately 83% of insurance loss for the region 

occurred from after 2000, which comports with farm bill policy incentives 

implemented in 1998, increasing crop insurance participation (acres) to over 90% 

(USDA, 2015).  Spatially, over 75% of insurance losses occurred in the iPNW, with 

wheat losses being the overwhelming dominant commodity.  As such, we limited our 

time frame of insurance loss examination to 2001 to 2015, and narrowed our study 

area region to the 24-county region of the IPNW (Figure 1.2).  This reduction of data 

by year additionally helped to resolve missing data issues in some counties that had 

no insurance claims, and thus no revenue loss.  Given the spatial diversity in terms of 

cropping systems across all three states, the IPNW area provided a more 
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homogenous, well distributed dryland farming region to allow us to explore spatial 

and temporal variations, while maintaining a fairly consistent county level claim total 

across the region as a whole.  Additionally, by narrowing our region to only the 

IPNW, we eliminated counties where little or no insurance claims were filed, 

primarily due to landscape, urbanization, or profitability constraints.   

 
2. We used principal components analysis (PCA) to identify commonalities in insurance 

claims across years, counties, commodities, and damage claims in the iPNW. PCA is 

a data dimensionality reduction technique which computes a new set of variables by 

maximizing the variance of all input variables, and then examines the linear 

combinations of said variables in orthogonal space (Tukey, 1977; Jolliffe, 2002).  In 

our agricultural insurance loss analysis, we transformed our damage cause factorial 

observations, constructing individual variables for each damage cause insurance loss 

total ($), by county, commodity and year.  Using this approach, we were able to 

create a set of input variables for our PCA, to examine how damage cause factors 

were associated, as well as how counties and years were aligned to these individual 

factor loading vectors. In order to evaluate how PCA variables group together, we 

apply a kmeans algorithm (Ding, 2004) to estimate optimal clusters for both county 

and year.   

 
3. From the results of our EDA and PCA, we limited our commodity analysis to wheat, 

and narrowed our set of damage cause claims to areas of water scarcity (drought and 

heat). We then examined wheat loss for the region, exploring these water scarcity 

temporal and spatial relationships on an annual basis.  In addition, we compared 
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insurance loss with overall wheat production across the 24-county study area, as well 

as annually (from 2001 to 2015). 

 

1.3. Results 

PNW insurance claims totaled over 28,000 from 2001 to 2015, for all commodities, with 

overall insured losses of $2.9 billion. Wheat, the dominant commodity for insurance claims 

in the three-state region, accounted for approximately 20,600 filings, with total losses of 

$1.45 billion for the same time period.  (Figure 1.3).  Cherries and apples were a distant 

second and third in terms of overall losses, each with approximately $180 million, with 

potatoes and peas adding a minimal contribution to the overall total. Narrowing our analysis 

to the iPNW, we see that insurance losses there made up approximately 72% of the total 

amount of loss for PNW as a whole.  Wheat was similarly the predominant commodity 

incurring insurance loss for the iPNW, with over $1.2 billion in claims, with apples coming 

in a distant second, at $52 million. In term of damage cause, drought resulted in the largest 

amount of insurance loss for the PNW overall, at over $700 million, with decline in price 

($340 million) and heat ($270 million) coming in second and third, respectively (Figure 1.4). 

Similarly, the leading damage causes for the iPNW were drought and heat, which combined 

to account for approximately $800 million in losses from 2001 to 2015. 

 
In order to address our research question around spatial and temporal variations of insurance 

loss related to water availability, annual wheat losses due to drought, heat, and excessive 

moisture for the iPNW were analyzed for each year in the period from 2001 to 2015. The 

results show that the year-to-year variation of losses are dominated by drought, with peak 

years occurring in 2009 and 2015. In contrast, 2011 had almost no drought or heat insurance 
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losses, with excessive moisture and rain being the dominant damage cause factors (Figure 

1.5).  This annual variability aligns with historical climatological variations: 2011 was a 

particularly wet year for the PNW (NOAA National Centers for Environmental Information, 

2011), while in 2015, the PNW experienced a significant drought (Fosu et al., 2016; Mote et 

al., 2016).  If decline in price is incorporated into this annual view, we see the large majority 

of these claims occurring during the 2009 year, given wheat prices declines from ~$430 

/metric ton to $220 /metric ton. Incorporating wheat production into this analysis, we see an 

inverse relationship, with the lowest levels of production occurring in years with the highest 

levels of drought/heat insurance loss (Appendix A) 

 
Spatially, we initially analyzed county level wheat production from 2001 to 2015 (Figure 

1.6), in relationship to drought/heat insurance losses for the same time period (Figure 1.7).  

While total 2001 to 2015 wheat production was highest in Whitman County, WA ($384 

million), wheat insurance loss due to drought and heat were highest along the northeastern 

portion of the Oregon high desert (Umatilla county, Oregon at $118 million and Morrow 

county, Oregon at $97 million).  From a percentage breakdown, over 50% of all damage 

cause losses in Umatilla were a result of drought/heat, with an over 30% ratio in Adams and 

Lincoln counties, Washington. If we more specifically examine spatial differences in wheat 

drought/heat insurance loss by year, we see notably different patterns of loss concentrations 

between 2011 and 2015. For 2011, the region’s few drought and heat claims were 

concentrated in the eastern portion of the region, primarily in Idaho, with losses in the highly 

productive Palouse region of eastern Washington being relatively low (Figure 1.8).  In 

contrast, 2015 wheat losses due to drought and heat were concentrated in the upper portion of 

the Washington Palouse region (Whitman, Lincoln, Adams, and Douglas counties), with 
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additional loss concentrations falling along the Columbia river valley and in the western 

portion of the Palouse (Figure 1.9). In order to better understand the factorial relationships of 

damage causes, two principal components analyses were run for the iPNW region to explore 

1) spatial (county) as well as 2) temporal (year) variation.  Both PC analyses used damage 

causes as the factor loadings, with all data scaled by the unit variance. Additionally we used 

singular value decomposition (SVD), a form of matrix factorization which is considered a 

superior method for PCA computation (Tanwar et al., 2018). 

 
The results of this analysis indicate that approximately 75% of total variance of insurance 

loss by county level damage cause can be attributed to the first two principal components, 

with water scarcity (drought/heat/fire) damage causes having a negative coordinate alignment 

in terms of the first principal component (PC1) vector loading directions (Figure 1.10).  

Examining PC loadings by county (Figures 1.11 and 1.12), we see a clear alignment of water 

scarcity damage causes in highly productive wheat counties (Umatilla county, OR, Lincoln 

and Whitman counties, WA), with orthogonal damage causes (excessive 

moisture/freeze/frost) aligning with counties that are typically in highly productive fruit 

production regions (e.g. Grant and Benton counties, WA).  Applying a kmeans clustering 

algorithm with an elbow cluster optimization selection method, we identified four key 

clusters in the two-dimensional PCA space, that additionally support the differentiation of 

water scarcity PC1 loadings from PC2 water excess.    

 
When PCA was run using year as the independent factor (2001 to 2015), we see similar 

water scarcity/water excess damage cause loading groupings, with PC1 and PC2 resulting in 

approximately 64% of total variance (Figure 1.13).  Kmeans clustering identified three key 
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groupings of years: most notably, 2009, 2014, and 2015 were distinct clusters along damage 

cause groupings for drought, fire, and heat. When PC1 and PC2 loadings are linearly 

compared by year (Figure 1.14), we see similar distinct divergences/opposing alignments 

between PC1 and PC2, in 2009, 2014, and 2015. Such divergence reinforces the clustering 

results for our yearly based PCA, which groups 2009, 2014, and 2015. Additional PCA for 

differing combinations (e.g. commodity) are included in Appendix B which provides an 

extended comparison of how insurance loss may vary across differing factorial combinations.  

 

1.4. Conclusions 

Given our research focus of using EDA to examine iPNW spatiotemporal variations of 

insurance loss in relationship to climatic damage causes, our results identified several unique  

spatial and temporal patterns that appear to align with historical climatological patterns.  In 

addition, said patterns provide  an important perspective on climate variability, economics, 

and the sensitivities of agricultural systems.  Of particular interest were the differences in 

iPNW wheat insurance loss, comparing 2009, 2011, and 2015, in terms of the drought, heat, 

excessive moisture, and decline in price total losses.  While 2009 and 2015 have large dollar 

losses in terms of drought and heat, 2009 additionally had extremely large values with 

regards to decline in price insurance claims, associated with a reduction in wheat prices (Fan 

et al., 2015).  While increased drought and heat losses in 2015 align well with regional 

drought conditions (Marlier et al., 2017), increased drought and heat claims for 2009 seem to 

conflict with comparable climate conditions for that year, which indicates that the PNW was 

not in a period of drought (Shukla et al., 2015).  These insurance loss comparisons between 

2009 and 2015 suggest that, in compromised economic conditions (e.g. price decline), claims 
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due to climatic damage causes may increase, even though actual climatic conditions do not 

warrant such increases (Miranda & Vedenov, 2001, Botzen & Van Den Bergh, 2008).  This 

may also indicate that particular commodity-specific thresholds exist where economic factors 

dominate over climatic impacts, resulting in a broad distribution of claim loss across a range 

of damage causes.  2011 losses were interestingly juxtaposed to 2009 and 2015, with very 

little drought or heat insurance claims, but with the largest amount of excessive moisture 

filings of any year in the period of analysis.  We also saw an inverse relationship between 

annual wheat production and drought/heat insurance loss, with 2009 and 2015 being the only 

years in this time period where losses were higher than production.  Work by Quiggin et al. 

(1993), Miranda et al. (1997), and Glauber (2004) all reference these relationships of 

insurance loss with overall crop production, supporting this inverse relationship scenario. 

Spatial variations of wheat insurance losses due to drought and heat provide an additional 

perspective in terms of locational sensitivities to climate.  With variations of phenology, 

claim frequency, regional crop development, irrigation, and cropping practices, commodity-

based insurance claim analysis for agriculturally homogeneous regions may provide the best 

framework for delineating differences in claim/loss variation, based on time and the cause of 

damage.  These distinct differences in annual variation as well as commodity/damage cause 

indicate the sensitive aspects of insurance claim loss, which may serve as a more effective 

barometer in gauging climatic influences as compared to crop yield production given varying 

aspects of pricing, land values, equipment, input price changes, and climate (Fan et al., 

2015).  Our results highlight that insurance losses likely integrate aspects of climate and 

economic impact together (e.g. comparisons of 2009 and 2015 damage causes), given that 

farmer decisions regarding whether to file a loss claim or not typically take into account 



 

 

12 

these two factors jointly.  The results of this work additionally highlight several areas of 

potential future research, particularly around understanding the interactions between 

insurance loss, conservation practices, economic factors, climate influences, and policy 

effects, as well as regional differences/similarities of damage cause influences across a range 

of commodities other than wheat.  Under changing climate and conservation practice 

conditions, there may be situations where crop insurance risk management may incentivize, 

or disincentivize, farm practices that reduce agricultural climate change impacts, given their 

individualized economic implications.  Additionally, this work may assist future research in 

identifying the financial impacts of a changing climate on insurance loss, over time and 

differing geographies. 
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Figure 1.3. Total insurance loss (2001 to 2015) for the top six 
commodities for the PNW (top), and the iPNW (bottom). 
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Figure 1.4. Total insurance loss (2001 to 2015) for the top ten damage causes 
for the PNW (top), and the iPNW (bottom). 
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CHAPTER 2: REGRESSION BASED RANDOM FOREST MODELING 
OF INLAND PACIFIC NORTHWEST DROUGHT-RELATED WHEAT 
INSURANCE LOSS USING TIME LAGGED CLIMATE 
CORRELATION MATRIX ASSOCIATION 
 

2.1. Introduction 

Climate change significantly adds to the challenges facing agriculture, such as ensuring food 

security and preserving the economic prosperity of a growing global population (Deschênes 

& Greenstone, 2018; Schlenker & Roberts, 2009; Fan et al., 2016; Epstein, 2005; 

Rosenzweig et al., 2001; Manandhar et al., 2014).  Of noted interest are the varied effects of 

climate on weather-related phenomena (e.g. drought, heat waves, flood, hurricanes, extreme 

precipitation) (Trenberth, 2000).  Drought in particular affects a number of factors associated 

with cropping systems, including excessive temperatures, water availability, long term soil 

moisture drawdown, and levels of evapotranspiration (Lobell & Costa-Robert, 2011; 

Rosenzweig & Parry, 1994). This analysis focuses on the highly productive inland Pacific 

Northwest (iPNW) agricultural region of the United States (figure 2.1), which relies heavily 

upon dryland farming for cereal production (Karimi et al., 2017; Yorgey & Kruger, 2017), 

and is considerably impacted by water availability.  Our research objectives were to model 

how climatic effects for the iPNW are related to agricultural insurance loss, with a particular 

focus on drought related claims in wheat. Two questions are addressed: What climate 

variables and temporal windows best relate to drought claims for wheat, and how do these 

relationships vary across the iPNW?  Additionally, based on these optimum relationships, 

what climate variables have a greater influence on wheat insurance loss due to drought for 

the region, and can we utilize this framework for the prediction of insurance loss? 
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2.2. Motivation 

From a regional perspective, the iPNW produces around 17% of the U.S. wheat harvest 

(Karimi et al., 2017; Roesch-McNally, 2018). Given that cereal production is directly linked 

with variations in precipitation and temperature across much of the U.S. and globe (Hatfield 

& Dold, 2018), much of the iPNW wheat yields are significantly correlated with variability 

in plant available water during the growing season (Yorgey & Kruger, 2017; Chi et al., 

2017).  For example, 2015 iPNW wheat cropping outputs were negatively impacted by 

drought and extreme temperatures, evidenced in reduced crop yield outputs, increased 

agricultural insurance loss claim totals, and overall reduced wheat quality resulting in 

approximately $200 million of insurance loss in Washington state alone (Seamon et al., 

2019a, Sandison, 2017; Howitt et al., 2015).   

 
Mishra and Singh (2010) define agricultural drought  as “a period with anomalously low soil 

moisture that substantially limits crop production are extended over multiple years”. During 

such conditions, the ability for landscapes to recharge water storage becomes more difficult, 

effecting vegetation cycles, soil erodibility, as well as agricultural practices that can severely 

impact farmer outputs (Lobell & Burke, 2010). While iPNW drought conditions have 

historically been driven by a lack of precipitation, warming temperatures have played an 

increasing role on future regional water availability and drought (Abatzoglou et al.., 2014; 

Marlier et al., 2017; Mankin & Diffenbaugh, 2015).  In addition, composite or index 

variables can also be useful in quantifying drought conditions, such as the Palmer Drought 

Severity Index (PDSI), which attempts to standardize drought impacts across differing 

climates and is dependent upon the available water holding capacity of soils (Palmer, 1965). 

While agricultural practices such as crop rotations, planting cycles, genetic selection, and 
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pest/fertilizer/water management have improved agricultural system efficiencies over the 

past 30 years, these improvements are partially offset by more adverse growing conditions in 

some regions given the impacts of climate change (Hatfield et al., 2014).  

 
In terms of mitigating long term and seasonal variability with regards to climatic impacts, 

crop insurance is a key mechanism that is used to reduce such risk (Miranda et al., 1997; 

Seamon et al., 2019a).  Of particular note are long-term climatic variability impacts on short-

term extreme weather events, as well as shifts in seasonal/subseasonal weather outcomes that 

are exacerbated by a changing climate over an extended period of time (USGCRP, 2017). In 

the PNW alone, from 2001 to 2015, over 35,000 insurance claims were filed, of which 

20,600 were for wheat (Seamon et al., 2019a). For the iPNW in particular, drought and heat 

insurance claims for all commodities resulted in approximately $760 million in insurance 

losses from 2001 to 2015, which account for approximately 55% of all losses for this time 

period (Figure 2.2). Of particular interest in terms of climate, agriculture, and crop insurance, 

are the individualized phenological cycles per cropping type and their seasonal relationships, 

particularly in regard to insurance loss outcomes. Due to the diverse nature of a particular 

crop’s growth cycle and its varying sensitivities to climatic effects, the seasonal timing of 

long-term climatic changes can be just as important as the extreme nature of a particular 

weather event (Barlow et al., 2015; Hatfield et al., 2014, Asseng et al., 2013).  Long term 

climatic changes on cropping systems, given non-linear relationships, may result in 

alterations in yields or losses after surpassing particular thresholds (Hatfield et al., 2014). 

Cropping systems have differing responses to temperature changes throughout the 

phenological life cycle, with most species typically requiring higher temperatures (presuming 

adequate water availability) for optimum vegetative growth rather than for reproductive 
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development (Hatfield & Prueger, 2015). As a result of these life cycle temperature needs, 

extreme climatic events will have differing effects on differing crops based on their 

phenological stage. These extreme event outcomes may result in shorter life cycles, lower 

plant production, reduced reproductive periods, decreased pollen viability, and lower yields.  

As such, these impacts may result in increasing the overall risk of financial loss, and 

therefore, increase the potential for higher insurance losses, as well as the frequency of 

claims.  

 
Grain-based cropping systems are particularly impacted by potential increased temperatures.  

Considerable research has examined the range of temperature impacts on grain yields (Sacks 

& Kucharik, 2011) indicating that progressive temperature increases may initially result in 

increased yields, with an accelerating decrease over time, given an inverse 

temperature/precipitation relationship. Stockle et al. (2018) note that while increased 

temperatures will likely decrease wheat yields in the region, the effects of CO2 fertilization 

may modestly offset these yield reductions over time. In contrast, Schlenker and Roberts 

(2009) suggest that yields for alternative forms of cropping systems, such as soybeans, corn, 

and cotton, would slightly increase with initial temperature increases up to 32 degrees 

Celsius, and then sharply decrease as temperatures rise above that threshold.  To make 

matters more complex, Rezaei et al. (2018) as well as Asseng et al. (2013) indicate that 

unique cultivars within a species may have varying phenological cycles, suggesting that any 

agricultural climate impacts assessment should include a variety of sub-species for proper 

threshold analysis.  When examined in total, climatic relationships to agriculture are 

extremely variable, with changing outcomes due to cropping system, regionalization, farming 

practices, and genetic diversity.  This complexity is encapsulated in agricultural insurance 
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loss management, in order to effectively hedge agricultural risk, associated variability and 

complexity, and incorporated into a time-adjusted financial premium/payout process. Under 

this premise, evaluating insurance losses in relationship to subseasonal climatic impacts 

provides a streamlined approach to assess patterns and predictability, without delving into the 

underlying crop processes and their biophysical effects due to a changing climate.   

 
Given this relationship between climate and agriculture, our research focus was to determine 

which climate variables and temporal windows best relate to drought claims for wheat, and 

what spatial variability exists with regards to this climate/agriculture association.  Armed 

with this optimized information, we then developed a predictive model for estimating 

agricultural insurance loss based on climatic influences. 

 

2.3. Data and Methods 

The study area for this analysis was a 24-county region of the inland Pacific Northwest 

(iPNW) of the United States (Figure 2.1). As one of the key agricultural production regions 

in the U.S, it supports a variety of cropping systems and management practices, which are 

dominated by dryland wheat farming (Chi et al., 2017).  The region has cool to cold, wet 

winters and warm to hot, dry summers, with considerable interannual variability based on 

regionalization across the PNW three state area (Yorgey & Kruger, 2017; Abatzoglou et al., 

2014). Agricultural production for the area is typically limited by water rather than by 

growing season length (Stockle et al., 2018), with annual precipitation increases from west to 

east, ranging from 200mm to over 600mm (Schillinger et al., 2010; Chi et al., 2017). 

Interannual climate variability in the region can lead to considerable variation in available 
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moisture, temperature, and evaporative demand, all of which can be influential on long term 

agricultural systems production. 

  
Two datasets were organized for this analysis: 1) the USDA agricultural crop insurance claim 

archive from 2001 to 2015 (http://rma.usda.gov).  When U.S. farmers experience economic 

losses for particular agricultural commodities, they typically file a crop insurance claim for 

that loss, as part of the Federal Crop Insurance Corporation’s (FCIC) program, which 

underwrites agricultural insurance policies in conjunction with private insurance 

organizations. The filing of a crop insurance claim is the result of complex decision making 

process, where farmers may incorporate multiple factors, spanning biophysical, climatic, 

economic, and socio-demographic disciplines. Over time, these insurance claim records are 

systematically provided to the U.S. Department of Agriculture (USDA), who administers the 

program via the USDA Risk Management Agency (http://usda.rma.gov) and makes these 

data available as a public archive.  Individual records are spatially coarsened to provide 

anonymity, by removing address information and providing the data only at a monthly, 

county-level temporal/spatial scale.  Each individual insurance claim indicates the 

commodity insured, the year and month of filing, the cause of damage, as well as the total 

amount claimed (in dollars). The USDA agricultural insurance dataset contains individual 

claims (with the dollar amount of the claim loss) based on four key factors: time (the year 

and month of the claim), the state and county the claim was filed in, the commodity type, the 

acreage of the claim, and the specific, singular cause of the claim.  For the purposes of this 

analysis, individual agricultural insurance claims for wheat due to drought were aggregated 

to the county level. We only included claims during January to September given our focus on 

winter wheat phenological cycles, and hereafter focused on annual claims for each county.  
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The second dataset used was daily gridded climate data at 1/24th degree  (4km) spatial 

resolution for three climate variables that are most associated with water availability 

(maximum temperature, precipitation, and potential evapotranspiration) from Abatzoglou 

(2013).  Daily values were summarized by county and to a monthly time scale, with totals 

aggregated for precipitation and potential evapotranspiration, and average values for 

maximum temperature and PDSI. 

 
In order to explore the associations of climate to insurance loss, we constructed a set of time 

lagged climate variable design matrices, to search for the optimal seasonal temporal 

relationship between a climate variable (i.e. maximum temperature, precipitation, 

evapotranspiration, and PDSI) and a county’s seasonal wheat insurance loss due to drought.  

We used this optimization approach to identify the most influential county level time periods 

per season that were best correlated to wheat/drought insurance claims. Through these steps 

we evaluated a variety of machine learning algorithms individually, as well as part of an 

ensemble process, to initially evaluate predictive performance (singular regression decision 

tree, support vector machines, random forest, artificial neural networks), using a common out 

of sample/in sample structure (10-fold cross validation). Based on the RMSE/R2 results of 

the aforementioned algorithm outputs, we chose a regression-based random forest approach 

to predict insurance loss annually over a time span of 2001 to 2015.  A particular advantage 

of random forest techniques is the ability to evaluate the feature importance of climatic 

predictors (Liaw & Wiener, 2002), as well as the minimization of model overfitting 

(Brieman, 2002).  
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Our initial step was to perform a general comparison of county-level wheat/drought related 

claim acreage to water availability variables (precipitation and potential evapotranspiration), 

as well as aridity (precipitation / potential evapotranspiration), to examine general trends 

over time (2001 to 2015).  The purpose of this initial analysis was to verify that expected 

patterns of wheat/drought insurance loss acreage vs. water availability were seen (e.g. 

counties with relatively lower precipitation totals had overall increased wheat/drought 

insurance loss acreage).  These annual, county-specific ratios were calculated by taking the 

total number of acres of wheat/drought insurance loss and dividing by the total number of 

acres for all other wheat damage cause losses.  As the ratio approaches 1, we identify 

county/year combinations where drought was the dominant factor in terms of total farmland 

acreage attributed to insurance loss.   

 
Secondly, we aggregated and associated climate data to wheat/drought crop loss seasonal 

totals by county, analyzing all outputs by using a time-lagged association by searching for 

the highest correlations between all combinations of monthly climate values (scaled and 

mean centered) and wheat insurance loss claims due to drought.  We transformed annual loss 

amounts by a cube root function which resulted in a normal distribution of annual values. 

Following previous efforts to elucidate the optimum correlation (e.g., Du et al., 2013), we 

examined these climate/insurance loss correlations for each county, based on each climate 

variable, using a 12 x 9 design matrix that considered different temporal periods (12 months 

for all climate data, 9 months for only winter wheat claims from January to September).  Our 

goal was to evaluate which time-lagged windows were best correlated with overall 

wheat/drought insurance loss for a county, across the 2001 to 2015 time period. Using the 

results of this optimization, we then combined results of our county-specific time lagged 
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correlation data across the 24-county study area, examining coefficients of correlation (R). 

The output of our design matrix methodology resulted in an optimized county level 

climate/insurance loss dataset (wheat claims due to drought), for each year, for the entire 

study area. This process created a new dataset of dependent and optimized independent 

(maximum temperature, precipitation, potential evapotranspiration, PDSI) variables, which 

were used in the final step of our analysis: a regression-based random forest/decision tree 

analysis. 

 
Regression decision trees are a method of constructing a set of decision rules on a predictor 

variable (Breiman et al., 1984; Verbyla, 1987; Clark & Pregibon, 1992) that is continuous 

(versus categorical). These rules are constructed by recursively partitioning the data into 

successively smaller groups with binary splits based on a single predictor variable, with the 

goal of encapsulating the training data in the smallest possible tree (Prasad et al., 2006). The 

rationale for minimizing the tree size is the premise that the simplest explanation for a set of 

phenomena is preferable over other explanations (Behrens, 2000).  Regression decision tree 

development initially grows maximal trees and then uses techniques such as cross 

validation/rotation estimation to prune the overfitted tree to an optimal size (Therneau & 

Atkinson, 1997).  Regression decision trees have several advantages over traditional 

statistical methods, including: uncovering conditional structure in data with hierarchical 

variables, assessing non-linearity given that no a priori knowledge is assumed, as well as 

providing insight into spatial tendencies given its ability to map predictors with the greatest 

influence on a distribution (Prasad et al., 2006).  Computationally, decision tree processing is 

typically based on either the ID3 or C3.4 algorithms (Quinlan, 1986), which are used to 
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construct a decision tree for regression by replacing information gain with standard deviation 

reduction.  

 
Random forest, or ensemble decision trees, are a combination of many decision tree 

predictors, where each tree depends on the values of a random vector, sampled independently 

and with the same distribution for all trees in the forest (Brieman, 2001).  Random forest 

modeling reduces the potential for overfitting through the use of bootstrap aggregation, 

averaging across many trees, and provides a level of feature importance for assessing 

predictor power.  As part of our random forest construction, we utilized 10-fold cross 

validation, a model validation technique used to assess the generalizability of the model. 

Model construction for this analysis utilized the recursive partitioning and regression trees 

package (rpart) within R (Therneau & Atkinson 2011; Breiman et al., 1984).  To tune the 

model, we performed hyperparameter optimization as part of our cross validation, which 

iterates over the model to find the best set of parameters for optimization and minimizes the 

loss/error function (in regression, typically the mean squared error (MSE) or the root mean 

squared error (RMSE). We then examined this error using learning curve theory, which 

compares the performance of a model’s training and testing data over a varying number of 

training instances, with the expectation that model performance improves with an increase in 

observations.  By separating the training and testing datasets and plotting them individually 

as the model is run repeatedly, while increasing observations, we can get a sense of how well 

the model will generalize with new data (i.e. changing climate variables or a change in 

commodity pricing).  Additionally, learning curve analysis allows for the evaluation of the 

balance between bias and variance, by examining how the curves converge or persist in 

separation (Perlich et al., 2004).   
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2.4. Results 

The results of our initial county level wheat/drought acreage ratios (2001 to 2015), as 

compared to precipitation, potential evapotranspiration, and aridity are shown in Figure 2.3.  

Each observation represents the mean annual totals of each individual variable, for each 

county, from 2001 to 2015. We see expected climate/insurance loss relationships, with 

county level precipitation totals, as well as aridity, inversely proportional to increased 

drought acreage ratios.  Similarly, potential evapotranspiration totals increased as ratios 

increased.  These general patterns supported moving forward to explore more specific 

spatiotemporal relationships of climate to insurance loss using our climate-lagged correlation 

framework.  

 

2.4.1. Climate vs insurance loss time-lagged relationships results 

Using our time-lagged matrix approach, we identified the optimum correlation between 

annual wheat/drought insurance loss and each variables’ climate window, for each county 

(Figure 2.4 shows an example of this climate lagged matrix design for Whitman county, 

WA).  Using these time-lagged matrix correlation outputs, we mapped the spatial and 

temporal variations for each climatic variable, at a county scale.  This mapping allowed us to 

identify notable patterns that align to physiographic features, such as elevation. In addition, 

we plotted these optimum temporal windows for each county, and for each variable. Finally, 

we constructed bivariate plots that compared each county/year combination with the related 

wheat/drought insurance loss, with wheat price used to vary the observation point size.  

These three analysis views are organized for each of the predictor climate variables. 
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Potential Evapotranspiration (PET). An overview analysis of PET from 2001 to 2015 for the 

study area indicates a climate gradient from east to west, with the annual maximum occurring 

in July (Figure 2.5). When examining optimum correlations of PET to cube root transformed 

wheat/drought insurance loss (Figure 2.6), the counties of Walla Walla, Columbia, and 

Whitman (Washington) had the highest values, along with Latah and Benewah counties 

(Idaho).  Southernmost counties (Oregon) tended to have the lower correlations with earlier 

seasonal months (Feb/Mar/Apr).  In terms of the optimum time windows for PET (Figure 

2.7), we see a shift toward later time windows from southwest, through Washington into 

Oregon. The optimal time window for Idaho counties tended to be earlier in the season 

(March/April/May), while that window is slightly later for Washington counties 

(April/May/June/July/Aug), and for Oregon counties that time window is later still 

(July/August/September).  When we analyze the correlation of all optimal county/year 

climate combinations with insurance loss (Figure 2.8), we see moderate positive correlations 

(R = .49), with similar regionalized groupings between Idaho, Oregon, and Washington 

counties: Idaho counties tended to have higher precipitation with lower wheat/drought 

insurance loss, with Washington having the highest insurance loss totals with the highest 

levels of PET. 

 
Precipitation. Regional cycles of precipitation, averaged for the period from 2001 to 2015, 

show increasing values from northwest to southeast.  In all counties, the wettest months are 

November through January, but spring (March-April-May) is wet too (Figure 2.9). Negative 

correlations of precipitation (Figure 2.10) with insurance loss were highest in the 

southernmost study area counties, which tended to border the Snake and Columbia rivers 

(Wasco, Sherman, and Union counties, OR, and Columbia and Whitman counties, WA), 
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ranging from -.61 to -.81.  Counties further to the northwest (Franklin, Douglas, Lincoln, 

Spokane counties, WA) tended to have lower correlations, with April/May/June precipitation 

more highly correlated with drought loss for most counties (Figure 2.11).  However, the 

counties furthest west (Benton, Grant, Douglas), which are fruit dominant regions, had 

differing time windows for optimal insurance loss associations. When combined in an overall 

bivariate plot (Figure 2.12), we saw modest inverse correlations with precipitation (R = -.44), 

with increased precipitation in counties with overall lower wheat/drought insurance claim 

totals. Similar to PET, we see regionalized groupings for study area counties by state, with 

Idaho counties having the highest precipitation totals and the lowest overall wheat/drought 

insurance loss. 

 
Maximum Temperature. Temperature tends to increase from southeast to northwest, which, 

as expected, is opposite to the pattern for precipitation. July was the peak month for high 

temperatures for every county in the iPNW (Figure 2.13).  Maximum temperature was most 

highly correlated with drought (Figure 2.14) in southeastern Washington counties, including 

Walla Walla, Whitman, Columbia, Garfield, and Spokane counties, WA, as well as Latah 

county, ID, ranging from .59 to .72.  Temporally, most counties had an optimum relationship 

that fell between April and July, with Oregon counties and several western WA counties 

shifting that time window slightly later (Figure 2.15).  The two counties with the highest 

correlations (Columbia and Garfield counties, WA), both had optimum time windows that 

included April.  When all county/year combinations are examined in a bivariate plot (Figure 

2.16), we see R = .47, with a positive correlational distribution, indicating higher loss with 

increased temperatures.  
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Palmer Drought Severity Index (PDSI). PDSI spatial gradients had an increasing trend from 

southeast to northwest (Figure 2.17). PDSI optimum correlations with wheat/insurance loss 

appeared to have a spatial gradient that similarly increased to the northwest (Figure 2.18), 

with Douglas, Benton, and Grant counties, WA, as well as Wasco county, OR, having the 

highest correlation coefficients (R = .81).  July/August/September was the most common 

window for optimum climate/insurance loss relationships (Figure 2.19), yet those counties 

with the highest correlations had window ranges that were much longer.  As with 

precipitation, PDSI is negatively correlated with wheat/drought loss (Figure 2.20). 

 

2.4.2. Regression based random forest modeling results 

The foregoing correlations demonstrate significant lagged effects of late spring climate 

variables on drought loss. Building on this understanding, we uncover nonlinear effects using 

random forest modeling. The overall results of our 10-fold cross validated random forest 

model using insurance dollar loss totals yielded an R2 of .45 with a RMSE of approximately 

$8,089,273 (Figure 2.21) Feature importance rankings indicated that PDSI was the most 

influential predictor, with wheat prices and potential evapotranspiration as second and third 

most important (Figure 2.22).  Precipitation was the lowest predictor in terms of feature 

importance.  When evaluating model error across training size (n = 348) using a learning 

curve analysis, we see considerable variation between training and validation error, which 

indicates that the model may be overfitting, and would potentially benefit from a reduction of 

complexity, or an increase in observations to improve performance.  A comparison of 

historical vs. predicted insurance loss is visualized in Figure 2.23, for all 24 counties 
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combined, with overall model predictions underestimating insurance loss, particularly so in 

the high loss years of 2009 and 2015.  

 

2.5. Conclusions 

The results of our climate lagged correlation analysis provide an interesting view of the 

spatial and temporal relationships of climate with localized insurance loss, with a particular 

focus on the region’s dryland wheat production.  In particular, our results indicate the 

importance in understanding the varying temporal effects of drought-related climatic 

variables, as they vary spatially, which is also supported by the previous work of Semenov 

(2009) and Lobell et al. (2015).  As noted previously, we see expected spatial patterns of 

correlation that align with climate variables within our iPNW study area: for example, we see 

that counties in the high desert regions of northeastern Oregon, which typically experience 

very low precipitation rates, were more highly correlated with wheat/drought insurance loss, 

which may indicate the relative regional sensitivity of these particular counties to 

precipitation (or lack thereof). Similarly, the higher correlation of PDSI with wheat/drought 

loss in the most western counties of the region, may indicate that insurance loss in these 

locations are more sensitive to a composite water-balance context that incorporates 

temperature, PET, and the available water capacity of soils. 

 
The results of our random forest model efforts indicate the potential importance of economic 

factors not accounted for in the current model, particularly given the underprediction of years 

with extreme drought claim totals.  Given the considerable declines in wheat prices from 

2008 to 2009, during the U.S. great recession (Fan et al., 2016), the underprediction of wheat 

insurance loss totals in 2009 may indicate the difficulty in the model to factor in economic 
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considerations, particularly given the possible inflation of drought loss due to economics 

rather than climatic outcomes.  By contrast, in 2015, which was a year of noted severe 

drought in the iPNW (Mote et al., 2016), the model prediction was considerably closer to the 

observed loss.  The comparisons of these two years may suggest a broader question around 

insurance loss and the interaction of climate and economics:  are there particular extreme 

economic thresholds which may induce more fraudulent efforts to make climatic-associated 

loss claims, when, in fact, no such scenario exists?  

 
Given the aforementioned associations of insurance loss with climate change, there are 

important considerations to contemplate. As future climatic condition in the iPNW will likely 

lead to increased evapotranspiration rates, increased temperatures, and thus more extreme 

soil moisture deficits (Suyker & Verma, 2009; United States National Assessment Synthesis 

Team, 2001), crop insurance programs will likely be considerably negatively impacted.  With 

limited long-term resilience, crop insurance efforts face added financial pressure under 

prolonged extreme weather conditions: subsidization mechanisms by the federal government 

to indemnify authorized crop insurance providers have typically only one year of coverage in 

cases of severe claim payouts (USDA RMA, 2011).  As such, future extreme conditions for 

crop commodity systems, particularly around water availability, will likely increase the 

likelihood of financial stress with consecutive year drought events.  Aspects of insurance loss 

prediction, as well as understanding potential conditional relationship thresholds (climatic 

and economic) will become more important, particularly given the need to extend risk 

management financial tools to areas of the world currently not appropriately indemnified 

(e.g. Africa). As such, effective modeling efforts to predict the risk based on extreme climatic 
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conditions, as well as related socio-economic indicators, are becoming paramount (Mann et 

al., 2019). 

 
An interesting component that was not explored as part of this research is the overlapping 

and interactive effects of drought combined with heat, and the manifestation of such impacts 

on overall wheat insurance loss.  While agricultural drought implies a reduction in water 

supply to agronomic systems that may impede or hinder growth rates (and thus reduce 

yields), heat impacts have the potential to accelerate overall phenological development, 

which may result in early maturation, lower yields, and potential increases in insurance loss – 

particularly in cereal systems (Lesk et al., 2016).  Understanding these competing and/or 

countermanding relationships could assist in developing a more accurate representation of 

climatic impacts on insurance loss, particularly in differing regions of the world.  Another 

extension of this research could employ the use of other drought-associated climatic variables 

that are supported in other recent research, including: the normalized difference vegetation 

index (NDVI), precipitation-associated indices, such as the standardized precipitation 

evaporation index (SPEI), the evaporative demand drought index (EDDI), or simulated soil 

moisture (Gao et al, 2007; Ahmad et al., 2010).  Additional climatic inputs may provide a 

more enhanced view of insurance loss, particularly related to drought, as well as assisting in 

separating the differing influences of climate and economics. 
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Precipitation vs. 
Wheat/Drought Loss: 
Whitman County, WA 
April/May/June precipitation 
has highest correlation with 
annual insurance loss ($) for 
Whitman County, WA 
 
Range: -.16 to -.66 

Number of months preceding 

 

Potential 
Evapotranspiration vs. 
Wheat/Drought Loss: 
Whitman County, WA 
Apr/May/June/July PET has 
highest correlation with annual 
insurance loss ($) for Whitman 
County, WA 
 
Range: .24 to .75 

Number of months preceding 

 

PDSI vs. 
Wheat/Drought Loss: 
Whitman County, WA 
Aug/Sept PDSI has highest 
correlation with annual 
insurance loss ($) for Whitman 
County, WA 
 
Range: -.22 to -.67 

Number of months preceding 
  

Figure 2.4.  Example climate and wheat insurance loss correlation matrices for 
Whitman county, WA, 2001 to 2015, due to drought. Correlation values are 
absolute (R). 
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Figure 2.5. Top panel shows (a) potential evapotranspiration (PET) monthly 
averages per county, from 2001 to 2015, grouped by state. Bottom panel (b) 
shows annual PET averages (2001 to 2015).  Note the spatial trend of PET 
increasing from east to west. 
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Figure 2.9. Top panel shows (a) precipitation monthly averages per county, from 
2001 to 2015, grouped by state. Bottom panel (b) shows annual precipitation 
averages (2001 to 2015).  Note the spatial trend increasing from northwest to 
southeast. 
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Figure 2.13. Top panel shows (a) max temperature monthly averages per county, 
from 2001 to 2015, grouped by state. Bottom panel (b) shows annual max 
temperature averages (2001 to 2015).  Note the spatial trend increasing from 
southeast to northwest. 
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Figure 2.17. Top panel shows (a) PDSI monthly averages per county, from 
2001 to 2015, grouped by state. Bottom panel (b) shows annual PDSI 
averages (2001 to 2015).  Note the spatial trend increasing from southeast to 
northwest. 
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Figure 2.21. Historical vs. predicted annual wheat insurance loss ($) due to drought, 
constructed using a random forest model (number of trees = 1000), for the 24 county 
iPNW study area. Input variables were precipitation, maximum temperature, and 
potential evapotranspiration, as well as annual wheat pricing, from 2001 to 2015.  
Climate variables were refined using the aforementioned time-lagged correlation 
methodology (R2 = .47, RMSE = $8,089,273) 
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Figure 2.22. (a) Random forest feature importance (total trees = 1000), as well as a 
(b) learning curve comparison of training dataset error vs. validation dataset error. 
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CHAPTER 3: DEVELOPMENT OF A REPRODUCIBLE SCIENCE 
FRAMEWORK TO EXAMINE INLAND PACIFIC NORTHWEST 
(IPNW) AGRICULTURAL INSURANCE LOSS IN RELATIONSHIP TO 
CLIMATE 
 

3.1. Introduction 

Reproducibility is a critical component to scientific research.  Over the last twenty years, the 

ability to generate more data, more rapidly, and with a greater variety, have led to an 

increased focus on data science methods for scientific evaluation, organization, and analysis 

(Zikopoulos et al., 2013). This expansion in data generation has resulted in more 

collaborative and transdisciplinary efforts, which has not only made reproducible science 

even more difficult (Blow, 2014) but has introduced questions about how reproducibility is 

defined.  For example, language-specific variations can confuse the meaning of reproducible 

science (e.g. consider the words “replicable”, “repeatable,” or “generalizable”).  Even the act 

of defining reproducibility across disciplines is onerous: in some instances, reproducibility is 

the test of a scientific hypothesis or experiment: if an experiment is repeated, the same 

resultant output is produced (Goodman et al., 2016).  In medical and health fields, 

repeatability is generally described as a technique which measures the variation in 

measurements taken by a single instrument or person under the same conditions, while 

reproducibility measures whether an entire study or experiment can be reproduced in its 

entirety (Bartlett & Frost 2008; National Institute of Standards and Technology [NIST], 

2007). Other disciplines, such as computational sciences, define reproducibility as a 

deterministic outcome, so that the re-running of an experiment should produce identical 

modeling results, which may include hyperparameter sampling decisions, or the random 

sampling nature of a training/testing model (Stodden et al., 2016).  Furthermore, the concepts 
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of “open access” or “open science” complicate the discussion.  While reproducibility, in a 

broad context, focuses on the ability to duplicate a scientific research study or experiment for 

the purposes of evaluation and replicability, open access and open science expand the 

discussion to include the ability to expose scientific processes to a universal audience, 

without the limitations of proprietary publication or repository access. Baker (2016) 

conducted a survey of over 1500 scientists, across a variety of scientific disciplines, 

specifically on this topic of reproducibility.  The results were startling: more than 70% of 

those surveyed indicated that they had tried, and failed, to reproduce other scientists’ 

experiments, and over 50% failed to reproduce their own experiments.  While the majority of 

respondents acknowledged that reproducibility is a significant crisis, less than 31% indicated 

that the failure to reproduce meant that a publications’ results were incorrect.   

 
Popper (1992) notes that “communicating a scientific result requires enumerating, recording 

and reporting those things that cannot with advantage be omitted.”  Under this premise, 

sound scientific research and analysis should effectively describe the methods and analytic 

steps required to support underlying hypotheses and subsequent results. In addition, Stark 

(2018) has proposed that the concept of “preproducibility” is a prerequisite for 

reproducibility.  Preproducibility occurs if “an experiment or analysis has been described in 

adequate detail for others to undertake it”. Therefore, effective detail and information must 

be provided to document and produce analyses before such outcomes can be replicated, 

reproduced, or repeated.  Putting this approach into practice, Johnson et al. (2017) attempted 

to examine the rates of reproducibility across 100 psychological science studies:  97% of the 

original studies showed significant results, while only 36% of those same studies, when 

reproduced, showed significance.    
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By extending the preproducibility/reproducibility process and introducing cross-disciplinary, 

interdisciplinary and transdisciplinary research, we create an added level of complexity that 

is extremely challenging, particularly with regards to data intensive analyses.  While 

interdisciplinarity (Fairbairn & Fulton, 2000; Augsburg, 2005; Davies & Devlin, 2007; 

Pennington et al., 2016) addresses overlapping methods and ontologies between disciplines 

while persisting research separation, transdisciplinarity is a much more integrative effort that 

may combine methods, data, systems, and processes in a holistic way which results in a 

merged, unique research structure (Nicolescu, 2008). Transdisciplinary efforts not only relate 

to data, systems, and methods, but to people, and the ways in which they think about their 

own research (Gray, 2008).  Stokols et al. (2013) indicate that transdisciplinarity “entails not 

only the integration of approaches but also the creation of fundamentally new conceptual 

frameworks, hypotheses, and research strategies that synthesize diverse approaches and 

ultimately extend beyond them to transcend preexisting disciplinary boundaries.” As such, 

this form of collaborative science can be extremely valuable in terms of tackling complex 

problems, particularly those that span across multiple disciplines or that require unique, 

multi-pronged hypotheses to address the questions at hand.  While transdisciplinarity is a 

complementary extension of traditional multidisciplinarity,  Nicolescu (2008) further notes 

that it is  “nevertheless radically distinct from multidisciplinarity and interdisciplinarity 

because of its goal, the understanding of the present world, which cannot be accomplished in 

the framework of disciplinary research”.  In this context, scientific transdisciplinarity is 

extremely beneficial, particularly in current scientific collaborative environments (e.g. 

climate change, biogenomics, astrophysics). While transdisciplinary research provides clear 

benefits to addressing multi-faceted research questions, it simultaneously is difficult to 
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successfully implement, and even more challenging in terms of its output 

preproducibility/reproducibility.  Such research efforts have been popular in the several 

applied scientific areas such as bioinformatics and climate (Shi et al., 2008).  Of additional 

note are the aspects of reliance upon data intensive processes in both example areas, as well 

as the importance of modular, reproducible scientific frameworks (Devezer et al., 2019).  If 

we focus in on the importance of reproducibility and its relationships to transdisciplinary, 

data intensive research, we can identify numerous challenges, including:   

 
1.  The act of initiating transdisciplinary, reproducible research, given the interpersonal 

and discipline specific variations in terminology, research methods, data 

management, and ontologies. 

2. Concerns around potential intellectual property rights, as well as more informal 

concerns around the competitive nature of scientific research and exposing work 

efforts that may be beneficial for other scientists who may be competing for similar 

funding. 

3. The ability of researchers to quantify the lifecycle of their research in a timely fashion 

that aligns publications with output results, particularly given data-intensive research 

efforts. 

4. Quantifying the methods and data in such a way as to easily expose reproducibility 

elements. 

5. Issues of scaling in the number of researchers engaged, as singular efforts or smaller 

teams may have less resources to formulate systems and architectures which facilitate 

reproducible elements; similarly, larger, transdisciplinary teams may also experience 
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challenges in remote collaboration, communications, and effectively integrating 

research objectives.  

6. Access to high performance computing (HPC) services and the barriers to engaging 

such services if research teams have little expertise in computational processes.  

7. Issues regarding the long-term viability of reproducibility, given the need for data and 

code persistence and the cost of maintenance, particularly with regards to extremely 

large datasets.  Stodden et al. (2010) did a survey of the machine learning community 

regarding the barriers to data and code sharing in the computational sciences:  the 

most important issue raised was the time to document and clean up data (77%) and 

code (54%).  Additionally, Vines et al. (2014) note that the data availability of 

research publications declines considerably with age.   

 
These challenges can place heavy burdens on research teams, funding agencies and academic 

institutions, as well as journals, all of which have varying responsibilities to ensure 

reproducible science is achievable (Figure 3.1).  In total, the lack of focus in these areas may 

hinder the initial expansion of such integrative research, as well as reducing the importance 

of reproducibility in general.  The overall implications of such roadblocks are to discourage 

the type of progressive scientific discovery that is necessary for complex challenges facing 

our world. Counterbalancing these challenges, however, are numerous advantages that 

provide added incentive to researchers and their institutions, including: (a) the overall value 

of integrated scientific research in exploring complex systems, such as biological, 

environmental, socio-economic, or combinatory aspects (Cooke et al., 2015); (b) uncovering 

scientific issues or questions that were previously unexplored or unknown (Stokols et al., 

2013); (c) establishing collaborative relationships across domains that may persist for 
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engagement in other projects or aspects of research; (d) enhancing individual domain 

research directions by introducing alternative methods or techniques that were heretofore not 

known or utilized (Uzzi et al., 2013); (e) enhancing funding streams for research efforts 

which may enhance systems, processes, or data environments, thereby improving future 

research capabilities (Wuchty et al., 2007); and (f) having an overall positive value on 

science impact (Wuchty et al., 2007; Uzzi et al., 2013). From a more refined perspective, 

there are specific, tangible outcomes that indicate value from transdisciplinary research 

efforts, including: group publications are more highly cited than publications by individuals, 

which serves as an indicator of impact (Wuchty et al., 2007). Compared with solo authors, 

teams and groups across disciplines were also more likely to develop research that organized 

unique ideas into high-impact publications (Cooke et al., 2015). Stipelman et al. (2014) 

performed a meta-analysis of publications produced by disciplinary vs. transdisciplinary 

research centers over time, concluding that transdisciplinary team science approaches tend to 

broaden the reach of research findings more so than traditional disciplinary efforts. 

 
Given the aforementioned challenges and added value regarding reproducible science and its 

relationships to data intensive research, the focus of this work was to quantify and prioritize 

the methods and processes that are necessary for reproducible, data intensive research, with a 

particular emphasis on transdisciplinary efforts.  We lay out a process-oriented framework 

for such a structure, using two complementary disciplines for our case scenario: agricultural 

systems and climatology.  Our focused goal is to document and construct an effective data 

intensive research framework using these complementary disciplines, providing actual 

systems, data, and code that could assist other researchers in furthering their scientific 
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endeavors.  As part of our methodology, we address specific challenges and pitfalls to 

provide solutions, spanning both technological as well as collaborative team building facets. 

 

3.2. Methods 

Our methodological approach is divided into two components: (a) description of a framework 

which supports and facilitates reproducible science efforts, and (b) a case study data analysis 

example that applies the framework, using agricultural and climatic data as a foundation. 

This framework development and case study example were funded as part of the Climate 

Impacts Research Consortium (http://pnwcirc.org), a science-to-action team funded by the 

National Oceanic and Atmospheric Administration (NOAA).  CIRC is also one of NOAA’s 

Regional Integrated Sciences and Assessments (RISA) teams under award # 

NA15OAR4310145. Of particular note are the considerable efforts to establish similar data 

intensive frameworks and methodologies for reproducibility, including Flathers and Gessler 

(2018), Donoho et al., (2007) and Dumontier and Wesley (2018).  Our proposed approach 

builds upon this research, extending the aspects of data input, processing, analysis, and 

storage, and includes facets of team collaboration, code storage, data management, project 

management, and code version control. Our premise is that successful reproducible science 

includes more than just data intensive analysis components, and includes aspects of scientific 

collaboration, team development and leadership. 

 

3.2.1. Reproducible scientific framework (RSF) components 

The framework methodology identifies the most important facets of transdisciplinary, 

reproducible science, and quantifies such a framework in a proposed set of systems, data, 
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code, analytics, and management processes.  As part of our methodology, we lay out each of 

the individual framework sections below, which are also depicted in Figure 3.2.  We then 

describe our prototype case study, the relationships to the framework, the challenges and 

limitations encountered, and the implications to other reproducible science projects. 

 

3.2.1.1. Data management and the FAIR principles 

At the core of the ability to develop sound, modular efforts for reproducible, open science 

efforts, is the ability to organize, manage, and persist data (McKiernan et al., 2016).  To a 

greater extent, such data must conform to a particular structure to allow for eventual 

reproducibility.  Wilkinson et al. (2016) outline the FAIR principles (findability, 

accessibility, interoperability, reusability), a recent set of data management concepts that, at a 

high level, set a structure for reproducibility and open science efforts which ultimately 

support the tenet of scientific transparency.  Critical to enabling the FAIR principles is the 

ability to structure and organize data in a way that permits transdisciplinary research 

interaction and reproducibility.  These efforts are not trivial and can require knowledge in the 

areas of system and network administration (Bergstra & Burgess, 2008), metadata 

specifications and ontologies (Giles, 2011; Mayernik et al., 2016), database architectural 

development (Wandell et al., 2015) as well as integrative software development (Hermann & 

Del Balso, 2017).  Each of these areas, on their own, have considerable challenges and 

complexities; to assemble them in a cohesive fashion can create difficult hurdles which can 

discourage the type of integrative research efforts described previously.   Numerous data 

management-specific systems exist:  SciTran (http://scitran.github.io), developed by Stanford 

University’s VISTA lab (Wandell et al., 2015), is a recent effort to facilitate scientific 
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transparency and reproducibility through effective data management approaches, which is 

instantiated as part of a RESTful (representational state transfer) application programming 

interface (API).  SciTran has recently been migrated to a for-profit software package called 

FlyWheel (http://flywheel.io) and is used primarily in medical research data management 

efforts. Tableau (http://tableau.com) is another for-profit software system that is heavily used 

in commercial and research settings for data management, visualization and analysis 

purposes.  From an open-source perspective, the Comprehensive Knowledge Archive 

Network (CKAN - http://ckan.org) is one of the most utilized data management platforms 

worldwide, used by a number of governmental and academic institutions for data storage, 

retrieval, and metadata documentation (Winn, 2013). CKAN is used by the United States 

federal government in numerous capacities, most notably as the engine for http://data.gov. It 

is also the framework used by the European Union’s European Data Portal 

(https://www.europeandataportal.eu), Australia’s Commonwealth Scientific and Industrial 

Research Organization (CSIRO), as well as the governments of Canada, Switzerland, and a 

large number of municipalities and cities (http://ckan.org).   

 
Apache Solr (http://apache.org) is another data management platform that is based on 

Apache Lucene, a set of Java-based indexing and search libraries, which provide 

spellchecking, hit highlighting and advanced analysis/tokenization capabilities (Shahi, 2015).  

Apache Solr has numerous advantages:  it is highly scalable and fault tolerant, is enterprise 

ready, can accommodate a full text search, is extensible, and has relatively easy configuration 

and administration. For the purposes of our case study example, we implemented Solr on 

Linux Red Hat Enterprise Server 6.0, for the storage of agricultural datasets from the 

National Agricultural Statistics Service (NASS) and the USDA risk management agency 
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(RMA).  Given Solr’s RESTful access over HTTP, it allows for easy incorporation of 

metadata search requests into other software deployments. 

 
Operationally supporting the FAIR principles and data management systems are a large 

grouping of research models that attempt to standardize data management efforts across 

differing domains. An established approach has been to construct service-oriented 

architectures (SOA), a concept from computer sciences that describes building modular, 

loosely coupled software systems which expose content using APIs, integrating disparate 

domains for the purpose of diverse research and analysis (Papazoglou & Van Den Heuvel, 

2006; Flathers et al., 2017).  By utilizing a SOA, transdisciplinary research efforts can 

associate defined database and modeling systems in a way that allows for autonomy and 

flexibility, while preserving legacy environments that may be difficult to migrate or 

transform (Pessoa et al., 2008).  In total, data management systems which enable machine-

ready requests, and facilitate distributed data coupling with other analysis and modeling 

efforts through a SOA, are a product of the need to reproduce scientific processes without the 

burden of manual data integration, searching, or access.  As such, they are a critical 

component of not only large research efforts, but smaller teams that nonetheless utilize large 

amounts of data and processing to derive results.  

 

3.2.1.2. Dynamic data requests 

Enabling reproducibility and iterative analysis methods, particularly given large data that 

may be spatially and temporally variable, often times requires the efficient ability to re-run 

analyses using differing data transformations (which may entail differing variables, 

geographies, and time scales). Using climatic information as an example, we note the huge 
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array of data that exist for atmospheric, oceanic, surficial and groundwater, as well as paleo-

climatic data, that are often structured using existing specifications and formatting (Table 

3.1).  In addition, there has been extensive research into the processes of downscaling and 

structuring climatic data for gridded analysis and use (Daly, 2006; Thorton et al., 1997; 

Abatzoglou, 2013).  In the climatological disciplines, NetCDF (Network Common Data 

Form) datasets are the standard to represent such multi-dimensional array data, that may span 

many variables across differing time frames, and that are typically in a gridded spatial 

structure.  Developed by the University Consortium for Atmospheric Research (UCAR), and 

based on the National Aeronautical Space Administration’s (NASA) CDF model, NetCDF 

represent a set of common libraries which allow for machine-independent access (Treinish & 

Gough, 1987) and is the de facto standard for representing such data by academia, 

government, and corporate entities worldwide (Harnett & Raw 2008).  To a greater extent, 

such climate and forecast convention (CF) formatting is commonly used for global climate 

modeling (GCM), as well as coupled general circulation modeling efforts which forecast 

/simulate meteorological outcomes into the future (Eaton et al., 2011).  Several mechanisms 

exist for accessing and transforming multi-dimensional gridded datasets, including 

distributed data access server platforms, such as Thematic Real-Time Distributed Data 

Services (THREDDS – https://www.unidata.ucar.edu/software/tds), Hyrax 

(https://www.opendap.org/software/hyrax-data-server), or ERDDAP 

(https://www.ncei.noaa.gov/erddap/index.html).  THREDDS, Hyrax, and ERDDAP are web 

servers which organize metadata and content for scientific datasets (typically gridded), using 

a variety of remote data access protocols, such as the open-source project for a network data 

access protocol (OPeNDAP), the Open Geospatial Consortium (OGC), Web Coverage 
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Services (WCS), and HTTP.  OPeNDAP in particular is a useful protocol, which enables the 

use of data from a remote server, without the need to download data files, and includes 

metadata inspection, sub-setting, slicing, and aggregation of data (Cornillon et al., 2003). 

While OPeNDAP allows for representational state transfer (REST) requests via a web 

browser, these same data queries can be implemented directly from other scientific software, 

such as Python, Java, Matlab, and R.  

 
THREDDS specifically provides a gridded array model for NetCDF data storage and access, 

extending access by permitting dynamic aggregation and subsetting of gridded data files 

using RESTful API requests.  For example: a user may have a particular need to access a 

specific number of variables, for a refined geographic location across a limited time frame.  

Instead of having to download large amounts of data, which may include extraneous 

information that is not needed, they can formulate a request (utilizing OPeNDAP that uses 

the THREDDS RESTful API via the NetCDF subset service, or NCSS), to acquire only the 

needed data, aggregated or subset in a fashion that fits their purposes. ERDDAP, a server 

architecture developed by NOAA, is also useful for quickly building RESTful URLs which 

generate outputs in a variety of structures.  Similar to THREDDS, such dynamic URLs can 

be embedded into software code, and/or manipulated to change or refine input variables. 

These protocols and platforms facilitate the ability of researchers to not only modularly 

structure analyses, but to easily modify such analyses for alternative hypotheses, and publish 

the base code for reproducibility purposes, without providing the mass of data utilized as part 

of that process.  
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3.2.1.3. Numerical model integration 

An important advancement in reproducible scientific efforts has been the integration and re-

use of models from different disciplines to simulate complex environmental systems, such as 

the Community Surface Dynamics Modeling System (CSDMS) (Peckam et al., 2016). Other 

related model integration efforts include the Earth System Modeling Framework (ESMF) and 

the Open Modeling Interface (OpenMI) (Gregersen et al., 2007).  These frameworks are a 

considerable advance in the ability of the geosciences discipline to couple various numerical 

models together using component-based programming, across differing programming 

languages and operating systems, thru the use of open source software standards. Such 

modeling integration efforts are a critical piece to the future of reproducible and replicable 

science, by loosely connecting established modeling outputs together.  There are numerous 

benefits that include performance, ease of maintenance, ease of use, flexibility, portability, 

stability, encapsulation, and software longevity (Overeem et al., 2013; Peckam et al., 2016).   

 

3.2.1.4. Dynamic data analytics 

Data analyses are typically the final output of any hypothesis-focused and/or data-driven 

research.  Such outputs may have a statistical emphasis and can include time series and/or 

geospatial relationships, as well having associations with differing discipline-specific 

methodologies (Daley, 2006). A key conclusion, from a broad perspective, is that with more 

data inputs, that span multiple disciplinary areas, reproducibility and method standardization 

become more complex (Mesirov, 2010).  For example: agriculturally-focused research into 

understanding agricultural insurance loss and the relationships to climate may involve (a) 

multiple cropping systems, (b) insurance loss data collected over multiple counties and/or 
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time points, (c) additional agricultural variables, such as management practices, biophysical 

and/or genetic components of the particular cropping systems, as well as (d) 

meteorological/climatic data, across multiple variables, that similarly may have variations 

temporally and spatially (Seamon et al., 2019b).  In this basic example, we have potentially 

introduced a multitude of data sources and methods that make the core analysis portions 

fairly complex for allowing reproducible results.  A particular researcher may be able to 

establish a singular set of procedures that effectively allow for the preproducibility of 

analyses, and to document the procedures within a publication, but is such documentation 

sufficient for reproducible results?  Likely not.  Constructing the output results in the form of 

a dynamic set of analytic tools, which allow for the iterative running/re-running of processes, 

as well as exposing the standardized code for such analytics, provides a more effective 

foundation for facilitating reproducibility (Guru et al., 2016)  Extending this premise, the 

assumption is that an external researcher may not have the full depth of knowledge of the 

preproducible results, and therefore will likely require a roadmap/workflow of the analytics, 

with accompanying data and code, in order to align reproducible efforts with the steps of the 

original analysis.   

 

3.2.1.5. Modular code development 

A critical facet to most aspects of transdisciplinary scientific research is the ability to 

collaborate on programming code.  To a greater extent, standards that allow for the modular 

construction of such code, in a way that allows for the ease of re-use, reproduction, or 

transformation of modeling outputs, is an important part of reproducible science.   There 

have been a number of developments to facilitate such collaboration. For example, The 
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ability to collaborate and reproduce code/modeling outputs through the use of dynamic 

research notebooks has been a paradigm shift in the quantitative sciences (Kluyver et al., 

2016). One of the most popular efforts in this area is the Interactive Python (IPython) 

research notebook development (Perez, 2007).  In 2014, the notebook portion of IPython was 

separated from its kernel and shell, and re-named Project Jupyter.  Jupyter notebooks support 

a variety of programming languages (R, Ruby, Python), and leverage a web service interface 

to allow programming collaboration in a dynamically run window via HTTP.  Up until the 

development of IPython/Jupyter, teams were required to utilize a code repository/version 

control framework, such as Apache Subversion (http://subversion.apache.org, 2019), or more 

recently, cloud-based code repository frameworks such as Github (http://www.github.com).  

Dynamic research notebooks do not replace such code repository/version control approaches, 

but rather complement their usage by allowing for real-time collaboration and the dynamic 

presentation of code output, with accompanying visualizations and statistical outputs.  To 

elaborate on this complementary nature, code repository systems such as Github allow for the 

storage and version control of .ipynb or .Rmd files, which are the outputs of research 

notebook systems such as Jupyter or R/Rstudio. 

 

3.2.1.6. Referencing data/publications using Digital Object Identifiers (DOIs) 

A digital object identifier uniquely denotes a dataset or publication, by creating an electronic 

object which contains metadata used to reference the materials (International  

DOI Foundation, 2012). DOIs are structured in such a way as to allow for machine ingestion, 

which enables the intelligent searching and filtering based on keywords, subject topics, data 

types, or other metadata content.  DOI usage has expanded considerably into data, code, and 
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other related research outputs, particularly given the growth of data repositories for 

permanent data storage.  Some key facets of DOIs include:   

 
1. Discoverability.  By attaching a unique identifier that can contain metadata, datasets 

can not only be associated with related publications, but can be searched and queried 

via research engines such as Google, ORCID, dryad, CrossRef, or datecite.  Such 

discoverability only extends that capacity of research efforts to be replicated or 

extended.   

2. Availability and/or persistence.  A core premise of the DOI architecture is that only 

datasets which reside in a relatively permanent location can be assigned an identifier 

(Kahn & Wilensky, 2006).  By hosting datasets in a permanent home, and assigning a 

DOI, the likelihood of reuse increases.   

3. Scientific impact.  The combined aspects of discoverability and persistence 

facilitate/increase the overall scientific impact of a publication and its related data.  

By establishing a level of stability in terms of the full understanding of a research 

effort, the potential for discoveries to effect related or peripheral research is 

magnified (Michener, 2015).  

 

3.2.1.7. Workflow construction 

Workflow templates are a commonly used technique to outline data intensive scientific 

processes and are a useful tool in term of organizing and structuring methods which can then 

be used as to facilitate replication/reproducibility (Deelman et al., 2008).  As teams work to 

develop integrated research processes, it may be easier to develop these efforts individually, 

with little interaction between subsets of the overall team, and cobbling together the results 
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of such analysis at a later stage.  However, with more complex research questions, this form 

of process organization may be limiting:  similar to other transdisciplinary functions, the task 

of integrating such processes across disciplines may be difficult and time-consuming.  As a 

whole, developing an effective workflow strategy that encapsulates the spectrum of research 

needs will benefit long-term analysis capabilities, and extend the prospect of reproducibility 

or added value in derivative research efforts. 

 

3.2.1.8. Collaborative research communications 

Often times the aspect of qualitative research communications are underestimated in terms of 

the overall value to reproducible, transdisciplinary science.  With an essential focus on data 

assembly, processing, modeling outputs, and permanence of storage, the methods and 

approaches for effective collaboration are usually ranked low in terms of importance (Russell 

et al., 2008).  The ability for scientists of differing disciplines (and sometimes in differing 

locations) to communicate effectively, and in turn, facilitate collaboration at a level that spurs 

scientific discovery, is not trivial.  Traditional scientific research has, for many years, been 

framed in the context of the “silo” mentality (Gray, 2008).  Researchers are, at the most basic 

level, solely responsible for their own methods, analyses, and approaches to organize and 

structure their research program, and such approaches may vary dramatically based on 

expertise, technology capabilities, and discipline (Martín-Sempere et al., 2008).  Adding to 

this complexity are data-intensive research efforts, which may occupy tremendous amounts 

of time and energy in order to merely get to the point of being able to run a model or perform 

analyses. Under this paradigm, a researcher is forced to prioritize needs, which includes the 

time needed to understand and bond with fellow collaborators.  Such review is continuously 
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being performed by focused researchers.  Is there value in attending this collaborative 

meeting?  What deadlines exist for me in terms of other research commitments?  Am I 

honestly going to derive value from this collaborative communication?  When research teams 

undertake difficult transdisciplinary efforts, the focus is usually on the technical, operational, 

scientific, and data-specific requirements that are needed to explore the proposed scientific 

hypotheses.  Yet in many ways, the ability of researchers to acknowledge the value in 

collaborative communications, and prioritizing such efforts, is critical to succeeding in such 

transformative research efforts (Bennett & Gadlin, 2012).  

 
There are several approaches which attempt to bolster such collaborative scientific 

integration, including work done by Eigenbrode et al. (2007), who developed the Toolbox 

Dialogue Initiative (http://tdi.msu.edu/research/), an effort to facilitate improved 

communications for team based collaborative science efforts. The toolbox effort is founded 

in a dialogue-based workshop, where researchers discuss their beliefs and values in 

relationships to scientific collaboration and team interaction.  Using this tested dialogue 

approach, interdisciplinary and transdisciplinary teams can enhance their abilities to achieve 

project success (Morse, 2013).  Such team engagement is an essential aspect of integrated 

science that involves expertise across a spectrum of disciplines, and particularly so when 

such research involves data-intensive science. 

 

3.2.1.9. Content integration 

Framing all of the previous components, in a manner that encourages their use and 

examination, has typically resulted in some form of a dynamic website.  However, depending 

upon the nature of a research team, and their interaction with external partners and/or 
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stakeholders, such a communication mechanism takes on multiple roles.  Not only does it 

communicate and facilitate research efforts by allowing team members to access systems and 

related instructional materials for the use and operation of those systems, but it may also 

serve to communicate scientific outcomes to differing audiences in differing ways.  While the 

development of such content integration is likely seen as trivial in relation to other aspects of 

reproducibility, the failure to effectively devote time and energy to such tasks can hinder 

overall team and stakeholder interaction (Böcher & Krott, 2014).  Aspects of such content 

integration includes scientific communications writing, user interface design, as well as 

scientific tool assessment and evaluation (Bagstad et al., 2013). 

 

3.2.1.10. Scientific project management 

Structured scientific project management to implement and iteratively improve all of the 

previously mentioned components, is another overlooked factor that ensures reproducibility.  

Many research projects which have worthy goals and objectives fall to the wayside given 

poor planning, no real structured model for resilience and longevity, or an effective data 

management plan that incorporates maintenance and support beyond the life of the funding.  

Similarly, few academic institutions have organizational models that recognize the need to 

address these long-term aspects of resiliency, from a resource and financial perspective.  If a 

funding agency makes a considerable investment in a research project, how will the long-

term implications of such a project affect access to the underlying data, code, modeling, and 

analytics that may produce resultant publications?  Is there not an added value in research 

efforts that spur scientific discovery, based on the foundational research outputs that support 

initial publication development?  The general consensus amongst wide swaths of research 
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communities affirms that there is considerable value in making such information available, as 

it enables pyramid-like research generation (Mesirov, 2010).  Ensuring that such long-term 

planning and research resiliency exists requires effective project management efforts, that 

are, in and of themselves, a research component of many transdisciplinary efforts.  Engaging 

researchers whose core focus is in such areas would be a wise consideration in diverse, large 

project teams, particularly those that involve intensive data science-driven goals.  Project 

management is an established discipline with an extensive body of research, across a variety 

of scientific and non-scientific areas (Brocke & Lippe, 2015). 

 
There are numerous project management methodologies, but the Agile methodical 

framework is one which is used regularly in corporate and governmental software 

development organizations (Cockburn & Highsmith, 2001).  Agile emphasizes iterative, 

spiral-like development processes, with self-organizing teams providing the majority of 

emphasis on tasks and timelines (vs. a formal project manager who may be more isolated 

from the detailed work effort).  While academic research settings are not corporate 

environments, they would be well served to take the best-of-breed portions of such project 

management efforts, balancing that with academic creativity and scientific discovery, which 

is not always set to a particular time frame.  Nonetheless, more of a focus on structured 

project frameworks may assist transdisciplinary teams in their organizational data-intensive 

research efforts, and thus, improve the abilities to construct reproducible outcomes.  

 

3.2.2. Case Study Example: Climate and Agriculture 

Our case study data analysis example focuses on agricultural insurance loss analysis and the 

relationships to climate in the inland Pacific Northwest US (iPNW).  While our overall 
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hypothesis was that climatic outcomes have a temporal and spatial predictive power in terms 

of commodity-specific insurance loss, the purpose of the case study was not merely to 

provide the quantitative results of the analysis, but also to exemplify how the proposed 

framework could be used to facilitate reproducibility in a particular analysis scenario.  The 

detailed analysis results of this case study can be found in two additional publications, 

Seamon et al. (2019a) and Seamon et al. (2019b). We used two data sources for this example 

analysis:  

 

1. Agricultural crop insurance. Crop insurance claims from 2001 to 2015 were acquired 

from the United States Department of Agriculture’s (USDA) risk management agency 

(RMA).  The USDA’s RMA provides an extensive archive of crop insurance data, at 

an individual claim level, by commodity, county, and year, along with specific 

information about the cause of the damage and the total loss ($) of the particular 

claim.  In the Pacific Northwest alone (Oregon, Idaho, Washington), over 20,000 

agricultural insurance claims were filed across 35 differing commodities rom 2001 to 

2015 (Seamon et al., 2019a).  Data sources for insurance loss are accessible in 

Appendix D. 

 
2. Gridded climatological data. In addition, we utilized daily gridded climate data at a 

1/24th degree spatial resolution (~4km/pixel) (Abatzoglou, 2013), acquired from the 

University of Idaho’s (UI) THREDDS server, which is hosted by the Northwest 

Knowledge Network (NKN – http://northwestknowledge.net).  NKN provides 

research data management and computing support for UI researchers and their 

regional, national, and international collaborators.  Data sources for climatology are 
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accessible in Appendix D. Using these two datasets, we constructed a step-by-step 

analysis workflow, which is depicted in Figure 3.3.  Our case study workflow is 

described below in terms of analysis steps. The overall reproducible science 

framework provides support for this analysis model, with each framework component 

having an associated case study parallel (Table 3.1). 

 

3.2.2.1.  Agricultural data acquisition and organization.  

In our initial step, we downloaded agricultural insurance loss files for the conterminous 

United States from 1989 to 2015. Files were available in a comma separated format from the 

USDA web site (http://usda.gov/rma).  Insurance loss data were combined in R and 

aggregated by several factors (year, county, damage cause, and cropping system), which 

created several transformed datasets. The resultant data and code functions for step 1 were 

uploaded to a central GitHub repository, and are noted in Appendix A.  The outputs of this 

aggregation allowed us to explore the totality of agricultural insurance loss for the study area 

by commodity, county, year, and by the cause of damage (e.g. drought, heat, excessive 

moisture).   

 

3.2.2.2. Data transformation and exploratory data analysis. 

 In our second step, data mining processes were performed on our transformed agricultural 

insurance loss data, in order to evaluate issues of missing data and spatial/temporal 

variability by crop type.  For example, principal components analyses (PCA) was performed 

to evaluate factorial relationships, which resulted in a reduction of our spatial and temporal 

extent, as well as focusing on wheat insurance loss due to drought for the inland Pacific 
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Northwest (iPNW) region (Figure 3.3).  Finally, the insurance loss data for this refined area 

were prepared for associations with climate data.  The resultant data and code functions for 

step 2 were similarly uploaded to a central GitHub repository, with procedural steps 

described in appendices A and B.  A fully detailed review of the analysis results from steps 1 

and 2 can also be found in Seamon et al (2019a). 

 

3.2.2.3. Climate data acquisition and dataset combination. 

 In our third step, we acquired and transformed climate data (precipitation, maximum daily 

temperature, potential evapotranspiration, and the Palmer Drought Severity Index (PDSI)) 

from the University of Idaho’s THREDDS server, using a combination of RESTful API 

requests, as well as NC operator statements (Zender, 2006).  Given that the available data 

was accessed at a gridded and daily timestep, we needed to aggregate to a monthly basis, by 

county.  Finally, the code functions which performed this spatial and temporal aggregations 

were used to generate a range of monthly combinations, which were then used to evaluate 

optimum correlational relationships to insurance loss for wheat, due to drought.  The code 

and analysis portions of this process were documented in RMarkdown and are referenced in 

Appendix C. 

 

3.2.2.4. Predictive modeling using analytic dashboard development 

In our final step, we used the data outputs generated for our analysis to construct a set of 

dynamic data analysis and predictive modeling dashboards within R, exposed as web 

applications using R’s web server, called Shiny 

(https://www.rstudio.com/products/shiny/shiny-server/).  Shiny server works in conjunction 
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with R, to expose R programming via a dynamic web interface, allowing users to explore 

data analysis and modeling outputs on their own. Several specific dashboards were 

developed that address a range of analytic capabilities, with a focus on (a) exploratory data 

analysis, and (b) predictive modeling.  A list of dashboards and their online access URLs are 

noted in appendices F and G. Our dashboard development had several advantages: it allowed 

us to use a modular approach to document our analysis processes, for iterative data 

examination and visualization.  With minimal alterations, we were able to clone multiple 

versions of dashboards to present varied versions of predictive modeling outputs (gradient 

boosted regression, random forest, neural networking), as well as a multiple exploratory data 

analysis outputs.  Additionally, by using a web-based application interface, we were able to 

expose the analysis capabilities to a wide audience, for review and use.  Such approaches, 

combined with research notebook outputs (Jupyter, Rmarkdown), allow for a full spectrum 

understanding of research approaches to problem sets, which promotes reproducibility in 

multiple forms.  

 

3.3. Discussion and Conclusions 

Our case study analysis identified several challenges regarding reproducible science in 

transdisciplinary, data-intensive research efforts, spanning technological, operational, and 

communications/collaboration areas.  In addition, the challenges raised here have a 

combinatory effect, particularly in big data/data intensive research areas that overlap 

disciplinary methodologies.  As such, the proposed framework provides a frame of reference 

for future research teams who see the value in outputs which are reproducible, for themselves 
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as well as for additional researchers working on related problems.  The results of our case 

study analysis which uses the described framework indicated several takeaways: 

 
Processing efficiency and challenges.  With larger datasets, the ability to access and 

manipulate such information remotely (e.g. use of API requests) can be difficult depending 

upon server capabilities and network speeds.  As part of our case study analysis, we needed 

to perform some data transformation using NCO (NetCDF Operators) with local access to 

climate data.  NCO are open source command line functions which work with NetCDF, 

HDF, or DAP files, and assist in analyzing gridded or unstructured scientific information (Xu 

et al., 2019).  For our purposes, we integrated these transformations into Linux/bash scripts, 

which are additionally available online, as noted in Appendix D. However, a key takeaway 

from this process step is that API data access is not necessarily a complete solution in all 

cases when large, complex data transformations are needed.  These issues continue to 

challenge researchers in a variety of data-intensive scientific disciplines. 

 
Data persistence and embargo methods.  Aspects of data persistence over the long term is a 

critical component to long-term reproducibility and viability (Michener, 2015).  As data 

modifications are made over time, issues of reproducibility and replication may be affected, 

particularly when time-series content is involved (e.g. climatological data generation).  

Embargoing is a technique for data inclusion with a delay time period before access is 

enabled.  Such embargoing is important if the publisher believes that said data may change or 

be altered.  However, embargoing does not necessarily address regular, on-going changes to 

datasets that are valid at each time point.  In the instance of parent-child data relationships, 

not only is the core data need to be preserved, but the metadata associated with such 
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information (instrumentation usage, calibration methods, bias correction processes) is 

important in order to enable reproducibility (Hampton & Parker 2011; Bowser et al., 1994).  

 
Scaling.  Issues of temporal and spatial scaling are a continued source of concern in large 

data analyses, and present on-going issues in terms of reproducible science.  Flathers and 

Gessler (2018) note these issues in their efforts to combine and analyze datasets at differing 

spatial resolutions, particularly regarding issues of data variance smoothing.  In our case 

study analysis, there were issues of scaling both spatially and temporally:  with agricultural 

data at a county/monthly scale, we were forced to aggregate our daily/4km per pixel climate 

data to a coarser spatial and temporal resolution, in order to standardize our analyses. While 

not ideal, this form of accommodation is not uncommon, given the limitations of available 

data, and the scaling structure that may be imposed given confidentiality or other 

organizational constraints (National Research Council, 2001).   

 
Time commitments and efforts for reproducibility and modularity.  Modular, reproducible 

science takes time and energy, and is very often underestimated.  The amount of effort to 

construct an effective data management strategy, to agree upon scientific nomenclature and 

ontologies, as well as continuing to keep long-term processes in mind when code is 

developed, are time consuming and may be neglected in deference to expediting the research 

outcomes.  As with all research programs, a level of balancing must take place in terms of 

available resources and time commitments, while ensuring that the methodological 

approaches will support reproducibility in an appropriate fashion. 

 
Commitment to modularity in code development will pay off when reanalysis is performed.  

As part of the case study development, a considerable challenge was to design functions and 
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related code with a mindset of modularity.  For example, we tried to use discrete functions 

for portions of analysis, data aggregation, climate analysis, and modeling, that were self-

contained:  Under this approach, the functions could be used separately for differing needs, 

or to reproduce portions of the work for validation and replication.  However, such work took 

a considerable amount of time, and required a focused effort to plan, document, and organize 

the code and related data in such a way as it could be understood by someone outside of the 

project.  While this type of work is not necessary to construct the scientific analyses or 

models, it is important to stress these tasks as part of a project that wants to encourage 

reproducibility.   

 
Willingness to use alternative methods if the need arises.  A fairly common adage that has 

been used in many capacities, but is applied frequently in the statistical modeling and 

machine learning community recently, is the following: “if the only tool you have is a 

hammer, everything looks as if it were a nail” (Kaplan, 1964; Kolby, 1963; Maslow, 1965).  

In terms of modeling, a data scientist who is familiar with a particular form of analysis may 

be more inclined to use this approach frequently, even if such an approach is not necessarily 

warranted. From a data analysis and applied data science perspective, R and python are two 

approaches to scientific programming, which require an investment of time for applied use.  

A takeaway from our case study work was that both of these programming environments 

have value in differing capacities and may complement each other in certain situations 

(factoring in resource availability and allotted time).   

 
Ability to apply modular techniques to unique analytical needs.  Most analysis and research 

efforts have very particular goals and data needs.  Given these constraints, one might 
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envision that each project effort would require a unique development process, with little 

commonality to other project efforts.  Yet by applying some of the noted standardized 

approaches (use of dynamic data access requests, use of data/code repositories and version 

control, code collaboration, agile project management), a basic research framework is 

established which makes reproducibility more achievable.  If these approaches are combined 

with other institutional mechanisms (required use of DOIs, publishing of data in conjunction 

with publications, funding of workflow provenance and reproducibility standards), then a 

wide spectrum of differing project efforts can considerably improve the likelihood of 

reproducibility.  
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Figure 3.1. Reproducibility responsibilities (Yale Law School Roundtable on Data 
and Code Sharing , 2010) 

 

Researcher 
Responsibilities 

Institutional 
Responsibilities 

Journal 
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Publish code and 
data in a location 
that is publicly 
accessible and 
persistent 

Establish institutional 
hosting for data and 
analytics preservation 

Require reproduction of results 
before publication 

Uniquely identify 
versioning 

Encourage and 
develop leadership to 
facilitate 
reproducibility 
standards 

Require appropriate code and data 
citations through standardized 
citation mechanisms, such as Data 
Cite 
(http://thedata.org/citation/tech). 

Use open licensing 
to facilitate code 
usage 

Encourage 
researchers to use 
tools that embed code 
and data into 
publications 

Require stable URLS for data and 
code for publication 

When possible, use 
open access for 
publications 

Fund data provenance 
and workflow sharing 

 

Publish code in 
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formats 
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Gridded Climate Data 
Sources 

Description 

National Oceanic and 
Atmospheric 
Administration’s (NOAA) 
National Center for 
Environmental Information 
(NCEI) 

NOAA’s NCEI hosts oceanic, atmospheric, and 
geophysical data. NCEI is the United States’ leading 
agency for managing environmental information, and 
operates an extensive THREDDS repository of 
gridded climatic datasets:  
 
https://www.ncei.noaa.gov/thredds/model/model.html  

National Aeronautical Space 
Agency (NASA) Distributed 
Active Archive Centers 
(DAACs)  
 

NASA DAACs are part of the organizations’ Earth 
Observing System Data and Information System 
(EOSDIS).  DAACs provide access to a wide variety 
of earth-based data: 
 
https://earthdata.nasa.gov/eosdis/daacs  
https://search.earthdata.nasa.gov/search  

United States Geological 
Survey (USGS) Data Portal  

The USGS provides an extensive amount of data 
through their online portal and maintains a robust 
THREDDS repository for dynamic data access: 
https://www.usgs.gov/products/data-and-tools/data-
and-tools-topics 
https://cida.usgs.gov/thredds/catalog.html  

Australia’s Commonwealth 
Scientific and Industrial 
Research Organisation 
(CSIRO) Data Portal 

CSIRO is Australia’s independent scientific research 
organization, and houses an array of climatic data 
sources: 
https://data.csiro.au/collections/  

National Oceanic and 
Atmospheric Administration 
ERDDAP Servers 

NOAA has developed an internal DAP compliant 
server called ERDDAP, which is extremely useful for 
extracting gridded array and table data. 
 
https://www.ncei.noaa.gov/erddap/index.html  

 
Table 3.1. List of key climatic data repositories, many of which utilize software 
approaches to expose and enable access to data in gridded array formats. 
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Agricultural Prediction Dashboard: Insurance Loss Gradient Boosted 
Regression – iPNW Wheat Claims Due to Drought vs. Climate 

 
 

Figure 3.6. Example Shiny server predictive dashboard. This example dashboard, 
which is focused on the inland Pacific Northwest (iPNW), provides a predictive 
model to estimate agricultural insurance loss as compared to climatic variables and 
commodity pricing.  The dashboard specifically uses a gradient boosted regression 
algorithm to estimate relative feature importance and error comparisons of test and 
train datasets (http://dmine.io/dashboards).   
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APPENDIX A: INSURANCE LOSS EXPLORATORY DATA ANALYSIS 
 
Appendix A is an online RMarkdown generated HTML file which is associated with Chapter 
1, and provides code and extended analytics output, describing crop insurance exploratory 
data analysis for the Pacific Northwest, as well as the inland Pacific Northwest.   
 

 
 
 
 
 
 
 
 
 
 
 
 

Title Online location 
Appendix A: crop insurance 
exploratory data analysis 

http://github.com/erichseamon/seamon_dissertation/ 
Rmarkdown:RMarkdown:  
 
seamon_dissertation_appendix_A.Rmd 
Html: seamon_dissertation_appendix_A.html 
 
File can be dynamically viewed at: 
http://erich.io/dissertation  
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APPENDIX B: INSURANCE LOSS PRINCIPAL COMPONENTS 
ANALYSIS  
 
Appendix B is an online RMarkdown generated HTML file that is associated with Chapter 1 
and provides code and extended analytics output with a focus on principal components 
analysis (PCA), for the differing factorial relationships for PNW and iPNW insurance loss 
(damage cause, year, county, and commodity type).   
 

 
 
 
 
 
 
 
 
 
 
 

Title Online location 
Appendix B: principal 
components analysis (PCA) 

http://github.com/erichseamon/seamon_dissertation/ 
RMarkdown:  
 
seamon_dissertation_appendix_B.Rmd 
Html: seamon_dissertation_appendix_B.html 
 
File can be dynamically viewed at: 
http://erich.io/dissertation  
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APPENDIX C: AGRICULTRUAL INSURANCE LOSS AND 
RELATIONSHIPS TO CLIMATE IN THE INLAND PACIFIC 
NORTHWEST  
 
Appendix C is an online RMarkdown generated HTML file that is associated with Chapter 2 
and provides code and extended analytics output related to wheat/drought insurance loss and 
the varying spatiotemporal relationships to climate.  Appendix C documents the time-lagged 
climate correlation process and provides associated inline code. 
 

 
 
 
 
 
 
 
 
  

Title Online location 
Appendix C: Insurance loss 
and relationships to climate 

http://github.com/erichseamon/seamon_dissertation/ 
RMarkdown: 
 
seamon_dissertation_appendix_C.Rmd 
html: seamon_dissertation_appendix_C.html 
 
File can be dynamically viewed at: 
http://erich.io/dissertation  
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APPENDIX D: DATA AND CODE SOURCES 
 
Appendix D contains online links to dissertation data sources related to all analyses.   
  

Data Source Online location 
DATA: Data Loading seamon_dissertation_dataload.R 

This script is used to load all datasets indicated below.  
The script can be run and will download all data to a 
/tmp directory on your local machine. 

DATA: USDA/RMA  
Agricultural Insurance Loss 

http://github.com/erichseamon/seamon_dissertation 
/data/RMA_originaldata/   
Annual txt files containing individual insurance claims 
data from 1988 to 2015 (e.g. 1988.txt), for the entire 
United States. 
http://github.com/erichseamon/seamon_dissertation/ 
data/RMA_csv/ 
Aggregated insurance claim files for the Pacific 
Northwest (Idaho, Oregon, and Washington), in 
comma separated file (csv) format. 
http://github.com/erichseamon/seamon_dissertation/ 
data/RMA_Rda 
Insurance claim files in .Rda format, for the Pacific 
Northwest as well as for the entire United States 

DATA: Wheat pricing http://github.com/erichseamon/seamon_dissertation/ 
data/wheat_prices  
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Data Source Online location 
DATA: Climatology 
 

Gridded daily climate data for 14 variables (burn index, 
precipitation, wind speed, palmer drought severity index, 
minimum relative humidity, maximum relative 
humidity, minimum temperature, maximum temperature, 
solar radiation, wind direction, specific humidity, 100 
hour fuel moisture, 1000 hour fuel moisture), aggregated 
at a monthly/county level, for Idaho, Washington, and 
Oregon – 1989 to 2015. 
 
http://github.com/erichseamon/seamon_dissertation/data/ 
climatology 
 
http://github.com/erichseamon/seamon_dissertation/data/ 
climate_matrices 
 
http://github.com/erichseamon/seamon_dissertation/data/ 
climate_outputs 
 
http://github.com/erichseamon/seamon_dissertation/data/ 
climate_correlations 
 
http://github.com/erichseamon/seamon_dissertation/data/ 
climate_correlation_summaries 
 

DATA: States http://github.com/erichseamon/seamon_dissertation/data/ 
states 
 

DATA: Counties http://github.com/erichseamon/seamon_dissertation/data/ 
counties 
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APPENDIX E: CODE SOURCES 
 
Appendix E contains online links to dissertation code sources related to all chapter analyses. 
 

 
 
 
 
 
 
 
 
 
 

Code Source Online location 
CODE: Exploratory data 
analysis code and 
transformations (Chapter 1) 

http://github.com/erichseamon/seamon_dissertation/ 
appendices/appendix_A_code    
 

CODE: Principal components 
analysis code (Chapter 1) 

http://github.com/erichseamon/seamon_dissertation/ 
appendices/appendix_B_code     
 

CODE: Time-lagged climate 
correlation generation and 
regression random forest 
modeling (Chapter 2) 

http://github.com/erichseamon/seamon_dissertation/ 
appendices/appendix_C_code    
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APPENDIX F: EXPLORATORY DATA ANALYSIS DASHBOARD 
SOURCES 
 
Appendix F contains online links to online exploratory data analysis dashboard sources, as 
discussed in Chapter 3. 
 

Code Source Description and online location 
DASHBOARD: PNW 
Exploratory data analysis: 
agricultural insurance loss 
normal analysis (Chapter 3) 

Shiny Server dashboard which compares spatial 
and temporal anomalies of insurance loss (by 
county and by month) 
https://dmine.io/ag-commodity-dashboard-ag-
normals/  

DASHBOARD : PNW 
Insurance loss county level 
comparison to climate (Chapter 
3) 

Shiny server dashboard which compares annual 
insurance loss by damage cause to annual climate 
variables. 
https://dmine.io/ag-commodity-loss-dashboard-
climate-comparisons/   

DASHBOARD : Nationwide 
agricultural insurance loss 
comparison with climate, by 
county (Chapter 3) 

Shiny Server dashboard which compares United 
States insurance loss by county with differing 
climate variable totals. 
https://dmine.io/ag-commodity-loss-dashboard-
nationwide-climate-data-by-county/  

DASHBOARD : Nationwide 
agricultural insurance loss 
analysis (Chapter 3) 

Shiny Server dashboard which analyzes agricultural 
insurance loss by county, year, commodity, and 
damage cause. 
https://dmine.io/agricultural-data-discovery-
dashboard-nationwide/    

DASHBOARD: PNW 
agricultural insurance loss 
analysis (Chapter 3) 

Shiny Server dashboard which analyzes PNW 
insurance loss by state and county, with included 
animation. 
https://dmine.io/pnw-ag-insurance-loss-dashboard/  
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APPENDIX G: PREDICTIVE DASHBOARD SOURCES 
 
Appendix G contains online links to online predictive dashboard sources, as discussed in 
Chapter 3. 
 

 
 
 
 
 

Code Source Description and online location 
DASHBOARD: PNW Gradient 
Boosted Regression (Chapter 3) 

Shiny Server predictive dashboard that uses a 
boosted regression approach to examine climate 
vs. wheat insurance loss. 
https://dmine.io/ag-gb-dashboard/ 

DASHBOARD : PNW 
regression, decision tree, and 
neural networking analysis 
(Chapter 3) 

Shiny server dashboard which runs several 
analysis techniques to compare wheat insurance 
loss to climate variables (regression, decision tree 
analysis, and neural networking). 
https://dmine.io/ag-insurance-neural-network-
dashboard/  


