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Abstract 

Breast cancer is a pervasive health issue that affects millions of women worldwide. Early detection of 

breast cancer is crucial for reducing mortality and improving patient prognosis. By identifying cancer 

at an early stage, treatment options can be initiated promptly, leading to more successful outcomes. 

Breast ultrasound imaging is a valuable tool in the early detection of breast cancer. It offers several 

advantages, including painless and noninvasive imaging, the absence of ionizing radiation, and 

affordability. Ultrasound imaging provides detailed visualization of breast tissue, allowing healthcare 

professionals to identify suspicious lesions, and assess tumor characteristics. Moreover, it is particularly 

effective in evaluating dense breast tissue, which may pose challenges for other modalities such as 

mammography. Despite its advantages, the interpretation of breast ultrasound images presents certain 

challenges. One of the major difficulties is the presence of speckle noise, which can obscure subtle 

abnormalities and make accurate tumor identification challenging. Additionally, variations in image 

quality, tumor shapes, and sizes further complicate the analysis. Computer-aided diagnosis (CAD) 

systems have emerged as crucial tools in breast cancer detection and diagnosis. These systems employ 

techniques from machine learning and image processing to assist healthcare professionals in analyzing 

breast ultrasound images. CAD systems can aid in operator-independent tumor segmentation, feature 

extraction, and precise tumor quantification, thereby enhancing diagnostic accuracy and efficiency. By 

leveraging the power of artificial intelligence, CAD systems can assist in early cancer detection, reduce 

false-positive rates, and improve overall patient care. 

In this dissertation, I built a suite of deep learning approaches to enhance breast cancer early 

detection using ultrasound images.  

First, I proposed two novel deep learning approaches, Small Tumor-Aware Network (STAN) 

and Enhanced STAN (ESTAN), to detect and segment small breast tumors. STAN addressed the 

challenges posed by speckle noise, poor image quality, and variable tumor shapes and sizes in breast 

ultrasound images. A multiscale feature extraction architecture was proposed to learn and fuse context 

information at different scales. Building upon the STAN network, the ESTAN model incorporated 

breast anatomy into STAN to address the aforementioned challenges.  

Second, I built a benchmark for BUS image classification that consists of a large public dataset 

with 3,641 B-mode BUS images, provided open-source code of state-of-the-art approaches, and 

identified the best strategies for deep learning-based BUS classification. I proposed a comprehensive 

evaluation methodology that incorporates multiple performance metrics and compares the effectiveness 

of different classification algorithms.  
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The benchmark dataset and evaluation framework serve as valuable resources for researchers 

and practitioners, facilitating the development and assessment of robust classification models.  

Third, I proposed a Multitask-Enhanced Small Tumor Aware Network (MT-ESTAN) to 

perform breast tumor classification and segmentation simultaneously. It incorporates a small-tumor 

aware network as its backbone, and leverages information from segmentation and classification tasks 

to enhance the overall performance for breast cancer classification. 

Finally, I proposed a hybrid multitask CNN-Transformer network for breast ultrasound tumor 

classification. The proposed approach combines the strengths of convolutional neural networks (CNNs) 

and transformer networks to capture both local and global context effectively. The network is trained 

using a multitask learning framework, simultaneously performing tumor classification and 

segmentation.  
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Chapter 1: Introduction 

1.1 Background 

Breast cancer holds the highest incidence rate among all cancers and remains the primary cause of 

cancer-related mortality among women across the globe [53]. Early detection plays a crucial role in 

reducing mortality rates and expanding treatment options. Mammography and ultrasound are the two 

commonly used imaging modalities for breast abnormality detection, although mammography 

implementation is limited in many low- and middle-income countries due to infrastructure costs [54]. 

Additionally, mammography exhibits high false-positive rates in women with dense breasts, leading to 

increased anxiety and additional biopsy procedures [55]. Studies have shown that ultrasound can detect 

around 40% more cancer cases than mammography in women with dense breasts [56].  

Breast ultrasound (BUS) imaging is a standard and successful clinical procedure because it is 

painless, noninvasive, nonradioactive, and cost-effective. However, medical analysis of BUS images is 

challenging due to speckle noise, low contrast, weak boundary, artifacts, and varying tumor shapes and 

sizes among patients. To address these challenges and aid radiologists in breast tumor diagnosis, deep 

learning-based computer-aided diagnosis (CAD) systems have been developed.  

1.2 Computer Aided-Diagnosis (CAD) Systems 

Computer-Aided Diagnosis (CAD) systems are tools designed to assist radiologists in the interpretation 

and analysis of ultrasound images. CAD systems have emerged as a powerful approach for early breast 

cancer detection, with their ability to automatically learn and extract meaningful features from large 

amounts of data.  

 

 

 

 

                                                               (a) Conventional CAD systems 

                        (b) Deep learning-based CAD systems 

Figure 1-1 Key modules in conventional and deep learning-based CAD systems. 
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These systems aim to improve diagnostic accuracy by providing additional support and automated 

analysis of ultrasound images.  

 Traditional CAD systems for breast cancer ultrasound typically rely on rule-based algorithms 

and handcrafted features that are manually designed by domain experts. These features capture various 

characteristics of abnormalities in ultrasound images, such as shape, texture, and intensity. The 

algorithm analyzes the input ultrasound image by comparing the extracted features against predefined 

rules or patterns to generate a diagnosis or highlight areas of suspicion, see Figure 1-1 (a).  

In contrast, deep learning-based CAD systems for breast cancer ultrasound employ deep neural 

networks, specifically convolutional neural networks (CNNs), to automatically learn hierarchical 

representations directly from the raw ultrasound images. Deep learning models are trained on large, 

annotated datasets, allowing them to automatically extract relevant features without the need for explicit 

feature engineering, see Figure 1-1 (b).  

The primary distinction between traditional CAD systems and deep learning-based CAD 

systems lies in the feature extraction process. Traditional CAD systems heavily rely on human experts 

to handcraft features, which can be time-consuming and subjective. Deep learning-based CAD systems 

offer several advantages over traditional CAD systems. They can learn complex representations directly 

from the data, potentially capturing subtle patterns and features that may be challenging to identify 

manually. Deep learning models also demonstrate scalability, as once trained, they can be applied to 

new datasets without extensive modifications, making them suitable for diverse clinical settings. 

However, the interpretability and explainability of deep learning models remain ongoing research 

challenges, whereas traditional CAD systems often provide more transparent decision-making 

processes based on explicitly defined rules and features. 

1.3 Major Challenges 

Despite significant advancements in machine learning (ML)-based techniques for enhancing breast 

ultrasound image analysis and processing, several challenges persist in the development of computer-

aided diagnosis systems. The major challenges are summarized as follows: 

      Figure 1-2 Breast ultrasound (BUS) images. 
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a) Accurate small tumor detection and segmentation: Accurately segmenting small tumors in 

breast ultrasound (BUS) image is a critical challenge in breast ultrasound image analysis. Small 

tumors can be challenging to differentiate from surrounding normal tissue due to their size, 

subtle appearance, and variable shapes. Accurately segmenting these small tumors is crucial 

for assessing tumor size, monitoring tumor progression, and guiding treatment decisions. If 

small tumors are missed or inaccurately segmented by radiologists, there is a risk of delayed 

diagnosis and potential implications for early breast cancer detection. Developing advanced 

segmentation algorithms that can effectively identify and delineate small tumors, even in 

challenging cases, can help improve the accuracy and reliability of breast ultrasound analysis, 

reducing the possibility of missing these tumors and facilitating early detection and 

intervention.  

b) Data availability and annotation: Collecting a significant amount of annotated breast 

ultrasound images is time-consuming and resource intensive. Annotating ultrasound images 

requires expert knowledge and manual efforts to identify and label specific regions of interest, 

such as tumors or normal tissues. The scarcity of annotated data slows the development and 

optimization of accurate breast ultrasound image analysis algorithms. 

c) Diversity and representativeness: Breast ultrasound images can vary significantly regarding 

patient demographics, imaging protocols, and equipment characteristics, Figure 1-2 shows 

three BUS images from different datasets. To develop robust algorithms, it is essential to have 

diverse and representative datasets encompassing various breast tissue types, tumor sizes, and 

pathologies.  

d) Reproducibility: Reproducibility ensures the validity and reliability of research findings. By 

reproducing the results of an approach, researchers can verify the reported findings, build upon 

existing work, and contribute to cumulative knowledge in the field of breast cancer early 

detection. However, using private datasets, lack of standardized data preprocessing, and 

evaluation, in-house source code implementation, and algorithm complexity make it 

challenging to reproduce results. 

e) Poor generalizability: Despite their superior performance, deep learning models can 

sometimes struggle with generalization when the data is acquired from different institutions, 

patient populations, and imaging protocols.  

The poor generalization of such models occurs due to the challenging nature of breast 

ultrasound images, inherent limitations of CNN, the sensitivity of these approaches to noise 
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and artifacts, limited data availability, overfitting and biased learning, Inter- and Intra-

variability due to variations in patient characteristics, imaging settings, and pathological 

conditions. 

These challenges present researchers with opportunities to develop innovative solutions. In the 

dissertation, we focus on these five significant challenges, which are addressed in the following 

chapters of the study. Chapters 2 and 3 address challenge a, Chapter 4 addresses challenges b, c, and d, 

and finally, chapter five addresses challenge e.   

1.4 Dissertation Objectives and Contributions 

The primary goal of this dissertation is to design deep learning approaches to detect, segment, and 

classify BUS images despite the innate challenging nature of such images.  

Our main contributions are summarized as follows: 

Contribution 1: Built a deep learning approach named STAN to segment breast tumors of 

various sizes. We proposed a two-encoder approach that can learn features using different kernel sizes. 

  Contribution 2: Extended the STAN approach and built an approach named ESTAN that can 

detect and segment breast tumors effectively. ESTAN designed a new kernel, named row-column-wise 

kernel, which targets learning from breast anatomy layers.  

Contribution 3: Built the first and largest benchmark for breast ultrasound classification. The 

benchmark datasets consist of 3,641 B-mode images from five public datasets. The benchmark website 

provides excellent documentation and source code for the researcher in the field to experiment with 

and compare their results to the top-10 listed approaches.  

Contribution 4: Building a multitask approach, namely MT-ESTAN, to perform simultaneous 

breast tumor segmentation and classification tasks. The approach learns shared features between the 

two tasks to improve the performance of the main task. 

Contribution 5: Building a hybrid multitask learning approach to exploit the advantages of 

CNN and Vision Transformers in learning local and global features using a multitask learning approach. 
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Chapter 2: STAN: Small Tumor-Aware Network for Breast Ultrasound 

Image Segmentation 

B. Shareef, M. Xian and A. Vakanski, "Stan: Small Tumor-Aware Network for Breast Ultrasound 

Image Segmentation," 2020 IEEE 17th International Symposium on Biomedical Imaging 

(ISBI), Iowa City, IA, USA, 2020, pp. 1-5, doi: 10.1109/ISBI45749.2020.9098691. 

2.1 Introduction 

According to the National Center for Health Statistics [1], in 2019, the United States is expected to 

have 891,480 new women cancer cases, where 30% of all cases will be breast cancer. Early detection 

is the key to improving the survival rate of breast cancer; the five-year relative survival rate is 98% if 

the breast cancer is detected and treated at the early stages, and only 22% in cases with advanced-stage 

cancers. Computer-aided diagnosis (CAD) systems have been proposed to detect breast cancer 

automatically. In these systems, breast tumor segmentation is a key step that helps accurate tumor 

quantification. A tremendous number of breast tumor segmentation approaches have been proposed in 

the last two decades; and some approaches have achieved promising overall performance on their 

private datasets. However, most approaches cannot segment small tumors accurately. 

 

(a) BUS images      (b) Ground truth         (c) U-Net [15]          (d) AlexNet [19]      (e) SegNet [18]           

No tumor 

detected 

No tumor  

detected 

Figure 2-1 Performance of state-of-the-art approaches for segmenting breast tumors with different sizes. 



6 

 

 

 Breast ultrasound (BUS) images are used in this study since ultrasound imaging is noninvasive, 

painless, nonradioactive and cost-effective. 

In the last two decades, breast tumor segmentation has been an active research area. Existing 

approaches can be classified into traditional approaches and deep learning approaches. Various 

traditional image processing approaches have been applied to BUS image segmentation, such as 

thresholding [2-5], region growing [6,7], and watershed [4]. However, the traditional methods are not 

robust due to poor scalability and sensitivity to noise. Refer to [20] for a detailed review of BUS 

segmentation approaches. 

Deep learning approaches [9-12,21] have recently demonstrated state-of-the-art performance for 

breast ultrasound segmentation. Cheng et al. [6] employed a stacked denoising auto-encoder (SDAE) 

to diagnose breast ultrasound lesions and lung CT nodules. The information extension strategy was 

used in [11], where the wavelet feature was added to the original image to train a fully convolutional 

network (FCN).  Breast anatomy information was applied to the Conditional Random Fields (CRFs) to 

enhance the segmentation performance. In addition, Huyanh et al. [7] used transfer learning for 

classification of BUS images, however, the proposed model does not perform tumor segmentation. 

Similarly, Yap et al. [5] used three different deep learning methods, a patch-based LeNet, a U-Net, and 

a transfer learning approach with a pre-trained FCN-AlexNet on two different datasets to segment BUS 

images. However, they failed to achieve good performance for segmenting small tumors. Furthermore, 

a very deep CNN architecture GoogleNet Inception v2 in [8] is used for the classification task, to 

distinguish between benign and malignant tumors. The results showed that the CNN model had better, 

or equal diagnostic performance compared to radiologists. Moreover, in order to focus on regions with 

high saliency values, the method in [21] integrates radiologists’ visual attention for BUS segmentation.  

In this paper, our results indicate that the three state-of-art models (FCN-AlexNet, SegNet, and 

regular Unet) have difficulty in detecting small tumors, as shown in Figure 2-1. We propose a novel 

architecture based on the core of U-Net architecture to solve the current issue of segmenting small 

tumors in breast ultrasound images. The method is validated using two public datasets. The 

experimental results demonstrate enhanced ability of the proposed model for small tumor detection in 

comparison to existing methods.  

2.2 Method 

The proposed method is based on one key observation: the size of breast tumors varies dramatically 

among patients; and existing deep neural networks that use fixed kernel size cannot detect small breast 

tumors accurately. To overcome this problem, we propose the Small Tumor-Aware Network (STAN) 
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to extract and fuse image context information at different scales. STAN constructs feature maps using 

kernels with three different sizes at each convolutional layer in the encoder.  Such feature maps carry 

multiscale context information and preserve fine-grained tumor location information. Consequently, 

STAN improves the performance of breast tumor segmentation, especially for small tumors. Figure 2-

2 illustrates the overall architecture of STAN.  

2.2.1 STAN Architecture 

The size of the receptive field is a crucial issue in deep neural networks, because the output must 

response to an appropriate size of regions to capture objects with different sizes. There are two main 

ways to tune the size of the receptive field: 1) downsampling; and 2) stacking more layers. The two 

methods can only increase the receptive field, and are suitable for segmenting large objects. In BUS 

image segmentation, a large receptive field will result in high false positives. Therefore, our goal is to 

avoid stacking too many layers with large kernel size, and design an architecture that has different sizes 

of the receptive field.  

The proposed approach has a similar architecture as the general U-Net: i.e., it contains a 

contracting and expanding stage with skipping links. Unlike the U-Net architecture, where the 

contracting stage has only one branch, the proposed network comprises two encoder branches. In 

addition, the proposed network has three skipping links (the green links in Figure 2-2) between the 

encoder and decoder blocks, which allows retaining and propagating high-resolution features to the 

decoder. E.g., for the ith block, we denote the output of the two encoder branches as Ci,1 and Ci,2, and 

the next block will output 

 

 

Figure 2-2 The STAN architecture. The blocks do not represent the actual feature maps. 
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𝐶𝑖+1,1 = 𝑝 (𝑐𝑜𝑛𝑣3 (𝑐𝑜𝑛𝑣3(𝐶𝑖,1)))                                              (2.1)  

𝐶𝑖+1,2 =  𝑝 (𝑐𝑜𝑛𝑣3 (𝑐𝑜𝑛𝑣1(𝐶𝑖,2)) ⨁𝑐𝑜𝑛𝑣3 (𝑐𝑜𝑛𝑣5(𝐶𝑖,2)))                   (2.2)  

where 𝑐𝑜𝑛𝑣𝑛 denotes the convolutional operation with kernel size 𝑛 × 𝑛. C0,1 and C0,2 are used to 

denote an input image to the network, where C0,1 = C0,2; p denotes the max pooling operation; and, 

for the central layer, C5,1 and C5,2 are 

𝐶5 = 𝐶5,1 = 𝐶5,2 = 𝑐𝑜𝑛𝑣5 (𝑐𝑜𝑛𝑣5(𝐶4,1)) ⨁

                                      
𝑐𝑜𝑛𝑣1 (𝑐𝑜𝑛𝑣1(𝐶4,2)) ⨁

𝑐𝑜𝑛𝑣3 (𝑐𝑜𝑛𝑣3(𝐶4,2))   
 
                      (2.3) 

In Eqs. (2.1-2.3), ⨁  denotes the concatenation operation. From the blocks one to four, each block 

applies kernels with three different sizes, that is 1×1, 3×3 and 5×5, and captures image features at three 

different scales. In general, when the dimensions of the input images to the neural network are reduced 

extremely via down-sampling layers, the network performs poorly because the network loses vast 

amount of information, recognized as a representational bottleneck [9]. To solve the representational 

bottleneck issue, the network-in-network architecture [9] used convolutional kernels of size 1×1 

followed by a ReLU layer to introduce more no-linearity. Motivated by this approach, in the second 

branch of the encoder, we introduced 1×1kernels to increase the representational power of the model. 

The original U-Net architecture copies features after the second convolutional layer in the 

encoder part and concatenates the features to the corresponding layer in the decoder section. In our 

proposed model, the skipping links involve the output of the first convolution in each layer merged to 

the result of the first convolution in the corresponding decoder part. In addition, a skipping layer from 

the merging of the two new layers after the second convolution in the encoder merges to the result of 

the second convolution in the decoder part. Accordingly, the expanding stage is enriched by fusing 

feature maps from the blocks in the two encoders. Let Ui  (i = 5, 4, 3, 2, 1) be the output of ith up-

sampling block; and the output of the next bock is given by 

𝑈𝑖−1 = 𝑐𝑜𝑛𝑣 (𝑐𝑜𝑛𝑣 (𝐷𝑒𝐶𝑜𝑛𝑣(𝑈𝑖⨁𝐶𝑖−1,1)) ⨁𝑐𝑜𝑛𝑣5(𝐶𝑖,1)⨁𝐶𝑖−1,2)                 (2.4)  

In Eq.(2.4), 𝑈5 is equal to 𝐶5 from the central layer, and 𝐷𝑒𝐶𝑜𝑛𝑣 denotes the deconvolution operation. 

In addition, since the layer five does not involve pooling, we discarded the pooling layers from the 

skipping block. The original skipping layers stay the same, where we combine it to the up-sampling 

layer before the first convolutional layer. 
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2.2.2 Implementation and Training  

The input images and their corresponding ground truths are resized to 256×256. Since the datasets are 

of small size, we applied image width and height shift to augment the training set. The batch size is 4, 

and the number of training epochs is set to 50. Adam optimizer [9] is utilized for training the proposed 

network, and the initial learning rate is set to 0.0001.  

Let P = {𝑝𝑖}𝑖=1
𝑁  and G = {𝑔𝑖}𝑖=1

𝑁  be the output of the final pixel-wise sigmoid layer and the 

ground truth, respectively. The loss function is computed by using discrete dice loss [10]:  

𝐿𝑑𝑖𝑐𝑒 = 1 −
1 + 2 ∑ 𝑝𝑖𝑔𝑖

𝑁
𝑖

1 + ∑ 𝑝𝑖
2 + ∑ 𝑔𝑖

2𝑁
𝑖

𝑁
𝑖

                                                 (2.5) 

2.3 Experimental Results 

2.3.1 Datasets, Evaluation Metrics, Setup 

We use two publicly available datasets to validate the performance of the proposed approach, BUSIS 

dataset [11] and Dataset B [9]. The BUSIS dataset contains 562 images from three hospitals using GE 

VIVID 7, LOGIQ E9, Hitachi EUB-6500, Philips iU22, and Siemens ACUSON S2000. The Dataset B 

has 163 breast ultrasound images, and the UDIAT Diagnostic Centre of the Parc Taul´ı Corporation, 

Sabadell (Spain) collected the images using Siemens ACUSON Sequoia C512 system with 17L5 linear 

array transducer. 

Both area and boundary metrics are used to evaluate the segmentation results. The metrics are 

true positive ratio (TPR), false positive ratio (FPR), Jaccard index (JI), dice’s coefficient (DSC). 

      

      

      

      
 (a) BUS images  (b) Ground Truth (c) FCN-AlexNet  (d) SegNet        (e) U-Net           (f) STAN 

No tumor 

detection 
No tumor 

detection 

No tumor 

detection 

Figure 2-3 Small tumor segmentation. 
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 2.3.2 Overall Performance  

The overall quantitative results are shown in Table 2-1, where the proposed STAN method 

outperformed the other three approaches in six metrics on the two datasets. FCN-AlexNet, SegNet, and 

U-Net produced high TPRs on the BUSIS dataset, and FCN-AlexNet and SegNet obtained higher TPRs 

than the proposed approach on the Dataset B. However, they achieved high TPR at the cost of large 

false positive ratio (FPR) shown in the fourth column of Table 2-1. 

Figure 2-3 compares the segmentation results of SegNet, FCN-AlexNet, U-Net, and the 

proposed STAN. Figure 2-3(b) shows the corresponding ground truth of the original BUS images in 

Figure 2-3(a). As shown in the first row, FCN-AlexNet, SegNet, and U-Net produce high false 

positives, while the proposed STAN can accurately segment the tumors. In the second row of Figure 2-

3, the FCN-AlexNet has high false positives compared to the ground truth; and both the SegNet and U-

Net fail to detect the tumor.   

2.3.3 Small Tumor Segmentation  

 In this section, we evaluate the performance of four approaches in segmenting small tumors. The 

criterion to select small tumors is the length of the longest axis of a tumor region, and the length 

threshold is set to 120 pixels. The physic sizes of tumors are not used because they are unavailable for 

most images in the two datasets. 76 and 49 images are selected form the BUSIS and Dataset B, 

respectively.  

Datasets Methods TPR FPR JI DSC AER AHE AME 

BUSIS 

FCN AlexNet 0.950 0.336 0.736 0.841 0.386 25.1 7.1 

SegNet 0.938 0.158 0.820 0.895 0.220 21.7 4.5 

U-Net 0.920 0.138 0.825 0.897 0.218 26.8 4.9 

STAN 0.917 0.093 0.847 0.912 0.176 18.9 3.9 

 

Dataset 

B 

FCN AlexNet 0.868 1.167 0.469 0.610 1.299 40.8 14.5 

SegNet 0.852 0.834 0.595 0.708 0.982 41.6 11.4 

U-Net 0.776 0.406 0.653 0.745 0.630 39.6 10.8 

STAN 0.801 0.266 0.695 0.782 0.465 35.5 9.7 

 

Table 2-1 Segmentation performance of four approaches on two datasets. 
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As shown in Table 2-2, on the two datasets, all metrics except the TPR of the proposed STAN 

are better than those of FCN-AlexNet, SegNet, and U-Net. The FPR of the FCN-AlexNet on the small 

dataset (0.767) of is more than twice as its original FPR in Table 2-1(0.336). All other three approach 

generate high FPRs (FCN-AlexNet: 1.86, SegNet: 1.45 and U-Net: 0.68) for small tumors in the Dataset 

B. The third and fourth rows of Figure 2-3 show segmentation results of a small tumor, the FCN-

AlexNet and U-Net detect no tumor, while the SegNet produced high false positive. In the fourth row, 

the FCN-AlexNet and U-Net generated high false positive, and the SegNet only found a small part of 

the tumor. 

2.4. Conclusion 

In this work, we proposed the Small Tumor-Aware Network (STAN) to overcome challenges in breast 

tumor early detection. The STAN has two encoder branches that extract and fuse image context 

information at different scales. The model constructs feature maps using kernels with three different 

sizes at each convolutional layer. These feature maps carry multiscale context information and preserve 

fine-grained tumor location information. The proposed STAN achieved the state-of-the-art overall 

performance on two public datasets, and outperformed the other three segmentation approaches in 

segmenting small tumors. In the future, we will focus on improving the robustness of the proposed 

STAN.  

 

 

 

 

 

Table 2-2 Small Tumor Segmentation. 

Dataset Method TPR FPR JI DSC AER AHE AME 

BUSIS 

FCN-AlexNet 0.947 0.767 0.603 0.732 0.821 26.3 9.6 

SegNet 0.923 0.251 0.747 0.841 0.328 22.4 6.2 

U-Net 0.920 0.296 0.756 0.843 0.376 44.2 8.3 

STAN 0.902 0.165 0.791 0.870 0.263 21.3 5.2 

 

Dataset B 

FCN-AlexNet 0.868 1.863 0.353 0.492 1.995 49.2 18.4 

SegNet 0.854 1.452 0.495 0.619 1.598 50.1 14.2 

U-Net 0.768 0.682 0.593 0.681 0.913 43.1 13.8 

STAN 0.814 0.400 0.673 0.759 0.586 35.9 11.1 
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Chapter 3: ESTAN: Enhanced Small Tumor-Aware Network for Breast 

Ultrasound Image Segmentation 

Shareef, B., Vakanski, A., Freer, P.E., Xian, M. ESTAN: Enhanced Small Tumor-Aware Network 

for Breast Ultrasound Image Segmentation. Healthcare 2022, 10, 2262. 

https://doi.org/10.3390/healthcare10112262 

3.1. Introduction 

Breast ultrasound (BUS) imaging is an effective screening method due to its painless, noninvasive, 

nonradioactive, and cost-effective nature. BUS image segmentation aims to extract tumor region(s) 

from normal breast tissues in images. It is an essential step in BUS computer-aided diagnosis (CAD) 

systems. However, because of the speckle noise, poor image quality, and variable tumor shapes and 

sizes, accurate BUS image segmentation is challenging.  

According to the National Cancer Institute, in the United States, the relative survival is 99% if breast 

cancer is detected and treated at the early stages, and only 27% if cancer has spread to other organs of 

the body [12]. Early detection of breast tumors is the key to reducing the mortality rate. However, in 

the early stages, most tumors are small and occupy a relatively small region in BUS images. It is 

challenging to distinguish them from normal breast tissues. Therefore, accurate detection of small 

tumors is critical for breast cancer early detection and can improve clinical decisions, treatment 

planning, and recovery. 

The approaches of BUS image segmentation can be classified into traditional approaches and 

deep learning-based approaches. Numerous traditional approaches have been used for BUS image 

segmentation, such as thresholding [13-18], region growing [3][19], and watershed [4][20]. Despite 

their simplicity, these methods require knowledge and expertise in extracting features, and they are not 

robust due to poor scalability and high sensitivity to noise. Refer to [21] for a comprehensive review of 

BUS image segmentation. 

Recently, several deep learning approaches [5, 22-33] have been developed for BUS image 

segmentation; Table 3-1 lists the most recent deep learning approaches for BUS image segmentation. 
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Huang et al. [22] proposed a fuzzy fully convolutional network to perform BUS image segmentation. 

Fuzzy logic is adopted to solve the uncertainty issue in the BUS images and feature maps. Contrast 

enhancement and wavelet features were applied as preprocessing techniques to augment the training 

data. The augmented training image set and features from convolutional layers were transformed into 

a fuzzy domain by a fuzzy membership function. The context information and the human breast 

structure were integrated into Conditional Random Fields (CRFs) to enhance the segmentation results. 

Yap et al. [5] evaluated the performance of three different deep learning approaches: a patch-based 

LeNet, a U-Net, and transfer learning with a pretrained AlexNet on two BUS datasets (Dataset A and 

Dataset B). The transfer learning AlexNet outperformed all others on Dataset A for true positive and 

F-measure metrics and patch-based LeNet achieved the best results on Dataset B for false positive per 

image metric. Although the results show that the different deep learning approaches designed for other 

tasks can be adopted and trained on BUS datasets, all the approaches could not achieve the best results 

for all the evaluation metrics on both datasets. Amiri et al. [23] studied transfer learning and the 

significance of fine-tuning configurations of U-Net architecture to solve the issue of scarce ultrasound  

 

   (a) BUS Images          (b) GT             (c) DenseU-Net         (d) CE-Net        (e) 

RDAU-Net  Figure 3-1 Performance of state-of-the-art approaches for segmenting breast tumors 

with different sizes. GT: Ground truth. 
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image data. Fine-tuning the shallow layers of U-Net for small BUS datasets achieved the best results; 

however, there is no significant difference in fine-tuning the whole network or shallow layers for large 

BUS dataset. Refer to [21][34] for more deep learning approaches for medical image segmentation.  

In addition, Nair et al. [24] proposed a DNN with two decoders to create BUS images and segmentation 

masks from raw single plane wave channel data. This approach shows promising results where both 

the segmentation masks and B-mode images were generated in a single network using raw data. Zhuang 

et al. [24] proposed an RDAU-Net model, based on U-Net architecture, to perform the tumor 

segmentation task on BUS images. The dilated residual blocks and attention gates were used to replace 

the basic blocks and original skip connections in U-Net, respectively. The RDAU-Net design improves 

the overall sensitivity and accuracy of the model. Similarly, Hu et al. [26] proposed a DFCN method 

that combines the dilated fully convolution network with a phase-based active contour (PBAC) model 

to automatically segment breast tumors. The DFCN with PBAC network is more robust to noise and 

blurry boundaries, and successfully segments tumors with a large volume of shadows.  

Article Year Method Dataset Size Evaluation Metrics 

Huang et al. [22] 2018 FCN + Wavelet features + CRFs 325 TPR, FPR, JI 

Shareef et al. [33] 2020 U-Net + Two encoders 725 
TPR, FPR, JI, DSC, 

AER, MAE, HD 

Yap et al. [5] 2018 
Patch-based LeNet, U-Net, and 

AlexNet 
469 TPR, FPR, F1 

Ameri et al. [35] 2020 Transfer learning 163 DSC 

Nair et al. [24] 2020 
Deep Neural Networks + Two 

Decoders +Simulated Data 
22230 DSC 

Zhuang et al. [25] 2019 U-Net+ Attention gate 1062 
TPR, Sp, F1, Pr, JI, 

Acc, DSC, AUC 

Hu et al. [26] 2019 
Dilated FCN + Active contour 

model 
570 DSC, MAD, and HD 

Vakanski et al. 

[27] 
2020 U-Net + Attention blocks 510 

TPR, FPR, DSC, JI, 

Pr, AUC-ROC 

Byra et al. [28] 2020 
U-Net + Attention gate + Entropy 

maps 
269 DSC, JI 

Moon et al. [14] 2020 Ensemble CNNs 246 TPR, FPR 

Lee et al. [30] 2020 
U-Net + Channel attention 

module 
163 

FPR, F1, JI, AUC, Pr, 

Sp, TPR 

Chen et al. [31] 2022 
U-Net + Bidirectional attention + 

refinement residual net  
780 

Acc, DSC, Sens, Sp, 

Pr, JI 

Hussain et al. [32] 2022 U-Net + level set 349 Acc, DSC, JI 

Table 3-1 Deep learning-based bus segmentation approaches. 

*TPR: true positive rate, FPR: false positive rate, JI: Jaccard indices, IoU: intersection over union, Acc: Accuracy, 

Pr: precision, Sp: specificity, MCC: mattews correlation coefficient, AUC: area under curve, AER: area error 

rate, MAE: mean area error, HD: average Hausdorff distance, DSC: dice similarity coefficient, CRFs: 

conditional random fields, and FCN: fully convolutional network. 
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Moreover, Vakanski et al. [27] integrated radiologists’ visual attention with a U-Net model to 

perform BUS segmentation task. The model designs attention blocks to ignore regions with low 

saliency and emphasize more on regions with high saliency. This study outperformed the U-Net model 

and has successfully combined prior knowledge information into a convolutional neural network. Byra 

et al. [36] proposed a deep learning segmentation approach for BUS images based on entropy 

parametric maps with the attention-gated U-Net network. The model achieved a good improvement; 

however, there are insufficient results and analysis to show the significance of entropy maps. 

 Furthermore,  Moon et al. [14] proposed an ensemble CNN architecture for a CAD system 

comprising multi-models trained on original BUS images, segmented image tumors, tumor masks, and 

fused images. The fused images were prepared by combining an original image, segmented tumor, and 

tumor shape information (TSI). The results show that the fused images achieved the best results among 

all others, and the study provides a clear guide to choosing an approach for a specific dataset size. Lee 

et al. [30] proposed a channel attention module with multi-scale grid average pooling for segmenting 

BUS images. The approach utilizes both local and global information and achieves good overall 

segmentation performance. Chen et al. [31] proposed bidirectional attention and refine network that 

they added on top of the U-net to accurately segment breast lesions. However, training such a network 

on a small dataset is challenging to deal with overfitting/underfitting issues. These methods achieved 

good overall performance. However, as shown in Figure 3-1, they failed to achieve good performance 

for segmenting small tumors. First, these methods were designed to improve the overall performance 

using general-purpose square kernels which were developed for learning features in natural images. 

Second, all currently available BUS datasets are small, and most deep learning-based approaches 

require a large and high-quality training set.  

We aim to solve the challenge of small tumor segmentation in BUS images. The work is 

inspired by current progress in small object detection and/or segmentation which is an important task 

in computer vision, as it forms the foundation of many image-related tasks, such as remote sensing, 

scene understanding, object tracking, instance and panoptic segmentation, aerospace detection, and 

image captioning. Chen et al. [37] proposed an augmented technique for the R-CNN algorithm with a 

context model and small region proposal generator; which was the first benchmark dataset for small 

object detection. Krishna et al. [38] designed a Faster R-CNN model with a modified upsampling 

technique to improve the performance of small object detection. Guan et al. [39] proposed a semantic 

context aware network (SCAN), which integrates a location fusion module and context fusion module 

to detect semantic and contextual features. The DenseU-Net architecture was proposed by Dong [40] 

for semantic segmentation of small objects in urban remote sensing images.  
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It uses residual connections and a weighted focal loss function with median frequency 

balancing to improve the performance of small object detection. 

To the best of our knowledge, STAN [33] was the first deep learning architecture designed 

specifically for small tumor segmentation. Three skip connections and two encoders were employed to 

extract multi-scale contextual information from different layers of the contracting part. STAN 

outperformed other deep learning approaches for segmenting small tumors in BUS images. However, 

its average FPR on small tumors is much larger than the FPR on large tumors. In this paper, we extend 

STAN and propose a new architecture, namely Enhanced Small Tumor-Aware Network or ESTAN, to 

achieve robust segmentation for tumors of different sizes. The new architecture has two encoder 

branches. The basic encoder has five blocks and learns features at different scales. The ESTAN encoder 

applies row-column-wise kernels to adapt to the breast anatomy during the feature learning. 

Specifically, the human breast anatomy consists of four main layers: skin, premammary (subcutaneous 

fat), mammary, and retromammary layers [41] (Figure 3-3). Each layer is characterized by a distinct 

texture and corresponding echo patterns in ultrasound images. The tissue layers in BUS images appear 

vertically stacked, with similar echo patterns propagating horizontally across images.  Breast pathology 

originates predominantly in the mammary layer. The row-column-wise kernels were designed to learn 

the breast tissue structure and thus improve detecting small tumor representations in BUS images. In 

the decoder, each block has three skip connections that fuse rich contextual features from the two 

encoders. The contextual features are robust to different tumor sizes and help distinguish tumor regions 

from normal regions. 

The rest of the paper is organized as follows: Section 3.2 presents the proposed architecture 

and implementation details; Section 3.3 demonstrates experimental results; and Section 3.4 provides 

the conclusion.    

3.2 Proposed Method 

In this section, we introduce the proposed Enhanced Small Tumor-Aware Network (ESTAN) for 

solving the issue of small tumor segmentation in BUS images. ESTAN builds upon two observations: 

1) BUS images contain tumors of a broad range of sizes, and current state-of-the-art approaches have 

poor performance on segmenting small tumors; and 2) the current deep learning-based approaches used 

square-shape kernels and have difficulty utilizing context information of BUS images, e.g., breast tissue 

anatomy. To alleviate these challenges, we propose ESTAN to extract and fuse image context 

information at different scales. ESTAN constructs feature maps using both square and large row- 
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column-wise kernels. These feature maps transmit multi-scale context information and preserve fine-

grained tumor location information. Therefore, the new design enables ESTAN to accurately segment 

breast tumors of different sizes, and it is especially efficient with small size tumors. ESTAN consists 

of two encoders and one decoder where each decoder block (UP Block) receives three skip connections. 

The overall architecture of the proposed approach is shown in Figure 3-2.    

3.2.1 Basic Encoder 

The basic encoder downsamples the input feature maps to extract low-level spatial and contextual 

information. Both convolution and pooling operations with strides greater than 1 are employed for 

downsampling the feature maps in the encoder blocks. The basic encoder comprises of five blocks, 

where each block contains two convolutional layers and a max pooling layer; except the fifth block, 

which has no pooling layer. The basic blocks in the encoder are different from the original U-Net [42] 

encoder blocks since the new architecture uses two skip connections to copy feature maps from the 

encoder blocks to the corresponding upsampling layers in the decoder module. Figure 3-2(c) illustrates 

the architecture of the basic encoder. Let denote the input images as X ∈  Rℎ×𝑤×𝑐, where h, w, and c 

are the height, width, and number of channels, respectively.  

Let f be the convolution function for square kernels, 𝐾𝑖 be the number of kernels and 𝑆𝑖 be 

kernel size in the ith convolution layer, followed by a rectified linear unit (ReLU) activation function. 

The output of the jth block of the basic encoder is defined by 

𝐵𝑗 = ϕ (𝑓𝑆2,𝐾2
(𝑓𝑆1,𝐾1

(𝑋)))                                                        (3.1) 

 (a) Overall Architecture (c) Basic Block 

(b) ESTAN Block 

Figure 3-2 ESTAN architecture. ⨁ is the concatenation operator, Ai, Si, Mi, denote kernel sizes, and Ci, Ki, Yi 

define number of kernels. 
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where 𝐵𝑗 is the output of a given block, and ϕ is the pooling operatio n the jth block. Additionally, the 

kernel size 𝑆1 and 𝑆2 in Basic Block 1, 2, 3, 4, and 5 are all set to 3. The number of kernels 𝐾1 and 𝐾2 

in Basic Block 1, 2, 3, 4, and 5 have values 32, 64, 128, 256, and 512, respectively.  

3.2.2 ESTAN Encoder 

The receptive field in CNNs has an important role in building effective feature maps. It defines the 

input image region that produces the output features, and image regions outside the receptive field of a 

feature will not contribute to the computation of the feature. To ensure the coverage of all relevant 

image regions and achieve enhanced performance, many dense prediction tasks used large receptive 

fields [43][44]. There are several techniques for increasing the size of the receptive field such as 

stacking more layers, sub-sampling, and dilated convolutions [45]. However, in BUS images, a large 

receptive field can result in poor performance for small tumor segmentation [33]. The goal of the 

ESTAN encoder is to effectively produce feature maps and avoid the large receptive field. 

STAN [33] proposed a two-encoder architecture and applied kernels of sizes 1 × 1,  3 ×

3,  and 5 × 5. The small kernel size can avoid a large receptive field. The two encoders fused contextual 

information at different scales by producing features using different sizes of receptive fields. This 

design improved the overall performance for small breast tumor segmentation. However, STAN 

produced high false positives for some BUS images with small tumors.   

To overcome this problem, we redesigned the encoder by applying row-column-wise kernels. 

The small square kernels in STAN constructed feature maps using only square image regions. The 

motivation for the design is because BUS images are composed of vertically stacked tissue layers 

(Figure 3-3). Applying row-column-wise kernels in CNNs can avoid calculating features using image 

regions from multiple anatomical layers and produce more accurate and meaningful feature maps. In 

addition, in this study, ESTAN is compared to nine state-of-the-art approaches on three datasets, while 

STAN was compared with only three state-of-the-art approaches on two datasets.  

ESTAN encoder comprises five blocks, named ESTAN blocks, which are parallel with the 

basic encoder blocks. Each block has four square kernels and two row-column-wise kernels in two 

parallel branches. Such kernels can efficiently extract contextual and fine-grained details of small 

tumors in the BUS images.  

Furthermore, ESTAN blocks add one extra non-linearity to each encoder block. Figure 3-2(b) 

illustrates the design of each ESTAN block. Let Ci  be the number of kernels, and AI be the kernel size. 

The output of j-th ESTAN block is defined by 
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Ej = ϕ (fA5,C5
(fA2,C2

(fA1,C1
(X)) + fA4,C4

(h1,A3,C3
(hA3,1,C3

(X)))))                     (3.2) 

where Ej is the output of the jth ESTAN block, and ϕ is the pooling operatio h is the row-column-wise 

convolution function followed by a rectified linear unit (ReLU) activation function with the size of 

A3 × 1 and 1\timesA3, respectively. The size of A3 in ESTAN Block 1, 2, 3, 4, and 5 are 15, 13, 11, 

9, and 7, respectively. The size of A5 in ESTAN Block 2 and 5 is 5, and in the rest is 1. Furthermore, 

block 5 has no pooling operation for both encoders. Moreover, the number of kernels (CI) in each 

ESTAN Block 1, 2, 3, 4, and 5 have values 32, 64, 128, 256, and 512, respectively.        

3.2.3 Decoder and Skip Connections 

The decoder module comprises four upsampling blocks, where each has one upsampling layer followed 

by three convolution layers. Unlike the U-Net architecture, where the decoder has two convolution 

layers, the ESTAN adds an additional kernel after the first convolution kernel to control the post 

concatenation channels. Let f be the convolution function followed by a rectified linear unit (ReLU) 

activation function, Yi  be the number of kernels, and MI be the kernel size. The output of the jth block 

of the decoder is defined by 

Uj = fM3,Y3
(fM2,Y2

(fM1,Y1
(Ψ)))                                   (3.3) 

where Ψ is the upsampling layer. Kernel sizes M1 and M3 in all blocks are 3 and M2 in blocks 1,2, and 

3 is 1, and M2 in block 4 is 5. In addition,  Y1, Y2, and Y3, which represent the number of kernels in j-

th Up Block has the same values in each block, and their values are 256, 128, 64, and 32 in Up Block 

1, 2, 3, and 4, respectively.  

We have introduced three skipping connections to copy feature maps at different scales from 

both encoders to the decoder. The first two skip connections come from combining the result of fS1,K1
 

       

 
Figure 3-3 Major breast layers of a sample BUS image. 
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in the basic encoder and the result of fA5,C5
 in the ESTAN encoder concatenates to the upsampling 

layer. The second skip connection that comes from the result of fS2,K2
 combines to the fM2,Y2

 in the 

decoder part. Afterward, the output layer utilizes a 1 × 1 convolution layer followed by a sigmoid 

activation function to predict the final outputs. Figure 3-2(d) illustrates the decoder module.  

3.3 Experimental Results 

3.3.1 Datasets, Evaluation Metrics and Setup 

We use three public BUS datasets: BUSIS [21][17][46][47], BUSI [47] and Dataset B [48]. The BUSIS 

dataset contains 562 images collected from three hospitals using GE VIVID 7, LOGIQ E9, Hitachi 

EUB-6500, Philips iU22, and Siemens ACUSON S2000. The BUSIS dataset includes 306 benign and 

256 malignant breast ultrasound images. The BUSI dataset is from Baheya Hospital for Early Detection 

& Treatment of Women’s Cancer in Egypt using the LOGIQ E9 ultrasound system and the LOGIQ E9 

Agile ultrasound system with ML6-15-D Matrix linear probe transducers. The BUSI dataset has 780 

images, of which there are 133 normal, 487 benign, and 210 malignant images collected from 600 

women patients aged 25 to 75 years old. In addition, radiologists from Baheya Hospital reviewed and 

modified the ground truth masks. The Dataset B has only 163 breast ultrasound images, and the UDIAT 

Diagnostic Centre of the Parc Taul’ı Corporation, Sabadell (Spain) collected the images using a 

Siemens ACUSON Sequoia C512 system with a 17L5 linear array transducer (8.5 MHz). Dataset B 

consists of 53 malignant, and 110 benign images from different women with a mean image size of 760 

× 570 pixels. The Dice loss [48] function is used in this work.  

The tumor size is an important variable, and Figure 4 illustrates the histograms of tumor size 

distributions of the three datasets based on their original resolution. The physical sizes of most tumors 

in the three datasets are unavailable; therefore, we define the tumor size as the length (in pixels) of the 

longest axis of a tumor region in the original BUS image. The distributions of BUSI and Dataset B 

show positive skewness where many tumors are smaller than 150 pixels. The BUSI dataset has more 

large tumors compared to the other datasets, and the sizes of most tumors are between 150 and 250 

pixels. In addition, the images in the BUSIS dataset were collected with five different BUS 

workstations; thus, the image quality has large variations. To evaluate the segmentation results, both 

area and boundary metrics are employed. The metrics are true positive rate (TPR), false positive rate 
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(FPR), Jaccard index (JI), Dice similarity coefficient (DSC), area error rate (AER), Hausdorff distance 

(HD), and mean absolute error (MAE). For detailed information about the seven metrics, refer to [21]. 

We perform five-fold cross-validation individually for each dataset to evaluate the test performance of 

all methods, and the input image size is 256 × 256 pixels for all the approaches.  

In this study, we compare the proposed method with nine state-of-the-art approaches: AlexNet 

[49], SegNet [50], U-Net [42], CE-Net [51], MultiResUNet [52], RDAU-Net [25], SCAN [39], 

DenseU-Net [40], and STAN [33]. These approaches have different backbone networks and different 

training strategies. We employ a transfer learning technique for AlexNet, which is pretrained on 

ImageNet. SegNet, U-Net, CE-Net, MultiResUNet, RDAU-Net, SCAN, and DenseU-Net are trained 

from scratch. 

3.3.2 Overall Performance 

In this section, we compare the proposed approach with AlexNet, SegNet, U-Net, CE-Net, 

MultiResUNet, RDAU-Net, SCAN, DenseU-Net, and STAN. The results are shown in Figure 3-6 and 

Table 3-2.  

Figure 3-6 shows the segmentation results of four sample BUS images. In the first row, the 

tumor in the BUS image is small, and AlexNet, U-Net, MultiResUNet, SCAN, and DenseU-Net have 

poor segmentation performance. In the second and third samples (2nd and 3rd rows), all approaches, 

except the proposed ESTAN, produce high false positives, which demonstrates that they have difficulty 

distinguishing tumor regions from tumor-like regions. In Figure 3-6(k), STAN can segment small 

tumors accurately but still produces false tumor regions. Figure 3-6(l) shows that ESTAN segments the 

four images accurately without any false tumor regions. 

Table 3-2 presents the quantitative results of all approaches on the three datasets. The proposed 

ESTAN achieved the best overall performance on all three datasets. AlexNet and SegNet obtained high 

TPRs, but at the cost of high FPRs.  

 

 

 
Figure 3-4 Histogram of tumor size (number of pixels) distribution per dataset. 
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To investigate the statistical significance of all the proposed approaches, Wilcoxon signed-rank 

test was employed to compare ESTAN against all other approaches for FPR, JI, DSC, AER, HE, and 

MAE metrics on the three datasets. The significance level is defined as p-value < 0.05. The obtained p-

values from the Wilcoxon signed-rank test were corrected using Holm-Bonferroni method for multiple 

comparisons. The results indicate a statistically significant difference for the six metrics on the three 

datasets, except for the cases that are marked with (*) in Table 3-2.  

STAN has 22 million parameters while ESTAN uses 30 million. The average training time of 

STAN for each fold is 21, 24, 23 minutes for DSB, BUSI, and BUSIS datasets, respectively, while 

ESTAN takes 34, 32, 34 minutes for training DSB, BUSI, and BUSIS datasets, respectively, with batch 

size of 4 and maximum 50 epochs. The average testing time of STAN for segmenting each image on 

the trained models is 150, 66, 61 milliseconds for DSB, BUSI, and BUSIS datasets, respectively, while 

ESTAN needs 205, 80, 85 milliseconds for segmenting each image.  

3.3.3 Small Tumor Segmentation 

The physical size for all images of the three datasets is not available. Therefore, the length of the longest 

axis of a tumor region in the original BUS image (non-resized) is chosen to be a criterion to select small 

tumors, and the length threshold is set to 120 pixels. BUSIS, BUSI, and Dataset B contain 49, 151, and 

76 small tumors, respectively. Figure 3-5 illustrates the FPR comparison between the overall and small 

tumor segmentation. All ten approaches have higher FPR for small tumors on BUSIS and for both 

overall and small tumor segmentation. Table 3-3 shows all-inclusive results of all approaches on the 

three datasets using the selected seven quantitative metrics. ESTAN outperforms all other nine 

approaches for small tumor segmentation on the three datasets. AlexNet Dataset B datasets. The FPR 

of AlexNet increased dramatically for small tumor segmentation. The ESTAN approach is superior in 

comparison to all nine approaches and achieves the lowest false positive and SegNet obtain high TPRs, 

but at the cost of high FPR.   
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     (a)             (b)            (c)            (d)            (e)            (f)            (g)             (h)            (i)             (j)            (k)            (l) 

Figure 3-6 Tumor segmentation examples. (a) BUS Image, (b) ground truth, (c) AlexNet, (d) SegNet, (e) U-Net,  

(f) CE-Net,  (g) MultiResUNet,  (h) RDAU-Net , (i) SCAN, (j) DenseU-Net,  (k) STAN, and (l) ESTAN. 

Figure 3-5 False positive rates of overall and small tumor segmentation on the three datasets. 
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Table 3-2 Overall performance 

Datasets Methods TPR FPR JI DSC AER HD MAE 

BUSIS [35] 

AlexNet 0.95 0.77 0.60 0.73 0.82 26.3 9.6 

SegNet 0.92 0.25 0.75 0.84 0.33 22.4 6.2 

U-Net 0.92 0.30 0.76 0.84 0.38 44.2 8.3 

CE-Net 0.91 0.36 0.73 0.82 0.46 34.8 9.0 

MultiResUNet 0.91 0.23 0.77 0.84 0.33 27.7 8.5 

RDAU-NET 0.89 0.19 0.78 0.86 0.30 22.0 7.3 

SCAN 0.88 0.18 0.77 0.85 0.30 27.4 6.2 

DenseU-Net 0.90 0.50 0.72 0.81 0.60 34.5 8.2 

STAN 0.90 0.17 0.79 0.87 0.26 21.3 5.2 

ESTAN 0.90 0.11 0.82 0.89 0.21 14.9 3.0 

 

Dataset B [16] 

AlexNet 0.87 1.86 0.35 0.49 2.00 49.2 18.4 

SegNet 0.85 1.45 0.50 0.62 1.60 50.1 14.2 

U-Net 0.77 0.68 0.59 0.68 0.91 43.1 13.8 

CE-Net 0.72 0.88 0.53 0.63 1.15 50.0 14.4 

MultiResUNet 0.79 0.42 0.62 0.71 0.62 39.3 11.5 

RDAU-NET 0.78 0.52 0.62 0.71 0.73 34.1 8.8 

SCAN 0.75 0.50 0.61 0.70 0.74 48.7 11.2 

DenseU-Net 0.70 0.73 0.54 0.63 1.02 56.0 20.0 

STAN 0.81 0.40 0.67 0.76 0.59 35.9 11.1 

ESTAN 0.85 0.30 0.72 0.80 0.44 21.5 6.3 

 

BUSI [31] 

AlexNet 0.94 2.74 0.41 0.56 2.81 52.5 15.4 

SegNet 0.81 1.42 0.55 0.66 1.61 52.1 16.6 

U-Net 0.86 1.34 0.63 0.73 1.48 61.0 13.0 

CE-Net 0.83 1.86 0.59 0.69 2.03 50.9 13.3 

MultiResUNet 0.85 0.83 0.67 0.76 0.99 34.7 10.6 

RDAU-NET 0.87 0.99 0.68 0.77 1.13 33.9 9.9 

SCAN 0.80 1.13 0.63 0.73 1.33 42.4 12.5 

DenseU-Net 0.81 1.06 0.65 0.73 1.26 40.9 13.7 

STAN 0.86 1.10 0.67 0.76 1.25 49.2 11.3 

ESTAN 0.89 0.77 0.72 0.81 0.88 24.2 6.1 
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Datasets Methods TPR FPR JI DSC AER HD MAE 

BUSIS [35] 

AlexNet 0.95 0.34 0.74 0.84 0.39 25.1 7.1 

SegNet 0.94 0.16 0.82 0.90 0.22 21.7 4.5 

U-Net 0.92 0.14 0.83 0.90 0.22 26.8 4.9 

CE-Net 0.91 0.13 0.83 0.90 0.22 21.6 4.5 

MultiResUNet 0.93 0.11 0.84 0.91 0.19 18.8 4.1 

RDAU-NET 0.91 0.11 0.84 0.91 0.20 19.3 4.1 

SCAN 0.91 0.11 0.83 0.90 0.20 26.9 4.9 

DenseU-Net 0.91 0.16 0.81 0.88 0.25 25.3 5.5 

STAN 0.92 0.09 0.85 0.91 0.18 18.9 3.9 

ESTAN 0.91 0.07 0.86 0.92 0.16 16.4 3.2 

 

Dataset B [16] 

AlexNet 0.87 1.17 0.47 0.61 1.30 40.8 14.5 

SegNet 0.85 0.83 0.60 0.71 0.98 41.6 11.4 

U-Net 0.78 0.41 0.65 0.75 0.63 39.6 10.8 

CE-Net 0.74 0.48* 0.61 0.72 0.74 40.1 10.5 

MultiResUNet 0.79 0.26 0.66 0.75 0.48 37.1 10.7 

RDAU-NET 0.78 0.30* 0.67 0.77 0.52 32.4 8.3 

SCAN 0.75 0.29* 0.65 0.74 0.54 43.7 9.9 

DenseU-Net 0.71 0.43 0.60 0.69 0.72 48.9 15.5 

STAN 0.80 0.27* 0.70* 0.78 0.47* 35.5 9.7* 

ESTAN 0.84 0.22 0.74 0.82 0.38 25.5 7.0 

 

BUSI [31] 

AlexNet 0.87 1.14 0.55 0.68 1.27 47.4 14.1 

SegNet 0.77 0.55 0.62 0.72 0.78 46.5 13.3 

U-Net 0.77 0.56 0.63 0.73 0.78 59.0 13.7 

CE-Net 0.77 0.64 0.64 0.73 0.88 43.9 12.4 

MultiResUNet 0.78 0.37 0.67 0.75 0.59 41.2 12.0 

RDAU-NET 0.80 0.42* 0.68 0.76 0.62 39.2 12.0 

SCAN 0.73 0.43 0.63 0.72 0.70 47.0 13.8 

DenseU-Net 0.74 0.43 0.64 0.72 0.69 47.4 15.5 

STAN 0.76 0.42* 0.66 0.75 0.66 46.5 12.1 

ESTAN 0.80 0.36 0.70 0.78 0.56 34.8 9.9 

 

Table 3-3 Performance of small tumor segmentation. 
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3.3.4 Segmentation Tumors with Different Sizes 

To demonstrate the effectiveness of the proposed ESTAN model, we split the BUSIS [17][21][47][46] 

dataset into four tumor size groups. We chose the BUSIS dataset for the following reasons: 1)  the 

images were collected from three hospitals using five ultrasound devices operated by different 

radiologists; 2) the ground truths of the BUSIS  dataset have less bias because they were prepared by 

four experienced radiologists, where three radiologists generated tumor boundaries for each BUS image 

separately, and the fourth radiologist—a senior expert—judged and adjusted the majority voting results; 

and 3) all ten approaches achieved the best performance on the BUSIS dataset compared to BUSI and 

Dataset B. We chose the length of the longest axis of a tumor as a criterion for selecting tumor groups 

in the original BUS image. The first group contains 19 images with tumor sizes from 0 to 100 pixels, 

the second group has 30 images from 100 to 120 pixels, the third group consists of 81 images from 120 

to 160 pixels, and the fourth group has 432 images from 160 to 533 pixels. 

 

Table 3-4 Performance of four tumor size groups of BUSIS dataset. 

Table 3-4 lists the values of JI and FPR for the four tumor groups. AlexNet has poor performance 

for segmenting small tumor group with JI of 0.57 and FPR of 0.97, while FPR and JI improve 

Tumor size groups (0-100) (100-120) (120-160) (>160) 

Number of Images 19 30 81 432 

 JI FP JI FP JI FP JI FP 

AlexNet 0.57 0.97 0.63 0.64 0.68 0.44 0.76 0.27 

SegNet 0.71 0.28 0.77 0.23 0.79 0.21 0.83 0.14 

U-Net 0.72 0.34 0.78 0.27 0.80 0.18 0.84 0.11 

CE-Net 0.62 0.63 0.80 0.19 0.80 0.16 0.84 0.09 

MultiResUNet 0.71 0.34 0.80 0.16 0.82 0.17 0.86 0.09 

RDAU-NET 0.72 0.26 0.82 0.14 0.81 0.17 0.85 0.09 

SCAN 0.71 0.24 0.81 0.14 0.81 0.16 0.80 0.09 

DenseU-Net 0.67 0.77 0.75 0.34 0.78 0.21 0.83 0.11 

STAN 0.76 0.25 0.81 0.11 0.83 0.12 0.86 0.08 

ESTAN 0.79 0.15 0.83 0.09 0.85 0.10 0.87 0.06 
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dramatically in the other three groups. The results of segmenting tumors in both mid-size groups (100-

120) and (120-160) are very close to each other, e.g., CE-NET and SCAN have achieved the same JI 

with 0.81 and 0.80 in both groups, respectively. The results show that the tumor size between (0-100) 

are the most difficult cases, and all ten approaches cannot achieve as good performance as segmenting 

large tumors. On the other hand, for the fourth group containing the large tumor sizes (>160 pixels) all 

approaches achieved better results than the other tumor size groups. The proposed ESTAN achieved 

the highest JI and lowest FPR values on all tumor size groups.  

3.4 Discussion 

BUS images were obtained from different ultrasound devices with non-uniform settings, and they vary 

in resolution, depth, and contrast. As shown in our experimental results (Table 3-2), the performance 

of all approaches differs on images from different datasets. Therefore, to precisely evaluate the 

performance of BUS image segmentation approaches, it is recommended to involve large and diverse 

BUS datasets collected from different resources.  

The results indicate that despite the absence of a large high-quality dataset, designing a better 

feature extractor is an effective approach to improving the segmentation performance of tumors of 

different sizes. (Tables 3-2,3-3 and 3-4). 

The strengths of this study include (a) utilizing the human breast anatomical layers to design 

convolution kernels, (b) using two encoders to learn features and three skip connections to transfer 

contextual information to the decoder to locate tumors more accurately, and (c) validating the efficacy 

and weakness of the proposed approach using extensive experiments on three publicly available 

datasets. Although ESTAN achieved remarkable results for segmenting tumors of various sizes on the 

three datasets, it failed to detect tumors in 29 extremely challenging BUS cases, because these cases 

have high speckle noise, low contrast, and no clear tumor boundaries. To extract features at different 

scales, ESTAN uses two encoders instead of one. Despite its success, these encoders require more 

parameters, memory, and computational power. Therefore, optimizing ESTAN to eliminate 

unnecessary parameters and operations is significant, specifically for resource-constrained systems 

such as mobile devices. 

3.5 Conclusion 

To improve the segmentation of small tumors in BUS images, this paper proposed the Enhanced Small 

Tumor-Aware Network (ESTAN), which comprises of two encoder branches that extract and fuse 

image context information at different scales. The ESTAN blocks apply row-column-wise kernels to 
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adapt to the breast anatomy. The decoder has three skip connections from the two encoders to fuse 

features. The new design enhances the performance by incorporating multi-scale features and breast 

anatomy into the encoder layers. The proposed architecture is sensitive to small breast tumors, and 

segments small tumors accurately with a low FPR. In addition, the approach achieves state-of-the-art 

performance in segmenting tumors of different sizes. We validate the proposed approach extensively 

using three datasets and compare it with the other nine breast tumor segmentation approaches. The 

results demonstrate that ESTAN achieves the state-of-the-art performance on all datasets.  In the future, 

we plan to test the proposed approach using large datasets and focus on developing domain-enriched 

deep architectures for small object detection. 
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Chapter 4: A Benchmark for Breast Ultrasound Image Classification 

Bryar Shareef, Min Xian, Aleksandar Vakanski, Jianrui Ding, Chunping Ning, Heng-Da Cheng, A 

benchmark for breast ultrasound image classification,  Ultrasound in Medicine &Biology, 

under review.  

4.1 Introduction 

Breast cancer has become one of the most common cancers worldwide, accounting approximately for 

12% of all new cancer cases [53]. In the U.S., it is estimated that breast cancer affected 30% of all new 

female cancer cases in 2021 [53]. Early detection of breast cancer can significantly reduce mortality 

and expand treatment options. Among the different imaging modalities, mammography and ultrasound 

are the two most popular imaging tools for detecting breast abnormality. However, mammography is 

less commonly implemented in most low- and middle-income countries, because of the high costs of 

the required infrastructure [54]. 

Furthermore, mammography produces high false-positive rates in women with dense breasts, 

which leads to anxiety and additional examination steps, such as biopsy [55]. Rebolj et al. [56] reported 

that ultrasound detected approximately 40% more cancer cases than mammography in women with 

dense breasts. According to [5-9], women with dense breasts have a four to six times greater risk of 

breast cancer than those with fatty breast tissue. Asian women of age < 45 have 1.2 more dense breasts 

than white women of that age, and the ratio increases to 1.6 for age 65 and older. In contrast, black 

women have 1.7 more dense breasts than white women for age 65 and younger, while black, Hispanic, 

and white women have a similar breast density for ages>65. [58][59][60][61] 

BUS image processing is challenging due to the presence of speckle noise, low contrast, weak 

boundary, and artifacts [21]. Therefore, analyzing ultrasound images requires extensive experience and 

training. To alleviate this challenge, computer-aided diagnosis (CAD) systems have been developed to 

assist radiologists with breast tumor diagnosis. The idea of CAD was first introduced in the 1960s [62]. 

These systems can reduce operator dependency and identify breast tumors/cancers more accurately 

[47]. CADs can be broadly classified into conventional and deep learning-based systems [63]. The 

conventional BUS CAD systems typically comprise four modules: image preprocessing, tumor 

segmentation, feature extraction and selection, and tumor classification [47] (see Figure 1-1(a)). In deep 

learning-based CAD systems, the modules of preprocessing [11,12] and segmentation [16,17] become 

optional (see Figure 1-1(b)).  
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References Approaches Year Dataset/Availability  Performance 
Pretrained 

dataset 

Huynh, et al. [7] 
Feature extractor (AlexNet) + 

SVM 
2016 1,125 cases/private AUC: 88% ImageNet 

Shia, et al. [71] Fine-tuned (ResNet101) + SVM   2021 2,099/private  
Sen: 94%, Spec: 93%,  

AUC: 94% 
ImageNet 

Liang, et al. [67] 
Feature extractor (Mask-R-

CNN) 
2019 

150 cases/private 

163 cases/public 

Acc : 80%, TPR: 63%,  

TNR: 87%    

Coco 

datasets 

Liao et al. [77] 

Fine-tuned (VGG19, ResNet50, 

DenseNet121, Inceptions V3) + 

Elastography images + B-mode 

images  

2020 256/private 

AUC:98%, Acc:93%, 

Sen:91%, Spec: 95%,  

F1: 93% 

ImageNet 

Fei et al. [78] 

Designed DL network (SVM + 

Elastography) + Transfer 

learning 

2020 265/private 

Acc:87%, Sen: 86%, Spec: 

87%, Youden index (YI): 

73% 

-- 

Yap et al. [116] Fine-tuned (FCN-AlexNet) 2018 
306/private 

163/public 

Sen (Benign:83%, 

Malignant: 57%) 
ImageNet 

Zhang, et al. [72] 
Fine-tuned (VGG16, ResNet50, 

InceptionV3, VGG19) 
2020 6,007/private 

Sen: 85%, AUC: 91%, 

PPV:64%, Acc:83%,  

NPV: 93.7%, Spec: 81.5% 

ImageNet 

Hijab et al. [69] Fine-tuned (VGG16) + ROIs 2019 1,300/private Acc: 97%, AUC: 98% ImageNet 

Cao et al. [70] 
Fine-tuned (4 ROIs on five 

networks) 
2019 1,041/private 

APR: 97%, ARR:67%, 

F1:79%, Acc: 87.5% 
ImageNet 

Xie et al. [73] 
Network design (Dual-sampling 

(2 Encoders) network) 
2020 

1,272/private 

163/public 

Acc: 92%, Sen: 95%, Spec: 

89%, PPV:  88%, NPV: 

95%, AUC: 94% 

ImageNet 

Xing et al. [75] 
Prior knowledge (BI-RADS + 

CNN) 
2020 

Training: 

9,373/private 

Tested: 810/public 

AUC: 91%, Acc: 87%,  

Sen: 82%, Spec: 89%, 

 Precision: 80% 

ImageNet 

Zhuang et al. [76] 
Prior knowledge (hand crafted 

features +SVM +DL) 
2021 1,682/public 

Acc: 93%, Precision: 91%, 

Sen: 95%, F1: 93%, Spec: 

91% 

ImageNet 

Han et al. [74] 
Adopting modified network 

(GoogleNet) +ROIs 
2017 7,408/private 

AUC: 96%, Acc: 91%, 

Sen:84%, Spec: 96% 
ImageNet 

Al-Dhabyani et al. 
[64] 

Data augmentation (GAN to 

produce data) 
2019 780/public Acc: 99% ImageNet 

Tanaka et al. [117] 
Ensemble Learning (VGG19 

+ResNet152) 
2019 1,543/private 

Acc: 86%, Precision: 85%, 

Sen: 89%, F1 

: 87%, Spec: 83%, 

AUC:94% 

-- 

Byra et al. [65] Preprocessing (Input Channel) 2019 

Training:882/ 

private 

Tested: 163/public 

AUC: 94%, Acc: 89%, Sen: 

85%, Spec: 90% 
ImageNet 

Zhuang et al. [79] 
Preprocessing (Decomposition 

of BUS images) 
2020 2,280/public 

AUC: 98%, Acc: 92%, Sen: 

98%, Spec: 86%, F1: 93% 
 ImageNet 

Zhang et al. [81] 
Multitask learning + attention 

mechanism 
2021 647/public 

Acc:94%, Sen: 89%, Spec: 

96%, F1:93% 
-- 

Moon et al. [118]  

Ensemble learning (BUS + 

tumor masks + segmented tumor 

+ fused images)  

2020 
647/public 

1,687/private 

AUC: 95%, Acc:91%, Sen: 

97%, Spec: 95%, F1: 83%, 

Precision: 73% 

-- 

 

Table 4-1 Deep learning approaches for BUS image classification. 

Acc: Accuracy, AUC: area under curve, Sen: sensitivity, Spec: Specificity, TNR: true negative rate, TPR: true positive rate, 

PPV: positive predictive value, NPV: negative predictive value, APR: average precision rate, ARR: average recall rate, 



31 

 

 

Automatic feature learning without human intervention is a substantial advantage of deep learning-

based approaches over conventional approaches [63].  

On the other hand, conventional approaches rely on radiologists’ knowledge to extract and 

select meaningful features [46]. 

Given recent advancements in deep learning approaches for medical image applications, prior 

work demonstrated the effectiveness of deep learning to classify breast tumors in ultrasound images  

(see Table 4-1). However, due to the lack of large, publicly available, high-quality BUS datasets, and 

unified quantitative metrics, a fair evaluation of the current approaches and strategies is impossible. 

Furthermore, most existing deep learning architectures for BUS image classification are simply adopted 

from general-purpose image classification tasks, and there is limited research on identifying the best 

architectures and strategies of deep learning for BUS image classification. In this paper, the focus is on 

benchmarking deep learning-based CAD systems for BUS image classification. Refer to [21] for more 

details on a BUS benchmark for breast tumor segmentation. 

The paper is organized as follows. Section 2 discusses the fundamentals of BUS image 

classification using deep learning; Section 3 describes the benchmark setup. Section 4 illustrates the 

proposed approach; Section 5 presents comprehensive experimental results. Finally, Sections 6 and 7 

provide a discussion and conclusion, respectively. 

4.2 Fundamentals of BUS image classification using deep learning 

4.2.1 Transfer Learning 

Deep learning typically requires large and high-quality labeled data. However, many medical 

applications have scarce data due to expensive data collection, high labeling costs, and privacy issues. 

To address these issues, many approaches have adopted the transfer learning strategy. In transfer 

learning approaches, a deep learning network, which is previously pretrained for another task on a 

large-scale dataset is employed for BUS classification. For example, the ImageNet [66] dataset is 

widely used by deep learning approaches for learning feature representations. The pretrained model can 

be used as 1) a fixed feature extractor or 2) an initial model for fine-tuning.   

For the fixed feature extractor, the pretrained layers are kept unchanged, and the prediction 

layers are trained based on the target task. Huynh et al. [7] employed a pretrained model (AlexNet) as 

a feature extractor and combined it with a support vector machine (SVM) algorithm to classify BUS 

images by using 1,125 whole images and 2,393 regions of interest (ROIs). Liang et al.  
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[67] proposed using Mask R-CNN to segment and classify breast tumors simultaneously, where 

a ResNet50 pretrained on the COCO [68] dataset was used as a backbone to extract features. 

In models for fine-tuning, the whole network including the pretrained layers and the prediction 

layers is retrained using new data. The fine-tuning approach uses the pretrained weights to initialize the 

network and tune it to a target task. Hijab et al. [69] adopted transfer learning to train VGG16 for 

classifying BUS images. The authors studied three different training techniques, and the results 

demonstrated that the fine-tuned network outperformed both training from scratch and transfer learning 

without fine-tuning. Cao et al. [70] studied breast tumor detection and classification using five models 

with and without transfer learning. Moreover, [71] used a pretrained deep residual network as a feature 

extractor and a support vector machine (SVM) algorithm to classify BUS images, and their 

classification performance on 2,099 BUS images outperformed physicians. Zhang et al. [72] used a 

balanced training set and compared four pretrained classifiers (InceptionV3, VGG16, ResNet50, and 

VGG19), and pretrained InceptionV3 with fine-tuning outperformed all other three models. 

4.2.2 Network Architectures 

Developing network architectures based on domain knowledge can enhance the generalizability of deep 

learning-based approaches. Xie et al. [73] proposed the DSCNN to combine convolutional and residual 

layers for BUS image classification. DSCNN outperformed pretrained and fine-tuned AlexNet, 

ResNet18, VGG16, GoogleNet, and EfficientNet, and the three experienced radiologists. Han et al. [74] 

modified GoogleNet with different regions of interest (ROIs) which accepted single-channel images 

and removed two auxiliary classification branches. The proposed approach achieved a sensitivity of 

86% and an AUC of 90% on a private dataset.  

4.2.3 Incorporating Prior Knowledge 

Xing et al. [75] integrated BI-RADS information into a three-layer residual network. The proposed 

approach showed promising results and outperformed all other transfer learning and non-transfer 

learning approaches on two public datasets and one private dataset. Zhuang et al. [76] extracted four 

characteristic semantic features (i.e., orientation, characteristics of posterior shadowing region, shape 

complexity, and edge indistinctness) and combined them with computational features learned from 

VGG16. The proposed approach outperformed the general-purpose-designed deep learning approaches. 

Liao et al. [77] extracted computational features using two VGG19 models from B-mode BUS images 

and strain elastography images, respectively; and all features are concatenated and input into a 3-layer 

network to conduct classification. The results showed that the proposed approach can achieve better 
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sensitivity and specificity compared to deep learning approaches trained solely on B-mode images. 

Similarly, [78] transferred knowledge from elastography ultrasound through transfer learning to 

improve the diagnostic accuracy of breast cancer.  

4.2.4 Preprocessing 

The image quality and size of a BUS dataset have a significant impact on deep learning models. 

Researchers have employed a variety of preprocessing techniques to enlarge, standardize, and enhance 

datasets. Al-Dhabyani et al. [64] implemented a new augmentation approach by combing generative 

adversarial networks (GANs) with traditional augmentation methods; and the classification accuracy 

of VGG16, Inception, ResNet, and NasNet was improved by 16%, 17%, 16%, and 15%, respectively. 

Byra et al. [65] introduced a matching layer to rescale grayscale BUS images to RGB images. The 

results showed that this technique improved the performance of a pretrained VGG19 network. Zhuang 

et al. [79] used fuzzy enhancement, bilateral filtering, and image morphology operation to produce a 

set of decomposed images which were combined to feature maps using three deep learning models. 

The approach showed promising results, with the specificity and sensitivity reaching 98% and 94%, 

respectively. 

4.2.5 Multitask Learning 

Multitask learning has been proved to be an effective approach to improve the generalizability of deep 

learning approaches by learning shared representations from multiple tasks. Vakanski et al. [80] 

implemented a deep multitask network that comprised both tumor segmentation and classification 

subnetworks, and the performance of tumor classification was significantly improved by learning 

representations focused on tumor regions. Zhang et al. [81] employed soft and hard attention 

mechanisms to perform tumor classification and segmentation simultaneously; and the classification 

accuracy increased by 2.45% compared with the single task model.  Shi et al. [82] proposed the EMT-

NET, a light-weighted multitask learning approach for both breast tumor classification and 

segmentation to replace the single task MobileNet; and its sensitivity increased by 18.81%. 

4.2.6 Challenges 

Conclusively, despite the potential of deep learning approaches for accurately classifying BUS images, 

considerable challenges still need to be addressed: 1) most deep learning approaches require large and 

high-quality labeled datasets, but most publicly available BUS datasets are small. It is time-consuming 

and expensive to collect a large BUS dataset. 2) The end-to-end learning scheme of deep learning 

approaches makes BUS image classification a black box, which leads to poor explainability. 3) Existing 
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deep learning approaches have poor robustness and are vulnerable to adversarial attacks. 4) Most deep 

learning approaches are computationally intensive, which makes it impossible to deploy them to 

devices with limited resources. To the best of our knowledge, there is an absence of benchmarking 

studies focusing on deep learning approaches in classifying breast ultrasound images. Therefore, we 

are introducing a BUS benchmark to identify the most useful strategies for classifying breast tumors 

using a combined dataset of 3,641 BUS images.  

4.3 Benchmark Setup 

This section provides a detailed description of the BUS image datasets, deep learning approaches, 

experimental setup, and evaluation metrics.   

4.3.1 BUS Image Dataset 

Existing public BUS datasets are small. We prepared a large and diverse BUS dataset from five sources, 

HMSS [83], BUSI [84], BUSIS [21], Thammasat [85], and Dataset B [5]. It contains a total of 3,641 

B-model BUS images, of which 1,854 contain benign tumors and 1,763 have malignant tumors. 

Detailed information on the five datasets is shown in Table 4-2. We develop a set of scripts to prepare 

the images which are publicly available at http://busbench.midalab.net. Note that we do not own the 

images, and researchers need to obtain permissions to use the datasets from the original authors.  

A total of 2,006 BUS images are from the HMSS [83] dataset, of which 882 images have benign 

tumors and 1,100 have malignant tumors. HMSS was collected by Dr. Geertsma, an experienced 

radiologist at Gelederse Vallei hospital in Netherland, in a collaboration with Hitachi Medical Systems 

Europe.  BUSI [84] dataset was collected from Baheya Hospital for Early Detection & Treatment of 

Women’s Cancer (Cairo, Egypt) using LOGIQ E9 ultrasound system and LOGIQ E9 Agile ultrasound 

system with the ML6-15-D Matrix linear probe transducers. The dataset has a total of 780 images, of 

BUS dataset  BUS images Class distribution Ground truth availability Country 

HMSS [83] 2,006 B: 846, M: 1,160 
Classification: Yes 

Segmentation: No 
Netherlands 

BUSI [84] 647 B: 437, M: 210 
Classification: Yes 

Segmentation: Yes 
Egypt 

BUSIS [21] 562 B: 306, M: 256 
Classification: Yes 

Segmentation: Yes 
China 

Thammasat [85] 263 B:120, M: 143 
Classification: Yes 

Segmentation: No 
Thailand 

Dataset B [5] 163 B: 109, M: 54 
Classification: Yes 

Segmentation: Yes 
Spain 

Total # of images  3,641 
Total # of Benign (B): 1,823 (50.06%) 

Total # of Malignant (M): 1,818 (49.94%) 

 

Table 4-2 Five public BUS datasets. 
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which 133 are normal, 437 are benign, and 210 are malignant. It was collected from 600 women patients 

aged between 25 and 75 years old. We excluded the normal cases, resulting in a total of 647 BUS 

images. BUSIS [21]  dataset was collected from the Second Affiliated Hospital of Harbin Medical 

University, the Affiliated Hospital of Qingdao University, and the Second Hospital of Hebei Medical 

University using the GE VIVID 7, LOGIQ E9, Hitachi EUB-6500, Philips iU22, and Siemens 

ACUSON S2000 systems. It contains 562 images, of which there are 306 benign and 256 malignant 

images. Thammasat dataset [85] was collected by the Biomedical Engineering Unit at the Thammasat 

University Hospital, and Philips iU22 ultrasound workstation was used. We get a total number of 263 

(120 benign and 143 malignant) BUS images from the Thammasat dataset. Dataset B [5] consists of 

163 breast ultrasound images (53 malignant and 110 benign), provided by the UDIAT Diagnostic 

Centre of the Parc Taul´ı Corporation, Sabadell (Spain). The images were collected using the Siemens 

ACUSON Sequoia C512 system with a 17L5 linear array transducer (8.5 MHz). Refer to the original 

publications of the datasets for more details. 

Because most deep learning approaches require square images as input, all BUS images in the 

benchmark dataset are zero-padded and reshaped to form square images without distortions. Note that 

directly reshaping an original BUS image to a square shape will result in morphologic changes in breast 

tumors and their surrounding tissues. Refer to our scripts for preparing the benchmark dataset.  

4.3.2 Deep Learning Approaches and Setup 

In this study, we evaluate seven generic widely used deep learning-based classifiers [41-47] and three 

recently published state-of-the-art approaches [34-36] for BUS image classification (see Table 4-3). 

The generic approaches include MobileNet V1 [86], EfficientNet [87], DenseNet121 [88], ResNet50 

List of generic deep learning classifiers 

 Classifiers Number of parameters (million) Size of trained models 

(megabytes) 

1 MobileNet 4.2 29 MB 

2 EfficientNetB0 5.3 37 MB 

3 DenseNet121 8 59 MB 

4 Xception 22.9 168 MB 

5 InceptionV3 23 176 MB 

6 ResNet50 25 189 MB 

7 VGG16 138.3 172 MB 

List of BUS-specific deep learning classifiers 

1 Shi, et al. [82] 5.1 60 MB 

2 Zhang, et al. [81] 8.2 130 MB 

3 Vakanski, et al. [80]  27.3 312.6 MB 

 

Table 4-3 The sizes of the selected classifiers. 
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[89], VGG16 [90], Xception [91], and InceptionV3 [92]. These classifiers are among the most 

commonly used architectures in medical image applications, thus, providing new insights into their 

performance will benefit the development of CAD systems and the research community. In addition, 

the approaches range from lightweight to heavyweight models, and evaluating them could help build 

applications with hardware limitations. The 5-fold cross-validation is utilized to assess the performance 

of all approaches. The maximum number of training epochs is set to 50, and the batch size is 32. In 

addition, a validation set that comprises 20% of the training set is used, and all BUS images of the 

benchmark dataset are resized to the original classifier's input size. In the benchmark dataset, multiple 

images may come from one patient/case. To prevent data leakage and bias, we split the train and test 

set based on the cases, i.e., all images from one case are assigned to only one of the training, validation, 

and test sets. The approaches are implemented in Keras and TensorFlow using Python (version 3.7) 

programming language. All experiments were performed on a GPU server with seven NVIDIA Quadro 

RTX 8000 GPUs, two Intel Xeon Silver 4210R CPUs (2.40GHz), and 512 GB of RAM.  

4.3.3 Evaluation Metrics 

To evaluate the performance of the classifiers, we use the following quantitative metrics: accuracy 

(Acc), sensitivity (Sens), specificity (Spec), F1 score, false positive rate (FPR), false negative rate 

(FNR), and Area Under the Receiver Operating Characteristic Curve (AUC).   

Acc =
TP +  TN

TP + FP + TN + FN
                                                          (4.1) 

 

Sens =
TP

TP + FN
                                                                             (4.2) 

 

Spec =
 TN

TN + FP
                                                                              (4.3) 

 

F1 =
2 ∙ TP

2 ∙ TP + (FP + FN)
                                                              (4.4) 

 

FPR =
FP

FP + TN
                                                                              (4.5) 

 

FNR =
FN

FN + TP
                                                                              (4.6) 

 

 In Eqs. (4.1-4.6), TP is the number of true positives, TN is the number of true negatives, FP is 

the number of false positives, and FN is the number of false negatives.  
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4.3.4 Loss Functions 

We explore three different loss functions to improve the overall performance and identify the best 

strategy that can better balance the sensitivity and specificity for breast cancer detection. The adopted 

loss functions include binary cross-entropy loss, focal loss [93], and weighted cross-entropy loss. The 

binary cross-entropy is widely employed in binary classification, and it is defined by 

𝐿𝐵𝐶𝐸 =  −
1

N
∑[(𝑡𝑖  ∙ 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑡𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑝𝑖)]

N

𝑖=1

                                    (4.7) 

where N denotes the number of image samples; 𝑡𝑖  is the target label of the ith training sample; 𝑝𝑖 

denotes the prediction. Cross-entropy loss calculates the difference between two probability 

distributions and all classes are treated equally. To reduce the risk of false negatives, we employed the 

weighted cross-entropy function. The normal weighted cross-entropy is given by 

𝐿𝑊𝐵𝐶𝐸 =  −
1

N
∑[(𝑤𝑧  ∙  𝑡𝑖  ∙ 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑡𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑝𝑖)]

N

𝑖=1

                             (4.8) 

where 𝑤𝑧  is the weight parameter that penalizes the false-negative predictions and could also mitigate 

the issue of imbalanced classes. To avoid overflow issues and produce stable results, we utilized a 

numerically stable weighted cross-entropy which was implemented in [36] and is defined by  

𝐿𝑁𝑆−𝑊𝐵𝐶𝐸 = −
1

N
∑ ((1 − 𝑡𝑖) ∙ 𝑙𝑖 + 𝑠𝑖 ∙ log(1 + 𝑒−𝑙𝑖)  )                              (4.9)

N

𝑖=1

 

where li is the logits of the predicted probability 𝑝𝑖, and si is from the positive weight coefficient. They 

defined as 𝑙𝑖 =   log (
𝑝𝑖

1−𝑝𝑖
)    and  𝑠𝑖 = 1 +  𝑡𝑖 ∙ (𝑤𝑧 − 1). 

Furthermore, to focus more on difficult predictions, we utilized the focal loss function [50]. In the focal 

loss, a factor (1 − 𝑝𝑖)𝛾 is added to the cross-entropy loss, where 𝛾 is a focusing parameter that makes 

the model focus on hard samples. The focal loss is defined by  

𝐿𝐹𝑜𝑐𝑎𝑙 =  −
1

N
∑[(𝛼 ∙  𝑡𝑖  ∙ (1 − 𝑝𝑖)𝛾 ∙ log(𝑝𝑖) + (1 − 𝑡𝑖) ∙ (1 − 𝛼) ∙ 𝑝𝑖 ∙ log(1 − 𝑝𝑖)]   (10)

𝑁

𝑖=1

 

where 𝛼 is a weighting factor, and takes values from [0, 1]. We use nine combination of focal loss 

weights (𝛾 = {2, 3, 4}, and 𝛼 = {0.25, 0.50, 0.8}) and five weights for 𝐿𝑊𝐵𝐶 (1, 2, 3, 4, and 5).  

4.3.5 The Proposed Method 

Multitask learning (joint BUS segmentation and classification) can significantly improve the 

generalization ability of deep learning approaches trained using datasets with limited sizes. The 
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performance of the primary task could be improved using better representations regularized by a 

secondary task. In BUS images, tumor categories are determined by features inside or around a tumor; 

if we could regularize a deep neural network to learn representations of tumor regions, a more accurate 

and robust model could be trained. Inspired by this, we propose a new deep multitask network, namely 

MT-ESTAN, which consists of both tumor segmentation and classification tasks.  

The network architecture is shown in Figure 4-2. 

In our previous work [16, 17],  small-tumor aware networks were proposed to accurately segment 

tumors with different sizes. [16] used row-column-wise kernels to extract and fuse BUS context 

information at different scales. It consists of two parallel encoder branches: the enhanced small-tumor 

aware network (ESTAN) and basic encoders. In this work, we use the network in [16] as the backbone 

of MT-ESTAN to ensure sensitivity to tumors with different sizes; and ResNet50 is used as the building 

blocks of the basic encoder. Refer to [12] for the implementation details of ESTAN. There are several 

major differences between the proposed MT-ESTAN and our ESTAN in [16]: 1) MT-ESTAN performs 

tumor classification and segmentation simultaneously, and tumor classification is the primary task. 

ESTAN [16] only has a tumor segmentation task; 2) the loss function of MT-ESTAN is a balanced 

combination between 𝐿𝑁𝑆−𝑊𝐵𝐶𝐸 and Dice loss, while ESTAN only has the Dice loss; and 3) the basic 

encoder was pretrained on ImageNet in MT-ESTAN, but trained from scratch in ESTAN. 

Segmentation Task. The segmentation task is supplementary to the classification task. The 

Figure 4-1 MT-ESTAN architecture. (a) Overall architecture; (b) the ESTAN block; and (c) the upsampling (Up) block. ⨁ 

denotes the concatenation operator, and A denotes kernel size. 
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segmentation branch comprises four blocks, and each has an upsampling layer and three consecutive 

convolution kernels (see Figures. 4-2(a) and (c)). Each block receives two skip connections from blocks 

in the two encoders, i.e. a skip connection from the basic encoder and another from the ESTAN encoder. 

Classification Task. The primary task of the proposed MT-ESTAN is to classify BUS tumors 

into benign and malignant. The classification branch receives input from the combined basic and 

ESTAN encoders. It consists of a Global Average Pooling (GAP) layer followed by two dense layers 

using ReLU activation with 512, and 128 nodes, respectively. A dropout layer with a rate of (50%) is 

added after the first dense layer. The final prediction consists of a single node employing a sigmoid 

activation function. 

 Loss function. In disease diagnosis, the models that produce higher sensitivity are more vital 

than that vice versa. We utilize the weighted cross-entropy loss function for the classification task to 

perform a trade-off between sensitivity and specificity with minimum sacrifice of overall accuracy. A 

numerically stable weighted cross-entropy from [82] is adopted and is defined in Eq. (4.9). The final 

multitask loss (𝐿𝑚𝑡𝑙) function is defined by   

𝐿𝑚𝑡𝑙 = w  ∙  𝐿𝑁𝑆−𝑊𝐵𝐶𝐸   +  𝐿𝐷𝑖𝑐𝑒                                                                (4.11) 

where the weight (w) of the classification task is set to 3, and the positive weight of 𝐿𝑁𝑆−𝑊𝐵𝐶𝐸   is set 

to 3. In addition, the best model with the minimum 

where the weight (w) of the classification task is set to 3, and the positive weight of 𝐿𝑁𝑆−𝑊𝐵𝐶𝐸   is set 

to 3. In addition, the best model with the minimum validation loss will be saved during training. 

The proposed approach and  [34-36] share the same two tasks. However, two major differences 

exist. 1) [80], [81], and [82] used U-Net, DenseNet, and MobileNet, respectively, as the backbone 

network. The proposed multitask network applies the ESTAN as the backbone, and is more robust to 

tumors of different sizes. 2) [80] and [81] used the cross-entropy function as the loss of the classification 

loss, and have no control on the balance of sensitivity and specificity. For example, [81] obtained high 

specificity but relatively low sensitivity. The proposed network utilizes the numerically-stable weighted 

cross-entropy loss that enables the flexibility to balance sensitivity and specificity.  

4.4 Experimental Results 

In this section, we evaluate the proposed approach and 10 deep learning-based approaches for BUS 

image classification using the proposed benchmark dataset. The five most useful strategies in deep 

learning are validated by experiments in Sections 5.1 and 5.2.1; and the effectiveness of the proposed 

approach is validated and discussed in Section 5.2.2.  
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4.4.1 Evaluate Useful Strategies in Deep Neural Networks for BUS Image Classification 

Training from scratch versus transfer learning. In the transfer learning setup, all classifiers are 

pretrained on ImageNet, and the last prediction layer is replaced with two dense layers with 512 and 64 

units, respectively. ReLU is used as the activation. All model parameters are trainable in the fine-tuning 

stage. For training from scratch, all seven models are trained from scratch using BUS images.  

Additionally, all experiments were conducted without using regularization, augmentation, and 

postprocessing techniques.  

The results presented in Table 4-4 show that all seven models with transfer learning outperform 

those with training from scratch. It is worth noting that transfer learning significantly enhances the 

performance of the less complex classifiers with small model sizes. The reason could be that small 

models are prone to underfit when trained from scratch on a limited number of images. For example, 

the EfficientNetB0 model is a lightweight classifier with only 5.3 million parameters, and its accuracy, 

F1 score, and AUC improved by 19.3%, 12.1%, and 19.5%, respectively. On the other hand, VGG16 is 

Classifiers 
Accuracy 

(%) ↑ 

Sensitivity 

(%) ↑ 

Specificity 

(%) ↑ 
F1  ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓ 

  S  TL  S  TL    S     TL  S TL  S TL    S TL   S    TL  

DenseNet121   64.8     73.3   69.3    70.9   59.8     75.9   0.66    0.72   64.5    73.4   40.2   24.1   30.7    29.1 

InceptionV3   64.5     71.6   69.0    62.8   59.6     80.5   0.66    0.69   64.3    71.7   40.4   19.5   31.0    37.2 

MobileNet   61.7     75.3   74.5    76.9   49.1     74.2   0.66    0.76   61.8    75.5   50.9   25.8   25.5    23.1 

ResNet50   62.0     70.3   74.2    79.1   50.6     61.8   0.66    0.73   62.4    70.4   49.4   38.2   25.8    20.9 

VGG16   68.9     76.7   75.7    75.8   62.2     77.8   0.70    0.76   68.9    76.8   37.8   22.2   24.3    24.2 

Xception   63.1     72.7   75.4    73.0   52.1     72.6   0.67    0.73   63.8    72.8   47.9   27.4   24.6    27.0 

EfficientNetB0      59.7     74.0   75.6    73.0   43.8     75.4   0.65    0.74   59.7    74.2   56.2   24.6   24.4    27.0 

 

 

 

Table 4-4 Training from Scratch (S) vs. Transfer learning (TL). 

Table 4-5 Augmentation (Aug.) vs. no augmentation (No Aug.). 

Classifiers 

Accuracy 

(%) ↑ 

Sensitivity 

(%) ↑ 

Specificity 

(%) ↑ 
F1 ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓ 

No Aug. Aug.  No Aug. Aug.  No Aug. Aug.  No Aug. Aug.  No Aug. Aug. 
No 
Aug. 

 Aug. 
No 
Aug. 

Aug. 

DenseNet121   73.3       76.9   70.9      72.2   75.9      81.9   0.72     0.76   73.4      77.0   24.1    18.1   29.1    27.8 

InceptionV3   71.6       75.7   62.8      73.4   80.5      78.4   0.69     0.75   71.7      75.9   19.5    21.6   37.2    26.6 

MobileNet   75.3       77.2   76.9      75.1   74.2      79.6   0.76     0.77   75.5      77.4   25.8    20.4   23.1    24.9 

ResNet50   70.3       76.2   79.1      74.0   61.8      78.5   0.73     0.75   70.4      76.3   38.2    21.5   20.9    26.0 

VGG16   76.7       76.6   75.8      77.6   77.8      75.8   0.76     0.77   76.8      76.7   22.2    24.2   24.2    22.4 

Xception   72.7       76.0   73.0      72.1   72.6      79.9   0.73     0.75   72.8      76.0   27.4    20.1   27.0    27.9 

EfficientNetB0   74.0       76.7   73.0      74.0   75.4      79.6   0.74     0.76   74.2      76.8      24.6    20.4   27.0    26.0 
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a heavyweight classifier with 138 million parameters, and its accuracy, F1 score, and AUC improved 

by 10.1%, 7.8%, and 10.2%, respectively. The pretrained VGG16 classifier outperformed all other 

classifiers by achieving the best F1 score and AUC. Because transfer learning improves the overall 

classification performance, it is used in the remaining sections.  

Image augmentation. Several augmentation techniques are explored to improve models’ 

generalizability. An optimal augmentation technique should not distort the BUS images, because tumor 

shapes, boundaries, echo patterns, and margins in breast cancer classification are essential in etermining 

the tumor type. The classifiers are trained on six different augmentation techniques individually: 

horizontal flip, height shift, width shift, zoom, shear, and rotation. A combination of the four best-

performed techniques including the horizontal flip, height shift (0.2), width shift (0.2), and rotation 

(20%), is chosen to augment the training set. The results in Table 4-5 demonstrate that the augmentation 

combination improves the overall performance of DenseNet121, InceptionV3, MobileNet, ResNet50, 

Xception, and EffienetNetB0 classifiers except for VGG16.  
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This is because the VGG16 without augmentation has less overfitting than other approaches, 

and extra augmented images do not improve its performance significantly. The proposed combination 

of augmentation techniques is utilized for all classifiers to expand the dataset size in the remaining 

experiments.  

Loss functions. As described in section 3.4, the binary cross-entropy loss(LBCE), focal loss 

[93] (LFocal), and weighted cross-entropy loss (LWBCE) are evaluated. Table 4-6 shows the 

performance of different models with the loss parameter(s) that leads to the best overall and sensitivity 

values. By utilizing the 𝐿𝑊𝐵𝐶𝐸, the sensitivity of DenseNet121, InceptionV3, MobileNet, ResNet50, 

Table 4-4 Results of different loss functions. 

Classifiers Loss 
Accuracy 

(%) ↑ 

Sensitivity 

(%) ↑ 

Specificity 

(%) ↑ 
F1  ↑ 

AUC 

(%) ↑ 

FPR (%) 

↓ 

FNR 

(%) ↓ 

DenseNet121 

𝐿𝐵𝐶𝐸 76.9 72.2 81.9 0.76 77.0 18.1 27.8 

𝐿𝑊𝐵𝐶𝐸 (𝑤𝑧=4) 72.7 90.1 55.7 0.77 72.9 44.3 9.90 

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 3, 𝛼 = 0.8) 70.3 88.6 52.6 0.75 70.6 47.4 11.4 

InceptionV3 

𝐿𝐵𝐶𝐸 75.7 73.4 78.4 0.75 75.9 21.6 26.6 

𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 71.6 86.8 57.1 0.75 71.9 42.9 13.2 

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 68.3 90.3 47.4 0.74 68.8 52.6 9.70 

MobileNet 

𝐿𝐵𝐶𝐸 77.2 75.1 79.6 0.77 77.4 20.4 24.9 

𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 74.0 87.6 60.8 0.77 74.2 39.2 12.4 

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 3, 𝛼 = 0.8) 72.3 87.2 57.6 0.76 72.4 42.4 12.8 

ResNet50 

𝐿𝐵𝐶𝐸 76.2 74.0 78.5 0.75 76.3 21.5 26.0 

𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 72.6 86.2 59.4 0.76 72.8 40.6 13.8 

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 3, 𝛼 = 0.8) 71.3 88.3 54.4 0.75 71.4 45.6 11.70 

VGG16 

𝐿𝐵𝐶𝐸 76.6 77.6 75.8 0.77 76.7 24.2 22.4 

𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 74.5 86.7 62.6 0.77 74.7 37.4 13.3 

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 70.3 90.2 50.9 0.75 70.5 49.1 9.80 

Xception 

𝐿𝐵𝐶𝐸 76.0 72.1 79.9 0.75 76.0 20.1 27.9 

𝐿𝑊𝐵𝐶𝐸(𝑤𝑧=3) 72.9 88.7 57.7 0.77 73.2 42.3 11.30 

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 68.2 91.9 45.1 0.74 68.5 54.9 8.10 

EfficientNetB0 

𝐿𝐵𝐶𝐸 76.7 74.0 79.6 0.76 76.8 20.4 26.0 

𝐿𝑊𝐵𝐶𝐸(𝑤𝑧=3) 73.8 86.8 61.2 0.77 74.0 38.8 13.2 

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 69.6 91.3 48.5 0.75 69.9 51.5 8.70 
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VGG16, Xception, and EfficientNet improved by 19.8%, 15.4%, 14.2%, 14.1%, 10.4%, 18.7%, and 

14.7%, respectively. Additionally, with the Focal loss, the sensitivity has further improved, but the 

overall performance degrades considerably. For example, the sensitivity of InceptionV3 and Xception 

has increased by 18.7%, and 21.5%, respectively; however, the AUC is reduced by 9.3%, and 9.8%, 

respectively. The best trade-off between sensitivity and specificity is achieved by MobileNet and 

VGG16 when 𝐿𝑊𝐵𝐶𝐸  is used.  

Optimizers. We compare three popular optimizers: Adaptive Moment Estimation (ADAM) 

[94], Stochastic Gradient Descent (SGD) with momentum, and Nesterov-accelerated Adaptive Moment 

Estimation (NADAM) [95]. In the experiments, ADAM is applied with a learning rate of 0.00001, SGD 

with a learning rate of 0.002 and momentum of 0.9, and NADAM with a learning rate of 0.00001, 

beta_1 of 0.9, beta_2 of 0.999, and epsilon of 1e-08.  All other parameters take default values in Keras. 

As shown in Table 4-7, DenseNet121, ResNet50, VGG16, and EfficientNet classifiers 

achieved better F1 scores and AUC values using the ADAM optimizer. On the other hand, InceptionV3, 

Classifier Optimizer Accuracy (%) ↑ Sensitivity (%) ↑ Specificity (%) ↑ F1 ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓ 

DenseNet121 

ADAM 72.7 90.1 55.7 0.77 72.9 44.3 9.9 

SGD 71.6 89.0 54.8 0.76 71.9 45.2 11.0 

NADAM 71.1 87.7 55.0 0.75 71.3 45.0 12.3 

InceptionV3 

ADAM 71.6 86.8 57.1 0.75 71.9 42.9 13.2 

SGD 73.0 88.4 57.6 0.77 73.0 42.4 11.6 

NADAM 70.5 86.5 54.6 0.74 70.6 45.4 13.5 

MobileNet 

ADAM 74.0 87.6 60.8 0.77 74.2 39.2 12.4 

SGD 74.0 87.4 61.3 0.77 74.4 38.7 12.6 

NADAM 72.4 83.6 61.5 0.75 72.5 38.5 16.4 

ResNet50 

ADAM 72.6 86.2 59.4 0.76 72.8 40.6 13.8 

SGD 70.8 87.6 54.6 0.75 71.1 45.4 12.4 

NADAM 70.8 85.2 56.7 0.74 70.9 43.3 14.8 

VGG16 

ADAM 74.5 86.7 62.6 0.77 74.7 37.4 13.3 

SGD 70.2 89.7 51.1 0.75 70.4 48.9 10.3 

NADAM 71.5 86.3 57.0 0.75 71.7 43.0 13.7 

Xception 

ADAM 72.9 88.7 57.7 0.77 73.2 42.3 11.3 

SGD 73.7 88.5 59.6 0.77 74.0 40.4 11.5 

NADAM 69.1 87.6 50.0 0.74 68.8 50.0 12.4 

EfficientNetB0 

ADAM 73.8 86.8 61.2 0.77 74.0 38.8 13.2 

SGD 73.8 86.2 61.7 0.77 73.9 38.3 13.8 

NADAM 72.4 85.1 59.7 0.75 72.4 40.3 14.9 

 

Table 4-5 Results of different optimizers. 
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MobileNet, and Xception achieved better results using the SGD optimizers. It is worth mentioning that 

the optimizers have the slightest impact on the generalization performance among all the strategies that 

we tested.  DenseNet121 achieved the best sensitivity with 90.1% by using ADAM optimizers, and 

EfficientNetB0 attained the lowest sensitivity with 85.1% by using the NADAM optimizer. In addition, 

the VGG16 using Adam and MobileNet using SGD achieved the best AUC by 74.7% and 74.4%, 

respectively.  

4.5 Multitask Learning 

The multitask learning approaches need ground truth labels for both tumor class and tumor boundaries, 

and a combined dataset (BUSI and BUSIS) with a total of 1,209 BUS images is used. BUSI and BUSIS 

are chosen because they have accurate annotations for both tumor boundaries and classes. The 5-fold 

cross-validation is utilized to evaluate the performance of all approaches. The max epoch is set to 70, 

and the batch size is 32. We optimize all approaches using ADAM [94].  

4.5.1 The Effectiveness of Multitask Learning Using Generic Deep Learning Models 

Many previous studies [34-36] have demonstrated the effectiveness of integrating tumor segmentation 

tasks into tumor classification networks. In BUS images, the shared representations between tumor 

classification and segmentation tasks include tumor morphology, size, shape, and echo pattern. We 

evaluate multitask learning networks with five different pretrained (ImageNet) backbone networks, 

DenseNet121, MobileNet, ResNet50, VGG16, and EfficientNetB0. A subnetwork [80] is added to 

perform breast tumor segmentation at the end of the convolutional layers of the backbone network. The 

subnetwork consists of four blocks, each of which contains one upsampling layer, and two consecutives 

3 × 3 convolution layers with batch normalization and ReLU activation.  

Classifiers 
Accuracy 

 (%) ↑ 

Sensitivity  

(%) ↑ 

Specificity  

(%) ↑ 
F1  ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓ 

 Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi 

DenseNet121 82.2       85.0 75.3       79.1 87.1       88.9 0.76       0.80 81.2       84.0 12.9       11.1 24.7       20.9 

MobileNet 85.1       87.0 78.1        81.1 90.2       91.0 0.81       0.83 84.1       86.1 9.8          9.0 21.9       18.9 

ResNet50 85.1        86.1 78.5        80.1 89.2        89.0 0.80        0.81 83.8        85.0 10.7        10.9 21.5        21.3 

VGG16 86.1        87.1 81.0        81.3 91.2        90.9 0.82        0.83 86.1        86.1 8.8          9.1 19.0        18.7 

EfficientNetB0 84.2        87.5 81.2        81.0 86.9        91.2 0.80        0.83 84.0        86.1 13.1        8.8 18.8        19.0 

 

Table 4-6 Results of five deep NNs using multitask learning. 
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The loss function is a combination of both the Dice loss and binary cross-entropy loss. The weight for 

the binary cross-entropy loss is set to 1.5 by experiments.  

As shown in Table 4-8, with the additional segmentation task, the overall performance of the 

five approaches can be improved. VGG16, MobileNet, and EfficientNetB0 achieve the best AUC of 

86.1% among all the approaches. The sensitivity of DenseNet121 is improved by 5%. It is worth 

noticing that, in all approaches, the specificity values are significantly higher compared to the 

sensitivity values. We observed the same outcome in [80] and [81]. This issue could be addressed by 

choosing the weighted binary cross-entropy function.  

4.5.2 The Effectiveness of the Proposed MT-ESTAN 

In this section, we compare the proposed MT-ESTAN with three multitask learning approaches [34-

36]. We obtained the source code from the authors of [34, 36], and implemented the approach in [35], 

all model parameters were adopted from the papers.  

As shown in Table 4-9, the AUC of the proposed MT-ESTAN is significantly higher than those 

of [80], [82], and [81], and MT-ESTAN outperforms all approaches reported in Table 4-8. For example, 

compared to the best performed multitask network (VGG16) in Table 4-8, the proposed MT-ESTAN 

improves the sensitivity, F1 score, and AUC by 11.2%, 7.3%, and 4.6%, respectively. However, [34-

36] are not significantly better than the multitask learning approaches reported in Table 4-8. [34-36] 

achieves high specificity values, but at the cost of low sensitivity values, which leads to high false 

negative rates (FNRs), e.g., the FNR of [36] is 18.6%. In addition, all multitask learning approaches 

have low sensitivity values and high FNRs. The proposed MT-ESTAN achieves a better balance 

between sensitivity and specificity and has a low FNR of 9.6%. 

Approaches 

Accuracy 

(%) ↑ 

Sensitivity 

(%) ↑ 

Specificity 

(%) ↑ 

F1  ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓ 

Zhang, et al. [81] 87.4 81.4 91.4 0.83 86.4 8.6 18.6 

Vakanski, et al. [80] 83.6 77.4 87.8 0.78 82.6 12.2 22.5 

Shi, et al. [82] 83.9 87.3 81.7 0.80 84.5 18.3 12.6 

MT-ESTAN 90.0 90.4 89.8 0.88 90.1 10.2 9.6 

 

Table 4-7 Results of three multitask learning approaches developed for BUS image classification. 
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4.6 Discussion 

The experiments and similar outcomes in [36, 50, 51] demonstrate that the transfer learning (TL) 

strategy consistently outperforms training from scratch for deep learning approaches for BUS image 

classification, which implies that knowledge learned from a different domain (e.g., nature images) 

could be transferred and used to improve BUS image classification. BUS images share common image 

elements in natural images, e.g., object boundaries, image contrast, and texture, and deep neural 

networks learning the representations of those elements from nature images can also contribute to BUS 

image classification. Inspired by this, medical image datasets sharing common features with BUS 

images could be applied to further improve the performance of deep learning approaches for BUS image 

classification. For example, ultrasound images from other organs and breast images from other 

modalities (e.g., MRI, CT, and Mammogram) can be used to pretrain BUS image classifiers.  

Our results and previous studies [64] suggest that image augmentation techniques could improve the 

generalizability of most deep learning approaches for BUS image classification. Augmentation 

techniques introduce variations and enlarge the training set size, and could prevent overfitting [97]; and 

model training using an augmented dataset alleviates the issue of the small size of the medical dataset. 

To further increase the generalizability of deep learning models, the simplest way is to add more images 

from different sources to the model training. The additional images could be either new real BUS 

images or synthetic images generated using algorithms [98].     

Many BUS image classification approaches have achieved promising overall performance 

(e.g., accuracy and F1 score), but failed to balance the sensitivity and specificity. They used the binary 

cross-entropy as the loss function and treat cancer and non-cancer cases equally, which makes 

predictions that favor the dominant class, e.g., benign class, and produce low sensitivities. Sensitivity 

is the most important assessment metric in breast cancer detection because missing malignant cases 

may risk patients’ lives; and a well-balanced model should achieve both high overall performance and 

high sensitivity.  

One solution is to utilize the numerically-stable weighted cross-entropy function discussed in 

Section 3.4 to achieve a better balance between the sensitivity and specificity.  

Multitask learning (MTL) is a promising future direction to improve the robustness and 

generalization of deep learning approaches for BUS image classification. Table 4-8 demonstrates that 

MTL networks with a primary BUS tumor classification task and a secondary segmentation task 

outperform single-task networks with only the classification task. The segmentation task incorporates 

semantic information, i.e., tumor region, during the training, which enables an MTL network to learn 

meaningful and focused representations in tumor regions rather than random features from a whole 
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BUS image. This secondary task performs as a regularizer that could also improve models’ convergence 

using small or medium datasets. Inspired by this finding, researchers can further advance BUS image 

classification by incorporating other semantic knowledge, e.g., breast anatomy and BI-RADs 

descriptors, into MTL networks.  

Last but not least, to improve the adoption and trustworthiness of CAD systems for breast 

cancer detection, the explainability of approaches should be improved. Existing deep learning-based 

methods still have a black-box nature in which limited information is provided to help understand the 

BUS image classification process [54-55]. This gap discourages radiologists from using BUS CADs in 

clinical practice. Therefore, solving this gap by introducing explainability into models [99] is a 

promising direction for BUS image classification. 

4.7 Conclusion 

In this work, we build a public benchmark for the classification of B-mode BUS images which consists 

of a diverse dataset, useful strategies, and findings for developing deep learning-based approaches, and 

a novel MTL network, MT-ESTAN, for accurate BUS image classification. 

The benchmark dataset comprises 3,641 B-mode BUS images from five countries, and a set of 

public software tools for data preparing and preprocessing. The BUS images were collected with 

different ultrasound devices and patient populations, and have a wide variation in image contrast, 

brightness, level of noise, etc.  We highlight three major findings by evaluating 10 deep learning-based 

approaches using the benchmark dataset: 1) Transfer learning and image augmentation are effective 

strategies to significantly improve the overall performance of deep learning-based BUS image 

classifiers; 2) the numerically-stable weighted cross-entropy loss function offers a better balance 

between the sensitivity and specificity; 3) MTL networks with both the breast tumor segmentation and 

classification tasks is one of the most useful strategies to improve the generalization of deep learning 

approaches for BUS image classification. 

The newly proposed MT-ESTAN incorporates a small-tumor aware network as the backbone network 

and consists of one primary task (tumor classification) and a secondary task (tumor segmentation). The 

results show that MT-ESTAN achieves state-of-the-art performance, and significantly improved the 

sensitivity of the model.  

In the future, we will be continuously adding more BUS images, new findings, and emerging 

approaches to the benchmark. 
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Chapter 5: Breast Ultrasound Tumor Classification Using a Hybrid 

Multitask CNN-Transformer Network 

Bryar Shareef, Min Xian, Aleksandar Vakanski, Haotian Wang, Breast Ultrasound Tumor 

Classification using a Hybrid Multitask CNN-Transformer Network: MICCAI, 2023. 

5.1 Introduction 

Breast cancer is the leading cause of cancer-related fatalities among women. Currently, it holds the 

highest incidence rate of cancer among women in the U.S., and in 2022 it accounted for 31% of all 

newly diagnosed cancer cases  [53]. Due to the high incidence rate, early breast cancer detection is 

essential for reducing mortality rates and expanding treatment options. BUS imaging is an effective 

screening option because it is cost-effective, nonradioactive, and noninvasive. However, BUS image 

analysis is also challenging due to the large variations in tumor shape and appearance, speckle noise, 

low contrast, weak boundaries, and occurrence of artifacts. 

In the past decade, deep learning-based approaches achieved remarkable advancements in BUS 

tumor classification [101][102]. The progress has been driven by the capability of CNN-based models 

to learn hierarchies of structured image representations as semantics. To extract deep context features, 

CNNs apply a series of convolutional and downsampling layers, frequently organized into blocks with 

residual connections. Nevertheless, one disadvantage of such architectural choice is that the feature 

representations in the deeper layers become increasingly abstract, leading to a loss of spatial and 

contextual information. The intrinsic locality of convolutional operations hinders the ability of CNNs 

to model long-range dependencies while preserving spatial information in images effectively. 

Vision Transformer (ViT) [103] and its variants recently demonstrated superior performance 

in image classification tasks. These models convert input images into smaller patches and utilize the 

self-attention mechanism to model the relationships between the patches. Self-attention enables ViTs 

to capture long-range dependencies and model complex relationships between different regions of the 

image. However, the effectiveness of ViT-based approaches heavily relies on access to large datasets 

for learning meaningful representations of input images. This is primarily because the architectural 

design of ViTs does not rely on the same inductive biases in feature extraction which allow CNNs to 

learn spatially invariant features.   

Accordingly, numerous prior studies introduced modifications to the original ViT network 

specifically designed for BUS image classification [104] [105][106][107]. In addition, several works 
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proposed network architectures that combined Transformers and CNNs [108-110]. For instance, Mo et 

al. [108] proposed a hybrid CNN-Transformer incorporating BUS anatomical priors. Qu et al. [109] 

employed squeeze and excitation blocks to enhance the feature extraction capacity in a hybrid CNN-

based VGG16 network and ViT. Similarly, Iqbal et al. [110] designed two hybrid CNN-Transformer 

networks intended either for classification or segmentation of multi-modal breast cancer images. 

Despite the promising results of such hybrid approaches, effectively capturing the local patterns and 

global long-range dependencies in BUS images remains challenging [110][103][111]. 

Multitask learning leverages shared information across related tasks by jointly training the 

model. It constrains models to learn representations that are relevant to all tasks rather than learning 

task-specific details. Moreover, multitask learning acts as a regularizer by introducing inductive bias 

and prevents overfitting [112] (particularly with ViTs), and with that, can mitigate the challenges posed 

by small BUS dataset sizes. In [102], the authors demonstrated that multitask learning outperforms 

single-task learning approaches for BUS classification. 

In this study, we introduce a hybrid multitask approach, Hybrid-MT-ESTAN, which 

encompasses tumor classification as a primary task and tumor segmentation as a secondary task. 

Hybrid-MT-ESTAN combines the advantages of CNNs and Transformers in a framework 

incorporating anatomical tissue information in BUS images. Specifically, we designed a novel attention 

block named Anatomy-Aware Attention (AAA), which modifies the attention block of Swin 

Transformer by considering the breast anatomy. The anatomy of the human breast is categorized into 

four primary layers: the skin, premammary (subcutaneous fat), mammary, and retromammary layers, 

where each layer has a distinct texture and generates different echo patterns. The primary layers in BUS 

images are arranged in a vertical stack, with similar echo patterns appearing horizontally across the 

images. The kernels in the introduced AAA attention blocks are organized in rows and columns to 

capture the anatomical structure of the breast tissue. In the published literature, the closest approach to 

ours is the work by Iqbal et al.  [110], in which the authors used hybrid single-task CNN-Transformer 

networks for either classification or segmentation of BUS images. Conversely, Hybrid-MT-ESTAN 

employs a multitask approach and introduces novel architectural design. The main contributions of this 

work are summarized as: 

a) The proposed architecture effectively integrates the advantages of CNNs for extracting 

hierarchical and local patterns in BUS images and Swin Transformers for leveraging long-

range dependencies. 

b) The designed Anatomy-Aware Attention (AAA) block improves the learning of contextual 

information based on the anatomy of the breast. 
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c) The multitask learning approach leverages the shared representations across the classification 

and segmentation tasks to improve the model performance. 

   

5.2 Proposed Method 

5.2.1 Hybrid-MT-ESTAN 

The architecture of Hybrid-MT-ESTAN is shown in Figure 5-1, and it consists of (1) a CNN-based 

encoder MT-ESTAN, and a Swin Transformer-based encoder with Anatomy-Aware Attention (AAA) 

blocks, (2) a decoder branch for the segmentation task, and (3) a branch with fully-connected layers for 

the classification task. MT-ESTAN [102] is a CNN-based multitask learning network that 

simultaneously performs BUS classification and segmentation.  

 

Figure 5-2 MT-ESTAN blocks include parallel convolutional branches with different kernel size, followed by 1x1 

convolution and a pooling layer. 

 

 

Figure 5-1 Hybrid-MT-ESTAN consists of MT-ESTAN and AAA encoders, a segmentation decoder, and a 

classification branch. 
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The encoder sub-network of MT-ESTAN is ESTAN [12], which employs row-column-wise kernels to 

learn and fuse context information in BUS images at different context scales (See Figure 5-2). 

Specifically, each MT-ESTAN block is composed of two parallel branches consisting of four square 

convolutional kernels and two consecutive row-column-wise kernels. These specialized convolutional 

kernels effectively extract contextual information of small tumors in BUS images. Refer to [12][33] 

and [33]for the implementation details of ESTAN and MT-ESTAN. The source codes of the proposed 

work are available at http://busbench.midalab.net.  

5.2.2 Anatomy-Aware Attention (AAA) Block 

Swin Transformer [33] is a hierarchical Transformer-based approach that uses shifted windows to 

model global context information. Swin Transformer partitions an input image into non-overlapping 

patches of siz4 × 4e, where each patch is treated as a "token." A linear layer receives the patches and 

projects them into an arbitrary dimension. Each Swin Transformer block consists of a LayerNorm layer 

(𝐿𝑁) layer, a multi-head self-attention module (MSA), and a multi-layer perceptron (MLP) with GELU 

activation. To model long-range dependencies, the original Swin Transformer relies on shifted 

windows, where the window-based multi-head self-attention (WMSA) and shifted window-based multi-

head self-attention (SWMSA) modules are employed in each consecutive Swin block. The Swin block is 

formulated as follows: 

𝑓𝑙 = 𝑊_𝑀𝑆𝐴 (𝐿𝑁(𝑓𝑙−1)) + 𝑓𝑙−1                                                             (5.1) 

𝑓𝑙 = 𝑀𝑀𝐿𝑃 (𝐿𝑁(𝑓𝑙)) + 𝑓𝑙                                                                        (5.2) 

𝑓𝑙+1 = 𝑆𝑊_𝑀𝑆𝐴 (𝐿𝑁(𝑓𝑙)) +  𝑓𝑙                                                               (5.3) 

𝑓𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(𝑓𝑙+1)) +  𝑓𝑙+1                                                              (5.4) 

 

Where 𝑓𝑙  and 𝑓𝑙  are the output features of the MLP module and the (S)WMSAmodule for block 1, 

respectively; In the proposed Anatomy-Aware Attention (AAA) block, we redesigned the Swin blocks 

to enhance their ability to model global and local features by adding an attention block based on the 

breast anatomy (see Figure 5-3). The additional layers are defined as  

𝑦𝑖 = 𝑀(𝑓𝑙+1)                                                                                           (5.5) 

𝐵^𝑖 = 𝑈(𝑀𝐴𝑋_𝑃(𝑦^𝑖 ) + 𝐴𝑉𝐺_𝑃(𝑦^𝑖)                                                      (5.6) 



52 

 

 

𝑂𝑖 = 𝑦𝑖 ∙ (𝜎(𝐴(𝐵)))                                                                                (5.7)    

Concretely, we first reconstruct the  𝑖𝑡ℎ  feature map (𝑦𝑖 ) by merging all image patches (M), and 

afterward, we applied average pooling (AVGP) and max pooling  (MAXP) layers with size (2, 2). The 

outputs of (AVGP)  and (MAXP) layers are concatenated and up-sampled (U) with size (2, 2) and stride 

(2, 2). Row-column-wise kernels (A) with size (9 x 1) and (1 x 9) are then employed to adapt to the 

anatomy of the breast, and finally, a sigmoid function (𝜎) is applied to the output of (A) multiplied by 

the input feature map (𝑦𝑖). 

 

The segmentation branch in Figure 5-1 outputs dense mask predictions of BUS tumors. It consists of 

four blocks, Up Blocks 1-4, each with three convolutional layers and one upsampling layer(size (2, 2) 

and stride (2, 2)). The settings of the convolutional layers are adopted from [102] for the details of the 

convolutional layers. In addition, the blocks receive four skip connections from the MT-ESTAN 

encoder, i.e., there is a skip connection from each MT-ESTAN block 1 to 4. The classification branch 

consists of three dense layers, a dropout layer (50%), and the final dense layer that predicts the tumor 

class into benign or malignant. 

5.2.3 Loss Function 

We applied a multitask loss function (𝐿𝑚𝑡 ) that aggregates two terms: a focal loss𝐿𝐹𝑜𝑐𝑎𝑙  for the 

classification task and dice loss 𝐿𝐷𝑖𝑐𝑒 for the segmentation task. Therefore, the composite loss  function 

is 𝐿𝑚𝑡 =  𝑤1 ∙ 𝐿𝐹𝑜𝑐𝑎𝑙 + 𝐿𝐷𝑖𝑐𝑒 , where the weight coefficient 𝑤1 is set to apply greater importance to the 

classification task as the primary task. Since in medical image diagnosis achieving high sensitivity 

places emphasis on the detection of malignant lesions, we employed the focal loss for the classification 

task to trade-off between sensitivity and specificity. Because malignant tumors are more challenging to 

 

Figure 5-3 Anatomy-Aware Attention (AAA) block. 
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detect due to greater differences in margin, shape, and appearance in BUS images, focal loss forces the 

model to focus more on difficult predictions. Specifically, focal loss adds a factor (1 − 𝑝𝑖  )^𝛾 to the 

cross-entropy loss where 𝛾 is a focusing parameter, resulting in 𝐿𝐹𝑜𝑐𝑎𝑙 =   −1 ⁄ 𝑁 ∑ [(𝛼 ∙ 𝑡𝑖 ∙ (1 −𝑁
𝑖=1

 𝑝𝑖)𝛾) ∙ log(𝑝𝑖) + (1 − 𝛼) ∙ 𝑝𝑖 ∙ log(1 − 𝑝𝑖)] . In the formulation,  𝛼  is a weighting coefficient, 𝑁 

denotes the number of image samples, 𝑡𝑖 is the target label of the 𝑖𝑡ℎ training sample, and 𝑝𝑖 denotes 

the prediction. The segmentation loss is calculated using the commonly-employed Dice loss (𝐿𝐷𝑖𝑐𝑒) 

function. 

5.3 Experimental Results 

In this section, we describe the datasets, evaluation metrics, and various implementation details. Then 

we present ablation studies to verify the effectiveness of each component in the proposed architecture.  

 5.3.1 Datasets 

We evaluated the performance of the proposed approach on four public datasets, HMSS [113], BUSI 

[84], BUSIS [11], and Dataset B [11]. We combined all four datasets to build a large and diverse dataset 

with a total of 3,320 B-mode BUS images, of which 1,664 contain benign tumors and 1,656 have 

malignant tumors. Table 5-1 shows the detailed information for each dataset. HMSS dataset does not 

provide the segmentation ground truth masks, and for this study, they were prepared by a group of 

experienced radiologists. Refer to the original publications of the datasets for more details. 

 

Table 5-1 Four public breast ultrasound (BUS) datasets. B denotes a benign tumor, and M is a malignant tumor. 

BUS dataset No. of images Distribution Source 

HMSS 1948 B:812, M:1136 Netherlands 

BUSI 647 B:437, M:210 Egypt 

BUSIS 562 B:306, M:256 China 

Dataset B 163 B:109, M:54 Spain 

Total 3320 B: 1664, M: 1656  

 

 5.3.2 Evaluation Metrics 

 For performance evaluation of the classification task, we used the following metrics: accuracy (Acc), 

sensitivity (Sens), specificity (Spec), F1 score, Area Under the Curve of Receiver Operating 

Characteristic (AUC), false positive rate (FPR), and false negative rate (FNR).  
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To evaluate the segmentation performance, we used the dice score coefficient (DSC) and Jaccard index 

(JI). 

5.3.3 Implementation Details 

The proposed approach was implemented with Keras and TensorFlow libraries. All experiments were 

performed on a machine with NVIDIA Quadro RTX 8000 GPUs and two Intel Xeon Silver 4210R 

CPUs (2.40GHz) with 512 GB of RAM.  All BUS images in the dataset were zero-padded and reshaped 

to form square images. To avoid data leakage and bias, we selected the train, test, and validation sets 

based on the cases, i.e., the images from one case (patient) were assigned to only one of the training, 

validation, and test sets. Furthermore, we employed horizontal flip, height shift (20%), width shift 

(20%), and rotation (20 degrees) for data augmentation. The proposed approach utilizes the building 

blocks of ResNet50 and Swin-Transformer-V2, pretrained on ImageNet dataset. Namely, MT-ESTAN 

uses pretrained ResNet50 as a base model for the five encoder blocks (the implementation details of 

MT-ESTAN can be found in [102]). The encoder with AAA blocks uses the 

SwinTransformer_V2_Base_256 pretrained model as a backbone. For the composite loss function, we 

adopted a weight coefficient 𝑤1 = 3, and in the focal loss 𝛼 = 0.5 and 𝛾 = 2. For model training, we 

utilized Adam optimizer with a learning rate of 10−5 and mini batch size of 4 images. 

5.3.4 Performance Evaluation and Comparative Analysis 

We compared the performance of Hybrid-MT-ESTAN with with eight deep learning approaches 

commonly used for medical image analysis, which include CNN-based, ViT-based, and hybrid 

approaches. CNN-based networks include SHA-MTL [81], MobileNet [86], DenseNet121 [88], and 

EMT-Net [88]. ViT-based approaches include the original ViT [88], Chowdery [114], and Swin 

Transformer [115]. VGGA-ViT [109] is a hybrid CNN-Transformer network. The values of the 

performance metrics are shown in Table 5-2, indicating that the proposed Hybrid-MT-ESTAN 

outperformed all eight approaches by achieving the best accuracy, sensitivity, F1 score, and AUC with 

82.8%, 86.4, 86.0%, and 82.8, respectively. Although SHA-MTL [81] obtained the highest specificity 

of 90.8% and FPR of 9.2%, the trade-off between sensitivity and specificity should be taken into 

consideration, as that approach had a sensitivity of 48.1%. The preferred trade-off in medical image 

analysis typically is high sensitivity without significant degradation in specificity. 

We evaluated the segmentation performance of Hybrid MT-ESTAN and compared the results 

to five multitask approaches, including SHA-MTL [81], EMT-Net [88], Chowdery [114], MT-ESTAN 

[102], and VGGA-ViT [109]. Table 5-2 presents the quantitative results. The proposed Hybrid MT-
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ESTAN achieved the highest performance and increased DSC and JI by 5.9% and 6.4%, respectively, 

compared to MT-ESTAN. Note that the models in Table 5-2 for which the segmentation results are not 

provided are single-task models. 

In our experiments in Table 5-2, the proposed approach is compared to four singletask 

approaches, including MobileNet, DenseNet121, ViT, and Swin Transformer, and five multitask 

approaches including SHA-MTL, VGGA-ViT, EMT-Net, Chowdery, and MT-ESTAN.  

 

Table 5-2 Performance metrics of the compared BUS image classification and segmentation methods. 

 Classification Segmentation 

Methods Acc Sens. Spec. F1 Auc FNR FPR DSC JI 

SHA-MTL 69.6 48.1 90.8 0.58 69.5 51.9 9.2 72.2 60.7 

MobileNet  71.0 82.0 61.0 0.74 71.5 18.0 39.0  - - 

VGGA-ViT 73.6 61.8 79.8 0.61 70.8 38.2 20.2 74.9 64.9 

DenseNet121 73.0 74.0 71.0 0.73 72.5 26.0 29.0 -  - 

EMT-Net  74.1 79.4 69.1 0.75 74.3 20.6 30.9 76.7 67.0 

ViT 72.1 74.1 69.3 0.73 71.7 25.9 30.7  - - 

Chowdery  77.4 77.3 77.3 0.77 77.3 22.7 22.7 77.0 67.9 

Swin Transformer 77.4 72.6 82.5 0.74 77.6 27.4 17.5  -  - 

MT-ESTAN 78.6 83.7 72.6 0.83 78.2 16.3 27.4 78.2 69.3 

Ours 82.8 86.4 79.2 0.86 82.8 13.6 20.8 84.1 75.7 

 

Table 5-3 Effectiveness of the Anatomy-Aware Attention (AAA) Block 

 Classification Segmentation 

Methods Acc Sens. Spec. F1 Auc FNR FPR DSC JI 

MT-ESTAN  78.6 83.7 72.6 0.83 78.2 16.3 27.4 78.2 69.3 

Swin Transformer 77.4 72.6 82.5 0.74 77.6 27.4 17.5 - - 

MT-ESTAN + Swin 

Transformer 

80.3 84.2 76.3 0.83 80.2 15.8 23.7 82.3 73.6 

Hybrid MT-ESTAN + 

AAA (Ours) 

82.8 86.4 79.2 0.86 82.8 13.6 20.8 84.1 75.7 

 

5.3.5 Effectiveness of the Anatomy-Aware Attention (AAA) Block 

To verify the effectiveness of the Anatomy-Aware Attention (AAA) block, we conducted an ablation 

study that quantified the impact of the different components in Hybrid-MT-ESTAN on the 

classification and segmentation performance. Table 5-3 presents the values of the performance metrics 
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for MT-ESTAN (pure CNN-based approach), Swin Transformer (pure Transformer network), a hybrid 

architecture of MT-ESTAN and Swin Transformer, and our proposed Hybrid-MT-ESTAN with AAA 

block. According to the results in Table 5-3, MT-ESTAN achieved better sensitivity and F1 score than 

Swin Transformer, with 83.7% and 83%, respectively. The hybrid architectures of MT-ESTAN with 

Swin Transformer improved the classification performance and has higher accuracy, sensitivity, F1 

score, and AUC with 80.3%, 84.2%, 83%, and 80.2%, compared to MT-ESTAN and Swin Transformer 

individually. The proposed approach, Hybrid-MT-ESTAN with AAA block, further improved 

accuracy, sensitivity, F1 score, and AUC by 2.5%, 2.2%, 3%, and 2.6%, respectively, relative to the 

hybrid model without the AAA block.  We compared the proposed approach with and without the AAA 

block and Swin Transformer to evaluate the segmentation performance. As shown in Table 5-3, MT-

ESTAN combined with Swin Transformer improved DSC and JI by 4.1% and 4.3%, respectively, 

compared to MT-ESTAN. Employing the proposed AAA block further improved DSC and JI  by 1.8% 

and 2.1%, respectively.    

5.4 Conclusion 

In this paper, we introduce Hybrid-MT-ESTAN, a multitask learning approach for BUS image analysis 

that alleviates the lack of global contextual information in the low-level layers of CNN-based 

approaches. Hybrid-MT-ESTAN concurrently performs BUS tumor classification and segmentation 

with a hybrid architecture that employs CNN-based and Swin Transformer layers. The proposed 

learning approach exploits multi-scale local patterns and global long-range dependencies provided by 

MT-ESTAN and AAA Transformer blocks for learning feature representations that resulted in 

improved generalization. Experimental validation demonstrated significant performance improvement 

of Hybrid-MT-ESTAN compared to current state-of-the-art models for BUS image classification.    
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Chapter 6: Conclusion and Future Work 

 

In this dissertation, we have made significant contributions to the field of breast cancer early detection 

through the development of deep learning approaches. Firstly, we proposed novel deep learning models 

for breast ultrasound image segmentation. We addressed the current challenges and developed 

innovative approaches to segment breast ultrasound tumors accurately. These segmentation models 

provide a crucial step in computer-aided diagnosis (CAD) systems, enabling more precise tumor 

quantification and assisting healthcare professionals in making informed decisions. Secondly, we 

established the first and largest breast ultrasound image classification benchmark. The benchmark 

provides a diverse dataset and serves as a foundation for evaluating the effectiveness of different 

classification algorithms. Furthermore, we proposed a novel multitask learning approach to perform 

classification and segmentation. Lastly, a hybrid multitask CNN-Transformer network was proposed 

for breast ultrasound tumor classification. The approach effectively captures both local and global 

information in breast ultrasound images, leading to improved tumor classification performance. 

The outcomes of this dissertation have far-reaching implications for the medical community 

and breast cancer research. Our work provides a solid foundation for further advancements in deep 

learning-based approaches for breast cancer detection. It opens doors to developing more sophisticated 

algorithms, improved CAD systems, and personalized medicine approaches tailored to individual 

patients.  

While our research has made significant strides, there are still challenges and opportunities for 

future investigation. Continued efforts in refining segmentation algorithms, enhancing classification 

models, interpretability and explainability, and dataset expansion.  
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