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Abstract

Studying the spectra of dust in different planetary environments is important as

it provides valuable insights into the processes occurring in various astronomical

environments. This knowledge not only advances our understanding of other worlds

but also has practical implications for future space missions and our broader under-

standing of planetary systems. Spectral data often contains noise and one of the

challenges is to reduce this noise and improve the signal-to-noise ratio in order to

extract reliable information from the data. We explore and apply several background

removal and noise reduction techniques in this study. These techniques are applied

on the spectral data of two different dust populations, one on the Earth’s Moon

and the second emerging from the south pole of Saturn’s moon Enceladus. First,

the dust population on Earth’s Moon is constrained by obtaining an upper limit on

the number density of dust particles at the Moon’s surface. Lunar dust, due to its

abrasive properties, poses a risk to astronomical observations and the dust densities

limits obtained in this analysis will help plan safer and more reliable future missions

to the Moon. These constraints on dust population in the terminator region of the

Moon can also be used to constrain the Moon’s near-surface environment. Next,

we study the properties of ice-grain particles in Enceladus’s south polar plume by

deriving typical launch velocities and size distribution parameters for the particles

present in the plume. These plume particle properties provide new insights into

vent dynamics, suggesting that particle-particle interactions are more relevant than

previously expected by established models. We also develop a new Machine Learning

algorithm that allows robust constraints on particle size distribution parameters to

be extracted from noisy spectral data. These tools reveal that the plume’s particle

properties can vary in complex ways over multiple timescales. These findings should

constrain the physical processes underlying Enceladus’ plume particle dynamics.
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chapter 1

Introduction

A spectrum is defined as the amount of light reflected or emitted over a range

of wavelengths measured by a spectrographic equipment. The electromagnetic

spectrum ranges from the very short wavelengths of gamma rays (< 10
−6 nm) to the

long wavelengths of radio waves (> 10
6 nm). Studying spectra can help understand

how an object produces, emits, and absorbs light; of what it is composed; and its

physical properties. A spectrometer can be found on many spacecraft since the

measurement of light can be highly valuable in further understanding of our universe.

More specifically, UV-Vis spectroscopy uses the ultraviolet and visible regions of the

electromagnetic spectrum in the wavelength range of 0.1 - 0.7 µm, and infrared

spectroscopy uses the infrared part of the spectrum in the wavelength range of

around 0.7 - 100 µm. In practice, there are multiple ways to obtain spectral data.

For example, hyperspectral imaging combines imaging and spectroscopy to create

spectral data for each pixel in an image, enabling spectral variations to be mapped

across a surface.

Spectral data are highly relevant to planetary science and are a crucial tool

for understanding the composition, properties, and processes occurring on planets

and other celestial bodies. Spectroscopy allows us the study of the composition

of planetary surface and atmospheres, by identifying the presence of specific

elements, minerals, and compounds. This compositional information can provide

insights into the potential habitability of planets by revealing the spectroscopic

signatures of organic molecules, water, and other substances that could indicate

conditions conducive to life (Hansen et al., 2011; Thomas-Keprta et al., 2014;

Raponi et al., 2021). Geological mapping using spectral data is essential for

characterizing terrain and geological features like impact craters, volcanoes, and

mountain ranges (Solomonidou et al., 2010; Wright et al., 2013). Information gathered

using spectroscopy can also be used to characterize exoplanets, and understand their

history and evolution (Kaltenegger et al., 2010; Quanz et al., 2021). Additionally,
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spectral data are used to study the atmospheres of planets, revealing information

about temperature, pressure, chemical composition, and atmospheric dynamics (von

Paris et al., 2013; Tinetti et al., 2013). In this dissertation, spectral data are used for

studying the dust above our own Moon and Saturn’s moon Enceladus.

Studying the spectra of dust particles can provide insightful information about

various astronomical environments. Dust particles ranging from nanometer to

micrometer size have been observed in different parts of space, from protoplanetary

discs to planetary atmospheres, and can be used to characterize their environments

(Blum et al., 2008). Similarly dust particles can be found around the surfaces of

solid planetary bodies and in Saturn’s rings. These dust particles exhibit interesting

morphological, mechanical, and optical properties. Systematic investigations of these

dusty environments can help understand the cosmic material cycle, the formation of

the first solid bodies in the solar system, the evolution of planetary atmospheres,

and the physical properties of solid bodies. In addition, constraints on the dust

population and their physical properties (such as velocity and size) can help plan

safer and more efficient future missions into space (Blum et al., 2008).

The light-scattering properties of small particles can be modeled in a variety of

ways. These models can divided into three domains based on a dimensionless size

parameter, x, which is defined as:

x =
πd
λ

(1.1)

where πd is the circumference of a particle and λ is the wavelength of incident

radiation. Based on the value of x, these domains are: Rayleigh scattering, which

is valid when x << 1 (the particle is small relative to the wavelength of light); Mie

scattering, which is valid when x ≈ 1 (the particle is about the same size as the

wavelength of light); Geometric scattering, which is valid when x >> 1 (the particle

is larger than the wavelength of light).

Figure 1.1 shows the scattering efficiency as a function of scattering angle for

three different values of x across a range of scattering angles (the angle between the

incident and scattered light ray) using polar co-ordinates on left side and a line plot
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F igure 1 .1 : This figure shows the relationship between scattering efficiency and
scattering angle (θ) in polar co-ordinates on the left and as a line plot on the right
for a spherical particle of complex refractive index m = 1.5 - 1j (note the negative
sign is convention for the miepython code). These values were obtained using Mie
scattering theory code embedded in the python package “miepython". The polar co-
ordinates are such that the particle is at the center of the circle and light is incident
from the left. The scattering efficiency for the green curve is scaled (divided by 10)
to view the curve clearly. For small particles with x << 1 (shown in orange) light is
reflected equally in the forward and backward directions. For particle sizes roughly
equivalent to the wavelength of incident light i.e., x ≈ 1 (shown in blue) scattering is
majorly in the forward direction. For large particles with x >> 1 (shown in green),
the scattering is much narrower and concentrated in the forward direction.

on the right side. These plots were created using the python package “miepython"1,

and the curves are normalized so that when integrated over 4π steradians they yield

the single scattering albedo of the particles. On the polar plot on the left hand side,

the light is incident from the left and is scattered in all directions. For x << 1

(shown in orange) the scattering is divided equally in the forward and the backward

direction, consistent with Rayleigh scattering (Jackson, 1999; Zangwill, 2013).

For particles much larger than the wavelength of incident light (shown in green

in Figure 1.1) the scattered light is concentrated in the forward direction with some

amount of light scattered in the backward direction. This is consistent with geometric

optics and classical diffraction (Jackson, 1999; Zangwill, 2013). In classical diffraction

theory, the angle of the first minimum of scattering intensity is related to the object

1https://miepython.readthedocs.io/en/latest/
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size by sin(θ)Ist.min = 1.22λ/d = 3.83/x and most of the scattering intensity is

concentrated in a very sharp central lobe. The values for the green curve are scaled

in order to visualize the plot clearly.

When x ≈ 1 (i.e. the wavelength is of same order as the particle size) the scattering

becomes more complicated due to various interference phenomena and so is only

accurately described by Mie theory (Wriedt, 2012). However, as shown in Figure 1.1

the general result is that the particles are strongly forward scattering, unlike the

situation when x << 1. As the particle size increases, the width of the forward-

scattering peak gets narrower, again consistent with standard diffraction theory.
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F igure 1 .2 : This figure shows the scattering efficiency on y-axis on a log scale and
the phase angle on the x-axis for a sphere calculated using Mie scattering theory
(python package “miepython"). Each panel shows the scattering efficiency versus
phase angle for a different particle diameter at several different wavelengths. Note
that the peak scattering efficiency is higher for larger particles, but these also scatter
light over a smaller range of angles. The shaded region shows the phase angles of the
observations studied in this dissertation. In this phase range (150

◦ - 168
◦) particles

scatter light most efficiently at wavelengths comparable to the particle size.

These variations in the scattering properties of particles with different values of

x mean that particles of different sizes will scatter light with different efficiencies

in different directions. These trends are illustrated in Figures 1.2 and 1.3, which

show the scattering efficiency as a function of phase angle (180
◦-scattering angle) for

particles of different sizes observed at different wavelengths. These efficiencies are

all calculated using the code “miepython”. Three common patterns can be seen in

both Figures 1.2 and 1.3: 1) scattering efficiency increases with x until x ≈ 1, then
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levels off; 2) when x > 1, the scattering efficiency increases at higher phase angles;

3) larger particles have narrow forward-scattering peaks as compared to the smaller

particles, which is consistent with standard diffraction theory.

F igure 1 .3 : This figure shows the scattering efficiency of light on y-axis with a
log scale and the phase angle on the x-axis for a sphere of refractive index m = 1.5
- 1j using Mie scattering theory (python package “miepython"). Each panel shows
the scattering efficiency at a particular wavelength for a range of different particle
sizes. The shaded region shows the phase angle range for the observations used in
the current work. Note that the scattering efficiency is a roughly uniform function
of phase angle in cases where x << 1, but peaks at high phase angles when x ≈ 1
and x >> 1, with the width of the peak being narrower for larger particles. Particles
with sizes similar to the wavelength of light are most efficient at scattering light in
the range of phase angles 150

◦ - 168
◦ used in this work.

In this study, the spectral data is recorded at wavelengths of 0.2 - 5.0 µm (0.25 - 0.8

µm in Chapter 2 and 1.0 - 5.0 µm in Chapters 3 and 4) at high phase angles shown
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by the shaded region in Figures 1.2 and 1.3 (168.3◦ in Chapter 2 and 150 - 162
◦ in

Chapters 3 and 4), and in this observation regime, particle sizes close to the incident

wavelength will scatter light most efficiently. In Figure 1.3, at an incident wavelength

of 1.0 µm, particles of diameter 1.0 µm (green curve) scatter light most efficiently

in the phase angle range of 150 - 168
◦ (shown by the shaded region in the middle

panel). Similarly, at incident wavelengths of 0.1 µm, particles of comparable size (i.e.,

around 0.1 µm) will scatter light most efficiently at phase angles of 150
◦ - 168

◦. Thus

the relative brightness of a region at different wavelengths depends upon the relative

density of particles with different sizes, and so the shape of the spectra of provides

information about the particle size distributions in the region being observed. This

is the basic principle used below to translate spectral data into particle properties.

The two models of light scattering used in this dissertation are Fraunhofer

diffraction and Mie Scattering theory. Fraunhofer diffraction theory is an

approximate solution for largely opaque objects, where transmission can be neglected

(Kolokolnikov et al., 2019; Jackson, 1999). We use Fraunhofer diffraction model to

compute the scattering pattern in the first research paper of this dissertation where

in the observations were made at such high phase angles that the observed light is

predominantly due to diffraction around individual particles. In this case, the value

of power scattered obtained using the Fraunhofer model differs from that derived

from Mie theory by less than a factor of 2, and so is sufficiently accurate for setting

limits on the dust population close to the moon’s surface. Mie scattering theory is an

exact theory for calculating light scattered from perfect spheres with specified optical

constants, and so allows for the possibility of light passing through the particle. This

is particularly important for transparent materials like ice, so we use Mie scattering

theory to generate theoretical spectra for icy particle in Enceladus’ plume.

One of the primary problems addressed in this work is how to study spectra

that contain noise. Noise in spectral data refers to variations or fluctuations in the

measured signal that are unrelated to the physical properties of the object being

observed. Noise can obscure important information in the spectrum and affect the

accuracy and reliability of spectral analysis. Noise can arise from various sources

and can be problematic in a wide range of scientific and engineering applications.
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Some common sources and and types of noise are thermal, electronic, environmental,

detector, scattering and absorption, quantization and data acquisition (Colaprete et al.,

2015). Instrument noise arises from imperfections or limitations in the sensors and

instruments used to capture data including electronic noise, sensor calibration errors,

and other instrumental artifacts that affect the accuracy of measurements (Sarantos

et al., 2012). Detectors used in spectroscopy, such as photodiodes or charge-coupled

devices (CCDs), may exhibit noise due to imperfections, dark current, or readout

electronics (Xie et al., 2021). These noise sources can impact the quality of spectral

data. Similarly, high-energy particles can interfere with data collection and solar

radiation can affect observations and data transmission from spacecraft especially

when it is closer to the sun. Thermal noise from temperature variations can affect the

sensitivity and precision of instruments (Colaprete et al., 2015; Mccord et al., 2004).

In imaging data, artifacts like dead pixels, lens flares, and sensor anomalies can be

mistaken for actual features or objects in space.

Managing noise in spectral and planetary data is crucial to obtain accurate and

meaningful results. The specific methods and techniques for noise reduction can vary

depending on the type of data, the instruments used, and the nature of the noise.

Understanding noise in imaging data includes the basic steps involved in calibrating

these data, which include dark subtraction and flat-fielding. For imaging data, dark

subtraction involves taking images with the same exposure time as the scientific data

but with the camera shutter closed (Chavez Jr, 1988; Colaprete et al., 2015). This

helps in identifying and removing electronic noise, such as dark current and readout

noise. Flat-fielding corrects for variations in sensitivity across the detector or sensor.

It involves dividing the data by a flat-field image that represents the instrument’s

response to uniform illumination (Roberts et al., 1986; Zhang et al., 2003; Colaprete

et al., 2015). This process corrects for pixel-to-pixel variations in sensitivity. Signal

processing techniques such as low-pass filtering can be applied to suppress high-

frequency noise. Averaging multiple measurements can help reduce random noise,

with the signal-to-noise ratio steadily improving as more and more measurements

are averaged together. However, this statement might not be applicable to all

situations, as it can affect temporal or spatial resolution. For spectral data, smoothing
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techniques can be applied to reduce noise while preserving important spectral

features. Subtracting a background spectrum (obtained without the sample) can

remove unwanted noise and baseline variations. We use a combination of these

techniques and use an iterative approach to fine-tune the data processing.

There are two different dust populations that were explored in this dissertation:

(1) the dust found on our own Moon and (2) the dust found in the plume of Saturn’s

moon Enceladus. In Chapter 2, we focus on the dust population above the Moon’s

surface. Airless planetary bodies like the Moon constantly experience micrometeorite

bombardment as well as the influence of solar radiation, solar wind, and other factors

of outer space. Most of the lunar surface is covered with regolith, a mixture of fine

dust and rocky debris composed mostly of oxygen, silicon, and iron, produced by

the impacts of high-velocity micrometeorites over billions of years (Shoemaker and

Morris, 1970; McKay et al., 1991; Pohlen et al., 2022). The side of the Moon that faces

the Sun experiences solar radiation in the form of UV light that charges the regolith

surface of the Moon. These photoelectrons form an electric field over the regolith

that can exceed the gravitational forces and loft particles above the Moon’s surface

(Zakharov et al., 2020).

Lunar dust carries information about the Moon’s surface (Postberg et al., 2011a).

The moon’s regolith is composed of small particles ground down by perpetual

meteoroid bombardment and includes a significant number of micron and sub-

micron particles (McKay et al., 1991). Surveyor-7 photographed a bright glow along

the western lunar horizon one hour after local sunset. Criswell (1973) reasoned

that this horizon-glow (HG) must result from the forward scattering of sunlight

by electrically charged dust grains [a (grain radius) = 5 × 10
−4 cm], which are

electrostatically levitated 3 to 30 cm above rocks. Dust is ejected from the lunar

regolith by some combination of impacts and electrostatic lofting (Grün et al., 2011;

Zakharov et al., 2020) and so the distribution of lunar dust can clarify these processes,

as well as provide insights into the properties of the lunar regolith. Studying lunar

dust can therefore help us to understand space weathering processes, such as micro-

meteoroid impacts and solar wind interactions, which affect the surfaces of all rocky

bodies in space.
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At the same time, dust has practical effects that were first uncovered by the Apollo

astronauts, who discovered manifestations of lunar dust (Zakharov et al., 2020). The

effects of lunar dust on Extra-Vehicular Activity (EVA) systems could be sorted into

nine categories: vision obscuration, false instrument readings, dust coating and

contamination, loss of traction, clogging of mechanisms, abrasion, thermal control

problems, seal failures, and inhalation and irritation (Gaier, 2007). Understanding

dust’s behavior is crucial for designing protective measures for future lunar missions,

including spacesuits, habitats and dust-resistant equipment for lunar missions.

In Chapter 3 and 4 of this dissertation, Saturn’s moon Enceladus’ plume is

studied. Enceladus is the sixth largest moon of Saturn and was discovered by William

Herschel in 1789. Enceladus orbits the planet within the extended E-ring with a semi-

major axis of 238,020 km. Voyager images gave a reliable (equatorial) diameter of

513 km (Smith et al., 1982) and showed the surface to be a composite of moderately

cratered terrain and large expanses with no craters. Cassini, a spacecraft by NASA,

was a space probe sent to study the planet Saturn and its system, including its

rings and natural satellites. In 2005, multiple instruments onboard Cassini obtained

definitive evidence for active ejections of water vapor and ice particles in a plume

emerging from a series of fissures known as "tiger stripes" near the south pole of

Enceladus (Porco et al., 2006; Spencer et al., 2006; Spahn et al., 2006; Dougherty et al.,

2006; Khurana et al., 2007; Schenk et al., 2018; Brown et al., 2006). The plumes of

Enceladus make it interesting because no other icy body in the solar system is known

to to exhibit such continuous and large-scale activity. The interior of Enceladus is

of particular interest because various Cassini measurements suggest the existence

of a global subsurface ocean (Collins and Goodman, 2007; Nimmo et al., 2011; Iess

et al., 2014; Thomas et al., 2016). The icy shell that covers the ocean may be tens of

kilometers thick near the moon’s equator, but could be extremely thin (1 - 5 km km)

at the south pole (Nimmo et al., 2011).

The Enceladus plume is composed of three different phases: gas, solids and ions,

with neutral gas being the most abundant (Hansen et al., 2017; Hedman et al., 2013;

Nimmo et al., 2014). All three components are primarily composed of water with

the solid phase being primarily in a crystalline state (Dhingra et al., 2017). Other
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constituents are sodium salts and organic materials (Postberg et al., 2009, 2011b).

These composition of ice grains are often referred to using the following distinction:

Type I is nearly all water ice, Type II contains organic compounds, and Type III

is rich in salts (Postberg et al., 2008, 2011a). The composition information yields

unique insights into interior processes and into the moon’s environment. Cassini’s

measurements have shown that a greater part of the matter in the space between the

orbits of the main rings and Titan is dominated by compounds that were once part

of Enceladus (Postberg et al., 2009; Horányi et al., 2008; Kempf et al., 2010).

Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) was a remote sensing

instrument that captured images using visible and infrared light to learn more about

the composition of moon surfaces, the rings, and the atmospheres of Saturn and

Titan (Brown et al., 2004). It consisted of two telescopes - one used to measure

visible light, the other infrared. VIMS measured reflected and emitted radiation

from atmospheres, rings and surfaces over wavelengths from 350 to 5100 nm,

to help determine their compositions, temperatures and structures (Brown et al.,

2004). This dissertation discusses how VIMS observations of Enceladus’ plume

were used to derive information about the physical properties of the plume particles.

There are challenges associated with these measurements: (1) the plume has a low

optical depth such that the plume spectra have low signal-to-noise ratios, and (2)

the plume particles are strongly forward scattering such that they do not exhibit

strong absorption signals. These challenges make it difficult for us to derive useful

information from these noisy data. This work discusses the different ways to deal

with these challenges and extract reliable information from it.

The plume varies both spatially and temporally. The plume material over the

fissures called Baghdad and Damascus Sulci has a dust-to-gas mass ratio roughly an

order of magnitude higher than the material above the fissures named Alexandria

and Cairo Sulci (Hedman et al., 2018). Major temporal variations in the plume

brightness emitted from ice grains, which varies by a factor of 4 between apocenter

and pericenter due to the tidal stresses experienced by Enceladus (Hedman et al.,

2013; Nimmo et al., 2014). In addition to these orbital-period changes, there are also

brightness variations over timescales of years (Hedman et al., 2013; Ingersoll and
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Ewald, 2017). VIMS observations of these variations can provide insights into how

plume particle properties vary across a range of different timescales and with altitude

above Enceladus’ south pole.

The rest of this dissertation is structured as follows: First, Chapter 2 discusses

analyses of lunar dust observations made by LADEE-UVS. We discuss the results of

constraints on dust particles and compare them with already established values in the

planetary science community. Beginning with chapter 3, our focus shifts to the dust

in Enceladus’ plume. For the second paper we extract relevant information from our

spectral data. The paper concludes with typical velocity of Enceladus plume particles

and its implications on the launch process from the vents on the moon’s south pole.

In chapter 4, we study the size distribution of Enceladus plume particles and their

variations on different scales such as the moon’s orbital position, from one orbit to the

next and across altitude. Chapter 4 extends the noise reduction techniques applied

in Chapter 3 and uses a machine learning model that can handle the noise in these

data. The use of this algorithm with noise is a novel technique that can have many

applications in the field of planetary spectral science. Finally, the conclusion chapter

summarizes the results from the three papers and how they can be used to drive

further research.
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chapter 2

Constraining low-altitude lunar dust using the

LADEE-UVS data

H. Sharma, M. M. Hedman, and D. H. Wooden, A. Colaprete, A. M. Cook,

"Constraining Low-Altitude Lunar Dust Using the LADEE-UVS Data." Journal of

Geophysical Research: Planets, 126.11, 2021

In this paper, the lunar dust population is explored. This was a challenging problem being

the first project as part of my Ph.D. Dr. Hedman acquired the data used in this analysis. He

wrote the IDL code that extracted the relevant parameters such as scattering angle, position

of the spacecraft, instrument and measurements etc. from the LADEE-UVS data. I then

used these extracted measurements to perform the rest of the data analysis including filtering,

averaging and calculating the constraints on dust population using C and Python code. Dr.

Hedman guided me on every step of the process. Co-authors A. Colaprete, A. M. Cook and D.

H. Wo0den provided helpful comments and suggestions during the publication process.

2 .1 abstract

Studying lunar dust is vital to the exploration of the Moon and other airless

planetary bodies. The Ultraviolet and Visible Spectrometer (UVS) on board the Lunar

Atmosphere and Dust Environment Explorer (LADEE) spacecraft conducted a series

of Almost Limb activities to look for dust near the dawn terminator region. During

these activities the instrument stared at a fixed point in the zodiacal background

off the Moon’s limb while the spacecraft moved in retrograde orbit from the sunlit

to the unlit side of the Moon. The spectra obtained from these activities probe

altitudes within a few kilometers of the Moon’s surface, a region whose dust

populations were not well constrained by previous remote-sensing observations from

orbiting spacecraft. Filtering these spectra to remove a varying instrumental signal

enables constraints to be placed on potential signals from a dust atmosphere. These
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filtered spectra are compared with those predicted for dust atmospheres with various

exponential scale heights and particle size distributions to yield upper limits on

the dust number density for these potential populations. For a differential size

distribution proportional to s−3 (where s is the particle size) and a scale height of

1 km, we obtain an upper limit on the number density of dust particles at the Moon’s

surface of 142 m−3.

2 .2 introduction

Lunar dust, because of its adherence and abrasive properties, is prone to damaging

spacesuits and instruments, as well as reducing visibility during landing, and thus

poses a hazard to lunar exploration (Michael Holland and Simmonds, 1973; Khan-

Mayberry, 2008). Surface electric fields and dust transport on the Moon’s surface

could also compromise future astronomical observations from the Moon (Stubbs et al.,

2007). It is therefore vital to study this dust environment in order to develop solutions

for dust-related problems.

Furthermore, characterizing the dust density at different altitudes above the

Moon’s surface can reveal the amount of dust that gets ejected from the surface

and thus clarify dust transport on airless planetary bodies (Wang et al., 2016). Dust

above airless bodies can be naturally lofted by micro-meteoroid impacts (Popel et al.,

2016). However, some dust grains could also be levitated above the Moon’s

surface by electrostatic forces (Colwell et al., 2009; Orger et al., 2018). Furthermore,

future missions to the surface can loft significant amounts of dust (Metzger, 2020;

Immer et al., 2011; Lane and Metzger, 2012) and so understanding the current dust

environment can provide a useful baseline for its dynamics and distribution.

Information about the lunar dust exosphere comes both from remote sensing

(McCoy, 1976; Glenar et al., 2011; Glenar et al., 2014; Feldman et al., 2014; Rennilson

and Criswell, 1974) and in-situ observations (Berg, 1978; Grün et al., 2011; Szalay

and Horányi, 2015). Remote sensing observations include excess brightness

measurements in the photometrically calibrated coronal photography and the visual

observations of extended lunar horizon glow by Apollo 17 astronauts, which were
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attributed to forward scattering of sunlight by dust particles (McCoy, 1976). A

reanalysis of the Apollo observations by Glenar et al. (2011) concluded that this

dust cloud would extend into shadow a distance between 100 and 200 km from the

terminator. More recently, faint signals in some of the images from the Clementine

navigational star tracker measurements were matched to a dust exosphere with a

dust column of about 5 - 30 cm−2 and scale heights of 3 km and 12 km. (Glenar

et al., 2014). Dust within a few kilometers of the surface is probably undetectable

in these measurements since it corresponds to a small part of the pixel’s field of

view. The Lyman-Alpha Mapping Project far ultraviolet spectrograph on the Lunar

Reconnaissance Orbiter (LRO) has estimated upper limits for vertical dust column at

less than 10 grains cm−2 of 0.1 µm size (Feldman et al., 2014). These far-ultraviolet

measurements were within the wavelength range 170 and 190 nm and could probe

altitudes down to about 10 km, limited by shadowing. Closer to the surface, light

from very low-altitude dust was observed by each of the Surveyor 7, 6 and 5 landers

along the western lunar horizon following local sunset (Rennilson and Criswell,

1974).

In-situ measurements of lunar dust include data from the Lunar Ejecta and

Meteorite (LEAM) Experiment deployed by Apollo 17, which registered a multitude

of unexpected hits during lunar sunrise and sunset, possibly caused by slow moving

and highly charged dust grains transported across the lunar surface (Berg, 1978; Grün

et al., 2011). LEAM events are consistent with the sunrise/sunset–triggered levitation

and transport of slow moving, highly charged lunar dust particles (Colwell et al.,

2007) indicating that the amount of lunar dust varies with local time. More recently,

the LDEX experiment on board the LADEE spacecraft observed an extremely tenuous

asymmetric dust cloud around the Moon with peak densities around 0.004-0.005 m−3

near the dawn terminator for a grain size threshold of 0.3 µm extending hundreds

of kilometers above the Moon’s surface (Horányi et al., 2015). This instrument also

reported an upper limit of 100 m−3 on the dust density of particles larger than 0.1

µm in the altitude range of ≃ 3-250 km for a putative population of electrostatically

lofted dust (Szalay and Horányi, 2015).
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In this paper, we analyze the spectra obtained by LADEE’s Ultraviolet-Visible

Spectrometer (UVS). The UVS made a series of Almost Limb observations from

a spacecraft altitude of about 20 km of the lunar sunrise terminator at different

locations and times shown in Table 2.1. The observation geometry during the Almost

Limb activities enables us to probe the Moon’s dust atmosphere at altitudes ranging

between 1 and 10 km above the surface. These data probe lower altitudes than any

of the prior remote sensing observations from orbiting spacecraft, and even reach

below the lowest reported altitudes sensed by the LDEX instrument. Therefore, we

aim to constrain whether any additional population of dust exists between 1 and 10

km of the surface beyond the dust cloud seen by LDEX. Given that the nature of the

low-altitude dust populations seen by surface observations like LEAM and Surveyor

are still uncertain, we will derive empirical limits on this dust population for a range

of possible particle populations.

Section 2.3 below describes how we processed the Almost Limb data to obtain

the tightest limits on potential dust populations. Note that these data contain a

fluctuating signal that is inconsistent with a dust atmosphere whose density declines

with altitude. We, therefore, apply a spectral filter to eliminate these fluctuations and

isolate signals that can be used to set constraints on the dust atmosphere. We then

compare these filtered spectra to the expected signals from various dust populations

obtained using a Fraunhofer-diffraction model in order to derive upper limits on

the dust particle densities. These constraints are summarized in Section 2.4 and

compared with prior limits on the low-altitude dust atmosphere.

2 .3 method

The process by which we constrain the dust populations above the Moon’s surface

from the UVS Almost Limb data has multiple steps, which are described in detail

below. Section 2.3.1 gives a brief description of the UVS instrument and describes in

detail the Almost Limb activities and their geometry. Section 2.3.2 then describes how

the spectra are processed to isolate the dust signal. Section 2.3.3 next discusses how

we produce predicted spectra for various dust densities and particle size distributions
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Table 2 .1 : Almost Limb activities used in this analysis

Filename Mid time Observed Sub-Solar Sub-Earth
latitude longitude longitude longitude

1836A 01 Apr 2014 22:40:16 24.33
◦

58.43
◦

157.88
◦

5.54
◦

1840A 02 Apr 2014 08:10:22 24.19
◦

53.63
◦

153.65
◦

5.58
◦

1847A 03 Apr 2014 03:10:28 23.82
◦

44.07
◦

143.37
◦

5.48
◦

1873A 05 Apr 2014 23:13:22 23.00
◦

9.73
◦

108.76
◦

3.53
◦

1875A 06 Apr 2014 04:52:56 23.13
◦

6.83
◦

105.88
◦

3.28
◦

1880A 06 Apr 2014 18:05:14 23.51
◦

0.06
◦

99.17
◦

2.67
◦

1882A 06 Apr 2014 21:51:26 23.62
◦

358.12
◦

97.25
◦

2.48
◦

1889A 07 Apr 2014 14:50:09 24.16
◦

349.38
◦

88.63
◦

1.63
◦

1901A 08 Apr 2014 21:01.12 24.94
◦

333.87
◦

73.29
◦

0.04
◦

1918A 10 Apr 2014 14:31:13 24.86
◦

317.77
◦

52.23
◦ -2.05

◦

1929A 11 Apr 2014 20:42:35 25.37
◦

303.42
◦

36.91
◦ -3.35

◦

1956A 14 Apr 2014 17:20:29 22.82
◦

269.43
◦

2.11
◦ -5.06

◦

1969A 16 Apr 2014 11:58:26 24.26
◦

247.64
◦

340.50
◦ -5.09

◦

1987A 17 Apr 2014 21:20:19 24.85
◦

230.67
◦

323.60
◦ -4.57

◦

using a Fraunhofer diffraction model. Finally, Section 2.3.4 describes how we

compared our modeled spectra with the spectra obtained by the UVS instrument

in order to constrain dust densities above the surface.

2.3.1 UVS Almost Limb observations

The LADEE-UVS instrument is described in detail in Colaprete et al. (2014), but for

the sake of completeness we review some of its properties here.

This instrument observes light with wavelengths between 250 and 800 nm over

a 1-degree field of view via a catadioptic telescope that is coupled by a fiber-optic

cable to a spectrometer with a spectral resolution of λ/∆λ ∼ 900 at 500 nm. The

spectrometer disperses this light onto a 1044×64 (1024×58 active) pixel detector CCD

array. Each column of pixels is binned within the detector, delivering a 1×1044 pixel

spectrum. The raw signals recorded by the instrument are processed by standard

pipelines in four steps: dark and bias correction, normalization by integration time,

second order grating effects correction, and finally the radiance calibration. Each

calibrated spectrum recorded by LADEE-UVS therefore contains 1024 active records

of radiance in units of W m−2 nm−1 sr−1. However, when considering the light
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scattered by solid material like dust or the Moon’s surface, it is more useful to instead

consider reflectance, which is typically expressed in terms of the unitless ratio I/F,

where I is the intensity of the scattered radiation and F is the solar flux density (solar

flux divided by π). Hence for this investigation we converted the UVS radiance data

to I/F values using a standard solar spectrum (Mecherikunnel and Richmond, 1980)

at 1024 wavelengths ranging from 229.26 nm to 812.55 nm.

F igure 2 .1 : Illustrations of the Almost-Limb observation geometry using a 2D
projection of the geometry in the plane containing the UVS, the line of sight and the
lunar center. Note the Moon is not shown to scale in these diagrams. (i) Definitions
of relevant geometrical parameters (see also a.1). The black dashed line represents
the line-of-sight of the telescope, ϵ1 and a(x, t) are the Sun’s elevation angle at that
position and the height above the surface for any point lying on the field of view,
respectively. T marks the Terminator point, S is the position on the surface directly
below the spacecraft, A is where the telescope’s line of sight gets closest to the lunar
surface, and B is the point where the line of sight crosses into the shadowed region.
Figures (ii), (iii) and (iv) show how the geometry changes over the course of the
Almost Limb activity. During this activity the telescope moves around the Moon, so
its line of sight approaches and crosses the limb shortly after the Sun sets. At the
end of the Almost Limb activity the telescope field of view, which points at the fixed
direction relative to the Sun, intercepts the Moon’s unlit surface.
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The LADEE mission executed science observations in lunar orbit spanning 2013

Oct 16 - 2014 Apr 18. Over the duration of the LADEE mission, UVS executed 1890

activities, collecting over 1 million spectra. During the last month of the mission, the

UVS instrument obtained 15 so-called “Almost Limb” observations as the spacecraft

lowered its altitude before crashing into the surface. These observations will be the

exclusive focus of this study.

The 14 Almost Limb activities included in this analysis are summarized in

Table 2.1 (One Almost Limb activity, designated 1855A, did not contain any useful

data and is therefore omitted from this analysis). The duration for each of these

activities was approximately 8 minutes. Table 2.1 also shows the latitude and

longitude of the point where the telescope’s line of sight first intersected the Moon’s

surface during the course of each observation.

During each Almost Limb activity, the spacecraft flies over the Moon on a

retrograde orbit at an approximately constant altitude while the telescope points

in a fixed direction relative to the Sun, so that the telescope stares at a fixed location

in the sky 12
◦ away from the Sun that crosses the limb shortly after the Sun sets.

Figure 2.1 is a 2D projection of the observation geometry in a plane containing UVS

line of sight and the Lunar center. This type of observation allows the faint signals

from dust near the Moon’s surface to be cleanly isolated from other astronomical

signals like zodiacal light.

Zodiacal light is a diffuse signal created by sunlight scattered off of interplanetary

dust (Leinert et al., 1998; Stubbs et al., 2007; Lasue et al., 2020) that is often a significant

background for remote-sensing searches for lunar dust (Stubbs et al., 2010; Feldman

et al., 2014). The brightness of zodiacal light relative to Lunar Dust is expected to be

lower at the ultra-violet wavelengths observed by LADEE-UVS than it is at visible

wavelengths (Stubbs et al., 2010), but it cannot be completely neglected. Fortunately,

during each Almost Limb activity LADEE-UVS stares at a single point in the sky

that is nearly fixed relative to both the Sun and distant stars (the apparent motion of

the Sun being negligible over the few minute duration of a typical observation). The

signals from zodiacal light and other astronomical backgrounds therefore should

remain constant over the course of each observation. By contrast, the signal from
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dust should increase as the line-of-sight approaches the Moon’s surface, producing a

time-variable signal that can be cleanly separated from such constant backgrounds.

F igure 2 .2 : Unfiltered I/F values for different wavelength ranges as recorded by
the UVS instrument on board LADEE during the Almost Limb activity, 1969A. An
offset has been added to these values to view the various wavelength ranges distinctly.
The vertical black line on the plot denotes the point (tV) when the telescope’s line
of view hits the Moon’s surface. The fluctuations in the signal level persist even
after the telescope’s field of view crosses the Moon’s terminator, indicating that these
fluctuations are likely instrumental artifacts.

2.3.2 Spectral filtering

Initial looks at the LADEE-UVS Almost Limb data revealed signal fluctuations that

were inconsistent with the model of a uniform dust atmosphere. The signal from dust

is expected to be broadband (Stubbs et al., 2010; Van de Hulst, 1957) so we calculated

the average of reflectance values for wavelength ranges of width 50 nm from 250-300

nm to 650-700 nm. (Wavelengths shorter/longer than the above range have not been

considered for this analysis because their signal-to-noise ratio was poor.) Figure 2.2
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shows the resulting average I/F values for the Almost Limb activity 1969A after

the Sun sets. The vertical black line on the plot, denotes the point (tV) when the

telescope’s line of view meets the Moon’s surface. An offset has been added to the

spectral channels to view each wavelength signal distinctively.

The signals in Figure 2.2 do not show any obvious trends with altitude above

the limb that would be expected from exospheric dust. Instead, the signals contain

fluctuations that persist beyond the point when the telescope is viewing the unlit

part of the lunar surface. This is not consistent with any dust atmosphere, which

would produce a signal that increases with decreasing altitude above the limb and

then disappear when the telescope starts viewing the unlit surface.

The origins of these fluctuations are still unknown. The signal fluctuations seen

in Figure 2.2 have a similar shape in all the frequency bands, so they likely have a

common source with a distinct broad-band spectrum. However, since the spacecraft

is in shadow and viewing the dark side of the Moon for part of the time the spacecraft

sees these signals (cf. Figure 2.1), it seems unlikely that they represent fluctuations

in the amount of light entering the instrument. Likewise, these signals also do not

show any correlation with variations in instrument parameters like the target and

detector temperature, so they cannot be clearly associated with something internal to

the instrument.

Regardless of their origin, these fluctuations obscure the signal from the dust

atmosphere. Fortunately, these variations have a different spectrum from dust, and

so we can use spectral filtering techniques to remove these variations and isolate

potential dust signals in order to constrain any real signals from low-altitude dust.

Let us assume that the total signal Si in a wavelength channel i in Figure 2.2 is a

combination of a dust signal Di and the varying signal Vi, both of which change with

time such that,

Si(t) = Di(t) + Vi(t). (2.1)

The key thing to note is that any spectrum beyond the point of time, tV at which the

line of view hits the surface is entirely due to Vi(t) such that, Si(t > tV) = Vi(t > tV).

If the fluctuating signal has a fixed spectrum, then the value of Vi(t > tV) at any
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single wavelength should be a linear function of the average value of Vi(t > tV)

over all wavelengths (i.e. V̄(t > tV) = ∑i Vi(t > tV)/N, where N is the number

of wavelength bands). Figure 2.3 shows the varying background, Vi(t > tV) for

each wavelength range, i plotted against the average background, V̄(t > tV) for the

complete wavelength range (250-700 nm) for the Almost Limb activity 1969A and

considering only times t > tV . This plot confirms that the signal at each wavelength

is indeed proportional to the average signal over all wavelengths.

We therefore perform a linear fit to the values of Vi(t > tV) in each spectral

channel i as a function of the mean signal V̄(t > tV) and use the slope and offset of

these fits (mVi and bVi) to derive the following estimates of Vi(t) at each wavelength:

Vi,est(t) = mViV̄(t) + bVi . (2.2)

Figure 2.4 shows the derived values of mVi as a function of wavelength, which

is essentially the normalized spectrum of Vi. The spectrum of this signal is clearly

different from the spectrum of the expected dust signal (derived in Section 2.3.3),

so it should be possible to remove Vi without completely removing the dust signal.

Specifically, consider the following quantity:

Di,est(t) = Si(t)− mVi S̄(t)− bVi (2.3)

where S̄ = ∑i Si(t)/N, and mVi and bVi are the same slope and intercept parameters

from Equation 2.2 derived from the data obtained at times t > tV .

If we insert Si(t) = Di(t) + Vi(t) into this expression, we obtain:

Di,est(t) = Di(t) + Vi(t)− mVi D̄(t)− mViV̄(t)− bVi (2.4)

where D̄(t) = ∑i Di(t)/N. Provided that Vi,est(t) is a good estimate of Vi(t) both

before and after tV , the terms involving Vi(t) and V̄(t) will cancel, leaving

Di,est(t) = Di(t)− mVi D̄(t). (2.5)
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The quantity Di,est should therefore not contain any contamination from the

fluctuating instrument signal, at the cost of the dust signal being attenuated by a

predictable factor. (In practice, we also need to remove a small number of data points

that are large outliers to the mean trends, which we do by excluding any data where

Si(t) is more than 3σ from its mean value in any of the wavelength bands.)

F igure 2 .3 : The varying signal, Vi(t > tV) for each wavelength band in the Almost
Limb activity 1969A plotted against the average signal, V̄(t > tV) over the whole
wavelength range (250-700 nm). Note the strong correlations between each individual
spectral channel and the average signal.

The filtered signal Di,est(t) for observation 1969A is shown in Figure 2.5 and

indeed the fluctuations are much reduced, as desired. The results of applying this
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filtering technique to the other Almost Limb activities are shown in a.2. In all cases,

the fluctuations are significantly reduced.

F igure 2 .4 : The slope mVi from equation 2.2 for a linear fit of the scatter points
in Figure 2.3 between the variance signals at each wavelength Vi(t > tV) versus
the average variance signal V̄(t > tV) for the Almost Limb activity 1969A is shown
as the blue line. The green line for comparison, is the predicted slope for a dust
atmosphere with a power-law particle size distribution (s−3 with a threshold of 0.3
µm) described in Section 2.3.3. These slope curves are equivalent to normalized
spectra of the varying signal and dust, respectively. Since these two spectra are so
different, filtering out a signal with the blue spectrum will not eliminate signals with
something like the green spectrum.

When we apply this filtering technique to the first Almost Limb activities, we

observe an interesting phenomenon that further illustrates this technique can reveal

real signals in the data. Figure 2.6 shows an example of the results from processing

one of these earlier observations (1840A). In this case, the filtered signal shows a clear

brightness change at the limb crossing time tV , with the signals at short wavelengths
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becoming more negative while those at long wavelengths become more positive.

Since these signals do not change with altitude above the limb, these are probably not

real dust signals. Instead, they are almost certainly due to Earthshine, which causes

the surface of the Moon to be slightly brighter than the background sky. Earthshine is

expected to have a red color, which is consistent with the wavelength trends observed

here. Furthermore, these shifts are only clearly visible in the earliest observations,

which are also the ones expected to be most strongly affected by Earthshine (see

Table 2.1 and Figure a.10).

F igure 2 .5 : Corrected signal, Di,est(t) for the Almost Limb activity 1969A, after
spectral filtering has been applied to each wavelength range (solid lines) compared
with the original data (dashed lines). The vertical black line on the plot, denotes the
time (tV) when the telescope’s line of view hits the Moon’s surface. An offset has
been added here too to view each wavelength range distinctly. Note the filtered data
shows much smaller fluctuations than the raw data.
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This demonstrates that our spectral-filtering process is able to reveal real

astronomical signals that were previously obscured by the instrumental artifacts, and

so means that we can also use these filtered data to search for signals from lunar

dust. Taking a closer look at the other observations reveals that 9 observations have

significant contamination from Earthshine.

But the remaining 5 observations can still be used to search for dust (see

Section 2.3.4 below).

F igure 2 .6 : Corrected signal, Di,est for the Almost Limb activity 1840A, after
spectral filtering has been applied to each wavelength range. The vertical black line
on the plot, denotes the time (tV) when the telescope’s line of view hits the Moon’s
surface. An offset has been added here too to view each wavelength range distinctly.
Note the slight shifts in the signal level beyond with the vertical line. These shifts are
likely due to Earthshine from the Moon’s surface, which is expected to be present
in these early observations. The wavelength trends observed here are also consistent
with the red color expected for Earthshine.
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2.3.3 Predicted signals from model dust atmospheres

Since the filtered signals do not show clear variations with altitude that could be

due to lunar dust, we need an explicit model to constrain the amount of dust that

could be present. If we assume a density of particles at each altitude, the spectra

can be computed using the appropriate scattering theory. For a flux of radiation

πF with wavelength λ, the power scattered by an individual particle per unit solid

angle is given by the function dP
dΩ . In principle, these spectra could be computed

using Mie Theory or even more sophisticated scattering theories that can account

for the irregular shapes of these particles (Shkuratov et al., 1994; Kolokolova et al.,

2015). However, in practice the Almost Limb activities were made at such high

phase angles (168.3◦) that the observed light is predominantly due to diffraction

around individual particles, and the lunar dust populations are sufficiently tenuous

that multiple scattering among different particles can be ignored. In this situation,

Fraunhofer diffraction theory therefore provides a more efficient but still sufficiently

accurate way to estimate the spectra of the relevant dust populations.

The power scattered per unit solid angle by a conducting disk of radius s

illuminated by flux πF of radiation with wavelength λ is given by the following

function (Jackson, 1975; Hedman et al., 2009):

dP
dΩ

= πFs2 J2
1(k s sin θ)

sin2 θ
(2.6)

where s is the size (radius) of the particle, k=2π/λ, J1 is the spherical Bessel function

of first kind and θ is the scattering angle (180◦-the phase angle). The above expression

holds true for conducting materials, for dielectric particles we need to multiply the

above expression by a scaling factor (Fymat and Mease, 1981). This scaling factor can

be derived directly from the extinction factor Qext (the ratio of the total cross-section

of the particle to its geometrical cross-section, see a.1) using the optical theorem

which gives the following approximation for the scattering by a dielectric sphere:

dP
dΩ

=
πFs2

4 sin2 θ
J2
1(k s sin θ)Q2

ext(k s, m). (2.7)
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The above equation defines the power scattered per unit solid angle for particles

of size s. This value of power scattered obtained using the Fraunhofer model

differs from the Mie theory values by only a factor of about 0.97 - 1.8 for the

ranges of particle sizes and observing geometries considered here, and hence can

be considered a reasonable approximation of the expected signals from spherical

particles. Furthermore, at low scattering angles (high phase angles) the signals from

compact irregular grains differ from spheres with equivalent volume only by atmost

50%. (Pollack and Cuzzi, 1980). Our Fraunhofer calculations therefore also provide

reasonable approximations for the signals for irregular grains with the equivalent

effective sizes s.

The dust above the Moon’s surface is a collection of particles of different size

ranges for which a size distribution can be defined. The reflectance of this collection

of particles in a given wavelength channel i and time t is given by the standard

unitless quantity: [
I
F
(t)

]
i,pred

=
1
F

∫ smax

smin

dPi

dΩ
N (s, t)ds. (2.8)

where dPi
dΩ is the scattered power in wavelength channel i and N (s, t) is the particle

size distribution integrated along the line of sight during that particular time. The

limits on the above integral are defined by the lower and upper limits of the size

distribution discussed below.

For this analysis, we will consider several different models for the spatial and size

distributions of particles. However, we will assume that the particle size distribution

is independent of location, and only the total density of particles varies with altitude

above the Moon’s surface. These assumptions not only make the calculations more

tractable by restricting the phase space of possible predictions, but also facilitate

comparisons with previously published measurements of these dust populations.

We consider two different types of particle size distributions in this study. On

the one hand, we consider narrow size distributions for particles with radii between

0.07 to 1 µm in order to illustrate how sensitive these observations are to particles

of different sizes (Feldman et al., 2014; Glenar et al., 2014). Also, narrow size
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distributions could be more representative of electrostatically charged dust grains

(Criswell, 1973; Rennilson and Criswell, 1974).

On the other hand, we consider power-law size distributions because these size

distributions are also more likely to be representative of material lofted by impacts,

which are expected to have a broad size distribution (Horányi et al., 2015; Grün et al.,

2011). More specifically, we will use power-law size distributions with limits at 0.3

µm and 10 µm. These limits have been chosen to facilitate comparisons with previous

limits on dust density (Horányi et al., 2015; Szalay and Horányi, 2015; Glenar et al.,

2014; Feldman et al., 2014) and because UVS operates at wavelengths between 200

and 800 nm and these sorts of remote sensing observations are more sensitive to

particles comparable to the operating wavelength range of the instrument (Van de

Hulst, 1957). Also, we consider two different cases for the power-law index: N (s, t) ∝

s−3 and N (s, t) ∝ s−4. These two numbers (-3 and -4) bracket the expected differential

size distribution of collision debris, which has a differential index of around -3.5

(Dohnanyi, 1969; Tanaka et al., 1996), and the value of -3.7 measured in-situ by LDEX

(Szalay and Horányi, 2016).

In addition to assuming a specific size distribution, we also need to assume that

the dust has a specific spatial distribution before we can compute the predicted

signals and how they vary with time. Since this analysis seeks to constrain a low-

altitude global dust atmosphere, we will assume that the number of particles per

unit area along the line of sight can be described by a simple exponential dust

profile defined by nominal total number density of particles at the surface no,nom

and scale height H. Such models are almost certainly an oversimplification because

the actual dust distribution from both electrostatically lofted and impact-generated

dust is a convolution of the launch velocity distribution of the particle populations

ejected from the surface, which depends on how the particles are ejected, as well

as their size and charge state. Both methods of launching dust can potentially send

material to a wide range of altitudes (Szalay and Horányi, 2015; Horányi et al., 2015).

However, a simple exponential profile is a reasonable choice for this initial study,

primarily because it facilitates comparisons with prior remote-sensing searches for

and in-situ measurements of lunar dust, which have assumed exponential density
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profiles (Feldman et al., 2014; Glenar et al., 2014; Szalay and Horányi, 2016). In this

case, the total number of particles per unit area along the line of sight is given by the

integral

N(t) = no,nom

∫ ∞

d
e−a(x,t)/Hdx (2.9)

where x denotes the distance along the line of sight and a(x, t) is the altitude above

the surface at a particular time (see Figure 2.1). This integral is evaluated from a lower

limit d that signifies the point where the dust is illuminated to an upper limit of +∞

(see Figure 2.1). The lower limit d and a(x, t) are both explicitly calculated in a.1. For

this study, we will specifically consider scale heights H of 1, 3 and 5 km. These values

were chosen because the LADEE-UVS data are most sensitive to variations in the dust

density on these scales. These also correspond to scales that have not yet been probed

by previous remote-sensing observations (Feldman et al., 2014; Glenar et al., 2014) and

are near the lower limits of the published LDEX observations (Horányi et al., 2015;

Szalay and Horányi, 2015).

Finally, in order to account for the spectral filtering of the observations, we apply

the same filter to the predicted I/F signal as we did to the observed data (see

Equation 2.3) to create the following quantity.

Pi,est(t) =
[ I

F
(t)
]

i,pred
− mVi

[ I
F
(t)
]

pred
− bVi , (2.10)

where I/Fi,pred is the predicted I/F for each wavelength channel i, ¯I/Fpred is the

average predicted I/F over all wavelengths, and mVi and bVi are the same parameters

used in Equation 2.3. The resulting estimates of Pi,est(t) can therefore be directly

compared to the filtered observed values of Di,est(t) to derive limits on the dust

signals.

2.3.4 Comparison of UVS spectra and the Predicted signal

Figures 2.7 - 2.8 show the predicted signal, Pi,est(t) for a nominal surface

concentration of 103 m−3 and scale heights of 1, 3 and 5 km overlaid on the

observational data, Di,est(t) from Figures 2.5 and 2.6 with error bars based on the
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scatter in the data points (Figures a.3, a.5, a.7 and a.9 for Almost Limb activities

1918A-1987A can be found in the a.2). As expected, the predicted signals become

stronger as the telescope’s line-of-sight approaches the lunar surface. Note that

at short wavelengths the predicted signals are negative because mVi becomes large

enough to flip the sign of the difference in Equation 2.10.

F igure 2 .7 : This figure shows the filtered residual I/F signal, Di,est(t) with error
bars for Almost Limb activity 1969A at each wavelength range. The error bars are
based on the scatter in the data points. The vertical black line on the plot, denotes
the point (tV) when the telescope’s line of view hits the Moon’s surface. The signal,
Pi,est(t) predicted using the Fraunhofer model and the exponential density profile
for a size distribution proportional to s−3 and for scale heights of 1, 3 and 5 km, is
plotted over the residual signal in grey, light coral and black, respectively. An offset
has been added to view the signals distinctly. Note that the predicted signal, Pi,est(t)
is estimated for a nominal surface concentration of no,nom = 103m−3 and is greater
than the residual signal, indicating that the upper limit on dust density will be below
this value.
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In Figure 2.7 the observed brightness trends are much smaller than the predicted

trends for dust populations with an arbitrarily chosen nominal dust density of

no,nom = 103 m−3. The limits these data can place on these low-altitude dust

populations are therefore well below the value of no,nom. We derive quantitative limits

on the dust density from each spectral channel by performing a least-squared linear

fit of the observed signal calculated in equation 2.5 versus the model predictions from

equation 2.10:

Di,est =
no,est

no,nom
Pi,est + C. (2.11)

Note that the slope of this fit is simply the ratio of the most likely value of the surface

dust density no,est to the nominal surface dust density assumed in computing Pi,est.
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F igure 2 .8 : This figure shows the filtered residual I/F signal, Di,est(t) with error
bars for Almost Limb activity 1840A at each wavelength range. The error bars are
based on scatter in the data points. The vertical black line on the plot, denotes the
point (tV) when the telescope’s line of view hits the Moon’s surface. The signal
predicted using the Fraunhofer model and the exponential density profile for a size
distribution proportional to s−3, nominal surface dust densities of 103 m−3 and for
scale heights of 1, 3 and 5 km is plotted over the residual signal in grey, light coral
and black, respectively. An offset has been added to view the signals distinctly. This
plot is an example of the Almost Limb activity contaminated with Earthshine and
hence is not included in calculating the upper limit on dust density.

We also take the weighted average of these slope and offset estimates from the

different wavelength channels for each observation to obtain more precise estimates

on these parameters, and propagate errors appropriately.

In principle, the offset C in the above equation should be equal to zero so long

as there are no other sources of signal in the data. However, in practice we find that
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Earthshine contaminates many of these observations, making them less suitable for

deriving tight constraints on the dust populations. Figure 2.8 shows a clear example

of this contamination. Since our filtering method forces the signal to be zero after

the vertical line tV , the filtering step causes significant offsets in the signals observed

at earlier times. These signals do not vary with altitude like a low-altitude dust

atmosphere signal should and so produce significant offsets in the trends of observed

versus predicted signals (see Table a.2 ina.3). We force this offset C to zero for our

estimates of dust density limit.

Fortunately, as New Earth approaches and the Earth-Moon phase angle increases,

the illumination due to Earthshine on the surface of the Moon decreases. The

corresponding values of Earth-Moon system are shown in the Table a.1 and

Figure a.10 in a.3. The last three out of the 14 Almost Limb activities (1956A-

1987A) are located beyond the Earthshine horizon. In addition, the preceding two

Almost Limb activities (1918A and 1929A) were recorded at locations that have high

Earth-Moon phase angle (129
◦ and 141

◦ respectively) and should receive negligible

amounts of Earthshine.

We verify that Earthshine is negligible for the last five observations using the

above linear model by checking that the wavelength-averaged value of C was

consistent with zero for all of these five observations (see Table a.2 in a.3). We also

computed the chi-squared statistics of a model where C was forced to be zero for all

wavelengths for each of the observations and verified that the resulting individual

estimates for no,est from the last five measurements are all consistent with zero

(see Table 2.2). This finding demonstrates that for these five observations there is

no evidence for extraneous signals, and so we can use these five observations to

place firm constraints on the low-altitude dust population. Note that these last few

activities also probe the lowest altitudes, so they provide the tightest limits on the

dust populations at low altitudes.
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2 .4 results and discussion

Our final constraints on low-altitude dust populations are based on the weighted

average of the estimates of no,est from the Almost-Limb observations with negligible

Earthshine contamination. These weighted averages are all comparable to their

corresponding uncertainties, and so these constraints will mostly be provided as

upper limits. These upper limits depend on both the assumed scale height and

particle size distribution, and so these different assumptions will be considered

separately below.

First, consider the limits derived assuming mono-disperse size distributions, since

these reveal how our constraints depend on the assumed spherical-equivalent particle

size. Figure 2.9 shows the 95% confidence interval limit on dust populations with

scale height H of 1 km for mono-disperse size distributions. These limits tighten

dramatically with increasing particle size up to around 0.3 µm, at which point they

become much less sensitive to the assumed particle size. This demonstrates that the

LADEE-UVS data provide the tightest constrains on the dust density for particles

with equivalent radii bigger than 0.3 µm. This conclusion is reasonable, given the

UVS data used in this analysis was obtained at wavelengths between 200 nm and 800

nm, and light is most efficiently scattered by particles that are at least as large as the

light’s wavelength (Van de Hulst, 1957).

Many of the prior works on Lunar dust reported limits on particles around 0.1 µm

in size, which is also a reasonable size for a potential population of electrostatically-

lofted grains. We therefore compare these prior observations with our corresponding

limit for a mono-dispersed particle size distribution in Figure 2.10. The specific model

limit shown in this figure correspond to a mono-disperse size distribution for an

equivalent particle size of 0.1 µm and a scale height of 1 km, for which our upper

limit on the surface dust density, no,est is 3.1 ×104 m−3. The diagonal line shows the

corresponding limit on the dust density as a function of altitude for this particular

limit, and the green shaded area shows the allowed range of dust densities for this

particular model.

Our limit on the surface dust density is of the same order of the estimates of

surface dust density derived from Apollo 15 coronal photographs (Glenar et al., 2011),
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and is several orders of magnitude higher than limits set by more recent remote-

sensing measurements (Feldman et al., 2014; Glenar et al., 2014). However, those

measurements were insensitive to dust below altitudes of 10 km, and so our limit

extends to lower altitudes. Furthermore, because we can consider much lower scale

heights with the UVS data, at 10 km our limits become comparable to those earlier

remote-sensing limits. Meanwhile, the LDEX instrument reported limits of order

100 m−3 in this same size range at altitudes between 3 km and 250 km (Szalay and

Horányi, 2015). Our limit on the dust density at 3 km (1500 m−3) is an order of

magnitude above the LDEX limit. However, our constraints also apply to altitudes

below 3 km (and even below 1 km), where LDEX was not able to observe.

F igure 2 .9 : The upper limits on surface dust density, no,est for mono-disperse size
distribution with dust particles spherical-equivalent size (see Section 2.3) ranging
from 0.07 to 1 µm derived for the 5 Almost-Limb observations in Table 2.2 with
negligible Earthshine. The scale height H for all these values is 1 km. These limits are
within the 95% confidence level, assuming a positive density value. In principle, this
mono-disperse size distribution can be convolved to get upper limits for an arbitrary
size distribution.
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If we instead consider the populations with broader size distributions, our limits

become much tighter. Table 2.3 shows our surface dust density limits obtained

for the two different power-law size distributions (0.3 - 10 µm) and three different

scale heights . There are two sets of values displayed in the table for the last three

Almost Limb activities (1956A-1987A) with no Earthshine signal at all and the last

five activities (1918A-1987A) with negligible Earthshine present. These limits on the

surface dust density for particles larger than 0.3 µm are orders of magnitude above

the values of 0.004 - 0.005 m−3 measured by the LDEX experiment for the same size

range (Horányi et al., 2015). However, the UVS Almost-Limb observations probe a

very different population from the LDEX measurements. The dust population seen by

LDEX has a very large scale height, and the contribution of this diffuse cloud to any

signal measured in the UVS Almost-Limb data is negligible. However, LDEX could

only measure dust densities down to altitudes of around 3 km and so was insensitive

to any additional dust population that might be confined to low altitudes, such as

the extreme tails of the very low-altitude Lunar Horizon Glow seen by the Surveyor

landers. Our upper limits constrain this additional population of low-altitude dust,

and for a scale height of 1 km these limits correspond to densities of around 140 m−3

near the surface, decreasing to values of around 0.006 m−3 (comparable to the LDEX

measurements) at altitudes around 10 km.

The dust constraints from the LADEE-UVS observations are therefore consistent

with prior limits. Furthermore, since these measurements are sensitive to material

within just a few kilometers of the surface, they can help constrain both impact-

generated and electrostatically lofted dust in a region that had not been well

constrained by prior measurements.

2 .5 conclusions

In summary, this analysis of the LADEE Almost Limb observations provide new

constraints on the dust density at low altitudes above the Moon’s surface. Specifically,

the upper limit on the surface dust density for a mono-dispersed size distribution for

a particle size of 0.1 µm and a scale height of 1 km is 3.1 x 10
4 m−3. The additional
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population of low-altitude dust for a scale height of 1 km and a size distribution

proportional to s−3 ranging from 0.3 to 10 µm (and s−4) has an upper limit on dust

density of around 140 m−3 (and 190 m−3) closer to the surface which reduces to

around 6 x 10
−3 m−3 (and 9 x 10

−3 m−3) at altitudes reaching 10 km above the

Moon’s surface.

F igure 2 .10 : A comparison of the upper limits on dust density for particle size 0.1
µm as a function of altitude obtained from different measurements. This figure uses
values for earlier data summarized in Szalay and Horányi (2015). The LADEE-UVS
observation plotted here were computed using the last five Almost Limb activities
which have low Earthshine signal and corresponds to a scale height H of 1 km. This
value of dust density was calculated using a mono-disperse size distribution for a
particle of size 0.1µm to facilitate comparison with previous limits. Note that the
upper limit from the LADEE-UVS observations extend closer to the surface of Moon
than prior limits.
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Table 2 .3 : Dust density limits no,est with their respective 1σ error bars.

Scale Height H (km)
Dust Density (m−3)

1956A-1987A 1918A-1987A
s−3 s−4 s−3 s−4

1 75.6±66.9 94.5±93.7 64.6±63.4 83.6±88.7
3 4.6 ± 10.6 3.3 ± 14.8 8.2±9.3 9.6±12.9
5 2.6 ± 6.1 2.1 ± 8.6 6.0±5.1 7.6±7.1

Error bars are defined as 1/(
√
(∑ Wi)) where the weights Wi are the errors

corresponding to each observation. These upper limits on surface dust density
corresponding to two different size distributions: N (s, t) ∝ s−3 and N (s, t) ∝ s−4

and for scale heights of 1, 3 and 5 km. The limits of size range considered here are
from 0.3 to 10 µm.
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chapter 3

New Insights into Variations in Enceladus Plume Particle

Launch Velocities from Cassini-VIMS spectral data

H. Sharma, M. M. Hedman, and S. Vahidinia, "New Insights into Variations in

Enceladus Plume Particle Launch Velocities from Cassini-VIMS Spectral Data." The

Planetary Science Journal 4.6, 2023: 108.

This chapter begins the exploration into Enceladus plume population using Cassini-VIMS

data. Dr. Hedman gathered the relevant data and calibrated it using standard pipelines. He

wrote the IDL code to convert the VIMS data into cubes by re-projecting it into a cartesian

space. The output of his code converted the data in a reliable shape and format that it could be

used for further analysis. Dr. Hedman also devised the way to calculate the Equivalent Width

derived from the cubes. I used Python code to reduce noise in this data and convert its altitude

profile into velocity. Co-author Sanaz Vahidinia provided inputs and recommendations to

improve the analysis.

3 .1 abstract

Enceladus’ plume consists mainly of a mixture of water vapor and solid ice particles

that may originate from a subsurface ocean. The physical processes underlying

Enceladus’ plume particle dynamics are still being debated, and quantifying the

particles’ size distribution and launch velocities can help constrain these processes.

Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) observed the Enceladus

plume over a wavelength range of 0.9 µm to 5.0 µm for a significant fraction of

Enceladus’ orbital period on three dates in the summer of 2017. We find that the

relative brightness of the plume on these different dates varies with wavelength,

implying that the particle size distribution in the plume changes over time. These

observations also enable us to study how the particles’ launch velocities vary with

time and observed wavelength. We find that the typical launch velocity of particles



43

remains between 140 ms−1 and 148 ms−1 at wavelengths between 1.2 µm and 3.7 µm.

This may not be consistent with prior models where particles are only accelerated

by interactions with the vent walls and gas, and could imply that mutual particle

collisions close to the vent are more important than previously recognized.

3 .2 introduction

Enceladus emits a plume of water vapor and icy particles from a series of fissures

located near its south pole (Spencer et al., 2006; Dougherty et al., 2006; Porco et al.,

2006). This plume can shed light on the processes operating inside Enceladus

and the driving forces behind this geological activity. Measurements from several

instruments onboard the Cassini spacecraft have been used to examine the plume’s

characteristics (Hansen et al., 2006; Waite Jr et al., 2006; Spahn et al., 2006; Waite Jr et al.,

2009; Hedman et al., 2009; Postberg et al., 2009; Schenk et al., 2018). At the same time,

several different theoretical models have been developed to explain various aspects

of the plume (Kieffer et al., 2006; Hurford et al., 2007; Schmidt et al., 2008; Brilliantov

et al., 2008; Ingersoll and Pankine, 2010; Goldstein et al., 2018; Kite and Rubin, 2016).

One important source of information about the physics behind Enceladus’ plume

is its variations over time periods ranging from days to years. Variations have been

observed in plume’s total particle output by both the Visual and Infrared Mapping

Spectrometer (VIMS) instrument (Hedman et al., 2013) and the Imaging Science

Subsystem (ISS) cameras (Nimmo et al., 2014; Porco et al., 2014; Helfenstein and

Porco, 2015; Ingersoll and Ewald, 2017; Ingersoll et al., 2020) onboard the Cassini

spacecraft. Most dramatically, both the ISS and VIMS data show that the plume’s

ice grain output varies systematically with the moon’s orbital phase (the angular

distance between the moon’s current position and its orbital pericenter, equivalent to

the moon’s orbital mean anomaly). The primary maximum in the plume’s brightness

occurs close to orbital apocenter (orbital phase of 180
◦), where the particle output is

roughly four times higher than it is at other points in its orbit. The most likely cause

of the variations on orbital timescales are the tidal stresses experienced by Enceladus

as it moves in its eccentric orbit around Saturn (Hurford et al., 2007, 2012; Nimmo
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et al., 2007; Smith-Konter and Pappalardo, 2008; Goldstein et al., 2018). Variations in

the plume’s activity on longer time scales were also seen by both VIMS (Hedman

et al., 2013) and ISS (Ingersoll and Ewald, 2017; Porco et al., 2018; Ingersoll et al., 2020)

which may be due to either a 5% decrease in the eccentricity of the orbit as part of a

∼ 11-year tidal cycle, or slow (and perhaps seasonal) changes in the clogging of vents

(Porco et al., 2018; Ingersoll and Ewald, 2017). The plume is also prone to stochastic

time variability on month-to-year timescales (Ingersoll et al., 2020) whose origins are

still unclear and maybe due to individual jets turning on and off (Spitale and Porco,

2007; Ingersoll and Pankine, 2010; Hurford et al., 2012; Nimmo et al., 2014; Porco et al.,

2014; Nakajima and Ingersoll, 2016; Teolis et al., 2017).

Compared to the relatively dramatic brightness variations listed above, trends in

other plume particle properties like launch velocity and size distributions are more

subtle. Hedman et al. (2009) found some differences in the spectral properties of

the plume among the early VIMS observations, but these were of marginal statistical

significance. Both Hedman et al. (2013) and Ingersoll and Ewald (2017) found small

variations in the launch velocity with orbital phase. Nimmo et al. (2014) also reported

an essentially constant scale height parameter for the plume. These observations are

generally consistent with models where increasing crack width increases the total

mass flow but has little effect on particle velocities (Ingersoll and Pankine, 2010).

This paper aims to quantify variations in the plume’s properties using spectral

data obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the

Cassini spacecraft (Brown et al., 2004). VIMS can provide new information about

trends in the particle size and velocity distribution over time because it was able to

observe the plume over a broad range of near-infrared wavelengths. More specifically,

we will examine VIMS data obtained on three dates – June 18th, Aug 2nd and Aug

28th, 2017. There is a clear maximum in the plume’s brightness around apoapsis in

the VIMS data on all three of these dates (see Figure 3.1), consistent with previous

ISS results (Ingersoll et al., 2020). The VIMS observations at short wavelengths also

show the same variations in the plume’s brightness among the three orbits, where the

brightness increases from June 18th to Aug 2nd and decreases again on Aug 28th as

reported by Ingersoll et al. (2020). However, the VIMS data show that these variations
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in plume brightness across the three different orbits being studied here are not the

same at all wavelengths, suggesting the plume’s particle size distribution also varied

over this time period of 3 months. In addition, we find that the launch velocities of

the plume particles do not vary as much with wavelength as published models would

predict (Schmidt et al., 2008; Degruyter and Manga, 2011) but see Schmidt (2014) for

modified models that may be consistent with these observations.

F igure 3 .1 : Overview of variations in the plume’s brightness (expressed in terms
of the corrected Equivalent Width at a wavelength of 0.88 - 1.56 µm and an altitude
of 85 km, see text for details) as a function of orbital phase. This figure compares
the plume brightness estimates derived in this study (shown as solid dots) with
previously published estimates from earlier in the Cassini mission (shown as empty
symbols Hedman et al., 2013). Note that the corrected Equivalent Width used in this
particular plot includes the phase angle correction described in Hedman et al. (2013)
in order to facilitate comparisons among the different data sets.

Our methods for extracting information about the plume from the VIMS data

are described in Section 3.3. This analysis begins by converting the raw VIMS data

to estimates of the plume’s spectra at various distances from the south pole. These

spectra are then converted into constraints on the plume’s overall intensity and the

particles’ typical launch velocity assuming the particles follow ballistic trajectories.

The results of these calculations are presented in Section 3.4. Finally, in Section 3.5 we

further discuss the implication of the observed spectral trends in the brightness and
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typical launch velocity of particles. Note that this paper is focused on documenting

the spectral trends in these data. Detailed spectral modeling of these trends will be

the subject of future work.

3 .3 methods

This section describes the steps by which the relevant VIMS data are reduced into

standardized estimates of the plume brightness and typical launch velocity at a range

of wavelengths. Section 3.3.1 describes the geometry and calibration of the VIMS

observations for the 3 dates in 2017 being studied here. Section 3.3.2 details how these

data are processed to obtain high signal-to-noise spectra of the plume at different

altitudes. Finally, Section 3.3.3 shows how these data are fit to obtain the brightness

and typical launch velocity at different wavelengths.

3.3.1 Data

The Visual and Infrared Mapping Spectrometer (VIMS) was an imaging spectrometer

onboard the Cassini spacecraft that covered the 0.3 µm - 5.1 µm wavelength range

using 352 spectral channels. This instrument could view an array of up to 64 x 64

locations in the sky to produce a spectral-spatial image “cube" (Brown et al., 2004).

In this paper, we focus exclusively on the infrared spectra obtained by the VIMS-IR

channel that measured the brightness in 256 wavelength bands between 0.88 µm and

5.1 µm with a typical spectral resolution of 0.016 µm. Further, we have removed

the data corresponding to spectral channels at 1.23 µm (channel 118) and at 4.75

µm (channel 330) as they contain null values due to being hot pixels on the detector

(Clark et al., 2018) and exclude data beyond 4.0 µm because the signal-to-noise ratio

is significantly lower at these wavelengths. This reduces the number of spectral

channels considered here from 256 to 186.

This investigation examines VIMS observations of Enceladus from 3 different

Cassini orbits (designated 279, 286 and 290) corresponding to 3 days in 2017 - June

18th, Aug 2nd and Aug 28th. During all three of these days, VIMS viewed Enceladus

from similarly high phase angles (156
◦ - 162

◦) over a similar range of the moon’s
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F igure 3 .2 : The spatial geometry of the re-projected VIMS cubes. On the left is a
sample image of Enceladus and its plume at a wavelength of 1.03 µm derived from
a single re-projected cube (CM_1876456410_1) obtained at an orbital phase of 200

◦

during Orbit no. 279 on June 18th. The sample image shows individual pixels and
the data has been over sampled to obtain brightness values with a resolution of 100

km across both x and y co-ordinates. On the right is the geometry of the re-projected
VIMS cubes. The re-projected data plane is defined using cartesian co-ordinates [x,
y], with Enceladus at the center at [0, 0] and the negative y axis is aligned with
the moon’s spin axis. The left vertical axis and the horizontal axis show the [x, y]
coordinates for the cube. For the right vertical axis of the figure the y co-ordinate
has been converted into altitude above the Enceladus’ south pole (z = −(250 + y) in
km). The outlined regions on either side correspond to the region used to calculate
background signal levels.

orbital phase. The parameters for these three observations are listed in Table 3.1.

Note that all three observations cover orbital phases around 180
◦, when the plume is

most active, and are at high enough phase angles for the plume signals to be clearly

detectable.

The raw data in each cube are converted into I/F values (a standard measure of

reflectance) using standard calibration routines (the specific calibration being RC19

(Clark et al., 2018)). To facilitate comparisons among the observations, the observation

geometry for each cube is computed using the appropriate SPICE kernels, and the
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brightness data are re-projected onto a regular array of cartesian co-ordinates [x, y]

containing the moon’s spin axis. In these coordinates the center of Enceladus is

located at [0, 0] and the negative y-axis is aligned with Enceladus’ spin axis. In the

resulting maps x ranges from -1000 km to 900 km and y ranges from -2000 km to

900 km. Both coordinates are sampled every 100 km. Figure 3.2 shows the extent of

the co-ordinates x and y. We also use the y coordinate to compute the distance from

Enceladus’ south pole (i.e. the plume’s altitude) as z = −(250 + y) in km.

3.3.2 Extracting Brightness Spectra at different altitudes and times

The first step in extracting plume spectra from these cubes is to remove cubes that

had instrumental artifacts that made their spectra discrepant from the rest of the

observation. We identified these anomalous cubes by first averaging the brightness

in the region of Enceladus’ plume at each wavelength over all values of x from -400

km to 400 km and all values of y from -300 km and beyond. A median filter is then

applied to this list of average brightness values at each wavelength. Any image/cube

that lies outside the 3σ range of the median brightness was flagged as an outlier

for that spectral channel. We then compared the outlier list of each spectral channel

and if a cube appeared as an outlier for over 35 spectral channels it was regarded

as unreliable and so removed from further consideration. This procedure led to the

removal of 22 cubes from the data on June 18th/Orbit no. 279, 24 cubes from the

data on Aug 2nd/Orbit no. 286 and 11 cubes from the data on Aug 28th/Orbit no.

290 (see Appendix b.1 for an explicit list of these cubes).

After removing the outliers highlighted across orbital phase and wavelength and

before applying background removal techniques the cubes are co-added. Spectra

derived from the individual remaining cubes had low signal-to-noise, so we averaged

together sets of 10 cubes to improve the signal-to-noise in the spectra. Note that each

of these sets of cubes corresponds to a relatively narrow range of orbital phases, so

this averaging does not significantly affect our ability to quantify variations in plume

activity. Table 3.1 shows the range of cubes corresponding to each orbit, the number

of cubes before binning and after binning sets of 10 cubes each.
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From each of these co-added cubes, we derive plume spectra as a function of

altitude. Preliminary investigations of these data indicated that the majority of the

plume signal exists between x = -400 km and x = 400 km. Any signal in the range

x < -400 km and x > 400 km is therefore primarily due to background signals from

the instrument or the E ring. We estimated this background by fitting the brightness

values for -700 km < x < -400 km and x > 400 km at each value of y to a linear trend.

Note that the brightness beyond x < -700 km is not included in this linear fit because

this region appears to be more strongly contaminated by instrumental backgrounds

than the rest of the re-projected image at certain wavelengths.

F igure 3 .3 : Example Enceladus plume spectra, showing the plume’s Equivalent
Width (in km, see sub-section 3.3.2) versus wavelength (in µm) at similar orbital
phases for all three orbits. An orbital phase close to 200

◦ is chosen as the signal is
strongest closer to the plume maxima at apoapsis. The points show the Equivalent
Widths for individual spectral channels (after removing outliers before 2.5 µm and
after 3.3 µm) and the line plot with error bars shows the data after averaging each
spectrum over 8 wavelength channels.
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After removing the background across all values of x we define the plume’s

Equivalent Width at each y corresponding to an altitude z such that z = −(250 + y)

in km as the total integrated brightness in a horizontal slice through the plume

(Hedman et al., 2013). The Equivalent Width is calculated as the sum of the signal

across x dimension multiplied with the step width (that is, 100 km). This yields the

plume’s Equivalent Width for all y between -2000 km and -300 km, or altitudes z

ranging from 50 km to 1750 km. This process is carried out on each binned cube for

all wavelength channels of each of the 3 dates.

Figure 3.3 shows example plume spectra from 0.9 µm to 4.0 µm obtained from

cubes obtained close to peak of Enceladus’ activity and at low altitudes. Each of

these spectra has a clear dip around 3 µm corresponding to the fundamental water-

ice absorption band (Mastrapa et al., 2009). While the signal-to-noise of these spectra

is reasonably good, for other orbital phases and altitudes it is still rather low and

so to better quantify relevant spectral trends we further average these spectra over

wavelength.

For this analysis we focus primarily on wavelength ranges outside the water-ice

absorption band. Hence we first apply a median filter to find outliers before 2.5

µm and after 3.3 µm range. More specifically, we compute the median of the signal

before 2.5 µm and flag outliers beyond the range of 1.5 times the standard deviation

of all the points in this range, and then do the same for the signals beyond 3.3 µm

range. This threshold value of 1.5σ was chosen because it was found to remove clear

outliers based on visual inspection of selected spectra2 After flagging these general

outliers, we compute the average and error on the mean signal in bins of 8 wavelength

channels each. These averages and errors are computed after excluding both the

outliers flagged previously and any data points that are beyond the 2σ range from

the median of the 8 wavelength channels that are being averaged together. This leaves

us with 23 averaged wavelength values, which are shown as the connected lines in

Figure 3.3. Finally, we compute the weighted average Equivalent Width over four

2These particular parameters were chosen after trying a range of values and visually inspecting the
results. Figure 4.2 in Chapter 4 shows an example spectrum with outlier points identified with these
techniques highlighted in red. This plot shows that the removed points can reasonably be considered
outliers and their removal does not substantially change the signal.
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wavelengths each and obtain the plume’s output centered at 1.2 µm, 1.7 µm, 2.2 µm

and 3.7 µm. This last averaging step improves the signal to noise ratio considerably,

and is particularly useful for the calculations of overall plume output and typical

launch velocity described in the next subsection.

3.3.3 Quantifying trends with altitude and orbital phase/time

In order to better quantify the trends in the brightness with time and altitude, we

use the same basic parametrization as Hedman et al. (2013). That work defined a

parameter Z = [z/(rE + z)]1/2 where rE = 250 km is the radius of Enceladus and z is

the plume’s altitude. This parameter is useful because for low-optical-depth systems

like the plume, it is reasonable to assume that Enceladus’ gravity is the dominant

force acting on the particles and the particle and gas density are so low that the

particles follow purely ballistic trajectories. In this limit, the particle launch velocity

v is directly related to the altitude it reaches z:

v = vesc

[ z
rE + z

]1/2
= vesc ∗ Z (3.1)

where vesc = 240 ms−1 is the escape velocity on Enceladus. Thus for a population

of particles, trends in the plume’s brightness with Z reflect trends in the particles’

launch velocity. Hedman et al. (2013) found that at wavelengths around 1 µm the

relationship between Equivalent Width and Z was roughly linear with a negative

slope.

Figure 3.4 shows that the approximately linear relationship between the plume’s

integrated brightness and the Z parameter observed by Hedman et al. (2013) also

holds for the VIMS observations in 2017 over all the observed wavelengths. We

therefore fit a linear trend to the plume’s EW profile versus Z in Figure 3.4 at altitudes

between 50 km and 450 km i.e., Z between 0.41 and 0.8 and launch velocity v between

100 ms−1 and 200 ms−1.

The parameters for this linear fit are then used to calculate two quantities. One

parameter is the Equivalent Width (a measure of the plume’s total brightness) at

a reference altitude of z = 85 km (Z = 0.5; v = 120 ms−1) calculated through
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F igure 3 .4 : The integrated brightness of the plume (Equivalent Width or EW) as
a function of the parameter Z (=[z/(rE + z)]1/2 where rE = 250 km is the radius
of Enceladus and z the plume’s altitude) and launch velocity v (calculated using
equation 3.1). The Equivalent Width for the three different dates in 2017 - Orbit
no. 279/June 18th, Orbit no. 286/Aug 2nd and Orbit no. 290/Aug 28th are plotted
(in blue, green and red respectively) at similar orbital phase value of ≃ 200

◦ and 4

different wavelengths. The Equivalent Width is fit to a linear function of Z. Note the
brightness of the plume is higher for the observation on Aug 2nd (in green) than on
the other dates.

interpolation using the slope and the y-intercept, while the other is a critical velocity

vc, which is the value of v where the linear trend in the Equivalent Width would pass

through zero.

Note that the critical velocity defined above involves an extrapolation of the linear

fit into regions where it is not necessarily appropriate since this parameter often

exceeds the escape velocity of Enceladus vesc. Hence, we instead use this parameter

to compute a quantity called the typical launch velocity vtypical. This corresponds to

the weighted average of launch velocities of the particles visible between altitudes of

50 km and 450 km:

vtypical =

∫ vmax
vmin

n(v)v dv∫ vmax
vmin

n(v) dv
(3.2)

where vmin = 100 ms−1 and vmax = 200 ms−1 are the minimum and maximum launch

velocity of particles in the range of altitude 50 km to 450 km, and n(v) is the launch

velocity distribution of the particles. For this analysis, we assume n(v) ∝ (1 − v/vc),
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F igure 3 .5 : The plume’s Equivalent Width at Z = 0.5 (altitude z = 85 km) as a
function of orbital phase for the three dates and four different wavelength values.
The plume’s maximum brightness around the orbital phase of 180

◦ is consistent at
all wavelengths. Additionally, note that the brightness of the plume was higher on
Aug 2nd than it was on June 18th or Aug 28th in 2017 at all wavelengths.

consistent with the observed linear trend between Equivalent Width and launch

velocity shown in Figure 3.4. Using these values, Equation 3.2 can be reduced to:

vtypical =

[
v2

max
2

− v3
max

3vc

]
−
[

v2
min
2

−
v3

min
3vc

]
[

vmax −
v2

max
2vc

]
−
[

vmin −
v2

min
2vc

] (3.3)

Using the above equations, the typical launch velocity is calculated for each

binned cube. Since the trends among the different panels in Figure 3.4 are nearly

the same, the typical launch velocity should not depend strongly on wavelength.

3 .4 results

Figures 3.5 and 3.6 show the plume’s Equivalent Width at Z = 0.5 as a function of

orbital phase for all three dates (June 18th, Aug 2nd and Aug 28th) at 4 different
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F igure 3 .6 : The plume’s Equivalent Width at Z = 0.5 (altitude z = 85 km, same as
Figure 3.5) as a function of orbital phase, grouped by the Orbit no./Date instead of
wavelength. Note that on Aug 2nd the brightness variations are nearly identical at all
wavelengths, spectral trends in the plume’s brightness can be seen in both the June
18 and Aug 28 data at orbital phases below 180

◦.

wavelengths. In addition, Figure 3.7 shows the differences in the Equivalent Width

at different wavelengths for each of the three dates. The Equivalent Width parameter

provides an estimate of the plume’s overall brightness and therefore the moon’s

overall activity level. All three observations covered the range of orbital phase 160
◦

to 270
◦. The plume’s maximum brightness is consistently around the orbital phase of

180
◦ for all these observations, regardless of wavelength. This consistent observation

confirms that the plume’s ice-particle output is highest when the satellite is furthest

from Saturn, consistent with prior analysis of ISS and VIMS plume observations also

shown in Figure 3.1 (Hedman et al., 2013; Nimmo et al., 2014; Ingersoll and Ewald,

2017).

Closer comparisons of these data with the ISS data reported in Ingersoll et al.

(2020) not only confirm some of the variations documented in that work, but also

highlight novel spectral trends. In Figure 3.5 at wavelengths of 1.2 µm the trends

with time and orbital phase among the observations are similar to those seen at

visible wavelengths (Ingersoll et al., 2020), with the plume being brighter on August

2nd than it was on June 18th and August 28th, indicating the overall activity level in

the plume rose and fell during the 10-week interval of these observations. However,



55

F igure 3 .7 : The difference in plume’s Equivalent Width at different wavelengths
and at Z = 0.5 (altitude z = 85 km) as a function of orbital phase, grouped by the
Orbit no./Date. Note that on Aug 2nd the brightness variations are nearly identical
at all wavelengths, spectral trends in the plume’s brightness can be seen in both the
June 18 and Aug 28 data at orbital phases below 180

◦.

the relative brightness of the plume on June 18th and August 28th also varies with

wavelength (see also Figure 3.6 and 3.7). At short wavelengths of 1.2 µm and 1.7

µm shown in panels a) and b) of Figure 3.5, the plume is significantly brighter on

June 18th (in blue) than it was on August 28th (in red), which is consistent with prior

analysis of the imaging data (Ingersoll et al., 2020). However at a longer wavelengths

of 3.7 µm in panel d) of Figure 3.5 the plume’s brightness on these two dates (in blue

and red) are nearly identical. See Section 3.5 for further details on this variation.

Figure 3.8 shows the typical launch velocity of the plume particles derived from

the same linear fits described above as a function of orbital phase for the same four

average wavelength values and three observation dates. The typical launch velocity

plotted across orbital phase in Figure 3.8 are averaged using the inverse of variance

as weights. The weighted averages of these typical launch velocities across four

wavelength ranges and 5 orbital phase values are also provided in Table 3.2. Unlike

the dramatic variations seen in the plume’s brightness, this parameter depends

much less on orbital phase, date or wavelength. In general, the typical launch

velocity increases with increasing orbital phase between 160
◦ and 230

◦. The spectral

variations in the typical launch velocity are subtle, with the values at 3.7µm being

only about 10 m s−1 less than the values at 1.2 µm (see Table 3.2). This is consistent

with Figure 3.4 where the linear trends for each Orbit no./Date are similar for all the
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F igure 3 .8 : Typical launch velocity (in ms−1) for three different orbits derived using
equation 3.3 as a function of orbital phase. Note that the typical launch velocity is
higher on Aug 28th than June 18th or Aug 2nd at lower wavelengths of 1.2 µm. The
typical launch velocity also generally increases with orbital phase. Also note the
variations in the typical launch velocity with wavelength are relatively small.

different wavelengths. Also note that at 1.2 µm the typical launch velocity is slightly

higher on Aug 28th than on June 18th or Aug 2nd.

3 .5 discussion

Figures 3.5 - 3.7 show several interesting trends with orbital phase, time, and

particularly wavelength. Since the wavelength trends are the most unique aspect

of these new VIMS data, we will focus primarily on these aspects of the data here. In

general, particles of different sizes scatter different wavelengths of light with different

efficiencies, so the spectral trends provide information about trends with particle size.

Detailed modeling of these spectra will be the subject of a future work, but we can

already highlight some interesting trends with wavelength that likely reflect trends

with particle size. VIMS data are observed at high phase angles, where particles

scatter light most efficiently at wavelength comparable to the particle radius (Van de
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Hulst, 1957; Hedman et al., 2009). Hence larger particles contribute more to the

plume’s brightness at longer wavelengths. In other words, larger particles tend to

produce a spectrum with a redder slope.

Variations in the plume spectra indicative of variations in the particle size

distribution are most easily seen in Figure 3.7. One June 18th, the olive green curve

is more negative (brightness decreases from 1.7 µm to 3.7 µm) hinting at a higher

number of small particles in the plume on that date. While on Aug 28th both the

magenta and teal curves are above the zero line (brightness increases from 1.2 to 1.7

µm and 2.2 µm). This variation is also visible in the spectra shown in Figure 3.3,

where the Aug 28th data shows a redder slope than the earlier data on June 18th and

Aug 2nd. This indicates that the plume contained a higher fraction of larger particles

on Aug 28th than on June 18th.

These changes in plume’s spectra may provide additional clues about what

happened to produce the brightness changes across these three dates. One potential

explanation for these changes is that they reflect localized sources turning on and off.

Individual jets have been observed to turn on and off over time scales that are not

explicable by simple tidal models (Porco et al., 2014; Spitale et al., 2017, 2020; Ingersoll

et al., 2020). The maximum in plume brightness might be due to a highly collimated

jet only seen on Aug 2nd (Ingersoll et al., 2020). However, this change in plume

activity could also be explained by subsequent opening of new channels or choking

of conduits by ice deposition in the near-surface (Spencer et al., 2018; Ingersoll and

Pankine, 2010) Changes in the particle size distribution as a whole from one month

to another could shed light on the cause of this stochastic variability in the plume

such as how these variations reflect changes in vent conditions. We plan to further

explore the particle size variations in the plume using Mie scattering in our future

work.

Figure 3.8 shows that for all three orbits, the typical launch velocity of particles

increases with orbital phase after the satellite passes the plume maxima near

apocenter. This increase in the velocity with orbital phase holds true for all

wavelengths and is consistent with prior results (Hedman et al., 2013; Ingersoll

et al., 2020). This observation suggests an inverse relation between the particle mass
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flux and ejection velocity at least in the region beyond the apoapsis. Another key

observation is the typical launch velocity is higher on Aug 28th than on June 18th

and Aug 2nd at wavelengths of 1.2 µm while the particle mass flux reflected by

the Equivalent Width in Figure 3.5 is lowest. This observation further alludes to a

complementary change in particle mass flux and typical launch velocity at least at

lower wavelength of 1.2 µm. One possible explanation for this observation is the

narrowing of vents due to tidal stresses as the satellite cross its apocenter might

increase the flow speed while decreasing the mass flux (but see Nimmo et al., 2014,

for potential complications with this idea).

Interestingly, the launch velocity of particles in Table 3.2 and Figure 3.8 shows only

a slight decrease as wavelength increases. This observation is surprising because

previously published models by Schmidt et al. (2008) predict substantial variations

of launch velocity with particle size. According to these models, repeated collisions

with the walls of the conduit reduce the particle velocity relative to the gas. Degruyter

and Manga (2011) also modeled the particle acceleration within the conduit and their

ballistic transport once they exited the vent using the gas flow model of Ingersoll and

Pankine (2010) and the Schmidt et al. (2008)’s collision model and similarly found

that larger particles achieve lower exit speeds. Using Schmidt et al. (2008)’s collision

model for a gas density of 4.85 gm−3 and gas speed of 500 ms−1 and a collision length

of 0.1 m, a large fractional reduction of 0.98 is expected in the typical particle velocity

as size increases from 1.2 µm to 3.7 µm. By contrast, the typical launch velocities in

Figure 3.8 shows a fractional reduction of only 0.01 - 0.16 as wavelength increases

from 1.2 µm to 3.7 µm which is 6 times lower than predicted by previous models

of particle velocities. While the plume’s brightness at wavelength is due to particles

with a range of sizes, there is still a notable difference between the expected reduction

and the observed reduction in launch velocities of the particles.

This finding is also consistent with some of the earlier spectral analysis of the

Enceladus plume. Hedman et al. (2009) determined the relative number of particles

of radii 1, 2 and 3 µm versus height in early VIMS plume observations, which were in

turn converted into velocity distribution of particles. Data obtained at orbital phases

around 90
◦ - 120

◦ indicated that the number density of larger particles of radius 3 µm
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falls faster than the smaller particles of radius 1 µm implying a typical lower launch

velocity for 3 µm particles which was roughly consistent with the Schmidt et al. (2008).

However, the velocity distribution for the data obtained closest to apopasis in Figure

6 of that paper is not significantly steeper for larger particle sizes for most velocities,

indicating the typical launch velocity of larger particles does not decrease steeply,

which is more consistent with these observations.

One possible explanation for this surprisingly subtle reduction in particle velocity

with increasing particle size is that the vent parameters are different from what was

assumed in Schmidt et al. (2008) model. Changing these parameters such that the

critical grain radius is larger could result in a less steep dependence of ejection

velocity on grain sizes in the range from sub-microns to a few microns (Schmidt,

2014; Postberg et al., 2009, 2011b). Another possible explanation is that particle-

particle interactions at the vent are more common than previously thought. Unlike

collisions with the walls of the conduit (that produce trends in particle velocity with

size (Schmidt et al., 2008)), particle-particle collisions would cause grains of different

sizes to have similar velocity distributions. Both particle-wall and particle-particle

collisions are most important near the vent where the gas density rapidly declines,

and the particles become partially decoupled from the gas (so that they are launched

at much lower velocities than the gas) (Goldstein et al., 2018). Assuming a gas density

and a particle density of 1023 m−3 and 2.1 × 1010 m−3 respectively (Yeoh et al., 2017)

at the end of the conduit, the mean free path for particle-gas collision is of the order

of 10−13 m while for particle-particle collision is 1 m. The mean free path for particle-

particle collisions is comparable to the measured vent sizes on the south pole of

Enceladus. Goguen et al. (2013) estimated a fissure width of 9 m based on near-IR

thermal emission spectra acquired by VIMS and Yeoh et al. (2015) estimated vent

diameters of up to 2.8 m. Hence particle-particle interactions could occur at a high

enough rate to affect particle velocities, which has not been taken into account in the

current models.

We plan to model the observed spectral trends to obtain quantitative constraints

on the particle size distribution at different altitudes and times. This information

should further our understanding of the conditions within the vents.
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Table 3 .2 : Typical launch velocity for the three orbits being studied in this paper
across orbital phase and wavelength.

Typical launch Velocity (ms−1)
Wavelength Orbital Phase 279 286 290

(µm) (◦) June 18th Aug 2nd Aug 28th

0.95 - 1.37

174.6 141.3 ± 0.7 141.7 ± 0.5 142.9 ± 0.6
196.0 142.4 ± 0.7 142.6 ± 0.5 143.5 ± 0.6
217.4 143.7 ± 0.5 143.9 ± 0.3 145.1 ± 0.5
238.4 144.5 ± 0.4 146.2 ± 0.4 147.5 ± 1.0
260.2 144.8 ± 0.2 146.9 ± 0.5 146.8 ± 1.1

1.50 - 1.89

174.6 141.1 ± 0.8 141.4 ± 0.5 142.6 ± 0.8
196.0 142.2 ± 0.7 142.7 ± 0.4 142.8 ± 0.6
217.4 143.1 ± 0.7 144.2 ± 0.4 145.6 ± 0.5
238.4 144.1 ± 0.3 146.5 ± 0.2 145.9 ± 1.3
260.2 143.4 ± 0.6 148.1 ± 0.4 147.7 ± 1.5

2.01 - 2.41

174.6 140.7 ± 1.1 141.8 ± 0.6 141.9 ± 0.9
196.0 141.7 ± 0.7 141.6 ± 0.5 140.8 ± 0.8
217.4 142.3 ± 0.8 143.2 ± 0.3 145.0 ± 0.5
238.4 142.2 ± 0.9 145.8 ± 0.4 142.7 ± 1.2
260.2 142.6 ± 0.6 148.3 ± 0.5 145.5 ± 1.1

3.49 - 3.90

174.6 139.7 ± 0.9 140.7 ± 0.5 142.5 ± 0.7
196.0 140.3 ± 1.0 140.8 ± 0.4 142.2 ± 0.9
217.4 141.7 ± 0.6 141.9 ± 0.5 142.2 ± 0.7
238.4 145.0 ± 0.5 142.0 ± 0.8 144.5 ± 0.8
260.2 146.1 ± 0.3 148.2 ± 0.3 143.1 ± 1.4
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chapter 4

Noisy spectra to Particle properties: A machine learning

analysis of Enceladus plume spectral data using VIMS

observations

H. Sharma, M. M. Hedman, and S. Vahidinia

This paper is a continuation on the exploration of Enceladus plume particle population.

Here in we use the same data from the second paper to study the size distribution of plume

particles. I used python code to pre-process the data and apply a machine learning algorithm

to derive the results discussed in the paper. I plan to submit this paper for publication by the

end of 2023.

4 .1 abstract

The physical properties of Enceladus plume particles can shed light on the

processes responsible for driving the plume. Cassini’s Visual and Infrared Mapping

Spectrometer (VIMS) recorded near-infrared spectra of the plume for three Enceladus

orbits around Saturn in 2017 that shows variations that may reflect changes in vent

parameters over various timescales. We use a machine learning model trained

on theoretical spectra generated using Mie scattering theory to deduce the plume

particles’ size distribution. By adding artificial noise to the data this new model

is able to provide helpful constraints on the size distribution parameters. These

size distribution parameters are used to calculate the average size of plume particles.

The observations suggest stratification in the plume where the typical particle size

decreases with increasing altitude. This stratification is stronger at higher orbital

phase and is weaker when Enceladus is closer to its orbital apocenter. The average

particle size appears to increase as the orbital phase increases after Enceladus passed

through its the apocenter during the orbits on Jun 18th and on Aug 2nd but not
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during the orbit on Aug 28th. Secondly, the overall particle size is higher on Aug

2nd, which may be due to a highly collimated jet that was active only on Aug 2nd.

4 .2 introduction

Enceladus emits a plume of water vapor and icy particles from a series of fissures

located near its south pole (Spencer et al., 2006; Dougherty et al., 2006; Porco et al.,

2006). The properties of the plume particles reflect various phenomena occurring

beneath the moon’s surface, and so studying the properties of these particles can

shed light on the processes operating inside Enceladus and the driving forces behind

this geological activity. Measurements from multiple flybys of the Cassini spacecraft

have been utilized to examine the plume’s characteristics (Hansen et al., 2006; Waite Jr

et al., 2006; Spahn et al., 2006; Waite Jr et al., 2009; Hedman et al., 2009; Postberg et al.,

2009; Schenk et al., 2018). At the same time, several different theoretical models have

been developed to understand the plume and its driving mechanism (Kieffer et al.,

2006; Hurford et al., 2007; Schmidt et al., 2008; Brilliantov et al., 2008; Ingersoll and

Pankine, 2010; Goldstein et al., 2018; Kite and Rubin, 2016).

It is important to understand the physical properties of plume particles and how

they vary on different scales in order to propose more data-informed models that

explain the processes involved in driving the plume. There is evidence to suggest

that Enceladus’ plume supplies water molecules and ice grains to the E-ring of

Saturn, so studying the E-ring could also provide information on plume particles.

(Spahn et al., 2006; Horányi et al., 2009; Kempf et al., 2010). Some of the material

from the plume falls back on Enceladus’s surface to form deposits (Kempf et al.,

2010; Southworth et al., 2019). Most of the current plume particle size distributions

are calculated as an extrapolation of the particles in the E-ring and deductions from

Enceladus’ surface deposition. Kempf et al. (2010) concluded using simulations that

the size distribution of the jet particles varies from jet to jet. Southworth et al. (2019)

used surface deposition data from Encealdus plume emissions proposed in Spitale

and Porco (2007), Porco et al. (2014) and Spitale et al. (2015) to characterize the

deposition of particles in the size range, 0.6 - 15 µm. The distribution of particles
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on Enceladus’ surface (derived from Cassini-VIMS surface spectra) is dominated by

particles ranging in size between 15 ± 5 and 60 ± 20 µm with a peak at about 20

µm (Jaumann et al., 2008). In-situ measurements of the dust particles described by

Postberg et al. (2011b) indicate that the plume is compositionally stratified with a

mean particle radius in the range of 0.4 - 1.0 µm.

In this study, we use VIMS spectral data to constrain the particle size distribution

of the plume using a new methodology that involves machine learning. For this

analysis, we focus on the VIMS data for 3 different orbits of Enceladus around Saturn

dated June 18th, Aug 2nd and Aug 28th, 2017 (Sharma et al., 2023). Cassini’s VIMS

instrument recorded the spectra of Enceladus’ plume at a wide range of wavelength

from 0.3 µm to 5.2 µm at high phase angles. The variations in the shape of the

spectra from one orbital position to the next, across altitude, and from one orbit to

the next can be translated into shifts in particle size distribution across the same

scales. In order to accomplish this task, the observed spectra need to be compared to

theoretically generated spectra to find the best fit for the size distribution parameters.

Theoretical spectra are generated using Mie scattering theory for a power law size

distribution defined by a minimum size, maximum size, and power law index. A

machine learning model is then trained on these theoretical spectra and the trained

model is then used to estimate the size distribution parameters for the observed

spectra of the plume particles. In order to design a more robust machine learning

model, artificial noise is added to the theoretical spectra so simulate the noise in

the observed spectra. This step makes the machine learning model more robust

at predicting values on noisy data. Similarly, by applying the same algorithm to

multiple realizations of the observed plume spectra, we obtain robust error bars on

the relevant parameters. The results of these calculations are discussed in Section 4.4.

4 .3 methods

This section describes the three steps involved in estimating the size distribution of

Enceladus plume particles across orbital positions and distance from the south pole.
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F igure 4 .1 : This figure shows the pre-processing applied to the Enceladus plume
spectra. This process is applied to three different orbits - 279, 286 and 290, and the
numbers shown here correspond to Orbit 279. In the first step outliers images/cubes
are identified (an example is shown in red). After removing the outliers these
cubes are binned into groups of 10. The cubes are then integrated into Equivalent
Width and outliers are identified across wavelength at each position. After removing
outliers across wavelength, the spectra is binned across 8 wavelength channels as
shown in Figure 4.2. In the next step, the spectra is further binned by calculating
weighted average across orbital phases of bins shown in Figure 4.3. Using the
conservative error bars from the previous step, the plume spectra are augmented
by generating 20 realizations of the plume spectra at each position.

Section 4.3.1 details the pre-processing applied to the observed plume spectra

derived from the VIMS observations for 3 dates in 2017. Section 4.3.2 details

the parameters of the generated theoretical Mie spectra used to train the machine



67

learning models and the similar pre-processing applied to it. Section 4.3.3 describes

the machine learning algorithms applied to derive the parameters of particle size

distribution.

4.3.1 Observed Spectra/Plume Spectra

This paper considers the VIMS observations for three different Enceladus orbits

corresponding to the following dates in 2017 - June 18th/Orbit no. 279, Aug

2nd/Orbit no. 286 and Aug 28th/Orbit no. 290. Each orbit consists of a set of

orbital positions defined by the orbital phase value (the angular distance between the

moon’s current position and its orbital pericenter, equivalent to the moon’s orbital

mean anomaly) and includes the orbital apocenter at an orbital phase of 180
◦. At

each orbital position there are several altitude positions that refer to the distance from

the south pole of Enceladus. The VIMS data are available for each orbital position

and the different altitudes at that position. The procedure applied to improve the

signal-to-noise ratio of these observations is explained in greater detail in Sharma

et al. (2023). These steps yielded the spectra of Enceladus plume at wavelength

range between 1 µm and 4 µm for the three different orbits each with its own set

of orbital positions (> 10 positions for each orbit) ranging from 130
◦ to 300

◦ and at

four altitudes from the south pole ranging from 50 km to 350 km. The raw data

in each VIMS cube are converted to I/F values and re-projected onto a set of (X by

Y) common spatial coordinates in a reference frame that contained the moon’s spin

axis. In these coordinates the center of Enceladus is located at [0, 0] and the negative

y-axis is aligned with Enceladus’s spin axis (Hedman et al., 2013), which results in a

cube for each orbital position and wavelength. Table 4.1 shows the exact details for

each orbit. For the sake of reference, we summarize the processing steps for these

spectra in Figure 4.1. The processing of these re-projected cubes begins by identifying

anomalous cubes that contain instrumental artifacts are identified as outliers and

are removed from all spectral channels, (see Step 1 in Figure 4.1). Then, sets of 10

cubes are averaged to improve the signal-to-noise ratio (Step 2 in Figure 4.1) Next, in

Step 3 of Figure 4.1, we convert the brightness data in the images into estimates of

the plume’s equivalent width at 8 different altitudes. This step involved removing
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background across the cube and calculating equivalent width as the total integrated

brightness in a horizontal slice through the plume (see Sharma et al. (2023) for more

details).

F igure 4 .2 : Example Enceladus plume spectrum showing the plume’s Equivalent
Width (km) across wavelength ranging from 1.1 µm to 4.0 µm. The spectrum has
a clear dip around 3.0 µm corresponding to the water-ice absorption band. The
blue vertical lines at 2.5 µm and 3.3 µm define two different regions outside the
absorption band that are used to identify the first set of outliers using a median
filter. The blue scatter points show the EW at 174 wavelengths and the red scatter
points show the outliers that are removed from the spectra. This signal is then binned
across 8 wavelength channels each shown using the black dashed lines. The averaged
Equivalent width with respective error bars is shown as black squares.

Next, in Step 4 outliers are removed across wavelength channels and the spectra

is binned across 8 wavelength channels. We exclude data beyond 4.0 µm because

the signal-to-noise ratio is significantly lower at these wavelengths. Figure 4.2 shows

the resulting plume spectra in terms of Equivalent width for orbit no. 279 at an

altitude of 50 km and an orbital phase of 204
◦. There is a dip around 3 µm due to

the fundamental water-ice absorption band. The blue vertical lines at 2.5 µm and 3.3

µm show the two regions outside the absorption band that are used to identify the

first set of outliers across wavelength channels using a median filter in each region.

The dashed black lines show the wavelength ranges that are averaged over during

spectral binning and the blue scatter points show the binned values. Before averaging
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the signal in each wavelength bin (defined by black dashed lines) a median filter is

applied to identify a second set of outliers in each bin. After removing all outliers

across wavelengths (shown in red in Figure 4.2), the Equivalent width is obtained for

each wavelength bin (shown by the black squares in Figure 4.2).

F igure 4 .3 : Example Enceladus plume spectra showing the plume’s Equivalent
Width (km) versus wavelength. The red and blue lines shows the EW at orbital
phases in the range 200

◦ to 210
◦. The dark purple line shows the weighted average

of EW with conservative error bars. These error bars as calculated as the square root
of the sum of squares of error on the weighted average and the standard deviation
across the two orbital position shown in red ad blue.

The cubes/images are further co-added into bins of orbital phase (see step 5 of

Figure 4.1). Figure 4.3 shows an example where the spectra is binned across orbital

phase. To co-add the spectra across orbital phases weighted averaging is used with

inverse of variance on the Equivalent width as weights. The standard deviations of

this weighted average is the standard deviations of the co-added spectra. To account

for any underestimation of the error bars, a conservative error is calculated for the

plume spectra. A conservative error bar is the square root of the sum of squares

of the error obtained from the weighted average and the standard deviation of the

Equivalent width across the orbital phase bin.

The dark purple line in Figure 4.3 shows the processed plume spectra after

binning across wavelength and orbital phase at an altitude of 50 km and a binned
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orbital phase of 207
◦. The shape of the spectra around the absorption band varies

from one position to another. This change in the spectral shape can help us derive

information about the size distribution of the particles in the plume.

F igure 4 .4 : An outline of the processing steps applied to the Mie spec-
tra/theoretical spectra. Theoretical spectra is generated for a power law size
distribution defined by a minimum radius, maximum radius and power law index.
676 combinations of the maximum radius and power law index are used for each
of 32 phase angles to generate the theoretical spectra. The relevant Mie spectra
corresponding to the scattering angles of each orbit is selected and averaged over bins
of scattering angles. In the final step, 30 realizations are created for each variation of
Mie spectra, which will be used to train a robust machine learning model that results
in best fit for observed spectra.
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4.3.2 Theoretical/Mie Spectra

In order to translate the observed spectra into information about the size distribution

parameters of particles in Enceladus’ plume, we need to compare the observed data to

predictions from Mie theory. Mie theory is based on Maxwell’s electromagnetic field

equations and predicts the scattering intensity as a function of particle size, angle

of observation, and wavelength and polarization of the incident beam provided that

the particle being measured is spherical, internally (optically) homogeneous, and

of known refractive index. From this Mie scattering pattern, information related

to the size distribution of the particles (where the size of the scattering particles is

comparable to the wavelength of the light) can be obtained.

Figure 4.4 shows the pre-processing steps applied to Mie spectra, which is similar

to the processing for the spectra of plume particles as shown in Figure 4.1. In step 1,

we generate theoretical spectra based on Mie scattering theory for a large parameter

space using the SF_SD function from the python library PyMieScatt created by

Sumlin et al. (2018). The parameters required to generate scattering intensity pattern

are the wavelength of the incident light, the wavelength-dependent refractive index

of material, the observed scattering angle, and the particle size distribution. The

wavelength of the incident light and the range of scattering angles are the same as

the VIMS observations i.e. 0.9 to 5.0 µm and 18
◦ to 24.4◦. The wavelength-dependent

refractive index of crystalline water-ice is defined using Mastrapa et al. (2009) at 20 K.

The size distribution of particles is assumed to follow a truncated power-law defined

by a power index, minimum radius, and maximum radius. The minimum radius

is assumed to be 0.1 µm since the near-infrared spectra are not sensitive to this

parameter. The maximum radius and power law index vary from 2.0 µm to 4.5

µm and -3.5 to -1.0 with a resolution of 0.1 µm and 0.1 respectively. This yields 676

combinations of size parameters and for each of these combinations the theoretical

spectra is generated for 32 scattering angles ranging from 18
◦ to 24.4◦. Figure 4.5

shows examples of Mie spectra for a fixed scattering angle of 21.9◦ and for different

combinations of size distribution parameters (maximum radius and power index).

The shapes of this theoretical spectra capture the water-ice absorption band that we
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observed in the plume’s observed spectra. The other combinations of these size

distribution parameters provide a large parameter space to fit the observed spectra.

F igure 4 .5 : A selection of the Mie spectra generated for different size distribution
parameters at a scattering angle of 21.9◦. These theoretical Mie spectra is generated
using a Python package called PyMieScatt for a range of size distribution parameters
that follow a truncated power law. The minimum radius is assumed to be constant
at 0.1 µm and the maximum radius is varied from 2.0 µm to 4.5 µm and the power
law index ranges from -3.5 to -1.0.

Each orbit has its own range of scattering angles and in step 2 of the pre-

processing, the Mie spectra are chosen for a subset of the scattering angles

corresponding to the appropriate orbit. The wavelength range of the spectra is then

reduced to 4.0 µm as is the range selected for the observed plume spectra. The

theoretical Mie spectra are then binned in the similar way as the observed plume

spectra to yield brightness values at 22 wavelengths. In step 3 of Figure 4.4 the

theoretical spectra are further binned across scattering angles using the same bins

used in step 5 of the pre-processing of observed plume spectra. This step generates

the spectra for the same range of scattering angles as the observed spectra during the

appropriate orbit.

We next augment these theoretical spectra with realizations of noise based on the

errors from the observed spectra. Since the plume spectra are defined for several

different altitudes, the error bars on the spectra are averaged across all 8 altitudes.

These averaged error bars are then multiplied by a randomly generated standard

normal distribution and added to the Mie spectra. This process is used to create 30
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realizations of each Mie spectra as shown in step 4 of Figure 4.4. Figure 4.6 shows an

example Mie spectra in black and its 30 realizations in color. Since the plume spectra

is defined for several different altitudes, the error bars on the spectra are averaged

across all 8 altitudes. These averaged error bars are then multiplied by a randomly

generated standard normal distribution and added to the Mie spectra. This process

is used to create 30 realizations of each Mie spectra as shown in Step 4 of Figure 4.4.

Figure 4.6 shows an example Mie spectra in black and its 30 realizations in color.

A similar process is also applied to each plume spectra to obtain error bars on the

predicted target variables shown in Step 6 of Figure 4.1. Figure 4.7 shows an example

plume spectra in black and its 20 realizations in color. These realization were obtained

by adding the spectra and the product of random standard distribution and error on

the observed plume spectra. The motivation behind calculating these realizations is

used to obtain error bars on the maximum radius and power law values estimated

using machine learning model as discussed in the next Section 4.3.3.

F igure 4 .6 : Example augmented Mie spectra for a scattering angle 21.9◦ and a
maximum radius of 2.2µm and a power law index of -1.2. in black and 30 realization
of the spectra in color. The various realizations are calculated by adding the product
of a random standard distribution and the error bars on the observed plume spectra
to the generated Mie spectra.
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F igure 4 .7 : Example augmentations of an observed Enceladus plume spectra at an
altitude of 50 km and an orbital phase close to 200

◦ after pre-processing. The black
line shows the binned spectra obtained after weighted average across orbital phase
and the colored lines show the 20 realizations created using the conservative error
bars. The realizations are calculated as the sum of the plume spectra and the product
of the error bars and random standard normal distribution.

4.3.3 Machine Learning

In principle, we can identify the theoretical spectrum that is closest to each

observed spectrum using appropriate statistics like chi-square goodness of fit method,

and thereby determine the most likely values of the size distribution parameters.

However, in practice the observed spectra are a nonlinear function of the particle

size distribution parameters, and the data are sufficiently noisy that multiple

theoretical spectra provide comparably good matches to each observation. These

issues complicate any effort to reliably estimate the error bars on the size distribution

parameters. Fortunately, we have developed a machine-learning algorithm that can

handle these complications in an relatively automatic manner.

The specific machine learning algorithm we use is a supervised learning

algorithm. A supervised learning algorithm is where you have input variables (X)

and an output variable (y) and you use an algorithm to learn the mapping function

f(X) from the input to the output such that, y = f(X). The goal is to approximate
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the mapping function so accurately that the model can predict the output variables

y for new input data X. Regression is a sub-type of supervised machine learning

where in the target variable is continuous. In this case, the theoretical spectra

generated using Mie scattering theory can be used as input X with two continuous

target variables (y): maximum radius and power index (the minimum radius is

assumed to be constant at 0.1 µm). A supervised regression machine learning model

can approximate a mapping function between the input spectra and the target size

distribution parameters and then be applied to the observed spectra.

A machine learning model is termed robust when it performs consistently in

real-world scenarios where data may be noisy, unexpected, or contain variations.

The theoretical spectra being used as input for the supervised regression model is

generated using the Mie scattering theory and contains no errors or noise while the

observed plume spectra contains noise or variations. A machine learning model

that is trained on perfect, noiseless data, such a model does not generalize well to

new data that may contain noise. To make the model robust to noise, we create

realizations of Mie spectra using the variance on observed plume spectra (discussed

in Section 4.3.2). This process helps us to train a more reliable machine learning

model that can detect the relationship between the shape of the spectra and the size

distribution parameters irrespective of noise in the data.

A machine learning model trained on the realizations of the noisy theoretical

spectra can estimate the maximum radius and power index for each observed plume

spectra. These results are devoid of error bars. Realizations are also calculated for

the observed spectrum as discussed in Section 4.3.2. With 20 realizations for each

observed spectra, 20 target variables can be predicted and averaged to obtain the

standard deviation on the result. The machine learning model trained on robust

data can now be used to estimate the size distribution parameter for each realization

enabling us to average these results in order to obtain more reliable estimate with

error bars on them.

There are several machine learning models available that have a range of

properties, and we are trying to evaluate, which algorithm to use for the current

problem. The accuracy of the ML model can be judged by testing the model’s
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F igure 4 .8 : Flow chart for the machine learning approach used in this project. This
begins with the Mie spectra derived in Figure 4.4. The Mie spectra are then split into
80:20 ratio as training and testing data. The machine learning model is trained on the
training data and an error is calculated on the test data. The trained model is then
used to estimate the size distribution of plume particles.

performance on the theoretical data. The theoretical spectra dataset can be divided

into two parts: training and testing as shown in Figure 4.8. The mapping function

is modeled on the training data and its accuracy is calculated on the test set to

determine how well the model fits the data. In the case of a regression problem,

we use root mean squared error on the predicted target labels and the original target

labels to find the error on test set of the data. In order to compare the root-mean-

squared error computed by each model we use the K-fold cross validation. K-fold

cross validation divides the data into k-subsets. This method is repeated k times

where in each step the model is trained on the k-1 number of folds and the model

is tested on the kth set. The four different models compared are: Linear regressor,

K-nearest neighbors regressor, Decision tree regressor and Random forest regressor

as shown in Figure 4.9. Figure 4.9 shows the root mean squared error on the k folds

in the form of a box plot. The random forest does better than the other models but

takes much longer. We chose to use K-nearest neighbors regressor because it is less
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F igure 4 .9 : The x-axis shows the 4 machine learning models being compared and
the y-axis shows the root-mean-squared-error on the predicted values. This plot
shows a relative metric of different algorithms rather than an overall assessment
of the quality of the fit. A machine learning algorithm provides a framework that
can handle the non-linear relationship between the plume brightness at different
wavelengths and particle size distribution parameters. These models are trained
on k-1 folds of data and used to make predictions on the kth fold to obtain these
cross validation scores. Finally, K-nearest neighbors is used to calculate the plume’s
particle size distribution as it is less computationally expensive and has a low error
rate.

computationally expensive as it only takes 3 minutes to run the model and the root

mean squared error has a median value of 0.3. This accuracy and efficient of the

model affirms that the model performs well on theoretical spectra with added noise

in it and can be used on observed spectra.

The chosen machine learning model is called K-nearest neighbors and uses

the input data features to calculate the best fit. The input data also need to be

transformed for the model to work accurately. The features of the dataset consists of

the Equivalent Width at different wavelength channels and the scattering angle as the

input and the maximum radius and power index as the output variables. K-nearest

neighbors uses an inverse distance weighted average of the K-nearest neighbors of
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the sample data. In order to calculate the euclidean distance between data points we

need a normalized range for the data. The range of features is different and since

K-nearest neighbors uses a distance metric the features need to be scaled. Feature

scaling is applied to the features such as the mean is 0 and the standard deviation

is 1. The K-nearest neighbors regressor is trained on the theoretical Mie spectra and

is tested on the test set. The trained model is then used to make predictions on the

observed plume spectra.

The target variables give us the best fit Mie spectra for each observed plume

spectra. We can also verify that this process yields sensible results by comparing the

observed spectra to the predicted spectra for the particle size distribution parameters

provided by the algorithm. Figure 4.10 shows the plume spectra with the predicted

Mie spectra for a few example observations. These plots show that the machine

learning model provides a reasonably good fit for the observed spectra of plume

particles.

4 .4 results and discussion

We can now use the machine learning model to compare particle size over the

different scales such as across orbital phase, altitude, and from one orbit to another.

The machine learning model gives a reasonable estimate of the parameters of the

size distribution of particles in the plume. The variations in these parameters across

all scales are shown in the Figure c.1 and Figure c.2 available in the Appendix c.1.

While the fits yield estimates and errors for the index and cut off, it is also useful to

consider the average particle size. Since the size distribution is assumed to follow a

power law, an average particle size can be calculated for a specific set of parameters.

The maximum particle size and power index are used to calculate the average particle

size as follows:

savg =

∫ smax
smin

sp+1 ds∫ smax
smin

sp ds
(4.1)

where smin is the minimum particle size assumed to be 0.1 µm, smax and p are

the maximum particle size and the power index for the spectra being studied.
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F igure 4 .10 : Example plume spectra (in color) over plotted with Mie spectra (in
black) using the best-fit size distribution predicted using the machine learning model.
The theoretical Mie spectra are a reasonably good fit on the plume spectra. This
reaffirms that the machine learning model is indeed working and gives good results.

Ingersoll and Ewald (2011) used ISS images at distinct wavelength filters to fit a

grain size distribution model that results in a median-grain radius of 3.1 µm, which

is higher than the average particle sizes obtained in the current analysis. This

discrepancy could be due to the different wavelength ranges being explored by the

two instruments and the fact that the Ingersoll and Ewald (2011) model assumes that

the particle size distribution to be independent of altitude/distance from the south

pole.

Figure 4.11 shows the average particle size for all three orbits at different altitudes.

On of the common variations among all orbits/dates is the slight reduction in the

average size of plume particles as altitude increases. This general trend is consistent

with the conclusions made in Hedman et al. (2009) and is generally expected. There
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are variations in this decrement that are interesting. The degree of this decrement

is different on different dates/orbits. Another important observation is the change

is average particle size as the orbital phase increases. For these observations, we are

able to observe Enceladus crossing its apocenter around 180
◦ to getting closer to its

orbital pericenter at 360
◦/0

◦. The average particle size appears to decrease as the

orbital phase gets closer to 300
◦. These variations are discussed in more detail below.

In Figure 4.11 on June 18th/Orbit no. 279 at a distance of 50 km from the south

pole of Enceladus, the average size of particles in the plume increases as the orbital

phase increases i.e. as the moon moves beyond its orbital apocenter (180
◦). This

increase in average particle size appears to be phase shifted with respect to the

plume’s brightness maxima. At the apocenter, Enceladus is farthest from Saturn

and the cracks at the south pole are being pulled apart due to tidal stresses (Hedman

et al., 2013). The wider cracks around the apocenter could be contributing to the rise

in average size of plume particles.

The June 18th/Orbit no. 279 observation covers a larger range of orbital position

as compared to Aug 2nd/Orbit no. 286 and Aug 28th/Orbit no. 290. There is

some evidence to suggest a subtle drop in the average size of plume particles as the

orbital phase increases beyond 280
◦ at altitudes of 150 km and 250 km, as the moon

progresses towards its orbital pericenter (360
◦ or 0

◦). This hints at a weak direct

relationship between the crack width and plume particle size, which appears to be

phase shifted.

There is a slight drop in the overall particle size as the altitude increases from 50

km to 350 km. One possible explanation is that the larger particles are launched at

a slightly lower velocity than smaller particles and thus are unable to reach higher

altitude from the south pole. This drop is larger at higher orbital phase for orbit 279

on June 18th.

On Aug 2nd/ Orbit no. 286 at a distance of 50 km from the south pole, we see an

increase in the average particle size as the orbital phase increases beyond 200
◦. This

trend is present at all altitudes in this particular observation. Ingersoll et al. (2020)

reported that the brightness of the plume is higher on Aug 2nd than on June 18th and

Aug 28th at short wavelengths due to a highly collimated jet seen only on Aug 2nd
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(Ingersoll et al., 2020). The lack of a trend in the average particle size with altitude for

orbit 286 on Aug 2nd implies larger particles are no longer being launched at lower

speeds, which might be consistent with more intense jets.

F igure 4 .11 : The average particle radius of the plume particles as a function of
orbit phase and altitude for the three orbits. The shaded region highlights the degree
of uncertainty on the estimated values. There is an overall reduction in the particle
size as the altitude increase from 50 km to 350 km. This over fit suggests a degree of
stratification in the plume.

On Aug 28th/Orbit no. 290 the average particle size around orbital phase of 180
◦

is slightly higher than June 18th and Aug 28th. Sharma et al. (2023) noticed that

the spectra from Aug 28th have a redder slope than the earlier data on June 18th

and Aug 2nd and proposed that this observation indicated that the plume contained

a higher fraction of larger particles on August 28. This observation is because the

particle size is higher in orbit 290 than in the other 2 orbits as seen in Figure 4.11.

The trends of increasing size with orbital phase is not present for orbit 290, but there

is stratification in the plume at high and low orbital phase. At low orbital phase of

around 150
◦ and high orbital phase of 250

◦ the average particle size decreases with

increasing altitude.
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On all three dates, June 18th, Aug 2nd and Aug 28th, there is a slight decrease in

the overall average particle size as altitude increases. This decreases in size implies

that the average of plume particles varies with altitude thus introducing stratification

in the plume. The stratification in the plume column could indicate that the smaller

particles are faster while the larger particles slow down and are unable to reach

higher altitudes. We observe an increased stratification at higher orbital phase of

250
◦ and a lower stratification at lower orbital phase of 180

◦.

Numerical models have been proposed to understand the physics of Enceladus

south polar plume that takes into account the particle grain size and how they interact

with gas (Yeoh et al., 2015). Yeoh et al. (2015) reasoned that the distribution of grain

size, speeds and temperature need to be used an an input to predict and accurate

model that can simulate the subsurface flow properly. The observations studied

in this paper and the results of average particle size variation could be used to

design/propose more thorough models that explain the origins and the processes

involved to generate Enceladus’ plumes.
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chapter 5

Conclusion

This dissertation focused on three different papers that explored noisy spectral data

of dust particles on our own Moon and Saturn’s moon Enceladus. The first paper

on Lunar dust used the data collected by Lunar Atmosphere and Dust Environment

Explorer (LADEE) spacecraft’s Ultraviolet and Visible Spectrometer (UVS). The UVS

conducted a series of Almost Limb Observations near the dawn-terminator region

of the Moon. The paper discussed in details the methods used to reduce the noise

in this spectral data such as averaging and background subtraction. The filtered

data were then compared to the predicted spectra for dust atmospheres with various

exponential scale heights and particle size distributions. Even though we do not find

evidence of dust above the Moon’s surface, we can use the generalized spectra of

dust particles to isolate the part of the signal that can constrain dust density limits

above the Moon’s surface. For a mono-dispersed size distribution at a particle size

of 0.1 µm and a scale height of 1 km the upper limit for dust density at the Moon’s

surface is 3.1 x 10
4 m−3. For the dust population that follows a differential size

distribution proportional to s−3 and s−4 ranging from 0.3 to 10 µm at a scale height

of 1 km, the upper limit on dust density at the Moon’s surface is 140 m−3 and 190

m−3 respectively. At an altitude of 10 km above the Moon’s surface these values

reduce to around 6 x 10
−3 m−3 and 9 x 10

−3 m−3 respectively.

These constraints on dust population should inform models of interactions

between the lunar surface and any ambient plasma. Our limits on the dust density

within 3 km of moon’s surface equal to 142 m−3 are orders of magnitude higher

than the measured densities of 0.0004 m−3 for particles larger than 0.3 µm obtained

by Szalay and Horányi (2015) using LDEX data. LDEX could only measure dust

densities down to altitudes of around 3 km while LADEE-UVS can probe lower

altitudes as the line-of-sight touches the surface during the Almost Limb observations

studied in this analysis. Rennilson and Criswell (1974) used Surveyor data to

measure a tenuous cloud formed temporarily just above sharp sunlight/shadow
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boundaries in the terminator zone and estimated column grain density of 50 grains

cm−2 for particles of size 10 µm and converting this value into a density estimate

is challenging because the column length is not well constrained. The current dust

density limits in this work at most constrain the very tail end of the dust population

observed by Surveyor. These higher limits mean that additional low-altitude dust

populations besides the dust population measured by LDEX could potentially exist

on the Moon, including electrostatically lofted dust that can only reach low altitudes.

Electrostatically lofted dust could answer questions about the charged state of the

regolith as dust is raised above the surface due to electric fields. Additionally, the

dust density limits obtained in this study are in agreement with models that predict

higher dust densities closer to the lunar surface. For example, the theoretical model

by Popel et al. (2018) and the experimental measurements by Yeo et al. (2021) propose

dust lofting mechanisms involving an electrostatic potential barrier in the region of

the terminator and a photoelectron sheath. Using these models the lofting heights

on the Moon were found to be about 30 cm for 2 - 3 µm radius dust grains and 3

km for 0.1 µm radius grains. The latter altitude is in the range of observations in the

current analysis. Hence, these observations constrain the density of such small grains,

which are expected to have negative charges and thus contribute to the lunar plasma

environment. Future measurements like these could therefore potentially constrain

the size and charge state of the lunar dust.

The amount of dust above the lunar surface could also constrain overturning

rates in the top 1 mm of the lunar regolith, since the total amount of dust constrains

the rate at which micrometeoroids hit the lunar surface and cause regolith overturn.

For example, Pokornỳ et al. (2019) proposed a model with a meteoroid mass flux of

approximately 1.4 tons per day impacting the lunar surface that gave an estimated

gardening rate of about 30 cm per million years. However, this model also predicts

the density of lunar ejecta cloud to be four orders of magnitude larger than reported

values by LADEE dust detector (Pokornỳ et al., 2019; Szalay and Horányi, 2015).

However, these limits are in agreement with the dust density limit of 142 m−3 for

the size range of 0.3 - 10 µm obtained in this analysis. This agreement between the

predictions of Pokornỳ et al. (2019)’s model and the current limits implies that the
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conditions of the model would be a reasonable estimate of the lunar environment

with an ejecta mass product rate of 3 x 10
−12 g cm−2 s−1. The amount of dust lofted

also depends on the properties of the surface like its cohesion and composition,

so tighter constraints on the dust density can help further constrain these regolith

properties.

These dust density limits also have practical application for more accurate

and safer future lunar exploration. For example, sub-micron dust grains could

contaminate astronomical observations of infra-red, visible and UV light over the

majority of the lunar surface and a thorough understanding of lunar dust behaviour

is necessary in order to effectively tackle these problems in the future (Murphy and

Vondrak, 1993). The dust density limits obtained here can therefore help define

design specifications for remote-sensing instruments that will be stationed on the

Moon.

The next part of this dissertation explored the data recorded by the Visual and

Infrared Mapping Spectrometer (VIMS) onboard Cassini. VIMS observed Saturn’s

moon Enceladus, specifically the plumes emanating out of the cracks on its south

poles. The plumes contain water vapor and icy dust particles that may originate

from its subsurface ocean. The second paper studies the spectra of the plume to

understand the variations in velocity of dust particles with Enceladus’ orbital position

and from one month to the next. The spectra recorded by the VIMS instrument

also have a low signal to noise ratio and this work also details the methods used

to reduce noise and improve the signal strength. The outliers are removed in two

different ways at different steps of the process and the spectra is averaged across

orbital phase and wavelengths. These procedures helped us obtain data that was

then used to derive typical velocity of dust particles using the plume’s spectral profile

with altitude/distance from the south pole. We found that at wavelengths between

1.2 µm and 3.7 µm, the typical launch velocity of dust particles in the plume ranges

between 140 ms−1 and 148 ms−1.

The typical launch velocities of plume particles obtained in this analysis do not

vary as expected by the current models, which implies that the dynamics of the

plume at the vents are different from what had been proposed. The vent openings
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at the south pole of Enceladus act a bit like a nozzle, which allows the gas to leave

the vent at supersonic speeds. By contrast, the plume particles are moving slower

than both the observed and the expected speed of vapor coming from liquid water

exposed to vacuum (∼ 450 m/s Hansen et al., 2011). The most common explanation

for this is that the particles are both accelerated upwards by the water vapor but

are slowed on its way out of the cracks by collisions with the walls. These sorts of

models naturally lead to larger particles having lower launch velocities (eg. Schmidt

et al. (2008)). However, we observed a much smaller reduction in particle velocity

than these models would predict. Schmidt et al. (2008) expects a large fractional

reduction of 0.98 in the typical particle velocity as size increases from 1.2 µm to 3.7

µm, while only a fractional reduction of 0.01 - 0.16 is observed in the current work

for the same wavelength range, which is 6 times lower than predicted. There are

two possible explanations for this observation: either the vent parameters are very

different from what was assumed in Schmidt et al. (2008) model, or particle-particle

interactions at the vent are more common than previously thought. The mean free

path for particle-particle collisions is 1 m and is comparable to the measured vent

sizes of 2.8 m and 9 m on the south pole of Enceladus (Goguen et al., 2013; Yeoh et al.,

2015) implying that these collisions could occur at the vents affect the launch velocity

of particles in the plume.

A simplistic view of these particle-particle interactions would be that smaller

particles with higher velocities could kick up the larger particles with slower

velocities, accelerating them through the vent columns. These sorts of particle-

particle collisions would naturally cause grains of different sizes to have similar

velocity distributions. Future models of the particle and vapor dynamics near

the vents will therefore likely need to consider these particle-particle interactions.

The complete model that explains the complex affects of particle-particle collisions

requires further work and is beyond the scope of this work.

The third paper takes the exploration of Enceladus plume particles one step

further. This paper dived into how noisy spectra can be used to derive the physical

properties of particles in a reliable and efficient manner. The observed plume spectra

are compared to the theoretical spectra using a machine learning model to derive
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size distribution parameters for particles of the plume. These parameters are then

used to calculate the average size of particles in the plume and how it varies with

orbital position, altitude and from one orbit of Enceladus to the next. The significance

of this methodology lies in the way it handles noise in spectral data. A form of

artificial noise is added to both the theoretical spectra to better train the machine

learning model and to the observed spectra to obtain error bars on the parameters

estimated using the trained machine learning model. This robust machine learning

model enables us to predict the size distribution parameters for Enceladus’ plume

particles for three different dates in 2017. On all three dates, there is a slight decrease

in the overall average particle size as altitude increases. This indicates a degree

of stratification in the plume profile with smaller particles preferentially reaching

higher altitudes. The degree of stratification varies with orbital phase and from orbit

to another.

The combined information on the velocity and size distribution of plume particles

should further advance our knowledge of the vent dynamics at the south pole of

Enceladus. For example, both the average particle size and the typical launch velocity

of the particles tend to increase as Enceladus crosses its orbital apocenter, with the

launch velocities and particle sizes only decreasing at orbital phases beyond 300
◦.

These coordinated changes may both reflect systematic variations in the width of the

vents at the south pole. That is, as the cracks open near apocenter, this could lead to

increases in both particle size and velocity, but as the cracks shut down the pressure

in the system is enough to sustain higher velocities and larger particles until the

moon gets within 60 degrees of pericenter.

The vent dynamics can be used to understand the connection between the ocean

and Enceladus’ surface. According to the gravity field measurements and the

rotational asymmetries, Enceladus may be inferred to have a differentiated interior

consisting of a low-density rocky core (with an estimated radius of 191–198 km) that

is contact with a global sub-surface liquid water ocean (Iess et al., 2014; McKinnon,

2015). Iess et al. (2014) used long-range data collected by the Cassini spacecraft

to construct a gravity model of Enceladus and suggested the presence of a large,

subsurface ocean 30 to 40 km deep. The ice shell thickness is found to be variable
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using a combination of observed libration amplitude and measurement of Enceladus’

topography (Thomas et al., 2016; Nimmo et al., 2011) and may be only a few

kilometers thick at the south pole (Čadek et al., 2016). Tidal heating in combination

with a porous core throughout which water can circulate is thought to be the main

heat source, preventing quick freezing of the subsurface ocean (Nimmo et al., 2014;

Roberts, 2015). The temperature of the ocean is expected to be near the freezing point

of pure water (≈ 0
◦C) and with only small variations with the change in ice thickness

(0.1 ◦C) (Zeng and Jansen, 2021). Freezing of the water surface may be avoided

by water vapor pressure buildup over the water surface, due to a combination of

dissipative heating of water and a combination of the narrowing of the fractures

toward the surface and viscous throttling of the escaping vapor (Postberg et al., 2009;

Ingersoll and Pankine, 2010; Nakajima and Ingersoll, 2016; Yeoh et al., 2015; Kite and

Rubin, 2016; Schenk et al., 2018).

The characteristics of the plume’s particles and gases are clues to the physical

and chemical processes at the ocean-gas interface. For example, Postberg et al. (2009,

2011a) suggest that different particles in the plume could have different origins, with

smaller ice-rich grains condensing from the vapor phase and larger grains erupting

from the liquid water surface. Nakajima and Ingersoll (2016) and Porco et al. (2017)

also suggested the process of controlled boiling involving bubbles at the surface

could launch micrometer-sized particles from the ocean. These different particle

populations could be consistent with the variations in the size stratification we

observe in the plume, and could therefore further constrain the subsurface conditions.

We observed a slight decrease in the overall average particle size as altitude increases

showing smaller particles reaching higher altitudes, implying stratification in the

plume. For example, if the larger particles launched at lower speeds do in fact come

from the water interface, while the faster small particles are formed in the vapor, then

the variations in the relative amounts of these particles should constrain the depth

of the water surface within these cracks. This is relevant to future exploration of the

potentially habitable environments where in missions can be planned to use these

grains to assess conditions in the subsurface ocean.
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Observations of activity on Europa may play out in a similar manner to Enceladus.

Plume activity on Europa has been observed by the Hubble Space telescope and

Keck observatory (Roth et al., 2014; Sparks et al., 2016, 2017, 2019; Paganini et al.,

2020). Europa’s activity may be more sporadic and less energetic than Enceladus,

indicating that eccentricity-driven tidal stress is not the only source controlling the

plumes on Europa. It is likely that any plume material on Europa originates in

discrete fluid pockets perched at shallow levels in the ice shell, rather than directly

from the ocean (Manga and Wang, 2007). The current data shows evidence for

vapor plumes and that the only evidence for particle plumes are potential deposits

on Europa’s surface (Fagents et al., 2000; Phillips et al., 2000; Quick and Hedman,

2020). If our observations of Enceladus imply that the water surface on Enceladus is

relatively shallow, there might be similarities between the plumbing system behind

the plumes at the two moons. It is important to note that the study of the Enceladus

plume in this dissertation constrain primarily conditions near the vent and don’t

provide strong constraints as to whether the ocean is deep or shallow. It would be

interesting to know if there exists similar temporal evolution in Europa’s plume and

how the properties of particle vary on difference scales compared to Enceladus. Such

a comparison could help narrow down the subsurface conditions on the two moons.

The methodology discussed in this work have a wider range of applications

and can be expanded on for future research. The studies discussed in this work

assumed that the particles in the plume have a spherical shape. Further studies

of the spectral particles could also reveal whether the plume particles are compact

grains or loose aggregates of smaller particles. For example, the machine learning

methodology could be expanded by adding new features to the model. These new

features can contain information about the possible aggregate populations such as

size, and numbers. Since a machine learning model is capable of learning from

large amount of data to find the best fit for observed spectra, we can potentially test

for an extremely large parameter set. Similarly, composition information can also

be added to the model. The current Mie scattering theory only takes into account

the refractive index of water-ice and hence we were able to simulate the water-ice

absorption band clearly in the theoretical data. A new element or compound or
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even ratio of multiple compounds can be used to calculate theoretical spectra for

many possible combinations. For example, the absorption bands of water vapor and

carbon dioxide are in a similar range of wavelength value (from 2.3 µm to 5.6 µm).

The refractive indices of these compounds can be used to calculate theoretical spectra.

All these additional data would make for a comprehensive machine learning model,

which can be generalized to spectral data of E-ring too. One potential issue would

be the noise in the data we might need to come up with even better ways to handle

data with low signal-to-noise.

Now that we have some information about the variations in average particle size

and velocity, the next step of the process could be to map these variation to the

specific features on the south pole of Enceladus. The detailed shape of the absorption

band and the shape of spectra at shorter wavelengths differs from fissure to fissure

(Dhingra et al., 2017; Hedman et al., 2018), which reflects differences in the particle

size distribution of the material from different fissures. Porco et al. (2014) identified

over 100 discrete jets that are time-variable in ways that are not obviously related to

the tidal modulation of the plume as a whole. The spatial distribution of particles

could hint at whether the solids are lifted mainly in jets or curtains. The question is

could this data be resolved enough to facilitate this mapping to surface features? I

believe we would need additional data such as from a different instrument maybe ISS

images that will need to be merged with VIMS data on similar dates and positions

to reach at this level of granularity.

Another area where the methods discussed in these papers can be applied

is JWST data, the James Webb Space Telescope (JWST) is a space observatory

launched by NASA. JWST is expected to revolutionize our understanding of the

universe. It is designed to be one of the most powerful and advanced space

telescopes ever built, specifically optimized for studying the universe in the infrared

spectrum. JWST’s primary goals include studying the early universe, the formation

of stars and planetary systems, the atmospheres of exoplanets, and more. JWST is

equipped with a suite of scientific instruments including the Near Infrared Camera

(NIRCam), Near Infrared Spectrograph (NIRSpec), Mid-Infrared Instrument (MIRI),

and the Near Infrared Imager and Slitless Spectrograph (NIRISS) providing with
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a whole host of spectral data (Sabelhaus and Decker, 2004). JWST will collect

(and is collecting) various types of data, including images, spectra, and time series

observations (Pontoppidan et al., 2022; Schaerer et al., 2022; Rustamkulov et al., 2022).

After obtaining JWST data, we typically need to reduce and process the data to

extract scientifically meaningful information. This involves calibration, correcting

for instrument artifacts, and extracting spectra or images from raw data. The

methodologies applied to reduce noise in spectra data in all three papers can

be replicated and advanced to study data collected by other spectrometers. The

techniques to improve the signal to noise can be beneficial to spectroscopy especially

in planetary science.
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appendix a

Supplementary Information to Chapter 2: Constraining

low-altitude lunar dust using the LADEE-UVS data

a .1 formulas for computing predicted dust signals

Here we provide additional details about the formulas used to compute the predicted

dust spectrum described in Section 2.3.3 above. For this analysis, we use the optical

theorem to approximate the scattering law for a dust grain as:

dP
dΩ

=
πFs2

4sin2θ
J2
1(k s sinθ)Q2

ext(k s, m) (a.1)

where F is the incident flux density, s is the particle size (radius), k is the wave

number of the light, θ is the scattering angle, which is 12
◦ for our observations, and

the factor of Qext in Equation a.1 is defined as follows Van de Hulst (1957):

Qext = 2 − 4e−ρtanβ cosβ

ρ

[
sin(ρ − β) +

cosβ

ρ
cos(ρ − 2β)

]
+ 4

cos2β

ρ2 cos(2β), (a.2)

where m is the complex refractive index of the particle (m = mr + imi), ρ = 2ks(mr −
1) and tanβ = mi/(mr − 1). For these observations we assume a refractive index

m = 1.5 + i0.0005 for a silicate-rich dust particle Zubko et al. (2017).

Since the dust above the Moon’s surface is a collection of particles of different

size ranges, we compute the unitless reflectance of this collection of particles with

differential size distribution N (s, t) for wavelength channel i, with the following

formula: [
I
F
(t)

]
i,pred

=
1
F

∫ smax

smin

dPi

dΩ
N (s, t)ds. (a.3)

For this analysis, we consider both mono-disperse size distributions and power-law

size distributions with differential power-law indices of -3 and -4 and limits of 0.3 to

10 µm.
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For the specific case where, N (s, t) = co(t)s−3, co is a dimensionless function of

time, but not particle size. The number of particles per unit area (m−2), N(t) is then

given by the integral

N(t) = co(t)
∫ smax

smin

s−3ds. (a.4)

where co(t) can be derived from equation a.3 such that

co(t) =
[ I

F (t)]i,pred
1
F

∫ smax
smin

dPi
dΩ s−3ds

. (a.5)

For reference, the value of the integral in the denominator for dust size from 0.3 (smin)

to 10 µm (smax) for the wavelength range 250 - 300 nm is 21.0. This integral is worked

out for all the wavelength ranges from 250 to 700 nm.

F igure a .1 : The Telescope graze altitude (z) from Figure 2.1, as height of line of
view at the point A (A in Figure 2.1) on the surface is shown by the red line plotted
against time for the Almost Limb activity 1969A. This altitude is given in the LBL
file associated with each Almost Limb activity. It reduces to zero as the field of
view touches the Moon’s surface, which is indicated by the vertical line on the plot.
The blue line shows the integrated dust density calculated using equation a.6. The
amount of dust per unit area does increase as altitude decreases until the line of sight
meets the surface.

In order to compute the total amount of lunar dust visible at a given time along

the line of sight, we assume an exponential dust profile defined by a nominal surface

concentration no,nom and scale height H. In this case, the total amount of dust along
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the line of sight is given by the following integral along the line of sight x:

N(t) = no,nom

∫ ∞

d
e−a(x,t)/Hdx (a.6)

where N is the number of particles per unit area and a(x, t) is the altitude above the

lunar surface, and d denotes the location where the light of sight crosses into sunlight

(see Figure 2.1). Figure a.1 illustrates how this parameter (N) varies over the course

of the observation, with a vertical line (tV) denoting when the field of view hits the

Moon’s surface.

In order to determine the altitude a(x, t) of the line of sight above the surface

as a function of the coordinate x along the line of sight at any given time t, we

use the parameters defined in Figure 2.1. The LBL data files associated with each

spectrum gives the “telescope graze altitude” above the Moon’s surface (denoted as

z in Figure 2.1) and the latitude and longitude of points S (the spacecraft’s location

above the surface of the Moon) and A (the place where the line of sight gets closest

to the Lunar surface). Figure a.1 shows how the graze altitude z changes over the

course of the observation. It decreases gradually as the line of sight gets closer to

the surface and reduced to zero as the line of sight hits the surface shown by the

black vertical line on the plot. The terminator position T is calculated based on the

sub-solar point on the Moon, which depends on the time at which the activity was

performed.

Assuming the Moon to be a sphere, the height of the line of sight above the surface

a(x, t) can be written as the following function of x:

a(x, t) =
√

x2 + (z + R)2 − R (a.7)

where R is the radius of Moon (1737.4 km).

The lower limit d is calculated using the geometry shown in Figure 2.1.

Considering the small triangle with legs l and d, we see that

d =
l

tan ϵ1
(a.8)



107

where ϵ1 is equal to the solar elevation angle of point A (Figure 2.1):

ϵ1 = sin−1
[

sin δ sin ϕ + cos δ cos ϕ cos(HRA)
]

(a.9)

where δ is the sub-solar latitude angle, which depends on the time of the year and

varies from (-0.5 to 0.5 deg for the Moon), ϕ is the latitude and HRA is the hour angle

of point A . Meanwhile, the length l in Equation a.8 can be calculated from ϵ1, z and

R as

l =
R

cos ϵ1
− (R + z). (a.10)

Note, the values of l, ϵ1 and d are evaluated separated for each spectra based on data

provided in each LBL file.

In Figure a.1, we see how the integrated dust density increases with time as

altitude decreases. This indicates that the amount of dust along the line of sight is

higher at lower altitude which is what one would expect. The slow decrease in N

after the line of view hits the surface (beyond the vertical line) is artificial because at

that point the observable material would actually be blocked from view by the Moon.

Combining equation a.4 and a.6, an expressions for predicted signal is obtained:

no,nom

∫ ∞

d
e−a(x,t)/Hdx = co(t)

∫ smax

smin

s−3ds. (a.11)

Substituting in the above expression for co(t) (equation a.5) and solving the integral

for the size distribution N (s, t) ∝ s−3, we find

no,nom

∫ ∞

d
e−(

√
x2+(z+R)2−R)/Hdx =

[
I
F

]
i,pred

1
F

∫ smax
smin

dPi
dΩ s−3ds

(
s2

max − s2
min

2s2
mins2

max

)
. (a.12)

Solving this equation for [I/F]i,pred gives the predicted signal for a given particle size

distribution (N (s, t) ∝ s−3) and wavelength channel i:

[ I
F

]
i,pred

= no,nom

[
2s2

mins2
max

s2
max − s2

min

][
1
F

∫ smax

smin

dPi

dΩ
s−3ds

] ∫ ∞

d
e−(

√
x2+(z+R)2−R)/Hdx.

(a.13)
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The above expression determines a predicted signal for a certain value of surface

concentration (no,nom = 103 m−3 and scale heights H = 1, 3 and 5 km).

Repeating these calculations for a size distribution proportional to s−4,

Equation a.13 becomes

[ I
F

]
i,pred

= no,nom

[
3s3

mins3
max

s3
max − s3

min

][
1
F

∫ smax

smin

dPi

dΩ
s−4ds

] ∫ ∞

d
e−(

√
x2+(z+R)2−R)/Hdx

(a.14)

and for a mono-disperse size distribution (0.07 to 1 µm) Equation a.13 changes to

[ I
F

]
i,pred

=
no,nomπs2

4sin2θ
J2
1(k s sinθ)Q2

ext(k s, m)
∫ ∞

d
e−(

√
x2+(z+R)2−R)/Hdx. (a.15)

a .2 plots showing the measured signals for all

observations after spectral filtering

a .3 tables of fit parameters for all observations

Table a.1 shows the slope between the residual and predicted signal and the standard

deviation of this slope is calculated for each wavelength range. A weighted average

of these slopes using their respective standard deviation as weights is computed for

each observation. The weighted averaged slope with error bars at scale height of 1,

3 and 5 km are shown in this table. The intercept for this case is reduced to zero.

Table a.1 and Figure a.10 also provide the Earth-Moon position details for these

observations. The observed locations are farther and farther away from Earthshine

horizon for the later data sets.
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F igure a .2 : Corrected signal (in solid) for the set "1918A", after spectral filtering
has been applied to each wavelength range and the original spectrum (in dotted),
plotted against time. An offset has been added here too to view each wavelength
range distinctly.
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F igure a .3 : This figure shows the filtered residual signal for "1918A" for each
wavelength range. The signal predicted using the Fraunhofer model and the
exponential density profile is plotted over the residual signal for a scale heights of 1,
3 and 5 km in grey, lightcoral and black respectively. An offset has been added to
view the signals distinctly.
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F igure a .4 : Corrected signal (in solid) for the set "1929A", after spectral filtering
has been applied to each wavelength range and the original spectrum(in dotted),
plotted against time. An offset has been added here too to view each wavelength
range distinctly.
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F igure a .5 : This figure shows the filtered residual signal for "1929A" for each
wavelength range. The signal predicted using the Fraunhofer model and the
exponential density profile is plotted over the residual signal for a scale heights of 1,
3 and 5 km in grey, lightcoral and black respectively. An offset has been added to
view the signals distinctly.
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F igure a .6 : Corrected signal (in solid) for the set "1956A", after spectral filtering
has been applied to each wavelength range and the original spectrum(in dotted),
plotted against time. An offset has been added here too to view each wavelength
range distinctly.
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F igure a .7 : This figure shows the filtered residual signal for "1956A" for each
wavelength range. The signal predicted using the Fraunhofer model and the
exponential density profile is plotted over the residual signal for a scale heights of
1, 3 and 5 km in grey, lightcoral respectively. An offset has been added to view the
signals distinctly.
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F igure a .8 : Corrected signal (in solid) for the set "1987A", after spectral filtering
has been applied to each wavelength range and the original spectrum(in dotted),
plotted against time. An offset has been added here too to view each wavelength
range distinctly.
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F igure a .9 : This figure shows the filtered residual signal for "1987A" for each
wavelength range. The signal predicted using the Fraunhofer model and the
exponential density profile is plotted over the residual signal for a scale heights of
1, 3 and 5 km in grey,lightcoral and black respectively. An offset has been added to
view the signals distinctly.
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F igure a .10 : This figure shows the location of Earth (arrows point to Earth) during
the month of April 2014 while the Almost Limb activities were recorded by LADEE-
UVS. It shows how the first observations are affected due to Earthshine of the dark
side of the Moon while the last 5 observations have negligible amount of Earthshine.

Table a.2 shows the slope and intercept between the residual, Di,est(t) and

predicted signal, Pi,est(t) and the standard deviation of this slope and intercept

are calculated for each wavelength range i. Weighted average of these slopes and

intercepts using their respective standard deviation as weights is computed for each

observation. The weighted averaged slope and intercepts with error bars at scale

height of 1, 3 and 5 km are shown in this table. The intercept for this case is not

reduced to zero. And the Earth-Moon position details during the course of these

observations. The observed locations are farther and farther away from Earthshine

horizon for the later data sets.
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appendix b

Supplementary Information to Chapter 3: New Insights

into Variations in Enceladus Plume Particle Launch

Velocities from Cassini-VIMS spectral data

b .1 cubes excluded from analysis

The following cubes were removed from the data on June 18th/Orbit no. 279:

CM_1876443559_1, CM_1876443614_1, CM_1876443669_1, CM_1876443724_1,

CM_1876445164_1, CM_1876446029_1, CM_1876446202_1, CM_1876446375_1,

CM_1876457449_1, CM_1876470103_1, CM_1876474082_1, CM_1876488640_1,

CM_1876493658_1, CM_1876493831_1, CM_1876494004_1, CM_1876494177_1,

CM_1876494350_1, CM_1876494523_1, CM_1876494696_1, CM_1876494869_1,

CM_1876495042_1, CM_1876495215_1.

The following cubes are removed during background removal from the

data on Aug 2nd/Orbit no. 286:

CM_1880355922_1, CM_1880358137_1, CM_1880366306_1, CM_1880369490_1,

CM_1880380704_1, CM_1880390533_6, CM_1880391952_6, CM_1880392472_6,

CM_1880392610_6, CM_1880392818_6, CM_1880392852_6, CM_1880393025_6,

CM_1880393233_6, CM_1880393337_6, CM_1880393441_6, CM_1880393579_6,

CM_1880393718_1, CM_1880394687_6, CM_1880394791_6, CM_1880395102_6,

CM_1880395241_6, CM_1880395794_6, CM_1880395967_6, CM_1880396071_6.

The following cubes are removed during background removal from the

data on Aug 28th/Orbit no. 290:

CM_1882608048_5, CM_1882637326_1, CM_1882640856_1, CM_1882644178_1,

CM_1882644386_1, CM_1882645009_1, CM_1882646047_1, CM_1882646255_1,

CM_1882646463_1, CM_1882646670_1, CM_1882646878_5.
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appendix c

Supplementary Information to Chapter 4: Noisy spectra to

Particle properties: A machine learning analysis of

Enceladus plume spectral data using VIMS observations

c .1 machine learning model results

F igure c .1 : This figure shows one of the outputs from the machine learning model:
the maximum radius of value for a power law size distribution of plume particles.
One the x-axis of each panel the orbital phase defines the position of Enceladus in its
orbit around Saturn and the Y-axis shows the maximum particle radius. The altitude
increases horizontally and the orbit no varies vertically.
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F igure c .2 : The plots also shows an output of the machine learning model: power
index of the power law size distribution for plume particles. Here we can see how
the power index varies across orbital phase for different orbits and across altitude.
The power law index appears to follow a very similar pattern to the average particle
size variations discussed in Section 4.4.
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