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Abstract 

Deep learning-based computer-aided diagnosis systems have achieved unprecedented 

performance in breast cancer detection. However, most approaches are computationally 

intensive, and impede their broad dissemination. In this study, we propose an efficient and 

light-weighted multitask learning framework to simultaneously classify and segment breast 

tumors. Pretrained MobileNetV1 is employed as the multitask network backbone, followed 

by 2 branches for classification and segmentation respectively. The segmentation branch 

utilizes the Link-Net as decoder. The proposed approaches are evaluated using a dataset 

with 864 B-scan breast ultrasound images. Extensive experiments demonstrate that the 

proposed multitask learning network not only improves the classification and segmentation 

accuracy, but also keeps the low latency and efficiency properties. The network achieves 

86.6% Dice’s coefficient and 79% Intersection Over Union for segmentation, while 93.85 

% Accuracy, 94.44% Sensitivity and 93.42 Specificity for classification. The trained 

network has the size of around 60 MB in Keras H5 format, and 20 MB after converting to 

Tensorflow Lite format. Lastly, we develop and build a mobile application in Android 

Studio. It launches the trained multitask learning network to do real-time breast tumor 

detection, with average inference time cost for classification and segmentation together 

being around 300 milliseconds. 
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CHAPTER 1: INTRODUCTION     

1.1 Breast Cancer Detection and Computer-Aided Diagnosis (CAD)  

Breast cancer is one of the most common cancers and leading causes of death among women 

worldwide [1] [2]. Alone in 2019 in the U.S., around 268,600 new cases of invasive breast 

cancer and 62,930 new cases of non-invasive breast cancer in women were expected to be 

diagnosed [3]. Early detection is the best way to reduce the mortality rate and improve 

treatment outcomes. Breast ultrasound (BUS) imaging has become one of the critical and 

effective imaging methods to detect and classify breast tumors because of its non-invasive, 

nonradioactive, and cost-effective nature and the easy integration into interventional 

procedures for future patient treatments [4]. Furthermore, BUS imaging is the most suitable 

tool for large-scale breast cancer screening and diagnosis in low-resource countries and 

regions. Over the decades, it has been demonstrated that BUS has several significant 

advantages over other medical imaging modalities such as X-ray, magnetic resonance 

imaging (MRI), and computed tomography (CT), including its non-ionizing radiation, 

portability, accessibility, and cost-effectiveness. However, in clinical routine, both 

automated BUS image classification and segmentation face unique challenges and heavily 

depend on the experience and technical ability of the clinical operators. Thus, the divergence 

in the operators’ skills, knowledge, and understanding of various BUS techniques is highly 

likely to lead to observation and determination variations during the diagnosis practice. 

Computer-aided diagnosis (CAD) systems are developed [5] to improve the predictive 

accuracy and overcome the operator dependency. CAD systems assist the radiologists with 

image interpretation and diagnosis by providing a second objective opinion. Many CAD 

systems have been clinically tested and proved their ability to improve the diagnostic 

sensitivity, specificity, and efficiency of the breast cancer diagnosis [6].  
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 1.2 Breast Cancer Classification Using Deep Learning 

Significant progress in medical image processing has been achieved by using deep learning 

techniques in recent years. Applying deep learning with Convolutional Neural Network 

(CNN) to BUS image classification has gained popularity in clinical practice because it 

achieves unprecedented performance, saves time, reduces radiologist fatigue, and 

compensates for lack of experience and skills in some cases. Since AlexNet [7], a 

representative deep CNN architecture and winner of the 2012 ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC), deep learning began to attract attention. To date, many 

studies have reported the usefulness of deep learning for diagnostic imaging of breast 

masses with ultrasound, e.g., discrimination between benign and malignant breast mass 

images from ultrasound [8], and classification of breast lesions [9]. Shi et al. [10] used the 

stacked deep polynomial network to extract textural features from 100 malignant and 100 

benign masses on ultrasound images [10]. Stoffel et al. [11] focused on phyllodes tumor and 

fibroadenoma classification using deep learning and achieved good accuracy (AUC = 0.73) 

and high negative predictive value (NPV = 100%). GoogLeNet [12] is used in [13], where 

4254 benign samples and 3154 malignant samples were employed to train the deep CNN, 

and reported an accuracy of 91%, a sensitivity of 86%, a specificity of 93%, and an AUC 

over 0.9. Shin et al. [14] applied transfer learning to achieve better classification 

performance by pretraining a CNN using the ImageNet dataset and fine-tuning the network 

using a BUS dataset.  Cheng et al. [15] used the CaffeNet [55] and VGG [28] with frozen 

pretrained weights from transfer learning for abdominal ultrasound images. 

1.3 Breast Cancer Segmentation Using Deep Learning 

BUS image segmentation aims to extract tumor regions from normal breast tissues in 

images, which is an essential step in the CAD systems for breast cancer detection. However, 

because of the speckle noise, poor image quality, and variable tumor shapes and sizes, 
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achieving accurate BUS image segmentation is challenging [16]. CNN-based segmentation 

methods have been quite popular and have been proven to be highly accurate [17].  Various 

state-of-the-art BUS segmentation methods have been studied extensively, and good 

performances have been reported utilizing their own datasets. There still are common and 

fundamental issues in BUS segmentation, including the denoising and preserving edges, 

operator-dependency, and the results being unreproducible caused by the user interactions, 

lack of modeling domain-related knowledge [18]. In addition, it is well known that manual 

segmentation to get the ground truth masks are time-consuming and tedious, also suffers 

from great individual variability.  

CNN-based models, such as Fully Convolutional Network (FCN) [19], SegNet [20], and U-

Net [21], have been developed and widely used. A Residual-Dilated-Attention-Gate-U-Net 

(RDAU-NET) is an improved version of the regular U-Net and achieved a precision of 

88.58%, sensitivity of 83.19%, and F1 score of 0.848 [22]. By combining a dilated fully 

convolutional network with a phase-based active contour model for automatic tumor 

segmentation, the constructed model is reported to exhibit high robustness, accuracy, and 

efficiency [23]. Kumar et al. [24] introduced the multi-U-net algorithm for automatic and 

effective breast masse segmentation. They achieved a mean Dice coefficient of 82%, a true 

positive rate of 84%, and a false positive rate of 0.01. Xian et al. [25] proposed a fully 

automatic and adaptive ROI generation method, where the ROI seeds can be generated with 

high accuracy and can be used to distinguish the lesion regions from normal regions. 

1.4 Efficient Multitask Learning for BUS Classification and Segmentation  

This work investigates both classification and segmentation approaches’ accuracy and 

efficiency and aims to build a mobile CAD system for breast cancer detection. State-of-art 

CNN models can achieve great performance but are faced with issues of the large number 

of parameters and high hardware requirements. It is difficult to deploy these approaches to 
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mobile devices [26]. In this thesis, a multitask learning network is proposed to combine the 

two separate tasks together in one shared model to obtain both the tumor classification and 

segmentation results simultaneously; and the new approach can avoid deploying two 

independent models to model devices. In addition, the tradeoff between accuracy and 

efficiency is studied in this work. The study demonstrates that using multitask learning to 

combine the efficient classification and segmentation network as a single network could 

help boost the classification task while keeping the efficiency. 

1.5 Thesis Organization 

The thesis is organized as follows. Chapter 2 introduces several efficient classification 

models and segmentation models, and provides an overview of the proposed multitask 

model for the mobile CAD. Chapter 3 describes the BUS image datasets from three data 

sources used for training, validation, and testing approaches. The experimental results of 

single-task classification, single-task segmentation, and multitask modeling are introduced 

in Chapter 4. Chapter 4 also presents the final mobile application design using Android 

Studio. Chapter 5 briefly summarizes the work and concludes the thesis. 
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CHAPTER 2: EFFICIENT MULTITASK NETWORK FOR BREAST CANCER 

DETECTION 

2.1 Efficient Breast Cancer Classification Using MobileNet 

Deep CNNs have become ubiquitous and popularized in computer vision tasks. One of the 

general trends is to build deeper and more complicated architectures for higher performance 

to deal with more complex scenarios in real life. Many CNN architectures were proposed in 

the last decade, e.g., AlexNet [7], VGG [28], ResNet [29], DenseNet [30] and SeNet [31]. 

However, large number of parameters prevent the models to be deployed as real world 

application and make it less accessible to large group of users. Smart wearable devices with 

limited computational resources are getting populated, and real-time applications on mobile 

devices is witnessed with significant progress and rising popularity [32]. Efficient CNN 

infrastructure is in unprecedented demand.  

Many small CNNs have been developed. Flattened networks [33] builds a network out of 

fully factorized convolutions out of the purpose of fast feedforward execution. Factorized 

Networks [34] introduces the use of topological connections. Squeeze-Net [35] uses a 

bottleneck approach to obtain a very small network. MobileNetV1 [36] primarily employs 

the primarily separable convolutions to substantially improve computation efficiency. 

MobileNetV2 [37] introduces a resource-efficient block with inverted residuals as well as 

linear bottlenecks which could help make even more efficient layers through leveraging the 

low rank nature of the problem. NASNet [38] searches for an architectural building block 

on a small dataset and then transfers the block to a larger dataset with a new regularization 

technique called ScheduledDropPath which significantly improves the generalization. 

Efficientnet [39] uses a simple while highly effective compound coefficient to scale up CNN 

to be in a more structured manner.  
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MobileNetV1 could be applied to various image recognition tasks for efficient on device 

intelligence, including Fine Grained Recognition, Large Scale Geo-localization, face 

attribute classification task and object detection. MobileNetV1 expresses the standard 

convolution with the depthwise separable convolution [40], which is a combination with 3 

× 3 depthwise and 1 × 1 pointwise convolution layers. The depthwise convolutions perform 

lightweight filtering by applying a single convolutional filter per input channel. The 1 × 1 

pointwise convolution layers build new features through computing linear combinations of 

the input channels, which is followed by Batchnorm [41] and Relu for robustness when used 

with low-precision computation. The depthwise separable convolution brings the benefit of 

only consuming around 8 to 9 times less computations than the standard convolution with 

only a small reduction in accuracy. Figure 1 shows the architecture of the MobileNetV1, 

including the structure of one single depthwise separable convolution. 

 
(a) MobileNetV1 architecture 

 

(b) DS Block 

Figure 1. The architecture of the MobileNetV1. DS represents depthwise separable convolution, 

which is a sequential combination of a 3 x 3 depthwise convolution and a 1 x 1 pointwise 

convolution, each followed by Batchnormlization operation and Relu activation. 
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MobileNetV2 is built upon the ideas from MobileNetV1 using depth wise separable 

convolution as efficient building blocks. To overcome the risk of collapsing the channel 

which inevitably loses information in that channel caused by Relu in MobileNetV1, the V2 

introduces two new features to the architecture, including the linear bottlenecks between 

layers, and the short connections between bottlenecks. In Efficientnet, a new scaling method 

which is designed to uniformly scale all dimensions of depth/width/resolution using a simple 

yet highly effective compound coefficient. 

2.2 Efficient Breast Cancer Segmentation with LinkNet 

Most of the popular CNNs-based segmentation models use the similar encoder-decoder 

architecture. Although initially developed for medical/biomedical image segmentation, U-

Net could achieve state-of-art results of segmenting biological microscopy images. It is not 

designed to be efficient enough to deploy in real-time applications in terms of parameters 

and number of operations, hence it is quite slow too. Two parts are comprised in the U-Net 

architecture, including a contracting path to capture context and a symmetric expanding path 

that enables precise localization.  
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(a)                                            (b) 

 

(c)  

Figure 2. LinkNet Architecture [42]. (a) Convolutional modules in encoder-block; (b) 

Convolutional modules in decoder-block; and (c) Overall Architecture.  

LinkNet [42] is a light weighted deep neural network architecture designed for performing 

semantic segmentation, and capable of giving real-time performance for tasks such as self-

driving cars. It takes the advantages of skip connections, residual blocks and encoder-

decoder architecture, and originally uses the ResNet18 [43] as its encoder, while in our 
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experiments, the encoder part will be replaced with the pretrained more efficient 

MobileNetV1. The original LinkNet structure is shown in Figure 2, where down-sampling 

by a factor of 2 is achieved by performing the stride convolution; the encoder part consists 

of residual blocks; and the novelty comes from the way each encoder being linked with 

decoder to recover the potential lost spatial information caused by multiple down-sampling 

operations.                                                   

2.3 MobileNet-LinkNet Based Multitask Learning for Breast Cancer Detection 

As mentioned in the Introduction, deploying two separate deep learning models will result 

in two large models running on mobile devices. This section studies automatically and 

jointly achieve BUS image segmentation and classification. The segmented lesions could 

help assess the tumor severity if diagnosis as malignant and assist further follow-ups. A 

multi task learning architecture with both classification and segmentation tasks is proposed 

in this section. The motivation is to leverage useful information from two related tasks to 

improve performances of each other [44]. 

The pretrained MobileNetV1 is used as the shared backbone network and encoder part to 

extract the local features representation from the input images efficiently.  Figure 3 shows 

both the overall model with classification and segmentation branches, along with the detail 

for layers in encoder linking with layers in decoder. In the pretrained MobileNetV1, only 

the convolutional layers (Figure 1) are used with the output shape being 7 x 7 x 2024, while 

its original FC layers are not included. 



15 

 

 

(a) 

 

(b) 

Figure 3. MobileNet-LinkNet Architecture. (a) Overall architecture with MobileNetV1 as the 

backbone, whose last convolutional layer followed by the classification branch with new added 

dense layers as the binary classifier, and the segmentation branch using the LinkNet encoder; and 

(b) the internal connections between the MobileNetV1 LinkNet. 
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CHAPTER 3: BREAST ULTRASOUND DATASET 

3.1 Breast Ultrasound (BUS) Dataset 

The introduced approaches are evaluated using BUS datasets. Sound waves are used in BUS 

instead of radiation or x-ray and sent out by moving a wand-like instrument called a 

transducer screening tools across over the skin. BUS generates a computer picture of the 

interior of the breast, where certain breast changes could be easily shown, especially for 

those changes like fluid-filled cysts, that could be perceived by human but are relatively 

difficult to be identified on mammograms. In addition, echoes that bounce off the body 

tissues could be also picked up into the picture, as echo patterns and echogenicity is used as 

one criterion in diagnosis for benign or malignant lesions. Figure 4 shows an example of 

mammograph and BUS imaging for same Breast Anatomy [45].  

In real clinical practice of diagnosis on breast screening ultrasounds, image characteristics 

including tumor shape, orientation, margin, echo pattern, posterior features, and associated 

calcifications features are all important assessment features, the details of standardized 

terminology to describe Breast Ultrasound findings using BI-RADS (Breast Imaging-

Reporting and Data System) could be found in [46]. Figure 5 shows examples for 4 common 

abnormalities represented as a lump in BUS images along with corresponding ultrasound 

findings. 
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         (a)                    (b)                           (c) 

Figure 4. Example of a (a) Breast Anatomy, (b) Mammography, and (c) breast ultrasound imaging 

[45]. 

    

                     (a)     (b)      (c)   (d) 

Figure 5. Examples of 4 common abnormalities seen in the breast [45]: (a) Cysts with anechoic 

pattern, oval shape, circumscribed margin, horizontal orientation, posterior enhancement and no 

calcifications; (b) Fibroadenomas with hypoechoic pattern, oval shape, circumscribed margin, 

horizontal orientation, minimal posterior enhancement and gross calcifications; (c) Breast Cancer 

with hypoechoic pattern, irregular shape, uncircumscribed margin, vertical orientation, posterior 

shadowing and small calcifications; (d) Locally palpable glandular tissue with hyperechoic pattern 

and no calcifications. 

Using BUS criteria, a lesion can be assigned into one of seven BI-RADS categories using a 

scoring system developed by the ACR with the following interpretation and management 

shown in Table 1. Each BIRADS category corresponds to a classification that estimates the 

breast health and cancer risk obtained from the diagnosis. 
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Table 1. BI-RADS Classification Category and Scoring  

BIRADS Category Diagnosis Description & Management 

 
0 

Incomplete. 
Need additional imaging evaluation. 

 

1 

Negative.  

Symmetrical and no masses, architectural distortion or suspicious 
calcifications.  

Routine screening recommended. 

 

2 

Benign. 

0 % probability of malignancy. 
Early follow-up to document stability unless clinical indications suggest a 

more aggressive evaluation. 

 

3 

Probably benign. 

Probability of malignancy <2%. 
Short interval follow-up suggested. 

 

 
 

4 

Suspicious malignancy. 

Not characteristic of breast cancer, but reasonable probability of being 
malignant. 

Further divided: 

• 4A: low suspicion for malignancy (2-9%) 

• 4B: moderate suspicion for malignancy (10-49%) 

• 4C: high suspicion for malignancy (50-94%) 

Biopsy should be considered. 

 
5 

Highly suggestive of malignancy. 
>95% probability of malignancy. 

Appropriate action should be taken. 

 

6 

Known biopsy-proven malignancy. 

Lesions known to be malignant that are being imaged prior to definitive 
treatment. 

Assure that treatment is completed. 

 

The entire dataset is consisted of three public Breast Ultrasound datasets: the BUSIS dataset 

[47], the Dataset B [48] and the Thailand dataset [49]. Patients’ privacy is well guaranteed 

and protected. The BUSIS benchmark dataset contains total 562 images collected by the 

Second Affiliated Hospital of Harbin Medical University, the Affiliated Hospital of 

Qingdao University, and the Second Hospital of Hebei Medical University using different 

ultrasound devices including of GE VIVID 7, LOGIQ E9, Hitachi EUB-6500, Philips iU22, 

and Siemens ACUSON S2000. The Dataset B consists of total 163 lesion images with a 

mean image size of 760 by 570 number of pixels, which are collected in 2012 by from the 

UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain) with a Siemens 

ACUSON Sequoia C512 system 17L5 HD linear array transducer (8.5 MHz). There are one 
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or more than one lesions presented in each of the images. The Thailand dataset has total 139 

lesion images, collected from the US Online Medical Images database provided by the 

Department of Radiology of Thammasat University and Queen Sirikit Center of Breast 

Cancer of Thailand. Images along with the ground truth are hand-drawn by leading 

radiologists of these centers. Table 2 gives the number of benign lesions and malignant 

lesions for each of the three datasets separately. Figure 6 shows examples of both benign 

and malignant lesion images in BUSIS dataset, Dataset B and Thailand dataset. Combining 

the three datasets could help to enhance and investigate the robustness of training and 

evaluating the introduced models. 

Table 2. Number of Benign and Malignant Tumors in datasets 

Dataset Images Benign Malignant Benign ratio Malignant ratio 

BUSIS 562 306 256  54.4% 45.6% 

Dataset B 163 109 54    66.9% 33.1% 

Thailand 139 52  87    37.4% 62.6% 

Entire dataset  864 467 397   54.1% 45.9% 
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(a) 

                            
(b) 

                            
(c) 

Figure 6. Examples of benign (left) and malignant (right) tumor images, separately from BUSIS 

dataset (row a), Dataset B (row b), and Thailand dataset (row c). 

3.2 Data Preprocessing 

Almost all the images in the datasets are originally rectangle shaped, however all the 

introduced classification and segmentation models require inputs with fixed and equal width 

and height. From the perspective of real clinical practice, clinical doctors rely a lot on the 

tumor shape so that with reasonable descriptions for benign and malignancy diagnosis and 

determination. From the perspective of modeling, original tumor shape in the image is also 

an important feature that the model leverages for better training and correct identification. 

In order to have the original tumor shape kept unchanged while the image shape processed 
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from rectangle to square, obviously simply implementing resize operation over the whole 

image will bring out the tumor distortion problem, as a result simple resize or rescale is not 

allows to be applied in our application. Table 3 shows the number and ratio of horizontal 

shape images and vertical shape images over the 3 datasets. 

Table 3. Number of Horizontal and Vertical Tumors in datasets 

Dataset Images Horizontal Vertical Horizontal Ratio Vertical Ratio  

BUSIS 562 490 72 87.2% 12.8% 

Dataset B 163 133 33 81.6% 18.4% 

Thailand 139 104 35 74.8% 25.5% 

Entire dataset  864 727 137 84.1% 15.9% 

To avoid tumor distortion, two strategies are introduced as data preprocessing stage, 

including Padding strategy and Cropping strategy. Both the Padding and Cropping strategy 

need firstly leverage the tumor object from the ground truth for each image, to find the four 

vertex and get the four distance of each vertex to boundary.  

In addition, considering the upper gray skin layer along with dark or hypoechoic fat layer 

and glandular tissue are useful information for accurate diagnosis and better classification, 

both the Padding and Cropping strategy will leave the upper layers as origin without adding 

new pixels or removing any pixels. Let 𝑾𝑜𝑟𝑖 denote the original width, 𝑯𝑜𝑟𝑖  denotes the 

original height, 𝑺𝑑𝑖𝑓𝑓  denote the absolute value of the difference between the 𝑾𝑜𝑟𝑖   and 

𝑯𝑜𝑟𝑖  , and 𝑺𝑡  denote the target final squared size. Let 𝑫𝑙, 𝑫𝑟, 𝑫𝑏  represent the distance 

from the left, right and bottom vertex to the boundary of corresponding direction, while 𝑹𝑙, 

𝑹𝑟 represent the ratio of 𝑫𝑙 and 𝑫𝑟over the original image width. 

                                                     𝑹𝑙 =
𝑫𝑙

𝑾𝑜𝑟𝑖
;    𝑹𝑟 =

𝑫𝑟

𝑾𝑜𝑟𝑖
                                  (1) 

Padding strategy introduces new black pixels around the shorted edges of the original 

images and masks. For images being horizontal shaped, 𝑺𝑡 will equal to 𝑾𝑜𝑟𝑖 and all new 

pixels will be padded at the bottom layers. For images being vertical shaped, 𝑺𝑡 will equal 
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to 𝑯𝑜𝑟𝑖 , new pixels will be added into both the left side (denoted as 𝑷𝑙 ) and right side 

(denoted as 𝑷𝑟 ) of images based on the 𝑹𝑙 and 𝑹𝑟. The number of pixels to be added at 

each side is calculated as 

                                                𝑷𝑙 =  𝑺𝑑𝑖𝑓𝑓 ∗   𝑹𝑙;   𝑷𝑟 =  𝑺𝑑𝑖𝑓𝑓– 𝑷𝑙                     (2) 

On the contrary with padding, the Cropping strategy removes pixels from the longer edges 

of the images and masks. For images being vertical shaped, 𝑺𝑡 will equal to 𝑾𝑜𝑟𝑖 and all 

pixels of 𝑺𝑑𝑖𝑓𝑓  will be removed from the bottom layers. For images being horizontal 

shaped,  𝑺𝑡 will equal to 𝑯𝑜𝑟𝑖  and pixels will be removed from both the left side (denoted 

as 𝑪𝑙 ) and right side (denoted as 𝑪𝑟 ) of images based on the 𝑹𝑙 and 𝑹𝑟. The number of 

pixels to be removed at each side is calculated as 

                                                𝑪𝑙 =  𝑺𝑑𝑖𝑓𝑓 ∗   𝑹𝑙;   𝑪𝑟 =  𝑺𝑑𝑖𝑓𝑓– 𝑪𝑙                     (3) 

During the cropping preprocessing, there are cases observed whose tumor instance is very 

large and close to its left and right boundary, and makes the available space for cropping 

which calculated as the summation of 𝑫𝑙 and 𝑫𝑟 is smaller than 𝑺𝑑𝑖𝑓𝑓 , as a result the tumor 

object inside the image will be cropped to be incomplete. For those images, the padding 

strategy is then applied as the supplement. See examples of this case in Figure 7.  
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(a) 

                            

                                                                      (b)          

                           

(c) 

Figure 7. An example of image whose tumor is large and close to boundaries (a). To avoid cutting 

the tumor instance to be incomplete by the cropping (b), use padding instead (c). 

Examples given in Figures 8 and 9 are clearly shown the resized result from original image 

has caused severe tumor distortion, while Padding and Cropping avoid the distortion. Also, 

although both the Padding and Cropping prevents the tumor from transforming, padding 

will have the tumor taken smaller proportion over the entire image, compared with cropping, 

whose impact on the modeling accuracy will be introduced in the next experiment session. 
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(a)                                                                            

     
(b)            

    
(c)            

    
(d)            

Figure 8. An example of an original horizontal shaped image (left) and its mask (right) and different 

resized results: (a) directly resized from the original; (b) resized after the padding; (c) resized after 

the cropping. 
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(a)            

    
(b)            

    
(c)            

    
(d)            

Figure 9. An example of an original vertical shaped image (left) and its mask (right) and different 

resized results: (a) directly resized from the original; (b) resized after the padding; (c) resized after 

the cropping. 
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CHAPTER 4: EXPERIMENTAL RESULTS 

4.1 Experimental Settings and Evaluation Metrics 

The experiments for classification and segmentation were performed using NVIDIA 

QUADRO RTX 8000 GPU, equipped with CUDA (version 10.2) and cuDNN (version 7). 

The neural network models are constructed in Keras (version 2.3.1) using Tensorflow 

(1.14.0 GPU version) as the backend. The input images and their corresponding ground 

truths are resized to a fixed size of 224 × 224. The percentages of train, validation, and 

testing sets used in the experiments are 70%, 15%, and 15%, respectively. In the K-fold 

cross-validation, K is set to 4 to have 75% of data into training while 12.5% in validation 

set and 12.5% in test set. 

For the single classification task, transfer learning is used since the number of the entire 

training images is limited. Layers (not including the previous final dense layer) with weights 

pretrained using ImageNet are taken as the convolutional layers of the classifier. All the 

pretrained layers are set to be trainable for fine-tuning purposes and meaningful 

improvements by incrementally adapting the pretrained features to the new medical images. 

Following the pretrained convolutional layers, one Global Average Pool (GAP) layer [50], 

two new fully connected (FC) layers using Relu activation, and one last FC with Sigmoid 

activation are added. A dropout layer [51] with a dropout rate 0.5 is added after the first new 

sense layer. The batch size is 32, and the number of training epoch is set as 100. Stochastic 

gradient descent (SGD) optimizer is used with a learning rate 0.003 and a momentum (set 

to 0.9). The momentum [52] is used to accelerate the SGD in the relevant direction and 

dampens oscillations. 
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The randomness in many machine learning algorithms result in poor reproducibility. When 

comparing and demonstrating the impact of a specific approach, the randomness should be 

controlled. For example, comparing two image preprocessing strategies or different image 

augmentation techniques, and environment configurations, only reproducible results are 

meaningful for comparisons.  

GPUs speed up the training at the expense of losing the reproducibility. In addition, in the 

Tensorflow, some common operations, e.g., reduce_sum, are by default designed to be non-

deterministic on the GPU to make use of the CUDA atomics when broadcasting the biases; 

and Tensorflow is unable to control the randomness of its multithreading processing, which 

make it unlikely to achieve repeatability on the GPU.  

 

(a) GPU results of two training rounds 
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(b) CPU results of two training rounds 

Figure 10.  Training ACC and Loss Curves of running two times using same data, model, and 

environment configurations, on GPU (a) and CPU (b), respectively. 

As shown in Figure 10 (a), the two training rounds can reproduce well at early epochs (<10); 

but when the epochs keep increasing, differences between curves emerge, which 

demonstrates that the training on GPUs cannot be reproduced well for large epochs.  Figure 

10(b) shows that running on CPUs can achieve perfect reproducibility. 

The strategies and settings to achieve high reproducibility on CPUs are listed below. Firstly, 

environment variables including the PYTHONHASHSEED, CUDA_VISIBLE_DEVICES 

(need to set to -1, if the Tensorflow version installed is a GPU version), 
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TF_DETERMINISTIC_OPS and TF_CUDNN_DETERMINISTIC are required to set to a 

fixed value, and in our experiments are all set to be 1. Secondly, the random seed should be 

set to a fixed value. Thirdly, to avoid any non-determinism from inter-operation parallelism, 

configurations in the Tensorflow for all inter- and intra-operation parallelism should be set 

to 1. Fourthly, when generating the train, validation, and test sets, the random state value is 

should be set to a fixed value (42 in experiments) so that each algorithm will be trained and 

evaluated using the same data. The seed value is set to 1 for the batch data generation for 

each training epoch. Lastly, the seed value of both the kernel weight initializer which uses 

the glorot uniform [53] should be fixed. For the single segmentation mask, the batch size is 

32, and the optimizer uses Adam with an initial learning rate of 0.0001. To avoid learning 

stagnates, ReduceLROnPlateau function with 0.000001 as the minimum learning rate is 

added in the training callbacks. 

Metrics for evaluating the classification include the accuracy (ACC), the sensitivity (SEN, 

also known as the true positive ratio (TPR)), and the specificity (SP, also known as the true 

negative ratio (TNR)). Metrics for evaluating the segmentation include the Dice’s 

coefficient (DSC) [54], Intersection Over Union (IOU), TPR, TNR, ACC, and Area Under 

the Receiver Operating Characteristic Curve (AUC-ROC). 

                             ACC =  
(TP + TN)

(TP + TN + FP  + FN)
                                    (4) 

                             SEN =  TPR =  
TP

(TP +  FN)
                                    (5) 

                             SPC = TNR =
TN

(FP +  TN)
                                                (6) 

        DSC =  
2TP

2 × TP+FP+FN
                                                        (7) 
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                              IOU =   
TP

TP+FP+FN
                                                              (8) 

where TP  denotes the number of True Positives, TN  the number of True Negatives, FP the 

number of False Positives, and FN  the number of False Negatives. 

4.2 Single-task tumor Classification 

4.2.1 Padding versus Cropping  

Two image preprocessing strategies are introduced to transform the image and 

corresponding ground truth from original rectangular shape to square shape without tumor 

distortion. One is applying padding to all images. The other is applying cropping to most 

images while using padding on those images that do not have enough space to be cropped 

because of large tumors.  

Controlled K-fold (K = 5) cross-validation experiments using CPU are performed twice 

using two different random splitting seeds on (1) images resized directly from the original 

images, (2) images resized from the padding strategy, and (3) images resized from the 

cropping strategy. The accuracy of each fold and average accuracies are calculated and 

shown in Table 4 and visualized in Figure 11. As shown in Table 4, the cropping strategy 

outperforms the padding strategy averagely using two seeds for dataset splitting. All the 

experiments are performed on the resized images using the cropping preprocessing method 

in the later sections. 
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Table 4. K-fold ACC (%) of the padding and cropping strategy 

Seed = 42 

 Original Padding Cropping 

Fold1 80.77 82.57 86.15 

Fold2 82.31 84.85 83.69 

Fold3 81.54 82.31 84.62 

Fold4 82.31 84.62 86.15 

Fold5 84.62 83.08 85.38 

Average 82.31 83.49 85.20 

Seed = 77 

Fold1 83.91 82.76 85.06 

Fold2 75.86 81.61 82.76 

Fold3 78.16 85.06 80.46 

Fold4 75.8 79.31 82.76 

Fold5 79.07 80.23 83.72 

Average 78.56 81.80 82.95 

* The best accuracy in each row is highlighted using bold font. 

 

 (a) Seed=42 

 

(b) Seed = 77 
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Figure 11.  K-fold ACCs of the tumor classification trained on images resized directly from original 

images, resized after padding, and resized after cropping.  

4.2.2 Classification results with different pretrained efficient CNNs 

Transfer learning from pretrained models with loaded trainable weights is used as the base 

convolutional layers in the classification. The final CNN is then created from the base 

model, followed by two new dense layers with 512 and 128 units and Relu activation. A 

dropout layer with 0.5 dropout rate is inserted between these two dense layers to alleviate 

the risk of overfitting. The final dense layer is built with one unit and the sigmoid activation. 

Four efficient CNNs are compared to construct the new tumor classification network. Table 

5 shows the model size and number of parameters for MobileNetV1, MobileNetV2, 

NASNetMobile, and EfficientNetB0. The Top-1 and Top-5 accuracies refer to the model’s 

performance evaluated on validation set of the ImageNet dataset. 

Table 5. Model size and parameters of the pretrained efficient CNNs. 

Model Size Parameters Top-1 Accuracy Top-5 Accuracy 

MobileNetV1 16 MB 4,253,864 0.704 0.895 

MobileNetV2 14 MB 3,538,984 0.713 0.901 

NASNetMobile 23 MB 5,326,716 0.744 0.919 

EfficientNetB0 29 MB 5,330,571 0.767 0.931 

Controlled K-fold experiments are performed with two random seeds to compare the 

performance of the four pretrained CNNs. All configurations are same, including training, 

validation, and testing splits, seed for weight initializers and seed the dropout layer. The 

maximum number of training epoch is 100, and the optimizer is SGD. All the experiments 

are conducted using CPU.  Table 6 shows the model size and parameters of the new efficient 

CNNs. 

 

https://keras.io/api/applications/mobilenet/#mobilenetv2-function
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Table 6. Size and Parameters of the classification model with pretrained CNNs. 

Pretrained Model Size Parameters 

MobileNetV1 30 MB 3,819,457 

MobileNetV2 24 MB 2,979,649 

NASNetMobile 41 MB 4,876,693 

EfficientNetB0 37 MB 4,771,229 

Table 7. K-fold ACC (%) of the classification model with pretrained CNNs 

 

 

 

Seed 

= 

42 

 MobileNetV1 MobileNetV2 NASNetMobile EfficientNetB0 

Fold1 85.06 75.86 75.93 80.56 

Fold2 82.76 81.61 66.67 83.33 

Fold3 82.76 80.76 65.74 83.33 

Fold4 81.46 77.01 70.37 80.56 

Fold5 84.62 77.91 62.04 80.56 

Average 84.314 78.63 68.15 81.668 

 

 

Seed 

= 

77 

Fold1 86.61 81.72 70.55 87.23 

Fold2 83.61 77.91 71.92 82.98 

Fold3 79.01 76.74 63.2 80.5 

Fold4 80.89 74.1 68.5 75.47 

Fold5 85.56 81.72 61.5 78.72 

Average 83.14 78.44 67.13 80.98 

* The best accuracy in each row is highlighted using bold font. 
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(a) Seed = 42 

 

(b) Seed = 77 

Figure 12.  Results of K-fold cross-validation of four efficient CNNs using two random seeds to 

split data in each fold.  

As shown in Table 7 and Figure 12, MobileNetV1 (with input shape 224 × 224 × 3) produces 

the highest average accuracy. Although EfficientNetB0 could also achieve competitive 

performance, its model size and parameters are much larger than MobileNetV1. In future 

experiments, MobileNetV1 will be selected for the backbone network for tumor 

classification. 
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4.2.3 Weighted Binary Cross-Entropy 

In CAD systems for disease diagnose, sensitivity is more important than other metrics. 

Sensitivity measures a model’s ability to find out disease cases from normal cases. Poor 

sensitivity of a model will result in the missing classification of many positive cases to 

negative cases (high false negative). In breast cancer diagnosis, it is intolerant to misclassify 

a malignant tumor to a benign tumor because the false positive will lead to the late detection 

of cancer and extremely lower the survival chance of patients. 

To make a tradeoff between the sensitivity and specificity while not to decrease the overall 

accuracy of the model, we use the weighted binary cross-entropy (WBCE) as the loss 

function. The WBCE is defined by 

                   𝑳𝑊𝐵𝐶𝐸 = −
1 

M
∑ (𝑾𝑝 ∙ 𝒀𝑖 ∙ log(𝑯𝑖) + (𝟏 − 𝒀𝑖) ∙ log(1 − 𝑯𝑖))

𝑀

𝑖=1
       (9)  

where M denotes the number of training examples; 𝒀𝑖 is the target label of the ith training 

sample; 𝑯𝑖 is the prediction; and the weight 𝑾𝑝 is added as a multiplicative coefficient for 

the positive labels term. The additional weight 𝑾𝑝 with value large than 1 will increase the 

loss for false negative results, hence minimizing the loss function will increase the 

sensitivity.  

The effectiveness of the additional weight added in the loss function is tested using nine 

different weight values from 1 to 5 with a step size 0.5. Except for the positive weight value 

in the WBCE loss function being different, all the other configurations for each training are 

controlled to be the same, including the data preparation, model weight initialization, 

learning rate, momentum in SGD optimizer, total training epoch (100), and the batch size 

(32). All these experiments are performed using CPU.  
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Figure 13 plots values of the accuracy (ACC), sensitivity (SEN) and specificity (SPE) 

calculated using the test set for different weights. Compared with the standard BCE loss 

function where the positive weight is 1, the sensitivity gets improved if the weight increases. 

A higher weight value for the positive label term helps strongly penalize the False Negatives 

and compensate the class imbalance problem. 

  

Figure 13.  ACC, SEN and SPE of tumor classification using different weights in the WBCE 

loss function. 

4.2.4 Classification Using Image Augmentation 

The total number of BUS images is limited. After splitting 30% of images to be the 

validation set and testing set, the training dataset is relatively small, with only 604 images. 

Training a CNN using a small training set will highly likely lead to overfitting and not 

generalizing well from the validation data to test data. We explore the effectiveness of 
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several image augmentation techniques to improve the generalization of the tumor 

classification. 

In breast cancer detection, tumor shapes and boundaries are important to determine the 

tumor categories. Augmentation techniques are not allowed to cause any tumor distortion, 

permutation of the relative position of image pixels, and new white pixels (confuse with 

calcification). Therefore, techniques including random rotation, rescaling, shearing, 

zooming, vertical flip, and brightness shifting are applied in our experiments. The final 

augmentation experiments are evaluated on traditional transformation techniques, including 

width shifting, height shifting, and horizontal flip. Figure 14 shows the example of an 

original resized image and its corresponding augmented images using width shifting by 10% 

of the image size, height shifting by 10%, and horizontal flip. 

K-fold (K=5) cross-validation is performed on the CPU to measure the effectiveness of the 

three image augmentation techniques. Two seeds, 42 and 77, are used for splitting the train, 

validation, and test sets twice. The results are shown in Table 8 and Figure 15. Among the 

three techniques, width shifting achieved better overall accuracy than the other two 

techniques. Using the height shifting faces with risk of decreasing the accuracy. 
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                                       (a)                                                            (b) 

             

                                       (c)                                                            (d) 

Figure 14.  Example of (a) an original resized image with (b) width shifting by 10%, (c) height 

shifting by 10%, and (d) horizontal flipping. 

Table 8. Tumor classification using various augmentation techniques. 

 

 

 

Seed 

= 

42 

 No Aug Width Shift Height Shift Horizontal Flip 

Fold1 86.15 85.19 81.48 83.67 

Fold2 83.69 92.59 85.19 93.88 

Fold3 84.62 85.19 83.33 83.67 

Fold4 86.15 84.26 83.33 82 

Fold5 85.38 86.11 83.33 83.67 

Average 85.20 86.67 83.33 85.38 

 

 
Seed 

= 

77 

Fold1 85.06 83.33 85.19 87.23 

Fold2 82.76 89.81 85.16 82.41 

Fold3 80.46 82.81 82.33 86.04 

Fold4 82.76 85.2 75.53 82.41 

Fold5 83.72 85.18 82.11 86.11 

Average 82.95 85.27 82.06 84.06 
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 (a) Seed = 42 

  

(b) Seed = 77 

Figure 15.  K-fold ACCs of the tumor classification using different augmentation techniques.  

4.3 Multi-task Tumor Classification and Segmentation 

4.3.1 Single-task Efficient Tumor Segmentation 

U-Net is one of the most commonly used CNN for medical image segmentation using the 

concept of deconvolution and built upon the elegant architecture of FCN. Although using 

U-Net could achieve satisfying performance, it does not focus on utilizing the parameters 
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efficiently and is not suitable for deployment on mobile devices. A new segmentation 

architecture is proposed to use Link-Net as the decoder with pretrained light-weighted CNN 

(MobileNetV1, MobileNetV2, and EfficientNetB0) as the encoder. Table 9 shows the size 

and number of parameters for each model. 

Controlled experiments are conducted to measure the performance of those four introduced 

segmentation models on the cropped images. All configurations are the same. From results 

showing in Table 10 and Figure 16, compared with U-Net, Link-Net with the pretrained 

EfficientNetB0 achieves the best overall performance, and Link-Net with the pretrained 

MobileNetV1 achieves the second-best overall performance. However, the pretrained 

EfficientNetB0’s IOU is only 2.3% higher than that of the MobileNetV1, and it consumes 

51.8% more memory storage. Our final model will be deployed on the mobile device, and 

the slight decrease of performance could be tolerated if the efficiency of segmentation could 

be largely improved.  Based on this criterion, the Link-Net with the pretrained MobileNetV1 

will be used in our final model. 

Table 9. Size and Number of Parameters of evaluated segmentation models 

Model Size  Parameters 

U-Net 89 MB 7,760,097 

Link-Net with Pretrained MobileNetV1 54 MB 4,546,065 

Link-Net with Pretrained MobileNetV2 50 MB 4,144,577 

Link-Net with Pretrained EfficientNetB0 82 MB 6,096,333 

 

Table 10. Performance of the 4 evaluated segmentation models 

Model DSC  IOU TPR TNR ACC AUC 

U-Net 87 79.5 88.2 98.8 97.2 94.8 

Link-Net with Pretrained MobileNetV1 86.6 79.2 87.4 99.4 98.4 95.7 

Link-Net with Pretrained MobileNetV2 86.3 78.8 86.9 99.1 97.3 95.5 

Link-Net with Pretrained EfficientNetB0 88.2 81 89.1 99 97.6 95.7 
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Figure 16.  Performance Comparison Results of different segmentation models 

4.3.2 Efficient Multitask Tumor Classification and Segmentation 

Based on the single-task classification and segmentation, to construct a joint classification 

and segmentation model, the pretrained MobileNetV1 without its original dense layers is 

used as the network backbone in the multitask learning architecture. The feature maps from 

the backbone network are feed into (1) the newly introduced binary classification branch 

and (2) the Link-Net decoder segmentation branch. 

Firstly, controlled experiments are performed to evaluate the classification and 

segmentation performance of the constructed multitask model. The metrics DSC and IOU 

are used for the segmentation task; and ACC, SEN, and SPE are used for the classification 

task. The optimizer for the multitask model employs the Adam algorithm with a learning 

rate of 0.0005. The loss function for the classification branch is the Standard BCE, and the 

Dice loss is used for the segmentation branch. The ratio of the two losses in the final loss 

function is 1:1, which makes the two tasks equally important. 

As shown in Table 11, the proposed multitask learning network effectively boosts both the 

classification and segmentation performance; and the size of the multitask model is only 
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71.4% of the size of the summation of the single-task classification and segmentation model 

(84 MB). Figure 17 gives two examples for benign and malignant tumors with their mask 

and segmentation results from the multitask network. 

Table 11. Segmentation and classification performance of proposed multitask network 

Training  Size  Parameters DSC IOU ACC  REC SPE 

Multitask network 60MB   5,136,658 87.2 79.7 88.69 85.19 90.47 

Single-task Classification 30MB 3,819,457 - - 83.85 79.66 87.32 

Single-task Segmentation 54MB 4,546,065 86.6 79.2 - - - 

 

      

(a) Benign case 

      
(b) Malignant case 

Figure 17.  Examples of two original image (left), ground truth (middle), and segmentation results 

(right) from the multitask model. 

Since classification is the major task in the multitask network. Controlled experiments are 

performed by assigning a larger weight of the BCE loss for classification. Table 12 shows 

the comparison for classification and segmentation, which shows that assigning large weight 
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for classification makes training pays more attention to optimize this task and could improve 

the classification performance. 

Table 12. Segmentation and classification performance of different weight ratios. 

Weight Ratio of 

Classification and Segmentation Loss 

 

DSC 

 

IOU 

 

ACC 

 

SEN 

 

SPE 

1:1 87.2 79.7 88.69 85.19 90.47 

2:1 85.9 78.5 90.77 87.04 93.42 

3:1 86.6 79 93.85 94.44 93.42 

 

4.4 Mobile Application Development Using Android Studio 

All the model’s architecture and learnable weights are saved in the standard Keras H5 file 

format. We firstly convert it to TensorFlow Lite (. tflite) using the TFLiteConverter function 

provided by Tensorflow to use the TensorFlow Lite Java API for model optimal inference 

on Android.  

The mobile application is created and developed using Android Studio 3.2 installed on a 

Windows machine, with Android SDK with version 23 in the configurations. Since we do 

not have a physical Android device, we use Android Emulator to simulate an Android 

mobile device on the computer. It provides almost all the capabilities of a physical Android 

device. Google Pixel 2 API 28 with CPU x86 and 9.2 GB size on disk is downloaded as the 

instance of the Android virtual device (AVD), where our application is installed and tested. 

Figure 18 shows the overall workflow of the developed mobile “Breast Cancer Detection” 

application. After launching the detection application, clicking the button “Choose Image” 

will allow the app access to the mobile photo gallery; after selecting a breast ultrasound 

images from the gallery, a page showing both the selected image will come up; clicking the 

“Detect” button at the bottom will enable the model starting the inference; the final result 
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page covers three results: 1) segmentation result at the top; 2) classification results with a 

probability of malignancy; and 3) inference time cost (measured in microseconds). 

        

(a)                                                      (b) 
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(c)  

     

(d)  

Figure 18.  Mobile Application workflow. (a) landing page; (b) mobile photo gallery; (c) a benign 

case and the results; and (d) a malignant case and the results. 
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CHAPTER 5: CONCLUSION 

The thesis focuses on developing and evaluating efficient and light-weighted CAD 

approaches for breast cancer detection, and building and deploying a mobile application 

using Android Studio. The major conclusions are as below. 

(1) Padding and cropping preprocessing strategies are applied to prepare square input 

images of the tumor segmentation and classification networks. Experimental results 

demonstrate that the cropping strategy produces higher classification accuracy than the 

padding strategy. 

(2) 4 pretrained light-weighted CNNs as classification models are measured from the 

accuracy perspective, including MobileNetV1, MobileNetV2, NASNetMobile, and 

EfficientNetB0. From the experiment results, MobileNetV1 achieves highest accuracy 

among the 4 evaluated classifiers. 

(3) Image augmentation techniques including of width-shift, height-shift and horizontal-flip 

are employed to ease overfitting. Shown from the experiments, the width-shift with 0.1 

percent of image size mostly improves the classification accuracy, compared with height-

shift and horizontal-flip. 

(4)  From the experiments to evaluate the single-task segmentation models, including U-

Net, Link-Net with pretrained MobileNetV1, MobileNetV2 and EfficientNetB0, Link-Net 

with pretrained MobileNetV1 outperforms with best tradeoff between segmentation 

accuracy and model efficiency. 

(5) Testing results from multitask learning models prove that combining classification and 

segmentation task into a joint network improves the prediction accuracy of both tasks. The 
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classification task archives further better performance with larger weight assigned to the 

classification loss. 

(6) The mobile App “Breast Cancer Detector” uses the multitask learning model converted 

in Tensorflow Lite format. The App supports real-time classification and segmentation of 

breast tumor simultaneously, with around 350 milliseconds average inference time.  
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